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General introduction 

1. The relevance of survey data quality

In the social sciences, research is often based on findings from survey data. Common research topics 

examine political behavior, societal attitudes and opinions, as well as personal values. Survey results 

shape societal debates and can have an impact on policy decisions. A recent example for the impact 

of survey results is the debate about same-sex marriage in Germany. A report by the German Federal 

Anti-Discrimination Agency released in early 2017 reported that 82.4% of the German population 

was in favor of allowing same-sex marriage based on a large-scale telephone survey (see 

Antidiskriminierungsstelle des Bundes, 2017). When in June 2017 a short but heated discussion 

about passing a law that would allow same-sex marriage took place in the German public sphere and 

the parliament, this survey finding was a prominent argument in favor of same-sex marriage in the 

news coverage1. Considered as a valid expression of the German public view on this topic, this survey 

result might have helped proponents of the admission of same-sex marriage to pass the respective 

law in the German parliament by the end of June 2017 in a sudden and uncharacteristically fast 

legislative process. 

However impactful the results might be, research and policy debates based on survey data rely on 

the assumption that the survey data are of high enough quality to be able to draw inferences from 

the data to a broader population. However, collecting high quality survey data is challenging. 

Common methodological issues include declining response rates (see e.g., de Heer & de Leeuw, 

2002) as well as concerns about biases due to systematic misrepresentation of members of the 

target population (see e.g. Groves & Lyberg, 2010) as well as measurement error (see e.g., 

O'Muircheartaigh, 1997). 

That survey data can be wrong has recently been shown repeatedly in the area of election polling. 

Prominent in British news coverage, for example, were the mispredictions of many polls with regard 

1
 See for example http://www.handelsblatt.com/politik/deutschland/kehrtwende-der-kanzlerin-merkel-macht-

ehe-fuer-alle-ploetzlich-moeglich/19983854.html. 
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to the 2015 general election2. Most polls had predicted the Conservative Party to be tied with 

Labour. Yet the final election outcome was a clear win for the Conservatives. Similarly, most British 

polls predicted that the British public would vote to remain in the European Union in the 2016 

referendum. Yet the outcome of the referendum was that Britain would leave the EU3. Outside of 

Britain, too, media coverage of election poll mispredictions has occurred, for example in the United 

States where many polls predicted Hillary Clinton to win the presidential election in 2016 while the 

final outcome was that Donald J. Trump won the race4. Other examples of failed predictions from 

survey data include failure to predict voter turnout (see for example Holbrook & Krosnick, 2010), 

income (see for example Hariri & Lassen, 2017), and religious attendance (see for example Presser & 

Stinson, 1998). 

Because results from survey data can be inaccurate and possibly lead to wrong predictions, it is 

important to ask whether survey data have the necessary quality to be able to draw valid inferences. 

This question is, however, often difficult to answer because multiple error sources can influence 

survey data quality. Among other factors, the quality of the survey data is influenced by survey 

design characteristics, such as the sampling method and the survey mode. In an inquiry report, 

Sturgis et al. (2016), for instance, find that the main reason for the failure of most election polls in 

the 2015 UK general election was “unrepresentative samples” (p. 69; for similar findings on 

mispredictions of election polls see AAPOR, 2009). 

It is imperative to ensure that research findings from survey data are valid by avoiding the different 

types of survey errors that can arise throughout the survey process. In order to do this, researchers 

need to keep the various error sources in mind and be able to detect them. Such an overview of 

potential survey errors can be gained by applying the Total Survey Error framework. 

2
 See for example http://www.bbc.com/news/uk-politics-32751993. 

3
 See for example https://www.cnbc. com/2016/07/04/why-the-majority-of-brexit-polls-were-wrong.html. 

4
 See for example https://www.nytimes.com/2017/05/31/upshot/a-2016-review-why-key-state-polls-were-

wrong-about-trump.html. 
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2. The Total Survey Error (TSE) framework

The TSE provides a framework to examine the various errors that might occur in the survey process 

(Groves, 2004; Groves & Lyberg, 2010). As components of the survey process, the TSE includes 

measurement steps as well as representational inference steps. The measurement steps of the TSE 

(see left side of Figure 1) start with the operationalization of theoretical constructs into survey 

questions as measurements. The next step of the measurement process is the retrieval of responses 

to the survey questions. Then, the responses are processed into edited data. The representational 

inference steps of the TSE (see right side of Figure 1) start with the identification of the target 

population of the survey from the inferential population. The next step is the construction of the 

sampling frame that is supposed to contain all members of the target population. Then, a sample is 

drawn from the sampling frame. After this, a set of respondents is generated from the sample by 

conducting survey interviews. The end result of the measurement and representational inference 

steps of the TSE is the survey statistic, which is calculated from the edited data on the set of 

respondents. 

Figure 1: Total Survey Error Components Linked to Steps in the Measurement and Representational Inference Process 

(taken from Groves et al., 2004). 

At each step of the TSE process, errors can occur. Regarding the measurement steps of the TSE 

framework, the construct might be erroneously operationalized into a survey question. This might 

result in invalid measurements. In addition, measurement error can arise in the measurement 
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process resulting in incorrectly measured items that do not reflect the true population values. 

Furthermore, processing error might occur in the process of recording and coding the survey 

responses into the edited data set. 

In the representational inference steps of the TSE framework, coverage error can occur when the 

sampling frame either excludes members of the target population or includes nonmembers of the 

target population. This can lead to biased estimates if there is systematic under-coverage or over-

coverage of certain parts of the target population. In addition, sampling error can arise because not 

every member of the sampling frame is included in the sample. This often leads to imprecisions in 

the survey estimates. Furthermore, nonresponse error can occur when members of the sample do 

not respond to the survey. As an additional error source in the survey process, researchers often 

discuss adjustment error, which arises when statistical adjustments for misrepresentations in the 

data fail to correct these misrepresentations. 

All errors that can arise throughout the Measurement and Representational Inference Process of the 

TSE framework described above can result in incorrect or imprecise survey statistics. Therefore, it is 

necessary to examine survey data from different perspectives keeping in mind that both the 

measurement steps and the representational steps of the TSE framework influence the survey data. 

In the first three dissertation papers, I examine the representational inference steps of the TSE from 

different angles by applying different types of definitions of the concept of survey 

representativeness. In my last dissertation paper, I turn the focus to the measurement steps of the 

TSE framework by applying the concept of response quality as a potential type of measurement 

error. 



13 

3. The concept of survey representativeness

The concept of survey representativeness refers to the representational inference steps of the TSE 

framework. It generally includes coverage error, sampling error, nonresponse error, and adjustment 

error as potential error sources. There is not one agreed-upon definition of survey 

representativeness. Instead, the term is often used ambiguously (see Kruskal & Mosteller, 1979a, 

1979b, 1979c for a collection of definitions) and seldom defined explicitly.5 Because it is used 

ambiguously, some researchers resent using the term “representativeness” altogether (see for 

example Rendtel & Pötter, 1992). A common alternative term is “survey accuracy” (see for example 

Yeager et al., 2011). 

In the current scientific literature on survey representativeness, two definitions of survey 

representativeness are commonly used, even if mostly only implicitly. The first definition refers to 

the similarity between the response set of a survey compared to the target population (see left side 

of Figure 2 for an illustration). Although this is an intuitive definition, it is hard to operationalize it in a 

measurement. Usually, studies working with this underlying definition compare a survey response 

set to a benchmark that is assumed to accurately reflect the target population. Such benchmarks can 

be official statistics such as a census or large-scale surveys that are assumed to be of high quality. 

An advantage of this approach is that no knowledge about the nonrespondents is necessary to 

conduct this type of representativeness assessment. Drawbacks include that the assumption of an 

accurate benchmark might be violated and that in many cases only socio-demographic characteristics 

can be compared because these are the only available benchmark data. 

This type of studies can commonly be found in fieldwork reports (see for example European Social 

Survey, 2016) and methodological literature on survey mode effects (see for example Malhotra & 

Krosnick, 2007) as well as post-survey adjustment weights (see for example Steinmetz et al., 2014). 

5
 A rare exception is the paper by Schouten et al. (2009), where representativeness is defined as a “respondent 

selection” that is “as close as possible to a ‘simple random sample’” (p. 103). In the current literature, the term 
“representativeness” is often used to say that a survey is of high general quality. 
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Figure 2: Strict and weak definition of survey representativeness (adapted from Särndal and Lundström, 2005) 

The second definition of survey representativeness that is used in large parts of the scientific 

literature relies on the assumption that the gross sample of a probability-based survey correctly 

represents the target population (see right side of Figure 2 for an illustration). Therefore, 

representativeness can be assessed by comparing the response set to the gross sample of the survey, 

which includes the survey respondents as well as the nonrespondents. Strictly speaking, this concept 

is equal to that of nonresponse bias. 

An advantage of this approach is that in many cases a variety of variables are either available for the 

representativeness assessment directly, e.g. from the sampling frame of the survey, or additional 

data can be linked to the available data from other sources, such as commercial or official area data. 

A potential drawback is that it is necessary to obtain data for the survey nonrespondents, which 

might be challenging if data-rich sampling frames are not available. In addition, indicators that rely 

on this representativeness approach neglect potential sampling biases, for example due to sampling 

frame imperfections. 

This type of studies can commonly be found in the statistical literature on model-based data quality 

measures (see for example Schouten et al., 2009). They can also be found in the literature on 
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fieldwork monitoring (see for example Schouten, Shlomo, & Skinner, 2011) and tailored fieldwork 

designs (see for example Luiten & Schouten, 2013). 

Regardless of the definition, survey representativeness is necessary for obtaining accurate survey 

statistics following the TSE framework. Therefore, research on the measurement of survey 

representativeness and the survey characteristics associated with it is crucial. This dissertation 

contributes to this line of research. 

4. The concept of survey response quality

The concept of survey response quality refers to the idea that respondents might provide better or 

worse responses depending on the quality of the respondents’ response processing. The dominant 

response processing model in the current literature was developed by Tourangeau, Rips, and Rasinski 

(2000). It describes the process from the question stimulus to the survey response. The cognitive 

steps involved in response processing are: question comprehension, information retrieval, judgment 

and estimation, and reporting an answer (see Figure 3). 

Figure 3: A simple model of the survey response process (adapted from Groves et al., 2009). 

In the question comprehension step, respondents interpret the question. They process the words 

and structure of the question, assign meaning to the question, and evaluate what information the 

question asks for. The retrieval of information step is where respondents recall the necessary 

information they need to answer the question. The information retrieval is set off by cues in the 

question that trigger recall from memory. The respondent’s memory then provides further cues that 

help in answering the question. This process might go back and forth between question cues and 

memory cues several times until the necessary information is retrieved. In the judgment and 

estimation step of the response process, the respondent combines and summarizes the recalled 
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information. When reporting an answer, the respondent formulates the response in the required 

format. This involves mapping the actual answer to the response options. While there is a certain 

plausibility to the order of the cognitive processes, starting with question comprehension, and 

ending with the reporting of an answer, the processes are not always carried out in that order. 

Instead, there can be a substantial amount of backtracking from one step to another, as well as an 

overlap between cognitive steps. 

Following the prominent satisficing theory developed by Krosnick (1991), respondents at each of the 

processing steps obtain either optimized results that are as best as possible or satisficed results that 

only seem satisfactory. If respondents satisfice, this means that they take short-cuts through the 

optimal cognitive response process to reduce the cognitive burden (Krosnick & Alwin, 1987). They 

might for instance only skim the question text for keywords, they might skip reading definitions and 

other supplementary material meant to help them answer the question correctly, or they might only 

browse through the answer options until they find an option that fits them reasonably well without 

checking whether there is another answer option that fits them even better. 

If respondents satisfice rather than optimize, response quality is compromised and measurement 

error is introduced into the data. Following the TSE framework, this can result in erroneous survey 

statistics. Therefore, research on the measurement of response quality and the survey characteristics 

associated with it is crucial. This dissertation contributes to this line of research. 

5. Summary of dissertation papers

My dissertation consists of four papers. The first paper is a meta-analysis on the association between 

survey characteristics and representativeness in the published literature. The second paper is an 

examination of the informative value of five common measures of survey representativeness using 

the recruitment data of two large-scale probability-based online panels in Germany. The third paper 

is an assessment of the utility of auxiliary data for predicting survey response in a probability-based 

online panel. The last paper explores the effects of respondent motivation on response quality in 
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three probability-based and seven nonprobability online panels in Germany. With these four papers, 

my dissertation covers potential errors in survey data discussed in the TSE framework from different 

perspectives. 

Paper 1: Is there an association between survey characteristics and representativeness? A meta-

analysis 

In this paper, I synthesize the literature on survey representativeness and its association with 

common survey design characteristics. The paper gives an overview of common definitions of the 

term representativeness and sheds light on ongoing debates about how it is related to the design of 

a survey. In particular, the paper discusses the association of survey representativeness with the 

sampling design, the survey mode, the response rate, and the auxiliary data used in the 

representativeness assessment. 

In addition to providing an overview of the state of the literature with regard to these 

methodological issues, I present empirical evidence on how these survey design characteristics are 

related to representativeness. In this empirical assessment, I apply meta-analytic techniques to 

synthesize the results that we find in the published literature on two common measures of survey 

representativeness: R-Indicators and descriptive benchmark comparisons. 

The results from the meta-analytic moderator analyses indicate that probability-based samples, 

mixed-mode surveys, and other-than-Web mode surveys are more representative than 

nonprobability samples, single-mode surveys, and web surveys. In addition, I find that there is a 

positive association between representativeness and the response rate. 

A key finding of this paper is, however, that more research into the topic of survey 

representativeness is needed. In the literature, there is, for instance, a strong need for studies that 

assess survey representativeness on more than one measure. There are also only few studies that 

assess the representativeness of online surveys using benchmark comparisons and no studies that 

assess representativeness of web surveys using R-Indicators. In general, I find that more primary 
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research is needed to enhance the informative value of meta-analyses in order to derive 

recommendations for survey practitioners aiming to design a generally representative survey. 

Paper 2: Is it in the method? Testing five measures of survey representativeness 

The second paper assesses and discusses the informative value of five common measures of survey 

representativeness for use in a cross-survey as well as within-survey representativeness comparison. 

I test measures on different levels of aggregation. On the most aggregated level, I test response rates 

and R-Indicators as single-number representativeness overviews. On the variable level, I assess the 

value of Fractions of Missing Information (FMIs) to provide evidence on the representativeness of 

survey data. On the category level, I examine subgroup response rates as well as benchmark 

comparisons and assess their added value to the representativeness analysis. 

The data I use in this study are from two probability-based online panels in Germany: the German 

Internet Panel (GIP) and the GESIS Panel. Both panels share a number of survey design characteristics 

but also differ in other aspects. I assess the informative value of each representativeness measure for 

a comparison across the panels. In addition, I compare the representativeness measures within each 

panel across its recruitment stages. 

My findings show that to get a broader picture of survey representativeness, it is necessary to apply 

multiple measures at different levels of aggregation. When identical auxiliary data are available on 

the surveys that researchers want to compare, the R-Indicators provide a more meaningful 

representativeness assessment than the response rates because they take more information into 

account. FMIs are difficult to apply in a comparative context because they overemphasize the 

relative size of the response set compared to the overall gross sample in a way that distorts survey 

comparisons. Both subgroup response rates and benchmark comparisons add value to the 

representativeness assessments by providing more detail than the aggregate measures. When only 

using these category-level measures, however, it is hard to make a general representativeness 
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assessment. Therefore, I conclude that using a variety of measures on different levels of aggregation 

is advisable to provide a comprehensive picture of the broad concept of survey representativeness. 

Paper 3: The utility of auxiliary data for survey response modeling: Evidence from the German 

Internet Panel 

In this paper, I explore the value of different sources of auxiliary data (sampling frame data, 

interviewer observations, and commercial as well as official micro-geographic area data) in the 

context of the recruitment of the GIP, a probability-based online panel in Germany. I examine the 

proportions of missing values in the auxiliary variables available in this study and investigate whether 

there are systematic differences in the proportions of missing values between respondents and 

nonrespondents. In addition, I assess the correlations of the auxiliary variables with survey response 

as well as the predictive power and significance of coefficients in survey response models. I conduct 

all of the analyses on survey response in the GIP face-to-face recruitment interview as well as the 

subsequent online profile survey. 

I find in this study that all of the auxiliary data have problems: the sampling frame data are scarce, 

the interviewer observations have relatively high proportions of missing values that are in part 

systematically missing by survey response, the Microm data are intransparent and have some 

missing data as well, and the INKAR data are highly aggregated. In addition, none of the auxiliary 

variables correlate to any substantial degree with survey response at the two GIP recruitment steps. 

Therefore, none of the auxiliary data have predictive power in the survey response models although 

some of the coefficients in the models are significant. 

I conclude that the auxiliary data examined in this study should be used with caution in survey 

practice. In addition, more research is needed into the quality of different sources of auxiliary data. 

Furthermore, this study shows that the search for high quality auxiliary data that are predictive of 

survey response should continue to fill the need for these data in survey operations and 

methodological research. 
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Paper 4: Response quality in nonprobability and probability-based online panels 

The last paper of my dissertation discusses the topic of response quality across nonprobability and 

probability-based online panels. The basic assumption in this paper is that monetary rewards are a 

much more important motivation for participation in nonprobability online panels than in 

probability-based online panels. This is because nonprobability online panels recruit their 

respondents primarily by online advertisements that promise fast cash in return for filling out 

questionnaires. Due to the self-selection mechanism that nonprobability online panels rely on for 

panel recruitment, it is likely that this strategy has an impact on the motivational composition of the 

set of people that self-selects into these nonprobability panels. While monetary rewards likely 

motivate probability-based online panel participants as well, I assume that there is a wider variety of 

motivations for participation in probability-based online panels. 

Based on these assumptions, I compare the response quality of seven nonprobability online panels to 

the response quality of three probability-based online panels. All online panels fielded the same 

short survey at approximately the same fieldwork period. The response quality indicators I examine 

in the data of the ten online panels are straight-lining, item nonresponse, and midpoint selection in a 

visual design experiment. The results show that there is significantly more straight-lining in the 

nonprobability online panels than in the probability-based online panels. However, I find no 

systematic pattern indicating that response quality is lower in nonprobability online panels than in 

probability-based online panels with regard to item nonresponse and the midpoint selection 

experiment. I conclude that more research is needed into response quality in nonprobability online 

panels. 
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Paper 1 

Is there an association between survey characteristics and 

representativeness? A meta-analysis6 

Abstract 

How to achieve survey representativeness is a controversially debated issue in the field of survey 

methodology. Common questions include whether probability-based samples produce more 

representative data than nonprobability samples, whether the response rate determines the overall 

degree of survey representativeness, and which survey modes are effective in generating highly 

representative data. This meta-analysis contributes to this debate by synthesizing and analyzing the 

literature on two common measures of survey representativeness (R-Indicators and descriptive 

benchmark comparisons). Our findings indicate that probability-based samples (compared to 

nonprobability samples), mixed-mode surveys (compared to single-mode surveys), and other-than-

Web modes (compared to Web surveys) are more representative, respectively. In addition, we find 

that there is a positive association between representativeness and the response rate. Furthermore, 

we identify significant gaps in the research literature that we hope might encourage further research 

in this area. 
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1. Background and aims

One of the most important questions in the research field of survey methodology is how to collect 

high quality survey data that can be used to draw inferences to a broader population. Extensive 

research has been conducted from different angles, often creating an ambiguous picture of whether 

and how a specific survey characteristic might help or hurt in the pursuit of reaching high survey 

quality. An example is the current debate around the representativeness of probability-based surveys 

versus nonprobability surveys, where proponents and opponents of each approach provide new 

findings on a regular basis. Some of these studies suggest that probability-based surveys are more 

accurate than nonprobability surveys (e.g., Malhotra & Krosnick, 2007; Loosveldt & Sonck, 2008; 

Chang & Krosnick 2009; Yeager et al., 2011). Other studies demonstrate that nonprobability surveys 

are as accurate as or even more accurate than the probability-based surveys (e.g., Gelman et al., 

2017; Wang et al., 2015). 

Another example of a scientific discussion in the survey methodological community is the question of 

whether the response rate can be used as a representativeness indicator. Even though meta-analytic 

research shows that the response rate is only weakly associated with nonresponse bias (Groves & 

Peytcheva, 2008; Groves et al., 2008) the debate about how to stop the decrease in response rates 

goes on (e.g., de Leeuw & de Heer, 2002; Brick & Williams, 2013). Another topic continuously 

investigated in survey methodological research with seemingly contradictory findings is which survey 

mode and which mode combinations yield the most representative data (e.g., Luiten & Schouten, 

2012). Based on a systematic review summarizing the available meta-analytic evidence about mode 

effects and mixed-mode effects on representativeness, Bosnjak (2017, p. 22) concludes: “there is a 

lack of meta-analytic studies on the impact of (mixing) modes on estimates of biases in terms of 

measurement and representation, not just on proxy variables or partial elements of bias, such as 

response rates.” 

In light of the extensive research on different aspects of survey representativeness that partly leads 

to seemingly contradictory findings, the overall aims of this paper are to identify and systematically 
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synthesize the existing literature on survey representativeness, and to answer the question if, and to 

what extent, specific survey characteristics are associated with survey representativeness. Before we 

develop the specific research question and hypotheses of this study, we define the scope by 

specifying the two survey representativeness concepts considered. 

2. Survey representativeness concepts

Survey representativeness is an ambiguous and controversial term. In survey methodology, it most 

commonly refers to the success of survey estimates to mirror ‘true’ parameters of a target 

population (see Kruskal & Mosteller, 1979a, 1979b, 1979c for this and other definitions of the 

concept of representativeness). The fact that a survey can be representative regarding the variables 

of interest to one researcher, and misrepresent the variables of interest to another researcher at the 

same time, adds to the vagueness of the concept of a generally representative survey. Since some 

researchers reject the term ‘representativeness’ entirely (e.g., Rendtel & Pötter, 1992; Schnell, 1993), 

research on the subject frequently emerges under the keywords ‘accuracy’ or ‘data quality’ in 

general (e.g. Malhotra & Krosnick, 2007; Yeager et al., 2011). Other researchers still use the term 

‘representativeness’ (e.g., Chang & Krosnick, 2009) or ‘representativity’(e.g., Bethlehem et al., 2011). 

From a total survey error perspective, survey non-representativeness encompasses the errors of 

nonobservation: coverage error, sampling error, nonresponse error, and adjustment error (Groves et 

al., 2004; Groves & Lyberg, 2010). 

Because of its ambiguity, there are various operationalizations of survey representativeness. Two 

common approaches prevail; each is associated with specific advantages and disadvantages. The first 

approach is to compare the survey response set to the target population in question. This is mostly 

done by using benchmark comparisons, estimating the absolute bias. For this type of 

representativeness measure, it is necessary to assume that the benchmark to which the response set 

is compared is unbiased and reflects the ‘true’ values of the target population. Therefore, these 

representativeness assessments are mostly conducted on socio-demographic characteristics only 

(e.g., Keeter et al., 2000; Wozniak, 2016). The goal is in many cases to show whether a specific data 
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source is trustworthy and can therefore be used to answer a substantive research question, for 

example on health (Potthof et al., 2004) road safety (Goldenbeld & de Craen, 2013) or religion and 

ethnicity (Emerson et al., 2010). 

The other approach to operationalizing the concept of representativeness is to compare the survey 

response set to the gross sample including respondents as well as nonrespondents. This allows the 

inclusion of a much broader set of variables in the assessment compared to the absolute bias 

measure. For instance, data from the sampling frame, fieldwork, and from data linkage can be used 

for the representativeness assessment. Examples of such measures include R-Indicators (Schouten et 

al., 2009), balance and distance measures (Lundquist & Särndal, 2013), and Fractions of Missing 

Information (Wagner, 2010). However, since only those characteristics can be assessed that are 

available for respondents as well as for nonrespondents, data availability is an issue also for 

measures operationalizing this approach. In addition, the underlying assumption is that if the 

response set perfectly reflects the gross sample, including both respondents and nonrespondents, 

this constitutes a representative survey. This assumption leaves out the fact that the sample might 

already be biased compared to the target population due to coverage error and sampling error. 

Therefore, these measures operationalizing the second approach to representativeness are – 

technically speaking – nonresponse bias measures (Wagner, 2012). 

Because there is no agreed-upon measure of survey representativeness, we focus on two 

conceptualizations that are common in the survey methodological literature. First, we investigate R-

Indicators that assess representativeness by comparing respondents to the gross sample of a survey, 

which includes respondents as well as nonrespondents. Second, we examine descriptive benchmark 

comparisons that measure survey representativeness by comparing respondent characteristics to an 

external benchmark that is supposed to reflect the characteristics of the target population. 
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3. Conceptual development of research question and expectations

In this paper, we assess whether there is an association between survey characteristics and the 

reported degree of representativeness of a survey. We focus on a selection of survey characteristics 

that are commonly considered to affect survey representativeness in the current research literature 

and for which we could gather sufficient information during the data extraction process. Specifically, 

we expect that the following five survey characteristics are associated with the reported degree of 

representativeness: probability surveys versus nonprobability surveys, response rates, mixed-mode 

surveys versus single-mode surveys, web surveys versus offline surveys, and the number of auxiliary 

variables (i.e., data that is available for respondents as well as nonrespondents) used in the 

representativeness assessments. In the following, we describe our expectations for each survey 

characteristic considered in more detail. These associations should hold regardless of whether 

representativeness is operationalized using R-Indicators (an indicator based on response propensity 

models using auxiliary data; see section 4.3.1 in this paper for more details) or descriptive benchmark 

comparisons. 

3.1 Probability surveys versus nonprobability surveys 

Probability sampling theory states that valid inference and the assessment of an estimate’s 

uncertainty can only be guaranteed by random selection of units of analysis from an accurate 

sampling frame (e.g. Kish, 1965; Lohr, 2010). Some researchers have, however, suggested that true 

probability sample surveys of the population do not exist in practice due to non-random survey 

nonresponse (e.g., Gelman et al., 2017). 

Over the last decades, the number of nonprobability surveys, especially commercial opt-in online 

panels, has increased immensely. Their advantages include that they are fast and relatively cheap. 

Furthermore, they often reach high numbers of respondents (e.g., Bethlehem & Biffignandi, 2012). 

They also often have respondent pools containing millions of people, sometimes even across several 
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countries, as for instance Google 3607, Research Now8, Omnirussia9, or Toluna10. In many cases, little 

information is available on how these nonprobability panels recruit people, how many people are in 

their respondent pool, how they sample from the respondent pool to conduct an individual survey, 

and how many people in their respondent pool are actually active, i.e. respond to survey requests 

regularly. Furthermore, it has been observed that active panelists often participate in multiple non-

probability panels (e.g. Vonk et al., 2006; Tourangeau et al., 2013), especially since there are 

databases that contain many opt-in panels from which people who would like to earn money by 

completing surveys can choose as many panels as they like (e.g., www.umfragenplatz.de; 

www.mysurvey.com/). In addition, a Google search performed in July 2017 for the term “money for 

surveys” yielded 180.000 hits and the application Google Opinion Rewards, that offers Google Play 

credit in return for answering surveys, has been downloaded 10 million times on Android devices 

across the world (according to the information available in the Google Play Store11). People who 

actively participate in several panels are, however, suspected of satisficing and even forging data to 

increase their financial rewards (e.g., Toepoel et al., 2008; Yan & Tourangeau, 2008). 

There is evidence that nonprobability survey respondents are a highly selective subgroup of the 

general population (e.g., Yeager et al., 2011). This is because people who recruit themselves by 

reacting to survey advertisements, which are a common way of nonprobability survey recruitment, 

are likely to have specific profiles in terms of demographics, personality, values, and habits. For 

instance, people who frequently use the Internet are more likely to be exposed to commercials and 

advertisements (e.g., OECD, 2014). In addition, previous research indicates that nonprobability 

survey participants show higher political knowledge and engagement (e.g., Chang & Krosnick, 2009; 

Duffy et al., 2005) and that they are unlikely to be older than 65 (e.g., Loosveldt & Sonck, 2009). We 

expect the self-recruitment procedure to negatively affect the representativeness of nonprobability 

7
www.google.com/insights/consumersurveys/home 

8
www.researchnow.com/audiences-data-collection/ 

9
www.omirussia.ru/en/online_panels/consumer_panels/#consumer 

10
 www.toluna-group.com/de/umfrage-plattform/toluna-samplexpress- 

11
 play.google.com/store/apps/details?id=com.google.android.apps.paidtasks 

https://www.mysurvey.com/
https://www.google.com/insights/consumersurveys/home
https://www.researchnow.com/audiences-data-collection/
http://www.omirussia.ru/en/online_panels/consumer_panels/#consumer
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survey data, even though there is some contradicting evidence (e.g., Gelman et al., 2017; Wang et al., 

2015). Still, our first hypothesis is: 

H1: Probability surveys are more representative than nonprobability surveys. 

3.2 Response rates 

Declining response rates are a widely-discussed issue in the survey methodological literature. In the 

German general social survey ALLBUS, for instance, response rates have been decreasing from 54% in 

1994 to 38% in 2012 (Blohm & Koch, 2015). Similarly, Curtin et al. (2005) find a response rate decline 

of about one percentage point per year in the University of Michigan Survey of Consumer Attitudes. 

These findings are in accordance with earlier research on declining response rates (e.g., the 

international comparative study on household survey nonresponse by de Leeuw & de Heer, 2002). If 

less people participate in a survey, the risk of nonresponse bias increases (Bethlehem et al., 2011). 

This can be deduced from the well-known expression for nonresponse bias: 

         
 

 
          (1) 

“where          = the nonresponse bias of the unadjusted respondent mean;     = the unadjusted 

mean of the respondents in a sample of the target population;    = the mean of the respondents in 

the target population;     = the mean of the nonrespondents in the target population;   = the 

number of nonrespondents in the target population; and   = the total number in the target 

population  (Groves, 2006: 648). 

A difficulty with regard to response rates is that they are not always computed in the same way (for 

an overview, see e.g. AAPOR, 2016). In the scientific literature, it often remains unclear how exactly 

the response rates were calculated. This is especially true for the nonprobability surveys that usually 

provide participation rates where the number of the survey respondents is divided by the number of 

the invited members of the respondent pool instead of dividing the number of survey respondents 

by the number of persons in a sample, which is more common in the computation of probability 
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surveys. In the literature, these participation rates are often termed response rates although the 

AAPOR Task Force on Non-Probability Sampling, in an attempt to avoid confusion, recommends not 

calling these participation rates response rates (Baker et al., 2013). 

Response rates are often reported as an indicator of nonresponse bias. It is, however, not necessarily 

true that high response rates lead to high degrees of survey representativeness. Indeed, the 

association between the response rate and nonresponse bias has been found to be small (Groves & 

Peytcheva, 2008). While it is true that the response rate places an upper bound on the potential 

nonresponse bias (Bethlehem, 2011), surveys with high response rates can still be heavily biased if 

the small number of nonrespondents systematically differs from the respondents. Conversely, 

surveys with relatively low response rates can accurately reflect population properties if the set of 

respondents only randomly varies compared to the set of nonrespondents. 

Because the response rate places an upper bound on the potential nonresponse bias and because 

the response rate is often considered to be an indicator of the general quality of the survey data, we 

expect that surveys with high response rates more often achieve high degrees of representativeness. 

Therefore, our second hypothesis is: 

H2: There is a positive association between the response rate and the measured degree of 

representativeness. 

3.3 Mixed-mode surveys versus single-mode surveys 

Mixed-mode surveys apply two or more modes of data collection (e.g. Dillman et al., 2008). Reasons 

for using multiple modes are diverse. One reason is that offline survey costs can be decreased by 

adding a web survey version (e.g., Couper et al., 2007; Jäckle et al., 2013). Another reason is that with 

different modes it is sometimes possible to reach a more diverse set of people and thereby survey 

representativeness increases (e.g., Lugtig et al., 2011; Klausch et al., 2015). 

Mixed-mode survey designs vary in their purpose and type of implementation. Some surveys offer all 

respondents an option to choose their favorite mode from the onset (e.g., Bosnjak et al., 2017). 
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Other surveys assign modes to respondents based on estimated response propensities (e.g., 

Schouten & Cobben, 2007). Even more flexible mixed-mode designs are called ‘responsive design 

surveys’ (e.g., Groves & Heeringa, 2006; Peytchev et al., 2010). In responsive design studies, the 

survey mode assigned to a sample unit can change over the course of the survey fieldwork period 

depending on the development of subgroup response propensities. This approach has the advantage 

that modes can be targeted at sample subgroups that have a high risk of misrepresentation in the 

response set given one initial mode of data collection (e.g. singles in urban areas based on face-to-

face survey data collection). These responsive techniques have become possible by the technological 

development in real-time fieldwork management (e.g., Macer, 2014; Blom, 2016). 

Regardless of the specific design, mixed-mode surveys have in common that they strive to improve 

survey data quality as compared to traditional single-mode surveys. This goal might not always be 

achieved, especially when survey requests to an offline mode offer a concurrent web option (e.g., 

Medway & Fulton, 2012). Nevertheless, our third hypothesis is: 

H3: Mixed-mode surveys are more representative than single-mode surveys. 

3.4 Web surveys versus other single-mode surveys 

Web surveys are a data collection mode that has become popular in survey research and practice in 

the early 2000s (e.g. Couper, 2000; Couper & Bosnjak, 2010). Since then, the number of web surveys 

has increased dramatically reaching turnovers of around 15 billion US$ in 2014 in both Europe and 

North America12. Generally, web surveys are a valuable addition to the possibilities of designing a 

survey. They are fast, cheap, and easy to conduct. In addition, they have the advantage that 

respondents can fill out questionnaires whenever and wherever they like by using mobile devices 

(e.g., Couper, 2013; Toepoel & Lugtig, 2015). 

The rise of web surveys has, however, from the onset been accompanied by concerns about data 

quality, especially with regard to potential coverage error (e.g. Eckman, 2015; Blom et al., 2016). One 

12
www.esomar.org/news-and-multimedia/news.php?pages=1&idnews=150 
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reason for this is that web surveys are difficult to combine with probability sampling approaches, 

because often there is no sampling frame of Internet users available from which a sample could be 

drawn (e.g. Couper, 2000). Therefore, people who do not have an Internet connection and devices 

that enable logging into the Internet do not have the chance to be selected. In addition, people 

without access to the Internet have no chance to self-select into nonprobability web surveys. 

Research shows, however, that Internet users are systematically different from non-Internet users. 

For example, people with a low education level are usually underrepresented among Internet users 

(e.g., Blom et al., 2016). 

Coverage error is more likely to be a problem in countries with relatively low Internet penetration 

rates than in countries with high Internet penetration rates (e.g., OECD, 2014). Bosnjak et al. (2013) 

find, however, that coverage error is the most influential source of attenuating representativeness in 

web surveys. Therefore, our fourth hypothesis is: 

H4: Web surveys are less representative than other single-mode surveys. 

3.5 Auxiliary variables 

The term ‘auxiliary data’ usually encompasses all data that are available for both respondents and 

nonrespondents and can therefore be used to enhance post-survey adjustments (e.g., Kreuter, 

2013). Examples of this type of data include sampling frame data, survey paradata, and data linked to 

survey data from external sources such as population registers. These data are often available on an 

aggregate level only, such as municipalities, city districts, or streets. Auxiliary data are commonly 

used to assess survey representativeness and adjust for misrepresentation (e.g., Brick & Kalton, 

1996; Kreuter & Olson, 2011). 

Some studies on survey representativeness only include basic sampling frame information or socio-

demographic variables in the representativeness assessment because it is usually difficult to obtain 

more and other data for the assessment. Since these few basic variables are also commonly used to 

design quota samples or to construct nonresponse weights, many surveys cover these characteristics 
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sufficiently. However, the representativeness measure is generally more informative the broader the 

range of auxiliary variables taken into account actually is. The more auxiliary variables a study aims to 

address, the larger is the risk that at least one auxiliary variable is misrepresented in the data. For 

these reasons, our last hypothesis is: 

H5: The more auxiliary variables are used for the representativeness assessment the lower is 

the overall representativeness. 

4.Method 

4.1 Literature search, study identification and data extraction 

In order to answer our research question whether and how survey characteristics are related to 

survey representativeness, we have identified, reviewed, and coded the existing literature. In our 

dataset, we included all journal articles, book chapters, and scientific working papers that contain 

one of the two measures of representativeness that we focus on (general sample-based R-Indicators 

or descriptive comparisons between a survey and an external benchmark). Additional necessary 

preconditions for articles to be included in our analysis are that they need to be published in English, 

available in full text, and listed in an established database. 

Our literature search and data coding were conducted in multiple steps by multiple coders. We used 

several data bases (Web of Science, EBSCO host, Jstor, and Google Scholar) and conducted full text 

searches wherever possible. Furthermore, we used the publications section of the website www.risq-

project.eu as a database for articles on R-Indicators. Generally, we used a large number of search 

terms (“representativeness”, “representation”, “survey research”, “nonresponse”, and “R-Indicator”) 

in different combinations. We also conducted a snowballing search where we started with crucial 

articles and searched the literature section for relevant sources. For an overview of the article 

identification and eligibility assessment processes see Figure 1. 
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Figure 1: Article identification and eligibility assessment 

As for the coding procedure, every data entry was checked by another coder and disagreements 

between coders were resolved by the authors of this paper. When the coded papers lacked 

necessary information (e.g., the survey mode), this information was searched on the Internet, 

requested from the authors of the papers in question via email, or, if possible, computed from the 

existing information. 

4.2 Meta-analytic procedure 

To compute the two overall mean representativeness scores across all eligible studies identified, we 

used Hedges/Olkin-type random-effects meta-analytic models (e.g., Hedges & Olkin, 1985; 

Raudenbush, 2009). In Hedges/Olkin-type meta-analyses, observed effect sizes (i.e., 

representativeness estimates in our case) are synthesized using a weighted mean procedure, with 

the inverse sampling variance of each effect size (i.e., representativeness coefficient) serving as 

weights. This procedure ensures that more precise representativeness estimates, that is, those being 

associated with smaller study-specific sampling variances, are assigned a larger weight when 

computing the overall mean representativeness estimate across all studies considered compared to 

the less precise effect sizes. Hedges/Olkin-type meta-analyses are based on one of two statistical 

models. A fixed-effect meta-analysis assumes all primary studies are estimating the same mean 
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(representativeness) value, with the only source of variability being study-level sampling error. A 

random-effects meta-analysis allows for unsystematic differences in the mean (representativeness) 

values from study to study, in addition to study-level sampling error. The selection of a model must 

be based on the question of which model fits the inferential goal, with random effects models being 

favoured for unconditional inferences, that is inferences going beyond the specific set of 

characteristics of the observed studies (Hedges & Vevea, 1998). Technically, in random effects meta-

analyses, two sources of variability around the mean representativeness effect are estimated, 

namely unsystematic between-study variance (‘T-square’) in true effects, and within-study sampling 

error. As a next step, the homogeneity of the overall weighted representativeness means is 

estimated, answering the question if, and to what extent, the variability between observed 

representativeness measures can be explained by sampling error and T-square alone, and/or by 

systematic differences among effect sizes (so-called moderators). We report the Q statistic of the 

model that indicates heterogeneity if significant. In case of heterogeneity, which we assume in light 

of our hypotheses, we perform moderator analyses aiming to explain the variability among 

representativeness estimates using mixed-effects models that combine random-effects meta-

analysis with data on the moderator. For an in-depth treatment of meta-analytic procedures, we 

recommend Borenstein et al. (2009), and Card (2011). 

We use the rma function implemented in the R package metafor, version 2.0(Viechtbauer, 2010). The 

rma function provides a general framework for fitting various meta-analytic models that are typically 

used in practice. Furthermore, we conduct moderator analyses using mixed-effects meta-regressions 

(van Houwelingen et al., 2002) implemented in metafor. The R-script and analysis output are 

available as Electronic Supplementary Material13. 

4.3 Effect size measures 

In meta-analytic terminology, dependent variables are called effect sizes and independent variables 

are called moderators. In the following, we describe the two effects sizes we use in this paper: R-

13
https://www.dropbox.com/sh/wmx1sap9e94fzto/AAABj7-H9ebkMS62WeTMPyqna?dl=0 



41 

Indicators and the Median Absolute Bias (MAB) derived from the descriptive benchmark 

comparisons. These measures are common in the existing literature and examine survey 

representativeness from different perspectives. 

4.3.1 R-Indicators 

General sample-based R-Indicators are a measure of survey representativeness that is based on 

logistic regression models of the propensity to respond to a survey (Schouten et al., 2009). In 

practice, these response propensities are unknown and therefore have to be estimated, which is 

usually done using a logistic regression model. The independent variables in the regression models 

are auxiliary variables that need to be available for both respondents and nonrespondents to the 

survey. The individual response propensities from the regression model are aggregated using the 

formula 

      
 

   
          
   (2) 

Where n is the number of cases, i is the case indicator, ρ is the propensity to respond, and    is the 

mean response propensity. 

The aggregated results from the propensity model are rescaled to range between zero (not 

representative) and one (very representative) using the formula 

R ρ    1 – 2S ρ  (3) 

where S(ρ) is the standard deviation of the response propensities. For our meta-regressions, we 

compute inverse variance weights for the R-Indicators based on their confidence intervals that we 

find in the publications. In the primary studies, they are usually computed from standard errors using 

bootstrapping procedures. Where confidence intervals for the R-Indicators are not reported we 

impute them using a predictive mean matching procedure (e.g., Schenker & Taylor, 1996). 
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4.3.2 MAB 

We compute the Absolute Bias by category (   ) as the percentage point differences between 

proportions of a characteristic in a survey and an external gold-standard benchmark for each variable 

of a study with 

      
   

  
   

  

 
   (4) 

where   is the number of respondents,   is the benchmark estimate, and   is the characteristic. 

The raw estimates of the survey and benchmark for our computations are usually reported in tables 

in the publications. To aggregate the results, we compute the Median Absolute Bias MAB across all of 

the characteristics assessed in a study of these individual percentage point differences across all 

categories and variables in the study. We compute inverse variance weights for the MABs based on 

bootstrapped standard errors (e.g., Efron & Tibshirani, 1986).14 

5.Results 

In this section, we summarize the meta-analytic findings. We start with some general results from 

random-effects meta-analyses, yielding a summary effect across all studies included for the two 

effect size measures considered, namely R-Indicators and MAB. Next, we give an overview of the 

moderator analyses conducted to test our five hypotheses, relating the following design features to 

representativeness: probability versus nonprobability surveys, response rates, mixed-mode surveys 

versus single-mode surveys, and the number of auxiliary variables. Finally, we present more detailed 

findings on each of our moderators in turn. In each of the analyses, significant outliers and missing 

values were excluded (see the Electronic Supplementary Material for detailed information). 

14
See the Electronic Supplementary Material for a sensitivity analysis using the Mean Absolute Bias instead of 

the Median Absolute Bias. 
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5.1 General findings 

Generally, our random-effects models show for each of the two effect sizes (R-Indicators and MAB) 

that most surveys in our sample achieve high degrees of representativeness. In addition, we find that 

there is a substantial amount of heterogeneity in the data worth to be explored further. 

Table 1: Random-effects meta-regression models of R-Indicators and MAB 

R-Indicators MAB 

Mean 0.84 4.39% 

CI 0.82-0.85 3.73%-5.05% 

Q-test 23286.35*** 8710.95*** 

K 109 108 
Note: Significance codes: 0 ‘***’, 0.001 ‘**’ 0.01 ‘*’ 

Table 1 displays the overall mean effect size, standard error, a heterogeneity estimate (Q-test 

results), and the number of studies (k) included in our analysis of the random-effects models on R-

Indicators and the MAB. The mean effect sizes are 0.84 for the R-Indicators and 4.39% for the MAB. 

The confidence intervals (CI) around these mean effect sizes are from 0.82 to 0.85 for the R-

Indicators and from 3.73% to 5.05% for the MAB. The Q-tests are highly significant for both effect 

sizes, indicating substantial heterogeneity in the data worth exploring with the aid of moderator 

analyses. 

5.2 Moderator analyses 

Overall, our moderator analyses show that there are significant associations between the degree of 

representativeness as measured using R-Indicators or the MAB and the survey design characteristics 

specified in our hypotheses. In Table 2, we display an overview of the findings. The table is structured 

as follows: The first column contains the names of the moderators and information on their variable 

type (dichotomous versus continuous). The estimates of the continuous variables were rescaled for 

easier interpretation of the results. The second column lists the categories of the dichotomous 

variables. The rest of the table is divided into an overview of results from the moderator analyses on 

the R-Indicators and those of the MAB. For each of the effect sizes, we present the number of studies 

included in the moderator analyses (k). If the moderator is a dichotomous variable, we display the 



44 

number of studies included for each of the moderator’s categories separately. Furthermore, we 

present the regression coefficients, their significance level, and their standard errors of the mixed-

effects meta-regressions of the effect sizes on the individual moderators as well as R²-statistics as a 

measure of model fit. 

Table 2: Mixed-effects meta-regression models of R-Indicators on each moderator (standard errors in parentheses) 

Moderator R-Indicator MAB 
(Variable type) Chategories k Coefficient R² k Coefficient R² 

Sample Prob. 110 - - 61 -2.18*** 10.93% 
(dichotomous) Nonprob. 0 - 49 (0.59) 

Response rate 104 0. 14** 8.18% 90 -2.05* 2.22% 
(continuous; rescaled x100) (0.04) (1.14) 

Mixed mode Mixed 45 0.05*** 13.22% 8 - - 
(dichotomous) Single 51 (0.01) 101 - 

Web survey Web 1 - - 56 1.57* 4.37% 
(dichotomous) Other 50 - 45 (0.65) 

No. auxiliary variables 104 0.05 0.00% 104 -10.28* 3.81% 
(continuous; rescaled x100) (0.00) (4.48) 

Note: Significance codes: 0 ‘***’, 0.001 ‘**’ 0.01 ‘*’ 

Generally, we find in the mixed-effects meta-regression models that the degree of 

representativeness as measured using R-Indicators is associated significantly positively with the 

response rate and with mixed-mode surveys (as opposed to single-mode surveys). In addition, the 

MAB is significantly negatively associated with probability surveys (as opposed to nonprobability 

surveys), the response rate, other single-mode surveys (as opposed to web surveys), and the number 

of auxiliary variables on which representativeness is assessed. Next, we discuss the results of the 

analyses on each moderator in more detail. 

5.2.1 Probability versus nonprobability surveys 

The first moderator we examine is probability surveys versus nonprobability surveys. Overall, we find 

evidence in support of our expectation that probability surveys are more representative than 
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nonprobability surveys (H1), although we can only identify this association using the MAB as a 

representativeness measure. 

Figure 2: Subgroup comparison results by probability versus nonprobability surveys as a moderator  

The computation of sample-based R-Indicators requires that a survey is based on a probability 

sample. In nonprobability samples, we are unable to identify the nonrespondents, and we also do 

not have auxiliary data on the nonrespondents. A workaround might be the usage of population-

based R-Indicators, which apply population aggregated auxiliary information, for example from 

benchmark data, instead of individual-level auxiliary data (e.g., Shlomo et al., 2009). These 

population-based R-Indicators are not yet widely used, especially not with regard to nonprobability 

surveys. We therefore cannot consider them in our analysis. Therefore, we do not have any 

nonprobability surveys in the R-Indicator analysis that we could compare the probability surveys to. 

Regarding the MAB, we find that there are 61 probability surveys and 49 nonprobability surveys in 

our dataset. The right-hand side of Figure 2 shows an average MAB of 3.72% with a confidence 

interval from 2.72% to 4.71% in probability surveys and an MAB of 5.36% with a 95%-confidence 

interval from 4.42% to 6.30% in nonprobability surveys. Table 2 shows that the regression coefficient 

from the mixed-effects meta-regression model is -2.18 and highly significant, the R²-statistic for this 

model is 10.93%. These findings suggest that probability surveys are more representative than 

nonprobability surveys, which is in accordance with our expectations. 
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5.2.2 Response rates 

The second moderator we examine is the response rate, which is a continuous variable. Overall, we 

find that the response rate is highly significantly associated with the degree of representativeness as 

measured using R-Indicators and the MAB. This is in accordance with our second expectation (H2). 

As displayed in Table 2, the number of R-Indicators in our mixed-effects meta-regression model of 

the response rate on the R-Indicators is 104. The model’s rescaled coefficient is 0.14, significant, and 

has a standard error of 0.04%. The R²-statistic of this model is 8.18%. The number of MAB studies 

that we use in our moderator analysis on the response rate is 90. The mixed-effects meta-regression 

produces a rescaled coefficient of -2.05 that is significant and has a standard error of 1.14 as well as 

an R²-statistic of 2.22%. 

Overall, we find across R-Indicators and the MAB that the results of our meta-regressions support 

our expectation that response rates are positively associated with the reported degree of 

representativeness. 

5.2.3 Mixed-mode versus single-mode surveys 

The third moderator we investigate is a dichotomous variable on mixed-mode surveys versus single-

mode surveys. Our results suggest that mixed-mode surveys are more representative than single-

mode surveys (H3) although there are too few mixed-mode surveys (8 surveys) among the MAB 

studies to allow for valid conclusions. 

There are 45 mixed-mode surveys and 51 single-mode surveys among the R-Indicators in our dataset. 

Figure 3 shows that the average R-Indicators are 0.87 with a confidence interval from 0.85 to 0.89 in 

the mixed-mode surveys and 0.83 with a confidence interval from 0.82 to 0.84 in the single-mode 

surveys. The mixed-effects meta-regression reported in Table 2 has a coefficient of 0.04 with a 

standard error of 0.01 and an R²-statistic of 13.22%. 
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Figure 3: Subgroup comparison results by mixed-mode versus single-mode surveys as a moderator  

The number of MAB studies is 8 on mixed-mode surveys and 101 on single mode surveys. Because of 

the insufficient number of cases in the mixed-mode survey subgroup, estimation of a mixed-effects 

meta-regression model on this moderator is not feasible. 

Overall, we find support for our expectation that mixed-mode surveys are more representative than 

single-mode surveys on the R-Indicators while for the MAB, the available evidence at present does 

not allow us to conduct moderator analyses. 

5.2.4 Web surveys versus other single-mode surveys 

Next, we investigate the association between survey representativeness and web surveys versus 

other single-mode surveys as a moderator. In accordance with our expectation (H4), our findings 

indicate, that web surveys are less representative than single-mode surveys as measured using the 

MAB. There is only one R-Indicator study that examines web surveys. Therefore we cannot conduct a 

moderator analysis on the R-Indicator data. 
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Figure 4: Subgroup comparison results by web surveys versus other single-mode surveys as a moderator  

The number of R-Indicator studies is 1 for the web surveys and 50 for other single-mode surveys. The 

remaining R-Indicator studies identified do not cover single-mode surveys. Because there is only one 

web survey in our R-Indicator data, we do not estimate a mixed-effects meta-regression model on 

this moderator. 

There are 56 web surveys and 45 other single-mode surveys in our MAB data. The average MAB is 

5.10% with a confidence interval from 4.15% to 6.06% in the web surveys and 3.65% with a 

confidence interval from 2.51% to 4.80% in the other single mode surveys. The mixed-effects meta-

regression on this moderator estimates a regression coefficient of 1.57 that is significant and has a 

standard error of 0.65. The R² of this model is 4.37%. 

In sum, the MAB data support our expectation that web surveys are less representative than other 

single-mode surveys while there is only one web survey among the R-Indicator studies in our data so 

that we cannot draw valid conclusions on this moderator for R-Indicators. 

5.2.5 Number of auxiliary variables 

The last moderator we examine is the number of auxiliary variables that enters the 

representativeness assessment. Overall, we find no evidence in favor of our expectation (H5). This 

suggests that there is no negative association between the number of auxiliary variables included in a 

representativeness assessment and the reported degree of representativeness. 
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There are 104 R-Indicator studies that we use in the moderator analysis concerning the number of 

auxiliary variables. The rescaled regression coefficient in the mixed-effects meta-regression model is 

0.05, not significant, and has a standard error of 0.00. The R² of the model is 0.00%. Regarding the 

MAB, there are 104 studies included in the moderator analysis of the number of auxiliary variables. 

The rescaled mixed-effects meta-regression coefficient is -10.28, significant, and has a standard error 

of 4.48. The R²-statistic of this model is 3.81%. 

Overall, the findings on this moderator are not entirely robust across the two effect sizes. However, 

our findings show that neither on the R-Indicators nor on the MAB there is a negative association 

between the number of auxiliary variables included in a representativeness assessment and the 

reported degree of representativeness. In fact, the MAB findings indicate that more auxiliary 

variables are positively associated with reported representativeness. 

6. Summary and conclusion

In this section, we revisit our expectations from above and interpret the empirical findings. Then, we 

discuss practical implications and limitations of our paper as well as avenues for further research. 

In accordance with our first expectation (H1), we find that probability surveys are more 

representative than nonprobability surveys with regard to the MAB. In line with our second 

expectation (H2), we find that the response rate is positively associated with representativeness on 

R-Indicators as well as the MAB. In compliance with our third expectation (H3), we find that mixed-

mode surveys are more representative than single-mode surveys on the R-Indicators. Furthermore, 

in accordance with our fourth expectation (H4), we find that web surveys are less representative 

than other single-mode surveys with regard to the MAB. Contrary to our fifth expectation (H5) we 

find that there is no negative association between the number of auxiliary variables and the reported 

degree of representativeness. 

We expected results to be consistent across the two measures of representativeness. Due to 

insufficient numbers of cases per category, however, some expectations could only be tested for one 
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of the two measures. There are two moderator analyses (on the response rate and the number of 

auxiliary variables) that we could conduct on both representativeness measures. Both the R-

Indicators and the MAB indicate that the higher the response rate is the higher is the reported 

degree of representativeness. In addition, we find on both the R-Indicators and the MAB that there is 

no negative association between the number of auxiliary variables and reported representativeness. 

However, only the MAB indicates that in fact the association between the number of auxiliary 

variables and the degree of representativeness might be positive. 

Based on these findings and disregarding potential interdependencies between moderator variables 

in our data that might confound our results, we would recommend survey practitioners aiming to 

design representative surveys to use probability sampling, to put every effort into increasing 

response rates, and to consider mixed-mode survey designs encompassing the web mode. We would 

also recommend documenting the achieved degree of representativeness using the available 

auxiliary data to allow assessing the general quality of the data and to allow further research into the 

association between survey design characteristics and survey representativeness. 

This study does, however, face some restrictions that limit the generalizability of the results. Firstly, 

the analyses do not allow for causal inferences. We cannot claim that probability sampling, high 

response rates, mixed-mode designs, and the other-than-web survey modes cause a survey to be 

representative. Our analyses are limited to identifying existing associations. These associations might 

be confounded with other survey characteristics that we cannot control for in our analyses, such as 

the data quality of the auxiliary data used in the primary research. Secondly, since our analyses are 

based on the existing literature, publication biases might influence our results (see the Electronic 

Supplementary Material for sensitivity analyses). This is especially the case when researchers do not 

publish results that show that a survey has a low degree of representativeness. Lastly, and potentially 

partly due to publication bias, the number of cases on some survey characteristics is too small to 

conduct all planned analyses. In the existing literature, there are few studies that assess the 

representativeness of mixed-mode surveys using benchmark comparisons that allow the 
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computation of the MAB or that investigate the representativeness of web surveys using R-

Indicators. In addition, there are no studies that assess the representativeness of a survey using R-

Indicators as well as benchmark comparisons. Furthermore, there are a number of potentially 

influential moderators that we could not take into account either because too much information was 

missing from the publications identified, or the information was too ambiguous, for instance 

regarding whether and how post-survey adjustments were applied. 

We would therefore like our recommendations to be taken with caution and this meta-analysis to be 

considered as encouragement for more systematic primary research in these areas, filling the gaps 

identified. If there were more primary research available, future meta-analytic replications could be 

conducted using more advanced modeling, such as multivariate regression analyses, simultaneously 

controlling for potentially influential moderators.In a future replication and extension of this meta-

analysis, besides considering additional primary studies, one might want to add additional 

moderators of practical importance, such as whether surveys apply a responsive mode design, which 

formula is used to compute the response rate, or whether adjustment weights were applied. 
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Paper 2 

Is it in the method? Testing five measures of survey 

representativeness15 

Abstract 

This paper appraises five methods for assessing representativeness in a survey-comparative context 

using response rates, R-Indicators, Fractions of Missing Information (FMIs), subgroup response rates, 

and benchmark comparisons. We investigate representativeness comparatively at the example of 

three probability-based online and mixed-mode panels, which share the same target population, 

probability sampling methods, face-to-face recruitment and fieldwork agency, but which differ in the 

details of their implementation, most notably in the way in which the offline population is included in 

the sample. Within each panel, representativeness is evaluated across two recruitment stages: the 

face-to-face recruitment stage and the panel registration stage. The panels thus offer a unique quasi-

experimental setting to assess different measures of representativeness within and across panels. 

Ours is the first empirical study to comprehensively assess the added value of the most common 

measures of representativeness. Our results show high levels of representativeness across the three 

large-scale probability-based panels and are mostly consistent across measures, except for the FMIs. 

While all other measures suggest high degrees of representativeness that tend to increase across 

recruitment steps, FMIs indicate moderate to low degrees of representativeness. 

Keywords 

Fraction of Missing Information (FMI), panel comparison, probability sample, representativeness, 

response rates, R-Indicators 

15
 This paper is joint work with Tobias Enderle and Annelies Blom. The current version is under review. 
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1. Introduction

Representativeness is the aim of many cross-sectional and panel surveys; however, measuring 

representativeness comparatively across surveys is difficult. Response rates are frequently used as a 

convenient measure of representativeness, because of their ease of calculation. However, several 

studies have shown that the relationship between response rates and representativeness is weak 

(see e.g., Groves & Peytcheva, 2008). Other indicators of representativeness may be more precise. 

Benchmark comparisons, for example, compare sample estimates to true population values; 

subgroup response rates look at response rates by sample subgroups; and Fractions of Missing 

Information (FMIs) assess the success of imputing values for the nonrespondents. These measures 

are calculated individually for each benchmark, subgroup, or variable leading to a large number of 

(possibly contradictory) indicators. R-Indicators were thus developed to provide summary indicators 

for the representativeness of a sample. However, R-Indicators are complex in their calculation and 

depend on the availability of informative auxiliary data (see Schouten et al., 2009; Wagner, 2010). 

Each of these indicators of representativeness has advantages and disadvantages, and they differ 

from the other in what they represent and the way they are calculated. In this paper, we appraise 

five methods for assessing representativeness in a survey-comparative context: response rates, R-

Indicators, FMIs, subgroup response rates, and benchmark comparisons. Furthermore, we discuss 

how differences in results may result from the underlying definitions, assumptions, variables and 

modelling of the five measures of representativeness rather than from actual differences in survey 

sample compositions. 

We investigate these five representativeness measures at the example of two probability-based 

online and mixed-mode panels: the German Internet Panel (GIP; www.reforms.uni-

mannheim.de/internet_panel) and the GESIS Panel (http://www.gesis.org/en/services/data-

collection/gesis-panel). When considering online panels, assessments of their representativeness are 

of importance, because their ability to produce data that reflects the general population of a country 

has often been questioned (for an overview of the debate see Couper, 2013), in particular where opt-
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in panels are concerned (see e.g., Yeager et al., 2011). To meet this criticism, research teams across 

the globe have set up online panels that are recruited with traditional probability sampling methods 

and fieldwork techniques and that include the offline population by either equipping them with 

online devices or by applying mixed-mode designs. Examples of such online panels in Europe are the 

LISS panel in the Netherlands, the ELIPSS in France and the GIP and GESIS Panel in Germany (see 

Blom et al., 2016a). Other examples worldwide include the Knowledge Panel in the USA 

(http://www.knowledgenetworks.com) and the new Australian Social Research Centre “Life in 

Australia” panel (Pennay et al., 2016). The aim of these probability-based online panels is to be 

representative of the general population in the respective country. The approaches to achieving this 

goal, however, differ, in particular with regard to the types of sampling frames used and the inclusion 

of those parts of the population that do not have access to the Internet (see Blom et al.,2016b). Such 

differences raise questions about which strategies are most effective at reaching representativeness. 

The research in this paper originated from a unique position, in which we have access to the survey 

data, sampling frame data, benchmark information, interviewer observations, and auxiliary geo-

coded data of three large-scale probability panel recruitments of the same general population, 

enabling us to conduct comprehensive comparative analyses into their representativeness. Two of 

the panels, in fact, share an especially large number of characteristics, because they are two 

independent samples of the GIP, one recruited in 2012 and the other in 2014. The other panel we 

examine is the GESIS Panel which was recruited in 2013. 

While all three panels (GIP 2012, GESIS Panel, and GIP 2014) are face-to-face recruited probability 

panels of the general population, including the offline population, they differ in terms of sampling 

frame used and mode of interview for the offline population, resulting in different recruitment 

protocols. This enables us to carefully examine the effect of these differences in recruitment 

protocols on the representativeness of the two panels and to calculate and compare the results of 

our five indicators of representativeness. In the course of comparatively assessing the 
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representativeness of the GIP and GESIS Panel, we provide evidence on how insightful and robust the 

results of these five widely-used measures of representativeness are. 

2. Measures of survey representativeness

Two broad perspectives on investigating survey representativeness prevail with regard to theoretical 

considerations. One is to categorize approaches according to their underlying definition of represent-

tativeness. The other way is to structure measures by the level of aggregation that the indicators 

achieve. Strictly speaking, with regard to defining the concept, survey representativeness is the 

degree to which the set of respondents to a survey accurately reflects its target population (see left 

side of Figure 1). Coverage error, sampling error and nonresponse error are all error sources that can 

cause misrepresentation in a survey response set. In the literature, these error sources are often 

treated separately, because the underlying mechanisms and measures used to detect these errors 

may differ across error types (see Biemer, 2010; Groves & Lyberg, 2010; Smith, 2011). How much 

each individual error source contributes to the overall survey misrepresentation largely depends on 

the design of a survey. Web surveys, for instance, often have a higher coverage bias than face-to-face 

surveys, because parts of the survey target population do not use the Internet (see e.g., Couper, 

2008; Eckman, 2015). 
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Figure 1: Strict and weak definition of survey representativeness (adapted from Särndal and Lundström, 2005)  

Indicators that operationalize the strict definition of representativeness can mostly be found in the 

survey practice literature, such as field reports and technical surveys reports. The European Social 

Survey (ESS), for instance, publishes population statistics on its website against which survey 

representativeness can be assessed (European Social Survey, 2016). Such benchmark comparisons 

are also used to develop and assess the success of weighting procedures (see e.g., Holt & Smith, 

1979; Kalton & Flores-Cervantes, 2003; Kish, 1965; Steinmetz et al., 2014) and to investigate mode 

effects (see e.g., Malhotra & Krosnick, 2007). Variables that are commonly used for benchmark 

comparisons are age, gender, education and other key socio-demographic characteristics for which 

benchmark data are available from official statistics (see e.g., Watson & Wooden, 2013; Fricker et al., 

2005; Loosveldt & Sonck, 2008), which are typically very limited and may contain measurement, 

coverage, sampling and nonresponse errors of their own. 

Because of these limitations of benchmark comparisons and because with decreasing response rates 

(see e.g., de Heer & de Leeuw, 2002; Groves, 2006) nonresponse may be considered the most 

important source of error leading to misrepresentation, researchers often apply a weaker definition 

of survey representativeness (see right side of Figure 1). Following this definition, a survey is 

representative when there is no nonresponse bias. Therefore, it suffices to compare the response set 
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to the gross sample of a survey, which contains both respondents and nonrespondents. The 

advantage is that, for surveys with rich sampling frames and linked auxiliary variables, a wider range 

of indicators can be used to measure survey representativeness. This weaker definition of 

representativeness is mainly used in the statistical literature on model-based measures for data 

quality (see e.g., Lundquist & Särndal, 2013; Schouten et al., 2009; Wagner, 2010; Nishimura et al., 

2016) and in the typology of nonresponse bias by Wagner (2012). 

There are various measures for the weak definition of survey representativeness. The most basic and 

commonly used measure is the response rate (see AAPOR, 2011). The assumption is that, if the 

response rate is high, the potential for nonresponse bias is small (see Beullens & Loosveldt, 2010). 

Indeed, the response rate places an upper bound on the potential nonresponse bias in a survey 

variable (for a detailed discussion of this argument see Bethlehem et al., 2011: 186). However, 

although response rates can be valuable in showing the success and efficiency of fieldwork agencies 

at interviewing the sample members, they are not a reliable measure of survey representativeness. 

As Groves and Peytcheva (2008) show, surveys with low response rates can have highly 

representative response sets if nonresponse is a relatively random phenomenon. Conversely, surveys 

with high response rates can be biased, if the nonrespondents constitute a highly selective subgroup 

of the sample (see also Bethlehem, 1988; Groves, 2006). 

Subgroup response rates follow the same logic as overall response rates, with the exception that 

they are calculated separately for each category of a variable. They are applied in fieldwork 

monitoring to intervene if the response set becomes unbalanced due to unequal response 

probabilities of subgroups. In addition to response rates and subgroup response rates, there are 

further measures that assess whether a survey response set is representative of the gross survey 

sample. These are typically based on modelling the difference between respondents and 

nonrespondents, such as R-Indicators (Schouten et al., 2009; Shlomo et al., 2012) and FMIs (Wagner, 

2010). 
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In this paper, we assess the representativeness of the GIP 2012, GESIS Panel, and GIP 2014 using 

benchmark comparisons to operationalize the strict definition of representativeness, and response 

rates, R-Indicators, FMIs, and subgroup response rates to operationalize the weak definition of 

representativeness. These measures belong to the most widely used indicators of survey represent-

tativeness and measure representativeness at different levels of aggregation: aggregated to the 

survey level or disaggregated at the variable or category level (see Figure 2). 

Figure 2: Representativeness measures by level of aggregation 

On the aggregate level, response rates and R-Indicators provide a single overall indicator of survey 

representativeness. This is attractive from a survey documentation point of view, because aggregate 

indicators can easily be compared across surveys. 

Variable level indicators are more detailed and differentiated. Their rationale is that a survey may at 

the same time accurately reflect the distribution of one variable while it poorly represents another. 

Depending on the variable of interest, this can mean unbiased estimates for one model and biased 

estimates for another model. Finally, the most detailed group of indicators investigates 

representativeness at the category level. Measures at this level are especially valuable during 

fieldwork where interventions to increase response in an underrepresented subgroup may be 

possible as well as for post-survey weighting adjustments. 

At the aggregate level, we use the two most common measures in our paper: response rates and R-

Indicators. At the variable level, we use the highest FMI in a variable. At the category level, we 

calculate subgroup response rates and conduct benchmark comparisons. 
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The literature presents innumerable additional measures of representativeness, most importantly 

Särndal and Lundquist’s balance and distance measures (see Särndal & Lundquist, 2014) and partial 

R-Indicators (see Schouten et al., 2011; Schouten et al., 2012). However, balance and distance 

measures follow a similar logic as general and partial R-Indicators, and partial R-Indicators are very 

similar to subgroup response rates (see Shlomo & Schouten, 2013). To limit the conceptual overlap 

between our measures of representativeness, out of these three measures we chose subgroup 

response rates as the most commonly used in the literature and survey practice. In the following, 

each of the aforementioned representativeness measures is discussed in turn. 

2.1 Representativeness measures at the aggregate level 

2.1.1 Response rates 

Response rates are an overall measure of the weak definition of representativeness. They measure 

the proportion of eligible sample units that was actually interviewed. In general, response rates are 

thus formalized by 

    
  

  
(1) 

where   is the number of respondents and    is the number of eligible elements (see Bethlehem et 

al., 2011). 

Response rate are a common measure of representativeness that is easy to compute, interpret and 

to apply to across surveys. To comparatively assess the representativeness of the GIP 2012, GESIS 

Panel and GIP 2014, we use AAPOR response rates (see AAPOR, 2011) derived from priority-coded 

outcomes (see Blom, 2014). The GIP 2012, the GESIS Panel and the GIP 2014 adopt slightly different 

approaches during the sampling and recruitment processes (see Blom et al., 2016a). Accordingly, the 

estimation of the reported response rates differs slightly. For the GIP 2012 and GIP 2014 face-to-face 

recruitment interviews, we use AAPOR response rate 2 (RR2), including short doorstep interviews as 

partial interviews. With regard to the GIP 2012 and GIP 2014 registration surveys, we report AAPOR 
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response rate 4 (RR4) assuming 1.78 eligible persons per household in 2012 and 1.77 eligible persons 

per household in 2014 for households in which the exact number of household members is unknown. 

All GESIS Panel response rates are based on AAPOR response rate 5 (RR5). 

To compare survey representativeness across panels, we provide 1    1    % confidence 

intervals for each estimated measure with 

                                    (2) 

where      is the 1    1    2  percentile from the standard normal distribution and           

is the standard error of the estimate. 

We compute the standard error of the response rate with 

      
         

  
. (3) 

For all reported confidence intervals α is 0.05. 

2.1.2 General sample-based R-Indicators 

General sample-based R-Indicators are aggregate representativeness measures derived from the 

predicted response propensities from a logistic regression model of response on a set of auxiliary 

variables. R-Indicators were proposed by Schouten et al. (2009) to compare modified fieldwork 

strategies experimentally. R-Indicators are used in fieldwork management contexts and general 

nonresponse bias assessments. Other applications include comparing R-Indicators across 

experimental conditions in responsive designs (Luiten & Schouten, 2013), comparing R-Indicators 

over time during the field phase (Beullens & Loosveldt, 2010) and across surveys (Schouten et al., 

2012). 

R-Indicator values range from 0 to 1. High R-Indicator values mean that response sets are highly 

representative, whereas low R-Indicator values indicate highly biased response sets. Because of their 

intuitive value range, R-Indicators are relatively easy to interpret and compare across surveys, time 
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periods or experimental conditions. However, R-Indicators are strongly influenced by the type, 

amount, and quality of the auxiliary variables that are fed into the underlying propensity models. In 

addition, R-Indicators cannot be interpreted as stand-alone values, but meaningful interpretation 

necessitates the comparison with other R-Indicators (from other surveys, time periods, or 

experimental conditions), which have to be based on the same propensity model. 

Technically, general sample-based R-Indicators are computed as follows. First, the selected auxiliary 

data are used as independent variables in a logistic response propensity regression model with 

      
  

    
                 (4) 

where   is the response propensity of individual i,    is the model intercept, and  to    are the 

model coefficients for each auxiliary variable   to   . 

From this model, we predict individual response propensities (see Table A1 in the Appendix). 

Subsequently, the response propensities are fed into the general R-Indicator formula with 

R ρ    1 – 2S ρ  (5) 

where S(ρ) is the standard deviation of the average response propensity with 

      
 

   
          
   (6) 

where  is the number of cases, i is the case indicator, ρ is the propensity to respond and   is the 

mean response propensity that is roughly equal to the overall survey response rate (RR). 

In this paper, we compute R-Indicators for the GIP2012, GESIS Panel and GIP2014 face-to-face 

recruitment interviews and registration surveys. In our modelling, we take into account the complex 

survey design of the panels by including the sample stratification characteristics in the logistic 

regression models underlying the R-Indicator computations. The clustering by sample points, 

however, cannot be taken into account because including this nominally scaled variable with 250 to 
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270 categories per model exceeds available computation power. For each R-Indicator, we include a 

95% confidence interval based on the bootstrapped standard errors as proposed by Schouten et al. 

(2009) with 

        
 

   
    
                (7) 

where      is the R-Indicator, B is the number of bootstrap replications (500 in our analyses), b 

through B are the bootstrap counters,      is the R-Indicator for a specific bootstrap and      is the 

mean R-Indicator across all B bootstraps. 

Since we also compare R-Indicators across the recruitment stages within panels, we have to account 

for the covariance structure when testing for statistical significance. We therefore take the 

differences between the bootstrapped R-Indicators of the face-to-face recruitment interviews and 

registration surveys to receive the mean difference 

       
 

 
        
 
   (8) 

where         is the bootstrap difference      
               

      
 in the bootstrap sample of 

each replication  . To compute empirical confidence intervals, we use the standard error of the 

difference in R-Indicators across recruitment stages with 

       
  

 

   
    
                 

 
. (9) 

This approach serves as a hypothesis test of whether the difference between face-to-face 

recruitment interview and registration survey R-Indicators is significant. If the confidence interval of 

the bootstrapped difference does not include 0, the difference between face-to-face recruitment 

interview and registration survey is statistically significant at the 95%-level. 
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2.2 Representativeness measures at the variable level 

2.2.1 Fractions of Missing Information (FMIs) 

FMIs capture the uncertainty due to missing data in multiple imputation contexts. In addition, FMIs 

have been used as an alternative measure for survey representativeness (Wagner, 2010). The general 

logic of FMIs as representativeness measures is that the nonrespondents are similar to the 

respondents if the missing values for the nonrespondents can be imputed based on the survey data 

of the respondents with high degrees of certainty. Low FMIs mean that underlying models fit the 

data well. High FMIs mean that the nonrespondents systematically differ from the respondents and 

may therefore cause the data to be biased. 

FMIs were first proposed by Dempster et al. (1977) for the purpose of missing-data analysis and later 

applied by Rubin (1987) for multiple imputations quality assessments. Most conventional imputation 

routines assume the missing data to be missing at random (MAR). When computing FMIs, the 

missing values of the nonrespondents are multiply imputed using the data available for the 

respondents. We augment the missing data a pre-specified number of times M following the 

recommendations in Graham et al. (2007) and Bodner (2008). Then, we compute estimates and their 

standard errors for each augmented data set. Finally, we pool the results from each imputation into a 

combined multiple imputation estimate and compute its total variance. The combined multiple 

imputation estimate is the average of the M estimates and the total variance consists of two 

components: (1) the within-imputation variance, which reflects the conventional sampling error and 

(2) the between-imputation variance, which captures the additional variance caused by the 

uncertainty about the imputed values. The more the augmented data and, hence, the estimates per 

imputation differ from each other, the larger becomes the between-imputation variance. 

For each category of a variable, we compute FMIs with 

   
   

   
   

 

   
(10) 
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where   is an adjusted estimate for the degrees of freedom and   is the proportion of the variation 

caused by missing data based on the between-imputation variance with 

    1  
 

 
 
  

  
(11) 

where   is the number of imputations,    is the between-imputation variance and   is the total 

variance. 

We report highest FMIs per variable, because they indicate the potential bias on the variable-level 

and, hence, how many times a variable would have to be imputed to receive an efficient estimate. 

The smaller the FMIs, the more confidence can be placed in the assumption that the missingness 

mechanism is MAR. As a benchmark, Nishimura et al. (2016) found in a simulation study that the 

MAR assumption holds for FMIs smaller than the survey nonresponse rate. Similarly, Andridge and 

Little (2011) find in their proxy pattern-mixture analysis for survey nonresponse that “[i]f the FMI 

values are all below the nonresponse rate, then we have very strong covariate information, and can 

be confident that we have good information to correct bias, even if data are MNAR [missing not at 

random]” (Andridge and Little, 2011: 163/164). 

In our analysis, we estimate FMIs for proportions of a set of socio-demographics based on the 

respondents to the face-to-face recruitment interview and to the registration survey. Within each 

survey, these variables are observed for respondents only. The missing values for the 

nonrespondents are imputed multiply (with M=30) using chained equation procedures based on 

multinomial logit models described by van Buuren and Groothuis-Oudshoorn (2011) and on the 

predictors in the logistic regression model that we specified for the R-Indicator calculations, which 

includes sample stratification characteristics that describe the complex survey designs of the panels 

(see Table A1 in the Appendix). To fully account for the complex survey designs, we additionally 

include the sample points as clustering information in the modelling. Note that to not artificially 

distort the FMIs, socio-demographic variables are excluded from imputations of other socio-

demographic variables. 
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2.3 Representativeness measures at the category level 

2.3.1 Subgroup response rates 

Subgroup response rates measure representativeness in terms of nonresponse bias by displaying 

differences in gross sample subgroups’ propensity to response to a survey. We compute subgroup 

response rates across panels and recruitment stages for a common set of characteristics. From each 

subgroup response rate we subtract the overall response rate. As a result, we receive the over- and 

underrepresentation in each category relative to the overall response rate. 

           
   

   

   
  

  
   

   

   

     (12) 

where     is the number of respondents per category,    
is the number of eligible elements per 

category,    is the number of respondents to the survey,    is the number of eligible elements in the 

sample and   is the survey response rate. 

We compute 95% confidence intervals based on proportions estimates for each subgroup category. If 

the deviation of a subgroup response rate from the overall response rate is positive, the 

characteristic is overrepresented in the response set. If the deviation is negative, the characteristic is 

underrepresented in the response set. The smaller the deviation of each subgroup response rate is 

from the overall response rate and, consequently, the closer the deviation is to 0, the more 

representative is the response set with regard to the characteristic. 

2.3.2 Benchmark comparisons 

For benchmark comparisons, socio-demographic respondent characteristics are compared to a gold 

standard survey or official data source that describes the distribution of this characteristic in the 

population. For each category of each variable we compare proportions between the survey and the 

benchmark. For the proportion of individuals in a category the benchmark comparison takes the 

following form: 



86 

              
   

  
   

  

 
  (13) 

where    is the number of respondents,   is the benchmark estimate and  is the category of a 

variable. 

We compute 95% confidence intervals around the deviations of the panel estimates from the 

benchmark using the standard errors of the proportions estimates. For our analyses, we draw on 

benchmarks from the German Mikrozensus (Statistisches Bundesamt, 2016), the official statistics on 

the general population in Germany. 

3. Data

3.1 The survey designs of the GIP 2012, the GESIS Panel, and the GIP 2014: differences and 

similarities 

We assess the representativeness of three probability-based panels that are similar with regard to a 

number of design features (see Blom et al., 2015; http://www.gesis.org/en/services/data-

collection/gesis-panel; Blom et al., 2016a). In our analyses, we compare the GIP 2012, the GESIS 

Panel, and the GIP 2014. Furthermore, for each panel, we compare the representativeness at the 

face-to-face recruitment stage and the online registration stage (see Table 1). 

Table 1: Number of cases by panel and recruitment stage 

GIP 2012 GESIS Panel GIP 2014 

Gross sample 4,878 households 19,676 individuals 9,136 households 

Face-to-face recruitment stage 2,543 households   7,599 individuals 4,426 households 

Panel registration stage 1,603 individuals    4,938 individuals 3,386 individuals 

All three panels are ongoing multi-topic panels with a social scientific focus and strive to be 

representative of the general population in Germany. The panels were recruited during roughly the 

same time period with the first GIP recruitment in 2012, the GESIS Panel recruitment in 2013 and a 

second GIP recruitment in 2014. To gain representative survey samples, the GIP 2012, GESIS Panel, 

and GIP 2014 recruit their respondents via gold-standard survey methods, i.e. is by established multi-
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stage probability-based sampling procedures and face-to-face recruitment interviews. All panel 

sampling designs are set up to be self-weighting, that is with equal probabilities of selection for all 

sample members. Moreover, the recruitment fieldwork was subcontracted to the same fieldwork 

agency and even the same team within the survey organization, relying on largely the same 

interviewers. All panels include in their samples persons that do not have prior access to the Internet. 

These so-called offliners are recruited into the panels and invited to fill out questionnaires together 

with the other panelists. All panels conduct web surveys of approximately 20 to 25 minutes length on 

a bi-monthly basis. Furthermore, the GIP 2012, GESIS Panel, and GIP 2014 respondents receive 

invitation letters to the first panel survey soon after the face-to-face recruitment interview. This 

letter contains a web link to the first panel survey. In this first self-administered panel survey, 

respondents provide further information about their socio-demographic profile. Every individual that 

completes this last step in the recruitment process is regarded a panel member (see Table 2 for an 

overview of similarities between the panels). 

Table 2: Similarities between the panels 

GIP2012, GESIS Panel and GIP2014 

Multi-topic panel studies with a social scientific focus 

Target population is the general population of Germany  

Approximately same time period (2012-2014) 

Traditional multi-stage probability sampling 

Face-to-face recruitment interviews and subsequent registration surveys 

Same fieldwork organisation with the same interviewer pool 

Bi-monthly panel survey waves of 20 to 25 minutes length 

Inclusion of individuals without Internet access 

The GIP 2012 and GIP 2014 were largely sampled and recruited in the same way. Despite their 

similarities with the GESIS Panel, however, there are a number of differences in the survey designs 

(see Table 3). While the GIP 2012 and the GIP 2014 use a three-stage area probability sampling 

procedure with prior listing of households in each primary sampling unit (PSU) and complete listing 

of age-eligible individuals in each household, the GESIS Panel draws its sample from locally-based 

registers held by municipalities in a two-stage sampling process. All panel samples are stratified by 

the federal state, municipality, and degree of urbanity. In addition, the panels are designed to have 
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equal probability samples. In practice, however, there might be deviations from the planned 

sampling design. For example, the GESIS Panel has a small amount of substitutions for municipalities 

that did not cooperate with the sampling request. Therefore, our expectation is that the GIP 2012 

and the GIP 2014 are more representative than the GESIS Panel in the recruitment interview. 

However, recent research also shows that area probability samples with listings along a random 

route, for which the GIP 2012 and GIP 2014 are examples, violate the equal probability assumption 

with repercussion for the sample (see Bauer, 2014 and Bauer, 2016). 

As a knock-on effect of the different sampling procedures, the panels apply slightly different 

fieldwork routines in the recruitment interviews. The GIP 2012 and the GIP 2014 sample all age-

eligible household members into the online panel. This means that frequently more than one 

individual per household is eligible for the online panel. However, to not overburden the household 

at the panel recruitment, any person at the sampled household above the age of 16 can be 

interviewed for the initial face-to-face recruitment interview. During this interview, the respondent 

provides key socio-demographic information on themselves and all other household members. 

Subsequently, all household members within the eligible age range that consent to be re-contacted 

are invited to the online panel. In contrast, the GESIS Panel selects age-eligible individuals directly 

from the register. This individual is interviewed face-to-face during the recruitment interview and 

subsequently in the online panel. Overall, this leads to a key difference in the task of the face-to-face 

interviewer across panels: While the GIP 2012 and the GIP 2014 interviewers make contact with the 

household and interview any household member aged 16 or older, the GESIS Panel interviewers 

need to interview a named, pre-specified individual. This difference in face-to-face recruitment 

procedures leads us to the expectation that the GIP 2012 and the GIP 2014 are more representative 

than the GESIS Panel regarding survey participant household characteristics, because it should be 

easier to achieve a high response rate and balanced sample of households in the GIP 2012 and the 

GIP 2014. 
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Table 3: Main differences between the panels 

GIP2012 and GIP2014  GESIS Panel 

Area sample of individuals clustered within 

households and regions 

Register-based sample of individuals clustered 

within regions 

Face-to-face recruitment interview with any 

household member above the age of 16 

Face-to-face recruitment interview with named, 

pre-specified individual 

All age-eligible household members invited to the 

online panel 

The pre-specified individual (typically one per 

household) is invited to the online panel 

All panel members interviewed in online mode 

(offline households are provided with equipment) 

Panel members interviewed in mixed-mode 

(choice of online or paper-and-pencil) 

Another major difference between the panels is their approaches to including individuals that do not 

have access to the Internet. In the GIP, offline households are provided with an Internet connection 

and the necessary equipment to participate in the online surveys. The GESIS Panel, in contrast, 

applies a mixed-mode design, where the web is the primary mode, but individuals that cannot or 

prefer not to fill out the questionnaires online can participate by means of self-administered paper-

and-pencil mail questionnaires. Our expectation is that the GESIS Panel is more representative at this 

second recruitment step, because people who do not have Internet access might either not want to 

receive Internet access, for example for data protection reasons, or might find it too difficult to 

answer questions online, because they might not possess the necessary technical skills (Blom et al., 

2016b; Leenheer & Scherpenzeel, 2013). We expect that this group of offliners is more likely to 

participate via mail surveys than to accept and use a technical device with Internet access. 

3.2 Auxiliary data for modelling representativeness 

To assess the representativeness of the GIP 2012, the GESIS Panel, and the GIP 2014, we use a 

number of different data sources available for all panels: population statistics from the German 

Mikrozensus, sampling frame data, interviewer observations and official as well as commercial micro-

geographic area data (see Table 4). 
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Table 4: Auxiliary data by data source and type of analysis 

Source Auxiliary data Used for 

Mikrozensus data Geographic region, degree of 

urbanity, age, gender, education, 

household size 

Benchmark comparisons, FMIs 

Sampling frame data Geographic region, degree of 

urbanity 

R-Indicators, subgroup response 

rates, FMIs 

Interviewer observations Presence of an intercom, type of 

building, building condition, 

social class 

R-Indicators, subgroup response 

rates, FMIs 

Official micro-geographic 

area data 

Percentage people aged 0-5, 

percentage immigrants, total 

balance of people that move to 

or from the district, aggregated 

household income 

R-Indicators, subgroup response 

rates, FMIs 

Commercial micro-

geographic area data 

Unemployment rate R-Indicators, subgroup response 

rates, FMIs 

The German Mikrozensus is a repeated cross-sectional face-to-face survey conducted annually with a 

probability sample of one percent of the German population. The data from the Mikrozensus are 

used to derive official population statistics for Germany. Since the Mikrozensus is mandatory, 

response rates are at least 95% every year (Statistisches Bundesamt, 2016). The core questionnaire 

contains socio-demographic characteristics. The socio-demographics collected in the GIP 2012, the 

GESIS Panel, and the GIP 2014 are based on the harmonized questions of the Demographic Standards 

(“Demographische Standards”) developed by a collaboration of survey methodologists and the 

German Federal Agency of Statistics (Statistisches Bundesamt, 2010). As a consequence, the 

Mikrozensus lends itself well as a benchmark to study the representativeness of the three panels, 

although it should be kept in mind that these benchmark data can also contain survey errors, 

because the Mikrozensus is a survey itself. In this paper, we use population estimates of the 
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following socio-demographic characteristics as benchmarks: geographic region, degree of urbanity, 

age, gender, education and household size. 

Furthermore, the GIP 2012, GESIS Panel, and GIP 2014 sampling frames include variables on all of the 

gross sample members, i.e. means for respondents and nonrespondents. However, since the 

sampling frames of the panels differ (see above), only the following sampling frame variables were 

available for all panels: geographic region, sample point, and degree of urbanity. All panel samples 

are stratified by these variables. By including most, and where possible all, of these variables in our 

models, we therefore account for the complex survey design of the three panels. The reliability of 

these data is high and there are no missing values on the variables in any of the panels. 

In addition, all three panels instructed their interviewers to record key information about the house 

and area that the sampled unit lives in. These interviewer observations are available for the gross 

sample, i.e. means for both respondents and nonrespondents. The variables available are presence 

of an intercom, type of building, building condition, and predicted social class of the inhabitants. 

These variables, though insightful and generally meaningful in nonresponse analyses (see Sinibaldi et 

al., 2014), have to be considered with caution. Some of these assessments are subjective. In addition, 

these variables contain missing values, ranging between 2 and 20 percent of the cases depending on 

the variable. We multiply impute the missing data on the interviewer observations (with M=30) using 

a chained equations procedure with predictive mean matching for unordered categorical data 

(Meinfelder and Schnapp, 2015) for all panels. 

Finally, we link information on the micro-geographic area surrounding the sample unit from official 

and commercial data bases. The German Federal Institute for Research on Building, Urban Affairs and 

Spatial Development (BBSR) within the German Federal Office for Building and Regional Planning 

(BBR) provide an online platform called INKAR (Indicators and Maps for City and Spatial Research; 

Bundesinstitut für Bau-, Stadt- und Raumforschung, 2015) with data on numerous characteristics of 

the administrative districts. We link INKAR data to our survey data based on the district of the sample 
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member’s address. The indicators we use were originally gathered in the German Census 2011 and 

updated based on expansion factors provided by the German Federal Statistical Office. These area 

variables are percentage of people aged 0 to 5, percentage of immigrants, total balance of people 

that move to or from the district, and aggregated household income. There are no missing values on 

these variables, but it is possible that there are survey errors in the data. 

The most commonly used source for commercial micro-geographic area data in Germany is microm 

(microm Consumer Marketing, 2013). Microm sells data on different geographic levels mainly for 

consumer marketing for companies. They provide a large amount of geographic area data of interest 

to our analyses. However, microm is secretive about how they derive the indicators they provide. 

Since this secrecy contrasts with transparency standards in academic research, we only use one 

microm variable in our models, where we could identify and trust the source: the unemployment 

rate on the district level, which is originally provided by the German Federal Employment Agency 

(BA). There are no missing values on this variable in the GIP 2012, 5 percent missing values in the 

GESIS Panel, and 1 percent missing values in the GIP 2014 due to address mismatches. Since missing 

data rates are low, we conduct complete-case analyses. 

In a model validation study, we assess the correlations of each auxiliary variable with survey 

participation as well as socio-demographic characteristics (age, gender, education, household size). 

All correlations are relatively weak. The only correlations with a coefficient of more than 0.1 are with 

the degree of urbanity in the GESIS Panel recruitment interview, with social class in the GIP 2014 

recruitment interview, and the GIP 2012 and GIP 2014 registration survey (see the online appendix 

for all results of the validation study). 

4. Results

In the next section, we juxtapose the five representativeness measures described in section 2. For 

each measure, we estimate the sample representativeness of the GIP 2012, the GESIS Panel, and the 

GIP 2014. To observe developments in representativeness during each recruitment process, we 
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further estimate representativeness at the face-to-face recruitment interview and at the registration 

interview stages for each of the panels. Following the representativeness measure hierarchy, we first 

present results on the two aggregate level measures, response rates and R-Indicators, next the 

results for the highest FMIs as a variable level measure and last, the results of our two category level 

measures, subgroup response rates and benchmark comparisons. 

4.1 Response rates 

We find that the response rates are average to high in the GIP 2012, the GESIS Panel, and the GIP 

2014 compared to other high-quality face-to-face surveys conducted in Germany, which achieve 

response rates of 30% to a maximum of 50% (see Pforr et al., 2015; Stoop et al., 2011 for overviews). 

Figure 3: Response rates in the GIP 2012, GESIS Panel and GIP 2014 (GIP 2012 and GIP 2014 recruitment interview: AAPOR 

RR 2; GIP 2012 and GIP 2014 registration survey: AAPOR RR 4; GESIS Panel: AAPOR RR 5) 

Figure 3 shows that at the face-to-face recruitment interview, response rates for the three panels are 

52.1% (GIP 2012), 38.6% (GESIS Panel) and 48.4% (GIP 2014). At the registration survey, the 

cumulative response rates are 16.4% (GIP 2012), 25.1% (GESIS Panel) and18.5% (GIP 2014). 

If we compare the three panels with each other across recruitment steps, we see that the GIP 2012 

has the highest response rate at the face-to-face recruitment interview, followed by the GIP 2014 

and the GESIS Panel. The GESIS Panel, however, has the highest cumulative response rate at the 

registration survey, followed by the GIP 2014 and GIP2012. With regard to the response rate as a 

survey representativeness measure, the results indicate that the GIP 2012 and the GIP 2014 are more 
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representative at the face-to-face recruitment interview, whereas the GESIS Panel is more 

representative at the registration survey. 

4.2 R-Indicators 

R-Indicators across panels and recruitment stages are high. Nonetheless, we find significant 

differences within as well as across the three samples (see Figure 4). In the upper left part of Figure 

4, we display R-Indicators per panel at the face-to-face recruitment interview, in the lower left part 

we display R-Indicators at the registration survey and the right side shows the bootstrapped 

differences of R-Indicators across recruitment steps for each panel. 

Figure 4: R-Indicators by panel and recruitment stage (including 95% confidence intervals and bootstrapped differences 

between R-Indicators across recruitment stages; underlying response propensity models contain sampling strata) 

At the face-to-face recruitment interview, the R-Indicators for the GIP 2012, GESIS Panel, and GIP 

2014 are 0.89, 0.84 and 0.84, respectively. At the registration survey, we find R-Indicators for the GIP 

2012, GESIS Panel and GIP 2014 of 0.90, 0.87 and 0.82, respectively. This means that the GESIS Panel 

significantly increases representativeness from the recruitment to the registration survey (see also 
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the right pane in Figure 4), while the GIP 2012 and the GIP 2014 remain stable in terms of 

representativeness across recruitment stages. 

When we compare R-Indicators across the three panels and recruitment steps, we see that the GIP 

2012 is significantly more representative at the face-to-face recruitment interview than the other 

two panels. At the registration survey, the representativeness of the GESIS Panel increases 

significantly and catches up with the GIP 2012. The GIP 2014 shows significantly lower 

representativeness at the registration survey than the other two panels. 

4.3 Fraction of Missing Information (FMI) 

We use FMIs as a representativeness measure at the variable level. Figure 5 depicts the highest FMI 

per socio-demographic variable in the three panels. We use the highest FMI per variable because it 

tells us whether we can expect the variable to be biased and how many times the variable has to be 

imputed to get an efficient estimate. Generally, we find that FMIs are moderately high or high (see 

Figure 5) and are mostly lower than the panel nonresponse rates (see Figure 6). This means that 

there is considerable misrepresentation on the variables we examine, but for most variables it can be 

considered as MAR (see Nishimura et al., 2016). 

Figure 5: Highest FMIs for each variable by panel and recruitment stage (using 30 imputations with 10 iterations each; 

imputation models contain sample strata and clustering information; estimates are based on ordered logistic regressions 

(age, education, household size) and logistic regressions (gender); education not available for GIP 2012 and GIP 2014 

recruitment interviews) 
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Figure 5 shows that, at the face-to-face recruitment interviews, the highest FMIs per variable for the 

GIP 2012 are 0.38 for age, 0.36 for gender and 0.44 for household size. For the GESIS Panel, they are 

0.47 for age, 0.38 for gender, 0.71 for education and 0.50 for household size. For the GIP 2014, the 

highest FMIs are 0.56 for age, 0.28 for gender and 0.40 for household size. 

At the registration survey, the highest FMIs per variable for the GIP 2012 are 0.73 for age, 0.57 for 

gender, 0.69 for education and 0.60 for household size. For the GESIS Panel, they are 0.50 for age, 

0.35 for gender, 0.77 for education and 0.55 for household size. For the GIP 2014, highest FMIs are 

0.54 for age, 0.48 for gender, 0.90 for education and 0.64 for household size. 

When we compare FMIs across panels and recruitment steps, we find that the GIP 2012 has the 

lowest FMI for age at the recruitment interview and for education at the registration survey, and the 

highest FMI forage and gender at the registration survey. The GESIS Panel has the lowest FMI for age, 

gender, and household size at the registration survey and the highest FMI for gender and household 

size at the recruitment interview. The GIP 2014 has the lowest FMI for gender and household size at 

the recruitment interview, and the highest FMI for age at the recruitment interview and for 

education and household size at the registration survey. The differences across panels, however, are 

mostly small. From the face-to-face recruitment interview to the registration survey, we find that the 

FMIs of all panels increase by 0.19 in the GIP 2012, 0.02 in the GESIS Panel and 0.06 in the GIP 

2014on average. 

Figure 6: FMI deviations from survey nonresponse rates by panel and recruitment stage (FMIs computed using 30 

imputations with 10 iterations each; imputation models contain sample strata and clustering information; estimates are 
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based on ordered logistic regressions (age, education, household size) or logistic regressions (gender); education not 

available for GIP 2012 and GIP 2014 recruitment interviews) 

Figure 6 depicts the deviations of the largest FMIs per variable from each survey nonresponse rate. 

We see that most FMIs are below the nonresponse rates. Exceptions are age at the GIP 2014 

recruitment interview and education at the GESIS Panel registration survey and the GIP 2014 

registration survey. Following the rule of thumb by Nishimura et al. (2016), this means that the 

missingness mechanisms for most but not all of the examined variables can be regarded as MAR 

across panels and recruitment steps. 

4.4 Subgroup response rates 

The deviations in subgroup response rates from the overall panel response rates are displayed in 

Figure 7 (for all subgroup response rates see Table A2 in the Appendix). We compute subgroup 

response rates for all auxiliary variables. Overall, we find that all panels over- or underrepresent 

largely the same characteristics. There are few differences across panels and recruitment stages, 

except for some of the interviewer observations. For the auxiliary variables that we linked from 

external data sources, representativeness increases from the face-to-face recruitment interview to 

the registration survey. In the following, we describe the results in more detail. We only report over- 

and underrepresentations where there is a significant deviation of the subgroup response rate from 

the overall response rate and where this deviation exceeds three percentage points. If percentage 

point differences are smaller than three percentage points, we regard the deviation to be of low 

empirical relevance and thus do not report these in the text, but they are visible in Figure 7. 
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Figure 7: Subgroup response rate deviations from overall response rates by panel and recruitment stage 
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Figure 7 (continued): Subgroup response rate deviations from overall response rates by panel and recruitment stage 
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At the face-to-face recruitment interview, all three panels show high levels of representativeness for 

Western and Eastern Germany, medium-sized towns, buildings with an intercom, middle-class 

individuals, people who live in areas with medium proportions of young children and medium 

proportions of immigrants, a medium total balance of people moving into and out of the area and 

areas with a low, medium and high aggregated household income as well as medium unemployment 

rates (see Figure 7). 

All panels significantly overrepresent inhabitants of small towns (GIP 2012 and GIP 2014 by 4%-

points, GESIS Panel by 7%-points), single-housing units (GIP 2012 and GESIS Panel by 6%-points and 

GIP 2014 by 7%-points) and upper-middle-class or higher individuals (GIP 2012 by 8%-points, GESIS 

Panel by 5%-points and GIP 2014 by 15%-points). Furthermore, the GESIS Panel and GIP 2014 

significantly overrepresent people who live in areas with low proportions of young children and low 

proportions of immigrants (by 4%-points each) and with a low total balance of people moving into 

and out of the area (by 5%-points and 4%-points). 

All three panels significantly underrepresent inhabitants of large cities (GIP 2012 and 2014 by 5%-

points, GESIS Panel by 7%-points) and buildings that are in a bad condition (GIP 2012 by 6%-points, 

GESIS Panel by 4%-points and GIP 2014 by 14%-points). Furthermore, the GESIS Panel 

underrepresents inhabitants of multi-unit buildings (by 4%-points), buildings that are in a moderate 

condition (by 5%-points) and lower-class individuals (by 5%-points) and the GIP 2014 overrepresents 

inhabitants of buildings that are in a good condition (by 7%-points). We also find that all panels 

underrepresent people who live in areas with high proportions of immigrants (by 5%-points). The 

GESIS Panel and GIP 2014 underrepresent people who live in areas with high proportions of young 

children (by 4%-points and 5%-points) and with a high total balance of moving into and out of the 

area (by 5%-points and 4%-points). 

At the registration survey, all panels nicely represent Eastern and Western Germans, inhabitants of 

medium-sized towns, buildings with an intercom, multi-unit buildings and buildings that are in a 
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moderate or good condition and all variables that we linked from external data sources. The only 

minor exception is that the GESIS Panel underrepresents people who live in areas with a high 

percentage of immigrants (by 4%-points). 

All panel samples significantly overrepresent inhabitants of single-housing units (GIP 2012 by 5%-

points and GESIS Panel and GIP 2014 by 6%-points), upper-middle-class or higher individuals (GIP 

2012 by 8%-points, GESIS Panel by 10%-points and GIP 2014 by 14%-points) and inhabitants of 

buildings that are in a bad condition (GIP 2012 by 7%-points, GESIS Panel by 6%-points and GIP 2014 

by 10%-points). Furthermore, the GIP 2012 and GESIS Panel overrepresent inhabitants of buildings 

without an intercom (by 5%-points and 4%-points) and the GESIS Panel and GIP 2014 overrepresent 

middle-class people (by 7%-points and 5%-points). In addition, the GESIS Panel overrepresents 

inhabitants of small towns (by 5%-points) and the GIP 2012 overrepresents individuals in buildings 

without an intercom (by 4%-points). The GESIS Panel underrepresents inhabitants of large cities (by 

4%-points) and the GIP 2012 and GIP 2014 underrepresent lower-class individuals (by 5%-points and 

9%-points). 

Overall, across panels, we find a moderate amount of misrepresentation on our observed subgroups 

and this moderate misrepresentation diminishes over the course of the panel recruitment. The only 

persistent misrepresentations are found in the degree of urbanity and in some of the interviewer 

observations (type of building, building condition and social class). 

4.5 Benchmark comparison 

In Figure 8, we display deviations from the German Mikrozensus of selected socio-demographic 

characteristics (for all proportions see Table A3 in the Appendix). We find few differences across 

panels and recruitment steps regarding the degree of representativeness and few variables with a 

significant misrepresentation. We again report only significant over-and underrepresentations of 

more than three percentage points to not exceed the scope of the paper. 
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Figure 8: Deviations from the Mikrozensus by panel and recruitment stage (absolute difference between proportions in the 

survey samples and the Mikrozensus; education not available for GIP 2012 and GIP 2014) 

In the face-to-face recruitment interviews, all panels closely represent Western and Eastern 

Germans, inhabitants of medium-sized towns, all age groups, gender, and households with two or 

three members. All panels overrepresent small towns (GIP 2012 and 2014 by 11%-points, GESIS Panel 

by 6%points). They all underrepresent large cities (GIP 2012 and 2014 by 13%-points, GESIS Panel by 

8%-points) and single-person households (GIP 2012 by 9%-points, GESIS Panel by 5%-points and GIP 

2014 by 7%-points). The GESIS Panel underrepresents the low educated and overrepresents the high 
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educated (by 5%- points). There is no data on education for the GIP 2012 and 2014 face-to-face 

recruitment interviews. The GIP 2012 and 2014 both overrepresent people who live in households 

with 4 or more members (by 4%-points). 

In the registration survey, all panels show high levels of representativeness for Eastern and Western 

Germans, inhabitants of medium-sized towns, all age groups, gender, people with medium 

education, and households with three or more members. All panels overrepresent small towns 

(GIP2012 by 11%-points, GESIS Panel by 6%-points and GIP 2014 by 8%-points) and highly educated 

persons (GIP 2012 by 10%-points, GESIS Panel by 8%-points and GIP 2014 by 12%-points). They all 

underrepresent large cities (GIP 2012 by 14%-points, GESIS Panel by 7%-points and GIP 2014 by 12%-

points), low educated persons (GIP 2012 and 2014 by 12%-points and GESIS Panel by 8%-points) and 

single-person households (GIP 2012 by 7%-points, GESIS Panel by 4%-points and GIP 2014 by 5 %-

points). In addition, the GIP 2012 and 2014 overrepresent two-person households (by 5%-points). 

Overall, across both recruitment steps, we find that all panels represent most of the benchmark 

characteristics well. The only variables with significant misrepresentation are the degree of urbanity 

and education. Furthermore, one- and two-person households are slightly misrepresented. 

5. Discussion

We divide the discussion into two parts. In the first part, we discuss the representativeness of the 

three panels relative to each other, the second part deals with the consistency and informative value 

of the results across the measures tested. 

Regarding aggregate level representativeness assessments with R-Indicators, we find that all three 

panels perform well. The GIP 2012, the GESIS Panel, and the GIP 2014 are all highly representative at 

the face-to-face recruitment interview (with R-Indicators of 0.89, 0.84 and 0.84, respectively) and, 

most importantly, at the registration survey (with R-Indicators of 0.90, 0.87 and 0.82, respectively). 
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The representativeness at the registration stage is especially important, because the response set at 

this stage is the set of people that is interviewed in future panel waves. 

Our results indicate that the GIP 2012 and GIP 2014 samples are more representative at the 

recruitment interview than the GESIS Panel sample. This is surprising, because recent research shows 

that random-route procedures as they are used to draw the GIP samples may result in unequal 

selection probabilities (see Bauer, 2014 and Bauer, 2016), a problem that the register-based sample 

of the GESIS Panel is not faced with. A potential explanation may be that register-based samples in 

Germany usually contain substitutions at the level of the municipalities, because some municipalities 

refuse to draw survey samples. Furthermore, employees at municipalities are typically not sampling 

statisticians and thus mistakes in drawing the sample may occur. Both aspects of the register 

sampling process in Germany would explain the lower representativeness of the GESIS Panel at the 

recruitment interview. 

At the registration survey, the GESIS Panel significantly improves its representativeness, while the 

GIP 2012 and GIP 2014 remain relatively constant. A reason for this could be that the GESIS Panel is 

more successful at recruiting previously offline sample units into the panel, because of its mixed-

mode design. This hypothesis is supported by the fact that in the GESIS Panel 35% of all panel 

participants use the mail survey mode (see http://www.gesis.org/en/services/data-collection/gesis-

panel). In contrast, in the GIP 2012 and the GIP 2014, only 8% of the panel participants are 

previously-offline persons who are provided with the necessary equipment to participate online (see 

Blom et al., 2016b). Note however, that the GESIS Panel also allows onliners to participate in the 

paper-and-pencil mode, while the GIP equips only true offliners with devices. This obscures the true 

difference in offliner recruitment success between the GIP samples and the GESIS Panel. 

At the variable level, the FMIs show only small differences in representativeness across the three 

panels. In addition, the FMIs suggest that the missingness mechanism is mostly MAR (see Nishimura 

et al., 2016) and can therefore be corrected for. On the category level, the subgroup response rates 
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as well as the benchmark comparisons find that all three panels overrepresent inhabitants of small 

towns and single housing units as well as highly educated people and individuals that are rated as 

upper-middle class or higher by the interviewers. All panels underrepresent inhabitants of large cities 

and single-person households, as well as people who live in buildings that are rated by the 

interviewers as being in a bad condition. These findings are consistent with the general literature on 

survey nonresponse (see e.g., Groves et al., 2002; Bethlehem et al., 2011). Overall, we observe an 

increase in representativeness from the face-to-face recruitment interview to the registration survey, 

in particular for the GESIS Panel. This is good news for probability-based online panels and supports 

the findings by Blom and Herzing (2017). 

This paper also assesses the value of five different measures of representativeness. We find that 

their results are only partially consistent. Response rates and R-Indicators suggest that the GIP 2012 

has the highest degree of representativeness at the face-to-face recruitment interview. Furthermore, 

both response rates and R-Indicators show that the GESIS Panel significantly gains in 

representativeness at the registration survey stage. This is not surprising, because the mean 

response propensity, which is approximately equal to the response rate, is part of the R-Indicator 

formula. Because the literature shows that response rates are poor indicators of nonresponse bias 

(see Groves, 2006; Groves & Peytcheva, 2008), the R-Indicator should be preferred over the response 

rate, especially in cases where high-quality sampling frame data is available. 

The FMI results, however, are not consistent with these aggregate-level findings. The FMIs suggest 

only moderate or even low degrees of representativeness across panels. The reason is that the 

independent variables in our imputation models insufficiently explain the socio-demographic 

characteristics for which we compute the FMIs. Furthermore, the FMIs suggest a decrease in panel 

representativeness for all panel samples from the face-to-face recruitment interview to the 

registration survey. This finding contradicts our aggregate measure findings and can be explained by 

the logic of the FMIs. Traditionally, FMIs have been used as measures for the efficiency of multiple 

imputations. Due to respondents dropping out of the study between recruitment steps, the amount 
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of missing data is higher at the panel registration stage than at the face-to-face recruitment stage. 

When using the same imputation model on the data for both recruitment steps, the variation of the 

multiple imputations will therefore be higher at the panel registration stage compared to the face-to-

face recruitment stage. For this reason, the increase in the FMIs from the recruitment interview to 

the registration survey is likely to be an artefact of the method and unrelated to panel 

representativeness. In addition, FMIs are also highly sensitive to small changes in the modelling. 

Sensitivity analyses show that small changes in the set of variables used to predict the FMIs result in 

different findings across surveys that do not follow any systematic pattern. These changes across FMI 

models are, for example, not in accordance with the correlations between variables that we find in 

our validation study (see Figures 9 to 11 in the Appendix). 

With regard to subgroup response rates, the three panels perform equally well. The results show a 

general increase in the degree of representativeness from the recruitment interview to the 

registration survey. The increase in representativeness is especially large for the GESIS Panel. This is 

consistent with our findings for the R-Indicators. This consistency is highly plausible because both the 

subgroup response rates and R-Indicators are related to the response rate of a survey and we were 

able to use the identical set of variables for these analyses. 

The benchmark comparisons also show strong similarities in representativeness patterns across the 

panels. On those categories where we find significant misrepresentation, the GESIS Panel is slightly 

closer to the benchmark than the GIP samples. Since we largely use the same set of variables for the 

benchmark comparisons and the FMIs, the results from these two measures should be consistent. 

The findings are, however, contradictory. Whereas the benchmark comparisons show that all panels 

represent the age groups and gender well, the FMIs indicate that all panels are only moderately 

representative for these variables. In addition, the benchmark comparisons suggest that all panels 

have misrepresentations on education and household size, whereas FMIs indicate that these two 

variables are better represented in the three panels than age and gender. 
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Since FMIs are strongly influenced by how well the variables used in the imputation model predict 

the variables examined, the contradictory FMI results can be attributed to the influences of the 

imputation model rather than to actual (mis-)representations in the data. FMIs also contradict our 

findings from the aggregate measures as well as subgroup response rates with regard to the 

development across recruitment steps. Response rates, R-Indicators and subgroup response rates 

indicate an increase in representativeness from the recruitment interview to the registration survey. 

FMIs suggest the opposite, which we attribute to the higher amount of missing data that has to be 

imputed in the registration survey, rather than to actual differences in response set compositions. 

Considering the informative value of the five measures of representativeness examined in this paper, 

we find that the extent to which they lend themselves to comparative investigations depends on the 

purpose of the investigation. The advantage of response rates and R-Indicators is that they provide a 

single aggregate measure, which is especially valuable for identifying general differences between 

surveys at first glance. An important aspect of response rates is that they do not rely on auxiliary 

information, which is often unavailable. But response rates are only weakly related to nonresponse 

bias. R-Indicators are more informative, because they model representativeness using a set of 

auxiliary variables as predictors. In addition, R-Indicators can use any auxiliary information available 

for respondents and nonrespondents. 

Subgroup response rates and benchmark comparisons draw a more differentiated picture of 

representativeness than response rates and R-Indicators and are useful if researchers aim to 

investigate which subgroups are misrepresented in the sample. This large degree of differentiation, 

however, hampers a general comparative assessment of representativeness. Furthermore, finding 

identical questions across two or more surveys and thus effectively using the power of these lower 

level measures is difficult. For instance, including some substantive variables in our analyses would 

have added value to our investigation. Unfortunately, there were no identically measured survey 

questions in the GIP 2012, GESIS Panel, and GIP 2014 recruitment and registration stages apart from 

socio-demographics. Especially benchmark comparisons are typically limited to socio-demographic 
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characteristics (see e.g., Watson & Wooden, 2013; Fricker et al., 2005; Loosveldt & Sonck, 2008). 

Benchmark comparisons are, however, a meaningful supplement to any response rate based 

measure, because they allow us to look at survey representativeness from a different angle, one 

which is more closely related to nonresponse bias analyses. Finally, FMIs hint at the underlying 

nonresponse mechanism, a feature which can be valuable for bias corrections. However, the uses of 

FMIs for analyses of representativeness are limited, because FMIs are unsuited to investigate 

differences in representativeness across surveys or changes over time. The reason for this is that, if 

the amount of missing data relative to the non-missing data increases, the FMIs increase too, even if 

the missingness mechanism is MCAR. Furthermore, FMIs highly depend on how well the variables 

included in the imputation model predict the variable for which an FMI is computed. Thus, it is 

difficult to compare the degree of representativeness across variables. This is why we do not 

consider FMIs fit for the purpose of comparing representativeness across surveys or within surveys 

over time. 

In conclusion, our recommendation for survey comparative representativeness analyses is to apply at 

least one measure at the aggregate level (response rates or, preferably, R-Indicators) in addition to at 

least one measure at the variable or category level (for example, subgroup response rates or 

benchmark comparisons). Finally, in any analyses it is crucial to keep in mind the amount, quality and 

explanatory power of the variables that are available for the analysis, because they have much 

influence on the results. When comparing surveys to each other or across time, it is necessary to 

base the analysis on identical variables, models and measures, to ensure the comparability of results. 
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Online Appendix 

Table A1: Logit models across by panel and recruitment stage 

Recruitment interview Registration survey 

GIP 
2012 

GESIS 
Panel  

GIP 
2014 

GIP 2012 GESIS 
Panel 

GIP 2014 

Constant 0.17 -0.24 -0.47 -1.96*** -1.07*** -2.12*** 
(0.17) (0.05) (0.16) (0.34) (0.06) (0.23) 

Region 

East -0.10 0.01 0.14 0.23 0.05 0.14 

(0.01) (0.00) (0.01) (0.02) (0.00) (0.01) 
Urbanity (admin.) 

50,000-500,000 
inhabitants 

-0.12 -0.03 -0.09 -0.06 -0.08 0.01 

(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) 
>500,000 
inhabitants 

-0.32* -0.32*** -0.12 -0.40 -0.29*** -0.03 

(0.01) (0.00) (0.01) (0.03) (0.00) (0.01) 

Urbanity (pol.) 

20,000-100,000 
inhabitants 

-0.15 -0.21*** -0.12 -0.03 -0.14 -0.09 

(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) 
>100.000 
inhabitants 

-0.27 -0.35*** -0.19 -0.05 -0.16 -0.06 

(0.01) (0.00) (0.01) (0.03) (0.00) (0.01) 

Intercom 

Yes -0.20* -0.10** -0.14** -0.21 -0.05 0.01 
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) 

Type of building 

Single housing unit 0.09 0.13*** 0.14 -0.14 0.14*** 0.09 

(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) 
Building condition 

Moderate -0.02 -0.06 0.33* 0.16 0.05 0.38 

(0.02) (0.01) (0.01) (0.06) (0.01) (0.03) 

Good -0.13 0.04 0.50*** 0.17 0.21 0.43 
(0.03) (0.01) (0.02) (0.07) (0.01) (0.03) 

Social class 

Middle 0.08 0.27*** 0.31*** 0.64*** 0.35*** 0.93*** 

(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) 
High 0.46** 0.39*** 0.83*** 1.00*** 0.49*** 1.40*** 

(0.02) (0.00) (0.01) (0.03) (0.00) (0.01) 

Unemployment 
rate 

0.00 0.00 0.02** -0.01 0.00 0.00 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Percentage people 
aged 0-5 

0.13 -0.01 -0.09 0.14 -0.06 -0.08 
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) 

Total balance of 
people that move 
to or from the 
district 

0.01 -0.01 0.00 0.01 0.01 0.01 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Percentage 
immigrants 

0.01 0.01 0.00 0.01 -0.01 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Aggregate 
household income 

0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

† *** p<0.001; ** p<0.01; * p<0.05 
††Standard errors in parentheses 
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Table A2: Subgroup response rates by panel and recruitment stage 

Recruitment interview Registration survey 
GIP 

2012 
GESIS 
Panel 

GIP 
2014 

GIP 
2012 

GESIS 
Panel 

GIP 
2014 

Overall response 
rate 

52.1% 38.6% 48.4% 16.4% 25.1% 18.5% 

Region 

West 53.0% 39.2% 48.4% 16.7% 25.5% 19.3% 

East 48.9% 36.2% 48.5% 15.4% 23.7% 16.6% 

Urbanity (admin.) 

<50,000 inhabitants 56.3% 45.3% 52.6% 18.5% 29.8% 19.1% 

50,000-500,000 
inhabitants 

52.7% 41.1% 48.7% 17.3% 26.2% 19.9% 

>500,000 
inhabitants 

47.0% 31.2% 43.4% 13.1% 20.7% 16.6% 

Urbanity (pol.) 

<20,000 inhabitants 56.6% 45.1% 52.8% 19.0% 29.3% 21.0% 

20,000-100,000 
inhabitants 

51.3% 37.6% 48.2% 15.7% 24.1% 17.5% 

>100.000 
inhabitants 

47.5% 30.9% 43.9% 14.0% 20.3% 17.2% 

Intercom 

No 57.1% 41.9% 52.0% 18.3% 26.9% 19.7% 

Yes 50.0% 36.0% 46.4% 14.1% 23.7% 18.1% 

Type of building 

No single housing 
unit 

50.9% 35.4% 46.1% 14.6% 22.6% 17.0% 

Single housing unit 58.1% 45.8% 55.4% 19.0% 30.7% 24.0% 

Building condition 

Bad 46.3% 35.5% 34.8% 10.3% 19.2% 8.7% 

Moderate 53.3% 34.7% 47.0% 15.0% 20.8% 17.2% 

Good 52.9% 40.9% 55.0% 20.6% 27.4% 25.4% 

Social class 

Low 54.2% 39.3% 42.5% 11.4% 23.5% 10.0% 

Middle 56.6% 46.7% 50.1% 18.6% 31.7% 23.0% 

High 63.9% 49.4% 63.3% 23.9% 35.1% 32.3% 
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Table A3: Shares of socio-demographic characteristics across the GIP 2012, GESIS Panel, GIP 2014, and German Mikrozensus 

Recruitment interview Registration survey 
GIP 

2012 
GESIS 
Panel 

GIP 
2014 

GIP 
2012 

GESIS 
Panel 

GIP 
2014 

MZ 
2013 

Region 
West 80.10 81.04 80.34 79.41 80.90 80.92 80.24 
East 19.90 18.96 19.66 20.59 19.10 19.08 19.76 
Urbanity (admin.) 
<50,000 
inhabitants 

34.19 28.64 34.03 33.94 28.94 31.31 23.11 

50,000-500,000 
inhabitants 

41.77 42.61 42.37 43.17 41.76 44.00 40.28 

>500,000 
inhabitants 

24.04 28.75 23.60 22.89 29.30 24.69 36.61 

Urbanity (pol.) 
<20,000 
inhabitants 

45.52 48.11 44.43 45.91 48.10 42.75 40.74 

20,000-100,000 
inhabitants 

26.42 27.35 25.72 25.64 27.06 24.98 27.23 

>100.000 
inhabitants 

28.06 24.54 29.86 28.45 24.85 32.27 32.03 

Age 
18-29 20.06 20.92 22.26 19.81 19.64 20.42 20.55 
30-39 16.81 15.62 17.45 18.13 15.11 17.36 17.51 
40-49 20.32 23.53 20.53 21.36 23.24 22.05 22.87 
50-59 24.42 21.81 22.56 23.77 22.59 23.72 21.74 
60-70 18.38 18.12 17.20 16.92 19.42 16.45 17.32 
Gender 
Male 50.27 49.3 49.26 50.16 48.08 49.84 49.96 
Female 49.73 50.7 50.74 49.84 51.92 50.16 50.04 
Education 
Low –† 27.46 –† 20.29 24.57 20.45 32.38 
Middle –† 34.42 –† 36.26 34.38 34.71 34.32 
High –† 38.12 –† 43.45 41.05 44.83 33.30 
Household size 
1 11.67 15.75 13.91 13.13 16.10 15.76 20.46 
2 36.70 35.75 34.63 40.71 36.99 40.09 35.56 
3 19.51 21.57 19.68 20.48 21.41 19.46 20.43 
4 20.80 18.36 20.71 17.50 17.99 17.51 16.68 
5 or more 11.32   8.58 11.07   8.18   7.51   7.18   6.86 
†Note: Education not available for GIP 2012 and GIP 2014 recruitment interview. 
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Figure 9: Correlations of panel participation and socio-demographic characteristics with auxiliary variables in the GIP 2012 

(demographic variables include age, gender, education and household size; education not available for the recruitment 

interview) 
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Figure 10: Correlations of panel participation and socio-demographic characteristics with auxiliary variables in the GESIS 

Panel (demographic variables include age, gender, education and household size) 
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Figure 11: Correlations of panel participation and socio-demographic characteristics with auxiliary variables in the GIP 2014 

(demographic variables include age, gender, education and household size; education not available for the recruitment 

interview) 
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Paper 3 

The utility of auxiliary data for survey response modeling: Evidence 

from the German Internet Panel16 

Abstract 

Auxiliary data are becoming more important as nonresponse rates increase and new fieldwork 

monitoring and respondent targeting strategies develop. In many cases, these auxiliary data are 

collected or linked to the gross sample to predict survey response. If the auxiliary data have high 

predictive power, these response models can meaningfully inform survey operations as well as post-

survey adjustment procedures. In this paper, I examine the utility of different sources of auxiliary 

data (sampling frame data, interviewer observations, and micro-geographic area data) for modeling 

survey response in a probability-based online panel in Germany. I find that each of these data 

sources are challenged by a number of concerns (scarcity, missing data, transparency issues, and high 

levels of aggregation) and none of them predict survey response to any substantial degree. 

Therefore, I conclude that the available auxiliary data should be used with caution. Furthermore, I 

hope that this paper inspires the search for more predictive auxiliary variables as well as efforts to 

raise the quality of auxiliary data. 
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Auxiliary data, nonresponse, representativeness, online panel 
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1. Introduction

In light of decreasing response rates and rising concerns about nonresponse bias and cost efficiency, 

auxiliary data have become popular in survey methodological research in recent years. Auxiliary data 

are typically external to the survey data collected and for most operational purposes they need to be 

available for respondents as well as nonrespondents (see for example Sinibaldi et al., 2014). They can 

be used for a number of survey operational tasks, such as eligibility screening and fieldwork 

monitoring, as well as post-survey nonresponse adjustments, such as weighting and imputations. 

Because of the current high demand for auxiliary data, there is progress in collecting more such data 

and making them available to secondary data users (for example in the European Social Survey (see 

ESS, 2012) and in the Health and Retirement Study (see HRS, 2014)). In addition, some official 

institutions as well as commercial vendors provide aggregated auxiliary data that can be linked to 

survey data (see Section 3 for more information). 

Most approaches to using auxiliary data for nonresponse research rely on the assumption that the 

data are of high quality (i.e. error-free) and predictive of survey response (as well as, for many 

purposes, key survey variables; see Olson, 2013 for a formalization of characteristics of auxiliary 

variables that are useful for nonresponse adjustments). This stands in contrast with the literature on 

auxiliary data that indicates potential errors in the auxiliary data as well as low predictive power. 

This paper contributes to the survey methodological literature on auxiliary data by exploring the 

utility of different sources of auxiliary data in the context of the recruitment of a probability-based 

online panel in Germany. I provide an overview of the existing literature on auxiliary data and discuss 

the advantages and disadvantages of the data sources that were available for my study. Then, I 

explore whether auxiliary variables are systematically missing by survey response. In addition, I 

examine the correlations of each of the auxiliary variables with survey response and I assess the 

predictive power of the auxiliary data as well as the significance of their coefficients in logistic 

regression models on survey response. I thereby contribute to the scarce literature on assessing the 
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utility of different types of auxiliary data for predicting survey response. Finally, this study is the first 

that assesses the utility of auxiliary data for predicting survey response in the context of the different 

stages of recruiting a panel. 

2. Uses and usefulness of auxiliary data

Auxiliary data are used for multiple purposes, many of which involve predicting survey response. One 

application that has been developed in recent years is model-based representativeness measures 

such as R-Indicators (see Schouten et al., 2009), balance indicators (see Särndal, 2011), or the 

Fraction of Missing Information (see Wagner, 2010). These representativeness measures can be 

reported and compared across surveys or experimental fieldwork conditions after data collection to 

provide data users with background information on survey data quality (see for example Schouten et 

al., 2012). 

In addition to measuring representativeness after data collection, auxiliary data can be used for 

fieldwork monitoring during data collection. The National Survey of Family Growth, for instance, has 

integrated auxiliary data into their fieldwork monitoring “dashboard” (see Kirgis and Lepkowski, 

2010). This allows them to detect potential problems (such as high numbers of locked buildings in 

certain areas) on a daily basis and to then intervene quickly if necessary. Auxiliary data can also be 

used to monitor whether the sample representativeness is compromised during fieldwork, so that 

steps can be taken to rebalance the sample, for example by case-prioritization, before the fieldwork 

phase ends (see for example Schouten, Shlomo, and Skinner, 2011). 

A related form of auxiliary data usage is in responsive or adaptive survey designs (see Groves & 

Heeringa, 2006; Wagner, 2008). The idea of these approaches is that subgroups of the gross sample 

receive different survey designs depending – at least to some extent – on their response propensity 

as modeled using auxiliary data. Usually, the most important goal is to reduce variation in response 

propensities across subgroups of the gross sample. There are many survey design features that can 

be varied in such a design, for example the survey mode or the timing of contact attempts (see 
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Schouten et al., 2013 for an extensive list of design features that can be varied in responsive design 

settings). 

In a large-scale study on multiple surveys Schouten et al. (2016) find that these responsive design 

approaches can reduce nonresponse bias as measured by model-based representativeness 

measures. Similarly, Wagner et al. (2012) find that responsive design approaches based on the 

auxiliary data from the NSFG successfully increase response rates among the formerly 

underrepresented subgroups of the sample leading, as intended, to lower variation in response 

propensities across subgroups. 

Another prominent application of auxiliary data in the literature is nonresponse adjustment weights 

(see for example Olson, 2013), when cases are weighted by their inverse response propensity 

calculated from a logistic regression model. Olson (2013) defines a useful auxiliary variable for 

nonresponse weighting as a variable that is associated with survey response as well as substantive 

survey variables of interest. In a study on the added value of auxiliary data for nonresponse 

adjustment weights Kreuter et al. (2010) find that the available auxiliary data were only moderately 

associated with substantive survey variables and weakly associated with survey response. 

Nonetheless, the authors report that using the auxiliary data to derive adjustment weights still led to 

substantial changes in survey estimates. However, not all types of auxiliary data seem to be equally 

suited to derive nonresponse adjustment weights. Sinibaldi et al. (2013), for example, show that 

interviewer observations have higher associations than commercial micro-geographic area data with 

some primary survey variables (unemployment of a household member and income). The 

interviewer observations therefore contributed more to the nonresponse adjustment weights. 

An alternative to weighting procedures is the application of imputation procedures to adjust for 

survey nonresponse. In this context, West and Little (2013) find that multiple imputations using 

pattern-mixture models can reduce nonresponse bias even under a potentially non-ignorable missing 

data mechanism and when the auxiliary data used in the imputation model are error prone. 
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3. Types of auxiliary data and their quality

There are several types of auxiliary data that are commonly used in the literature and in practice. The 

most common types are sampling frame data, interviewer observations, and linked micro-geographic 

area data. In the following, I describe these types of auxiliary data and discuss findings from the 

literature about the quality of these data. 

Sampling frame data are typically available in probability-based surveys, where they describe all 

units in the gross survey sample. In theory, sampling frame data exist for all units on a frame. 

However, in practice, researchers only have access to information on the units that were actually 

drawn into the gross sample. Sometimes sampling frames contain a lot of information, for example 

when the sample is drawn from a register. In some countries, population registers may include 

detailed individual information, like age, gender, ethnic background, household composition, 

employment history, education history, and income. In other situations, however, the sampling 

frame data may be limited to broad regional information only. In the literature, sampling frame data 

are commonly used for measuring representativeness (see for example Schouten et al., 2009) as well 

as fieldwork monitoring (see for example Schouten, Shlomo, and Skinner, 2011) and nonresponse 

adjustment (see for example Kreuter et al., 2010). However, there is very little research on the 

quality of sampling frame data (for a discussion of potential data quality issues of sampling frames 

see for example Hall, 2008). 

Interviewer observations contain information about all sample units in the gross sample. This 

information is recorded by interviewers during fieldwork (see Olson, 2013). Commonly collected 

interviewer observations include reports about access impediments to the sample unit’s house (e.g. 

closed gates) and the type of housing unit (e.g. single house, terraced house, apartment block, farm, 

etc.) that the sample unit lives in (see for example West & Kreuter, 2013). Depending on the survey, 

collected interviewer observations may also include interviewer assessments about the volume of 

traffic and public transportation stops near the housing unit (like in the Health and Retirement 

Survey (HRS); see HRS, 2014) or interviewers’ guesses about the presence of children in the sampled 
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household or whether the sample units are sexually active (like in the National Survey of Family 

Growth (NSFG); see West, 2010). 

Some publications consider the quality of interviewer observations. One finding from this field of 

research is that missing data rates can vary greatly across surveys and are often rather high. Matsuo 

et al. 2010, for example find that in the European Social Survey the missing data rates for the 

interviewer observations range from 0.00% in Russia to 40.01% in Germany. Other researchers find 

that interviewer observations are prone to interviewer effects (see Olson, 2013), especially when the 

measures collected leave room for interpretation because interviewers can perceive the objects that 

they observe differently (see for example Raudenbush & Sampson, 1999). West and Kreuter (2013), 

for example, show that in the NSFG the accuracy of the interviewer observations about the presence 

of children in the household varies by interviewer experience. 

The contribution of interviewer observations to nonresponse adjustments is yet unclear. West, 

Kreuter, and Trappmann (2014), for example, find that using interviewer observations in 

nonresponse adjustment weights hardly has an impact substantive survey estimates. The authors 

suspect that this is due to the low predictive power of the interviewer observations in modeling 

survey response. However, Sinibaldi et al. (2014) find that interviewer observations were more 

successful than linked commercial micro-geographic area data in predicting primary substantive 

survey outcomes and were therefore better suited to inform nonresponse adjustment weighting. 

Micro-geographic area data are linked to the survey data from external (official or commercial) 

sources and contain aggregated information that describe all sample units’ environment. Typical data 

from such sources include aggregate measures of income or purchasing power in each area, 

household composition in terms of socio-demographics, and ethnic or religious composition of the 

neighborhood (see for example West et al., 2015). They can often be purchased from commercial 

marketing vendors, such as Microm17 in Germany, Experian18  and Callcredit19  in the UK, and 

17
 www.microm.de 
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MSG20and Aristotle International Inc.21 in the US. There are, however, also official institutions that 

make micro-geographic area data available, such as the German Federal Institute for Research on 

Building, Urban Affairs and Spatial Development (BBSR) in Germany, the Office for National Statistics 

(ONS) in the UK, and the United States Census Bureau in the US. 

Micro-geographic area data are most commonly used in nonresponse adjustment weighting. The 

literature, however, shows that micro-geographic area data usually correlate little with survey 

response (see for example West et al., 2015) and are therefore not useful in nonresponse adjustment 

procedures (see for example Biemer & Peytchev, 2013). However, there are also studies that show 

that including micro-geographic area data in nonresponse adjustment weights can lead to shifts in 

survey estimates, especially when there is at least a moderate association with substantive survey 

variables (see for example Kreuter et al., 2010). 

A potential disadvantage of the commercial micro-geographic area data is that they have been found 

to be prone to errors. In a study on the quality of commercial marketing data, Pasek et al. (2014), for 

example, find that these data were often inaccurate and systematically incomplete. In addition, the 

authors point to transparency problems with commercial data: “Because these data are of 

considerable value to the private companies that aggregate them […] social scientists seem unlikely 

to gain a full picture” (p. 912). In addition, West et al. (2015) find only weak agreement between 

identical variables in the data purchased from two different commercial data vendors. However, they 

also show that the commercial data can effectively be used to predict sample eligibility as well as 

some substantive survey variables. They, therefore, conclude that buying micro-geographic area data 

might be a good investment for some survey operational tasks, such as eligibility screening, but less 

so when it comes to nonresponse weighting. 

18
 www.experian.co.uk 

19
 www.callcredit.co.uk 

20
 www.m-s-g.com 

21
 www.aristotle.com 
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4. Data and methods

In this section, I describe the data that I use for the analyses, the auxiliary data that I use as 

predictors in the response models, and the methods I apply in the analyses. 

4.1 The German Internet Panel (GIP) 

For the analyses, I use data from the GIP recruitment phase. The GIP is a probability-based online 

panel of the general population with bi-monthly panel waves on multiple topics in the social sciences 

and economics (see Blom, Gathmann, Krieger, 2015). It is based on a three-stage stratified 

probability area sample, for which areas in Germany are randomly sampled, subsequently all 

addresses are listed within sampled areas, and then a random selection of households is made from 

the addresses listed. 

The GIP recruitment was conducted in two phases: a face-to-face recruitment interview phase and a 

subsequent online profile interview (enrollment in the online panel). All age-eligible household 

members in a household that participated in the recruitment interview were invited to participate in 

the subsequent online panel waves. People who did not have access to the Internet or Internet-

enabled devices were provided with the necessary equipment (see Blom et al., 2016). A person was 

considered an online panel member from the moment that they filled out the first online survey that 

contains questions on the participants’ personal profile, including socio-demographic characteristics 

and key substantive survey variables, such as voting behavior. 

The GIP recruited new panel members in 2012 and 2014. The samples were drawn independently of 

each other and the sampling and recruitment procedures were almost identical. For the analyses in 

this paper, I therefore pool the two samples, except for the logistic regression model where I include 

a dummy variable for the recruitment year as a control variable. 

I conduct all analyses separately for the face-to-face recruitment interview and the online profile 

survey to investigate whether auxiliary data predict survey response in either of the two recruitment 

steps. 
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4.2 The auxiliary data 

The auxiliary data that I use in the analyses stem from various sources. Table 1 provides an overview 

of the variables, a brief description of the data, and information on the amount of missing data per 

variable. 

Table 1: Overview of the auxiliary data, including brief data description and percentage of missing data 

Variable Description Missing data (in %) 

Sampling frame data Official data; provided by the sampled municipalities 
Geographic region East versus west Germany 0.00 
Urbanity (admin.) Less than 50,000 inhabitants, 50,000 to 500,000 

inhabitants, more than 500,000 inhabitants 
0.00 

Urbanity (pol.) Less than 20,000 inhabitants, 20,000 to 100,000 
inhabitants, more than 100,000 inhabitants 

0.00 

Interviewer observations Collected by the interviewers during fieldwork 
Intercom Yes ; no 5.47 
Type of building Single housing unit versus apartment building 5.12 
Building condition Bad, moderate, good 5.23 
Social class Low, middle, high 9.23 
Microm data Commercial micro-geographic area data; from mixed 

and partly intransparent data sources 
Unemployment rate Continuous variable 0.09 
Exclusive 
livingenvironment 

Yes ; no 3.22 

Percentage academics Continuous variable 3.22 
Households in the street Continuous variable 0.19 
Percentage home 
ownership 

Continuous variable 0.09 

Percentage Roman 
Catholics 

Continuous variable 0.01 

Percentage Protestants Continuous variable 0.01 
INKAR data Official micro-geographic area data; predominantly 

from the German Census and German Mikrozensus 
Percentage people aged 
0-5 

Continuous variable 0.00 

Total balance of people 
that move to or from the 
district 

Continuous variable 0.00 

Percentage immigrants Continuous variable 0.00 
Aggregate household 
income 

Continuous variable 0.00 

4.2.1 Sampling frame data 

The sampling frame data in my analyses are official data from the area database that is used to draw 

the GIP primary sampling units from. The sampling frame data include the geographic region (east 
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versus west), the degree of urbanity operationalized as administrative districts22 (less than 50,000 

inhabitants, 50,000 to 500,000 inhabitants, more than 500,000 inhabitants), and the degree of 

urbanity operationalized as political governmental districts23 (less than 20,000 inhabitants, 20,000 to 

100,000 inhabitants, more than 100,000 inhabitants). The latter two measure population density in 

differently defined types of geographic areas. There is no missing data on any of the sampling frame 

variables. 

4.2.2 Interviewer observations 

The interviewers collected the interviewer observations during the fieldwork of the face-to-face 

recruitment interview. The interviewers were instructed to record the observations in the contact 

forms for all households in the gross sample units, so that the data are available for the respondents 

as well as the nonrespondents. The data include the presence of an intercom (yes, no), the type of 

building (single housing unit, apartment building), the building condition (bad, moderate, good), and 

the social class of the sampled household (low, middle, high). There is a substantial amount of 

missing data on all of the interviewer observations in the GIP, ranging between 5.12% on the type of 

building and 9.23% on social class. 

4.2.3 Microm data 

Microm data are micro-geographic area data provided by Microm Consumer Marketing, a 

commercial data vendor. The Microm data were linked to the sampled addresses of the GIP and are 

based on a variety of commercial and official sources such as Deutsche Telekom and the German 

Federal Employment Agency. In the documentation of the data, there is little detailed information on 

the data sources and adjustments24. The variables I use are the unemployment rate (continuous), 

exclusive living environment (yes versus no), percentage of academics (continuous), number of 

households in the street (continuous), percentage of home ownership (continuous), percentage of 

22
 BIK; see https://www.bik-gmbh.de/cms/basisdaten/bik-regionenfor more information 

23
 GKPOL; 

seehttp://www.bbsr.bund.de/BBSR/DE/Raumbeobachtung/Raumabgrenzungen/StadtGemeindetyp/StadtGem
eindetyp_node.html for more information. 
24

 See https://www.microm.de/fileadmin/media/document/Handbuch_Daten_2015_DE.pdf for more 
information. 
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Roman Catholics (continuous), and percentage of Protestants (continuous).Two of the variables are 

aggregated to up to four buildings (exclusive living environment, percentage of academics), two 

variables are aggregated to the street level (number of households, percentage of homeownership), 

two variables are aggregated to the municipality-level (percentage of Roman Catholics, percentage of 

Protestants), and one variable is aggregated to the postal-code-level (unemployment rate). There is a 

small to moderate amount of missing data on the Microm data, ranging between 0.01% on the 

percentage of Roman Catholics as well as the percentage of Protestants and 3.22% on exclusive living 

environment as well as the percentage of academics. 

4.2.4 INKAR data  

INKAR (Indicators and Maps for City and Spatial Research; Bundesinstitut für Bau-, Stadt- und 

Raumforschung, 2015) data are official micro-geographic area data aggregated to the municipality-

level. They are predominantly based on the German Census and German Mikrozensus and can be 

downloaded free of charge from an Internet platform25 that is run by the German Federal Institute 

for Research on Building, Urban Affairs, and Spatial Development (BBSR) of the German Federal 

Office for Building and Regional Planning (BBR). In the documentation of the data there is rich 

information on the data sources and adjustments. The variables I used are the percentage of people 

aged 0 to 5 (continuous), the total balance of people that move to or from the district (continuous), 

the percentage of immigrants (continuous), and the aggregate household income (continuous). There 

is no missing data on any of the INKAR data. 

4.3 Methods 

The analyses start with an examination of the data quality of the auxiliary data in terms of item 

missingness. For each auxiliary variable, I examine whether there are significant differences between 

GIP nonrespondents and respondents regarding the proportion of missing values. I use   -statistics 

to determine whether the Missing Completely at Random (MCAR; see Rubin & Little, 2002) 

25
See www.inkar.de. 
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assumption holds. If the MCAR assumption does not hold the value of the auxiliary data for assessing 

and adjusting for misrepresentation is compromised. 

My next analyses focus on assessing the utility of the different types of auxiliary data for predicting 

survey response. I first explore to what extend each auxiliary variable correlates with survey 

response using Pearson’s correlation calculated from bivariate logistic regression models. Then, I 

examine the predictive power as well as the significance of coefficients for each type of auxiliary data 

in multivariate logistic regression models on response in the GIP recruitment interview and the GIP 

profile survey. I apply complete-case analyses in all of the regression models. Due to the missing data 

on some auxiliary variables, there are therefore 1,795 observations (12.92%) missing from the 

multivariate survey response models. 

To differentiate between panel recruitment steps, I conduct the analyses separately on the face-to-

face recruitment interview and the subsequent online profile survey. 

5. Results

5.1 Missing data 

Table 2 displays the proportion of missing values among nonrespondents and respondents on each of 

the variables that has at least some missing values separately for each GIP recruitment step. In 

addition, Table 2 provides   -statistics for the comparison between the proportion of missing values 

among nonrespondents and respondents. 

Overall, I find moderately large proportions of missing values on the interviewer observations as well 

as the Microm data. For some of the interviewer observations, the proportion of missing values is 

significantly higher for nonrespondents than for respondents. In the recruitment interview, there is 

one variable where the proportion of missing values is significantly higher for nonrespondents than 

for respondents: the interviewer observation on social class (5.36% versus 3.87% with   =38.68, 

df=1, and p=0.00). In the profile survey, I find additional variables for which the proportion of missing 
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values differs between nonrespondents and respondents. There are significantly higher proportions 

of missing values among nonrespondents than among respondents on all of the interviewer 

observations: intercom (4.63% versus 0.84% with   =16.39, df=1, and p=0.00), type of building 

(4.33% versus 0.79% with   =15.01, df=1, and p=0.00), building condition (4.41% versus 0.82% with 

  =14.14, df=1, and p=0.00), and social class (7.99% versus 1.24% with   =51.60, df=1, and p=0.00). 

Table 2: Proportion of missing values and   -statistic for the difference in proportion of missing values between 
nonrespondents (NR) and respondents (R) by auxiliary variable and GIP recruitment step (degrees of freedom (df) and p-
values in parentheses; sampling frame data and INKAR data do not have any missing values) 

Missing data:  
Recruitment interview 

Missing data:  
Profile survey 

% NR % R   % NR % R   

Interviewer 
observations 

Intercom 2.74 2.73 
0.03 

(df=1; p=0.87) 
4.63 0.84 

16.39***(df=1;p=
0.00) 

Type of building 2.61 2.52 
0.30 

(df=1;p=0.58) 
4.33 0.79 

15.01***(df=1;p=
0.00) 

Building condition 2.63 2.61 
0.04 

(df=1;p=0.84) 
4.41 0.82 

14.14*** 
(df=1; p=0.00) 

Social class 5.36 3.87 
38.68***(df=1;p=

0.00) 
7.99 1.24 

51.60***(df=1;p=
0.00) 

Microm data 
Unemployment 
rate 

0.06 0.04 
0.71 

(df=1; p=0.40) 
0.06 0.03 

0.71 
(df=1;p=0.40) 

Exclusive living 
environment 

1.59 1.63 
0.05 

(df=1; p=0.83) 
2.54 0.68 

0.00 
(df=1; p=0.99) 

Percentage 
academics 

1.59 1.63 
0.05 

(df=1; p=0.83) 
2.54 0.68 

0.00 
(df=1; p=0.99) 

Number hhlds. in 
the street 

0.08 0.12 
0.90 

(df=1; p=0.34) 
0.16 0.04 

0.12 
(df=1;p=0.73) 

Percentage home 
ownership 

0.06 0.04 
0.71 

(df=1; p=0.40) 
0.06 0.03 

0.71 
(df=1;p=0.40) 

Percentage Roman 
Catholic 

0.01 0.00 
2.01 

(df=1;p=0.16) 
0.01 0.00 

0.54 
(df=1;p=0.46) 

Percentage 
Protestant 

0.01 0.00 
2.01 

(df=1;p=0.16) 
0.01 0.00 

0.54 
(df=1;p=0.46) 

Note: *** p<0.001; ** p<0.01; * p<0.05 

5.2 Correlations with survey response 

Table 3 displays the correlation between each auxiliary variable and survey response at each GIP 

recruitment step. Generally, I find that correlations are small ranging from 0.00 to 0.18. By far the 

highest correlations with survey response can be found on the social class variable, although even 
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this correlation is rather weak. In the recruitment interview, no auxiliary variable correlates with 

survey response to any substantial degree (i.e. the correlation coefficients are smaller than 0.10). In 

the profile survey, only social class correlates with survey response, although only weakly (r=0.18). 

Table 3: Correlation of auxiliary variables with survey response by auxiliary variable and GIP recruitment step (Pearson’s 
correlation coefficients calculated from bivariate logistic regression models) 

Variable 
Pearson’s r:  

Recruitment interview 
Pearson’s r:  

Profile survey 

Sampling frame data 

Geographic region 0.00 0.01 

Urbanity (admin.) 0.06 0.02 

Urbanity (pol.) 0.06 0.02 

Interviewer observations 

Intercom 0.05 0.01 

Type of building 0.06 0.03 

Building condition 0.05 0.08 

Social class 0.08 0.18 

Microm data 

Unemployment rate 0.02 0.05 

Exclusive living environment 0.01 0.01 

Percentage academics 0.01 0.01 

Households in the street 0.04 0.04 

Percentage home ownership 0.06 0.06 

Percentage Roman Catholics 0.04 0.04 

Percentage Protestants 0.00 0.00 

INKAR data 

Percentage people aged 0-5 0.03 0.01 

Total balance of people that move 
to or from the district 

0.03 0.02 

Percentage immigrants 0.01 0.02 

Aggregate household income 0.04 0.01 

5.3 Survey response models 

Table 4 displays the results of the multivariate logistic regressions of the auxiliary variables on survey 

response separately for the two GIP recruitment stages. Overall, I find very low Pseudo R-squared for 

the survey response models even though many coefficients are significant. 



 

Table 4: Logistic regression models of all auxiliary data (including dummy variable on the GIP recruitment phase) on the 
propensity to respond in the recruitment interview and the profile survey of the GIP (*** p<0.001; ** p<0.01; * p<0.05; 
standard errors in parentheses) 

Recruitment interview Profile survey 

Constant -1.37*** -2.83*** 
(0.36) (0.46) 

Sampling Frame data 
Region: east  0.70*** 0.59*** 
(ref.: west) (0.11) (0.14) 
Urbanity (admin.): 50k-500k 
inhabitants 

-0.04 
(0.05) 

0.03 
(0.06) 

(ref.: <50k inhabitants) 
Urbanity (admin.): >500k 
inhabitants  

-0.05 
(0.08) 

-0.01 
(0.10) 

(ref.: <50k inhabitants) 
Urbanity (pol.): 20k-
100kinhabitants 

-0.14** 
(0.05) 

-0.06 
(0.06) 

(ref.: <20k inhabitants) 
Urbanity (pol.): >100,000 
inhabitants 

-0.20** 
(0.07) 

-0.00 
(0.09) 

(ref.: <20k inhabitants) 
Interviewer observations 
Intercom: yes  -0.17*** -0.06 
(ref.: no) (0.04) (0.05) 
Type of building: Single housing 
unit 

0.09 
(0.05) 

-0.01 
(0.06) 

(ref.: multiple units) 
Building condition: moderate  0.36*** 0.38* 
(ref.: bad) (0.10) (0.15) 
Building condition: good  0.46*** 0.44** 
(ref. bad) (0.11) (0.16) 
Social class: middle  0.23*** 0.84*** 
(ref.: low) (0.04) (0.05) 
Social class: high  0.74*** 1.27*** 
(ref.: low) (0.08) (0.08) 
Microm data 
Unemployment rate 0.02** 0.00 

(0.00) (0.01) 
Exclusive living environment: yes 0.03 0.01 
(ref. no) (0.04) (0.05) 
Percentage academics -0.00 0.05 

(0.04) (0.05) 
Households in the street 0.00 0.00 

(0.00) (0.00) 
Percentage home ownership -0.00 0.00 

(0.00) (0.00) 
Percentage Roman Catholics 0.01*** 0.01*** 

(0.00) (0.00) 
Percentage Protestants 0.01*** 0.01** 

(0.00) (0.00) 
INKAR data 
Percentage people aged 0-5 -0.04 -0.00 

(0.04) (0.05) 
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Table 4 (continued) 

Total balance of people that move 0.00 0.01 
to or from the district (0.00) (0.00) 
Aggregated household income 0.00 -0.00 

(0.00) (0.05) 
Percentage immigrants 0.01 0.00 

(0.01) (0.01) 
GIP recruitment year 
Recruitment year: 2012 0.34*** -0.33*** 
(ref.: 2014) (0.04) (0.05) 

Pseudo R2 0.02 0.04 
N 12098 12098 
Note: *** p<0.001; ** p<0.01; * p<0.05 

In the recruitment interview, the Pseudo R-Squared of the survey response model is 0.02. Regression 

coefficients are significant for two sampling frame variables (geographic region and urbanity (pol.)), 

most interviewer observations (intercom, building condition, and social class), and three Microm 

variables (unemployment rate, percentage Roman Catholics, and percentage Protestants). 

In the profile survey, the Pseudo R-Squared of the survey response model is 0.04. Regression 

coefficients are significant for one sampling frame variable (geographic region), two interviewer 

observations (building condition and social class), and two Microm variables (percentage Roman 

Catholics and percentage Protestants). 

When comparing the survey response models of the two GIP recruitment steps, I find that the 

Pseudo R-Squared of the survey response models are very low in the recruitment interview as well as 

the profile survey. In addition, there are three auxiliary variables (urbanity (pol.), Intercom, and 

unemployment rate) that have a significant effect in the survey response model in the recruitment 

interview but not in the profile survey. Furthermore, I find that the GIP recruitment year has a 

significant effect on survey response at both recruitment stages. 
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6. Discussion

This study assesses the utility of auxiliary data for predicting recruitment success in the GIP, a 

probability-based online panel in Germany. The auxiliary data I examined include sampling frame 

data, interviewer observations, and commercial as well as official micro-geographic area data. I 

assessed the utility of these types of auxiliary data for predicting survey response in the GIP face-to-

face recruitment interview as well as the subsequent online profile survey. 

First, I examined whether auxiliary data are systematically missing by survey response. I found that 

there are systematically more missing values for the nonrespondents than for the respondents on 

social class in the recruitment interview as well as all interviewer observations at the profile survey. 

The missingness mechanism on the interviewer observations can, therefore, not be considered 

MCAR. To correct for this bias is imperative to accurately estimate survey response using the 

interviewer observations. 

To correct the missingness bias in the interviewer observations in estimations of survey response, it 

would, however, be necessary to have data available that correlate highly with the interviewer 

observations and survey response. In my study, the only data available for nonrespondents as well as 

respondents are the other auxiliary data. In addition, the aim of using the auxiliary variables is to 

predict survey response and then to be able to correct for potential nonresponse bias in the data. If 

there is already a missingness bias in the auxiliary variables, this might defeat the purpose of using 

the auxiliary data for representativeness assessments and nonresponse adjustments. 

Second, I examined the correlations of each of the auxiliary variables with survey response. I found 

that the auxiliary data are at most weakly correlated with survey response. None of the auxiliary data 

correlates with survey response to any substantial degree in the recruitment interview and only 

social class correlates with survey response to some relevant degree in the profile survey. 

Next, I assessed the predictive power of the auxiliary variables as well as the significance of their 

coefficients in logistic regression models on survey response. I found that the predictive power of the 
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auxiliary variables is very low in survey response models for both GIP recruitment steps. The 

predictive power of the multivariate logistic regression models of the auxiliary variables on survey 

response is low in the GIP recruitment interview (Pseudo R-Squared=0.02) as well as the profile 

survey (Pseudo R-Squared=0.04). However, in the recruitment interview the coefficients of most 

sampling frame data, most interviewer observations, and some Microm data are significant. In the 

profile survey, the coefficients of one sampling frame variable, some interviewer observations, and 

some Microm data are significant. None of the INKAR data coefficients is significant in the models. 

The results from the logistic regression models on survey response show that no type of auxiliary 

data contributes substantially to the prediction of recruitment success in the GIP at the two 

recruitment steps even though some coefficients are significant in the regression models. 

To sum up, I find that all of the auxiliary data in my study have problems: the sampling frame data 

are limited to a few geographic characteristics, the interviewer observations contain relatively high 

proportions of missing values and this missingness is systematically related to survey response, the 

Microm data are intransparent and also contain some item missings, and the INKAR data are 

aggregated to a high level. None of the auxiliary variables is substantially correlated with survey 

response (with the exception of the interviewer observation social class for response to the online 

profile survey). Therefore, no single group of auxiliary data has substantial predictive power in the 

survey response models across the GIP recruitment steps. 

I conclude from this study that no type of auxiliary data adds substantial value to predicting the 

recruitment success of the GIP. One potential reason for this might be that there is little nonresponse 

bias in the GIP recruitment. Other publications on the GIP recruitment, however, indicate some 

misrepresentation. When comparing survey estimates to benchmark data from official statistics, 

Blom et al. (2016) find, for example, that there is some misrepresentation on socio-demographic 

characteristics, such as age and education. 
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My study focused on the utility of auxiliary data for predicting survey response across the 

recruitment steps of a probability-based online panel. Because this study focuses on the level of the 

sampled households, correlations with substantive survey findings on the individual level are not 

considered here. Future research may extend this analysis and look into the association of auxiliary 

data with substantive survey variables. The auxiliary data I examined in my study might, for instance, 

still be useful for nonresponse adjustment weights if they are highly correlated with substantive 

survey variables. 

Generally, auxiliary data can meaningfully contribute to survey operational tasks, such as eligibility 

screening and fieldwork monitoring, as well as post-survey nonresponse adjustments, such as 

weighting and imputations. In light of decreasing response rates and rising concerns about 

nonresponse bias and cost efficiency, these tasks are gaining in importance. However, I conclude 

from my study that the currently available auxiliary data should be used with caution because they 

might lack in general quality and they might not be predictive of survey response. These problems 

with the auxiliary data can compromise their use in survey operational tasks and adjustment 

procedures. My study shows that concerns about quality and predictive value of auxiliary data are 

justified and that the problems apply to a variety of commonly used types of auxiliary data. I 

therefore conclude from this research that the search for high quality auxiliary data that is predictive 

of survey response needs to continue to be able to satisfy the need for such auxiliary data in survey 

practice. 
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Paper 4 

Response quality in nonprobability and probability-based online 

panels26 

Abstract 

Recent years have seen a growing number of studies investigating the accuracy of nonprobability 

online panels; however, response quality in nonprobability online panels has not yet received much 

attention. To fill this gap, we investigate response quality in a comprehensive study of seven 

nonprobability online panels and three probability-based online panels, which were all collected in 

Germany during the same fieldwork period. Three response quality indicators typically associated 

with survey satisficing are assessed: straight-lining in grid questions, item nonresponse, and midpoint 

selection in visual design experiments. Our results show that there is significantly more straight-lining 

in the nonprobability online panels. However, contrary to our expectations, there is no generalizable 

difference between nonprobability online panels and probability-based online panels with respect to 

item nonresponse. Finally, neither respondents in nonprobability online panels, nor respondents in 

probability-based online panels are significantly affected by the visual design of the midpoint of the 

answer scale. 
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1. Introduction

The past decade has seen increasing debate about the quality of nonprobability online panels. This 

debate has primarily circled around whether or not these panels provide representative sets of 

respondents (see for example Smith 2003; Malhotra and Krosnick 2007; Loosveldt and Sonck 2008; 

Chang and Krosnick 2009; Baker et al. 2010; Yeager et al. 2011; Legleye et al. 2015; Pasek 2016). The 

apprehension of some researchers is that a biased subgroup of the population self-selects into 

nonprobability online panels (Malhotra and Krosnick 2007; Loosveldt and Sonck 2008; Chang and 

Krosnick 2009; Yeager et al. 2011; Pasek 2016; and Pennay et al. 2016). Others argue that 

nonprobability online panels can accurately reflect the target population, especially after weighting 

(see Wang et al. 2015; Goel, Obeng, and Rothschild 2015; and Kennedy, Keeter, and Weisel2016). 

However, while the number of publications on nonprobability panel accuracy is increasing, less 

attention has been paid to response quality in nonprobability panels (for notable exceptions see 

Chang and Krosnick 2009; Greszki, Meyer, and Schoen 2014; and Hillygus, Jackson, and Young 2014). 

This is surprising, because one might argue that, since their respondents participate in the panel 

mainly for monetary reasons (see for example GreenBook 2017), nonprobability online panel 

respondents may be less committed to the panel in terms of response quality. The focus on 

monetary rewards among the respondents is encouraged by the nonprobability online panel 

advertising industry that recruits the panel members. With advertising slogans like “Earn Cash With 

Quick Paid Surveys!” (www.quickpaysurvey.com), “Make Money Online With Paid Surveys” 

(www.cashcrate.com) or “Take surveys for cash” (www.takesurveysforcash.com) advertisers try to 

attract as many internet users as possible. Being attracted to the online panel by the promise of easy 

money for little effort, nonprobability online panel respondents may show different care in 

answering survey questions than respondents that were recruited into an online panel by 

probability-based offline recruitment methods, independent of their socio-demographic 

characteristics. And consequently, response quality might differ between nonprobability and 

probability-based online panel respondents. 

http://www.cashcrate.com/
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In this paper, we investigate whether there is a difference in response quality between survey 

participants in nonprobability online panels and probability-based online panels. For this purpose we 

look into three indicators that are often associated with response quality in the context of survey 

satisficing: straight-lining, item nonresponse, and midpoint selection. 

2. Respondent motivation and survey satisficing

Most social research based on survey data relies on the assumption that respondents answer the 

survey questions to the best of their ability. This requires the respondents to carefully carry out all 

the cognitive steps involved in answering a survey question. According to Tourangeau, Rips, and 

Rasinski (2000) cognitive response processing consists of four steps: question comprehension, 

information retrieval, judgment and estimation, and reporting an answer. Data analysts typically 

assume that all four response steps were carefully carried out by all respondents, i.e. that 

respondents optimize survey responses. Respondents, however, sometimes take short-cuts through 

the optimal cognitive response process. This behavior is called satisficing (Krosnick and Alwin 1987). 

Krosnick (1991) defines two types of satisficing: weak satisficing and strong satisficing. Weak 

satisficing occurs when respondents execute all cognitive steps that are necessary to arrive at a 

response, but they do so only superficially. They might, for instance, read a question text carefully 

but skip the accompanying instruction text. Alternatively, when presented with a list of answer 

options they might choose the first option that approximately fits their opinion without considering 

further answer options that might fit their opinion even better. Because weak satisficers carry out 

the response steps superficially, unmeaningful decision-making cues, like the visual design of an 

answer scale, can influence their responses. 

While weak satisficers still carry out all four cognitive response steps, even if they do so superficially, 

strong satisficers do not or only partially carry out the response steps. Respondents might, for 

instance, process only just enough information to arrive at a response that they consider generally 

reasonable without reading and considering the question carefully, or without searching their 



155 

memories and retrieving the relevant information. This strategy results in either no responses at all, 

unmeaningful answers, nonsubstantive answers, or undifferentiated answers. 

According to satisficing theory, there is a continuum of cognitive thoroughness of responses with 

perfectly optimized responses at one end of the continuum and strongly satisficed responses at the 

other end (see Krosnick 1991). Respondents can be in different positions on the continuum, with 

some being generally thorough in all of their responses and others being generally less careful in 

their responses (for empirical proof see Krosnick 1992; Narayan and Krosnick 1996; Knäuper 1999; 

Malhotra 2008; and Kaminska, McCutcheon, and Billiet 2010). In addition to this interpersonal 

variation, there can be intra-personal variation in the level of satisficing observed during an 

interview, for example when respondents fatigue during a long interview. 

According to Krosnick (1991), there are three factors that largely influence the occurrence and 

degree of satisficing: task difficulty, respondent ability, and respondent motivation. Task difficulty 

refers to the cognitive effort needed to answer a question optimally. The task difficulty depends on 

the complexity of a question and of the information asked for. When a question contains many 

words, long words, and/or uncommon or ambiguous terms, satisficing is more likely to occur than 

when questions are short, precise, and easy to comprehend (for empirical proof see for example 

Alwin and Krosnick 1991). Similarly, when a question asks respondents to evaluate multiple items or 

answer on a long, unlabeled scale, satisficing is more likely than when a question asks for the 

evaluation of only one item and provides few fully labeled answer options (see also Krosnick and 

Berent 1993; and Krosnick 1999). 

Respondent ability refers to the competences and skills involved in answering survey questions. It 

includes cognitive abilities, such as cognitive sophistication, the amount of practice in thinking about 

a topic, and attitude strength, as well as practical abilities, such as the ability to process and 

communicate answers. In self-administered questionnaires, respondent ability also includes reading 

and writing skills. Furthermore, in web surveys, computer literacy and technological skills necessary 
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to start and navigate through the survey are important aspects of respondent ability (for empirical 

proof on satisficing in web surveys see for example Toepoel et al. 2009). Satisficing is more likely to 

occur when a respondent has low cognitive abilities and may therefore have problems 

comprehending the question (see also Krosnick and Alwin 1987; Krosnick 1992; Narayan and Krosnick 

1996; and Kaminska et al. 2010). 

The respondents’ motivation determines how much effort they are willing to invest in answering a 

question. To some extent, respondent motivation is a personality characteristic that is related to a 

person’s need for cognition (for information on the concept of need for cognition see Cacioppo and 

Petty 1982). Satisficing is more likely to occur if respondents have low need for cognition (see 

Kaminska et al. 2010). Respondents with high need for cognition have an intrinsic motivation to fill 

out the questionnaire carefully, because they generally enjoy thinking about questions and have fun 

expressing their opinions. High interest in a survey topic and the perceived importance of a survey 

can have a substantial impact on respondent motivation at the start of the survey (see also Groves, 

Presser, and Dipko 2004; Stoop 2005). However, respondent motivation may decrease over the 

course of the interview. Therefore, satisficing is more likely towards the end of a survey, especially in 

long surveys, than towards the start and in short surveys (see also Krosnick et al. 2002). 

3. Measuring satisficing

Thus, according to Krosnick (1991), the combination of task difficulty, respondent ability, and 

respondent motivation explains the occurrence and amount of satisficing. In our analyses, we keep 

task difficulty constant across panels by including exactly the same questions across all of the panels. 

In addition, we aim to keep respondent ability constant across panels by applying the same weighting 

procedure to all samples and thus controlling for sample composition differences in socio-

demographic characteristics. 

Regarding respondent motivation, we expect the nonprobability panel participants to be motivated 

mainly by the monetary incentives that they receive in their respective panels. Thus, we expect them 
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to minimize effort in order to maximize their incentive-by-effort ratio. This expectation is supported 

by studies that demonstrate the importance of monetary incentives for nonprobability online panel 

members. For instance, in a study on the motives for joining nonprobability online panels, Keusch, 

Batinic, and Mayerhofer (2014:179) find that when asked to select all of their motives for 

participation, 40% of panelists indicated they “wanted to earn some extra money”. In addition, 

“monetary motives had the strongest correlation with survey participation” for nonprobability online 

panel participants (Keusch et al. 2014:185). Similarly, Sparrow (2006:5) finds that 52% of the new 

members of a nonprobability online panel participate because it is “an enjoyable way to earn 

money” as opposed to 20% who join because they “thought they would be interested in the topics 

covered”, and 19% who “enjoy answering questions”. 

The probability-based online panelists are less driven by monetary incentives. For instance, analyzing 

survey data on the respondents’ most important reason to participate in the Dutch LISS Panel27, a 

probability-based online panel of the general population in the Netherlands, we find that 16.4% of 

the respondents participate in the panel because they “find it important to contribute to science”. 

The financial reward is only stated as the most important reason for participating by 15.2% of 

respondents. Furthermore, for the German Internet Panel (GIP28), a probability-based online panel of 

the German general population, we observe that about 13% of panelists even waive their incentive 

and choose to donate it to charity instead. 

We, therefore, expect the share of people who care about giving optimized answers to be lower, and 

thus the amount of satisficing behavior to be higher, in the nonprobability online panels than in the 

probability-based online panels. To investigate differences in response quality across nonprobability 

and probability-based online panels, we examine three indicators of satisficing: straight-lining in grid 

questions, item nonresponse, and midpoint selection in a visual design experiment. In the following, 

we discuss the theoretical and empirical background in the literature of each of these indicators. 

27 www.lissdata.nl 
28 http://reforms.uni-mannheim.de/internet_panel 
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3.1 Straight-lining 

The term straight-lining refers to the tendency of respondents to choose the same or a very similar 

answer option for each item in a grid (see Schonlau and Toepoel 2015). This phenomenon is 

sometimes also referred to as “non-differentiation” (see Malhotra, Miller, and Wedeking 2014). 

Straight-lining is a strong form of satisficing. It occurs in self-administered questionnaires, because 

the grid format provides a visual cue that triggers a specific type of cognitive shortcut: While for the 

first item of the grid respondents might still carry out all the cognitive steps necessary to arrive at an 

optimized response, the grid format suggests that the same answer will also be acceptable for the 

following items. Therefore, some respondents might abandon the full cognitive response processing 

in favor of a shortcut and give the same (or a very similar) answer to all other grid items. Research 

suggests that avoiding grid questions and asking each question separately instead, preferably with 

only one question per screen, can prevent straight-lining (see Couper, Traugott, and Lamias 2001; 

and Couper 2008). 

3.2 Item nonresponse 

Like straight-lining, item nonresponse is a form of strong satisficing. Respondents who choose this 

satisficing strategy skip one or all of the cognitive response steps. In a web survey, respondents 

might not read the question text carefully and click on the “next”-button instead, in order to get to 

the end of the questionnaire more quickly. If they read the question carefully, they might still not be 

willing or able to go through the necessary information retrieval or the judgement and estimation 

processes. There are two types of item nonresponse: question skipping (QS) and giving a 

nonsubstantive answer, i.e. answering “don’t know” (DK) or “don’t want to say” (DWS). 

Nonsubstantive responses require some cognitive effort because respondents have to at least 

browse through the answer options or look for other visual design cues that lead them to the DK or 

DWS answer category. Relative to nonsubstantive responses, QS is a much stronger type of 

satisficing, because when choosing to skip a question altogether respondents do not engage in any 

kind of cognitive response process. 
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A potential drawback to using nonsubstantive answers as a satisficing indicator is that respondents 

may carry out all the necessary response steps and in the end still decide to choose a nonsubstantive 

response, for example because they honestly do not know the answer to a question (Converse 1974; 

Schuman and Presser 1981; and Sturgis, Roberts, and Smith 2014). With respect to “no opinion” 

answers, Krosnick et al. (2002), however, show that respondents with low levels of education are 

more likely to choose this answer option suggesting that people are more likely to choose “no 

opinion” responses when they perceive the processes of producing an optimal response as 

cumbersome. Furthermore, the authors find that the amount of “no opinion” answers increases with 

interview duration, suggesting that respondent motivation decreases towards the end of the 

interview resulting in less willingness to engage in the cognitive effort necessary to produce an 

optimal response. These findings are supported by further research (see for example Bradburn and 

Sudman 1988; Feick 1989; Gilljam and Granberg 1993; Fowler and Cannell 1996; and Holbrook, 

Green, and Krosnick2003). 

3.3 Midpoint selection 

The midpoint of a scale provides a superficial visual cue in self-administered questionnaires. 

Following Krosnick’s (1991) reasoning, some respondents might satisfice by selecting the middle 

category while optimizing respondents are not influenced by this visual cue and instead choose the 

answer option that best represents their “true” answer after carrying out all the necessary cognitive 

steps. Specifically, Krosnick and Fabrigar (1997:147) argue that “many people […] might select an 

offered midpoint because it provides an easy choice that requires little effort and is easy to justify”. 

On the continuum of cognitive thoroughness, midpoint selection can be interpreted as a weaker 

form of satisficing than straight-lining and item nonresponse when we assume that respondents go 

through the necessary response steps but are influenced in their decision by the visual design cue 

that the scale midpoint provides. Tourangeau, Couper, and Conrad (2004) show that, generally, the 

visual midpoint rather than the conceptual midpoint shapes the response distribution. Their 

explanation is that “the visual midpoint is seen as providing a benchmark, representing either the 
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conceptual midpoint of the scale or the most typical response” (Tourangeau et al. 2004:390). 

Following satisficing theory, it is likely that satisficing respondents choose the visual midpoint to 

reduce the cognitive effort needed to evaluate the other response options against this midpoint. This 

behavior would constitute a shortcut to the information retrieval and/or the judgement and 

estimation processes. Therefore, the selection of the visual midpoint may be used as an indicator of 

satisficing behavior (see also Kaminska et al. 2010; and Malhotra et al. 2014). 

4. Online panel data

In this paper, we assess response quality among respondents in ten online panels (see Table 1). 

Three of them are probability-based online panels: the German Internet Panel (GIP), the GESIS Panel 

(GP), and one commercial probability-based online panel. The remaining seven are commercial 

nonprobability online panels. In each of the online panels, we fielded the same short multi-topic 

survey. In the following, we describe the various online panels and the study that we implemented in 

more detail. 

Table 1: Panel characteristics 

Panel
29 

Type Sampling Recruitment Offline households Fieldwork period N 

GIP Academic Probability Face-to-face Yes 1-31 March 2015 3075 

GP Academic Probability Face-to-face Yes 18 Feb14-April 2015 2533 

1 Commercial Probability Telephone No 1-31 March 2015 1012 

2 Commercial Nonprobability Online No 5-18 March 2015 1038 

3 Commercial Nonprobability Online No 2-11 March 2015 999 

4 Commercial Nonprobability Online No 1-18 March 2015 1002 

5 Commercial Nonprobability Online No 2-16 March 2015 1000 

6 Commercial Nonprobability Online No 25 March-1 April 2015  1000 

7 Commercial Nonprobability Online No 3-9 March 2015 994 

8 Commercial Nonprobability Online No 5-11 March 2015 1000 

4.1 The GIP 

The GIP is based on a three‐stage stratified probability area sample with subsequent face-to-face 

recruitment interviews. At the first sampling stage, a random sample of areas is drawn from a 

29Data collection in the GIP, GP, and Panel 1 was free of charge. The other panels are sorted by cost 
with Panel 8 being the most expensive panel. 
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database that covers all areas in Germany. Within each primary sampling unit (PSU), listers record 

every household along a predefined random route until they have listed 200 households. 

Subsequently, a random sample of households is drawn to be interviewed in face-to-face recruitment 

interviews. All age‐eligible members of sampled households are invited to become online panelists 

(Blom, Gathmann, and Krieger 2015). Furthermore, the GIP covers individuals without computer 

and/or internet access by equipping them with the necessary devices (see Blom et al. 2017). All panel 

members are invited bi-monthly to participate in an online interview of about 20‐25 minutes on a 

diversity of social, economic, and political topics. For the analyses in this paper, we used wave 16 of 

the GIP. It had a completion rate30 of 69.8 percent and a cumulative response rate31 of 14.3 percent. 

Although the GIP covers the German population aged 16 to 75, we only use data from individuals 

that were aged 18 to 70 to make the data comparable across all panels in this study. 

4.2 The GP 

The GP is based on a two-stage stratified probability sample from population registers and 

subsequent face-to-face recruitment interviews. At the first sampling stage, the GP draws a random 

sample of areas from a database of municipalities in Germany. Then, the GP samples individuals from 

the local population registers within each of the sampled PSUs. Because 10 sampled municipalities 

refused to cooperate with the GP sampling request, these PSUs had to be substituted (see Bosnjak et 

al. 2017). Subsequently, the sampled individuals were contacted for face-to-face recruitment 

interviews. All interviewed individuals were invited to become panelists. Furthermore, the GP 

includes the offline population via paper-and-pencil mail surveys. Internet users that prefer to 

participate offline instead of online are also provided with paper-and-pencil mail surveys. All panel 

members of the GP are invited to participate in bi-monthly interviews of about 20 minutes on a wide 

30 Based on AAPOR Standard Definitions (AAPOR 2016); completion rate (COMR) = number of wave 
participants divided by the number of recruited panel members. 
31 Based on AAPOR Standard Definitions (AAPOR 2016); cumulative response rate (CUMRR) = number 
of wave participants divided by the number of eligible persons 
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variety of topics. For the analyses in this paper, we used wave ca of the GP. It had a completion rate32 

of 50.5 percent and a cumulative response rate33 of 19.5 percent. The age range covered in the GP is 

18 to 70 years. 

In our study, we exclude the GP mail respondents because the potential mode effect might bias our 

results (see for example Green, Krosnick, and Holbrook 2001; and Holbrook et al. 2003 for evidence 

on differences in satisficing by mode). 

4.3 Panel 1 

Panel 1 is a commercial probability-based online panel. To recruit panel members, the panel draws 

its sample from Random Digit Dialing (RDD) telephone surveys conducted in-house by the same 

company. Individuals interviewed in an RDD telephone interview are subsequently invited to join the 

panel for regular online interviews. Panel 1 does not cover the offline population. For our study, 

Panel 1 drew a quota sub-sample from its probability-based respondent pool. 

4.4 The nonprobability online panels: Panel 2 - Panel 8 

For the recruitment of the nonprobability online panels, we published a call for tender in November 

2014. The call for tender explained that we sought to implement a 10‐minute questionnaire about 

traffic, politics, and health among 1,000 respondents that should be representative of the German 

population aged 18 to 70 years of age. The call further announced that the data were to be collected 

in March 2015. Regarding further design decisions (application of quotas, provision of weights, etc.) 

the panel providers were free to choose whichever approach they thought would provide the most 

representative data. 

In response to our call, we received 17 tenders for conducting the specified survey. Out of these, 16 

survey providers explicitly offered a sample representative of the general population in Germany 

32 Completion rate = number of wave participants divided by the number of recruited panel 
members. 
33 Cumulative response rate = number of wave participants divided by the number of gross sample 
members. 
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aged 18 to 70. Seven providers were considered fit for our purpose as well as within reasonable 

budgetary limits. We therefore commissioned them with collecting our data. The costs quoted for 

conducting the wave analyzed in this paper plus two additional waves conducted in half-year 

intervals varied widely across the panels (see Appendix A for details). In the following, the 

nonprobability online panels are numbered from 2 to 8 in sequence of ascending costs. 

5. Methods

To assess differences in the amount and type of satisficing between the nonprobability online panels 

and the probability-based online panels, we consider three satisficing indicators: straight-lining in 

grids, item nonresponse, and midpoint selection in a visual design experiment. Their 

operationalization is described in the following. Information on the question texts and answer scales 

of the questions we used in our analyses can be found in Appendix B. 

5.1 Straight-lining 

To assess straight-lining in our questionnaire, we implemented two psychological short scales with 

four items each in grid format. We define respondents as straight-liners if they choose the same 

answer category for every item on at least one of the two grid questions. Based on the literature 

described above, we test the following hypothesis: 

H1: In nonprobability online panels a higher proportion of respondents chooses to straight-line on grid 

questions than in probability-based online panels. 

To test this hypothesis, we compare the proportions of straight-liners and the respective confidence 

intervals around these estimates across the online panels. Furthermore, we apply   -tests to 

examine averages across the nonprobability and probability-based online panels. 

5.2 Item nonresponse 

Our questionnaire contained several possibilities for generating item nonresponse, all of which were 

implemented in the same way across all panels. In our analyses, we can differentiate between 
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different types of item nonresponse. At several questions, respondents were able to give 

nonsubstantive answers. At five questions we provided the nonsubstantive answer option “don’t 

know” (DK), at two questions we provided a “don’t want to say” (DWS) option, and at one question 

we provided both DK and DWS answer options. In addition, at each question, respondents were able 

to skip the question by clicking on the “next”-button, generating question skips (QS). Based on the 

literature described above, we test the following hypotheses: 

H2: In nonprobability online panels a higher proportion of respondents chooses to not provide any 

(substantive) response to a question than in probability-based online panels. 

H2a: In nonprobability online panels a higher proportion of respondents chooses to answer DK 

than in probability-based online panels. 

H2b: In nonprobability online panels a higher proportion of respondents chooses to answer DWS 

than in probability-based online panels. 

H2c: In nonprobability online panels a higher proportion of respondents chooses to skip a question 

than in probability-based online panels. 

For each type of item nonresponse, we generated a dichotomous variable that operationalizes 

whether a respondent chose this type of item nonresponse at least once during the survey. In 

addition, we generated a variable INR that operationalizes whether a survey respondent ever chose 

any type of item nonresponse during the survey as an overview statistic of item nonresponse. 

To test our hypotheses, we compare the proportions of each type of item nonresponse and the 

respective confidence intervals around these estimates across the online panels. Furthermore, we 

apply   -tests to examine averages across the nonprobability and probability-based online panels. 
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5.3 Midpoint selection 

We implemented a visual design experiment in our questionnaire to investigate whether 

respondents answer consistently across different answer scales. Four experimental conditions were 

randomly assigned to respondents. 

Condition 1: The conceptual midpoint was located at the visual midpoint. 

Condition 2: The answer scale contained a conceptual midpoint but no visual midpoint. 

Condition 3: The answer scale contained a visual midpoint but no conceptual midpoint. 

Condition 4: The answer scale contained neither a conceptual nor a visual midpoint. 

We conducted this experiment on two questions of our questionnaire and randomly assigned 

respondents independently at each question. The first question covered respondents’ perceived 

health. The second question concerns respondents’ opinion on environmental zones in cities34. 

We varied the presence of a conceptual midpoint by including a “neither nor” or “average” answer 

option in the scale versus excluding this conceptual midpoint. We vary the presence of a visual 

midpoint by leaving a gap between the substantive answer options and the “I don’t know” option 

versus not leaving a gap. The respective answer scales are depicted in Table 2a and Table 2b. 

34 Environmental zones are areas in German cities, from which cars that emit high levels of respirable 
dust are banned. 
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Table 2a: Experimental conditions in the midpoint experiment on the 5-point scale 

Conceptual & 

visual midpoint 

Conceptual 

midpoint only 

Visual midpoint 

only 

No midpoint 

Very good Very good Very good Very good 

Good Good Good Good 

Average Average Bad Bad 

Bad Bad Very bad Very bad 

Very bad Very bad DK 

DK DK 

DK 

Note: conceptual midpoint;  visual midpoint. 

Table 2b: Experimental conditions in the midpoint experiment on the 7-point scale 

Conceptual & visual 

midpoint 

Conceptual midpoint 

only 

Visual midpoint 

only 

No midpoint 

Very good Very good Very good Very good 

Good Good Good Good 

Rather good Rather good Rather good Rather good 

Neither good nor bad Neither good nor bad Rather bad Rather bad 

Rather bad Rather bad Bad Bad 

Bad Bad Very bad Very bad 

Very bad Very bad DK 

DK DK 

DK 

Note: conceptual midpoint;  visual midpoint. 
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As described in the literature above, we detect satisficing behavior when respondents are drawn to 

visual midpoints in self-completion questionnaires. Our experiment allows us to test the following 

hypotheses: 

H3:  In nonprobability online panels a higher proportion of respondents chooses an answer option 

located at the visual midpoint than in probability-based online panels.  

H3a: The difference between the proportion of respondents choosing the conceptual midpoint 

when it matches the visual midpoint (condition 1) and the proportion of respondents 

choosing the conceptual midpoint when there is no visual midpoint (condition 2) will be 

higher in nonprobability online panels than in probability-based online panels. 

H3b: The difference between the proportion of respondents choosing an answer option when it is 

located at the visual midpoint (condition 3) and the proportion of respondents choosing the 

same answer option when it is not located at the visual midpoint (condition 4) will be higher 

in nonprobability online panels than in probability-based online panels. 

We apply   -tests to examine averages across the nonprobability and probability-based online 

panels. For each of the estimates in our analyses, we obtained bootstrapped standard errors by 

pooling results across 100 variance-covariance matrices. 

6. Results

We examine whether there are significant differences in response quality between nonprobability 

online panels and probability-based online panels based on our hypotheses on the satisficing 

indicators described (straight-lining, item nonresponse, and midpoint selection in a visual design 

experiment). 

6.1 Straight-lining 

With regard to our hypothesis that a higher proportion of respondents chooses to straight-line on 

grid questions in nonprobability online panels than in probability-based online panels (H1), we 
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indeed find significantly more straight-lining in the nonprobability panels than in the probability-

based panels (on average 13.4% and 6.5%, respectively;    1 =152.7, p=0.00). 

When investigating the online panels in detail (see Figure 1), we find that in each of the 

nonprobability online panels, straight-lining is considerably more prevalent (between 10.2% in Panel 

2 and 16.2% in Panel 5) than in the probability-based online panels (between 3.1% in GP and 9.2% in 

GIP). In fact, two of the probability-based online panels (GP and Panel 1) show significantly less 

straight-lining than the best nonprobability online panel (Panel 2). 

Figure 1: Proportion of straight-liners across panels (bars); bootstrapped 95% confidence intervals (spikes) 

6.2 Item nonresponse 

Regarding our hypothesis that a higher proportion of respondents chooses to not provide any 

(substantive) response to a question in nonprobability online panels than in probability-based online 

panels (H2), we find no generalizable evidence in support of our item nonresponse hypotheses 

across the three types of item nonresponse (DK, DWS, QS). 

When examining INR as an overall measure of item nonresponse that operationalizes the broader 

hypothesis H2 (see INR bars in Figure 2), we find that, contrary to our expectations, a significantly 

lower proportion of respondents chose any type of item nonresponse at least once in the 

nonprobability online panels compared to the probability-based online panels (29.2% versus 31.7% 

respectively;    1 =9.7, p=0.00). In the following, we explore the different types of item 

nonresponse (DK, DWS, QS) in more detail based on our hypotheses 2a to 2c. 
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Figure 2: Proportion of item nonresponse in probability-based and nonprobability panels (bars); bootstrapped 95% 
confidence intervals (spikes) 

With regard to our hypothesis that a higher proportion of respondents chooses to answer DK in 

nonprobability online panels than in probability-based online panels (H2a), we find that, contrary to 

our expectations, the nonprobability online panel respondents chose to answer DK at least once 

significantly less often than the probability-based online panel respondents (17.6% versus 14.8%, 

   1 =16.6, p=0.00, see DK bars in Figure 2). 

However, looking at the proportions of DK across the online panels in detail (see left part of Figure 3), 

we find high variability in the proportion of people who chose DK at least once in the nonprobability 

online panels (between 9.1% in Panel 4 and 17.8% in Panel 7) as well as the probability-based online 

panels (between 15.4% in Panel 1 and 20.8% in GP). While we observe significantly more 

respondents in the GP and significantly fewer in Panel 4 answered DK at least once, the overall 

variability across the panels is so large that any differences between probability-based and 

nonprobability online panels seem coincidental. 
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Figure 3: Proportion of DK, DWS, and QS across panels (bars); bootstrapped 95% confidence intervals (spikes) 

Regarding our hypothesis that a higher proportion of respondents chooses to answer DWS in 

nonprobability online panels than in probability-based online panels (H2b), we find that there is no 

significant difference in the proportions of respondents that chose DWS at least once between the 

nonprobability online panels and the probability-based online panels (15.7% versus 15.5%, 

   1 =0.09, p>0.1). 

Examining the proportions of DWS across the online panels in detail (see middle part of Figure 3), we 

also do not find any generalizable evidence that may distinguish nonprobability online panels 

(between 10.3% in Panel 4 and 22.1% in Panel 3) from probability-based online panels (between 

13.8% in GP and 17.4% in GIP). 

With regard to our hypothesis that a higher proportion of respondents chooses to skip a question in 

nonprobability online panels than in probability-based online panels (H2c), we find no significant 

difference between nonprobability online panels and probability-based online panels (2.4% versus 

2.8%,    1 =1.91, p>0.1). 

When we examine QS across panels in detail (see right part of Figure 3), we also find no generalizable 

pattern of differences between the nonprobability online panels (between 0.0% in Panel 4 and Panel 
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6 and 8.4% in Panel 2) and the probability-based online panels (between 0.6% in Panel 1 and 6.9% in 

GP). 

Overall, we find that there is great variability across the online panels with regard to the amount and 

type of item nonresponse. This variability cannot be attributed to the sampling design of the panels 

because while Panel 3 has the highest proportion of general INR and also the highest proportion of 

respondents who answered DWS at least once, the GP has the highest proportion of respondents 

who answered DK at least once, and Panel 2 has the highest proportion of QS. 

6.3 Midpoint selection 

In Table 3, we present the results of our experiment on the influence of the answer scale design on 

the selection of the visual midpoint. Contrary to our hypothesis on midpoint selection (H3), we find 

no significant difference between nonprobability online panels and probability-based online panels in 

the effect of the visual design of the scale on midpoint selection. In the following, we investigate the 

differences in midpoint selection across nonprobability online panels and probability-based online 

panels in more detail based on our hypotheses 3a and 3b. 

Table 3: Proportions and absolute numbers of respondents in the middle category by experimental group in probability-
based online panels and nonprobability online panels   

5-point scale 7-point scale 
Non-

probability 
Probability-

based 
Non-

probability 
Probability-

based 
% N % N % N % N 

Hypothesis 3a 
Condition 1: Conceptual 
midpoint matches visual 
midpoint 

28.5 500 26.7 444 17.1 299 15.2 254 

Condition 2: Conceptual 
midpoint but no visual 
midpoint 

27.6 493 26.3 432 16.3 288 18.4 298 

Difference between 
conditions 1 and 2 

0.8 7 0.4 12 0.7 11 -3.2 -44 

Hypothesis 3b 
Condition 3: Visual 
midpoint 

14.7 254 9.2 154 10.4 181 11.7 196 

Condition 4: No 
midpoint 

14.0 246 11.9 194 11.6 205 10.6 175 

Difference between 
conditions 3 and 4 

0.7 8 -2.7 -40 -1.2 -24 1.1 21 
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With regard to our hypothesis that the difference between the proportion of respondents choosing 

the conceptual midpoint when it matches the visual midpoint (condition 1) and the proportion of 

respondents choosing the conceptual midpoint when there is no visual midpoint (condition 2) will be 

higher in nonprobability online panels than in probability-based online panels (H3a), we find that the 

difference in proportions is not significantly higher in the nonprobability online panels than in the 

probability-based online panels (0.8%-points and 0.4%-points respectively on the 5-point scale, 

  (1)=0.01, p>0.1; 0.7%-points and -3.2%-points respectively,   (1)=-0.05, p>0.1; on the 7-point 

scale). This indicates that respondents in nonprobability online panels are not more influenced by the 

visual design of the midpoint than respondents in probability-based online panels. 

Regarding our hypothesis that the difference between the proportion of respondents choosing an 

answer option when it is located at the visual midpoint (condition 3) and the proportion of 

respondents choosing the same answer option when it is not located at the visual midpoint 

(condition 4) will be higher in nonprobability online panels than in probability-based online panels 

(H3b), we find that the difference in proportions is not significantly higher in the nonprobability 

online panels than in the probability-based online panels (0.7%-points and -2.7%-points respectively 

on the 5-point scale,   =0.24, p>0.1; -1.2%-points and 1.1%-points respectively,   =0.05, p>0.1; on 

the 7-point scale). In accordance with our findings from H3a, the findings on hypothesis H3b also 

indicate that respondents in nonprobability online panels are not more influenced by the visual 

design of the midpoint than respondents in probability-based online panels. 

Furthermore, when examining the results of the experiment in each of the online panels (see Table 

C1 in Appendix C) we find that the visual design of the midpoint has no effect. Exceptions are three of 

the nonprobability online panels (Panel 5, Panel 6, and Panel 7), where we find a weakly significant 

effect in one comparison of experimental conditions each, but given the number of effects tested, 

this may well be just by chance. 
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6.4 Response quality and costs 

Table A1 in Appendix A shows the total costs for data collection in the commercial online panels. 

Panel 1 participated without billing any costs. All other commercial online panels costed different 

amounts of money ranging from 5,392.97€ in Panel 2 to 10,676.44€ in Panel 8. There is no indication 

that the more costly panels perform better than the less costly panels in terms of data quality. For 

example, Panel 2 as the least costly commercial online panel has a slightly lower proportion of 

straight-lining, DK answers, and DWS answers than Panel 8 as the most costly commercial online 

panel. Panel 8, however, has a lower percentage of QS answers than Panel 2. Regarding the midpoint 

design experiment, both Panel 2 and Panel 8 do not show any significant differences across 

experimental subgroups. We therefore conclude that there is no association between costs and 

response quality. 

7. Discussion

In this paper, we investigate the effect of respondent motivation on response quality in 

nonprobability and probability-based online panels. In our study, we implemented the same survey 

across ten online panels (seven nonprobability online panels and three probability-based online 

panels) during the same fieldwork period. In our analysis, we used three satisficing indicators: 

straight-lining in grid questions, item nonresponse, and midpoint selection in a visual design 

experiment. These indicators are associated with different degrees of satisficing. This research design 

provides us with a uniquely rich database for comparisons of response quality across online panels. It 

allows us to answer the question of whether the more incentive-oriented motivation of 

nonprobability online panel respondents negatively influences the quality of responses in 

comparison with respondents in probability-based online panels. 

Overall, we find that response quality is worse in the nonprobability online panels than in the 

probability-based online panels with regard to straight-lining, but neither item nonresponse nor 

midpoint selection are differentially affected. In the following, we summarize and discuss the findings 

on each of our hypotheses in more detail. 
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In our study, we find evidence in support of our first hypothesis. Overall, there is significantly more 

straight-lining in the nonprobability online panels than on the probability-based online panels (13.4% 

versus 6.5%). When we examine the panels individually, we find that there is more straight-lining in 

all of the nonprobability online panels than there is in any of the probability-based online panels. 

These findings suggest that response quality is indeed lower in nonprobability online panels than in 

probability-based online panels, possibly due to a lower motivation to provide good answers in the 

former. 

When analyzing item nonresponse, we find no generalizable evidence for our second hypothesis. 

Nonprobability online panels do not score higher on any of the item nonresponse indicators (DK, 

DWS, and QS) investigated. On all types of item nonresponse there is, however, a substantial amount 

of variability in response quality across the online panels in general. 

In fact, contrary to our hypothesis H2a, we find that there are significantly less DK responses in 

nonprobability online panels than in probability-based online panels. This finding is, however, not 

consistent, but instead largely driven by one nonprobability panel (Panel 4) with a significantly lower 

proportion of DK answers than any other online panel, as well as one probability-based online panel 

(GP) with a significantly higher proportion of DK answers than all other online panels. 

This suggests that other factors than the nonprobability versus probability-based characteristic might 

influence the proportion of DKs across online panels. Thus answering DK might be used as a 

satisficing strategy, but may be related to other characteristics than a respondent’s motivation for 

participating in a panel. A potential explanation for the variability across online panels regarding DK 

responses might be question fatigue. In panels that use the questions from our survey (such as vote 

choice at the last general election) relatively often, respondents might defect from giving a 

substantive answer, while in panels that usually mainly conduct other types of surveys, for example 

on consumer surveys, respondents might still be willing to provide a substantive answer. Future 
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research will need to further investigate the reasons for the large variability in the proportion of DK 

answers across surveys. 

With respect to DWS responses, we find similarly high variability across the online panels (between 

10.3% in Panel 4 and 22.1% in Panel 3). Again, differences in DWS seem unrelated to the sampling 

design. In contrast, with respect to QS responses, we find considerably less variability. Many panels 

have either no QS at all or very little (between 0.3% and 1.3%). Only three panels have substantial 

amounts of QS (GP, Panel 2, and Panel 3). These differences in the proportion of QS found across 

panels may indicate that some online panels monitor question-skipping behavior and react to it in 

different ways (for example by excluding respondents that skip questions from the dataset or by 

probing respondents that skip questions), while other online panels do not take precautions against 

question-skipping. The GP, for instance, does not usually probe respondents who click on the “Next” 

button without responding to the question, while the default in GIP surveys is to softly probe 

respondents that try to skip a question. 

We also find no evidence in support of our third hypothesis. The difference in the proportion of 

visual midpoint answers is not significantly higher in the nonprobability online panels than in the 

probability-based online panels. This might be because generally the differences in visual midpoint 

answers are small across experimental conditions and panels. Overall, we see little effect of the 

visual design of the midpoint on response quality. 

Finally, we find that there is no association between response quality and survey costs across the 

nonprobability online panels. This means that investing in a more expensive panel does not 

automatically lead to better data. 

Our study is one of very few that explore differences between nonprobability and probability-based 

online panels with regard to response quality. While we only detect differences in terms of straight-

lining future studies will need to investigate whether our findings and null-findings replicate. Such 

replications will be particularly interesting with respect to the influence of the visual design of the 
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answer scale on midpoint selection reported in the literature (see for example Tourangeau et al. 

2004), because using our experimental design we could not replicate such an effect, neither for the 

nonprobability nor for the probability-based online panels. We therefore hope that our study 

encourages further research into the topic of response quality in nonprobability and probability-

based online panels. 
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Appendix A: Panel costs 
Table A1: Total costs for the commercial online panels (final costs paid for three waves of fieldwork including 19 percent 
VAT; costs for GIP, and GP samples not available, because the samples were not specifically contracted for this study; 
instead, the data are freely available as Scientific Use Files from their respective data archives) 

Panel Total Costs (€) 

1 Participated free of charge 

2 15,392.97 

3 15,618.57 

4 17,061.11 

5 17,411.00 

6 17,636.22 

7 18,380.46 

8 10,676.44 
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Appendix B: Question texts and answer scales by indicator 
Variable German English 

Environ-
mental 
zones 

Fragetext 
Wie ist Ihre Meinung zu Umweltzonen in Großstädten? 
Antworten 
Ich finde Umweltzonen in Großstädten … 
• sehr gut
• gut
• eher gut
• mittelmäßig
• eher schlecht
• schlecht
• sehr schlecht
• weiß nicht
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die entsprechende 
Antwort aus. Falls Sie keine Angabe machen möchten, klicken Sie bitte auf 
*Weiter*.

Question text 
What is your opinion regarding environmental zones in large cities? 
Answer options 
I think environmental zones in large cities are... 
• Very good
• Good
• Somewhat good
• Neither good nor bad
• Somewhat bad
• Bad
• Very bad
• Don't know
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer, click on *Next*. 

Driver's 
licence 
(yes/no) 

Fragetext 
Wurde Ihnen in Deutschland jemals ein Führerschein ausgestellt? 
Damit ist jeder in Deutschland gültige Führerschein beziehungsweise jede 
Fahrerlaubnis gemeint – unabhängig von der Fahrzeugklasse. 
Bitte wählen Sie auch „ja“ aus, wenn Sie Ihren Führerschein 
(vorübergehend) abgegeben haben. 
Antworten 
• ja
• nein
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 

Question text 
Did you ever receive a driver's license in Germany? 
By this we mean any driver's license that is valid in 
Germany -- irrespective of vehicle classes.  
Please also select "yes" if you have (temporarily) 
handed in your driver's license.  
Answer options 
• yes
• no
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the 
respective answer. If you do not want to give an 
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klicken Sie bitte auf *Weiter*. answer click on *Next*. 

Driver's 
licence 
(since 
1999) 

Fragetext 
Wurde Ihnen nach dem 1. Januar 1999 ein Führerschein ausgestellt? 
Hinweistext 
Das kann zum Beispiel sein, weil Sie... 
... einen neuen Führerschein gemacht haben,  
... Ihren Führerschein verloren hatten und er Ihnen neu ausgestellt wurde 
oder 
... Ihren Führerschein eingetauscht haben. 
Bei Führerscheinen, die in Deutschland nach dem 1. Januar 1999 neu 
ausgestellt wurden, handelt es sich um Kartenführerscheine, wie diesen: 

Quelle: Bundesdruckerei GmbH 
Antworten 
• ja
• nein
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Question text 
Did you receive a driver's license after January 1st, 1999?  
Help text 
This could be because you... 
... got a new driver's license, 
... lost your driver's license and received a new one, 
... swapped your driver's license. 
Driver's licenses that were issued after January 1st, 1999 are card 
driver's licenses that look like this:  

Source: Bundesdruckerei GmbH 
Answer options 
• yes
• no
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Driver's 
licence 
(foreign) 

Fragetext 
Hatten Sie jemals einen ausländischen Führerschein, mit dem Sie in 
Deutschland ein Auto fahren durften? 

Question text 
Did you ever have a foreign driver's license that allowed you to drive 
a car in Germany?  
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Hilfetext 
Bitte wählen Sie auch „ja“ aus, wenn Sie Ihren Führerschein 
(vorübergehend) abgeben mussten. 
Antworten 
• ja
• nein
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Help text 
Please also select "yes" if you have (temporarily) handed in your 
driver's license.  
Answer options 
• yes
• no
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Traffic 
violation 
points 

Fragetext 
Hatten Sie am 1. Januar 2015 Punkte für Verkehrsverstöße, also 
sogenannte Punkte in Flensburg?  
Und wenn ja, wie viele? 
Hilfetext 
Bitte geben Sie Ihre Punkte nach dem neuen System (gültig ab dem 1. Mai 
2014) an, Informationen dazu finden Sie in der Abbildung. Denken Sie 
auch daran, dass Punkte nach einer bestimmten Zeit wieder gelöscht 
werden. Geben Sie daher bitte nur die Punkte an, die Sie am 1. Januar 
2015 hatten. 

Bei dieser Frage können Sie nur eine Antwort geben. 
Antworten 

Question text 
Did you have traffic violation points on January 1st, 2015, that is to 
say the so-called "Punkte in Flensburg"? 
And if you did, how many did you have? 
Help text 
Please report the points in compliance with the new system (valid 
from May 1, 2014). You can find information on this in the figure 
below. Remember that points are deleted after a certain time. 
Please therefore only report points that you had on January 1st, 
2015. 

You can only select one answer to this question. 
Answer options 
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• 0 Punkte
• 1 Punkt
• 2 Punkte
• 3 Punkte
• 4 Punkte
• 5 Punkte
• 6 Punkte
• 7 Punkte
• 8 Punkte
• weiß nicht
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

• 0 points
• 1 point
• 2 points
• 3 points
• 4 points
• 5 points
• 6 points
• 7 points
• 8 points
• Don't know
Error message 
[IF no answer was given:] 
You did not yet give any answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Number 
of cars 

Fragetext 
Waren am 1. Januar 2015 auf Sie persönlich Autos zugelassen? Und wenn 
ja, wie viele? 
Damit meinen wir PKWs, bei denen Sie persönlich im Fahrzeugschein als 
Halter eingetragen waren. 
Bitte beziehen Sie dabei ausschließlich PKWs ein: Das sind Fahrzeuge zur 
Beförderung von Personen mit mindestens vier Rädern und mit höchstens 
acht Sitzplätzen außer dem Fahrersitz. Wohnmobile zählen zu PKWs, nicht 
eingeschlossen sind jedoch Wohnmobile auf LKW-Basis. 
Antworten 
• Nein, es war kein PKW auf mich persönlich zugelassen.
• Ja, auf mich persönlich waren PKWs zugelassen. Anzahl PKW: [offenes
Feld]  
Fehlermeldungen 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Question text 
Were there any cars registered in your name on January 1st, 2015? 
And if there were, how many were there?  
With this we mean automobiles for which you personally are 
registered as the owner in the vehicle registration certificate. 
Please exclusively take into account only automobiles: That is 
vehicles for transportation of persons with at least four wheels and a 
maximum of eight seats apart from the driver's seat. Recreational 
vehicles are automobiles, but recreational vehicles based on trucks 
are not included.  
Answer options 
• No, there weren't any cars registered in my name.
• Yes, there were cars registered in my name. Number of cars: [open
answer box]  
Error messages 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*.[IF answer 
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[WENN Antwort 2 „Ja, auf mich persönlich waren PKWs zugelassen. Anzahl 
PKW:“ angeklickt, aber keine Eingabe gemacht wurde] 
Bitte tragen Sie Ihre Antwort in das Feld ein. 
[WENN Eingabe in offenem Feld gemacht, aber andere Antwort angeklickt 
wurde]   
Sie haben „Nein, es war kein PKW auf mich persönlich zugelassen.“ 
ausgewählt und gleichzeitig eine Anzahl eingetragen. Bitte löschen Sie 
entweder diese Anzahl oder wählen Sie „Ja, auf mich persönlich waren 
PKWs zugelassen. Anzahl PKW:“ aus, damit Ihre Antwort eindeutig ist. 
[WENN keine ganze Zahl eingegeben wurde]  
Bitte tragen Sie eine ganze Zahl zwischen 0 und 99 ein. 

option 2 „Yes, there were cars registered in my name. Number of 
cars:“ was selected, but no entry was made:] 
Please enter an answer into the box.  
[IF an entry was made in the box but another answer selected:]   
You have selected „No, there weren't any cars registered in my 
name. “ and at the same time entered a number. Please either 
delete the number or select „Yes, there were cars registered in my 
name. Number of cars:“ to provide a distinctive answer. 
[IF no number was entered]  
Please enter a number between 0 and 99.  

Health Fragetext 
Was würden Sie sagen, wie ist Ihre Gesundheit im Allgemeinen? 
Antworten 
• sehr gut
• gut
• mittelmäßig
• schlecht
• sehr schlecht
• weiß nicht
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Question text 
What would you say, how is your health generally? 
Answer options 
• Very good
• Good
• Neither good nor bad
• Bad
• Very bad
• Don't know
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Health 
insurance 

Fragetext 
Sind Sie krankenversichert? 
Hilfetext 
Private Zusatzversicherungen für zusätzliche Leistungen sind nicht 
gemeint. 
Antworten 
Ja, und zwar ... 
... in einer gesetzlichen Krankenversicherung 

Question text 
Do you have any health insurance? 
Help text 
Additional private supplementary insurances are not meant. Answer 
options 
Yes, namely ... 
... in a public health insurance 
• own mandatory insurance
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• selbst pflichtversichert
• selbst freiwillig versichert
• als Familienangehörige/-r versichert
... in einer privaten Krankenversicherung 
• selbst versichert
• als Familienangehörige/-r versichert
• Nein, nicht krankenversichert
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

• own voluntary insurance
• insured as a family member
... in a private health insurance 
• own insurance
• insured as a family member
• No, not health insured
Error message 
[IF no answer was given:] 
You did not yet give any answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Height Fragetext 
Wie groß sind Sie? 
Antwort 
• Geben Sie bitte Ihre Größe in Zentimetern (cm) an: [offenes Feld]
• Keine Angabe
Fehlermeldungen 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 
[WENN Antwort „Geben Sie Ihre Größe in Zentimetern (cm) an:“ 
angeklickt, aber keine Eingabe gemacht wurde] 
Bitte tragen Sie Ihre Antwort in das Feld ein. 
[WENN Eingabe in offenem Feld gemacht, aber gleichzeitig „Keine 
Angabe“ angeklickt wurde] 
Sie haben „Keine Angabe“ ausgewählt und gleichzeitig eine Größe 
eingetragen. Bitte löschen Sie entweder die Größe oder wählen Sie 
„Geben Sie bitte Ihre Größe in Zentimetern (cm) an:“ aus, damit Ihre 
Antwort eindeutig ist. 
[WENN keine ganze Zahl eingegeben wurde]  
Bitte tragen Sie eine ganze Zahl zwischen 0 und 999 ein. 

Question text 
How tall are you? 
Answer options 
• Select height in centimeters (cm): [open box]
• No response
Error messages 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*.[IF answer 
„Select height in centimeters (cm):“ was selected, but no entry was 
made:] 
Please enter an answer into the box. 
[IF an entry was made in the box but at the same time "No 
response" was selected:] 
You selected "No response" and entered a height at the same time. 
Please either delete the height or select "Select height in 
centimeters (cm):" for the answer to be distinct. 
[IF no number was entered:]  
Please enter a number between 0 and 999. 



190 

Weight Fragetext 
Wie viel wiegen Sie? 
Antwort 
• Geben Sie bitte Ihr Gewicht in Kilogramm (kg) an: [offenes Feld]
• Keine Angabe
Fehlermeldungen 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 
[WENN Antwort „Geben Sie bitte Ihr Gewicht in Kilogramm (kg) an:“ 
angeklickt, aber keine Eingabe gemacht wurde] 
Bitte tragen Sie Ihre Antwort in das Feld ein. 
[WENN Eingabe in offenem Feld gemacht, aber gleichzeitig „Keine 
Angabe“ angeklickt wurde]   
Sie haben „Keine Angabe“ ausgewählt und gleichzeitig ein Gewicht 
eingetragen. Bitte löschen Sie entweder das Gewicht oder wählen Sie 
„Geben Sie bitte Ihr Gewicht in Kilogramm (kg) an:“ aus, damit Ihre 
Antwort eindeutig ist. 
[WENN keine ganze Zahl eingegeben wurde]  
Bitte tragen Sie eine ganze Zahl zwischen 0 und 999 ein. 

Question text 
How much do you weigh? 
Answer options 
• Please select a weight in kilogram (kg): [open box]
• No response
Error messages 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 
[IF answer „Please select a weight in kilogram (kg):“ was selected, 
but no entry was made:] 
Please enter an answer into the box. 
[IF an entry was made into the box but at the same time "No 
response" was selected:]   
You selected "No response" and entered a height at the same time. 
Please either delete the weight or select "Please select a weight in 
kilogram (kg):" for the answer to be distinct.  
[IF no number was entered:]  
Please enter a number between 0 and 999. 

Voter's 
recall 

Fragetext 
Welche Partei haben Sie bei der letzten Bundestagswahl am 22. 
September 2013 mit Ihrer Zweitstimme gewählt? 
Hilfetext 
Bei dieser Frage können Sie nur eine Antwort geben.  
Antworten 
• CDU/CSU
• SPD
• Die Linke
• Bündnis 90/Die Grünen
• FDP
• Piratenpartei

Question text 
What party did you vote for in the last general election on 
September 22nd, 2013?  
Help text 
For this question, you can only select one answer. 
Answer options 
• The Christian Democratic Union/Christian Social Union "CDU/CSU"
• The Social Democratic Party "SPD"
• The Left "Die Linke"
• The Greens "Bündnis 90/Die Grünen"
• The Free Democratic Party "FDP"
• Pirate Party "Piratenpartei"
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• AfD (Alternative für Deutschland)
• NPD
• eine andere Partei, und zwar: [offenes Feld]
• Ich war nicht wahlberechtigt.
• Ich habe nicht gewählt.
• Ich weiß es nicht mehr.
• Ich möchte es nicht sagen.
Fehlermeldungen 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 
[WENN Antwort 9 „eine andere Partei, und zwar“ angeklickt, aber keine 
Eingabe gemacht wurde] 
Bitte tragen Sie Ihre Antwort in das Feld ein. 
[WENN Eingabe in offenem Feld gemacht, aber andere Antwort angeklickt 
wurde]   
Sie haben einen Text in das Feld hinter der Antwort „eine andere Partei, 
und zwar:“ eingetragen und gleichzeitig eine andere Antwort ausgewählt. 
Bitte löschen Sie entweder den Text in diesem Feld oder wählen Sie die 
Antwort „eine andere Partei, und zwar:“ aus, damit Ihre Antwort eindeutig 
ist. 

• Alternative for Germany "AfD (Alternative für Deutschland)"
• National Democratic Party of Germany "NPD"
• Other party, please enter: [open box]
• Not eligible to vote.
• I didn’t vote.
• Don´t know.
• Don´t want to tell.
Error messages 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 
[IF answer 9 „Other party, please enter:“ was selected, but no entry 
was made:] 
Please enter an answer into the box. 
[IF an entry was made but no answer was selected:]   
You have entered text into the box after "Other party, please enter:" 
and at the same time selected an answer option. Please either 
delete the text in the box or choose the answer option "Other party, 
please enter:" to provide a distinct response. 

Party 
member-
ship 

Fragetext 
Sind Sie Mitglied in einer Partei? Und wenn ja, in welcher? 
Hilfetext 
Bei dieser Frage können Sie nur eine Antwort geben.  
Antworten 
• CDU/CSU
• SPD
• Die Linke
• Bündnis 90/Die Grünen
• FDP
• Piratenpartei

Question text 
Are you a member of a political party? And if you are, which one? 
Help text 
For this question you can only select one answer. 
Answer options 
• The Christian Democratic Union/Christian Social Union "CDU/CSU"
• The Social Democratic Party "SPD"
• The Left "Die Linke"
• The Greens "Bündnis 90/Die Grünen"
• The Free Democratic Party "FDP"
• Pirate Party "Piratenpartei"
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• AfD (Alternative für Deutschland)
• NPD
• eine andere Partei, und zwar: [offenes Feld]
• Ich bin in keiner Partei Mitglied.
• Ich bin ausschließlich in der Jugendorganisation einer Partei Mitglied.
• Ich weiß es nicht.
• Ich möchte es nicht sagen.
Fehlermeldungen 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 
[WENN Antwort 9 „eine andere Partei, und zwar“ angeklickt, aber keine 
Eingabe gemacht wurde] 
Bitte tragen Sie Ihre Antwort in das Feld ein. 
[WENN Eingabe in offenem Feld gemacht, aber andere Antwort angeklickt 
wurde]   
Sie haben einen Text in das Feld hinter der Antwort „eine andere Partei, 
und zwar:“ eingetragen und gleichzeitig eine andere Antwort ausgewählt. 
Bitte löschen Sie entweder den Text in diesem Feld oder wählen Sie die 
Antwort „eine andere Partei, und zwar:“ aus, damit Ihre Antwort eindeutig 
ist. 

• Alternative for Germany "AfD (Alternative für Deutschland)"
• National Democratic Party of Germany "NPD"
• Other party, please enter: [open box]
• I am not a party member.
• I am exclusively the member of a party youth organization.
• Don´t know.
• Don´t want to say.
Error messages 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 
[IF answer option 9 „Other party, please enter: “ was selected but no 
entry was made:] 
Please enter an answer into the box. 
[IF an entry was made but no answer was selected:]   
You have entered text into the box after "Other party, please enter:" 
and at the same time selected an answer option. Please either 
delete the text in the box or choose the answer option "Other party, 
please enter:" to provide a distinct response. 

Political 
interest 

Fragetext 
Wie stark interessieren Sie sich im Allgemeinen für politische Themen? 
Antworten 
• überhaupt nicht
• 
• 
• 
• 
•  
• 
• sehr stark

Question text 
How strongly are you generally interested in political topics? 
Answer options 
• not at all
• 
• 
• 
• 
•  
• 
• very strongly
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Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Big 5 Fragetext 
Nun kommen einige allgemeine Aussagen, die zur Beschreibung von 
Personen verwendet werden können. Diese Aussagen können auf Sie 
persönlich mehr oder weniger zutreffen.  
Bitte geben Sie bei jeder Aussage an, inwieweit die Aussage auf Sie selbst 
zutrifft. 
• Ich schenke anderen leicht Vertrauen, glaube an das Gute im Menschen.
• Ich habe nur wenig künstlerisches Interesse.
• Ich neige dazu, andere zu kritisieren.
• Ich habe eine aktive Vorstellungskraft, bin fantasievoll.
Antworten 
• trifft überhaupt nicht zu
• trifft eher nicht zu
• weder noch
• eher zutreffend
• trifft voll und ganz zu
Fehlermeldung 
[WENN in mindestens einer Zeile keine Angabe gemacht wurde] 
Sie haben in mindestens einer Zeile noch keine Antwort gegeben. Bitte 
suchen Sie die entsprechende(n) Antwort(en) aus. Falls Sie keine Angabe 
machen möchten, klicken Sie bitte auf *Weiter*. 

Question text 
Next, there are some general statements that can be used to 
describe a person. These statements can fit you more or less. 
How well do the following statements describe your personality? 
I see myself as someone who …  
• ... is generally trusting
• ... has few artistic interests.
• ... tends to find fault with others.
• … has an active imagination. 
Answer options 
• Disagree strongly
• Disagree a little
• Neither agree nor disagree
• Agree a little
• Agree strongly
Error message 
[IF no answer was given in at least one row:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Need for 
cognition 

Fragetext 
Die folgenden Aussagen können mehr oder weniger auf Sie zutreffen.Bitte 
geben Sie bei jeder Aussage an, inwieweit diese im Allgemeinen auf Sie 
persönlich zutrifft. 
• Es genügt mir einfach die Antwort zu kennen, ohne die Gründe für die
Antwort eines Problems zu verstehen. 

Question text 
These statements can fit you more or less. Please choose for every 
answer how much it fits you personally.  
Answer options 
• Simply knowing the answer rather than understanding the reasons
for the answer to a problem is fine with me. 
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• Ich habe es gern, wenn mein Leben voller kniffliger Aufgaben ist, die ich
lösen muss. 
• Ich würde kompliziertere Probleme einfachen Problemen vorziehen.
• In erster Linie denke ich, weil ich muss.
Antworten 
• trifft überhaupt nicht zu
• 
• 
• weder noch
• 
• 
• trifft voll und ganz zu
Fehlermeldung 
[WENN in mindestens einer Zeile keine Angabe gemacht wurde] 
Sie haben in mindestens einer Zeile noch keine Antwort gegeben. Bitte 
suchen Sie die entsprechende(n) Antwort(en) aus. Falls Sie keine Angabe 
machen möchten, klicken Sie bitte auf *Weiter*. 

• I prefer my life to be filled with puzzles that I solve.
• I would prefer complex to simple problems.
• I think primarily because I have to.
Answer options 
• Doesn’t apply at all
• 
• 
• Neither applies nor does not apply
• 
• 
• Applies completely
Error message 
[IF no answer was given in at least one row:] 
You did not yet give any answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 

Home-
owner 

Fragetext 
Bewohnen Sie Ihre Wohnung/ Ihr Haus als ... ? 
Hilfetext 
Bei mietfreier Bereitstellung Ihrer Wohnung, zum Beispiel durch 
Familienmitglieder oder durch Ihren Arbeitgeber (Werk-/Dienstwohnung), 
sind Sie Hauptmieter/-in. 
Antworten  
• Eigentümer/-in des Gebäudes
• Eigentümer/-in der Wohnung
• Hauptmieter/-in
• Untermieter/-in
Fehlermeldung 
[WENN gar keine Angabe gemacht wurde:] 
Sie haben noch keine Antwort gegeben. Bitte suchen Sie die 
entsprechende Antwort aus. Falls Sie keine Angabe machen möchten, 
klicken Sie bitte auf *Weiter*. 

Question text 
Do you live in your apartment as the ... ? 
Help text 
In case of rent-free apartment provision, for example by family 
members or your employer you are considered the main tenant. 
Answer options 
• Owner of the building
• Owner of the apartment
• Main tenant
• Sub-tenant
Error message 
[IF no answer was given:] 
You did not yet give an answer. Please select the respective answer. 
If you do not want to give an answer click on *Next*. 



195 

Appendix C: Midpoint design experiment by panel 
Table C1: Respondents in the middle category by experimental group and proportion tests based on z-scores by panel (absolute number of respondents by experimental group and p-values in 
parentheses) 

GIP GP Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 Panel 7 Panel 8 

5-point-scale 

% Conceptual&Visual midpoint 26.4 30.6 17.4 31.8 29.1 29.3 32.8 25.1 22.3 28.9 

% Conceptual midpoint 26.4 29.7 17.8 27.3 24.7 27.2 26.8 32.1 23.4 31.8 

% Difference 0.0 0.9 -0.4 4.5 4.4 2.1 6.0 -7.0 -1.2 -2.9 

Z 0.0 0.4 -0.1 1.1 1.1 0.5 1.5† -1.7 -0.3 -0.7 

% Visual midpoint 8.3 11.3 6.3 13.5 10.9 14.7 15.0 19.0 13.8 16.1 

% No midpoint 11.0 14.3 8.7 12.9 10.6 17.0 14.7 16.2 10.1 15.8 

% Difference -2.8 -3.0 -2.3 0.6 0.3 -2.2 0.2 2.8 3.6 0.2 

Z -1.8 -1.6 -1.0 0.2 0.1 -0.7 0.1 0.8 1.2 0.1 

7-point-scale 

% Conceptual&Visual midpoint 15.1 14.4 17.5 17.2 17.5 18.0 17.0 21.0 16.9 12.2 

% Conceptual midpoint 19.9 15.7 20.4 16 18.9 16.1 19.5 16.1 11.6 16.1 

% Difference -4.8 -1.3 -2.9 1.2 -1.3 1.9 -2.5 4.9 5.4 -3.9 

Z -2.5 -0.6 -0.8 0.4 -0.4 0.6 -0.7 1.4† 1.7* -1.3 

% Visual midpoint 13.0 11.1 9.4 13.2 7.9 7.3 12.0 12.9 8.9 10.8 

% No midpoint 11.4 9.3 11.6 10.8 12.7 10.9 9.8 13.9 11.1 11.8 

% Difference 1.6 1.8 -2.1 2.4 -4.8 -3.6 2.2 -1.0 -2.1 -1.0 

Z 0.9 1.1 -0.8 0.8 -1.8 -1.4 0.8 -0.3 -0.8 -0.4 
*** p<0.001; ** p<0.01; * p<0.05; †<0.1 
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General conclusion 

Survey data are relevant because they can shape societal debates and can have an impact on policy 

decisions. However, for survey results to be informative it is necessary to take into account and 

ensure representativeness and response quality. In the following, I briefly summarize the findings 

from each dissertation paper and the conclusions that can be drawn from them. In addition, I depict 

paths for future research on the basis of this dissertation and I conclude with a summary of my 

overall research contribution. 

Paper 1: Is there an association between survey characteristics and representativeness? A meta-

analysis 

In the first paper, I synthesize the existing literature on measuring survey representativeness and I 

assess common associations between survey characteristics (such as the sampling type and mode of 

data collection) and representativeness (as measured using R-Indicators and benchmark 

comparisons). I find that probability-based samples, mixed-mode surveys, and other-than-Web mode 

surveys are more representative than nonprobability samples, single-mode surveys, and web 

surveys. In addition, I find that there is a positive association between representativeness and the 

response rate. I conclude that there is an association between survey characteristics and 

representativeness and these results are partly robust across two common representativeness 

measures. There is, however, a strong need for more primary research into the representativeness of 

different types of surveys. 

Future primary research is necessary to be able to enhance meta-analytic assessments of 

associations between survey characteristics and representativeness. More research into assessing 

survey representativeness on more than one measure would be especially valuable, as it would allow 

comparisons of results across measures. When more primary research is available, more advanced 

modeling can be applied in future meta-analyses. Multivariate analyses might, for example, provide a 

deeper understanding of the associations between survey characteristics and representativeness. In 
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addition, more primary research would enable exploring associations of survey representativeness 

with other potentially relevant survey characteristics (such as whether post-survey adjustments were 

applied or not). 

Paper 2: Is it in the method? Testing five measures of survey representativeness 

In the second paper, I compare five common measures of survey representativeness and assess their 

informative value in the context of representativeness comparisons within as well as across two 

probability-based online panels in Germany: the GIP and the GESIS Panel. Both panels share a 

number of survey design characteristics but also differ in other aspects. I assess the informative value 

of each representativeness measure in our study (response rates, R-Indicators, Fractions of Missing 

Information, subgroup response rates, and benchmark comparisons) for comparisons across and 

within the two probability-based online panels in Germany. I find that all five measures have 

advantages and disadvantages and they all shed light on different aspects of survey 

representativeness. Therefore, the extent to which these representativeness measures lend 

themselves to comparative analyses depends on the purpose of the investigation. I conclude from 

this study that for survey comparative representativeness analyses it is advisable to apply at least 

one measure at the aggregate level (response rates or, preferably, R-Indicators) in addition to at least 

one measure at the variable or category level (for example, subgroup response rates or benchmark 

comparisons) to obtain a comprehensive picture. 

There are many possibilities for future research into the robustness of these findings in other 

settings. For instance, this paper focuses on a comparison of two panels that have the same target 

population. Whether the findings translate into the contexts of countries other than Germany and 

how valuable the examined measures of representativeness are in cross-national comparisons 

should, for example, be explored in future research. In addition, explorations into how the results on 

the measures examined in this paper change across panel waves might provide further valuable 

insights for researchers interested in assessing representativeness in longitudinal research. It might, 
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for instance, be that some measures disclose increases or decreases in representativeness across 

panel waves that other measures do not capture. Furthermore, there is generally little research into 

comparing different measures of representativeness, especially in observational studies. Therefore, 

to extend this study to other representativeness measures might be another relevant path for future 

research. 

Paper 3: The utility of auxiliary data for survey response modeling: Evidence from the German 

Internet Panel 

In the third paper, I take a closer look at the value of commonly used types of auxiliary data. I 

examine the utility of different sources of auxiliary data (sampling frame data, interviewer 

observations, and micro-geographic area data) for modeling survey response in a probability-based 

online panel in Germany. I explore whether auxiliary data are systematically missing by survey 

response. In addition, I investigate the correlations of the auxiliary data with survey response as well 

as the predictive power and the significance of coefficients of the auxiliary data in survey response 

models. I find that all of these data have disadvantages (for example scarcity, missing values, 

transparency problems, or high levels of aggregation) and none of them predict survey response to 

any substantial degree. I conclude that more research into the quality and predictive power of similar 

and other types of auxiliary data is needed to allow meaningful application of auxiliary data in survey 

practice, as for example in measuring representativeness, monitoring fieldwork, nonresponse 

adjustment, or conducting responsive design surveys. 

Future research should, however, not only concentrate on searching for more auxiliary data that are 

predictive of survey response, but in addition examine more closely the problems with the already 

available auxiliary data. A relevant question for future research would, for instance, be why there is a 

substantial amount of missing data on the interviewer observations and why there is systematically 

more missing data for the nonrespondents than the respondents. This research could potentially be 

used to inform survey agencies, for example regarding interviewer trainings and monitoring. Another 
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question for future research would be whether some commercial and official micro-geographic area 

data lack predictive power regarding survey response models because of the high levels of 

aggregation. If so, it might be worthwhile to explore ways in which the error introduced into the data 

due to aggregation can be reduced. 

Paper 4: Response quality in nonprobability and probability-based online panels 

In the last paper of this dissertation, I shift the methodological focus to the measurement part of the 

TSE framework. In this paper, I investigate response quality in a comprehensive study of seven 

nonprobability online panels and three probability-based online panels, which were all collected in 

Germany during the same fieldwork period. In the analysis, I apply three response quality indicators: 

straight-lining in grid questions, item nonresponse, and midpoint selection in a visual design 

experiment. I find that there is significantly more straight-lining in the nonprobability online panels 

than in the probability-based online panels with regard to straight-lining. However, I find no 

systematic pattern indicating that response quality is lower in nonprobability online panels than in 

probability-based online panels with regard to item nonresponse and midpoint selection. I conclude 

that there is a difference between nonprobability online panels and probability-based online panels 

in response quality on one out of three satisficing indicators. Therefore, more research into response 

quality in nonprobability online panels is needed, for example using different indicators of response 

quality and different theoretical frameworks. 

Future research might, for instance, investigate whether the significantly higher proportion of 

straight-lining can be replicated in other studies. In addition, it might be worthwhile to assess 

whether there are differences in other response quality indicators, such as response times, across 

nonprobability online panels. Furthermore, research into the association between sample 

representativeness and response quality would be valuable to assess data quality in nonprobability 

online panels and probability-based online panels from a broader TSE perspective. 
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Overall, with this dissertation I contribute to survey methodological research into the 

representativeness and response quality of survey data in several ways. I synthesize the existing 

literature on survey representativeness and I identify survey characteristics that are associated with 

survey representativeness. In addition, I demonstrate that survey representativeness needs to be 

examined from different perspectives using representativeness measures on different levels of 

aggregation. I also discover a lack in quality and predictive power of auxiliary data for survey 

response models and I explore differences in response quality across nonprobability and probability-

based online panels. Furthermore, I identify a number of gaps in the current literature on 

representativeness and response quality of survey data in general. 

The findings from this dissertation lead to the conclusion that great care has to be put into measuring 

and ensuring high survey data quality and more research is needed to fully understand how high 

representativeness and response quality can be reached. To undertake this research is imperative, 

because if survey data quality is compromised, research findings based on the data can be 

misleading. In future research, I therefore plan to expand on the work in this dissertation and to 

contribute to closing the identified gaps in the literature. 
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