
Biomechanical Soft Tissue Modeling –
Techniques, Implementation and Applications

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Dipl.-Phys. Markus A. Schill

aus Heilbronn

Oktober, 2001

Dekan: Professor Dr. Herbert Popp, Universität Mannheim

Referent: Professor Dr. Reinhard Männer, Universität Mannheim

Korreferent: Professor Dr. Karl-Heinz Höhne, Universität Hamburg

Tag der mündlichen Prüfung: 19. November 2001

Preface

January 1996 to Today

While a team of talented people is particularly important in software develop-
ment, I found myself all alone in January 1996, when Reiner Männer challenged
me to build up a research group at his chair, the Department for Computer
Science V at University of Mannheim. The group should deal with medical
image processing and biomechanical simulations, where the latter was soon to
become dominant due to the direction our work was heading for.

In early 1997 Joachim Meißner became the first diploma student of the research
group to be. He developed a finite element model for the Dura mater, a strong
skin surrounding the brain. The element he derived found its way to our current
code.

The EyeSi project was born early in 1996 in a joint effort with Martin
Schinkmann, Joachim Bender and Reiner Männer. After about a year of project
planning, applications for funding and first design considerations, Marc Hennen
started his diploma thesis in summer 1997, laying the fundaments for EyeSi.
Clemens Wagner joined the team as a PhD student shortly there after, focusing
on computer graphics and system architecture. In late 1997 I went to MERL
in Cambridge, U.S.A. for a six months research stay and Clemens took over
the responsibility for the group which we had named ViPA (Virtual Patient
Analysis) in the meantime. Ever since then Clemens has been one of ViPA’s
major pillars. While I was studying biomechanical simulation algorithms with
Sarah Gibson and decented into the depth of ChainMail, Clemens and Marc
created the first computer graphical eye model. When Clemens mailed the first
screenshots to MERL I pinned them to the walls of my cubical and felt thrilled.

As we were getting more and more engaged with the ideas of Virtual Reality,
we decided to investigate its key technologies. Olaf Körner started a diploma
thesis in July 1998 investigating haptic feed-back and implementing the first
software for the newly acquired PHANToM device. His thesis was about the
haptic exploration of volume data sets, however he also contributed greatly
to architectural design questions related with other projects. As a matter of

I

II

fact Olaf convinced Clemens and myself that vrmNode and vrmConnector are
basically the same.

The summer of 1999 brought a doubling of the group’s staff. Johannes Grimm
and Nickolaj Nock joined in July. Johannes carried on the brain simulations
bringing them to new heights and Nick worked on color segmentation and the
generation of world models from camera images. Johannes’ work on finite
elements and his implementation also became a part of the vrmDesign. Nick’s
work can be regarded as our first work towards optical tracking; another key
technology for Virtual Reality. In August Olaf started his PhD. Based on the
experiences so far collected with EyeSi, he began a second simulator project,
which aims at developing a training simulator for endoscopy; internally the
project was dubbed ”GLdarm”. Norbert Hinckers also lined up in August to
carry on the haptic research in his diploma thesis. He developed our first,
self-designed and very heavy, electro-magnetic force-feed-back device. Since
he started Norbert was particularly interested in the EyeSi development and
has greatly contributed to make the EyeSi-project what it is now. In Fall
1999 Thomas Ruf joined ViPA for his diploma. It was the time of the first
redesign of the EyeSi-hardware. Thomas developed a new very fast optical,
tracking system for EyeSi. Moreover, his computer knowledge in general, and
his coding skills in particular made him a valuable source of information for us
all.

The year 2000 brought ViPA its first international PhD member: Liu Bing
from China. After developing an environment for the evaluation of tactile
displays for blind people, she is now working on the stereo reconstruction- and
calibration-processes for the optical tracking system. Johannes started his PhD
in August focusing on physical modeling techniques.

Andreas (Mr. C++) Köpfle, also known as the kernel hacker, joined ViPA
in May 2001 for a PhD. He will be coordinating the optical tracking develop-
ments. So far he has not only contributed to ViPA’s work, but also to the linux
USB kernel development. Only recently Ralf Panse started his diploma thesis,
investigating self calibration methods for the tracking system.

Without having mentioned the many students, who also contributed greatly
to the developments, these are the people who teamed up to make great and
wonderful things . . .

. . . but wait – this is not the acknowledgment section!

Comment

The structure of the thesis at hand does not strictly follow the way in which
such a thesis is usually composed. Usually the first half describes what has been
reached in research so far and the second half explains the findings and results

III

of the own work. Instead I decided to follow a concept that seems more natural
to me, the sequence from Techniques over Implementation to Applications.

Here is a direct list of what I feel to be the major contributions to research
from this work: Free-sampling (page 37), the Enhanced ChainMail algorithm
(page 43), the implemented software architecture vrmDesign (page 73), which
unites several modeling approaches and visualization techniques and of course
the two simulation projects EyeSi (page 92), which I feel particularly associated
with, and Brain3D (page 104).

Acknowledgment

I want to thank Prof. Dr. Reinhard Männer for giving me the chance to
establish the ViPA research group at his chair, the responsibility he delegated
to me and the freedom I had in my work. I also want to thank him for being
my advisor for the thesis at hand. He always had an ear for my problems and
sometimes fancy solutions to them.

Prof. Dr. Dr. Hans-Joachim Bender advised all medical projects conducted
in the ViPA group. He supported me right from the beginning and provided
valuable contacts that helped to accomplish my plans. He sometimes called me
during the time at MERL; just to keep contact! Thank you.

I want to particularly thank Prof. Dr. Karl Heinz Höhne for readily taking the
time to read and give his expertise on the thesis at hand.

Dr. Sarah Gibson invited me to MERL and provided me with a completely
different research experience. Thank you for a time in which I could focus on
my research and everything else was taken care of.

Many thanks to Clemens Wagner for endless discussions on senseless and also
extremely meaningful issues (particularly the one in Dallas, I mean the mean-
ingful!?).

Andrea Seeger and Christiane Glasbrenner always cheered me up and helped
when things were going astray. In particular Andrea Seeger saved my day more
than once.

Clemens Wagner, Norbert Hinckers, Johannes Grimm and Petra Joswig thank
you for proof-reading and valuable comments.

A special thanks to all the people of the ViPA research group (they were al-
ready mentioned above) for their commitment and the perfect atmosphere they
created. To all of you and all associated snipers and campers: “Go go go!!!”

There were also times when the kind of special support was necessary that can
only be provided by the right people. Thank you Petra! Thank you Anna and
Judith for just being there!

Last but not least, I want to thank my parents, Marianne and Dieter, for raising
me the way they did and giving me the chance to do the things I have done.

IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 3

1.3 Overview . 3

2 Biomechanical Modeling 5

2.1 Modeling and the Modeling Cycle 6

2.2 Physical and Descriptive Modeling 8

2.3 Theory of Elasticity . 10

3 Currently used Modeling Techniques 15

3.1 Finite Element Method . 16

3.1.1 Basic Concept . 16

3.1.2 FEM in Soft Tissue Modeling 20

3.1.3 Classification . 24

3.2 Mass Spring . 24

3.2.1 Basic Concept . 25

3.2.2 Mass-spring in Soft Tissue Modeling 27

3.2.3 Classification . 28

3.3 Other Modeling Techniques . 30

3.3.1 Free Form Deformation (FFD) 30

3.3.2 Deformable Models . 32

3.3.3 Implicit Surfaces . 33

V

VI Contents

3.3.4 Particle Models . 35

3.3.5 Free-sampling . 37

3.3.6 Transmission Line Model 39

3.4 Summary . 40

4 Enhanced ChainMail 43

4.1 ChainMail . 43

4.1.1 Outline of the Original ChainMail Algorithm 44

4.1.2 Discussion . 46

4.2 The Enhanced ChainMail Algorithm (ECM) 49

4.2.1 Basic Idea . 49

4.2.2 Outline of the ECM Algorithm 52

4.2.3 Results . 53

4.2.4 Discussion . 65

4.2.5 ECM in Soft Tissue Modeling 69

4.2.6 Classification . 71

4.3 Summary . 71

5 Implementation 73

5.1 On Masses, Elements, Chains and Vertices 74

5.1.1 Nodes and Connectors 75

5.1.2 Object-oriented Analysis and Design 77

5.2 System Architecture: vrmDesign 78

5.2.1 Basic Classes . 78

5.2.2 Modeling MassSpring 80

5.2.3 Modeling ChainMail . 81

5.2.4 Modeling FEM . 83

5.2.5 Visualization . 86

5.3 Summary . 88

Contents VII

6 Application 91

6.1 EyeSi – A Simulator for Intra-ocular Surgery 92

6.1.1 Previous Work on Eye Surgery Simulation 93

6.1.2 Surgery in Cyberspace 93

6.1.3 Summary . 103

6.2 Simulation of Decompressive Craniotomy 104

6.2.1 Method . 104

6.2.2 Sensitivity analysis . 106

6.2.3 Preliminary Results . 107

6.2.4 Discussion . 108

6.3 Summary . 110

7 Summary 113

Bibliography 114

A Modal Analysis 127

B Element Matrices 129

VIII Contents

1
Introduction

1.1 Motivation

The year is 2026. Dr. I.C. Foo, a promising young micro-surgeon is scheduled
to perform a difficult ophthalmic surgery tomorrow morning. Exchanging the
retina on a living human eye is far from being a standard procedure. The
donor’s retina has already been extracted and everything is prepared for the
intervention tomorrow. Dr. Foo is well aware of all the risks involved with
detaching the retina of his patient and fixing the “exchange part” in place.
Disbelief in his own manual abilities can spoil the self-confidence needed to
accomplish the task successfully. There are a lot of complications that can
happen. When Dr. Foo enters his office at 5 p.m. this evening, he decides to
train the operation once more and re-run the surgical procedure in his simulator.
This time he will use the individual data scanned from his patient. He always
feels better after preparing difficult surgeries with the VR device. After loading
the patient’s data, Dr. Foo enters the VR-OR.

Next day: Just to let you know, Dr. Foo’s patient – Mr. C. Klope – is well up!

Micro surgical interventions are demanding both in performing and teaching.
Great manual and psychological abilities are required to concentrate on the
small-scale motion to be performed, often over a period of several hours, un-
der microscopic vision as for example in intra occular surgery. Teaching these
operative techniques is difficult as well. Animal cadavers fall short of human
anatomy and certain pathologies are difficult or even impossible to be created
for individual training. To enable surgeons to train and practise difficult inter-
ventions before actually performing them on the real patient makes the joint
effort of several research fields necessary: medical visualization, general Virtual
Reality technology, biomechanical modeling and medical image processing.

1

2 1. Introduction

A major goal of computer graphics has been the realistic rendering of artifi-
cal scenes, objects, creatures and persons, trying to imitate reality; which has
ever since been heavily used by the movie industries. In contrast to artists
and animators, scientific visualization deals with real data. The area of medi-
cal visualization rapidly gained importance with the development of volume
visualization as the data provided by most medical imaging devices is of volu-
metric nature. The three-dimensional rendering of human organs captured by
e.g. MRI scanners provide a new view on the interior of the human body (see
figure 1.1), which led to fascinating projects such as the visible human1.

Figure 1.1: Volume rendered images of the interior of the human body. Images
from Voxel-Man by Department of Computer Science in Medicine, University
Hamburg [HPP+00a], [HPP+00b]

The capability to render images of the above quality and presenting them
through stereoscopic vision systems2 almost immediately generated the desire
to touch and interact with the rendered objects. Virtual Reality technology
constantly develops better displays and even general force-feed-back devices.

However, interacting with structures of the human body requires biomechan-
ical modeling to determine the reaction of e.g. a squeezed organ. To generate
a biomechanical model the anatomy and the biomechanical properties of the
desired structures are needed.

Medical image processing provides segmentation algorithms which can be
used to extract individual anatomy from a patient’s medical data set. Also
information about the state of the tissue at the relevant places can be extracted
by medical image processing.

1www.nlm.nih.gov/research/visible/visible human.html
2first red/green- then shutter glasses, later head-mounted-displays and today auto-stereo

displays

1.2. Problem 3

Systems which combined contribution from several or all of the required re-
search fields have already been used for planning and controlling surgeries.
The potential of using Virtual Reality for the training of standard, as well
as critical situations has been demonstrated by flight simulators in the past.
Virtual Reality together with real time biomechanical simulation and visual-
ization is also well suited to improve significantly the way physicians acquire
knowledge, train manual abilities and learn surgical procedures.

1.2 Problem

There are at least three major problems in developing a simulation environment
like the one Dr. I.C. Foo uses in the year 2026: (1) fast visualization and
simulation algorithms, (2) a software architecture that allows the assembly of
contributions from the different contributing research fields and (3) patient
specific models. Two of those problems are addressed in this thesis. The third
problem, the creation of patient specific models from scanner data, respectively
the development of scanners that extract the required tissue information with
sufficient resolution, falls into another research area.

To interact with an object like a human organ in a medical simulation re-
quires to calculate the organ’s reaction to the manipulation. There are two
contrary approaches one can follow to determine how the tissue reacts. The
organ’s reaction can either be calculated with the physical theory of elasticity,
which currently requires way too much computational time, or some “pseudo-
physical” method has to be invented which produces similar results.

As scientific visualization and biomechanical simulation have so far evolved
independently, they work with different data structures. In general medical
simulations today use two or even more different representations of the object
they simulate; one representation is generally required for visualization and one
for simulation. Sometimes there is an extra representation for collision detec-
tion. The multiplicity of representations leaves the problem of synchronization
and memory consumption.

1.3 Overview

First, this thesis addresses the need for suited simulation algorithms. Chapter
2 discusses briefly the modeling process in general and introduces two defini-
tions which will be used to classify – and should help to assess – the modeling
techniques presented later. Chapter 2 closes with a presentation of the physics
of elasticity as the correct physical description still represents the gold standard
for soft tissue simulations.

4 1. Introduction

Chapter 3 gives an overview over the state of the art in biomechanical modeling.
The basic principles of the presented techniques are explained, followed by
examples of how they have been used to model soft tissue by the research
community. Each technique is classified according to the definitions given in
the previous chapter.

In chapter 4 the Enhanced ChainMail algorithm is presented together with
several examples which illustrate its capabilities. The performance of the al-
gorithm is analysed and a detailed discussion on its strength and weakness is
given.

Then, in chapter 5, the thesis presents a software architecture which could
overcome the multiple representations problem mentioned in the previous sec-
tion. Several biomechanical simulation algorithms and OpenGL visualization
are already implemented in the presented design.

Finally, two applications of biomechanical soft tissue modeling are presented,
that were developed in the scope of this thesis. Both applications presented
in chapter 6, the simulation of an intra-ocular surgery and the simulation of a
decompressive craniotomy, were realized using the presented software architec-
ture.

2
Biomechanical Modeling

Chapter 2 provides an overview over the modeling process in general and the
physics (theory of elasticity) needed for biomechanical modeling in particular.
The first section 2.1 introduces the idea of the modeling circle. The modeling
circle describes the general modeling process. Single tasks found as parts of
the circle occur in similar form in every modeling process.

The second section 2.2 suggests two definitions that can be used to characterize
a particular modeling approach. Such a definition is desirable as it has become
fashionable in the field of biomechanical modeling to call approaches “physical”
or “physically based”. Such a nomenclature is often chosen to suggest that the
particular model is very close to physical reality, which is not always true. In
chapter 3 some of the most common modeling techniques will be presented.
The given definitions will be used to characterize each presented modeling
technique.

A summary of the theory of elasticity will be given in section 2.3. The theory of
elasticity represents the current gold standard in modeling deformable objects.
Although elasticity theory deals with idealized bodies, which generally don’t
exist in real problems, approaches which follow the theory exactly often cannot
be conducted. They lead to complex expressions that either cannot be solved
at all due to numerical instability or require computational time which exceeds
the time constraints for reasonable solving.

5

6 2. Biomechanical Modeling

2.1 Modeling and the Modeling Cycle

Modeling is a very common task in computer science. Real-world processes are
mapped into algorithmic representations that can be processed by a computer1.
A model can be considered appropriate if the algorithmic representation is
capable of reproducing or predicting the outcome of the real-world-process for
a given set of start conditions. The more general the start conditions are
allowed to be, the more general the model can be used. A model that maps
exactly one real world process under one defined set of start conditions into
a computer can be regarded as automation. Depending on the computational
time required for finding the solution of the algorithmic representation, on- and
offline simulations can be distinguished.

Soft tissue modeling deals with predicting the behavior of deformable tissue
when forces or displacements are applied to one or several parts of the tissue.
The tissue may be subject to certain constraints (starting/boundary condi-
tions); it can be fixed or supported in one or many places. Soft tissue simula-
tion covers research areas reaching from medical simulations – e.g. predicting
the outcome of surgical procedures – over character animation – providing e.g.
realistic facial expressions – to cloth/fabric simulation for the fashion industry.

In contrast to rigid body simulation, which can very well exploit the general
laws of physics, the behavior of soft tissue can be much more complex and
often requires different approaches. Using classical physical approaches mostly
leads to formulations which cannot be solved analytically and whose numerical
solutions are time-consuming and difficult or even impossible due to numeri-
cal instability. To overcome these problems, a variety of other (non-physics)
approaches have been developed. Some of them are referred to as physical
or physically based whereas others can clearly be associated with animation
techniques.

No matter which category a particular model might fall into, the process of find-
ing a model always includes similar tasks. In general, all models are designed
by following the same sequence of steps:

1. Observe the domain of the problem and try to find regularities that can
be used for a model.

2. Find an idealization for the problem which is capable to reproduce the
observed regularities.

3. Construct a model, generally a mathematical formulation that reflects the
regularity. In particular investigate the start and boundary conditions of
the formulation.

1In this sense an accounting software models the real-world process of money flow in a
company.

2.1. Modeling and the Modeling Cycle 7

4. Use the model to make a prediction; solve the mathematical formulation.

5. Validate the prediction with experiments.

6. Correct model; start process all over.

Errors can occur in all steps of the modeling process. Most severely are the
errors made in the idealization of the problem; wrong idealizations can never
produce right simulation results. Numerical errors should always be consid-
ered as they always occur while solving the mathematical problem formulation
numerically (step 4).

Figure 2.1 illustrates the modeling process described above.

Figure 2.1: The modeling cycle.

Once a model is found, it has to be tested and validated. Testing includes the
investigation of the valid scope of the model by varying the start and boundary
conditions. There are various ways to validate a given model. Obviously the
best way is to compare the real-world and the simulated system. Therefore
it is necessary to determine exactly the status of the real-world system at
the beginning and at the end of the process. As this is not always possible
validation by an expert with knowledge about the behavior of the system has
become common practice in these cases.

Online simulations have the great advantage that they produce their results
within fractions of a second which makes the iterative modeling process faster.
In addition, online simulations allow the interactive adaptation of model pa-
rameters, accelerating the testing and fitting of the model.

8 2. Biomechanical Modeling

2.2 Physical and Descriptive Modeling

Whereas simulations use physical laws to predict a real-world process, anima-
tions do not necessarily have to follow physical laws. An animator transforms
his/her own ideas of how an object should behave when exposed to external
forces. Although animations don’t have to follow causality, there is a strong
desire to make animations follow some particular rules. This desire is mainly
founded in the development of animation systems which are capable of evolving
a given scene following such particular rules. Apart from using different rules
the situation is very similar in a physical simulation. Given a set of start- and
boundary condition and all effective forces, the system evolves according to the
general laws of physics.

Research has produced a lot of different modeling approaches to calculate the
shape changes of deformable objects. They reach from purely geometric tech-
niques to the accurate physical description of a problem. In between these,
several other forms have established, trying to overcome the lack of physics in
geometric models on one side or the expensive modeling and time consuming
calculations necessary in physical modeling on the other side. A lot of these
models are called physical or physically based. At least with respect to the mod-
els capability of producing physically correct simulation results this denotation
is misleading. Often the attribute is simply based on the use of physical terms
like energy, mass or force in analogy to their physical meanings.

The following definitions will be used to classify the modeling techniques that
will be introduced in the next section. There are two contrary approaches for
finding an adequate model.

Physical modeling techniques: Physical models are constructed using
physical laws. Usually the result is a system of differential equations,
containing parameters with a physical meaning. The result of a physical
model is only governed by these parameters. As the parameters reflect
physical properties they can be measured in the real-world process. In
case of biomechanical modeling such parameters are typically the Young’s
modulus E and the Poisson ratio ν. A good model makes correct pre-
dictions only if (math.: iff) the measured, real physical properties are
used for the calculations. In physical modeling the functionality of the
real-world process is modeled. Detailed physical knowledge about the
simulated process is necessary.

Descriptive modeling techniques: Descriptive models do not exploit phys-
ical knowledge. Instead they parameterize observed behavior. Descrip-
tive models mimic the desired properties of a real-world system. The
free parameters of the descriptive model are used to fit modeled and ob-
served behavior. Like in animations the quality of a descriptive model
depends on the skill and experience of the designer. In general a descrip-
tive model behaves similar to the real-world process, but not necessarily

2.2. Physical and Descriptive Modeling 9

exactly alike. A descriptive model models the behavior of the real-world
process. No knowledge about how the process works is necessary.

Physical models are generally easier to validate as they use parameters that
are measurable in the real-world process. Their drawback is, that they are
expensive; in particular, the required numerical methods for solving the math-
ematical formulation are very time consuming.

Descriptive models can be difficult to validate - it is possible that once chosen
model parameters produce correct results only for conditions that were observed
during the parameter fitting. The quality of the model depends on the designer.
The advantages of descriptive models are: (1) in order to construct the model no
knowledge about the functionality of the real-world process is needed, (2) they
can be very fast.

The modeling pyramid in figure 2.2 once more illustrates the necessary steps
of the modeling process. A real-world process has to be idealized before it
can be modeled with e.g. one of the techniques that form the base of the
pyramid. Modeling approaches in the base are arranged regarding their physical
respectively their descriptive character.

Figure 2.2: At first the real-world process is idealized, then the idealization
is modeled. Some of the available modeling approaches are arranged in the
base of the modeling pyramid. They are classified in the range from physical to
descriptive. (The bubbles around the particular approach should have a soft
boundary.)

Mostly the application one has in mind determines the modeling techniques

10 2. Biomechanical Modeling

that can be used. If the goal is a real-time virtual reality simulator, like the
EyeSi system presented in chapter 6, the time consuming physical approaches
can not be used. The chosen modeling technique in turn determines the way
in which the real-world problem should be idealized. A priori it is not possible
to decide that one technique is better than the other. The modeling technique
should be chosen according to the problem and its constraints. Choosing a
modeling approach which is suited to solve the given problem is often a hard
problem.

A physically correct set of rules, however, if it can be derived, will always be
able to evolve a given start situation correctly. The theory of elasticity, which is
presented in the next section, provides the framework for the physically correct
problem formulation.

2.3 Theory of Elasticity

Elasticity problems are formulated using the laws of continuum mechanics.
Figure 2.3 shows a deformable body in two configurations: the undeformed

Figure 2.3: Displacement u from undeformed to deformed configuration.

initial configuration (at t0) and after translation and deformation (at t). The
displacement vector ~u describes the distance between the material point P (t0)
and the same point P (t) in the deformed configuration:

~u(x1, x2, x3) = u1(x1, x2, x3)~i+ u2(x1, x2, x3)~j + u3(x1, x2, x3)~k (2.1)

The difference between translation and deformation of a body is that during
translation the distances between any pair of material points do not change.
From this property a measure for deformation of the body can be defined: any
measure that considers the change in length between any pair of neighboring
material points can be used to measure the deformation.

2.3. Theory of Elasticity 11

The strain tensor
Using Eq. (2.1) leads to a deformation measure which is called Lagrangian

strain tensor. In (2.1) the displacement was expressed as a function of the
coordinates of the undeformed configuration. If ~u was expressed as a function
of the deformed configuration this would result in a measure which is called
Eulerian strain tensor. In the following only the Lagrangian strain tensor will
be used. In Cartesian coordinates it has the form:

Eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
: i, j = 1, 2, 3 (2.2)

The squared term in Eq. (2.2) is the reason for the nonlinearity of the general
theory of elasticity. It makes the strain a nonlinear function of the displace-
ments.

Most formulations of elasticity problems are limited to linearity which means
they only use the first part of (2.2)

εij = Eij ≈
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
: i, j = 1, 2, 3 (2.3)

This approximation however, is valid only if the displacement gradients are
small relative to unity, because only then the products of the gradients, last
term in (2.2), are small relative to the gradients themselves and can therefore
be neglected.

The classical linear strain tensor has the following form:

ε11 =
∂u

∂x

ε22 =
∂v

∂y
(2.4)

ε33 =
∂w

∂z

ε12 =
1
2

(
∂u

∂y
+
∂v

∂x

)
ε23 =

1
2

(
∂v

∂z
+
∂w

∂y

)
(2.5)

ε31 =
1
2

(
∂w

∂x
+
∂u

∂z

)

The stress tensor
Stress is generated within a body that is exposed to external forces. Elastic

forces try to bring the body back into its initial shape. Elastic forces are near
effect forces, i.e. they operate on adjacent points only. Figure 2.4 illustrates
the stresses acting on mutually perpendicular coordinate planes that form an
infinitesimal volume element dV . The nine stresses can be arranged in a second
order tensor2. The terms with identical subscripts are called normal stresses
and the terms with mixed subscripts are called shear stresses. Considering

2The nine stresses σij in figure 2.4 transform as a tensor. See [Bur87]

12 2. Biomechanical Modeling

Figure 2.4: Stress on an infinitesimal volume element.

a balance of forces on the infinitesimal volume element of figure 2.4 with an
external force fx in x-direction results in

−fx =
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

(2.6)

or generally
~Fi =

∂σki
∂xk

(2.7)

Also, looking at the balance of moments about each axis yields

σij = σji (2.8)

Thus the stress tensor is symmetric.

The stress-strain relation: material law
The considerations so far are generally valid for all materials. However, to

describe a particular material additional information is necessary: the relation
between stress and strain which is material dependent. Well known is this
relation from Hooke’s linear law, where the relative length change of e.g. a
wire with length l is directly proportional to the acting force F . A is the cross
section of the wire and the force acts perpendicular to A. E is called Young’s
modulus and is a material dependent figure.

∆l
l

=
1
E

F

A
(2.9)

which corresponds to the notation3

ε =
1
E
σ (2.10)

3Cauchy stress: σ = F
A

where F is normal to A. See also [MWMTT98].

2.3. Theory of Elasticity 13

One additional figure, besides E, is necessary to describe the properties of a
particular material completely: the Poisson’s ratio ν. Where E is responsible
for length changes of the wire, ν expresses the contraction of the wire with
respect to the two other coordinate axis. The Poisson’s ratio is related to the
degree of volume conservation that might be true for a certain material as it
expresses the transverse contraction of a material that is stretched lengthwise.

The generalized form of Hooke’s law has the following form:

σij = Cijklεkl (2.11)

where Cijkl is a fourth-rank tensor with 81 (34) elastic moduli. Their number
can be reduced to 21 independent elastic moduli using the symmetry of σ and
ε.A material law considering all 21 independent entries represents the maximum
possible degree of anisotropy.

σxx
σyy
σzz
σxy
σyz
σzx

 =

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

εxx
εyy
εzz
εxy
εyz
εzx

 (2.12)

Equation 2.12 shows only the independent entries. The matrix C is symmetric
with Cij = Cji.

Most modelers limit their approach to the use of isotropic and homogeneous
materials. Together with the assumption of linearity (eq. 2.3) this leads to the
important and frequently used isotropic material law.

~σ = C~ε (2.13)

with

C =
E

(1 + ν)(1− 2ν)

1− ν ν ν 0 0 0

1− ν ν 0 0 0
1− ν 0 0 0

1
2 − ν 0 0

1
2 − ν 0

1
2 − ν

 (2.14)

12 of the 21 elastic moduli from eq. 2.12 vanish for the isotropic case which
makes handling much easier 4.

Finding an appropriate material law for a given object/material combination is
one of the most difficult tasks in biomechanical modeling. In [Bur87] material
laws for several configurations (including anisotropic) are derived. A very good

4A short comment on the implications involved with the solving of non-linear elasticity
problems follows in section 3.1.1.

14 2. Biomechanical Modeling

general discussion on anisotropy can also be found there. A brief compilation of
linear and nonlinear elasticity theory can be found in [MWMTT98]. Material
laws for other material properties like viscoelasticity and a section on how dif-
ficult it can be to find valid material laws is also presented there. Fundamental
continuum mechanics can be studied in [Gol87].

3
Currently used Modeling
Techniques

This section presents major modeling techniques used in biomechanical mod-
eling. The techniques will be classified following the definitions introduced on
page 8. The focus lies on presenting the basic idea of the particular modeling
technique. References to literature are given where needed to allow further
studies. Examples for each presented modeling technique will be used to illus-
trate its capabilities and at the same time provide an overview over the current
status of research in biomechanical modeling.

In general, processes in nature are continuous with respect to space and time.1

Modeling continuous processes with a computer necessarily leads to problems
as computers can represent data only with a limited accuracy. Therefore all
problems have to be parameterized in a discrete state vector. The problem is
then generally solved with a numerical integration technique which approxi-
mates the solution at discrete time steps.

A discrete problem representation as necessary for the computer can be
achieved in two ways: (1) A continuous problem formulation can be dis-
cretizised or (2) the problem itself can be formulated in a discrete way. Both
approaches are common in biomechanical modeling. An example for the first
are so called finite element models (see section 3.1), the latter way is often used
in e.g. mass-spring models (see section 3.2).

1If scale is shifted to quantum mechanical dimensions this is no longer true. In our scales
however this is a valid assumption

15

16 3. Currently used Modeling Techniques

3.1 Finite Element Method

Strictly speaking the finite element method (FEM) is not a modeling technique,
but a method to solve a particular formulation of a mathematical problem2.
Elasticity problems as presented in section 2.3 can be formulated in this par-
ticular way. The term FEM model is often used for biomechanical simulations
where finite elements are used to discretizise the underlying elasticity problem.

3.1.1 Basic Concept

Discretization means that the continuous domain of the problem is divided into
smaller elements with a simple regular shape. Adjacent elements are joint at
discrete node points. Any point P of the problem domain can be expressed
within an element by the use of interpolation functions – so called shape func-
tions – that interpolate P from the surrounding node points Ni. Also any
unknown function g(P) applied to the problem domain can be interpolated by
the shape functions; any continuous problem g(P) may be approximated by
a finite set of equations g(Ni) which hold the node coordinates as variables
[Zie75].

FEM treats an object as a continuum. A continuous problem is approximated
with the interpolation functions for each element in a way, that the values of the
node variables g(Ni) represent the continuous solution of the problem over the
element. The element solutions are then joint to the global problem solution.
Continuity between two elements is reached by arbitrary nodes on the border
of adjacent elements3.

The basic idea of finite elements is that the solution of the problem is easier
over the simple and regular shape of the finite element than over the whole
problem domain. Therefore the object is subdivided into smaller, but still con-
tinuous elements with a more simple shape. The shape and size of the finite
elements (often triangles, tetrahedrons or cubes) lead to an easier mathemat-
ical description of the problem. A good approximation of the solution can be
reached with simple interpolation functions within each element. The interpo-
lation functions describe how the solution varies continously over the element.
A valid finite element is characterized by the property that, given a particular
element, the higher the discretization of the problem is chosen, the better the
approximation of the solution will be. Usually, the interpolation functions are
polynomials. The elements are connected at discrete node points. Each node
point can have one or more node variables which represent e.g. the node’s posi-
tion and higher derivatives. As the node points correspond to the key points of
the interpolation functions the continuity of the solution at element boundaries

2boundary value problems (ger. Randwertprobleme)
3Derivatives of g(Ni) can also be used as node variables to guarantee higher order conti-

nuity.

3.1. Finite Element Method 17

can easily be achieved4. Since the number of key points of a polynome is given
by the number of the polynome’s coefficients, their number must match the
number of the element’s node variables. In general the order of the polynomial
is chosen to be the lowest possible while still providing enough degrees of free-
dom (equals the number of coefficients). Using a polynomial of a higher degree
than necessary, provides the advantage that the approximation of the solution
is better already for a coarser discretization, while the handling of the approach
becomes more difficult with respect to computation time and required memory
size.

For the analysis of deformable bodies displacement based finite element meth-
ods are used. An equilibrium equation is derived using the principle of minimal
potential energy. The material displacements over the object are varied until
its potential energy is minimal. Such an approach is valid only for static or
quasi-static processes5 as in dynamic processes (see page 19) mass effects con-
tribute to the total energy and minimizing the potential energy of the system
does not lead to a stable state.

The Problem Formulation

A complete model of a deformable body is derived from the principle that a
general body is in the equilibrium when its potential energy is at a minimum,
i.e. a deformable body under external forces will take the shape that represents
the minimum of the potential energy. To determine the new shape the total
potential energy Π of a body under stress is calculated as

Π = Λ−W (3.1)

with Λ denoting the total strain energy caused by the work W that is done
by external forces acting on the body. Such external forces can be volumetric
forces (e.g gravitation), acting all over the body, surface forces being applied
only to the body’s surface (e.g. pressure), or local forces acting on discrete
points of the body.

Λ and W have to be expressed in terms of object deformation, which can
be achieved by using the material displacement function equation (2.1). By
varying the material displacements, the minimum of the potential energy can
be found, which corresponds to the new shape of the object. The expression
for the total potential energy is minimized by derivating it with respect to the
material displacements and setting it equal to zero. The result is a continuous
differential equation. Solving the differential equation leads to the material
displacements that represent the new shape of the body.

4Polynomials may be created by specifying a set of (x,y) pairs (key points) and construct-
ing the Lagrange interpolation polynomial that passes through them

5quasi-static processes change very slowly, so that they can be regarded as static within
the analyzed time step.

18 3. Currently used Modeling Techniques

Expressing the external work W in terms of material displacements is easy:

W =
∫
V

~pT~u dV +
∫
S

~qT~u dS +
m∑
i=1

~Fi
T
~ui (3.2)

where ~p is a volumetric force, ~q a surface force and the ~Fi represent forces
acting on discrete point of the body.

The strain energy Λ is given by

Λ =
1
2

∫
V

~σT~ε dV (3.3)

with ~σ the stress vector and ~ε the strain vector from equation (2.13). To find
a corresponding formulation, equation (2.13) is used to replace ~σ in (3.3).

Λ =
1
2

∫
V

~εT C ~ε dV (3.4)

Thus Λ is a function of the material law which gives the stress-strain relation
and thereby governs the behavior of a deformable body under applied forces.

The material displacements can be brought into (3.4) by introducing a differ-
ential operator matrix B. (2.4) and (2.5) illustrate that the relation between ~ε
and ~u can formally be given by

~ε = B ~u (3.5)

where B is a 6× 3 matrix of differential operators.

Λ =
1
2

∫
V

~uTBT C ~uB dV (3.6)

=
1
2
~uT
(∫

V

BT C B dV

)
~u (3.7)

Substituting (3.2) and (3.7) into (3.1) gives the desired form for the total po-
tential energy as a quadratic function of the node displacement vector ~u.

The Solution with FEM

Section 3.1.1 illustrated how an elasto-mechanical problem could be formulated
mathematically. However, the differential operator matrix B, used in (3.5),
can not be given in a generally valid analytical form and is often difficult to
determine for a given problem. Instead it is often easier to derive the relation
(3.5) explicitly once the interpolation functions for the finite elements have

3.1. Finite Element Method 19

been chosen. Detailed presentations of such explicit approaches can be found
in [Sch91].

Once the equilibrium condition is derived for each element, the global system is
assembled. Contributions to node values at arbitrary node points for adjacent
elements are added. In general, this results in a system of linear equations of
the form

K~U = ~F (3.8)

where K is the stiffness matrix, that reflects the geometry of the problem
domain and contains the appropriate material parameters. K is a very large,
but sparsely occupied matrix. ~U is the vector of the node variables. It contains
the nodal displacements which are the result of the accumulated forces ~F that
act on the corresponding nodes. Before actually solving the equation system
(3.8) for ~U the boundary conditions of the problem have to be considered. This
is done by manipulating the rows and columns of K and ~F accordingly so that
the solution will provide the desired values in ~U . For a homogeneous boundary
condition at node n the nth row and column of K are set equal zero and their
diagonal element to one. Also the nth position of ~F is set to equal zero.

The equation system (3.8) can then be solved with either direct methods, like
Gauss- or Cholesky-decomposition or iterative methods like conjugated gradi-
ents.

Dynamic and Non-linear FEM Analysis

The above considerations were based on the idea of equilibrium. This is only
valid for static and pseudo-static (slowly developing) processes. FEM can also
be used to solve dynamic problems, i.e. oscillations or systems that are in the
process of reaching their equilibrium. In the first case a trigonometric sum
is used as interpolation functions and the resulting problem is an eigenvalue
equation. In the dynamic case two additional terms are needed in equation
(3.8) to express the mass effects and damping of such a system. This results
in a second order differential equation completely analogous to the Newtonian
equation of motion.

M~̈U +D~̇U +K~U = ~F (3.9)

M is the global mass matrix which holds the contributions of all the element
mass matrices. The element’s mass matrix is calculated by using its interpola-
tion functions to express the object’s density and integrate over the element’s
volume. D is the damping matrix which is sometimes also calculated from
the contributions of each element. But since the required damping parameters
are often difficult to determine D is generally constructed as a linear combina-
tion of M and K. The dynamic system can finally be solved with numerical
integration techniques. Presentations can be found in [Bat90].

20 3. Currently used Modeling Techniques

Static (pseudo-static) and dynamic problem formulations using the assumption
of linear material response can be solved completely and correctly. However,
although the linear assumption is useful in many cases, it represents an approx-
imation of the true physical behavior of an object. For a physically realistic
simulation all the non-linearities of an object should be taken into considera-
tion. Non-linearity applied to soft tissue modeling is extremely complex. It is
very difficult to find appropriate material laws to formulate the problem. Also,
once formulated, it can be extremely hard to solve the problem mathematically.
A common approach for solving non-linear problems is to combine a finite ele-
ment discretization of the geometry with finite difference discretization of time
and an iterative scheme that is called Updated Lagrangian which allows a step-
by-step solution of the problem. In the Updated Lagrangian approach the
non-linear equations are replaced by iterative relations which refer to the cor-
responding recently computed configuration. The iterative form takes account
for changing the tensorial terms in each step as non-constant elasticity param-
eters are the character of non-linear materials. A chapter on solving non-linear
elasticity problems with incremental methods can be found in [MWMTT98].

3.1.2 FEM in Soft Tissue Modeling

Various approaches have been suggested for soft tissue modeling with FEM.
Most of them use the assumption, that the material reacts linear to stress.
Larrabee [Lar86] calculate skin deformation to simulate skin flap design with
FEM. The skin was modeled as a linear membrane that is attached to sub-
cutaneous layers with linear springs (the mass-spring approach is presented in
section 3.2).

Gourret et. al. [GMTT89] computed the interactions between the soft tissue
of the fingers and a deformable object during a grasping task. In a dynamic
formulation they used 3D elements with linear interpolation functions.

Celniker and Gossard proposed an approach for the design of free-form surfaces
with FEM [CG91]. The user controls the shape of the object by applying
external forces on its surface. They used triangular 2D-elements and Hermite
polynomials as interpolation functions6.

Koch et. al. [KGC+96] used a combination of FEM and mass-spring models
to predict the outcome of cranio-facial surgery. The skin surface was modeled
following the approach from [CG91] for finite element curve and surface free-
form shape design. The skin surface was then fixed with springs to the bone.
The facial surface was determined with laser scanners whereas the bone surface
was extracted from ct scans. The spring stiffnesses where also derived from the
ct data. The system is capable of predicting deformations of the facial shape
after surgical procedures.

6Third order cubic polynomials

3.1. Finite Element Method 21

Keeve compares the results of cranio facial surgery simulation performed on the
one hand with a mass-spring approach and on the other hand with an FEM
model (see 27).

A team at INRIA7 developed a simulator for liver surgery. The system allows
the interaction with a deformable model of the liver using a force feedback sys-
tem. The liver model used in the simulation did undergo several changes since
its first presentation. In [CDA96] a pseudo static FEM approach was used.
They state in [Del98] that the model was well suited to compute accurate and
complex deformation of soft tissue. However, it was too slow to compute de-
formations in real time on powerful workstations. Therefore they investigated
methods to speed up the calculations [BNC96]. The suggested condensation is
a standard technique which basically removes nodes while increasing the degree
of the interpolation functions (polynomial) used to approximate the solution in
each element (compare page 17). In [CDA99] they proposed a method based
on a set of pre-computed equilibrium solutions which allowed real time inter-
action with the model. Both [BNC96] and [CDA99] had the main drawback
of not allowing topology changes as they occur when cutting. Changes con-
nected with cutting the model discard any method based on pre-computation
of the inverse of the stiffness matrix K (compare (3.8)) as cutting induces a
modification of this matrix. Mass-spring models allow cutting without addi-
tional time requirements. Consequentially in [dCL99] mass-spring models were
investigated. In [DCA99] tensor/mass models, an enhanced mass-spring model
allowing anisotropic linear material properties, were introduced and combined
with the pre-computing method described above. [PLDA00] summarizes the
current development of the hepatic surgery simulator.

Besides skin simulations – mostly for cranio facial surgery (see above) – and the
project at INRIA, the simulation efforts focus on simulating the biomechanical
behavior of the brain.

In [HLL+00] a finite element analysis was carried out with the goal to investi-
gate brain contusion during an indirect impact. A head injury model was used
to simulate forward and backward rotation around the upper cervical vertebra.
Intra-cranial pressure and shear stress response were calculated. A relatively
coarse 3D finite element model was generated which includes the skull and fa-
cial bone – to roughly simulate the inertia of the head – and internal structures
like the Dura mater, Falx cerebri and tentorium of the cerebellum. The whole
model comprises 1,455 nodes and 1,328 solid elements, mainly eight-node hex-
ahedral element. The tissue was assumed to be homogeneous, isotropic and
linearly viscoelastic. The biomechanical parameters used for the brain tissue
are presented in table 3.1. The analysis was carried out with the commercial
FEM package ANSYS.

In [TSBM94] the distortion and stress distribution in the brain caused by
putaminal hemorrhage were calculated using a two dimensional FEM model

7http://www-sop.inria.fr/epidaure/

22 3. Currently used Modeling Techniques

of a single cerebral hemisphere. The model was divided into 326 triangular
elements. The bleeding within the slice was modeled by six vectors of force
radiating from a small area. The material properties were considered to be
linear and isotrop. Different properties were used for gray and white matter
and the Falx cerebri. The parameters are listed in table 3.1.

In [PBWP99] the goal of the simulation was to study the biomechanics of acute
obstructive hydrocephalus and to investigate where peri-ventricular edema will
most likely appear. The analysis was carried out on one typical axial two-
dimensional slice through the brain. The model consists of 679 quadrilateral
elements and 2,208 nodes. The brain tissue was modeled as a two-phase ma-
terial composed of a porous elastic matrix saturated by interstitial fluid. The
biomechanical parameters used in this simulation are listed in table 3.1.

Hartmann presents a high resolution three-dimensional brain model in [Har99].
He investigates dynamic effects as well as the growth of tumors in the brain.
The model is discretizised with approximately 150,000 cubical eight-node-
elements. As the model is generated from MRI data in a pre-computing step
all relevant internal structures are considered. In particular Hartmann investi-
gated the effect of Falx cerebri and tentorium which were segmented manually
and integrated into the model. According to his analysis the two structures
show only little influence on pressure waves propagating through the brain in
a dynamic simulation. In contrast they seem to have a large effect on mate-
rial transport as for example in tumor growth. The parameters used in the
simulation can also be found in table 3.1.

A three-dimensional brain model which describes the brain as a biphasic
medium with a solid matrix saturated with interstitial fluid is introduced in
[MPK+99]. Their model consists of 25,340 nodes and 139,351 tetrahedral ele-
ments. The model also incorporates the Falx cerebri. The study in particular
investigated the effect of the Falx cerebri on brain tissue deformation under
gravity. The purpose is to improve the prediction of subsurface deformation
for intra-operative registration. They conclude that the deformation across the
middle line seems to be significantly damped by the Falx cerebri.

The time consuming work to do in finite element analysis is the decomposition
of the stiffness matrix K. The dimension of the stiffness matrix is in generally
very high.

Essa et. al. [ESP92], [ESP93] suggested to use a mode superposition method
based on the modal analysis presented by Pentland [PW89]. The basic idea
of the modal analysis is changing the basis of the problem from nodal dis-
placements p to modal displacements q. With q � p this brings a significant
simplification for the solution of the linear algebraic system as it reduces the
dimension of the stiffness matrix. The principle of modal analysis is explained
in appendix A. Arbitrary deformations can be expressed by superposing defor-
mation modes. Essa et. al. applied FEM to image processing tasks like shape
fitting and motion tracking. They simulated the dynamics of deformable bod-

3.1. Finite Element Method 23

Young’s Poisson’s Density Ka

Tissue modulus ratio [g/cm3] [m4/(Ns)] used in
[kPa]

Brain 250 0.49 1 [HLL+00]
Brain 10 0.30 10−11 [PBWP99]

Brain (white) 3.9 0.47 [TSBM94]
Brain (white) 120 0.499 1.04 [Har99]
Brain (gray) 7,8 0.47 [TSBM94]
Brain (gray) 75 0.499 1.04 [Har99]

Brain 2.1 not given [MPK+99]
Membraneb 31500 0.45 1.133 [Har99]

Falx 900 0.47 [TSBM94]
Falx 12 not given [MPK+99]
Dura 50000 0.45 1.13 [HLL+00]

ahydraulic permeability
bprobably Falx and tentorium

Table 3.1: Biomechanical parameters of brain tissue used in various simulations.

ies by considering them as linear viscoelastic isotropic incompressible objects.
They used a 27-node finite element cube for their simulation.

Chen and Zeltzer employed the modal decomposition approach to speed up
their model of skeletal muscles [CZ92]. The goal of their simulation was natural
character motion animation. The model also includes the muscle contraction
based on Zajac’s muscle force model (e.g. in [LB95]). For simplicity reasons
the analysis was carried out on a cubic shaped bounding box of the muscle. 20-
node iso-parametric brick elements with parabolic interpolation functions were
used. The resulting deformations were mapped onto the real anatomy with
free-form deformation (see section 3.3.1). Only very few elements were used
per muscle which represents the tradeoff of quality versus calculation time.

Other approaches to speed up the simulation have already been discussed and
are generally based on pre-computing major parts of the solution. The most
trivial case of pre-computed speed-up is a beforehand invertation of the stiffness
matrix K.

K~U = ~F (3.10)
~U = K−1 ~F (3.11)

The right side of (3.11) can be carried out very fast. Therefore deformations
of an object with a fixed topology can be calculated very rapidly for different
force vectors. However, all deformations are calculated from the initial rest
state of the object.

24 3. Currently used Modeling Techniques

Non-linear FEM approaches were developed mainly for lungs and ventricles.
Their full discussion is beyond the scope of this work; details can be found
in [LL78], [PCRH78], [Vaw], [KBS80], [LTY83], [JG73], [JBM73], [CM82],
[NRBM83], [HBHP90], [HvCAH91], [Tab91a] and [Tab91b].

3.1.3 Classification

A carefully conducted finite element analysis in soft tissue modeling minimizes
the energy function given in (3.1). If the two energy terms W (3.2) and Λ (3.3)
reflect the situation correctly, the simulation will produce physically correct
results. The major problem of the above assumption is that the strain energy
(3.3) generally can not be given correctly at all as it depends on the material
law (2.11), which is extremely hard to determine for living soft tissues. In
addition the generally made assumption of linear material response represents
an idealization which might not always be true.

Nevertheless, keeping these limitations in mind, finite element analysis can be
regarded as the most physical of all available techniques provided that the
idealization of the real world system has been done physically correct. To be
more precise, actually an FEM approach itself can neither be called physical nor
non-physical, the terms must be referred to the formulation of the underlying
problem. If the underlying problem was formulated physically correct, the
model can be called physical in the sense of the definition given in section 2.2.

The problem of correctly formulating a valid material law is best illustrated
by the varying material parameters presented in table 3.1. These values were
all used in FEM models of the brain. According to the definition of a phys-
ical modeling technique (see 8) the parameters should correspond to physical
properties of the brain tissue and it could be expected that they lie in the same
order of magnitude; which is not the case. In chapter 6 a sensitivity analysis
regarding biomechanical parameters in a brain simulation using finite elements
is presented. While research mostly has to work with estimated or uncertain
biomechanical parameters we should be aware of the fact that they significantly
determine the outcome of the simulation.

Currently it seems reasonable to used FEM models for the simulation of prob-
lems where enough time is available to perform and solve a careful analysis.
“High-speed” FEM approaches generally limit the physical realism already in
the idealization step.

3.2 Mass Spring

Mass-spring models have been used extensively for the modeling of deformable
bodies. The reason for the wide acceptance of the mass-spring approach is its

3.2. Mass Spring 25

easiely understandable, physically based concept, its simplicity of implementa-
tion, its relatively low computational demands and its straight applicability to
various problems.

3.2.1 Basic Concept

Mass-spring models are based on an idea originally introduced in classical me-
chanics. A body of a mass m can be represented by a single mass point that has
no extension and holds the complete mass of the body. The concept can also
be applied to systems of mass points as for example relevant for astronomical
problems. The center of mass (CoM) of a system of n masses moves exactly as
if the total mass m =

∑n
i=1mi of the system was present in the CoM and all

external forces were applied to it.

A continuous body can also be regarded as a system of distributed mass points.
A body of a volume V and a mass m can be divided into n smaller sub-volumes
∆Vi with masses ∆mi.

V =
n∑
i

∆Vi (3.12)

and

m =
n∑
i

∆mi =
n∑
i

∆mi

∆Vi
∆Vi (3.13)

For ∆V → 0, ∆m → 0 and n → ∞ equations 3.12 and 3.13 lead to the
definition of a continuous body. The ratio ∆m

∆V is then called density ρ of the
body.

As long as the distances between all points stay constant the system of mass
points reassembles a rigid configuration. If distances between points change,
the Lagrangian strain tensor, introduced on page 11, can be used to measure
the degree of displacement. As presented in section 2.3 any change of distances
between points leads to stress within the body.

In mass-spring models a deformable body is approximated by a system of mass
points that are distributed over the volume of the original body. The stress
that originates from distance changes between points is modeled with springs
that are affixed between the mass points. In principle there is no limitation
to how the mass points can be connected. However, the most common way
is to simply connect nearest neighbors. Also, often linear (Hookean) springs
are used to connect mass points; the use of nonlinear springs, however, is also
possible. When the mass point n is moved by an external force the springs
attached to n are strained and forces are exerted on adjacent mass points that
start moving accordingly. In such a dynamic system the movement of a mass
point is governed by Newton’s Second Law:

mi~̈xi = ~Fi (3.14)

26 3. Currently used Modeling Techniques

with mi the mass of the ith mass point, ~xi ∈ R3 its position and

~Fi =
n∑
j

~gij − di~̇xi + ~fexti (3.15)

the sum of the effective forces. The first term in equ. (3.15) is the force on
mi exerted by the spring between mass i and mass j, the second term is the
velocity dependant damping that affects mi and the last term contains external
forces acting on the mass point.

For Hookean springs the force ~gij is directly proportional to the deflection from
rest position of the spring between i and j.

n∑
j

~gij =
n∑
j

~xj − ~xi
||~xj − ~xi||︸ ︷︷ ︸

1

(
kij︸︷︷︸
2

(
||~xj − ~xi|| −Rij

)︸ ︷︷ ︸
3

)
(3.16)

with :
1 : direction of the force
2 : spring constant
3 : deflection from restposition

As (3.15) represents the equation of motion for a single mass point, a system
of n mass points is assembled from n such equations. The positions of the n
mass points are arranged in one position vector, which is used to characterize
the system. The system’s position vector has 3n entries8. The matrices M , D
and K with each 3n× 3n entries can be used to represent mass, damping and
stiffness. For a system of mass points equ. (3.15) becomes:

M~̈x+D~̇x+K~x = ~Fext (3.17)

The system is evolved forward in time by solving the following system of first
order differential equations:

~̇v = M−1(−D~v −K~x+ ~Fext) (3.18)

~̇x = ~v (3.19)

When evolving such a system in time the size of the time step used for in-
tegration on the one hand governs the system’s stability and on the other
determines the time require for solving; if large time steps are possible the
solution is reached faster. However, it is obvious that the time steps should
be chosen according to the expected accelerations and velocities of the system.
Stiff spring constants generally result in high spring forces and large acceler-
ations of the participating masses. In conjunction with large time steps such
mass-spring systems tend to accumulate energy and become very unstable.

There are various integration techniques available in literature (see e.g. [Deu96]
for a detailed study on integration techniques with mass-spring models).

8x, y, z for each mass point

3.2. Mass Spring 27

3.2.2 Mass-spring in Soft Tissue Modeling

Mass-spring models were intensely used in computer graphics to animate facial
expressions. In an early approach by Platt and Badler [PB81] the skin was
represented as a tension net; nodes were connected with linear springs, skin
nodes were also spring-connected to underlying bones. A tension net is a static
version of a mass-spring model, basically it solves the non-time dependent
system

K~x = ~F (3.20)

The face was modeled with tension nets warped around an ovoid and forces
applied to certain nodes to generate the desired facial expressions.

While still using a static approach Waters [Wat87] improved the model by
introducing vector springs following the major directions of real facial muscles.
Besides the directed spring concept they also modeled zones of influence, areas
of nodes, that contracted e.g. elliptically, parameterized by radius and fall-
off coefficients. In [TW90], [TW91] Terzopoulos and Waters used a dynamic
mass-spring approach for facial modeling. The facial skin was modeled with
three different layers: skin, subcutaneous tissue and a muscle layer that is fixed
to the bone. The different layers were assigned different stiffness parameters
corresponding to the real tissue parameters. Incompressibility of particular
skin layers or regions was modeled by introducing additional forces that were
calculated and directed to preserve the volume of the relevant regions.

In [WT91] they used a more simple two layer skin model, but instead of a
generic face the system could generate individual face models using data from a
laser scanner. The scan provides a texture for the top layer of the model as well
as the surface of the individual face. In a preprocessing step the node mesh was
refined were the texture provides a high feature density. Waters used computer
tomography data in [Wat92] to generate the 3D face models. In [LTW93] and
[LTW95] a generic model was adapted to individual data captured with a laser
scanner. Features were identified in the scan and matched to the appropriate
features of the generic model. In addition constraints were introduced to avoid
the three layers from penetrating the bone.

Wu et. al. [WBMT99] simulated skin aging and wrinkles in facial animation
with a two layer skin model. A plastic-visco-elastic skin surface is connected
via springs to the underlying layer, simulating the connective fat tissue between
skin and muscles.

Koch et. al. [KGC+96] used the combination of FEM and mass-spring models
for the prediction of cranio-facial surgery outcome as described above (see 20).

A summary on facial simulation models with a special focus on the needs of
cranio facial surgery simulation can be found in [KGKG99]. In his presentation
Keeve compares the results of a mass-spring and an FEM based approach on
the same real surgical case. The study proves that facial soft tissue can be

28 3. Currently used Modeling Techniques

simulated with a higher precision using FEM instead of mass-spring. However,
the results received from the mass-spring simulaton may be accurate enough for
most cases of pre-operative planning and provide the advantage of interactive
simulation rates.

In [KKH+97] a mass-spring approach was employed to model different kinds of
inner organs. In their endoscopic simulator Kuehnapfel et. al. modeled organs
with nodal meshes of (virtual) mass nodes interconnected with springs. A sub-
set of nodes on the organs’ surfaces correspond to control points which are used
to manipulate the graphical representation of the object. Later Kuehnapfel et.
al. also incorporated FEM analysis in their system [KCM99] using the method
of inverting the stiffness matrix K beforehand to speed up calculation time (see
above page 23).

In [RNP00] and [ARW+99] a mass-spring approach is suggested for virtual
tissue deformation which uses a neuro-fuzzy system to adapt the behavior of
virtual tissue to that of real tissue by trimming the elasto mechanical properties
of the mass-spring system. The fuzzy set and fuzzy rules that determine the
tissue behavior can be obtained by interviewing experts. As fuzzy rules use lin-
guistic terms to define specific characteristics this might be advantageous when
working with medical professionals. In contrast to above aproaches Radetzky
et. al. do not solve the system of differential equations that can be derived
from the mass-spring model. Instead the simulation process is performed by
the propagation function of a recurrent neuronal network. The deformation
is limited to a local area by setting the recursive depth of the algorithm to n
springs.

3.2.3 Classification

Equations (3.8) and (3.9) represent an FEM model and equations (3.20) and
(3.17) a mass-spring model. The two sets of equations appear to be almost
similar. However, they represent two very different matters.

An FEM model treats a deformable object as a continuum; a continueous
solution is derived for each part of the problem’s domain, while guaranteeing
continuity over the whole object. In contrast, the mass-spring approach doesn’t
treat the object as a continuum. Instead of the geometric discretization of the
problem used in FEM, the mass-spring approach uses a discretization of the
problem itself. It idealizes an possibly continuous body as a discrete array of
mass points which are connected via springs. With respect to figure 2.2 the
major difference between the two approaches lies in the very first step of the
modeling pyramid. FEM and mass-spring use different idealizations for the
initially same problem.

At first glance it might seem easier to solve a given elasticity problem with
a mass-spring approach than with a finite element analysis. The mass-spring
approach itself specifies how the problem has to be idealized: “Divide the mass

3.2. Mass Spring 29

of the body into discrete mass points and connect these via springs”9. However,
once the object is represented by discrete masses and a suitable spring topology
is found, the most difficult part in mass-spring modeling starts: the elasticity
parameters for the springs have to be adjusted. In general these parameters
will have no meassureable correspondent in the real problem as the idealization
was not performed sufficiently correct.

A given mass-spring model’s behavior is governed by the spring constants and
the assigned masses. Tuning these parameters to meet the demands of the
simulation, has become an art of its own. In section 3.2.2 an approach was
described that used neuro-fuzzy logic to adapt a mass-spring model to realistic
behavior [RNP00]. The cited example shows which efforts are taken to find eli-
gible parameters. In addition, the model governing parameters heavily depend
on the chosen topology. They generally have to be readapted if the object is
represented by a different mass-spring mesh10.

Where incompressibility is a “natural” property of biological tissue it is difficult
to model volume conservation with a mass-spring mesh. Additional springs
have to be inserted to take care of cross-contraction when the body is stressed
in one direction. This results in complicated mesh topologies that are even
more difficult to tune to the desired behavior. In addition computational costs
rise because additional springs have to be calculated.

Since in general the spring constants don’t correspond to the measurable biome-
chanical parameters of the problem, the mass-spring approach is not a physical
modeling technique in the sense of the definition given in section 2.2. How-
ever, the basic idea of the mass-spring approach is definitely physical and if
the real-world process was a mesh of masses connected with springs it would
of course model the situation physically correct. Problems emerge from the
desire of mapping any given elasticity problem onto the easy understandable
and manageable mass-spring approach while ignoring that the approach was
initialy designed for a different physical problem class. Depending on the simi-
larity of what should be modeled and what is modeled with a mass-spring system,
the resultant model is more or less physically realistic. Representing a muscle
fiber with a spring might be a valid simplification and result in a model with
spring constants similar or close to the measurable biomechanical properties.
However, when dealing with inhomogeneous volumetric objects, like e.g. the
brain, it is very questionable whether the model governing parameters are still
in accordance with what is measurable in reality after creating a mass-point-
spring topology and tuning the spring constants to match the behavior of the
real world process.

9In contrast, the idealization step in FEM can be very hard as it includes finding an
appropriate material law.

10In [Deu96] the effect of different mass-point distributions and mesh topologies is investi-
gated.

30 3. Currently used Modeling Techniques

3.3 Other Modeling Techniques

3.3.1 Free Form Deformation (FFD)

In contrast to the modeling approaches described above, free form deformation
has its roots in computer graphics. It was initially developed to intuitively
deform graphical objects e.g. for animations. Free form deformation can effi-
ciently be applied to several, very common, graphical representations such as
points, polygons, splines, parametric patches and implicit surfaces.

Basic Concept

Early work was presented by Barr [Bar84]. He used an analytical description
for a geometric mapping from R3 → R3 which results in the deformation of
graphical objects with parametrical representations. For example twisting an
object around the z-axis can be described analytically by:

f(~p) =

 cos(pz) − sin(pz) 0
sin(pz) cos(pz) 0

0 0 1

 px
py
pz

 (3.21)

Barr’s technique remained restricted to a couple of such deformations. The
application of these deformations is not very intuitive. A desired shape change
of an object can only by achieved by trial and error, since no mapping of desired
change to required transformation has been found.

Picking up the idea of using a parametrical graphical object representation and
deforming the object by mapping the control points of the representation to a
different location in space led Sederberg and Parry to what they named free
form deformation [SP86]. Instead of deforming the object directly, their new
idea was to embed the object in a space that is to be deformed. The shape of the
embedded object changes in accordance with the space deformation. Sederberg
suggested to think of space as a block of transparent plastic in which the object
is fused-in. A deformation of the plastic results in an analogous shape change
of the embedded object. Sederberg claimed that object deformations achieved
in that way is “intuitively correct” [WW92].

The space in which an object is embedded, can mathematically be described
with hyperpatches. The control points of the hyperpatches are used to control
the space deformation. The embedded object is represented in a control point
or vertex based description. If the positions of the object’s vertices are known
in the lattice coordinates of the hypertpatch before the deformation, the points
can be set to their corresponding positions after the lattice deformation. A
typical FFD (see figure 3.111) is performed in the following manner [WW92]:

11http://www.cs.unc.edu/~hoff/projects/comp239/finalproj/snapshots2d/index.

html

3.3. Other Modeling Techniques 31

1. Determine the position of the vertices in lattice space: A lattice space
triple (s, t, u) is assigned to each vertex which stays with it unchanged
throughout the deformation.

2. Deform the FFD block: The FFD block is e.g. represented by a hy-
perpatch. Deformation is achieved by moving the control points of the
hyperpatch from their undisplaced lattice positions.

3. Determine the deformed positions of the object’s vertices: After defor-
mation lattice space and object space are different. A transition can
be given by using the (s, t, u) triple assigned to each vertex to the local
coordinate system of the appropriate hyperpatch and use these local hy-
perpatch coordinates in the hyperpatch’s defining equation to calculate
its new position; of the deformed object.

Figure 3.1: Example of a free form deformation. The red nodes of the space
lattice were moved. (Free FormDeformer Snapshots by Kenny Hoff 4/28/97)

The original algorithm has been extended and modified by several others. Co-
quillart and Jancene [CJ91] introduced an animation technique based on two
FFD blocks; one corresponding to the desired initial and one corresponding to
the final state of the animation. The parameter sets for the states between
beginning and end state were interpolated with a key-frame technique. As ex-
act shape changes are difficult to achieve by moving control points Hsu et. al.
[HHK92] suggested a direct manipulation technique (DFFD). Their method
allows the direct manipulation of object surface points by converting the de-
sired movement of object points to equivalent lattice control point movements.
MacCracken and Joy introduced space lattices with arbitrary topology. The
shape of the lattice governs the number of possible deformations. Therefore it
is desirable to match the lattice space to the object’s shape. In [MJ96] they
presented a technique that uses a subdivision methodology to successively re-
fine a 3-dimensional lattice into a sequence of lattices that converge to a specific
region of 3d-space.

32 3. Currently used Modeling Techniques

FFD in Soft Tissue Modeling

Yamashita et. al. used an adaption of Hsu’s DFFD in their virtual reality envi-
ronment called “ViSurf” to model the interaction between a user manipulated
tool and a deformable surface [YYFS94]. They also included force-feedback
into their simulation.

Cover et. al. implemented a combination of FFD and active surface approach
(section 3.3.2) for their gall-bladder surgery simulator. They claim that Hsu’s
approach met their demand in allowing a direct object manipulation, but was
too slow to provide real-time interaction [CEO+93].

Moccozet and Thalmann employed a generalized FFD model based on the
Dirichlet FFD introduced by Farin [Far90] for the animation of a human hand.
They modeled morphological variations of different hands with their approach
and interactively simulated different types of hand activities [MT97].

Classification

FFD is a classical technique for soft object animation. It was initially devel-
oped to simplify and improve the process of creating computer animations.
In contrast to the two methods presented previously (FEM and mass-spring),
FFD is a displacement based method. Whereas in FEM and mass-spring simu-
lations forces are applied to certain nodes which then results in a displacement
(force-based method), in FFD the desired displacement is directly applied to the
object. There is no physical analogy to the FFD method. The objects behav-
ior is parameterized in a consistent way with weighted mathematical functions.
The coefficients of the mathematical functions govern the model’s behavior and
have no real-world-counterpart. FFD is a descriptive modeling technique.

3.3.2 Deformable Models

The term deformable model summarizes several techniques of which the con-
cept suggested by Kass et. al. called “snakes”[KWT88] is certainly best known.
Others “Active Contour” models are “Active Surfaces”, “Active Cubes” (e.g.
[BN95]) or “Active Blobs” (e.g. [Whi94a]). All these techniques have a phys-
ical interpretation in common: a given contour is regarded as an elastic body
that responds to applied forces. Deformable models are widely used in image
processing for the identification and segmentation of image features.

Basic Concept

Typically, an energy function is defined in terms of the geometric degrees of
freedom that are associated with the deformable model. The energy grows

3.3. Other Modeling Techniques 33

as the model deforms from its “rest shape”. Often additional “energy”-terms
are included that constrain the smoothness of the model. Adding an external
potential energy function deforms the model from its initial state. The exter-
nal potential is generally defined in a way so that the model fits itself to the
desired shape when the potential energy of the model is minimized[MT96]. In
image processing such external potentials are assigned to the interesting image
features.

Deformable Models in Soft Tissue Modeling

Where “snakes” and its derivates are widely used in image processing, only few
people applied the technique to biomechanical simulations. The reason for this
is probably that arbitrary shape changes always require to find a corresponding
external potential. These potentials can not be defined in an intuitive way.

Cover et. al. [CEO+93] suggested a combination of elements of both free-form
deformation and energy-minimizing surfaces for their deformable model. They
simulated user interaction with the gall-bladder in their laparoscopic surgery
simulator including cutting of tissue.

Bro-Nielsen [BN95] suggested “active cubes”, which is a straight forward three-
dimensional extension of the snake idea. In a CT scan the jaw is moved and
the adjacent soft tissue is deformed accordingly. In the three-dimensional CT
data set labeled bone voxels are moved to their desired new position and fixed.
The system is then relaxed into the energy minimum.

Classification

Where the terminology used in deformable models is clearly physical, its use in
biomechanical modeling is to be regarded as descriptive. There is no mapping
of the model governing parameters to the real physical properties.

3.3.3 Implicit Surfaces

An implicit surface is defined as a set of points P satisfying an equation e.g.
f(P) = 0. Such an equation results in what is also known as an “iso-surface”.
If two fairly continuous implicit surfaces f(x, y, z) = 0 and g(x, y, z) = 0 are
given and the two functions have a common sign convention (e.g. positive on
the inside, negative on the outside) then the implicit surface defined by f+g=0
is a blend of the shapes.

34 3. Currently used Modeling Techniques

Basic Concept

The van der Waals potentials of atomic bond forces known from physics and
chemistry led Blinn to his so called “blobby models” [Bli82]. He used a super-
position of Gaussian potentials to define a surface for an animation of DNA.
The same technique is called “metaballs” mainly in the pacific region where it
is still very popular and has been further developed extensively. A metaball
[NHK+85] is a 3-D modeling primitive that is expressed as a distribution func-
tion of a point charge in 3-D space. The surface of the metaball is defined as
an isosurface where voltage equals a user defined threshold. The area where
voltage is greater than the given threshold is defined to be inside of the meta-
ball. With CSG (Constructive Solid Geometry)12 the metaball primitives can
be combined to complex shapes. An example for constructive and destructive
superposition of two metaballs is given in figure 3.2.

Figure 3.2: Left to right show constructive superposition and destructive su-
perposition of two metaballs and a sequence of two metaballs approaching
eachother.

Bloomenthal discussed techniques for modeling organic forms (trees, leaves,
arms) using “implicit modeling” [BW90], [BS91]. He also suggested algorithms
for the polygonization of any implicit model, which is very important for the
fast rendering of the model [Blo88]13.

Brian and Geoff Wyvill called their implicit surface models “soft objects” and
contributed e.g. approximations of field potentials and how to accomplish
animations with implicit surfaces [WMW86], [WW89].

Implicit Surfaces in Soft Tissue Modeling

Metaball simulations are typically used in body modeling and
deformation[BPW93]. For example D. Thalmann et. al. used Metaballs
for constructing and animating realistic human bodies. The Metaballs are
used to simulate the gross behavior of bone, muscle, and fat tissue [JT95].
Metaballs are attached to the proximal joints of the skeleton, arranged in an
anatomically-based approximation. In their “Bodybuilder”, a software module
which is designed to allow the user to perform simulation of the human body
envelope, N. Thalmann et. al. also use a hierarchy of metaballs which are
attached or connected to joint articulations of a skeleton [TK95].

12A modeling technique which organizes primitive solids as nodes in a tree of which the
root is the desired object and the edges are boolean operators.

13The better known “marching cubes” algorithm, initially suggested in [LC87], is a less
general variant of Bloomenthal’s algorithm.

3.3. Other Modeling Techniques 35

Classification

Metaballs or Blobs were first suggested for the simulation and visualization of
molecules. In this context the model can be regarded as physical, even though
using a Gaussian instead of Yukawa potentials is an approximation.

Later, Metaballs were used for character animation and object deformation.
The use of Metaballs in object deformation has nothing to do with the initially
physical concept of electrical potentials.

Implicit surfaces are a descriptive modeling technique.

3.3.4 Particle Models

Particle models deal with systems of mass points as presented in section 3.2
above. A set of physical rules is applied on each particle which governs the
particle’s behavior. A whole system of particles represents the deformable
object.

Basic Concept

Particle models typically deal with lightweight objects, which have attributes
like position, velocity, mass, charge, etc. The aggregation of particles defines
the shape of the desired object. Forces can act upon the particles and change
their distribution, i.e. the shape of the object. Generally there are global
forces which only depend on the particle itself, like gravitation14 or wind and
inter-particle forces like real bi-directional gravitation and repulsion.

Particle systems were used in computer graphics to model natural phenomena
such as fire and waterfalls [Ree83], [Sim90]. These first models moved the par-
ticles while forces and constraints acted on them, but did not consider particle
interaction. Later models used spherically symmetric potential fields to take
inter-particle influence into account [TPF89], [Ton91].

Szeliski and Tonnesen [ST92] suggested the use of oriented particles to model
the surface of the object while previous particle models formed volumetric ob-
jects. They achieved the forming of surfaces by designing special interaction
potentials which favor locally planar or locally spherical particle arrangements.
To control the average inter-particle spacing they introduced long-range attrac-
tion forces and short-range repulsion forces as typically caused by a Lennard-
Jones potential.

Desburn and Gascuel developed a method in [DG94] that combined particle
systems and implicit surfaces for the animation of highly deformable material.

14Gravitation acts between earth and particle. Due to the mass difference mearth �
mparticle the force acting from particle on earth is generally neglected.

36 3. Currently used Modeling Techniques

In [DG95] they presented enhancements to the method. The basic model con-
sists of a set of mass points Pi subject to attraction/repulsion forces Fint and
fluid friction forces Ffr which depend on the local particle density. The forces
applied by particle P1 on P2 are:

Fint(P1 → P2) = λ

((r0

r

)8

−
(r0

r

)4
)
P2 − P1

r2
(3.22)

Ffr((P1 → P2) = µ(r)‖Ṗ1 − Ṗ2‖(Ṗ1 − Ṗ2) (3.23)

where r = ‖P2−P1‖ is the distance between the two particles, λ is a parameter
for regulating the stiffness of the material and µ is a decreasing continuous
function with a restricted scope of influence. Each particle has an associated
field fi which is a decreasing function of the distance. The surface of the object
generated by the set of particles is defined as an implicit surface:

f(P) =
∑

fi(P) = s (3.24)

with s being a given isovalue. In case of a collision, the contact surface is
calculated based on the field potentials of the participating particles. In the
next iteration forces based on the contact surface are generated and considered
in the particle model. The method seems to be well suited for the animation
of fluids or visco-elastic materials. It allows the collision and the fusion and
separation of material pieces.

Particle Models in Soft Tissue Modeling

Particle models are typically used for the modeling of gases, fluids, fire, etc..
Wu et. al. implemented a deformable surface model using particles and demon-
strated it with several simulation examples: the animation of wrinkles on the
forehead-skin, the deformation of a head, a membrane shrinking around a given
shape and an elastoplastic surface [WTT95].

Classification

A particle model simulating particle with the set of rules that corresponds to
the true physical laws could certainly be regarded as physical. Again the main
question is: What is the nature of the problem that was modeled with the
approach. Particle models seem to be suited for the simulation of visco-elastic
to fluid materials. That is because the nature of fluids is sometimes close to
what is modeled with a particle model.

The use of particle models in soft tissue modeling, or other solid, elastic objects
must be regarded as descriptive.

3.3. Other Modeling Techniques 37

3.3.5 Free-sampling

Free-sampling, as suggested in [SRG+97], picks up the idea of deforming space
to deform the objects embedded in the space just the way FFD (presented in
section 3.3.1) does. The difference between FFD and free-sampling is that the
latter is tailored to the needs of raytracing as e.g. used in volume rendering of
medical data sets.

Basic Concept

In volume visualization, the path of a straight beam of light is followed through
a data set. Transmission, absorption and reflection are calculated at each voxel
and the cumulated reflected light is projected back to the viewing plane. In
free-sampling the path of the sampling beam passing through the data volume
is no longer straight, which results in a deformed visualization of the data
set (see figure 3.3). There are various ways of deforming a data set via the

Figure 3.3: In the raytracing process the sampling beam does not necessarily
have to be straight. If sampled along a bend path the result will be a deformed
data set.

modification of the sample paths. Smooth bending of the sample path also
bends the object smoothly. Discontinuous sample paths can result in cut open
objects.

Free-sampling does not release the user from defining the desired deformation,
as it requires a function or otherwise definition of the sampling paths. Figure 3.4
illustrates how the sampling paths can be included into the volume rendering
process. An additional data volume contains the sample-offset information.
Instead of the voxel the sampling ray would hit on a straight path through the
volume, it uses the voxel that is found at the position given by the corresponding
entry in the sample-offset information data set.

38 3. Currently used Modeling Techniques

Figure 3.4: Illustration of the normal volume rendering process on the left
and volume rendering with free-sampling on the right. Instead of the voxel
the sampling ray would hit on a straight path through the volume, it uses the
voxel that is found at the position given by the corresponding entry in the
sample-offset information data set.

Free-sampling in Soft Tissue Modeling

Free-sampling was used in [SRG+97] to deform an MRI data set of a brain
according to a pre-calculated finite element simulation. The deformation of
the Falx cerebri, a strong septum in the brain dividing the brain’s hemispheres,
was calculated under various pressure gradients in [SSBM96]. The simulation
results were then used for a manipulation of the original MRI data set to render
realistic images of the simulation results (see figure 3.5).

Figure 3.5: Sequence of free-sampled deformations of the brain based on finite
element simulation of the Falx cerebri. The left pictures show the original data
with a centered Falx cerebri; to the right the Falx and the surrounding brain
tissue is deformed with free sampling according to finite element calculations.

3.3. Other Modeling Techniques 39

Classification

As free-sampling is a method for the deformation of volume data sets that
requires external information on how to deform the object, the classification
depends on how the deformation (offset- sample-information) is aquired. Gen-
erally free-sampling is bare of any physical deformation calculation and there-
fore regarded as being a descriptive method.

3.3.6 Transmission Line Model

Transmission line models were devised in the 1970s to model problems in elec-
tromagnetics but have since then also been transferred to problems in acoustics
and heat-transfer. The technique is only barely known in the biomechanical
modeling community although its use for elastic deformation was suggested
before [Bos92], [LWP94].

Basic Concept

The Transmission Line method calculates the path of information pulses
through a grid of inter-connected nodes. At each node the information is
re-emitted. The information pulse takes one time step to travel a link be-
tween nodes. The links are assigned a certain impedance which affects the
path an information pulse takes. At each node the pulse is partially reflected.
The remaining pulse is distributed along the other connections in a ratio ac-
cording to the impedance of the link. There are also special link types called
“stub lines” which are not connected to nodes and only reflect the pulse back
to where it came from. “Stub lines” can be used to control the propagation
speed of an information pulse. A known problem with TLM is that spread-
ing out of the wavefront can generate dispersion errors. In [LWP94] two- and
three-dimensional stress and deformation waves were propagated through very
simple nodal structures. Very generally spoken, TLM deals with wave front
propagation (see figure 3.6).

TLM in Soft Tissue Modeling

Unknown.

Classification

In [LWP94] a deformation and stress analysis was performed for a two- and
three dimensional object using TLM. In [LWP94] the true physical equations
describing the propagation of an elastic wave through an object is used. The

40 3. Currently used Modeling Techniques

Figure 3.6: Wavefront propagation through a TLM mesh. A wave can “carry”
different information, e.g. stress- or deformation information.

problem, however, is separated and solved on several transmission line networks
which are superposed for the solution. The authors claim that they numerically
compared their results to solutions achieved with a finite difference method.
TLM, similar to FEM, is primarily a method to solve, or better approximate
the solution of a particular problem class. Too few work has been done so far
to decide whether biomechanical problems can be mapped to a mathematical
formulation suited for TLM.

3.4 Summary

The most common techniques currently used in biomechanical modeling and
computer graphics were introduced in chapter 3. Best known and most widely
spread in biomechanical modeling are FEM and mass-spring approaches. All
discussed techniques were presented in the context of biomechanical modeling
together with a detailed overview over the state of the art of their application
in biomechanical modeling.

The presented modeling approaches were also classified according to a scheme
(introduced in section 2.2) opposing physical and descriptive approaches. The
attempt to classify each approach showed, that in biomechanical modeling,
techniques with initially strictly physical concept are often used in a descrip-
tive way. This is mainly due to the fact that physical models are very costly.
E.g. FEM yields computationally demanding systems of equations. To cut
down computational costs simplifications of the proper approach have been
proposed. Very common is limiting the approach to static or quasi-static prob-
lems and thus eliminating the time dependency (see section 3.1.1, [CDBN+96],
[Del98]). Static simulations are generally faster than dynamic, since no integra-
tion over time is necessary. The other most commonly made assumption is that
of linear elasticity. This significantly reduces the complexity of the material

3.4. Summary 41

laws and herewith simplifies the governing equations (see section 2.3). While
most of the described simplifications allow a faster solution of the problem,
they shift the approach to the descriptive side of the introduced scheme. The
shift to the descriptive side of the scheme is even more serious with mass-spring
than with FEM models. In most mass-spring approaches the “physical” pa-
rameters that govern the model’s behavior are set highhanded or adjusted by
very sophisticated proprietary algorithms [RNP00]. The used parameters can
no longer be reproduced by measurement at the modeled real-world system,
which is required by the definition of a physical model.

Similar developments can be observed with other techniques. Metaballs e.g.
were first used to simulate and visualize molecules. Later the technique was
applied to object deformation. The evolution of Metaballs, can be compared
to what happened to mass-spring models. Both approaches were first utilized
to simulate what they physically represent, namely atomic potentials (Meta-
balls) and beam-structures (mass-spring). Both models were capable and well
suited to approximate the modeled problems. Due to their well understand-
able concept, their idea was then transferred to other problem classes. In these
other contexts their use is still intuitive but the parameters used, shape of po-
tentials (Metaballs) and masses and spring constants (mass-spring), no longer
correspond to true physical properties.

Already the first step of the modeling process, the idealization of the real-world
process, represents the first approximation. Other approximations follow, like
e.g. discretization – whether it is the discretization of a continuous model or
the discretization of the problem – or numerical approximations.

On the other side of the spectrum of available modeling techniques, initially
descriptive models are being more and more enhanced. Descriptive models are
up-valued by introducing more physics into their concepts. Such a development
is triggered by the constantly increasing computational power available. The
Enhanced ChainMail algorithm which is introduced in the next chapter e.g.
combines a descriptive kinematic model with a physical dynamic model, an
elastic relaxation process.

It is important to note that good models can be designed with either technique
no matter whether it is physical or descriptive. In general the validation and
the portability to other problems might be easier for physical models. The gap
between physical and descriptive models will narrow in the future.

42 3. Currently used Modeling Techniques

4
Enhanced ChainMail

Chapter 4 introduces a novel algorithm for soft tissue modeling, named Chain-
Mail. ChainMail was first introduced by Gibson in [Gib97a]. The algorithm
was significantly enhanced in the scope of this work. The initial concept lacked
the capability to model inhomogeneous objects, which is a pre-requisite for its
use in biomechanical modeling. This capability is provided by the new En-
hanced ChainMail algorithm. Chapter 4 introduces the ChainMail algorithm
as first introduced and then explains how the concept of the original approach
had to be changed to allow the modeling of inhomogeneous materials.

The ChainMail algorithm very rapidly approximates the final shape of a de-
formable object by exploiting simple rules between neighboring elements. As
it might not always result in a deformed object with a homogeneous distribu-
tion of elastic energy, it should be the first step in a two step process. The
second step should be an elastic relaxation. The relaxation will provide fine
adjustments of the object’s shape and grant a valid energy distribution over
the object.

4.1 ChainMail

ChainMail works with one-, two- and three-dimensional objects. Objects are
represented as connected neighborhoods. In three dimensions each element is
linked to its six nearest neighbors. ChainMail is based on geometric constraints.
During the deformation process each element tries to satisfy given maximum
and minimum distance constraints to its neighboring elements. The movement
of an element depends only on the position of its nearest neighbors. Because
of the similarity of the algorithm to a set of linked chains it has been dubbed
ChainMail (see figure 4.1).

43

44 4. Enhanced ChainMail

Figure 4.1: Illustrations from the original ChainMail publication [Gib97a]: De-
formation of a 1D chain when the selected link is moved to the right by dx
(left). Deformation of 2D ChainMail when the selected link is moved (right).

When one element (named initial sponsor in the following) is moved while the
whole structure is in a relaxed state, the links between the initial sponsor and
its neighbors can first compensate the motion in their links. Once the move-
ment becomes too large so that a link is maximally stretched or compressed
a displacement of the respective neighboring element takes place. In an iter-
ative process the initial deformation is propagated through the structure. By
changing the constraints of the links that connect the elements it is possible to
model softer or more rigid objects.

4.1.1 Outline of the Original ChainMail Algorithm

The degree of deformation in which an object reacts to the displacement of
one of its nodes is governed by the constraints that were a priori assigned
to the connections between the nodes. Each horizontal link has a minimum
and maximum allowed length; minDx and maxDx. In addition two nodes
connected by a horizontal link may only have a defined shear ±maxHorzDx
against each other. Analogous constraints are valid for vertically connected
node, with minDy and maxDy being the link length and ±maxV ertDy the
shear. Figure 4.2 illustrates the constraints. Once defined, these constraints
are valid for all links within the object, which result in the model of an isotropic
and homogeneous body. In three dimensions an additional triplet of constraints
has to be considered. For simplicity the algorithm is illustrated in 2D in the
following. The extension to three dimensions, however, is straightforward.

In two dimensions four lists are maintained in which the elements that are to
be considered for a move (candidates for a move) are stored. The lists (top,
bottom, left, right) classify the elements regarding which neighbor they have
to be checked against.

When an element is moved by the user (initial sponsor), its position is updated
accordingly and its four nearest neighbors (candidates for a move) are added

4.1. ChainMail 45

Figure 4.2: Illustrations from the original ChainMail publication [Gib97a]: The
regions in which the element (black dot) can move relative to its left and bottom
neighbor.

to the appropriate lists. Then a process is started which runs until all lists are
exhausted:

1. The first element of the right candidates list is checked against its left
neighbor and moved as far as necessary to satisfy the stretch and shear
constraints illustrated in figure 4.2. The new position is given by:

(a) Stretch constraint:
if (x− xleft) < minDx, x = xleft +minDx;
else if (x− xleft) > maxDx, x = xleft +maxDx;

(b) Shear constraint:
if (y − yleft) < −maxHorizDy, y = yleft −maxHorizDy;
else if (y − yleft) > maxHorzDy, y = yleft +maxHorzDy;

2. If the previous step required a move of the element, its neighbors (top,
bottom and right) are added to the respective candidate lists. The left
neighbor is not added as the position was just adjusted to meet the con-
straints of this link.

3. Process right candidates list in the described way until the list is empty.

4. Process left candidates list in the corresponding way until it is empty.
Bottom top and left neighbors have to be added to the appropriate can-
didates lists.

5. Process top candidates list. Only top neighbors have to be added to top
list.

46 4. Enhanced ChainMail

6. Process the bottom candidates list. Only bottom neighbors have to be
added to bottom list.

Following the suggested list processing sequence grants that a minimum number
of elements has to be processed until the algorithm reach its end. Changing
the order, however, has no effect on the final shape of the object.

4.1.2 Discussion

The algorithm as presented is tailored to the deformation of initially convex
bodies. Each element is processed only once. In case of non-convex objects it
might be necessary to add and process elements which have a reduced number
of neighbors, due to the concave shape, more than once. This might also
imply that candidate lists have to be revisited to guarantee that they will be
exhausted during the process1

Figure 4.3 shows the result of the deformation of a small setup (6× 6 nodes) .
The red arrow indicates the point and direction of the current interaction. The
sequence shows single frames of an animation; each image represents a final
ChainMail simulation step.

Figure 4.3: The sequence shows single frames of an animation; each image
represents a final ChainMail simulation step. The red arrow indicates the
current point and direction of interaction.

Figures 4.4 illustrates the iterations performed for a single simulation step of the
original ChainMail algorithm. The iteration begins, when the initial sponsor is
moved and it ends when all candidate lists are exhausted. In the example the
initial sponsor is moved very far to the right in an initial step.

1A proof that each element is only processed once can be found in [Gib97b]. Since for
the Enhanced ChainMail algorithm no limitation regarding the shape of the object exist the
shape issue is not addressed here.

4.1. ChainMail 47

Mostly ChainMail will not leave the object in an optimal condition regarding
the energy distribution within the body. Therefore an elastic relaxation process
is started in a second step. It reduces an energy measure in the deformed object
by locally adjusting relative element positions. The object’s energy is given by a
function that depends on the distances between the elements. This function can
also be used to model different material properties like elasticity or plasticity.

48 4. Enhanced ChainMail

Figure 4.4: Original ChainMail on a 50x50 element matrix. The image shows
a sequence of iteration steps of a single ChainMail simulation step; in a real
simulation only the initial state (image before the first) and the last image
would be visible. The element in the middle of the most right column is moved
away to the right. According to the original ChainMail algorithm, the left/right
neighbors lists are processed first and then the top and bottom neighbors. This
is very well noticeable in the sequence. In the first image of the second row the
left/right lists are already exhausted and the top list is processed. Top list is
empty with the last image of row three and the bottom list is processed.

4.2. The Enhanced ChainMail Algorithm (ECM) 49

4.2 The Enhanced ChainMail Algorithm
(ECM)

Enhanced ChainMail is a further development of the original ChainMail idea
which lacked the capability to process inhomogeneous materials. As modeling
inhomogeneous material is essential for biomechanical simulations, the term
Enhanced was added to the algorithm’s original name. However, ECM actually
represents a generalization of the original ChainMail idea.

This section 4.2 provides a different, more general, view on the process de-
scribed with ChainMail. A physical interpretation of the algorithm is given
and then used to derive the principle that allows modeling of inhomogeneity.

4.2.1 Basic Idea

Applying ChainMail to an inhomogeneous object, i.e. link constraints that vary
over the object, fails. Figure 4.5 shows how an object is torn apart if the original
ChainMail algorithm is applied on an inhomogeneous object. The result is

Figure 4.5: Applying the original ChainMail algorithm to an inhomogeneous
object fails. The test object is the four connected neighborhood shown on the
left. The material constraints are constant over the object except for the red
t-shaped structure which is completely rigid. The right image shows the final
state of the deformation with original ChainMail. The t-shape is torn apart
by the algorithm. The link lengths between neighboring nodes within the red
shape and at its right border are also false.

the image on the right of figure 4.5 showing a gap in the rigid red t-shape.
The tearing apart of the structure which was supposed to be completely rigid,
seems to suggest that the process simply finished too early. Therefore either
always adding all neighbors of a moved element, changing the order in which
the lists are processed or/and visiting the lists multiple times also after they
were exhausted, should produce correct results. None of these straightforward

50 4. Enhanced ChainMail

modifications nor a combination of them solves the problem. They either render
unrealistic shapes or stick in an infinite loop where parts of the object are
oscillated back and forth.

Seeking the basic principle behind ChainMail leads to understanding the al-
gorithm as a method of transporting information through a mesh of inter-
connected nodes. However, the information needs to be transported to the
appropriate nodes in the “correct” order; the nodes must be processed in the
“correct sequence”. The chronology in which information is spread through the
mesh is important because each node2 may alter the information it receives be-
fore passing a modified message on to its neighbors. Therefore the principle of
causality must be respected. Considering physical behavior – the information
propagated through the mesh could be the information of deformation – the
correct order in which nodes have to be considered for a move is given by the
order in which nodes condition their movement. Figure 4.6 shows the propaga-
tion of deformation information through the trivial case of a one dimensional
chain. As the information that a deformation occurred, travels through the
object, each element reacts by adjusting its own position. The distance each
element moves is given by the material constraints. By adjusting its position,
each element implicitly changes the information (size of the deformation) that
is passed on to its neighbor. The process ends, when the deformation informa-
tion is reduced to zero or no neighbors are left to pass the information to. The
correct order which guarantees causality is very easy to comprehend in the one
dimensional case.

Figure 4.6: The deformation is initiated by moving element #1. In the next
step, element #2 implicitly changes the information that is passed on to element
#3 by adjusting its position according to the material constraint, maxDx,
where maxDx is the maximum allowed distance between two elements. During
the process the “Deformation still to be performed” becomes smaller with every
step.

What is the “correct” way of propagating information through an arbitrary
object? ChainMail can be regarded as a physical process in which deformation
information travels through the material, just like a sound wave. In general, the

2respectively the link between two nodes

4.2. The Enhanced ChainMail Algorithm (ECM) 51

speed of sound is higher in material with a tight coupling between adjacent ele-
ments. In ChainMail the “stiffness” of a connection between two neighbors can
be determined by the material properties of the two involved elements. In in-
homogeneous materials, when neighboring elements can have different material
constraints, the constraints for the link between two neighbors can be calcu-
lated using contributions from both elements. Figure 4.7 shows the constraints
that are assigned to a single element in the Enhanced ChainMail algorithm and
figure 4.8 illustrates how the two neighbors contribute to the link constraints
that govern their relative behavior.

Figure 4.7: Constraints assigned to a single element in the Enhanced ChainMail
Algorithm. deltaMaxX, deltaMinX, deltaMaxY and deltaMinY correspond
to maximum allowed stretch and compression in the horizontal and vertical
directions respectively. ±deltaV ertX and ±deltaHorzY correspond to the
maximum allowed shear to vertical and horizontal neighbors respectively.

Figure 4.8: The contributions of both neighbors combine to give the constraints
of the link between them.

The order in which neighbors of a moved element are processed determines
to where the deformation information is propagated first. Hence, the process-

52 4. Enhanced ChainMail

ing order can be used to model material and direction-dependent propagation
speeds in the object. The ECM algorithm uses this observation to order the
processing of elements so that the deformation travels most quickly through
stiff materials. Such a processing order can be obtained by comparing the con-
straint violations between neighboring elements and always process the element
with the largest constraint violation first. For example, the constraint violation
for element #2 in step 1 of Fig. 4.6 is determined as follows:

amount of constraint violation = distance#1,#2 −maxDx

After moving an element, its neighbors are examined to investigate whether
any constraints have been violated. If so, the neighbor with the largest con-
straint violation is processed next. This is equivalent to processing neighbors
in the order in which their constraints were violated, guaranteeing that the
deformation information is propagated fastest through stiff materials.

4.2.2 Outline of the ECM Algorithm

The Enhanced ChainMail Algorithm maintains one ordered list where all ele-
ments that must be considered for a movement are stored. The ordering criteria
for the list is the size of the constraint violation.

The process starts when an element – the initial sponsor – is moved to a new
position. The neighboring elements are inserted into the list, whereby the
above ordering principle must be maintained, i.e. the element with the largest
constraint violation is always at the top of the list. Then the first element is
popped from the list and moved to satisfy the constraints against its sponsor
(the element’s sponsor is the element which had caused that the element was
added to the list). Moving an element to satisfy constraints against its sponsor
may again make an adding of elements to the list necessary. The list grows
when an element is moved and its neighbors are added, it becomes smaller
with each element that is popped from the top of the list and processed. The
algorithm ends when the list is exhausted. The following is pseudo code for the
Enhanced ChainMail Algorithm:

initialSponsor.position = newPosition ;
insertNeighborsToList(initialSponsor) ;
// the above function maintains the ordering principle
while (elements in list)

popFirstElementFromList ;
if(checkVsSponsor demands move)

thisElement.updatePosition ;
addNeighborsToList(thisElement) ;

It is intuitively understandable that the described process will terminate. The
constraint violation corresponds to the amount of deformation that still has

4.2. The Enhanced ChainMail Algorithm (ECM) 53

to be performed by the object. As the algorithm works from large to small
violations it always decreases the deformation that is still to be considered.
Generally – however – one element is added more than once to the list of
candidates.

The candidate list can be sorted easily if new elements are inserted into the
correct position while they are added to the list. Currently the list is imple-
mented as a binary tree, making it relatively fast and easy to insert and find
elements. However element insertion remains the most time-consuming part of
the algorithm.

4.2.3 Results

The Enhanced ChainMail Algorithm was implemented and tested in 2D as well
as in 3D for both flat and volumetric objects. The algorithm was integrated
into a general system which allows a 2D gray-scale image as well as a raw
volume data set to be read in, material constraints to be set and the resultant
model to be interactively manipulated. Constraints are set using a lookup table
based on gray-scale values which can easily be modified.

Figure 4.9 shows the deformations achieved with ECM of the same dataset
that was used in figure 4.2 to demonstrate the failure of the original ChainMail.
The red arrow indicates the location and direction of the current manipulation.
The object is grabbed at its right brim and pulled to the right (images one to
five). Then the object is torn downwards (images six through nine). Images
ten through fourteen show displacements to the left/top, which leads to a
compression of the softer tissue and finally the object is stretched again in
image fifteen.

With ECM the rigid t-shape is no longer torn apart and its deformation as well
as the deformation of the softer tissue looks natural. Even material densifica-
tions can be observed around the t-shape when tissue is pushed together e.g.
in front of the t-shape (third image in the first row).

Figure 4.10 illustrates the deformation of an object which contains a continuous
transition from rigid to soft. A gray-scale gradient is embedded in a white sur-
rounding. Gray values are directly mapped to material properties where black
corresponds to completely rigid and white to soft material. The ChainMail
structure has a resolution of 50× 50. The initial distance between elements is
10 length units. The first picture in figure 4.10 shows the structure as it was
generated from the gray-scale image. Starting with the second image, elements
are used as vertices of an OpenGL triangle strip which renders a continuous
object3. Link properties are set according to the concept introduced in section
4.2.1 and illustrated in figures 4.7 and 4.8 based on the gray values of the nodes.

3The continuous object is equivalent to the initial gray-scale image scaled by a factor of
ten.

54 4. Enhanced ChainMail

Figure 4.9: ECM algorithm, operating on the same t-shape data set that was
used in figure 4.2 to illustrate the failure of the original ChainMail. The stiffer
t-shape is embedded into soft tissue. The red arrows indicate the direction and
location of the current manipulation. The frames are taken from an animation
which can be performed interactively. Frames are rendered in line-mode (only
the links are drawn).

4.2. The Enhanced ChainMail Algorithm (ECM) 55

Figure 4.10: ECM algorithm: A gray-scale gradient, representing a material
transition from rigid (black) to soft (white), is surrounded by soft tissue.

Gray values of two connected nodes are averaged and the result is used on a
previously defined look up table to get the properties of the link between the
two nodes. For the example shown in figure 4.10 the look up tables holding the
link properties were generated in the following way:

1. maxLength: maximum allowed length of the link between two nodes.
maxLength is equal to maxDx from figure 4.8. The interval grayvalue =
[0, 255] was linearly mapped to maxLength = [10, 15] which means that
for a link between two black nodes (gray value=0) the maximal length is
set to 10.

2. minLength: minimum allowed length of the link between two nodes. min-
Length is equal to minDx from figure 4.8. The interval grayvalue =
[0, 255] was linearly mapped to minLength = [10, 6].

3. shear1: maximum shear allowed in y-direction. shear1 equals the sum of
deltaVertDx (see figure 4.7) of the two participating nodes. The interval
grayvalue = [0, 255] was linearly mapped to shear1 = [0, 7].

4. shear2: maximum shear allowed in z-direction. shear2 equals the sum of
deltaHorzDy (see figure 4.7) of the two participating nodes. The interval
grayvalue = [0, 255] was linearly mapped to shear2 = [0, 7].

Link properties are illustrated in figure 4.11. The following pseudocode shows
how the link properties are set. The directions x, y, z refer to the local coordi-
nate system of each link4.

4For the example shown in figure 4.10 the shear2 constraint was not used since no defor-
mation in z-direction was applied.

56 4. Enhanced ChainMail

Figure 4.11: Link properties used in the implementation. The directions x, y,
z refer to the local coordinate system of each link.

linkValue = link[i]->node[0]->getDensity() +
link[i]->node[1]->getDensity() ;

linkValue /= 2 ;
link[i]->minConstraint.x = minLength[linkValue] ;
link[i]->minConstraint.y = - shear1[linkValue] ;
link[i]->minConstraint.z = - shear2[linkValue] ;
link[i]->maxConstraint.x = maxLength[linkValue] ;
link[i]->maxConstraint.y = shear1[linkValue] ;
link[i]->maxConstraint.z = shear2[linkValue] ;

The described mapping of gray values to material properties generates a fixed
link between two black nodes – completely rigid material – no shear or length
change is possible. A link between two white pixels (gray value=255) can be
stretched by 50% (from 10 to 15 length units) and be compressed by 40%. The
shear in y and z direction was set to be equal.

A deformation in z-direction of the local link coordinate system is shown in
figure 4.12. A flat object is deformed in 3D bringing the z-constraint of the
links into play. The out off plane deformation (pictures five and six) is governed
by the shear2 constraint. Rotating the object in space (third image of figure
4.12), grabbing an element within the large black structure in the middle of
the setup and moving it in z-direction results in the configurations in the lower
row.

The ECM algorithm can model any object shape. The next example (figure
4.13) shows how an irregular (non-square) shape is used with ECM. Again
material properties are mapped to gray values with black being rigid and white
being soft material. The example shows deformations of the initially flat object
in all three spatial directions.

The modeling of volumetric objects is particularly important for medical simu-
lations. Medical imaging devices like CT and MRI produce voxel data. These
volume scans are often used as a data basis for bio-medical simulations. Since
the simulation and visualization of volume models is disproportionately more

4.2. The Enhanced ChainMail Algorithm (ECM) 57

Figure 4.12: ECM algorithm for a 2D shape in 3D: Black corresponds to rigid
white to soft material. After an initial in-plane deformation the flat object is
turned in space (third image) and deformed into the third spatial direction.

sumptuary than the corresponding operations with surface models, it is very
common to generate surface representations from the data delivered by medical
imaging devices. This procedure, however, has several drawbacks:

• The complex physical behavior of a volumetric object has to be mapped
onto a surface representation which is always a simplification.

• Biomechanical simulations are often conducted to learn more about the
internal structures of an organ, e.g. the vascular system, which are not
present in the surface representation.

• In surgery simulation cuts or tears in organs provide a view on inner
structures.

The simulation of volumetric objects with ECM is straight forward. Instead of
a gray-scale image a data volume x×y×z is loaded, where (xi, yi, zi) ∈ [0, 255].
In volumetric objects a typical node is connected to its six nearest neighbors
instead of four in the 2D case. Again the gray-scale – or density5 – is mapped
to material properties. Figure 4.14 shows the deformation of a homogeneous
cube.

An inhomogeneous volume example is shown in figure 4.15. For this example a
3D-dataset was generated by duplicating a gray-scale image 10 times with a z-
offset. The cohesion of the dark rigid area is well observable in all 3 directions.
The illustrated example comprises about 20.000 nodes.

5as provided by CT scanner

58 4. Enhanced ChainMail

Figure 4.13: ECM algorithm for an arbitrarily shaped 2D object. The initially
flat object is deformed in all three spatial directions.

4.2. The Enhanced ChainMail Algorithm (ECM) 59

Figure 4.14: Deformation of a homogeneous cube. A typical node is connected
to its six nearest neighbors.

Figure 4.15: Deformation of an inhomogeneous volume.

60 4. Enhanced ChainMail

Performance Analysis

The original ChainMail algorithm can be understood as a highly optimized
variant of the ECM for the special case of homogeneous material parameters
(see section 4.2.4). As no sorting is required when dealing with homogeneous
material the processing order of elements can be optimized so that each element
has to be processed only once. Because the ECM algorithm requires sorting it
is slower than ChainMail. In addition it is often necessary to process the same
node several times. Nevertheless interactive rates are reached on a standard
PC hardware.

An object of size n×m× o was deformed with ECM by grabbing an arbitrary
node and displacing it into:

1. direction ~u = (X, 0, 0)

2. direction ~u = (−X, 0, 0)

3. direction ~u = (X,Y, 0)

4. direction ~u = (X,Y, Z)

To average out variations the object was deformed 100 times into each direction
in sequence before changing the direction. The displacement was chosen to be
large against the size of object to guarantee that all nodes in the object must
to be moved to satisfy the constraints. Different object sizes were tested. The
test objects were inhomogeneous containing 255 different gray levels. The inho-
mogeneity was spread over the object. All measurements were carried out on a
Intel Pentium III 450 Mhz running under Linux 2.4.4 using gcc version 2.95.2.

Object size: 12× 12 = 144 nodes. (All nodes affected by deformation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 0.804968 0.00559 123
(-X,0,0) 0.787949 0.00547 123
(X,Y,0) 1.58299 0.01099 245
(X,Y,Z) 2.35202 0.01633 371

Object size: 25× 25 = 625 nodes. (All nodes affected by deformation!)

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 3.81201 0.006099 554
(-X,0,0) 4.22683 0.006762 552
(X,Y,0) 7.58899 0.012142 1108
(X,Y,Z) 11.385 0.018216 1664

4.2. The Enhanced ChainMail Algorithm (ECM) 61

Object size: 50× 50 = 2500 nodes. (All nodes affected by deformation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 19.73 0.007892 2250
(-X,0,0) 19.387 0.0077548 2250
(X,Y,0) 39.632 0.0158528 4500
(X,Y,Z) 59.685 0.023874 6752

Object size: 100×100 = 10000 nodes. (All nodes affected by deformation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 101.472 0.0101472 9170
(-X,0,0) 101.969 0.0101969 9172
(X,Y,0) 202.138 0.0202138 18340
(X,Y,Z) 304.936 0.0304936 27514

Object size: 200×200 = 40000 nodes. (All nodes affected by deformation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 508.573 0.012714325 39352
(-X,0,0) 502.53 0.01256325 39354
(X,Y,0) 996.893 0.024922325 78708
(X,Y,Z) 1496.99 0.03742475 118054

Object size: 316×316 = 99856 nodes. (All nodes affected by deformation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 1445 0.014470838007
(-X,0,0) 1417.43 0.014194740426
(X,Y,0) 2863.53 0.028676594296
(X,Y,Z) 4298.72 0.043048990546

Object size: 22 × 26 × 20 = 11440 nodes. (All nodes affected by deforma-
tion!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 221.175 0.019333479021 21091
(-X,0,0) 220.357 0.019261975524 21093
(X,Y,0) 445.261 0.038921416084 42184
(X,Y,Z) 656.348 0.057373076923 63275

62 4. Enhanced ChainMail

Object size: 50 × 50 × 10 = 25000 nodes. (All nodes affected by deforma-
tion!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 426.335 0.0170534 25137
(-X,0,0) 430.177 0.01720708 25129
(X,Y,0) 982.172 0.03928688 50241
(X,Y,Z) 1281.73 0.0512692 75371

Object size: 100 × 100 × 10 = 100000 nodes. (All nodes affected by defor-
mation!):

direction: time [ms]: time/node [ms]: max. Cand.List
(X,0,0) 2298.69 0.0229869 180636
(-X,0,0) 2110.84 0.02110 180642
(X,Y,0) 3844.19 0.0384419 361296
(X,Y,Z) 5595.62 0.0559562 541765

As mentioned above it can happen during ECM that elements are added more
than once to the list of candidates. For some measurements the size of the can-
didates list was protocoled. The largest size that was reached during the process
is given in the tables as max. Cand.List. When more than one deformation
direction has to be considered ((X,Y,0) and (X,Y,Z)) the list size generally
exceeds the number of elements. This is also true for 3D objects. Figure 4.16
summarizes the measurements. The processing time of the ECM algorithm
varies linear with the number of elements affected by the deformation6. The
linear behavior is due to the local nature of the ECM algorithm. All interac-
tions are local; moving an element only affects its direct neighbors. Adding n
additional elements to the object increases calculation time by about n times
the calculation time required for one element. The number of displacement
directions, dispDir:(X,Y,Z), represents a factor in the algorithms complexity.
For 2D objects the complexety of ECM is:

O(#dispDir ∗#nodes) (4.1)

For a 3D oject another factor must be added, which takes account of the ob-
ject’s dimensions. In two dimensions each element has four neighbors, in three
dimensional structurs a node has six neighbors. Figure 4.16 shows exactly this
relation (six to four) when comparing 2D with the corresponding 3D displace-
ment. The general complexety estimation for ECM result in:

O(#objectDim ∗#dispDir ∗#nodes) (4.2)

6precisely: the number of chains

4.2. The Enhanced ChainMail Algorithm (ECM) 63

Figure 4.16: Timings for the deformation of inhomogeneous 2D- and 3D-objects
of different size with the ECM algorithm. (X,Y,Z) refers to a displacement
that was applied in the corresponding directions. Test system: Pentium III,
450 MHz, running Linux 2.4.4.

In ECM, as well as ChainMail the directions (x, y, z) are independent from
each other. This issue will be discussed in the next section. However, due to
the independence of the three directions, they can be processed independently
from each other in separate threads. The solutions of the three processes are
superposed in the end to give the final configuration of the object. Sofar the
algorithm was not parallelized, but the functions moveX(node, xDisplacement),
moveY(node, yDisplacement) and moveZ(node, zDisplacement) are carried out
one after the other. Parallel execution of the three functions on a ≥ three-
processor computer should produce the same timings for (X,Y,Z) as for (X,0,0,).

Elastic Relaxation

The Enhanced ChainMail algorithm rapidly approximates the final shape of
the object by following geometric constraints between neighboring elements.
However, it is not ensured, that the final configuration reflects an optimal
configuration with respect to energy distribution within the object. Therefore
an ECM pass should be followed by an elastic relaxation pass, to equally spread
the deformation energy over the object. If the object’s energy is given by a
function that depends on the distances between elements this function can
be used to model different material properties. In the following an elastic
relaxation algorithm is suggested that can be used to model different material

64 4. Enhanced ChainMail

properties. The algorithm is inspired by a highly damped mass-spring model
and was implemented and tested.

All operations on the vectors dist, deflection and relaxDistance are carried out
on their components, e.g. dist/2 = (distx/2, disty/2, distz/2).

do for all chains
dist = chain->node1.getCurrentPosition() -

chain->node0.getCurrentPosition();

// mass-spring:
// F = -D(x-x0) + dv ; x - x0 is the offset from the
// restposition and D is the fraction of the offset
// that we will move the node.

deflection = dist - chain->getCurrentRestLength() ;

relaxDistance = chain->getCurrentSpringConst(deflection) *
deflection ;

// each node should be moved half of relaxDistance
relaxDistance /= 2 ;

currentPosNode0 = node0.getCurrentPosition() ;
currentPosNode1 = node1.getCurrentPosition() ;

// node0 is always the right node,
// node1 is always the left node
node0.setCurrentPosition(currentPosNode0 + relaxDistance) ;
node1.setCurrentPosition(currentPosNode1 - relaxDistance) ;

The above loop can be run repeatedly. By making the currentSpringConst a
function of the deflection from the restlength non-linear and plastic relaxation
can be modeled as well as elastic relaxation. Plastic behavior could be modeled
e.g. with spring constants that become zero before the initial rest length of a
link is reached.

A second relaxation method was also studied which uses a full featured mass-
spring model on the final configuration of ECM to minimize the energy (see
chapter 5). However, the above presented method has the advantage that it can
be interrupted when user interaction, e.g. displacing the next node, requires a
prompt system answer. After each relaxation pass over all chains the system
is in a valid ECM configuration. The full featured mass-spring relaxation, if
interrupted, can place nodes out of their geometric boundaries, which is fatal
for the next ECM pass! If not interrupted, i.e. relaxed to the energy minimum,
the mass-spring relaxation works fine.

4.2. The Enhanced ChainMail Algorithm (ECM) 65

4.2.4 Discussion

For inhomogeneous materials, the first-moved-first-processed element process-
ing order that was used in the original ChainMail is no longer appropriate.
As expected, a straightforward application of ChainMail using this process-
ing order gave inconsistent deformations for inhomogeneous materials that re-
sulted in holes and tears. The Enhanced ChainMail algorithm addressed this
problem with a new element processing order. The first-moved-first-processed
criteria was replaced by the more general principle largest-constraint-violation-
processed-first.

How do the two principles relate?

The idea of regarding ChainMail as a process in which deformation information
is being propagated through a connected neighborhood (see section 4.2.1) will
be utilized to answer this question. In the original ChainMail implementation
lists are maintained for left, right, top and bottom neighbors7; each list cor-
responds to a propagation direction. The candidate lists were processed until
empty. This is feasible because in the current implementation propagation di-
rections are independent and - don’t interfere with each other. Causality is
complied by processing the elements in the same order as they were added
to the lists. While processing one list the relevant deformation information
decreases (compare figure 4.6) which – for homogeneous material – conditions
that the constraint violation in step (i+1) of the list processing is always ≤ the
violation that was processed in step i. Therefore in the homogeneous case the
processing order first-moved-first-processed is equivalent to the more general
largest-constraint-violation-processed-first principle.

In the current ChainMail implementation the different propagation directions
are independent from each other. A deformation, e.g. in x-direction has no
effect on the material in any other direction than x. This is an approximation
of true physics; a real object would contract in the directions perpendicular
to the main stress direction (compare section 2.3). The capabilities of the
ChainMail algorithm are not limited to the current implementation. The cur-
rent implementation was chosen for performance reasons. ChainMail is fast
because it uses a very simple distance measure along the main coordinate axis.
Calculating the constraint violation is the task which is performed most often
during ChainMail. Therefore a considerable speed-up was achieved by using a
distance norm along the main coordinate axis.

xDistance(n, n+ 1) = ‖xn − x(n+1)‖; (4.3)
yDistance(n, n+ 1) = ‖yn − y(n+1)‖; (4.4)
zDistance(n, n+ 1) = ‖zn − z(n+1)‖; (4.5)

The link constraints between two elements in a 2D environment can be vio-
lated with respect to the x-direction and independently with respect to the

72D case

66 4. Enhanced ChainMail

y-direction or z-direction. In the first case either maxLength or minLength is
violated, whereas in the latter shear1 respectively shear2. If link constraints
were modeled physically correct the constraints would refer to the absolute
length of the link between element n and n+ 1, e.g.

link constr. =
√
xDist2n,n+1 + yDist2n,n+1 + zDist2n,n+1 (4.6)

which is considerably more expensive to evaluate.

Not only the calculation of constraint violations but also their handling is
accelerated considerably by using equations (4.3), (4.4) and (4.5) instead of
(4.6). To satisfy the link constraints, the candidate for a move must to be
moved the distance

∆x = amount of x constraint violation = xDistance−maxLength;
∆y = amount of y constraint violation = yDistance− shear1;
∆z = amount of z constraint violation = zDistance− shear2;

which again is a simple difference.

The calculation becomes more expensive, if constraints were set as illustrated
in figure 4.17. Such a model would require the evaluation of equation (4.6) to
determine the constraint violation. It would depend on the element’s history,

Figure 4.17: ChainMail uses square regions of interaction as shown in figure 4.7.
A more appropriate model would consider these regions to be circular, which
corresponds to using the distance norm given in eqn. (4.6) as link constraint.

how it had to be moved to comply the constraints (see figure 4.18). How would
the link in I.2) react to the applied force F2? it could either stay rigid and pass
on shear to the next link or it could contract in x-direction to allow a similar
result of the deformation as in II.). The propagation directions would no longer
be independent and the individual constraints would have to be calculated for
each link in each iteration step. Determining the new position for an element
would also be more costly. Figure 4.19 compares the element positioning for
circular and square interaction areas. In the circular case (blue) thecandidate
for a move should be placed where the straight line from candidate to sponsor
intersects with the circular interaction area.

4.2. The Enhanced ChainMail Algorithm (ECM) 67

Figure 4.18: With circular interaction areas the result of a deformation process
becomes dependent on the previous history of the link.

Figure 4.19: Difference between square (red) and circular (blue) interaction
areas: The candidate for a move should be placed where the straight line from
candidate to sponsor intersects the circular area. Determining this point is
expensive. For the square interaction areas only two difference operations have
to be performed.

The Enhanced ChainMail algorithm features the possibility of interactively
deforming considerably large inhomogeneous data sets. Moreover ChainMail is
based on a very well understandable and intuitive concept which puts it in line
with mass-spring models.

As a matter of fact, comparing ChainMail and mass-spring suggests that a
mass-spring system with a spring force of the following type

Fi = 0 ∀ i < imax

Fi = ∞ ∀ i ≥ imax
where i ∈ x, y, z

and an infinitely high damping would result in a quite similar configuration
as ChainMail. Assuming such a configuration, a spring that was elongated by

68 4. Enhanced ChainMail

x < xmax would exert no force at all. It would take up the deformation in
its structure. Once x >= xmax an insuperable force would move the neigh-
bor along. Using a deformation-force-relation as shown above for the springs
of a real mass-spring system leads to numerical instability as the masses are
infinitely accelerated once xmax is exceeded. In our thought experiment we
introduced an infinitely high damping to compensate for the acceleration. If
very short time-steps could be calculated while moving the initial sponsor, the
nodes would come to rest at the same places as with ChainMail8.

ChainMail differs from mass-spring in the way objects are manipulated. A
mass-spring model is deformed by acting forces whereas in ChainMail an initial
deformation is applied; a node (initial sponsor) is set to its new location and
the rest of the body adjusts its position accordingly.

The Transmission Line Method, introduced in section 3.3.6, follows a simi-
lar concept as ChainMail. In both models information waves are propagated
through a network of interconnected nodes. However, the way nodes are pro-
cessed in TLM is more similar to mass-spring than to ChainMail. TLM as
well as mass-spring can be regarded as isochronous processes with an explicite
time dependency, which means that for one time-step a loop running over all
nodes is processed. There is no particular order in which the nodes have to be
processed and the effects of adjustments, performed in the current time-step,
are not considered until the next time-step. The system needs several time
steps to reach its final state. E.g. in a mass-spring system a node A is moved
because the springs connecting A to its neighbors are tense. Those springs are
tense because in the previous time-step the neighbors of node A were moved.
One time step follows the next until equilibrium is reached.

The situation is different with ECM. An ECM pass has a clearly defined
chronology; the order in which nodes are processed matters! TLM and mass-
spring have an explicit dependency on the time. Whereas in ChainMail t is an
implicit parameter which is considered by keeping a certain processing order.

Since no explicit time dependency is present, ChainMail can not consider any
dynamic effects and the system is always in a valid state at the end of a pass
(one-step process). The algorithm results in a final configuration which states
a position for each element within the constraints implied on this element by
its neighbors. In contrast mass-spring models are generally time dependent.
After each time step the model delivers a configuration that can be rendered,
however the final object configuration is generally not reached until several
time steps were calculated.

A limitation of the current Enhanced ChainMail implementation is, that it does
not model volume conservation, an important characteristic of many biological
tissues. There are at least two ways to impose volume conservation on the
deforming volume: The first suggestion is to incorporate volume conservation

8The above view suggests that ChainMail represents a robust method to very rapidly
solve a special type of linear equation, respectively unequation systems.

4.2. The Enhanced ChainMail Algorithm (ECM) 69

into the relaxation process. A certain size of the volume spanned by 8 adjacent
nodes in 3D could be defined as energy minimum. The relaxation process would
develop the system towards a configuration with the same volume as the start
configuration. The second method would be to modify material constraints
in dependency of the perpendicular link state. If e.g. a link is maximally
stretched in x-direction, the constraints in y- and z-direction would be made
smaller. This would require to check neighbors not only against constraint
violations in the same direction as the displacement but also perpendicular to
this direction. While this direct method seems to be easier at first glance it
requires the administration of individual link constraints as link constraints
now depend on the history of the deformation process.

4.2.5 ECM in Soft Tissue Modeling

The original ChainMail algorithm was developed for the manipulation of large
volumetric data sets as produced by medical scanners like CT or MRI. It was
first used to simulate the cartilage in the simulation of an arthroscopic knee
surgery [Gib97a]. The knee model was created by hand segmentation of MRI
data and is visualized with volume rendering. The system features a 5 DoF
force feedback (3 translation, 2 leverage) which is generated by a self-designed
enhancement to a PHANToM device. The cartilage, which is attached to rigid
bone, can be manipulated with the arthoscope while realistic rendering and
force sensation is provided.

The ChainMail algorithm was used in [BSV+98] for the deformation of soft-
bodies while doing haptic volume rendering. When the stylus of a PHANToM
device collides with a volume object in the scene, forces are generated on the
stylus and the object is deformed accordingly.

In 1998 the Enhanced ChainMail algorithm was first published [SGBM98].

To illustrate the intuitive way in which objects can be manipulated with the
Enhanced ChainMail algorithm a work-frame has been implemented for the
manipulation of volume data sets. For the rendering of the original and de-
formed data sets the volume visualization software VG Studio9 was used. The
images in figure 4.20 show the deformation of a CT data set of a jaw. A voxel of
the jaw bone at the front part of the chin was moved in the direction indicated
by the red arrows on figures 4.20. The images on the top show only the boney
parts of the data set to illustrate their deformation. The images on the lower
part of figure 4.20 show also the soft tissue that was moved along with the bone
by the ECM algorithm.

The Enhanced ChainMail algorithm was used in [YXR+00] to implement a
semi-automatic 3D surface editing tool for generating models of the cortical
surface. A model brain was superimposed on an arbitrary brain data set.

9by Volume Graphics, http://www.volumegraphics.com

70 4. Enhanced ChainMail

Figure 4.20:

4.3. Summary 71

Differing points on the model brain surface can be adjusted by mouse operation
on the 2D image planes where the surface contours of the model data and the
data set are superimposed. The model brain’s surface is represented as an
Enhanced ChainMail net. Therefore the adjustments made in a 2D image slice
are propagated along the surface also perpendicular to the image plane while
preserving topology and surface smoothness. Yu et. all. used ECM for the
implementation of a suface editing method that can move local regions on a
3-D surface while preserving topology and surface smoothness.

4.2.6 Classification

ChainMail is a typical example for the process described at the end of section
3.4. A descriptive model is more and more enhanced to meet the demands
of the real processes. At first ChainMail was only capable to model homo-
geneuous materials. With the development of the presented ECM algorithm
inhomogeneuous material can also be modeled. Gibson has done considerable
work to show that real material properties can be modeled in the relaxation
step, which can also be regarded as an enhancement to ChainMail [Gib00].

Even though Enhanced ChainMail uses physical principles like sound wave
propagation or elastic relaxation, ChainMail and Enhanced ChainMail are de-
scriptive modeling techniques10.

4.3 Summary

The Enhanced ChainMail algorithm was developed and presented utilizing the
physical analogy of sound wave propagation in material. Enhanced ChainMail
is well suited for the interactive deformation of various kinds of objects. The
new ECM algorithm addresses the need for modeling complex, inhomogeneous
materials. ECM can be regarded as a generalization of the original Chain-
Mail – or more precisely the original ChainMail resembles a highly optimized
special case of the ECM algorithm. For homogeneuous material (the original
ChainMail case) the first-moved-first-processed principle becomes equivalent to
the principle largest-constraint-violation-processed-first used in the Enhanced
ChainMail algorithm (see section 4.2.4).

Several examples illustrating the capabilities of ECM in modeling inhomo-
geneuous two- and three-dimensional objects were presented. A frame work
was developed which allows the generation of two- and three dimensional ECM
objects from either gray scale images or raw volume data sets. These objects

10Figure 2.2 on page 9 presents a more differentiated view on the classification scheme.
While in the respective sections the modeling techniques are classified only with respect to
being descriptive or physical, figure 2.2 arranges the approaches in the whole range from
physical to descriptive

72 4. Enhanced ChainMail

can be deformed interactively in all spatial directions. Gray values are mapped
to material constraints which can also be changed interactively.

The speed of the ECM algorithm is based on using a very simple distance norm
between neighboring nodes, a difference along the main coordinate axis. Firstly
this distance can be calculated much faster than the correct distance between
the nodes, which would require the evaluation of a square root term. Secondly
the used distance norm leads to rectangular regions of interest (see section
4.2.4) which makes the three spatial directions independent from each other.
The independence of the spatial directions can be exploited for parallelizing
the algorithm. Parallel execution of the three spatial directions reduces the
complexity of the algorithm to:

O(#objectDim ∗#nodes) (4.7)

An ECM pass leaves the object in a configuration which does not necessarily
correspond to an optimal energy distribution. Therefore ChainMail will gener-
ally be followed by an elastic relaxation step. The energy stored in the object
depends on the distance between nodes and can be reduced by locally adjusting
relative element positions. Different energy-minimizing criteria can be set to
the relative distance between two nodes. If e.g. the energy stored in a link is
minimal only when the link has its initial length (the length it had when the
deformation process started) the relaxation would run until the initial shape of
the object was reached. Such a link criterium in the relaxation process models
completely elastic material. Plastic behavior can be modeled by defining a link
length range which corresponds to minimal energy.

5
Implementation

In [Boo01] Grady Booch states that the software industry faces the three harsh
realities that developing complex software of quality is wickedly hard, that it is
not getting any easier, and that there is a real shortage of skilled programmers.

“In the face of such pressure, there are pragmatically only two
things a development organization can do. First, the best way
to reduce the risk of software development is to not develop any
new software at all. That’s why the reuse of assets – from code to
models to pure intellectual property – is an essential practice of ev-
ery successful development organization. Second, [. . .] there is an
essential complexity to most interesting software, we can’t expect
to reduce complexity, we can only seek to manage it: that means
raising the level of abstraction in the components we create [. . .].”

Finding a suited algorithm for one’s simulation needs is often a time demanding
process of experimenting with different approaches. Once a certain approach
is implemented the simulation is fixed to the chosen algorithm. Changing or
experimenting with other approaches generally requires to start all over again
and reimplement the simulation with another algorithm.

Being capable to change the simulation algorithm of a running system with only
little programming effort is highly desirable. While searching a suited algorithm
various approaches could be tested regarding their suitability for the problem.
If a similar problem had to be solved which required a different algorithm most
parts of the existing system could still be used. This chapter describes the
first steps towards such an architecture. The implementation currently called
vrmDesign even allows to change the simulation algorithm during a running

73

74 5. Implementation

simulation. This feature was used to relax an Enhanced ChainMail simulation
with a mass-spring model.

In contrast to conventional modeling approaches which are generally hand tai-
lored to the particular problem, the suggested architecture aims at high porta-
bility. The idea is to develop a tool box which offers various simulation algo-
rithms all running on the same data structure and thus being exchangeable.
After introducing the data structure developed for the vrmDesign the modeling
approaches that were implemented so far will be presented.

5.1 On Masses, Elements, Chains and Vertices

When studying the various modeling approaches presented in chapter 3 one
might discover similarities dispositional to the discrete nature of a computer
(compare page 15). Most of the algorithms operate with spatial discretization
where properties of an actually continuous object region are summarized in a
single point. Such a point is called mass in case of a mass-spring approach, it
is referred to as node in FEM or element in ChainMail. The discrete points
are set in relation to each other by some sort of connection. The connection
is called spring or chain in mass-spring respectively ChainMail or element in
FEM.

Visualization has not been discussed so far, but it is obvious that visual feed-
back must be considered when designing a tool box for biomechanical simula-
tions. Most commonly visualization is done with the computer graphics library
OpenGL [Kil96], [WND97], [Rog92]. Alike the simulation algorithms, OpenGL
stores properties of the object’s visual appearance in discrete points called ver-
tices. OpenGL represents the object’s surface with triangle meshes. Vertices
are connected with each other via triangles.

Figure 5.1 illustrates the similarities in the different approaches regarding their
representation as meshes made up out of points and connections between them.
The images in the top row of figure 5.1 show a mass-spring structure, a beam
made up out of finite elements and a deformed Enhanced ChainMail cube.
The lower row shows geometric objects as represented by OpenGL in wire-
frame mode on the left and shaded according to the properties stored in the
vertices on the right.

In mass-spring (see section 3.2.1) the points are assigned properties like mass,
position, velocity, acceleration. The springs typically hold information about
the nodes they are connected to, length, spring constant and damping. A cer-
tain finite element always has a given topology, e.g. a triangular finite element
has triangular shape. Depending on the used interpolation functions the nodes
of the chosen element type hold a number of node variables (compare section
3.1.1). Typically node variables in structure analysis are the position of a node

5.1. On Masses, Elements, Chains and Vertices 75

Figure 5.1: Similarities in object representation. Top row: mass-spring, finite
element and ChainMail, lower row: OpenGL example vertex mesh representa-
tion on the left and shaded according to the properties stored in the vertices
on the right.

and higher derivatives thereof. Structure information is stored in e.g. a trian-
gle mesh were each triangle holds information about the nodes that form the
triangle. In Enhanced ChainMail a chain-element is connected via chain-links
to its neighbors. Besides its position, each element is also assigned a parameter
which summarizes the material properties of the immediate surrounding of the
point’s location. As presented in section 4.2 chains have properties like rest
length and min- and max length with respect to the main coordinate system
axis. The chain parameters can easily be created from the material properties
stored within the points. As mentioned above, in OpenGL vertices form prim-
itives like triangles, where each vertex has a position and holds information
which determines the optical appearance of the primitive in the visualization
process. Such properties are e.g. color and normal vector.

5.1.1 Nodes and Connectors

The objects which are to be simulated have to be represented in a data struc-
ture. The data structure we are looking for should be suited for the different
simulation algorithms as well as for visualization. A single data structure that
could be used by all simulation algorithms is a pre-requisite for the planned
tool box system, because if all the simulation algorithms run on the same data
structure, they can easily be exchanged.

The similarities presented in the previous section, suggest to look for an ab-
straction of the various forms of nodes and connections between them. The

76 5. Implementation

terms node and connector will be used for the wanted abstractions. Nodes rep-
resent the spatial discretization of the problem whereas the connectors can be
thought of as an ordering principle on the set of nodes. A connection between
two nodes will be called 2-connector, between three nodes 3-connector and so
on. A connector will basically store pointers to the nodes it connects. Figure
5.2 shows how a set of nodes (bottom row) could be ordered with different
connector types to represent a particular object. A 3-connector represents a
triangle and a 2-connector could be a spring or a chain between two nodes. The
example illustrates how a set of 2-connectors (a, b, c, d, e) can represent the
cross shaped structure on the right by defining a topology for the nodes. The
3-connectors (A, B, C) create the triangulated shape on the top right of figure
5.2. The figure also shows a 1-connector which corresponds to a look-up-table.
1-connectors could be used e.g. to resort the set of nodes without actually
having to rearrange the nodes in memory. The two examples given in figure
5.2 refer to different sets of nodes.

Figure 5.2: A set of connectors “forms” the object by arranging the nodes in a
topology. E.g. the set of 2-connectors (a, b, c, d, e) create the cross shape in
the examples on the right from a given set of nodes. The 3-connectors A, B,
C generate the triangulated shape on the top right. The two examples refer to
different sets of nodes (positions on the nodes differ).

In a real simulation several ordering principles will be used on the same set
of nodes. E.g. 2-connectors will be used to represent the ChainMail mesh
and at the same time 3-connectors will form the triangles needed for OpenGL
rendering. Maybe certain nodes have to be stored in a list, which could very
well be done with an array of 1-connectors. Figure 5.3 illustrates 1-, 2- and

5.1. On Masses, Elements, Chains and Vertices 77

3-connectors on a single set of nodes.

Figure 5.3: Different connector types operating on a single set of nodes. The
2-connectors ([a, m]) create a mesh that could either be used for mass-spring
or ChainMail simulation. The 3-connectors ([A, J]) form triangles that could
be used for OpenGL rendering. The list of 1-connectors on the right can be
used to store and re-order nodes.

A connector is basically implemented as a list of pointers to nodes. As already
indicated in figure 5.2 by the two pointed arrows connecting nodes and connec-
tors, it is useful if not only the connectors “know” the nodes they connect but
also vice versa; the nodes store pointers to the connectors that concern them.
Most simulation algorithms require to access the connectors via the nodes:
e.g. in ChainMail the initial sponsor is moved and then adjacent neighbors
are checked whether they also require a move. The criteria if and how far the
neighbors have to be moved is given by the connector between the nodes. In
homogeneous material this criteria is identical over the whole object and can
be stored globally, but for inhomogeneous material the constraints vary and
are therefore stored in the connector. For regular topologies the neighborhood
relationship of the nodes can be stored implicitly in the data structure1, but
irregular structures require to explicitly store the topology. This can also be
achieved by the bi-directional pointers between nodes and connectors.

5.1.2 Object-oriented Analysis and Design

The key to implementing the desired data structure which could serve as a ba-
sis for simulation and rendering is an object-oriented analysis and design. At
the beginning of this section (5.1) the similarities in object representation of
different simulation algorithms and OpenGL rendering were presented. Follow-
ing the guide-lines of object-oriented design the problem domain was analyzed
in terms of principal abstractions. The abstractions node and connector were
introduced and their usability was demonstrated. Next, we will map these ab-

1think of a matrix n×m, where the neighbors of the entry xij can be determined easily.

78 5. Implementation

stractions into classes, using the two major concepts of object-oriented analysis
and design: polymorphism and inheritance.

Object-oriented programming languages allow the creation of object hierar-
chies with common method names for operations. The operations should be
conceptually similar, but can be implemented differently for each class in the hi-
erarchy. This functionality is referred to as polymorphism. Operations defined
for arguments of a certain class will also accept arguments of a polymorphic
class. If e.g. the classes node, massNode and chainNode were polymorphic
where node was the superclass and an operation:

OPERATION simulate(node myNode)
{
myNode.simulate() ;

}

was defined, simulate() would also accept nodes of the type massNode or chain-
Node as an argument.

Polymorphisms are often generated by inheritance. Inheritance is a mechanism
for automatically sharing methods and data among classes: classes inherit the
operations and data of their parent classes. The programmer only needs to
implement the differences to the parent class. If certain methods (operations)
of the parent class are inappropriate they have to be overwritten in the child
class – which generates a polymorphism. Due to inheritance object-oriented
programs consist of hierarchies of classes, where classes become more specific
with each inheritance level.

5.2 System Architecture: vrmDesign

The vrmDesign was implemented and – so far – successfully adapted to mass-
spring, ChainMail, FEM models and OpenGL rendering. The architecture can
be extended to other modeling approaches that fit into the node-connector
abstraction. The presentation given in this section focuses on the functionality
of the design. Details are skipped and simplifications are made where possible
to emphasis the basic design concept.

5.2.1 Basic Classes

The part of the vrmDesign that deals with nodes and connectors was dubbed
vrmGraph , since nodes and connectors represent a mathematical graph. The
vrmGraph class hierarchy is presented in figure 5.4. As mentioned above, con-
nectors store pointers to the nodes they connect. Nodes should also hold point-
ers to the connectors that they are part of. This suggests that connectors and

5.2. System Architecture: vrmDesign 79

Figure 5.4: vrmGraph class hierarchy. vrmMGE is a top level class that pro-
vides the management of pointer lists to other vrmMGEs.

nodes are conceptually similar and can be generalized in one top level class.
The class is called vrmMGE .

vrmMGE
The vrmMGE mainly provides functionality for the management of lists of
pointers to other vrmMGEs. Several lists of such pointers can be created and
maintained within one vrmMGE . This functionality is needed e.g. in a node
that belongs to connectors of different types; different connector types are
stored in separate lists.

vrmPoint
A vrmPoint represents a simple point in space. It holds three coordinates and
the methods to set and get the values of (x, y, z).

vrmNode
The vrmNode inherits its properties from vrmPoint and vrmMGE. The part
of the interface that is inherited from vrmMGE is supplemented with methods
that refer to adding, removing and finding particular vrmConnectors in the
vrmNode’s lists.

vrmConnector
vrmConnector is also a child of vrmMGE. In addition to the inherited func-
tionality the maximum number of allowed pointers to vrmNodes can be set.
Pointers to nodes can be added separately or as an array. vrmConnector has
methods that refer specially to the manipulation of pointers to nodes. These
methods do a type check on the argument; they can only be used with a
vrmNode as argument.

vrm1-, 2-, 3Connector
Essentially the same as vrmConnector with specification of one, two or three

80 5. Implementation

vrmNodes as arguments.

5.2.2 Modeling MassSpring

The basic classes from vrmGraph will be specialized in this section for the use
in mass-spring simulations. Following the toolbox concept of the vrmDesign
the basic properties of masses and springs are stored in special property classes
called vrmSpringBase and vrmMassNodeBase. A node for a mass-spring sim-
ulation e.g. is then created by inheritance from the vrmNode class and the
appropriate properties class. Implementing the properties required for a par-

Figure 5.5: vrmMassSpring class hierarchy. Basic properties of masses and
springs are stored in special property classes called vrm(. . .)Base.

ticular simulation in separate property classes makes the combination of two
or even more simulation algorithms possible. The simulation node would then
inherit the properties needed for algorithm A from the properties class aNode-
Base and the properties for algorithm B from bNodeBase.

vrmMassNodeBase
vrmMassNodeBase stores and manages the access to the parameters a mass-
spring simulation expects to find in a mass-node. Examples are mass, current
velocity, current acceleration and as the case may be external forces acting on
the node. Another important property is whether the node is constraint or
free.

5.2. System Architecture: vrmDesign 81

vrmSpringBase
In analogy to the mass node vrmSpringBase stores and manages access to the
parameters needed in a spring. Such parameters are e.g. the spring constant,
its zero length and the damping.

vrmMassNode
vrmMassNode unifies the properties from vrmMassNodeBase with vrmNode.
vrmMassNode is the object that is used in a mass-spring simulation to represent
the mass points.

vrmSpring
vrmSpring is derived from a vrmConnector and the vrmSpringBase class. In a
mass-spring simulation it represents a spring.

vrmTissueLoader
The vrmTissueLoader represents a basic class present in all simulations. The
tissue loader reads in the node information from e.g. a file and creates the
topologies necessary to run the simulation. In most cases at least two different
topologies are necessary: one for the simulation algorithm and one for the
visualization (see figure 5.3).

vrmMassSpringSimulation
vrmMassSpringSimulation is the actual mass-spring simulation algorithm class.
It operates on the structures filled by the vrmTissueLoader. The simulation
holds lists of the springs and nodes the simulation operates upon.

5.2.3 Modeling ChainMail

Again the basic simulation classes vrmChainNode and vrmChain are derived
from the vrmNode respectively from vrmConnector implemented in vrmGraph.
Alike the mass-spring implementation the special properties required for a
ChainMail model are stored in property classes; the actual chain node is derived
from vrmNode and vrmChainNodeBase, the vrmChain from vrm2Connector
and vrmChainBase. The vrmTissueLoader is supplemented by a vrmChain-
MailImport class which utilizes a scalar value stored in the connected vrm-
ChainNodes2 to determine the properties of each vrmChain.

vrmChainNodeBase
The basic properties of a chain node are stored in vrmChainNodeBase. Again
a simulation node with the appropriate features will be created by inheritance
from vrmChainNodeBase. The properties stored in a typical chain node are:
the scalar value mentioned above (which we will call density from now on) and
the information whether the node is fixed or free.

2The scalar value could, for example, be interpreted as the density around the node point
if the data underlying the model stems from a CT scanner. In a mass-spring model it could
be the mass assigned to the node.

82 5. Implementation

Figure 5.6: vrmChainMail class hierarchy..

vrmChainNode
A vrmChainNode is derived from vrmNode and vrmChainNodeBase. It has
methods to set and change its position (inherited from vrmPoint ; through
vrmNode) and the node can access all the connectors it is joint with (inherited
from vrmMGE , also through vrmNode).

vrmChainBase
Every vrmChain locally stores its individual constraints. The variables and
methods to manage and check the constraints are therefore stored in the vrm-
ChainBase class. In the ECM algorithm each chain connects two vrmChainN-
odes. The two nodes have a minimal and maximal distance in all three spa-
cial directions independently (see figure 4.11), i.e. the vrmChain has three
restlengths and three min. and max. length constraints, one for each direction.
Each constraint is related to a possible constraint violation in this direction and
a sponsor for this violation. The variables restlength, minConstraint, maxCon-
straint, violation and sponsor are stored within a vector (x, y, z) and managed
in vrmChainBase. In addition each vrmChain has methods to check whether
any of its constraints are hurt.

vrmChain
The vrmChain represents the object that is used in a ChainMail simulation.
It combines the properties from vrmChainBase and vrm2Connector. Access to
the connected nodes is granted by the functionality inherited from vrmMGE.

5.2. System Architecture: vrmDesign 83

vrmChainCandidate
vrmChainCandidate is the object type that is stored in the list of candidates
for a move. The object holds a pointer to the actual vrmChain that is to
be checked for a constraint violation. The candidate list itself is held in the
vrmChainMailSimulation class and is implemented as a STL3 multiset. As
the entries of the multiset have to be ordered according to their constraint
violation the greater operator (<) has to be defined for the objects stored in
the multiset. In the vrmChainCandidate class the greater operator and all
other comparators are implemented with respect to the constraint violation;
one vrmChainCandidate is greater than the other if its constraint violation is
greater.

vrmChainMailSimulation
The ChainMail simulation class has two major methods: move and relax. move
takes as first argument the pointer to the node that is the initial sponsor of the
process and as second argument a vector which holds the displacement applied
to the initial sponsor. By applying the displacement to the initial sponsor
the ChainMail process is started. move initializes a STL multimap that is
ordered according to the constraint violations. The neighbors of moved nodes
are added to this ordered list. The ChainMail (chainreaction) runs until all
entries from the list are processed and the list is empty. Since all nodes and
chains are bi-directionally connected ChainMail needs no global structure were
all nodes or chains are stored. Instead the process starts with one node and by
following the connections it travels through the object. The relax method can
be implemented in various ways. It represents the process that optimizes the
energy distribution in the object, by locally adjusting node positions.

vrmLUT
vrmLUT is an auxiliary class that creates a look-up table by linearly interpo-
lating values between the given key points of a function. It is used to create
look-up tables which take the density values of the two nodes connected with
a vrmChain and return the length and shear constraints for the vrmChain.
By that the material properties of the simulated object can be changed by
manipulating the key points of the linear function given to the vrmLUT class.

vrmChainMailImport
Support class for the vrmTissueLoader. It reads in a gray scale image or volume
data set while interpreting the gray values as material properties and assigning
appropriate values to the vrmChains.

5.2.4 Modeling FEM

The adaption of the presented design to FEM approaches as suggested in the
following was used to implement the simulation of a swelling brain (see sec-
tion 6.2). The implementation aims at elasticity problems and was adapted

3Standard Template Library, a part of the C++ programming language

84 5. Implementation

to static and dynamic FEM analysis. Again basic classes from vrmGraph are
used to derive the major components of the approach: vrmFemNode and vrm-
FemElement. In contrast to the implementations of mass-spring and ChainMail
presented above it is not a priori clear how many nodes will be connected by a
particular element in an FEM approach; the implementation must allow the de-
duction of different finite element types, connecting different numbers of nodes.
Therefore the vrmFemElement inherits its basic properties from vrmConnector,
which is not limited in the number of nodes it can manage. The actual num-
ber of nodes connected by the finite element is specified later in the particular
element type class that is derived from vrmFemElement.

vrmFEM

maths and special matrix classes

vrmFemTriangleElement

vrmFemTetraederElement

vrmNode
(from graph)

vrmConnector
(from graph)

vrmFemLineElement
elements
1..*

elementMatrix
1

vrmMatrix<double>

1

elements
1..*

vrmFemElement

1

1

1

vrmFemIO

1

nodes
1..*

vrmFemSimulation

1..*

nodes

1..*

vrmTissueLoader

1..*

1

1

variableVector

vrmVectorN<double>

1forceVector
1

vrmFemNode

1
1

1..* 1..*

Figure 5.7: vrmFEM class hierarchy..

vrmFemNode
Finite element nodes store the socalled node variables (see section 3.1). These
node variables depend on the interpolation functions that were chosen when
deriving the element type. Within vrmFemNode the node variables are stored
in a vector whose length can vary according to the number of node variables. In
general the first three node variables are the node’s position in space (x, y, z).
In biomechanical analysis the possible other node variables are higher deriva-
tives of the nodes position, describing smoothness and continuity of e.g. sur-
faces. The vrmFemNode inherits position related properties from vrmNode –
if present, other node variables are calculated when assembling the element
matrices. The force vector present in every vrmFemNode stores the possibly

5.2. System Architecture: vrmDesign 85

acting forces on the particular node. The position in the force vector corre-
sponds to the node variable it acts upon. Accordingly the first three entries
of the force vector can be used in elasto-mechanical analysis to set acting dis-
placement forces. In analogy to the previously described implementations of
mass-spring and ChainMail each node also has variables that describe its state
like fixed or free, its color or additional topological information like a global
number or whether the node lies on the surface of the object.

vrmFemElement
In the class vrmFemElement the interface to the concrete finite element types
is defined. Methods in vrmFemElement are mostly declared as virtual; the ac-
tual implementation is done in the classes derived from vrmFemElement. This
approach is necessary since vrmFemSimulation needs to access the different
types of vrmFemElements through an identical interface. The most relevant
virtual function in vrmFemElement is calcMatrix() which calculates the element
matrix and fills the appropriate variable elementMatrix.

vrmFemLineElement
Implementation of a simple two node element. It behaves basically like a spring.

vrmFemTriangleElement
Concrete implementation of a triangle element with a in-plane-strain and a
bending term. For the deduction see [Gri00], [ner98]. The triangle element is
used in section 6.2 to model the Dura mater, a strong skin covering the brain.

vrmFemTetraederElement
Concrete implementation of a tetrahedron element. This volumetric element is
used in section 6.2 for the modeling of brain tissue.

vrmFemSimulation
The actual simulation class is responsible for the assembly of the global stiffness
and mass matrices as well as the global force vector. vrmFemSimulation can
access the necessary information for the assembly in the elements and nodes.
After having set up all the necessary variables, an equation system of the form
(3.8, page 19) or (3.9, page 19) has to be solved. The implemented vector
and matrix classes hold all operations to solve such equation systems including
memory saving representation of large matrices and sorting of nodes to reduce
the bandwidth of the matrices4.

vrmFemIO
vrmFemIO provides special methods for importing and storing data sets and
forces to the vrmTissueLoader.

No rule without exception
The separate implementation of simulation specific functionality in

vrm(. . .)Base classes was not followed when implementing vrmFem. FEM sim-
ulations run in a completely different time frame (hours or days) as e.g. ECM

4The mathematical classes of the vrmDesign are not further presented.

86 5. Implementation

or mass-spring (fractions of seconds). Therefore the combination of FEM with
any of the other approaches does not seem reasonable and had not been a
primary goal. Besides that there is an implementational issue which led to
this excursion from the concept: Whereas for the vrmFemNode the separation
could have been realized easily, doing so for the vrmFemElement would have
made the design unnecessarily complicated. The particular functionality of a
vrmFemElement which could have been placed in a vrmFemElementBase class
relates to e.g. assembling the element’s stiffness matrix. Such tasks require ac-
cess to the nodes connected by the element because node variables are needed
for the assembly. The functionality to access to nodes is implemented in vrm-
Connector. It would not have been available in a vrmFemElementBase class.
Therefore vrmFemElement was directly derived from vrmConnector without
the use of a vrmFemElementBase class.

5.2.5 Visualization

OpenGL visualization is vertex-based, which means that the vertices store all
properties that govern the looks of the rendered scene. Vertices are connected
to triangles to define the topology of an object’s surface in the scene. Properties
assigned to vertices are e.g. color, alpha value5 or a normal vector which can
be used in the lighting model. With these properties OpenGL fits well into the
concept of the vrmDesign. Vertices can be realized as vrmNodes, triangles and
triangle strips as vrmConnectors.

vrmTriangleBase
The class vrmTriangleBase stores useful information about the triangle such
as a unique id6 or whether front, back or both sides of the triangle should be
rendered. Furthermore vrmTriangleBase provides a method which takes two
vectors as argument and returns the normal vector. Each triangle’s normal
vector is needed since the normal vectors of the vertices are interpolated from
the normal vectors of the triangles a particular vertex is part of.

vrmTriangleStripBase
A triangle strip is defined as a list of vertices where the first three vertices form
the first triangle, each succeeding vertex together with the two last defines a
new triangle. Triangle strips are generally a little more efficient than a list of
triangles describing the same object. vrmTriangleStripBase holds basically the
same functionality as vrmTriangleBase.

vrmGraphicsTriangle
The actual triangle used by the vrmVisualization. vrmGraphicsTriangle inher-
its from vrm3Connector the access functions to the nodes, i.e. vertices.

vrmGraphicsMesh
A graphics mesh is represented as a triangle strip. As it is not a priori known

5determines the object’s opacity
6can be used for select mode rendering.

5.2. System Architecture: vrmDesign 87

vrm3Connector
(from graph)

vrmNode
(from graph)

vrmConnector
(from graph)

vrmTraingleBase vrmTriangleStrip

vrmGraphicNodeBase

vrmGraphicTriangle vrmGraphicMesh

vrm
Visualization

vrmGLVisualization

vrmGraphicNode

Figure 5.8: vrmVisualization class hierarchy.

how many vertices will be used in the mesh the vrmGraphicsMesh inherits the
node access from vrmConnector.

vrmGraphicsNodeBase
Graphics nodes, or vertices, store all the information that is relevant for ren-
dering such as color, opacity and texture coordinates. In addition vrmGraph-
icsNodeBase stores a normal vector which it can interpolate from a vector of
normal vectors passed to the appropriate member function as an argument.

vrmGraphicsNode
In addition to the vrmGraphicsNodeBase functionality the vrmGraphicsNode
inherits node properties from vrmNode.

vrmGLVisualization
The vrmGLVisualization currently works with lists of vrmGraphicsTriangles,
vrmGraphicMeshes or directly with vrmGraphicsNodes. It uses OpenGL to
either render triangles, triangle strips or points. The methods provided by
vrmGLVisualization have identical interfaces no matter what is currently ren-
dered. vrmGLVisualization also provides select mode rendering, an OpenGL
method for identifying particular nodes or triangles in a scene7.

The vrmVisualization module currently only supports OpenGL. A DirectX
7Select mode rendering is often used to find the node that is currently under the mouse

cursor.

88 5. Implementation

visualization class is under development. There are plans to also incorporate
volume visualization.

5.3 Summary

As finding a suited simulation algorithm for a given problem can be a time
demanding task which often requires to try and implement several test envi-
ronments, a software architecture was suggested that enables the developers
of biomechanical simulations to easily try out different simulation approaches.
In an object oriented approach simulation and visualization algorithms were
analyzed and mapped into a class hierarchy. The key to the implemented
software architecture is the node-connector abstraction introduced on page 75.
As demonstrated, some simulation and visualization approaches can be rep-
resented in a the node-connector abstraction. So far mass-spring, Enhanced
ChainMail, finite element analysis and OpenGL rendering have been imple-
mented using the presented concept. The architecture allows the rapid imple-
mentation and testing of simulations using one of these approaches. Due to
their common derivation from the node-connector concept different modeling
approaches can even be combined, using the same data structures. In this way
the Enhanced ChainMail algorithm was combined with a mass-spring model.
The ECM was used for the fast shape approximation of the simulated object,
the mass-spring algorithm was then used for the elastic relaxation whenever no
user interaction occurred.

The implemented architecture is open to extensions. Other simulation or visu-
alization approaches that fit into the node-connector abstraction can easily be
added. Current candidates for the extension of the architecture are Microsoft’s
Direct3D and Volume Graphics’8 volume visualization.

Figure 5.9 shows the inheritance tree of the implemented data structure. Node
and connector are basically of the same type and find a common abstraction
as vrmMGE. It was attempted to detach the basic functionality of all the con-
nector and node flavors in the inheritance tree into separate vrm(XYZ)Base
classes9. By this the classes needed for e.g. a mass-spring simulation can
easily be created by inheritance from the vrmNode respectively vrmConnector
together with the appropriate vrm(XYZ)Base classes: vrmMassNodeBase and
vrmSpringBase. On the application level it will certainly be necessary to visual-
ize the simulation results. As visualization is also included in the vrmDesign the
concrete simulation node, mySimNode, can also inherit the properties needed
for visualization; from vrmGraphicsNodeBase. The aggregation of properties
belonging to different tasks, e.g. mass-spring simulation and OpenGL visual-
ization in one class is only possible because basic functionality was separated

8www.volumegraphics.com
9The separation was not realized for FEM. FEM simulations run on a different time scale

(see page 85) and will not be combined with the other simulation approaches.

5.3. Summary 89

into vrm(XYZ)Base classes. An object like mySimNode could be derived from
vrmNode, vrmMassNodeBase and vrmGraphicsNodeBase. Such a node would
be suited for mass-spring simulation and brings all the properties needed for a
visualization with OpenGL. The same mechanism was used for the combination
of mass-spring and ECM, described above.

90 5. Implementation

vr
m

D
es

ig
n

vr
m

1C
on

ne
ct

or

vr
m

C
on

ne
ct

or

vr
m

2C
on

ne
ct

or
vr

m
3C

on
ne

ct
or

vr
m

C
ha

in
N

od
e

vr
m

N
od

e

vr
m

Fe
m

E
le

m
en

t

vr
m

Fe
m

Li
ne

E
le

m
en

t

vr
m

Fe
m

N
od

e

vr
m

P
oi

nt

vr
m

Fe
m

Te
tra

ed
er

E
le

m
en

t
vr

m
Fe

m
Tr

ia
ng

le
E

le
m

en
t

vr
m

G
ra

ph
ic

s
N

od
e

vr
m

Sp
rin

g
B

as
e

vr
m

Sp
rin

g

vr
m

M
G

E

vr
m

M
as

s
N

od
e

vr
m

C
ha

in

vr
m

C
ha

in
B

as
e

vr
m

M
as

sN
od

eB
as

e vr
m

C
ha

in
N

od
eB

as
e

ap
pl

ic
at

io
n

le
ve

l

ap
pl

ic
at

io
n

le
ve

l

ap
pl

ic
at

io
n

le
ve

l

vr
m

G
ra

ph
ic

sN
od

eB
as

e

ap
pl

ic
at

io
n

le
ve

l

ap
pl

ic
at

io
n

le
ve

l

vr
m

Tr
ia

ng
le

St
rip

B
as

e

vr
m

Tr
ia

ng
le

B
as

e

ap
pl

ic
at

io
n

le
ve

l

... vr
m

G
ra

ph
ic

Tr
ia

ng
le

vr
m

G
ra

ph
ic

M
es

h

Figure 5.9: vrmDesign class hierarchy.

6
Application

The study of available modeling techniques (chapter 3) and the extension of the
available modeling instrumentation (chapter 4, section 3.3) that was conducted
in the scope of this thesis was motivated by the desire to built simulations for
two concrete medical problems: the real-time simulation of intra ocular surgery
for training purposes and the off-line simulation of a decompressive craniotomy
for supporting the surgeon with operation recommendations. Both simulations
are based on the architecture presented in chapter 5.

The first section of this chapter presents the simulator EyeSi that was projected,
designed and implemented while accomplishing the work on hand. EyeSi is a
computer-based medical workstation for the simulation of a vitrectomy that
allows training and rehearsal of eye surgeons [SWH+99]. The surgeon ma-
nipulates two original instruments inside a cardanically suspended mechanical
model of the eye. The instruments’ positions are optically tracked and mon-
itored by a PC which renders the scenery using a computer graphical model
of the eye and the instruments. Stereoscopic images are presented to the user
through two small LCD displays that are mounted to the system and emulate
the stereo microscope used in real operations. The simulator offers the train-
ing of intra-ocular navigation as well as interaction with pathological tissues
using mass-spring and 3D-ChainMail models. All operations (tracking, render-
ing, collision detection, tissue manipulation) are computed in real-time on a
PC. A lot of issues had to be solved for the realization of the simulator EyeSi,
which, although they are mainly novel and highly innovative, could not find
their way into the description at hand. Due to the limited space references to
more detailed literature are given.

The second section deals with the simulation of a diffusely swelling brain in the
constraint space of the firm skull. An advanced volume increase of the brain tis-
sue caused by the development of edema across the whole brain leads to a rise of

91

92 6. Application

intra-cranial pressure (ICP) which – if a critical ICP level is reached – becomes
life-threatening. In these cases the surgeon supplies additional space to the
swelling brain by opening the skull. Depending on the location and size of the
craniotomy more or fewer brain tissue can extrude from the skull and thereby
lower the ICP. The goal of the simulations, that use finite element analysis,
was an outcome estimation of different possible craniotomy techniques. The
project was initiated and first, approximating simulations were carried out.
The Brain3D/4D project will be continued in another dissertation1.

6.1 EyeSi – A Simulator for Intra-ocular
Surgery

Operating inside the eye is one of the most demanding tasks in microsurgery:
the involved structures are extremely sensitive, the field of view is limited and
the operation is performed under a microscope, making hand-eye coordination
very difficult. In general, two instruments are inserted into the eye. One is a
lamp that lights the operation area. The other one is an operative instrument,
used to interact with the pathological tissue. There are several operative de-
vices which mainly differ in the way they interact with the tissue. They range
from simple picks and cutters to highly sophisticated instruments like the vit-
rector, a cutting and sucking instrument which is used to remove material from
within the eye. Figure 6.1 illustrates a so called vitrectomy. Typical patholo-
gies which make intra-ocular surgery necessary include opaque vitreous humor,
diabetic retinopathy and detached retinas. In case of diabetic retinopathy the
surgeon has to peel off pathological membranes covering the retina.

Figure 6.1: Illustration of a vitrectomy. The vitrector is inserted from the right,
the lamp from the left side. Picture [Fre85]

Interacting with pathological tissue inside the eye is very difficult. Even the
pure navigation of the operative instruments is a delicate task in the limited

1look for: Johannes Grimm, Institute for Computational Medicine, University Mannheim,
Germany

6.1. EyeSi – A Simulator for Intra-ocular Surgery 93

space available. Collisions with the highly damageable retina can be fatal and
have to be avoided in any case. The stereo microscope, used in eye surgery,
provides three dimensional view, which is a first means of orientation inside the
eye. To estimate the distance between a surgical instrument and the retina,
the surgeon additionally uses the strong shadow of the instrument that is cast
onto the retina with the lamp.

Currently surgeons acquire practical knowledge in intra-ocular surgery mainly
by assisting an experienced surgeon. This takes usually two years and bears
risks for the patients and the surgeons. The risky, long, and expensive training
can be significantly improved by using a simulation system that provides the
surgeon with a realistic operation environment.

6.1.1 Previous Work on Eye Surgery Simulation

There are several projects which have dealt with eye surgery simulation2 in
the past ([oGIaG], [MSBH94], [aUoI]). [MSBH94] and [oGIaG] focus on the
simulation of cataract surgery. They either use Finite Element simulations to
calculate tissue reaction or previously measured interaction forces. The first
could not be accomplished with interactive rates whereas the latter is limited
to pre-defined interaction points. In addition [NSM98] describes a current
project at the University of Illinois which also aims at the development of a
vitrectomy simulator. The project emerged from [aUoI], the development of
an anatomical eye atlas. Based on this atlas, the simulation provides detailed
graphics which also include the periphery of the eye like eye muscles and parts
of the face. In contrast to [oGIaG] and [MSBH94], [NSM98] uses mass spring
models to achieve interactive simulation rates. All mentioned projects use
OpenGL surface graphics and expensive graphics workstations for rendering.

The Illinois simulator, as presented in [NSM98], lacks an adequate mechanical
setup. An eye model is absolutely necessary to provide realistic instrument
handling and a simulation of the eye’s movement during surgery. Also, includ-
ing a high precision tracking of instruments- and eye motion is a prerequisite
for a correct simulation: the scale of real motion and simulated feed back must
be the same.

6.1.2 Surgery in Cyberspace

Simulators using virtual reality, must be constructed in a way that the user
feels as if he/she is actually undergoing the simulated situation. It is intended,
that the user forgets his/her surrounding and operates completely naturally in

2The overview over the state of the art is given at this place instead of chapter 3, because
the projects mentioned in this section rather deal with the design of complete simulators
than with biomechanical modeling alone.

94 6. Application

the virtual reality. All necessary senses of the user must be involved in order to
achieve this feeling. Virtual reality aims at merging real sensory perception with
virtually presented and by that create a complete involvement (immersion). In
order to simulate an intra-ocular operation the stimulation of the visual, haptic
and possibly acoustic senses are feasible.

In the case of EyeSi stereoscopic images of the virtual operation scenario are
shown on two small LCD displays which are mounted in the shape of a mi-
croscope eyepiece. Through these displays the surgeon watches the computer
generated operation scenario in the used three-dimensionality. The original
surgical instruments are introduced into a mechanical model of the eye. The
artificial eye is constructed so that its characteristics of movement correspond
to those of the human eye. It is fixed under the mask of a human face. The
artificial eye serves as interface to the virtual world. Instruments can be moved
in the same way as they are moved when operating a real eye. Rotating the
eye out of its rest position generates back-driving forces corresponding to those
generated by the muscles of the real eye. An optical tracking system observes
the eye model from below. It sends information about the current position
and direction of the instruments as well as the orientation of the eye to a PC
which updates the computer graphical model. Thus, the movements of the
instruments and the mechanical eye cause their virtual counterparts to move
correspondingly.

Figure 6.2: An operation in the eye is performed under the stereo-microscope
(left side). The simulation (right side) takes all relevant aspects of the surgery
into account. Two small LCD displays provide the same three-dimensional view
as the microscope and the user works with original instruments in a mechanical
model of the eye.

6.1. EyeSi – A Simulator for Intra-ocular Surgery 95

Mechanical Eye: The Interface to Virtual Reality

The mechanical eye is a metallic hemisphere with cardanic suspension which
is mounted under a facial mask. It has the same rotational degrees of freedom
as the human eye in the eye socket. The effect of the eye muscles, turning the
eye back into its rest position, is modeled by a set of springs with appropriate
strength which are fixed to each rotational axis. The mechanical eye has two
puncture marks through which the surgical instruments are inserted.

The equator of the eye is marked from below with two small color spots. To-
gether with the rotary invariant center of the spherical eye, these markers
define the plane that gives the rotational state of the mechanical eye. The
surgical instruments are also marked at their tips. Their orientation can be
determined with only one marker per instrument, because the exact position of
the puncture marks in the mechanical eye are known. The rotational state of
non rotational symmetric instruments like, e.g. a vitrector or forceps, is mea-
sured with a magnetic field sensor. For this purpose two rare-earth magnets
are attached under the mask to generate a suited magnetic field.

Figure 6.3 shows a sequence of pictures illustrating the transition from real to
virtual world. The left picture shows the real eye with inserted instruments,
the middle picture shows the metallic hemisphere of the mechanical eye which
serves as an interface to the virtual world and the right picture shows the
virtual eye3.

Figure 6.3: The real eye in its orbital cavity has three rotational degrees of
freedom (left). In the mechanical eye (middle), this behavior is modeled by a
cardanical suspension and springs which pull the eye back into its rest position.
The virtual eye (right) with two surgical instruments inserted.

Optical Tracking: Connection between Worlds

During eye surgery two instruments are inserted into the eye. The tip of each
instrument has three translational degrees of freedom while being constricted

3While operating the microscope is focused through the lense and almost nothing of the
eye’s periphery is visible.

96 6. Application

at its insertion point. In addition the rotation of non-rotational symmetric
instruments must be measured. The eye can be tilted in three axes, adding
another 3 degrees of freedom to the system. All these movements must be
identified in real-time.

Optical tracking systems provide high accuracy and work contact free. Optical
tracking is well suited to determine the instruments’ positions and the two
eye markers (orientation of the eye)4. No commercial solution that meets our
requirements of narrow setup space (the tracking system has to fit into the body
of the simulator) and high accuracy in the small volume of interest, essentially
the eye volume (approx. 3× 3× 3 cm3), is available.

After several experiments with commercial frame grabbers and “intelligent
cameras”5 an FPGA-based image capturing and analyzing hardware was de-
veloped [Ruf00]. The latency connected with the conventional image capturing
process – composing the image in the memory of the frame grabber, trans-
fering the image into the computer’s main memory (via DMA), copying the
image from the designated DMA memory area to the application’s memory
and analyzing the image there – was to high for a comfortable virtual reality6.

Figure 6.4 (middle) shows a photo of the developed hardware dubbed USB-
FPGA. The hardware grabs a camera image (left), analyzes the image doing
a color segmentation (right) and sends the sensor coordinates of each colors’
center of mass via USB7 to the PC. The camera sends each pixel of the image8

with a pixel clock of ca. 12 MHz (for PAL) to the FPGA, which basically
classifies the pixel as belonging to a relevant color or not. If the pixel belongs

Figure 6.4: The images delivered by a PAL camera (left) are captured and
analyzed by the USB-FPGA hardware (middle) and the colors’ centers of mass
(right) are transferred to the PC.

to a relevant color its sensor coordinates are considered in the color’s center
4As mentioned above the rotational state of the instruments is measured magnetically.
5Camera with integrated rudimentary image processing.
6Researchers working in the area of human perception of computer generated images

report that minimal update rate that allows a feeling of immersion is 10Hz, but higher
update rates (up to 20 Hz) are preferable [Hel93].

7Universal Serial Bus
8through a video processor which converts analog PAL signal to digital pixels

6.1. EyeSi – A Simulator for Intra-ocular Surgery 97

of mass calculation. The transfer of the colors’ centers of mass takes place as
soon as the last pixel of a field has been classified. The position information is
available to the application after a maximum latency of 2 msec after the end
of the field. The latency on the movement of the object is mainly determined
by the sampling rate of the used cameras. The EyeSi tracking uses PAL cam-
eras running with a field frequency of 50 Hz. The average latency on object
movement is therefore about 12 msec (10 msec average latency while a field is
captured + 2 msec for the transfer of the positions to the PC).

Three cameras are mounted below the mechanical eye. Their field of view is
adjusted to consider exactly the relevant volume (see figure 6.4; left). They
observe the relevant volume from different perspectives. The equator of the
eye and the tips of the instruments are marked with color tags (see figure 6.4;
left). As the cameras see the scenery from different angles a stereoscopic back
projection can be used with two of the camera images to calculate the posi-
tions of the markers in space. The third camera is automatically activated
when an occlusion occurs on one camera. The cameras were calibrated using
the technique introduced in [Tsa87] in a free implementation of the algorithm
[Wil95]. Besides the internal camera parameters like the effective focal length
and the first coefficient of the radial lens distortion, the algorithm also supplies
the external camera parameters: position and rotation regarding a world coor-
dinate system. The external parameters are required for the stereoscopic back
projection.

Figure 6.5 illustrates the 3D-reconstruction. In a continuous measurement of
a fixed instrument’s tip the determined 3D-coordinates vary within 10 µm
(±5µm) in the xy-plane and within 30 µm (±15µm) in the z-direction (re-
peat accuracy). Measurement of the absolute accuracy in the required scale is
expensive and has not been done so far.

Figure 6.5: 3D-reconstruction with the tracking setup used in EyeSi.

The spatial resolution of the developed tracking system is sufficiently high for
the simulated type of retinal surgery. The positioning accuracy of a micro

98 6. Application

Figure 6.6: A computer graphical eye model was generated following anatomical
information from literature. The rear part of the eye is semitransparent to allow
a view on the retina. Instruments are inserted into the eye; left is a cold light
source, right a vitrector.

surgeon holding the instrument is about 0.1 mm and is superposed by phys-
iological tremor of about 8 – 10 Hz and lower frequency aperiodic erroneous
motion [RK99].

Visualization: The Virtual Eye

The optical tracking system registers the positions of the instruments as well
as the orientation of the mechanical eye and transmits the information to the
computer. The computer modifies the virtual scene correspondingly to the new
tracking data. Based on anatomical information9 a computer graphical model
of the eye and several instruments were developed using OpenGL. Texture
mapping is used to project real photos of the eye’s background and an iris
on the appropriate positions in the computer graphical eye. All objects were
implemented using the vrmDesign introduced in chapter 5. Figure 6.6 shows
the eye model.

The graphical model includes light effects and shadows. The lamp produces
a spot light and the instrument casts a shadow onto the retina. A realistic
shadow generation is very important to the simulation as the shadow is one, of
two, important means of navigation for the surgeon. The distance between the
instrument’s tip and the tip of the shadow provides depth cues. The other one
is the 3D-view through the stereo microscope. The stereo buffer of OpenGL
is used to produce stereo images. Stereo glasses with two high resolution mini
LCDs present the calculated pictures to the user (compare figure 6.2). Each
LCD has a resolution of 800× 600 pixels. Figure 6.8 illustrates the importance

9There is extensive anatomical data available from literature. Gullstrand’s norm eye (Al-
lvar Gullstrand ∗1862, †1930; 1911 Nobel price for medicine) comprise detailed information
on geometry and refraction indices of materials of the eye.

6.1. EyeSi – A Simulator for Intra-ocular Surgery 99

Figure 6.7: Several instruments were modeled. From left to right: a needle,
forceps and vitrector. All images are screenshots from simulations.

of the shadow for estimating the distance to deeper structures. The imple-
mentation of the shadow follows the volume shadow concept as suggested in
[Kil00].

Figure 6.8: Illustration of the importance of shadows for the estimation of
distance to deeper structures. All images are screenshots from simulations.

The PC used for the EyeSi simulator is equipped with a graphics adapter
from nVidia Corporation. Several of nVidia’s graphics extensions are used to
speed up rendering. With the current hardware setup, a Pentium III 500 MHz
with nVidia Geforce 210 the rendering of the scene requires about 40 msec in

10The GeForce 2 chip was converted to a Quadro 2 Pro by moving two resistors on the

100 6. Application

full simulation mode. Full simulation mode requires four times rendering of the
sceen; the shadow generation is a two-pass-process and stereo mode contributes
another factor of two.

Biomechanical Simulation: Imitation of Reality

When instruments are moved inside the eye, collisions with structures of the
eye may occur. If, e.g. an instrument touches a pathological membrane, the
membrane has to change its shape according to the forces exerted by the in-
struments and the membrane itself. If forces superceed a material specific limit
the membrane must tear in. Slight touching of the retina may lead to bleeding
which the surgeon perceives as a red spot on the retina. Such events must be
visualized immediately. For these reasons it is important that the computer
can quickly determine whether and where collisions between virtual objects
occurred. Once a collision is detected, displacements and forces acting between
the object have to be determined. The forces are used to calculate the reaction
of e.g. a pathological membrane which is described by a biomechanical model.
In EyeSi, the interaction with a pathological membrane makes high demands
on the computer respectively the biomechanical model. The calculation of the
biomechanical reaction has to be fast since otherwise the simulation begins to
flag and becomes unrealistic. Evidently, the speed of the calculation depends
on the complexity of the membrane’s mathematical description which in turn
depends on the approach chosen for the biomechanical model of the membrane.

Where feasible, simple geometric intersection calculations are used to detect
collisions between instruments and eyeball. Due to the spherical shape of the
eye ball this can be accomplished very fast. As soon as collisions with more
complex shapes have to be considered, e.g. pathological tissues in the eye,
collision detection becomes more expensive. In order to accelerate collision
detection in these cases a new, graphics-hardware supported approach for col-
lision detection was developed11. The basic idea of the approach is to place an
additional camera (collision camera) within e.g. an instrument which should
always be oriented towards the tip of the instrument. The images that the
collision camera sees changes as soon as a collision occurs at the tip of the
instrument (the membrane suddenly becomes visible to the collision camera
as it permeates the instrument). The charm of this approach lies in the fact
that the collision calculations are carried out by the GPU12 and not the host’s
CPU. The approach is particularly superior to existing collision detection algo-
rithms (e.g. RAPID [GLM96], SOLID [vdB97]) when deformable objects are
observed; the time required for the collision calculation depends only on the
number of triangles in the scene. Thus, the described collision detection, which

board. Instructions from http://www.guru3d.com
11Hidden-Surface Based Collision Detection with 3D-Graphics Accelerators: C. Wagner,

M. Schill, R. Männer, to be published.
12The GPU is highly optimized for these calculations.

6.1. EyeSi – A Simulator for Intra-ocular Surgery 101

would only be used in simulations with deformable objects, costs an additional
rendering pass. With the current graphical model and hardware one rendering
pass takes about 10 msec.

As for the need of a fast response to a collision, in EyeSi two descriptive biome-
chanical modeling approaches were applied: mass-spring and Enhanced Chain-
Mail. The latter was primarily intended for the modeling of the vitreous hu-
mor in the eye. Simulation of the vitreous humor requires volume visualization
which has not yet been incorporated into the vrmDesign and therefore is not
part of the EyeSi simulator at its current state. Nevertheless, ECM has also
been tested for its suitability to model membranes. The Enhanced ChainMail
algorithm generally has advantages over mass-spring regarding numerical sta-
bility13 (see page 67).

Currently pathological membranes in EyeSi are simulated with a mass-spring
model. It produces good results within the known limitations of mass-spring
models (see below). The model consists of a triangulated mesh of mass points
and springs. The governing equation is (compare: equation 3.16)

~Fi =

 N∑
j

~xj − ~xi
‖ ~xj − ~xi‖

(ki,j‖ ~xj − ~xi‖ −Ri,j)

−Di ~̇xi (6.1)

where ~Fi is the force on mass i, ki,j is the spring constant of the spring between
i and j, Ri,j is the length of this spring and Di the damping connected with
spring i.

The biomechanical properties of the model were derived phenomenologically in
an iterative process together with an experienced surgeon. In the sense of the
concept introduced in section 2.2 the implemented mass-spring model repre-
sents a descriptive approach. However, convincing behavior of soft membranes
was achieved. Figure 6.9 shows an example of membrane peeling off the retina.
A membrane tissue with approximately 1,500 mass nodes can be solved within
< 10 ms.

The drawbacks of conventional mass-spring systems were experienced when
simulating stiffer structures. The system then showed a tendency to numerical
instability. Moreover, also in cases where soft membranes were simulated, well
conditioned boundary constraints had to be chosen: to avoid a collapse of the
triangulated mesh the tissue had to be fixed along its rim. In addition the
stability was improved by setting the velocities and accelerations of all nodes
equal zero after each timestep. By this the dynamic effects in the mass-spring
system were lessened, which even had a positive effect on the membrane’s
appearance; its movements became more realistic.

Figure 6.10 gives a comparison between simulation and real operation. The left
column shows video captures from real surgery, the right column screen shots

13This is particularly true for 3D modeling.

102 6. Application

Figure 6.9: Simulation of membrane peeling with forceps (left) and with vit-
rector (right).

from the simulator. The images demonstrate the degree of realism reached
with the simulator: light effects, shadow, eye’s background and instruments
were modeled in conformity with the real surgery.

Figure 6.10: Video captures (left) and simulation snapshots (right) showing
membrane peeling (top) and instrument navigation (bottom).

One advantage of virtual reality vs. reality is that a difficult surgery can easily
be subdivided into less complex tasks which can be trained independently from
each other. In virtual reality it is also possible to create abstract training
tasks that do not have to exist in reality but which emphasize a particular
training aspect. To exercise bi-manual instrument handling an abstract task
was implemented where the user has to move the tip of a needle into a sphere
and hold it steady within the sphere for a defined period. After this period the
sphere changes its color and the user can proceed to the next sphere. Spheres of

6.1. EyeSi – A Simulator for Intra-ocular Surgery 103

varying size are distributed over the eye; the smaller and closer to the retina, the
more difficult to treat. Figure 6.8 (right) shows a screenshot of the navigation
training session.

6.1.3 Summary

EyeSi is a virtual reality simulator for the training of intra-ocular surgery which
incorporates all essential details from the real operation scenario like stereo-
microscope setup, original surgical instruments and mechanical eye which be-
haves like a real eye and serves as an interface to the simulator.

Currently it is possible to exercise instrument-navigation inside the narrow
space of the eye. In addition the simulator allows the training of membrane
peeling off the retina. Abstract tasks were implemented where helpful to em-
phasize particular training effects. Biomechanical models allow interaction with
pathological tissues. Two descriptive approaches were included in the simula-
tor: mass-spring and Enhanced ChainMail. ECM will be used as soon as
volume visualization is available in the vrmDesign to model the vitreous hu-
mor. ECM has considerable advantages over mass-spring regarding stability,
which particularly comes to play when three-dimensional objects are modeled.

Great importance is attached to the handling of instruments during the simu-
lation. The mechanical eye (see Figure 6.3 (middle)) provides a passive tactile
feedback similar to what a surgeon experiences when operating a real eye. The
instruments are optically tracked when introduced into the mechanical eye and
can be moved and rotated in a natural way.

The platform of EyeSi is off-the-shelf pc hardware, currently an Intel Pen-
tium III CPU and a nVidia GeForce 2 GPU. In full simulation mode (inter-
acting with membrane and stereo rendering turned on) the framerate is above
20Hz. It reaches up to over 50Hz in mono mode.

We have not yet finished clinical evaluation studies, the prototype is currently
tested in clinical practice.

Future developments will include a training curriculum for surgeons in educa-
tion. The program will provide a performance analysis informing the trainee
about his training success in terms of accuracy and time needed to complete a
certain task.

In addition to training the simulator can also be used for the development
of new operative instruments and surgical techniques. New instruments can
rapidly be prototyped in a simulation. New operation techniques could be
developed, tested, demonstrated and taught to colleagues.

104 6. Application

6.2 Simulation of Decompressive Craniotomy

Nature protected the highly sensitive brain by surrounding it with firm bone
(figure 6.11 (left). In general the skull keeps the brain save from physical
disturbance, but in cases of increasing intra-cranial pressure (ICP) the skull
turns out to be a very confined space. Space demanding processes, like e.g.
edemas or hematomas can rise ICP to a life threatening level at which the
sufficient supply of the brain is no longer granted. In such cases neurosurgeons
open the skull. The surgery, a decompressive craniotomy, reduces the pressure
inside the skull by providing additional volume for the swelling brain; brain can
swell out of the skull. While planning decompressive craniotomy the surgeons
face questions like: Where to open the skull? How large should the opening
be made? How can areas of high stress be kept away from functional centers
of the brain? There are mainly two common techniques for carrying out a
decompressive craniotomy. Depending on where the surgeon opens the skull
they are called bi-frontal or lateral craniotomy. Figure 6.11 shows a bi-frontal
(middle) and a lateral opening (right) of the skull.

Figure 6.11: Left: The skull is a firm bone which protects the highly sensitive
brain from physical disturbance (image courtesy Volume Graphics). Middle:
Illustration of bi-frontal craniotomy. Right: Illustration of lateral craniotomy.

The goal of simulating a decompressive craniotomy is to support the surgeon in
planning the surgery. As a first step towards simulating the complete problem
it was investigated whether there is a significant difference between the two
most common techniques regarding the ICP decrease they can generate14.

6.2.1 Method

The software architecture presented in chapter 5 was used to develop a vol-
umetric finite element model to simulate a decompressive craniotomy. The

14The whole problem is further investigated in a dissertation by Johannes Grimm at the
Institute for Computational Medicine, University Mannheim.

6.2. Simulation of Decompressive Craniotomy 105

brain was segmented from an MRI data set (figure 6.12 (left)) using VGStu-
dio15 and scaled to a standard volume of 1,700 ml. It was then discretizised
with tetrahedron elements. In addition the Dura mater, the strong leather-like
skin surrounding the brain was modeled with triangular elements. When the
bone is removed the Dura mater plays an important role in holding the brain in
place. Both element types use the assumption of linear material response. The
tetrahedron element is a 4-node element which uses a linear interpolation func-
tion. The triangular element is a 6-node element which uses linear interpolation
functions for in-plane strain and cubic interpolation functions for bending. The
element matrices for both elements are given in appendix B. The two element
types were combined in the simulation. Such a combination of elements can
easily be realized with the concept of the vrmDesign. On the node-connector
abstraction level the two element types can be regarded as vrm3Connector
(triangle)16 and vrm4Connector (tetrahedron). The two connector types form
different topologies on the same set of nodes (compare section 5.1.1); the tetra-
hedrons discretizise the volume whereas the triangles discretizise the surface of
the brain. The triangles connect a subset of all nodes, i.e. the nodes that lie
on the surface of the brain and represent the Dura mater. Figure 6.12 (right)
shows the brain model used in the simulation. It consists of 34,000 tetrahedrons
and 8,000 triangular elements.

Figure 6.12: Original MRI data set (left) and brain model derived from the
MRI scan (right)

Two material parameters are required for the simulation. The Poisson’s ratio
ν and the Young’s modulus E completely describe the elastic behavior of an
object. The specific material parameters of brain tissue are controversial. The
values used in this study are based on measurements by Patin et. al. [PEHP93].
For brain tissue E was set to 6 kPa and for the Dura mater an E of 2.5 MPa was
used. The Poison’s ratio ν was set to 0.48 for both materials. As common in

15www.volumegraphics.com
16Since node variables are also present on the edges of the triangle a vrm6Connector could

also be used. In the actual implementation the edge nodes are included into a special kind
of 3Connector.

106 6. Application

cases that lead to decompressive craniotomies, a homogeneous pressure inside
the skull was assumed. In such cases the high ICP is caused by a global edema.
If the skull is assumed to be a closed shell, a volume increase ∆V induces a
pressure increase following the relation:

∆V
V

= − 1
K

∆p

with :

K =
1
3

E

1− 2ν

The development of a global edema was simulated by applying a pressure inside
each tetrahedron and calculating the force on the tetrahedron’s surfaces. The
surface force was then distributed on the elements’ nodes. For the simulation of
a homogeneous ICP the pressure in each element was set equally. The model,
however, also allows the simulation of pressure gradients inside the skull, since
the pressure can be set separately for each element.

Figure 6.13: In simulations three different craniotomies were considered. The
areas where the bone was removed in the simulations are marked in bright
color. The figure shows a bi-frontal opening (left), a lateral opening (middle)
and a lateral opening including the temporal lobe (right)

With the model the two steps of performing a decompressive craniotomy, (1)
removal of the bone and (2) opening and expanding the Dura mater with
synthetic patches were simulated at different ICP levels. The two most common
ways of opening the skull, bi-frontal and lateral, were compared in simulations.
In addition a third method, a lateral opening including the temporal lobe, was
simulated. This third opening was suggested by neurosurgeons because they
assume that an opening which would allow the temporal lobe to be shifted to
the front, as a whole, could be beneficial to the total pressure decrease gainable
by the surgery. Figure 6.13 shows the three investigated openings.

6.2.2 Sensitivity analysis

To gain more intuition on the way the physical parameters Poisson’s ratio ν
and Young’s modulus E influence the simulation results a sensitivity analysis

6.2. Simulation of Decompressive Craniotomy 107

on these parameters was carried out. The craniotomy simulation was carried
out under fixed condition with either varying ν or E. Intra-cranial pressure
was set to 20 mmHg. While ν was varied, E was set to 6kPa and while E was
varied ν was fixed at 0.47. Table 6.1 and 6.2 present the results. Figure 6.14
shows them graphically. Incompressible material has a ν close to 0.5 (compare

ν ∆V/V ∆p [mmHg] p0 −∆p [mmHg]
0.47 6.16% 15.39 4.61
0.40 16.07% 12.05 7.95
0.30 27.38% 10.27 9.73
0.20 37.57% 9.39 10.61

Table 6.1: While all other simulation parameters are kept constant, the Pois-
son’s ratio ν was varied.

E [Pa] ∆V/V ∆p [mmHg] p0 −∆p [mmHg]
10,000 3.64% 15.16 4.84
9,000 4.05% 15.20 4.80
8,000 4.57% 15.25 4.75
7,000 5.25% 15.31 4.69
6,000 6.16% 15.39 4.61
5,000 7.44% 15.51 4.49
4,000 9.41% 15.69 4.31
3,000 12.79% 15.99 4.01

Table 6.2: While all other simulation parameters are kept constant, the Young’s
modulus E was varied.

section 2.3). It is well understandable that a material that is less compressible
(large ν) shows a large pressure decrease ∆p17. It is very interesting that ∆p the
ICP decrease reached with the craniotomy does merely depend on the Young’s
modulus E. E only has an effect on the amount of tissue that protrudes from
the skull. This observation is important for the validation, where the amount
of tissue that protrudes is determined (see below).

6.2.3 Preliminary Results

The simulation was carried out for several levels of raised ICP. An ICP of 10
mmHg is regarded as normal, an ICP of 40 mmHg can be called high whereas
80 mmHg are considered critical. Exemplary simulation results are presented in

17The opposite case is maybe more intuitive: If you press your finger into a balloon filled
with water (incompressible) the balloon will at once bulge out at another place.

108 6. Application

Figure 6.14: Graphical presentation of the results of the sensitivity analysis.
The simulation relevant value, ICP decrease (∆p) depends almost exclusively
on the size of the Poisson’s ratio, whereas the Young’s modulus has an effect
on the size of the volume that swells out of the skull.

table 6.3. All results lie in a reasonable range and were considered as medically
realistic.

Figure 6.15 shows a simulation result graphically. The three images on the left
show the brain surface prior to surgery (blue) and after the complete opening
– bone and Dura mater – (transparent) for a lateral opening of the skull. The
initial ICP in the presented images was 40 mmHg. The larger image on the
right shows the displacement vectors of the nodes.

6.2.4 Discussion

As observed in real surgery, the simulations reproduced that the bone removal
leads only to a small decrease in ICP. The major effect is achieved by opening
and extending the Dura mater. Comparing the two standard methods bi-
frontal and lateral opening of the skull suggests that the lateral opening is
considerably superior with respect to decreasing ICP. The areas of the two
openings compared here were approximately of the same size. As expected a
larger lateral opening results in a higher pressure decrease. The simulation of
the larger lateral opening (including the temporal lope) showed that regarding
ICP levels this approach brings only marginal improvement. The major benefit

6.2. Simulation of Decompressive Craniotomy 109

bone removal Dura mater opening

ICP(t=0) ∆V/V ICP(br) ∆V/V ICP(dmo)
[mmHg] [%] [mmHg] [%] [mmHg]

bi-frontal opening
10 0.4 9.1 1.5 6.2
40 1.5 36.2 6.7 23.1
80 3.2 72.1 15.2 41.9

lateral opening
10 0.9 7.6 2.1 3.1
40 3.9 30.2 11.8 10.6
80 8.2 59.4 25.9 15.3

lateral opening incl. temporal lobe
10 1.1 7.2 3.0 2.5
40 4.6 28.6 12.8 8.0
80 9.5 56.2 27.5 11.2

Table 6.3: ICP(t=0) denotes the intra cranial pressure prior to the surgery,
ICP(br) after bone removal, ICP(dmo) after Dura mater opening. ICP is mea-
sured against atmospheric pressure. ∆V/V gives the volume change in %.

of an opening that includes the temporal lope might be an advantageous stress
distribution in the tissue since the lobe as a whole could be shifted.

The presented simulation results still have a number of limitations. Linear and
homogeneous material properties were assumed to be valid for the whole brain
and for all displacements. This obviously is a simplification. Internal structures
like ventricles or the Falx cerebri are not yet considered in this simulation.
However, finite element simulations of the Falx cerebri were carried out in
previous work [SSBM96] and will be adapted to the vrmDesign and included
into the simulation. Also, currently the brain is treated as being one continuous
piece of tissue. However, the brain’s temporal lobe e.g. is only connected to
the rest of the brain in the ventral part. It lies on the rest of the brain without
a connection in the frontal part. This is the cause why neurosurgeons expect
that including the temporal lobe in the craniotomy could be beneficial to the
stress distribution in the tissue. The correct anatomy will be considered in the
next model.

Current work also includes the validation of the model. For this purpose a 3D-
scanner was placed in the operating room to measure the volume protruded
from the skull after bone removal and Dura mater opening. Figure 6.16 shows
a 2D image of such a scan. 3D-scans taken after different steps during a real
surgery will be used together with an ICP monitor to validate the model.

110 6. Application

Figure 6.15: Graphical simulation result for a lateral opening of the skull with
an initial ICP of 40 mmHg after Dura mater opening. The three images in
the left column show the original brain surface (prior to opening) in blue and
in transparent the surface of the brain after the swelling process came to an
end. The image on the right shows the displacement vectors of the nodes which
correspond to the shift of tissue that was induced by the opening.

Unfortunately so far no relevant craniotomies were performed while the scanner
was setup in the OR.

In its current state the model allows a comparison between the two standard
operation techniques for decompressive craniotomies. Estimations of the ICP
decrease in dependence of the size and position of the opening are possible.

6.3 Summary

Two applications using biomechanical soft tissue models were presented in
chapter 6: an intra-ocular surgery simulation and the simulation of decom-
pressive craniotomy. The two applications make different demands on the
biomechanical models used to simulate the soft tissues present in the particular
case.

The presented simulator for eye surgery, EyeSi, was developed as a training
tool for students and physicians. EyeSi makes heavy use of Virtual Reality
to generate the highest possible degree of realism. One of the most impor-
tant constraints for a simulator like EyeSi is real time performance. The real

6.3. Summary 111

Figure 6.16: Three dimensional scans of the brain’s surface are performed at
different steps of the surgery. Such scans will be used to determine the volume
protruded from the skull. In connection with an ICP monitor this will allow a
validation of the model.

time constraint is particularly true for the biomechanical simulation. There-
fore descriptive modeling approaches are used for tissue modeling. Enhanced
ChainMail will be used for the modeling of the vitreous humor in the eye, as
soon as volume visualization will be integrated into the underlying architecture,
the vrmDesign (see chapter 5). A mass-spring model is used to simulate the in-
teraction between surgical instrument and pathological membranes in the eye.
The model governing parameters, spring constants and masses, were adjusted
together with experienced ophthalmo-surgeons to match the behavior of real
membranes. However, descriptive models can generally only act qualitatively
like real tissue.

The simulation of craniotomy aims at a quantitative analysis. In contrast to
the simulator EyeSi, time constraints are no issue and physical approaches can
be followed when modeling the soft tissue. The two standard ways of perform-
ing decompressive craniotomies were compared in FEM simulations to decide
which technique is superior. The brain tissue and the Dura mater, a strong
skin surrounding the brain, were modeled with finite tetrahedron, respectively
triangular elements. The biomechanical parameters used for the simulations
are actually measured values, that were taken from literature. To cope with
the great uncertainty that is assigned to published biomechanical properties
(compare table 3.1 on page 23) a sensitivity analysis on these parameters was
performed beforehand. The pressure decrease ∆p that is achieved through the
craniotomy is mainly sensitive to the Poisson’s ration ν and almost indepen-
dent from Young’s modulus E, whereas the change in volume mainly depends

112 6. Application

on E. This dependency becomes relevant when the model is validated. For
this purpose a 3D-scanner is placed in the operating room to directly measure
the volume protruding from the opening.

Both simulations were implemented using the software architecture presented
in chapter 5.

7
Summary

The capability to visualize medical data sets in real time and the possibility
to present these images three-dimensionally in the space right in front of the
observer immediately creates the desire to touch, feel and interact with the
presented organs. Interaction, however, comprises that the organ reacts to the
forces applied to it; it must deform in a natural way when being touched. The
reaction of soft tissue to applied forces can be calculated with biomechanical
simulation algorithms. Several modeling approaches exist. A scheme is sug-
gested which allows the classification of arbitrary modeling approaches with re-
spect to the degree of physical realism contained in the model. Two definitions
are given to characterize a physical model on the one hand and a descriptive
model on the other hand. The parameters that govern the behavior of physical
models are physical values that can be measured in the real world. An analysis
of the available modeling techniques on the basis of the introduced definitions
yields that models with initially physical concept are very often used to model
processes they were not made for. However, the descriptive use of physical
models, or the direct use and development of descriptive models is important
for biomechanical modeling for one reason: calculation speed! The calculation
time required to solve a physical model generally surmounts the time available
in any real time simulation task.

Besides well known approaches like mass-spring, finite element, particle models
and others the ChainMail algorithm is investigated. Where ChainMail in its
original formulation lacked the capability to model inhomogeneous material,
it is exceptionally stable and converges in one step to a valid configuration.
However, this configuration does not necessarily represent an optimal energy
distribution in the object. Therefore ChainMail is generally followed by an
elastic relaxation. In this thesis ChainMail is generalized to the Enhanced
ChainMail (ECM) algorithm which is capable to model inhomogeneous, volu-
metric objects and is fast enough for real time simulations. The ECM algorithm

113

114 7. Summary

is derived using the physical analogy of sound wave propagation in material.
Two and three dimensional objects can interactively be deformed with ECM.
The algorithm was applied to various soft tissue objects as for example a ct
data set of a jaw. A performance analysis was conducted and revealed a linear
dependency on the number of elements affected by the deformation. As the
three spatial deformation directions can be calculated separately the algorithm
is well suited for parallelization. The original ChainMail used a geometric con-
sideration to relax the object to a homogeneous energy distribution. In the
inhomogeneous case the varying material properties are to be considered in the
relaxation process. Two approaches, which are both based on the mass-spring
idea, were implemented for the inhomogeneous relaxation and provide natural
object behavior.

While now in principle being able to simulate and visualize an object in real
time, a software architecture is required to team up simulation and visualiza-
tion. As visualization and simulation have so far evolved independently, they
work with different data structures. Multiplicity of data representations leads
to the problems of data consistency and high memory consumption. Using
the principles of object oriented analysis and design, a software architecture is
developed which provides a universal data structure for several simulation and
visualization approaches. Biomechanical simulation algorithms including En-
hanced ChainMail, mass-spring and finite elements can be run on the same data
together with any visualization technique. Even the combination of different
biomechanical algorithms in one simulation has been realized. An Enhanced
ChainMail configuration was relaxed with a mass-spring model.

The versatility of the developed architecture is demonstrated by two medical
simulations which represent the two opposite positions of the scheme intro-
duced in the beginning. The first is the simulation of an intra-ocular surgery,
which makes heavy use of Virtual Reality techniques. Designed as a train-
ing and educational tool the simulator EyeSi relies on descriptive real time
tissue simulation and visualization. The second deals with the simulation of
decompressive craniotomy. The medical problem requires a physical model as
the project’s goal is to provide exact predictions on tissue behavior to support
surgeons in surgery planning.

Bibliography

[ARW+99] L.M. Auer, A. Radetzky, C. Wimmer, G. Kleinszig,
F. Schroecker, D.P. Auer, H. Delingette, B. Davies, and D.P.
Pretschner. Visualization for planing and simulation of mini-
mal invasive neurosurgical procedures. In Chris Taylor and Alan
Colchester, editors, miccai1999, volume 1679 of Lecture Notes in
Computer Science, Cambridge; UK, September 1999. Springer.

[aUoI] Biomedical Visualization Laboratory at University of Illinois.
Model of the Eye. http://www.bvl.uic.edu/bvl/eye.

[Bar84] A. H. Barr. Global and local deformations of solid primitives.
In Proc. of SIGGRAPH 84, volume 18 of Computer Graphics,
Annual conference series, pages 21–30, July 1984.

[Bat90] Klaus-Jürgen Bathe. Finite-Elemente-Methoden. Springer, 1990.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing.
ACM Trans. on Graphics, 1(3):235–256, July 1982.

[Blo88] Jules Bloomenthal. Polygonization of implicit surfaces. Com-
puter Aided Geometric Design, 5:341–355, 1988.

[BN95] Morten Bro-Nielsen. Modelling elasticity in solids using active
cubes – application to simulated operations. In Nicholas Ayache,
editor, Proc. CVRMed ’95, pages 535–541, 1995.

[BNC96] M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable
models for surgery simulation using finite elements and conden-
sation. Computer Graphics Forum, 25(3):57–66, 1996.

[Boo01] Grady Booch. Developing the future. IEEE Comunications,
44(3):119–121, March 2001.

[Bos92] I.E. Boston. Transient Stress Analysis by the Transmission Line
Matrix Metho. PhD thesis, University of Hull, 1992. Reference
found in: [LWA].

115

116 Bibliography

[BPW93] N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating Hu-
mans: Computer Graphics Animation and Control. Oxford Uni-
versity Press, 1993.

[BS91] Jules Bloomenthal and Ken Shoemake. Convolution surfaces.
Computer Graphics, 25(4):251–256, July 1991. (SIGGRAPH’91
proceedings).

[BSV+98] Jon Burgin, Bryan Stephens, Farida Vahora, Bharti Temkin,
and William Marcy. Haptic rendering of volumetric soft-bodies
objects. In J.K. Salisbury and M.A. Srinivasan, editors, Proc. of
the third PHANTOM Users Group Workshop, The Artificial In-
telligence Laoratory and The Research Laoratory of Electronics
at MIT, Cambridge, MA, USA, 1998.

[Bur87] D.S. Burnett. Finite Element Analysis: From Conception to
Applications. Addison-Wesley, Reading, 1987.

[BW90] Jules Bloomenthal and Brian Wyvill. Interactive techniques for
implicit modeling. Computer Graphics, 24(2):109–116, March
1990.

[CDA96] S. Cotin, H. Delingette, and N. Ayache. Real time volumetric
deformable models for surgery simulation. In Vizualisation in
Biomedical Computing, pages 535–540. Springer, 1996.

[CDA99] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic de-
formations of soft tissuees for surgical simulation. IEEE Trans-
actions On Visualization and Computer Graphics, 5(1):62–73,
Jan–Mar 1999.

[CDBN+96] S. Cotin, H. Delingette, M. Bro-Nielsen, N. Ayache, J.M.
Clement, V.Tassetti, and J. Marescaux. Geometrical and phys-
ical representations for a simulator of hepatic surgery. In
Medicine Meets Virtual Reality: Health care in the information
age, number 29 in Technology and Informatics, pages 139–151,
Amsterdam, Oxford, Tokyo, Washington, 1996. IOS Press.

[CEO+93] S. Cover, N. Ezquerra, J. O’Brien, R. Rowe, T. Gadacz, and
E. Palm. Interactively deformable models for surgery simula-
tion. IEEE Computer Graphics & Applications, pages 68–75,
November 1993.

[CG91] G. Celniker and D. Gossard. Deformable curve and surface finite-
elements for free-form shape design. In Proc. of SIGGRAPH
91, Computer Graphics Proceedings, Annual conference series,
pages 257–266. ACM, 1991.

Bibliography 117

[CJ91] S. Coquillart and P. Jancene. Animated free-form deforma-
tion: An interactive animation technique. Computer Graphics,
25(4):23–26, 1991.

[CM82] G. W. Christie and I. C. Medland. A non-linear finite element
stress analysis of bioprosthetic heart valves. In R. H .Gallagher,
B. R. Simon, P. C. Johnson, and J. F. Gross, editors, Finite
Elements in Biomechanics. John Wiley & Sons, Chichester, UK,
1982.

[CZ92] David T. Chen and David Zeltzer. Pump it up: Computer an-
imation of a biomechanically based model of muscle using the
finite element method. In SIGGRAPH ’92, number 26, in 2,
pages 89–98, July 1992.

[DCA99] H. Delingette, S. Cotin, and N. Ayache. A hybrid elastic model
allowing real time cutting, deformations and force-feedback
for surgery training and simulation. In Computer Animation,
Geneva, Switzerland, Mai 26–28 1999.

[dCL99] F. Boux de Casson and C. Laugier. Modeling the dynamics of a
human liver for a minimal invasive surgery simulator. In Chris
Taylor and Alan Colchester, editors, miccai1999, volume 1679 of
Lecture Notes in Computer Science, Cambridge; UK, September
1999. Springer.

[Del98] Herve Delingette. Towards realistic soft tissue modeling in medi-
cal simulation. Technical Report 3506, INRIA, Sophia-Antipolis,
September 1998.

[Deu96] Oliver Deussen. Untersuchung effizienter Verfahren zur Bewe-
gungssimulation deformierbarer Körper. Number 215 in Reihe
20. VDI Verlag GmbH, Düsseldorf, 1996.

[DG94] Mathieu Desbrun and Marie-Paule Gascuel. Highly deformable
material for animation and collision processing. In 5th Euro-
graphics Workshop on Animation and Simulation, Oslo, Norway,
September 1994.

[DG95] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft sub-
stances with implicit surfaces. Computer Graphics, 29:287–290,
1995.

[ESP92] I. Essa, S. Sclaroff, and A. Pentland. A unified approach for
physical and geometric modeling for graphics and animation. In
Proc. of Eurographics, volume 11, pages C129–C138, 1992.

[ESP93] I. Essa, S. Sclaroff, and A. Pentland. Directions in Geometric
Computing, chapter Physically-based Modeling for Graphics and
Vision. Information Geometers, Winchester, UK, 1993.

118 Bibliography

[Far90] G. Farin. Surface over dirichlet tessellations. Computer Aided
Geometric Design, (7):281–292, 1990. NorthHolland.

[Fre85] Heinrich Freyler. Augenheilkunde für Studium, Praktikum u.
Praxis. Springer, Wien, 1985.

[Gib97a] S. Gibson. 3d chainmail: a fast algorithm for deforming volu-
metric objects. In Symposium on Interactive 3D Graphics, pages
149–154, 1997.

[Gib97b] Sarah F. F. Gibson. Linked volumetric objects for physics-based
modeling. Technical Report TR97-20, MERL – Mitsubishi Elec-
tric Research Laboratory, Cambridge, U.S.A., 1997.

[Gib00] Sarah F. F. Gibson. Using linked volumes to model object col-
lision, deformation, cutting, carving and joining. Technical Re-
port TR-2000-24, MERL – Mitsubishi Electric Research Labo-
ratory, Cambridge, U.S.A., 2000.

[GLM96] S. Gottschalk, M.C. Lin, and D. Manocha. Obbtree: A hierar-
chical structure for rapid interference detection. In Proceedings
SIGGRAPH ’96, pages 171–180, 1996.

[GM97] S.F. Gibson and B. Mirtich. A survey of deformable modeling
in computer graphics. Technical Report TR-97-19, MERL – A
Mitsubishi Electric Research Laboratory, 1997.

[GMTT89] J.P. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Sim-
ulation of object and human skin deformations in a grasping
task. In Proc. of SIGGRAPH 89, Computer Graphics Proceed-
ings, Annual conference series, pages 21–30. ACM, 1989.

[Gol87] Herbert Goldstein. Klassische Mechanik. Aula-Verl., Wiesbaden,
1987.

[Gri00] Johannes Grimm. Simulation eines diffus schwellenden Gehirns
mit der Methode der finiten Elemente. Master’s thesis, Univer-
sität Mannheim, 2000.

[Har99] Ulrich Hartmann. Ein mechanisches Finite-Element-Modell des
menschlichen Kopfes. PhD thesis, Universität Leipzig, 1999.

[HBHP90] X. Huang, M. M. Black, I. C. Howard, and E. A. Patterson. A
two-dimensional finite element analysis of a bioprosthetic heart
valve. J. Biomechanics, (23):753–762, 1990.

[Hel93] J. L. Helman. Designing VR systems to meet physio- and psycho-
logical requirements. ACM – Siggraph’93 Course 23 – Applied
Virtual Reality, 1993.

Bibliography 119

[HHK92] W. Hsu, J. Hughes, and H. Kaufman. Direct manipulation of
free-form deformations. Computer Graphics, 26(2):177–182, July
1992.

[HLL+00] H.M. Huang, M.C. Lee, S.Y. Lee, W.T. Chiu, L.C. Pan, and C.T.
Chen. Finite element analysis of brain contusion: an indirect
impact study. Medical & Biological Engeneering & Computing,
38:253–259, 2000.

[HPP+00a] Karl Heinz Höhne, Bernhard Pflesser, Andreas Pommert, Kay
Priesmeyer, Martin Riemer, Thomas Schiemann, Rainer Schu-
bert, Ulf Tiede, Hans Frederking, Sebastian Gehrmann, Stefan
Noster, and Udo Schumacher. VOXEL-MAN 3D Navigator:
Inner Organs. Regional, Systemic and Radiological Anatomy.
Springer-Verlag Electronic Media, Heidelberg, 2000. (3 CD-
ROMs, ISBN 3-540-14759-4).

[HPP+00b] Karl Heinz Höhne, Bernhard Pflesser, Andreas Pommert, Mar-
tin Riemer, Rainer Schubert, Thomas Schiemann, Ulf Tiede,
and Udo Schumacher. A realistic model of the inner organs
from the Visible Human data. In Scott L. Delp, Anthony M. Di-
Gioia, and Branislav Jaramaz, editors, Medical Image Comput-
ing and Computer-Assisted Intervention, Proc. MICCAI 2000,
volume 1935 of Lecture Notes in Computer Science, pages 776–
785. Springer, Berlin, 2000.

[HvCAH91] J. M. Huygue, D. H. van Campen, T. Arts, and R. M. Heethaars.
A two-phase finite element model of the diastolic left ventricle.
J. Biomechanics, (24):527–538, 1991.

[JBM73] R. F. Janz, R. K. Bruce, and T.F. Moriarty. Deformation of the
diastolic left ventricle - part ii: Non-linear geometric effects. J.
Biomechanics, pages 509–516, 1973.

[JG73] R. F. Janz and A. F. Grimm. Deformation of the diastolic left
ventrical – part i: Non-linear elastic effects. Biophys. J., pages
689–704, 1973.

[JT95] S. Jianhua and D. Thalmann. Interactive shape design using
metaballs and splines. In Proc. Implicit Surfaces, Grenoble,
1995.

[KBS80] A. D. Karaplan, M. P. Bienek, and R. Skalak. A mathematical
model of lung parenchyma. J. Biomech. Engng., (102):124–136,
1980.

[KCM99] U. Kühnapfel, H.K. Cakmak, and H. Maaß. 3d modeling for
endoscopic surgery. In Proc. IEEE Symposium on Simulation,

120 Bibliography

pages 22–32, Delft University, Delft, NL, Oct 13 1999. ISBN:
90-804551-7-2.

[KGC+96] R.M. Koch, M.H. Gross, F.R. Carls, D.F. von Büren,
G. Frankenhauser, and Y.I.H. Parish. Simulating facial surgery
using finite element models. In SIGGRAPH 96, Anual Confer-
ence Series, pages 421–428, New Orleans, Louisiana, August 4–9
1996.

[KGKG99] Erwin Keeve, Sabine Girod, Ron Kikinis, and Bernd Girod. De-
formable modeling of facial tissue for craniofacial surgery simu-
lation. Computer Aided Surgery, 3(5):228–238, 1999.

[Kil96] Mark J. Kilgard. OpenGL Programming for the X Window Sys-
tem. Addison-Wesley Developers Press, 1996.

[Kil00] Mark J. Kilgard. Improving shadows and reflections via
the stancil buffer. Technical report, nVidia Corporation,
www.nvidia.com, 2000.

[KKH+97] U. Kühnapfel, Ch. Kuhn, M. Hübner, H.-G. Krumm, H. Maaß,
and b. Neisius. The karlsruhe endoscopic surgery trainer as an
example for virtual realita in medicla education. Minimal In-
vasive Therapy and Allied Technologies (MITAT), (6):122–125,
1997.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. Int. J. Comput. Vision, 1(4):321–331, 1988.

[Lar86] W. Larrabee. A finite element model of skin deformation. Laryn-
goscope, pages 399–412, April 1986.

[LB95] R. Lieber and T. Burkholder. Musculoskeletal soft tissue me-
chanics. In Joseph D. Bronzino, editor, The Biomechanical En-
geneering Handbook, pages 352–356. CRC Press, IEEE Press,
1995.

[LC87] William Lorensen and Harvey Cline. Marching cubes: A
high resolution 3d surface reconstruction algorithm. Computer
Graphics, 21(4):163–170, July 1987. handle with care; some bugs
in the paper have been discussed in the scientific visualization
community in the years since the paper first appeared.

[LL78] J. T. Liu and G. C. Lee. Static finite deformation analysis of
the lung. J. Engng. Mech. Div., (104):225–238, 1978.

[LTW93] Y. Lee, D. Terzopoulos, and K. Waters. Constructing physics-
based facial models of individuals. In Proc. of Graphics Interface,
pages 1–8, May 1993.

Bibliography 121

[LTW95] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for
facial animation. In Proc. of SIGGRAPH 95, Computer Graph-
ics Proceedings, Annual conference series, pages 55–62. ACM,
1995.

[LTY83] G. C. Lee, N. T Tseng, and Y. M. Yuan. Finite element modeling
of lungs including interlobar fissures and the heart cavity. J.
Biomechanics, 16(9):679 – 690, 1983.

[LWA] I.P. Logan, D.P.M. Wills, and N.J. Avis. Deformable objects in
virtual environments. Department of Computer Science, Virtual
Environment Research Centre, University of Hull, Hull, HU6
7RX, U.K., i.p.logan@dcs.hull.ac.uk.

[LWP94] P. Langley, A.J. Wilkinson, and S.H. Pulko. A three-dimensional
transmission line model of transient elastic deformation. In
Proc. of the Twelfth IASTED International Conference AP-
PLIED INFORMATICS, pages 100–103, Annecy, France, May
1994. IASTED. ISBN: 0-88986-190-0.

[MJ96] R. MacCracken and K. Joy. Free-form deformations with lattices
of arbitrary topology. In Proc. of SIGGRAPH 96, Computer
Graphics, Annual conference series, pages 181–188. ACM, 1996.

[MPK+99] Michael I. Miga, Keith D. Paulsen, Francis E. Kennedy, Alex
Hartov, and David W. Roberts. Model-updated image-guided
neurosurgery using the finite element method: Incorporation of
the falx cerebri. In Chris Taylor and Alan Colchester, editors,
miccai99, volume 1679 of Lecture Notes in Computer Science,
pages 900–909, Cambridge; UK, September 1999. Springer.

[MSBH94] Gordon D. Mallinson, Mark A. Sagar, David Bullivant, and Pe-
ter J. Hunter. A Virtual Environment and Model of the Eye
for Surgical Simulation. In Proc. of SIGGRAPH 94, Annual
conference series, pages 205–212, 1994.

[MT96] Tim McInerney and Demetri Terzopoulos. Deformable models
in medical image analysis: a servey. Medical Image Analysis,
1(2):91–108, 1996. Oxford University Press.

[MT97] L. Moccozet and N. M. Thalmann. Dirichlet free-form defor-
mations and their application to hand simulation. In Proc. of
Computer Animation ’97, pages 93–102. IEEE, 1997.

[MWMTT98] W. Maurel, Y. Wu, N. Magnenat-Thalmann, and D. Thalmann.
Biomechanical Models for Soft Tissue Simulation. Basic Re-
search Series. Springer, Berlin, Heidelberg, New York, 1998.

122 Bibliography

[ner98] Joachim Meißner. Biomechanische Simulaton mit finiten Ele-
menten. Master’s thesis, Universität Mannheim, 1998.

[NHK+85] Hitoshi Nishimura, Makoto Hirai, Toshiyuki Kawai, Toru
Kawata, Isao Shirakawa, and Koichi Omura. Object modeling by
distribution function and a method of image generation. Trans-
actions of the Institute of Electronics and Communication En-
gineers of Japan, J68-D(4):718–725, July 1985. (translated into
English by Takao Fujiwara while at Centre for Advanced Stud-
ies in Computer Aided Art and Design, Middlesex Polytechnic,
England, 1989.). I could not get this one, but at least now you
know where to find the original publication.

[NRBM83] A. Needleman, S. A. Rabinowitz, D. K. Bogen, and T. A. McMa-
hon. A finite element model of the infarcted left ventricle. J.
Biomechanics, (16):45–58, 1983.

[NSM98] Paul F. Neumann, Lewis L. Sadler, and Jon Gieser M.D. Virtual
Reality Vitrectomy Simulator. In Alan Colchester, William M.
Wells, and Scott Delp, editors, Medical Image Computing and
Computer- Assisted Intervention – MICCAI ’98, pages 910–917,
Cambribge, MA, USA, October 1998. Springer.

[oGIaG] Medical College of Georgia & IMTC at GeorgiaTech. Simu-
lation of a Catheract Surgery. http://www.oip.gatech.edu/
MMTLPROJ/eye.html.

[PB81] S. Platt and N.I. Badler. Animating facial expressions. In Proc.
of SIGGRAPH 81, volume 3 of Computer Graphics, pages 245–
252, 1981.

[PBWP99] Alonso Pena, Malcom D. Bolton, Helen Whitehouse, and
John D. Pickard. Effects of brain ventricular shape on periven-
tricular biomechanics: A finite-element analysis. Neurosurgery,
45(1):107–118, 1999.

[PCRH78] Y. C. Pao, P. A. Chevalier, J. R. Rodarte, and L. D. Harris.
Finite element analysis of the starinvariations in excised lobe of
canine lung. J. Biomechanics, (11):91–100, 1978.

[PEHP93] D. J. Patin, E. C. Eckstein, K. Harum, and V. S. Pal-
lares. Anatomic biomechanical properties of human lumbar dura
mater. Anesth Analg, (76):535–540, 1993.

[PLDA00] Guillaume Picinbono, Jean-Christophe Lombardo, Herve
Delingette, and Nicholas Ayache. Improving realism of a surgery
simulator: Linear anisotropic elasticity, complex interactions
and force extrapolation. Theme 3 4018, Institut National de
Rechereche en Informatique et en Automatique, INRIA, 2000.

Bibliography 123

[PW89] A. Pentland and J. Williams. Good vibrations: Modal dy-
namics for graphics and animation. In Proc. of SIGGRAPH
89, Computer Graphics Proceedings, Annual conference series,
pages 215–222. ACM, 1989.

[Ree83] William T. Reeves. Particle systems – a technique for modeling a
class of fuzzy objects. ACM Transactions of Graphics, 2:91–108,
April 1983.

[RK99] Cameron N. Riviere and Pradeep K. Khosla. Microscale track-
ing of surgical instrument motion. In Chris Taylor and Alan
Colchester, editors, Medical Image Computing and Computer-
Assisted Intervention – MICCAI ’99, volume 1679 of Lecture
Notes in Computer Science, pages 1080–1087, Cambridge; UK,
September 1999. Springer.

[RNP00] Arne Radetzky, Andreas Nürnberger, and Dietriech P.
Pretschner. Elastodynamic shape modeler: A tool for defin-
ing the deformation behavior of virtual tissues. RadioGraphics,
(20):865–881, 2000.

[Rog92] David Rogelberg, editor. OpenGL Reference Manual. Addison-
Wesley Developers Press, 1992.

[Ruf00] Thomas Ruf. Entwurf, Aufbau und Evaluierung eines FPGA-
basierten Farbmarker-Trackings für den Augenoperations-
Simulator EyeSi2. Master’s thesis, Universität Mannheim, 2000.

[Sch91] H. R. Schwarz. Methode der Finiten Elemente. Teubner, 1991.

[SGBM98] Markus Schill, Sarah Gibson, H.-J. Bender, and R. Männer.
Biomechanical simulation of the vitreous humor in the eye us-
ing an enhanced chainmail algorithm. In Alan Colchester,
William M. Wells, and Scott Delp, editors, Medical Image Com-
puting and Computer- Assisted Intervention – MICCAI ’98,
pages 679–687, Cambribge, MA, USA, October 1998. Springer.

[Sim90] Karl Sims. Particle animation and rendering using data parallel
computation. Computer Graphics (SIGGRAPH’90), 24(4):405–
413, August 1990.

[SP86] T. Sederberg and S. Parry. Free-form deformation of solid geo-
metric models. In Proc of SIGGRAPH 86, Annual Conference
Series (Computer Graphics), pages 151–160. ACM, 1986.

[SRG+97] M. Schill, Ch. Reinhart, T. Günther, Ch. Poliwoda, J. Hesser,
M. Schinkmann, H.-J. Bender, and R. Männer. Biomechani-
cal simulation of brain tissue and realtime volume visualisation.
integrating biomechanical simulations into the virim system. In

124 Bibliography

Proc. of the international Symposium on Computer and Commu-
nication Systems for Imageguided Diagnosis and Therapy, Com-
puter Assisted Radiology, pages 283–288, Berlin, Germany, June
1997.

[SSBM96] M. Schill, M. Schinkmann, H.-J. Bender, and R. Männer. Biome-
chanical Simulation of the Falx cerebri Using the Finite Element
Method. In Proceedings of the 18. Annual International Confer-
ence, IEEE Engeneering in Medicine and Biology, pages 455–
456, Amsterdam, The Netherlands, Oct 1996.

[ST92] Richard Szeliski and David Tonnesen. Surface modeling with ri-
ented particle systems. Computer Graphics, 26(2):185–194, July
1992.

[SWH+99] Markus A. Schill, Clemens Wagner, Marc Hennen, Hans-
Joachim Bender, and Reinhard Männer. Eyesi – a simulator
for intra-ocular surgery. In Chris Taylor and Alan Colchester,
editors, Medical Image Computing and Computer- Assisted In-
tervention – MICCAI ’99, volume 1679 of Lecture Notes in Com-
puter Science, pages 1166–1174, Cambridge; UK, September
1999. Springer.

[Tab91a] L. A. Taber. On a non-linear theory for muscle shells – part
i: Theoretical development. J. Biomech. Engng, (113):56–62,
1991.

[Tab91b] L. A. Taber. On a non-linear theory for muscle shells – part
ii: Application to the beating of the left ventricle. J. Biomech.
Engng, (113):63–71, 1991.

[TK95] Nadia Magnenat Thalman and Prem Kalra. The simulation of
a virtual tv presentor. Technical Report, MIRALab, Univer-
sity of Geneva, PG95, 1995. http://www.miralab.unige.ch/
ARTICLES/PG95.html.

[Ton91] David Tonnesen. Modeling liquids and solids using thermal par-
ticles. Graphics Interface ’91, pages 255–262, 1991.

[TPF89] Demetri Terzopoulos, John Platt, and Kurt Fleischer. From
gloop to glop: Heating and melting deformable models. In Proc.
Graphics Interface, pages 219–226, June 1989.

[Tsa87] Roger Y. Tsai. A versatile camera calibration technique for
high-accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. IEEE Journal of Robotics and Automation,
RA-3(4):323–344, 1987.

Bibliography 125

[TSBM94] Hideo Takizawa, Kazuaki Sugiura, Motoki Baba, and J. Douglas
Miller. Analysis of intracerebral hematoma shapes by numerical
computer simulation using the finite element method. Neurol
Med Chir (Tokyo), (34):65–69, 1994.

[TW90] D. Terzopoulos and K. Waters. Physically based facial modeling,
analysis and animation. J. Visual. Comp. Anim., (1):73–80,
1990.

[TW91] D. Terzopoulos and K. Waters. Techniques for realistic fa-
cial modeling and animation. In N. Magnenat-Thalmann and
D. Thalmann, editors, Proc. Computer Animation ’91, Tokyo,
1991. Springer.

[Vaw] D. L. Vawter. A finite element model for macroscopic deforma-
tion of teh lung. In R. H. Gallagher, B. R. Simon, P. C. Johnson,
and J. F. Gross, editors, Finite Elements in Biomechanics. John
Wiley & Sons, Chichester, UK.

[vdB97] G. van den Bergen. Efficient collision detection of complex de-
formable models using aabb trees. Journal of Graphical Tools,
1997.

[Wat87] K. Waters. A muscle model for animating three-dimensional fa-
cial expression. In Proc. of SIGGRAPH 87, Computer Graphics
Proceedings, Annual conference series, pages 17–24. ACM, 1987.

[Wat92] K. Waters. A physical model of facial tissue and muscle artic-
ulation derived from computer tomography. In Proc. of Visual-
ization in Biomedical Computing, volume 1808, pages 574–583.
SPIE, 1992.

[WBMT99] Yin Wu, Pierre Beylot, and Nadia Magnenat-Thalmann. Skin
aging estimation by facial simulation. In Computer Animation
1999 (CA’99), Geneva, Switzerland, 26–28 May 1999. IEEE
Computer Society.

[Whi94a] Ross T. Whitaker. Volumetric deformable models: Active
blobs. Technical report, ECRC, European Computer-Industry
Research Centre GmbH (Forschungszentrum), 1994. also in:
[Whi94b].

[Whi94b] Ross T. Whitaker. Volumetric deformable models: Active blobs.
In Richard A. Robb, editor, Proc. of Visualization In Biomedical
Computing, pages 122–134, Rochester, Miesota, USA, Oct 1994.

[Wil95] Reg Willson. Tsai camera calibration software. http://www.
cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html,
1995. Code Revision 3.0b3.

126 Bibliography

[WMW86] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Animating
soft objects. The Visual Computer, 2(4):235–242, 1986.

[WND97] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Program-
ming Guide. Addison-Wesley Developers Press, 1997.

[WT91] K. Waters and D. Terzopoulos. Modeling and animating faces
using scanned data. Visualization and Computer Animation,
(2):123–128, 1991.

[WTT95] Yi Wu, Daniel Thalmann, and Nadia Magnenat Thalmann. De-
formable surfaces using physically-based particle systems. In
VHCGI95, Switzerland, 1995. downloaded from: http://www.
miralab.unige.ch/ARTICLES/art95.html.

[WW89] Brian Wyvill and Geoff Wyvill. Field functions for implicit sur-
faces. Visual Computer, 5:75–82, 1989.

[WW92] A. Watt and M. Watt. Advanced animation and rendering tech-
niques. ACM press New York, New York. Addison Wesley, Wok-
ingham, England, 1992.

[YXR+00] D. Yu, C. Xu, M. Rettmann, D. Pham, and J. Prince. Quantita-
tive validation of a deformable cortical surface model. In SPIE
International Symposium on Medical Imaging, February 2000.

[YYFS94] J. Yamashita, H. Yokoi, Y. Fukui, and M. Shimojo. A virtual
surface modeler for direct and regional free form manipulation.
In Proc. of ICAT 94, The Fourth International Conference on
Artificial Reality and Tele-Existence, pages 35–42, 1994.

[Zie75] O. C. Zienkiewicz. Methode der finiten Elemente. Carl Hanser
Verlag, München-Wien, 1975.

A
Modal Analysis

The changing of the basis from p generalized nodal displacements to q general-
ized modal displacements with (q � p) brings a significant improvement with
respect to the resolution of the algebraic equations system. The change of the
basis is performed by expressing the nodal displacement vector in terms of the
modal displacement vector:

~U = Φ~V with Φp×q =
[
~φ1 . . . ~φq

]
(A.1)

with:
~U the generalized nodal displacement vector.
~V the generalized modal displacement vector.
~φi the the eigenvectors of the linearized eigenproblem.
Φp×q the modal transfer matrix which is composed of the column eigenvectors.

With the mass matrix M , the stiffness matrix K and the damping matrix D
the corresponding eigenvalue problem is

KΦ = MΦΩ2 with Ω2 =

 ω2
1 0 0

0
. . . 0

0 0 ω2
q

 (A.2)

where the generalized eigenvalues ωi = 2Πfi and the fi are the natural frequen-
cies of the system (i = 1, . . . , q) [MWMTT98]. Because M and K are generally
symmetric positive definite and D is typically a linear combination of M and
K, they can be simultaniously diagonalized by Φ.

ΦTMΦ = M̃

ΦTKΦ = K̃ (A.3)
ΦTDΦ = D̃

127

128 A. Modal Analysis

Using equ. (A.1) on equ. (3.9) and multipying by ΦT yields:

ΦTMΦ ~̈V + ΦTDΦ ~̇V + ΦTKPhi~V = ΦT ~F (A.4)

With equs. (A.3) and the definition F̃ = ΦT ~F this leads to

M̃ ~̈V + D̃ ~̇V + K̃ ~V = F̃ (A.5)

In equ. (A.5) the system equations are lineary independent. Each equation de-
scribes a vibrational mode of the object. In 3D, six vibrational modes represent
the possible rigid body motion (three translational and three rotational degrees
of freedom). Additional modes account for linear strain, quadratic strain and
higher order deformations.

For simulations that requir a real time system response the vibrational modes
can be sorted in such a way that the rigid body motions are calculated first and
deformations are only calculated up to the degree that system time is available.
This allows a setup with different levels of detail for the deformation depending
on the available computational time [GM97].

B
Element Matrices

The following passage introduces the matrices used for the finite element anal-
ysis described in section 6.2. The matrices for the BV-triangle are given as a
combination of the matrices of the B-triangle andf the V-triangle.

Triangular Element: BV-triangle

The used element is a combination of a triangular element which considers in-
plane strain (V-triangle (figure B.2) and one that considers bending B-triangle
(figure B.3). We call the combined element BV-triangle (figure B.1.

Figure B.1: Node variables for the BV-triangle considering in-plane strain and
bending

129

130 B. Element Matrices

The node variables of the BV-triangle are a combination of the node variables
of the B-triangle and V-triangle.

~u =
(
ux,1, uy,1, ux,2, uy,2, ux,3, uy,3, uz,1, uz,2, uz,3,

(
∂uz
∂n

)
4

,

(
∂uz
∂n

)
5

,

(
∂uz
∂n

)
6

)T
(B.1)

Analogous is the stiffness matrix of the BV-triangle a combination of the stiff-
ness matrices of the B-triangle and V-triangle.

S̃BV =
(
S̃V 0
0 S̃B

)
(B.2)

By exchanging rows and collums S̃BV is brought to the more convinient form
SBV which corresponds to the following node variable vector:

~u =
(
ux,1, uy,1, uz,1, ux,2, uy,2, uz,2, ux,3, uy,3, uz,3,

(
∂uz
∂n

)
4

,

(
∂uz
∂n

)
5

,

(
∂uz
∂n

)
6

)T
(B.3)

V-triangle

The V-triangle lies in the xy-plane. The three corners, each contributes a node
variable: ~u1 = (ux,1, uy,1)T , ~u2 = (ux,2, uy,2)T und ~u3 = (ux,3, uy,3)T The

Figure B.2: Node variables for the V-triangle that considers in-plane strain.

V-triangles stiffness matrix is:

S̃V = ATSVA (B.4)

131

Figure B.3: Node variables for the B-triangle considering bending.

with:

SV = hF
E

(1 + ν)(1− 2ν)

0 0 0 0 0 0
0 1 0 0 0 ν
0 0 1−ν

2 0 1−ν
2 0

0 0 0 0 0 0
0 0 1−ν

2 0 1−ν
2 0

0 ν 0 0 0 1

 , (B.5)

and

A−1 =

1 x1 y1 0 0 0
0 0 0 1 x1 y1

1 x2 y2 0 0 0
0 0 0 1 x2 y2

1 x3 y3 0 0 0
0 0 0 1 x3 y3

 (B.6)

B-triangle

The B-triangle considers energy generated by bending the triangle out of the
xy-plane. In addition to the node translations uz,i, i = 1, 2, 3, we also need
to consider the first derivative of nodes on the middle of the three edges
(duzdnj) , j = 4, 5, 6. The B-triangles stiffness matrix is:

S̃B = ATSBA (B.7)

132 B. Element Matrices

with:

SB =
1
3
h3F

E

(1 + ν)(1− 2ν)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 4 0 4ν
0 0 0 0 2(1− ν) 0
0 0 0 4ν 0 4

 . (B.8)

and:

A−1 =

1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y1 y2

3

0 cosφ4 sinφ4 2x4 cosφ4 x4 sinφ4 + y4 cosφ4 y4 sinφ4

0 cosφ5 sinφ5 2x5 cosφ5 x5 sinφ5 + y5 cosφ5 y5 sinφ5

0 cosφ6 sinφ6 2x6 cosφ6 x6 sinφ6 + y6 cosφ6 y6 sinφ6

(B.9)

Tetrahedron element

The tetrahedron element (figure B.4) used in section 6.2 has the following
stiffness matrix. The tetrahedron’s stiffness matrix is given by:

Figure B.4: The tetrahedron element used for simulating the swelling brain.

S̃ = ATSA (B.10)

with:

133

S =
E

(1 + v)(1− 2ν)

1− ν 0 0 0 0 ν 0 0 0 0 ν 0
0 1

8 −
1
4ν 0 0 1

8 −
1
4ν 0 0 0 0 0 0 0

0 0 1
8 −

1
4ν 0 0 0 0 0 1

8 −
1
4ν 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 1

8 −
1
4ν 0 0 1

8 −
1
4ν 0 0 0 0 0 0 0

ν 0 0 0 0 1− ν 0 0 0 0 ν 0
0 0 0 0 0 0 1

8 −
1
4ν 0 0 1

8 −
1
4ν 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

8 −
1
4ν 0 0 0 0 0 0 1

8 −
1
4ν 0 0

0 0 0 0 0 0 1
8 −

1
4ν 0 0 1

8 −
1
4ν 0 0

ν 0 0 0 0 ν 0 0 0 0 1− ν 0
0 0 0 0 0 0 0 0 0 0 0 0

and:

A−1 =

1 x1 y1 z1 0 0 0 0 0 0 0 0
0 0 0 0 1 x1 y1 z1 0 0 0 0
0 0 0 0 0 0 0 0 1 x1 y1 z1

1 x2 y2 z2 0 0 0 0 0 0 0 0
0 0 0 0 1 x2 y2 z2 0 0 0 0
0 0 0 0 0 0 0 0 1 x2 y2 z3

1 x3 y3 z3 0 0 0 0 0 0 0 0
0 0 0 0 1 x3 y3 z3 0 0 0 0
0 0 0 0 0 0 0 0 1 x3 y3 z3

1 x4 y4 z4 0 0 0 0 0 0 0 0
0 0 0 0 1 x4 y4 z4 0 0 0 0
0 0 0 0 0 0 0 0 1 x4 y4 z4

(B.11)

