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Chapter 1

A Short Introduction and Summary

1.1 General remarks

Empirical research in the social sciences often requires the collection of information about re-

search objects. When these objects are humans, researchers often use surveys and simply ask

respondents questions to collect the information desired. Such information may be sociodemo-

graphic (e.g., the age or gender of the respondents) or it may refer to behavior shown by the

respondents or attitudes held by them.

Collecting information about behaviors or attitudes often requires asking similar or even the

same questions, sometimes even on multiple occasions, e.g., in longitudinal or panel surveys.

The reasons for asking similar or identical questions either at a single occasion or at multiple

ones are numerous. For example, researchers may be interested in a set of behaviors and atti-

tudes that they believe occur together or where one behavior explains the occurrence of another.

Similarly, researchers may want to gather the same details about several similar behaviors or

attitudes (for example, motivations or consequences of a behavior) to test a theoretical model;

they may be interested in studying changes in a behavior or an attitude over time or they may

want to infer a causal relationship between changes in a behavior and changes in the respon-

dent’s environment from longitudinal data. As a result, respondents are often presented with

questionnaires containing similar or identical elements or they may be presented with the same

1



2 Chapter 1. A Short Introduction and Summary

questionnaire on multiple occasions. It is even possible that researchers interview respondents

with a questionnaire that contains similar questions and that these questions are asked on

multiple occasions, e.g., in a panel survey.

Retrieving information from humans in surveys, however, may affect respondents in certain

ways, just as the temperature of a thermometer may change the water’s temperature it is

supposed to measure. E.g., responding to questions in a survey may influence respondents’

future behavior or it may influence the way how respondents report in the future. I refer to

such effects of answering questions in a survey on respondents’ future behavior and/or future

reporting as conditioning effects. When conditioning affects respondents’ behavior, I refer

to it as changes-in-behavior conditioning. When survey participation conditions respondents’

reporting, however, I refer to it as changes-in-reporting conditioning.

Furthermore, I refer to changes-in-reporting conditioning that occurs due to answering a set of

similar questions within a single survey by survey conditioning, following Duan et al. (2007).1

When respondents’ behavior or reporting is conditioned by participating in several waves of the

same survey, i.e., through participation in a panel survey, I refer to these forms of conditioning

by panel conditioning.

Providing a methodological framework for the study of these conditioning effects and analyzing

whether some of their forms actually occur in social science (longitudinal) survey data is the goal

of this dissertation. That is, I study whether repeated measurement with similar or even the

same questions in (panel) surveys leads to changes in the ways how respondents behave and/or

report their behavior. Before explaining the need for the studies that form this dissertation, for

clarification, I give examples of the different types of conditioning effects and I briefly review

the consequences they may have for survey data first.

1There is no changes-in-behavior survey conditioning because survey conditioning occurs within a single
survey and there is therefore simply no time for respondents to change their behavior. However, it is possible
that respondents’ behavior changes after participating in a single survey. Without measuring the same behavior
for a second time, i.e., through a second interview, changes in that behavior would, however, not be uncovered.
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1.2 Examples of the various forms of conditioning

(Repeatedly) answering a question about some form of behavior may lead to changes in this

behavior (changes-in-behavior panel conditioning) (Waterton and Lievesley 1989). For instance,

answering questions may stimulate respondents to think about the behavior under study and

eventually even lead them to behave differently in the future. When respondents are interviewed

for a second time with the same questionnaire (e.g., because researchers are interested in changes

in that behavior over time or a causal effect of some intervention), respondents would then report

on their adjusted behavior. However, had they not been interviewed before, their behavior

would not have changed. In this way, respondents’ behavior is conditioned by repeated panel

survey participation.

Consider, for example, a survey that asks unemployed people about their job search strategies.

Answering to the questions of the survey might stimulate an unemployed respondent to reflect

on her search strategies. As a result of this cognitive process, she may start to reconsider her

current search strategies and eventually adjust her strategies to others thought to be more

successful. Similarly, it is also possible that an unemployed respondent who does not spend

much time on job search realizes a conflict between her behavior and society’s norms. She might

realize that the socially desirable behavior would be to spend more time on job search in order

to become employed again and contribute to societal wealth. As a result, she may then increase

the time she spends on job search to bring her actual behavior in line with society’s norms.

In both cases, had she not participated in the survey, she would not have adjusted her job

search behavior. Therefore, in this example, answering questions conditions the respondent’s

job search behavior.

Being surveyed, however, can also change the way a respondent answers survey questions

(changes-in-reporting conditioning) (Waterton and Lievesley 1989). For example, a respon-

dent may recall having answered similar or the same questions before. When she is interviewed

with a second similar set of questions (survey conditioning) or with the same questions for the

second time (panel conditioning), having already answered them in the past may influence how

she answers the questions in the present. Had she not been interviewed before, her reporting
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would not have changed. In this way, the respondent’s reporting behavior is conditioned by

(repeated panel) survey participation.

Consider, for example, a survey that asks a series of simple “Yes”/“No” questions to determine

the eligibility of a respondent for follow-up questions. If the respondent is eligible, she receives

some extra questions before continuing with the remaining eligibility questions. If she is not

eligible, she receives the next eligibility question right away. Such questions may, for example,

ask for purchase behavior of certain goods. If the respondent confirms the purchase of the goods,

follow-up questions could ask details about the purchase or the purchased goods themselves

(as used in the Consumer Expenditure Survey, for example). Some respondents, however,

may realize after a few eligibility and follow-up questions that saying “Yes” to the eligibility

question results in additional questions. As a result, they may begin to say “No” to the eligibility

questions to avoid the follow-up questions and thereby shorten the duration of the interview. In

this way, some respondents may become worse reporters over time due to changes-in-reporting

survey conditioning, because they report less accurately to later questions in a survey.2

However, it is also possible that respondents become better reporters over time due to changes-

in-reporting conditioning. For example, some respondents of a survey that asks sensitive ques-

tions (e.g., about substance abuse) may feel uncomfortable revealing their behavior to the

interviewer because the respondents perceive their own behavior as socially undesirable. In a

second or third wave of the same survey, however, when respondents have been interviewed a

few times, they may feel more comfortable revealing their actual behavior to the interviewer.

One reason for this may be increased trust towards the interviewer due to familiarity. Thus,

some respondents may become better reporters, i.e., report more accurately and honestly, over

time due to changes-in-reporting conditioning.3

All of these examples show that respondents’ behavior and/or their reporting can become

conditioned by answering similar or the same questions, either within a single survey due to

2The example can also be extended to the panel survey case. If respondents remember the structure of the
survey from one wave to another, they may become worse reporters not only within a single survey, but also
over the waves of a panel survey.

3Respondents within a single survey may also become better reporters over time if, for example, they get a
better understanding of the survey questions after having answered a few of them.
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survey conditioning or over multiple waves of the same survey due to panel conditioning. In

this dissertation, I test whether such effects occur in the surveys considered below. Before

summarizing the four papers that form the core of my dissertation, I will briefly discuss why

researchers should pay attention to these effects.

1.3 Consequences of conditioning effects on survey data

and for users of survey data

Both, survey conditioning and panel conditioning, are the result of repeated measurement with

the same or a similar instrument. The resulting changes in behavior and/or reporting, however,

are unintended: In panel surveys, researchers usually assume that any intra-individual change

over time reflects a ’true’ change in respondents’ behavior and/or reporting. That is, researchers

assume that these changes would have also occurred had the respondent not participated in

the survey (Warren and Halpern-Manners 2012). If some changes over time are caused by

panel survey participation alone, however, they would not have occurred, had the respondent

not participated in the survey. As a result, a sample will be less representative of the total

population if panel conditioning results in behavioral changes. That is, after a few waves, the

behavior of the sample interviewed does no longer represent the behavior of those people who

were not interviewed and any statements about the respondents’ behavior may be biased or

wrong.

In addition, and this holds also for changes-in-reporting panel conditioning, researchers would

over- or underestimate change over time because some of the change solely comes from the

fact that respondents report differently in early waves of the panel than in later waves of the

same panel. Consider, for example, the case from above, where researchers are interested in

unemployed respondents’ job search behavior and their employment probabilities. Interviewing

respondents’ about certain job search strategies may stimulate some respondents to engage in

those job search strategies. At the same time, however, asking questions about unemployment

and job search encourages respondents to spend more time on searching a new job, possibly re-
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sulting in respondents finding a new job faster than those who are not interviewed. Researchers

might then conclude that changing job search strategies caused the decrease in the time needed

to find a new job. In reality, however, the decrease in the time needed to find a new job is only

caused by the stimulation resulting from being interviewed about their unemployment. Thus,

researchers would underestimate the time that unemployed people need to find a new job and

would (falsely) attribute the cause of the decrease in job search time to the change in search

strategies.

Similarly, if survey conditioning results in respondents becoming better or worse reporters over

time, then responses to questions asked early in the survey will be less (or more) accurate than

answers to questions asked later in the survey. As a result, estimates derived from the data

may under- or overestimate the underlying behavior.

Consider again the second example from above, where respondents misreport to eligibility

questions to skip follow-up questions and thereby shorten the duration of the interview. If these

questions refer to purchasing behavior, for example, then researchers would underestimate this

behavior because some respondents underreport behavior in answers to questions asked later

in the survey. As a result, any univariate estimates regarding purchasing behavior would be

biased and would not well represent the true purchasing behavior of the whole population. In

addition, if purchasing behavior was included in a multivariate model, e.g., to test a theoretical

model, then any multivariate estimates derived from the model, such as regression coefficients,

may be biased. In the worst case, researchers may falsely reject a model or falsely interpret

empirical findings as evidence in favor of the model.

To sum up, once a respondent is conditioned by participating in several waves of a longitudinal

survey or by responding to a set of similar questions in a single survey, subsequent reporting

and/or behavior are/is a function of respondents’ previous experience with (similar elements of)

the same survey. As a result, estimates derived from the data may be biased and conclusions

drawn from the data may be wrong.
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1.4 Why this dissertation?

Concerns regarding the existence of conditioning effects have been documented in the literature

since 1940 (e.g., Lazarsfeld 1940) and many scholars have studied survey and panel conditioning

since then.4 Considerable progress has been made regarding the circumstances when survey

(e.g., Eckman et al. 2014) and panel conditioning (e.g., Waterton and Lievesley 1989; Warren

and Halpern-Manners 2012) are likely to occur. Much less attention, however, has been paid

to the question how to uncover such effects, especially those that occur in panel surveys. For

instance, there are only a few studies that carefully distinguish between the different forms of

panel conditioning (changes-in-reporting and changes-in-behavior). In fact, some studies claim

to study changes-in-behavior panel conditioning, but they rely on respondents’ self-reports only

(e.g., Axinn, Jennings, and Couper 2015). Thus, they cannot tell whether survey participa-

tion actually affects respondents’ behavior or if respondents simply report that their behavior

changed. Furthermore, several other studies do not consider the possibility that other processes

may lead to change in a panel survey over time, too (see, e.g., Das, Toepoel, and van Soest

2011, for a discussion). That is, these studies claim to identify a panel conditioning effect, but

this effect may in fact be caused by another reason and not by survey participation.

The second chapter of this dissertation fills this gap and provides a methodological framework

for the study and identification of the various forms of panel conditioning effects. Building on

the methodological recommendations proposed in Chapter 2, I address the issue of disentangling

changes-in-behavior from changes-in-reporting as well as the challenge of adjusting for other

effects that may occur in panel surveys in Chapter 3. I am aware of only one other study

(Crossley et al. 2017) that applies a methodologically sound research design to study changes-in-

behavior due to survey participation. Thus, the importance of Chapter 3 lies in the contribution

it makes to the more than sparse literature on changes-in-behavior panel conditioning.

Chapter 4 connects panel conditioning with survey conditioning. Although several studies have

analyzed either one or the other form of conditioning, no study has analyzed the two in a joint

4See, e.g., Tourangeau, Kreuter, and Eckman (2015) for a literature review on survey conditioning effects
and Warren and Halpern-Manners (2012) for a review of studies on panel conditioning effects.
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context. But as some varieties of the two forms share the same theoretical mechanism and it

is therefore evident to study the two together. Chapter 4, then, closes this gap by analyzing

survey and panel conditioning in a single experiment.

The last of the three empirical chapters (Chapter 5) focuses on survey conditioning and answers

the question whether survey conditioning depends on respondents’ likelihood to participate in a

survey. Only few studies have explored connections between respondents’ likelihood to respond

and other forms of misreporting (e.g., Olson 2006; Fricker and Tourangeau 2010), but the

literature falls short of testing the connection with survey conditioning.

In sum, these four chapters make necessary contributions to various aspects of the literature on

survey and panel conditioning, extending the current state of research in conditioning effects.

The next - and last - section summarizes the contents of these chapters in more detail.

1.5 Summary of papers

Chapter 2 (“Methodological Challenges for the Analysis of Panel Conditioning Effects”) pro-

vides an overview of three challenges confronting methodological research on panel conditioning

and also of research designs developed to tackle them. First, as mentioned above, panel con-

ditioning can lead to changes-in-reporting and changes-in-behavior. In some cases, both forms

can even occur at the same time.5 The challenge is that researchers working with self-reported

behavior from survey data can hardly tell whether respondents’ actual behavior changes over

time or if it is only the reporting of behavior that changes. Thus, the first challenge I identify

in Chapter 2 is to disentangle the two forms of panel conditioning. Second, in order to make

statements about the causal effect of panel survey participation, researchers need to come up

with control groups of people who have not been interviewed or have been interviewed only

once. Finding such control groups, however, is often difficult and, hence, a second challenge.

Third, other sources of error in (panel) surveys that result in changes in survey outcomes over

5For instance, a respondent may bring her behavior in line with society’s norms after participating in several
waves of a panel survey. At the same time, however, she might misreport this behavior due to social desirability in
early waves of the panel, but report more honestly in later waves due to increased trust towards the interviewer.
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time can easily be mistaken for panel conditioning. Panel attrition, for example, affects the

composition of the respondent group because some respondents decide to not participate in all

waves of a panel survey, resulting in changes in survey outcomes over time. These changes in

survey outcomes over time may be misinterpreted as panel conditioning if they are not properly

accounted for. Thus, the third challenge is to account for confounding sources of error when

analyzing panel conditioning effects.

In addition to identifying these three challenges, I review and discuss research designs and meth-

ods developed to tackle them. To disentangle changes-in-reporting from changes-in-behavior,

researchers can observe respondents’ behavior in data that is independent of respondents’ re-

porting. Control group data can easily be found in panel surveys that apply a rotating design,

for example. The third challenge can be tackled by studying panel conditioning only among

those respondents who respond to all waves of a panel or by conditioning on determinants of

attrition, for example. This chapter concludes with a discussion of a future research agenda

regarding panel conditioning effects.

In Chapter 3, I address all three challenges and study changes-in-behavior panel conditioning in

the German panel study “Labor Market and Social Security” (Trappmann et al. 2013).6 This

panel study surveys recipients of unemployment benefits (amongst other groups) in Germany

on an annual basis and has been running for more than ten years. One unique feature of this

survey is that its respondents can be linked to administrative labor market records covering,

inter alia, their phases of (un)employment, participation in labor market programs or unem-

ployment benefits receipt. These records are independent of respondents’ reporting; the panel

survey (in combination with the administrative records) therefore offers an ideal setting to dis-

entangle changes-in-behavior from changes-in-reporting. Starting out from the hypothesis that

repeatedly answering questions about participation in active labor market policies (ALMP, i.e.,

programs designed to help unemployed people find a new job) increases respondents’ take-up of

these ALMP, I find that responding to several waves of the survey changes respondents’ labor

market behavior. That is, there is strong evidence that respondents’ take-up of these programs

6The chapter is based on a joint paper with Stephanie Eckman. A revision of the paper is currently under
review at the Journal of the Royal Statistical Society, Series A: Statistics in Society and an earlier version is
published in the discussion paper series of the Institute for Employment Research (Bach and Eckman 2017).
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increases as a result of repeated participation in the survey. To account for confounding sources

of error (e.g., initial nonresponse, panel attrition and mode effects), I use an instrumental vari-

able approach. I do so by selecting a control group of unemployment benefit recipients from

the same administrative data. These recipients were also eligible for participation in the sur-

vey, but were never selected. Instrumenting actual participation in the survey among those

selected for the survey with the random offer to participate in the survey allows us to adjust

for confounding sources of error and identify a changes-in-behavior panel conditioning effect.

Chapter 4, by contrast, focuses on two other forms of conditioning effects.7 In this chapter,

I provide results regarding the question whether respondents of two consecutive waves of the

Dutch Longitudinal Internet Study for the Social Sciences (Scherpenzeel 2011) misreport to

filter questions, a form of survey conditioning (compare example in Section 1.2). Furthermore,

I study whether this misreporting transfers to a second wave, leading to more misreporting in

the second wave, which is a form of changes-in-reporting panel conditioning. Proceeding on

previous research on misreporting to filter questions (e.g., Eckman et al. 2014), I hypothesize

that respondents learn, after answering a few filter questions, that for each filter question

triggered, several follow-up questions have to be answered. The motive behind this form of

survey conditioning is the desire of some respondents to reduce the burden of the survey by

answering fewer questions. Similarly, I hypothesize that this learning effect transfers to a

second wave fielded one month after, resulting in increased conditioning effects in the second

wave. Results from this study suggest that respondents learn to misreport in a single wave,

but this learning does not transfer to a second wave. To sum up, there is evidence for survey

conditioning, but there is no evidence for changes-in-reporting panel conditioning.

Chapter 5 builds on and extends parts of the analysis of Chapter 4. I replicate experimental re-

sults regarding misreports to two forms of eligibility questions due to survey conditioning in five

surveys conducted in the Netherlands, the U.S. and Germany (Eckman et al. 2014; Bach and

Eckman forthcoming; Eckman and Kreuter forthcoming)8. The core contribution of this chap-

7The chapter is based on a joint paper with Stephanie Eckman. The paper has been accepted for publication
in the Journal of Survey Statistics and Methodology (Bach and Eckman forthcoming).

8The chapter is based on a joint paper with Stephanie Eckman and Jessica Daikeler. The paper is under
review in Public Opinion Quarterly.
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ter, however, is the extension of their analyses to the question whether reluctant respondents

are worse reporters than likely respondents, i.e., whether reluctant reporters are more suscep-

tible to becoming worse reporters due to survey conditioning. The nonresponse-measurement

error model developed by Groves (2006) predicts a nexus between response propensity (the

probability to respond to a specific survey) and measurement error (e.g., misreporting due to

survey conditioning). There may be some common causes that influence both the decision to

participate in a survey and the degree of misreporting. In this study, I hypothesize that the

desire to reduce the burden of the survey may be such a common cause. That is, respondents

who have a strong desire to reduce the burden of the survey have both a low probability to

respond to the survey in the first place and a high desire to misreport during the interview to

reduce the duration of the survey. I identify reluctant respondents by estimating respondents’

response propensities in each of the five surveys. Those respondents with the lowest response

propensities in each survey are reluctant respondents. Comparing misreporting due to survey

conditioning between the most reluctant and the most likely respondents, I do not find con-

sistent evidence that response propensity influences misreporting due to survey conditioning.

Only in one survey do I find reluctant respondents to be worse reporters. Thus, our results

suggest that reluctant respondents do not report worse to eligibility questions due to survey

conditioning.
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Chapter 2

Methodological Challenges for the

Analysis of Panel Conditioning Effects

2.1 Abstract

Panel conditioning refers to the phenomenon whereby respondents’ attitudes, behavior, report-

ing of behavior and/or knowledge are changed by repeated participation in a panel survey.

Uncovering such effects, however, is difficult due to three major methodological challenges.

First, researchers need to disentangle changes in behavior from changes in the reporting of

behavior as panel conditioning may result in both, even at the same time and in opposite direc-

tions. Second, the identification of the causal effect of panel participation on the various forms

of change mentioned above is complicated as it requires comparisons of panel respondents with

control groups of people who have not been interviewed before. Third, other sources of error

in (panel) surveys may easily be mistaken for panel conditioning if not properly accounted for.

Such error sources are panel attrition, mode and interviewer effects. We review the challenges

mentioned above in detail and discuss the strengths and weaknesses of the various designs that

researchers have developed to address them. We conclude with a discussion of a future research

agenda on panel conditioning effects in longitudinal surveys.

14
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2.2 Introduction

Researchers working with data collected through surveys usually assume that the act of mea-

suring does not affect what is being measured. Yet, as early as in 1940, Lazarsfeld (1940, p.128)

noted that “the big problem, as yet unsolved, is whether (...) interviews are likely, in themselves,

to influence a respondent’s opinion”. Since then, researchers have spent decades analyzing how

repeated measurement can result in unintended changes in respondents’ attitudes, knowledge,

behavior and reports of behavior. These changes are unintended insofar as researchers usually

assume that any intra-individual over-time change found in their data reflects a ’true’ change

in a person’s attitudes or behavior, and that these changes would have also occurred had the

respondent not participated in the survey (Warren and Halpern-Manners 2012). Yet, when the

sheer act of measuring affects what is being measured, this assumption is no longer satisfied and

researchers risk mis-characterizing the existence, magnitude, and correlates of changes across

survey waves in respondents’ attitudes and behaviors (Clinton 2001; Halpern-Manners, Warren,

and Torche 2014).

Although scholars from various disciplines have spent much time on uncovering these so-called

panel conditioning effects, there are three methodological challenges that have plagued re-

searchers of panel conditioning ever since. First, panel conditioning may influence both re-

spondents’ reporting of behavior and the actual behavior itself, even at the same time and

in opposite directions. Therefore, researchers need to disentangle changes in respondents’ be-

havior from changes in respondents’ reporting of behavior to get unbiased estimates of either

one. For example, respondents may remember from participation in prior waves of a panel

survey how the interview is structured and how they can speed through the interview by taking

shortcuts. We call this form of panel conditioning changes-in-reporting panel conditioning. At

the same time, respondents’ actual behavior may be conditioned by participation in the survey.

For example, repeatedly answering questions may work as a stimulus that affects respondents’

subsequent behavior. We call this form of panel conditioning changes-in-behavior panel condi-

tioning.1 To get unconfounded estimates of either form of panel conditioning, it is crucial to

1We will discuss examples of both types of panel conditioning in detail throughout this paper.
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clearly distinguish between the two.

The second challenge refers to the availability of control group data. That is, researchers of

panel conditioning (at least implicitly) wish to estimate the causal effect of panel survey par-

ticipation on respondents’ attitudes, knowledge, reporting of behavior or actual behavior (Bach

and Eckman 2017). To estimate a causal or treatment effect, we usually compare treated cases

against untreated, i.e., control cases in (quasi) experimental designs. In the panel conditioning

framework, the former are those cases of individuals who responded to two or more waves of a

panel survey, while the latter are cases who have not been interviewed or have been interviewed

only once. To identify an unbiased treatment effect, assignment to treatment and control is,

ideally, random because randomization balances (in expectation) all differences (e.g., socio-

demographic differences) between the treatment and the control group. As a result, the only

remaining difference between the two groups is that one receives the treatment, and the other

one does not. In large-scale social science panel surveys, the kind of surveys that social scientists

frequently use for substantive research, methodological experiments with random assignment

of cases to treatment or control (i.e., participation in a survey several times or only once) are

hardly ever (intentionally) implemented (Warren and Halpern-Manners 2012). That is, data

for treated cases (panel survey respondents) are usually easily available from the panel survey

itself; control group data, however, are much harder to find. As a result, the identification of

the causal effect is difficult without further assumptions.

The third challenge is that, even when experimental manipulations can be implemented, re-

searchers need to account for confounding sources of error. Error sources that may confound

estimates of panel conditioning are longitudinal nonresponse (i.e., panel attrition), mode effects

and interviewer effects. While attrition affects the composition of a longitudinal survey sample

over time, mode effects and interviewer effects confound the level of measurement error. All of

them may result in changes in an outcome variable over time that are not due to a ’true’ change

in a person’s attitudes or behavior and may thus easily be mistaken for panel conditioning. As

a result, estimates of panel conditioning, even when based on experimental manipulations, will

be biased if these error sources are not properly accounted for.
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In the remainder of this article, we briefly summarize the different forms of panel conditioning

effects and hypotheses why panel conditioning can occur in social science longitudinal surveys.

We then elaborate on the methodological challenges mentioned above and the research designs

developed to tackle them. We do so by demonstrating for each challenge why it requires

researchers’ special attention when studying panel conditioning and by discussing the research

designs and methods developed by previous research to deal with them. We conclude with a

discussion of a future research agenda for panel conditioning effects in social science longitudinal

surveys.

2.3 Various forms of panel conditioning

Panel conditioning has been studied for some decades. However, the literature often lacks a

clear distinction between the various forms of panel conditioning. Moreover, the underlying

causal mechanisms as well as their theoretical foundations are often unclear. To date, there

is no unified theory explaining the nature and the mechanisms underlying panel conditioning.

However, several authors have proposed hypotheses under which panel conditioning is likely

to affect respondents’ attitudes, knowledge, behavior and reporting of behavior (Waterton and

Lievesley 1989; Cantor 2010; Warren and Halpern-Manners 2012). We distinguish between the

different forms of panel conditioning below, review hypotheses that explain when the different

forms may arise and present empirical evidence.

2.3.1 Changes-in-reporting panel conditioning

Changes-in-reporting panel conditioning refers to the phenomenon whereby panel survey partic-

ipation influences the way respondents report over time. This form of conditioning can result

in respondents becoming either better or worse reporters over the waves of a panel survey.

Respondents can become better reporters because they become more trusting of the survey

experience. For example, they might feel more comfortable and more motivated giving less

socially desirable, but more accurate answers. That is, increasing trust in the confidentiality
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of their responses and reduced suspicion towards the interviewer leads to a reduction in mea-

surement error over time as respondents report more honestly. Similarly, respondents may gain

a better understanding of the meaning of the questions or may become more convinced of the

importance of their answers for the survey and report fewer “don’t know”-responses. Thus,

respondents become more comfortable with the interviewing process leading them to answer

the questions more accurately (Bailar 1989; Waterton and Lievesley 1989; Van der Zouwen and

Van Tilburg 2001; Warren and Halpern-Manners 2012).

The literature documents several examples of changes-in-reporting panel conditioning result-

ing in respondents becoming better reporters. Halpern-Manners, Warren, and Torche (2014)

find that respondents report more honestly regarding having previously driven drunk or having

stolen something of little value in later waves of a panel survey. Similarly, Waterton and Lieves-

ley (1989) report declines in social desirability bias (reporting racial prejudice) over time and

fewer reports of “don’t knows”. Chadi (2013) finds that increased trust towards the interviewer

leads to more honest reporting of life satisfaction, a finding replicated by Van Landeghem

(2012). Furthermore, Kroh, Winter, and Schupp (2016) find that the reliability of person fit

measures increases with every wave of a panel survey because respondents get a better under-

standing of the interview process. Angel, Heuberger, and Lamei (2017) report that both over-

and under-reporting of household income decreases over panel waves as respondents feel more

comfortable reporting their income honestly and prepare for the interviews to provide more

accurate responses to the survey.

On the other hand, respondents may become worse reporters over the waves of a panel survey

(Bailar 1989; Waterton and Lievesley 1989; Williams, Block, and Fitzsimons 2006; Warren

and Halpern-Manners 2012). Respondents can learn from participation in previous waves of a

survey how the interview is structured and how its burden or length can be reduced by taking

shortcuts in the interview. For example, respondents of a labor market survey might learn that

reporting to be employed leads to additional follow-up questions regarding the employment

and may report to be unemployed in later waves to skip the follow-up questions. As a result,

measurement error will increase over the waves of a panel survey. Declining data quality over

time may also result from increasing levels in social desirability bias. That is, when questions
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refer to socially non-normative behavior, respondents may be confronted with a conflict between

their behavior and society’s norms. To avoid such cognitive dissonance, respondents may resort

to reporting behavior closer to society’s norms.

Examples of respondents becoming worse reporters due to panel conditioning are numerous.

Schonlau and Toepoel (2015), for example, show that straightlining, i.e., the tendency to give

the same responses to a series of questions with identical answer choices, increases with respon-

dents’ panel experience. Several other studies find increases in social desirability bias over time,

e.g., in reports of children’s vaccination status (Battaglia, Zell, and Ching 1996) or in reports

of exercising (Williams, Block, and Fitzsimons 2006). Furthermore, it is well documented that

the Current Population Survey (CPS) underestimates unemployment rates because respondents

misreport unemployment to skip follow-up questions in later waves of the survey (Hansen et

al. 1955; Bailar 1975; Bailar 1989; Shack-Marquez 1986; Solon 1986; Shockey 1988; Halpern-

Manners and Warren 2012).2 Other studies find respondents taking shortcuts in later waves

of a panel survey regarding reports of home alteration and repair jobs (Neter and Waksberg

1964), functional limitations among elderly people (Mathiowetz and Lair 1994), substance abuse

(Torche, Warren, and Halpern-Manners 2012), every day personal hygiene product use (Nancar-

row and Cartwright 2007) and consumption of purchased and own-produced goods (Schündeln

2017). Similar effects, called survey conditioning, may also occur in cross-sectional surveys. For

example, respondents learn to misreport to filter questions in order to skip follow-up questions

and speed through an interview (e.g., Duan et al. 2007; Kreuter et al. 2011; Eckman et al.

2014; Eckman and Kreuter forthcoming; Bach and Eckman forthcoming). However, there are

also studies that find no increases or decreases in misreporting over time in panel surveys (e.g.,

Cohen and Burt 1985; Halpern-Manners, Warren, and Torche 2014; Struminskaya 2016; Bach

and Eckman forthcoming).

2Some of these studies likely over- or underestimate the panel conditioning effect in the CPS due to confound-
ing panel attrition and mode effects (see Section2.4.3). However, the general finding that the CPS underestimates
unemployment rates seems to hold even when attrition and mode effects are accounted for (Halpern-Manners
and Warren 2012).
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2.3.2 Changes-in-behavior panel conditioning

Panel participation may also result in changes in actual behavior over time. The common

explanation for this type of panel conditioning is the cognitive stimulus approach. It holds that

repeatedly being asked the same questions causes respondents to become more aware of the

topic of the survey, raises their consciousness of the issues and motivates them to engage in the

behavior under study (Sturgis, Allum, and Brunton-Smith 2009; Waterton and Lievesley 1989;

Warren and Halpern-Manners 2012). For example, the participation in a pre-election poll may

increase voter turnout because being asked about voting intentions increases the likelihood of

actual voting.

Furthermore, being asked knowledge questions might stimulate respondents who do not know

the answer to look it up after the interview. E.g., respondents of a political science survey who

are not aware of a new law might look it up after the survey. In a follow-up interview, they would

then know the correct answer. Their knowledge would not have changed, however, had they

not participated in the interview. Similarly, survey questions can serve to provide information

about behaviors that respondents were not aware of. If respondents had not participated in a

survey, they would not have known of the behavior under study and could not have engaged in

it (Halpern-Manners and Warren 2012). A survey that asks for participation in a specific cancer

screening measure, for example, might inform a respondent who had not known of the measure

before about the existence of this measure. Therefore, had the respondent not participated in

the survey, she would not have known of that measure.

Changes in behavior may also arise from survey questions dealing with socially non-normative

or stigmatized behavior or attitudes. As respondents are confronted with a conflict between

their attitudes or behavior and society’s norms, they bring their future behavior or attitudes in

line with society’s norms (Williams, Block, and Fitzsimons 2006).3 In a survey about alcohol

consumption, for example, dissonance between respondents’ heavy-drinking habits and society’s

norms of modest alcohol consumption may stimulate respondents to reconsider the amount and

3Note that respondents of surveys containing questions asking for socially non-normative behavior may be
subject to both changes-in-reporting as well as changes-in-behavior panel conditioning. This dual effect poses
a major challenge to panel conditioning research (see Sections 2.2 and 2.4.1).
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frequency of alcohol consumption and thereby lead them to drink less by the time of a follow-up

survey (Warren and Halpern-Manners 2012).

Panel participation might also lead to ’real’ changes in an attitude. When attitudes are less

crystallized, responding to questions about an attitude can sometimes change it. Moreover,

when respondents lack crystallized attitudes about a specific topic, they will nonetheless offer

a response to a question about that attitude. This response may start a cognitive process that

will lead to a change in the attitude by the time of the next wave (Waterton and Lievesley 1989;

Sturgis, Allum, and Brunton-Smith 2009; Warren and Halpern-Manners 2012). For example,

respondents of a survey on same-sex marriage may not have an opinion regarding this topic,

but might provide an opinion nonetheless. Moreover, responding to a question regarding their

views on this topic may also start a cognitive process that will lead them to form an opinion.

Changes-in-behavior panel conditioning is reported in studies of voting behavior, where par-

ticipation in a pre-election survey leads to increases in voter turnout in upcoming elections

(Clausen 1969; Kraut and McConahay 1973; Yalch 1976; Traugott and Katosh 1979; Granberg

and Holmberg 1992). However, not all studies detect this effect (Smith, Gerber, and Orlich

2003). Other behaviors affected by panel conditioning are water treatment product use (Zwane

et al. 2011); purchases of health insurance (Zwane et al. 2011), automotive services (Borle et al.

2007), automobiles (Morwitz, Johnson, and Schmittlein 1993; Chandon, Morwitz, and Reinartz

2005) and computers (Morwitz, Johnson, and Schmittlein 1993); saving for retirement (Crossley

et al. 2017); cheating in exams (Spangenberg and Obermiller 1996), use of contraceptives (Ax-

inn, Jennings, and Couper 2015); perceptions of marital quality (Veroff, Hatchett, and Douvan

1992) and participation in labor market programs (Bach and Eckman 2017). Regarding panel

conditioning leading to changes in knowledge, increases in knowledge are reported for bacteria

and for pension schemes (Das, Toepoel, and van Soest 2007), contraception methods (Coombs

1973) and vaccination programs (Battaglia, Zell, and Ching 1996).

To sum up, theory and evidence from numerous studies suggest that repeated participation in

panel surveys can lead to changes in respondents’ reports of behavior and attitudes as well as

to changes in their actual behavior, attitudes and knowledge. Furthermore, all forms of panel
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conditioning are more likely to occur the shorter the interval between the waves of a panel study

is and the more often respondents are interviewed (Halpern-Manners, Warren, and Torche 2014;

Van Landeghem 2012). Identifying a panel conditioning effect of any form, however, is difficult,

as we will see in the next section.

2.4 Methodological challenges

Three major methodological challenges (disentangling the different forms of panel conditioning,

finding control group data and accounting for confounding sources of error) complicate the

identification of panel conditioning effects in longitudinal data. We review them in detail in

this section. Moreover, we discuss the various designs that previous studies have developed

to address them. Table 2.1 summarizes the methodological challenges and the approaches

developed to tackle them.

2.4.1 Challenge 1: Disentangling the different forms of panel con-

ditioning

Repeated participation in a panel survey can result in both changes-in-reporting and changes-

in-behavior as we have laid out above.4,5 Surveys, however, usually measure behavior through

respondents’ self-reports only. Thus, working with survey data only, i.e., with respondents’

self-reported behavior, it is difficult for researchers to tell whether panel conditioning affects

respondents’ behavior or reports of behavior. To further complicate things, panel conditioning

may even affect both at the same time. Bach and Eckman (2017), for example, discuss a

hypothetical example where respondents of a panel survey on recycling and environmental

behavior over-report recycling in early waves due to social desirability, but report more honestly

4We do not need to differentiate between different effects of panel survey participation on respondents’
knowledge. Panel conditioning either increases respondents’ knowledge or does not affect it at all.

5Strictly speaking, one would need to disentangle changes in the reporting of attitudes from real changes
in attitudes in a similar way because panel conditioning can result in both (real changes in an attitude and
changes in the reporting of an attitude (see previous section). Since attitudes are, to the author’s knowledge,
always measured through self-reports, disentangling the two is impossible.
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Table 2.1: Summary of methodological challenges and solutions

Challenge Solutions Remarks
Challenge 1: Dis-
entangling changes-in-
behavior and changes-
in-reporting

Records independent of respon-
dents’ reporting (e.g., administra-
tive data) to study changes-in-
behavior

Requires data independent of re-
spondents’ reporting and linkage
with respondents

Validation records independent
of respondents’ reporting (e.g.,
administrative data) to study
changes-in-reporting

Requires data independent of re-
spondents’ reporting and linkage
with survey records

Exclude changes-in-behavior
based on theoretical considera-
tions

Challenge 2: Finding
control group data

Within-person approach: Use
panel respondents as their own
control group

Restricted to analysis of some
forms of changes-in-reporting
(e.g., measurement error)

Between-person approaches
Variant 1: Implement experiment
Variant 2: Placebo interviews Confounding effects of placebo in-

terviews?
Variant 3: Cross-sectional survey
with same content

Cross-sectional survey: same
mode, same questions, same sam-
pling design and population as
well as same time of data collec-
tion

Variant 4: Panel survey with ro-
tating designs

Challenge 3: Account-
ing for confounding
sources of error
Panel attrition Disregard respondents who do

not participate in all waves
Only in combination with within-
person approach and variants 2
and 4 of between-person approach

Condition on observable determi-
nants of attrition

Requires (untestable) missing-at-
random assumption

Instrumental variables Requires outcome data for both
respondents and nonrespondents
as well as control group of people
not interviewed

Mode and interviewer
effects

Restrict to cases interviewed in
same mode and by same inter-
viewers
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in later waves as they become more comfortable and trusting of the interview process. At the

same time, however, repeatedly asking respondents about recycling and environmental behavior

may work as a stimulus and increase respondents’ awareness of the importance of recycling and

thereby lead to changes in their behavior. Researchers seeking to understand panel conditioning

need to be aware of the various ways that panel conditioning might affect behavior and the

reporting of it at the same time. It is therefore crucial to clearly distinguish between the two

forms (Waterton and Lievesley 1989; Van der Zouwen and Van Tilburg 2001).

Luckily, disentangling changes-in-reporting from changes-in-behavior is straightforward when

records that are unaffected by respondents’ reporting are available, for example, from admin-

istrative records. Using such data, researchers can study changes-in-behavior by linking both

data sources and analyzing respondents’ behavior in the administrative records only. Such

administrative data (e.g., tax records or insurance records), are themselves not free of error

(e.g., Oberski et al. forthcoming). Yet, they can be considered the gold standard for analyzing

changes-in-behavior panel conditioning because they are usually generated independently of

respondents’ reporting.

Linked survey-administrative records can also be used to study changes-in-reporting, for exam-

ple, using them to validate survey responses. If measurement error, the deviation of a survey

report from the true value (i.e., the value recorded in the validation data), changes over time

in a panel survey, we can interpret such results as evidence for changes-in-reporting panel

conditioning.

Unfortunately, however, in most scenarios, researchers will not have external validation records

at hand, thereby making disentanglement of the two forms of panel conditioning difficult or

impossible. In a few cases, theoretical considerations may allow researchers to conclude that

only one of the two forms of panel conditioning is possible. Warren and Halpern-Manners

(2012), for example, conclude that respondents of the CPS who report to be unemployed in the

first wave, but report to be out of the labor force in subsequent waves, do so to avoid follow-up

questions and not because participating in the survey made them actually more likely to leave

the labor force. Thus, some scenarios may allow researchers to preclude one or the other form
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of panel conditioning.6

It is likely that the lack of administrative records explains why many studies do not consider

differences between changes-in-reporting and changes-in-behavior panel conditioning. If re-

searchers do not clearly disentangle the two forms, they risk making flawed statements about

either form. In the worst case, the two forms cancel each other out, leading researchers to

conclude that panel conditioning is not present.

Only a few studies explicitly acknowledge that panel survey participation can lead to both

forms of change. Angel, Heuberger, and Lamei (2017), studying the development of misreports

of household income over time (see Section 2.3.1), for example, link respondents’ survey reports

of their household income to register data containing the same information. Using the income

from the register as validation records, they are able to study how panel survey participation

leads to changes-in-reporting. Similarly, Yan and Eckman (2012) link survey responses of a

large-scale labor market panel survey to administrative labor market records to disentangle the

two forms of panel conditioning, demonstrating that both take place at the same time. Crossley

et al. (2017) and Bach and Eckman (2017) are two examples of studies that explicitly study

changes-in-behavior panel conditioning by observing the behavior of respondents of large-scale

social science panel surveys in administrative records. Similar approaches are applied by the

other studies cited in Section 2.3.2, though many of them rely on small datasets collected

among students (e.g., Spangenberg and Obermiller 1996) or marketing data (e.g., Chandon,

Morwitz, and Reinartz 2005) and do not use the kind of longitudinal data that builds the basis

for substantive research in the social sciences.

To sum up, disentangling the two forms of panel conditioning is difficult when administrative

data or validation records of reported behavior do not exist or cannot be linked. In these cases,

no clear statement can be made about either form of panel conditioning. Recent studies (e.g.,

Crossley et al. 2017; Angel, Heuberger, and Lamei 2017), however, have made considerable

methodological advances in disentangling the different forms of panel conditioning.

6While excluding the possibility that survey participation affects actual behavior seems justified in some
scenarios, we cannot think of an example where panel conditioning may result in changes-in-behavior only, i.e.,
excluding changes-in-reporting.
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2.4.2 Challenge 2: Finding control groups

The second challenge (finding control group data) can be best understood in terms of the

counterfactual causal model (e.g., Holland 1986). Researchers analyzing panel conditioning

usually wish to study the causal effect of panel survey participation. Thus, we can think of

panel conditioning as the effect of a treatment, D ∈ [0, 1]) (panel survey participation) on some

outcome, Y (e.g., the value of a reported survey variable). To define the treatment effect, τ , we

define two potential outcomes, following Rubin (1974) and Rubin (1978): Yi,1 is the outcome

that occurs when a case i receives treatment (participates in the survey), Yi,0, by contrast, is

the outcome when a case does not receive treatment, i.e., is in the control condition (does not

participate in the survey). Using these potential outcomes, we define the individual treatment

effect as τi = Yi,1 − Yi,0. The fundamental problem of causal inference, however, is that we

observe only Yi = DiYi,1 + (1 −Di)Yi,0 for any individual (Holland 1986). In other words, we

observe only one of the two potential outcomes because a person either participates in a survey

or does not. While this problem prevents us from estimating an individual treatment effect,

we may still estimate an average treatment effect, such as the average treatment effect on the

treated (ATT), τATT = E(τ |D = 1) = E(Y1|D = 1)− E(Y0|D = 1).

In the panel conditioning case, the expected value of the outcome of the treated cases, E(Y1|D =

1), can be directly observed from the data: it is simply the expected value of Y among respon-

dents who responded to several waves of a panel. The counterfactual outcome of the treated,

E(Y0|D = 1), by contrast, cannot be observed. When treatment assignment is random, how-

ever, we can replace E(Y0|D = 1) with E(Y0|D = 0), the expected value of the outcome among

the cases that were not treated (that is, the expected value of Y of the control group), and es-

timate an unbiased treatment effect. Using this framework to study panel conditioning effects,

the challenge is to find suitable estimates of the control group outcome, i.e., an estimate of

Y from persons who did not participate or participated only once in a survey, but who would

participate in all waves of the panel, had they been selected.

Approaches to replace the counterfactual outcome of the treated can broadly be grouped into

two categories. The first approach relies on within-person comparisons and the second on
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between-person comparisons. A review of the literature suggests that the majority of studies

applies a variant of the between-person approach. Each approach has its own specific strengths

and weaknesses in identifying panel conditioning effects. One challenge that all of them face is

eliminating or adjusting for panel attrition (one aspect of the third methodological challenge,

see Section 2.4.3). Our initial review of the different ways to come up with an estimate of

the counterfactual does not include a discussion of panel attrition. Instead, we discuss panel

attrition and other sources of confounding error only after all approaches haven been reviewed.

The within-person approach

The within-person approach uses panel respondents as their own control group and simply

compares survey outcomes among the same people at different waves of a panel. That is,

the control group outcome is usually defined as responses in the first wave of a panel (where

respondents are not yet conditioned), while the outcome of the treatment group is defined as

responses by the same respondents to subsequent waves of the same panel survey. A few studies

have applied this design, e.g., by comparing coefficients of variation at different waves of a panel

diary (Toh, Lee, and Hu 2006), by comparing responses from a baseline survey with follow-up

reports of the same respondents collected one week later (Sharpe and Gilbert 1998), by studying

trends in attitudes across eleven waves of the British Household Panel Survey (Sturgis, Allum,

and Brunton-Smith 2009) or by analyzing person fit measures in several dozen waves of the

German Socio-Economic Panel (Kroh, Winter, and Schupp 2016).

The ability of this method to estimate an unbiased panel conditioning effect, however, heavily

depends on the object of study. If one is interested in behavioral or attitudinal changes due

to panel conditioning, one needs to account for the fact that there are many other factors

(besides participating in the panel survey) that may cause a change in behavior or attitudes.

Disentangling such ’true’ change (i.e., change, that would have happened even in the absence

of participation in the survey) from change that is caused by survey participation alone is im-

possible when relying on a single set of respondents only (see, for example, Shadish, Cook, and

Campbell 2002, ch.4, for a general discussion of this approach in the causal inference frame-
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work). Thus, this method will lead to biased estimates of panel conditioning in many settings.

Sturgis, Allum, and Brunton-Smith (2009), for example, conclude from discovering changes

over time in political attitudes among the same respondents of the British Household Panel

Survey that these attitudes changed due to panel conditioning. However, many factors that

influence political attitudes changed over the same course of time (e.g., new bills being passed

or new governments being elected). Thus, change in political attitudes over several waves of the

panel is not only caused by panel survey participation, but also by change in other (external)

factors over time. Disentangling these two forms of change, however, is impossible using only

one set of respondents. That is, Sturgis, Allum, and Brunton-Smith’s (2009) estimates of panel

conditioning are likely biased because they do not separate change in attitudes over time that

would have happened irrespective of panel participation from change over time that is only due

to panel participation.

In other scenarios, relying on a single set of respondents can work well, however. Angel,

Heuberger, and Lamei (2017), for example, study changes in the level of measurement error in

income reports over time. Other than attitudes or behavior, which can change due to external

influences (see above), measurement error in respondents’ survey reports is unlikely to covary

with external factors. That is, if the level of measurement error is smaller (or larger) in the first

wave than in subsequent waves, respondents became worse (or better) reporters over time due

to panel conditioning. Thus, when the objective of a study is to analyze changes-in-reporting

panel conditioning, relying on a single set of respondents can produce unbiased estimates of

panel conditioning effects.

The between-person approach

The second method taking a different approach is more powerful in this regard because it can

be applied to study all forms of panel conditioning. Instead of within-person comparisons,

it relies on between-person comparisons, usually implemented in an experimental design with

random assignment of cases to either the treatment or the control group (see the potential out-

comes framework introduced above). That is, the between-person approach compares outcomes
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between respondents with varying levels of exposure to the treatment of survey participation.

There are many different variants of this design, which we review below.

The first variant randomly assigns people to either repeated participation in a panel survey or

to one-time participation in one wave of the same survey only. As a result, some respondents are

interviewed several times (treatment condition), whereas other respondents are interviewed only

once (control condition). Kruse et al. (2009), for example, compare attitudes and (reported)

behavior of respondents from eleven subsequent waves of the Knowledge Networks Panel with

attitudes and behavior of respondents of three independent cross-sectional samples of the same

panel that were interviewed with the same instrument at waves three, six or nine. Using

a similar design, Axinn, Jennings, and Couper (2015) compare reported contraception use

between women who were assigned to a baseline survey followed by weekly journal keeping for

twelve months and women who were assigned to the baseline survey and a follow-up survey

after twelve months only. Pushing the variant described in this paragraph to the most extreme,

three studies (Zwane et al. 2011; Crossley et al. 2017; Bach and Eckman 2017) randomly assign

people to participation in (several waves of) a survey (treatment) or to no participation at all

(control). To measure the outcome, they identify survey participants and people not assigned

to survey participation in administrative records that contain measures of the outcome and are

available for both groups. In the absence of nonresponse and panel attrition, any differences

between the sample selected for survey participation and the control group sample that is

observed in the administrative records only are then due to panel conditioning.

The second variant is similar to the first, with one important difference. In variant one, the

treatment group is interviewed several times with the same instrument, whereas the control

group is interviewed only once (or not at all). In the second variant, however, both the treat-

ment and the control group are interviewed several times, but with different instruments. For

example, a study that analyzes the (panel conditioning) effect of repeatedly answering a set of

questions A may split respondents into two groups. One group is interviewed with questions

A for several waves and the other group is interviewed with questions B. Only in the last wave

is the latter group also interviewed with questions A. As a result, the first group is treated

with A, but the second one not. Such a design is implemented, for example, by Struminskaya
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(2016). The main reason for interviewing the control group with other or ’placebo’ questions

instead of not interviewing them at all is that many panel surveys simply cannot afford to not

interview some respondents.

The third variant of the between-respondent approach builds on a somewhat different idea.

Instead of assigning people to different levels of exposure to the same survey (or variants of

it), this approach uses data from two different surveys, where one is a panel survey and the

other is a cross-sectional survey. Wilson and Howell (2005), for example, compare trends in

the prevalence of arthritis in the U.S. between 1992 and 2002 derived from panel respondents

of the Health and Retirement Survey (HRS) with arthritis trends for the same years derived

from cross-sectional respondents of the National Health Interview Survey (NHIS). Because data

from the two surveys are comparable, as the authors argue, any differences between trends in

the HRS and the NHIS data (in the absence of panel attrition in the HRS) are due to panel

conditioning in the former. In other words, because respondents of the HRS respond to the

same survey multiple times (the treatment group) and the NHIS is a repeated cross-sectional

survey that interviews a new group of respondents in each round (the control groups), any

differences in the prevalence of arthritis trends between the two is due to panel conditioning in

the HRS.

The fourth variant exploits experimental manipulations that occur unintentionally in some

panel surveys. Because the sample size of panel surveys decreases over time due to panel attri-

tion, some surveys introduce refreshment samples from time to time to renew the respondent

pool to approximately its original sample size (e.g., the General Social Survey or the Current

Population Survey in the U.S. or the panel study Labor Market and Social Security in Ger-

many). To ensure comparability between the original sample and the refreshment sample(s),

refreshment samples are usually drawn from the same population and with the same sampling

design. Thus, people who join a panel survey as part of a refreshment sample form an ideal

control group: When they join the panel as novice respondents, respondents of the original sam-

ple have already participated in several waves of the panel. Thus, the only difference between

the two groups (absent of panel attrition in the original sample) is that one group has been

treated and the other one has not been treated (yet). Warren and Halpern-Manners (2012),
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for example, use this design to study panel conditioning effects in several outcomes measured

in the General Social Survey and the German Socio-Economic Panel.

A slightly different variant of this approach has been applied extensively to study panel con-

ditioning effects among respondents of the Current Population Survey (Hansen et al. 1955;

Bailar 1975; Shack-Marquez 1986; Solon 1986; Shockey 1988; Bailar 1989; Halpern-Manners

and Warren 2012). This survey uses a rotating panel structure, that is, respondents are only

interviewed for a certain number of waves before being removed from the panel. At each wave,

a new rotation group joins the panel. Comparing outcomes between respondents of one rotation

group with another rotation group (with different panel tenure) thus offers an ideal setting to

study panel conditioning effects.

All of the four variants reviewed above can produce unbiased estimates of the counterfactual

outcome E(Y0|D = 1) (had the respondents not participated in the survey). Variants one and

four seem the most powerful as they do not require as many assumptions as variants two and

three. At the same time, however, they are also the most difficult to implement. Variant one

requires researchers to intentionally implement experimental manipulations in a survey. Such

manipulations, especially in large-scale social science surveys, are usually expensive. Moreover,

many well-established social science longitudinal surveys may simply not be willing to allow

researchers to hold out some respondents to be interviewed only occasionally. Principal in-

vestigators may fear that such experiments interfere with their historically grown panels. In

fact, we are not aware of any intentionally implemented panel conditioning experiments in

large-scale longitudinal social science surveys such as the Panel Study on Income Dynamics,

the German Socio-Economic Panel or the British Household Panel. Only recently, with the

emergence of online panels (e.g., the Longitudinal Internet Study for the Social Sciences in

the Netherlands or the German Internet Panel), have some surveys opened their panels for

experimental manipulations and methodological experiments.

Variant four can overcome the difficulties discussed above because researchers rely on exper-

imental manipulations that are already (unintentionally) implemented in surveys some other

way. The drawback of this variant is that researchers can only work with what is available.



32 Chapter 2. Methodological Challenges for the Analysis of Panel Conditioning Effects

That is, while some surveys use refreshment samples or rotating designs (see above) that can be

used for uncovering panel conditioning effects, others simply do not apply such designs. Thus,

this variant, although very powerful in producing unbiased control group outcomes, completely

depends on the availability of refreshment samples or rotation groups.

Variant two also depends on the question whether researchers can implement experimental

manipulations in a panel survey. While it may be easier to implement variant two than variant

one because all respondents are interviewed, the drawback of variant two is that researchers

need to be sure that asking some other (placebo) questions does not influence the outcome in

some other way.

Variant three requires somewhat different assumptions in order to produce an unbiased control

group outcome. Researchers need a cross-sectional survey that asks the same question. Fur-

thermore, this survey should be conducted in the same mode (e.g., CATI or CAPI) to avoid

mixing up mode effects with panel conditioning effects (see also the discussion in Section 2.4.3).

Data should be collected at the same time because attitudes and behavior may follow seasonal

trends and change over time for other external reasons (see examples above). Samples of both

surveys should be drawn with the same design and from the same population to avoid selection

bias. Thus, in order for this variant to produce unbiased results, researchers need to find two

almost identical surveys with the only difference between the two being that one is conducted as

a longitudinal survey, i.e., interviews respondents more than once with the same questionnaire,

and the other one as a cross-sectional survey. Given these requirements, variant three seems

difficult to implement.

To sum up, the within-person approach and the four variants of the between-person approach

all provide helpful designs for the analysis of panel conditioning effects. The between-person

variants are more powerful in most settings as they are not restricted to certain forms of panel

conditioning and may require fewer assumptions to produce unbiased control group outcomes.

Both approaches (even if based on careful experimental manipulations), however, can produce

biased estimates of panel conditioning if other confounding sources of error in (panel) surveys

are not properly accounted for.
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2.4.3 Challenge 3: Accounting for confounding sources of error

The third challenge is that researchers need to account for confounding sources of error when

analyzing panel conditioning effects. The most common are longitudinal nonresponse (i.e.,

panel attrition), mode effects and interviewer effects.

Panel attrition

The main confounder in studies of panel conditioning is panel attrition, i.e., nonresponse in

follow-up waves of a panel survey (e.g., Das, Toepoel, and van Soest 2011). Panel attrition is

usually highly selective: it is related to certain observable and/or unobservable characteristics

of a respondent, leading to compositional differences between all respondents of the first wave

and those who also participate in subsequent waves of a panel. For example, respondents may

differ from the full sample regarding socio-demographics or personality traits (e.g., Lepkowski

and Couper 2002; Lugtig 2014). In these cases, attrition can easily be mistaken for panel

conditioning because changes in the composition of the panel respondents over time can also

affect the outcome where panel conditioning is suspected. Consider variant four of the between-

person approach, for example. The distribution of socio-demographic information in the panel

respondent group will be different from the distribution of these characteristics in the incoming

sample due to nonrandom attrition.7 If attrition is also correlated with the outcome, then

comparisons of the mean of this variable between panel respondents and the refreshment sample

could reveal (or hide) a panel conditioning effect that, in fact, is only due to nonrandom dropout

over time among panel respondents. As a result, panel attrition bias would be mis-characterized

7Initial nonresponse is usually less of a problem because it affects both samples to the same degree. It may
affect estimates of panel conditioning only if nonresponse patterns in the first interview of the treatment group
are different from nonresponse patterns of the first interview of the control group. For example, nonresponse
patterns in a survey of attitudes on same-sex marriage may differ between the treatment group and the control
group. If same-sex marriage were to be legalized between the first wave of the treatment group and the first
wave of the control group, then nonresponse patterns may differ between the two groups. Some opponents of
the new bill who would have responded to the survey before the introduction of the bill may in fact not respond
after legalization as they may be afraid to share their opposing opinion in an interview due to social desirability.
In such cases, initial nonresponse patterns may differ between the first round of the treatment group and the
first round of the control group causing an additional challenge for the analysis of panel conditioning effects.
The methods that adjust for panel attrition (discussed below), however, can easily be extended to adjust for
different (initial) nonresponse patterns, too.
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as panel conditioning.

Studies of panel conditioning implement various approaches to tackle panel attrition. A few

studies recognize attrition as a confounding source of error, but do not adjust for it in their

empirical analysis (e.g., Bailar 1975) or subsume conditioning and attrition under ’panel bias’

(e.g., Bartels 1999). Many more studies address it using one of the adjustment techniques

reviewed below.

Broadly speaking, we can categorize approaches to adjust for attrition into three classes. The

first class comprises approaches that simply disregard those respondents who do not participate

in all waves of a panel. These approaches do not require any assumptions about the form of panel

attrition and are therefore a powerful way to eliminate any bias in panel conditioning effects due

to panel attrition. A drawback of these approaches, however, is that they can be implemented

in combination with the within-person approach (e.g., Sturgis, Allum, and Brunton-Smith

2009, see Section 2.4.2) and variants two and four of the between-person approach only (e.g.,

Halpern-Manners and Warren 2012, see Section 2.4.2). Disregarding attriters cannot be used

in combination with variants one and three of the between-person approach because only the

treatment groups are affected by attrition. Thus, limiting the treatment groups to respondents

who participate in all waves would not account for attrition at all. Instead, it would exacerbate

error due to attrition because additional cases would be excluded from the group that already

suffers from nonrandom dropout. Therefore, this approach is limited to certain scenarios.

The study by Halpern-Manners and Warren (2012), implementing this approach in combina-

tion with variant four of the between-person approach, deserves a closer look as the authors

implement one of the most elaborate research designs to the analysis of panel conditioning

effects. In the simplest case, their design consists of two rotation groups, as shown in Table

2.2. The treatment group is first interviewed in Wave 1 and interviewed for a second time in

Wave 2. The control group is interviewed for the first time in Wave 2 and for the second time

in Wave 3. Restricting both groups to those respondents who participate in two waves (Wave

1 and Wave 2 for the treatment group and Wave 2 and Wave 3 for the control group) and

comparing the Wave 2 outcome of the treatment group (their second interview) with the Wave
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Table 2.2: Example of a research design accounting for attrition with a rotating panel survey

Wave 1 Wave 2 Wave 3

Rotation group 1 X X
Rotation group 2 X X

Comparing the Wave 2 outcomes between Rotation group 1
and Rotation group 2 accounts for attrition because both
rotation groups contain only respondents who participate
in all waves.

2 outcome of the control group (their first interview) eliminates any confounding error due to

panel attrition without having to impose any further assumptions. Thus, this design is very

powerful in eliminating any confounding error due to panel attrition from panel conditioning

and in providing unbiased control group data. Yet, as we have noted before, it is limited to

those surveys that apply the refreshment or rotation group design described in Section 2.4.2.

The second class of approaches comprises all methods that adjust for attrition by conditioning

on observable determinants of attrition (e.g., by including them as control variables in regression

functions) or functions of the determinants (e.g., by using them as weights). These approaches

usually assume that attrition is missing at random (MAR), i.e., attrition is random conditional

on some fully observed covariates (Rubin and Little 2002). In other words, any confounding

bias due to attrition in estimates of panel conditioning is adjusted for when all variables that

determine whether a respondent drops out over time or not are correctly accounted for. The

difficulty with this approach, however, is that the MAR assumption cannot be tested or verified

in a statistical way. That is, researchers can only assume that attrition is MAR by, for example,

conditioning on all determinants identified as predictors of attrition in previous research or all

covariates thought to be related to attrition based on theory. If researchers fail to include

relevant variables or if attrition is missing not at random (MNAR), then panel conditioning

effects will be confounded by attrition.

Empirical implementations of this class of approaches are numerous. Kruse et al. (2009), for

example, adjust for attrition by including determinants of attrition as control variables in their

regression model. Other studies (e.g., Pennell and Lepkowski 1992; Dennis 2001; Nancarrow and
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Cartwright 2007), by contrast, condition on determinants of attrition by including nonresponse

weights supplied by the panel survey (e.g., longitudinal nonresponse weights or poststratification

weights) or calculate their own weights based on propensity scores (e.g., Struminskaya 2016).

Regardless, these studies cannot test whether the MAR assumption actually holds.

Approaches based on the MAR assumption are often used because they can be combined with

each of the approaches presented in Section 2.4.2. Preference should be given to the first class

of approaches (restricting the sample to respondents of all waves) however, because they do

not require relying on an untestable assumption.

A third approach to account for attrition uses instrumental variables. That is, the third ap-

proach does not require researchers to assume that they observe all determinants of attrition.

Instead, this method exploits random allocation of people to a treatment and a control group.

We are aware of only one study that has applied this approach to account for attrition. We

therefore describe the approach with the example of this study.8 Bach and Eckman (2017)

observe the behavior of two groups of people (a treatment group and a control group) in ad-

ministrative records to study a changes-in-behavior panel conditioning effect. The treatment

group consists of respondents and nonrespondents of a panel survey, and the control group

is observed in the administrative data only. To account for attrition and initial nonresponse,

the authors instrument the (endogenous) participation in the survey among members of the

treatment group with the random allocation of people to the treatment or the control group.

Because the allocation of people to the two groups is random and correlated with the endoge-

nous treatment (actual participation in the survey), it is a valid instrument by definition. That

is, this method exploits the random variation from the allocation of people to treatment or con-

trol to overcome the endogeneity resulting from members of the treatment group self-selecting

into panel response or nonresponse. Thus, this method is a powerful tool to eliminate bias due

to attrition and initial nonresponse among members of the treatment group. A major draw-

back of the approach, however, is that it works only when outcome information can be observed

for respondents, nonrespondents, and the control group. Moreover, instrumental variables will

8Crossley et al. (2017) apply the same approach to account for nonresponse in their study of the effect of
participating in only one wave of a panel survey on respondents’ behavior.
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likely underestimate the true panel conditioning effect because all respondents who participate

in at least one wave of a panel have to be treated as panel respondents (see Bach and Eckman

2017, for a discussion).

All three classes of approaches to account for confounding error due to panel attrition can be

used to uncover unbiased panel conditioning effects. The choice of the method, however, is often

limited by the availability of data and the design applied by the panel study of interest. Even

when attrition is successfully accounted for, other sources of error still need to be considered

in order to estimate unbiased panel conditioning effects.

Other confounding sources of error

Mode and interviewer effects are two other sources of error in surveys that require adjustment

(Halpern-Manners and Warren 2012; Chadi 2013). Both phenomena can lead to changes in

measurement error in panel surveys over time and may therefore easily be mistaken for panel

conditioning. Halpern-Manners and Warren (2012), for example, report that many studies of

panel conditioning in the Current Population Survey (CPS) likely estimate biased conditioning

effects because they confound conditioning with mode effects as the survey uses mostly in-person

interviews in a respondent’s first round and telephone interviews in subsequent rounds. Thus,

changes in an outcome between the first round and subsequent rounds of the CPS may (partly)

be due to face-to-face and telephone interviews resulting in different levels of measurement error.

Halpern-Manners and Warren (2012) demonstrate, however, that the CPS is still affected by

panel conditioning, even when mode effects have been properly accounted for.

Regarding interviewer effects, Chadi (2013) shows that self-reported life satisfaction decreases

steadily over time due to increased trust in the interviewer (a changes-in-reporting effect). Once

panel respondents are interviewed by a new interviewer, however, he finds an abrupt rise in life

satisfaction (an interviewer effect). Without acknowledging changes in interviewer allocation,

such abrupt rises in life satisfaction may be falsely attributed to panel conditioning. Similarly,

Van der Zouwen and Van Tilburg (2001) report that changes in reported network size over

time are due to interviewer behavior and not panel conditioning. Moreover, other substantial
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changes in panel surveys, such as a change of the data collection agency or the introduction of

dependent interviewing, might lead to similar changes over time that can easily be mistaken

for panel conditioning. However, we are not aware of any published research regarding these

other sources of error. To sum up, researchers need to make sure that any changes found over

time are only due to repeated interviewing of the same people and not due to other elements of

a survey that might change between waves and cause change in respondents’ behavior and/or

reporting.

2.5 Discussion and a look forward

The purpose of this study was to give an overview of the current state of methodological re-

search on panel conditioning effects in social science longitudinal surveys. We have identified

three methodological challenges that have plagued research on panel conditioning for a long

time. First, panel conditioning can result in changes-in-behavior and/or changes-in-reporting.

To make statements about either form, it is essential to clearly disentangle the two forms (at

minimum, researchers should acknowledge that panel conditioning can take various forms).

Second, obtaining control group data of people who have not been interviewed or have been

interviewed only once is crucial to the identification of the causal effect of panel survey par-

ticipation on inter-wave changes. Third, panel attrition and other sources of error in (panel)

surveys have to be accounted for to estimate unbiased panel conditioning effects. We have re-

viewed these challenges and the research designs developed to tackle them and discussed their

strengths and weaknesses.

The discussion of these designs and their implementations in the literature have shown that

more methodologically sound research is needed that carefully tackles all of the challenges

identified in this study. In addition, we would like to see more studies on the kind of large-scale

social science longitudinal surveys that social scientists frequently use for substantive research.

For example, we are not aware of any research on panel conditioning effects in the Panel

Study on Income Dynamics, the world’s longest-running household panel study. However, we
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also acknowledge that the implementation of methodological experiments is expensive, difficult

or even impossible. As a result, the choice of research designs may be limited to those ex

post designs that require several (untestable) assumptions, making clear statements about the

presence of panel conditioning effects difficult or even impossible.

Future research should also go beyond uncovering average panel conditioning effects. Little is

known about treatment effect heterogeneity, i.e., how panel conditioning effects vary for different

subgroups. Panel conditioning due to learning (see Section 2.3.1), for example, may vary with

respondents’ cognitive ability. Research should also extend the current focus on univariate

panel conditioning to the multivariate context. To date, little is known about the ways panel

conditioning biases estimates derived from complex multivariate statistical models. Future

work should assess how panel conditioning translates into bias in, e.g., regression coefficients

derived from econometric panel data models. Such projects may, for example, simulate data

without panel conditioning from real data that is affected by panel conditioning. Comparing

estimated panel regression coefficients between the two datasets would, for example, allow to

assess bias in multivariate estimates due to panel conditioning.

Recent technological advancements in data collection techniques, such as the use of mobile

(smart)phones, create even more opportunities for studies on conditioning effects. Online panel

surveys, text message surveys and app-based surveys, for example, offer new means of data col-

lection that are easy to implement, cheap and often allow to interview respondents up to several

times per month (online panels) or even per week (text message and app-based surveys). At

the same time, however, high-frequency surveying is also most susceptible to conditioning (see

Section 2.3). Thus, when collecting high-frequency data via text message surveys, smartphones

or online surveys, special attention must be paid to the possibility that the act of measuring

changes what is being measured. If researchers incorporate experimental manipulations in such

new data collection designs from the very beginning, obtaining sound and unbiased estimates

of panel conditioning will be easy.

Any experiment on panel conditioning, however, should only be conducted if there is theoretical

reason to assume a conditioning effect to be present (for example, if researchers believe that
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answering to a survey item encourages respondents to change their behavior). Similarly, studies

should be restricted to those items routinely used in surveys because the scientific value of

studying items that are hardly ever part of a survey may be questionable, a point also raised

by Warren and Halpern-Manners (2012).

Furthermore, findings regarding changes-in-behavior panel conditioning may also open new

ethical debates about survey research. That is, as soon as questions change behavior, researchers

must carefully think about the resulting behavioral change from an ethical point of view. Veroff,

Hatchett, and Douvan (1992), for example, demonstrated that asking questions about marriage

may lead to decreased marital satisfaction. Similarly, asking questions about suicidal thoughts

in a survey could increase the likelihood of suicide among certain respondents. Thus, some

questions may have huge negative influences on respondents’ behavior. Research on panel

conditioning therefore may also provide guidelines for researchers collecting data regarding the

ethics of asking certain questions.

Finally, no recommendations exist regarding what to do when panel data are affected by panel

conditioning. Are data really “irredeemably biased” as Warren and Halpern-Manners (2012, p.

522) put it? Or is it possible to ‘repair’ data or account for panel conditioning by, e.g., adjusting

statistical models? Can survey designers imagine ways to avoid panel conditioning in the first

place? Although our review has shown that scholars have analyzed for decades how repeated

interviewing of the same people can change their (reporting of) behavior and attitudes, we

have also identified several challenges that many studies fail to address adequately. Similarly,

our discussion shows that many important issues related to conditioning effects still need to be

addressed.
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Chapter 3

Does the Participation in a Panel

Survey Change Respondents’

Behavior?

3.1 Abstract

Panel survey participation can bring about unintended changes in respondents’ behavior and/or

their reporting of behavior. Using administrative data linked to a large panel survey, we analyze

whether the survey brings about changes in respondents’ labor market behavior. We estimate

the causal effect of panel participation on the take-up of federal labor market programs using

instrumental variables. Results show that panel survey participation leads to an increase in

respondents’ take-up of these measures. These results suggest that panel survey participation

not only affects the reporting of behavior, as previous studies have demonstrated, but can also

alter respondents’ actual behavior.
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3.2 Background

Panel surveys are a key resource for researchers and policy makers who seek to understand

dynamic processes, such as movements in and out of the labor force. Yet such surveys are

also vulnerable to the critique that participation can distort respondents’ behavior and/or re-

sponses, making the collected data unrepresentative of the larger population. This phenomenon

is referred to as panel conditioning (Halpern-Manners, Warren, and Torche 2017). Although

concerns about panel conditioning first arose in the 1940s (Lazarsfeld 1940), researchers from

many disciplines still rely on panel data for causal analysis. In this study, we test whether

repeated participation in the large-scale German panel study “Labor Market and Social Secu-

rity” alters respondents’ labor market behavior. We think of participation in the first three

waves of the panel survey as a treatment and the panel conditioning effect as a treatment ef-

fect. The outcome variables of interest are take-up of federal labor market programs and job

search behavior. That is, we use techniques of causal analysis to study whether panel survey

participation makes respondents more or less likely to take part in the labor market programs

and whether it helps respondents find a job faster.

Our study faces two major methodological challenges. First, we need to disentangle the effect

of survey participation on changes-in-behavior from changes-in-reporting. Administrative la-

bor market data, which are independent of respondents’ reporting, make this disentanglement

possible. Second, we need to control for confounding effects of survey nonresponse and attrition

from the estimates of panel conditioning. We use an instrumental variable approach and select

a second sample of persons who were eligible for selection into the panel survey but were not

selected. Thus, our data consist of two random subsamples – one selected for the survey, the

other not. Instrumenting actual participation in several waves of the survey, i.e., the treatment,

with the (random) invitation to participate in the survey, we adjust for bias due to nonresponse

and attrition and estimate the causal effect of panel survey participation on respondents’ labor

market behavior.

Previous studies of behavioral changes due to panel survey participation are rare and most suffer

from design flaws. Many do not disentangle changes-in-reporting from changes-in-behavior due
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to data limitations; others do not untangle panel conditioning effects from other effects such as

attrition. We contribute to this sparse literature and tackle the methodological challenges that

previous studies have encountered.

Before we turn to the data, methods and results of our study, we discuss panel conditioning

and its two forms in more detail. We also explain why we expect panel participation to alter

survey respondents’ labor market behavior.

3.2.1 Panel conditioning

If participation in a panel survey induces changes-in-behavior, then the survey’s sample be-

comes less representative of the population over time, and estimates based on the data will be

biased (Yan and Eckman 2012). The classic finding of this type of panel conditioning, from the

field of political science, is that participation in a pre-election survey increases voter turnout

in upcoming elections (Clausen 1969; Kraut and McConahay 1973; Yalch 1976; Traugott and

Katosh 1979; Granberg and Holmberg 1992). However, not all studies have detected this effect

(Smith, Gerber, and Orlich 2003). Panel participation can also affect other types of behavior:

water treatment product use and purchases of health insurance (Zwane et al. 2011); purchases

of automotive services (Borle et al. 2007), automobiles (Morwitz, Johnson, and Schmittlein

1993; Chandon, Morwitz, and Reinartz 2005) and computers (Morwitz, Johnson, and Schmit-

tlein 1993); saving for retirement (Crossley et al. 2017)); and cheating in exams (Spangenberg

and Obermiller 1996). For an extensive review of relevant studies in consumer behavior and

marketing research, see Dholakia (2010).

The literature proposes several theoretical explanations for changes-in-behavior panel condi-

tioning (Warren and Halpern-Manners 2012). Two mechanisms best explain why we expect

changes in behavior due to panel conditioning to arise in our labor market survey data. Cogni-

tive stimulus theory holds that repeatedly being asked the same questions makes respondents

more aware of the topic of the survey, raises their consciousness of the issues, and motivates

them to engage in the behavior under study (Sturgis, Allum, and Brunton-Smith 2009; Zwane et

al. 2011; Warren and Halpern-Manners 2012). This approach likely explains panel conditioning
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in studies of voting behavior: a pre-election interview may stimulate interest and participation

in the election and thereby increase voter turnout among respondents (Clausen 1969). The

second explanation is concerned with stigmatized or socially non-normative behavior. When

survey questions force respondents to confront a conflict between their behavior and society’s

norms, they might bring their future behavior in line with social norms to avoid dissonance

(Williams, Block, and Fitzsimons 2006).

Based on these two theoretical explanations, we hypothesize that repeatedly answering ques-

tions in a panel survey about whether or not one has participated in active labor market policies

(ALMP) increases the likelihood that respondents will participate in those measures. ALMP

are programs administered by the German government that aim to reduce unemployment and

increase participation in the labor market (Crépon and Van den Berg 2016): they may include

measures such as job application trainings or continuing education courses. Participation in

such measures is often mandatory for recipients of unemployment benefit recipients, and fail-

ure to participate may result in sanctions, i.e., temporary cuts in benefit receipt (Jacobi and

Kluve 2007). Taking part in a survey that includes several questions about such programs may

stimulate respondents to think more about the ALMPs, enhance their awareness of them and

thereby increase the likelihood that respondents will participate in these ALMPs. Additionally,

respondents may feel embarrassed reporting that they have not participated in such measures

and change their future behavior accordingly. In this way, panel participation could change

some respondents’ behavior. Furthermore, we expect that the size of the effect of panel survey

participation on respondents’ labor market behavior will increase with each wave.

Participating in the panel may also increase respondents’ likelihood to find employment. That

is, because ALMP are designed to help unemployment benefit recipients find a new job, we

expect that participating in the panel also reduces the search time that respondents need to

find a job. It is also possible that survey participation has an independent effect on job search

success, perhaps due to the stigma explanation discussed above.

Panel conditioning can also induce changes in how respondents report their behavior, which we

refer to as changes-in-reporting (Waterton and Lievesley 1989; Sturgis, Allum, and Brunton-
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Smith 2009; Cantor 2010; Warren and Halpern-Manners 2012). For example, respondents

may report more accurately in later waves of a panel survey, due to increased trust in the

interviewing process. On the contrary, respondents may also learn from prior participation

how the questionnaire is structured and then falsify their answers to reduce the length of

the interview. For a detailed review of theoretical explanations for changes-in-reporting panel

conditioning and an extensive literature review see, e.g., Warren and Halpern-Manners (2012).

Both forms of panel conditioning can occur at the same time (Halpern-Manners and Warren

2012; Yan and Eckman 2012). For example, unemployed respondents of a panel survey on

labor market behavior may under-report unemployment due to social desirability bias in early

waves of the survey but report more truthfully in later waves as they become more trustful

of the interviewer. Yet, at the same time, repeatedly asking respondents about labor market

topics could stimulate respondents’ job search activities and thereby lead to changes in their

actual behavior (the cognitive stimulation hypothesis). Researchers need to be aware of the

various ways that panel conditioning can occur and how it can bias inference: working with data

affected by panel conditioning, researchers risk mischaracterizing the existence, magnitude and

correlates of changes across survey waves in respondents’ attitudes and behaviors, which are the

main estimates made from panel data (Clinton 2001; Halpern-Manners, Warren, and Torche

2017). In addition, as mentioned above, the conclusions drawn from the panel participants may

not generalize to the larger population.

3.2.2 Methodological challenges

Studies of panel conditioning are confronted with two major methodological challenges. The

first is that disentangling changes-in-behavior from changes-in-reporting is difficult or impossi-

ble to do without validation records for the answers given in the survey (Waterton and Lievesley

1989; Van der Zouwen and Van Tilburg 2001). Indeed, most studies of changes-in-reporting

do not distinguish between the two types of panel conditioning (for exceptions see Pennell and

Lepkowski (1992), Van der Zouwen and Van Tilburg (2001), Duan et al. (2007), and Halpern-

Manners and Warren (2012)). To isolate changes-in-behavior panel conditioning, we need data



3.2. Background 53

that are unaffected by respondents’ reporting, such as administrative process data. Using such

data, researchers can study changes-in-behavior by, for example, comparing respondents’ be-

havior in the administrative data with the behavior of those who were not interviewed. This is

the approach we follow in our study. If one was interested in changes-in-reporting, comparisons

of respondents’ survey answers with administrative records may be used (e.g., Yan and Eckman

2012). If only survey data are available, one may compare experienced respondents with novel

respondents in panel studies with rotating designs to study changes-in-reporting, but this ap-

proach does not fully separate between the two forms of panel conditioning (Halpern-Manners

and Warren 2012).

The second major challenge to estimating panel conditioning error is adjustment for confound-

ing sources of error in panel studies (Williams and Mallows 1970; Van der Zouwen and Van

Tilburg 2001; Sturgis, Allum, and Brunton-Smith 2009; Das, Toepoel, and van Soest 2011;

Halpern-Manners and Warren 2012). The most common confounding source of error is nonre-

sponse and panel attrition. Initial nonresponse, for example, will result in systematic differences

between respondents of a survey and the originally selected sample. If these differences are not

properly adjusted for, analysis of panel conditioning may be confounded by nonresponse bias.

Similarly, compositional changes in the survey sample due to nonresponse in later waves of a

panel survey, i.e., panel attrition, may be mistaken for panel conditioning. For example, almost

all studies of panel conditioning in the Current Population Survey (CPS) do not distinguish

between attrition and conditioning (Halpern-Manners and Warren 2012). Some researchers,

using other data sets, do attempt to control for the effects of nonresponse and attrition by con-

ditioning on covariates related to nonresponse and attrition; others attempt to exclude attrition

by comparing only those who did not attrit (Shack-Marquez 1986; Pennell and Lepkowski 1992;

Dennis 2001; Nancarrow and Cartwright 2007; Toepoel, Das, and van Soest 2009; Das, Toepoel,

and van Soest 2011; Halpern-Manners and Warren 2012). Two other potential sources of error

that can easily be mistaken for panel conditioning are interviewer effects and mode effects. Van

der Zouwen and Van Tilburg (2001), for example, show that changes in reported network size

over time are due to interviewer changes between two waves of a panel survey and not panel

conditioning. Similarly, Halpern-Manners and Warren (2012) warn that changes over time may
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also result from a change of the data collection mode: the CPS, for example, uses in person

interviews in the first and telephone interviews in subsequent rounds.

We note that, among large socio-economic panel surveys, only one study of changes-in-behavior

does not suffer from the problems discussed above. Crossley et al. (2017) employ a quasi-

experimental design to identify a survey participation effect in a large-scale panel survey in

the social sciences. Analyzing administrative wealth data from respondents of a Dutch online

panel, they find that participating in an interview about saving for retirement has, on average,

a negative effect on respondents’ future saving behavior. Although the authors estimate the

effect of participation in a survey module fielded only once, their results lend support to the

hypothesis that (repeated) survey participation can alter respondents’ behavior. Moreover,

their identification strategy, which uses an instrumental variable approach, can be applied to

the estimation of panel conditioning effects, and that is the approach we take in this study.

3.3 Data

Data for our analysis come from the German panel study “Labor Market and Social Security”

(PASS), which is a large-scale yearly panel survey conducted by the Institute for Employment

Research on labor market topics. It uses a mixed-mode design of computer-aided telephone

interviews (CATI) and computer-aided personal interviews (CAPI). The survey consists of

a household interview and additional individual interviews with all household members who

are at least 15 years old. The main topics of the interviews are pathways into and out of

unemployment benefits receipt type II (long-term benefits due to unemployment, disability or

employment that does not reach a minimum standard of living); dynamics of the material and

social situation of benefit recipients; changes in recipients’ behavior and attitudes over time;

and interactions between recipients and the benefit providing agencies (Trappmann et al. 2013).

The PASS sample consists of two subsamples. The recipient subsample (n = 29, 309) is a

representative sample of all unemployment benefit units in Germany drawn from a register

maintained by the Federal Employment Agency. The sample was drawn from the most recent
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available administrative records in July 2006. Unemployment benefit units are in most cases

identical to households (see Trappmann et al. 2013). Variables on the register, however, concern

the individuals residing in these households. The second subsample is a general population

sample of households, selected from a commercial data set of addresses in Germany. We do not

use this subsample in our analysis and do not describe it further (see Trappmann et al. 2013,

for details).

Both samples were drawn using a multi-stage sampling design (Schnell 2007; Rudolph and

Trappmann 2007). In the first stage, 300 postcode areas were selected as primary sampling

units. In the second stage, unemployment benefit units in the selected postcode areas were

drawn from the administrative register of unemployment benefit recipients. Since the recip-

ient sample was drawn from the administrative data, respondents and nonrespondents can

easily be identified in the administrative records. We discuss linkage between the survey and

administrative data in more detail below.

We consider data from the first three waves of PASS, excluding refreshment samples that were

introduced in several waves (Trappmann et al. 2013). Data were collected on an annual basis

between winter 2006 and spring 2009. In each of these waves, respondents were asked the

same set of questions about their participation in ALMPs (see Appendix A for the text of the

questions). These questions may provide a cognitive stimulus that will increase respondents’

awareness and take-up of the programs, and for this reason we hypothesize changes-in-behavior

panel conditioning.

Household response rates are 35 percent in Wave 1, 51 percent in Wave 2, and 65 percent

in Wave 3 (Wave 2 and Wave 3 response rates conditional on participation in previous waves,

Christoph et al. 2008; Gebhardt et al. 2009; Berg et al. 2010). However, in our dataset we cannot

distinguish between households selected and fielded (n = 23, 736) and households selected and

not fielded (n = 5, 573). Therefore, the household response rate calculated with our larger

dataset is 22.8 percent. Since the subset of households used during fieldwork is a random

subsample of the original sample, we do not expect the additional households to bias our

estimates.
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3.3.1 Administrative data and linkage

The administrative data we use to investigate changes-in-behavior conditioning are the ‘Inte-

grated Employment Biographies’ (IEB), which include records of all employment spells subject

to social security, unemployment benefit receipt, participation in ALMP, or spells of job search

(Jacobebbinghaus and Seth 2007; Institute for Employment Research 2013). These records

can be aggregated to the person level and contain histories of employment, unemployment, job

search, and benefit receipt, as well as records of ALMP participation. Although the adminis-

trative data are not free of error, their overall quality is very high, and they are used by the

German government to calculate pension claims, administer benefit claims and make payments

(Jacobebbinghaus and Seth 2007; Köhler and Thomsen 2009; Kreuter, Müller, and Trappmann

2010). In general, data on benefits, ALMP and job search are of the highest quality, because

they are generated by activities of the Federal Employment Agency itself (Jacobebbinghaus and

Seth 2007). A variety of socio-demographic variables such as gender, date of birth, citizenship,

education and place of residence are also included in the data set.

Because the PASS recipient sample is selected from the same data source, we can easily identify

members of the households sampled for PASS in the IEB. Overall, we are able to identify

and obtain full information on 28,377 selected households, i.e., 96.8% of the original household

sample. Cases that do not have socio-demographic variables needed for our analysis (see Section

3.4.5) are not included (3.2%). We do not expect this restriction of the sample to bias our

estimates of panel conditioning because households with similar scarce administrative records

will also not be included in our control group, for the same reason (see Section 3.4). For

the 28,377 households with full information, we obtain individual records on 38,350 household

members.

Table 3.1 shows the number of households with at least one realized interview per wave and

the number of households successfully identified in the administrative records. Overall, we are

able to identify and obtain full information on 6,415 households that responded in at least one

of the first three waves of PASS (95.3%, last column of Table 3.1). Likewise, we obtain full

information on 21,962 households that did not respond to any of the first three waves of PASS
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Table 3.1: Number of households with at least one realized interview and number of successfully
linked households per wave

Wave 1 Wave 2 Wave 3
Response in

any wave
Households with at least

6,691 3,391 3,615 6,734
one realized interview

Responding households successfully 6,371 3,236 3,445 6,415
linked to administrative records (95.2%) (95.4%) (95.3%) (95.3%)

Individuals within linked
8,647 4,337 4,626 8,728

responding households

(97.3%). Thus, the linkage rate among all households is very high.

Due to German privacy regulations, we cannot link individual response indicators from the

survey to the administrative data without respondents’ consent. For this reason, we treat

all members of a responding household as respondents. Restricting our analysis sample to

consenting respondents may introduce bias if consenters are different from non-consenters. To

avoid such bias, we do not identify individuals within households and treat all household

members as respondents if at least one person in the household responded to the survey. This

issue might lead us to underestimate the true panel conditioning effect because some household

members have not received the stimulus of responding to the survey (within-household response

rates at the individual level are 85.6% in Wave 1, 85.5% in Wave 2, conditional on response

in Wave 1, and 83.5% in Wave 3, conditional on response in Wave 2, Christoph et al. 2008;

Gebhardt et al. 2009; Berg et al. 2010). However, it avoids any bias due to non-consent in our

estimates. Based on these definitions, about 22.8 percent of all individuals identified in the

administrative data responded to at least one wave of PASS.

Identifying the administrative records for respondents and nonrespondents is only the first step,

however: to get an unbiased estimate of the effect of repeated survey participation on ALMP

take-up, we need to control for the confounding effects of nonresponse and panel attrition.
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3.4 Methods

We regard participation in the first three waves of PASS as a treatment, and the panel condi-

tioning effect as a treatment effect: we are interested in estimating how receiving the treatment

(participating in three waves of the PASS survey) changes respondents’ behavior. The three-

time PASS respondents form the treatment group. To estimate the treatment effect, we selected

a second random sample from the IEB administrative data set (n = 38, 350) to form the control

group. This sample consists of unemployment benefit recipients who were eligible for the first

wave of the PASS survey but were not selected in the first wave nor in any later waves. Thus,

our data consist of two random samples, one selected for the survey, i.e., the respondents and

nonrespondents of PASS, the other one, the control group, not.

In formal terms, Z ∈ [0, 1] defines an indicator of whether one was assigned to treatment

(Z = 1) or control (Z = 0), i.e., selected for the survey or not. Moreover, D ∈ [0, 1] denotes

the treatment indicator, i.e., whether one actually participated in the survey (D = 1) or not

(D = 0). If everyone complied with the treatment status assigned, then D = Z. Assignment to

treatment (Z) is fixed over time. Actual treatment (D), however, may change over time, e.g.,

a household that did not participate in the first wave (D = 0) may participate in the second

wave, thus changing to D = 1. Let Y be the outcome of interest (take-up of ALMP and job

search behavior). If everyone complied with the treatment, the treatment effect would simply

be the difference between the average outcomes of the treated persons E(Y |D = 1) and the

control group E(Y |D = 0).

However, as shown in Section 3.3, many persons selected for the survey did not participate:

Z = 1, but D = 0. These persons are non-compliers, that is, they did not respond to the survey,

their assigned treatment status. Nonresponse and attrition in surveys have many causes and

can lead to bias or endogenous selection into treatment (Groves, Cialdini, and Couper 1992;

Groves, Singer, and Corning 2000; Abadie 2003; Kreuter, Müller, and Trappmann 2010). For

example, people who agree to participate in three waves of a survey may be more compliant

and thus more likely to participate in ALMP, even without the treatment of the survey (e.g.,

Zabel 1998; Rizzo, Kalton, and Brick 1996; Lepkowski and Couper 2002). Thus, comparing
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the outcomes of the treated cases with the outcomes of the control group may bias our analysis

of panel conditioning, because survey respondents are different from nonrespondents in many

ways.

One method to address the problem of noncompliance with treatment assignment is to estimate

an intention-to-treat (ITT) effect. In this approach, rather than comparing individuals with

different treatment statuses, we compare those assigned to different treatments, conditional on

a vector of predetermined covariates X:

ITT = E[Y |Z = 1, X]− E[Y |Z = 0, X] (3.1)

Since Z was randomly assigned, the ITT estimates the causal effect of the offer of treatment.

However, due to noncompliance with the treatment status assigned (the take-up rate of the

treatment, E(D|Z = 1), across all waves is about 22.8 percent), the effect estimated via Equa-

tion 3.1 will be too small relative to the average causal effect on the treated (Angrist and

Pischke 2009, ch. 4). A more powerful class of methods uses the randomization of Z in an

indirect way to adjust for the bias due to noncompliance and to estimate the treatment effect.

3.4.1 Instrumental variables

The instrumental variable (IV) approach is based on the following idea: if an instrument Z

is available that induces exogenous variation in the treatment variable D, then instrumenting

D with Z allows us to estimate the treatment effect of D (Imbens and Angrist 1994; Angrist,

Imbens, and Rubin 1996; Abadie 2003).

Following the potential outcomes framework (Rubin 1974; Rubin 1977) , we define two potential

outcomes: Y1 is the outcome that occurs when a case receives treatment (participates in three

waves) and Y0 is the outcome without treatment. Obviously, we observe only Y = DY1 + (1−

D)Y0 for a given individual, i.e., either Y1 or Y0. Furthermore, let Dz represent the potential

treatment status given Z = z. If, for a given case D1 = 0, then that case would not participate
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if selected; D1 = 1 means that a case would participate if selected. Analogous to the potential

outcomes setup, we observe only D = ZD1 + (1− Z)D0, but never both potential treatments

for any individual.

Following Angrist, Imbens, and Rubin (1996), we divide the population into four groups:

• Compliers : D1 > D0 or, equivalently, D0 = 0 and D1 = 1

• Always-takers : D1 = D0 = 1

• Never-takers : D1 = D0 = 0

• Defiers : D1 < D0 or equivalently D0 = 1 and D1 = 0

In our framework, the group of survey respondents are the compliers: They were assigned to

take the treatment, i.e., selected for the survey, and complied with the treatment assignment,

i.e., responded to the survey. There are no always-takers, i.e., people who take the treatment

irrespective of their treatment assignment status, since participation in the survey is only

possible for cases selected for participation. However, we do have never-takers, people who do

not participate in the survey when they are selected (and also when they are not selected).

Non-compliance in our setup is one-sided because people not assigned to the survey cannot

decide between response and nonresponse. In other words, the probability that a case assigned

to control does not take the treatment equals one (Pr(D0 = 0) = 1). There are no defiers for

the same reason.

Angrist, Imbens, and Rubin (1996) show that instrumenting D with Z estimates the local

average treatment effect (LATE) for compliers under certain assumptions that we discuss in the

next section. Moreover, since there are no always-takers and no defiers, the group of compliers

and the group of treated are identical, and the LATE for compliers equals the average treatment

effect on the treated (ATT).
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3.4.2 Identification assumptions

To state the assumptions needed for the instrumental variable approach, we need to include Z

in the definition of potential outcomes. Let Yzd represent the potential outcome if Z = z and

D = d, and let X be a vector of known characteristics. Then, with the following nonparametric

assumptions, we can use IV techniques to estimate the LATE for compliers.

(i) Independence of the instrument: conditional on X, the random vector

(Y00, Y01, Y10, Y11, D0, D1) is independent of Z.

(ii) Exclusion of the instrument: Pr(Y1d = Y0d|X) = 1 for d ∈{0,1}

(iii) First stage: 0 < Pr(Z = 1|X) < 1 and Pr(D1 = 1|X) > Pr(D0 = 1|X)

(iv) Monotonicity: Pr(D1 ≥ D0|X) = 1

Assumption (i) means that treatment assignment Z is ignorable or as good as randomly

assigned, conditional on X. This assumption is justified in our study. The cases selected for

the PASS survey and the control data set are equal size random samples of people registered

as unemployment benefit recipients in the IEB at the date of sample selection of PASS. As we

would expect from random assignment of Z, there are only few significant correlations between

Z and a set of covariates derived from the administrative data (see Section 3.4.5 for details on

these covariates and the Appendix for supporting analysis).

Assumption (ii) states that variation in Z, i.e., assignment to treatment or control, does

not influence potential outcomes except through D, i.e., through response or nonresponse.

Moreover, the assumption allows us to define potential outcomes in terms of D alone, i.e.,

Y0 = Y00 = Y10 and Y1 = Y01 = Y11.Taken together, (i) and (ii) guarantee that the only effect Z

has on Y is through D, that is, that being selected for the survey does not affect participation

in ALMP except through taking part in the PASS survey.

However, we need to discuss these two assumptions in more detail. We would like to estimate

the effect of repeated participation in PASS on the take-up of ALMPs. Thus, as defined above,
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D refers to repeated participation in the survey. However, some persons participate in one or

two waves and then drop out of the survey. These households are selected (Z = 1) but not

treated (D = 0), because we have defined D as participation in all three waves. If participation

in just one or two waves is enough to change behavior (as suggested by Crossley et al. 2017),

then we have a violation of the assumptions: Z can affect Y , even when D = 0. Thus, we

need to redefine our treatment to satisfy the assumptions. Instead of participation in the first

three waves of PASS, we define the treatment as participation in any of the first three waves

of PASS.

This modification to the definition of treatment strengthens our argument that, once we control

for the small differences between the group selected for survey participation and the control

group of unselected recipients, assignment to survey participation, Z, has no effect other than

through actual participation in any wave of the survey, D, and thus that Assumptions (i) and

(ii) hold. It may still be possible that being selected for the survey, receiving the advance letter

announcing the survey, and perhaps receiving a few contact attempts could influence ALMP

behavior without survey participation. However, we believe the chances of that happening are

very small, and we are not aware of any literature showing that survey contact attempts and

advance materials change behavior.

Assumption (iii) states that D and Z must be correlated, conditional on X. In addition,

the support of X conditional on Z = 1 must coincide with the support of X conditional on

Z = 0. Since 8,728 people (about 22.8 percent) responded in at least one of the first three

waves of PASS, and no non-selected cases participated, this assumption appears to be satisfied.

In addition, tests indicate that we do not need to worry about weak identification (F-statistic

from an IV regression with a linear first stage: F1,76678 = 11,187.81; partial R-squared of the

treatment indicator 0.13; Stock and Yogo (2005), Angrist and Pischke (2009, ch. 4)).

Assumption (iv), i.e., monotonicity, holds trivially because only people selected for the survey

could participate in the survey.

In addition to the four assumptions discussed above, we need to assume the stable unit treat-

ment value assumption (SUTVA) (Rubin 1978; Angrist, Imbens, and Rubin 1996). It holds
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that potential outcomes for each treated case are unrelated to the treatment status of others.

This assumption would be violated if, for example, a responding household would interact with

a non-responding household. Given the number of households with benefit receipt in Germany

in July 2006 (about 4.01 million Bundesagentur für Arbeit 2017) and the sample size of PASS

(29,309), the chances that households would interact are very small. Thus, we do not see any

reason why this assumption would not hold.

In general, these assumptions are similar to the assumptions needed for the popular Wald

estimator. In our case, however, the assumptions are more flexible as they allow conditioning

on X. Since there are minor differences between the group offered to participate in the survey

(see above and the Appendix for supporting analysis) and the control group, we choose the

estimator presented below and control for X.

Having discussed the assumptions in detail, we next turn to the identification of the LATE or,

in the terminology of Abadie (2003), the local average response function (LARF).

3.4.3 Identification

Define the object of interest, the LARF for compliers, as E[Y |D,X,D1 > D0]. The challenge

for the estimation of this LARF is the identification of the compliers (those who respond

when offered to participate and do not respond when not offered). Among the cases offered to

participate in the survey, the compliers are easy to identify, of course: these are the respondents.

In the control group, however, we cannot identify compliers individually because we cannot

distinguish whether a case complies with being assigned to the control group condition or is

a never-taker. Using Abadie’s κ and Theorem 3.1 of Abadie (236-237 2003), however, we

can express expectations for compliers with the LATE assumptions in the following way (see

Section 3.4.2). Let g(·) be any measurable real function of (Y,D,X) with finite expectation.

Furthermore, define

κ = 1− D(1− Z)

Pr(Z = 0|X)
− (1−D)Z

Pr(Z = 1|X)
(3.2)
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The second term of κ is > 0 only for the unselected always-takers (in our cases, the second

term equals 0, because people who were not offered to participate in the survey could not

participate, i.e., there are no unselected always-takers). The third term is > 0 only for the

selected never-takers. Thus, the only cases with κ > 0 are the compliers and the selected

always-takers because there are no defiers by definition (see Section 3.4.1). Therefore, we can

think of kappa as a case-level weight that identifies the complier population, allowing us to

estimate the LARF for compliers. Abadie shows that E(κ) = Pr(D1 > D0). Interestingly,

this procedure simplifies to the the popular Wald estimator when X contains a constant only

(Angrist and Pischke 2009, ch. 4). Since Pr(Z = 1|X) in Equation 3.2 is unknown due to

X, we estimate it, e.g., with a probit model, i.e., Pr(Z = 1|X) = Φ(x′iγ), where Φ(·) is the

cumulative distribution function of a standard normal distribution.

3.4.4 Estimation

When Y is continuous, estimation of the LARF, E[Y |D,X,D1 > D0], is straightforward with

linear regression. Suppose E[Y |D,X,D1 > D0] = h(D,X, θ), with h(D,X, θ) = αd + x′β

and parameter vector (θ = α; β). Using the results from above, Abadie (2003) proposes the

following least squares estimator for continuous outcomes:

(α̂, β̂) = arg min
(α,β)∈θ

1

n

n∑
i=1

κi(yi − αdi − x′iβ)2 (3.3)

When Pr(Z = 1|X) is estimated with least squares, Equation 3.3 produces the traditional

two-stage least squares estimator (Angrist and Pischke 2009, ch. 4).

When the outcome, Y , is binary, a probit transformation of the linear part of (2) can be used.

The estimator is then:

(α̂, β̂) = arg min
(α,β)∈θ

1

n

n∑
i=1

κi(yi − Φ(αdi − x′iβ))2 (3.4)
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In both cases, variances are estimated according to Theorem 4.2 of Abadie (2003).

Both estimators are implemented in the LARF package (version 1.4) by An and Wang (2016)

in R (R Core Team 2017). We next define the outcome variables, participation in ALMP and

job search after participation in the survey, and the set of covariates X in more detail.

3.4.5 Outcomes & Control variables

We consider two variables related to ALMP participation as outcomes. The first is the number

of ALMP taken. The second is a simple indicator of whether a person participated in any

ALMP (1) or did not (0). If panel conditioning has led to changes in behavior, we should see

that respondents participate in more programs and are more likely to participate in ALMP. In

building these outcome variables, we consider only those spells that started after the first day

of fieldwork (because the survey cannot affect ALMP spells before it started) and those that

occurred before January 31st, 2010, the day before fieldwork of wave four started (because later

spells may have been influenced by later waves of the survey and in this study we consider only

the first three waves). Furthermore, we consider both outcomes at three different periods in

time. The first period begins after the first day of field work of Wave 1 and ends just before

the beginning of Wave 2. The second period begins after Wave 2 and ends before Wave 3

and the third, finally, after Wave 3 and before Wave 4. However, we must then also define

the treatment accordingly (see Section 3.4.2). Table 3.2, showing possible response patterns,

defines the treatment indicator for each outcome period.

Estimating the treatment effect for each of these treatments separately allows us to study

whether panel conditioning effects get stronger over time, i.e., whether the effect size increases

with each additional wave. However, our approach may underestimate the true panel condi-

tioning effect because we treat all members of a responding household as respondents (Section

3.3.1) and because the definitions of the treatments in waves two and three also include people

who responded in only one wave (Section 3.4.2).

Regarding the question of whether panel survey participation increases the probability of em-
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Table 3.2: Treatment variable definitions and response patterns

Response to survey
Outcome period Treatment Wave 1 Wave 2 Wave 3 N Total

After wave one &
before wave two

D=1 X 8,647 8,647

After wave two &
before wave three

X X 4,310
D=1 X 4,337 8,674

X 27

After wave three &
before wave four

X X X 3,295
X X 1,015
X X 1,259

D=1 X X 18 8,728
X 1,683

X 9
X 54

ployment, we again consider two outcome measures. First, we simply calculate the duration

from the beginning of the fieldwork of the survey until the occurrence of the first job spell in

the records (in days). Second, we create an indicator of whether a person found a job after

the beginning of the fieldwork of the survey or not. Both variables consider only data until the

beginning of wave four. For brevity, we do not consider these two outcomes at different points

in time.

For each outcome, we first estimate the ITT described in (3.1). Second, we estimate the LARF

with the estimator defined in (3.3) for the number of ALMP participations and the time to find

a job and the estimator defined in (3.4) for the two binary participation indicators.

As a falsification or “placebo” test, we create the same two ALMP outcome variables for earlier

spells of program participation, those that ended before the first day of fieldwork, as suggested

by Athey and Imbens (2017). If the assumptions discussed above are met and the model is

correctly specified, we should not find a significant treatment effect on pre-treatment outcomes,

because the survey cannot affect ALMP spells that occurred before the survey started. We do

not perform this test for the job search outcomes because it is not clear how we should define

the search time for the last hob held before the survey started. In addition, most of our cases
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were unemployed at the time of selection and had been unemployed for a while.

Furthermore, we derive a set of covariates, X, from the administrative data. These covariates

cover socio-demographics (age, gender, education, nationality, place of residence) as well as

labor market histories (past employment, unemployment and unemployment benefit receipt).

We include these covariates in all of our analyses, for two reasons. First, to control for any

differences that might arise by chance between the group assigned to treatment and the group

assigned to control. Second, because including covariates, even if they do not differ between

Z = 1 and Z = 0, can reduce some of the variability in the outcome variable and thereby

increase the precision of the estimates (Angrist and Pischke 2009, ch.4). For a complete list of

the covariates we use, see the Appendix.

In sum, with the methods discussed here, we can estimate the causal effects of repeated partic-

ipation in PASS on the take-up of ALMP and employment. The results allow us to answer our

research question: whether panel participation leads to changes in respondents’ labor market

behavior.

3.5 Results

In a first step, we present descriptive statistics of the outcome variables. Then, we present the

results of the ITT analysis and our main results, the estimated treatment effects of participation

in several waves of the survey. At each step, we also check the results from the falsification

test: if our models are working well, they should not detect any treatment effect in the ALMP

variables before Wave 1, that is, before treatment began.

3.5.1 Descriptive statistics

Table 3.3 shows descriptive statistics of the outcome variables at four different periods in time.

The first set of rows show that the two ALMP outcomes do not differ much between the group

selected for the survey (Z = 1) and the control group of unselected recipients (Z = 0) before
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the start of the survey. This result is expected, given the random selection process. The last

two columns, however, show that respondents to the survey (D = 1|Z = 1), i.e., selected cases

who will respond to at least one wave of the survey, participate more often in ALMP and in

more ALMP than nonrespondents (D = 0|Z = 1). These results support the claim that actual

participation in the survey, i.e., take-up of the treatment, is selective, which inspired our use of

the instrumental variable approach in the first place. We observe similar patterns after waves

one, two and three (rows three through eight).

In the last two rows, we see that after participating in the survey, the mean number of days

to find a job as well as the percent of people who found a job do not differ much between

Z = 1 and Z = 0. Differences between respondents and nonrespondents, however, are more

pronounced. Respondents need less time to find a job and are more likely to find a job. We

evaluate whether these differences are due to survey participation in the next section.

3.5.2 Treatment effects

Figure 3.1 shows the results of the intention-to-treat analysis, i.e., the differences in the ALMP

outcomes between the group assigned to survey participation and the group assigned to control

as shown in Equation 3.1. Results of this analyses are similar to columns one and two of Table

3.3, but the results shown in Figure 3.1 control for the covariates introduced in Section 3.4.5.

Before we discuss the ITT estimates, we first check that there are no significant differences

between the selected and unselected cases with respect to the two ALMP outcomes measured

prior to the start of the survey, i.e., we run the falsification test described in Section 3.4.5. The

first row in Figure 3.1 shows that the method estimates no significant differences in the number

of ALMP (left panel) nor for the ALMP participation indicator (right panel). This finding

supports the claim that assignment to treatment or control was in fact random, conditional on

X (assumption (i)).

After the first wave (the second row of Figure 3.1), the ITT is positive and significant for

both ALMP outcomes, though very small. Unemployment benefit recipients selected for the

survey participate in about 0.01 more ALMP than the control group (left panel of Figure 3.1),
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Table 3.3: Descriptive statistics of outcome variables

Outcomes Mean (Std. dev.)

Selected
Not

Respondentsa
Non-

selected respondents
(Z = 1) (Z = 0) (D = 1|Z = 1) (D = 0|Z = 1)

Before Number of ALMP 1.71 1.70 1.79 1.68
wave one participations (2.05) (2.03) (2.07) (2.04)

ALMP participation 63% 62% 64% 62%

N 38,350 38,350 8,728 29,622

After wave Number of ALMP participations 0.35 0.34 0.37 0.35
one & before participations (0.71) (0.70) (0.71) (0.71)
wave two

ALMP participation 25% 24% 27% 25%

N 38,350 38,350 8,647 29,703

After wave Number of ALMP 0.69 0.66 0.71 0.68
two & before participations (1.11) (1.11) (1.12) (1.11)
wave three

ALMP participation 37% 36% 39% 37%

N 38,350 38,350 8,674 29,676

After wave Number of ALMP 1.01 0.98 1.04 1.00
three & before participations (1.48) (1.49) (1.51) (1.47)

wave four
ALMP participation 45% 44% 46% 45%

N 38,350 38,350 8,728 29,622

After wave Days until 1,333.74 1,324.26 1,280.28 1,335.26
one & before new job (928.40) (928.52) (926.07) (928.60)
wave four

Found job 54% 55% 58% 54%

N 38,350 38,350 8,728 29,622
a See Table 3.2 for definitions.
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Before wave one

After wave one

After wave two

After wave three

−.1 0 .1 .2 .3

Number of ALMP
participations

−5 0 5 10

ALMP participation indicator
(in percentage points)

Figure 3.1: Point estimates of panel conditioning effects with 95% confidence intervals. Es-
timates from Intention-to-treat analysis, controlling for covariates X (see Section 3.4.5).
N=76,700.
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controlling for X. In addition, take-up of ALMP is about one percentage point larger among

the selected cases (right panel of Figure 3.1). Both effects become stronger after waves two and

three (rows three and four of Figure 3.1), i.e., when respondents may have been exposed to

the survey more than once. These results are evidence that participation in the PASS survey

leads to a small increase in ALMP participation, and the effect becomes stronger over the three

waves.

Regarding the time to find a job, the ITT is 3.98 days with a standard error of 6.12, controlling

for X. The ITT for the indicator of whether a person found a job is -0.17 percentage points

with a standard error of 0.33. Both ITTs are insignificant. Thus, ITT results do not seem to

support the hypothesis that respondents need less time to find a job or find a job more often

than people who were not interviewed.

However, all ITT effects described above underestimate the average causal effect on the treated,

due to substantial noncompliance with the treatment assignment status. Using the LARF

estimator described in Section 3.4, we can get a clearer picture of the actual effect size of

(repeated) survey participation.

Figure 3.2 shows the main results of our study, the LARF estimates from the IV models. Again,

we control for the set of covariatesX (see Section 3.4.5) to ensure that treatment assignment Z is

in fact random (conditional on X) and to reduce some of the variability in the outcome variable

and thereby increase the precision of the estimates. Note that once we include covariates in the

estimation, the LARF estimator described in Section 3.4 still equals the ATT under one-sided

noncompliance. The ATT, however, is then specific to these covariates.

Again, before turning to the outcomes after survey participation, we first look at the take-up of

ALMP before the start of the survey to assess the model specification with a falsification test.

If the model is correctly specified and if the assumptions discussed in Section 3.4 hold, then

there should be no significant effect on ALMP participation prior to treatment. The first row

of Figure 3.2 reports the results of this analysis. We do not find a significant treatment effect

for the number of ALMP (left panel) or for the ALMP participation indicator (right panel).

These results, together with the results from the falsification test in Figure 3.1, suggest that
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Before wave one

After wave one

After wave two

After wave three

−.1 0 .1 .2 .3

Number of ALMP 
participations

−5 0 5 10

ALMP participation indicator
(in percentage points)

Figure 3.2: Point estimates of panel conditioning effects with 95% confidence intervals. Esti-
mates from instrumental variable analysis using the LARF estimator and controlling for co-
variates X (see Section 3.4.5). N=76,700.
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our IV model is correctly specified, and the assumptions discussed in Section 3.4 are met and

thus that we can estimate the causal effect of survey participation on respondents’ take-up of

ALMP.

Turning to the other rows in Figure 3.2, the effect of participation in the survey on ALMP

take-up after the start of the survey, we find a significant positive causal effect of participation

in the first wave of the survey on respondents’ take-up of ALMP (second row). Respondents

participate in about 0.07 more programs (left panel) and participation increases the probability

of taking-up an ALMP by about 4.8 percentage points (right panel). After Wave 2, the mag-

nitude of both effects increases to about 0.14 programs and 6.4 percentage points, respectively.

Wave 3 leads to a further increase in effect size to about 0.18 and 7.5, respectively. Compar-

ing the LARF estimates (Figure 3.2) to the ITT estimates (Figure 3.1), we see the expected

increase in effect size (recall that the ITT underestimates the true effect because it does not

adjust for noncompliance). However, we also see that, mainly due to noncompliance among

participants offered to participate in the survey, the confidence intervals of the LARF estimates

are much wider.

Next, we analyze whether the survey also affects respondents’ employment probabilities. Be-

cause ALMP are designed to increase employment probabilities for the unemployed, we expect

that the increase in ALMP participation leads to a decrease in the time that respondents need

to find a job and that respondents find a job more often than people who were not interviewed.

Using the same LARF estimator, we do not find that respondents, after participating in up to

three waves of the panel, find a job faster (17.22 days with a standard error of 26.80). Similarly,

respondents do not find a job more often than people who were not interviewed (-0.73 percent-

age points with a standard error of 1.43). Thus, we do not find evidence that the increase in

ALMP participation results in a significant change in employment probability.

Taken together, these results are strong evidence for the presence of panel conditioning effects in

PASS. Survey participation seems to increase the number of programs people participate in and

to increase the likelihood to participate in ALMP. Thus, repeated participation in PASS changes

respondents’ actual labor market behavior, i.e., respondents are more likely to participate in
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ALMP, and participate in more programs, than similar persons who are not exposed to the

survey. Moreover, these effects seem to increase with the number of survey waves. Contrary to

our expectations, survey participation does not affect respondents’ employment probabilities.

However, taking all the results and the falsification test together, we find strong evidence of

changes-in-behavior panel conditioning in the PASS survey.

3.6 Discussion

In this study, we have regarded selection and participation in the first three waves of a large

panel survey as a treatment and have used techniques of causal analysis to estimate changes in

respondent behavior due to panel conditioning as a treatment effect. The results revealed that

respondents of the first three waves are more likely to participate in ALMP, and participate in

more programs, than a group of eligible but unselected unemployment benefit recipients. Each

additional exposure to the treatment, i.e., each additional wave, intensifies this effect. We do

not see an increase of respondents’ employment probabilities.

Because many people selected for the survey did not respond, our analysis accounts for non-

compliance with the treatment assigned. We relied on an instrumental variable approach and

instrumented actual participation in the survey with the random assignment of people to the

survey. In addition, we discussed the assumptions necessary to identify the local average re-

sponse function with this instrument in detail and addressed potential concerns about model

misspecification or violated assumptions with a falsification test.

Two theoretical mechanisms offer plausible explanations as to why panel participation can

change respondents’ behavior. We hypothesized that asking people repeatedly about a specific

behavior works as a stimulus, which increases respondents’ awareness and motivates them to

take up this behavior. Another hypothesis holds that feeling embarrassed about reporting

non-normative behavior, people bring their behavior in line with society’s norms. In line with

these hypotheses, we found that respondents’ labor market behavior is changed by (repeated)

participation in the survey. However, we cannot distinguish between these two mechanisms.
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The true panel conditioning effect may be larger than that shown in Figure 3.2. We likely

underestimated the effects of repeated participation in the survey for two reasons. First, we

treated all members of a responding household as respondents due to privacy regulations that

prevent us from identifying individuals within households. Not all individuals in responding

households responded to the survey, however, and therefore did not receive the stimulus. Thus,

our treatment group included some untreated cases. Second, the definitions of the treatments

after waves two and three also include people who responded in one wave only and therefore

received only a ’reduced’ stimulus (see Table 3.2).

Our findings may have interesting implications for research on ALMP, labor market policy

and labor economics in general. Several studies in the field find that assigning unemployment

benefit recipients to an ALMP has a ”threat effect” (e.g., Van den Berg and Bergemann 2009;

Fitzenberger, Osikominu, and Paul 2010; Graversen and Larsen 2013). That is, unemployed

individuals who are assigned to participate in an ALMP increase their job search activity

and/or lower their reservation wages to find a job before the program starts, to avoid having to

participate in the program. Such an effect may exist because individuals dislike the participation

experience or because it reduces their leisure time or time available for job search. Participating

in a panel survey that makes ALMP more salient by asking questions about them, however,

seems to drive people into program participation. Whether it is preferable to bring people into

jobs that pay less than their original reservation wages, or to stimulate them to participate in

ALMP through survey participation, however, is a question we cannot answer in this paper,

especially because we do not find evidence that the increase in program participation caused

by participating in the survey affects respondents’ employment probabilities.

Future work should expand our results to other outcomes for which administrative data are

available. We would also like to see our results replicated with other data sets and variables.

However, we note that in scenarios where external validation records are not available, clear

distinction between the two forms of panel conditioning (and elimination of other confounding

sources of error) will be difficult. Unfortunately, few studies will have external validation data

at hand.
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Our results also suggest that the PASS recipient sample is no longer representative of all

recipients in Germany (at least in terms of ALMP participation), because participation in

the survey over the waves has changed respondents’ behavior. As a consequence, inference

made from PASS data may be biased if it includes ALMP participation either as a dependent

or independent variable. For example, assessments using the PASS data of whether ALMP

programs help the unemployed find a new job, an important public policy question, may apply

only to PASS respondents and not to the larger recipient population, because the respondents

have been changed by the survey.

We note that the participation in federal labor market programs is a rather specific form of

(labor market) behavior, and we cannot generalize these findings to other behaviors of interest

in panel studies. Yet, with our example, we hope to raise researchers’ attention to the fact that

repeated participation in panel surveys can change respondents’ behavior, a fact that is often

not acknowledged by researchers working with panel data.

The possibility that panel data such as PASS is biased due to changes-in-behavior and/or

changes-in-reporting panel conditioning has been acknowledged for a long time. However, to

date, panel conditioning has been primarily studied by researchers from survey methodology or

survey research, and the majority of work has been published in corresponding journals. Yet, as

panel data and panel methods have become more popular in recent years with social scientists

and economists as tools to uncover causal effects, applied researchers need to be aware that

such data can come with new sources of error. Other panel-specific sources of error, such as

attrition, have been widely acknowledged by researchers and are addressed, for example, by

weighting methods or by introducing refreshment samples. Panel conditioning, by contrast, is

often ignored. Our results suggest this strategy is unwise, because panel conditioning can have

strong effects on substantively important variables.
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3.7 Appendix

3.7.1 Additional analysis Section 3.4.2

The figure below shows associations between covariates X (Y-axis) and the treatment assign-

ment indicator Z. As expected from random assignment of cases to the Z = 1 and Z = 0,

there are only minor differences between the two groups, justifying Assumption (i) (see Sec-

tion 3.4.2). To increase the precision of our ITT and LARF estimates, we increase all of the

covariates shown in the figure (those that differ between Z = 1 and Z = 0 and those that do

not differ between the two groups) in all of our analyses presented in Section 3.5.2.

Age
Male

Place of residence: Western Germany

# of ALMP prior to Intw
# of unemployment benefit II spells

Mean duration of unemployment benefit II spells
# of unemployment benefit I spells

Mean duration of unemployment benefit I spells
# of employment spells

Mean duration of employment
# of unemployment spells

Mean duration of unemployment
Change of employer in the past

Years since last job

German (ref. category)
Turkish

Other European
Other non−European

No degree (ref. category)
Voc. training

College degree
University degree

Labor market history

Nationality

Education

−.1 0 .1 .2 .3

Figure 3.3: Coefficients from OLS regression of covariates X on treatment assignment indicator
Z. All covariates measured prior to start of the survey.
Note: Marginal effects from a logistic regression model accounting for the binary nature of Z
produce similar results. Unemployment benefit II: longer-term benefits due to unemployment,
disability or employment that does not reach a minimum standard of living. Unemployment

benefit I: short-term unemployment benefits due to job loss.
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3.7.2 Additional analysis Section 3.4.5

Table 3.4: Descriptive statistics of control variables X
% Mean Std. Dev. Min Max

Gender
Male 50.7%
Female 49.3%

Place of Residence
Western Germany 65.9%
Eastern Germany 34.1%

Nationality
German 82.5%
Turkish 6.0%
Other European 7.1%
Non-European 4.4%

Education
No degree 28.0%
Voc. training 69.4%
College Degree 1.5%
University Degree 1.1%

Age 38.11 12.93 15.00 78.38
Labor market history
# of unemployment benefit II spells 1.48 1.50 0 40
Mean duration of unemployment benefit II 0.42 0.46 0 1.94
# of unemployment benefit I spells 6.96 8.22 0 145
Mean duration of unemployment benefit I spells 0.31 0.26 0 2.66
# of employment spells 11.82 11.33 0 409
Mean duration of employment 0.40 0.25 0 1.00
# of unemployment spells 7.16 6.00 0 81
Mean duration of unemployment 0.61 1.09 0 42.13
Change of employer in the past 0.41 0.27 0 1
Years since last job 1.04 2.99 0.00 31.46

Note: Unemployment benefit II: longer-term benefits due to unemployment, disability or
employment that does not reach a minimum standard of living. Unemployment benefit I:
short-term unemployment benefits due to job loss.
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3.7.3 Official English version of PASS survey questions asking for

ALMP participation (Panel ‘Labour Market and Social Secu-

rity’ 2006; Panel ‘Labour Market and Social Security’ 2007;

Panel ‘Labour Market and Social Security’ 2008)

Wave 1

Employment agencies and [fill in type of authority responsible for administration of unem-

ployment benefit II] have various possibilities to support you in finding a vocational training

position or a job. Now we would like to learn about your experiences. Have you since January

2005 participated in a program financed or promoted by the job center (“Arbeitsamt”) or [name

of authority responsible for unemployment benefit II], which was to improve your prospects for

finding a job or a vocational training position like application training measures for instance,

or in a program that offered you a job opportunity like a one-euro job for example? Please also

think of programs that were of short duration, maybe of a few days only.

Wave 2

Have you participated in at least one of the following programs, measures or courses, which was

promoted or financed by the job center (“Arbeitsamt”) or [fill in type of authority responsible for

administration of unemployment benefit II] since January 2006? Please also consider programs

which were only of short duration.

Wave 3

Have you January 2007 participated in at least one of the following programs, measures or

courses which was financed or promoted by the job center (“Arbeitsamt”) or employment

agency? Please also consider programs which were only of short duration.
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Chapter 4

Motivated Misreporting in Web Panels

4.1 Abstract

Previous studies of reporting to filter questions have shown that respondents learn to say

“No” to filter questions to shorten the interview, a phenomenon called motivated misreporting.

Similar learning effects have been observed in panel surveys: Respondents seem to recall the

structure of a survey from earlier waves and, in subsequent waves, give responses that shorten

the interview. Hence, concerns arise that misreporting to filter questions worsens over time in

a panel study. We conducted an experiment using filter questions in two consecutive waves of

a monthly online panel to study how misreporting to filter questions changes over time. While

we replicate previous findings on the filter question format effect, we do not find any support

for the hypothesis that responses to filter questions worsen over time. Our findings add to the

literature on data quality in web panels, panel conditioning and motivated misreporting.

4.2 Background

Motivated misreporting refers to the phenomenon whereby respondents deliberately give inac-

curate survey responses to reduce the burden of the survey. Motivated misreporting has been
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shown either within a single survey or over two or more waves of a panel survey, but we are not

aware of any study that has analyzed motivated misreporting within and between waves of a

panel study. We test whether motivated misreporting worsens over two waves of a panel survey.

To begin with, we review relevant findings and theoretical explanations in the literature.

Many surveys use filter questions to determine respondent eligibility for follow-up questions.

Their purpose is to reduce burden for respondents by asking only relevant questions. Two

common formats are used for these filter questions. In the interleafed format, respondents

are asked a filter question, and the follow-ups, if triggered, follow immediately. In the grouped

format, respondents are first asked all filters before answering the follow-ups that apply. Several

studies have shown that respondents trigger fewer follow-ups in the interleafed format than in

the grouped format (Kessler et al. 1998; Duan et al. 2007; Kreuter et al. 2011; Eckman et al.

2014). In the interleafed format, respondents learn how the survey is structured and begin to say

“No” to the filter questions to avoid the follow-up questions. Comparisons with administrative

records have shown that the grouped format collects more accurate reports (Eckman et al.

2014). Consistent with respondents’ learning, the difference in reporting between the two filter

question formats is larger for items asked later in a survey (Kreuter et al. 2011). Duan et al.

(2007) call such misreporting due to learning the structure of the interview survey conditioning,

because respondents’ reporting behavior is conditioned by survey participation.

A similar mechanism underlies one form of panel conditioning. Respondents may learn in

an earlier wave how the questionnaire is structured and use this information to misreport.

They then become worse reporters over time in a panel survey (Bailar 1989; Waterton and

Lievesley 1989; Cantor 2010; Yan and Eckman 2012). Other forms of panel conditioning are

also possible, such as respondents becoming better reporters (Kroh, Winter, and Schupp 2016)

or panel conditioning resulting in changes in respondents’ attitudes (Warren and Halpern-

Manners 2012) or behavior (Bach and Eckman 2017). However, given the evidence from survey

conditioning, i.e., respondents’ tendency to become worse reporters due to learning the structure

of the questionnaire, we focus on the worse respondents mechanism in this study.1

1An extensive discussion of theoretical mechanisms underlying panel conditioning, their outcomes and a
review of relevant studies is provided by Warren and Halpern-Manners (2012).
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Halpern-Manners and Warren (2012) find evidence for the worse reporters hypothesis in the

Current Population Survey. Some respondents interviewed for the second time overreport em-

ployment. The authors suspect that respondents remember from the first round that reporting

unemployment triggers extensive follow-up questions and thus misreport unemployment in the

second wave to skip follow-up questions. However, given the topic of unemployment, social

desirability may also influence respondents’ reports. Additional support for the worse reporters

hypothesis has been found in reports of home alteration and repair jobs (Neter and Waksberg

1964), functional limitations of elderly people (Mathiowetz and Lair 1994) and every day per-

sonal hygiene product use (Nancarrow and Cartwright 2007). Schonlau and Toepoel (2015)

find support for the worse reporters hypothesis in the LISS panel, the panel study that also

provides the data for our analysis. They show that straightlining, i.e., the tendency to give the

same responses to a series of questions with identical answer choices, increases with respon-

dents’ panel experience. On the other hand, using different studies, Cohen and Burt (1985)

and Struminskaya (2016) find no evidence that panel respondents become worse reporters over

time. Regarding the likelihood of the occurrence of panel conditioning, Van Landeghem (2012)

reports that panel conditioning becomes more likely the higher the number of exposures to

the same survey. Moreover, Halpern-Manners, Warren, and Torche (2014) report that panel

conditioning is more likely the shorter the interval between waves.

Although the studies cited above have analyzed panel and survey conditioning separately, the

literature falls short of testing these two effects jointly. Given the consistent findings on survey

conditioning and the evidence from previous studies of panel conditioning, a careful test of both

phenomena in a joint context is needed, the more so, as both forms of conditioning share the

same theoretical mechanism, a desire by respondents to reduce the burden of the survey. In

this paper, we use a two by two design where half of the respondents in wave one receive the

questions in the interleafed format and half of the respondents in the grouped format. In wave

two, half of the respondents are assigned to the same format as in wave one and the other half

switch to the other format.

In this study, we test three hypotheses. We first replicate findings on misreporting to filter

questions, i.e., survey conditioning. In line with previous research, we expect that the percent
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of filter questions triggered will be greater in a grouped format than in an interleafed format

in wave one. We call this first hypothesis the survey conditioning hypothesis. In addition

to replicating survey conditioning, we explore whether survey conditioning depends on the

education of a respondent. To date, there is no evidence regarding an interaction between

survey conditioning and education or ability.

Second, we aim to determine whether motivated misreporting persists over waves. Kreuter

et al. (2011) show that misreporting in an interleafed format is worse in later items in a survey

and conclude that respondents learn how the survey is structured. When respondents are

presented with the same questions in wave two, they already know the structure and can

misreport from the very first filter question. Thus, we hypothesize that respondents become

worse respondents, i.e., the percent of filters triggered will be smaller in the second wave among

respondents interviewed in the same format in both waves. We call this the panel conditioning

hypothesis. Respondents in the interleafed format can learn in wave one and underreport in

wave two. Respondents in the grouped format have no opportunity to learn in wave one, but

they may nevertheless recall the structure in wave two. Consequently, we expect a decrease

in filter questions triggered in wave two among respondents interviewed in the same format in

both waves.

Third, we study how panel conditioning affects misreporting when respondents are interviewed

in different formats in each wave, i.e., when the format changes from grouped to interleafed

(and vice versa) over time. We refer to the effects of changing the format over time as the

changed format panel conditioning hypothesis. Recognizing response patterns in this context

and disentangling panel and survey conditioning (i.e., changes in reporting due to changing

the format) is harder, as both panel conditioning and the format may influence responses

at the same time, possibly even in different directions. Switching from grouped to interleafed,

misreporting should increase over time, due to both survey conditioning and panel conditioning.

However, switching from interleafed to grouped, the effect is somewhat more complex. We

expect that respondents recall the questionnaire from the first wave and thus, due to panel

conditioning, misreporting should increase: this is the worse reporters mechanism. At the

same time, however, the grouped format usually collects more reports. Thus, we would expect
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a decrease in misreporting after switching the format. Consequently, we cannot predict whether

misreporting will increase or decrease over time for this group. Theory does not predict whether

gains in data quality from changing to the better grouped format are outweighed by losses due

to panel conditioning. Yet, this question is especially important for panel surveys using the

interleafed format that wish to change to the grouped format to reduce motivated misreporting.2

Table 4.1 summarizes the second and third hypotheses and the expected effects on the level of

misreporting.

In addition to testing these three hypotheses, we explore whether both survey conditioning and

panel conditioning depend on respondents’ cognitive ability. Evidence from studies on response

order effects, non-differentiation, and satisficing show that respondents with low education

are most susceptible to such effects (e.g., Krosnick and Alwin 1987; Narayan and Krosnick

1996; Holbrook et al. 2007). Similarly, Binswanger, Schunk, and Toepoel (2013) find a panel

conditioning effect in difficult attitudinal questions only among low educated respondents. In

our case, survey conditioning may on the one hand increase with cognitive ability, because

respondents with higher cognitive abilities may be faster in discovering repetitive patterns

of the questionnaire. On the other hand, respondents with higher cognitive abilities might

instead show less misreporting in the interleafed format as they may be more aware of the

importance of accurate survey reports for scientific purposes. The same arguments may hold

for panel conditioning: Respondents with higher cognitive ability may be better at recalling

having answered the same questionnaire one month ago. However, their better understanding

of the importance of accurate survey reports for research may again counteract.

4.3 The study

The data we use for our analysis of survey and panel conditioning comes from the Dutch LISS

panel, a longstanding Internet panel based on a probability sample. Sample members complete

2Other panel surveys might consider a switch from the grouped to the interleafed format, for reasons we
do not discuss here, for brevity. See Kreuter, Eckman, and Tourangeau (forthcoming) for a discussion of the
advantages of the interleafed format.
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Table 4.1: Panel conditioning hypotheses

Filter question format Hypothesis Effect on
Wave one Wave two misreporting
Interleafed Interleafed Panel conditioning Increasea

Grouped Grouped Panel conditioning Increasea

Grouped Interleafed Changed format panel cond. Increasea

Interleafed Grouped Changed format panel cond. Unclear
aCorresponds to a decrease in the number of filters triggered.

online questionnaires of about 15 to 30 minutes on a monthly basis (Scherpenzeel and Das

2010).

In 2012, we put several filter question experiments in two consecutive waves of the LISS panel.

In the first wave (April 2012), LISS participants (n=3,330) were randomly assigned to either

the interleafed or grouped filter question format. In the second wave (May 2012), all panel

members were again randomly assigned to one of the two formats. The resulting design has

four cells (two formats by two waves), as shown in Table 4.5.3

In the interleafed format, respondents were asked 13 filter questions in random order. Two

follow-up questions were asked immediately after each filter, if applicable. In the grouped

format, respondents were asked all 13 filter questions (in random order) before answering any

applicable follow-ups. Apart from the filter questions and a handful of questions asking for

respondents’ experience with the questionnaire, no other questions were asked in this module.4

Given the small number of questions, the median response time was a little more than three

minutes in both waves and 95% of all respondents answered the questionnaire in less than eight

minutes.

All filter questions asked about purchases of items such as groceries, clothes or tickets for movies

during the last month (see the Appendix for the original questions). We chose these questions

to ensure that most respondents triggered at least a few follow-up questions in each wave. Also,

we chose items that should not be influenced by circumstances such as seasonality that would

3There was a third format included in the original experiment. However, we do not use these cases. Results
concerning that format are reported in Kreuter, Eckman, and Tourangeau (forthcoming).

4While no other questions were asked in this module, respondents are usually invited to answer more than
one module per month. We do not have any information on other modules our respondents answered in these
months.
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Table 4.2: Response rates by filter question format

Filter question format Wave one Wave two
in wave one n Response Ratea nb Response ratec

Interleafed Respondents 1,303 78.9% 1,080 81.8%
Nonrespondents 347 242

Grouped Respondents 1,337 81.0% 1,082 82.0%
Nonrespondents 313 238

Total number of respondents 2,640 79.3% 2,162 81.9%

|Z-statistic|d 1.48 0.10
p-value 0.139 0.919
aAAPOR RR1.
bAmong wave one respondents.
cAAPOR RR1, conditional on wave one response.
dH0: % triggered interleafed = % triggered grouped

lead to a real change of purchasing behavior between the two waves of the experiment. Thus,

we expect that any differences in reporting between the two waves are, on average, caused by

a change in reporting and not by a change in behavior.

Nonresponse and Attrition

About 79% of the LISS panel members selected for the study participated in the first wave

of the experiment (AAPOR RR1). Conditional on wave one response, the participation rate

in wave two is 82% (third column in Table 4.2). For the analysis sample of our research

questions, however, we discard those who responded only in wave one (n=478) or only in wave

two (n=326). Panel attrition can easily be mistaken for panel conditioning, and disentangling

the two effects is one of the major challenges when analyzing panel conditioning (Bach and

Eckman 2017). Using only two wave respondents allows us to eliminate any confounding effects

of attrition (Warren and Halpern-Manners 2012). Two additional respondents are excluded as

they broke off the survey, one in wave one and one in wave two. The resulting analysis sample

consists of 2,162 people (third column in Table 4.2).

Before we report the results of our analysis, however, we make sure that sub-setting the analysis
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sample to two-wave respondents does not confound the experimental manipulations regarding

the filter question formats and thus our estimates of survey and panel conditioning. To do so,

we check whether nonresponse in wave one and attrition differ by the two formats and waves.

Regarding nonresponse in wave one, response rates do not differ between the two formats

(second column in Table 4.2), and we do not find any substantial or significant differences in

socio-demographic variables between the formats (results not shown). Moreover, nonresponse

over time, i.e., attrition, does not seem to be related to socio-demographic variables: we find

only one substantial and significant difference between those who respond to both waves and

those who participate in the first wave only. Attriters are younger, but do not differ from

two-wave respondents in gender, education, marital status, household composition or in their

response behavior in previous waves of the LISS panel (results not shown). Importantly, neither

the filter question format in wave one, the number of filters triggered in wave one, nor their

interaction is predictive of attrition (Table 4.3). Wave two response rates do not differ between

the two wave one formats (fourth column in Table 4.2).

Since all LISS participants were randomly assigned to the two filter question formats in wave

two, we also test whether there are any important differences between the two-wave-respondents

and all respondents of wave two, i.e., whether dropping some respondents from wave two inter-

feres with the randomization to the filter question formats in wave two. After sub-setting the

sample to two-wave-respondents, we do not find any significant differences in socio-demographic

variables or the number of filters triggered in wave one between the two formats in wave two

(results not shown). Therefore, we are confident that nonresponse and attrition patterns do

not differ among the subgroups. Importantly, attrition is not influenced by the experimental

conditions or the filter question experience in wave one and thus should not bias the results

of our analysis. Although the sample restrictions limit the representativeness of the data (ex-

ternal validity), they do not jeopardize our interpretation of the experimental results (internal

validity).

In the next two sections, we present and discuss the results of our analysis regarding our three

hypotheses, i.e., whether respondents learn to misreport within a single wave of the survey and

whether misreporting persists over two waves.
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Table 4.3: Predictors of attrition

Coefficient
Grouped 0.031
(ref.: interleafed) (0.037)

No. of filters triggered 0.002
in wave one (0.005)

Grouped*No. of filters -0.002
triggered in wave one (0.007)

N 2,640a

Note: Linear probability model: Attrition (Yes/No).
Standard errors in parentheses. Constant not shown.
aAll wave one respondents.

4.4 Results

As expected by the survey conditioning hypothesis, the percent of filter questions triggered in

wave one is significantly smaller in the interleafed format than in the grouped format (36% vs.

43%, i.e., 4.7 vs. 5.6 filters triggered, Table 4.4). Survey conditioning is taking place in wave

one as we expected. When we also include the position of a filter question (i.e., whether a

filter was asked in the first, second or third third of the section) in the analysis, we find that

the probability of triggering a filter in the interleafed format decreases significantly with the

position of a filter in the questionnaire (results not shown). This finding further supports our

first hypothesis, that respondents learn to misreport in the interleafed format.

Regarding the second hypothesis, panel conditioning, we expect that the percent of filters

triggered should decrease over time due to learning when filter questions are asked in the

same format in each wave (rows one and two of Table 4.1). Row one of Table 4.5 shows that

respondents interviewed in the interleafed format in both waves show no significant change

in reporting across time. The same result holds for respondents interviewed in the grouped

format in both waves. Thus, we do not find any support for the panel conditioning hypothesis:

Respondents do not trigger fewer filters when interviewed for the second time in the same

format.
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Table 4.4: Percent of filter questions triggered in wave one, by format

Format Wave one
% triggered

Interleafed 36.3 (0.005)
Grouped 43.1 (0.006)

Total 39.7 (0.004)

|Z-statistic|a 84.83
p-value <0.001
n 2,162
Note: Standard errors (in parentheses) clustered
at the respondent level.
aH0: % triggered interleafed = % triggered grouped

Next, we turn to our third hypothesis and those respondents who changed formats from wave

one to wave two (rows three and four of Table 4.1). We expect that respondents switched

from grouped to interleafed underreport in wave two due to panel conditioning (see Table

4.1). Row three of Table 4.5 shows, as expected, that these respondents trigger significantly

fewer filters in wave two than in wave one and thus increase misreporting. Switching from

interleafed to grouped, however, leads to a significant increase in filters triggered and thus less

misreporting (row four). Both effects have about the same absolute size. Moreover, the effect

size is approximately equal to the difference between the interleafed format and the grouped

format in wave one. For this reason, we interpret the changes over time seen in the bottom

rows of Table 4.5 as driven by the format change and not by panel conditioning. Thus, we find

no support for the third hypotheses that panel conditioning influences misreporting when the

filter question format changes between waves.

In both panel conditioning hypotheses, we hypothesize that respondents learn from participa-

tion in the first wave of the experiment how follow-up questions can be avoided. However, a

few respondents (n=48) did not trigger a single filter question in wave one. Therefore, these

respondents could not learn. To assess whether this confounds the results shown in Table 4.5,

we rerun the analyses without these 48 respondents. Results without these respondents do not

differ substantially from the results shown in Table 4.5 (results not shown).

Regarding the influence of cognitive ability, we find that survey conditioning does not depend
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Table 4.5: Percent of filter questions triggered, by experimental condition

Format Percent of filters triggered n |Z-statistic|a p-
Wave one Wave two Wave one Wave two value
Interleafed Interleafed 36.1 (0.007) 36.5 (0.007) 571 0.86 0.353
Grouped Grouped 43.3 (0.007) 43.4 (0.007) 565 0.00 0.948

Grouped Interleafed 42.8 (0.008) 35.0 (0.007) 517 116.34 <0.001
Interleafed Grouped 36.4 (0.007) 43.3 (0.008) 509 107.87 <0.001
Note: Standard errors (in parentheses) clustered at the respondent level.
aH0: % triggered wave one = % triggered wave two

on cognitive ability, measured by respondents’ highest educational degree achieved. In other

words, the difference between filters triggered in the interleafed format and filters triggered in

the grouped format does not vary with respondents’ education (results not shown). Similarly,

we do not find a panel conditioning effect when replicating the results of Table 4.5 in subgroups

defined by respondents’ highest educational degree. We interpret these findings as evidence that

survey conditioning and panel conditioning do not depend on respondents’ cognitive ability.

To sum up the results presented here, we find strong evidence for survey conditioning. Fewer

filters are triggered in the interleafed format than in the grouped format, additional evidence

that respondents in the interleafed format learn how the survey is structured and use that infor-

mation to reduce the burden of the survey by misreporting. However, there is no evidence that

respondents remember the survey structure over time in a panel survey context and misreport

more in the second wave and thus no support for the worse respondents mechanism.

4.5 Discussion

Survey researchers are increasingly aware that asking filter questions in different formats can

affect responses and measurement error. Studies on misreporting in cross-sectional surveys have

shown that respondents asked in an interleafed format trigger fewer follow-ups than respondents

interviewed in a grouped format. The common explanation for such survey conditioning is that

respondents learn how a survey is structured and use this information to speed through the

interview and reduce the burden of the survey. Similar concerns have been raised in the context
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of panel surveys: If respondents remember the structure of a survey from prior waves, they

might recall that giving certain answers can reduce the length of the survey.

We hypothesized that first, respondents surveyed in the interleafed filter question format would

misreport more than respondents surveyed in the grouped format. We found in both waves

of our experiment that respondents in the interleafed format trigger fewer filters than respon-

dents in the grouped format. Our interpretation of this finding is that misreporting is more

pronounced in the interleafed format: Studies that compared responses to filter questions with

validation records (see Section 4.2) showed that the grouped format produces more correct

responses. Thus, we are confident in our interpretation of the grouped format as more accurate

than the interleafed format. These results are as expected from previous studies.

In our second and third hypotheses, we suspected that we would see more misreporting in a

second wave of a panel study. If respondents remember the structure of a questionnaire from

prior participation, then misreporting in a second wave should increase: respondents would

recognize the filter questions and trigger fewer filters in a second wave. In this study, the two

waves were separated by only four weeks, which should make panel conditioning more likely

(Warren and Halpern-Manners 2012; Halpern-Manners, Warren, and Torche 2014). However,

we did not find support for either of the two panel conditioning hypotheses. Respondents inter-

viewed in the same format in both waves do not misreport more in the second wave (the panel

conditioning hypothesis). We did see differences in triggering rates for those respondents whose

formats changed across waves (the changed format panel conditioning hypothesis). However,

these changes in the levels of misreporting are likely only due to the format itself and not due

to the worse respondents (or better respondents) mechanism. Interestingly, neither survey con-

ditioning nor panel conditioning seem to vary with respondents’ cognitive ability, as measured

by respondents’ highest educational degree.

To ensure that our findings are not distorted by attrition, we considered only those respondents

who participated in both waves of the survey. Furthermore, we chose a battery of filter questions

that should not lead to changes-in-behavior panel conditioning. One might argue that the

absence of panel conditioning is due to LISS respondents being very good or very motivated
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respondents who are not susceptible to motivated misreporting. Yet, the study by Schonlau

and Toepoel (2015) regarding straightlining (see Section 4.2) and the clear signs of misreporting

in the interleafed format in wave one (see Section 4.4) show that LISS respondents are as good

(or bad) as any other respondents. Even so, we did not find a panel conditioning effect in our

filter questions.

This lack of a panel conditioning effect is somewhat surprising. While respondents show a

strong tendency to remember the structure of a questionnaire in a single survey, they do not

seem to recall this information when the same questions are repeated four weeks later. Even

respondents in the interleafed format in wave one, many of whom misreported, no longer show

any signs of misreporting when interviewed for a second time in a grouped format. The most

likely explanation for this finding is the resetting effect reported by Kreuter et al. (2011). They

find that respondents’ misreporting is reset when a new section within a questionnaire starts.

A similar logic might apply to the panel survey context: If misreporting resets when a new

section starts, then the same should hold for the start of a new wave in a panel survey.

The degree of panel conditioning seems to depend on the topic and the burden of the questions

asked in a survey (Warren and Halpern-Manners 2012). The questions we asked in the LISS

panel were fairly easy to answer, dealt with a possibly boring topic (“What did you buy last

month?”) and respondents needed only a few minutes to answer them (see Section 4.3). In ad-

dition, LISS respondents were exposed to our questionnaire only twice and have answered many

other, potentially more interesting, novel or burdensome LISS modules in the past. Respond-

ing to our filter questions module may not have been distinct from the general experience of

participating in the LISS panel, and thus respondents may not have remembered the questions

(Tourangeau, Rips, and Rasinksi 2000, chapter 3). Questions dealing with more burdensome or

sensitive topics may produce different results, potentially even resulting in respondents becom-

ing better reporters over time (compare the studies cited in Section 4.2). Moreover, results may

differ when respondents are exposed to the survey more than twice (see Section 4.4). Thus,

more research exploring the influence of topic and survey burden as well as the level of exposure

to the survey on motivated misreporting and panel conditioning needs to be done, a point also

made by Eckman et al. (2014).
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Our finding, however, that motivated misreporting does not increase over waves of a panel

survey is good news for survey practitioners. Although misreporting can pose a serious problem,

repeated participation in the same survey does not make the problem worse. Importantly, for

panel surveys that used the interleafed format in the past, our work suggests that changing

to a grouped format is a good idea, as it can help increase data quality by eliminating survey

conditioning without introducing panel conditioning.
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4.6 Appendix

Filter questions

• In the past month, have you purchased coffee for consumption at home?

• In the past month, have you purchased beer or wine for consumption at home?

• In the past month, have you purchased tobacco?

• In the past month, have you purchased children’s clothing or shoes?

• In the past month, have you purchased clothing or shoes for yourself?

• In the past month, have you purchased chocolate?

• In the past month, have you purchased medication?

• In the past month, have you purchased flowers?

• In the past month, have you purchased pet supplies?

• In the past month, have you purchased movies on DVD or VHS?

• In the past month, have you purchased music on CD or as MP3s (or other

• In the past month, have you purchased a ticket for a concert, theater

• In the past month, have you purchased any cleaning supplies for your home?

Follow-up questions

For each yes answer to the above filter questions:

Thinking about your most recent purchase of (fill: item)

• How much did it cost?

– (Open ended response in Euros)



102 Chapter 4. Motivated Misreporting in Web Panels

– a. Don’t know

– b. Refused

• For whom was it purchased?

– a. self

– b. another household member

– c. someone else

– d. Don’t know

– e. Refused
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Chapter 5

Motivated Misreporting Among

Reluctant Respondents

5.1 Abstract

Many surveys aim to achieve high response rates to keep bias due to nonresponse low. However,

research has shown that the relationship between the nonresponse rate and nonresponse bias

is small. In fact, high response rates may lead to measurement error, if respondents with

low response propensities provide survey responses of low quality. In this paper, we explore

the relationship between response propensity and measurement error, specifically motivated

misreporting, the tendency to give inaccurate answers to speed through an interview. Using

data from five surveys conducted in several countries and modes, we analyze whether motivated

misreporting is worse among those respondents who were the least likely to respond to the

survey. Contrary to the prediction of our theoretical model, we do not find clear evidence that

reluctant respondents are more likely to misreport.

106
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5.2 Background

Many surveys aim to achieve high response rates to keep bias due to nonresponse low, but

increasing the response rate by bringing in reluctant respondents may lead to measurement

error. That is, respondents who are the least likely to become respondents may provide survey

responses of low quality when they do respond (Curtin, Presser, and Singer 2000; Curtin,

Presser, and Singer 2005; Groves, Couper, and Dipko 2004; Groves 2006; Groves and Peytcheva

2008; Keeter et al. 2000; Merkle and Edelman 2002; Tourangeau, Groves, and Redline 2010;

Peytchev, Peytcheva, and Groves 2010; Olson 2013). Thus, researchers who use extraordinary

measures to increase the response rate may in fact increase total error (Biemer 2001; Groves

2006).

To study the relationship between respondents’ reluctance and measurement error, we must

operationalize both reluctance and measurement error. To measure respondents’ reluctance,

we estimate response propensities, i.e., the probability of each person who was selected for a

survey to respond to the survey. Respondents with the lowest response propensities are re-

luctant respondents. We operationalize measurement error through motivated misreporting,

a phenomenon whereby respondents deliberately give inaccurate or false responses to reduce

the burden of the survey. This response behavior is often observed in questions used to deter-

mine respondent eligibility for follow-up questions. Asking such questions in certain formats

allows respondents to learn how follow-up questions can be avoided by giving inaccurate or

false answers, thus introducing measurement error. The motive behind this motivated misre-

porting is respondents’ desire to reduce the burden of the survey (Tourangeau, Kreuter, and

Eckman 2015). Respondents who have a low propensity to respond to the survey at all may

be more interested than other respondents in reducing the burden of the survey when they do

respond. Thus, reluctant respondents should show more motivated misreporting, supporting

the hypothesis that response propensity affects measurement error. We elaborate on these

operational definitions and the hypothesis in more detail in the next section.

To study this hypothesis empirically, we use five surveys that were conducted in three countries

(the Netherlands, the U.S. and Germany) and modes (Online, CAPI and CATI). Each contained
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Figure 5.1: Nonresponse-Measurement Error model explaining a relationship between response
propensity (RP ) and measurement error (ε) in a reported survey variable Y . Y ∗ is the true
value of the outcome (figure adapted from Groves (2006)).

experimental manipulations of questions prone to motivated misreporting: filter questions and

looping questions. These experimental manipulations allow us to study the connection be-

tween response propensity and measurement error. Before we review the data in more detail,

we present the theoretical reasoning underlying the hypothesis that nonresponse influences

measurement error.

5.3 A Nonresponse-Measurement Error Model

The idea that reluctant respondents may be worse reporters builds on the nonresponse-measurement

error model developed by Groves (2006), shown in Figure 5.1. This model suggests a nexus

between response propensity and measurement error. The reported value of Y equals the true

value, Y ∗, plus an error term ε, i.e., for individual i, Yi = Y ∗i + εi. The magnitude of the

error for case i, εi, is determined by the response propensity of the case RPi. Applying the

model to our study, low response propensities cause high levels of measurement error, while

high response propensities cause lower levels of measurement error.

This model does not specify how exactly response propensity influences the error term. Many

possible mechanisms exist. For example, lack of interest in the survey topic can cause a case

to have a low response propensity (Martin 1994; Groves, Couper, and Dipko 2004) and may

also explain why low interest respondents who do participate in the survey put less effort

into answering survey questions carefully and truthfully. Other motives such as a general
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reluctance to help out (Tourangeau, Groves, and Redline 2010) or a lack of motivation and

cooperativeness (Cannell and Fowler 1963; Bollinger and David 2001) may also reduce RP and

cause ε. Thus, there may be some characteristics Z that explain both RP and ε and induce

the relationship between the two shown in Figure 5.1. These external causes are excluded from

the model. Nevertheless, we can use this model to test our hypothesis about the relationship

between response propensity and motivated misreporting. Before we present the analytical

strategy, we review previous findings in the literature on the connection between nonresponse

and measurement error in the next section.

5.4 Previous findings

Empirical studies of a connection between (non)response propensity and measurement error

have focused on several aspects of both response propensity and measurement error. Cannell

and Fowler (1963), for example, assess the impact of nonresponse on reporting errors in self-

reported hospital stays. Comparing self-reports with administrative hospital records, they

find that respondents who needed extensive follow-up tend to misreport both the number of

hospital stays and their duration. However, it is unclear if the higher level of measurement

error among late respondents is caused by response propensity or simply the result of the

increased recall period for late respondents (Fricker and Tourangeau 2010). Kreuter, Müller,

and Trappmann (2010), also validating survey reports against administrative records, find that

measurement error among respondents recruited with increased levels of follow-up offsets the

reduction in nonresponse bias gained by including them in terms of total survey error. Other

studies show that late respondents (Willimack et al. 1995) and converted refusers (Triplett

et al. 1996) have higher item nonresponse rates. Little evidence, however, is found by Keeter

et al. (2000) regarding the effects of more rigorous recruiting strategies compared to standard

recruiting strategies on item nonresponse. Studies using response propensity scores find that

including low response propensity cases results only in a weak increase in measurement error

that is offset by gains in reduction of nonresponse bias (Olson 2006). Peytchev, Peytcheva,

and Groves (2010) show that low response propensity cases underreport abortion experiences,



110 Chapter 5. Motivated Misreporting Among Reluctant Respondents

show more misreporting errors in voting behavior (Tourangeau, Groves, and Redline 2010)

and higher item nonresponse rates (Fricker and Tourangeau 2010). Low response propensity

cases, however, do not show more acquiescence, extreme responses or non-differentiation (Yan,

Tourangeau, and Arens 2004) or provide answers of worse data quality to questions asking for

well-being (Hox, de Leeuw, and Chang 2012). To sum up, the majority of previous research

examining the influence of nonresponse on measurement error finds that response propensity

does affect measurement error. However, there are some studies where the connection is small or

even nonexistent. The different operationalizations of respondents’ reluctance and measurement

error may explain some of the variation of the findings.

In this study, we use the estimated response propensity scores as the operationalization of re-

spondents’ reluctance. The advantage of this approach is that the estimated response propensity

score is a comprehensive measure of different aspects of response propensity. That is, depending

on the predictors entered into the response propensity model, this score may capture a variety

of aspects of response propensity such as the extent of follow-up needed (Cannell and Fowler

1963), how early or late a case responded to the survey (Willimack et al. 1995) and interest in

the survey (Martin 1994). Due to this encompassing nature of the response propensity score,

we prefer the response propensity score to the more specific measures of reluctance used in

other studies. Next, we briefly present findings regarding motivated misreporting, our measure

of measurement error.

Three question types, filter questions, looping questions, and screener questions, are prone to

motivated misreporting. These questions are typically used to determine respondents’ eligibility

for follow-up questions. Filter questions, for example used in the National Survey on Drug

Use and Health, the U.S. Consumer Expenditure Survey or the National Crime Victimization

Survey, are usually asked either in the interleafed or in the grouped format. Respondents in the

interleafed format are asked a filter question with the follow-ups, if triggered, right away. In the

grouped format, however, respondents are first asked all filter questions before answering the

follow-ups that apply (see Table 5.1 for an example). Looping questions, for example part of

the Panel Survey on Income Dynamics, the Health and Retirement Survey or the Panel Survey

Labor Market and Social Security, are used to collect data about several similar events, e.g.,
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doctor visits or periods of unemployment. For every event reported, respondents are asked

follow-up questions. These looping questions can also be asked in two formats. In the go-again

format, respondents are asked about the most recent event, for example, and then about details

of this event right away. Only then are respondents asked whether there is another event to be

reported. In the how-many format, however, respondents are first asked about the number of

events and then follow-up questions about each event reported (see Table 5.2 for an example).

The third type of questions, screener questions, are used to determine if anyone in a household

is eligible for the survey. Tourangeau, Kreuter, and Eckman (2012) provide details on the

formate of these questions and their effect on motivated misreporting. However, we do not

review these questions in more detail because they are not included in our analysis.

Table 5.1: Example of Interleafed vs. Grouped format (filter questions)

Interleafed version Grouped version
In the past 3 months, have you purchased a coat? In the past 3 months, have you purchased a coat?

Please briefly describe the most recent coat you In the past 3 months, have you purchased a shirt?
purchased. In the past 3 months, have you purchased pants?
For whom was it purchased? In the past 3 months, have you purchased a suit?
In what month did you purchase it? In the past 3 months, have you purchased a dress?
How much did it cost? FOR EACH YES

In the past 3 months, have you purchased a shirt? Please briefly describe the most recent [item] you
Please briefly describe the most recent shirt you purchased.
purchased. For whom was it purchased?
[...] In what month did you purchase it?

In the past 3 months, have you purchased a suit? How much did it cost?
[...]

[...]
Note: Table adapted from Kreuter et al. (2011)

Table 5.2: Example of Go-again vs. How-many (looping questions)

Go-again version How-many version
Please think about the first event X that How many events X have you

you ever experienced. experienced in your life?
[Follow-up questions about event] [Number of events]

Did you ever experience another event X? Thinking about the first event X ...
[Follow-up questions about event] [Follow-up questions about event]

Did you ever experience another event X? Thinking about the second event X ...
[Follow-up questions about event] [Follow-up questions about event]

... ...
Note: Table adapted from Eckman and Kreuter (forthcoming).

Comparisons between the interleafed and the grouped format in filter questions have shown
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that respondents trigger fewer follow-ups in the interleafed format than in the grouped format

(Kessler et al. 1998; Duan et al. 2007; Kreuter et al. 2011; Eckman et al. 2014). This motivated

misreporting is not possible in the grouped format because there is no chance for respondents to

learn how the questions work. Similarly, comparisons between the go-again and the how-many

format in looping questions have shown that respondents report fewer events in the go-again

format than in the how-many format (Eckman and Kreuter, forthcoming). Similar to the

interleafed format in filter questions, respondents learn in the go-again format how the survey

is structured and begin to report fewer events to avoid the follow-up questions. Comparisons

with administrative validation data have shown that misreporting is in fact more pronounced in

the interleafed format and the go-again format, respectively (Eckman et al., 2014; Eckman and

Kreuter, forthcoming). Thus, differences between the two formats in each question type reflect

real differences in measurement error, with the grouped and how-many formats collecting more

correct responses to the initial filter or looping questions.

Tests of different mechanisms that could explain the observed format effects have shown that

motivated misreporting arises from respondents’ desire to reduce the burden of the survey

(Eckman et al., 2014). That desire may also affect the response propensity score. For example,

respondents who want to reduce burden may be unlikely to respond to the survey at all. The

desire to reduce the burden of the survey would therefore be a mechanism that affects both

motivated misreporting, ε in Figure 5.1, and the response propensity score, RP . The level of

measurement error associated with a reported survey outcome would therefore be related to

the response propensity score, inducing the relationship shown in Figure 5.1.

Given this theoretical model and the evidence from previous studies, we analyze the connec-

tion between response propensity and motivated misreporting. That is, we study whether

motivated misreporting is more pronounced among reluctant respondents using reports from

several surveys briefly described in the next section.
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5.5 Data

Data for our analysis come from five surveys, conducted in different countries and modes. We

briefly present key characteristics of each survey below and in Table 5.3. The original questions

from each survey are shown in the Appendix.

The first survey was conducted as part of the Dutch LISS panel, a longstanding probability-

based internet panel. Sample members complete online questionnaires of about 15 to 30 minutes

on a monthly basis (Scherpenzeel 2011). In 2012, we put several filter question experiments in

two consecutive waves of the LISS panel using the same questionnaire in both waves. In the first

wave (April), LISS participants (n=5,513) were randomly assigned to either the interleafed or

grouped filter question format. In the second wave (May), participants (n=5,668) were again

randomly assigned to one of the two formats.1 Respondents in both formats were asked 13

filter questions with two follow-up questions for each filter answered with “Yes”. All filter

questions asked about purchases of items such as groceries, clothes or movie tickets during the

last month. About 68 percent (n=3,767) of the LISS panel members selected for the study

participated in the first wave of the experiment (AAPOR RR1, AAPOR, 2016) and about 64

percent (n=3,601) participated in wave two. Participation in the second wave was open to

all panel members, irrespective of participation in wave one. Since there is no evidence that

measurement error increases from wave one to wave two due to panel conditioning (Bach and

Eckman forthcoming), we treat each wave separately in our analysis. We refer to the first

wave of this survey as LISS-1 and to the second wave as LISS-2. Results regarding motivated

misreporting in both LISS-1 and LISS-2 are reported in Bach and Eckman (forthcoming).

The second survey, the Survey on Free Time (SOFT), was a CAPI survey conducted in 2013

in the U.S.. 1,120 households were selected from the U.S. Postal Service’s Delivery Sequence

File using a three-stage sampling design.2 The response rate (AAPOR RR1) was about 27

1There was another format included in the original experiment. Since we do not use these cases, there are
small differences between the number of participants in wave one and wave two. Results concerning the third
format are reported in Kreuter, Eckman, and Tourangeau (forthcoming).

2Primary sampling units (PSU) were compromised of individual cities or urban areas. Secondary sampling
units (SSU) used ZIP codes or ZIP code fragments within sampled PSUs. Participants were then sampled
within SSUs.
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percent (n=304). Respondents were randomly assigned to answer 16 filter questions in the

interleafed format or in the grouped format. Filter questions asked about interest in sports,

clothing purchases and watching television, followed by up to six follow-up questions.

The third survey, ”Employment and Purchase Behavior in Germany” (EPBG), was a CATI

survey conducted in Germany in 2011. 12,400 adults were selected from German administrative

labor market records. The response rate was about 19 percent (AAPOR RR1) and we use 1,200

out of 2,400 completed cases in this analysis.3 Respondents of the EPBG survey were asked 18

filter questions either in the interleafed or in the grouped format, covering clothing purchases,

employment history and income sources. Four follow-up questions were asked for each filter, if

applicable. We refer to this survey as EPBG-FQ. Results regarding motivated misreporting in

this survey are reported in Eckman et al. (2014).

The fourth survey, also called ”Employment and Purchase Behavior in Germany” (EPBG),

was a web survey conducted in Germany in 2012 (Eckman and Kreuter, forthcoming). While

EPBG-FQ contained filter questions, this survey contained looping questions instead. For this

reason, we refer to this survey as EPBG-LQ. The sample of 11,836 adults was selected from

the same German administrative labor market records and 1,068 cases (about nine percent,

AAPOR RR1) responded to the looping questions of the survey.4 The survey contained two

sections of looping questions, one asked about employers and the other one about places the

respondent had lived. The order of the questions was randomized and respondents were asked

these questions either in the how-many or the go-again format. Results regarding motivated

misreporting in this survey are reported in Eckman and Kreuter (forthcoming).

See Table 5.3 for an overview of the five datasets. Four of these datasets (LISS-1, LISS-2,

SOFT, EPBG-FQ) contain filter questions and one (EPBG-LQ) contains looping questions.

In each, respondents were randomly assigned to the different question formats (interleafed or

grouped for the filter questions and go-again or how-many for the looping questions).

3An additional 1,200 respondents completed the survey but were assigned to experimental conditions not
used in this paper. Results concerning the other experiments are reported in Sakshaug, Tutz, and Kreuter
(2013).

4The survey contained two additional experiments: An incentive experiment (Felderer, Kreuter, and Winter
2013) and a consent experiment (Sakshaug and Kreuter 2014). We do not expect these manipulations to affect
our results.
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Table 5.3: Summary of five datasets from four surveys

LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ
Country NL NL U.S. Germany Germany
Mode Web Web CAPI CATI Web
Data collection April 2012 May 2012 April-June 2013 Aug-Oct 2011 Feb-April 2012
Motivated

FQ FQ FQ FQ LQ
misreporting
Question formats I/G I/G I/G I/G GA/HM
n respondents 3,767 3,601 304 1,200 1,068
Response ratea 68% 64% 27% 19% 9%
FQ: Filter questions. LQ: Looping questions.
I: Interleafed. G: Grouped. GA: Go-again. HM: How-many.
a AAPOR RR1 2016.

To test our hypothesis, we need an estimate of the response propensity score to identify reluctant

and non-reluctant respondents as well as a measure of measurement error (that is, the extent

of motivated misreporting).

5.6 Estimation of response propensity and motivated

misreporting

The idea of the response propensity builds on the seminal work of Rosenbaum and Rubin (1983)

on propensity scores. Originally introduced in the field of evaluation studies, the propensity

score denotes the conditional probability that a unit (e.g., a person) receives a treatment,

given observable attributes of the unit. Similarly, the response propensity is the conditional

probability that a person responds to a survey or not, given the person’s attributes (Bethlehem,

Cobben, and Schouten 2011, chapter 11). This score, RPi, varies between zero and one and is

a latent variable. Although we cannot observe it, we can observe the corresponding response

indicator, Ri, which allows us to estimate response propensity scores.

Logistic regression is the most common technique for estimating response propensities (Bethle-

hem, Cobben, and Schouten 2011, chapter 11). The dependent variable in these models is the

binary response indicator, Ri, indicating whether a unit responded to a survey or not. All vari-

ables known or assumed to influence whether a unit is a respondent to a survey are included in
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the model as covariates, often in various functional forms (e.g., linear, quadratic, or interacted

with other predictors). Predictions from this model then form the response propensity scores.

In recent years, however, nonparametric prediction algorithms from machine learning methods

have been introduced in the response propensity score literature (McCaffrey, Ridgeway, and

Morral 2004; Phipps and Toth 2012; Buskirk and Kolenikov 2010). The major advantage of

these methods is that the researcher does not need to determine the (correct) functional form

of the predictor variables in the propensity score model, including the decision about which

variables should enter the model at all. Rather, machine learning or data mining methods

automatically select covariates predictive of the response variable based on the available data.

In addition, machine learning methods can deal with many covariates even if the sample size

is small. Simulation studies have shown that these methods often outperform standard ap-

proaches such as logistic regression in the estimation of (response) propensity scores (e.g., Lee,

Lessler, and Stuart 2010; Buskirk and Kolenikov 2010).

5.6.1 Predictors of response

We use boosted regression modeling to estimate the response propensity of each selected case,

and we fit a separate model for each of the five datasets. The dependent variable in each

model is a binary variable indicating whether a case responded to the survey or not. The

independent variables in these models are all variables available for both respondents and

nonrespondents in the dataset.5 As shown in Table 5.3, the five surveys were selected from

different sampling frames and conducted in different modes (i.e., online, CAPI, and CATI).

Therefore, the information available to build the response propensity model differs between the

surveys. Below we describe the variables available for response propensity score prediction in

each survey. The appendix shows the complete list of covariates in each model.

LISS-1 and LISS-2 were both conducted as part of the longstanding LISS online panel. Panel

members have responded to several other waves of the panel before taking part in our two sur-

veys, and thus the amount of information available for both respondents and nonrespondents

5Covariates may contain missing values as long as there are non-missing values observed among both respon-
dents and nonrespondents.
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from previous waves is large. All in all, we included 116 covariates in the response propensity

model for LISS-1. These covariates cover socio-demographic information (e.g., age, gender,

education, employment), a series of attitudinal questions and the response behavior in previ-

ous waves, information regarding household composition, as well as paradata from the initial

recruitment interview for the panel. The response propensity model for LISS-2 includes the

same information as LISS-1 plus information that was collected as part of LISS-1, i.e., whether

a person responded in LISS-1, the filter question format and the number of filters triggered in

LISS-1.

Compared to LISS, the amount of information available about both respondents and nonre-

spondents in SOFT is much smaller. The SOFT response propensity model includes covariates

derived from paradata that were collected during the CAPI interviews, such as the date and

time of the first contact attempt and whether a person ever refused the interview, as well as

covariates derived from the sampling design, for example primary and secondary sampling unit

identifiers.

The samples of EPBG-FQ and EPBG-LQ were both selected from the same German admin-

istrative labor market records. Therefore, both models include several predictors derived from

the administrative data, such as age, gender, employment and unemployment history, and ed-

ucation. The response propensity model of EPBG-FQ furthermore contains predictors derived

from the sampling frame (e.g., stratum identifiers) and paradata from the CATI interview,

such as date and time of a call, interviewer IDs and assessments of the likelihood of a case

to participate in the survey which were made by interviewers (Sinibaldi and Eckman 2015).

Unfortunately, we cannot include paradata from the online survey in the response propensity

model of EPBG-LQ, because paradata is missing for nearly all nonrespondents in this survey.

Using the boosting algorithm and the covariates described above, we predict the response

propensity scores, our measure of reluctance, for the respondents and nonrespondents in each

dataset. We discuss model performance in the Results section.



118 Chapter 5. Motivated Misreporting Among Reluctant Respondents

5.6.2 Measuring motivated misreporting

We use the differences between the formats (interleafed vs. grouped; go-again vs. how-many),

the format effect, as our measure of motivated misreporting. We report results from this

analysis in the results section to demonstrate that motivated misreporting is taking place in

every survey.

Strictly speaking, the format effect we estimate is not true measurement error, the ε term in

Figure 5.1. However, comparisons of survey data with administrative records (see Section 5.4)

have shown that motivated misreporting, i.e., the format effect, is due to measurement error in

the interleafed (go-again) condition. Thus, we can use the format effect to test our hypothesis.

5.6.3 Identification of the relationship between reluctance and mo-

tivated misreporting

From the above boosted regression models, we have estimated response propensities for all

respondents and nonrespondents. To study the connection between response propensity and

motivated misreporting, we split the estimated scores for the respondents into quartiles within

each study. The fourth quartiles contain respondents with the highest response propensity

scores, i.e., respondents who are the most likely to respond to the survey, given their observed

covariates described above. The first quartiles, by contrast, contain respondents with the lowest

response propensity scores, i.e., those who responded, but were not likely to do so. For the

third part of our analysis, we use only respondents in the fourth and first response propensity

quartiles of each dataset. Comparing the format effect between the most likely respondents (the

fourth quartile) and the least likely respondents (the first quartile) allows us to study whether

reluctant respondents are worse reporters.

One simplistic approach to estimating the connection between response propensity and mo-

tivated misreporting is to take the difference in filter questions (looping questions) between

reluctant and likely respondents in the interleafed (go-again) format. Yet, this approach will

likely produce biased estimates because there may be true differences in the behavior measured
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with the filter questions (looping questions) between reluctant and likely respondents. The

two types of respondents differ on many characteristics (recall the covariates of the response

propensity models, Table 5.6). For example, reluctant respondents of EPBG-LQ may actually

have held more jobs then likely respondents. Without accounting for these true differences in

filter and looping questions, estimates of the connection between respondents’ reluctance and

motivated misreporting may be biased.

To avoid such bias, we extend the analysis of motivated misreporting described in Section

5.6.2 to four subgroups: Reluctant respondents in the interleafed format, likely respondents in

the interleafed format, reluctant respondents in the grouped format and likely respondents in

the grouped format. We do the same for the looping questions asked in EPBG-LQ (go-again

and how-many instead of interleafed and grouped). If response propensity affects motivated

misreporting, as predicted by our theory, we should see more misreporting among reluctant

respondents than among likely respondents (that is, a larger format effect) in each survey.

That is, we account for true differences in the behavior using the difference in filter (looping)

questions between reluctant and likely respondents in the grouped (how-many) format. Because

misreporting due to the mechanisms described in Section 5.4 is not possible in the grouped (how-

many) format, we assume that any differences between reluctant and likely respondents in the

grouped (how-many) format are true differences in behavior. Due to random assignment of

respondents to the interleafed and grouped (go-again and how-many) formats, true differences

in behavior between reluctant and likely respondents should (in expectation) be about the same

in both formats.

In formal terms, we define Y as the number of filter questions triggered, W ∈ [0, 1] as an

indicator of whether a respondent is a reluctant respondent (W = 1) or not (W = 0) and

I ∈ [0, 1] as an indicator of whether a respondent was interviewed in the interleafed (I = 1)

or grouped (I = 0) format. Under the two assumptions from above (misreporting is only

possible in the interleafed/go-again format and the differences between reluctant and likely

respondents in the true value, Y ∗, are the same in the two formats due to randomization, i.e.,

E(Y ∗|W = 1, I = 1) − E(Y ∗|W = 0, I = 1) = E(Y ∗|W = 1, I = 0) − E(Y ∗|W = 0, I = 0))
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and in the absence of a connection between response propensity and misreporting, E(Y |W =

1, I = 1) − E(Y |W = 0, I = 1) = E(Y |W = 1, I = 0) − E(Y |W = 0, I = 0). If there is a

connection between respondents’ reluctance and misreporting, we should see that the difference

between reluctant and likely respondents is larger in the interleafed (go-again) format than in

the grouped (how-many) format, due to increased misreporting among reluctant respondents in

the former format: E(Y |W = 1, I = 1)−E(Y |W = 0, I = 1) > E(Y |W = 1, I = 0)−E(Y |W =

0, I = 0). In the analysis of EPBG-LQ, Y is the number of events reported and I an indicator

whether a person is interviewed in the go-gain (I = 1) or how-many (I = 0) format.

To better understand the above approach, we can think of it as a difference-in-difference (DiD)

model. Difference-in-difference models are commonly used in causal inference settings to derive

treatment effects from non-randomized designs (Angrist and Pischke 2009, pp. 221-247). In

our case, DiD controls for any true differences in the Y between reluctant and non-reluctant

respondents. Just as in the setting described in the previous paragraph, the DiD model is

simply the difference of the differences between reluctant and non-reluctant respondents in

each format as shown in Equation 5.1.

DiD = [E(Y |W = 1, I = 1)− E(Y |W = 0, I = 1)]−

[E(Y |W = 1, I = 0)− E(Y |W = 0, I = 0)]

(5.1)

Estimation of this model is straightforward using a linear regression model, as in Equation 5.2,

with intercept β0, coefficients β1, β2, β3 and residual error term ε.

Yi = β0 + β1Ii + β2Wi + β3Ii ∗Wi + εi (5.2)

That is, two binary variables (I and W ) and their interaction (I ∗W ) are included in the model

as independent variables. The coefficient of the interaction between these two variables, β3,

is our DiD estimate. Its sign and significance provide the test of our hypothesis that there is

a connection between response propensity and motivated misreporting. If β3 is negative, we

interpret this as evidence that there is such a connection and that reluctant respondents show

more misreporting. If there is no significant effect, however, we take this as lack of evidence for
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a connection.

5.7 Results

Presentation of our results proceeds in three steps. First, we present key information on the

response propensity models and the estimated response propensity scores for each survey. Sec-

ond, we analyze whether the data in each survey is affected by motivated misreporting. Third,

we present the findings regarding the connection between response propensity and motivated

misreporting.

5.7.1 Response propensity models

Table 5.4 shows measures of predictive performance of each response propensity model.6 Using

Youden’s J statistic (1950) as a probability cutoff to evaluate model performance, between 71

and 88 percent of respondents are correctly classified as respondents (sensitivity column) and

between 64 and 85 percent of nonrespondents are correctly classified (specificity column) (the

choice of the probability threshold is only relevant for assessing model performance measures

shown in Table 5.4).7 Taken together, about 65 to 86 percent of all cases are correctly classified

(’Accuracy’). Moreover, the area under the receiver operating characteristic curve (AUC)

indicates excellent (AUC≥ 0.8) to outstanding (AUC≥ 0.9) discrimination in nearly all models,

according to the rules of thumb proposed by Hosmer and Lemeshow (2000).8 R-squared values,

that is, the percent of log-likelihood explained by each model, vary between 0.11 and 0.53.

Taken together, these performance metrics indicate that the response propensity model built

6All models are optimized based on 4-fold cross-validation to guard against overfitting (Hastie, Tibshirani,
and Friedman 2009, ch.7).

7Many performance measures depend on the probability threshold used to classify cases into a binary classi-
fication (e.g., Coussement and Van den Poel 2008). In our study, we choose this threshold as a function of both
sensitivity (the true-positive-rate) and specificity (the true-negative-rate). That is, the probability threshold
is determined as the cut-point that maximizes both sensitivity and specificity in each survey, as suggested by
Youden (1950). Other thresholds commonly applied are 0.5 (Hosmer and Lemeshow 2000) or the observed
survey response rate (Tollenaar and Van der Heijden 2013).

8The AUC has an appealing interpretation: It is the probability that in a random pair of one respondent and
one nonrespondent, the respondent is assigned a higher estimated response propensity than the nonrespondent.
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Table 5.4: Performance measures of response propensity models, by survey

Dataset Sensitivity Specificity Accuracy AUC McFadden-R2

LISS-1 0.82 0.79 0.81 0.89 0.44
LISS-2 0.83 0.79 0.82 0.88 0.39
SOFT 0.88 0.85 0.86 0.94 0.53

EPBG-FQ 0.76 0.75 0.75 0.84 0.28
EPBG-LQ 0.71 0.64 0.65 0.73 0.11
Note: Sensitivity, specificity and accuracy at optimal probability cut-point,
as determined by maximal sensitivity and specificity (Youden 1950).

for the SOFT survey discriminates well between respondents and nonrespondents, followed by

good predictive performance of LISS-1, LISS-2, and EPBG-FQ. In comparison, the EPBG-LQ

response propensity model does not seem to perform as well.

Furthermore, we inspect density plots of the estimated response propensities. Figure 5.2 shows

that respondents in each dataset have, on average, higher response propensities than nonre-

spondents, as expected by the performance metrics discussed above. The covariates included in

the response propensity models of LISS-1, LISS-2, SOFT, and EPBG-FQ seem to clearly differ-

entiate between respondents and nonrespondents, a sign that the covariates are good predictors

of response to the survey. In line with the findings from Table 5.4, the response propensity

model of EPBG-LQ shows less discrimination between respondents and nonrespondents. This

may be caused by the limited set of information available to the model.9

Table 5.5 shows the ranges of the first and fourth quartile of the estimated response propensity

scores in each dataset. Given that we built a unique response propensity model for each dataset,

it is not surprising that the range of propensity scores within the first and within the fourth

quartiles varies considerably between datasets. Since the value of the response propensity

score itself has no meaningful interpretation (Bethlehem, Cobben, and Schouten 2011) and we

are only interested in identifying reluctant and likely respondents, differing ranges of response

propensity scores across the five studies do not interfere with our analysis.

9Unobserved confounders, i.e., predictors of treatment and/or the outcome of interest, are major sources
of bias in causal inference settings based on propensity scores where achieving balance on both observed and
unobserved confounder is essential to the estimation of unbiased treatment effects. In our study, however, we
use the (response) propensity scores only as a tool to identify likely and reluctant respondents and therefore
do not need to rely on the strict (and untestable) assumptions necessary for estimation of unbiased treatment
effects.
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Figure 5.2: Density plots of estimated response propensities, by survey

Table 5.5: Summary statistics of estimated response propensities, by survey

Quartile
1st 4th

Dataset Min. Mean Max. Min. Mean Max. na

LISS-1 0.08 0.55 0.70 0.92 0.95 0.99 1,883
LISS-2 0.11 0.55 0.76 0.89 0.92 0.96 1,801
SOFT 0.19 0.47 0.55 0.68 0.71 0.79 152

EPBG-FQ 0.05 0.20 0.28 0.52 0.68 0.89 600
EPBG-LQ 0.03 0.06 0.08 0.17 0.22 0.47 534
aRespondents in first and fourth response propensity quartiles
only.
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Table 5.6: Relative influencea of most influential predictors of response, by dataset

LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ
Gross household Number of filters Screening interview Appointment Age

income triggered in wave one started made
6.5 % 30.6 % 27.1 % 10.7 % 43.4 %

Year of birth Gross household Date of second Income full- Number of
income contact attempt time job past employers

6.3 % 4.9 % 9.3 % 8.4 % 11.4 %
Age at interview Net household income Time of first Year of birth Type of last

contact attempt spell
5.7 % 4.2 % 5.9 % 8.1 % 8.1 %

Age of household Wave one Date of first Calls per Education
head FQ format contact attempt case
4.7 % 3.9 % 5.8 % 7.5 % 6.3 %

Net household Age of household Time of second Income part- Stratum
income head contact attempt time job
4.5 % 3.0 % 5.6 % 6.7 % 5.3 %

Number of predictors
116 120 47 42 15

aPercentage of log likelihood explained by predictor relative to the total log likelihood explained by the model.

Table 5.6 shows the five most influential predictors of response in each dataset. In LISS-1,

sociodemographic information such as the year of birth or having a migration background

dominate the response propensity model. In LISS-2, sociodemographic information and co-

variates collected in LISS-1 have the greatest influence. The response propensity models for

SOFT and EPBG-FQ, both telephone surveys, are dominated by paradata collected during

call attempts. EPBG-LQ, however, is dominated by sociodemographic information and vari-

ables derived from the administrative labor market records. We next turn to the analysis of

motivated misreporting in each dataset.

5.7.2 Motivated misreporting

Table 5.7 shows results of the analysis of motivated misreporting in each dataset using all

respondents. Motivated misreporting is taking place in all four datasets that include filter

questions (LISS-1, LISS-2, SOFT, and EPBG-FQ): respondents trigger fewer filters in the in-

terleafed (row one) than in the grouped format (row two). These results support the hypothesis

that respondents learn to misreport in the interleafed format. Interestingly, the size of the effect

seems to be about one filter question in every dataset (except for SOFT), i.e., misreporting
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Table 5.7: Means of filters and events reported, by question format and survey

Filters triggered Events reported
LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ

Interleafed 4.75 (0.05) 4.63 (0.05) 7.39 (0.20) 6.98 (0.10) -
Grouped 5.58 (0.05) 5.63 (0.06) 7.92 (0.21) 7.81 (0.10) -

Go-again - - - - 5.01 (0.10)
How-many - - - - 6.96 (0.12)

|F-statistic|a 125.96 181.26 3.39 32.76 153.34
p-value 0.000 0.000 0.067 0.000 0.000
n 3,767 3,601 304 1,200 1,068
aH0: Filters triggered interleafed = filters triggered grouped / Events reported
go-again = events reported how-many.
Note: Standard errors in parentheses.

patterns seem to be very consistent across these datasets. The effect in SOFT, significant at

the 10% level, however, is only about half a filter question. The smaller effect size could be due

to the fact that SOFT is a face-to-face survey, where the physical presence of an interviewer

may cause respondents to report more honestly. We observe a similar pattern of motivated

misreporting to looping questions in EPBG-LQ.10 Respondents in the go-again format report

almost two fewer events than respondents interviewed in the how-many format, again support-

ing the hypothesis that respondents learn to misreport. To sum up, we find clear evidence that

motivated misreporting is taking place in every dataset: respondents deliberately give false or

inaccurate answers to both filter questions and looping questions to avoid follow-up questions

and reduce the burden of the survey.

5.7.3 Motivated misreporting among reluctant respondents

In the next step of our analysis, we reduce the analysis sample of each dataset to reluctant

(lowest response propensity quartile) and likely respondents (highest response propensity quar-

tile). We then estimate the difference-in-difference models described in Section 5.6.2. Results

10The number of loops was limited to a maximum of seven loops for the first section of questions and five
loops for the second section of questions (the topic of the questions was randomized, see Section 5.5). Because
respondents in the how-many format could report more then seven and five events, we re-code the number of
events reported in the this format to match the go-again format, following Eckman and Kreuter (forthcoming).
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Table 5.8: Difference-in-difference estimates of the influence of response propensity on moti-
vated misreporting, by survey

LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ
Interleafed -0.71*** -0.83*** -0.49 -0.69* -

(ref. grouped) (0.14) (0.14) (0.61) (0.29) -
Go-again - - - - -1.05**

(ref. how-many) - - - - (0.31)
Reluctant respondent -0.18 0.06 -0.16 -0.81** 1.46***

(0.15) (0.14) (0.60) (0.29) (0.31)
Interleafed*Reluctant -0.23 -0.12 -0.03 0.22 -

respondent (0.20) (0.20) (0.87) (0.41) -

Go-again*Reluctant - - - - -1.81**
respondent - - - - (0.45)

na 1,883 1,801 152 600 534
Note: *** p<0.001,** p<0.01, * p<0.05, + p<0.10. Standard errors in parentheses.
aRespondents in the first and fourth response propensity quartiles only.

are reported in Table 5.8. Regarding LISS-1, LISS-2, and EPBG-FQ we find that respondents

in the interleafed format trigger fewer filters in the interleafed than in the grouped format

(first row), after accounting for respondents’ reluctance. Interestingly, the format effect in the

SOFT survey seems to disappear, as the coefficient on the interleafed indicator in this model

is insignificant. This finding, however, may also be due to the very small sample size of the

SOFT survey (recall that we use only half of the respondents in this analysis).

As indicated by the insignificant coefficients on the reluctance indicator, reluctant respon-

dents in LISS-1, LISS-2, and SOFT do not report fewer filters (in the grouped format) than

likely respondents. In EPBG-FQ, there seems to be a difference between reluctant and non-

reluctant respondents: reluctant respondents report fewer filters than likely respondents (β̂ =

−0.81, s.e. = 0.29). Given the assumptions discussed in Section 5.6.3, however, this result

is likely due to a true difference in purchasing behavior among reluctant and non-reluctant

respondents.

To answer our research question, we check whether these differences in filters triggered are sim-

ilar in the interleafed format (recall the DiD model described in Section 5.6.3). The absolute

size of the interaction effect (third row), our main coefficient of interest, is small and insignifi-
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cant. That is, the difference in filters triggered between reluctant and likely respondents in the

interleafed format is about the same as in the grouped format. Thus, we do not find evidence

that motivated misreporting is stronger among reluctant respondents regarding filter questions.

Turning to the connection between response propensity and motivated misreporting to looping

questions in the EPBG-LQ dataset, we find that respondents report fewer events in the go-

again format (β̂ = −1.05, s.e. = 0.31), as expected. Moreover, there seem to be true differences

in the number of events reported in the how-many format between reluctant and non-reluctant

respondents, as indicated by the reluctance indicator (β̂ = −1.46, s.e. = 0.31). Contrary to

the filter question surveys, however, we find a significant interaction effect (β̂ = −1.81, s.e. =

0.45). That is, the difference between reluctant and likely respondents in the go-again format

is much larger than the difference between these two groups in the how-many format. We

find evidence for our hypothesis that there is a connection between response propensity and

motivated misreporting to looping questions.

Interestingly, reluctant respondents report more events than likely respondents in both for-

mats. That is, true differences (given the assumptions discussed in Section 5.6.3) indicate that

reluctant respondents had more employers and lived in more places than likely respondents.

The difference in the go-again format, however, is larger than the difference in the how-many

format, thus, supporting our hypothesis that reluctant respondents are worse reporters (see

also Table 5.9 in the appendix).

5.7.4 Robustness

To assess the robustness of the results presented in Table 5.8 to the specification of reluctant

and likely respondents, we modify the reluctance indicator. Instead of comparing misreporting

between respondents of the first and fourth response propensity quartile, we analyze misreport-

ing of respondents in the first and tenth response propensity decile. That is, our definition of

reluctance covers only 20% of all respondents (instead of 50%) - the most reluctant 10% and

the most likely 10%.
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Generally speaking, results of these robustness checks (reported in Table 5.10 and Table 5.10

in the appendix) are in line with the findings presented in the previous section. That is,

for LISS-1, SOFT and EPBG-FQ, there is no evidence that motivated misreporting to filter

questions is worse among reluctant respondents. Only for LISS-2 do we find a substantial and

significant interaction effect (β̂ = −0.63, s.e. = 0.31), that is, misreporting seems to be worse

among the most reluctant respondents in LISS-2. Regarding misreporting to looping questions,

our substantive conclusions compared to the results reported in the previous section. That is,

misreporting is worse among reluctant respondents in EPBG-LQ (β̂ = −1.51, s.e. = 0.75).

To sum up, the results reported in Section 5.8 and the results of the robustness checks do not

provide much support to our hypothesis of a connection between response propensity and moti-

vated misreporting to filter questions. However, we find a connection of response propensity and

motivated misreporting in the looping questions study, indicating that reluctant respondents

are worse reporters to looping questions.

5.8 Discussion

Are reluctant respondents more likely to introduce measurement error, specifically motivated

misreporting? Using data from five surveys conducted in different modes and countries, we

analyzed the connection between response propensity and two different forms of motivated

misreporting, filter questions and looping questions, to answer this question. We estimated

response propensities in each dataset using a data mining algorithm that allows us to sidestep

the challenge of having to pre-specify a set of predictors of response from all available covariates

and their correct functional form. While we did not find much evidence for a connection

between response propensity and motivated misreporting to filter questions, we found that

reluctant respondents show a stronger tendency to take shortcuts in looping questions than

likely respondents.

The finding that reluctant respondents do not misreport more to filter questions than likely

respondents is good news for researchers who put extra efforts into achieving high response
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rates. While high response rates do not necessarily decrease bias due to nonresponse (see the

literature reviewed in Section 5.2), we do not find that the extra efforts introduce additional

measurement error in terms of increased levels of motivated misreporting.

The nonresponse-measurement error model offers a theoretical explanation of why reluctant

respondents may in fact report less accurate data than likely respondents. This model states

that the survey reports are a function of the true value and an error term that is determined

by the response propensity. Our results, at least for four out of five datasets, do not support

this model. We do not believe that this model is wrong, rather, it does not seem to apply to

the case of misreporting to filter questions. It may well be that once a sampled person decides

to participate in the survey, her motivation or interest in the survey is high enough to give

answers as correct as any other respondents. The desire to reduce survey burden may be a

good explanation for motivated misreporting, but sampled units with a strong desire to reduce

survey burden may simply decide to not participate in the survey at all. This explanation is

supported by the fact that the response propensities of even the reluctant respondents lie to the

right of most of the response propensities of the nonrespondents in four out of five datasets (see

Figure 5.2). In other words, the lowest response propensity cases are in fact nonrespondents,

and we are not able to explore the patterns of measurement error among nonrespondents.

Regarding motivated misreporting to looping questions, we found that reluctant respondents are

worse reporters because the difference between reluctant and likely respondents in the go-again

format is larger than the difference between the two in the how-many format. It may be possible

that the burden of answering looping questions is higher than the burden of answering filter

questions. In the looping question survey, respondents had to recall all employers they worked

for in the last five years and all places they had lived. In most of the filter question surveys,

however, respondents were asked for purchases during the last year or month (see Section 5.5

and the text of the questions in the Appendix). Retrieving the information in respondents’

minds to answer the latter question seems much easier than remembering all events that had

to be reported to the looping question survey. Support for such a difference in burden between

the surveys can also be found in the result that the magnitude of misreporting is about one
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item in the filter question surveys, but almost two items in the looping question survey.11 In

general, it is possible that reluctant respondents tend to give less correct answers only when

the burden of answering questions is very high.

While the results from the looping question survey seem to support our theoretical model, there

is a major limitation regarding these results. Unlike the response propensity models of the four

filter question datasets, which included rich information derived from paradata or respondents’

past reporting behavior, the response propensity model of EPBG-LQ could only use covariates

derived from the administrative labor market data and information from the sampling frame.

Moreover, the most influential predictors of response in the filter question datasets are exactly

those that are not available in EPBG-LQ (e.g., whether a case ever refused an interview, the

likelihood whether a case would cooperate or the number of contact attempts, see also Table

5.6). In line with these findings, the performance of this model is the worst on all measures.

Thus, the response propensity model does not distinguish as well between reluctant and non-

reluctant respondents. The findings regarding the connection between response propensity and

motivated misreporting in this dataset may be confounded by the limited predictive perfor-

mance of the response propensity model. Therefore, we consider these results as exploratory

findings that require more research and replication with other datasets.

11In the latter case, re-coding of the number of events reported in the how-many format to match the maximum
number of loops in the go-again format may, however, partially explain the magnitude of the effect (see Section
5.7.2).
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5.9 Appendix

5.9.1 Additional results

Table 5.9: Predicted means of filters and events reported, by respondents’ reluctance, question
format, and survey

Filters triggered Events reported
LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ

Interleafed
Reluctant respondents 4.45 (0.10) 4.64 (0.10) 7.44 (0.47) 6.94 (0.18) -
Likely respondents 4.86 (0.09) 4.70 (0.08) 7.63 (0.38) 7.54 (0.21) -

Grouped
Reluctant respondents 5.39 (0.12) 5.58 (0.12) 7.95 (0.40) 7.42 (0.20) -
Likely respondents 5.57 (0.09) 5.52 (0.09) 8.11 (0.48) 8.23 (0.22) -

Go-again
Reluctant respondents - - - - 4.90 (0.21)
Likely respondents - - - - 5.26 (0.20)

How-many
Reluctant respondents - - - - 7.76 (0.25)
Likely respondents - - - - 6.31 (0.23)

na 1,883 1,801 152 600 534
aRespondents in the first and fourth response propensity quartiles only.
Note: Standard errors in parentheses.

Table 5.10: Summary statistics of estimated response propensities, by survey

Decile
1st 10th

Dataset Min. Mean Max. Min. Mean Max. na

LISS-1 0.08 0.43 0.56 0.95 0.96 0.99 1,883
LISS-2 0.11 0.32 0.62 0.92 0.93 0.96 1,801
SOFT 0.33 0.40 0.46 0.67 0.72 0.78 152

EPBG-FQ 0.05 0.14 0.20 0.70 0.78 0.89 600
EPBG-LQ 0.03 0.05 0.06 0.22 0.27 0.47 534
aRespondents in first and fourth response propensity quartiles
only.



132 Chapter 5. Motivated Misreporting Among Reluctant Respondents

Table 5.11: Difference-in-difference estimates of the influence of response propensity on moti-
vated misreporting, by survey (lowest and highest decile)

LISS-1 LISS-2 SOFT EPBG-FQ EPBG-LQ
Interleafed -0.67*** -0.79*** -0.15 -0.48 -

(ref. grouped) (0.23) (0.22) (1.07) (0.47) -
Go-again - - - - -1.32*

(ref. how-many) - - - - (0.53)
Reluctant respondent -0.23 0.61** 0.10 -0.48 1.10*

(0.23) (0.23) (1.13) (0.48) (0.51)
Interleafed*Reluctant -0.34 -0.63* -0.50 0.06 -

respondent (0.32) (0.31) (1.46) (0.66) -

Go-again*Reluctant - - - - -1.51*
respondent - - - - (0.75)

na 753 721 61 240 213
Note: *** p<0.001,** p<0.01, * p<0.05, + p<0.10. Standard errors in parentheses.
aRespondents in the first and tenth response propensity decile only.

5.9.2 Filter questions used in LISS-1 and LISS-2

• In the past month, have you purchased coffee for consumption at home?

• In the past month, have you purchased beer or wine for consumption at home?

• In the past month, have you purchased tobacco?

• In the past month, have you purchased children’s clothing or shoes?

• In the past month, have you purchased clothing or shoes for yourself?

• In the past month, have you purchased chocolate?

• In the past month, have you purchased medication?

• In the past month, have you purchased flowers?

• In the past month, have you purchased pet supplies?

• In the past month, have you purchased movies on DVD or VHS?

• In the past month, have you purchased music on CD or as MP3s (or other digital formats)?
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• In the past month, have you purchased a ticket for a concert, theater performance or a

movie?

• In the past month, have you purchased any cleaning supplies for your home?

Follow-up questions

For each yes answer to the above filter questions:

Thinking about your most recent purchase of (fill: item)

• How much did it cost?

– (Open ended response in Euros)

– a. Don’t know

– b. Refused

• For whom was it purchased?

– a. self

– b. another household member

– c. someone else

– d. Don’t know

– e. Refused

5.9.3 Filter questions used in SOFT

Sports section filter questions

• Do you follow professional hockey?

• Do you follow professional basketball?
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• Do you follow professional soccer?

• Do you follow professional football?

Sports section follow-up questions

For each yes answer to the above filter questions:

• Do you have a favorite team you support, or do you have no particular favorite team?

– a. I have a favorite team

– b. I do not have a favorite team

– c. cannot say

• When you watch (or attend) (fill: item) games, do you usually do so alone, or with family

members or friends?

– a. alone

– b. with family members

– c. with friends

– d. with both family members and friends

– e. it depends

• In the last 12 months, how much money have you spent purchasing (fill: item)-team

merchandise ?

– (Open ended response in Dollars)

• When (fill: item) is in season, how many hours per week, on average, do you spend

watching (fill: item)?

– (Open ended response in hours)
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• Do you also follow college or high school (fill: item), or only professional (fill: item)?

– a. college

– b. high school

– c. mentioned another league

– d. only professional

• Were you also a fan as a child or teenager, or did you only become a fan since getting

older?

– a. also fan as child

– b. fan only since getting older

Clothing section filter questions

• In the last 12 months, have you purchased shoes?

• In the last 12 months, have you purchased jeans or pants?

• In the last 12 months, have you purchased a shirt or sweater?

• In the last 12 months, have you purchased sport clothing?

• In the last 12 months, have you purchased a coat or jacket?

• In the last 12 months, have you purchased a business suit?

Clothing section follow-up questions

For each yes answer to the above filter questions:

• Thinking of the most recent (fill: item) you purchased, was/were it/those for yourself, or

for someone else?

– a. self
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– b. someone else

• How much did the/those (fill: item) cost?

– (Open ended response in Dollars)

• Was this an impulse purchase or a planned purchase?

– a. planned

– b. impulse

• At what kind of store did you buy the/these (fill: item)?

– a. department or big box store

– b. local or boutique store

– c. online

– d. other

• How comfortable would you feel purchasing such items online?

– a. very comfortable

– b. somewhat comfortable

– c. somewhat uncomfortable

– d. not at all comfortable

TV section filter questions

• Do you regularly watch soap operas on television?

• Do you regularly watch reality television shows?

• Do you regularly watch late night talk shows?
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• Do you regularly watch evening drama shows?

• Do you regularly watch evening scripted comedy shows?

• Do you regularly watch evening news programs?

TV section follow-up questions

For each yes answer to the above filter questions:

• What is the name of your favorite show in this category?

– (open ended response)

• How many hours per week, on average, do you spend watching such shows?

– (open ended response in hours)

• Do you believe such programs have educational value?

– a. yes

– b. no

• Approximately how many different shows in this category do you watch regularly?

– (open ended response)

5.9.4 Filter questions used in EPBG-FQ

Clothing section filter questions

• This year, that is in 2011, have you bought a coat or jacket for yourself or for someone

else?
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• This year, that is in 2011, have you bought a shirt or a blouse for yourself or for someone

else?

• This year, that is in 2011, have you bought trousers for yourself or for someone else?

• This year, that is in 2011, have you bought shoes for yourself or for someone else?

• This year, that is in 2011, have you bought sportswear for yourself or for someone else?

• This year, that is in 2011, have you bought swimwear for yourself or for someone else?

Clothing section follow-up questions

• For whom did you purchase this/those (fill: item)? For yourself, a family member, or

someone else?

• In what month did you purchase this/those (fill: item)?

• How much did this/those (fill: item) cost?

• How satisfied are you with this/those (fill: item)? Are you very satisfied, somewhat

satisfied, somewhat dissatisfied, or very dissatisfied?

Employment section filter questions

• Have you ever held a full-time job? (Note: We explicitly instructed respondents not to

include self-employment.)

• Have you ever held a part-time job? (Note: We explicitly instructed respondents not to

include self-employment or Mini-Jobs.)

• Have you ever held a so-called Mini-Job, with a payment of 400 Euros a month or less?

• Have you ever received professional training?

• Have you ever received paid practical training?
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• Have you ever been self-employed?

Employment section follow-up questions

• From when and until when did you hold your most recent (fill: item)?

• How many hours per week did/do you work in your most recent (fill: item)?

• In what industry was/is your most recent (fill: item)?

• What was your last monthly income at your most recent (fill: item)?

Income section filter questions

• In the year 2010: Did you or another person in your household have income from interest

or investment income, e.g., savings, shares, equity funds, or fixed-interest securities?

• In the year 2010: Did you or another person in your household have income from rental

property, including leases and subleases?

• In the year 2010: Did you or another person in your household receive a child benefit?

• In the year 2010: Did you or another person in your household receive parental money

or a maternity benefit?

• In the year 2010: Did you or another person in your household receive income support?

• In the year 2010: Did you or another person in your household receive unemployment

insurance?

Income section follow-up questions

• Which person in your household has received income from (fill: item)? You yourself or

another member of your household?

• How often (with what regularity) did your household receive (fill: item)?
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• How large was the last amount of income from (fill: item) that your household received

in 2010?

• In what month in 2010 did your household first receive income from (fill: item)?

5.9.5 Looping questions used in EPBG-LQ

Employers, how-many format

• For how many employers have you worked in your life so far? Please do not count phases

in which you were self-employed.

• Loop through for each reported employer up to 7 (in first section) or 5 (in second section)

– Please think about your first/second/. . . employer. . . When did your employment

there begin?

– When did your employment there end?

– How many hours did you work there?

– What was your professional position when you stopped working there?

• If fewer than 7 (5) employers reported: Did you have any other employer you did not

think of before?

• If yes:

– When did your employment there begin?

– When did your employment there end?

– How many hours did you work there?

– What was your professional position when you stopped working there?

• If fewer than 7 (5) employers reported: Did you have any other employer you did not think

of before? <continued until respondent said no, or reported about maximum number of

events >
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Employers, go-again format

• Have you ever been employed? Please do not count phases in which you were self-

employed.

• If yes:

– Please think about your first/second/. . . employer. When did your employment there

begin?

– When did your employment there end?

– How many hours did you work there?

– What was your professional position when you stopped working there?

• Did you have any other employers after that?

– If yes, loop through follow-up items again

• <continued until respondent said no, or reported about maximum number of events >

Residential locations, how-many format

• In how many places have you ever lived?

• Loop through for each reported location up to 7 (in first section) or 5 (in second section)

– Please think about your first/second/. . . place of residence. . . When did you begin

living there?

– And when did you move away?

– How many people lived there?

– Which state is the place in?

• If fewer than 7 (5) locations reported: Have lived anywhere else that you did not yet

mention?
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• If yes:

– When did you begin living there?

– And when did you move away?

– How many people lived there?

– Which state is the place in?

• If fewer than 7 (5) locations reported: Have lived anywhere else that you did not yet

mention? <continued until respondent said no, or reported about maximum number of

events >

Residential locations, go-again format

• Please think about your first/second/. . . place of residence. . .

– When did you begin living there?

– And when did you move away?

– How many people lived there?

– Which state is that in?

• Have you lived anywhere else?

– If yes, loop through follow-up items again

• <continued until respondent said no, or reported about maximum number of events >

5.9.6 Predictor variables, by survey

Survey Variables
LISS-1 Gender

Position in household
Year of birth
Age in CBS categories
Age of household head
Number of household members
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Number of children in household
Household Head lives together with a partner
Civil Status
Domestic situation
Type of household’s dwelling
Urban character of place of residence
Primary occupation
Personal gross monthly income (in Euros)
Personal gross monthly income (in Euros), imputed
Personal net monthly income (in Euros) (incl. nettocat)
Personal net monthly income (in Euros)
Personal net monthly income (in Euros), imputed
Personal gross monthly income in categories
Personal net monthly income in categories
Gross household income (in Euros)
Net household income (in Euros)
Highest level of education (without diploma)
Highest level of education (with diploma)
Level of education in CBS categoriess
Household member participates in the panel
Recruitment wave
Ethnic group
Does the household have a simPC?
Count of responses in previous waves
Interviewer ID recruitment interview
Instrument (through which respondent was originally contacted)
Instrument datafile (through which respondent was finally contacted)
Usable address
Contact successful
Minimally posed central question
Complete recruitment interview
Willing to participate in the panel
Registered as panel member
Number of CATI contacts
Number of CAPI contacts
Total number of contact attempts
Interviewer used designated arguments
Life satisfaction (in general)
Statement: Feel good about myself
Confidence in abilities
Follow news on TV or radio
Follow news on the internet
Follow news through free daily paper
Follow news through national or regional newspaper
Follow news hardly or never
Follow news: do not know
Interested in news
Been to cinema in past 12 months
Visited museum in the Netherlands in the past 12 months
Doing voluntary work
Actively taken part in activities of one or more associations or organisations
Doing sports? If yes how many hours a week (on average)
Grade of health at present
Suffer from one or more long-term diseases afflictions or handicaps
Frequency of contact to friends, close acquaintances or family members
Statement: Enough people to fall back on in event of misfortune
Statement: Miss having people around
Statement: Life is meaningless without religion



144 Chapter 5. Motivated Misreporting Among Reluctant Respondents

Interested in political topics
Voted in 2006 election
Which of the two best decribes own view
Household has computer with internet connection
Type of internet connection: Cable connection
Type of internet connection: ADSL
Type of internet connection: Dial-up connection 1
Type of internet connection: Dial-up connection 2
Type of internet connection: Mobile internet
Type of internet connection: other fast, broadband
Type of internet connection: do not know 1
Type of internet connection: do not know 2
Type of internet connection: Dial-up connection used 1
Type of internet connection: Dial-up connection used 2
Type of internet connection: Cable connection
Type of internet connection: ADSL connection, DSL
Type of internet connection: Mobile internet
Type of internet connection: other fast, broadband
Type of internet connection: do not know
Household has computer without internet connection
Computer has: Windows Vista
Computer has: Windows XP
Computer has: Windows 2000
Computer has: Windows 95 or 98
Computer has: Linux variant
Computer has: Mac OS (Apple)
Computer has: other operating system
Computer has: do not know
Gender
Date of birth: day
Date of birth: month
Date of birth: year
Age
Composition of household
Household composition
Age of youngest child in household
Which of following descriptions best applies to respondent
Does respondent work
How many hours a week working in total (in a normal week)
Highest form of completed education
How well can respondent make ends meet on household’s income
Estimated gross income
Born in the Netherlands
In which country born otherwise
Farther born in Netherlands
In which country was farther born otherwise
Mother born in Netherlands
In which country was mother born otherwise
Usually speaking Dutch at home or other language
Statement: to acquire material posse is one of most important things in life
Statement: Tolerance better than intolerance
Statement: Survey research is important for society

LISS-2 Gender
Position in household
Year of birth
Age in CBS categories
Age of household head
Number of household members
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Number of children in household
Household Head lives together with a partner
Civil Status
Domestic situation
Type of household’s dwelling
Urban character of place of residence
Primary occupation
Personal gross monthly income (in Euros)
Personal gross monthly income (in Euros), imputed
Personal net monthly income (in Euros) (incl. nettocat)
Personal net monthly income (in Euros)
Personal net monthly income (in Euros), imputed
Personal gross monthly income in categories
Personal net monthly income in categories
Gross household income (in Euros)
Net household income (in Euros)
Highest level of education (without diploma)
Highest level of education (with diploma)
Level of education in CBS categoriess
Household member participates in the panel
Recruitment wave
Ethnic group
Does the household have a simPC?
Count of responses in previous waves
Interviewer ID recruitment interview
Order of answers
Instrument (through which respondent was originally contacted)
Instrument datafile (through which respondent was finally contacted)
Usable address
Contact successful
Minimally posed central question
Complete recruitment interview
Willing to participate in the panel
Registered as panel member
Number of CATI contacts
Number of CAPI contacts
Total number of contact attempts
Interviewer used designated arguments
Life satisfaction (in general)
Statement: Feel good about myself
Confidence in abilities
Follow news on TV or radio
Follow news on the internet
Follow news through free daily paper
Follow news through national or regional newspaper
Follow news hardly or never
Follow news: do not know
Interested in news
Been to cinema in past 12 months
Visited museum in the Netherlands in the past 12 months
Doing voluntary work
Actively taken part in activities of one or more associations or organisations
Doing sports? If yes how many hours a week (on average)
Grade of health at present
Suffer from one or more long-term diseases, afflictions or handicaps
Frequency of contact to friends, close acquaintances or family members
Statement: Enough people to fall back on in event of misfortune
Statement: Miss having people around
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Statement: Life is meaningless without religion
Interested in political topics
Voted in 2006 election
Which of the two best decribes own view
Household has computer with internet connection
Type of internet connection: Cable connection
Type of internet connection: ADSL
Type of internet connection: Dial-up connection 1
Type of internet connection: Dial-up connection 2
Type of internet connection: Mobile internet
Type of internet connection: other fast, broadband
Type of internet connection: do not know 1
Type of internet connection: do not know 2
Type of internet connection: Dial-up connection used 1
Type of internet connection: Dial-up connection used 2
Type of internet connection: Cable connection
Type of internet connection: ADSL connection, DSL
Type of internet connection: Mobile internet
Type of internet connection: other fast, broadband
Type of internet connection: do not know
Household has computer without internet connection
Computer has: Windows Vista
Computer has: Windows XP
Computer has: Windows 2000
Computer has: Windows 95 or 98
Computer has: Linux variant
Computer has: Mac OS (Apple)
Computer has: other operating system
Computer has: do not know
Gender
Date of birth: day
Date of birth: month
Date of birth: year
Age
Composition of household
Household composition
Age of youngest child in household
Which of following descriptions best applies to respondent
Does respondent work
How many hours a week working in total (in a normal week)
Highest form of completed education
How well can respondent make ends meet on household’s income
Estimated gross income
Born in the Netherlands
In which country born otherwise
Farther born in Netherlands
In which country was farther born otherwise
Mother born in Netherlands
In which country was mother born otherwise
Usually speaking Dutch at home or other language
Statement: to acquire material posse is one of most important things in life
Statement: Tolerance better than intolerance
Statement: Survey research is important for society
Filter question format in LISS 1
Number of filters triggered in LISS 1
Case responded in LISS 1

Soft Screening interview started
Call First
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Condition: How-many
Condition: Grouped
Condition: Paired
Primary sampling unit
Segment
Transfer case
Screener completed
Screener started
Start disposition code
Number of contacts total
Time of 1st contact
Time of 2nd contact
Time of 3rd contact
Time of 4th contact
Time of 5th contact
Time of 6th contact
Time of 7th contact
Time of 8th contact
Time of 9th contact
Time of 10th contact
Interviewer ID
Contact mode of 1st contact
Contact mode of 2nd contact
Contact mode of 3rd contact
Contact mode of 4th contact
Contact mode of 5th contact
Contact mode of 6th contact
Contact mode of 7th contact
Contact mode of 8th contact
Contact mode of 9th contact
Contact mode of 10th contact
Person ever refused interview
Person refused two times
Appointment scheduled
Appointment broken
Date of 1st contact
Date of 2nd contact
Date of 3rd contact
Date of 4th contact
Date of 5th contact
Date of 6th contact
Date of 7th contact
Date of 8th contact
Date of 9th contact
Date of 10th contact

EPBG-FQ Appointment scheduled
Average likelihood to cooperate
Minimum likelihood to cooperate
Maximum likelihood to cooperate
SD of likelihood rating
Calls per case with likelihood rating
Share of attempts on weekends
Share of attempts before 10am
Share of attempts between 10am and 5pm
Share of attempts between 5pm and 8pm
Share of attempts after 8pm
Stratum
Always same interviewer
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Share of different interviewers
Number of calls
At least one contact without realization
Gender
Birthday
Call accepted
Call not accepted, busy
Call not accepted, not connected
Call not accepted, timeout or no answer
Call not accepted, port is not reached
German nationality
Education
Case needed phone research after delivery to LINK
Ever did vocational training
Vocational training started before 1999
Ever did a minijob
Ever did an internship
Ever worked full time
Ever worked part time
Recent employment not full time
Recent employment not part time
Received unemployment benefit II in 2010
Received unemployment benefit I in 2010
Mean income in last full time spell (in Euros)
Mean income in part time spell (in Euros)
Mean income in internship spell (in Euros)
Mean income in vocational training spell (in Euros)
Mean income in minijob spell (in Euros)
Mean income in other spell (in Euros)

EPBG-LQ Birthday
Stratum
Ever did vocational training
Ever did an internship
Ever worked full time
Ever worked part time
Ever did minijob
Type of last spell
Number of moves
Number of past employers
Gender
Highest educational degree
Vocational degree
Vocational Training
German nationality
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Chapter 6

Conclusion

In the introduction to this dissertation, I pointed out the possibility that repeated measurement

in social science (longitudinal) surveys can lead to unintended behavioral consequences. Specif-

ically, answering a set of similar or identical questions can influence respondents’ subsequent

behavior and/or the way how they report their behavior in subsequent answers. I briefly intro-

duced these forms of change as changes-in-reporting and changes-in-behavior and discussed the

circumstances under which they may occur in a cross-sectional survey (survey conditioning)

and/or a panel survey (panel conditioning).

Numerous studies have been conducted in the past to uncover the latter type of effects, i.e.,

changes due to repeated participation in a panel survey. I demonstrated that many of them fall

short of addressing three essential methodological challenges: disentangling changes-in-behavior

from changes-in-reporting, finding adequate control group data, and adjusting for confounding

sources of error. This shortcoming apparently derives from the lack of a unified methodological

framework for the study of panel conditioning effects. I filled this gap by first, clearly identifying

the three challenges mentioned above, second, discussing the various designs that researchers

developed in the past and third, providing a workable methodological framework for the study

of panel conditioning effects.

This framework is applied to the analysis of changes-in-behavior, a form of panel conditioning

that many previous studies barely accomplished to study with the necessary methodological
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carefulness. The paper demonstrated that participation in several waves of the German panel

study “Labor Market and Social Security” influences respondents’ labor market behavior. The

true conditioning effect may even be larger than the one estimated as the instrumental variable

approach required the inclusion of one- and two-time respondents. Future projects, using similar

designs, may overcome this limitation by, for instance, introducing additional (random) variance

among first wave respondents through randomly allocated incentives. This variance could then

be used as a second instrument to overcome the limitations of this paper (as demonstrated by

Fricke et al. 2015).

No evidence was found for a second form of panel conditioning (changes-in-reporting). Ample

evidence for survey conditioning in one wave of the LISS panel led to the hypothesis that

conditioning would be even stronger in a second wave due to panel conditioning. Although

both forms of conditioning share the same theoretical mechanism, only one of the two was

present in the data analyzed. As discussed in the paper, the lack of panel conditioning may

be due to the short duration of the survey and the low response burden of answering to the

questions.

The last empirical paper of this dissertation studied survey conditioning from a new perspective.

Due to the widespread, but empirically refuted belief that high response rates lead to low

nonresponse bias, many surveys aim for high response rates. This strategy may, however,

backfire if reluctant respondents provide data of low quality, i.e., data with increased levels of

measurement error. Building on a powerful machine learning algorithm, I identified reluctant

respondents via their response propensity. However, there was little evidence that reluctant

respondents are worse reporters than those who are the most likely to respond.

All four papers jointly make necessary contributions to the academic research literature on

conditioning effects in surveys. At the same time, Chapters 3, 4 and 5 also provide helpful

insights for researchers and institutions collecting data. Thus, Chapter 4 may help questionnaire

designers decide which filter question formats to use and whether using such questions will affect

data quality in panel surveys. Furthermore, findings in Chapter 5, suggesting that data quality

may not suffer when reluctant respondents are brought into the respondent pool, possibly are
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good news for data collectors.

Chapter 3 should encourage academic research as well as data collecting institutions to think

about ways to avoid panel conditioning in the first place. As mentioned before, there are,

to my knowledge, no recommendations regarding the question how to avoid the occurrence of

panel conditioning. As soon as panel survey participation affects behavior, however, researchers

and data collectors must consider the ethical implications of simply asking questions (cf. the

discussion in Chapter 2).

Other projects on survey and panel conditioning, in the latter case building on the methodologi-

cal framework provided in this dissertation, may focus on conditioning effects that occur in data

collected with new technologies. For instance, the increasing use of mobile devices in survey

research may lead to increases in survey conditioning. People who answer surveys on mobile

devices are often less willing to invest as much time in a survey as non-mobile respondents be-

cause the former group perceives the act of answering on a mobile device as more burdensome

(Mavletova 2013). Thus, they may be more likely to take shortcuts by misreporting.

Furthermore, the findings on misreporting to looping questions among reluctant respondents

(Chapter 5) call for replication. Many important predictors of response in the EPBG-LQ

survey were not available and the response propensity model may therefore be misspecified,

possibly leading to bias in the estimates of the connection between respondents’ reluctance

and misreporting. Thus, it is necessary for future research to replicate the findings regarding

looping questions with other, richer datasets.
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