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Abstract

We ask whether a pay-as-you-go financed social security system is welfare improving

in an economy with idiosyncratic productivity and aggregate business cycle risk. We show

analytically that the whole welfare benefit from joint insurance against both risks is greater

than the sum of benefits from insurance against the isolated risk components. One reason is

the convexity of the welfare gain in total risk. The other reason is a direct risk interaction

which amplifies the utility losses from consumption risk. We proceed with a quantitative

evaluation of social security’s welfare effects. We find that introducing an unconditional

minimum pension leads to substantial welfare gains in expectation, even net of the welfare

losses from crowding out. About 60% of the welfare gains would be missing when simply

summing up the isolated benefits.
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1 Introduction

Many countries operate large social security systems. One reason is that social security can
provide insurance against risks for which there are no private markets. However, these systems
also impose costs by distorting prices and decisions. The question arises whether the benefits of
social security outweigh the costs.

We address this question in a model economy featuring two types of risk, aggregate business
cycle risk in form of aggregate wage and asset return risk as well as idiosyncratic productivity
risk. We follow the literature and assume that insurance markets for both types of risk are
incomplete. In such a setting, social security can increase economic efficiency by providing
partial insurance. However, it also distorts decisions leading to welfare losses from crowding
out of capital formation. Our analysis differs from the previous literature in that prior studies
characterized social security’s welfare effects in models with only one type of risk. One strand
of the literature examined social security when only aggregate risk is present, e.g., Krueger and
Kubler (2006). In that setting, social security—by pooling aggregate wage and asset return
risks across generations—can improve intergenerational risk sharing. The other strand only
considered idiosyncratic risk, cf., e.g., İmrohoroğlu, İmrohoroğlu, and Joines (1995, 1998)
and Conesa and Krueger (1999). There, social security provides intragenerational insurance by
redistributing ex-post from high to low productivity households. Broadly speaking, both strands
of this literature conclude that the costs of introducing social security outweigh the benefits.

Such a segregated view is incomplete because households face both types of risk over the
life-cycle and because social security, when appropriately designed, can (partially) insure both
types of risk. We also argue that simply combining the findings from previous studies leads
to severe biases in the overall welfare assessment. Our theoretical contribution is to show
analytically why the whole insurance benefit exceeds the sum of the benefits from insurance
against isolated risk components. Our quantitative contribution is to establish that joint insurance
against both types of risk leads to large net welfare gains, thereby turning previous findings in
the literature upside down: social security is welfare improving from the ex-ante perspective.

We emphasize that two important biases emanate from simply combining previous findings.
The first arises even when the two types of risk are statistically independent. This bias is a
consequence of the convexity of the welfare gain (CWG) in total risk. The welfare gain is convex
in the amount of total risk because the marginal utility of insurance increases disproportionately
as risk increases. Joint presence of idiosyncratic productivity and aggregate business cycle risk
strongly fans out the earnings and consumption distributions. If social security is designed as
a Beveridgean system with flat pension benefits, it provides partial insurance against this total
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life-cycle risk exposure. Because of CWG, the whole benefit from insurance is therefore greater
than the sum of benefits from insurance against the single risk components. We show that this
difference in welfare assessments, the “CWG bias”, increases in the total amount of risk. Since
total life-cycle risk is large, we can expect this bias to be large.

The second bias stems from a direct interaction of risks in form of a counter-cyclical

cross-sectional variance (CCV ) of idiosyncratic productivity risk: the variance of persistent
idiosyncratic shocks is higher in a downturn than in a boom. The CCV has been documented in
the data (Storesletten, Telmer, and Yaron 2004b) and analyzed with respect to its asset pricing
implications (Mankiw 1986; Constantinides and Duffie 1996; Storesletten, Telmer, and Yaron
2007).1 It leads to a high variance of the idiosyncratic income component when the aggregate
income component is low. Due to concavity of the utility function this amplifies the welfare
gains from insurance against both risks.

To expose these biases we start our analysis by employing an analytically tractable two-
period life-cycle model in which a household faces idiosyncratic and aggregate wage risk in the
first period of life. In absence of social security, retirement consumption is financed by private
savings which bear aggregate return risk. We study the welfare consequence of introducing a pay-
as-you-go (PAYG) financed social security system with flat, unconditional pension payments. By
pooling idiosyncratic wage risks within and aggregate risks across generations, this Beveridgean
system jointly provides partial insurance against idiosyncratic and aggregate risks. We measure
welfare gains by a consumption equivalent variation. Abstracting from CCV , we derive a term
capturing the welfare difference between the whole insurance benefit and the sum of the benefits
from insurance against the isolated risk components. This difference reflects the CWG bias.
We subsequently modify the two-period model to account for the CCV mechanism and show
how an additional welfare difference emerges.

Our arguments so far ignore behavioral reactions, i.e., the reduction of savings caused by
social security. In general equilibrium, this savings reaction leads to crowding out of aggregate
capital, which entails corresponding changes in relative prices. Therefore, both the sign and the
size of the welfare effects of introducing social security in a model with both risks have to be
determined in a quantitative general equilibrium analysis.

To conduct such a quantitative analysis we build a large-scale overlapping generations model
in the tradition of Auerbach and Kotlikoff (1987), extended by idiosyncratic productivity risk
and aggregate wage and asset return risk. Households can save privately by investing in a

1Based on Guvenen, Ozkan, and Song (2014) a recent paper by Busch and Ludwig (2017) finds that in addition
to the variance the skewness of persistent idiosyncratic shocks is countercyclical. Adding such a countercyclical
left-skewness would strengthen our results, because more households would find themselves in situations with high
marginal utility.
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risk-free bond and a risky stock. Including this portfolio choice is important. It allows us
to appropriately calibrate the risk-return structure of the private savings technologies, which
directly affects the value of social security. The possibility to save in two assets also implies
that households have additional means of self-insurance. In our computational experiment,
we consider a stylized social security reform by introducing a pure Beveridgean PAYG social
security system—like in our analytic two-period model—with a contribution rate of 2%. This
is the size of the U.S. system when first introduced in 1935. We hence study the welfare
implications of introducing a flat rate minimum pension.2

By calibrating the model to the U.S. economy we find that such a marginal introduction
of social security leads to a strong welfare gain of 2.6% in terms of a consumption equivalent
variation. This welfare improvement is obtained because strong partial equilibrium insurance
gains of 5.2% outweigh the substantial welfare losses from crowding out of capital of 2.6% in
general equilibrium. Our key finding of net welfare gains stands in stark contrast to the previous
literature. When instead replicating the earlier literature by considering economies with only
one type of risk we indeed observe net welfare losses. We therefore conclude that it is of crucial
quantitative importance to jointly consider both risks.

To uncover the sources of the partial equilibrium welfare gain of 5.2%, we decompose it into
the components that are attributable to insurance against the isolated risks as well as the two
bias terms, CCV and CWG. We find that the combined effect of the two bias terms scales up
the partial equilibrium welfare gains by 60%. This strong effect reemphasizes our key finding
on the quantitative importance of jointly considering both risks. Finally, we investigate how
much of the general equilibrium welfare effects stem from changes in mean consumption and
from changes in the intra- and intergenerational distribution of consumption.

The notion that social security can insure against aggregate risks dates back to Diamond
(1977) and Merton (1983). They demonstrate how it can partially complete financial mar-
kets, thereby increasing economic efficiency. Building on these insights, Shiller (1999) and
Bohn (2001, 2009) show that social security can reduce consumption risk of all generations by
pooling labor income and capital income risks across generations. Gordon and Varian (1988),
Matsen and Thogersen (2004), Krueger and Kubler (2006), and Ball and Mankiw (2007) use a
two-period partial equilibrium model in which households only consume in the second period
of life, i.e., during retirement. For our analytical results, we extend this model by adding
idiosyncratic risk. Among the few quantitative papers with aggregate risk and social security,
Krueger and Kubler (2006) is the most similar to our work. They conclude that the introduction

2Nearly all OECD countries feature either a minimum or a basic pension that is independent of previous
income, see OECD (2015).
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of a small PAYG system does generally not constitute a Pareto-improvement.3 The concept of
a Pareto-improvement requires that they take an ex-interim welfare perspective, whereas we
calculate welfare from an ex-ante perspective. Our analysis also differs substantially because we
include idiosyncratic risk and analyze interactions between the risks.4

Many quantitative papers consider idiosyncratic risk and social security, e.g., Conesa and
Krueger (1999), İmrohoroğlu, İmrohoroğlu, and Joines (1995, 1998), Huggett and Ventura
(1999), and Storesletten, Telmer, and Yaron (1999). One general conclusion from this literature
is that welfare in a stationary economy without social security is higher than in one with a
PAYG system. More recently Nishiyama and Smetters (2007), Fehr and Habermann (2008),
and Golosov, Shourideh, Troshkin, and Tsyvinski (2013) focus on modeling the institutional
features of existing social security systems in detail, which we abstract from. Our results
demonstrate the benefits of a flat minimum pension. Like all these papers, we conduct a limited
policy design experiment by restricting attention to insurance through the social security system,
taking insurance through taxes and transfers during the working period as given.5

We derive our analytical results in Section 2. Section 3 describes the quantitative model,
Section 4 presents the calibration and Section 5 the main results of our quantitative analysis. We
conclude in Section 6. Proofs as well as computational and calibration details are relegated to
separate appendices.

2 A Two-Generations Model

2.1 Model

In each period t, a continuum of households is born who live for two periods only. A household
has preferences over consumption in the second period. In the first period of life, a household
experiences an idiosyncratic productivity shock, denoted by η. This shock induces ex-post
heterogeneity and we denote ex-post different households by i. Age is indexed by j, with j = 1
being working age and j = 2 being retirement. Denoting by ci,2,t+1 consumption in retirement,

3The recent work by Hasanhodzic and Kotlikoff (2015) mirrors these findings.
4Other related papers are Ludwig and Reiter (2010) who assess how pension systems should optimally adjust

to demographic shocks, Olovsson (2010) who contends that pension payments should be highly risky because this
increases precautionary savings and thereby capital formation, Peterman and Sommer (2015, 2016) who discuss
the insurance benefits of social security in the Great Depression and the Great Recession, respectively, modeling
each event as a one-time macroeconomic shock, and, finally, Gomes, Michaelides, and Polkovnichenko (2012) who
use a model similar to ours to study how changes in fiscal policy and government debt affect asset prices and the
wealth distribution.

5Huggett and Parra (2010) point out the importance of analyzing the optimal design of social security and the
income tax system jointly.
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the expected utility of a household born in period t is Et [u(ci,2,t+1)]. We assume a CRRA per

period utility function with coefficient of relative risk aversion θ, u(ci,2,t+1) = c1−θi,2,t+1−1
1−θ .

Gross wage income is given by ηi,1,twt, where wt is the aggregate and ηi,1,t is the idiosyn-
cratic, stochastic wage component. Wage income is subject to social security contributions at
rate τ . During retirement, the household receives a flat pension income, ysst+1. Accordingly, the
budget constraints are given by

si,2,t+1 = (1− τ)ηi,1,twt and ci,2,t+1 ≤ si,2,t+1Rt+1 + ysst+1, (1)

where si,2,t+1 denotes gross savings and Rt+1 = 1 + rt+1 is the risky gross interest factor.
While contributions depend on the idiosyncratic shock ηi,1,t, retirees receive the same flat
pension payment, ysst+1. Thus, social security provides partial intragenerational insurance against
idiosyncratic risk.

We denote by ζt the shock to aggregate wages and by %t the shock to returns.6 We further
assume that wages grow deterministically at rate λ. Denoting by R̄ and w̄t the deterministic
components of returns and wages we accordingly get:

wt = w̄tζt = w̄t−1(1 + λ)ζt and Rt = R̄%t. (2)

Abstracting from population growth,7 the balanced budget of the pure PAYG system reads

τwt = ysst . (3)

From equations (2) and (3) one can see that social security provides partial intergenerational
insurance against aggregate risk if ζt and %t are imperfectly correlated.

2.2 Analysis

The CWG Bias. We analyze the welfare effects of introducing a marginal social security
system of size dτ > 0 under the following assumptions:

Assumption 1. All shocks ηi,1,t, ζt, %t: (a) are distributed log-normal with means µln η, µln ζ ,

µln % and variances σ2
ln η, σ

2
ln ζ , σ

2
ln %, (b) have a mean of one: Eζ = E% = Eη = 1, (c) are

uncorrelated over time, and (d) are statistically independent from each other.

6In this section, we limit the analysis to a partial equilibrium, and hence wages and returns are exogenous.
7Our quantitative model also features population growth.
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Assumptions 1a-b are frequently employed for analytical tractability. Assumption 1c can be
justified by the long periodicity of each period in a two-period overlapping generations model
of approximately 30–40 years. Assumption 1d is important to illustrate the CWG. Below, we
relax it to extend the model by the CCV .

To evaluate welfare, we adopt an ex-ante perspective. The social welfare function of a cohort
born in period t is the unconditional expected utility of a generation, E [u(ci,2,t+1)]. We study
the consumption equivalent variation (CEV) from a marginal introduction of social security,
which is the percentage increase in consumption, gc, required to make the household indifferent
between being born into an economy without social security (τ = 0) and with a small social
security system (τ = dτ > 0). We include a superscript PE for “partial equilibrium” to remain
consistent with the subsequent quantitative analysis, which considers a general equilibrium. We
also index the CEV by AR and IR to indicate presence of aggregate and idiosyncratic risk,
respectively. We can now state our first proposition, which we prove in Appendix A:

Proposition 1. Under Assumption 1, the consumption equivalent variation from a marginal

introduction of social security is given by

gPEc (AR, IR) =

1 + λ

R̄
· exp

(
θ
(
σ2

lnAR + σ2
ln η

))
︸ ︷︷ ︸

≡Ψ(σ2
lnAR,σ

2
ln η)

−1

 dτ (4)

where σlnAR ≡
√
σ2

ln ζ + σ2
ln %. Therefore, gPEc (AR, IR) ≥ gPEc (AR, 0) + gPEc (0, IR) with the

inequality being strict for σ2
ln η > 0 ∧ σ2

lnAR > 0.

To interpret this proposition, first consider a deterministic economy, where gPEc (0, 0) =(
1+λ
R̄
− 1

)
dτ . This reflects the well-known Aaron (1966) condition, i.e., social security in-

creases welfare in a deterministic economy if (and only if) its implicit return exceeds the market
rate of return, (1 + λ) > R̄. In the non-degenerate stochastic case where σ2

ln η > 0 ∧ σ2
lnAR > 0,

term Ψ captures the welfare benefits from intergenerational and intragenerational (partial) in-
surance provided by the system. Ψ is (i) increasing in risk aversion θ, reflecting the standard
intuition that more risk-averse households value insurance more; (ii) increasing in σ2

η because
social security pools histories of idiosyncratic earnings risk; (iii) increasing in σ2

% because
pension payments are not affected by return risk; (iv) increasing in σ2

ζ because social security
reduces exposure to the wage shock, ζ, when young and increases it when old;8 (v) convex in

8Since ζ is uncorrelated over time, mixing ζt and ζt+1 by having τ ∈ (0, 1) is welfare improving.
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total risk, σ2
lnAR + σ2

ln η. This last finding is central to our analysis.9 As a consequence of the
convexity, the whole welfare gain is greater than the sum of the gains from insurance against
individual risk components. We denote the welfare difference attributable to the convexity of the
welfare gain by ∆CWG. To further characterize it, we provide the following formal definition:

Definition 1 (Components of CEV). The contributions to gPEc (AR, IR) attributable to idiosyn-

cratic and aggregate risk are defined as

dgPEc (IR) = gPEc (0, IR)− gPEc (0, 0),

dgPEc (AR) = gPEc (AR, 0)− gPEc (0, 0),

so that the CEV can be written as

gPEc (AR, IR) = gPEc (0, 0) + dgPEc (AR) + dgPEc (IR) + ∆CWG.

Under Assumption 1 we can express Ψ in terms of variances of levels instead of variances of
logs: Ψ(σAR, ση) ≡

(
1 + σ2

η + σ2
AR + σ2

ησ
2
AR

)θ
, where σAR ≡

√
σ2
ζ + σ2

% + σ2
ζσ

2
%. Employing

Definition 1 for logarithmic utility (θ = 1), the CEV writes as

gPEc (AR, IR)
∣∣∣
θ=1

=
(

1 + λ

R̄
− 1

)
dτ︸ ︷︷ ︸

≡gPEc (0,0)|θ=1

+ 1 + λ

R̄
σ2
ARdτ︸ ︷︷ ︸

≡dgPEc (AR)|θ=1

+ 1 + λ

R̄
σ2
ηdτ︸ ︷︷ ︸

≡dgPEc (IR)|θ=1

+ 1 + λ

R̄
σ2
ARσ

2
ηdτ︸ ︷︷ ︸

≡∆CWG|θ=1

.

For logarithmic utility, the ∆CWG is accordingly directly related to the product of variances
of aggregate and idiosyncratic risk. By providing a flat, unconditional transfer, social security re-
duces the variance of retirement consumption, thereby reducing exposure to each risk component
as well as their multiplicative interaction.10 As we show formally in Appendix B, dgPEc (AR),
dgPEc (IR), and ∆CWG are increasing in risk aversion θ, so that for θ > 1, the contribution of
each component in the equation above constitutes a lower bound on welfare gains.

Modification: The CCV Bias. We alter Assumption 1 by conditioning the variance of idiosyn-
cratic productivity risk on the aggregate state of the economy while keeping its unconditional

9The finding mirrors an important result from the literature on the welfare costs of aggregate fluctuations,
namely that the welfare gain of insuring against aggregate risk is a convex function of risk, cf. Lucas (1978), De
Santis (2007), and Krebs (2007). Relative to this literature we study the effects of joint insurance and therefore
total risk is the sum of the risk components.

10Retirement consumption in the absence of social security is given by w̄tR̄ηi,1,tζt%t+1. Its variance
is (w̄tR̄)2var(ηi,1,tζt%t+1) = (w̄tR̄)2(σ2

η + σ2
AR + σ2

ησ
2
AR), because the shocks are independent and have a

mean of one, cf. Goodman (1960).
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variance equal to σ2
ln η. Focusing on logarithmic utility we extend Definition 1 by the CCV :

Assumption 2. (a) Let ζt ∈ {ζ−, ζ+} for all t, with ζ± = χ · exp(1 ± σlnζ) > 0 and

probabilities π(ζt = ζ+) = π(ζt = ζ−) = 1
2 , where χ is a normalizing constant. Let

ηi,1,t be distributed as log-normal with conditional variance σ2
ln η(ζt = ζ+) = σ2

ln η + ∆η,

and σ2
ln η(ζt = ζ−) = σ2

ln η − ∆η. The rest of Assumption 1 continues to hold. (b) Utility is

logarithmic, i.e., θ = 1.

Definition 2 (Components of CEV with CCV ). The contribution to the CEV with CCV,

gPEc (AR, IR,CCV ), that is attributable toCCV is defined as ∆CCV = gPEc (AR, IR,CCV )−
gPEc (AR, IR). Hence, the total CEV with CCV can be written as gPEc (AR, IR,CCV ) =
gPEc (0, 0) + dgPEc (AR) + dgPEc (IR) + ∆CWG + ∆CCV .

We can now state our next result. The proof is provided in Appendix A.

Proposition 2. Under Assumption 2 and using Definition 2 we get

gPEc (AR, IR,CCV ) =(
1 + λ

R̄
· exp

(
σ2

ln %

)( 1
ζ−

exp
(
σ2

ln ηl

)
+ 1
ζ+

exp
(
σ2

ln ηh

))
− 1

)
dτ (5a)

and ∆CCV = 1 + λ

R̄
exp

(
σ2

ln %

)
∆η

(
1
ζ−
− 1
ζ+

)
dτ > 0. (5b)

Equation (5a) is the analogue to equation (4) for discrete ζ and includingCCV . Equation (5b)
shows the increase of welfare gains through the CCV mechanism. This is due to the fact that
the CCV raises (reduces) the variance of idiosyncratic productivity risk in states where average
consumption already tends to be low (high). Since utility is concave, this mechanism increases
the value of social security. The amplification of welfare is stronger the larger aggregate
risk (σ2

ln ζ and σ2
ln %) and the larger the variance shifter, ∆η.

2.3 Extensions

Harenberg and Ludwig (2015) provide an extension of the simple model with utility from
first period consumption in general equilibrium to analytically derive a number of additional
important insights, which we summarize and extend in Appendix B.2. This shows, first, how
life-cycle and precautionary savings are reduced in response to the social security reform,
leading to crowding out of capital. Second, it shows that the biases in the welfare assessment
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of crowding out are ambiguous. While crowding out becomes stronger with more risks, this
does not only reduce the deterministic component of wages, it also reduces exposure to wage
risk because wage risk positively depends on the size of the capital stock.11 Third, we uncover
the importance of discounting: the lower the discount rate, the more relevant are the welfare
benefits from insurance against second period consumption risk and the lower are the welfare
costs of crowding out. In addition to the insights we worked out in our simple two period model,
these aspects will play crucial roles in our quantitative analysis to which we turn next.

3 The Quantitative Model

3.1 Time, Risk, and Demographics

Time is discrete and runs from t = 0, . . . ,∞. At the beginning of each period t, an aggregate
shock zt hits the economy. For a given initial z0, a date-event is uniquely identified by the history
of shocks zt = (z0, z1, . . . , zt) where the zt follow a Markov chain with finite support Z and
nonnegative transition matrix πz. Thus, πz(zt+1|zt) represents the probability of zt+1 given zt.

At every point in time t, the economy is populated by J overlapping generations indexed
by j = 1, . . . , J . We denote the size of a generation by Nj(zt). Each generation consists of a
continuum of households. We normalize the initial population size to unity, i.e.,

∑J
j=1Nj(z0) =

1. Population grows at the exogenous rate of n. To keep the analysis focused we abstract from
survival risk.12 Total population at t is therefore N(zt) = (1 + n)t.

Households within a cohort are ex-ante identical but receive an idiosyncratic shock ej each
period so that there is ex-post intragenerational heterogeneity. We denote by ej the history
of idiosyncratic shocks with probability πe(ej). We assume that ej follows a Markov chain
with finite support E and strictly positive transition matrix πe. The transition probabilities
are πe(ej+1|ej).13

11In general equilibrium, wages increase in capital and shocks are multiplicative in wages. Such pecuniary
effects play key roles for welfare in heterogeneous agent economies, cf. Davila, Hong, Krusell, and Ríos-Rull
(2012) and Krueger and Ludwig (2017). Also, Harenberg and Ludwig (2015) focus on log utility and therefore the
saving rate does not react to changes of the capital stock. Furthermore, for analytical tractability, the model features
a degenerate distribution of households who are all ex-ante identical. Both aspects play additional important roles
for the welfare effects of crowding out, see our discussion of the quantitative results in Section 5.4.

12In presence of survival risk, social security can be beneficial if it partially substitutes for missing annuity
markets. Caliendo, Guo, and Hosseini (2014) demonstrate that this may not hold because social security crowds out
accidental bequests. Also, it is not straightforward to jointly model survival risk and financial risk with Epstein-Zin
preferences, see Bommier, Harenberg, and Le Grand (2017).

13By a Law of Large Numbers πe(ej) represents both the individual probability for ej and the fraction of the
population with that shock history. Likewise, πe(ej+1|ej) represents both the individual transition probability and
its population counterpart.
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3.2 Households

At any date-event zt, a household is fully characterized by its age j and its history of idiosyncratic
shocks ej . Denote by uj(c, ej, zt) the expected remaining life-time utility from consumption
allocation c at age j, history ej , and date-event zt. Preferences are represented by a recursive
utility function uj(c, ·) of the Epstein-Zin-Weil kind (Epstein and Zin 1989, 1991; Weil 1989):14

uj(c, ej, zt) =[cj(ej, zt)] 1−θ
γ +β

∑
zt+1

∑
ej+1

πz(zt+1|zt)πe(ej+1|ej)
[
uj+1(c, ej+1, zt+1)

]1−θ1
γ


γ

1−θ

,

uJ(c, eJ , zt) = cJ(eJ , zt) , c > 0 ,

where β is the discount factor and θ controls risk aversion. Parameter γ is defined as γ ≡ 1−θ
1− 1

ψ

with ψ denoting the intertemporal elasticity of substitution.
Households inelastically supply one unit of labor until they retire at the fixed retirement age

jr. They are endowed with a deterministic life-cycle productivity profile εj . The idiosyncratic,
stochastic component of income, η(ej, zt), depends on the realization of idiosyncratic and
aggregate shocks. The dependence of η(ej, zt) on the aggregate shock is necessary to model
the CCV . We assume that E (η(ej, zt)|zt) = 1. Labor income is yj(ej, zt) = w(zt)εjη(ej, zt),
where w(zt) is the real aggregate wage in terms of the consumption good at zt. Insurance
markets for labor income risk are closed by assumption.

Households can transfer wealth between periods by holding stocks and bonds in amounts
sj+1(ej, zt) and bj+1(ej, zt), respectively. The stock has a risky return rs(zt+1) that depends
on the realization of the aggregate shock in the following period, whereas the bond pays a
one-period risk-free interest rate rb(zt). The sequential budget constraint is standard:

cj(ej, zt) + sj+1(ej, zt) + bj+1(ej, zt) = (1 + rs(zt))sj(ej, zt)

+ (1 + rb(zt−1))bj(ej, zt) + (1− τ)yj(ej, zt)I(j) + yss(zt)(1− I(j)),

where τ is a fixed social security contribution rate, yss(zt) is pension income, and I(j) is an
indicator function that takes the value 1 if j < jr and 0 otherwise.15 Households cannot die in

14In a slight abuse of notation, we use letter u to denote remaining lifetime utility in this recursive formulation,
which was used in Section 2 to denote the per-period utility function.

15We do not consider an exogenous borrowing constraint. This may bias results in favor of social security
because income (and asset) poor households can relax their budget constraint. With an exogenous borrowing
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debt, sJ+1(eJ , zt) + bJ+1(eJ , zt) ≥ 0. Since there are no bequests, households are born with
zero assets, i.e., s1(e1, zt) = b1(e1, zt) = 0.

3.3 Firms

There is a representative firm that produces output, Y (zt), using capital, K(zt), and labor, L(zt).
The production technology is Cobb-Douglas with capital share α and deterministic labor-
augmenting productivity growth λ. At each date-event there is a multiplicative shock to total
factor productivity, ζ(zt), so that we have Y (zt) = ζ(zt)K(zt)α((1 + λ)tL(zt))1−α.

Assuming a stochastic depreciation rate δ(zt),16 the capital stock evolves according to
K(zt) = I(zt−1) + K(zt−1)(1 − δ(zt−1)). Because of perfect competition, the firm remuner-
ates the factors of production according to their marginal productivities. Thus, the aggregate
wage, w(zt), and the return on capital, r(zt), are given by

w(zt) = (1 + λ)t(1− α)ζ(zt)
(

K(zt)
(1 + λ)tL(zt)

)α
, (6a)

r(zt) = αζ(zt)
(

(1 + λ)tL(zt)
K(zt)

)1−α

− δ(zt). (6b)

The capital stock is financed by issuing stocks and bonds in quantities S and B, so that
K(zt) = S(zt) +B(zt) = S(zt)(1 + κf ). The debt-equity ratio, κf , is exogenous and constant.
Therefore, the firm only decides on aggregate capital and not on the capital structure.17 This
mechanical leverage allows us to keep the depreciation shocks, which drive stock return volatility,
small in the calibration. This is desirable, because large depreciation shocks imply unrealistically
large fluctuations on the real side of the economy. As derived in Appendix B.5, the leveraged
stock return is

rs(zt) = r(zt) + κf
(
r(zt)− rb(zt−1)

)
, (7)

which shows that leverage increases mean and variance of stock returns.18

constraint it would be natural to modify the social security system to have a progressive contribution rate with an
exemption for income poor households.

16The same assumption is employed by Storesletten, Telmer, and Yaron (2007), Gomes and Michaelides (2008),
and Krueger and Kubler (2006), among others.

17Leverage is frequently modeled this way in the finance literature to increase the volatility of stock returns, cf.,
e.g., Boldrin, Christiano, and Fisher (1995) and Croce (2014).

18As Gomes and Michaelides (2008) point out, the empirical equity premium is for levered firms. Our model is
consistent with this target, whereas standard models should rather compare to an “unlevered” empirical counterpart.
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3.4 Social Security

Social security is organized as a PAYG system just like in the two-generations model of Section 2.
Denoting by P (zt) the number of pensioners, P (zt) = ∑J

j=jr Nj(zt), the budget constraint
accordingly reads as τw(zt)L(zt) = yss(zt)P (zt).19

3.5 Equilibrium

We study a competitive general equilibrium, where households and firms maximize and all
markets clear. The corresponding value function of the household is denoted vj(·). In the
computational solution, we focus on recursive Markov equilibria. We express all aggregate
variables in terms of labor efficiency units, i.e., we divide aggregate variables by (1+λ)tL(zt) =
(1 + λ)t∑jr−1

j=1 εjNj(zt). The corresponding normalized variable is written in lower case, e.g.,
k(zt) = K(zt)

(1+λ)tL(zt) . Individual variables are detrended only by the level of technology, and

the corresponding variables are denoted with a tilde, e.g., c̃j(·) = cj(·)
(1+λ)t . Accordingly, the

monotone transformation of the value function is denoted by ṽj(·). Since the model has (ex-post)
heterogeneous households and aggregate uncertainty, the distribution of households becomes
part of the state space. We denote by Φ the distribution of households over age, current income
state, stocks, and bonds. The corresponding equilibrium law of motion, Φ′ = H(Φ, z, z′), is
induced by household’s optimal choices and the exogenous shock processes.20 Every period
there are five markets that clear: consumption good, capital, labor, stocks, and bonds. A precise
definition of the recursive Markov equilibrium is relegated to Appendix B.

3.6 Computational Solution

We compute an equilibrium of our model by applying the Krusell and Smith (1998) method.21

To approximate the law of motion of the distribution, H(Φ, z, z′), we consider various forecast
functions, Ĥ , of the average capital stock and the ex-ante equity premium and select the one
with the best fit. The average goodness of fit of the selected approximate law of motion is in
the range of R2 = 0.99 for all of the calibrations. The state space is further reduced by one
dimension by recasting the problem in terms of cash-on-hand. To speed up the solution, we

19By the balanced budget, intergenerational sharing of aggregate risk is limited to generations alive at the same
point in time. It may be desirable to also share this risk with future, unborn generations. This could be achieved by
adding a social security trust fund to the model.

20Next period’s aggregate shock z′ is an element of the law of motion because it determines the distribution of
next period’s idiosyncratic income states.

21Also see, e.g., Storesletten, Telmer, and Yaron (2007) and Gomes and Michaelides (2008).
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employ a variant of the endogenous grid method (Carroll 2006) that allows for two continuous
choices. Details of the computational solution are provided in Appendix C.

3.7 Welfare Criterion and Dynamic Efficiency

Social Welfare Function. We employ the same welfare concept as in the two-generations
economy of Section 2, namely ex-ante expected utility of a household at the start of economic
life. As explained in Davila, Hong, Krusell, and Ríos-Rull (2012), in an economy with ex-ante
identical but ex-post heterogeneous agents, this concept represents a natural objective for a
social planner who is behind the Rawlsian veil of ignorance. It is a Utilitarian welfare criterion,
which weighs lifetime utilities with their respective probabilities. In our model with aggregate
shocks, this criterion means that we evaluate the expected life-time utility of many different
households that are randomly born into a state of an economy and then form the welfare index
by taking the unconditional average of these households’ expected life-time utility.

Formally, a household’s ex-ante expected welfare of being born into an economy with
policy A can be written as the unconditional expectationE

[
ṽ1(c̃A, e1, zt)

]
, where the expectation

is taken over all date-events zt. It is an expectation over all possible equilibrium values of
aggregate capital and induced prices. Analogous to Section 2, when comparing policy A to
policy B we express the welfare difference of two such ex-ante welfare measures in terms of a
consumption equivalent variation, gc. As we prove in Appendix B.5, it is given by

gc =
E
[
ṽ1(c̃B, e1, zt)

]
E [ṽ1(c̃A, e1, zt)] − 1. (8)

A positive number indicates the percentage of lifetime consumption a household would be
willing to give up under policy A in order to be born into an economy with policy B. We
compare the long-run welfare effects of such a reform. While this does not include the transition
between the two economies, it is important to understand that for the experiment described
below (an introduction of social security), including the welfare effects along the transition
would increase gc. The reason is that moving from policy A to policy B implies a gradual
decrease in capital. Thus, generations that live through the transition experience the full benefits
from insurance but are spared some of the long-run welfare costs of crowding out. Therefore, by
ignoring the transition, we calculate a lower bound on the welfare effects.

Dynamic Efficiency. In our economy, there are two sources for inefficiencies. One is missing
insurance markets against aggregate and idiosyncratic risk, the other is the possibility of an

14



inefficient intergenerational allocation of mean consumption across generations even when
insurance markets are complete. The latter is known as dynamic inefficiency, which can arise
in OLG models (Samuelson 1958; Diamond 1965). In a dynamically inefficient economy an
intergenerational reallocation of resources from the young to the old through a PAYG pension
system can help to cure this inefficiency.

In our experiments we want to focus on dynamically efficient economies to avoid making
a normative case for social security that is not based on a partial completion of missing asset
markets for insuring idiosyncratic and aggregate risk. To this aim, we check the dynamic
efficiency criterion of Demange (2002), Theorem 1, which applies to stochastic economies such
as ours and very general notions of efficiency (e.g., ex-ante efficiency). Specifically, we compute
the conditions proposed by Krueger and Kubler (2006) in Proposition 1, which are sufficient
conditions for Demange’s efficiency criterion. While these conditions can be conveniently
evaluated numerically, they may be far from necessary conditions.22 We restate them in the
following definition which is adapted to our notation.

Definition 3 (Dynamic efficiency, Krueger and Kubler (2006)). Suppose that

a) whenever the one period risk-free interest rate, rb(zt), is larger than the implicit average

social security return, (1+n)(1+λ)−1, then there exist two next period states z̃t+1, ˜̃zt+1 ∈
Z such that (i) next period’s bond returns in the corresponding date-events are above

the implicit return next period, i.e., rb(z̃t+1) > (1 + n)(1 + λ) − 1 and rb(˜̃zt+1) >

(1+n)(1+λ)−1, and (ii) the stock return satisfies rs(z̃t+1) > rb(zt) and rs(˜̃zt+1) < rb(zt),

and

b) from any initial equilibrium state, a high interest rate rb(zt) > (1 + n)(1 + λ) − 1 is

reached in finite time.

If conditions a) and b) are fulfilled, the economy is dynamically efficient.

This definition of dynamic efficiency implies that economies can be dynamically efficient
even if the average bond return is less than the average implicit social social security return. It is
crucial to understand that bond returns and implicit social security returns are fluctuating in our
quantitative model. While the average bond return may be less than the average implicit social
security return, condition (a) states that in equilibrium there need to exist states with high bond
returns and the economy needs to stay in such a state with positive probability. Condition (b) in
turn says that such a state with a high bond return must be reached in finite time.

22Details on the numerical implementation can be found in Appendix C.6.
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3.8 Experiment and Decomposition Analyses

Experiment. In terms of the previous section, our computational experiment consists of
comparing policy A, which has a social security contribution rate of τ = 0%, to policy B, which
has τ = 2%. It can be interpreted as the introduction of a marginal social security system in
form of a minimum pension, as in Section 2. We then compute the welfare gains from this policy
reform by comparing two long-run equilibria.

If the introduction of social security leads to a welfare improvement despite the fact that the
economy is dynamically efficient, then this must be a consequence of the partial completion of
markets through social security. As in the simple model of Section 2, this partial completion of
markets decreases the consumption variance. It also leads to behavioral adjustments through
reduced savings, cf. Section 2.3, and increased stock holdings, both of which tend to increase
average consumption. Disentangling these effects is crucial for understanding our quantitative
results which we achieve with the decomposition analyses described next.

Gains from Insurance and Losses from Crowding Out. Our first decomposition of the gen-
eral equilibrium welfare effects aims at disentangling the effects of welfare gains in partial equi-
librium from those induced by the crowding out of capital, as in our general equilibrium extension
of the simple model, cf. Section 2.3. We thereby also disentangle the long run (= general equilib-
rium) from the short run (= partial equilibrium) welfare effects. In our partial equilibrium exper-
iment, the social security system changes, but prices, i.e., wages and returns, remain unaffected.
Conceptually, this corresponds to a small open economy with free movement of the factors of
production. To formalize this, denote by PA = {{zt, r(zt), rs(zt), rb(zt), w̃(zt)}∞t=0|τ = 0%}
the sequence of shocks and prices obtained from the general equilibrium of the economy without
a social security system, i.e., under policy A (τ = 0%). Likewise, denote by ĤA the approximate
law of motion of this equilibrium. We compute the partial equilibrium under the old price
sequence PA and the old law of motion ĤA, but with policy B (τ = 2%). The welfare gains
stemming from insurance are then:23

gPEc =
E
[
ṽ1(c̃B, e1, zt)|PA, ĤA, τ = 2%

]
E
[
ṽ1(c̃A, e1, zt)|PA, ĤA, τ = 0%

] − 1. (9)

23We need to take into account the approximate law of motion ĤA in this definition because households form
their expectations based on the laws of motion.
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Analogously, the corresponding general equilibrium number is

gGEc =
E
[
ṽ1(c̃B, e1, zt)|PB, ĤB, τ = 2%

]
E
[
ṽ1(c̃A, e1, zt)|PA, ĤA, τ = 0%

] − 1, (10)

where the crucial difference is that in the new equilibrium with policy B (τ = 2%), households
optimize given the new general equilibrium prices and laws of motion, PB, ĤB. The welfare
costs of crowding out (CO) are given by the difference gCOc = gGEc − gPEc .

To relate the costs of crowding out to our concept of dynamic efficiency in Section 3.7, notice
that dynamic (in)efficiency refers to the mean allocation of consumption across generations. In
our model, however, there is also a dispersion of consumption around the mean which is induced
by different idiosyncratic shock histories. Therefore, from the ex-post perspective, households
may gain or loose from a decrease of the capital stock because—depending on each idiosyncratic
shock history and resulting asset position—either the negative aggregate wage or the positive
aggregate return effect dominates, cf., e.g., Kuhle (2012). From the ex-ante perspective the
question whether there is too much or too little capital in the economy then depends on the
weight a household receives in the respective welfare criterion, cf. Davila, Hong, Krusell, and
Ríos-Rull (2012). The reduction in the capital stock could therefore by itself lead to an increase
in welfare even in a dynamically efficient economy, meaning that gCOc > 0. In our results, we
never encountered this case; this is why we speak of welfare “costs” from crowding out.

Welfare Implications of Changes in the Mean and the Distribution of Consumption. The
equivalent variations gGEc , gPEc , gCOc encompass two effects. One is the welfare implication of
policy-induced changes of mean consumption allocations, the mean effect, the second is the
welfare implication from a change in the intra- and intergenerational distribution of consumption,
the distribution effect. We decompose the total CEV into these effects by computing the welfare
change due to a change of the distribution as (see Appendix B.5):

gPE,distrc =
E
[
C̃A|PA, ĤA, τ = 0%

]
E
[
C̃B|PA, ĤA, τ = 2%

] (1 + gPEc
)
− 1,

gGE,distrc =
E
[
C̃A|PA, ĤA, τ = 0%

]
E
[
C̃B|PB, ĤB, τ = 2%

] (1 + gGEc
)
− 1, (11)

where C̃A (C̃B) is aggregate, growth-adjusted consumption under policy regime A (B). The
respective differences gPE,meanc = gPEc − gPE,distrc and gGE,meanc = gGEc − gGE,distrc are then the
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equivalent variations capturing the welfare implications of changes in mean consumption.
In partial equilibrium, insurance through social security reduces both the intragenerational

consumption distribution as well as the consumption growth rate over the life-cycle because
precautionary savings go down (intergenerational distribution). Additional distributional changes
arise in general equilibrium because the crowding out of capital causes increasing returns and
decreasing wages, the welfare impact of which we capture by gCO,distrc = gGE,distrc − gPE,distrc .
Likewise, the mean effect of crowding out, i.e., the change in mean consumption due to a change
in equilibrium prices, is computed as gCO,meanc = gGE,meanc − gPE,meanc .

Sources of Partial Equilibrium Welfare Gains. Finally, we decompose gPEc into the ef-
fects attributable to insurance against aggregate risk, idiosyncratic risk, as well as the two
biases, CWG and CCV , respectively, as in our simple model of Section 2. Recalling our
decomposition of the CEV in Definitions 1 and 2 we have:

gPEc (AR, IR,CCV ) = gPEc (0, 0) + dgc(AR) + dgc(IR) + ∆CWG + ∆CCV

gPEc (AR, IR) = gPEc (0, 0) + dgc(AR) + dgc(IR) + ∆CWG

gPEc (0, IR) = gPEc (0, 0) + dgc(IR)

gPEc (AR, 0) = gPEc (0, 0) + dgc(AR).

The right-hand side of the first line shows all of the components. To isolate those, we compute
gPEc (AR, 0) and gPEc (0, 0), as in equation (9), but for an economy with only aggregate risk and
one without risk, respectively.24 With those numbers at hand, we can back out the welfare effect
attributable to aggregate risk, dgc(AR). Likewise, we compute gPEc (0, IR) for an economy
featuring only idiosyncratic risk to back out dgc(IR). Next, we compute gPEc (AR, IR). As
we already know dgc(AR) and dgc(IR), we can back out the ∆CWG. In the same manner, we
obtain ∆CCV . While we are mainly interested in the overall effect attributable to the respective
risk component, we further decompose those into the respective welfare effects of changes in
the mean and the distribution of consumption.

4 Calibration

The selection of targets and parameters to be calibrated is informed by our theoretical insights,
in particular Propositions 1 and 2, as well as Section 2.3. Accordingly, the coefficient of relative

24As shown in Appendix B.4, gPEc (0, 0) can be calculated from the present discounted value of lifetime income,
independent of preference parameters.
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risk aversion, θ, the variances of the shocks, the returns on savings and the discount factor are
crucial in determining the value of social security. Guided by this, our baseline calibration takes
a very conservative approach, in the sense that it features a low θ and small aggregate shocks.
In the sensitivity analysis of Section 5.3, we then first increase θ to match the Sharpe ratio,

ς = E[rs,t−rb,t]
σ[rs,t−rb,t] , and then aggregate shocks to match the equity premium, µ = E [rs,t − rb,t]. For

the discount factor our target is also conservative and we report results with a less conservative
target in Appendix E.3.

One set of parameters, the set of first-stage parameters, is determined exogenously by either
taking its value from other studies or measuring it in the data. The second set of parameters is
jointly calibrated by matching the model-simulated moments to their corresponding moments in
the data. Accordingly, we refer to those parameters as second-stage parameters.25

Table 1 summarizes our conservative baseline calibration, described next.26 Additional
information on our empirical approach to measure calibration targets and on the numerical
implementation of the procedure is provided in Appendices C and D, respectively.

4.1 Demographics

Households begin working at the biological age of 21, which corresponds to j = 1. We
set J = 58, implying a life expectancy at birth of 78 years, which is computed from the
Human Mortality Database (HMD) for year 2007. We set jr = 45, corresponding to a statutory
retirement age of 65. Population grows at a rate of 1.1%.

4.2 Households

In our baseline calibration, we treat the coefficient of risk aversion as a first-stage parameter,
setting it to 3, which is well within the standard range of [2, 4].27 The intertemporal elasticity of
substitution is set to 0.5. This is at the lower end of the range of values used in the literature,
as reviewed, e.g., by Bansal and Yaron (2004). A higher value of the elasticity of substitution
means that households react more strongly to price changes. As a consequence, welfare losses
from crowding out are lower, as shown in our sensitivity analysis in Section 5.3. In our baseline

25The second-stage parameters jointly determine all targeted moments. When we say that we calibrate a
parameter to a target, we mean that it has the strongest impact on that target.

26For lack of better data on the period when the social security system was introduced in the United States in
1935 with a contribution rate of 2% (the data analogue to our thought experiment), we take averages for postwar
data for calibration. In Section 5.3 we report results when the contribution rate is also set to its postwar average
of 9.5%.

27Given this choice, our model produces a Sharpe ratio of ς = 0.076 and an equity premium of µ = 0.76%,
well below their empirical counterparts of 0.33 and 5.60%, which we explicitly target in Section 5.3.
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calibration, the discount factor β is calibrated to match the capital-output ratio of 2.65, which
we calculate from NIPA data, cf. Appendix D.2.28 We obtain β = 0.987, which is a reasonable
estimate for a model at an annual frequency such as ours.

The parametrization of the labor income process is based on household earnings data from
the PSID applying the procedure of Busch and Ludwig (2017). Our earnings measure excludes
social security contributions but includes all other taxes and transfers.29 The age specific
productivity profile εj is extracted from the deterministic component of the earnings process
displayed in Appendix D.1. Calibration of the stochastic component η(ej, zt) is derived from
the estimates of the process

log(ηi,j,t) = ξi + νi,j,t + εi,j,t, εi,j,t ∼ N
(
0, σ2

ε

)
, (12a)

νi,j,t = ρνi,j−1,t−1 + υi,j,t, υi,j,t ∼ N
(
0, σ2

υ(zt)
)
, (12b)

where the variance of the persistent shock, σ2
υ(zt), depends explicitly on the aggregate state.

The estimated value of the autocorrelation coefficient is ρ = 0.969. The estimated conditional
variance of the persistent shock, σ2

υ(zt), is 0.024 in recessions and 0.008 in booms.30 The
estimated variance of idiosyncratic shocks is σ2

ε = 0.085. We approximate the AR(1) process
using the Rouwenhorst method, cf. Kopecky and Suen (2010), and approximate the transitory
component εj,t by Gaussian quadrature (for details see Appendix C).

4.3 Firms

We set the value of the capital share parameter to α = 0.32. This is directly estimated from
NIPA data on total compensation as a fraction of GDP. Our estimate of the deterministic trend
growth rate is based on data on total factor productivity. The point estimate is λ = 0.018, which
is in line with other studies. Leverage in the firm sector is set to κf = 0.66 (Rajan and Zingales
1995). The mean depreciation rate of capital, δ0, is a second-stage parameter. We calibrate it to
match an average bond return of 2.3%.31 In economies without aggregate risk we calibrate δ0 to
produce a risk-free return of 4.2%, corresponding to the empirical estimate of Siegel (2002).

28Our estimate is in line with the estimates of, e.g., Fernández-Villaverde and Krueger (2011).
29We thank Christopher Busch for providing us with the estimates.
30See Appendix D.1 for the identification of recessions and booms in the data and Section 4.4 for the corre-

sponding definition in the model.
31The empirical bond return, equity premium, etc., are calculated from the data on Robert Shiller’s website, see

http://aida.wss.yale.edu/~shiller/data.htm.
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4.4 Aggregate Risk

Aggregate risk is driven by a four-state Markov chain with supportZ={z1, ..., z4} and transition
matrix πz. Each aggregate state maps into a combination of a total factor productivity (TFP)
shock and a depreciation shock, (ζ(z), δ(z)). Both shocks can take a high and a low value, given
by ζ(z) = 1± ζ̄ and δ(z) = δ0 ± δ̄. We define recessions as the low TFP states z ∈ {z1, z2},
where ζ(z) = 1 − ζ̄. The transition probability of remaining in a low TFP state is πζ . To
govern the correlation between TFP and depreciation shocks, we let the probability of the
high depreciation state conditional on the low TFP state be πδ. Assuming symmetry of the
transition probabilities, the Markov chain of aggregate shocks is characterized by four parameters,
(ζ̄ , δ̄, πζ , πδ), see Appendix D.3 for details. We set ζ̄ and πζ to match the standard deviation
and autocorrelation of TFP of 0.029 and 0.88, both estimated using NIPA data. The remaining
parameters, δ̄ and πδ, are calibrated as second-stage parameters to jointly match the standard
deviation of aggregate consumption growth of 0.03 and the correlation of the cyclical component
of TFP with risky returns of 0.5. We get ζ̄ = 0.029, δ̄ = 0.080, πζ = 0.941, πδ = 0.887.

5 Results

5.1 Baseline Calibration

Dynamic Efficiency. We first report the results of checking the two conditions for dynamic
efficiency of Definition 3 before the introduction of social security.32 Table 2 shows that
about 40% of the 72 000 simulated periods have a high bond return (larger than the average
social security return). Such a high bond state is reached from any simulated initial condition
in finite time—with a maximum of 120 periods—so that condition (b) is satisfied. Conditional
on being in such a high bond return state, we check condition (a) and find that it is violated
about 5% of the time. Since the conditions of Definition 3 are sufficient, but not necessary, we
can have at least 95% confidence that the baseline economy is dynamically efficient.

Aggregate Effects and Welfare Consequences. The effects of introducing social security at
a contribution rate of 2% on capital accumulation, prices and welfare are documented in Table 3.
Our experiment leads, on average, to a long-run reduction in the capital stock of 11.61%, which
is accompanied by a 3.8% reduction in gross wages, an increase in the return on stocks of 0.99
percentage points, and an increase in the return on bonds of 1.01 percentage points. The average

32We obtain similar results for the baseline economy with social security (τ = 2%), as well as for our other
calibrations. Details are provided in Appendix E.1.
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Table 2: Dynamic Efficiency of Baseline Economy, τ = 0%

Condition (a) Condition (b)

High Bond
Returns

Conditional
violation

Max.
periods

Avg.
periods

Simulated
periods

38.1% 4.7% 120 11.5 72 000

Notes: Dynamic efficiency conditions of Definition 3. High bond returns: fraction of high
bond return states in which 1 + rb(zt) > (1 + n)(1 + λ). Conditional violation: Viola-
tion of conditions (a)(i) and (a)(ii), conditional on being in a high bond return state. Avg.,
resp. max., periods: average, resp. maximum, number of simulation periods to reach a high
bond return state. Number of total simulated periods is after discarding a phase-in period.

return on bonds increases to a greater extent, because the insurance provided through social
security leads households to rebalance their portfolios towards stocks. This reduces relative
demand for bonds, decreasing their price and increasing their return.

Table 3: Aggregate Effects of The Social Security Experiment

Variable Change

Aggregate capital, K ∆K/K = −11.61%
Aggregate wage, w ∆w/w = −3.8%
Stock return, rs ∆rs = +0.99pp
Bond return, rb ∆rb = +1.01pp
Consumption equivalent variation gGEc = +2.56%
Notes: ∆X/X is the expected percent change in variable X between two steady states,
i.e., ∆X/X = E(Xt|τ=2%)−E(Xt|τ=0%)

E(Xt|τ=0%) . ∆x is the change in variable x expressed in per-
centage points (pp), i.e., ∆x = E(xt|τ = 2%)−E(xt|τ = 0%). gGEc is the consumption
equivalent variation in general equilibrium, cf. Section 3.8.

Table 3 also reports the consumption equivalent variation, gGEc , as defined in equation (10).
The reform yields a CEV of 2.6% despite the sizeable crowding out of capital. This constitutes
a substantial welfare gain from a minimum pension at a contribution rate of 2%.

Conditional Distribution of Welfare Gains. We now report the distribution of the CEV
conditional on the household being born into a recession or a boom. That is, we compute

the CEV for each history of aggregate shocks, gGEc,t = E[ṽ1(c̃B ,e1,zt)|zt,PB ,ĤB ,τ=2%]
E[ṽ1(c̃A,e1,zt)|zt,PA,ĤA,τ=0%] − 1, thereby

comparing a household being born into an economy with social security to a household being
born into an economy without social security, before they learn their idiosyncratic shocks.
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Figure 1 shows the distribution of gGEc,t for recessions (zt ∈ {z1, z2}) in Panel (a) and
booms (zt ∈ {z3, z4}) in Panel (b). First, notice that the CEVs are always positive. Sec-
ond, as contributions to social security imply higher utility costs in recessions when incomes
are already low and as aggregate shocks are persistent, CEVs are on average higher in booms
(with an average of 2.83%) than in recessions (with an average of 2.25%). Furthermore, the
distribution of CEVs is left-skewed in recessions and right-skewed in booms.

Figure 1: Distribution of CEV: Recessions and Booms

(a) Recessions (b) Booms

Benefits from Insurance versus Costs from Crowding Out. Where do these substantial
welfare gains come from? To provide an answer, we first decompose the total welfare gain
into the benefits from insurance and the losses from crowding out by conducting the partial
equilibrium (PE) experiment described in Section 3.8. Accordingly, the sequences of wages
and returns before and after the introduction of social security are identical. As a consequence,
the CEV in this experiment reflects purely the benefits from insurance. Subtracting this number
from the overall welfare gain reported in Table 3 yields the losses from crowding out. As Table 4
reveals, the net welfare gains attributable to the total insurance provided by social security
amount to +5.2% and the losses from crowding out stand at −2.6%.

Welfare Implications of Changes in the Mean and the Distribution of Consumption. Ta-
ble 5 reports the results of our welfare decomposition of the numbers in Table 4 into the mean
effect, gmeanc , and the distribution effect, gdistrc , as described in Section 3.8. Turn first to the
distribution effect. The gains from a reduction of the dispersion of consumption are large,
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Table 4: Benefits from Insurance versus Costs from Crowding Out

CEV GE PE CO

gc +2.56% +5.18% -2.62%

Notes: gc is the CEV in general equilibrium (GE) and partial equilibrium (PE). The differ-
ence of the two CEVs is the loss from crowding out (CO). See Section 3.8 for the formal
definitions of these terms.

standing at 3.4% in partial and at 2.3% in general equilibrium. This is a conservative estimate of
gdistrc , because—as the results of our simple model show and as is confirmed in our quantitative
sensitivity analysis of Section 5.3—the welfare gains of the distribution effect increase in risk
aversion, the value of which is moderate in our baseline calibration. The distribution effect of
crowding out stands at −1.0%, which is due to the ex-ante welfare losses from the increased
exposure to return risk (recall from Table 3 that crowding out increases returns) and the induced
(ex-post) widening of the wealth distribution.

Next, observe that the mean effect in general equilibrium is 0.24%. It is small, compared
to the total CEV of 2.6%; therefore the mean effect is of secondary importance for the welfare
effects of social security.

But how can mean aggregate consumption increase in a dynamically efficient economy?
This gain is possible because social security provides partial insurance. To understand this, it
is instructive to first analyze the partial equilibrium mean effect which stands at 1.8%. This
is large because the implicit average return of social security is (λ + n) · 100[%] = 2.8%,
which exceeds the average bond return. Social security is, therefore, an attractive implicit asset.
Furthermore, the insurance provided through social security induces households to increase
their financial share invested in stock in response to the policy reform, thereby increasing their
mean portfolio returns and mean consumption. This portfolio reallocation is large because
of the relatively low risk aversion of the baseline calibration.33 To corroborate this intuition,
we perform a counterfactual experiment where we hold constant portfolio allocation policy
functions when social security is introduced. Then aggregate consumption falls by −0.62%,
as one would expect in a dynamically efficient economy without endogenous portfolio choice.
Also, as documented in Figure 2 below, in partial equilibrium the portfolio adjustments in
combination with a reduction of savings primarily increase consumption of the young. Notice
that in a dynamically inefficient economy we would instead observe the opposite, namely that
social security redistributes consumption from the young to the old, cf. Section 3.7.

33Qualitatively, these adjustments are the same as in Krueger and Kubler (2006).
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Opposing this positive mean effect in partial equilibrium is the reduction of mean con-
sumption induced by relative price changes, which is given by the crowding out mean effect
of −1.58%. It is smaller than the partial equilibrium mean effect, so that the net mean effect
in general equilibrium is positive. We want to stress that the mean effect is positive only in
our conservative baseline calibration with relatively low risk aversion and low implied risky
returns. As we document in our sensitivity analysis, higher risk aversion dampens the portfolio
reallocation so that the mean effect is negative in general equilibrium.

Table 5: Benefits from Changes in the Mean and the Distribution

CEV GE PE CO

gc +2.56% +5.18% -2.62%

gdistrc +2.32% +3.36% -1.04%
gmeanc +0.24% +1.82% -1.58%

Notes: The total gc is decomposed into the mean effect, gmeanc , and the distribution ef-
fect, gdistrc . See Section 3.8 for the formal definitions of these terms.

A Closer Look at the Distributional Implications. The previous discussion makes clear that
distributional implications are important for interpreting the welfare consequences of the policy
reform. To shed further light on these, Figure 2 displays average life-cycle consumption in
Panel (a) and the variance of log consumption over the life-cycle in Panel (b). The increase
of the variance of log consumption during retirement shown in Panel (b) is a consequence of
aggregate risk in our model.34 Without that risk the variance during the retirement period would
be constant in the τ = 0% economy because all the dispersion would result from pre-retirement
shock histories and because preferences are homothetic.

The introduction of social security in partial equilibrium leads to better consumption in-
surance as in the simple model of Section 2 and therefore reduces precautionary savings.
Consequently, the consumption profile is pivoted clockwise so that households consume more

34The kink in the variance of log consumption at retirement is due the CCV mechanism. This amplification of
labor income risk vanishes with retirement, which leads households to increase their exposure to aggregate risk
by investing a larger financial share in stocks, as in Storesletten, Telmer, and Yaron (2007). Overall, the variance
of log consumption over age is similar to the data from age 40 to age 75 (Guvenen 2007; Aguiar and Bils 2015).
At younger ages, our model underestimates the variance. One explanation is the absence of initial cross-sectional
heterogeneity in our model. Also notice that the variance of log consumption is flatter during retirement when we
consider a more generous baseline pension system, cf. Section 5.3 below. This corresponds to Storesletten, Telmer,
and Yaron (2004a) who report the variance of consumption based on CEX data for the period 1980-1990 when a
generous social security system in the U.S. with its distributional components was in place (the contribution rate
increased from 10.16% in 1980 to 12.4% in 1990).
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on average in the early stages of the life-cycle at the expense of reduced average consumption
when old. Due to discounting, the early consumption gains are weighted more strongly than the
later consumption losses. Simultaneously, the variance of log consumption decreases over the
life-cycle. Both effects underlie the strong partial equilibrium welfare gain.

Figure 2: Life-cycle Consumption

(a) Average Life-cycle Consumption
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(b) Variance of Log Consumption
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Notes: Average consumption in Panel (a) and variance of log consumption in Panel (b) at each age for the economy
without social security (GE, τ = 0%), with social security (GE, τ = 2%), and the partial equilibrium with social
security and old prices (PE, τ = 2%).

In the post-experiment general equilibrium, the consumption profile is pivoted counter-
clockwise, because crowding out of capital leads to lower wages and higher returns, cf. Table 3.
In response to higher returns, households increase their life-cycle savings when young and
increase consumption when old.35 Consumption remains below its pre-experiment, general
equilibrium level until age 44. This lower average level and high volatility of consumption when
young drives the welfare losses from crowding out. On the positive side, the variance of log
consumption is smaller than in the pre-experiment economy after age 40.

Finally, Table 6 reports the Gini coefficients for assets, labor earnings, and consumption. We
make three observations. First, the simulated Gini coefficients for earnings and assets closely
align with the data.36 This is notable because they were not a target in the calibration, and it is

35In addition, households increase the share invested in stock. Note that, since there is no borrowing constraint
in the model, households are leveraged in stocks at young ages despite the positive correlation of aggregate wage
and return risk and the presence of idiosyncratic risk. Despite this leverage at young age, portfolio shares after
age 30 are very similar to those predicted by Cocco, Gomes, and Maenhout (2005), Cocco (2005), cf. Appendix E.4.

36We take the data from Krueger, Mitman, and Perri (2016). Their estimates of the Ginis for assets and earnings
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not easy to match them.37 Second, the Gini coefficient for assets increases. This is so because
households take on more risky portfolio compositions in response to the introduction of social
security and because of higher average returns, see Table 3. Third, improved consumption
insurance leads to a slightly lower degree of consumption dispersion in the economy.

Table 6: Distributional Consequences: Gini Coefficients

Variable τ = 0.00 τ = 0.02 Change Data

Assets 0.735 0.775 4.04pp 0.77
Earnings 0.456 0.456 0.00pp 0.43
Consumption 0.262 0.259 -0.32pp 0.4

Notes: pp stands for percentage points. Estimates in column “Data” are taken from Krueger,
Mitman, and Perri (2016).

Decomposition into Risks. Based on our analytical results of Section 2, we investigate how
much of the welfare gains in partial equilibrium of +5.2% can be attributed to insurance
against aggregate and idiosyncratic risk, to the direct interaction between risks in form of
the CCV , and to the convexity of the welfare gain, CWG.38 Results are summarized in Table 7.
The consumption equivalent variation in a deterministic environment, gPEc (0, 0), is negative
at −0.6%, because the implicit return of social security of (λ + n) · 100[%] = 2.8% is below
the interest rate of rb = 4.2%, our target in the risk-free economy.

The welfare gains from insurance against idiosyncratic risk, dgc(IR), amount to 0.7% and
against aggregate risk, dgc(AR), to 2.0% in terms of consumption equivalent variations. Hence,
the role played by aggregate risk is approximately twice as important as the role played by
idiosyncratic risk. This strong contribution of aggregate relative to idiosyncratic risk may seem
counterintuitive, because conventional wisdom suggests that idiosyncratic risk is higher. Based
on our analysis of the simple model of Section 2 one would therefore expect that the contribution
of insurance against idiosyncratic risk to the CEV is also higher. However, this intuition
is misleading because the simple model misses the mean effect. A further decomposition,
reported in the second and third row of Table 7, in fact shows that our results are in line
with this conventional wisdom (and with our simple model) because the distribution effect of

are very similar to those of Hintermaier and Koeniger (2011).
37See, e.g., Castañeda, Díaz-Giménez, and Ríos-Rull (2003) and De Nardi (2004). The asset Gini is around 0.5

in alternative calibrations where we target the Sharpe ratio or the equity premium whereas our welfare findings
are robust, cf. Section 5.3. The earnings and consumption Ginis decrease to 0.255 and 0.06 when we shut down
idiosyncratic income risk, again cf. Section 5.3.

38See Section 3.8 for the decomposition procedure.
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insurance against idiosyncratic risk is 0.8%, which is more than twice as large as for aggregate
risk (0.3%). On the other hand, the strong positive mean effect of dgc(AR) results—as explained
above—from the endogenous portfolio reallocation, which allows households to achieve higher
consumption on average, even in a dynamically efficient economy. The mean effect of dgc(IR),
in contrast, is negative, reflecting the dynamic efficiency of the economy.

Our key finding in this decomposition analysis concerns the two bias terms. The difference
in welfare attributable to the CCV , the ∆CCV , is at 1.4%. The ∆CWG is of similar size. The two
welfare differences jointly account for 60% of the total insurance gains through social security,
calculated as ∆CCV +∆CWG

gPEc
· 100[%]. Combining the findings from the previous literature—

which focuses only on one risk—therefore leads to substantial quantitative biases in the welfare
assessments of social security.

Table 7: Decomposition of Welfare Benefits in Partial Equilibrium

CEV, gc gPEc gPEc (0, 0) dgc(IR) dgc(AR) ∆CWG ∆CCV

Total 5.18% = -0.62% +0.67% +2.02% +1.68% +1.43%

Distr. 3.36% = 0.0% +0.77% +0.36% +1.16% +1.08%
Mean 1.82% = -0.62% -0.09% +1.66% +0.52% +0.35%

Notes: This table presents the decomposition of the welfare gain in partial equilibrium (PE) expressed as a consump-
tion equivalent variation, gPEc , into various sources, cf. Section 3.8. IR: idiosyncratic risk, AR: aggregate risk,
CWG: convexity of the welfare gain, CCV : counter-cyclical cross-sectional variance. The effects attributable to
each risk component are further decomposed into the respective distribution effects, gdistrc , and mean effects, gmeanc ,
again see Section 3.8.

5.2 On the Importance of Modeling both Risks

The analysis of our baseline scenario suggests that the role played by the two biases is large. To
investigate whether it is indeed the joint presence of both risks (aggregate and idiosyncratic risk)
as well as their interactions that lead us to conclude that social security is beneficial in the long
run, we compute the general equilibria of economies that feature only aggregate risk (AR-only),
only idiosyncratic risk (IR-only), or no risk (No-risk). We calibrate each economy to standard
targets in the literature. For the AR-only economy, we adopt the targets of Krueger and Kubler
(2006) and match the equity premium, µ = E [rs,t − rb,t], and the volatility of stock returns.
Specifically, we target an equity premium of µ = 5.6% and a standard deviation of stock returns
of σ(rs) = 16.8%.39 For the economy without aggregate risk and the deterministic economy,

39Again based on data taken from Rob Shiller’s webpage.
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we target an interest rate of 4.2%, which is estimated by Siegel (2002) and which is the same
rate used in our PE decomposition procedure for economies without aggregate risk. Throughout
these experiments, we target a capital-output ratio of 2.65 by adjusting the discount factor,
β. Further details of the calibration are described in Appendix D.5. All three economies are
dynamically efficient (see Appendix E.1 for the AR-only economy).

Proposition 1 shows that welfare gains from introducing social security increase exponen-
tially in risk aversion and the volatility of aggregate risk. With respect to these two, the AR-only
calibration is an extreme case in that it features high aggregate risk and high risk aversion. But
even with such an extreme calibration, Table 8 documents welfare losses for this case. In general
equilibrium, they stand at −0.6%, again expressed as a consumption equivalent variation. Even
in the short-run, the benefits from insurance through social security do not dominate, as the
welfare losses stand at −0.4% in partial equilibrium. Most of these effects are attributable to the
mean effect of −0.5%. In contrast to our baseline results, the negative mean effect comes from
the fact that households do not benefit that much from the introduction of the low yield asset
social security, compared to the losses from taxation. This is so because mean stock returns
now stand at 7.9%, much higher than the 3.0% of the baseline scenario. Also, the previously
discussed portfolio reallocation is less strong because of the high risk aversion.

In the IR-only economy, we find large welfare losses in general equilibrium of −1.6%. The
mean effect again is negative at −0.4%. As in the AR-only economy, this reflects that we force
households to implicitly save in a low yield asset. If prices are held constant, then in partial
equilibrium there is a small welfare gain, as households do value the insurance provided by
social security, but the welfare cost of crowding out are much larger.

Finally, introducing social security in the no-risk economy leads to welfare losses in both
general (−1.1%) and partial equilibrium (−0.6%). Here, the negative mean effect of −0.3%
is due to the downward shift of life-cycle consumption, while the negative distribution effect
of −0.8% represents the welfare impact of decreased consumption when young, cf. Figure 2.

As explained above, we re-calibrated the economies to the same targets used in the literature
so as to replicate earlier findings. In Appendix E.2 we report the corresponding results without
re-calibration. Qualitatively, our findings for the AR-only and the No-risk economies are
unchanged. However, without re-calibration, the IR-only economy is dynamically inefficient
and accordingly features a mild mean effect of 0.15%. The distribution effect in general
equilibrium, gdistrc , is also slightly positive at 0.14%. The sum of insurance gains of theAR-only
and the IR-only economies continues to be negative.
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Table 8: The Role of Both Risks: Benefits, Costs, and Change in Aggregates

Consumption equivalent variation, gc gdistrc gmeanc

Scenario GE PE CO GE

AR-only -0.64% -0.40% -0.23% -0.13% -0.51%
IR-only -1.62% 0.08% -1.69% -1.22% -0.40%
No-risk -1.13% -0.62% -0.51% -0.84% -0.29%

Notes: GE: general equilibrium, PE: partial equilibrium, CO: crowding out; AR-only: economy with only aggre-
gate risk, calibrated to match equity premium; IR-only: economy with only idiosyncratic risk; No-risk: determin-
istic economy. The total gc is further decomposed into the mean effect, gmeanc , and the distribution effect, gdistrc ,
cf. Section 3.8 for formal definitions.

5.3 Sensitivity Analysis

Dynamic Efficiency. We check the sufficient conditions for dynamic efficiency of Definition 3
for all economies considered in our sensitivity analyses. The conditions are satisfied in all cases,
with the statistics being very close to those of our baseline economy shown in Table 2, cf.
Appendix E.1. The reason why the statistics are so similar is that we always target the same
bond return and never modify the implicit return to social security, while the risky return either
retains its low mean and volatility of the baseline, or has higher mean and volatility closer to the
data. Therefore, the central elements of the conditions are unchanged.

Sharpe Ratio, Equity Premium, and Intertemporal Elasticity of Substitution. We inves-
tigate whether our key findings of long-run welfare gains and sizeable interactions are robust
when we consider economies with realistic calibration targets that imply higher levels of risk.
In one variant we calibrate the model to match the equity premium and the volatility of stock
returns, the same targets as in the AR− only economy of Section 5.2. This scenario is referred
to as EP . It implies a consumption volatility and a Sharpe ratio which are both too high relative
to the data. We therefore also consider an intermediate case where we instead match the Sharpe
ratio and the volatility of consumption. This scenario is referred to as SR. To isolate the effects
of risk and risk aversion, we hold the discount factor β constant at its baseline value in thes
experiments. Therefore, a crucial preference parameter, which—as we discuss in the context of
our simple model in Section 2.3—has a strong impact on welfare, remains unchanged, making
the comparison and interpretation of the results much easier. The average risk-free bond return
is always kept at the same level of the baseline through an appropriate calibration of δ0, because
we know from Propositions 1 and 2 that it plays a key role for the value of social security.
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We repeat this sensitivity analysis with a higher intertemporal elasticity of substitution (IES).
To this end, we first proceed as in our baseline calibration, i.e., for our choice of risk aversion
of θ = 3, we define a modified baseline (BLIES=1.5) in which we set the IES to 1.5 and
recalibrate all parameters. Starting from this modified baseline, we then repeat the analogues to
the SR and EP calibrations, referred to as SRIES=1.5 and EPIES=1.5, respectively. Details on
the calibration are described in Appendix D.5.

The welfare results in general equilibrium are presented in Table 9, together with the benefits
from insurance and the losses from crowding out of capital formation. Our result from the
baseline scenario (BL) is confirmed: there are large welfare gains ranging from 2.5 to 5.5
percent in terms of a consumption equivalent variation when losses from crowding out are fully
taken into account. In line with the prediction from our simple model of Section 2, welfare gains
increase in risk aversion: BL features θ = 3, SR has θ = 11.1 and EP has θ = 5.3.40 Our two
baseline scenarios, with an IES of 0.5 and 1.5 and a reasonable degree of risk aversion of 3,
deliver the smallest welfare numbers with total welfare gains of 2.6% and 2.7%, respectively.

Table 9: Sensitivity Analysis: Benefits, Costs, Bias, and Change in Aggregates

gc
∆CCV +∆CWG

gPEc
gdistrc gmeanc

Scenario GE PE CO GE

IES = 0.5
BL +2.56% +5.18% -2.62% 0.60 +2.32% +0.24%
SR +4.78% +8.48% -3.70% 0.66 +5.42% -0.64%
EP +3.58% +7.40% -3.81% 0.73 +8.72% -5.13%
BLτ=9.5% +1.00% +2.23% -1.24% 0.41 +0.92% +0.08%

IES = 1.5
BLIES=1.5 +2.69% +3.21% -0.53% 0.60 +2.57% +0.12%
SRIES=1.5 +5.62% +8.04% -2.42% 0.66 +5.93% -0.31%
EPIES=1.5 +5.56% +7.80% -2.23% 0.75 +7.73% -2.16%

Notes: GE: general equilibrium, PE: partial equilibrium, CO: crowding out; CCV : counter-cyclical cross-sectional
variance, CWG: convexity of the welfare gain; BL: baseline calibration with θ = 3; SR: scenario matching
Sharpe ratio; EP : scenario matching equity premium. The total gc is further decomposed into the mean ef-
fect, gmeanc , and the distribution effect, gdistrc , cf. Section 3.8 for formal definitions.

To examine the role played by the welfare biases attributable to the CWG and the CCV
40Ceteris paribus, matching a higher equity premium would require a higher degree of risk aversion. However,

as we simultaneously increase the variance of risky returns—by an appropriate choice of δ̄—, we also introduce
more risk into the economy. As a consequence, the coefficient of risk aversion is lower in the EP than in the
SR-calibration.
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across scenarios, we compute the ratio ∆CCV +∆CWG

gPEc
. It amounts to approximately 60 percent in

our two baseline scenarios and reaches 75 percent in scenario EPIES=1.5. Therefore, our finding
that roughly 60% of the total welfare gains would be missed from adding up the isolated benefits
is robust across calibrations.

In all scenarios, the portion of the welfare gain attributable to an increase of mean consump-
tion, gmeanc , is smaller than in our baseline. More importantly, it is negative when we match the
equity premium or the Sharpe ratio (both for IES = 0.5 and IES = 1.5), while the welfare
gains in those calibrations are higher than in our baseline. This is consistent with the explanation
given earlier, namely that higher risk aversion mitigates the portfolio reallocation towards stocks
that is induced by the introduction of social security. Also, the risky returns in those calibrations
are higher, so that the implicit social security return is relatively low. At the same time, the
welfare gain attributable to changes of the distribution, gdistrc , increases very substantially, again
due to the higher risk and risk aversion in these economies.

Expanding the existing U.S. Social Security System. Next, we present results on the welfare
effects of expanding the existing U.S. social security system, with its average contribution rate
of the postwar period of 9.5% by 2 percentage points.41 With this experiment we give up some
of the clarity of our thought experiment because our closed form expressions from Section 2
are derived for marginal changes around τ = 0. We recalibrate our model to achieve the same
targets as in our baseline scenario and base the calibration of the income process on estimates
after all taxes and social insurance contributions, see Appendix D.5. We label this experiment
as BLτ=9.5% in Table 9. We continue to observe welfare gains in general equilibrium which are
smaller than for our baseline results.42 The contribution attributable to the interactions decreases
to 41%. This is still sizeable.

However, a number of cautionary remarks on this experiment are in order. With this social
security system we lose the interpretation of analyzing a minimum pension; instead this is a very
generous flat pension. While this scenario models the average size of the actual U.S. system,
the generous flat pension income does not correctly reflect the institutional feature of a mix
of an earnings related and a redistributional component thereby exaggerating the insurance
benefits. Finally, because the marginal excess burden is increasing in the tax level, abstracting
from endogenous labor supply responses is more critical for such an experiment with an already
high base distortion.

41Using the average contribution rate of 9.5% rather than the current contribution rate of 12.4% corresponds to
our calibration of other moments which is based on postwar averages.

42Hence, the optimal social security contribution rate in our model is somewhere above the average rate of 9.5%.
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Other Model Parameters and Modeling Choices. In Appendix E.3 we report and discuss
further results of sensitivity analyses with respect to calibration and modeling choices. We in
turn consider an exogenous decrease (increase) of risk aversion to two (to four), an increase of
the targeted capital-output ratio to 3.0, a zero debt-equity ratio, a zero variance of depreciation
shocks, and a zero variance of transitory income shocks. All these experiments confirm our
main findings. Also, we consider a redistribution of all tax income to workers, instead of to
pensioners. Welfare gains are smaller under that redistribution scheme, because it cannot insure
against aggregate risk and only to a limited extent against the CCV .

5.4 On Biases in the Welfare Assessment of Crowding Out

One important question is whether there are also biases in the welfare assessment of crowding
out of capital: Are there counterparts to ∆CWG and ∆CCV that increase the welfare losses, and
what can we say about them? The answer is fundamentally difficult because crowding out
is a general equilibrium phenomenon that works through price adjustments, which inhibits a
decomposition of the form we preform for the insurance benefits. However, the whole point
of our general equilibrium analysis is to see whether any biases in crowding out are stronger
than ∆CWG + ∆CCV . Since in single-risk economies the welfare costs dominate, whereas in
all our calibrations with both types of risk the benefits dominate, it must be that the biases on
the insurance side are stronger than those on the crowding out side. While we cannot state this
result generally, it does hold for all our carefully calibrated scenarios.

To gain additional insights on the strength of biases in the welfare cost of crowding out
despite the above mentioned fundamental difficulty, we resort to a comparison of the welfare
costs in our sensitivity analyses. Comparing our findings in Table 9 with those of Table 8
we indeed observe that losses from crowding out increase more strongly when both risks are
modeled jointly, but this is less pronounced than for the welfare gains. Losses from crowding
out in the IR-only economy are at−1.69% and in the AR-only economy at−0.23%, but losses
in the corresponding scenario EP are much larger than the sum, namely at −3.81%. This
comparison is only indicative, because we compare across different equilibria and because
of recalibration. Taking the non-recalibrated results from Appendix E.2, Table 13, we have
analogous findings.43 Hence, in our experiments, the convexity of the welfare losses from
crowding out is weaker than the convexity of the welfare gains from insurance.

We now provide reasons for this finding. In Section 2.3 we already emphasize the role of

43Losses from crowding out in the IR-only economy are at −1.56% and in the AR-only economy at −0.36%;
again the sum is lower than the −3.81% observed for scenario EP .
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pecuniary externalities to explain why the convexity of welfare losses from crowding out may
be weaker. There are two additional reasons. The first is that mean wages decrease while mean
returns increase, which, in a model with heterogeneous agents, benefits some while hurting
others (Davila, Hong, Krusell, and Ríos-Rull 2012). The reason is that increasing interest rates
benefit the asset rich, while falling interest rates hurt the relatively asset poor. The net effect of
crowding out on expected life-time utility and welfare is therefore per se ambiguous and depends
on the distribution of factor incomes. As the second reason note that, in contrast to the partial
equilibrium insurance gains, crowding out is a general equilibrium phenomenon. The reduction
of savings leads to an important feedback in general equilibrium, because crowding out raises
asset returns which induces households to save more. This substitution effect mitigates the
reduction of aggregate capital and the corresponding welfare losses. Since the substitution effect
becomes stronger the larger the IES, this mitigating channel can be observed by comparing
the welfare losses from crowding out in the IES = 0.5 and IES = 1.5 scenarios of Table 9. It
is indeed the case that losses from crowding out are smaller for all the IES = 1.5 scenarios,
which is also the main reason why the general equilibrium welfare gains are higher.44

6 Conclusion

This paper analyzes the welfare effects of social security by evaluating its benefits and costs
when households face multiple risks in the form of idiosyncratic earnings risk and aggregate
business cycle risk. We consider a pay-as-you-go (PAYG) financed social security system which
partially insures both forms of risk through a minimum pension. We show that the whole gain
from insurance is greater than the sum of the insurance benefits attributable to the isolated risk
components. One source for this welfare difference is a direct interaction of risks, in the form of
a countercyclical, cross-sectional variance of idiosyncratic income risk. The other is due to the
convexity of the welfare gain in total risk.

Based on a calibrated large-scale overlapping generations model, we find that introducing a
PAYG financed social security system with a contribution rate of 2% leads to long-run welfare
gains of 2.6% in terms of a consumption equivalent variation despite significant crowding out of
capital. Considering both risks jointly is crucial for this finding. Examining only one risk in
isolation misses the two amplifying mechanisms which account for 60% of the welfare gains. In
fact, when we consider only one type of risk in isolation, we find net welfare losses.

44Because of the substitution effect, a higher IES also leads to a smaller volatility of real aggregates. The
fluctuations caused by depreciation shocks are counteracted by households’ savings, so that, for higher IES,
volatility of capital is smaller, leading to smaller volatility of aggregate output.
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There is an interesting parallel to the literature on the welfare costs of aggregate fluctuations.
In his seminal contribution, Lucas (1987) demonstrates that the costs of business cycles are
negligible. However, when business cycle risk is analyzed in conjunction with idiosyncratic
income risk, then welfare costs can become very large, see De Santis (2007) and Krebs (2007).

While our analysis uncovers important biases in the welfare assessment of social security and
documents that they matter quantitatively, some aspects are not taken into account, two of which
we emphasize here. First, we abstract from endogenous labor supply. This may bias results in
favor of social security for two reasons. One is that we do not account for self-insurance against
risk through endogenous labor supply adjustments. The other is that a higher contribution rate
would distort labor supply decisions, crowding out aggregate labor supply if the substitution
effect dominates. However, when taking labor market frictions into account and considering
small policy changes, as in this paper, a calibrated model would likely only lead to small effects
of endogenous labor supply reactions.

Second, we only conduct a limited policy design experiment by studying the welfare effects
of improved insurance through social security, taking as given the distribution through the tax
and transfer system. With this approach we follow much of the social security literature, which
complements a large literature that analyzes the welfare implications of the general tax and
transfer system during working life, taking as given the design of social security. There are
good reasons to consider redistribution through social security beyond the insurance motives
emphasized in our work. One reason is efficiency concerns based on lifetime income tax
smoothing arguments put forth by Vickrey (1947), see Diamond (2003) for an analysis in the
context of social security. A second is the presence of moral hazard frictions during working life
that lead Michelacci and Ruffo (2015) to conclude that optimal unemployment insurance should
decrease over the life-cycle thereby limiting the scope for redistribution. Since these frictions
are gone in retirement, it may be optimal to redistribute less during the working period and more
in retirement. In light of these aspects it is obviously important to analyze the optimal joint
design of social security and progressive income taxation, respectively unemployment insurance,
which we address in ongoing research.
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A Appendix: Proofs

Proof of Proposition 1. The proof has various steps. Step 1 characterizes utility consequences
without making the specific assumption of log-normal shocks. Step 2 modifies the respective
terms for the case of log-normally distributed random variables. Finally, Step 3 derives the CEV.

1. Maximize

Eu(ci,2,t+1)= 1
1− θE

(
w̄t
(
R̄ηi,1,tζt%t+1 + τ

(
(1 + λ)ζt+1−R̄ηi,1,tζt%t+1

)
,
))1−θ

which is equivalent to

max 1
1− θER

1−θ
p,t,t+1,

where Rp,t,t+1 ≡ ηi,1,tζtR̄%t+1 + τ
(
(1 + λ)ζt+1 − R̄ηi,1,tζt%t+1

)
is a consumption (or

portfolio) return. Increasing ex-ante utility for a marginal introduction of social security
requires the first-order condition w.r.t. τ to exceed zero, hence:

E

[
R−θp,t,t+1

∂Rp,t,t+1

∂τ

]∣∣∣∣∣
τ=0

> 0.

Taking the according partial derivatives we get, using Assumption 1b–1d, the condition

1 + λ

R̄

E
[
(ηi,1,tζt%t+1)−θ

]
E
[
(ηi,1,tζt%t+1)1−θ

] − 1 > 0. (13)

2. Define Z1 ≡ (ηi,1,tζt%t+1)−θ and Z2 ≡ (ηi,1,tζt%t+1)1−θ. By log-normality we have
that EZi = exp(E lnZi + 1

2σ
2
lnZi), i = 1, 2. Turning first to Z1 observe that

E[Z1] = exp
(
−θ

(
E ln ηi,1,t +

σ2
ln η

2

))
· exp

(
−θ

(
E ln %+

σ2
ln %

2

))
·

· exp
(
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E ln ζ +

σ2
ln ζ

2

))
exp

(1
2θ(1 + θ)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
= exp

(1
2θ(1 + θ)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
,
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where the second line follows from Assumption 1b. As to Z2 we get

E[Z2]=exp
(
(1−θ)

(
E ln ηi,1,t +

σ2
ln η

2

)(
E ln %+

σ2
ln %

2

)(
E ln ζ +

σ2
ln ζ

2

))

· exp
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2θ(θ − 1)
(
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ln η + σ2
ln % + σ2

ln ζ

))
= exp

(1
2θ(θ − 1)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))

and hence, defining σlnAR ≡
√
σ2

ln ζ + σ2
ln % we have

E[Z1]
E[Z2] = exp

(
θ
(
σ2

ln η + σ2
lnAR

))
. (14)

3. To evaluate the CEV between two scenarios, i.e., comparingEu
(
cτ>0
i,2,t+1

)
withEu

(
cτ=0
i,2,t+1

)
,

we use that

Eu
(
cτ>0
i,2,t+1

)
= Eu

(
cτ=0
i,2,t+1

)
+
∂Eu

(
cτ=0
i,2,t+1

)
∂τ

dτ.

and evaluate this expression at τ = 0.

(a) Case θ 6= 1. We have that, evaluated at τ = 0,

∂Eu(cτ=0
i,2,t+1)
∂τ

= w̄1−θ
t E

[(
R̄ηζt%t+1

)−θ
·
(
(1 + λ)ζt+1 − R̄ηζt%t+1

)]
= w̄1−θ

t R̄1−θ
(

1 + λ

R̄
EZ1 − EZ2

)
,

where Z1, Z2 are defined in Step 2.

We also have that

Eu(cτ=0
i,2,t+1) = 1

1− θ w̄
1−θ
t R̄1−θE (ηi,1,tζt%t+1)1−θ

= 1
1− θ w̄

1−θ
t R̄1−θEZ2.
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Therefore:

Eu(cτ>0
i,2,t+1) = 1

1− θ w̄
1−θ
t R̄1−θEZ2

+ w̄1−θ
t R̄1−θ

(
1 + λ

R̄
EZ1 − EZ2

)
dτ.

The CEV, denoted by gPEc , is defined by the relationship:

Eu(cτ=0
i,2,t+1(1 + gPEc )) = Eu(cτ>0

i,2,t+1),

from which, using the above formulae, we get

(1 + gPEc )1−θ 1
1− θ w̄

1−θ
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EZ1 − EZ2

)
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Hence,
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θ
(
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ln η + σ2
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dτ

where the second line follows from equation (14), cf. Step 2. Hence,

gPEc =
(

1 + (1− θ)
(

1 + λ

R̄
exp

(
θ
(
σ2

ln η + σ2
lnAR

))
− 1

)
dτ

) 1
1−θ

−1,

or, expressed in logs, i.e., using that gPEc ≈ ln(1 + gPEc ) for small gPEc , we get

gPEc ≈ 1
1− θ · ln

(
1 + (1− θ)

(
1 + λ

R̄
exp

(
θ
(
σ2

ln η + σ2
lnAR

))
− 1

)
dτ

)

≈
(

1 + λ

R̄
exp

(
θ
(
σ2

ln η + σ2
lnAR

))
− 1

)
dτ (15)
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(b) Case θ = 1. We have that, evaluated at τ = 0,

∂Eu(cτ=0
i,2,t+1)
∂τ

= E
[(
R̄ηζt%t+1

)−1
·
(
(1 + λ)ζt+1 − R̄ηζt%t+1

)]
= 1 + λ

R̄
EZ1 − 1.

We also have that

Eu(cτ=0
i,2,t+1) = ln

(
w̄tR̄

)
+ E ln (ηi,1,tζt%t+1) .

Therefore:

Eu(cτ>0
i,2,t+1) = ln

(
w̄tR̄

)
+ E ln (ηi,1,tζt%t+1) +

(
1 + λ

R̄
EZ1 − 1

)
dτ.

For gPEc we accordingly get

1 + gPEc = exp
((

1 + λ

R̄
EZ1 − 1

)
dτ

)
. (16)

Approximating the above in logs we get:

gPEc ≈
(

1 + λ

R̄
exp

(
σ2

ln η + σ2
lnAR

)
− 1

)
dτ

which is the same as equation (15) for θ = 1.

4. Finally, observe from (15) that gPEc (AR, 0) ≈
(

1+λ
R̄

exp (θσ2
lnAR)− 1

)
dτ and gPEc (0, IR) ≈(

1+λ
R̄

exp
(
θσ2

ln η

)
− 1

)
dτ so that

gPEc (AR, 0) + gPEc (0, IR) ≈
(

1 + λ

R̄

(
exp

(
θσ2

lnAR

)
+ exp

(
θσ2

ln η

))
− 2

)
dτ.

Hence, the inequality gPEc (AR, IR) ≥ gPEc (AR, 0) + gPEc (0, IR) is equivalent to the
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requirement that

exp
(
θσ2

lnAR

)
exp

(
θσ2

ln η

)
− 1 ≥ exp

(
θσ2

lnAR

)
+ exp

(
θσ2

ln η

)
− 2

⇔ exp
(
θσ2

lnAR

) (
exp

(
θσ2

ln η

)
− 1

)
≥ exp

(
θσ2

ln η

)
− 1

⇔

exp (θσ2
lnAR) ≥ 1 if σ2

ln η > 0

exp
(
θσ2

ln η

)
≥ 1 if σ2

lnAR > 0.

Hence, the inequality is strict for σ2
ln η > 0 ∧ σ2

lnAR > 0.

Proof of Proposition 2. Observe that E[Z1] is now given by

E[Z1] = 1
2E

[
%−1
t+1

] ( 1
ζ−
E
[
η−1
l

]
+ 1
ζ+
E
[
η−1
h

])

which, using the distributional assumptions of log-normality, can be rewritten as

E[Z1] = 1
2 exp

(
σ2

ln %

)( 1
ζ−

exp
(
σ2

ln ηl

)
+ 1
ζ+

exp
(
σ2

ln ηh

))

Using this in equation (16) gives (5a). Equation (5b) then follows from applying Definition 2 to
the above.
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Supplementary Appendix (Not for Publication)

B Supplementary Analytical Appendix

B.1 Two-Generations Model: Convexity of Welfare Gain

Proposition 3. Applying Definition 1 to equation (4) gives the properties of the components of

the CEV as follows:

∂dgPEc (i)
∂θ

> 0, for i ∈ {AR, IR}, ∂∆CWG

∂θ
> 0,

∂ ∆CWG

dgPEc (AR)

∂θ
> 0.

Proof. The proof consists of three steps. First, we translate the CEV as a function of variances
of random variables in logs into the respective terms in levels. Second, we combine the
general definition (1) with the formula for the CEV in equation (4) to write the respective terms
for gc(0, 0), dgc(AR) and so forth. Third, we derive the partial derivatives.

1. By log-normality we have exp
(
θ
(
σ2

ln η + σ2
lnAR

))
=
(
(1 + σ2

η)(1 + σ2
AR)

)θ
, where σAR ≡√

σ2
ζ + σ2

% + σ2
ζσ

2
% and therefore

gPEc =
(

1 + λ

R̄

(
(1 + σ2

η)(1 + σ2
AR)

)θ
− 1

)
dτ (17)

which encompasses the case θ = 1 shown in Section 2.2.

2. Applying definition (1) to (17) readily gives

gPEc (AR, IR) =
(1 + g

R̄

((
1 + σ2

η

) (
1 + σ2

AR

))θ
− 1

)
dτ

gPEc (0, 0) =
(1 + g

R̄
− 1

)
dτ

gPEc (AR, 0) =
(1 + g

R̄

(
1 + σ2

AR

)θ
− 1

)
dτ ⇔ dgc(AR) = 1 + g

R̄

((
1 + σ2

AR

)θ
− 1

)
dτ

gPEc (0, IR) =
(1 + g

R̄

(
1 + σ2

η

)θ
− 1

)
dτ ⇔ dgc(IR) = 1 + g

R̄

((
1 + σ2

η

)θ
− 1

)
dτ

We observe that dgc(AR) and dgc(IR) are both increasing in θ. From these terms we
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further get

∆CWG = gPEc (AR, IR)−
(
gPEc (0, 0) + dgc(AR) + dgc(IR)

)
= 1 + g

R̄

(((
1 + σ2

η

) (
1 + σ2

AR

))θ
− 1

−
((

1 + σ2
AR

)θ
− 1

)
−
((

1 + σ2
η

)θ
− 1

))
dτ

|θ=1 = 1 + g

R̄
σ2
ησ

2
AR

and readily observe that ∆CWG is increasing in ση as well as σAR.

3. To establish that ∆CWG is also increasing in θ, simplify notation by defining σTR =√
σ2
η + σ2

AR + σ2
ησ

2
AR where TR stands in for “total risk”. Using this notation, observe

that

∂∆CWG

∂θ
= 1 + g

R̄

(
ln(1 + σ2

TR)(1 + σ2
TR)θ−

ln(1 + σ2
AR)(1 + σ2

AR)θ − ln(1 + σ2
η)(1 + σ2

η)θ
)

Evaluate this at θ = 1 to get

∂∆CWG

∂θ

∣∣∣∣∣
θ=1

= 1 + g

R̄

(
σ2
AR · ln

(
1 + σ2

TR

1 + σ2
AR

)
+ σ2

η · ln
(

1 + σ2
TR

1 + σ2
η

)
+

ln(1 + σ2
TR) · σ2

AR · σ2
η

)
> 0.

The general conclusion that ∂∆CWG

∂θ
> 0 for all θ then follows from continuity. Finally,

we can express the contribution to the CEV of CWG relative to AR as

d∆CWG

dgc(σAR) =

((
1 + σ2

η

)
(1 + σ2

AR)
)θ

(1 + σ2
AR)θ − 1

− 1
(1 + σ2

AR)θ − 1
− 1−

(
1 + σ2

η

)θ
− 1

(1 + σ2
AR)θ − 1
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Take the derivative of this term w.r.t. θ to get

∂ d∆CWG

dgc(σAR)

∂θ
= 1(

(1 + σ2
AR)θ − 1

)2

(
ln
((

1 + σ2
η

) (
1 + σ2

AR

)) ((
1 + σ2

η

) (
1 + σ2

AR

))θ
((

1 + σ2
AR

)θ
− 1

)
−
((

1 + σ2
η

) (
1 + σ2

AR

))θ
ln
(
1 + σ2

AR

) (
1 + σ2

AR

)θ
+ ln

(
1 + σ2

AR

) (
1 + σ2

AR

)θ
− ln

(
1 + σ2

η

) (
1 + σ2

η

)θ ((
1 + σ2

AR

)θ
− 1

)
+
((

1 + σ2
η

)θ
− 1

)
ln
(
1 + σ2

AR

) (
1 + σ2

AR

)θ)
.

Evaluated at θ = 1 we get

∂ ∆CWG

dgc(σAR)

∂θ

∣∣∣∣∣∣
θ=1

= 1
(σ2

AR)2

(
ln
((

1 + σ2
η

) (
1 + σ2

AR

)) (
1 + σ2

η

) (
1 + σ2

AR

)
σ2
AR

−
(
1 + σ2

η

) (
1 + σ2

AR

)
ln
(
1 + σ2

AR

) (
1 + σ2

AR

)
+ ln

(
1 + σ2

AR

) (
1 + σ2

AR

)
− ln

(
1 + σ2

η

) (
1 + σ2

η

)
σ2
AR + σ2

η ln
(
1 + σ2

AR

) (
1 + σ2

AR

))
Now split the numerator up as follows:

N ≡ ln
(
1 + σ2

TR

) (
1 + σ2

TR

)
σ2
AR −

(
1 + σ2

TR

)
ln
(
1 + σ2

AR

) (
1 + σ2

AR

)
︸ ︷︷ ︸

≡Ψ1

+ ln
(
1 + σ2

AR

) (
1 + σ2

AR

)
− ln

(
1 + σ2

η

) (
1 + σ2

η

)
σ2
AR + σ2

η ln
(
1 + σ2

AR

) (
1 + σ2

AR

)
︸ ︷︷ ︸

≡Ψ2

where σ2
TR is again the variance due to total risk. Next, notice that:

Ψ1 = (1 + σ2
TR)

(
σ2
AR ln(1 + σ2

η)− ln(1 + σ2
AR)

)
Ψ2 = (1 + σ2

TR) ln
(
1 + σ2

AR

)
− σ2

AR

(
1 + σ2

η

)
ln
(
1 + σ2

η

)
Ψ1 + Ψ2 =

(
σ2
AR

)2
ln(1 + σ2

η)
(
1 + σ2

η

)
.

Therefore
∂

∆CWG
dgc(σAR)
∂θ

∣∣∣∣∣
θ=1

> 0 and the conclusion for general θ again follows by continuity.
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B.2 General Equilibrium Extension of the Simple Model

We sketch the main elements, provide and extend the key findings of Harenberg and Ludwig
(2015) with the purpose (i) to show that the discount rate plays an additional decisive role for
evaluating the welfare effects of social security and (ii) to expose analytically one channel for the
ambiguity of risk interactions on the welfare consequences from crowding out of capital. To this
end, consider a two period extension of the model of Section 2 in general equilibrium. In the first
period, households are endowed with one unit of labor productivity and work full time. In the
second period, they only work fraction ω ∈ [0, 1) of their time and are retired with fraction 1−ω.
We also assume that the idiosyncratic shock only hits in the second period of life. The subperiod
structure together with the assumption that the shock only hits in the second period enables us
to model precautionary savings behavior while maintaining closed form solutions in general
equilibrium when we focus on a logarithmic utility function and Cobb-Douglas production.45

B.2.1 Modifications

The modifications of the simple model of Section 2 are threefold. First, denoting the discount
factor by β, expected life-time utility isEt [ln(c1,t) + β ln(c2,t+1)], where we restrict the analysis
to log utility for analytical solutions. Second, the budget constraints in the two periods now
write as

s2,t+1 + c1,t = (1− τt)wt and ci,2,t+1 ≤ s2,t+1Rt+1 + ω(1− τ)wt+1ηi,2,t+1 + (1− ω)ysst+1.

Third, to close the model in general equilibrium, production takes place with a representative
firm’s production function F (Kt,ΥtLt), where Kt is aggregate capital, Lt = Nt,0 + ωNt,1 is
aggregate labor, and Υt is labor augmenting technological progress, growing at exogenous rate λ.
Next, introduce shock ζt as a standard RBC shock to output and shock %t as a shock to the user
costs of capital and assume 100% depreciation (again for analytical reasons) so that profits are
given by Πt = ζtF (Kt,ΥtLt) − (1 + rt) %−1

t Kt − wtLt. Denoting by kt = Kt
ΥtLt the capital

stock per efficiency unit (the capital “intensity”), profit maximization of this neoclassical firm

45Because of the human capital wealth effect from second period income, we cannot derive closed form solutions
even with logarithmic utility in partial equilibrium. Analytical tractability only arises when plugging in the general
equilibrium dynamics into the first-order conditions of households, also see Krueger and Ludwig (2007), Ludwig
and Vogel (2009), and Krueger and Ludwig (2017). Formally, the reason is that second period income is discounted
with the market interest rate and both income and the interest rate are functions of capital in general equilibrium.
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then gives the first order conditions as

wt = (1− α)Υtk
α
t ζt = w̄tζt and Rt = αkα−1

t ζt%t = R̄tζt%t.

which is the general equilibrium analogue to equation (2).

B.2.2 Analysis

In general equilibrium, the law of motion of the capital intensity writes as

kt+1 = 1
(1 + λ)(1 + ω)s(τ)(1− τ)(1− α)ζtkαt (18)

where s(τ) = βΓ(τ)
1 + βΓ(τ) ≤

β

1 + β
(19)

and Γ(τ) = Et

 1
1 + 1−α

α(1+ω)%t+1
(ωηi,2,t+1 + τ (1 + ω(1− ηi,2,t+1)))

 ≤ 1. (20)

cf. Propostion 3 in Harenberg and Ludwig (2015). To interpret this, notice that in a deterministic
economy (where ζt = %t = ηt = 1) without work effort in the second period (ω = 0)
equation (18) is just the standard textbook variant of the law of motion of the capital intensity
in a 2-period OLG economy with logarithmic utility and Cobb-Douglas production. The
risk adjustment term Γ(τ) in equation (19) captures (i) precautionary saving behavior w.r.t.
idiosyncratic income risk—s(τ) increases in response to a mean-preserving spread of η; (ii)
intertemporal reallocation w.r.t. return risk—s(τ) decreases in response to a mean-preserving
spread of % because savings become less attractive if the return risk increases; and (iii) crowding
out of savings—the saving rate decreases when τ is increased. In the deterministic economy,
life-cycle savings are reduced due to positive retirement income in the second period. In the
stochastic economy, there is additional partial insurance of idiosyncratic risk through social
security which decreases precautionary savings.

Based on this structure, Proposition 4 in Harenberg and Ludwig (2015) contains the main
results on the welfare benefits from insurance and the welfare costs from crowding out in terms
of utility units. Our next proposition extends those results to a consumption equivalent variation:

Proposition 4. The CEV from a marginal introduction of social security at rate dτ > 0 in the
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stationary equilibrium is given by gGEc = gPEc + gCOc , where

gPEc ≈ 1
1 + β

βE
 1−α

α
1

%t+1
− 1−α

α
ω

1+ω
ηi,2,t+1
%t+1

− 1
1 + (1−α)

α
ω

1+ω
ηi,2,t+1
%t+1

− 1
 (21)

gCOc ≈ − 1
1 + β

((
1− ϕs,τ |τ=0

)( α

1− α
1 + β

β
− Γ|τ=0

))
. (22)

Γ|τ=0 is term (20) for τ = 0 and ϕs,τ |τ=0 is the semi-elasticity of the saving rate w.r.t. τ ,

ϕs,τ = ∂s/s
∂τ

, again evaluated at τ = 0.

Proof of Proposition 4. 1. Harenberg and Ludwig (2015), Proposition 4, show that social
security increases ex-ante welfare in the stationary equilibrium if and only if

A+B > 0

where A ≡ βE

 1−α
α

1
%t+1
− 1−α

α
ω

1+ω
ηi,2,t+1
%t+1

− 1
1 + (1−α)

α
ω

1+ω
ηi,2,t+1
%t+1

− 1

and B ≡ −β
(
1− ϕs,τ |τ=0

)( α

1− α
1 + β

β
− Γ|τ=0

)
.

2. To translate this into a CEV, observe that EU (Cτ>0) = EU (Cτ=0) + (A+B) dτ , where
capital letter U denotes life-time utility and capital letter C the consumption stream under
the respective policy, hence U (Cτ=0) = ln(ct,1)+β ln(ci,t+1,2). Using the definition of the
CEV it is then straightforward to show that the CEV is given by gc = exp

((
A+B
1+β

)
dτ
)
−1,

which can be approximated as gc ≈ A+B
1+β dτ .

Observe that gPEc is the CEV in “partial equilibrium”, corresponding to our definition in
the quantitative model of Section 3. It is the consumption equivalent variation from a marginal
introduction of social security where the price sequence is held constant (i.e., does not react
to social security) at the corresponding price sequence in the general equilibrium of the τ = 0
economy. gCOc is the additional effect from the crowding out of capital induced by the social
security reform.46

To interpret terms gPEc and gCOc further, we first restate as observation important findings
from Harenberg and Ludwig (2015) and then move on to a Corollary:

46Also notice that the aggregate productivity shock ζt does not show up in (21) and (22). This is a consequence
of (i) ζt showing up in all sources of income—wages, interest rates, and social security—, (ii) ζt showing up
multiplicatively in the law of motion of the aggregate capital stock, and (iii) ζt also showing up multiplicatively in
the derivatives of the utility function by the assumption of log utility. All these cancel each other out.
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Observation 1. 1. The deterministic ω = 0 economy is dynamically efficient if and only if

α

1 + α

1 + β

β
> 1. (23)

2. If condition (23) holds then gGEc < 0 in the corresponding stochastic economy with 0 ≤
ω < 1.

3. With respect to term gPEc we find that ∂g
PE
c

∂σ2
%
> 0, ∂g

PE
c

∂σ2
η
> 0, ∂

2gPEc
∂σ2
%∂σ

2
η
> 0.

4. With respect to term gCOc we find that ∂ Γ(τ)|τ=0
∂σ2
η

< 0, ∂
2 Γ(τ)|τ=0
∂%2∂σ2

η
< 0 and, under condi-

tion (23), ∂g
CO
c

∂σ2
%
< 0, ∂g

CO
c

∂σ2
η

Q 0, ∂
2gCOc

∂σ2
%∂σ

2
η
Q 0.

Observation 1.3 confirms our findings from Section 2. Importantly, Observation 1.4 states
that the direction of the change of the welfare costs from crowding out when idiosyncratic risk
increases (and its interaction with aggregate risk) is ambiguous. To understand this finding,
suppose first that crowding out increases in risk, i.e., that ϕs,τ |τ=0 becomes more strongly
negative as risk goes up.47 This means that precautionary savings decrease more strongly if
the amount of risk insured increases. Under this assumption, the effects of an increase of
idiosyncratic risk on the costs of crowding out (as well as the cross partial w.r.t. aggregate return
risk) are ambiguous. The formal reason for this finding is that Γ|τ=0 increases in idiosyncratic
risk, so that the welfare costs of crowding out are less strong. Intuitively, while crowding
out reduces the mean capital stock thereby leading to welfare losses (as in a deterministic
dynamically efficient economy) a lower capital stock also reduces the exposure to idiosyncratic
wage risk because wages depend positively on the capital stock and are multiplicative in the
shock, an effect which is (at least partially) offsetting the utility consequences of crowding out.

The next corollary on the importance of the discount factor—which is not contained in Haren-
berg and Ludwig (2015)—provides further guidance for the calibration of our quantitative model
and the interpretation of its results:

Corollary 1. The CEVs from a marginal introduction of social security in partial equilib-

rium, gPEc , and, under condition (23), also in general equilibrium, gGEc , increase in β.
47It is not possible to show this analytically, but it is the most plausible case. It is also found to hold in the

numerical analysis in Harenberg and Ludwig (2015).
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Proof of Corollary 1. Rewrite gPEc and gCOc as

gPEc ≈ 1
1 + 1

β

E

 1−α
α

1
%t+1
− 1−α

α
ω

1+ω
ηi,2,t+1
%t+1

− 1
1 + (1−α)

α
ω

1+ω
ηi,2,t+1
%t+1

− 1
1 + β

gCOc ≈ −
(
1− ϕs,τ |τ=0

) α

1− α −
1

1 + 1
β

Γ|τ=0


and the result immediately follows.

The intuition for the effect of discounting on the gPEc is that households value insurance of
second period consumption more when β is increased. As to the intuition for gCOc , observe that
increasing β lowers the welfare costs from crowding out—i.e., the distance α

1−α−
1

1+ 1
β

Γ|τ=0 > 0
decreases towards zero—, because increasing β increases life-cycle savings which moves the
economy closer to the boundary of dynamic inefficiency.

B.3 Definition of Recursive Markov Equilibrium

We here provide a formal definition of a competitive recursive Markov equilibrium, cf. Sec-
tion 3.5. To this end, we define a state space that is sufficient for solving the households’
maximization problem. Let E = {e1, e2, ..., emax} and J = {1, 2, ...J}, and letM be a sigma-
algebra over {[s̃, s̃]× [b̃, b̃]× E × J }, where s̃, s̃, b̃, and b̃ are the infimum and supremum on
stock and bond holdings.48 The measure Φ is defined overM, and the set of all such measures
is denoted by Q. We follow the applied literature and define the state space to consist of Φ, the
current idiosyncratic state (s̃, b̃, e), and the current aggregate shock z. As a recursive equilibrium
does not depend on the date-event, we drop time index t and use a prime for next period’s

variables. Finally, note that the economic dependency ratio, p = P (zt)
L(zt) =

∑J

j=jr
(1+n)J−j∑jr−1

j=1 (1+n)J−jεj
, and

the labor-to-population ratio, ` = L(zt)
N(zt) =

∑jr−1
j=1 (1+n)J−jεj∑J

j=1(1+n)J−j
, are both constant over time.

Definition 4. For any initial (z0,Φ0) ∈ Z × Q, a recursive competitive equilibrium consists

of a measure Φ, measurable functions for household choices {c̃j(s̃, b̃, e; Φ, z), s̃′j(s̃, b̃, e; Φ, z),
b̃′j(s̃, b̃, e; Φ, z)} and an associated value function ṽj(s̃, b̃, e; Φ, z), firm choices k(Φ, z), social

security settings {τ, ỹss(Φ, z)}, factor prices {w̃(Φ, z), r(Φ, z)}, asset returns {rb(Φ), rs(Φ, z)},
and a law of motion H(Φ, z, z′) such that:

48For a given level of aggregate capital and a given equity premium, the infimum and supremum on bond and
stock holdings are implied by the bounds on the income process and the fact that households can’t hold negative
positions in the asset when they die, see Section 3.2. In equilibrium, aggregate capital and the equity premium will
be bounded, and the infimum and supremum can be calculated for those bounded intervals.
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a) given functions for prices and returns and the law of motion, the households’ policy functions

{c̃j(s̃, b̃, e; Φ, z), s̃′j(s̃, b̃, e; Φ, z), b̃′j(s̃, b̃, e; Φ, z)} solve

ṽj(s̃, b̃, e; Φ, z)

= max
c̃>0,s̃′,b̃′


(
c̃

1−θ
γ + β̃

(∑
z′
∑
e′ πz(z′|z)πe(e′|e) ṽ1−θ

j+1

(
s̃′, b̃′, e′;H(Φ, z), z′

)) 1
γ

) γ
1−θ

c̃ if j = J

s. t. c̃+ s̃′ + b̃′ = (1 + rs(Φ, z))s̃+ (1 + rb(Φ))b̃

+ (1− τ)ỹj(e,Φ, z)I(j) + ỹss(Φ, z)(1− I(j)) ,

ỹj(e,Φ, z) = w̃(Φ, z)εjη(e, z) ,

s̃′ + b̃′ ≥ 0 if j = J, (24)

where β̃ = β(1 + λ)
1−θ
γ ,

b) functions for prices and for firm choices are related by

w̃(Φ, z) = (1− α)ζ(z)k(Φ, z)α,

r(Φ, z) = αζ(z)k(Φ, z)α−1 − δ(z),

c) functions for asset returns are given by

rb(Φ) = 1
κf
E [r(Φ, z)(1 + κf )− rs(Φ, z)] ,

rs(Φ, z) = r(Φ, z)(1 + κf )− κfrb(Φ),

d) the pension system budget constraint holds, i.e.,

τw̃(Φ, z) = ỹss(Φ, z)p, (25)

where p is the economic dependency ratio defined above,
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e) all markets clear:

ζ(z)k(Φ, z)α + (1− δ(z))k(Φ, z) = 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
c̃j(s̃, b̃, e; Φ, z)Φ(s̃, b̃, e, j) db̃ ds̃

+ k(H(Φ, z), z′)(1 + λ)(1 + n),

k(H(Φ, z), z′)(1 + λ)(1 + n) = 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
(s̃′j(s̃, b̃, e; Φ, z)

+ b̃′j(s̃, b̃, e; Φ, z))Φ(s̃, b̃, e, j) db̃ ds̃,
k(H(Φ, z), z′)(1 + λ)(1 + n)

(1 + κf )
= 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
s̃′j(s̃, b̃, e; Φ, z)Φ(s̃, b̃, e, j) db̃ ds̃,

and by Walras’ Law, the bond market also clears,

f) the law of motion H is generated by the policy functions and the Markov transition matrix

πe, so that

Φ′ = H(Φ, z, z′)

with the initialization at j = 1 of s̃ = b̃ = 0.

B.4 Corollary: CEV in a Deterministic Economy, gPEc (0, 0)

For an economy with an arbitrary number of generations J , we can provide a closed-form
solution for gc for an economy without risk. Following the discussion in Section 2.2, we denote
the consumption equivalent variation in an economy without risk by gPEc (0, 0).

Corollary 2. Denote by pviA1 (pviB1 ) the present discounted value of lifetime income in policy A

(B). The consumption equivalent variation in the partial equilibrium of the risk-free economy is

given by

gPEc (0, 0) = ũ1(c̃B)
ũ1(c̃A) − 1 = p̃vi

B

1

p̃vi
A

1

− 1,

i.e., it is not affected by preference parameters.

Proof. The property follows from linearity of consumption policy functions in initial wealth
which we first establish. We again simplify notation and drop the i and t indices. Recursive
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substitution from j = J, . . . , 1, using that ũJ = c̃J gives

ũ1 =
 J∑
j=1

β̃j−1c̃
1−θ
γ

j


γ

1−θ

,

where β̃ = β(1 + λ)
1−θ
γ . As for the resource constraint, write

J∑
j=1

ỹj

( 1
1 + r

)j−1
−

J∑
j=1

c̃j

( 1
1 + r

)j−1
≥ 0,

where, in slight abuse of notation, we use ỹj to denote labor income during the working period
and retirement income thereafter (see main text).

The Lagrangian writes as

L =
 J∑
j=1

βj−1c̃
1−θ
γ

j


γ

1−θ

+ λ

ã1 +
J∑
j=1

ỹj

( 1
1 + r

)j−1
−

J∑
j=1

c̃j

( 1
1 + r

)j−1
 .

First-order conditions give:

β̃j−1 1− θ
γ

c̃
1−θ−γ
γ

j − λ̃
( 1

1 + r

)j−1
= 0

where λ̃ ≡ λ

(
γ

1−θ

[∑J
j=1 β̃

j−1c̃
1−θ
γ

j

] γ
1−θ−1)−1

. Using the FOC for any two ages j and j + 1

gives the standard Euler equation

c̃j+1

c̃j
=
(
β̃(1 + r)

) γ
θ+γ−1 =

(
β̃(1 + r)

)ψ
.

where ψ is the intertemporal elasticity of substitution. We consequently have

c̃j
c̃1

= (β(1 + r))ψ(j−1) .

Using this in the resource constraint, which holds with equality in the optimum, and defining

58



by p̃vi1 total (human) wealth of the household, we get

p̃vi1 ≡
J∑
j=1

ỹj

( 1
1 + r

)j−1
= c̃1

J∑
j=1

c̃j
c̃1

( 1
1 + r

)j−1

⇔ p̃vi1 = c̃1

J∑
j=1

((
β̃(1 + r)

)ψ ( 1
1 + r

))j−1
= c̃1

J∑
j=1

bj−1 = 1
m1

c̃1

where b ≡
(
β̃(1 + r)

)ψ ( 1
1+r

)
and m1 ≡

(∑J
j=1 b

j−1
)−1

is the marginal propensity to consume
out of initial wealth in period 1. We accordingly get, for any age j, that

c̃j = mj p̃vi1, where mj ≡ β̃(1 + r)ψ(j−1)m1.

Using this in the utility function we get

ũ1 =
 J∑
j=1

βj−1
(
mj p̃vi1

) 1−θ
γ


γ

1−θ

=
 J∑
j=1

βj−1 (mj)
1−θ
γ


γ

1−θ

p̃vi1,

establishing linearity of the utility function in initial wealth.
Consequently, the CEV in partial equilibrium—where mj does not change between any two

policies A and B because it is only a function of the constant parameters r, β, ψ—is equal to the
percentage change in wealth and given by

gPEc = ũA1
ũB1
− 1 = p̃vi

A

1

p̃vi
B

1

− 1.

B.5 Additional Proofs

Derivation of Equation (7). Here, we derive the stock and bond return in the quantitative model.
Recall that κf is the exogenous and constant debt-equity ratio. First, we restate the relevant
equation from Section 3.3,

K(zt) = S(zt) +B(zt) = S(zt)(1 + κf ), (26)
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where S and B denote the quantities of stock and bond, respectively. The return on capital then
satisfies

r(zt)K(zt) = r(zt)S(zt)(1 + κf ).

The return on capital equals the standard first-order condition of the firm, as shown in equation
(6b). Out of this total return on capital, bondholders receive

rb(zt−1)B(zt) = rb(zt−1)κfS(zt),

where the bond return is determined one period ahead, since it is one-period risk-free. Stock
holders receive the remainder, which is

rs(zt)S(zt) = r(zt)S(zt)(1 + κf )− rb(zt−1)κfS(zt).

From the last equation, we immediately get (7).

Proof of Equation (8). The property follows from homotheticity of Epstein-Zin preferences. To
prove it we proceed by induction. We look at two alternative (expected) consumption streams c̃A

and c̃B. One can think of them as optimal consumption under policy regime A and B. We ask
how big the percentage increase of consumption stream c̃A in each period has to be to reach
the same utility level as reached for consumption stream ˜̃cB. For sake of simplicity we drop
indices t and i and adopt the notation ũXj ≡ ũj(cX) for X ∈ {A,B}.

1. Induction claim: At each age j we have that

ũBj = (1 + gc)ũAj .

2. Induction start: For our Epstein-Zin utility specification (cf. Section 3.2), at age J we
have that

ũAJ = c̃AJ and ũBJ = c̃BJ .

Hence, by the induction claim, we get

ũBJ = (1 + gc)ũAJ = (1 + gc)c̃AJ
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and, correspondingly,

ũBJ−1 =
[
(c̃BJ−1)

1−θ
γ + β

(
EJ−1(ũBJ )1−θ

) 1
γ

] γ
1−θ

= (1 + gc)ũAJ−1.

3. Induction step: Using the induction claim for any period j < J − 1 we therefore have:

ũBj =
[
(c̃Bj )

1−θ
γ + β

(
Ej(ũBj+1)1−θ

) 1
γ

] γ
1−θ

= (1 + gc)ũAj .

Derivation of Equation (11). Denote by γc = E[C̃B |τ=2%]
E[C̃A|τ=0%] = 1 + ∆c the consumption growth

factor, where ∆c is the consumption growth rate. Take the definition of gc and divide all individ-
ual consumption allocations, c̃B , by the consumption growth factor so that mean consumption is
the same in both economies. This gives the welfare benefits from changes of the distribution as

gdistrc =
E
[
ṽ1
(

1
γc
c̃B
)
|τ = 2%

]
E [ṽ1(c̃A)|τ = 0%] − 1 = 1

γc

E
[
ṽ1
(
c̃B
)
|τ = 2%

]
E [ṽ1(c̃A)|τ = 0%] − 1 = 1

γc
(1 + gc)− 1,

where the second equality follows from homotheticity. The gmeanc is then given by

gmeanc = gc − gdistrc = 1 + gc
γc

∆c.

C Supplementary Computational Appendix

C.1 Overview

The numerical solution follows Krusell and Smith (1997, 1998), Storesletten, Telmer, and Yaron
(2007) and Gomes and Michaelides (2008). The algorithm consists of the following steps, details
of which are given in the next subsections.

1. Choose arguments and a functional form for the approximate law of motion, and make an
initial guess for its coefficients.
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2. Given the approximate law of motion, solve the household’s problem.

3. Simulate the economy using the obtained optimal policy functions. In every period,
compute the market clearing prices.

4. Update the coefficients of the approximate law of motion by running a regression on the
simulated aggregate statistics.

5. If the coefficients have converged, and the R2 of the regression is sufficiently high, stop,
else go to 2.

6. Repeat steps 1 to 5 for different arguments and functional forms of the law of motion.
Select the one with the highest R2.

7. Given the functional form for the approximate law of motion that achieved the best fit,
calibrate the economy to match the targets.

(a) Provide an initial guess for the parameters to be calibrated.

(b) Given the parameters, repeat steps 2 to 5.

(c) Calculate the target statistics from the simulations. If they are close to the targets in
the data, stop, else update the guess for the parameters and go to 7b.

8. Given the calibrated parameters, increase the social security contribution rate and compute
the new general equilibrium by repeating steps 2 to 5.

9. Compute the welfare gains of the experiment in general equilibrium from the simulated
variables of the first and the second economy.

10. Given the approximate laws of motion and the simulated prices of the first economy,
perform the risk decomposition analysis.

(a) Given the approximate law of motion of the first economy, solve the household’s
problem.

(b) Given the simulated prices of the first economy, simulate the economy using the
obtained optimal policy functions. (Do not compute market clearing prices.)

(c) Increase the social security contribution rate and repeat steps 10a and 10b.

(d) Compute the welfare gains of the experiment in partial equilibrium (PE) from the
simulated variables of the pre-experiment PE and the post-experiment PE.
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(e) If this was the no-risk, deterministic economy, stop, else turn off a risk and repeat
steps 10a to 10d.

The numerical solution is implemented in Fortran and parallelized, running on 24 cores.

C.2 Solving for the approximate law of motion

The idea behind the Krusell-Smith-method (1997, 1998) is to approximate the infinite dimen-
sional distribution, Φ, by a finite number of statistics. The household then uses a law of motion
of these statistics, Ĥ(·), as an approximation to the true law of motion of the distribution,
H(Φ, z, z′). The statistics have to enable the household to forecast the prices that it needs to
solve its optimization problem. We follow Krusell and Smith (1997), Storesletten, Telmer,
and Yaron (2007), and Gomes and Michaelides (2008) and choose mean aggregate capital, k,
together with a second variable to forecast the bond return. As this second variable, we choose
the expected equity premium, µ = E (r′s − r′b), cf. Storesletten, Telmer, and Yaron (2007).49

Thus, the approximate law of motion becomes

{k′(z′), µ′(z′)} = Ĥ(k, µ, z, z′).

The functional form for Ĥ that gives the best approximation in our baseline economy is

ln kt+1 = ψk0,z + ψk1,z ln kt + ψk2,z(ln kt)2, (27a)

µt+1,z′ = ψµ0,z′ + ψµ1,z′ ln kt+1 + ψµ2,z′(ln kt+1)2, (27b)

which is similar to the best fit regression found by Storesletten, Telmer, and Yaron (2007). Note
that the forecast of capital, ln kt+1, enters as a regressor in eq. (27b). Effectively, the forecast
for µt+1,z′ , which is conditional on z′, depends on ln kt and z through the forecast of ln kt+1.
The discrete, aggregate shock, z, can take four values, so that we estimate eight equations.
Therefore, we report eight coefficients of determination, which for the baseline economy are
R2
k = {0.9998, 0.9999, 0.9998, 0.9998} and R2

µ = {0.9918, 0.9945, 0.9584, 0.9695}. For the
other economies, the R2s are always higher.50

49We choose µ instead of the bond price because this enables us to avoid E(rb) > E(rs) by construction. This
is desirable because such a situation would never arise in equilibrium.

50For example, for the equity premium calibration with IES = 0.5, the coefficients of determination are
R2
k = {0.9999, 0.9999, 0.9999, 0.9999} and R2

µ = {0.9961, 0.9968, 0.9944, 0.9949}. This economy is the closest
to Storesletten, Telmer, and Yaron (2007) and Gomes and Michaelides (2008), and the R2 are very close to the
ones reported there.
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To find the coefficients, we solve g(Ψ) = Ψ− Ψ̃(Ψ), where Ψ collects all the coefficients,
i.e. Ψ =

{
ψml,z

}
l={0,1,2},z={1,2,3,4},m={k,µ}

. To solve this nonlinear equation system, a multidi-
mensional Broyden algorithm is used. During the solution, we normalize (and subsequently
de-normalize) the coefficients around unity. For these coefficients around unity, the convergence
criterion is max {|g(Ψ)|} < 1.0−7. The Newton-like update steps are limited to a small length,
and backtracking is used to find an update, if the first step was too large.51

C.3 Solving the household’s problem

First, we rewrite the household problem in terms of cash-on-hand, x̃. This reduces the state
space by one dimension, so that the idiosyncratic state consists of (x̃, e). Second, we recast the
two control variables bond, b̃′, and stock, s̃′, as total savings, ã′, and the portfolio share invested
in stock, κ. This enables us to employ the endogenous grid method proposed by Carroll (2006),
as detailed below. And third, we replace the distribution, Φ, by the approximation discussed
in the previous section, so that the aggregate state consists of (k, µ, z). With a slight abuse of
notation,52 the optimization problem in recursive form then reads

ṽj(x̃, e; k, µ, z)

= max
c̃>0,ã′,κ


(
c̃

1−θ
γ + β̃

(∑
z′
∑
e′ πz(z′|z)πe(e′|e) ṽ1−θ

j+1

(
x̃′, e′; Ĥ(k, µ, z, z′), z′

)) 1
γ

) γ
1−θ

c̃ if j = J

s. t.

x̃′ = ã′
(1 + rb

′ + κ(r′s − r′b))
1 + λ

+ ỹ′j+1 ,

ã′ ≥ 0 if j = J ,

51The Newton-like update step is Ψi+1 = Ψi− sJ(Ψ)−1g(Ψ), where J(Ψ) is a finite-difference approximation
to the Jacobi matrix of the system of equations and s determines the maximum step length.

52Technically, some variables would need to be renamed, e.g. ỹ to ˜̃y, because the state space is now different
than the one in Definition 4. For sake of readability, we do not change the notation.
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where β̃ = β(1 + λ)
1−θ
γ , r′s = rs(Ĥ(k, µ, z, z′), z′), r′b = rb(Ĥ(k, µ, z, z′)), and income in the

next period is given by

ỹ′j+1 = ỹj+1(e′, Ĥ(k, µ, z, z′), z′)

=

(1− τ)w̃(Ĥ(k, µ, z, z′), z′)εj+1η(e′, z′) if j + 1 < jr,

ỹss(Ĥ(k, µ, z, z′), z′) else.

The budget constraint contains a growth adjustment of 1
1+λ , because x′ is cash on hand at the

beginning of next period, while a′ is the savings choice made in the previous period. In contrast,
the budget constraint in the equilibrium definition of Section 3.5 contains only contemporaneous
variables, i.e., states and choices in the current period, so that no growth adjustment is needed
there.

Applying the envelope theorem and simplifying we get the two first-order-conditions53

E
[
ṽj+1(·)

(1−θ)(γ−1)
γ (c̃′)

1−θ−γ
γ (r′s − r′b)

]
= 0 , (28a)

c̃=
(
β̃

1 + rb
′

1 + λ

(
E
[
ṽj+1(·)1−θ

]) 1−γ
γ E

[
ṽj+1(·)

(1−θ)(γ−1)
γ (c̃′)

1−θ−γ
γ

]) γ
1−θ−γ

. (28b)

To solve for the optimal choices (c̃, ã′, κ), we apply a variant of the endogenous grid method
proposed first by Carroll (2006). In fact, essentially we follow a simplified version of the
two-step procedure of Hintermaier and Koeniger (2010). The exogenous grid is defined on total
assets in the next period, ã′. For a given grid-point ã′i, we first solve eq. (28a) for the portfolio
share κ using Brent’s root-finding method. Then, given ã′i and the corresponding κ(ã′i), we use
eq. (28b) to get the optimal consumption, c̃i(ã′i). Finally, the budget constraint x̃ = c̃+ ã′ gives
us the endogenous grid-point x̃i that corresponds to the optimal choices (ã′i, c̃i).

When evaluating the expectations, we interpolate ṽj+1 and c̃′ by multidimensional linear
interpolation in the continuous states x̃, k, µ. The aggregate shock z and the idiosyncratic shock
η(e, z) are both discrete and follow a discrete Markov chain. As discussed in Section 4.2,
our specification of the stochastic labor income process has a persistent component, ν ,and a
transitory shock, ε, so that we have η(e, z) = ν(e, z)ε(e). We construct the Markov transition
matrix of ν(e, z) with the Rouwenhorst method (Kopecky and Suen (2010)), which makes it
straightforward to implement the countercyclical cross-sectional variance, CCV , because the
variances affect only the grid and not the transition matrix, which in turn is determined purely
by ρ. We discretize the transitory shocks ε using Gauss-Hermite quadrature.

53See Weil (1989) for the envelope theorem with recursive Epstein-Zin preferences.
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As is standard in life-cycle models, we iterate backwards, starting with the last generation J ,
for which the solution is c̃J = x̃J , since they do not leave bequests. In the backwards iteration,
we construct age-dependent, exogenous grids

{
ã′i,j
}
i,j

to improve the approximation quality.
The solution is parallelized in the dimension k, so that for each generation, the solution for all
values of k is computed in parallel.

We discretize the state space in the following way. The continuous state variables cash-on-
hand, x̃, aggregate capital, k, and equity premium, µ, have 20, 18, and 10 grid-points, respectively.
The discrete state variables, which are the number of generations, J , the idiosyncratic shock, e,
and the aggregate shock, z, have 58, 4, and 4 grid-points, respectively, and we use 4 points for the
Gauss-Hermite quadrature (for the transitory shocks). We check that this is sufficient by doubling
each of the grid-points in turn and find no change to our results. The first-order-condition in
eq. (28a) is solved to an accuracy of 1.0−10.

C.4 Simulating the economy

We simulate the economy 24 times for 4000 periods each time and throw away the first 1000
periods, so that we are left with a total 72.000 simulation periods.54 In each period, we record
the aggregates, the life-cycle profiles, and the distribution. The aggregates are needed to estimate
the laws of motion, and to calibrate the economy. Like in the solution of the household problem,
the optimal policy functions are interpolated in the dimensions of the aggregate states k, µ by
multidimensional linear interpolation.

The distribution over households is normalized to a mass of one. We do not simulate many,
discrete household units; instead we keep the continuum of households and approximate the
distribution with a histogram as proposed by Young (2010). As described in Section 3.1, the Law
of Large Numbers implies that πe(e′|e) represents the fraction of the population moving from
idiosyncratic state e to e′. Therefore, we get a nearly exact approximation in that dimension.
In the cash-on-hand dimension, the distribution is discretized on a much finer grid than the
policy functions obtained in the household solution, as proposed by Ríos-Rull (1999). This finer
discretization improves the approximation quality substantially and helps in ensuring that no
households are stuck on the bounds of the distribution. If the lowest or the highest points of the
distribution have positive mass, then the cash-on-hand grid is extended and the discretization is
made finer.

54We found that a large number of simulation periods is necessary for the distribution to converge in the sense
that increasing the number of simulation periods does not change the results. In particular, we found that for less
than 30.000 simulation periods, the means and standard deviations of the aggregates as well as the estimates of the
laws of motion are still sensitive to the number of periods.
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In each period, the beginning-of-period distribution is iterated forward by using the computed
optimal policy functions and the realizations of the shock. For a given cash-on-hand at the
beginning of the period, the implied cash-on-hand in the following period will almost always
lie between two grid points. Since we are dealing with a continuum of households, we assign
a fraction (1 − f) to the lower grid point and f to the upper grid point of the interval which
contains the implied cash-on-hand, where f is the distance to the lower grid point.55

In each period t, we calculate the market-clearing prices.56 The current stock return, rs(Φt, zt)
is given by the contemporaneous aggregate capital and aggregate shock. The current bond return,
rb(Φt), is determined one period before by the bond market clearing condition. We compute it
with a nonlinear equation solver to an accuracy of 1.0−8.

We make sure that the grid for the aggregate states is large enough by checking whether the
realized values lie on the bounds of the grid. If they do, the grid is increased. To get good initial
guesses for the bounds of the aggregate grids and the distribution over households, we compute
a degenerate equilibrium, where the realization of the aggregate shocks in the simulations is
always equal to their mean. We call this a mean-shock equilibrium.

To check the accuracy of the solution, we compute in each period the ’aggregation error’
and the ’income error’. The aggregation error eaggt = Yt−Ct−It

Yt
says by how much the aggregate

budget constraint is violated due to interpolation and aggregation errors, expressed in percent
of output. For all economies, the maximum aggregation error is in the order of 1.0−6 and the
average is in the order of 2.0−9. The income error comes from Euler’s formula, which says that
total output must equal total factor income. Again expressed in terms of output, we find that it
never exceeds 1.0−14.

C.5 Calibrating the economy

The calibration procedure is cast as a system of nonlinear equations. Let T denote the target
statistics in the data and P the model parameters to be calibrated. For given P , T̂ (P) are the
model-generated statistics, which we get from the simulations. Then the calibration procedure
tries to find a root of T − T̂ (P) = 0. We use Broyden’s multidimensional secant method to
solve the system to an accuracy of 1.0−4.

55For details, see Young (2010).
56Algan, Allais, Den Haan, and Rendahl (2014) stress the importance of ensuring market clearing during the

simulations.
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C.6 Evaluating the conditions for dynamic efficiency

After having calibrated the economy, we evaluate the sufficient conditions of Definition 3 in
each period of our simulations (after discarding burn-in). Conditional on having reached a high
bond return in a date-event zt, rb(Φt) > (1 + n)(1 + g), we compute market clearing prices for
all possible aggregate shocks next period, zt+1 ∈ Z .57 We then check whether there exist two
states z̃t+1, ˜̃zt+1, such that (i) the economy remains in a high bond return equilibrium in both
corresponding date-events next period and (ii) the stock return fluctuates enough in these states
relative to this period’s high bond return. If this is the case condition (a) is fulfilled.

As for condition (b), we define a counter which is initialized to zero and increased by one
every period. If the economy reaches a high bond return equilibrium, the value of the counter is
saved, and we start counting again from zero. If the maximum count is smaller than the number
of simulated periods, then condition (b) is fulfilled. To provide more information we report in
Tables 2 and 12 the maximum and the average count.

D Supplementary Calibration Appendix

D.1 Households

We base our estimates of the earnings process on Busch and Ludwig (2017) using PSID data
of household post government earnings excluding contributions to social security. To get
consistent earnings measures the sample is restricted to years from 1977 to 2012. Household pre-
government earnings is the sum of labor earnings of households’ head and spouses augmented
by 50% of payroll taxes excluding social security. Post-government earnings is derived from this
measure by adding transfers and deducting taxes (calculated from TAXSIM), again excluding
contributions to social security. A second earnings measure used for our scenario with social
security (BLτ=9.5%) in Section 5.3 also takes contributions to social security into account.

Busch and Ludwig (2017) adopt the standard strategy to first decompose a household’s log
earnings into a deterministic and a stochastic component. The estimates of the age specific
productivity profile εj are taken from the deterministic component. Figure 3 displays the profile
for both our earnings measures (“post gov, excl. soc sec” and “post gov”).

To estimate the stochastic earnings process, Busch and Ludwig (2017) first classify contrac-
tion years on the basis of NBER recession indicators, which, due to the sluggish adjustment of
the labor market, is expanded by years of upward trending unemployment rates as in Guvenen,

57Since the Markov transition matrix πz has non-zero entries everywhere, all zt+1 can be reached from zt with
positive probability.
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Figure 3: Life-cycle Productivity

Notes: Age-specific productivity profile εj . Notes: Own estimates based on Busch and Ludwig (2017).

Ozkan, and Song (2014). All years that are not accordingly classified as a recession are classified
as a boom. Using their procedure and the income measures described above, our earnings
process (12) is estimated with results reported in Section 4.2.58

D.2 Firms

To estimate α, we take data on total compensation of employees (NIPA Table 1.12) and deflate it
with the GDP deflator (NIPA Table 1.1.4). In the numerator, we adjust GDP (NIPA Table 1.1.5),
again deflated by the GDP deflator, by nonfarm proprietors’ income and other factors that should
not be directly related to wage income. Without these adjustments, our estimate of α would be
considerably higher (at α = 0.43).

To measure capital, we take the stock of fixed assets (NIPA Table 1.1), appropriately deflated.
We relate this to total GDP.

We determine the growth rate of technology λ by estimating the Solow residual from the
production function, given our estimate of α, our measure for capital, and a measure of labor
supply determined by multiplying all full- and part-time employees in domestic employment
(NIPA Table 6.4A) with an index for aggregate hours (NIPA Table 6.4A). Notice that we ignore

58Again, we thank Christopher Busch for providing us with the estimates.
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age-specific productivity which should augment our measure of employment. We then fit a linear
trend specification to the Solow residual. Acknowledging the labor augmenting technological
progress specification, this gives our point estimate.

D.3 Aggregate Risk

We first provide details on how we construct the transition matrix and the values for the aggregate
technology and depreciation shocks, (ζ(z), δ(z)). Both ζ(z) and δ(z) can each take a high or a
low value. We let

ζ(z) =

1− ζ̄ for z ∈ z1, z2

1 + ζ̄ for z ∈ z3, z4

and δ(z) =

δ0 + δ̄ for z ∈ z1, z3

δ0 − δ̄ for z ∈ z2, z4.
(29)

Set up in this way, z1 corresponds to a low wage and a low return, while z4 corresponds to a high
wage and a high return. We speak of z ∈ z1, z2 as a recessions in the sense that these represent
states in which aggregate wage shocks are low.

To calibrate the entries in the transition matrix, denote the transition probability of remaining
in the low technology state by πζ = π(ζ ′ = 1− ζ̄ | ζ = 1− ζ̄). Assuming that the transition
of technology shocks is symmetric, we then have π(ζ ′ = 1 + ζ̄ | ζ = 1 + ζ̄) = πζ and
1− πζ = π(ζ ′ = 1− ζ̄ | ζ = 1 + ζ̄) = π(ζ ′ = 1 + ζ̄ | ζ = 1− ζ̄).

To govern the correlation between technology and depreciation shocks, let the probability
of being in the high (low) depreciation state conditional on being in the low (high) technology
state be πδ = π(δ′ = δ0 + δ̄ | ζ ′ = 1 − ζ̄) = π(δ′ = δ0 − δ̄ | ζ ′ = 1 + ζ̄), where the second
equality follows from assuming symmetry of the matrix. We then have that the transition matrix
of aggregate states follows from the corresponding assignment of states in (29) as

πz =



πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ


.

Now we discuss the empirical correlation of TFP and stock returns, σ(ζt, rs,t), a second-
stage calibration target. Linear detrending of the data, as done, e.g., by Krueger and Kubler
(2006), results in σ(ζt, rs,t) < 0 as well as a negative correlation of wages and asset returns, i.e.,
σ(wt, rs,t) < 0. Not only does this seem counter to economic intuition in an annual RBC model,
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but our estimate for σ(ζt, rs,t) is also statistically insignificant. Assuming instead a unit root
process for the log of TFP and detrending by first differences yields a highly significant positive
correlation of σ(ζt, rs,t) = 0.50 (p-value 0.00).59 Now also σ(wt, rs,t) is positive and significant
with σ(wt, rs,t) = 0.306 (p-value 0.025), which coincides with our economic intuition as we
would expect these variables to co-move over the cycle. Our model, however, features a linear
trend, not a unit root. We therefore translate these moments to be consistent with a deterministic
trend specification.

D.4 Calibration of Single Risk Economies

Table 10 summarizes the second-stage parameters, i.e., the parameters that are jointly calibrated.
The remaining first-stage parameters take the same value as in the baseline, see Table 1. Table 10
also displays the targeted moments for these economies. For comparison, the table includes the
corresponding values of the baseline (BL).

Table 10: The Role of Both Risks: Parameters and Moments

Parameter θ β δ0 δ̄ πδ

BL 3.00 0.987 0.102 0.080 0.887
AR-only 15.10 0.994 0.076 0.111 0.833
IR-only 3.00 0.974 0.079 0.000 NA
No-risk 3.00 0.998 0.079 0.000 NA

Moment ς µ E
[
K
Y

]
E [rb] σ

(
∆Ct+1
Ct

)
σ(rs) σ(ζ, rs)

BL 0.076 0.008 2.65 0.023 0.030 0.107 0.500
AR-only 0.351 0.056 2.65 0.023 0.040 0.168 0.500
IR-only 0.000 0.000 2.65 0.042 NA NA NA
No-risk 0.000 0.000 2.65 0.042 NA NA NA

Notes: BL: baseline calibration with θ = 3; AR-only: economy with only aggregate risk, calibrated to match eq-
uity premium; IR-only: economy with only idiosyncratic risk; No-risk: deterministic economy. ς = E[rs,t−rb,t]

σ[rs,t−rb,t] :

Sharpe ratio; µ = E [rs,t − rb,t]: equity premium; E
[
K
Y

]
: average capital-output ratio; E [rb]: average bond

return; σ
(

∆Ct+1
Ct

)
: standard deviation of aggregate consumption; σ(rs): standard deviation of stock returns;

σ(ζ, rs): correlation of TFP shocks and stock returns.

59Observe that calibrating the model to match this moment explicitly is more conservative with regard to the
return implications of recessions than the assumption of Storesletten, Telmer, and Yaron (2007) who assume a
perfect negative correlation of TFP and depreciation shocks.
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D.5 Calibration for Sensitivity Analyses

The calibrated parameters and targeted moments for the various scenarios we consider are
summarized in Table 11. For comparison, the table includes the corresponding values of the
baseline (BL).

For the calibration of the earnings process in the τ = 9.5% economy, we take the Busch and
Ludwig (2017) estimates of an income process cum social security. The age productivity profile
is shown in Figure 3. For the stochastic part of the income process the estimates are ρ = 0.966,
and a conditional variance, σ2

ν(zt), of 0.024 in recessions and 0.01 in booms, and σ2
ε = 0.099.

Table 11: Sensitivity Analysis: Parameters and Moments

Parameter θ β δ0 δ̄ πδ

IES = 0.5
BL 3.00 0.987 0.102 0.080 0.887
SR 11.10 0.987 0.020 0.045 0.829
EP 5.51 0.987 0.000 0.114 0.830
BLτ=9.5% 3.00 1.014 0.105 0.088 0.893

IES = 1.5
BLIES=1.5 3.00 0.977 0.099 0.039 0.888
SRIES=1.5 12.20 0.977 0.019 0.038 0.829
EPIES=1.5 5.60 0.977 0.001 0.115 0.835

Moment ς µ E
[
K
Y

]
E [rb] σ

(
∆Ct+1
Ct

)
σ(rs) σ(ζ, rs)

IES = 0.5
BL 0.076 0.008 2.65 0.023 0.030 0.107 0.500
SR 0.333 0.020 5.80 0.023 0.030 0.067 0.500
EP 0.357 0.056 7.67 0.023 0.066 0.168 0.500
BLτ=9.5% 0.069 0.007 2.65 0.023 0.030 0.116 0.500

IES = 1.5
BLIES=1.5 0.051 0.003 2.65 0.023 0.030 0.052 0.500
SRIES=1.5 0.333 0.018 5.90 0.023 0.030 0.057 0.500
EPIES=1.5 0.356 0.056 6.57 0.023 0.089 0.168 0.500

Notes: BL: baseline calibration with θ = 3; SR: scenario matching Sharpe ratio; EP : scenario matching equity
premium. ς = E[rs,t−rb,t]

σ[rs,t−rb,t] : Sharpe ratio; µ = E [rs,t − rb,t]: equity premium; E
[
K
Y

]
: average capital-output ratio;

E [rb]: average bond return; σ
(

∆Ct+1
Ct

)
: standard deviation of aggregate consumption; σ(rs): standard deviation

of stock returns; σ(ζ, rs): correlation of TFP shocks and stock returns.
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E Supplementary Results Appendix

E.1 Dynamic Efficiency

Let us briefly point out two misconceptions on dynamic efficiency. First, observe that the
average bond return in our economy is 0.023 which is less than the average social security return
of λ+ n = 0.029. In our simple model of Section 2 this would indicate dynamic inefficiency.
However, in our quantitative model, bond returns and implicit social security returns fluctuate,
hence any conclusion based on average returns is misleading. Second, turn to the deterministic
steady state variant of the aggregate resource constraint, cf. item (e) in Appendix B.3 and
accordingly set in this equation ζ(z) = 1, δ(z) = δ0 = 0.102, and k(H(Φ, z), z′) = k.
From this we get the standard condition for dynamic efficiency that mpk − (δ + n + λ) ≥ 0,
where mpk = αkα−1 = α y

k
is the marginal product of capital. For our calibration with k

y
= 2.65

we get mpk = 0.1207 and δ + n+ λ = 0.13. One may therefore conclude that the economy is
dynamically inefficient. This conclusion is equally misleading because there does not exist a
steady state in our economy with aggregate risk, hence one cannot simply set ζ(z) = 1, δ(z) = δ0

and k(H(Φ, z), z′) = k. In fact the last equation holds in no period of our simulations.
Instead, the relevant criteria for dynamic efficiency in economies with aggregate risk, where

returns fluctuate, are the Demange (2002) criteria, see the main text for an extensive discussion.
Table 12 reports the results for the sufficient conditions according to Definition 3 for all model
variants with aggregate risk considered in the main text. The number of simulated periods used
is 72 000. Throughout, we conclude that all considered economies are dynamically efficient.
The lowest confidence for this finding of at least 90.0% applies to the economy BLIES=1.5.

E.2 On the Importance of Modeling both Risks: Results Without Re-
Calibration

Complementing our analysis in Section 5.2 we summarize in Table 13 results for economies with
only one form of risk, respectively for the deterministic economy, when we do not recalibrate.
As in Table 8, there are welfare losses in the AR-only economy.

The IR-only economy is dynamically inefficient. The risk-free return is at 2.86%, compared
to the implicit return of social security of 2.9%. That is why we find a small welfare gain in
general equilibrium. Despite dynamic inefficiency, there are welfare losses from crowding out,
cf. our discussion in Section 3.8 on the relationship between the costs from crowding out and
dynamic efficiency in heterogeneous agent economies. Finally, the deterministic economy has
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Table 12: Dynamic Efficiency in Baseline and Other Economies

Condition (a) Condition (b)

High Bond
Returns

Conditional
Violation

Max. Periods Avg. Periods

IES = 0.5
BL 38.1% 4.7% 120 11.5
SR 34.8% 6.0% 158 13.5
EP 45.1% 0.8% 134 10.8
AR-only 40.6% 3.9% 103 7.0
BLτ=9.5% 41.2% 3.1% 120 10.9

IES = 1.5
BLIES=1.5 31.8% 10.0% 120 12.1
SRIES=1.5 36.0% 6.6% 124 12.0
EPIES=1.5 46.3% 0.8% 120 9.9

Notes: Test results for dynamic efficiency conditions, cf. Definition 3. High bond returns: fraction of high bond
return equilibria in which 1 + rb(zt) > (1 + n)(1 + λ). Conditional violation: Violation of conditions (a)(i)
and (a)(ii), conditional on being in a high bond equilibrium. Avg., resp. max., periods: average, resp. maximum,
number of simulation periods to reach high bond equilibrium. The number of simulated and tested periods is 72 000
in each scenario.

a risk-free interest rate of 5.56% and we therefore continue to find welfare losses from the
introduction of social security.

E.3 Other Sensitivity Analyses

Table 14 summarizes results for other sensitivity analyses. Throughout, we stick to the calibration
strategy of the conservative baseline model—we accordingly denote all these scenarios with
prefix BL—and vary selected parameters, respectively alter modeling choices. We accordingly
recalibrate to match the calibration targets of the baseline, assuming an IES of 0.5.

First, we vary risk aversion in economies BL-θ = 2 and BL-θ = 4. As expected, in-
creasing θ increases the overall welfare gains, increases the share of gains attributable to the
insurance effect, decreases the share attributable to the mean effect and increases the share of
the interactions; and vice versa for decreasing θ.

Next, we consider a number of experiments regarding different model elements. In sce-
nario BL-σ2

ε = 0 we switch off the variance of transitory labor income shocks to show that our
results are not driven by this element. Scenario BL-κ̄ = 0 sets the debt-equity-ratio to zero
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Table 13: The Role of Both Risks without Re-Calibration

Consumption equivalent variation, gc gdistrc gmeanc

Scenario GE PE CO GE

AR-only -1.26% -0.91% -0.36% -0.88% -0.39%
IR-only 0.29% 1.84% -1.56% 0.14% 0.15%
No-risk -1.62% -0.94% -0.67% -0.94% -0.30%

Notes: GE: general equilibrium, PE: partial equilibrium, CO: crowding out; AR-only: economy with only aggre-
gate risk, calibrated to match equity premium; IR-only: economy with only idiosyncratic risk; No-risk: determin-
istic economy. The total gc is further decomposed into the mean effect, gmeanc , and the distribution effect, gdistrc , cf.
Subsection 3.8 for formal definitions.

(so that firms are purely equity financed), thereby decreasing the equity premium from 0.76%
in the baseline calibration to 0.46%, which slightly decreases the overall welfare gains from
social security. Targeting a higher capital-output ratio of 3 in scenario BL-K

Y
= 3 yields higher

welfare benefits. The reason is that this requires a higher discount factor (of β = 0.992 rather
than β = 0.987), which increases the welfare benefits from social security in line with the pre-
dictions from the extended simple model in Appendix B.2. Finally, we consider an experiment
where we shut down the depreciation shocks in the conservative baseline calibration, BL-δ̄ = 0.
In this experiment we recalibrate the variance of TFP shocks (which in all other experiments
is taken as a first-stage parameter) to match the consumption volatility. In this experiment, the
partial equilibrium gains from insurance against aggregate risks decrease from 2% to 1.4%,
which leads to a decrease of the gains from insurance against the interactions of risks and to a
reduction of the total insurance gains. The reason is that aggregate wage volatility increases in
this calibration which makes social security less attractive.

Lastly, we model an alternative distribution scheme, labelled BL-distr to L. Instead of
distributing the contributions of workers to pensioners each period, we redistribute lump-sum
to all workers. Such a scheme does not implement a life-time income risk smoothing like
social security, but rather directly insures the idiosyncratic risk each period. We find that
overall welfare gains are substantially smaller than in our baseline model. To understand this,
observe that, on the one hand, such a redistributive scheme insures idiosyncratic risk in each
period. As a consequence, the partial equilibrium gain from insuring idiosyncratic risk increases
from 0.67% in the baseline model to 1.92%. On the other hand, this scheme does not provide
any insurance against aggregate risk. Also, the partial equilibrium gain from insuring the CCV
decreases from a pure insurance effect of 1.08% in the baseline model to 0.47%, because this
redistribution scheme can only offer very limited insurance against the countercyclical variance:
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the volatility of idiosyncratic shocks is high in recessions, during which aggregate wages and
the insurance payment to workers are low. This finding underscores once more the importance
of risk interactions for the welfare benefits of social security and also gives support to the view
that a lifetime redistributive scheme is desirable, see our concluding discussion.

Table 14: Sensitivity Analysis: Other Scenarios

gc
∆CCV +∆CWG

gPEc
gdistrc gmeanc

Scenario GE PE CO GE

BL +2.56% +5.18% -2.62% 0.60 +2.32% +0.24%
BL-θ = 2 +2.37% +3.41% -1.04% 0.53 +2.12% +0.25%
BL-θ = 4 +2.67% +7.09% -4.42% 0.65 +2.44% +0.22%
BL-σ2

ε = 0 +2.44% +4.30% -1.86% 0.54 +2.22% +0.22%
BL-κ̄ = 0 +2.08% +4.46% -2.38% 0.58 +1.82% +0.27%
BL-K

Y
= 3 +2.97% +4.90% -1.93% 0.60 +2.75% +0.23%

BL-δ̄ = 0 +1.19% +2.62% -1.42% 0.46 +0.78% +0.42%
BL-distr to L +1.61% +1.92% -0.31% 0.28 +1.57% +0.03%

Notes: GE: general equilibrium, PE: partial equilibrium, CO: crowding out; CCV : counter-cyclical cross-sectional
variance, CWG: convexity of the welfare gain; BL: baseline calibration with θ = 3; SR: scenario matching
Sharpe ratio; EP : scenario matching equity premium. The total gc is further decomposed into the mean ef-
fect, gmeanc , and the distribution effect, gdistrc , cf. Subsection 3.8 for formal definitions.

E.4 Life-Cycle Portfolios

Panel (a) of Figure 4 shows average shares invested in the risky asset over the life-cycle for
model EPIES=0.5, which comes closest to the calibration in standard life-cycle portfolio choice
models like Cocco, Gomes, and Maenhout (2005). Recall from Section 3.2, in particular
Footnote 15, that there is no borrowing constraint in our model. As a consequence, households
are leveraged at the beginning of the life-cycle. From age 35 on, our simulated profiles are
very similar to those presented in Cocco, Gomes, and Maenhout (2005).60 Panel (b) shows
corresponding life-cycle asset and stock holdings. Since there is no inter-generational transfer

60Unlike Storesletten, Telmer, and Yaron (2007) we do not find in this model—and in any of our other scenarios—
that the CCV mechanism leads to a hump-shaped portfolio share profile. We conjecture that this is a result of
the perfect positive correlation between depreciation and technology shocks in their model, which maximizes
the impact of CCV, so that young households hold less assets. We instead calibrate the correlation to the data,
cf. Appendix D.3.
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motive, asset holdings at young ages are very low and households fully decumulate assets
towards the end of their life.

Figure 4: Life-cycle Portfolios

(a) Risky Asset Share (b) Assets and Stocks

77


	Introduction
	A Two-Generations Model
	Model
	Analysis
	Extensions

	The Quantitative Model
	Time, Risk, and Demographics
	Households
	Firms
	Social Security
	Equilibrium
	Computational Solution
	Welfare Criterion and Dynamic Efficiency
	Experiment and Decomposition Analyses

	Calibration
	Demographics
	Households
	Firms
	Aggregate Risk

	Results
	Baseline Calibration
	On the Importance of Modeling both Risks
	Sensitivity Analysis
	On Biases in the Welfare Assessment of Crowding Out

	Conclusion
	Appendix: Proofs
	Supplementary Analytical Appendix
	Two-Generations Model: Convexity of Welfare Gain
	General Equilibrium Extension of the Simple Model
	Modifications
	Analysis

	Definition of Recursive Markov Equilibrium
	Corollary: CEV in a Deterministic Economy, 
	Additional Proofs

	Supplementary Computational Appendix
	Overview
	Solving for the approximate law of motion
	Solving the household's problem
	Simulating the economy
	Calibrating the economy
	Evaluating the conditions for dynamic efficiency

	Supplementary Calibration Appendix
	Households
	Firms
	Aggregate Risk
	Calibration of Single Risk Economies
	Calibration for Sensitivity Analyses

	Supplementary Results Appendix
	Dynamic Efficiency
	On the Importance of Modeling both Risks: Results Without Re-Calibration
	Other Sensitivity Analyses
	Life-Cycle Portfolios




