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Abstract

The present thesis addresses two aspects of random fields: sample continuity and
the simulation of random fields.

In the first part of the thesis we formulate and prove a local and a global variant of
the Kolmogorov-Chentsov theorem in [70] for random fields on metric spaces. From
this we obtain a theorem for random fields on Riemannian manifolds that is easy to
apply and yields the existence of a modification which is locally uniformly sample
continuous or locally Hölder sample continuous.

In the second part we present a model of a random field on a topological space
that unifies well-known models such as the Poisson hyperplane tessellation model,
the random token model, and the dead leaves model. In addition to generalizing
these submodels from Rd to other spaces such as the d-dimensional unit sphere Sd,
our construction also extends the classical models themselves, e.g. by replacing the
Poisson distribution by an arbitrary discrete distribution. Moreover, the method of
construction directly produces an exact and fast simulation procedure. By inves-
tigating the covariance structure of the general model we recover various explicit
correlation functions on Rd and Sd and obtain several new ones.

This second part also contains a proof of the spectral turning bands method on
Sd, which has the same properties as its analogue in Rd.

Zusammenfassung

In der vorliegenden Arbeit werden zwei Aspekte von Zufallsfeldern untersucht: Die
Stetigkeit der Realisationen und die Simulation von Zufallsfeldern.

Im ersten Teil der Arbeit formulieren und beweisen wir eine lokale und eine globale
Version des Kolmogorov-Chentsov Theorems in [70] für Zufallsfelder auf metrischen
Räumen. Dies führt uns zu einem Theorem für Zufallsfelder auf Riemannschen Man-
nigfaltigkeiten, welches einfach anzuwenden ist und die Existenz einer Modifikation
mit lokal gleichmäßig stetigen oder lokal Hölderstetigen Realisationen liefert.

Im zweiten Teil präsentieren wir ein Modell für Zufallsfelder auf topologischen
Räumen, das bekannte Modelle wie das Poisson-Hyperplane-Tessellation-Modell, das
Random-Token-Modell und das Dead-Leaves-Modell vereint. Unser Modell verallge-
meinert diese Modelle von Rd auf andere Räume wie zum Beispiel die d-dimensionale
Einheitssphäre Sd. Außerdem erweitern wir die bekannten Modelle auch in Rd,
beispielsweise durch die Möglichkeit, allgemeine diskrete Verteilungen anstelle der
Poisson-Verteilung zu betrachten. Aus der Konstruktion unseres Modells ergibt sich
direkt eine schnelle und genaue Simulationsmethode. Indem wir die Kovarianzstruk-
tur unseres Modells untersuchen, erhalten wir viele bekannte und einige neue Kor-
relationsfunktionen auf Rd und auf Sd.

Schließlich beweisen wir im zweiten Teil der Arbeit noch die Spectral-Turning-
Bands-Methode auf Sd, die die selben Eigenschaften wie ihr Analogon in Rd hat.
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Introduction

For any set M , a real-valued random field Z on M may be defined as a family of real-
valued random variables (Z(x), x ∈ M) on a common probability space (Ω,A , P ).
In the classical theory [2, 53, 20], the set M is usually assumed to be a subset
of Rd and the corresponding random field can be interpreted as a tool to model
spatial uncertainty. Many applications for example in geostatistics, cosmology, and
material sciences show that the choice M ⊆ Rd may be inappropriate or even too
restrictive in general. This led to an increased interest in the study of random fields
on general spaces [3, 5, 39, 57, 59, 69, 70, 71] and it is the aim of the present thesis
to contribute to this development.

The assumptions on the space M will vary throughout the thesis depending on
the particular subject. However, one example that will accompany us all the way is
M = S2. The reason for this is twofold. First, the sphere may be seen as the simplest
non-trivial example of a space with non-Euclidean geometry, which makes random
fields on the sphere interesting from a theoretical point of view. Second, random
fields on the two-dimensional sphere are of particular interest for applications. In
geosciences, spatial data collected by satellites or obtained as output from climate
models often cover a large portion of the globe. Examples for such data include sea
surface temperature [14], sea level pressure [4], and total column ozone levels [65].
The analysis of such data sets requires random fields and covariance models on S2,
as can be seen in [13, 36, 41, 44, 45, 47]. Furthermore, random fields on the sphere
have applications in material sciences [29], serve as radial functions of star-shaped
random sets [37], and can be used to model cosmic microwave background radiation
[15, 59].

The present thesis addresses two aspects of random fields on general domains:
sample continuity and the simulation of random fields.

Part I: Sample Continuity

One of the key theorems in the theory of stochastic processes is the Kolmogorov–
Chentsov theorem (the classical references are [82] and [17]), which establishes the
existence of a continuous modification of a given stochastic process based on tail
or moment estimates of its increments. The core of the method leading to this
theorem is the application of the Borel-Cantelli lemma in order to conclude from
statistical properties of the random field to continuity properties of its realizations.
The method has been generalized by a number of authors to the case of a random
field on Rd, see [2, 6, 21, 46] and references therein. It can be seen from the proofs
that a crucial ingredient of this method is the existence of a dense subset with certain
properties. This dense subset is naturally available in Rd by the (multivariate) dyadic
rationals, but there is no natural analogue in more general spaces.

In the article [70] the author identified and generalized the properties of this dense
subset which enable a proof of the method, resulting in a Kolmogorov-Chentsov type
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Introduction

theorem for random fields on metric spaces. This paper is the starting point for the
work that is presented in part I.

In an attempt to apply the results of [70] to the metric space (S2, dS2), where
dS2 denotes the great circle metric on S2, we identified two obstacles that prevent a
direct application. These obstacles are explained in more detail in Section 1.2. In
summary, we found that there are two assumptions in [70] on a metric space that
are not compatible with the geometry of S2.

This problem led us to two different solutions, both of which are presented in
Chapter 2. The first one is presented in Section 2.4 and consists of a direct ge-
neralization of the method given in [70]. We formulate weakened assumptions on
the underlying space and show that the proof given in [70] can be retained in its
core and eventuates in a theorem that yields the existence of a uniformly continuous
modification under the classical condition on the random field. In Section 3.1, we
show that it is possible to apply this generalized theorem to (S2, dS2), resulting in a
criterion for the uniform sample continuity of a random field on the sphere.

The second approach, which we present first, is based on joint work with Annika
Lang, Jürgen Potthoff, and Martin Schlather [51]. In this approach, we prove in a
first step a local variant of the Kolmogorov-Chentsov theorem in [70]. This local
formulation of the theorem reduces the validation of the assumptions in any appli-
cation from the whole space to local domains and is therefore less restrictive. On
each of these domains we then obtain a local modification by applying the theo-
rem in [70] and we show that it is possible to glue these modifications together in
order to obtain a global modification with the desired properties. We then apply
our theorem to the important case of M being a finite-dimensional Riemannian ma-
nifold. The key here is that by utilizing the structure of a Riemannian manifold
we are able to show that it is possible to construct a local coordinatization of the
underlying space which is such that we can apply the local Kolmogorov–Chentsov
theorem. In particular, our construction can be made for every finite-dimensional
Riemannian manifold in the same manner, such that for the theorem that we obtain
this way there are no additional assumptions on the underlying space of the random
field. Furthermore, the condition on the random field in the theorem is formulated
in terms of the topological metric of the Riemannian manifold and is in particular
independent of any choice of coordinatization of the manifold.

We then proceed and discuss the existence of modifications which are locally
sample Hölder continuous and provide sufficient conditions on the moments or tails
of the increments. Additionally, we apply our findings to the special case of Gaussian
random fields.

The application of this second method to our example M = S2 is trivial as there
are no further assumptions on the underlying space other than that M is a finite-
dimensional Riemannian manifold. In Section 3.2, we compare both approaches and
discuss their results.

Part II: Random Field Models and Simulations

For many of the applications mentioned above it is essential to have a simulation
procedure which generates samples of a random field. So far, many simulation
methods have been developed in Rd (see [75] for an overview), while for any other
space M , e.g. the sphere, only few methods are available [22, 52, 56]. In the second
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part of this thesis we define and investigate two random field models that lead to
direct simulation procedures.

The first model, mosaic random fields, are piecewise constant random fields that
are build upon a random tessellation of the underlying space. These random fields
have applications for example in material sciences [29, 42, 84], cosmology [23], and
geosciences [18, 19]. In Chapter 4, we present a general class of mosaic random fields
that unifies well-known models in Rd and generalizes them to other spaces. The idea
behind the generalization is best explained by considering two classical models in
Rd: the mosaic random field that is build from a Poisson hyperplane tessellation
[62, 63, 66] and the random token field [81, 20, 53].

Suppose we are given a Poisson point process Π in Sd−1
+ × R and that for each

point (x, r) of a realization of Π a hyperplane with normal vector sgn(r)x pointing
from the origin to the hyperplane and distance |r| from the origin is drawn. The
polytopes that are delimited by this network of random hyperplanes form the Pois-
son hyperplane tessellation and a random field is obtained by the assignment of a
different random variable from an independent and identically distributed sequence
(Ui, i ∈ N) to each cell. For the random token field, bounded subsets or tokens
are placed at the points of a Poisson point process in Rd and to each token Bi a
random variable is associated from an independent and identically distributed se-
quence (Ui, i ∈ N). At each location x the random field is then defined as the sum
of all random variables Ui that are associated to tokens containing x.

The first step that led to the construction in Section 4.2 is to distinguish between
the underlying mosaic and the procedure which assigns random variables to the
cells of the random mosaic. It is natural to think of both, the Poisson hyperplane
tessellation and the mosaic which is constructed from random tokens, as particular
examples of a mosaic which is build from the intersections of a random number of
general random closed sets. In more detail, if (B1, . . . , BN) are independent and
identically distributed random closed sets in M and N is an N0-valued random
variable, then the family of cells (CI , I ⊆ {1, . . . , N}) defined by

CI =

(⋂
i∈I

Bi

)
∩
( ⋂
j∈{1,...,N}\I

Bc
j

)
, I ⊆ {1, . . . , N},

forms a partition of M . If we choose a Poisson distributed N and random half-spaces
for the random closed sets Bi, then we obtain the Poisson hyperplane tessellation,
and if we take random tokens as random closed sets we obtain the mosaic of the
random token field.

Given such a generalized mosaic, we obtain an associated random field Z by
defining Z(x) = VI for all x that are contained in the cell CI and VI is a real-valued
random variable that is associated with the cell CI . As a result, the random field
Z is constant on every cell. The random variables VI , I ⊆ {1, . . . , N}, neither have
to be independent nor identically distributed. In order to investigate the random
field Z, it is nonetheless of advantage to impose some restrictions on the random
variables VI . In the present thesis we assume that the random variables VI are given
as

VI =
∑
i∈II

Ug(I),i, I ⊆ {1, . . . , N},
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where (Ui,j, i, j ∈ N) is an independent and identically distributed sequence of real-
valued random variables, g is a function mapping finite subsets of N to positive
integers, and (II , I ⊂ {1, . . . , N}) is a family of finite subsets of N. This way, our
model includes the examples from above, as can be seen by taking II = {1} and
an injective function g for the Poisson hyperplane tessellation model, and II = I
and g ≡ 1 for the random token model. There are many more examples of mosaic
random fields like the dead leaves random field [61] or mixtures of classical models
that are included in this class of mosaic random fields.

The advantages of this construction, apart from its unifying character, are twofold.
The most obvious advantage, which was also the motivation for this approach, is
that the formulation of the mosaic in terms of intersections of random closed sets
allows to formulate the model on topological spaces. In practice, whenever there is a
method available to simulate random closed sets in a topological space M , we obtain
through our construction a method to simulate a random field on M . To give an
example, in Section 4.5 we take random hemispheres and random spherical caps on
M = Sd and obtain multiple explicit random field models on Sd by the combination
of different attributes of the general mosaic random field.

Additionally, our approach generalizes the present models in Rd themselves. First,
our construction allows to combine any choice of random closed sets with different
assignment procedures of random variables to the cells, so that the general model in-
cludes for example a mosaic random field which combines the assignment procedure
of the Poisson hyperplane tessellation model with random closed balls. Second, our
approach allows to avoid the assumption of a Poisson distributed number of random
closed sets whenever the underlying space M ⊆ Rd is bounded. This turns out to be
especially beneficial and results ultimately in a considerable number of covariance
models that are either new or have not been associated with mosaic random fields
yet.

Section 4.2 contains the formulation of the general mosaic random field. We show
that the formulation there allows obtaining a general formula for the mean and the
first mixed moment of the mosaic random field. From this, we obtain formulae for
the correlation functions of the most important submodels. In Sections 4.3, 4.5, and
4.7, we give examples of random closed sets in Rd, on Sd, on a cylinder, and on the
torus, which lead to multiple explicit correlation functions of the mosaic random field
that are presented in Tables 4.1, 4.2, 4.3, and 4.4. The interested reader will find
the necessary information for simulating the mosaic random fields corresponding to
the correlation functions in these tables in Appendix B.1.

Our step-by-step analysis of the covariance structure can also be used to find
mosaic random fields that correspond to given correlation functions. This approach
is used for example in Section 4.9, where it is shown that the power correlation
function [40] is a correlation function on Sd for all dimensions d ∈ N.

The results of Chapter 4 are accompanied by many examples, which illustrate
the techniques that produce explicit models and explicit correlation functions. The
examples include visualizations in form of simulated realizations of mosaic random
fields and approximate Gaussian random fields that were built from mosaic random
fields.

The results of Chapter 4 are based on joint work with Martin Schlather and Jürgen
Potthoff [78].

The second method, which is presented in Chapter 5, is the spectral turning bands
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method on Sd. In 1938 and 1942, Schoenberg published two papers [76, 77] in which
he showed that every continuous, stationary, and isotropic covariance function C
on Rd or Sd admits a spectral representation with a non-negative spectral measure.
From the representation in Rd, a simulation method has emerged [58] that is known
as the spectral turning bands method. For Sd however, to the best of the author’s
knowledge, a corresponding simulation method is missing.

In Section 5.1 we show by recalling the known method in Rd, that the key for
the formulation of the spectral turning bands method on Sd is to find a measurable
space (W,W ) and a function f : M → W such that Schoenberg’s representation
becomes C(x, y) = 〈f(x), f(y)〉L2(W ) for all x, y ∈ Sd. This representation readily
leads to a corresponding random field by a well-known result which is in the spirit
of Karhunen’s spectral representation of random fields [48, 10]. In Section 5.2, we
prove that Schoenberg’s representation on Sd can indeed be reformulated in the
form C(x, y) = 〈f(x), f(y)〉L2(W ) by utilizing a particular orthogonality property of
Gegenbauer polynomials.

For every continuous and isotropic covariance function on Sd, the spectral turning
bands method produces a corresponding random field. When it comes to practice,
the method is subject to the same limitations as the method in Rd. In order to
simulate the spectral turning bands random field one has to simulate a random
variable that is distributed according to the normalized spectral measure of the
covariance function, so that this spectral measure must be given in a form that
makes it possible to sample from it. In Section 5.3 we give examples on S2 for which
the correspondence between covariance function and spectral measure is explicit and
for which the spectral turning bands method therefore is applicable. We illustrate
these examples with simulations.
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1. Motivation

1.1. Preliminaries

Throughout this thesis we assume that we are given a set M and a probability space
(Ω,A , P ). In order to avoid trivialities, let us assume that M in non-empty here
and henceforth. We call a family of real-valued random variables (Z(x), x ∈ M)
on (Ω,A , P ) that is indexed by the elements of M a random field on M . When
there is no danger of confusion we denote the family (Z(x), x ∈ M) simply by Z.
In the course of this thesis we will have different assumptions on the structure that
is given on the index set of the random field, depending on our particular purposes.
In this part of the thesis we assume M to be either a metric space or a Riemannian
manifold and we study the particular case of M being a two-dimensional sphere in
more detail.

Let us begin by briefly introducing the necessary terminology of Riemannian geo-
metry and the objects that are associated to Riemannian manifolds and in particular
to the sphere, setting up our notation at the same time. For further background the
interested reader is referred to the standard literature, e.g. [38, 43, 54, 68].

Assume that d ∈ N and that (M, g) is a d–dimensional Riemannian manifold as
defined in [38]. That is, M is a connected, d–dimensional C∞–manifold together
with a symmetric, strictly positive definite tensor field g of type (0, 2). For each
x ∈M , the Riemannian metric g determines an inner product gx(·, ·) on the tangent
space TxM at x:

gx :

{
TxM × TxM −→ R,
(X, Y ) 7−→ gx(X, Y ).

The corresponding norm on TxM is given by

‖X‖ = gx(X,X)1/2, X ∈ TxM.

Let β : [a, b]→M be a smooth curve in M . Then its derivative β′(t) at t ∈ (a, b)
belongs to Tβ(t)M , and the length of β is given by

L(β) =

∫ b

a

‖β′(t)‖ dt.

The Riemannian distance dM(x, y) of two points x, y ∈M is defined as the infimum
of the lengths of curve segments joining x and y. Indeed, dM is a metric on M and
it can be shown that under the given assumptions on M the metric space (M,dM) is
separable, locally compact and connected [38, Proposition I.9.6]. Furthermore, the
original topology and the topology defined by dM coincide [38, Corollary I.9.5].

As explained in the introduction we are particularly interested in random fields
that are indexed by the elements of Sd, d ∈ N. Here and henceforth let

Sd =
{
z ∈ Rd+1 | 〈z, z〉 = 1

}
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denote the d-dimensional unit sphere in Rd+1, where 〈·, ·〉 denotes the standard inner
product of Rd+1. Sometimes it is also useful to consider the case d = 0, for which
the sphere S0 is just the set {−1, 1}. If ḡ denotes the standard Riemannian metric
on Rd+1, i.e.

ḡx(X, Y ) =
d+1∑
i=1

XiYi = 〈X, Y 〉, x ∈ Rd+1, X, Y ∈ TxRd+1,

then the inclusion ι : Sd ↪→ Rd+1 defines a Riemannian metric g̊ on Sd (for instance
[54, Example 13.16]), so that we may think of the sphere as a Riemannian manifold.
The Riemannian metric g̊ is called the round Riemannian metric or the standard
Riemmanian metric on Sd (for instance [54]). Let us denote the induced distance
function on Sd by dSd . On (Sd, g̊) a shortest curve segment that joins two points is
a segment of a great circle (e.g. [68, Example 30]). Therefore, the distance dSd(x, y)
between x, y ∈ Sd is given by the length of a shortest great circle segment that joins
x and y. Note that in case x and y are antipodal points, there are infinitely many
shortest great circle segments that join x and y, all of which have the same length.
Because we can identify each x ∈ Sd with a vector in Rd+1 and because the length
of a shortest great circle segment that starts in x ∈ Sd and ends in y ∈ Sd is given
by the angle between x and y in radians, it follows that in Euclidean coordinates
the metric dSd admits the representation

dSd(x, y) = arccos
(
〈x, y〉

)
, x, y ∈ Sd.

The metric dSd is called the geodesic or great circle metric.
Often it is convenient to work with spherical coordinates on Sd, which are given

by the map φd : [0, 2π)× [0, π]d−1 → Sd recursively defined by

φ1(ϕ) =
(
cos(ϕ), sin(ϕ)

)
,

φk(ϕ, θ1, . . . , θk−1) =
(
φk−1(ϕ, θ1, . . . , θk−2) sin(θk−1), cos(θk−1)

)
, k ≥ 2. (1.1)

In order for φd to be one-to-one, the domain of φd has to be restricted but this can
be neglected for our purposes.

Let B(Sd) be the σ-algebra on Sd that is generated by the topology of the metric
space (Sd, dSd). We denote the surface measure of Sd by σd. In spherical coordinates,
the surface measure σd admits the representation

σd(B) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

1B
(
φd(ϕ, θ1, . . . , θd−1)

) d−1∏
k=1

sink(θk) dθd−1 . . . dθ1dϕ (1.2)

for every B ∈ B(Sd). For further reference we note that the total mass of σd is given
by

σd(Sd) =
2π(d+1)/2

Γ((d+ 1)/2)
, d ∈ N, (1.3)

and we let σ̄d = 2−1π−(d+1)/2Γ((d+ 1)/2)σd denote the uniform probability measure
on Sd.
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1.2. Motivation

Suppose we are given a random field (Z(x), x ∈ M) on some space M . If M is a
subset of Rd, the question of the regularity of the samples of Z is a well-studied
subject. However, there are only few results that address this question in more
general settings [5, 39, 69, 70, 71]. In [70], a generalized Kolmogorov–Chentsov
theorem for random fields on metric spaces is proved, which supplies the existence
of a (Hölder) sample continuous modification of Z based on tail or moment estimates
of its increments. Because our results originated from the work in [70] and in order
to explain the necessity for further work on this topic, let us begin by stating the
main result of [70].

Let (M,dM) be a metric space and suppose that (Dn, n ∈ N) is an increasing
sequence of finite subsets of M . We may think of each set Dn as a grid in the space
M , where each grid Dn is a refinement of the previous grid Dn−1. For each n ∈ N,
the set Dn will be called n-grid henceforth. Given a sequence of grids, the sequence
(δ0
n, n ∈ N) is defined by

δ0
n =

{
min{dM(x, y)|x, y ∈ Dn, x 6= y}, |Dn| ≥ 2,

+∞, otherwise,

and we assume that we are given an associated sequence (δn, n ∈ N) of real numbers
such that δ0

n ≤ δn for all n ∈ N. The object D = ((Dn, δn), n ∈ N) is called a scale of
(M,dM) in [70] and we adopt this terminology. Given such a scale, we call x, y ∈ Dn

neighbors in Dn if dM(x, y) ≤ δn. For n ∈ N and x ∈ Dn let

Cn(x) = {y ∈ Dn|dM(x, y) ≤ δn}.

The set Cn(x) is called a clique of x in Dn. Furthermore, let πn denote the set
consisting of all unordered pairs of neighbors in Dn. Using the notation 〈x, y〉up for
an unordered pair of elements x, y ∈M ,

πn =
{
〈x, y〉up |x, y ∈ Dn, dM(x, y) ≤ δn

}
, n ∈ N. (1.4)

Suppose c is a positive constant and let us assume that we are given two mo-
notonically increasing functions r : [0, c) → R+ and q : [0, c) → R+, such that
r(0) = q(0) = 0. The second part of Theorem 2.8 in [70] may now be stated as
follows.

Theorem 1.2.1 (Potthoff, 2009). Suppose that (M,dM , ((Dn, δn), n ∈ N)), r, q,
and the random field Z satisfy the following conditions:

(a) D =
⋃
n∈NDn is dense in (M,dM);

(b) lim supn δn/δ
0
n < +∞;

(c) For almost all n ∈ N and all x, y ∈ Dn+1 there exist x′, y′ ∈ Dn such that
〈x, x′〉up, 〈y, y′〉up ∈ πn+1, and dM(x′, y′) ≤ dM(x, y);

(d)
∑

n∈N:δn<c
|πn|q(δn) < +∞;

(e)
∑

n∈N:δn<c
r(δn) < +∞;
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1. Motivation

(f) For all x, y ∈M such that dM(x, y) < c the inequality

P
(
|Z(x)− Z(y)| > r

(
dM(x, y)

))
≤ q
(
dM(x, y)

)
(1.5)

holds true.

Then Z has a modification which is uniformly sample continuous.

Let us now turn to our recurrent example (M,dM) = (S2, dS2). A natural choice
for the grids on S2 is

Dn =
{
φ2

(
k

π

2n−1
, l

π

2n−1

)∣∣∣k = 0, 1, . . . , 2n−1, l = 0, 1, . . . , 2n − 1
}
, n ∈ N. (1.6)

Then clearly (Dn, n ∈ N) is increasing and since φ2 is continuous, D =
⋃
n∈NDn

is dense in S2. The next step is to define the sequence (δn, n ∈ N). By definition
(1.4), the number of elements in the sets (πn, n ∈ N) is determined by the choice of
the sequence (δn, n ∈ N). In view of Condition (d), it is desirable that (|πn|, n ∈ N)
does not grow too fast to ∞. This is because a rapid growth of (|πn|, n ∈ N) must
be absorbed with a function q that decreases fast to 0 as its argument decreases to
0 and such a choice of q implies a restrictive bound on the right hand side in (1.5).
In consequence, we want δn to be as small as possible. On the other hand, each δn
must be in particular large enough such that Condition (c) holds true. From the
application of the Theorem 1.2.1 in [70] to M = Rd, it can be seen that δn must be
at least as large as the distance of one grid point x ∈ Dn to any of its adjacent grid
points in Dn in order for Condition (c) to be satisfied. It is easy to find examples
of grid points which show, that this is also true on S2, and from Lemma A.1.2 in
Appendix A we have therefore the restriction

δn ≥ arccos
(

cos2
( π

2n−1

))
, n ∈ N. (1.7)

Furthermore, it follows from Lemma A.1.1 that

δ0
n = arccos

(
sin2

( π

2n−1

)
cos
( π

2n−1

)
+ cos2

( π

2n−1

))
, n ∈ N. (1.8)

In consequence, the combination of (1.7), (1.8), and the statement of Corollary A.1.4
show that Condition (b) is violated, so that we can not apply Theorem 1.2.1 to the
sphere S2 directly in case the grids are (1.6).

At this point we may either try to find a suitable grid or adjust the assumptions
of Theorem 1.2.1 in such a way that the theorem is also applicable to (M,dM) =
(S2, dS2). Because we think that the application of Theorem 1.2.1 should not amount
to a creative construction of suitable grids, we seek to adjust the assumptions of
Theorem 1.2.1 such that it is applicable also to S2.

In what follows, we present two different approaches. The first one is based on the
idea, that we may exploit the manifold structure of S2 in order to apply Theorem
1.2.1 locally. We prove a local variant of Theorem 1.2.1 and show, that this local
variant can be applied not only to S2 but also to arbitrary Riemannian manifolds.
Despite the local approach, we show that Condition (f) can be retained, so that in
particular the condition on the random field is independent of any choice of coor-
dinatization. Our second approach in Section 2.4 consists of a direct generalization
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of Theorem 1.2.1 which is motivated by the proof given in [70]. While retaining the
assertion of Theorem 1.2.1, we show that it is possible to weaken the assumptions
(b) and (c) in such a way that the new theorem is also applicable to S2. Section 3.2
consists of a discussion of both approaches.

Remark 1.2.2. Actually, the failure of Condition (b) does not constitute a serious
obstacle for the application of Theorem 1.2.1 to S2. It can be seen from the proof in
[70], that Condition (b) can be replaced with the weaker assumption of (δn, n ∈ N)
being a null sequence. However, in this case (|πn|, n ∈ N) may grow very fast. On
top of that, there are more delicate issues concerning the validity of Condition (c)
on S2. We choose to not go into detail at this point to not distract the reader from
the main results.
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2. A Kolmogorov-Chentsov Theorem
for Random Fields on Metric
Spaces and Riemannian Manifolds

2.1. A Local Kolmogorov–Chentsov Theorem for
Metric Spaces

In this section we give a variant of the Kolmogorov–Chentsov type theorem in [70],
which follows rather directly from it, and in some sense sharpens that result.

Suppose that (M,dM) is a separable metric space, that (Ω,A , P ) is a probability
space, and that Z =

(
Z(x), x ∈M

)
is a real-valued random field on this probability

space indexed by M .
Assume furthermore that r and q are two strictly increasing functions on an

interval [0, c), c > 0, such that r(0) = q(0) = 0. Throughout this section we suppose
that for all x, y ∈M with dM(x, y) < c, we have the bound

P
(∣∣Z(x)− Z(y)

∣∣ > r
(
dM(x, y)

))
≤ q
(
dM(x, y)

)
. (2.1)

We make the following assumptions on the metric space (M,dM):

Assumptions 2.1.1.

(a) There exists an at most countable open cover (Un, n ∈ N) of M , and for every
n ∈ N, there exists a metric dn on Un so that αn dn(x, y) ≤ dM(x, y) ≤ dn(x, y)
for all x, y ∈ Un and some αn ∈ (0, 1];

(b) for every n ∈ N, (Un, dn) is well-separable in the sense of [70], i.e.:

(i) there exists an increasing sequence (Dn,k, k ∈ N) of finite subsets of
Un such that Dn =

⋃
kDn,k is dense in (Un, dn), and for x ∈ Dn,k, let

Cn,k(x) = {y ∈ Dn,k | dn(x, y) ≤ δn,k}, where δn,k denotes the minimal
distance of distinct points in Dn,k with respect to dn;

(ii) every z ∈ Un has a neighborhood V ⊂ Un so that for almost all k ∈ N and
all x, y ∈ Dn,k+1 ∩ V , there exist x′, y′ ∈ Dn,k ∩ V with x′ ∈ Cn,k+1(x),
y′ ∈ Cn,k+1(y), and dn(x′, y′) ≤ dn(x, y);

(c) for n, k ∈ N, let πn,k be the set of all unordered pairs 〈x, y〉up, x, y ∈ Dn,k

with dn(x, y) ≤ δn,k, and let |πn,k| denote the number of elements in this set,
then ∑

k∈N:δn,k<c

|πn,k| q(δn,k) < +∞, (2.2)

∑
k∈N:δn,k<c

r(δn,k) < +∞ (2.3)
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2. A Kolmogorov-Chentsov Theorem

hold true.

We remark that due to the assumption on the metrics dM and dn, n ∈ N, in (a)
above, the relative topology on Un generated by dM coincides with the topology
generated by dn.

For x, y ∈ Un with dM(x, y) < αnc, we can estimate as follows

P
(∣∣Z(x)− Z

∣∣ > r
(
dn(x, y)

))
≤ P

(∣∣Z(x)− Z(y)
∣∣ > r

(
dM(x, y)

))
≤ q
(
dM(x, y)

)
≤ q
(
dn(x, y)

)
,

because r and q are both increasing. Theorem 2.8 in [70] shows that from this
estimate, together with the assumptions (a), (b), and (c) above, it follows that
for every n ∈ N, the restriction Zn of Z to Un has a locally uniformly continuous
modification Z̃n which is such that Zn, Z̃n, and Z coincide on Dn. In more detail we
have that for every n ∈ N, there exists a random field Z̃n indexed by Un such that

(i) for every ω ∈ Ω, the mapping Z̃n(·, ω) : Un → R is locally uniformly continu-
ous;

(ii) for every x ∈ Un, there exists a P–null set Nx,n so that Z̃n(x, ω) = Z(x, ω)
for all ω in the complement of Nx,n, and if x ∈ Dn, Nx,n can be chosen as the
empty set.

In order to get for x ∈ M a universal P -null set Nx, we set Nx =
⋃
n′ Nx,n′ , where

the union is over all n′ ∈ N such that x ∈ Un′ . Since this is a countable union, Nx

is indeed a P–null set.
From the modifications Z̃n of Zn, n ∈ N, we construct a locally uniformly conti-

nuous modification Z̃ of Z. We show

Lemma 2.1.2.

P
(
Z̃n(x) = Z̃n′(x), x ∈ Un ∩ Un′ , n, n′ ∈ N

)
= 1.

Proof. Assume that x ∈ Un ∩ Un′ . Since Z̃n and Z̃n′ are modifications of Z when
all these random fields are restricted to Un ∩ Un′ , we get Z̃n(x) = Z̃n′(x) on the
complement of the P–null set Nx. Since (M,dM) is separable so is (Un ∩ Un′ , dM),
and letting x range over a countable dense subset En,n′ and taking the union of
all associated P–null sets, we get the existence of a P–null set Nn,n′ such that for
all x ∈ En,n′ , we have Z̃n(x) = Z̃n′(x) on the complement of Nn,n′ . Z̃n and Z̃n′
are continuous on Un ∩ Un′ , and hence we obtain for all x ∈ Un ∩ Un′ the equality
Z̃n(x) = Z̃n′(x) on the complement of Nn,n′ . Finally, we set N =

⋃
n,n′ Nn,n′ so

that we find for all n, n′, and all x ∈ Un ∩ Un′ the equality Z̃n(x) = Z̃n′(x) on the
complement of the P–null set N . �

On the exceptional set N of the last lemma we define Z̃(x) = 0 for all x ∈M . On
its complement we set Z̃(x) = Z̃n(x) whenever x ∈ Un, and the last lemma shows
that this makes Z̃ well-defined. For x ∈ M , define the P–null set N ′x = Nx ∪ N
where Nx and N are the P–null sets defined above. We have x ∈ Un for some n ∈ N,
and for all ω in the complement of N ′x, we find that Z̃(x, ω) = Z̃n(x, ω) = Z(x, ω).
Thus Z̃ is a modification of Z. We have proved the following
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Theorem 2.1.3. Under Condition (2.1) on the random field Z and under the above
assumptions 2.1.1 on (M,dM), r and q, Z has a locally uniformly continuous modi-
fication.

2.2. A Kolmogorov–Chentsov Theorem for
Riemannian Manifolds

Assume that d ∈ N and that (M, g) is an d–dimensional Riemannian manifold as
defined in Section 1.1. We denote the open ball of radius R > 0 centered at x ∈M
relative to the metric dM by BM

R (x), while the ball of radius R in TxM with center
at X ∈ TxM with respect to the norm ‖ · ‖ is denoted by BR(X).

With the Riemannian metric g there is canonically associated – via the notions
of parallel transport and geodesics – the exponential map (Expx, x ∈ M), which
for each x ∈ M is a mapping from TxM into a neighborhood of x in M . It can
be shown that for each x ∈ M , there exists a radius R(x) > 0 such that Expx
maps BR(x)(0) diffeomorphically onto BM

R(x)(x) [38, Theorem I.9.9, Proposition I.9.4].

Moreover, for all Y , Z ∈ BR(x)(0) such that Expx(Y ) = y, Expx(Z) = z, the quotient
‖Y − Z‖/dM(y, z) converges to 1 as (y, z)→ (x, x) [38, Proposition I.9.10].

In view of Theorem 2.1.3 in Section 2.1, we construct a countable cover (Un, n ∈
N) of M as follows. The separability of M (see above) allows us to fix a countable
dense subset {xn |n ∈ N} of M . For every n ∈ N, choose Rn ∈

(
0, 1/(2

√
d)
]

in such
a way that:

1. the exponential map Expxn is a diffeomorphism from BRn(0) ⊆ TxnM onto
BM
Rn

(xn) ⊆M ,

2. for allX, Y ∈ BRn(0) such that Expxn(X) = x, Expxn(Y ) = y, x, y ∈ BM
Rn

(xn),

2−1‖X − Y ‖ ≤ dM(x, y) ≤ 2‖X − Y ‖. (2.4)

The existence of a strictly positive Rn for each n ∈ N with these properties follows
from the facts mentioned before.

The idea is now to use the exponential map in order to define a convenient coor-
dinatization of Un and to use inequality (2.4) for the definition of a suitable metric
dn on Un. To this end, we fix an orthonormal basis (Xn,1, . . . , Xn,d) of (TxnM, gxn)
so that every X ∈ TxnM can be written in a unique way as

X =
d∑
i=1

aiXn,i

with a = (a1, . . . , ad) ∈ Rd. Let us denote the so defined linear mapping from
Rd onto TxnM by Lxn . The orthonormality of (Xn,1, . . . , Xn,d) entails that Lxn is
an isometric isomorphism if Rd is equipped with the standard Euclidean metric.
In particular, the ball BRn(0) is under Lxn in one-to-one correspondence with the
Euclidean ball Bd

Rn
(0) in Rd. Define

ϕn(x) = L−1
xn ◦ Exp−1

xn (x), x ∈ BM
Rn(xn),

then ϕn is a C∞–coordinatization ofBM
Rn

(xn) which maps this ball ontoBd
Rn

(0) ⊆ Rd.
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2. A Kolmogorov-Chentsov Theorem

For x, y ∈ BM
Rn

(xn), define

dn(x, y) = 2
√
d max
i=1,...,d

∣∣ϕin(x)− ϕin(y)
∣∣, (2.5)

where ϕin(x) denotes the i–th Cartesian coordinate of ϕn(x). Set αn = 1/(4
√
d). If

‖ · ‖2 denotes the usual Euclidean norm on Rd, we obtain from (2.4)

αn dn(x, y) = 2−1 max
i

∣∣ϕin(x)− ϕin(y)
∣∣

≤ 2−1‖ϕn(x)− ϕn(y)‖2

= 2−1‖Exp−1
xn (x)− Exp−1

xn (y)‖

≤ dM(x, y)

≤ 2‖Exp−1
xn (x)− Exp−1

xn (y)‖

= 2‖ϕn(x)− ϕn(y)‖2

≤ dn(x, y).

Consider the open hypercube Hd
Rn

(0)

Hd
Rn(0) =

{
x ∈ Rd| max

i=1,...,d
|xi| < d−1/2Rn

}
in Rd of side length 2d−1/2Rn centered at the origin. Clearly we have Hd

Rn
(0) ⊆

Bd
Rn

(0). Set

Un = ϕ−1
n

(
Hd
Rn(0)

)
so that (Un, n ∈ N) is an open cover of M .

For each k ∈ N, define the following subset Gn,k of the hypercube Hd
Rn

(0)

Gn,k =
{
a ∈ Rd

∣∣∣ a = −Rn√
d

+
lRn

2k
√
d
, l ∈

{
1, . . . , 2k+1 − 1

}d}
.

By construction, for each n ∈ N, (Gn,k, k ∈ N) is an increasing sequence of finite
subsets of Hd

Rn
(0), and the union of these sets is dense in Hd

Rn
(0). Next set Dn,k =

ϕ−1
n (Gn,k). Then for each n ∈ N, (Dn,k, k ∈ N) is an increasing sequence of subsets

of Un, its limit being dense in Un. Moreover, it is easy to see that Condition (b.ii)
of Assumptions 2.1.1 holds true for the sequence (Dn,k, k ∈ N), where for every
z ∈ Un, we may choose the neighborhood V in this condition as Un itself. (For an
explicit argument, see also [70].)

By construction we have (in terms of the notation of Section 2.1)

δn,k = min
{
dn(x, y) |x, y ∈ Dn,k, x 6= y

}
= 2−k+1Rn.

Recall that for every n, k ∈ N

πn,k = {〈x, y〉up |x, y ∈ Dn,k, dn(x, y) ≤ δn,k}
and Cn,k(x) = {y ∈ Dn,k | dn(x, y) ≤ δn,k}, x ∈ Dn,k.

By definition of Dn,k and the metric dn,

|Cn,k(x)| =
∣∣∣{ϕn(y) ∈ Gn,k

∣∣∣ max
i=1,...,d

|ϕin(y)− ϕin(x)| ≤ Rn

2k
√
d

}∣∣∣, x ∈ Dn,k,
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so that |Cn,k| is bounded by 3d. Concerning the number |πn,k| of unordered pairs in
πn,k (cf. Assumption 2.1.1.(c)), we can estimate as follows:

|πn,k| ≤
∑

x∈Dn,k

∑
y∈Dn,k

1Cn,k(x)(y) ≤ |Gn,k| 3d = (2k+1 − 1)d 3d ≤ Kd 2dk (2.6)

for some constant Kd > 0.

Now let c ∈ (0, 1], and make the usual choices of the functions r, and q:

r(h) = log2(h−1)−α, (2.7)

q(h) = K log2(h−1)−α̃ hd, (2.8)

for h ∈ (0, c), and r(0) = q(0) = 0. Here K > 0 is an arbitrary constant, and α,
α̃ > 1. Let us define Kn,c =

(
log(Rn)− log(c)+log(2)

)
/ log(2), then Condition (2.3)

follows from∑
k∈N:δn,k<c

r(δn,k) = log(2)α
∑

k∈N:k>Kn,c

1(
(k − 1) log(2)− log(Rn)

)α , n ∈ N.

For the Condition (2.2) we may use (2.6) to get

∑
k∈N:δn,k<c

|πn,k| q(δn,k) ≤ log(2)ã(2Rn)dKd

∑
k∈N:k>Kn,c

1(
(k − 1) log(2)− log(Rn)

)α̃
for all n ∈ N. Thus we can apply Theorem 2.1.3 and obtain

Theorem 2.2.1. Suppose that Z is a random field defined on a d–dimensional
Riemannian manifold (M, g) with topological metric dM such that for all x, y ∈ M
with dM(x, y) < c,

P
(∣∣Z(x)− Z(y)

∣∣ > r
(
dM(x, y)

))
≤ q
(
dM(x, y)

)
holds true, where the functions r, q are defined as in (2.7), (2.8) for some constants
K > 0, α, α̃ > 1 and c ∈ (0, 1]. Then Z has a locally uniformly sample continuous
modification.

2.3. Hölder Continuity and Moment Conditions

While a locally uniformly sample continuous modification was constructed in the
previous section, the goal here is to show higher regularity in terms of orders of
Hölder continuity under additional assumptions.

Therefore, let (M,dM) be a metric space and Z be as in Section 2.1, Assumpti-
ons 2.1.1. For the sequences of minimal distances (δn,k, k ∈ N) of distinct points in
the grids (Dn,k, k ∈ N) and the function r, we make the stronger assumptions
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2. A Kolmogorov-Chentsov Theorem

Assumptions 2.3.1.

(a) For every n ∈ N, there exist constants ηn ∈ (0, 1), Cn > 0 such that for almost
all k ∈ N,

1

Cn
ηkn ≤ δn,k ≤ Cn η

k
n (2.9)

holds true;

(b) there exist constants τ ∈ (0, 1), Kτ > 0 so that for all h ∈ [0, c), the inequality

r(h) ≤ Kτh
τ (2.10)

is valid.

(Note that Assumption (b) on r above is stronger than the requirement of inequa-
lity (2.3).) Then, on every (Un, dn), we are in the situation of Theorem 2.9 in [70]
and get the existence of a modification Z̃n which is locally Hölder continuous of
order τ , i.e., for every ω ∈ Ω and every z ∈ Un, there exists a neighborhood V (ω)
of z in (Un, dn) and a constant ατ,n such that

sup
x,y∈V (ω), x 6=y

∣∣∣∣∣Z̃n(x, ω)− Z̃n(y, ω)

dn(x, y)τ

∣∣∣∣∣ ≤ ατ,n.

Actually, the constant ατ,n was explicitly calculated in [70] and is given by

ατ,n = 2Kτ
C2τ
n

ητn(1− ητn)
.

Again we can glue these modifications together to get a modification Z̃ of Z on
(M,dM) which is locally Hölder continuous of order τ .

Corollary 2.3.2. Assume that Condition (2.1) on the random field Z holds true.
Suppose furthermore that the assumptions 2.1.1 are valid, together with the addi-
tional stronger properties given in Assumptions 2.3.1. Then Z has a modification
which is locally Hölder continuous of order τ .

We return to the case where M is a d–dimensional Riemannian manifold with
topological metric dM . Let the open cover ((Un, dn), n ∈ N), and the sequences
of grids ((Dn,k, δn,k), k ∈ N), n ∈ N, be defined as in Section 2.2. Recall that

δn,k = 2−k+1Rn and Rn ∈
(
0, 1/(2

√
d)
]
, n, k ∈ N. Set ηn = 1/2, and choose

Cn ≥ 1/(2Rn). Then Condition (2.9) is fulfilled. As before let c be in (0, 1]. Define
q as in (2.8), and

r(h) = hτ (2.11)

for some τ ∈ (0, 1). Then Condition (2.10) is valid as well, and so we arrive at

Corollary 2.3.3. Let Z be a random field defined on a d–dimensional Riemannian
manifold (M, g), d ∈ N, with topological metric dM , such that for all x, y ∈M with
dM(x, y) < c,

P
(∣∣Z(x)− Z(y)

∣∣ > r
(
dM(x, y)

))
≤ q
(
dM(x, y)

)
holds true, where the functions r, q are defined as in (2.11), (2.8) for some constants
K > 0, α > 1, τ ∈ (0, 1) and c ∈ (0, 1]. Then Z has a locally Hölder continuous
modification of order τ .
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The standard application of Chebychev’s inequality yields sufficient conditions in
terms of moments:

Corollary 2.3.4. Suppose that Z is a random field defined on a d–dimensional
Riemannian manifold M , d ∈ N, with topological metric dM .

(a) If there exist c ∈ (0, 1] , l ≥ 1, κ ≥ d, ν > l + 1, and K > 0 such that

E
(
|Z(x)− Z(y)|l

)
≤ K log2

(
dM(x, y)−1

)−ν
dM(x, y)κ (2.12)

for all x, y ∈M with dM(x, y) < c, then Z has a modification which is locally
uniformly sample continuous.

(b) If there are c ∈ (0, 1] , l ≥ 1, τ ∈ (0, 1), and α > 1 such that

E
(
|Z(x)− Z(y)|l

)
≤ K log2

(
dM(x, y)−1

)−α
dM(x, y)d+lτ

for all x, y ∈ M with dM(x, y) < c, the modification can be chosen to have
locally Hölder continuous sample paths of order τ .

Proof. Let r be the function

r(0) = 0, r(h) = log2(h−1)−α, h ∈ (0, c),

defined in (2.7), where we can choose any α ∈ (1, (ν − 1)/l). If x, y ∈M , x 6= y, are
such that dM(x, y) < c, we have from Chebychev’s inequality and (2.12)

P
(
|Z(x)− Z(y)| > r

(
dM(x, y)

))
≤

E
(
|Z(x)− Z(y)|l

)
r
(
dM(x, y)

)
≤ K log2

(
dM(x, y)

)−(ν−αl)
dM(x, y)κ

≤ q
(
dM(x, y)

)
where q is the function defined in (2.8) with α̃ = ν − αl > 1. The assertion in (a)
thus follows from Theorem 2.2.1. For part (b) we use the function r defined in (2.11)
and Corollary 2.3.3 and proceed analogously. �

In case of a Gaussian random field, Corollary 2.3.4 leads to a condition which can
be formulated in terms of the semivariogram of the random field:

Corollary 2.3.5. Assume that Z is a Gaussian random field defined on a d–
dimensional Riemannian manifold M , d ∈ N, with topological metric dM and se-
mivariogram γ(x, y) = E

(
(Z(x) − Z(y))2

)
. If there exist c ∈ (0, 1] , η ∈ (0, 1), and

C > 0 such that
γ(x, y) ≤ C dM(x, y)η (2.13)

for all x, y ∈M with dM(x, y) < c, then Z has a modification which is locally Hölder
continuous of order τ for all τ < η/2.

Proof. Let Ẑ(x) = Z(x)−E(Z(x)), x ∈M , be the associated centered random field.
Because E

(
(Ẑ(x)− Ẑ(y))2

)
≤ γ(x, y), we have for every n ∈ N from (2.13)

E
((
Ẑ(x)− Ẑ(y)

)2n
)

= (2n− 1)!!
(
E
((
Ẑ(x)− Ẑ(y)

)2
))n
≤ KndM(x, y)nη
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2. A Kolmogorov-Chentsov Theorem

with Kn = (2n−1)!!Cn. Let α > 1, τ ∈ (0, η/2), and let n be larger than d/(η−2τ).
Then there is a constant C ′ > 0 such that for all x, y ∈ M with dM(x, y) < c the
inequality

dM(x, y)nη ≤ C ′ log2

(
dM(x, y)−1

)−α
dM(x, y)d+2nτ

holds true. It follows therefore from (b) in Corollary 2.3.4 that Ẑ has a modification
Z̃ which is locally Hölder sample continuous of order τ for all τ ∈ (0, η/2). On the
other hand, we have from (2.13)

|E(Z(x))− E(Z(y))| ≤
(
E
((
Z(x)− Z(y)

)2
))1/2

≤
√
C dM(x, y)η/2

for all x, y ∈M with dM(x, y) < c, so that the function x 7→ E(Z(x)) is locally Hölder
continuous of order η/2. Therefore the random field Z̃(x) + E(Z(x)), x ∈ M , is a
modification of Z which is locally Hölder continuous of every order τ ∈ (0, η/2). �

2.4. A Global Kolmogorov-Chentsov Theorem for
Metric Spaces

Throughout this chapter we assume that (M,dM) is a metric space, (Ω,A , P ) is a
probability space, and Z = (Z(x), x ∈ M) is a real-valued random field on M . Let
us assume again that we are given two monotonically increasing functions r and q on
[0, c) with r(0) = q(0) = 0 and some c > 0. In addition, we assume that (Dn, n ∈ N)
is an increasing sequence of finite subsets of M . The interpretation is again that
each set Dn, n ∈ N, is a grid in M and the grids become finer as n increases.

In Section 1.2 we have seen that one problem with the application of Theorem
1.2.1 to S2 is given by the assumption of a constant grid width δn for the grids Dn.
On S2, the distance of neighboring grid points at the poles converges faster to 0 than
the distance of neighboring points at the equator. The idea for a generalization is
therefore to allow the grid width to vary over M . For the following theorem we
go one step further and do not assume at all, that the notion of neighborhood in
the grids Dn is determined by some condition involving the distance of grid points.
That is, we will think of x, y ∈ Dn as neighbors if their unordered pair 〈x, y〉up
belongs to the set πn, where we do not specify the sets πn and just assume that
πn ⊆ {〈x, y〉up |x, y ∈ Dn}. In any application we can therefore define which grid
points we want to identify as neighbors, for example by using a more convenient
metric than the given one. With this abstract notion of neighborhood, we define ∆n

to be the maximal distance of neighboring points in Dn, i.e.

∆n = max
〈x,y〉up∈πn

dM(x, y), n ∈ N.

As we have mentioned in Remark 1.2.2, Condition (c) in Theorem 1.2.1 causes also
problems in the application to S2. We replace this condition therefore with the
following neighborhood condition:

(NC) For almost all n ∈ N there exists δ̃n > 0 such that for all m ≥ n and all
x, y ∈ Dm with dM(x, y) ≤ δ̃n there are x1, y1 ∈ Dm−1, . . . , xm−n, ym−n ∈ Dn

such that

〈x, x1〉up, 〈y, y1〉up ∈ πm, . . . , 〈xm−n−1, xm−n〉up, 〈ym−n−1, ym−n〉up ∈ πn+1,

and 〈xm−n, ym−n〉up ∈ πn.
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The interpretation of Condition (NC) is that grid points which are sufficiently
close can be iteratively connected through the transition to neighbors. In case
the sets πn are defined as in (1.4), Condition (c) of Theorem 1.2.1 entails the
validity of Condition (NC). Indeed, let us define δ̃n = δn, where δn is the grid
width which defines πn in (1.4). Let n ∈ N be sufficiently large and pick arbi-
trary m ≥ n and x, y ∈ Dm with dM(x, y) ≤ δ̃n. Then applying (c) of Theo-
rem 1.2.1 iteratively results in grid points x1, y1 ∈ Dm−1, . . . , xm−n, ym−n ∈ Dn

such that 〈x, x1〉up, 〈y, y1〉up ∈ πm, . . . , 〈xm−n−1, xm−n〉up, 〈ym−n−1, ym−n〉up ∈ πn+1.
Furthermore, we have dM(xm−n, ym−n) ≤ · · · ≤ dM(x, y) ≤ δ̃n, which implies
〈xm−n, ym−n〉up ∈ πn by definition of πn. The important difference between the con-
ditions is that under Condition (c) in Theorem 1.2.1 the distance is monotonically
decreasing throughout the iteration, while we do not assume such a monotonicity in
Condition (NC).

Theorem 2.4.1. Suppose that (M,dM , ((Dn, πn), n ∈ N)), r, q, and the random
field Z satisfy the following:

(a) D =
⋃
n∈NDn is dense in (M,dM);

(b) (∆n, n ∈ N) is a null sequence;

(c) Condition (NC) is valid;

(d)
∑

n∈N:∆n<c

|πn| q(∆n) < +∞;

(e)
∑

n∈N:∆n<c

r(∆n) < +∞;

(f) For all x, y ∈M with dM(x, y) < c it is true that

P
(
|Z(x)− Z(y)| > r

(
dM(x, y)

))
≤ q
(
dM(x, y)

)
.

Then Z has a modification which is uniformly sample continuous.

The proof of Theorem 2.4.1 follows the lines of the corresponding proof given in
[70] with subtle adjustments. The first lemma shows that it is sufficient to show
uniform continuity on the dense subset D in case Z is continuous in probability.

Lemma 2.4.2. Suppose that the random field Z is continuous in probability and
that almost surely the restriction of Z to D is uniformly sample continuous, i.e.,
there exists a P -null set N ∈ A such that for every ω ∈ N c the mapping Z(·, ω)|D
is uniformly continuous. Then Z has a modification Z̃ which is uniformly sample
continuous and furthermore Z(x, ω) = Z̃(x, ω) for every (ω, x) ∈ N c ×D.

Proof. Let Z̃ be defined as follows: For every (ω, x) ∈ N ×M we define Z̃(x, ω) =
0, and if (ω, x) ∈ N c × D we let Z̃(x, ω) = Z(x, ω). If ω ∈ N c and x ∈ Dc,
we choose a sequence (xn, n ∈ N) in D which converges to x. Since Z(·, ω)|D is
uniformly continuous for every ω ∈ N c and (xn, n ∈ N) is a Cauchy sequence, the
sequence (Z(x, ω), n ∈ N) is Cauchy, thus convergent. Hence we can define Z̃(x, ω) =
limn→∞ Z(xn, ω) for ω ∈ N c and x ∈ Dc and have now defined the random field Z̃

33



2. A Kolmogorov-Chentsov Theorem

entirely. A standard ε/3-argument shows that Z̃ is uniformly sample continuous.
In order to show that Z̃ is a modification of Z, let x ∈ M and let (xn, n ∈ N) be
a sequence in D converging to x. By construction, the sequence (Z(xn), n ∈ N)
converges almost surely to Z̃(x). On the other hand, (Z(xn), n ∈ N) converges in
probability to Z(x) because Z is continuous in probability by assumption. Hence
P
(
Z(x) = Z̃(x)

)
= 1. �

Lemma 2.4.3. The assumptions of Theorem 2.4.1 entail the continuity in probabi-
lity of Z.

Proof. By Assumption (a) D is dense in (M,dM) and because we have excluded the
case M = ∅, D can not be empty. Since (Dn, n ∈ N) is an increasing sequence, Dn

has at least one element for almost all n ∈ N. Furthermore, for almost all n ∈ N,
there exists a δ̃n > 0 such that Condition (NC) is true. We choose an n ∈ N which
is large enough such that δ̃n exists and Dn 6= ∅. Then there is an x ∈ Dn and it
is true that dM(x, x) ≤ δ̃n so that Assumption (NC) implies that 〈x, x〉up ∈ πn for
almost all n ∈ N. In consequence, we have |πn| ≥ 1 for almost all n ∈ N and in
view of Assumption (d) the sequence (q(∆n), n ∈ N) has to be a null sequence. The
monotonicity of q and Assumption (b) imply limn→∞ q(an) = 0 for any null sequence
(an, n ∈ N) in [0, c). The same holds true with similar arguments for the function r.

Now let x ∈M . In case x is isolated, there is nothing to show. Thus let (xn, n ∈ N)
be a sequence converging to x. Then there exists an n0 ∈ N, such that dM(x, xn) < c
for all n ≥ n0. Since

(
r
(
dM(x, xn)

)
, n ≥ n0

)
is converging to 0, we can find for all

ε > 0 an n1 ≥ n0 such that r
(
dM(x, xn)

)
≤ ε for all n ≥ n1. With the inequality

given in Assumption (f) it follows that

P
(
|Z(x)− Z(xn)| > ε

)
≤ P

(
|Z(x)− Z(xn)| > r

(
dM(x, xn)

))
≤ q
(
dM(x, xn)

)
for all n ≥ n1. Because

(
q
(
dM(x, xn)

)
, n ∈ N

)
converges to 0, the lemma is proven.

�

The next lemma uses the Borel–Cantelli lemma and shows that Assumptions (d)
to (f) entail a continuity property of Z which is the first step in showing that the
assumptions of Lemma 2.4.2 are satisfied.

Lemma 2.4.4. Under the assumptions of Theorem 2.4.1 there exists a P -null set
N ∈ A such that for every ω ∈ N c there exists an n(ω) ∈ N with

max
〈x,y〉up∈πn

|Z(x, ω)− Z(y, ω)| ≤ r(∆n) (2.14)

for all n ≥ n(ω).

Proof. The sequence (∆n, n ∈ N) is a null sequence by Assumption (b) so that there
exists an n0 ∈ N with ∆n < c for all n ≥ n0. By the arguments given in Lemma 2.4.3
there is an n1 ∈ N such that πn is not empty for all n ≥ n1. Let n ≥ max{n0, n1}
and 〈x, y〉up ∈ πn, then by Assumption (f) we find

P
(
|Z(x)− Z(y)| > r(∆n)

)
≤ P

(
|Z(x)− Z(y)| > r

(
dM(x, y)

))
≤ q
(
dM(x, y)

)
≤ q(∆n),
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where we have used the monotonicity of r and q and the fact that 〈x, y〉up ∈ πn
implies dM(x, y) ≤ ∆n. Consequently,

P
(

max
〈x,y〉up∈πn

|Z(x)− Z(y)| > r(∆n)
)

= P

( ⋃
〈x,y〉up∈πn

{
|Z(x)− Z(y)| > r(∆n)

})
≤

∑
〈x,y〉up∈πn

P
(
|Z(x)− Z(y)| > r(∆n)

)
≤

∑
〈x,y〉up∈πn

q(∆n)

= |πn| q(∆n).

Hence Assumption (d) entails that∑
n≥max{n0,n1}

P
(

max
〈x,y〉up∈πn

|Z(x)− Z(y)| > r(∆n)
)

converges, so that by the Borel–Cantelli lemma

P
(

lim sup
n≥max{n0,n1}

{
max

〈x,y〉up∈πn
|Z(x)− Z(y)| > r(∆n)

})
= 0.

If we denote this P -null set by N , then ω ∈ N c implies the existence of n(ω) ∈ N
such that for all n ≥ n(ω) inequality (2.14) is true. �

Now let us take Condition (NC) into account.

Lemma 2.4.5. Under the assumptions of Theorem 2.4.1 there exists a P -null set
N ∈ A and for every ω ∈ N c there exists n(ω) ∈ N such that the following statement
is true for all n ≥ n(ω): There exists a δ̃n > 0 such that for all m ≥ n and all
x, y ∈ Dm with dM(x, y) ≤ δ̃n we have

|Z(x, ω)− Z(y, ω)| ≤ 2
m∑
i=n

r(∆i). (2.15)

Proof. Let N , ω, and n(ω) be as in Lemma 2.4.4. Because the statement of Lemma
2.4.4 is true for all n ≥ n(ω), we may without loss of generality assume that n(ω) is
large enough such that for all n ≥ n(ω) we are in the situation of Assumption (NC).
In particular, n ≥ n(ω) implies that ∆n < c (see Lemma 2.4.4) so that the bound in
(2.15) is well-defined. Let us now pick an arbitrary n ≥ n(ω) and consider the case
m = n first. In that case Assumption (NC) implies the existence of a δ̃n such that
for all x, y ∈ Dn with dM(x, y) ≤ δ̃n we have 〈x, y〉up ∈ πn. Thus by Lemma 2.4.4
we have

|Z(x, ω)− Z(y, ω)| ≤ max
〈x,y〉up∈πn

|Z(x, ω)− Z(y, ω)| ≤ r(∆n) ≤ 2
m∑
i=n

r(∆i)

and (2.15) is true in case m = n. If m > n, Assumption (NC) entails the existence
of x1, y1 ∈ Dm−1, . . . , xm−n, ym−n ∈ Dn such that

〈x, x1〉up, 〈y, y1〉up ∈ πm, . . . , 〈xm−n−1, xm−n〉up, 〈ym−n−1, ym−n〉up ∈ πn+1

and 〈xm−n, ym−n〉up ∈ πn.
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Let us define x0 = x and y0 = y, then we can estimate with Lemma 2.4.4 as follows:

|Z(x, ω)− Z(y, ω)| ≤
m−n−1∑
i=0

(
|Z(xi, ω)− Z(xi+1, ω)|+ |Z(yi, ω)− Z(yi+1, ω)|

)
+ |Z(xm−n, ω)− Z(ym−n, ω)|

≤ r(∆n) +
m−n−1∑
i=0

2r(∆m−i)

≤ 2
m−n∑
i=0

r(∆m−i)

= 2
m∑
i=n

r(∆i).

This concludes the proof. �

The statement of Lemma 2.4.5 can now be utilized to show that the assumptions
of Lemma 2.4.2 are satisfied.

Corollary 2.4.6. Under the assumptions of Theorem 2.4.1 there exists a P -null set
N ∈ A such that for every ω ∈ N c the mapping Z(·, ω)|D is uniformly continuous.

Proof. Let N , ω ∈ N c, and n(ω) be as in Lemma 2.4.5 and fix an arbitrary ε > 0.
Because of Assumption (e) there exists an n0 ∈ N, such that

∑∞
i=n r(∆i) ≤ ε/2 for

all n ≥ n0. Choose

δ(ω) = δ̃max{n0,n(ω)}.

If x, y ∈ D, then there is an m ∈ N such that x, y ∈ Dm because (Dn, n ∈ N)
is increasing and furthermore we may assume that m ≥ max{n0, n(ω)}. For any
x, y ∈ D with dM(x, y) ≤ δ(ω) we have therefore by Lemma 2.4.5

|Z(x, ω)− Z(y, ω)| ≤ 2
m∑

i=max{n0,n(ω)}

r(∆i) ≤ 2
∞∑
i=n0

r(∆i) ≤ ε.

�

The proof of Theorem 2.4.1 follows now from the preceding statements.

Proof of Theorem 2.4.1. Lemma 2.4.3 shows, that Z is continuous in probability
under the given assumptions. Corollary 2.4.6 provides the continuity property that
is presumed in Lemma 2.4.2. The assertion then follows by Lemma 2.4.2. �

Remark 2.4.7. It is tempting to follow [70] and formulate a variant of Theorem 2.4.1
which yields higher regularity in terms of orders of Hölder continuity under the more
restrictive assumptions

1

α
ηn ≤ ∆n ≤ α ηn, n ∈ N, α > 0, η ∈ (0, 1),

r(0) = 0, r(h) ≤ hτ , h ∈ (0, c), τ,Kτ > 0.
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In order to transfer the proof given in [70] to our scenario we have to assume that
the quantities δ̃n of Assumption (NC) and ∆n are equal (δ̃n ≤ ∆n is not sufficient).
However, the application of Theorem 2.4.1 to S2 in the coming chapter shows that
such an assumption would not be reasonable. As there seems to be no apparent
workaround, the author considers the formulation and the proof of a variant of
Theorem 2.4.1 which yields a Hölder continuous modification as an open problem.
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3. Application and Comparison

3.1. Application to S2

Let us begin by showing that both Theorem 2.1.3 and Theorem 2.4.1 can be applied
to the metric space (S2, dS2). We start with the global version of Section 2.4.

As it was done in Section 1.2, we choose the spherical coordinate grids Dn, n ∈ N,
defined by

Dn =
{
φ2

(
k

π

2n−1
, l

π

2n−1

)∣∣∣k = 0, 1, . . . , 2n−1, l = 0, 1, . . . , 2n − 1
}
, n ∈ N,

so that the continuity of φ2 entails Condition (a) of Theorem 2.4.1.
In what follows we will work with polar coordinates θx, ϕx associated to x ∈ S2.

For any x ∈ S2 which is neither the North Pole nor the South Pole, there are
unique θx ∈ (0, π), ϕx ∈ [0, 2π) such that φ2(θx, ϕx) = x. In case x = (0, 0, 1) or
x = (0, 0,−1), θx is either 0 or π and we can pick an arbitrary ϕ̃x ∈ [0, 2π) such
that φ2(θx, ϕ̃x) = x holds true. Every statement that we make here and henceforth
is independent of this particular choice of the azimuthal angle ϕ̃x, and therefore -
with a slight abuse of language - we will speak of (θx, ϕx) as the polar coordinates
of x ∈ S2.

From the examples in [70] it can be seen that it is convenient to work with the
maximum metric in the grids in Rd. Since we have transformed such grids to S2 with
the help of the spherical coordinate map φ2, it is therefore natural to define a similar
maximum metric on S2. The idea in the following definition of a maximum metric
d∞ on S2 is that whenever one of the points x, y is a pole the distance d∞(x, y) is
independent of the azimuthal angles ϕx, ϕy. Furthermore, one has to pay attention
with the identification of points for which the azimuthal angle is at the boundaries
of [0, 2π). We define

d∞(x, y) = min{d1
∞(x, y), d2

∞(x, y)} (3.1)

with d1
∞(x, y) = max

{
|θx − θy|,min{|ϕx − ϕy|, 2π − |ϕx − ϕy|}

}
and d2

∞(x, y) = min{θx + θy, 2π − (θx + θy)}.

Note that if x is either the North Pole or the South Pole, we have d∞(x, y) = d2
∞(x, y)

for all y ∈ S2 so that the distance d∞(x, y) is independent of the choice of the
azimuthal angle ϕ̃x in case θx ∈ {0, π}.

With a little effort it can be shown that (3.1) does indeed define a metric on S2,
but this statement is not necessary for our purposes. Let us now define the sets πn
which define the notion of neighborhood in the grids Dn by

πn =
{
〈x, y〉up|x, y ∈ Dn, d∞(x, y) ≤ π

2n−1

}
, n ∈ N. (3.2)

It follows now from Lemma A.1.2 that

∆n = max
〈x,y〉up∈πn

dS2(x, y) = arccos
(

cos2
( π

2n−1

))
, n ≥ 2, (3.3)
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and we see that (∆n, n ∈ N) is a null sequence, so that Condition (b) of Theorem
2.4.1 is also satisfied. Let us turn to Condition (NC) of Theorem 2.4.1. For almost
all n ∈ N, we have to find a critical distance δ̃n > 0 such that all grid points x, y in
finer grids Dm, m ≥ n, which satisfy dS2(x, y) ≤ δ̃n can be connected through the
transition to neighbors. The following lemma shows, that we can find such a δ̃ if we
would haven taken the metric d∞ instead of dS2 .

Lemma 3.1.1. Let n ≥ 3, m ≥ n, and x, y ∈ Dm. Then d∞(x, y) ≤ π/2n−1 implies
the existence of x1, y1 ∈ Dm−1, . . . , xm−n, ym−n ∈ Dn such that

〈x, x1〉up, 〈y, y1〉up ∈ πm, . . . , 〈xm−n−1, xm−n〉up, 〈ym−n−1, ym−n〉up ∈ πn+1,

and 〈xm−n, ym−n〉up ∈ πn.

The proof of this lemma can be found in Appendix A.2. The next lemma shows,
that there is a sufficient condition in terms of dS2 such that d∞(x, y) ≤ π/2n−1 holds
true. The proof is also deferred to Appendix A.2.

Lemma 3.1.2. Let n ≥ 2, m ≥ n, and x, y ∈ Dm. Then

dS2(x, y) ≤ arccos
(

sin2
( π

2n

)
cos
( π

2n−1

)
+ cos2

( π
2n

))
implies d∞(x, y) ≤ π/2n−1.

Hence if we choose

δ̃n = arccos
(

sin2
( π

2n

)
cos
( π

2n−1

)
+ cos2

( π
2n

))
, n ∈ N,

it follows from Lemmas 3.1.1 and 3.1.2 that Condition (NC) in Theorem 2.4.1 is
satisfied.

Remark 3.1.3. The formulation in Lemma 3.1.2 is tailored to fit our purposes. Ho-
wever, a glance at the proof in Appendix A.2 shows, that although we have used
the representation x = φ2(kxπ/2

m−1, lxπ/2
m−1) and y = φ2(kyπ/2

m−1, lyπ/2
m−1) for

x, y ∈ Dm, the proof does not require kx, ky, lx, ly to be integer-valued. From this
we conclude that the statement of Lemma 3.1.2 holds true for all x, y ∈ M rather
than just for grid points x, y ∈ Dm. Let us furthermore observe, that the sequences
(δ̃n, n ∈ N) and (π/2n−1, n ∈ N) are null sequences. Then it is easy to see that
Lemma 3.1.2 implies the following statement:

For all x ∈M and for all ε > 0 there exists δ > 0 such that for all y ∈M
dS2(x, y) < δ implies d∞(x, y) < ε.

With other words, for each x ∈ M and every ε > 0 there exists a δ > 0 such that
an open dS2-ball with radius δ and centered at x is contained in an open d∞-ball
with radius ε and centered at x. Therefore, every subset of M that is open in the
topology induced by d∞ is also open in the topology induced by dS2 . With similar
arguments as in the proof of Lemma 3.1.2 it can be shown that the reverse statement
is also true, and it follows that dS2 and d∞ are topologically equivalent (for instance
[11]). Note that this property is weaker than the conventional equivalence of metrics.
Indeed, for n ∈ N let xn = φ2(1/n, 1/n) and yn = φ2(1/n, 0), then

dS2(xn, yn)

d∞(xn, yn)
=

arccos
(
sin2(1/n) cos(1/n) + cos2(1/n)

)
1/n

=
arccos

(
sin2(1/n) cos(1/n) + cos2(1/n)

)
arccos(cos(1/n))

,
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3.1. Application to S2

and an application of inequality (A.11) just as in Corollary A.1.4 shows that the
sequence (dS2(xn, yn)/d∞(xn, yn), n ∈ N) converges to 0. Therefore there can not be
constants c, C > 0 such that

c d∞(x, y) ≤ dS2(x, y) ≤ C d∞(x, y)

for all x, y ∈ S2.

At this point one may think of applying Theorem 2.4.1 to the metric space (S2, d∞)
instead of (S2, dS2), since it is easier then to validate Conditions (b) and (NC) of
Theorem 2.4.1. We chose not do so because in this case the condition on the random
field (f) in Theorem 2.4.1 must be formulated also in terms of d∞, and we believe
that on S2 it is more natural to have a condition which is stated in terms of the
great circle metric dS2 .

In view of Condition (d) of Theorem 2.4.1 we estimate the number of elements in
the sets πn, n ∈ N. As in Section 1.2, let Cn(x) = {y ∈ Dn | 〈x, y〉up ∈ πn} be the
clique of a grid point x ∈ Dn, then again

|πn| ≤
∑
x∈Dn

∑
y∈Dn

1Cn(x)(y).

If x is either the North Pole or the South Pole, its clique Cn(x) contains the pole
itself and any grid point on the nearest circle of latitude. The cliques of grid points
on the first and last circle of latitude contain 7 grid points, and any other clique
contains 32 grid points. Hence it is true that

|πn| ≤ 2 (2n + 1) + 2 2n 7 + (2n−1 − 3) 2n 32 ≤ K2 22n

with K2 = 32.

Let c ∈ (0, π/2] and define the function s by

s(h) =
1

2π
arccos

(√
cos(h)

)
, h ∈ [0, c), (3.4)

then we get from (3.3)

s(∆n) = 2−n (3.5)

for all n ∈ N such that ∆n < c. Let us now choose r and q as in Section 2.2, i.e.,
for h ∈ (0, arccos

(√
cos(c)

)
/(2π)

)
and some constants K > 0, α, α̃ > 1 we define

r(h) = log2(h−1)−α, q(h) = K log2(h−1)−α̃h2,

and for h = 0 we let r(0) = q(0) = 0. If we now define

r̃ = r ◦ s, q̃ = q ◦ s, (3.6)

then it follows from (3.5) and the arguments given in Section 2.2 that Conditions
(d) and (e) of Theorem 2.4.1 are satisfied for r̃ and q̃. We can thus apply Theorem
2.4.1 to (S2, dS2) and obtain the following
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Corollary 3.1.4. Suppose Z is a random field on S2 such that for all x, y ∈ S2 with
dS2(x, y) < c the inequality

P
(
|Z(x)− Z(y)| > r̃

(
dS2(x, y)

))
≤ q̃
(
dS2(x, y)

)
holds true, where the functions r̃ and q̃ are defined as in (3.6) for some constants
K > 0, α, α̃ > 1 and c ∈ (0, π/2]. Then Z has a modification which is uniformly
sample continuous.

For the application of Theorem 2.1.3 to (S2, dS2) we have done all the work already
in Section 2.2 in showing that Theorem 2.1.3 can be applied to any Riemannian
manifold. Hence the choice (M, g) = (S2, g̊) in Theorem 2.2.1 and Corollary 2.3.2
yields immediately the following corollaries:

Corollary 3.1.5. Suppose Z is a random field on S2 such that for all x, y ∈ S2 with
dS2(x, y) < c the inequality

P
(
|Z(x)− Z(y)| > r

(
dS2(x, y)

))
≤ q
(
dS2(x, y)

)
holds true, where the functions r and q are defined as in (2.7) and (2.8) for some
constants K > 0, α, α̃ > 1 and c ∈ (0, 1]. Then Z has a modification which is locally
uniformly sample continuous.

Corollary 3.1.6. Suppose Z is a random field on S2 such that for all x, y ∈ S2 with
dS2(x, y) < c we have the inequality

P
(
|Z(x)− Z(y)| > r

(
dS2(x, y)

))
≤ q
(
dS2(x, y)

)
,

where the functions r and q are defined as in (2.10) and (2.8) for some constants
K > 0, α > 1, τ ∈ (0, 1) and c ∈ (0, 1]. Then Z has a locally Hölder sample
continuous modification of order τ .

3.2. Comparison

From the application of Theorems 2.1.3 and 2.4.1 it is evident, that the major
difference between the approaches of Sections 2.1 and 2.4 lies in their applicability.
The local approach in Section 2.1 is tailored to produce an easy to validate criterion
for the existence of a continuous modification of random fields on any Riemannian
manifold. The application of Theorem 2.4.1 in Section 3.1 required the definition of
a suitable grid on the sphere, the identification of neighboring grid points, and in
order to validate Conditions (b) and (NC) of Theorem 2.4.1 we had to compare and
compute distances in the grids and find the necessary techniques that enable us to
do so. An application to a different Riemannian manifold than S2 is immediate from
Theorem 2.2.1, but we can not hope that any of the constructions made in Section
3.1 transfer to different examples and a thorough understanding of the underlying
geometry would be necessary in order to apply Theorem 2.4.1. Therefore it is
evident that from a practical point of view the local approach of Section 2.1 should
be preferred.
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Thus let us discuss the results that both approaches provide. In theory, Theorem
2.4.1 may provide the existence of a uniformly sample continuous modification of a
random field while Theorem 2.1.3 can provide the existence of a locally uniformly
sample continuous modification. However, in our example M = S2 this dispa-
rity vanished because the sphere is compact and any locally uniformly continuous
function thereon is also uniformly continuous. Furthermore, as in both approaches
the continuity-δ is non-explicit because it is constructed from an index n(ω) which
comes from the Borel–Cantelli lemma, the difference between local uniform con-
tinuity and uniform continuity is only of theoretical nature. Nonetheless it would be
interesting to know whether there is actually a non-trivial example of a Riemannian
manifold for which the application of Theorem 2.4.1 produces a uniformly sample
continuous modification while the modification provided in Theorem 2.2.1 is only
locally uniformly sample continuous. This may be an area of further research.

A significant drawback of the approach given in Section 2.4 is its non-compatibility
with the conventional techniques that produce a criterion for Hölder continuity. This
non-compatibility suggests that the generalization of the assumptions in [70] to that
in Theorem 2.4.1 may not be the most natural one.

Finally, let us discuss the different conditions on the random field in case M = S2.
The functions r and q in Corollary 3.1.5 and the functions r̃ and q̃ in Corollary 3.1.4
have been chosen such that the series∑

k∈N:δn,k<c

r(δn,k) and
∑

k∈N:δn,k<c

|πn,k| q(δn,k)

and ∑
n∈N:∆n<c

r(∆n) and
∑

n∈N:∆n<c

|πn| q(∆n)

have the same convergence behaviour. The different conditions on the random field
are therefore comparable. It is easy to see that the function s defined in (3.4) is
strictly smaller than the identity for all sufficiently small arguments. Therefore we
have for all sufficiently small h > 0 the inequalities r̃(h) < r(h) and q̃(h) < q(h), so
that

P
(
|Z(x)− Z(y)| > r

(
dS2(x, y)

))
≤ P

(
|Z(x)− Z(y)| > r̃

(
dS2(x, y)

))
≤ q̃
(
dS2(x, y)

)
≤ q
(
dS2(x, y)

)
.

This shows that the condition on the random field which is formulated in Corollary
3.1.4 is more restrictive than the condition in Corollary 3.1.5.

Altogether we conclude, that the local approach in Section 2.1 should be preferred
to the approach given in Section 2.4.
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Part II.

Random Field Models
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4. A General Class of Mosaic
Random Fields

4.1. Preliminaries

4.1.1. Covariance Functions

Let M be a non-empty set. It is well-known that a function C : M ×M → R is
symmetric and positive definite, i.e.

C(x, y) = C(y, x), x, y ∈M, (4.1)

and
n∑

i,j=1

αiαjC(xi, xj) ≥ 0, n ∈ N, {x1, . . . , xn} ⊆M,α1, . . . , αn ∈ R, (4.2)

if and only if there is a probability space (Ω,A , P ) and a real-valued random field
Z = (Z(x), x ∈ M) thereon such that C is the covariance function of Z. If a
covariance function C satisfies C(x, x) = 1 for all x ∈ M , the covariance function
and the correlation function of the corresponding random field coincide. We use this
characterization as a definition.

Definition 4.1.1. 1. A function C : M × M → R which is symmetric and
positive definite is called a real-valued covariance function on M .

2. A real-valued covariance function ρ on M which satisfies ρ(x, x) = 1 for all
x ∈M is called a real-valued correlation function on M .

3. A real-valued covariance function (correlation function) on M is called strictly
positive definite, if the inequality in (4.2) is strict whenever at least one of the
α1, . . . , αn does not vanish.

Because only real-valued covariance functions are considered in this thesis, we will
omit the prefix real-valued henceforth.

From [7, page 69] we have the inequality |C(x, y)|2 ≤ C(x, x)C(y, y), x, y ∈ M ,
which is valid for any covariance function on M . Therefore the range of a correlation
function is contained in [−1, 1]. The set of all covariance functions (correlation
functions) on M has the following closure properties (e.g. [7, Chapter 3, §1]).

Lemma 4.1.2. 1. If C1 and C2 are covariance functions on M and α, β ≥ 0,
then αC1 + β C2 is a covariance function on M .

2. If ρ1 and ρ2 are correlation functions on M and λ ∈ [0, 1], then the function
λ ρ1 + (1− λ) ρ2 is a correlation function on M .

3. If C1 and C2 are covariance functions (correlation functions) on M , then C1·C2

is a covariance function (correlation function) on M .
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4. A General Class of Mosaic Random Fields

4. If (Cn, n ∈ N) is a sequence of covariance functions (correlation functions)
on M which converges pointwise to a function C on M × M , then C is a
covariance function (correlation function) on M .

A function C : Rd × Rd → R is called stationary if

C(x, y) = C(x+ h, y + h), x, y, h ∈ Rd, (4.3)

and it is called isotropic if

C(x, y) = C(Rx,Ry), x, y ∈ Rd,R ∈ SO(d). (4.4)

Here SO(d) denotes the special orthogonal group in dimension d, i.e.

SO(d) = {R ∈ Rd×d |R′R = I, det(R) = 1},

and the group operation is matrix multiplication. Note that SO(d) acts also on Sd−1

and that this action is transitive, i.e., for all x, y ∈ Sd−1 there exists an R ∈ SO(d)
such that Rx = y.

If C : Rd × Rd → R is stationary and isotropic, x, y ∈ Rd, x 6= y, and if we take
h = −y in (4.3) and the rotation Rxy which maps (x − y)/‖x − y‖ ∈ Sd−1 to the
unit vector ed = (0, . . . , 0, 1) in (4.4), then

C(x, y) = C(x− y, 0) = C
(
‖x− y‖ed, 0

)
.

If x = y we have already after the translation C(x, x) = C(0, 0) = C
(
‖x− x‖ed, 0

)
.

Hence a stationary and isotropic covariance function is a function of the distance of
x and y only. If on the other hand there is a function C̃ : [0,∞)→ R such that for
C : Rd × Rd → R

C(x, y) = C̃
(
‖x− y‖

)
, x, y ∈ Rd, (4.5)

is true, then C is clearly stationary and isotropic. Therefore in Rd Condition (4.5)
is true if and only if both Conditions (4.3) and (4.4) are satisfied.

On an arbitrary set M stationarity or isotropy may not be well-defined. However,
we can use (4.5) as a definition for stationary and isotropic functions on a metric
space (M,dM). Recall that the diameter of a metric space (M,dM) is defined by

diamM = sup{dM(x, y) |x, y ∈M}.

Definition 4.1.3. Let (M,dM) be a metric space and define

IM =

{
[0, diamM), diamM =∞,
[0, diamM ], diamM <∞.

1. A function C : M ×M → R is called stationary and isotropic if there is a
function C̃ : IM → R such that

C(x, y) = C̃
(
dM(x, y)

)
, x, y ∈M.

2. A function C̃ : IM → R is said to be a (strictly positive definite) covariance
function on M , if the stationary and isotropic function C : M × M → R
defined by C(x, y) = C̃

(
dM(x, y)

)
is a (strictly positive definite) covariance

function on M .
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The metric space (Sd, dSd) is somewhat special. Because SO(d+ 1) acts on Sd, we
may call a function C : Sd × Sd → R in analogy to (4.4) isotropic if

C(x, y) = C(Rx,Ry), x, y ∈ Sd,R ∈ SO(d+ 1). (4.6)

This definition is in line with the definition of weakly isotropic random fields on Sd
in [59, 52] and that of homogeneous random fields on homogeneous spaces in [87]. It
follows from the definition of the metric dSd that a function C : Sd×Sd → R which is
stationary and isotropic in the sense of Definition 4.1.3, is also isotropic in the sense
of (4.6). The reverse implication is also true but not as obvious. For convenience of
the reader a proof is given in Appendix B.2. Because of this equivalence, we call a
function C : Sd×Sd → R which is stationary and isotropic in the sense of Definition
4.1.3 simply isotropic.

4.1.2. Spectral Representation of Stationary and Isotropic
Covariance Functions on Rd and Sd

Let M = Rd, d ≥ 1. In this chapter we denote the Euclidean inner product on Rd

by 〈·, ·〉 and the corresponding norm is denoted by ‖ · ‖. For any subset A of Rd we
write Bd(A) for the trace σ-algebra of A in B(Rd) where B(Rd) denotes the Borel
σ-algebra over Rd. The Lebesgue-measure on

(
Rd,B(Rd)

)
is denoted by λd.

The following characterization of continuous, stationary, and isotropic covariance
functions on Rd due to Schoenberg [76] is based on Bochner’s characterization of
characteristic functions [12]. The Bessel function of the first kind Jν is defined by
(for instance [35, Section 8.4])

Jν(z) =
zν

2ν

∑
n∈N0

(−1)n
z2n

22nn!Γ(ν + n+ 1)
, ν ∈ C, | arg z| < π. (4.7)

Theorem 4.1.4 (Schoenberg, 1938). Every continuous, stationary, and isotropic
covariance function C : Rd × Rd → R is of the form

C(x, y) =

∫
[0,∞)

Ωd

(
r‖x− y‖

)
dµ(r), x, y ∈ Rd, (4.8)

where µ is a uniquely determined finite measure on
(
[0,∞),B1

(
[0,∞)

))
and for all

d ∈ N

Ωd(r) = 1− r2

2d
+

r4

2 · 4 · d(d+ 2)
− r6

2 · 4 · 6 · d(d+ 2)(d+ 4)
+ . . . (r ≥ 0)

= Γ
(d

2

)(2

r

)(d−2)/2

J(d−2)/2(r). (r > 0)

If ρ is a correlation function we have ρ(x, x) = 1 = µ
(
[0,∞)

)
from (4.8) for

the corresponding measure µ, therefore the measure µ associated with a correlation
function is a probability measure. The set consisting of all continuous correlation
functions ρ̃ : [0,∞)→ [−1, 1] on Rd is denoted by Φd. In view of Definition 4.1.3 we
may identify Φd with the class of all continuous, stationary, and isotropic correlation
functions ρ : Rd × Rd → [−1, 1] on Rd and Theorem 4.1.4 shows that this set is
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parametrized by the set of all probability measures on [0,∞). It can be shown (see
[33] and references therein) that

Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φ∞ =
⋂
d∈N

Φd,

with the inclusions being strict.
In 1942, Schoenberg published a paper [77] in which an analogous result was

given for the sphere M = Sd. The base functions on the sphere are the Gegenbauer
polynomials Cλ

n , which are defined by the expansion (e.g., [26, Formula 18.12.4])∑
n∈N0

Cλ
n(x)zn =

1(
1− 2xz + z2

)λ , n ∈ N0, λ > 0, x ∈ [−1, 1], |z| < 1. (4.9)

For λ = 0 the functions C0
n are defined in [77] as

C0
n

(
cos(θ)

)
= cos(nθ), θ ∈ [0, π], (4.10)

and we adopt this definition. Note that for λ = 1/2 the generating function in
(4.9) is the generating function of the classical Legendre polynomials Pn so that

C
1/2
n = Pn. The representation of continuous and isotropic covariance functions on

the sphere is as follows.

Theorem 4.1.5 (Schoenberg, 1942). Every continuous and isotropic covariance
function C : Sd × Sd → R is of the form

C(x, y) =
∑
n∈N0

an,dC
(d−1)/2
n

(
cos
(
dSd(x, y)

))
, x, y ∈ Sd, (4.11)

with non-negative, uniquely determined coefficients (an,d, n ∈ N0) such that the series∑
n∈N0

an,dC
(d−1)/2
n (1) converges.

From Theorem 4.1.5 it follows that every continuous and isotropic correlation
function ρ on the sphere Sd admits the representation

ρ(x, y) =
∑
n∈N0

bn,d
C

(d−1)/2
n

(
cos
(
dSd(x, y)

))
C

(d−1)/2
n (1)

, x, y ∈ Sd, (4.12)

with a uniquely determined sequence (bn,d, n ∈ N0) of probabilities bn,d ∈ [0, 1],∑
n∈N0

bn,d = 1. In analogy to the case M = Rd, the set consisting of all continuous

correlation functions ρ̃ : [0, π]→ [−1, 1] on Sd is denoted by Ψd and the sets Ψd are
non-increasing in d (see [33])

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψ∞ =
⋂
d∈N

Ψd

with the inclusions being strict. Theorem 4.1.5 in the form (4.12) shows that Ψd

is parametrized by the set of all probability distributions on N0. The coefficients
bn,d are referred to in the literature [33, 88, 24] as d-Schoenberg coefficients and we
adopt this terminology.
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The Gegenbauer polynomials are orthogonal on [−1, 1] with respect to the weight
function w(x) = (1− x2)λ−1/2 (for instance [26, Table 18.3.1]), in detail:∫ 1

−1

Cλ
n(x)Cλ

m(x)(1− x2)λ−1/2dx = δn,m
21−2λπΓ(n+ 2λ)

(n+ λ)
(
Γ(λ)

)2
n!
, n,m ∈ N0, λ > 0,∫ π

0

C0
n

(
cos(θ)

)
C0
m

(
cos(θ)

)
dθ = δn,m

π

min{n+ 1, 2}
, n,m ∈ N0.

Because for all n ∈ N0 it is true that (e.g. [26, Formula 18.6.1])

Cλ
n(1) =

Γ(n+ 2λ)

n!Γ(2λ)
, λ > 0, C0

n(1) = 1, (4.13)

it follows from the orthogonality of the Gegenbauer polynomials that the Schoenberg-
coefficients in the expansion (4.12) are given by

bn,d =
2n+ d− 1

23−dπ

Γ
(
(d− 1)/2

)2

Γ(d− 1)

∫ π

0

C(d−1)/2
n

(
cos(θ)

)
sind−1(θ)ρ̃(θ) dθ (4.14)

for d ≥ 2 and n ∈ N0 and in case d = 1

bn,1 =
min{n+ 1, 2}

π

∫ π

0

cos(nθ)ρ̃(θ) dθ, n ∈ N0, (4.15)

where ρ̃ : [0, π] → [−1, 1] is the function associated to ρ : Sd × Sd → [−1, 1]
via Definition 4.1.3. Theorem 4.1.5 may also be used to check whether a given
continuous function ρ̃ : [0, π] → [−1, 1] is a correlation function on Sd, since ρ̃ is a
correlation function on Sd if and only if its d-Schoenberg coefficients (4.14) are non-
negative and sum up to 1. To give an example, it is well-known that the spherical
correlation function

ρ(x, y) =
(

1− 3dM(x, y)

2a
+
dM(x, y)3

2a3

)
1dM (x,y)≤a, x, y ∈M, (4.16)

is a valid correlation function on (M,dM) = (Rd, ‖ · − · ‖) for d ≤ 3 (e.g., [20]). In
[40], the authors used sine expansions of Legendre polynomials to obtain the follo-
wing representation of the 2-Schoenberg coefficients (bn,2, n ∈ N0) of the spherical
correlation function (4.16), which we state here for later reference:

bn,2 =
2n+ 1

2

∞∑
k=0

Cn,kan,k, n ∈ N0, (4.17)

with Cn,k =
4

π

(2n)!!

(2n+ 1)!!

(2k − 1)!!

k!

(n+ 1) · · · (n+ k)

(2n+ 3) · · · (2n+ 2k + 1)
, n, k ∈ N0,

and an,k =

∫ π

0

ρ̃(θ) sin
(
(n+ 2k + 1)θ) sin(θ) dθ, n, k ∈ N0.

Using this representation (4.17), the authors of [40] were able to show that bn,2 ≥ 0
for all n ∈ N0 and

∑
n∈N0

bn,2 = 1 hold true, implying the validity of the spherical
correlation function (4.16) on (M,dM) = (S2, dS2). Gneiting [33] used a different
method and showed that (4.16) is a correlation function on the sphere Sd for all
d ≤ 3.

Another interesting result, which connects the Schoenberg-coefficients with strict
positive definiteness, is the following one [16]:
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4. A General Class of Mosaic Random Fields

Theorem 4.1.6 (Chen, Menegatto, Sun, 2003). A function ρ̃ : [0, π]→ [−1, 1] is a
strictly positive definite correlation function on Sd, d ≥ 2, if and only if bn,d > 0 for
infinitely many even and infinitely many odd n ∈ N0.

4.1.3. Miscellaneous

Definition 4.1.7. A function ψ : [−1, 1]→ [−1, 1] of the form

ψ(t) =
∑
n∈N0

pnt
n, pn ∈ [0, 1],

∑
n∈N0

pn = 1, t ∈ [−1, 1], (4.18)

is called a probability generating function. If N is a N0-valued random variable on
some probability space (Ω,A , P ), the probability generating function of N ψN is
defined as

ψN(t) = E
(
tN
)
, t ∈ [−1, 1].

If ν is a probability measure on
(
N0,P(N0)

)
, the probability generating function of

ν ψν is defined as

ψν(t) =
∑
n∈N0

ν
(
{n}

)
tn, t ∈ [−1, 1].

It is evident from the definitions that the probability generating function of a
random variable and its distribution coincide so that there is no reason to distin-
guish between them. Because the coefficients in the series above are non-negative
and because their sum is 1, the series above are well-defined. Probability generating
functions possess many useful properties. We state their stability under compositi-
ons as a lemma for later reference. The proof of the lemma is evident.

Lemma 4.1.8. Suppose L,K1, K2, . . . are independent and N0-valued random va-
riables. If the random variables (Kl, l ∈ N) are identically distributed, then the
N0-valued random variable

N =
L∑
l=1

Kl

has the probability generating function ψL ◦ ψK1.

Here and henceforth, we make the convention that an empty sum equals 0 and an
empty product equals 1.

Since there are two geometric distributions and because we are using both, let us
also mention that the abbreviation GeoN(p) stands for the distribution∑

n∈N

p(1− p)n−1εn, p ∈ (0, 1],

counting the number of independent and identically distributed Bernoulli trials nee-
ded to get a success and the distribution which counts the number of failures until
a success occurs, ∑

n∈N0

p(1− p)nεn, p ∈ (0, 1],

is denoted by GeoN0(p).
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4.2. The Model

4.2. The Model

We consider a random field Z = (Z(x), x ∈ M) on a second countable locally
compact Hausdorff space M equipped with its Borel σ-algebra. Let N be an N0-
valued random variable, not almost surely equal to zero, and (Ui,j, i, j ∈ N) a doubly
indexed i.i.d. sequence of real-valued random variables with finite variances. Let
(Bn, n ∈ N) be an i.i.d. sequence of random closed sets in M [63]. We assume
that the family formed by N , (Ui,j, i, j ∈ N), and (Bn, n ∈ N) is independent. The
random variables U and B refer to a generic member of the sequences (Ui,j, i, j ∈ N)
and (Bn, n ∈ N), respectively.

Let Pn denote the power set of {1, . . . , n}. For every n ∈ N we define the family
(CI , I ∈ Pn) of disjoint random subsets of M by

CI =

(⋂
i∈I

Bi

)⋂( ⋂
j∈{1,...,n}\I

Bc
j

)
.

If n = 0 we define (CI , I ∈ P0) = (C∅) by C∅ = M . We call CI a random cell of M .
Let P∗(N) denote the set consisting of all finite subsets of N and let a function

g : P∗(N) → N be given. Suppose (II , I ∈ Pn), n ∈ N0, are families of elements of
P∗(N). We generalize the Poisson hyperplane tessellation model, the random token
model, and the dead leaves model as follows:

Z(x) =
∑
I∈PN

(∑
j∈II

Ug(I),j

)
1x∈CI , x ∈M. (4.19)

We call the random field Z simple mosaic random field and we write ZM instead
of Z, when g is an injection of P∗(N) and II = {1} for all I ∈ P∗(N). In this case
there exists an i.i.d. sequence

(
UI , I ∈ P∗(N)

)
such that we have

ZM(x)
d
=
∑
I∈PN

UI 1x∈CI , x ∈M, (4.20)

where the equality is in the sense of distribution. If M = Rd, the sets Bn are
half-spaces determined by random hyperplanes in Rd, and N is taken to be Poisson
distributed, then ZM is the Poisson hyperplane tessellation model in Rd.

The choices II = I, I ∈ P∗(N), and g ≡ 1 in (4.19) lead to the field

ZRT (x)
d
=
∑
I∈PN

(∑
i∈I

Ui

)
1x∈CI , x ∈M, (4.21)

where in this case (Ui, i ∈ N) is an i.i.d. sequence. Here each random closed set Bn

is associated with a random variable and to each point x ∈ M we assign the sum
of all random variables associated to random closed sets containing x. The random
field ZRT is called random token field if M = Rd and we keep the name for general
M as above.

In a third example, we take g from the simple mosaic random field and (II , I ∈ Pn),
n ∈ N0, from the random token field and get

ZMRT =
∑
I∈PN

(∑
i∈I

Ug(I),i

)
1x∈CI , x ∈M. (4.22)
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4. A General Class of Mosaic Random Fields

Figure 4.1.: From left to right: simple Mosaic with random half-spaces on [−1, 1]2,
random token with random balls on the sphere, dead leaves with random
balls on the torus.

Figure 4.2.: Weighted sum of n = 10, 100, and 200 realizations of a random token
field on the sphere.

We call ZMRT mixture random field.
In the dead leaves model [61] the random sets (Bn, n ∈ N) are placed sequenti-

ally in M , partially overlapping previously placed random sets. The corresponding
random field ZDL is defined at each x ∈M as ZDL(x) = U for the random variable
U associated to the latest random set covering x. In our setup, this random field
corresponds to the choices II = {1} and g(I) = 1I 6=∅max I for all I ∈ P∗(N), such
that

ZDL(x)
d
=
∑
I∈PN

Ug(I) 1x∈CI , x ∈M, (4.23)

for an i.i.d. sequence (Ui, i ∈ N0).
Realizations of different mosaic random fields on [−1, 1]2, on the sphere, and on

the torus are illustrated in Figure 4.1. Figure 4.2 displays the weighted sum of
n = 10, 100, and 200 realizations of a mosaic random field on the sphere.

In order to get reasonable analytic formulae for the covariance function of Z, we
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4.2. The Model

assume that there exist functions fn : N2
0 → N0, n ∈ N0, such that for all n ∈ N0

|II ∩ IJ | = fn
(
|I ∩ J |, |I 4 J |

)
for all I, J ∈ Pn, (4.24)

holds, where 4 denotes the symmetric difference of two sets. In the following we
present a class of functions fn for which we can construct families (II , I ∈ Pn),
n ∈ N0, such that (4.24) holds. The functions corresponding to ZM , ZRT , ZMRT ,
and ZDL above are given by fn(i, j) = 1, and fn(i, j) = i, respectively, and they are
included in the following class.

Lemma 4.2.1. Suppose that (an, n ∈ N0), (bn, n ∈ N0), and (cn, n ∈ N0) are
sequences such that for every n ∈ N0, an ∈ Z, bn, cn ∈ N0 holds. Assume furthermore
that for all n ∈ N0, an ≥ −bn, cn ≥ nbn holds true, and set fn(i, j) = ani− bnj+ cn,
i, j ∈ N0. Then there are families (II , I ∈ Pn), n ∈ N0, such that (4.24) holds true.

Proof. Fix n ∈ N0. Let A and Bi, Ci, i = 1, . . . , n, be disjoint subsets of N such that
|A| = cn − nbn, and |Bi| = bn, |Ci| = an + bn holds true for i = 1, . . . , n. Set

II = A
⋃( ⋃

i∈{1,...,n}\I

Bi

)⋃(⋃
j∈I

Cj

)
, I ∈ Pn,

then we get for all I, J ∈ Pn

|II ∩ IJ | = |A|+
∣∣∣∣ ⋃
i∈{1,...,n}\I

⋃
j∈{1,...,n}\J

(Bi ∩Bj)

∣∣∣∣+

∣∣∣∣⋃
i∈I

⋃
j∈J

(Ci ∩ Cj)
∣∣∣∣

= |A|+
(
n− |I ∪ J |

)
|B1|+ |I ∩ J ||C1| = fn

(
|I ∩ J |, |I 4 J |

)
,

and the lemma is proved. �

For x, y ∈M and n ∈ N0, let

px = P (x ∈ B) and pxy = P (x, y ∈ B),

and let

Vxy,n = (V 1
xy,n, V

2
xy,n, V

3
xy,n, V

4
xy,n)

be a multinomial distributed random vector with parameters n, pxy, px−pxy, py−pxy,
and 1 − px − py + pxy. In the case n = 0, the vector Vxy,n equals the zero vector
almost surely.

Theorem 4.2.2. Suppose that there are functions (fn, n ∈ N0) such that (4.24)
holds true for the families (II , I ∈ Pn), n ∈ N0, of the random field (Z(x), x ∈ M)
defined in (4.19). Then for all x, y ∈M it is true that

E
(
Z(x)

)
= E(U)E

(
fN(V 1

xx,N , 0)
)

(4.25)

and

E
(
Z(x)Z(y)

)
= Var(U)E

(
fN(V 1

xy,N , V
2
xy,N + V 3

xy,N)
)

+ E(U)2 E
(
fN(V 1

xy,N + V 2
xy,N , 0)fN(V 1

xy,N + V 3
xy,N , 0)

)
−Gxy Var(U)

(4.26)

with

Gxy = E
( ∑

I,J∈PN
g(I)6=g(J)

P (x ∈ CI , y ∈ CJ)fN
(
|I ∩ J |, |I4J |

))
. (4.27)
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4. A General Class of Mosaic Random Fields

Proof. By definition of the cells, independence and identity of the distributions of
the Bi, i ∈ N, we have for every n ∈ N0, I ∈ Pn, and every x ∈M

P (x ∈ CI) =
∏
i∈I

P (x ∈ Bi)
∏

j∈{1,...,n}\I

P (x /∈ Bj) = p|I|x (1− px)n−|I|.

Using this we get

E
(
Z(x)

)
=
∑
n∈N0

P (N = n)E
(∑
I∈Pn

(∑
j∈II

Ug(I),j

)
1x∈CI

)
=
∑
n∈N0

P (N = n)
∑
I∈Pn

P (x ∈ CI)
∑
i∈II

E(Ug(I),i)

= E(U)
∑
n∈N0

P (N = n)
∑
I∈Pn

p|I|x (1− px)n−|I||II |.

By assumption |II | = fn(|I|, 0), and as there are
(
n
k

)
subsets of {1, . . . , n} with k

elements, we find

E
(
Z(x)

)
= E(U)

∑
n∈N0

P (N = n)
n∑
k=0

(
n

k

)
pkx(1− px)n−kfn(k, 0)

= E(U)
∑
n∈N0

P (N = n)E
(
fn(V 1

xx,n, 0)
∣∣N = n

)
= E(U)E

(
fN(V 1

xx,N , 0)
)
,

proving formula (4.25). Regarding the mixed moment, we have∑
i∈II ,j∈IJ

E
(
Ug(I),iUg(J),j

)
= E(U)2

(
|II ||IJ | − |II ∩ IJ |

)
+
∑

i∈II∩IJ

E
(
Ug(I),iUg(J),i

)
for all I, J ∈ P∗(N). Since the second indices of the random variables in the last sum
are equal, the last sum equals E(U2)|II ∩ IJ | in case g(I) = g(J) and E(U)2|II ∩ IJ |
otherwise. Hence∑

i∈II

∑
j∈IJ

E
(
Ug(I),iUg(J),j

)
= E(U)2 |II ||IJ |+ Var(U) |II ∩ IJ |1g(I)=g(J).

This yields

E
(
Z(x)Z(y)

)
=
∑
n∈N0

P (N = n)
∑

I,J∈Pn

P (x ∈ CI , y ∈ CJ)
∑
i∈II

∑
j∈IJ

E
(
Ug(I),iUg(J),j

)
= Var(U)

∑
n∈N0

P (N = n)
∑

I,J∈Pn

P (x ∈ CI , y ∈ CJ) |II ∩ IJ |

+ E(U)2
∑
n∈N0

P (N = n)
∑

I,J∈Pn

P (x ∈ CI , y ∈ CJ) |II ||IJ |

− Var(U)Gxy.

Furthermore, for n ∈ N0,

P (x ∈ CI , y ∈ CJ)

= P (x, y ∈ B)|I∩J |P (x ∈ B, y /∈ B)|I\J |P (x /∈ B, y ∈ B)|J\I|P (x, y /∈ B)n−|I∪J |

= p|I∩J |xy (px − pxy)|I\J |(py − pxy)|J\I|(1− px − py + pxy)
n−|I∪J |.
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4.2. The Model

With the assumptions on (II , I ∈ Pn), n ∈ N0, and the multinomial distribution we
get ∑

I,J∈Pn

P (x ∈ CI , y ∈ CJ) |II ∩ IJ |

=
∑

k1,k2,k3,k4∈N0
k1+k2+k3+k4=n

(
n

k1, k2, k3, k4

)
pk1xy(px − pxy)k2(py − pxy)k3

× (1− px − py + pxy)
k4fn(k1, k2 + k3)

= E
(
fn
(
V 1
xy,n, V

2
xy,n + V 3

xy,n

)∣∣N = n
)
. (4.28)

Similarly, the sum
∑

I,J∈Pn P (x ∈ CI , y ∈ CJ) |II ||IJ | reduces to the expression (4.28)

where fn
(
V 1
xy,n, V

2
xy,n + V 3

xy,n

)
is replaced by fn

(
V 1
xy,n + V 2

xy,n, 0
)
fn
(
V 1
xy,n + V 3

xy,n, 0
)
,

yielding formula (4.26). �

Remark 4.2.3. As the proof of Theorem 4.2.2 shows, the restriction to mosaic random
fields for which the associated sets (II , I ∈ Pn), n ∈ N0, satisfy Condition (4.24)
allows us to utilize combinatorial arguments in order to obtain a rather simple
formula for the mean and the first mixed moment of the mosaic random field. Lemma
4.2.1 gives a class of functions (fn, n ∈ N0) such that there are always associated
sets (II , I ∈ Pn), n ∈ N0. In general, there are functions (fn, n ∈ N0) such that there
can not exist sets (II , I ∈ Pn), n ∈ N0, for which (4.24) is satisfied. An example is
given by fn(i, j) = j for all n, i, j ∈ N0. Indeed, if there would exist associated sets
(II , I ∈ Pn), n ∈ N0, then n = 2, I = ∅ and J = {1, 2} results in

|II ∩ IJ | = f2(0, 2) > f2(0, 0) = |II |,

which can not be true. On the other hand, there are sets (II , I ∈ Pn), n ∈ N0, for
which there can not exist function (fn, n ∈ N0) such that (4.24) holds true. This
can be seen from the example II = I ∪ {1} for all I ∈ Pn and n ∈ N0, which yields
for n = 5, I = {1, 2, 3}, and J = {1, 2, 4}

f5(2, 2) = |II ∩ IJ | = 2,

and for Ĩ = {2, 3, 4} and J̃ = {3, 4, 5} Condition (4.24) implies

f5(2, 2) = |IĨ ∩ IJ̃ | = 3.

For sets (II , I ∈ Pn), n ∈ N0, that do not satisfy Condition (4.24), the expectation
E
(
Z(x)

)
and the first mixed moment E

(
Z(x)Z(y)

)
of the corresponding mosaic

random field can not be computed as in Theorem 4.2.2, but there can be of course
similar arguments that lead to similar formulae. The author considers the formu-
lation of a more general conditions than (4.24) and a proof of Theorem 4.2.2 with
such a condition as an area of further research.

We write ρi, i = M,RT,MRT , and DL, for the correlation function of Zi. Fur-
thermore, recall that ψN denotes the probability generating function of the N0-valued
random variable N .
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4. A General Class of Mosaic Random Fields

Corollary 4.2.4. Let U , N , and B be such that Var(U) > 0, E(N) > 0, and px > 0
for all x ∈M . Then for all x, y ∈M

ρM(x, y) = ψN(1 + 2pxy − px − py), (4.29)

ρRT (x, y) =
apxy + bpxpy√

(a+ bpx)(a+ bpy)pxpy
(4.30)

with a = E(U2)E(N) and b = E(U)2
(
Var(N)− E(N)

)
,

ρMRT (x, y) =
pxy
(
cψ′N(1 + 2pxy − px − py)− d

)√
(a+ bpx)(a+ bpy)pxpy

+ ρRT (x, y) (4.31)

with c = Var(U) and d = Var(U)E(N), and

ρDL(x, y) =
pxy + (px + py − 2pxy)ψN(1− px − py + pxy)

px + py − pxy
(4.32)

hold true.

Proof. For the simple mosaic random field (4.20) we have II = {1} for all I ∈ P∗(N),
hence the functions fn in (4.24) can by taken to be identically 1. Consequently, we
get

E
(
ZM(x)

)
= E(U) (4.33)

for all x ∈M from (4.25). Since g is injective for this field, we have for all x, y ∈M
for the variable Gxy from (4.27) with the same reasoning as in the proof of Theorem
4.2.2

Gxy =
∑
n∈N0

P (N = n)
∑
I 6=J

P (x ∈ CI , y ∈ CJ)

= 1−
∑
n∈N0

P (N = n)
∑
I∈Pn

P (x, y ∈ CI)

= 1− ψN(1 + 2pxy − px − py).

Thus formula (4.26) yields

E
(
ZM(x)ZM(y)

)
= Var(U)ψN(1 + 2pxy − px − py) + E(U)2. (4.34)

From this we can compute the variance of ZM(x), the covariance of ZM(x) and
ZM(y), and then (4.29) follows. In case of the random token field (4.21), we have
II = I for all I ∈ P∗(N), and we can choose fn to be the projection on the first
coordinate. Therefore

E
(
ZRT (x)

)
= E(U)E(V 1

xx,N) = E(U)E(N)px (4.35)

by Theorem 4.2.2. The function g is identically 1 in case of the random token field,
hence Gxy = 0 and

E
(
ZRT (x)ZRT (y)

)
= Var(U)E(V 1

xy,N) + E(U)2 E
(
(V 1

xy,N + V 2
xy,N)(V 1

xy,N + V 3
xy,N)

)
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by (4.26). The covariance of the components of a multinomial distributed random
vector is well-known and a straightforward computation yields

E
(
ZRT (x)ZRT (y)

)
= E(U2)E(N)pxy + E(U)2

(
E(N2)− E(N)

)
pxpy

= apxy + bpxpy + E
(
ZRT (x)

)
E
(
ZRT (y)

)
, (4.36)

which implies (4.30). Now consider the mixture random field (4.22). Again, we have
II = I for all I ∈ P∗(N) and we can choose the same fn as above. Consequently,
E
(
ZMRT (x)

)
= E

(
ZRT (x)

)
. But in contrast to the random token field, g is injective

for the mixture random field. Reasoning as in the proof of Theorem 4.2.2 we obtain

Gxy =
∑
n∈N0

P (N = n)
∑

I,J∈Pn

P (x ∈ CI , y ∈ CJ)|I ∩ J |

−
∑
n∈N0

P (N = n)
∑
I∈Pn

P (x, y ∈ CI)|I|

= E(N)pxy −
∑
n∈N0

P (N = n) (1 + 2pxy − px − py)n−1 npxy

= E(N)pxy − pxyψ′N(1 + 2pxy − px − py)

and then with (4.26) and (4.36)

E
(
ZMRT (x)ZMRT (y)

)
= E

(
ZRT (x)ZRT (y)

)
−Gxy Var(U)

= cpxyψ
′
N(1 + 2pxy − px − py) + (a− d)pxy + bpxpy + E

(
ZMRT (x)

)
E
(
ZMRT (y)

)
.

This shows (4.31). For the dead leaves model (4.23) we have fn ≡ 1 for all n ∈ N0

and hence E
(
ZDL(x)

)
= E(U). In order to compute Gxy we let

An =
∑

I,J∈Pn
g(I)=g(J)

P (x ∈ CI , y ∈ CJ), n ∈ N0.

Writing Pn+1 = Pn ∪ {I ∪ {n+ 1} | I ∈ Pn} and using g(I) = 1I 6=∅max I we get the
recurrence relation

An+1 = P (x, y /∈ B)An + P (x, y ∈ B), n ∈ N0,

which leads to

An =
P (x, y ∈ B)

1− P (x, y /∈ B)
+
P (x ∈ B, y /∈ B) + P (x /∈ B, y ∈ B)

1− P (x, y /∈ B)
P (x, y /∈ B)n

for all n ∈ N0, and then with (4.27)

Gxy = 1−
∑
n∈N0

P (N = n)An

=
P (x ∈ B, y /∈ B) + P (x /∈ B, y ∈ B)

1− P (x, y /∈ B)

(
1− ψN

(
P (x, y /∈ B)

))
.

Collecting terms we get with (4.26)

E
(
ZDL(x)ZDL(y)

)
= E(U2)− Var(U)

(
1− ψN(1− px − py + pxy)

)px + py − 2pxy
px + py − pxy

and then (4.32) follows. �
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4. A General Class of Mosaic Random Fields

Remark 4.2.5. Let us consider the special case where N is a Poisson random variable.
In this case we write ρ∗i , i = M,RT , and MRT for the correlation function of Zi.
Plugging in the moments and the probability generating function of the Poisson
distribution into formulae (4.29), (4.30), and (4.31), yields the relation

ρ∗MRT = λ ρ∗RT ρ
∗
M + (1− λ) ρ∗RT with λ =

Var(U)

E(U2)
∈ (0, 1].

In view of the simulations in Sections 4.4 and 4.6 the absolute third moment
E
(
|Z(x)|3

)
appearing in the Berry-Esseen Theorem (4.55) is also of interest. The

next proposition provides bounds for this absolute third moment for the general
mosaic random field and its submodels.

Proposition 4.2.6. Under the assumptions of Theorem 4.2.2 we have for the mo-
saic random field Z in (4.19)

E
(
|Z(x)|3

)
≤ E

(
|U |3

)
E
(
fN(V 1

xx,N , 0)3
)
, x ∈M. (4.37)

If the mosaic random field is a simple mosaic random field (4.20) or a dead leaves
random field (4.23) we have

E
(
|ZM(x)|3

)
= E

(
|ZDL(x)|3

)
= E

(
|U |3

)
, x ∈M. (4.38)

In case we have a random token field (4.21) or a mixture random field (4.22),

E
(
|ZRT (x)|3

)
= E

(
|ZMRT (x)|3

)
≤ pxE

(
|U |3

)(
p2
xE(N3) + 3px(1− px)E(N2) + (1− 2px)(1− px)E(N)

)
(4.39)

holds true for all x ∈M .

Proof. Let x ∈M and let Z be the general mosaic random field (4.19). By disjoin-
tedness of the cells (CI , I ∈ Pn) for every n ∈ N0 we have

E
(
|Z(x)|3

)
= E

(∑
I∈PN

∣∣∣∣∑
i∈II

Ug(I),i

∣∣∣∣31x∈CI)

=
∑
n∈N0

P (N = n)
∑
I∈Pn

P (x ∈ CI)E
(∣∣∣∣∑

i∈II

Ug(I),i

∣∣∣∣3). (4.40)

In case Z is a simple mosaic random field or a dead leaves random field we have
II = {1} for all I ∈ P∗(N). Since the random variables Ui,j, i, j ∈ N, are identically
distributed, the equality (4.38) follows from (4.40).

In the general case, for every choice of the functions g, for each n ∈ N0, and
all I ∈ Pn, the sum

∑
i∈II Ug(I),i is just a sum of |II | = fn(|I|, 0) independent and

identically distributed random variables. Minkowski’s inequality yields

E
(∣∣∣∣∑

i∈II

Ug(I),i

∣∣∣∣3) ≤ (∑
i∈II

E
(
|Ug(I),i|3

)1/3
)3

= fn(|I|, 0)3E
(
|U |3

)
,
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4.3. Random Closed Sets in Rd

so that with the random variables V 1
xx,n ∼ Bin(n, px), n ∈ N0, x ∈ M , of Theorem

4.2.2, we get from (4.40)

E
(
|Z(x)|3

)
≤ E

(
|U |3

) ∑
n∈N0

P (N = n)
∑
I∈Pn

P (x ∈ CI)fn(|I|, 0)3

= E
(
|U |3

) ∑
n∈N0

P (N = n)
n∑
k=0

(
n

k

)
P (x ∈ B)kP (x /∈ B)n−kfn(k, 0)3

= E
(
|U |3

)
E
(
fN(V 1

xx,N , 0)3
)
,

i.e. the bound in (4.37) for the general mosaic random field holds true.
The bound in (4.39) follows from (4.40), fn(i, j) = i for all i, j ∈ N, n ∈ N0, and

E
(
(V 1

xx,n)3
)

= px
(
p2
xn

3 + 3px(1− px)n2 + (1− 2px)(1− px)n
)
, n ∈ N0, x ∈M,

since V 1
xx,n ∼ Bin(n, px). �

4.3. Random Closed Sets in Rd

The formulae in Corollary 4.2.4 depend on the law of the random closed set B
through the probabilities px = P (x ∈ B) and pxy = P (x, y ∈ B). Observe that for
every x ∈ M we have px = pxx so that it suffices to compute pxy for all x, y ∈ M .
In what follows we give examples for B and compute these probabilities to obtain
explicit correlation functions in the next section. In order to get reasonable formulae
we require that the random sets are in some sense uniformly placed in Rd. In the
pertinent literature this is typically done by placing the random sets at the points of
a Poisson point process. The drawback of this method is that the number of random
sets N must follow a Poisson distribution. As the formulae in Theorem 4.2.2 and
Corollary 4.2.4 indicate, different distributions for N may lead to different types of
correlation functions, depending on the concrete choices determining a submodel. In
the sequel we let M be a bounded subset of Rd, and it is convenient - and without
any serious loss of generality - to assume furthermore that M is closed or open.
In this way it is possible to place the random sets uniformly on M and have an
arbitrary distribution on N0 for the number of random sets.

As a first example we take a half-space delimited by random hyperplanes for the
random closed set B. A hyperplane P (x, r) in Rd, given in normal form, is the set
of all z ∈ Rd with 〈z, x〉 = r, where x ∈ Sd−1, r ∈ R, and rx is the vector from the
origin perpendicular to P (x, r). The hyperplane P (x, r) divides Rd into two half-
spaces, consider the half-space that is given by H(x, r) = {z ∈ Rd | 〈z, x〉 ≥ r}. Let
(Xn, n ∈ N) be an independent sequence of uniformly distributed random variables
on Sd−1 (e.g., [67, 60]) and let (Rn, n ∈ N) be an independent sequence of uniformly
distributed random variables on the interval [−CM , CM ] for a constant CM > 0
large enough such that M is contained in a closed ball with radius CM centered at
the origin. Furthermore, let (Xn, n ∈ N) and (Rn, n ∈ N) be independent. Then
(Hn, n ∈ N) defined by

Hn = H(Xn, Rn) ∩M = {z ∈M | 〈z,Xn〉 ≥ Rn}, n ∈ N,

is a sequence of random closed sets in M .
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4. A General Class of Mosaic Random Fields

For the second example we fix a > 0 and let (Yn, n ∈ N) be an independent
sequence of random variables, uniformly distributed on the ball BCM+a/2(0) of radius
CM + a/2 centered at the origin. Furthermore, let (Dn, n ∈ N) be an i.i.d. sequence
of [0, a]-valued random variables, independent of (Yn, n ∈ N). Then (Bn, n ∈ N)
defined by

Bn = BDn/2(Yn) ∩M =
{
z ∈M

∣∣∣ ‖z − Yn‖ ≤ Dn

2

}
, n ∈ N,

is an i.i.d. sequence of random closed sets in M . Since Y is uniformly distributed
and independent of the diameter D, we have

P
(
x, y ∈ BD/2(Y )

)
= P

(
Y ∈ BD/2(x) ∩BD/2(y)

)
=

E
(
λd
(
BD/2(x) ∩BD/2(y)

))
λd
(
BCM+a/2(0)

)
(4.41)

for all x, y ∈ M . If for example D is taken to be deterministic, this reduces to a
normalized geometric covariogram of a ball (e.g., [53]).

The intersection of two balls in Rd can be represented as the union of two equally
sized hyperspherical caps. Hence, if D is equal to some 0 < t ≤ a it follows from
(4.41) and [55] that

P
(
x, y ∈ Bt/2(Y )

)
=

Γ(d/2 + 1)td√
π(2CM + a)dΓ((d+ 1)/2)

B1−d2xy/t2

(
d+ 1

2
,
1

2

)
1dxy≤t,

(4.42)

where we define dxy = ‖x− y‖ and

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt, x ∈ [0, 1], a, b > 0,

is the incomplete Beta function (for instance [26, Section 8.17]). For example in
dimension 2, we can use [26, Formula 8.17.20] and [35, Formulae 8.391 and 9.121.26]
to obtain for dxy ≤ t

B1−d2xy/t2
(3

2
,
1

2

)
=

1

2
B1−d2xy/t2

(1

2
,
1

2

)
− dxy

t

(
1−

d2
xy

t2

)1/2

=
(

1−
d2
xy

t2

)1/2

2F1

(1

2
,
1

2
;
3

2
; 1−

d2
xy

t2

)
− 1

t2
dxy(t

2 − d2
xy)

1/2

= arcsin
((

1−
d2
xy

t2

)1/2)
− 1

t2
dxy(t

2 − d2
xy)

1/2

= arccos
(dxy
t

)
− 1

t2
dxy(t

2 − d2
xy)

1/2. (4.43)

Here pFq is the hypergeometric function which is formally defined by

pFq(α1, . . . , αp; β1, . . . , βq; z) =
∑
k∈N0

(α1)k · · · (αp)k
(β1)k · · · (βq)k

zk

k!

with (a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k ∈ N,
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4.3. Random Closed Sets in Rd

see [35, Section 9.14] and [26, Section 16.2] for more information.

From (4.42) and (4.43) it follows for d = 2 that

P
(
x, y ∈ Bt/2(Y )

)
=

2

π(2CM + a)2

(
t2 arccos

(dxy
t

)
− dxy

√
t2 − d2

xy

)
1dxy≤t.

If the diameter D is chosen to be a continuously distributed random variable, equa-
tion (4.42) has to be integrated with respect to the distribution of D. Sironvalle
showed in [81], that for d = 2 the choice

F (x) =
1

a

(
a−
√
a2 − x2

)
10≤x≤a + 1x>a, x ∈ R, (4.44)

for the distribution function of the diameter D results in P (x, y ∈ B) being propor-
tional to the spherical correlation function

ρ(x, y) =
(

1− 3dxy
2a

+
d3
xy

2a3

)
1dxy≤a. (4.45)

In Proposition 4.3.1 below we consider the case of uniformly distributed diameter.

An example for random sets which lead to a stationary but anisotropic correlation
function is given by hyperrectangles of the form

En = E(Zn) ∩M = {z ∈M | |z1 − Z1
n| ≤ a1, . . . , |zd − Zd

n| ≤ ad}, n ∈ N,

for a1, . . . , ad > 0 and an i.i.d. sequence (Zn, n ∈ N) such that Z =
(
Z1, . . . , Zd

)
is

uniformly distributed on
∏d

k=1[−(Rk + ak), Rk + ak] where R =
∏d

k=1[−Rk, Rk] is a
hyperrectangle large enough such that M ⊆ R.

Proposition 4.3.1. Suppose that M ⊂ Rd is as above, fix x, y ∈ M , and let dxy =
‖x− y‖. Then for H = H(X,R) ∩M

P (x, y ∈ H) =
1

2

(
1− cd

dxy
2CM

)
(4.46)

holds with cd = Γ(d/2)/
(√

πΓ((d + 1)/2)
)
. For B = BD/2(Y ) ∩M with D being

uniformly distributed on [0, a] the following formula holds true

P (x, y ∈ B) = c̃d

(
adB1−d2xy/a2

(d+ 1

2
,
1

2

)
−
dd+1
xy

a
B1−d2xy/a2

(d+ 1

2
,−d

2

))
1dxy≤a,

(4.47)

where dd+1
xy B1−d2xy/a2

(
(d+1)/2,−d/2

)
is defined as zero for dxy = 0, and the constant

is c̃d = Γ(d/2 + 1)/
(
(d+ 1)

√
π(2CM + a)dΓ((d+ 1)/2)

)
. For E = E(Z) ∩M

P (x, y ∈ E) =
d∏

k=1

1

2(Rk + ak)

(
2ak − |xk − yk|

)
+

(4.48)

holds true.
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4. A General Class of Mosaic Random Fields

Proof. The point (x, r) ∈ Sd−1×R defines the same hyperplane as the point (−x,−r),
but due to the opposite direction of the normal vector x we have the relation
H(x, r) \ P (x, r) = H(−x,−r)c for the half-spaces. By construction, X and R
have the same distribution as −X and −R, respectively. Thus

P
(
x ∈ H(X,R)

)
= P

(
x ∈ H(−X,−R)

)
= P

(
x ∈ H(−X,−R) \ P (−X,−R)

)
= P

(
x /∈ H(X,R)

)
,

which implies P (x ∈ H) = P (x /∈ H) = 1/2 for all x ∈ M . Now let x 6= y and
d ≥ 2, then

P (x ∈ H, y /∈ H) = P
(
〈X, y〉 < R ≤ 〈X, x〉

)
=

∫
Sd−1

1

2CM

(
〈z, x〉 − 〈z, y〉

)
1〈z,x〉>〈z,y〉 dσ̄d−1(z)

=
dxy

2CM
E
(〈
X,

x− y
dxy

〉)
1〈X,(x−y)/dxy〉>0.

Let R be a rotation which maps (x− y)/dxy ∈ Sd−1 to the point
(
0, . . . , 0, 1

)
, then

〈X, (x−y)/dxy〉 =
〈
RX,

(
0, . . . , 0, 1

)〉
. SinceRX and X have the same distribution,

we have using (1.1) and (1.2)

E
(〈
X,

x− y
dxy

〉)
1〈X,(x−y)/dxy〉>0 =

1

2π

∫ 2π

0

sin(ϕ)1sin(ϕ)>0 dϕ =
1

π

for d = 2 and for d ≥ 3

E
(〈
X,
x− y
dxy

〉)
1〈X,(x−y)/dxy〉>0

=
Γ(d/2)

2πd/2

∫ 2π

0

∫ π

0

· · ·
∫ π

0

cos(θd−2)
d−2∏
k=1

sink(θk)1cos(θd−2)>0 dθd−2 . . . dθ1dϕ

=
Γ(d/2)

2
√
πΓ((d+ 1)/2)

,

where we used [35, Formulae 3.621.1, 3.621.5, 8.384.1, and 8.335.1]. For d = 1,
one can do the same computation without spherical coordinates since the uniform
distribution on S0 is just the two-point distribution on {−1, 1} which assigns both
values probability 1/2. For x = y, the probability P (x ∈ H, y /∈ H) is zero. Hence,
we have for all x, y ∈M and d ≥ 1

P (x ∈ H, y /∈ H) = cd
1

2

dxy
2CM

and formula (4.46) is then obtained from

P (x, y ∈ H) = P (x ∈ H)− P (x ∈ H, y /∈ H).

In the case of the random set BD/2(Y )∩M , it follows from (4.41) and (4.42) that

P
(
x, y ∈ BD/2(Y ) ∩M

)
=
1dxy≤a

a c̃d

∫ a

dxy

(d+ 1) tdB1−d2xy/t2
(d+ 1

2
,
1

2

)
dt

=
1dxy≤a

a c̃d

∫ a

dxy

∫ 1−d2xy/t2

0

(d+ 1) td s(d−1)/2 (1− s)−1/2 ds dt.
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4.3. Random Closed Sets in Rd

An application of Fubini’s theorem yields for the integral∫ 1−d2xy/a2

0

s(d−1)/2(1− s)−1/2

∫ a

dxy/
√

1−s
(d+ 1) td dt ds

= ad+1B1−d2xy/a2
(d+ 1

2
,
1

2

)
−
∫ 1−d2xy/a2

0

dd+1
xy s(d−1)/2(1− s)−(d+2)/2 ds.

The last integral is 0 if dxy = 0, and we can write it as dd+1
xy B1−d2xy/a2

(
(d+1)/2,−d/2

)
if 0 < dxy ≤ a. Collecting terms we obtain (4.47).

Regarding (4.48), the components of Z =
(
Z1, . . . , Zd

)
are independent and uni-

formly distributed on [−(Rk + ak), Rk + ak] and (4.48) follows from

P (x, y ∈ E) =
d∏

k=1

P
(
|xk − Zk| ≤ ak, |yk − Zk| ≤ ak

)
and

P
(
|xk − Zk| ≤ ak, |yk − Zk| ≤ ak

)
=

1

2(Rk + ak)

(
2ak − |xk − yk|

)
+

for k = 1, . . . , d. �

Remark 4.3.2. The correlation functions in Corollary 4.2.4 depend on x and y only
through the probabilities pxy = P (x, y ∈ B). Proposition 4.3.1 and equation (4.42)
show, that the functions (x, y) 7→ pxy are stationary and isotropic on M if the
random set B is a random half-space H(X,R) or a random closed ball BD/2(Y ).
Therefore, the correlation functions that we get from the combination of Corollary
4.2.4, Proposition 4.3.1, and equation (4.42), will be stationary and isotropic. To
get less regular correlation functions, more general random closed sets B have to be
considered.

A very simple choice for the distribution of the random variable N in (4.29) on
page 58 is N ≡ 1. This leads to the correlation function

ρ(x, y) = P (x, y ∈ B) + P (x, y /∈ B), x, y ∈M, (4.49)

for the simple mosaic random field which is build from one random closed set. Taking
random half-spaces H as random closed sets B, we obtain with (4.46)

P (x, y ∈ H) = P (x ∈ H)− P (y /∈ H) + P (x, y /∈ H) = P (x, y /∈ H),

and therefore (4.49) becomes with (4.46)

ρ(x, y) = 1− cd
dx,y
2CM

, x, y ∈M,

with the constant cd = Γ(d/2)/
(√

πΓ((d + 1)/2)
)
. This base correlation will be

used hereafter to produce more evolved correlation functions. Before doing so, let
us take a closer look at the behaviour of the constant cd which governs the decay
of the base correlation (4.49). For d = 1, 2, and 3 the factor cd equals 1, 2/π, and
1/2, respectively. Figure 4.3 suggests, that cd is strictly decreasing as the dimension
increases to ∞. The following lemma shows, that this is indeed true and that cd
converges to 0.
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4. A General Class of Mosaic Random Fields

Figure 4.3.: The factor cd for d = 1, . . . , 20.

Lemma 4.3.3. The sequence (cd, d ∈ N) is strictly decreasing to 0 as d increases to
∞.

Proof. From [50] we have the following inequality for the quotient of gamma functi-
ons:

e(1−λ)Ψ(x+λ) <
Γ(x+ 1)

Γ(x+ λ)
< e(1−λ)Ψ(x+1), x > 0, λ ∈ (0, 1). (4.50)

Here Ψ(x) = d
dx

log(Γ(x)), x > 0, denotes the digamma function (e.g., [26, Formula
5.5.2]). Using (4.50) with λ = 1/2, we have for all x > 1/2

Γ(x)

Γ(x+ 1/2)

Γ(x+ 1)

Γ(x+ 1/2)
> e−1/2Ψ(x+1/2)e1/2Ψ(x+1/2) = 1,

hence

Γ(x)√
πΓ(x+ 1/2)

>
Γ(x+ 1/2)√
πΓ(x+ 1)

, x >
1

2
,

implying cd > cd+1 for all d > 1. For d = 1 this inequality is also true so that
(cd, d ∈ N) is strictly decreasing. From [26, Formula 5.15.1] we have

Ψ′(x) =
∞∑
k=0

1

(x+ k)2
, x > 0,

so that Ψ is strictly increasing. The mean value theorem entails that for all x > 0

log
(
Γ(x+ 1)

)
− log

(
Γ(x)

)
= Ψ(x0)

for some x0 ∈ (x, x+ 1). Since Ψ is strictly increasing we get

log
(Γ(x+ 1)

Γ(x)

)
= log x < Ψ(x+ 1)

so that Ψ increases to ∞ as x→∞. Another application of (4.50) yields

Γ(x)√
πΓ(x+ 1/2)

<
1√
π
e−1/2Ψ(x), x >

1

2
,

which implies that (cd, d ∈ N) converges to 0. �
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4.4. Explicit Correlation Functions on Bounded Subsets of Rd

4.4. Explicit Correlation Functions on Bounded
Subsets of Rd

In this section we give examples of correlation functions on bounded subsets M of
Rd which can be obtained for the mosaic random field (4.19) by the combination of
Proposition 4.3.1 and Corollary 4.2.4.

Before we begin with the examples, let us mention a lesser-known probability
distribution and its probability generating function which we will use frequently in
the following. In [80] it was shown, that for every α ∈ (0, 1),

pn =
αΓ(n− α)

Γ(1− α)n!
, n ∈ N, (4.51)

defines a probability distribution
∑

n∈N pnεn on
(
N,P(N)

)
. This distribution can be

extended to α ∈ (0, 1] by letting p1 = 1 and pn = 0, n ≥ 2, in case α = 1. In the
following, this distribution will be called Sibuya(α) distribution after [80]. By the
functional equation of the gamma function we have for every α ∈ (0, 1)

pn = −Γ(n− α)

Γ(−α)n!
, n ∈ N.

Using this and [73, Formula 7.3.1.27] we have for the probability generating function
ψ of the Sibuya(α) distribution

ψ(t) =
∞∑
n=1

pnt
n = 1−

∞∑
n=0

Γ(n− α)

Γ(−α)

tn

n!
= 1− (1− t)α, t ∈ [−1, 1], α ∈ (0, 1).

(4.52)

Since 1 − (1 − t)α is also the probability generating function of the Sibuya(α) dis-
tribution in case α = 1, the result of (4.52) holds true for all α ∈ (0, 1].

(a) α = 0.8. (b) α = 0.4.

Figure 4.4.: The probabilities p1, . . . , p20 in (4.51).

Figure 4.4 displays the probabilities p1, . . . , p20 for different α. The Sibuya(α)
distribution is heavy-tailed for α ∈ (0, 1). To see this, we write (4.51) as

pn =
α

Γ(1− α)(n− α)

Γ(n+ 1− α)

Γ(n+ 1)
, n ∈ N.
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4. A General Class of Mosaic Random Fields

An application of Gautschi’s inequality [26, Formula 5.6.4] for the quotient of gamma
functions yields the bounds

α

Γ(1− α)(n− α)(n+ 1)α
< pn <

α

Γ(1− α)(n− α)nα
, n ∈ N, α ∈ (0, 1). (4.53)

From this it follows that ∑
n∈N

pnn ≥
α

Γ(1− α)

∑
n∈N

1

nα
,

and we conclude that the Sibuya(α) distribution does not have a finite mean if
α ∈ (0, 1).

For the simulation of Sibuya(α) distributed random numbers for α ∈ (0, 1) we
use the following result which is taken from [80] (see also [25]): If X1 ∼ Exp(1),
X2 ∼ Gamma(1− α, 1), and X3 ∼ Gamma(α, 1) are independent random variables
and N is Poisson distributed with random parameter λ = (X1X2)/X3, then

1 +N ∼ Sibuya(α).

In case α = 1, we have by definition Sibuya(α) = ε1.
The next lemma is used for our simulations of approximate Gaussian random

fields below. It is a direct consequence of the multivariate central limit theorem
(e.g., [6, Satz 30.3]).

Lemma 4.4.1. Let M be a set, let Z = (Z(x), x ∈M) be a real-valued and square-
integrable random field on M with correlation function ρ, and let (Zi, i ∈ N) be a
sequence of independent copies of Z. Let the sequence of random fields (Sn, n ∈ N)
on M be defined by

Sn(x) =
1√

nVar
(
Z(x)

)( n∑
i=1

Zi(x)− nE
(
Z(x)

))
, n ∈ N, x ∈M. (4.54)

If Y = (Y (x), x ∈ M) is a centered Gaussian random field with the covariance
function ρ, then for each m ∈ N and any x1, . . . , xm ∈ M , the random vector(
Sn(x1), . . . , Sn(xm)

)
converges in distribution to

(
Y (x1), . . . , Y (xm)

)
as n→∞.

Henceforth, the random field (4.54) will be called an approximate Gaussian random
field. If we can simulate the random field Z in Lemma 4.4.1, then we can simulate
an approximate Gaussian random field with the correlation function ρ of Z as its
covariance function by means of (4.54).

There are many approaches which have been developed in order to decide from
which number n of superpositions in (4.54) onwards, (4.54) can be considered as
a Gaussian random field for practical purposes (for an overview see [53, Section
15.2.5]). One of these approaches is given by considering the Kolmogorov distance

sup
y∈R
|P (Sn(x) ≤ y)− Φ(y)|, x ∈M,

between the marginal distribution of Sn and the standard normal distribution (here
Φ denotes the distribution function of the standard normal distribution). We may
then think of (Sn(x), x ∈ M) as an adequate approximation to a Gaussian random
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4.4. Explicit Correlation Functions on Bounded Subsets of Rd

field if this distance is small. The Berry–Esseen theorem [9, 27] provides an upper
bound for this distance:

sup
y∈R
|P (Sn(x) ≤ y)− Φ(y)| ≤

CBE E
(
|Z(x)|3

)
Var
(
Z(x)

)3/2√
n
, x ∈M. (4.55)

The constant CBE in the bound is valid for any distribution of the random variable
Z(x) defining the sum Sn(x). In the original work [27], the value of CBE was given
as 7.59. It has been lowered successively over the years up to a value of 0.4784 in
[49] more recently. For simplicity we assume CBE = 1/2 henceforth.

This criterion is certainly not the best possible, since (4.55) does only involve
the marginal distributions and the convergence that we aim for is the convergence
in the sense of the finite-dimensional distributions. However, the advantage of this
approach is that the information that is necessary in order to apply the criterion
is available for the random fields that are considered in this thesis (see Proposition
4.2.6 for the mosaic random field and Proposition 5.2.4 on page 110 for the spectral
turning bands random field on Sd that is presented in Chapter 5). Therefore, we
stick to this criterion and keep in mind that the bound on n that is obtained from
(4.55) will be too small in general.

All simulations in the present thesis have been performed with the Scilab software
package [79, Version 6.0.1].

Example 4.4.2. The generalized Cauchy correlation function [32, 34] in Rd is of the
form

ρ(x, y) =
(

1 +
(dxy
c

)α)−β/α
, x, y ∈M. (4.56)

Here c > 0 is a scale parameter and α ∈ (0, 2], β > 0, are shape parameters.
Suppose M is a bounded and closed subset of Rd, then a mosaic random field
having the correlation function (4.56) can be obtained as follows. The negative
binomial distribution NegBin(r, p) with parameter r > 0, p ∈ (0, 1), is defined by
the probability mass function

pn =
Γ(n+ r)

n! Γ(r)
pn(1− p)r, n ∈ N0.

The probability generating function ψ1 of the negative binomial distribution is of
the form

ψ1(t) =
(1

p
− 1− p

p
t
)−r

, t ∈ [−1, 1].

Composing this probability generating function with the probability generating
function ψ2 of a Sibuya(α) distribution (4.52) yields

(ψ1 ◦ ψ2)(t) =
(

1 +
1− p
p

(1− t)α
)−r

, t ∈ [−1, 1]. (4.57)

At this point we have to make the restriction α ∈ (0, 1], otherwise (4.51) would
not define a probability distribution (this can be seen by considering the first pro-
bability p1). Concerning this restriction, see also Remark 4.6.2 in Section 4.6. If
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4. A General Class of Mosaic Random Fields

now L is an NegBin(r, p) distributed random variable and if (Kl, l ∈ N) are inde-
pendent Sibuya(α) distributed random variables, independent of L, then by Lemma
4.1.8 N =

∑L
l=1Kl has the probability generating function (4.57). By (4.29), Corol-

lary 4.2.4, the correlation function of a simple mosaic random field for which the
underlying mosaic is build from N random sets has the correlation function

ρ(x, y) =
(

1 +
1− p
p

(px + py − 2pxy)
α
)−r

, x, y ∈M.

Let us now choose for this simple mosaic random field random half-spaces H(X,R)
as random sets. Here X ∼ U(Sd−1), R ∼ U([−CM , CM ]), and CM > 0 is a constant
large enough such that M ⊆ BCM (0) ⊆ Rd. From (4.46) in Proposition 4.3.1 we get

ρ(x, y) =
(

1 +
1− p
p

(
cd
dxy

2CM

)α)−r
, x, y ∈M.

For any α ∈ (0, 1] and all β > 0 the choice r = β/α is a valid choice for the parameter
r of the negative binomial distribution. Furthermore, for all α ∈ (0, 1], c > 0, any
constant CM > 0, and all d ∈ N,

p =
(

1 +
(2CM
cdc

)α)−1

is a valid choice for the parameter p of the negative binomial distribution. With
these values of r and p, the correlation function of the simple mosaic random field
becomes

ρ(x, y) =
(

1 +
(dxy
c

)α)−β/α
, α ∈ (0, 1], β, c > 0, x, y ∈M. (4.58)

The generalized Cauchy correlation function, realizations of the corresponding
simple mosaic random field, and realizations of an approximate Gaussian random
field are given in Figure 4.5. For the simulation we have chosen M = [−1, 1]2, CM =√

2, c = 2
√

2, and standard normally distributed marginals Ui,j, i, j ∈ N. By (4.33)
and (4.34) we have E

(
ZM(x)

)
= E(U) = 0 and Var

(
Z(x)

)
= Var(U) = 1. Hence

(4.38) in Proposition 4.2.6 yields the bound CBE E(|U3|)/
√
n on the Kolmogorov

distance between the marginal distribution of the approximate Gaussian random
field and a standard normal distribution. The absolute third moment of a standard
normal distribution can be found from integration by parts and it is equal to 4/

√
2π.

With CBE = 1/2 the bound in (4.55) equals
√

2/(nπ) and n = 300 superpositions
yields a bound lower than a critical value of 0.05. Figure 4.5d (4.5e) presents a
realization of an approximate Gaussian random field which is build from from n =
300 (n = 1000) realizations of a simple mosaic random field with the generalized
Cauchy correlation function (4.58).

Example 4.4.3. In this example we consider a random token field on a bounded
closed set M ⊆ R2. We assume that the number of random closed sets N defining
the underlying mosaic of the random token field is Poisson distributed, so that
Var(N) = E(N) and we get from (4.30) in Corollary 4.2.4 the correlation function

ρ(x, y) =
pxy√
pxpy

, x, y ∈ [−1, 1]2.
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4.4. Explicit Correlation Functions on Bounded Subsets of Rd

(a) Correlation function (4.58) for different α, β. The scale parameter is c = 2
√

2.

(b) Simple mosaic random field with
α = 0.8, β = 6, c = 2

√
2.

(c) Simple mosaic random field with
α = 0.8, β = 20, c = 2

√
2.

(d) Approximate Gaussian random
field with α = 0.8, β = 6, c =
2
√

2, n = 300.

(e) Approximate Gaussian random
field with α = 0.8, β = 6, c =
2
√

2, n = 1000.

Figure 4.5.: Simple mosaic random field with the Cauchy correlation function (4.58).

71



4. A General Class of Mosaic Random Fields

Hence the choice of the distribution of the marginals (Ui,j, i, j ∈ N) and the parame-
ter of the Poisson distribution for N has no impact on the correlation function, as
long as Var(U) > 0. As random closed sets we take random balls (Bn, n ∈ N) defined
by Bn = BDn/2(Yn)∩M , where the Yn are uniformly distributed on BCM+a/2(0) ⊆ R2

and Dn ∼ U([0, a]). Here a > 0 is a cutoff-parameter and CM > 0 is a constant
depending on the set M . Then we are in the situation of (4.47) in Proposition 4.3.1
with d = 2 and get

pxy =
2

3π(2CM + a)2

(
a2B1−d2xy/a2

(3

2
,
1

2

)
−
d3
xy

a
B1−d2xy/a2

(3

2
,−1

))
1dxy≤a

for x, y ∈M . An explicit form for the first incomplete Beta function has been given
in (4.43). For the second incomplete Beta function we can use [35, Formula 8.391]
and [73, Formula 7.3.2.210] such that for dxy ≤ a

B1−d2xy/a2
(3

2
,−1

)
=
(

1−
d2
xy

a2

)3/2

2F1

(3

2
, 2;

5

2
; 1−

d2
xy

a2

)
=
(

1−
d2
xy

a2

)1/2
(
a2

d2
xy

−
(

1−
d2
xy

a2

)−1/2

artanh
((

1−
d2
xy

a2

)1/2))
.

The probability pxy then becomes

pxy =
2

3π(2
√

2 + a)2

(
a2 arccos

(dxy
a

)
− 2dxy

√
a2 − d2

xy

+
d3
xy

a
artanh

((
1−

d2
xy

a2

)1/2))
1dxy≤a, x, y ∈M. (4.59)

From this we also get px = a2/
(
3(2CM +a)2

)
, so that the correlation function of the

random token field is

ρ(x, y) =

(
2

π
arccos

(dxy
a

)
− 4

πa2
dxy

√
a2 − d2

xy

+
2

πa3
d3
xy artanh

((
1−

d2
xy

a2

)1/2))
1dxy≤a (4.60)

for x, y ∈M .
Figure 4.6 displays this correlation function, realizations of the random token

field, and realizations of the corresponding approximate Gaussian random field. For
the simulations we have chosen M = [−1, 1]2 (CM =

√
2), λ = 50 for the Poisson

distribution, and standard normally distributed marginals Ui,j, i, j ∈ N. For the
approximate Gaussian random field we took the cutoff parameter a =

√
2. By

formulae (4.35) and (4.36) the variance of a random token field is given by

Var(ZRT (x)) = E(U2)E(N)px + E(U)2
(

Var(N)− E(N)
)
p2
x, x ∈M,

and for the absolute third moment we have from (4.39) in Proposition 4.2.6 the
bound

E(|ZRT (x)|3) ≤ pxE(|U |3)
(
p2
xE(N3) + 3px(1− px)E(N2) + (1− 2px)(1− px)E(N)

)
.
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4.4. Explicit Correlation Functions on Bounded Subsets of Rd

(a) Correlation function (4.60) for different a.

(b) Random token field with λ =
50, a =

√
2.

(c) Random token field with λ = 50,
a = 2

√
2.

(d) Approximate Gaussian random
field with λ = 50, a =

√
2, n =

500.

(e) Approximate Gaussian random
field with λ = 50, a =

√
2,

n = 14000.

Figure 4.6.: Random token field with correlation function (4.60).
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4. A General Class of Mosaic Random Fields

Plugging in the corresponding values in (4.55), we get an upper bound on the Kolmo-
gorov distance which is smaller than 5.86/

√
n. We choose n = 14000 superpositions

in the approximate Gaussian random field such that this bound is smaller than 0.05.
Figure 4.6e displays the result of the simulation. Figure 4.6d displays a simulation
with n = 500 superpositions.

Example 4.4.4. Let Z be a dead leaves random field on a bounded subset M of Rd.
We take random half-spaces H(X,R) as random sets, such that formulae (4.46) and
(4.32) yield the correlation function

ρ(x, y) =
1/2
(
1− cd dxy/(2CM)

)
+ cd dxy/(2CM)ψN

(
1/2
(
1− cd dxy/(2CM)

))
1/2
(
1 + cd dxy/(2CM)

)
for x, y ∈ M . The probability generating function of the GeoN(p) distribution is
given by

ψ(t) =
p t

1− (1− p) t
, p ∈ (0, 1), t ∈ [−1, 1].

Taking this distribution for the number N of random half-spaces, we obtain after
some manipulations the correlation function

ρ(x, y) =
1− cd dxy/(2CM)

1 + (1− p)/(1 + p) cd dxy/(2CM)
, x, y ∈M.

If c > 2CM/cd, we may choose p = (c cd − 2CM)/(c cd + 2CM) as the success proba-
bility for the geometric distribution and obtain the correlation function

ρ(x, y) =
1− cd dxy/(2CM)

1 + dxy/c
, x, y ∈M, c >

2CM
cd

. (4.61)

Figure 4.7 displays this correlation function on M = [−1, 1]2 for different c. Simu-
lations of the dead leaves random field and the corresponding approximate Gaussian
random field are depicted in Figure 4.7. For the simulations we took M = [−1, 1]2,
CM =

√
2, and standard normally distributed marginals. In Figure 4.7b there are

N = 3 simulated half-spaces, while in Figure 4.7c there are N = 13. However, in
both figures only 3 half-spaces are visible because in Figure 4.7c earlier simulated
half-spaces are hidden under later simulated ones. This also explains the minor in-
fluence of the parameter c on the correlation function (4.61), which can be observed
in Figure 4.7a. Concerning the approximation to a Gaussian random field, we have
by (4.38) the same bound on the Kolmogorov distance as in Example 4.4.2. Figure
4.7d displays a simulation of the approximate Gaussian random field with n = 300
simulated dead leaves random fields and in Figure 4.7e we have chosen n = 5000.

More correlation functions on bounded subsets of Rd for which there are associated
mosaic random fields are given in Tables 4.1 and 4.2. The objects which determine
the respective mosaic random fields are given in Appendix B.1 .

4.5. Random Closed Sets on Sd

In this section we let M = Sd be the d-dimensional unit sphere, σd the surface
measure on Sd defined in (1.2), and φd the spherical coordinate map defined in (1.1).

74



4.5. Random Closed Sets on Sd

(a) Correlation function (4.61) for different c.

(b) Dead leaves field with c =
4CM/c2.

(c) Dead leaves field with c =
2.1CM/c2.

(d) Approximate Gaussian random
field with c = 2.1CM/c2, n =
300.

(e) Approximate Gaussian random
field with c = 2.1CM/c2, n =
5000.

Figure 4.7.: Dead leaves random field with correlation function (4.61).
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4. A General Class of Mosaic Random Fields

Correlation function Parameter Lit.

1. ρ(x, y) =
(
1 +

(dxy
c

)α)−β/α
α ∈ (0, 1], β, c > 0 [32, 34]

2. ρ(x, y) = e−(dxy/c)α α ∈ (0, 1], c > 0 [20, 53]

3. ρ(x, y) = 1−
( (dxy/c)α

1+(dxy/c)α

)β
α, β ∈ (0, 1], c > 0 [7]

4. ρ(x, y) = 1−
( (1+(dxy/c)α)γ−1

(1+(dxy/c)α)γ

)β
α, β ∈ (0, 1], γ, c > 0

5. ρ(x, y) =
(
1−

(dxy
c

)α)n
α ∈ (0, 1], c ≥ 2CM

cd
, n ∈ N0 [75]*

6. ρ(x, y) =
(
1− cd dxy

2CM

)n
e−(dxy/c)α α ∈ (0, 1], c > 0, n ∈ N0 [20, 53]*

7. ρ(x, y) = 1−(cd dxy/(2CM ))α

1−cd dxy/(2CM )
α ∈ (0, 1]

8. ρ(x, y) = 1−e−(dxy/c)
α

(dxy/c)α
α ∈ (0, 1], c > 0

9. ρ(x, y) = log(1+(dxy/c)α)

(dxy/c)α
α ∈ (0, 1], c > 0

10. ρ(x, y) =
(
1 + β − βe−(dxy/c)α

)−γ
α ∈ (0, 1], β, γ, c > 0

11. ρ(x, y) = e−β(dxy/c)α/(1+(dxy/c)α) α ∈ (0, 1], β, c > 0

12. ρ(x, y) = 1+(dxy/c)α

1+β(dxy/c)α
α ∈ (0, 1], β ≥ 1, c > 0

13. ρ(x, y) = e−β(1−e−(dxy/c)
α

) α ∈ (0, 1], β, c > 0

14. ρ(x, y) = 1−
( γ (dxy/c)α

1+(1+γ)(dxy/c)α

)β
α, β ∈ (0, 1], γ ≥ 0, c > 0

Table 4.1.: Correlation functions of simple mosaic random fields on bounded subsets
of Rd. A '*' at the reference indicates that the given correlation function
is new, but can be obtained as convex combinations or products of known
correlation functions.
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Correlation function Parameter Lit.

1. ρ(x, y) = λ
(
1− cd dxy

2CM

)
+ 1− λ λ ∈ (0, 2) [20, 53]

2. ρ(x, y) =
B

1−d2xy/a2
((d+1)/2,1/2)

B((d+1)/2,1/2)
1dxy≤a a > 0 [20, 53]

3. ρ2(x, y) =
(

2
π

arccos
(dxy
a

)
− 2
πa2
dxy
√
a2 − d2

xy

)
1dxy≤a a > 0 [20, 53]

4. ρ2/3(x, y) =
(
1− 3dxy

2a
+

d3xy
2a3

)
1dxy≤a a > 0 [81]

5. ρ(x, y) =
(B

1−d2xy/a2
((d+1)/2,1/2)

B((d+1)/2,1/2)

−dd+1
xy

ad+1

B
1−d2xy/a2

((d+1)/2,−d/2)

B((d+1)/2,1/2)

)
1dxy≤a a > 0

6. ρ2(x, y) =
(

2
π

arccos
(dxy
a

)
− 4

πa2
dxy
√
a2 − d2

xy

+ 2
πa3
d3
xy artanh

((
1− d2xy

a2

)1/2))
1dxy≤a a > 0

7. ρ(x, y) = 1−cd dxy/(2CM )

1+dxy/c
c > 2CM

cd

8. ρ(x, y) = λ
(
1− cd dxy

2CM

)
e−dxy/c

+(1− λ)
(
1− cd dxy

2CM

)
c > 0, λ ∈ (0, 1) [20, 53]*

9. ρ(x, y) = 1− 21−α cd dxy/(2CM )

(1+cd dxy/(2CM ))1−α
α ∈ (0, 1]

10. ρ(x, y) =
∏n
k=1(2ak−|xk−yk|)+

2d
∏d
k=1 ak

a1, . . . , ad > 0 [20, 53]*

Table 4.2.: Correlation functions of random token, dead leaves, and mixture random
fields on bounded subsets of Rd. Correlation functions 3. and 6. are
correlation functions on M ⊆ R2, 4. is valid on M ⊆ Rd with d = 2 or
d = 3. A '*' at the reference indicates that the given correlation function
is new, but can be obtained as convex combinations or products of known
correlation functions.
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Furthermore, we denote the great circle metric on Sd by dSd(x, y) = arccos
(
〈x, y〉

)
,

x, y ∈ Sd.
Let Br(x) = {z ∈ Sd | dSd(x, z) ≤ r} denote a closed ball or spherical cap on Sd,

centered at x ∈ Sd and with radius r ∈ [0, π]. Let (Xn, n ∈ N) be an independent
sequence of random variables uniformly distributed on Sd (e.g., [67, 60]) and let
(Rn, n ∈ N) be an i.i.d. sequence of random variables with values in [0, π], inde-
pendent of (Xn, n ∈ N). Then Bn = BRn(Xn) defines an i.i.d. sequence of random
closed sets in Sd. As in the previous section, we have

P (x, y ∈ B) =
Γ((d+ 1)/2)

2π(d+1)/2
E
(
σd
(
BR(x) ∩BR(y)

))
,

i.e. P (x, y ∈ B) is proportional to the mean surface volume of the intersection of
two spherical caps with random but equal radius.

For a deterministic radius R = r ∈ [0, π] and d = 1, an elementary geometric
consideration yields

P
(
x, y ∈ Br(X)

)
=

(
r

π
− dS1(x, y)

2π

)
+

, x, y ∈ S1.

Tovchigrechko and Vakser [85] used spherical trigonometry to obtain a formula for
σd
(
Br(x) ∩Br(y)

)
in case d = 2, which results in

P
(
x, y ∈ Br(X)

)
=

(
1

2π
arccos

(cos2(r)− cos(dS2(x, y))

sin2(r)

)
− cos(r)

π
arccos

(cos(r)
(
1− cos(dS2(x, y))

)
sin(r) sin(dS2(x, y))

)
1dS2 (x,y)≤2r

(4.62)

for all x 6= y ∈ S2 and r ∈ (0, π/2]. For higher dimension, Estrade and Istas [28]
provide the recursive formula

σd
(
Br(x) ∩Br(y)

)
=

∫ sin r

− sin r

(1− a2)(d−2)/2σd−1

(
Br(a)(x

′) ∩Br(a)(y
′)
)
da (4.63)

for all d ≥ 2, x, y ∈ Sd, and r ∈ [0, π/2], where r(a) = arccos
(
cos(r)/

√
1− a2

)
, and

x′, y′ are arbitrary points in Sd−1 satisfying dSd(x, y) = dSd−1(x′, y′) (there appears to
be a misprint in [28] regarding formula (4.63)). This recursion is particularly useful
if the balls are hemispheres, i.e. r = π/2, yielding for all d ≥ 1

P
(
x, y ∈ Bπ/2(X)

)
=

1

2
− dSd(x, y)

2π
, x, y ∈ Sd. (4.64)

From these formulae it is possible to compute P (x, y ∈ B) for a discretely distri-
buted radius R, although the formulae become quickly lengthy. In what follows we
consider a family of continuous distributions for R which results in rather simple
formulae for P (x, y ∈ B). A hyperplane in Rd+1 that intersects Sd divides Sd into
two spherical caps. If r ∈ [0, π] is the radius of one such spherical cap, the distance
of the hyperplane to the origin is given by the absolute value of cos(r). We assume
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henceforth, that cos(R) is continuously distributed with a distribution function of
the form

FQ(t) =

(
1

2
+

Q∑
q=0

pq t
2q+1

)
1[−1,1](t) + 1(1,∞)(t), t ∈ R, (4.65)

for Q ∈ N0 and p0, . . . , pQ ∈ R+ with
∑Q

q=0 pq = 1/2. If Q = 0 and p0 = 1/2, this is
the distribution function of the uniform distribution on [−1, 1].

Proposition 4.5.1. Assume that cos(R) is continuously distributed with the distri-
bution function FQ given in (4.65) and set dxy = dSd(x, y). Then for all d ≥ 1 and
all x, y ∈ Sd

P (x, y ∈ B) =
1

2
−

Q∑
q=0

q+1∑
l=1

pq Cq,l,d sin2l−1
(dxy

2

)
cos2(q−l+1)

(dxy
2

)
(4.66)

with

Cq,l,d = 2−(2q+1) Γ(2q + 2)Γ((d+ 1)/2)

Γ((2l + 1)/2)Γ(q − l + 2)Γ((2q + d+ 2)/2)
(4.67)

holds true.

Proof. The distribution function FQ in (4.65) fulfills FQ(t) + FQ(−t) = 1 for all

t ∈ R, which is equivalent to cos(R)
d
= − cos(R) or R

d
= π−R. With the symmetry

of X and the definition of dSd this gives for all x ∈ Sd

P
(
dSd(x,X) ≤ R

)
= P

(
dSd(x,−X) ≤ R

)
= P

(
dSd(x,X) ≥ π −R

)
= P

(
dSd(x,X) > R

)
and consequently P (x ∈ B) = 1/2. Thus

P (x, y ∈ B) =
1

2
− P (x ∈ B, y /∈ B) =

1

2
− P

(
dSd(x,X) ≤ R < dSd(y,X)

)
. (4.68)

The surface measure (1.2) is rotational invariant and we can therefore replace x and
y in (4.68) by any points x+, x− ∈ Sd, which satisfy dSd(x+, x−) = dxy. A convenient
choice is

x± = φd

(
π ∓ π

2
,
π

2
, . . . ,

π

2
,
dxy
2

)
=
(

0,± sin
(dxy

2

)
, 0, . . . , 0, cos

(dxy
2

))
. (4.69)

By independence of X and R we have

P
(
dSd(x+, X) ≤ R < dSd(x−, X)

)
=

∫
Sd
P
(
dSd(x+, z) ≤ R < dSd(x−, z)

)
1dSd (x+,z)≤dSd (x−,z) dσ̄d(z)

=

∫
Sd
P
(
〈x−, z〉 < cos(R) ≤ 〈x+, z〉

)
1〈x+−x−,z〉≥0 dσ̄d(z)

=

Q∑
q=0

pq

∫
Sd

(
〈x+, z〉2q+1 − 〈x−, z〉2q+1

)
1〈x+−x−,z〉≥0 dσ̄d(z).
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4. A General Class of Mosaic Random Fields

Passing to spherical coordinates (1.1), the difference 〈x+, z〉2q+1−〈x−, z〉2q+1 becomes

2q+1∑
l=0

(
2q + 1

l

)(
1− (−1)l

)
sinl
(dxy

2

)
sinl(ϕ)

d−1∏
i=1

sinl(θi) cos2q+1−l
(dxy

2

)
cos2q+1−l(θd−1)

= 2

q+1∑
l=1

(
2q + 1

2l − 1

)
sin2l−1

(dxy
2

)
sin2l−1(ϕ)

×
d−1∏
i=1

sin2l−1(θi) cos2(q−l+1)
(dxy

2

)
cos2(q−l+1)(θd−1).

Besides, the condition 〈x+ − x−, z〉 ≥ 0 becomes in spherical coordinates ϕ ∈ [0, π],
and this in fact explains the choice of x± in (4.69). Altogether we obtain

P
(
dSd(x+, X) ≤ R < dSd(x−, X)

)
=

Q∑
q=0

q+1∑
l=1

pq
Γ((d+ 1)/2)

π(d+1)/2

(
2q + 1

2l − 1

)
sin2l−1

(dxy
2

)
cos2(q−l+1)

(dxy
2

)
×
∫ π

0

sin2l−1(ϕ) dϕ
d−2∏
i=1

∫ π

0

sin2l−1+i(θi) dθi

×
∫ π

0

sin2l+d−2(θd−1) cos2(q−l+1)(θd−1) dθd−1.

For the last integral we can use [35, Formulae 3.621.5 and 8.384.1] because the
exponent of the cosine is even. The other integrals can be evaluated with [35,
Formulae 3.621.1, 8.384.1, and 8.335.1]. We obtain

P
(
dSd(x+, X) ≤ R < dSd(x−, X)

)
=

Q∑
q=0

q+1∑
l=1

pq

(
2q + 1

2l − 1

)
Γ((d+ 1)/2)Γ(l)Γ((2q − 2l + 3)/2)

πΓ((2q + d+ 2)/2)

× sin2l−1
(dxy

2

)
cos2(q−l+1)

(dxy
2

)
.

Writing the binomial coefficient in terms of the gamma function and applying [35,
Formula 8.335.1] two times we find formula (4.66). �

Remark 4.5.2. Remark 4.3.2 applies also here. The correlation functions that result
from the combination of Corollary 4.2.4, Proposition 4.5.1, and equations (4.62),
(4.64), are isotropic functions on Sd.
Remark 4.5.3. Suppose Z is a random token field on S2 which is build from a
Poisson distributed number N of random hemispheres Bπ/2(X). Then it follows
from Corollary 4.2.4 and (4.64) that the correlation function of Z is given by

ρ(x, y) = 1− dS2(x, y)

π
, x, y ∈ S2. (4.70)

This correlation function is an example of a positive definite function on S2 that
is not strictly positive definite, and there are at least two ways to see this. First,

80



4.6. Explicit Correlation Functions on Sd

it follows from (4.14) that the even Schoenberg-coefficients b2n,2, n ∈ N, of this
correlation function satisfy

2

4n+ 1
b2n,2 =

∫ π

0

P2n

(
cos(θ)

)
sin(θ)

(
1− θ

π

)
dθ

=

∫ 1

−1

P2n(x)
(1

2
− arccos(x)

π

)
dx

=

∫ 1

−1

P2n(x)
(1

2
− arccos(x)

π

)
dx+

1

2

∫ 1

−1

P2n(x) dx.

The first integral in the last line vanishes because P2n is even and the function
x 7→ 1/2−arccos(x)/π is odd and the second integral equals zero by the orthogonality
of the Legendre polynomials. Therefore it follows from Theorem 4.1.6 on page 52
that the correlation function (4.70) is not strictly positive definite.

Another way to see this is to consider the random token field Z corresponding to
the correlation function (4.70). Let x and y be arbitrary points in S2 and let xA
and yA denote their antipodal points, respectively. Because the random closed sets
B are hemispheres, we have x ∈ B if and only if xA /∈ B and y ∈ B if and only
if yA /∈ B. It follows therefore from the definition of the random token field (4.21)
that

Z(x) + Z(xA) = Z(y) + Z(yA) =
N∑
i=1

U1,i,

which implies

Z(x) + Z(xA)−
(
Z(y) + Z(yA)

)
= 0.

We have thus found a linear combination of random variables in (Z(x), x ∈ S2)
which has a variance of 0, implying that (4.70) is not strictly positive definite.

4.6. Explicit Correlation Functions on Sd

Example 4.6.1. The Dagum correlation function [33, 8] on M = Sd is of the form

ρ(x, y) = 1−
( (dxy/c)

α

1 + (dxy/c)α

)β
, x, y ∈ Sd. (4.71)

(There appears to be a misprinted bracket in [33] concerning (4.71)). It is shown
in [33], that c > 0, α ∈ (0, 1], and β ∈ (0, 1) are sufficient such that (4.71) is a
valid correlation function on Sd for any d ∈ N. In fact, the case β = 1 can be
included since the Dagum correlation function with β = 1 equals the generalized
Cauchy correlation function with β = α. The construction of a mosaic random field
Z having (4.71) as its correlation function is similar to the construction made for
the Cauchy correlation function in Example 4.4.2 as we will show now.

Let ψ2 be the probability generating function of the Sibuya(α) distributed random
variable in Example 4.4.2 and let ψ1 be the probability generating function of the
NegBin(r, p) distributed random variable in Example 4.4.2. This time, we take
r = 1, hence a geometric distribution on N0, so that

(ψ1 ◦ ψ2)(t) =
(

1 +
1− p
p

(1− t)α
)−1

, t ∈ [−1, 1].
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4. A General Class of Mosaic Random Fields

Putting additionally a Sibuya(β) probability generating function in front, we obtain

ψN(t) = 1−
( (1− t)α(1− p)/p

1 + (1− t)α(1− p)/p

)β
, t ∈ [−1, 1],

as the probability generating function of the compound random variable

N =
M∑
m=1

Lm∑
l=1

Kl,m

for independent random variables M ∼ Sibuya(β), Lm ∼ GeoN0(p), m ∈ N, and
Kl,m ∼ Sibuya(α), l,m ∈ N (see Lemma 4.1.8). If we take random hemispheres
Bπ/2(X), X ∼ U(Sd), as random sets, we have by (4.64) and (4.29)

ρ(x, y) = 1−
( (dxy/π)α(1− p)/p

1 + (dxy/π)α(1− p)/p

)β
, x, y ∈M,

as the correlation function of the corresponding simple mosaic random field. Choo-

sing p =
(
1+
(
π/c
)α)−1

, c > 0, α ∈ (0, 1], as the success probability for the geometric
distribution, we arrive at (4.71).

For the simulations we choose d = 2 and standard normally distributed marginals
(Ui,j, i, j ∈ N). Figure 4.8a displays the Dagum correlation function on the sphere
for a scale of c = π/2 and different shape parameter α and β. Simulations of the
associated simple mosaic random field are given in Figures 4.8b and 4.8c. The
bound on the Kolmogorov distance of the marginal distribution of Z and a standard
normal distribution is again equal to CBE E(|U |3)/

√
n =

√
2/(nπ) and we have

chosen n = 300 superpositions of simple mosaic random field in Figure 4.8d and
n = 1000 in Figure 4.8e.

Remark 4.6.2. Example 4.6.1 illustrates, that the correlation function of a mosaic
random field is widely independent of the particular choice of the index set M of the
mosaic random field. This independence can also be used to explain the restriction to
α ∈ (0, 1] in Example 4.4.2 concerning the generalized Cauchy correlation function.

Suppose Z is a simple mosaic random field on M = [−1, 1]d for d ≥ 2 with random
half-spaces as random sets and let us assume for the moment, that we can find a
distribution for the number N of random sets such that for the correlation function
ρ of Z

ρ(x, y) =
(

1 +
(dxy
c

)α)−β/α
, x, y ∈ [−1, 1]d, (4.72)

holds true also for α ∈ (1, 2]. Let us now choose a simple mosaic random field Z̃ on
Sd with random hemispheres as random sets and a compound number Ñ of random
sets of the form

Ñ =
N∑
n=1

An,

where N is the number of random sets for the simple mosaic random field on [−1, 1]d

from above and (An, n ∈ N) is an independent sequence of Bernoulli random varia-
bles with success probability p = (cd π)/(2

√
d), which we assume to be independent
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4.6. Explicit Correlation Functions on Sd

(a) Dagum Correlation function (4.71) for different α, β. The scale parameter is c = π/2.

(b) Simple mosaic random field with
α = 0.8, β = 1, c = π/2.

(c) Simple mosaic random field with
α = β = 0.8, c = π/2.

(d) Approximate Gaussian random
field with α = β = 0.8, c = π/2,
n = 300.

(e) Approximate Gaussian random
field with α = β = 0.8, c = π/2,
n = 1000.

Figure 4.8.: Simple mosaic random field with the Dagum correlation function (4.71).
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4. A General Class of Mosaic Random Fields

of N . For all d ≥ 2 we have p ∈ (0, 1) since c2 = 2/π and cd is strictly decreasing
by Lemma 4.3.3. The probability generating function ψA of a Bernoulli random
variable A is

ψA(t) = 1− p+ p t, t ∈ [−1, 1].

Using (4.29), Lemma 4.1.8, and (4.64), we see that the correlation function ρ̃ of Z̃
is

ρ̃(x, y) = (ψN ◦ ψA)
(

1− dSd(x, y)

π

)
= ψN

(
1− cd

dSd(x, y)

2
√
d

)
, x, y ∈ Sd.

Our assumption (4.72) implies

ψN

(
1− cd

θ

2
√
d

)
=
(

1 +
(θ
c

)α)−β/α
for all θ ∈

[
0, 2
√
d
]
. Because ψÑ = ψN ◦ ψA is a power series, we have with the

identity theorem for power series (e.g. [30, Theorem III.3.2]) that

ψÑ

(
1− θ

π

)
=
(

1 +
(θ
c

)α)−β/α
holds true for all θ ∈ [0, π]. In other words, the generalized Cauchy correlation
function with α ∈ (1, 2] is the correlation function of the hypothetical random field
Z̃ on Sd that we have constructed. But [33, Example 3] shows that the generalized
Cauchy correlation function with α ∈ (1, 2] is not a covariance function on Sd. We
conclude that there can not be a simple mosaic random field on [−1, 1]d, d ≥ 2,
with half-spaces as random sets, such that the correlation function of this mosaic
random field is given by the Cauchy correlation function for α ∈ (1, 2]. A similar
construction for the powered exponential correlation function (2. in Table 4.1) and
[33, Example 1] shows that the same holds true for the powered exponential function
and α ∈ (1, 2].

Example 4.6.3. In this example we want to illustrate the application of formula
(4.66) in Proposition 4.5.1.

Suppose Z is a random token field on Sd with random closed balls BR(X) as
random sets and X ∼ U(Sd). Let cos(R) be distributed according to the distribution
function FQ in (4.65). In caseQ = 0 and p0 = 1/2, the function FQ is the distribution
function of a uniform distribution on [−1, 1]. Accordingly, the density ϕR of R is

ϕR(r) =
1

2
sin(r)1[0,π](r), r ∈ R. (4.73)

The density ϕR̃ of a radius R̃ such that cos(R̃) is distributed according to the
distribution function FQ with Q = 2, p0 = p1 = 0, and p2 = 1

2
, is

ϕR̃(r) =
5

2
sin(r) cos4(r)1[0,π](r), r ∈ R. (4.74)

Both densities and simulations of random token fields with random balls BR(X) and
BR̃(X), respectively, are displayed in Figure 4.9. For the simulations in Figures 4.9c
and 4.9d we took the same simulated values for the number of random sets N , the
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4.6. Explicit Correlation Functions on Sd

(a) Density ϕR in (4.73). (b) Density ϕR̃ in (4.74).

(c) Random token field with
random balls BR(X).

(d) Random token field with
random balls BR̃(X).

Figure 4.9.: Comparison of random token fields with different distributions of the
radius R.

centers of the balls Xn, and the marginals Ui,j. Figure 4.9 illustrates, how the choice
of Q and that of the probabilities p0, . . . , pQ, determines the size of the random balls
which are visible in the simulations. While R is likely to attain values near π/2,
therefore realizing random balls BR(X) which are nearly as large as hemispheres,
the realizations of the random variable R̃ are small or large, resulting in random
balls BR̃(X) which are either small or very large (larger than hemispheres).

By formulae (4.66) and (4.67) in Proposition 4.5.1 we have

P
(
x, y ∈ BR(X)

)
=

1

2
− 1

2
C0,1,d sin

(dxy
2

)
=

1

2

(
1−

Γ
(
(d+ 1)/2

)
√
πΓ
(
(d+ 2)/2

) sin
(dxy

2

))
=

1

2

(
1− cd+1 sin

(dxy
2

))
, x, y ∈ Sd, (4.75)
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and

P
(
x, y ∈ BR̃(X)

)
=

1

2

(
1− C2,1,d sin

(dxy
2

)
cos4

(dxy
2

)
− C2,2,d sin3

(dxy
2

)
cos2

(dxy
2

)
− C2,3,d sin5

(dxy
2

))
, x, y ∈ Sd. (4.76)

The appearance of the factor cd of Lemma 4.3.3 in (4.75) is no coincidence. Because
of dSd(x, y) = arccos

(
〈x, y〉

)
we have

P
(
x, y ∈ BR(X)

)
= P

(
dSd(x,X) ≤ R, dSd(y,X) ≤ R

)
= P

(
〈x,X〉 ≥ cos(R), 〈y,X〉 ≥ cos(R)

)
= P

(
x, y ∈ H

(
X, cos(R)

))
with random half-spaces H

(
X, cos(R)

)
in Rd+1. Since cos(R) ∼ U

(
[−1, 1]

)
we have

by (4.46)

P
(
x, y ∈ BR(X)

)
=

1

2

(
1− cd+1

‖x− y‖
2

)
.

Basis trigonometry shows that the chordal distance ‖x− y‖ of two points x, y ∈ Sd
is related to the great circle distance dSd(x, y) by

‖x− y‖ = 2 sin
(dSd(x, y)

2

)
, x, y ∈ Sd,

so that (4.75) also follows from (4.46).
If ρ denotes the correlation function of a random token field with radius R and

ρ̃ the correlation function in case the radius is R̃, plugging in formulae (4.75) and
(4.76) into formula (4.30) for the correlation function of a random token field yields

ρ(x, y) = λ
(

1− cd+1 sin
(dxy

2

))
+ 1− λ, x, y ∈ Sd (4.77)

and

ρ̃(x, y) = λ

(
1− C2,1,d sin

(dxy
2

)
cos4

(dxy
2

)
− C2,2,d sin3

(dxy
2

)
cos2

(dxy
2

)
− C2,3,d sin5

(dxy
2

))
+ 1− λ, x, y ∈ Sd, (4.78)

with

λ =
a

a+ b/2
, a = E(U2)E(N), b = E(U)2

(
Var(N)− E(N)

)
.

We observe that the correlation function of the random token field is a linear
combination of the correlation function ρ1(x, y) = 2P

(
x, y ∈ BR(X)

)
(ρ̃1(x, y) =

2P
(
x, y ∈ BR̃(X)

)
, respectively) and the degenerate correlation function ρ2 ≡ 1. To

see that ρ1 and ρ̃1 are indeed correlation functions on Sd, one can proceed similarly
as in (4.49).
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4.6. Explicit Correlation Functions on Sd

The coefficient λ is determined by the moments of N and U , which we have
not specified yet. If λ ∈ (0, 1] the validity of the correlation functions (4.77) and
(4.78) would also follow from Lemma 4.1.2. Therefore it is somewhat surprising that
we can pick λ even from the interval (0, 2), which we show now. If N is GeoN(p)
distributed and if the marginals Ui,j, i, j ∈ N, follow a N (µ, σ2) distribution, the
factor λ becomes

λ =
p (µ2 + σ2)

p σ2 + µ2/2
, µ ∈ R, σ > 0, p ∈ (0, 1).

This λ can attain any value in (0, 2), as can be seen from the parametrization

µ = 1, σ(λ) =

√
2− λ
λ

, p(λ) =
λ2

2(λ− 1)2 + 2
, λ ∈ (0, 2). (4.79)

This representation of the parametrization is also useful for picking the correspon-
ding parameter in the simulation. Figure 4.10 visualizes the functions λ 7→ σ(λ)
and λ 7→ p(λ).

Figure 4.10.: The functions λ 7→ σ(λ) and λ 7→ p(λ).

The correlation function (4.77) on S2 (recall that c3 = 1/2) is depicted in Figure
4.11a. Realizations of the associated random token field on S2 are given in Figures
4.11b and 4.11c. The big difference in the number of realized random sets and in
the range of the random fields in Figures 4.11b and 4.11c is due to the particular
dependence of the success probability p and the variance σ2 on λ, cf. Figure 4.10.

Concerning the simulation of an approximate Gaussian random field, some com-
putations show that the absolute third moment of a N (µ, σ2) distributed random
variable Y is given by

E(|Y |3) = µ(µ2 + 3σ2)
(

1 + 2Φ
(
−µ
σ

))
+ σ(µ2 + 2σ2)

2√
2π
e−µ

2/(2σ2).

Plugging in the corresponding values in (4.55) we obtain the bounds 127.72/
√
n in

case λ = 1/2 and 73.07/
√
n if λ = 3/2. However our simulations in Figures 4.11d

and 4.11e show, that already n = 10000 yields acceptable results in the sense that
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4. A General Class of Mosaic Random Fields

none of the simulated balls on S2 is visible anymore. This is not surprising as our
bound in (4.39) is not sharp.

Figure 4.12 displays the analogous simulations for the random token field with
the radius R̃ and the correlation function (4.78).

More correlation functions on Sd for which there are associated mosaic random
fields are given in Tables 4.3 and 4.4. Most of these correlation functions did already
appear in Tables 4.1 and 4.2, except that some of the constants are different on the
sphere. We refer the reader to Appendix B.1 for details.

4.7. Cylinder and Torus

In this section we give a short excursion to two more exotic spaces, cylinder and
torus. Let O = S1 × [0, h] be an open cylinder with radius 1 and height h > 0. Let
dS1(x1, y1) = arccos

(
〈x1, y1〉

)
, x1, y1 ∈ S1, be the great circle metric on S1. Then

dO
(
(x1, x2), (y1, y2)

)
=
√
d2
S1(x1, y1) + |x2 − y2|2, x1, y1 ∈ S1, x2, y2 ∈ [0, h],

defines a metric on O. Fix a ∈ (0, π], and let (Dn, n ∈ N) be a sequence of [0, a]-
valued random variables, let (Un, n ∈ N) be a sequence of uniformly distributed
random variables on [0, 2π), and let (Vn, n ∈ N) be a sequence of uniformly distri-
buted random variables on [−a/2, h+ a/2]. Suppose all random variables above are
independent. Let F (u, v) =

(
cosu, sinu, v

)
, u ∈ [0, 2π), v ∈ [−a/2, h+ a/2], and let

us define (Xn, n ∈ N) by Xn = F (Un, Vn), n ∈ N. Then

Bn = BDn/2(Xn) =
{
z ∈ O

∣∣∣ dO(z,Xn) ≤ Dn

2

}
defines an i.i.d. sequence (Bn, n ∈ N) of random closed balls on O. Let D be equal
to some constant t ∈ (0, a], such that a single ball does not intersect itself. Then

P (x, y ∈ B) = P
(
X ∈ Bt/2(x) ∩Bt/2(y)

)
=
λ2
(
F−1

(
Bt/2(x) ∩Bt/2(y)

))
2π(h+ a)

holds for all x, y ∈ O. The set F−1
(
Bt/2(x)∩Bt/2(y)

)
is the intersection of two balls

Bt/2(x̃) and Bt/2(ỹ) in R2 with x̃, ỹ ∈ [−t/2, 2π+t/2)× [0, h] and ‖x̃− ỹ‖ = dO(x, y),
where a part of this intersection which possibly exceeds the left or right boundary
of [0, 2π) × [−a/2, h + a/2] is reflected to the opposite side. The volume of the
intersection of the balls does not change by this reflection and hence we can use
(4.42) and (4.43) to get

P (x, y ∈ B) =
1

4π(h+ a)

(
t2 arccos

(dO(x, y)

t

)
− dO(x, y)

√
t2 − d2

O(x, y)
)
1dO(x,y)≤t.

(4.80)

Just as in Section 4.3 this formula can be integrated with respect to the distribution
of D in order to obtain P (x, y ∈ B) for a random diameter of the ball B and the
resulting expressions are up to the normalization constant equal to (4.45) and (4.47)
with dxy = dO(x, y). Using for example the distribution function (4.44) of Sironvalle
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4.7. Cylinder and Torus

(a) Correlation function (4.77) for different λ.

(b) Random token field with λ =
1/2.

(c) Random token field with λ =
3/2.

(d) Approximate Gaussian random
field with λ = 1/2, n = 10000.

(e) Approximate Gaussian random
field with λ = 3/2, n = 10000.

Figure 4.11.: Random token field with the correlation function (4.77) and the radius
R.
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4. A General Class of Mosaic Random Fields

(a) Correlation function (4.78) for different λ.

(b) Random token field with λ =
1/2.

(c) Random token field with λ =
3/2.

(d) Approximate Gaussian random
field with λ = 1/2, n = 10000.

(e) Approximate Gaussian random
field with λ = 3/2, n = 10000.

Figure 4.12.: Random token field with the correlation function (4.78) and the radius
R̃.
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Correlation function Parameter Lit.

1. ρ(x, y) =
(
1 +

(dxy
c

)α)−β/α
α ∈ (0, 1], β, c > 0 [33]

2. ρ(x, y) = e−(dxy/c)α α ∈ (0, 1], c > 0 [33]

3. ρ(x, y) = 1−
( (dxy/c)α

1+(dxy/c)α

)β
α, β ∈ (0, 1], c > 0 [33]

4. ρ(x, y) = 1−
( (1+(dxy/c)α)γ−1

(1+(dxy/c)α)γ

)β
α, β ∈ (0, 1], γ, c > 0

5. ρ(x, y) =
(
1−

(dxy
c

)α)n
α ∈ (0, 1], c ≥ π, n ∈ N0 [40]*

6. ρ(x, y) =
(
1− dxy

π

)n
e−(dxy/c)α α ∈ (0, 1], c > 0, n ∈ N0 [33]*

7. ρ(x, y) = 1−(dxy/π)α

1−dxy/π α ∈ (0, 1]

8. ρ(x, y) = 1−e−(dxy/c)
α

(dxy/c)α
α ∈ (0, 1], c > 0

9. ρ(x, y) = log(1+(dxy/c)α)

(dxy/c)α
α ∈ (0, 1], c > 0

10. ρ(x, y) =
(
1 + β − βe−(dxy/c)α

)−γ
α ∈ (0, 1], β, γ, c > 0

11. ρ(x, y) = e−β(dxy/c)α/(1+(dxy/c)α) α ∈ (0, 1], β, c > 0

12. ρ(x, y) = 1+(dxy/c)α

1+β(dxy/c)α
α ∈ (0, 1], β ≥ 1, c > 0

13. ρ(x, y) = e−β(1−e−(dxy/c)
α

) α ∈ (0, 1], β, c > 0

14. ρ(x, y) = 1−
( γ(dxy/c)α

1+(1+γ)(dxy/c)α

)β
α, β ∈ (0, 1], γ ≥ 0, c > 0

15. ρ(x, y) = e−(sin(dxy/2)/c)α α ∈ (0, 1], c > 0 [33, 86]

16. ρ(x, y) =
(
1 +

(
1
c

sin
(dxy

2

))α)−β/α
α ∈ (0, 1], β, c > 0 [33, 86]

17. ρ(x, y) = 1−
(
cd+1 sin

(dxy
2

))α
α ∈ (0, 1] [33, 86]

Table 4.3.: Correlation functions of simple mosaic random fields on Sd. A '*' at the
reference indicates that the given correlation function is new, but can
be obtained as convex combinations or products of known correlation
functions.
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4. A General Class of Mosaic Random Fields

Correlation function Parameter Lit.

1. ρ(x, y) = λ
(
1− dxy

π

)
+ 1− λ λ ∈ (0, 2) [33]

2. ρ2(x, y) = 1dxy=0 + 1
π(1−cos(r))

(
arccos

( cos2(r)−cos(dxy)

sin2(r)

)
−2 cos(r) arccos

( cos(r)(1−cos(dxy))

sin(r) sin(dxy)

))
10<dxy≤2r r ∈ (0, π

2
] [85]

3. ρ(x, y) = 1−dxy/π
1+dxy/c

c > π

4. ρ(x, y) = λ
(
1− dxy

π

)
e−dxy/c + (1− λ)

(
1− dxy

π

)
c > 0, λ ∈ (0, 1) [33]*

5. ρ(x, y) = 1− 21−α dxy/π

(1+dxy/π)1−α
α ∈ (0, 1]

6. ρ(x, y) = λ
(
1− cd+1 sin

(dxy
2

))
+ 1− λ λ ∈ (0, 2) [33]

7. ρ(x, y) = 1− cd+1
3
d+2

sin
(dxy

2

)
cos2

(dxy
2

)
−cd+1

2
d+2

sin3
(dxy

2

)
Table 4.4.: Correlation functions of random token, dead leaves, and mixture random

fields on Sd. Correlation function 2. is a correlation functions on S2. A '*'
at the reference indicates that the given correlation function is new, but
can be obtained as convex combinations or products of known correlation
functions.
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4.8. Simple Mosaic Random Fields Revisited

for the diameter of the balls, we get for the corresponding random token field (4.21)
with Poisson distributed number of balls the correlation function

ρ(x, y) =

(
1−

3
√
d2
S1(x1, y1) + |x2 − y2|2

2a

+
(d2

S1(x1, y1) + |x2 − y2|2)3/2

2a3

)
1√d2

S1
(x1,y1)+|x2−y2|2≤a.

The two-dimensional torus T2 = S1 × S1 can be treated in a similar way. A
convenient choice for the random closed ball is

B = BD/2(X) =
{
z ∈ T2

∣∣∣ dT2(z,X) ≤ D

2

}
with dT2(x, y) =

√
d2
S1(x1, y1) + d2

S1(x2, y2), x, y ∈ T2. Here, we let X = F (U, V )
with the parametrization F (u, v) =

(
cosu, sinu, cos v, sin v

)
, u, v ∈ [0, 2π), the

random variables U and V are uniformly distributed on [0, 2π), the diameter D
is a [0, a]-valued random variable for a cutoff a ∈ [0, π], and all random variables
are assumed to be independent. For example, if the diameter D is equal to some
constant t ∈ (0, a], then the probability P (x, y ∈ B) for x, y ∈ T2 is given by

P (x, y ∈ B) =
1

8π2

(
t2 arccos

(dT2(x, y)

t

)
− dT2(x, y)

√
t2 − dT2(x, y)2

)
1dT2 (x,y)≤t.

As an example, a simple mosaic random field Z with Poi(λ) distributed N and this
random closed sets has then by virtue of Corollary 4.2.4 the correlation function

ρ(x, y) = e
−λ
(
t2/(8π)−1/(4π2)

(
t2 arccos(dT2 (x,y)/t)−dT2 (x,y)

√
t2−dT2 (x,y)2

)
1dT2 (x,y)≤t

)
(4.81)

for all x, y ∈ T2. This correlation function and simulations of the associated simple
mosaic random field are depicted in Figure 4.13. For the simulations we have chosen
standard normally distributed marginals.

4.8. Simple Mosaic Random Fields Revisited

If ρ is a correlation function on some set M and ψ defined by

ψ(t) =
∑
n∈N0

pnt
n, pn ≥ 0,

∑
n∈N0

pn = 1, t ∈ [−1, 1],

is a probability generating function, then it follows from Lemma 4.1.2 on page 47,
that ψ ◦ ρ is a correlation function on M . Lemma 4.8.1 gives an alternative proof of
this well-known result, which reveals a possibility to simulate a random field having
the correlation function ψ ◦ ρ given that we can simulate a random field with the
correlation function ρ.

Lemma 4.8.1. Suppose ρ is a real-valued correlation function on M and ψ is a
probability generating function. Then ψ ◦ ρ is a correlation function on M .

93



4. A General Class of Mosaic Random Fields

(a) Correlation function (4.81) for different t and λ.

(b) Simple mosaic random field with
t = π/2, λ = 10.

(c) Simple mosaic random field with
t = π, λ = 10.

(d) Approximate Gaussian random
field with t = π, λ = 10, n =
300.

(e) Approximate Gaussian random
field with t = π, λ = 10, n =
1000.

Figure 4.13.: Simple mosaic random field on T2 with the correlation function (4.81).
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4.8. Simple Mosaic Random Fields Revisited

Proof. Since ρ is a correlation function, its range is contained in [−1, 1] which in
turn is contained in the region of convergence of any probability generating function.
Hence the composition is well-defined. The assumptions imply the existence of a
probability space (Ω,A , P ) on which there are defined an N0-valued random va-
riable N having the probability generating function ψ, a real-valued random vari-
able U with E(U) = 0 and E(U2) = 1, and centered random fields (Zn, n ∈ N),
Zn = (Zn(x), x ∈ M), such that Cov(Zn(x), Zn(y)) = ρ(x, y) for all n ∈ N. Fur-
thermore, we may assume that N,U , and the random fields Zn, n ∈ N, are inde-
pendent. More precisely, the family formed by N , U , and the sequence of random
vectors

(
(Zn(x1), . . . , Zn(xm)), n ∈ N

)
is independent for any choice of m ∈ N and

{x1, . . . xm} ⊆M . Consider the random field

Y (x) = U
N∏
n=1

Zn(x), x ∈M. (4.82)

By independence

E
(
Y (x)

)
=
∑
n∈N0

P (N = n)E(U)
n∏
k=1

E
(
Zk(x)

)
= 0

and since furthermore E(U2) = 1 and E
(
Zn(x)Zn(y)

)
= ρ(x, y) for all n ∈ N,

Cov
(
Y (x), Y (y)

)
= E

(
Y (x)Y (y)

)
=
∑
n∈N0

P (N = n)E(U2)
n∏
k=1

E
(
Zk(x)Zk(y)

)
=
∑
n∈N0

P (N = n)
(
ρ(x, y)

)n
= (ψ ◦ ρ)(x, y) (4.83)

for all x, y ∈ M . Setting y = x in (4.83) we get Var
(
Y (x)

)
= 1 for all x ∈ M

and the claim follows because ψ ◦ ρ is the correlation function of the random field
(4.82). �

Remark 4.8.2. A construction of the form (4.82) with Poisson distributed N has
been used by Matheron in [64] in order to show that e−tγ is positive definite for any
t > 0 if γ is a conditionally negative definite kernel.

Let us now assume that M is as in Section 4.2 and let Z be a simple mosaic
random field with N ≡ 1 random sets, such that Z may be written as

Z(x) = V 1x∈B +W 1x/∈B, x ∈M, (4.84)

for a random set B in M and real-valued random variables V and W . We assume
that B, V , and W are independent and furthermore, that the random variables V
and W are centered and normalized, i.e.

E(V ) = E(W ) = 0 and E(V 2) = E(W 2) = 1.

Then E
(
Z(x)

)
= 0 and Var

(
Z(x)

)
= 1 and we get either directly or with (4.29)

ρZ(x, y) = P (x, y ∈ B) + P (x, y /∈ B) = 1 + 2pxy − px − py, x, y ∈M,
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4. A General Class of Mosaic Random Fields

for the correlation function ρZ of Z. Applying Lemma 4.8.1 to this correlation
function and a probability generating function ψN of some N0-valued random vari-
able N , we get for the correlation function of the random field Y in (4.82)

ρ(x, y) = ψN(1 + 2pxy − px − py), x, y ∈M,

which is exactly the correlation function (4.29) of the simple mosaic random field in
section 4.2. To clarify the connection between the simple mosaic random field and
Y , we use the following formula.

Lemma 4.8.3. Let (an,∈ N), (bn, n ∈ N) be sequences in R, then for any n ∈ N0

n∏
i=1

(ai + bi) =
∑
I∈Pn

(∏
i∈I

ai
∏

j∈{1,...,n}\I

bj

)
. (4.85)

Proof. Formula (4.85) is true for n = 0, since both sides equal 1 by definition of the
empty product and because P0 = {∅}. Suppose (4.85) holds true for some n ∈ N,
then

n+1∏
i=1

(ai + bi) =

(∑
I∈Pn

(∏
i∈I

ai
∏

j∈{1,...,n}\I

bj

))
(an+1 + bn+1)

=
∑
I∈Pn

( ∏
i∈I∪{n+1}

ai
∏

j∈{1,...,n}\I

bj

)
+
∑
I∈Pn

(∏
i∈I

ai
∏

j∈{1,...,n+1}\I

bj

)

=
∑

J∈{I∪{n+1}|I∈Pn}

(∏
i∈J

ai
∏

j∈{1,...,n+1}\J

bj

)
+
∑
I∈Pn

(∏
i∈I

ai
∏

j∈{1,...,n+1}\I

bj

)
.

Because the summands of the two sums in the last line are equal and because Pn+1

may be written as

Pn+1 = {I ∪ {n+ 1} | I ∈ Pn} ] Pn,

the assertion in the lemma follows by induction. �

Since the random field Z in (4.84) is centered and normalized, the associated
random field Y in (4.84) may be taken to be

Y (x) = U

N∏
i=1

(
Vi 1x∈Bi +Wi 1x/∈Bi

)
, x ∈M, (4.86)

with identically distributed sequences (Vi, i ∈ N) and (Wi, i ∈ N) of centered and
normalized random variables, and an identically distributed sequence (Bi, i ∈ N) of
random closed sets, such that the family formed by N , (Vi, i ∈ N), (Wi, i ∈ N), and
(Bi, i ∈ N) is independent. The simple mosaic random field ZM in (4.20) is of the
form

ZM(x) =
∑
I∈PN

UI 1x∈CI , x ∈M,
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4.8. Simple Mosaic Random Fields Revisited

with

CI =

(⋂
i∈I

Bi

)
∩
( ⋂
j∈{1,...,n}\I

Bc
j

)
, I ∈ Pn, n ∈ N0,

and identically distributed sequences (UI , I ∈ Pn), n ∈ N, and (Bi, i ∈ N), such that
the family formed by N , (UI , I ∈ P∗(N)), and (Bi, i ∈ N) is independent.

Because of∏
i∈I

1x∈Bi

∏
j∈{1,...,n}\I

1x/∈Bj = 1x∈(
⋂
i∈I Bi)∩(

⋂
j∈{1,...,n}\I B

c
j ) = 1x∈CI

for all x ∈ M , I ∈ Pn, and n ∈ N0, an application of (4.85) yields for every x ∈ M
the pointwise equality

Y (x) =
∑
I∈PN

ŨI1x∈CI with ŨI = U
∏
i∈I

Vi
∏

j∈{1,...,n}\I

Wj, I ∈ Pn, n ∈ N0.

Hence Y in (4.86) and ZM are of the same form, except that the random variables
(ŨI , I ∈ Pn), n ∈ N0, are not independent but uncorrelated: If n ∈ N0 and I, J ∈ Pn,
then the assumptions on the random variables U , Vi, and Wj imply

E
(
ŨIŨJ

)
= E(U2)E(V 2)|I∩J | E(V )|I4J | E(W 2)|{1,...,n}\(I∪J)| E(W )|{1,...,n}∩(I4J)|

=

{
1, I = J,

0, I 6= J.

It is of course irrelevant for the correlation function of a mosaic random field whether
the marginals are independent as for ZM or uncorrelated as for Y . In fact, we could
have also assumed uncorrelated marginals in Theorem 4.2.2 and the proof would
have followed the same lines. We may therefore think of Y in (4.86) as a simplified
representation of the simple mosaic random field.

As an application of this new representation, we now impose a modest correlation
structure on the marginals by assuming

E(VW ) = 1− κ, κ ∈ [0, 2],

instead of independence for the random variables V and W in (4.84). Lemma 4.8.1
is still applicable, so that we obtain

ρ(x, y) = (ψN ◦ ρκ)(x, y), x, y ∈M, (4.87)

as the correlation function of Y in (4.86) and ρκ is the correlation function of the
random field Z in (4.84) under correlated marginals V and W . A direct calculation
in the spirit of Theorem 4.2.2 shows

ρκ(x, y) = E(V 2)P (x, y ∈ B) + E(VW )
(
P (x ∈ B, y /∈ B) + P (x /∈ B, y ∈ B)

)
+ E(W 2)P (x, y /∈ B)

= 1− κ(px + py − 2pxy), x, y ∈M. (4.88)
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4. A General Class of Mosaic Random Fields

If M is a bounded subset of Rd and if we take random half-spaces H(X,R) as random
sets for our mosaic random field, the combination of (4.87) and (4.88) result in the
correlation function

ρ(x, y) = ψN

(
1− κ cd

dxy
2CM

)
, x, y ∈M,κ ∈ [0, 2].

For κ = 1 we recover our former correlation function. Through the new parameter κ,
we may now for example weaken the constraint c ≥ 2CM/cd for the scale parameter c
of the correlation function 5. in Table 4.1. Taking κ = 2 and a compound distribution
for N , consisting of a Bin

(
n, (CM/cd c)

α
)

distribution and a Sibuya(α) distribution,
we obtain the correlation function

ρ(x, y) =
(

1−
(dxy
c

)α)n
, α ∈ (0, 1], c ≥ CM

cd
, n ∈ N0. (5’)

The same can be done for the analogous correlation function on the sphere, as is
shown in the next section.

Note that it is not possible to get rid of the dimension-depending constant cd
in the bound on the scale factor c in (5’) with the help of probability generating
functions. An application of the identity theorem for power series as in Remark
4.6.2 shows that there can not exist a probability generating function ψN such that

ψN

(
1− κ cd

dxy
2CM

)
=
(

1−
(dxy
c

)α)n
holds true for all x, y ∈M if c < CM/cd.

4.9. Power Covariance Function on Sd

The power covariance function on S2

C(x, y) = c0 −
(dS2(x, y)

c

)α
, x, y ∈ S2, (4.89)

was introduced in [40]. It was shown there, that for the associated coefficients an,2
in (4.11) the inequalities

an,2 ≥ 0 and
∑
n∈N0

an,2C
1/2
n (1) <∞ (4.90)

hold true, which by Theorem 4.1.5 is equivalent to (4.89) being a continuous and
isotropic covariance function on S2. The parameter constraints that were given in
[40] are α ∈ (0, 1], c > 0, and

c0 ≥
∫ π

0

(θ
c

)α
sin(θ) dθ. (4.91)

To the best of the authors knowledge, the validity of (4.89) on spheres of arbitrary
dimension has not been shown so far. A generalization of the proof in [40] is not
straightforward as the proof relies on sine expansions of Legendre polynomials, which
are the Gegenbauer polynomials C

(d−1)/2
n in case d = 2 (see section 4.1.2).
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In what follows we given a proof of the validity of (4.89) using the simplified
representation of a mosaic random field with correlated marginals in Section 4.8.
Our proof shows the validity of (4.89) on spheres Sd of arbitrary dimension d ∈ N.
In doing so, we obtain a lower bound for c0, which is smaller than the lower bound
given in [40] in case d = 2 (cf. Remark 4.9.2 below). In case α = 1 our bound is also
necessary for the validity of (4.89).

Proposition 4.9.1. The power covariance function (4.89) is a covariance function
on Sd if α ∈ (0, 1], c > 0, and

c0 ≥
( π

2c

)α
. (4.92)

In case α = 1, the condition (4.92) is also necessary in order for (4.89) being a
covariance function on Sd for all c > 0.

Proof. Consider a mosaic random field Z̄ on Sd of the form

Z̄(x) = U 1x∈B + V 1x/∈B, x ∈ Sd,

with centered and normalized random variables U and V such that E(UV ) = −1.
Let

B = Bπ/2(X) =
{
z ∈ Sd

∣∣∣ dSd(z,X) ≤ π

2

}
, X ∼ U(Sd),

be a random hemisphere on Sd. We may assume that X is independent of U and
V . From (4.88) and (4.64) we get for the correlation function ρ̄ of Z̄

ρ̄(x, y) = 1− 2(px + py − 2pxy) = 1− dSd(x, y)

π/2
, x, y ∈ Sd. (4.93)

From Lemma 4.8.1 it follows that

ρ(x, y) = (ψ ◦ ρ̄)(x, y), x, y ∈ Sd, (4.94)

is a correlation function on Sd for any probability generating function ψ. Let
ψ = ψA ◦ ψS, where ψA is the probability generating function of a Bernoulli dis-
tribution with success probability p and ψS is the probability generating function of
a Sibuya(α) distribution, so that

ψ(t) = 1− p (1− t)α, α ∈ (0, 1], p ∈ [0, 1], t ∈ [−1, 1]. (4.95)

Combining (4.94) and (4.95) we have that

ρ(x, y) = 1− p dSd(x, y)

π/2
, x, y ∈ Sd,

is a correlation function on Sd. Let us now take

p =
1

c0

( π
2c

)α
, (4.96)
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4. A General Class of Mosaic Random Fields

then our assumption on c0 implies that p ∈ [0, 1] for all α ∈ (0, 1] and all c > 0.
With this p, the correlation function ρ becomes

ρ(x, y) = 1− 1

c0

(dSd(x, y)

c

)α
, x, y ∈ Sd, (4.97)

from which it follows that

C(x, y) = c0 −
(dSd(x, y)

c

)α
, x, y ∈ Sd,

is a covariance function on Sd.
To prove necessity in case α = 1, we consider the first Schoenberg coefficient b0,d

of (4.97). If d = 1, we have by (4.15)

b0,1 =
1

π

∫ π

0

(
1− 1

c0

θ

c

)
dθ = 1− 1

c0

π

2c
,

which is negative if c0 < π/(2c). If d ≥ 2, equation (4.14) yields

b0,d =
d− 1

23−dπ

Γ((d− 1)/2)2

Γ(d− 1)

∫ π

0

(
1− 1

c0

θ

c

)
C

(d−1)/2
0

(
cos(θ)

)
sind−1(θ) dθ.

Since Cλ
0 ≡ 1 for all λ ≥ 0, the assumption c0 < π/(2c) and integration by substi-

tution lead to

b0,d < −
d− 1

22−dπ2

Γ((d− 1)/2)2

Γ(d− 1)

∫ π/2

−π/2
θ cosd−1(θ) dθ = 0.

Therefore Theorem 4.1.5 implies that c0 ≥ π/(2c) is also necessary in case α = 1
and c > 0. �

Simulations of the mosaic random field that is constructed in the proof of Propo-
sition 4.9.1 are given in Example 5.3.6 in Chapter 5.

Remark 4.9.2. From∫ π

0

(θ
c

)α
sin(θ) dθ =

∫ π/2

0

(θ
c

)α
sin(θ) dθ +

∫ π

π/2

(θ
c

)α
sin(θ) dθ

≥
( π

2c

)α
+

∫ π

π/2

(θ
c

)α
sin(θ) dθ

>
( π

2c

)α
for all α ∈ (0, 1] and all c > 0, it follows that the bound on c0 given in Proposition
4.9.1 for d = 2 is lower than the bound given in [40]. However, a closer look at the
proof given in [40] suggests that it might be possible to work with the constraint

c0 ≥
1

2

∫ π

0

(θ
c

)α
sin(θ) dθ (4.98)

there. Figure 4.14 compares this new bound with the bound given in Proposition
4.9.1 and indicates, that the bound in (4.98) is slightly smaller (the integration
for the plot of α 7→ 2−1

∫ π
0

(θ/c)α sin(θ) dθ was done numerically). Note that the
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Figure 4.14.: Comparison of the bounds in Remark 4.9.2 for c = π.

condition (4.98) is not compatible with the proof of Proposition 4.9.1, because for
any c0 smaller than the bound given in Proposition 4.9.1 the probability p of the
Bernoulli distribution in (4.96) is not well-defined. However, the validity of (4.98)
is not guaranteed, as the details of a modified version of the proof given in [40] still
need to be worked out. Also, as mentioned before, the proof in [40] is valid only in
d = 2.
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5. Spectral Turning Bands on the
Sphere

5.1. The Spectral Turning Bands Method

The spectral turning bands method is a simulation method for random fields on Rd

which is based on the Schoenberg’s spectral representation (Theorem 4.1.4 on page
49) of covariance functions. In this section we motivate the method in a way that
allows us to apply it to the sphere in the next section.

We begin with Karhunen’s theorem on the spectral representation of second-order
random fields (the classical reference is [48]), in its general form given in [10].

Let (Ω,A , P ) be a probability space, (W,W ) a measurable space, and σ a σ-finite
measure on (W,W ). The set consisting of all elements B ∈ W such that σ(B) <∞
is denoted by W0. A mapping ξ : W0 → L2(Ω,A , P ;C) is called random orthogonal
measure with structure function σ if

1. ξ(A ∪B) = ξ(A) + ξ(B) for all disjoint A,B ∈ W0,

2. E
(
ξ(A)ξ(B)

)
= σ(A ∩B) for all A,B ∈ W0.

Theorem 5.1.1 (Karhunen, 1946; Berschneider, Sasvári, 2012). Let M be a set
and suppose that Z : M → L2(Ω,A , P ;C) is a second-order random field on M .
Let furthermore C(x, y) = E

(
Z(x)Z(y)

)
, x, y ∈ M , and assume that C can be

represented as

C(x, y) =

∫
W

f(x, z)f(y, z) dσ(z), x, y ∈M, (5.1)

where

1. σ is a σ-finite meaure on the measurable space (W,W ),

2. f : M ×W → C is such that f(x, ·) ∈ L2(W,W , σ;C) for all x ∈M ,

3. span{f(x, ·) |x ∈M} is dense in L2(W,W , σ;C).

Then there exists a uniquely determined random orthogonal measure ξ with structure
function σ such that

Z(x) =

∫
W

f(x, z) dξ(z), x ∈M. (5.2)

Additionally, setting H(Z) = span{Z(x) |x ∈M} and H(ξ) = span{ξ(A) |A ∈ W0},
it is true that H(Z) = H(ξ).
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5. Spectral Turning Bands on the Sphere

Let a function C with a representation of the form (5.1) be given. Note that (5.1)
implies the positive definiteness of C (cf. Remark 5.1.3 below). Then theoretically,
Theorem 5.1.1 yields a random field Z such that E

(
Z(x)Z(y)

)
= C(x, y), if the

sufficient conditions can be shown to be satisfied. However, if we wish to simulate
Z, there are two drawbacks concerning this approach. First, Condition 3 is quite
technical and hard to verify in general (see [10] for a discussion of this condition).
Second, the random orthogonal measure ξ is obtained as a limit and might not be
given explicitly, implying that the representation (5.2) is not explicit.

On the other hand the statement of Theorem 5.2 is quite strong, as it gives a
representation of the random field Z in L2(Ω,A , P ;C). If our goal is only to find
a random field such that E

(
Z(x)Z(y)

)
= C(x, y) holds true, we can hope for a

statement with less restrictive assumptions.
If the measure σ of Theorem 5.1.1 is finite and if S : Ω → W is a measurable

mapping such that PS = σ/σ(W ), then a very simple orthogonal measure with
structure function σ is given by ξ(B) = εS(B), B ∈ W0. Equation (5.2) with this
orthogonal measure becomes

Z(x) =

∫
W

f(x, z) dξ(z) = f(x, S), x ∈M.

Passing over to a real-valued, centered, and normalized version of the random field
Z, we arrive at the following weaker variant of Theorem 5.1.1.

Lemma 5.1.2. Let M be a set, let (Ω,A , P ) be a probability space, suppose that
(W,W , σ) is a finite measure space, and assume that f : M ×W → R is such that
f(x, ·) ∈ L2(W,W , σ;R) for all x ∈ M . Suppose that a function C : M ×M → R
can be represented as

C(x, y) =

∫
W

f(x, z)f(y, z) dσ(z), x, y ∈M. (5.3)

If S : Ω → W and U : Ω → R are independent measurable mappings such that
PS = σ/σ(W ), E(U) = 0, and E(U2) = 1, then the random field Z defined by

Z(x) =
√
σ(W )Uf(x, S), x ∈M,

has C as its covariance function.

Proof. By independence, we have

E
(
Z(x)

)
=
√
σ(W )E(U)E

(
f(x, S)

)
= 0, x ∈M,

and therefore

Cov
(
Z(x), Z(y)

)
= E

(
Z(x)Z(y)

)
= σ(W )E(U2)E

(
f(x, S)f(y, S)

)
=

∫
W

f(x, z)f(y, z) dσ(z)

= C(x, y), x, y ∈M.

�
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5.1. The Spectral Turning Bands Method

Remark 5.1.3. Neither the statement of Lemma 5.1.2 nor the implicated positive
definiteness of functions C which can be represented in the form (5.3) are new. In
fact, for any Hilbert space (H , 〈·, ·〉H ) and any function f : M → H it follows
from the properties of an inner product, that C(x, y) = 〈f(x), f(y)〉H , x, y ∈ M ,
is positive definite (for instance [75, Section 2.2]). For our purposes, it suffices to
consider the special case H = L2(Ω,A , P ;R).

Let us now turn to the spectral turning bands method on M = Rd (see [58, 75]).
By Theorem 4.1.4 on page 49, any continuous, stationary, and isotropic covariance
function C can be represented as

C(x, y) =

∫
[0,∞)

Ωd(r‖x− y‖) dµ(r), x, y ∈ Rd, (5.4)

with a uniquely determined finite measure µ on
(
[0,∞),B1

(
[0,∞)

))
. A random

field Z having the covariance function (5.4) is given by

Z(x) =
√

2µ
(
[0,∞)

)
cos
(
R〈x,X〉+ V

)
, x ∈ Rd, (5.5)

where R,X, and V are independent random variables such that R ∼ µ/µ([0,∞)),
X ∼ U(Sd−1), and V ∼ U([0, 2π)). This follows from Lemma 5.1.2, as we will show
now. Recall that

Ωd(r) = Γ
(d

2

)(2

r

)(d−2)/2

J(d−2)/2(r), r > 0,

where Jν is the Bessel function of the first kind (4.7). By [35, Formula 8.411.5] and
the definition of the normalized surface measure σ̄d−1 on Sd−1 (cf. equations (1.2)
and (1.3) on page 20), we have

Ωd(r‖x− y‖) =
Γ
(
d/2
)

√
πΓ
(
(d− 1)/2

) ∫ π

0

cos
(
r‖x− y‖ cos(θ)

)
sind−2(θ) dθ

=

∫
Sd−1

cos
(
r‖x− y‖〈z, ed〉

)
dσ̄d−1(z).

The surface measure is invariant with respect to rotations, hence we may replace
the unit vector ed in the integrand by any other element of Sd−1, in particular by
(x − y)/‖x − y‖ if x 6= y, x, y ∈ Rd. This yields for the integrand above with the
addition formula for the cosine function

cos
(
r‖x− y‖

〈
z,

x− y
‖x− y‖

〉)
= cos

(
r〈z, x〉

)
cos
(
r〈z, y〉

)
+ sin

(
r〈z, x〉

)
sin
(
r〈z, y〉

)
,

which can be written as

1

π

∫ 2π

0

cos
(
r〈z, x〉+ θ

)
cos
(
r〈z, y〉+ θ

)
dθ. (5.6)

Therefore the representation (5.4) becomes

C(x, y) =
1

π

∫
[0,∞)

∫
Sd−1

∫ 2π

0

cos
(
r〈z, x〉+ θ

)
cos
(
r〈z, y〉+ θ

)
dθ dσ̄d−1(z) dµ(r)

(5.7)
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5. Spectral Turning Bands on the Sphere

for all x, y ∈ Rd, x 6= y. For x = y (5.6) equals 1 and therefore (5.7) is also
true in that case. Letting ν̄ denote the uniform probability measure on [0, 2π) and
µ̄ = µ/µ([0,∞)), we have from (5.7)

C(x, y) =

∫
W

f(x, (r, z, θ))f(y, (r, z, θ)) dσ(r, z, θ), x, y ∈ Rd,

with

W = [0,∞)× Sd−1 × [0, 2π),

σ = µ̄⊗ σ̄d−1 ⊗ ν̄,
and f(x, (r, z, θ)) =

√
2µ([0,∞)) cos

(
r〈z, x〉+ θ

)
, x ∈ Rd, (r, z, θ) ∈ W.

By Lemma 5.1.2, a random field having the covariance function (5.4) is therefore
given by

Z(x) = U
√

2µ
(
[0,∞)

)
cos
(
R〈x,X〉+ V

)
, x ∈ Rd,

with independent R ∼ µ̄, X ∼ U(Sd−1), V ∼ U([0, 2π]), and a real-valued random
variable U such that E(U) = 0, and E(U2) = 1. Since the random variable U is
merely responsible for centering the random field and because

Z(x) =
√

2µ
(
[0,∞)

)
cos
(
R〈x,X〉+ V

)
is already centered, U can be omitted and we arrive at (5.5). We illustrate the
method with an example.

Example 5.1.4. For d = 2, Schoenberg’s representation (5.4) of a continuous, stati-
onary, and isotropic correlation function ρ becomes

ρ(x, y) =

∫
[0,∞)

J0

(
r‖x− y‖

)
dµ(r),

where µ is a probability measure because ρ is a correlation function. Suppose we
want to simulate a random field having a Gaussian correlation function

ρ(x, y) = e−(‖x−y‖/c)2 , c > 0, x, y ∈ R2. (5.8)

From [35, Formula 6.631.4] and integration by substitution we have

2e−(‖x−y‖/c)2 =

∫ ∞
0

J0

(
s‖x− y‖

)
c2 r e−(cr)2/4 dr,

and hence the spectral measure µ of the Gaussian correlation function is

µ(A) =

∫
A

r

2/c2
e
− r2

2·2/c2 dr, A ∈ B1([0,∞)),

i.e. a Rayleigh distribution with scale parameter σ =
√

2/c. A random variable R
having this distribution can be simulated by means of the inverse transformation
method:

R
d
=

2

c

√
− log(U), U ∼ U((0, 1)).
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5.2. Spectral Turning Bands on Sd

For the simulation of X ∼ U(S1) we can simply set X =
(
cos(Ũ), sin(Ũ)

)
, where Ũ

is uniformly distributed on the interval [0, 2π). With V ∼ U([0, 2π)), the random
field (5.5) becomes

Z(x) =
√

2 cos
(
R〈x,X〉+ V

)
, x ∈ R2.

The Gaussian correlation function is depicted in Figure 5.1a. Simulations of the
spectral turning bands field on [−1, 1]2 are given in Figures 5.1b and 5.1c. These
Figures illustrate why the method is called turning bands. Figures 5.1d and 5.1e
show simulations of the corresponding approximate Gaussian random fields.

5.2. Spectral Turning Bands on Sd

In this section, we derive a spectral turning bands method on the sphere Sd by the
application of Lemma 5.1.2. Recall that Schoenberg’s representation of a continuous
and isotropic correlation function ρ on Sd is given by

ρ(x, y) =
∑
n∈N0

bn,d
C

(d−1)/2
n

(
cos
(
dSd(x, y)

))
C

(d−1)/2
n (1)

, x, y ∈ Sd, (5.9)

with

bn,d =
2n+ d− 1

23−dπ

Γ
(
(d− 1)/2

)2

Γ(d− 1)

∫ π

0

C(d−1)/2
n

(
cos(θ)

)
sind−1(θ)ρ̃(θ) dθ (5.10)

for d ≥ 2 and n ∈ N0, and in case d = 1

bn,1 =
min{n+ 1, 2}

π

∫ π

0

cos(nθ)ρ̃(θ) dθ, n ∈ N0. (5.11)

Here ρ̃ : [0, π] → [−1, 1] is the function associated to the isotropic function ρ by
ρ(x, y) = ρ̃(dSd(x, y)).

Before we state the actual result, let us mention a more apparent approach and
its drawbacks. Building on Schoenberg’s representation of continuous and isotropic
correlation functions on Sd, Ziegel [88] showed that any such function has a spherical
convolution root.

Theorem 5.2.1 (Ziegel, 2014). For any continuous and isotropic correlation function
ρ there exists an isotropic function g ∈ L2

(
Sd×Sd,B(Sd×Sd), σd⊗σd;R

)
such that

ρ(x, y) =

∫
Sd
g(x, z)g(y, z) dσd(z), x, y ∈ Sd. (5.12)

The representation (5.12) of the correlation function is already in the form of
Lemma 5.1.2, so that the following corollary is evident.

Corollary 5.2.2. Let ρ be a continuous and isotropic correlation function on Sd
and let U and X be independent random variables such that X ∼ U(Sd), E(U) = 0,
and E(U2) = 1. Then there is a function g : Sd×Sd → R such that the random field

Z(x) =
√
σd(Sd)Ug(x,X), x ∈ Sd, (5.13)

has the correlation function ρ.
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5. Spectral Turning Bands on the Sphere

(a) Gaussian correlation function (5.8) with different scales c.

(b) Spectral turning bands field
with c = 1/2.

(c) Spectral turning bands field
with c = 1/4.

(d) Approximate Gaussian random
field with c = 1/2, n = 5000.

(e) Approximate Gaussian random
field with c = 1/4, n = 5000.

Figure 5.1.: Spectral turning bands random field with Gaussian correlation function.
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5.2. Spectral Turning Bands on Sd

Corollary 5.2.2 raises the question of how to determine a convolution root g for a
given correlation function ρ. In general, there can be more than one convolution root
leading to the same correlation function, as has been shown in [88]. However, an
explicit construction of g in the form of an infinite linear combination of Gegenbauer
polynomials involving the Schoenberg coefficients (5.10) of ρ has been given in [88]
in order to prove Theorem 5.2.1. This function g seems to be a natural candidate for
the application of Corollary 5.2.2. When it comes to the applicability in practice,
there are two drawbacks of this approach. First, we have to know the coefficients
(5.10) of a given correlation function ρ – in other words, we have to know the spectral
measure of ρ – and much like in the Rd case the determination of the spectral measure
of a given correlation function is a demanding task (see for instance [31] for solutions
in case of R2). The second drawback is that in any computer implementation, an
infinite linear combination must be truncated if no closed form is available, leading
to an approximate simulation method only.

In what follows we use an orthogonality relation for Gegenbauer polynomials in
order to show that Lemma 5.1.2 can be applied to Schoenberg’s spectral represen-
tation (5.9) directly, resulting in a simulation method that avoids the infinite linear
combination problem. The mentioned orthogonality relation is as follows (see [74,
Corollary 4.9]): For all d ≥ 2, n,m ∈ N0, and x, y ∈ Sd it is true that∫

Sd
C(d−1)/2
n

(
〈x, z〉

)
C(d−1)/2
m

(
〈y, z〉

)
dσd(z) = δn,mσd(Sd)

d− 1

2n+ d− 1
C(d−1)/2
n

(
〈x, y〉

)
,

(5.14)

for d = 1, n,m ∈ N0, and x, y ∈ S1 the relation is∫
S1
C0
n

(
〈x, z〉

)
C0
m

(
〈y, z〉

)
dσ1(z) = δn,m max{2− n, 1} π C0

n(〈x, y〉). (5.15)

Theorem 5.2.3. Let ρ be a continuous and isotropic correlation function on Sd and
let (bn,d, n ∈ N0) denote the coefficients of ρ in (5.10) or (5.11). Suppose R, X, and
U are independent random variables such that P (R = n) = bn,d for all n ∈ N0,
X ∼ U(Sd), E(U) = 0, and E(U2) = 1. Then the random field Z on Sd defined by

Z(x) =

{√
min{R + 1, 2}U cos

(
R〈x,X〉

)
, d = 1,√

2R+d−1

(d−1)C
(d−1)/2
R (1)

U C
(d−1)/2
R

(
〈x,X〉

)
, d ≥ 2,

x ∈ Sd, (5.16)

has the correlation function ρ.

Proof. Let d ≥ 2 and suppose µ is the distribution of the random variable R. Since
cos
(
dSd(x, y)

)
= 〈x, y〉, Schoenberg’s representation (5.9) of ρ can be written as

ρ(x, y) =

∫
[0,∞)

C
(d−1)/2
n

(
〈x, y〉

)
C

(d−1)/2
n (1)

dµ(n), x, y ∈ Sd.

Using (5.14) this integral becomes∫
[0,∞)

2n+ d− 1

(d− 1)C
(d−1)/2
n (1)

1

σd(Sd)

∫
Sd
C(d−1)/2
n

(
〈x, z〉

)
C(d−1)/2
n

(
〈y, z〉

)
dσd(z) dµ(n).
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5. Spectral Turning Bands on the Sphere

Rearranging we obtain

ρ(x, y) =

∫
W

f(x, s)f(y, s) dσ(s),

with

W = [0,∞)× Sd,
σ = µ⊗ σ̄d,

and f(x, (n, z)) =

√
2n+ d− 1

(d− 1)C
(d−1)/2
n (1)

C(d−1)/2
n

(
〈x, z〉

)
, x ∈ Sd, (n, z) ∈ W.

Thus Lemma 5.1.2 yields the claim for d ≥ 2. In case d = 1, we have because of
C0
n(1) = cos(n · 0) = 1 for all n ∈ N0

ρ(x, y) =

∫
[0,∞)

C0
n

(
〈x, y〉

)
dµ(n), x, y ∈ S1,

if µ denotes the distribution of R. Using (5.15) we obtain

ρ(x, y) =

∫
[0,∞)

∫
S1

2

max{2− n, 1}
C0
n

(
〈x, z〉

)
C0
n

(
〈y, z〉

)
dσ̄1(z)dµ(n), x, y ∈ S1,

and the assertion follows also in case d = 1 with Lemma 5.1.2 and the identity
2/max{2− n, 1} = min{n+ 1, 2} for all n ≥ 0. �

In view of the simulations in the next section, we investigate the third absolute
moment of the spectral turning bands random field (5.16).

Proposition 5.2.4. Let Z be the spectral turning bands random field (5.16) on Sd,
d ≥ 1, and let (cd, d ∈ N) be the sequence of constants defined in Proposition 4.3.1
on page 63. Then we have in case d = 1

E(|Z(x)|3) = E(|U |3)
(8
√

2

3π
+
(

1− 8
√

2

3π

)
b0,1

)
, x ∈ S1,

and in case d ≥ 2

E(|Z(x)|3) =
1

πcd
E(|U |3)

∑
n∈N0

bn,d

((2n+ d− 1)n! Γ(d− 1)

(d− 1)Γ(n+ d− 1)

)3/2

×
∫ π

0

∣∣C(d−1)/2
n

(
cos(θ)

)∣∣3 sind−1(θ) dθ, x ∈ Sd. (5.17)

Additionally, in case d = 2 the following inequality holds true

E(|Z(x)|3) ≤ E(|U |3)
(
b0,2 +

(Γ(1/4)

π

)2∑
n∈N

bn,2

(2n+ 1

n

)3/2)
, x ∈ S2. (5.18)

Proof. Let d ≥ 2 and x ∈ Sd, then by independence

E(|Z(x)|3) =
∑
n∈N0

bn,dE
(∣∣∣∣
√

2n+ d− 1

(d− 1)C
(d−1)/2
n (1)

U C(d−1)/2
n

(
〈x,X〉

)∣∣∣∣3)
= E(|U |3)

∑
n∈N0

bn,d

( 2n+ d− 1

(d− 1)C
(d−1)/2
n (1)

)3/2

E
(∣∣C(d−1)/2

n

(
〈x,X〉

)∣∣3).
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5.2. Spectral Turning Bands on Sd

For all n ∈ N0 we find by the rotational invariance of the uniform distribution on Sd

E
(∣∣C(d−1)/2

n

(
〈x,X〉

)∣∣3) = E
(∣∣C(d−1)/2

n

(
〈ed+1, X〉

)∣∣3).
Passing to spherical coordinates this expectation becomes

σd−1(Sd−1)

σd(Sd)

∫ π

0

∣∣C(d−1)/2
n

(
cos(θ)

)∣∣3 sind−1(θ) dθ.

With σd(Sd) = 2π(d+1)/2/Γ((d+ 1)/2) (cf. equation (1.3) on page 20), C
(d−1)/2
n (1) =

Γ(n+d−1)/(n!Γ(d−1)) (cf. (4.13) on page 51), and cd = Γ(d/2)/(
√
πΓ((d+ 1)/2))

(cf. (4.46) on page 63), equation (5.17) follows by collecting terms.
For d = 1, the representation X =

(
sin(V ), cos(V )

)
∼ U(S1) with V ∼ U([0, 2π))

and the definition of C0
n (cf. (4.10) on page 50) lead to

E
(∣∣C0

n

(
〈e2, X〉

)∣∣3) = E
(
|C0

n

(
cos(V )

)
|3
)

= E(| cos(nV )|3)

for all n ∈ N0, so that by the rotational invariance of the uniform distribution on S1

we have for all x ∈ S1 and all n ≥ 1

E
(∣∣C0

n

(
〈x,X〉

)∣∣3) = E(| cos(nV )|3)

=
1

2π

∫ 2π

0

| cos(nv)|3dv

=
1

2π

∫ 2π

0

| cos(v)|3dv =
4

3π
.

For n = 0 it follows from C0
0 ≡ 1 that E(|C0

0(〈x,X〉)|3) = 1. Therefore in case d = 1

E(|Z(x)|3) = E(|U |3)
∑
n∈N0

bn,1
(
min{n+ 1, 2}

)3/2E
(∣∣C0

n

(
〈x,X〉

)∣∣3)
= E(|U |3)

(
b0,1 +

∑
n∈N

bn,123/2 4

3π

)
= E(|U |3)

(8
√

2

3π
+
(

1− 8
√

2

3π

)
b0,1

)
, x ∈ S1.

Let us now turn to the case d = 2. Since C
1/2
n = Pn and c2 = 2/π, we have from

(5.17) for all x ∈ S2

E(|Z(x)|3) =
1

2
E(|U |3)

∑
n∈N0

bn,2(2n+ 1)3/2

∫ π

0

∣∣Pn(cos(θ)
)∣∣3 sin(θ) dθ.

By [1, Formula 22.14.3] we have the bound

∣∣Pn(cos(θ)
)∣∣ ≤√ 2

π n sin(θ)
, n ∈ N, 0 < θ < π. (5.19)

(Figure 5.2 presents a visualization of this bound.) Thus we have by [35, Formula
3.621.1] for all n ∈ N∫ π

0

∣∣Pn(cos(θ)
)∣∣3 sin(θ) dθ ≤

( 2

nπ

)3/2
∫ π

0

1√
sin(θ)

dθ =
2 Γ(1/4)2

π2
n−3/2.

For n = 0 the integral is equal to 2 and (5.18) follows. �
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5. Spectral Turning Bands on the Sphere

Figure 5.2.: Visualization of the bound (5.19).

5.3. Examples and Simulations on S2

In this section we consider the practically most relevant case of two-dimensional unit
sphere S2. We give various examples of spectral turning bands random fields and
their associated correlation functions and provide simulations.

Since C
1/2
n = Pn and Pn(1) = 1, Schoenberg’s representation (5.9) on S2 becomes

ρ(x, y) =
∑
n∈N0

bn,2Pn
(
cos
(
dS2(x, y)

))
, x, y ∈ S2, (5.20)

with bn,2 =
2n+ 1

2

∫ π

0

ρ̃(θ)Pn
(

cos(θ)
)

sin(θ) dθ, n ∈ N0. (5.21)

The corresponding spectral turning bands random field (5.16) is given by

Z(x) =
√

2R + 1UPR
(
〈x,X〉

)
, x ∈ S2, (5.22)

with independent R ∼
∑
n∈N0

bn,2εn, X ∼ U(S2), U such that E(U) = 0,E(U2) = 1.

In order to simulate the random field (5.22) we have to simulate a centered and
normalized random variable U , a random vector X which is uniformly distributed
on S2, and an N0-valued random variable R with P (R = n) = bn,2 for all n ∈ N0.
The simulation of U and X poses no problem, so the actual questions are how to
simulate R and what kind of correlation functions are obtained. In theory, this
question is answered by equations (5.20) and (5.21). However, in practice closed
form representations of (5.20) might be unknown for a given discrete distribution∑

n∈N0
bn,2εn. If on the other hand we are given a correlation function, solutions

of the integrals (5.21) might be unknown or given in a way, such that an exact
simulation procedure for the random variable R might be unknown, as the example
in (4.17) of [40] on page 51 demonstrates.

Before we start with the examples, let us take a closer look at the random field
Z in (5.22). Figure 5.3 displays two realizations of Z with random X, U fixed to 1,
R = 5 in Figure 5.3a and R = 20 in Figure 5.3b. The random variable X ∼ U(S2)
in (5.22) may be thought of as a random North Pole, defining a random spherical
coordinate system on S2. In a spherical coordinate system, a circle of latitude can
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5.3. Examples and Simulations on S2

be seen as the set consisting of all points in S2 which have a certain great circle
distance from the North Pole. From 〈x, y〉 = cos(dS2(x, y)) for all x, y ∈ S2 it is
therefore evident that the realizations of Z are constant on all circles of latitude
in the random spherical coordinate system. These are the bands that are visible in
Figure 5.3. On the circles of longitude, the random field Z behaves like the function
ϕ 7→

√
2R + 1UPR(cos(ϕ)). Figure 5.4 displays this function for U = 1 and different

values of R. Apart from the scaling, the random variable R determines the index
of the Legendre polynomial and is therefore responsible for the oscillation of Z on
each circle of longitude. In consequence, there a few bands visible in a realization of
Z if the simulated value of R is small and we get many bands if R is large. Finally,
the random variable U makes sure that the mean of Z is 0.

(a) U = 1, R = 5. (b) U = 1, R = 20.

Figure 5.3.: Realizations of Z(x) =
√

2R + 1UPR(〈x,X〉).

Figure 5.4.: The function ϕ 7→
√

2n+ 1Pn(cos(ϕ)) for n = 1, 5, 11, and 20.

In what follows, we provide examples of spectral turning bands random fields Z,
for which the correspondence between the correlation function and the coefficients
(bn,2, n ∈ N0) is explicit and we illustrate these examples with simulations. Note
that the spectral turning bands random field Z in (5.22) is centered and normalized.
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5. Spectral Turning Bands on the Sphere

Therefore, the sequence of random fields (Sn, n ∈ N) defined by

Sn(x) =
1√
n

n∑
i=1

Zi(x), x ∈ S2,

converges to a Gaussian random field as n tends to infinity (see Lemma 4.4.1). In
all simulations, we choose a standard normal distribution for the centering random
variable U . It follows therefore from (4.55) in Proposition 5.2.4, E(|U |3) = 4/

√
2π,

and CBE = 1/2, that for all x ∈ S2 and all n ∈ N the inequality

sup
y∈R
|P (Sn(x) ≤ y)− Φ(y)| ≤

(
b0,2 +

(Γ(1/4)

π

)2∑
k∈N

bk,2

(2k + 1

k

)3/2)√ 2

πn
, (5.23)

holds true, where Φ is the distribution function of the standard normal distribution.
Just as in Section 4.4 we choose for the simulation of the approximate Gaussian
random field Sn a number of superpositions n such that the bound in (5.23) becomes
smaller than 0.05.

Example 5.3.1. Of course the simplest example is to let R ≡ n with probability one
for some n ∈ N0. If we take for example n = 3, then (5.20) becomes [35, Formula
8.912.4]

ρ(x, y) = P3

(
cos
(
dS2(x, y)

))
=

1

8

(
5 cos

(
3 dS2(x, y)

)
+ 3 cos

(
dS2(x, y)

))
.

Figure 5.5a displays this correlation function on S2. It admits a full range of [−1, 1]
and is not monotone. Note that taking a single Legendre polynomial ρ(x, y) =
Pn
(
cos
(
dS2(x, y)

))
results in a correlation function which is symmetric with respect

to the point (π/2, 0) if n is odd and symmetric with respect to the y-axis shifted by
π/2 to the right if n is even. Figure 5.5b displays a realization of the spectral turning
bands random field with R ≡ 3. Figures 5.5c, 5.5d, and 5.5e show simulations of an
approximate Gaussian random field obtained from this spectral turning bands field.
From bn,2 = δ3,n, n ∈ N0, we get a bound in (5.23) which is lower than 3.79/

√
n,

and we choose n = 10, n = 500 and n = 6000 superpositions for the approximations
in Figures 5.5c, 5.5d, and 5.5e.

Example 5.3.2. The next step is to take finite convex combinations of Legendre
polynomials. Let us take for example

b1,2 =
1

3
, b2,2 =

1

6
, b4,2 =

1

3
, and b16,2 =

1

6
,

so that (5.20) becomes

ρ(x, y) =
1

3
P1

(
cos
(
dS2(x, y)

))
+

1

6
P2

(
cos
(
dS2(x, y)

))
+

1

3
P4

(
cos
(
dS2(x, y)

))
+

1

6
P16

(
cos
(
dS2(x, y)

))
, x, y ∈ S2. (5.24)

The graph of ρ is depicted in Figure 5.6a. It follows a global trend while oscillating
locally. Realizations of the corresponding spectral turning bands random field are
given in Figures 5.6b and 5.6c. The bound in (5.23) is approximately 4.27/

√
n.

Figures 5.6d and 5.6e display approximations to a Gaussian random field with this
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5.3. Examples and Simulations on S2

(a) Correlation function ρ(x, y) = P3

(
cos(dS2(x, y))

)
.

(b) Spectral turning bands random
field with R ≡ 3.

(c) Approximate Gaussian random
field with n = 10.

(d) Approximate Gaussian random
field with n = 500.

(e) Approximate Gaussian random
field with n = 6000.

Figure 5.5.: Spectral turning bands random field with R ≡ 3.
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5. Spectral Turning Bands on the Sphere

(a) Correlation function (5.24).

(b) Spectral turning bands random
field.

(c) Spectral turning bands random
field.

(d) Approximate Gaussian random
field with n = 500.

(e) Approximate Gaussian random
field with n = 7500.

Figure 5.6.: Spectral turning bands random field with correlation function (5.24).
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correlation function and n = 500 and n = 7500 superpositions of single realizations
of the spectral turning bands random field. Due to the combination of Legendre
polynomials with small and large indices, this random field exhibits just as its cor-
relation function a global behaviour paired with a local and quite regular oscillation.

Let us examine what happens if we increase the local oscillation while giving it
less weight. We take

b1,2 =
1

3
, b2,2 =

1

2
, b20,2 =

1

12
, and b50,2 =

1

12
,

so that the correlation function is now

ρ(x, y) =
1

3
P1

(
cos
(
dS2(x, y)

))
+

1

2
P2

(
cos
(
dS2(x, y)

))
+

1

12
P20

(
cos
(
dS2(x, y)

))
+

1

12
P50

(
cos
(
dS2(x, y)

))
, x, y ∈ S2. (5.25)

Figure 5.7a displays this correlation function and Figures 5.7b depicts a possi-
ble realization of the corresponding spectral turning bands random field. Figure
5.7c displays the associated approximate Gaussian random field with n = 500 su-
perpositions. The realization looks somewhat artificial and the local oscillation is
reminiscent of the surface of a golf ball. The bound on the Kolmogorov distance
is 4.71/

√
n, hence only marginally larger than the bound in the example before.

Figures 5.7d and 5.7e show, that the structure of the realizations stays the same if
we increase n.

Example 5.3.3. In the next example we fix N ∈ N and let

bn,2 =
2n+ 1

(N + 1)2
, n = 0, . . . , N, bk,2 = 0, k ≥ N + 1.

Then this defines a probability distribution on N0. By the Christoffel–Darboux
formula (for example [35, Formula 8.915.1]) and since Pk(1) = 1 for all k ∈ N0,
Schoenberg’s representation (5.20) becomes

ρ(x, y) =
1

(N + 1)2

N∑
n=0

(2n+ 1)Pn
(
cos
(
dS2(x, y)

))
=
PN
(
cos
(
dS2(x, y)

))
− PN+1

(
cos
(
dS2(x, y)

))
(N + 1)

(
1− cos

(
dS2(x, y)

)) , N ∈ N. (5.26)

Figure 5.8a displays this correlation function for different values of N . For large N
this correlation function drops quickly towards 0 and swings off. Simulations of the
spectral turning bands random field for N = 5 and N = 50 are given in Figures 5.8b
and 5.8c. Concerning the simulation of an approximate Gaussian random field and
the Kolmogorov distance of the marginal distributions, we have found the bounds
3.76/

√
n in case N = 5 and 3.1/

√
n in case N = 50. Figures 5.8d and 5.8e display

simulations with n = 6000.

Example 5.3.4. Let us take a negative binomial distribution for the random variable
R, i.e.

bn,2 = P (R = n) =
Γ(n+ r)

Γ(r)n!
pr(1− p)n, r > 0, p ∈ (0, 1), n ∈ N0.
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5. Spectral Turning Bands on the Sphere

(a) Correlation function (5.25).

(b) Spectral turning bands random
field.

(c) Approximate Gaussian random
field with n = 500.

(d) Approximate Gaussian random
field with n = 9000.

(e) Approximate Gaussian random
field with n = 20000.

Figure 5.7.: Spectral turning bands random field with correlation function (5.25).

118



5.3. Examples and Simulations on S2

(a) Correlation function (5.26).

(b) Spectral turning bands random
field with N = 5.

(c) Spectral turning bands random
field with N = 50.

(d) Approximate Gaussian random
field with N = 5 and n = 6000.

(e) Approximate Gaussian random
field with N = 50 and n = 6000.

Figure 5.8.: Spectral turning bands random field with correlation function (5.26).
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Using [72, Formula 5.10.1.16] Schoenberg’s representation (5.20) becomes

ρ(x, y) = pr
∑
n∈N0

Γ(n+ r)

Γ(r)n!
(1− p)nPn

(
cos
(
dS2(x, y)

))
= pr

(
1 + 2(1− p) cos

(
dS2(x, y)

)
+ (1− p)2

)−r/2
× 2F1

(
r, 1− r; 1;

1

2
−

1− (1− p) cos
(
dS2(x, y)

)
2
√

1− 2(1− p) cos
(
dS2(x, y)

)
+ (1− p)2

)
.

(5.27)

For the first factor in (5.27) we have

pr
(
1 + 2(1− p) cos

(
dS2(x, y)

)
+ (1− p)2

)−r/2
=
( 1

p2
− 2

1− p
p2

cos
(
dS2(x, y)

)
+

(1− p)2

p2

)−r/2
=
(

1 + 2
1− p
p2

(
1− cos

(
dS2(x, y)

)))−r/2
=

(
1 +

(
sin
(
dS2(x, y)/2

)
p/(2
√

1− p)

)2)−r/2
.

Let c > 0, then p = 2 c (
√
c2 + 1 − c) ∈ (0, 1) and thus p is a valid choice for the

second parameter of the negative binomial distribution. For this p, the last term in
the equality above becomes(

1 +

(
sin
(
dS2(x, y)/2

)
c

)2)−r/2
,

i.e. the first factor in (5.27) is equal to the composition of a generalized Cauchy model
with parameter α = 2 and β = r > 0 (see [34]) and the function θ 7→ sin(θ/2) (see
[33, 86]). If r = 1, i.e. if R ∼ GeoN0 , the hypergeometric function in (5.27) equals
1 from the definition of the hypergeometric function (e.g. [35, Formula 9.100]) and
we have the correlation function

ρ(x, y) =

(
1 +

(
sin
(
dS2(x, y)/2

)
c

)2)−1/2

, x, y ∈ S2. (5.28)

Figure 5.9a displays this correlation function for different parameter c. This cor-
relation function only admits positive correlations. Furthermore, large values of c
result in correlation functions which are close to ρ ≡ 1. Realizations of the corre-
sponding spectral turning bands field on S2 are depicted in Figures 5.9b and 5.9c.
Concerning the simulation of a Gaussian random field we have for the bound in
(5.23) the following inequality in terms of p = 2c(

√
c2 + 1− c):(

b0,2 +
(Γ(1/4)

π

)2∑
k∈N

bk,2

(2k + 1

k

)3/2)√ 2

πn

≤
(
p+

(Γ(1/4)

π

)2(
p

m∑
k=1

(1− p)k
(2k + 1

k

)3/2

+
(1− p)m+1(2m+ 3)3/2

(m+ 1)3/2

))√ 2

πn
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5.3. Examples and Simulations on S2

(a) Correlation function (5.28).

(b) Spectral turning bands random
field with c = 0.5.

(c) Spectral turning bands random
field with c = 0.1.

(d) Approximate Gaussian random
field with c = 0.5 and n = 9000.

(e) Approximate Gaussian random
field with c = 0.1 and n = 9000.

Figure 5.9.: Spectral turning bands random field with correlation function (5.28).
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for all m ∈ N. For m = 100 we get a bound of approximately 3.36/
√
n on the

Kolmogorov distance in (5.23) for c = 0.01 and if c = 0.5 the bound is lower
than 2.39/

√
n. Simulations of the approximate Gaussian random fields for c = 0.1,

c = 0.5, and n = 9000 superpositions are given in Figures 5.9d and 5.9e.

Example 5.3.5. By means of [72, Formula 5.10.1.13] a Poi(c) distributed random
variable R for the spectral turning bands random field (5.22) results in a correlation
function of the form

ρ(x, y) = e−c
∑
n∈N0

cn

n!
Pn
(
cos
(
dS2(x, y)

))
= e−2 c sin2(dS2 (x,y)/2)J0

(
c sin

(
dS2(x, y)

))
, c > 0, x, y ∈ S2. (5.29)

Figure 5.10a displays this correlation function for different values of the parameter
c. This correlation function looks similar to (5.26). The parameter c controls the
speed at which the correlation function levels off at 0 and is similar to a scale factor.
Simulations of the corresponding spectral turning bands field are given in Figures
5.10b and 5.10c. With a similar estimation as in Example 5.3.4, we get in (5.23)
the bounds 3.6/

√
n if c = 5 and 3.27/

√
n if c = 10 and we have chosen n = 9000 for

the simulations in Figures 5.10d and 5.10e. Figure 5.11 presents simulations with
larger values of c. The bounds on the Kolmogorov distance are 3.13/

√
n for c = 20

and 3.06/
√
n in case c = 50.

Example 5.3.6. Our last example exhibits the practical limitations of the spectral
turning bands method. Let us consider the correlation function corresponding to
the power covariance function of [40], which we have already discussed in Section
4.9:

ρ(x, y) = 1−
(dS2(x, y)

c

)α
, x, y ∈ S2. (5.30)

Proposition 4.9.1 shows, that (5.30) is a correlation function for all α ∈ (0, 1] and
all c ≥ π/2. Let us first consider the case α = 1:

ρ(x, y) = 1− dS2(x, y)

c
, c ≥ π

2
, x, y ∈ S2. (5.31)

By [40] the coefficients bn,2 of this correlation function are given by

bn,2 =


1− π

2c
, n = 0,

0, n even,

(2n+1)π
2c

(
(n−2)!!

2(n+1)/2((n+1)/2)!

)2

, n odd.

(5.32)

It is easy to see, that for all odd n ≥ 1 the recursion

bn+2,2 = bn,2
2n+ 5

2n+ 1

( n

n+ 3

)2

holds true, therefore a random variable R having the distribution
∑

n∈N0
bn,2εn can

conveniently be simulated with the inverse transformation method. Consequently,
we can simulate a spectral turning bands random field (5.22) which has the corre-
lation function (5.31). Figure 5.13a presents the correlation function (5.31).
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(a) Correlation function (5.29).

(b) Spectral turning bands random
field with c = 5.

(c) Spectral turning bands random
field with c = 10.

(d) Approximate Gaussian random
field with c = 5 and n = 9000.

(e) Approximate Gaussian random
field with c = 10 and n = 9000.

Figure 5.10.: Spectral turning bands random field with correlation function (5.29)
and c = 5 or c = 10.
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(a) Spectral turning bands random
field with c = 20.

(b) Spectral turning bands random
field with c = 50.

(c) Approximate Gaussian random
field with c = 20 and n = 20.

(d) Approximate Gaussian random
field with c = 50 and n = 20.

(e) Approximate Gaussian random
field with c = 20 and n = 9000.

(f) Approximate Gaussian random
field with c = 50 and n = 9000.

Figure 5.11.: Spectral turning bands random field with correlation function (5.29)
and c = 20 or c = 50.
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(a) c = π/2. (b) c = π.

Figure 5.12.: The coefficients b0,2, . . . , b20,2.

In order to explain the outcomes of the simulations, we have to take a closer
look at the coefficients (bn,2, n ∈ N0) in (5.32). Figure 5.12 displays the first few
coefficients and shows, that the random variable R is likely to attain a small value
in the simulations, which results in a spectral turning bands random field that looks
like the one in Figure 5.13b (the simulated value of R is 1 in this figure). However,
if we simulate repeatedly, occasionally a very large value of R and hence a random
field that looks like the one in 5.13c occurs (the simulated value of R in Figure 5.13c
is 151). The reason for this is the slow decay of the coefficients (bn,2, n ∈ N0). This
can be seen as follows. For every odd index 2m+ 1, m ∈ N0, we have from (5.32)

b2m+1,2 =
(4m+ 3)π

2c

( (2m)!

22m+1m!(m+ 1)!

)2

=
(4m+ 3)π

2c

( Γ(2m+ 1)

22m+1Γ(m+ 1)Γ(m+ 2)

)2

. (5.33)

Writing Γ(2m + 1) = Γ
(
2(m + 1/2)

)
, we obtain with the product theorem for the

gamma function (e.g. [35, Formula 8.335])

b2m+1,2 =
1

8c

4m+ 3

(m+ 2)2

(Γ
(
m+ 1/2

)
Γ(m+ 1)

)2

, m ∈ N0. (5.34)

An application of Gautschi’s inequality (for instance [26, Formula 5.6.4]) for the
quotient of gamma functions yields

1

2c

m+ 3/4

(m+ 2)2(m+ 1)
< b2m+1,2 <

1

2c

m+ 3/4

(m+ 2)2m
, m ∈ N, (5.35)

from which it follows that

E(R) ≥ 3π

32c
+

7

72c

∑
m∈N

1

m
,

and we conclude that the spectral measure of (5.31) does not have a finite mean.
Figure 5.13d displays a simulation of an approximate Gaussian random field which

is build from n = 500 simulations of spectral turning bands random fields with the
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correlation function (5.31). Out of this 500 simulations, there were 7 simulations for
which the value of R was close to 90 or even exceeded this value, and these 7 simu-
lations stand out from the rest. Because the correlation function (5.31) is isotropic
and generally quite simple, we suspect that this outcome is not characteristic for
the correlation function but can be explained with a rather slow convergence of the
spectral turning bands random field to a Gaussian random field. Therefore, let us
examine the bound on the Kolmogorov distance in (5.23) for this example. Using
(5.33), the bound in (5.23) becomes((

1− π

2c

)
+

1

8c

(Γ(1/4)

π

)2 ∑
m∈N0

(4m+ 3)5/2

(m+ 2)2(2m+ 1)3/2

(Γ(m+ 1/2)

Γ(m+ 1)

)2
)√

2

πn
.

The quotient of gamma functions can be estimated with Gautschi’s inequality. The
other quotient in the sum can be estimated as follows:

(4m+ 3)5/2

(m+ 2)2(2m+ 1)3/2
≤

(
4(m+ 1)

)5/2

(m+ 1)2
(
3/2(m+ 1)

)3/2
=

√
213

33
(m+ 1)−1, m ∈ N.

Therefore, the Kolmogorov distance of the marginal distributions is smaller than((
1− π

2c

)
+

1

8c

(Γ(1/4)

π

)2(35/2π

4
+

√
213

33

∑
m∈N

1

m(m+ 1)

))√ 2

πn

=

((
1− π

2c

)
+

81π + 217/2

32 · 33/2c

(Γ(1/4)

π

)2
)√

2

πn
,

where the equality follows because the series in the first line is a telescope series
from which it can be seen that the value of the series equals 1. This way, we get
moderate bounds of approximately 2.51/

√
n in case c = π/2 and 1.66/

√
n if c = π.

But the simulation of an approximate Gaussian random field with n = 10000 super-
positions in Figure 5.13e is not what we would expect from this bounds. Although
the simulation looks better than the one in Figure 5.13d, it is still somewhat blurred
and single simulations with large simulated value of R continue to stand out.

The practical explanation for this is the heavy-tailed spectral measure (5.35) of
the correlation function (5.31), which results in many simulated values of R that are
small and few simulated values which are very large. For instance, in the simulation
depicted in Figure 5.13e we had 9029 simulated values of R out of 10000, which were
lower or equal to 5, and 60 realizations of R exceeded 100. Another explanation could
be a slow convergence to a Gaussian random field for this particular correlation
function and the spectral turning bands method. Because we have seen that the
bound on the Kolmogorov distance in (5.23) is comparably small here, we assume
that the convergence of the multivariate distributions to that of a Gaussian random
field must be disproportionally slow.

Note that the correlation function (5.31) can also be simulated with mosaic
random fields. Indeed, we have shown the validity of (5.30) on any unit sphere
Sd and for all α ∈ (0, 1] in Proposition 4.9.1 with an explicit construction of a corre-
sponding simple mosaic random field. Although the mosaic random field in the proof
of Proposition 4.9.1 does also involve a heavy–tailed distribution in the Sibuya(α)
distribution, the case α = 1 is unproblematic because the Sibuya(1) distribution
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(a) Correlation function (5.31).

(b) Spectral turning bands random
field with c = π/2.

(c) Spectral turning bands random
field with c = π/2.

(d) Approximate Gaussian random
field with c = π/2 and n = 500.

(e) Approximate Gaussian random
field with c = π/2 and n =
10000.

Figure 5.13.: Spectral turning bands random field with correlation function (5.31).
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is just the Dirac measure in 1. Figure 5.14 compares simulations based on mosaic
random fields and spectral turning bands random field. Figures 5.14e and 5.14f
confirm our expectation that simulations based on simple mosaic random fields are
better suited for this particular correlation function than the spectral turning bands
method.

Now that we know how to simulate the case α = 1, we can for the spectral turning
bands random field also use Lemma 4.8.1 to simulate the general case α ∈ (0, 1]. In
detail, if (Zi, i ∈ N) are independent copies of a spectral turning bands random field
with the correlation function ρ in (5.31), U is a centered and normalized random va-
riable, and N is Sibuya(α) distributed, then by Lemma 4.8.1 the correlation function
ρα of the random field

Z(x) = U

N∏
i=1

Zi(x), x ∈ S2,

is given by

ρα(x, y) = (ψN ◦ ρ)(x, y) = 1−
(dS2(x, y)

c

)α
, α ∈ (0, 1], c ≥ π

2
, x, y ∈ S2, (5.36)

provided that U,N , and (Zi, i ∈ N) are independent (see the proof of Lemma 4.8.1).
Figure 5.15a displays the correlation function (5.36) for c = π/2 and different α.
Figure 5.15b depicts a spectral turning bands random field with this correlation
function and α = 0.8. Figures 5.15c, 5.15d, and 5.15e display the corresponding
approximate Gaussian random fields. Because we have added another heavy-tailed
distribution into our simulation, we have an even slower convergence to a Gaussian
random field than in the α = 1 example.

Figure 5.16 compares the spectral turning bands method with the mosaic random
field model in the case α = 0.8. Now that both methods include the simulation of
slowly decaying distributions, there seems to be no difference in their performance.
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(a) Single realization of a simple
mosaic random field with the
correlation function (5.31).

(b) Single realization of a spectral
turning bands random field with
the correlation function (5.31).

(c) Approximate Gaussian random
field build from simple mosaic
random fields, n = 500.

(d) Approximate Gaussian random
field build from spectral turning
bands random fields, n = 500.

(e) Approximate Gaussian random
field build from simple mosaic
random fields, n = 20000.

(f) Approximate Gaussian random
field build from spectral turning
bands random fields, n = 20000.

Figure 5.14.: Comparison of the mosaic random field model and the spectral turning
bands method for the correlation function (5.31).
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5. Spectral Turning Bands on the Sphere

(a) Correlation function (5.36) with c = π/2.

(b) Spectral turning bands random
field with α = 0.8 and c = π/2.

(c) Approximate Gaussian random
field with α = 0.8, c = π/2, and
n = 500.

(d) Approximate Gaussian random
field with α = 0.8, c = π/2, and
n = 5000.

(e) Approximate Gaussian random
field with α = 0.8, c = π/2, and
n = 10000.

Figure 5.15.: Spectral turning bands random field with correlation function (5.36).
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5.3. Examples and Simulations on S2

(a) Single realization of a simple
mosaic random field with the
correlation function (5.36) with
α = 0.8 and c = π/2.

(b) Single realization of a spectral
turning bands random field with
the correlation function (5.36)
with α = 0.8 and c = π/2.

(c) Approximate Gaussian random
field build from simple mosaic
random fields, n = 500.

(d) Approximate Gaussian random
field build from spectral turning
bands random fields, n = 500.

(e) Approximate Gaussian random
field build from simple mosaic
random fields, n = 20000.

(f) Approximate Gaussian random
field build from spectral turning
bands random fields, n = 20000.

Figure 5.16.: Comparison of the mosaic random field and the spectral turning bands
method for the correlation function (5.36) with α = 0.8 and c = π/2.
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A. Kolmogorov-Chentsov on S2 -
Auxiliary Results

A.1. Distances in the Grids (Dn, n ∈ N) on S2

In this appendix we present the proofs of auxiliary results that were presented in
Sections 1.2 and 3.1. We develop the the techniques that allow us to make quanti-
tative and qualitative statements about the distances of grid points in the spherical
grid on S2.

Consider the metric space (S2, dS2), where the great circle metric dS2 is defined by

dS2(x, y) = arccos
(
〈x, y〉

)
, x, y ∈ S2.

The spherical coordinate map φ2 is defined as

φ2 :

{
[0, π]× [0, 2π) −→ S2,

(θ, ϕ) 7−→ φ2(θ, ϕ) =
(
cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)

)
.

On (S2, dS2) it is often convenient to express the great circle distance dS2(x, y) in
terms of spherical coordinates. Using the addition theorem for the cosine function,
we have

dS2(x, y) = arccos
(
g(θx, θy, |ϕx − ϕy|)

)
(A.1)

with the function

g :

{
R3 −→ R,
(x, y, z) 7−→ g(x, y, z) = sin(x) sin(y) cos(z) + cos(x) cos(y).

(A.2)

Let us now take the spherical grid on S2 from Section 1.2:

Dn =
{
φ2

(
k

π

2n−1
, l

π

2n−1

)∣∣∣k = 0, 1, . . . , 2n−1, l = 0, 1, . . . , 2n − 1
}
, n ∈ N.

For any n ∈ N, the number δ0
n is defined as the minimal distance of distinct grid

points in the n-grid, i.e.

δ0
n = min

x,y∈Dn,x 6=y
dS2(x, y), n ∈ N.

It is intuitively clear, that the minimal distance of grid points is attained somew-
here at the poles. The following lemma justifies this intuition.

Lemma A.1.1. For all n ≥ 2 we have

δ0
n = arccos

(
sin2

( π

2n−1

)
cos
( π

2n−1

)
+ cos2

( π

2n−1

))
. (A.3)
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Proof. Let n ≥ 2. If x, y ∈ Dn, there are kx, ky ∈ {0, 1, . . . , 2n−1} and lx, ly ∈
{0, 1, . . . , 2n−1} such that X can be written as x = φ2

(
kxπ/2

n−1, lxπ/2
n−1
)

and for
y we have y = φ2

(
kyπ/2

n−1, lyπ/2
n−1
)
. In view of (A.1) we have

dS2(x, y) = arccos
(
g
(
kx

π

2n−1
, ky

π

2n−1
, |lx − ly|

π

2n−1

))
.

In order to minimize dS2(x, y) we have to maximize

g
(
kx

π

2n−1
, ky

π

2n−1
, |lx − ly|

π

2n−1

)
= sin

(
kx

π

2n−1

)
sin
(
ky

π

2n−1

)
cos
(
|lx − ly|

π

2n−1

)
+ cos

(
kx

π

2n−1

)
cos
(
ky

π

2n−1

)
.

(A.4)

If kx 6= ky, it is optimal to choose lx = ly so that

g
(
kx

π

2n−1
, ky

π

2n−1
, 0
)

= cos
(
|kx − ky|

π

2n−1

)
.

Consequently, we maximize g in the case kx 6= ky by picking k ∈ {0, 1, . . . , 2n−1− 1}
and l ∈ {0, 1, . . . , 2n − 1} and choosing x = φ2

(
kπ/2n−1, lπ/2n−1

)
and furthermore

y = φ2

(
(k + 1)π/2n−1, lπ/2n−1

)
. This leaves us with

g
(
k

π

2n−1
, (k + 1)

π

2n−1
, 0
)

= cos
( π

2n−1

)
as a candidate for the maximum in (A.4). In the other case, it follows from the mono-
tonicity of the cosine function that it is optimal to take any lx, ly ∈ {0, 1, . . . , 2n−1}
such that |lx − ly| mod (2n − 2) = 1, e.g. lx = 0, ly = 1. Because we require x 6= y,
neither kx = ky = 0 nor kx = ky = 2n−1 are permissible choices, so that we have to
find k ∈ {1, . . . , 2n−1 − 1} for which

g
(
k

π

2n−1
, k

π

2n−1
,
π

2n−1

)
= sin2

(
k

π

2n−1

)
cos
( π

2n−1

)
+ cos2

(
k

π

2n−1

)
(A.5)

becomes maximal. A straightforward optimization shows that (A.5) is maximal for
the boundary values k = 1 or k = 2n−1 − 1. We have therefore the candidates

g
( π

2n−1
,
π

2n−1
,
π

2n−1

)
= sin2

( π

2n−1

)
cos
( π

2n−1

)
+ cos2

( π

2n−1

)
and g

(
0,

π

2n−1
, 0
)

= cos
( π

2n−1

)
for the maximum in (A.4). The assertion of the lemma then follows from

sin2
( π

2n−1

)
cos
( π

2n−1

)
+ cos2

( π

2n−1

)
− cos

( π

2n−1

)
= − cos

( π

2n−1

)3

+ cos
( π

2n−1

)2

= cos
( π

2n−1

)2(
1− cos

( π

2n−1

))
,

since the last quantity is greater than or equal to 0 for all n ∈ N. �

As explained in Section 3.1, we think of the sets (πn, n ∈ N) as the sets which
define the notion of neighborhood in the grids. Let us define (πn, n ∈ N) as in
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Section 3.1 with the help of the spherical maximum metric d∞, i.e. for n ∈ N we
define the set πn by

πn =
{
〈x, y〉up

∣∣∣x, y ∈ Dn, d∞(x, y) ≤ π

2n−1

}
(A.6)

where

d∞(x, y) = min{d1
∞(x, y), d2

∞(x, y)} (A.7)

with d1
∞(x, y) = max

{
|θx − θy|,min{|ϕx − ϕy|, 2π − |ϕx − ϕy|}

}
and d2

∞(x, y) = min{θx + θy, 2π − (θx + θy)},

for all x, y ∈ S2. Defining πn this way, for any grid point x ∈ Dn away from the poles
the grid points y ∈ Dn which satisfy 〈x, y〉up ∈ πn are exactly the 8 adjacent grid
points and x itself. It was mentioned in Section 1.2, that we need to identify the
surrounding grid points of a point x ∈ Dn as neighbors of x in order for Condition (c)
of Theorem 1.2.1 to be satisfied. Let ∆n denote the maximal distance of neighboring
grid points in the n-grid with this notion of neighborhood, i.e.

∆n = max
〈x,y〉up∈πn

dS2(x, y), n ∈ N.

We have the following formula for ∆n:

Lemma A.1.2. For all n ≥ 2 it is true that

∆n = arccos
(

cos2
( π

2n−1

))
.

Proof. Let n ≥ 2 and x, y ∈ Dn, i.e. there are some kx, ky ∈ {0, 1, . . . , 2n−1}
and lx, ly ∈ {0, 1, . . . , 2n − 1} such that x = φ2

(
kxπ/2

n−1, lxπ/2
n−1
)

and y =
φ2

(
kyπ/2

n−1, lyπ/2
n−1
)
. It follows from the definition of d∞ in (A.7) that the asser-

tion 〈x, y〉up ∈ πn is equivalent to(
|kx − ky| ≤ 1 and |lx − ly| mod (2n − 1) ≤ 1

)
or
(

(kx + ky) mod (2n − 1) ≤ 1
)
.

(A.8)

Let us assume, that the first statement in (A.8) holds true. Then in particu-
lar |lx − ly| ∈ {0, 1, 2n − 1} since lx, ly ∈ {0, 1, . . . , 2n − 1}. Hence |lx − ly|π/2n−1

is an element of
{

0, π/2n−1, 2π − π/2n−1
}

and consequently cos
(
|lx − ly|π/2n−1

)
∈{

1, cos
(
π/2n−1

)}
by the symmetry of the cosine function. For any kx, ky it is there-

fore optimal to choose lx, ly such that |lx− ly| mod (2n−2) = 1 in order to minimize
(A.4). Concerning kx, ky we are free to make any choice that satisfies |kx − ky| ≤ 1.
We have by the addition theorem for the cosine function for all x, y, z ∈ R

g(x, y, z) =
(
cos(|x− y|)− cos(x) cos(y)

)
cos(z) + cos(x) cos(y)

= cos(|x− y|) cos(z) + cos(x) cos(y)
(
1− cos(z)

)
,

so that we are left with the minimization of

g
(
kx

π

2n−1
, ky

π

2n−1
,
π

2n−1

)
= cos

(
|kx − ky|

π

2n−1

)
cos
( π

2n−1

)
+ cos

(
kx

π

2n−1

)
cos
(
ky

π

2n−1

)(
1− cos

( π

2n−1

))
(A.9)
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subject to the condition |kx − ky| ≤ 1. Because the second summand in (A.9) is
non-negative for any choice of kx, ky ∈ {0, 1, . . . , 2n−1} with |kx − ky| ≤ 1, it is easy
to see that (A.9) can not become smaller than

g
(π

2
,
π

2
+

π

2n−1
,
π

2n−1

)
= cos2

( π

2n−1

)
, (A.10)

corresponding to x = φ2

(
2n−2π/2n−1, π/2n−1

)
and y = φ2

(
(2n−2+1)π/2n−1, π/2n−1

)
.

In the case (kx + ky) mod (2n− 1) ≤ 1 at least one of the grid points x, y must be
a pole and the other can be located on the adjacent circle of latitude or be a pole
as well. The function g may therefore attain the following values:

g
(
kx

π

2n−1
, ky

π

2n−1
, |lx − ly|

π

2n−1

)
=

{
1, x, y poles,

cos
(

π
2n−1

)
, otherwise.

Both of these outcomes are however larger than (A.10), which shows that

∆n = arccos
(
g
(π

2
,
π

2
+

π

2n−1
,
π

2n−1

))
= arccos

(
cos2

( π

2n−1

))
for all n ≥ 2. �

In view of Condition (b) in Theorem 1.2.1 we are interested in the behavior
of the quotients ∆n/δ

0
n, n ∈ N. Since ∆n = arccos(an) and δ0

n = arccos(bn)
for two sequences (an, n ∈ N) and (bn, n ∈ N) which increase to 1 and because
arccos(1) = 0, the behavior of the sequence (∆n/δ

0
n, n ∈ N) depends on the behavior

of the sequences (an, n ∈ N) and (bn, n ∈ N). The following result allows us to
reduce the question of the convergence of (arccos(an)/ arccos(bn), n ∈ N) to that of
(bn
√

1− a2
n/(an/

√
1− b2

n), n ∈ N). This will enable us to show that (∆n/δ
0
n, n ∈ N)

diverges to ∞, and hence that Condition (b) in Theorem 1.2.1 does not hold true
for the grids (A.3) and the metric space (S2, dS2).

We assume that an inequality of the form (A.11) is well-known to specialists, but
since we could not find it in the literature, we give a proof here.

Lemma A.1.3. For any ε > 0 there exists C ∈ (0, 1) such that

(1− ε) y
√

1− x2

x
√

1− y2
<

arccos(x)

arccos(y)
< (1 + ε)

y
√

1− x2

x
√

1− y2
(A.11)

for all x, y ∈ (C, 1).

Proof. By [26, Formula 4.23.3] the inverse tangent function may be represented as

arctan(x) =

∫ x

0

1

1 + t2
dt, x > 0.

A substitution yields

arctan(x) = x

∫ 1

0

1

1 + x2t2
dt. (A.12)

By dominated convergence we find that

lim
x↘0

∫ 1

0

1

1 + x2t2
dt = 1,
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hence the quotient
∫ 1

0
1/(1 + x2t2) dt/

∫ 1

0
1/(1 + y2t2) dt converges to 1 as x, y fall to

0 and consequently ∫ 1

0
1/(1 + x2t2) dt∫ 1

0
1/(1 + y2t2) dt

∈ (1− ε, 1 + ε) (A.13)

for all ε > 0 and all x, y which are sufficiently small. By [35, Formula 1.624.5] we
have

arccos(x)

arccos(y)
=

arctan
(√

1− x2/x
)

arctan
(√

1− y2/y
) (A.14)

for all x, y ∈ (0, 1). Because
√

1− x2/x falls to 0 as x increases to 1, for all ε > 0
there is a constant C ∈ (0, 1) such that for all x, y ∈ (C, 1) we can combine (A.14),
(A.12), and (A.13) to get (A.11). �

Corollary A.1.4. The sequence (∆n/δ
0
n, n ∈ N) diverges to ∞ as n→∞.

Proof. By Lemmas A.1.1 and A.1.2 we have

∆n

δ0
n

=
arccos

(
cos2

(
π/2n−1

))
arccos

(
sin2

(
π/2n−1

)
cos
(
π/2n−1

)
+ cos2

(
π/2n−1

)) .
As n→∞, both arguments of the inverse cosine functions increase to 1. In view of
Lemma A.1.3, for any ε ∈ (0, 1) there is an n0 ∈ N such that for all n ≥ n0

∆n

δ0
n

> (1− ε)

√
1− cos4

(
π/2n−1

)(
sin2

(
π/2n−1

)
cos
(
π/2n−1

)
+ cos2

(
π/2n−1

))√
1−

(
sin2

(
π/2n−1

)
cos
(
π/2n−1

)
+ cos2

(
π/2n−1

))2

cos2
(
π/2n−1

) .
(A.15)

Squaring inequality (A.15) and rearranging gives(∆n

δ0
n

)2

> (1− ε)2(1 + an + 2 bn)

with an =
sin4

(
π/2n−1

)
cn

,

bn =
sin2

(
π/2n−1

)
cos
(
π/2n−1

)
cn

,

and cn = cos2
(
π/2n−1

)
− sin4

(
π/2n−1

)
cos4

(
π/2n−1

)
− 2 sin2

(
π/2n−1

)
cos5

(
π/2n−1

)
− cos6

(
π/2n−1

)
.

By the Pythagorean trigonometric identity, the double-angle formula and the triple-
angle formula we find

an =
4
(
1 + cos

(
π/2n−1

))
cos2

(
π/2n−1

)(
cos
(
π/2n−1

)
+ 2 cos

(
π/2n−2

)
− cos

(
3π/2n−1

)
+ 6
) ,

so that an ≥ 0 for all n ≥ 3. Similarly,

bn =
2

sin2(π/2n) cos
(
π/2n−1

)(
cos
(
π/2n−1

)
+ 2 cos

(
π/2n−2

)
− cos

(
3π/2n−1

)
+ 6
) ,

from which it is seen that bn and hence also ∆n/δ
0
n diverge to ∞ as n→∞. �
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A.2. Application of Theorem 2.4.1 to S2

The next lemma shows that Condition (NC) in Theorem 2.4.1 is true if we would
have chosen the metric d∞ instead of dS2 . In combination with the following lemma
we then obtain the validity of Condition (NC) in Theorem 2.4.1 for the metric
space (S2, dS2) and the choice of (πn, n ∈ N) given in (A.6). The following proof is
motivated by the arguments given in Section 4 of [70].

Lemma A.2.1. Let n ≥ 3, m ≥ n, and x, y ∈ Dm. Then d∞(x, y) ≤ π/2n−1 implies
the existence of x1, y1 ∈ Dm−1, . . . , xm−n, ym−n ∈ Dn such that

〈x, x1〉up, 〈y, y1〉up ∈ πm, . . . , 〈xm−n−1, xm−n〉up, 〈ym−n−1, ym−n〉up ∈ πn+1,

and 〈xm−n, ym−n〉up ∈ πn.

Proof. We show the assertion by induction over m ≥ n. In case m = n, we have
to show that 〈x, y〉up ∈ πn, but this follows from the definition of πn and because
we have d∞(x, y) ≤ π/2n−1. Now let us assume that the statement of the lemma is
true for some m ≥ n and suppose x, y ∈ Dm+1 such that d∞(x, y) ≤ π/2n−1. With
kx, ky ∈ {0, 1, . . . , 2m} and lx, ly ∈ {0, 1, . . . , 2m+1 − 1} the grid points x, y ∈ Dm+1

can be represented as x = φ2(kxπ/2
m, lyπ/2

m) and y = φ2(kyπ/2
m, lyπ/2

m). From
the definition of d∞ it follows that the statement d∞(x, y) ≤ π/2n−1 can be divided
into three cases:

Case 1: kx + ky ≤ 2m−n+1,

Case 2: kx + ky ≥ 2m+1 − 2m−n+1,

Case 3: kx + ky ∈ {2m−n+1 + 1, . . . , 2m+1 − 2m−n+1 − 1} and |kx − ky| ≤ 2m−n+1

and |lx − ly| mod (2m+1 − 2m−n+1) ≤ 2m−n+1.

In each case we will now define grid points x′ = φ2(k′xπ/2
m−1, l′xπ/2

m−1) ∈ Dm

and y′ = φ2(k′yπ/2
m−1, l′yπ/2

m−1) ∈ Dm such that 〈x, x′〉up, 〈y, y′〉up ∈ πm+1 and
d∞(x′, y′) ≤ π/2n−1. Then, in view of the induction hypothesis, the lemma is proven.

Let us begin with the case of x, y being near the North Pole, i.e. kx+ky ≤ 2m−n+1.
In that case we simply move north in the polar coordinate to the nearest grid points
x′, y′ ∈ Dm. For the azimuthal coordinate the direction is irrelevant as long as we
arrive at a grid point in Dm. This is because d∞ has a different behavior for points
at the poles. If x or y are already elements of Dm+1 ∩Dm, we do not have to move
at all. In detail, choose

j′z = max
{
v ∈ N0

∣∣∣ v ≤ jz
2

}
, j ∈ {k, l}, z ∈ {x, y},

then k′z ∈ {0, 1, . . . , 2m−1}, l′z ∈ {0, 1, . . . , 2m − 1} for z ∈ {x, y}, so that we have
x′, y′ ∈ Dm. Because kx − 2k′x, lx − 2l′x ∈ {0, 1} it follows from the inequality
d∞(x, x′) ≤ d1

∞(x, x′) that d∞(x, x′) ∈ {0, π/2m}, so that 〈x, x′〉up ∈ πm+1. Analo-
gously, we have 〈y, y′〉up ∈ πm+1. The statement d∞(x′, y′) ≤ π/2n−1 can be obtained
from kx + ky ≤ 2m−n+1 and 2k′x + 2k′y ≤ kx + ky so that

d∞(x′, y′) ≤ d2
∞(x′, y′) ≤ (k′x + k′y)

π

2m−1
≤ π

2n−1
.

For the second case we can proceed analogously with the obvious difference that we
have to move south. Thus let us come to the third case. In this case the grid points
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x and y are located away from the poles and we can proceed similarly as if we had
a grid in R2. To reduce the distance between the polar coordinates we define

k′x =

{
max

{
v ∈ N0 | v ≤ kx

2

}
, kx ≥ ky,

min
{
v ∈ N0 | v ≥ kx

2

}
, kx < ky,

and k′y =

{
min

{
v ∈ N0 | v ≥ ky

2

}
, kx > ky,

max
{
v ∈ N0 | v ≤ ky

2

}
, kx ≤ ky.

Concerning the azimuthal coordinates, we have to be careful with the identifica-
tion of the boundary values. In order to decrease the distance of the azimuthal
coordinates we define

l′x =


max

{
v ∈ N0 | v ≤ lx

2

}
, |lx − ly| ≤ 2m−n+1, lx ≥ ly,

min
{
v ∈ N0 | v ≥ lx

2

}
, |lx − ly| ≤ 2m−n+1, lx < ly,

min
{
v ∈ N0 | v ≥ lx

2

}
mod 2m, |lx − ly| ≥ 2m − 2m−n+1, lx > ly,

max
{
v ∈ N0 | v ≤ lx

2

}
, |lx − ly| ≥ 2m − 2m−n+1, lx < ly,

l′y =


min

{
v ∈ N0 | v ≥ ly

2

}
, |lx − ly| ≤ 2m−n+1, lx > ly,

max
{
v ∈ N0 | v ≤ ly

2

}
, |lx − ly| ≤ 2m−n+1, lx ≤ ly,

max
{
v ∈ N0 | v ≤ ly

2

}
, |lx − ly| ≥ 2m − 2m−n+1, lx > ly,

min
{
v ∈ N0 | v ≥ ly

2

}
mod 2m, |lx − ly| ≥ 2m − 2m−n+1, lx < ly.

It follows as in the first case that the so defined grid points x′, y′ are elements of Dm

and furthermore, we have 〈x, x′〉up, 〈y, y′〉up ∈ πm+1 because

|kx − 2k′x|, |ky − 2k′y| ∈ {0, 1} and |lx − 2l′x|, |ly − 2l′y| ∈ {0, 1, 2m+1 − 1}.

To show that d∞(x′, y′) ≤ π/2n−1, we note that from |kx − ky| ≤ 2m−n−1 and
|2k′x − 2k′y| ≤ |kx − ky| it follows that

|k′x − k′y| ≤ 2m−n. (A.16)

Furthermore, we have in case |lx − ly| ≤ 2m−n+1 the inequality |2l′x − 2l′y| ≤ |lx − ly|
and if |lx − ly| ≥ 2m − 2m−n+1 then |2l′x − 2l′y| ≥ |lx − ly| by construction, so that

|l′x − l′y| mod (2m − 2m−n+1) ≤ 2m−n. (A.17)

It follows therefore from (A.16) and (A.17) that

d∞(x′, y′) ≤ d1
∞(x′, y′) ≤ π

2n−1
.

This concludes the proof. �

Now let us define

δ̃n = arccos
(

sin2
( π

2n

)
cos
( π

2n−1

)
+ cos2

( π
2n

))
, n ∈ N.

Then we can show the following:

Lemma A.2.2. Let n ≥ 2, m ≥ n, and x, y ∈ Dm. Then dS2(x, y) ≤ δ̃n implies
d∞(x, y) ≤ π/2n−1.
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Proof. Let n,m be as in the lemma and x, y ∈ Dm. We show the reverse sta-
tement, i.e. we show that d∞(x, y) > π/2n−1 implies dS2(x, y) > δ̃n. Hence let
x = φ2(kxπ/2

m−1, lxπ/2
m−1) ∈ Dm and y = φ2(kyπ/2

m−1, lyπ/2
m−1) ∈ Dm, then

d∞(x, y) > π/2n−1 is equivalent to(
|kx − ky| > 2m−n and 2m−n < kx + ky < 2m − 2m−n

)
or

(
2m−n < |lx − ly| < 2m − 2m−n and 2m−n < kx + ky < 2m − 2m−n

)
.

In particular, the points x, y can not be too close to the poles. In the first case we
have in particular kx 6= ky, and we have already seen in the proof of Lemma A.1.1
that in this case we have for the function g defined in (A.2)

g
(
kx

π

2m−1
, ky

π

2m−1
, |lx − ly|

π

2m−1

)
≤ g
(
kx

π

2m−1
, ky

π

2m−1
, 0
)

= cos
(
|kx − ky|

π

2m−1

)
.

Since |kx − ky| > 2m−n we have therefore

g
(
kx

π

2m−1
, ky

π

2m−1
, |lx − ly|

π

2m−1

)
< cos

(
2m−n

π

2m−1

)
= cos

( π

2n−1

)
and consequently dS2(x, y) > π/2n−1 in the first case. In the second case, the
restriction 2m−n < |lx − ly| < 2m − 2m−n implies

g
(
kx

π

2m−1
, ky

π

2m−1
, |lx − ly|

π

2n−1

)
≤ g
(
kx

π

2m−1
, ky

π

2m−1
,
π

2n−1

)
. (A.18)

For any kx, ky ∈ {0, 1, . . . , 2m−1} we have from the addition theorems for the sine
and the cosine function the relation

g
(kx + ky

2

π

2m−1
,
kx + ky

2

π

2m−1
,
π

2n−1

)
− g
(
kx

π

2m−1
, ky

π

2m−1
,
π

2n−1

)
= sin2

(kx − ky
2

π

2m−1

)(
1 + cos

( π

2n−1

))
.

Because the last term is non-negative, we get with (A.18)

g
(
kx

π

2m−1
, ky

π

2m−1
, |lx − ly|

π

2n−1

)
≤ g
(kx + ky

2

π

2m−1
,
kx + ky

2

π

2m−1
,
π

2n−1

)
.

The restriction 2m−n < kx + ky < 2m − 2m−n entails that 2m−n−1 < (kx + ky)/2 <
2m−1 − 2m−n−1, and it is easy to see that

g
(kx + ky

2

π

2m−1
,
kx + ky

2

π

2m−1
,
π

2n−1

)
< g
( π

2n
,
π

2n
,
π

2n−1

)
= sin2

( π
2n

)
cos
( π

2n−1

)
+ cos2

( π
2n

)
for all kx, ky such that 2m−n < kx + ky < 2m − 2m−n. Altogether we have in the
second case

g
(
kx

π

2m−1
, ky

π

2m−1
, |lx − ly|

π

2n−1

)
< sin2

( π
2n

)
cos
( π

2n−1

)
+ cos2

( π
2n

)
and hence dS2(x, y) > δ̃n also in the second case. This concludes the proof. �
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B. Isotropic Functions on Sd and
Correlation Functions of Mosaic
Random Fields

B.1. Mosaic Random Fields Corresponding to the
Correlation Functions in Tables 4.1, 4.2, 4.3,
and 4.4

In this appendix we present for each correlation function ρ of Tables 4.1, 4.2, 4.3,
and 4.4 a mosaic random field

Z(x) =
∑
I∈PN

(∑
i∈II

Ug(I),i

)
1x∈CI , x ∈M, (B.1)

CI =

(⋂
i∈I

Bi

)
∩
( ⋂
j∈{1,...,N}\I

Bc
j

)
, I ∈ PN , (B.2)

which has ρ as its correlation function. The mosaic random field (B.1) is determined
by the following objects:

� An N0-valued random variable N ,

� an independent and identically distributed sequence of random closed sets
(Bn, n ∈ N) defining the cells CI , I ∈ Pn, n ∈ N0, via (B.2),

� an independent and identically distributed sequence of real-valued random
variables (Ui,j, i, j ∈ N),

� a function g : P∗(N)→ N,

� families (II , I ∈ Pn), n ∈ N0, of finite subsets of N.

Random variables with different characters are assumed to be independent.
Each choice of g and (II , I ∈ Pn), n ∈ N0, determines a submodel of the mosaic

random field (B.1). We make the following conventions: the random field (B.1) is
called

� simple mosaic random field if g is an injection and II = {1} for all I,

� random token field if g ≡ 1 and II = I for all I,

� mixture random field if g is an injection and II = I for all I,

� dead leaves random field if g(I) = 1I 6=∅max I and II = {1} for all I.
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The abbreviations of the random sets are as follows:

� random half-spaces H = H(X,R) defined by

H(X,R) = {z ∈ Rd | 〈z,X〉 ≥ R} ∩M

in case M is a bounded subset of Rd,

� random closed balls B = BD/2(X) defined by

BD/2(X) =
{
z ∈ Rd

∣∣∣ ‖x− y‖ ≤ D

2

}
∩M

in case M is a bounded subset of Rd and

BD/2(X) =
{
z ∈ Sd

∣∣∣ dSd(x,X) ≤ D

2

}
in case M = Sd,

� random rectangles E = E(Z), Z = (Z1, . . . , Zd), defined by

E(Z) = {z ∈ Rd | |z1 − Z1| ≤ a1, . . . , |zd − Zd| ≤ ad} ∩M

in case M is a bounded subset of Rd and a1, . . . , ad > 0.

B.1.1. Table 4.1, M Bounded Subset of Rd

For the correlation functions in Table 4.1 the respective random fields are simple
mosaic random fields. From (4.29) it follows, that the distribution of U has no
impact on the correlation function of the simple mosaic random field, as long as
0 < Var(U) < ∞. Furthermore, all mosaic random fields corresponding to the
correlation functions of Table 4.1 are build from random half-spaces H(X,R) with
X ∼ U(Sd−1) and R ∼ U

(
[−CM , CM ]

)
. Therefore, we only specify the distribution

of the number of random sets N in this subsection.

1. Generalized Cauchy correlation function

ρ(x, y) =
(

1 +
(dxy
c

)α)−β/α
, α ∈ (0, 1], β, c > 0.

� N =
∑L

l=1Kl, L ∼ NegBin
(
β/α, (1+(2CM/(cd c))

α)−1
)
, Kl ∼ Sibuya(α).

2. Powered exponential correlation function

ρ(x, y) = e−(dxy/c)
α

, α ∈ (0, 1], c > 0.

� N =
∑L

l=1Kl, L ∼ Poi
(
(2CM/(cd c))

α
)
, this compound Poisson distribu-

tion is also called discrete stable distribution (see [83]), Kl ∼ Sibuya(α).

3. Dagum correlation function

ρ(x, y) = 1−
( (dxy/c)

α

1 + (dxy/c)α

)β
, α, β ∈ (0, 1], c > 0.
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B.1. Correlation Functions of Mosaic Random Fields

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ Sibuya(β),

Lm ∼ GeoN0

(
(1 + (2CM/(cd c))

α)−1
)
, Kl,m ∼ Sibuya(α).

4.

ρ(x, y) = 1−
((1 + (dxy/c)

α)γ − 1

(1 + (dxy/c)α)γ

)β
, α, β ∈ (0, 1], γ, c > 0.

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ Sibuya(β),

Lm ∼ NegBin
(
γ, (1 + (2CM/(cd c))

α)−1
)
, Kl,m ∼ Sibuya(α).

5.

ρ(x, y) =
(

1−
(dxy
c

)α)n
, α ∈ (0, 1], c ≥ 2CM

cd
, n ∈ N0.

� N =
∑L

l=1Kl, L ∼ Bin
(
n, (2CM/(cd c))

α
)
, Kl ∼ Sibuya(α).

6.

ρ(x, y) =
(

1− cd
dxy

2CM

)n
e−(dxy/c)α , α ∈ (0, 1], c > 0, n ∈ N0.

� N = n+
∑L

l=1 Kl, n ∈ N0, L ∼ Poi
(
(2CM/(cd c))

α
)
, Kl ∼ Sibuya(α).

7.

ρ(x, y) =
1−

(
cd dxy/(2CM)

)α
1− cd dxy/(2CM)

, α ∈ (0, 1].

� N = K − 1, K ∼ Sibuya(α).

8.

ρ(x, y) =
1− e−(dxy/c)α

(dxy/c)α
, α ∈ (0, 1], c > 0.

� N =
∑L

l=1Kl, L ∼ U
(
{0, . . . ,M}

)
, M ∼ Poi

(
(2CM/(cd c))

α
)
,

Kl ∼ Sibuya(α).

9.

ρ(x, y) =
log(1 + (dxy/c)

α)

(dxy/c)α
, α ∈ (0, 1], c > 0.

� N =
∑L

l=1Kl, L ∼ U
(
{0, . . . ,M}

)
, M ∼ GeoN0

(
(1 + (2CM/(cd c))

α)−1
)
,

Kl ∼ Sibuya(α).

10.

ρ(x, y) =
(
1 + β − βe−(dxy/c)α

)−γ
, α ∈ (0, 1], β, γ, c > 0.

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ NegBin

(
γ, (1 + β)−1

)
,

Lm ∼ Poi
(
(2CM/(cd c))

α
)
, Kl,m ∼ Sibuya(α).
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11.

ρ(x, y) = e−β(dxy/c)α/(1+(dxy/c)α), α ∈ (0, 1], β, c > 0.

� N =
∑M

m=1

∑Lm
l=1 Kl,m, M ∼ Poi(β), Lm ∼ GeoN0

(
(1+(2CM/(cd c))

α)−1
)
,

Kl,m ∼ Sibuya(α).

12.

ρ(x, y) =
1 + (dxy/c)

α

1 + β(dxy/c)α
, α ∈ (0, 1], β ≥ 1, c > 0.

� N =
∑M

m=1

∑Lm
l=1 Kl,m, M ∼ GeoN0

(
β−1
)
,

Lm ∼ GeoN0

(
(1 + (2CM/(cdc))

α)−1
)
, Kl,m ∼ Sibuya(α).

13.

ρ(x, y) = e−β(1−e−(dxy/c)
α

), α ∈ (0, 1], β, c > 0.

� N =
∑M

m=1

∑Lm
l=1 Kl,m, M ∼ Poi(β), Lm ∼ Poi

(
(2CM/(cd c))

α
)
,

Kl,m ∼ Sibuya(α).

14.

ρ(x, y) = 1−
( γ (dxy/c)

α

1 + (1 + γ)(dxy/c)α

)β
, α, β ∈ (0, 1], γ ≥ 0, c > 0.

� N =
∑Q

q=1

∑Mq

m=1

∑Lm,q
l=1 Kl,m,q, Q ∼ Sibuya(β), Mq ∼ GeoN0

(
(1 + γ)−1

)
,

Lm,q ∼ GeoN0

(
(1 + (2CM/(cd c))

α)−1
)
, Kl,m,q ∼ Sibuya(α).

B.1.2. Table 4.2, M Bounded Subset of Rd

1.

ρ(x, y) = λ
(

1− cd
dxy

2CM

)
+ 1− λ, λ ∈ (0, 2).

� Random token field,

� random half-spaces H(X,R), X ∼ U(Sd−1), R ∼ U
(
[−CM , CM ]

)
,

� N ∼ GeoN
(
λ2/(2(1− λ)2 + 2)

)
,

� Ui,j ∼ N
(
1, (2− λ)/λ

)
.

2.

ρ(x, y) =
B1−d2xy/a2((d+ 1)/2, 1/2)

B((d+ 1)/2, 1/2)
1dxy≤a, a > 0.

� Random token field

� random closed balls BD/2(X), X ∼ U(Sd−1), D = a,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.
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3.

ρ(x, y) =
( 2

π
arccos

(dxy
a

)
− 2

πa2
dxy

√
a2 − d2

xy

)
1dxy≤a, a > 0.

� Here M is a subset of R2,

� random token field,

� random closed balls BD/2(X), X ∼ U(S1), D = a,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

4. Spherical correlation function

ρ(x, y) =
(

1− 3dxy
2a

+
d3
xy

2a3

)
1dxy≤a, a > 0.

� Here M is a subset of R2 or R3,

� random token field,

� random closed balls BD/2(X),

– d = 2: X ∼ U(S1), D is continuously distributed with the distribu-
tion function F (x) = 1

a

(
a−
√
a2 − x2

)
10≤x≤a + 1x>a, x ∈ R,

– d = 3: X ∼ U(S2), D = a,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

5.

ρ(x, y) =

(
B1−d2xy/a2((d+ 1)/2, 1/2)

B((d+ 1)/2, 1/2)
−
dd+1
xy

ad+1

B1−d2xy/a2((d+ 1)/2,−d/2)

B((d+ 1)/2, 1/2)

)
1dxy≤a,

a > 0.

� Random token field,

� random closed balls BD/2(X), X ∼ U(Sd−1), D ∼ U
(
[0, a]

)
,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

6.

ρ(x, y) =

(
2

π
arccos

(dxy
a

)
− 4

πa2
dxy

√
a2 − d2

xy

+
2

πa3
d3
xy artanh

((
1−

d2
xy

a2

)1/2))
1dxy≤a, a > 0.

� Here M is a subset of R2,

� random token field,

� random closed balls BD/2(X), X ∼ U(S1), D ∼ U
(
[0, a]

)
,
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� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

7.

ρ(x, y) =
1− cd dxy/(2CM)

1 + dxy/c
, c >

2CM
cd

.

� Dead leaves random field,

� random half-spaces H(X,R), X ∼ U(Sd−1), R ∼ U
(
[−CM , CM ]

)
,

� N ∼ GeoN
(
(c cd − 2CM)/(c cd + 2CM)

)
,

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

8.

ρ(x, y) = λ
(

1− cd
dxy

2CM

)
e−dxy/c + (1− λ)

(
1− cd

dxy
2CM

)
, c > 0, λ ∈ (0, 1).

� Mixture random field,

� random half-spaces H(X,R), X ∼ U(Sd−1), R ∼ U
(
[−CM , CM ]

)
,

� N ∼ Poi
(
2CM/(cd c)

)
,

� Ui,j ∼ N
(
1, λ/(1− λ)

)
.

9.

ρ(x, y) = 1− 21−α cd dxy/(2CM)

(1 + cd dxy/(2CM))1−α , α ∈ (0, 1].

� Dead leaves random field

� random half-spaces H(X,R), X ∼ U(Sd−1), R ∼ U
(
[−CM , CM ]

)
,

� N ∼ Sibuya(α),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

10.

ρ(x, y) =

∏n
k=1(2ak − |xk − yk|)+

2d
∏d

k=1 ak
, a1, . . . , ad > 0.

� Random token field,

� random closed rectangles E(Z),

Z = (Z1, . . . , Zd) ∼ U
(∏d

k=1[−(Rk + ak), Rk + ak]
)
,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.
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B.1.3. Table 4.3, M = Sd

In case M = Sd we restrict ourselves to random closed balls BR(X) as random sets.
The center of the ball X is always uniformly distributed over Sd. Hence we must
only specify the distribution of the radius R in order to specify the random closed
set in Sd. The random fields corresponding to the correlation function in Table
4.3 are simple mosaic random fields and so are the random fields described in this
subsection. As before, the distribution of U is irrelevant for the correlation function
of a simple mosaic random field.

1. Generalized Cauchy correlation function

ρ(x, y) =
(

1 +
(dxy
c

)α)−β/α
, α ∈ (0, 1], β, c > 0.

� R ≡ π/2,

� N =
∑L

l=1Kl, L ∼ NegBin
(
β/α, (1 + (π/c)α)−1

)
, Kl ∼ Sibuya(α).

2. Powered exponential correlation function

ρ(x, y) = e−(dxy/c)
α

, α ∈ (0, 1], c > 0.

� R ≡ π/2,

� N =
∑L

l=1Kl, L ∼ Poi
(
(π/c)α

)
, Kl ∼ Sibuya(α).

3. Dagum correlation function

ρ(x, y) = 1−
( (dxy/c)

α

1 + (dxy/c)α

)β
, α, β ∈ (0, 1], c > 0.

� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1 Kl,m, M ∼ Sibuya(β), Lm ∼ GeoN0

(
(1 + (π/c)α)−1

)
,

Kl,m ∼ Sibuya(α).

4.

ρ(x, y) = 1−
((1 + (dxy/c)

α)γ − 1

(1 + (dxy/c)α)γ

)β
, α, β ∈ (0, 1], γ, c > 0.

� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ Sibuya(β), Lm ∼ NegBin

(
γ, (1+(π/c)α)−1

)
,

Kl,m ∼ Sibuya(α).

5.

ρ(x, y) =
(

1−
(dxy
c

)α)n
, α ∈ (0, 1], c ≥ π, n ∈ N0.

� R ≡ π/2,

� N =
∑L

l=1Kl, L ∼ Bin
(
n, (π/c)α

)
, Kl ∼ Sibuya(α).
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6.

ρ(x, y) =
(

1− dxy
π

)n
e−(dxy/c)α , α ∈ (0, 1], c > 0, n ∈ N0.

� R ≡ π/2,

� N = n+
∑L

l=1Kl, n ∈ N0, L ∼ Poi
(
(π/c)α

)
, Kl ∼ Sibuya(α).

7.

ρ(x, y) =
1− (dxy/π)α

1− dxy/π
, α ∈ (0, 1].

� R ≡ π/2,

� N = K − 1, K ∼ Sibuya(α).

8.

ρ(x, y) =
1− e−(dxy/c)α

(dxy/c)α
, α ∈ (0, 1], c > 0.

� R ≡ π/2,

� N =
∑L

l=1Kl, L ∼ U
(
{0, . . . ,M}

)
, M ∼ Poi

(
(π/c)α

)
, Kl ∼ Sibuya(α).

9.

ρ(x, y) =
log(1 + (dxy/c)

α)

(dxy/c)α
, α ∈ (0, 1], c > 0.

� R ≡ π/2,

� N =
∑L

l=1Kl, L ∼ U({0, . . . ,M}), M ∼ GeoN0

(
(1 + (π/c)α)−1

)
,

Kl ∼ Sibuya(α).

10.

ρ(x, y) =
(
1 + β − βe−(dxy/c)α

)−γ
, α ∈ (0, 1], β, γ, c > 0.

� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ NegBin

(
γ, (1 + β)−1

)
, Lm ∼ Poi

(
(π/c)α

)
,

Kl,m ∼ Sibuya(α).

11.

ρ(x, y) = e−β(dxy/c)α/(1+(dxy/c)α), α ∈ (0, 1], β, c > 0.

� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ Poi(β), Lm ∼ GeoN0

(
(1 + (π/c)α)−1

)
,

Kl,m ∼ Sibuya(α).

12.

ρ(x, y) =
1 + (dxy/c)

α

1 + β(dxy/c)α
, α ∈ (0, 1], β ≥ 1, c > 0.
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� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ GeoN0

(
β−1
)
, Lm ∼ GeoN0

(
(1 + (π/c)α)−1

)
,

Kl,m ∼ Sibuya(α).

13.

ρ(x, y) = e−β(1−e−(dxy/c)
α

), α ∈ (0, 1], β, c > 0.

� R ≡ π/2,

� N =
∑M

m=1

∑Lm
l=1Kl,m, M ∼ Poi(β), Lm ∼ Poi

(
(π/c)α

)
,

Kl,m ∼ Sibuya(α).

14.

ρ(x, y) = 1−
( γ (dxy/c)

α

1 + (1 + γ)(dxy/c)α

)β
, α, β ∈ (0, 1], γ ≥ 0, c > 0.

� R ≡ π/2,

� N =
∑Q

q=1

∑Mq

m=1

∑Lm,q
l=1 Kl,m,q, Q ∼ Sibuya(β), Mq ∼ GeoN0

(
(1 + γ)−1

)
,

Lm,q ∼ GeoN0

(
(1 + (π/c)α)−1

)
, Kl,m,q ∼ Sibuya(α).

15.

ρ(x, y) = e−(sin(dxy/2)/c)α , α ∈ (0, 1], c > 0.

� cos(R) ∼ U
(
[−1, 1]

)
,

� N =
∑L

l=1 Kl, L ∼ Poi
(
(cd+1c)

−α), Kl ∼ Sibuya(α).

16.

ρ(x, y) =
(

1 +
(1

c
sin
(dxy

2

))α)−β/α
, α ∈ (0, 1], β, c > 0.

� cos(R) ∼ U
(
[−1, 1]

)
,

� N =
∑L

l=1Kl, L ∼ NegBin
(
β/α, (1 + (cd+1c)

−α)−1
)
, Kl ∼ Sibuya(α).

17.

ρ(x, y) = 1−
(
cd+1 sin

(dxy
2

))α
, α ∈ (0, 1].

� cos(R) ∼ U
(
[−1, 1]

)
,

� N ∼ Sibuya(α).

B.1.4. Table 4.4, M = Sd

1.

ρ(x, y) = λ
(

1− dxy
π

)
+ 1− λ, λ ∈ (0, 2).

� Random token field,
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� R ≡ π/2,

� N ∼ GeoN
(
λ2/(2(1− λ)2 + 2)

)
,

� Ui,j ∼ N
(
1, (2− λ)/λ

)
.

2.

ρ(x, y) = 1dxy=0 +
1

π
(
1− cos(r)

)(arccos
(cos2(r)− cos(dxy)

sin2(r)

)
− 2 cos(r) arccos

(cos(r)
(
1− cos(dxy)

)
sin(r) sin(dxy)

))
10<dxy≤2r, r ∈

(
0,
π

2

]
.

� Here M is the two-dimensional sphere S2,

� random token field,

� R ≡ r,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

3.

ρ(x, y) =
1− dxy/π
1 + dxy/c

, c > π.

� Random token field,

� R ≡ π/2,

� N ∼ GeoN
(
(c− π)/(c+ π)

)
,

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

4.

ρ(x, y) = λ
(

1− dxy
π

)
e−dxy/c + (1− λ)

(
1− dxy

π

)
, c > 0, λ ∈ (0, 1).

� Mixture random field,

� R ≡ π/2,

� N ∼ Poi
(
π/c
)
,

� Ui,j ∼ N
(
1, λ/(1− λ)

)
.

5.

ρ(x, y) = 1− 21−α dxy/π

(1 + dxy/π)1−α , α ∈ (0, 1].

� Dead leaves random field

� R ≡ π/2,

� N ∼ Sibuya(α),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.
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6.

ρ(x, y) = λ
(

1− cd+1 sin
(dxy

2

))
+ 1− λ, λ ∈ (0, 2).

� Random token field,

� cos(R) ∼ U
(
[−1, 1]

)
,

� N ∼ GeoN
(
λ2/(2(1− λ)2 + 2)

)
,

� Ui,j ∼ N
(
1, (2− λ)/λ

)
.

7.

ρ(x, y) = 1− cd+1
3

d+ 2
sin
(dxy

2

)
cos2

(dxy
2

)
− cd+1

2

d+ 2
sin3

(dxy
2

)
.

� Random token field,

� cos(R) ∼ U
(
[−1, 1]

)
,

� N ∼ Poi (the parameter of the Poisson distribution is arbitrary),

� the distribution of U is arbitrary as long as 0 < Var(U) <∞.

B.2. Isotropic Functions on Sd

A function C : Sd×Sd → R is called isotropic if for all x, y ∈ Sd and allR ∈ SO(d+1)
it is true that

C(x, y) = C(Rx,Ry).

In this appendix we give a proof of a statement which is well-known but which
we could not find in the literature.

Lemma B.2.1. A function C : Sd × Sd → R is isotropic if and only if there is
C̃ : [0, π]→ R such that

C(x, y) = C̃
(
dSd(x, y)

)
, x, y ∈ Sd. (B.3)

Proof. Suppose there is a function C̃ : [0, π] → R such that (B.3) is true. Because
any rotation R ∈ SO(d+ 1) is an orthogonal matrix, we have for all x, y ∈ Sd

C(Rx,Ry) = C̃
(
dSd(Rx,Ry)

)
= C̃

(
arccos

(
〈Rx,Ry〉

))
= C(x, y),

which shows the reverse implication. To see that the isotropy of C also implies the
existence of a function C̃ : [0, π] → R such that (B.3) holds true, let x, x̃, y, ỹ be
some points in Sd such that dSd(x, y) = dSd(x̃, ỹ). We aim to show C(x, y) = C(x̃, ỹ).

Because SO(d+ 1) acts transitively on Sd there are rotations Rx,Rx̃ ∈ SO(d+ 1)
such that

Rxx = Rx̃x̃ = ed+1 with ed+1 = (0, . . . , 0, 1) ∈ Sd.

Because of dSd(x, y) = dSd(x̃, ỹ) we have

〈ed+1,Rxy〉 = 〈x, y〉 = cos
(
dSd(x, y)

)
= 〈ed+1,Rx̃ỹ〉,
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so that we may write Rxy and Rx̃ỹ in block matrix notation as

Rxy =
(
u, cos

(
dSd(x, y)

))
, Rx̃ỹ =

(
v, cos

(
dSd(x, y)

))
(B.4)

with some vectors u, v ∈ Rd. Since ‖Rxy‖ = ‖Rx̃ỹ‖ = 1, the length of u and v is
given by

‖u‖ = ‖v‖ = sin
(
dSd(x, y)

)
. (B.5)

Suppose that dSd(x, y) ∈ {0, π}, so that u = v = 0 by (B.5). Then we have
Rxy = Rx̃ỹ from (B.4) and the isotropy of C implies

C(x, y) = C(ed+1,Rxy) = C(x̃, ỹ).

If dSd(x, y) ∈ (0, π), then u 6= 0 and v 6= 0 and the vectors u′ = u/ sin
(
dSd(x, y)

)
and

v′ = v/ sin
(
dSd(x, y)

)
are elements of Sd−1. Using the transitive action of SO(d) on

Sd−1 there is a rotation R′ ∈ SO(d) such that R′u′ = v′. It is easy to see, that the
rotation (given in block matrix notation)

R∗ =

(
R′ 0
0 1

)
is an element of SO(d+ 1), and furthermore, that ed+1 is a fixed point of R∗. Hence
in case dSd(x, y) ∈ (0, π) we have

C(x, y) = C(ed+1,Rxy)

= C(ed+1,R∗Rxy)

= C
(
ed+1,R∗

(
sin
(
dSd(x, y)

)
u′, cos

(
dSd(x, y)

)))
= C

(
ed+1,

(
sin
(
dSd(x, y)

)
v′, cos

(
dSd(x, y)

)))
= C(ed+1,Rx̃ỹ)

= C(x̃, ỹ).

Altogether we have shown that the isotropy of C implies

C(x, y) = C(x̃, ỹ) for all x, x̃, y, ỹ ∈ Sd such that dSd(x, y) = dSd(x̃, ỹ). (B.6)

For θ ∈ [0, π] we may now pick any x, y ∈ Sd with dSd(x, y) = θ and define C̃(θ) by

C̃(θ) = C(x, y).

Then this defines a function C̃ : [0, π]→ R and (B.6) shows that the condition (B.3)
holds true for this C̃. �
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