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Non-technical summary

In economic studies, it is often necessary to use discrete choice models with more than

two alternatives of a qualitative variable. Examples are the analysis of the choice of living

arrangements, of the brand choice of consumers, of the choice of modes for the journey to

work, of the household portfolio choice, or the analysis of employment reactions of firms.

Multinomial probit models (in contrast e.g. to the restrictive multinomial logit models) are

particularly suitable for the examination of such economic problems because of the flexible

structure. For a long time, the application of flexible one- or multiperiod multinomial probit

models was restricted because of the appearing multidimensional integrals. The use of such

approaches has become numerically feasible, however, since the investigation of simulated

estimation methods. With regard to the empirical application of flexible one- and multiperiod

multinomial probit models, the simulated maximum likelihood method (SMLM), e.g. the

simulated counterpart of the maximum likelihood method (MLM) (including the so-called

GHK simulator), seems to be preferable. The asymptotic properties of the SMLM estimator

as well as the properties with finite numbers of observations and with finite numbers of

random draws in the GHK simulator have been investigated in the past. Such studies are

essential to handle estimation results in the empirical work.

Often, the absolute estimated values are not the focus of empirical applications, but it is more

interesting to know if the choice of an alternative depends on certain explanatory variables or

on certain contemporary and/or intertemporal relationships. Based on the classical MLM,

such problems can be examined with z-tests as special cases of classical test procedures. In

a flexible one- or multiperiod multinomial probit model, however, the MLM, and thus the z-

test, can be computationally infeasible because of the underlying multidimensional integrals.

According to the inclusion of simulators in the MLM, classical test procedures can also be

associated with simulation methods. By embedding a simulator in the z-test, one gets the

simulated z-test. The asymptotic properties of simulated classical tests in general have been

investigated in the past, too. But, in view of the empirical application of simulated z-tests,

the properties with finite sample sizes and with finite amounts of random draws in the GHK

simulator are again more important than the asymptotic properties.

Hence, within the framework of Monte Carlo experiments, this paper systematically com-

pares different versions of the simulated z-test (using the GHK simulator) in one- and mul-

tiperiod multinomial probit models. In this context, deviations between the shares of type I

errors and the basic significance levels are examined as well as the number of type II errors.

In view of empirical applications, the number of observations and the number of random

draws in the GHK simulator are varied. One important finding is that, in the flexible pro-

bit models, the tests on parameters of explanatory variables mostly provide robust results



in contrast to the tests on variance-covariance parameters. Overall, neither the amount of

random draws in the GHK simulator nor the choice of a certain version of the simulated

z-test have a strong influence on the results. This finding refers to the conformity between

the shares of type I errors and the basic significance levels as well as to the number of type

II errors. In contrast, the number of type II errors in the simulated z-tests on variance-

covariance parameters is reduced by increasing the sample size. Effects of misspecifications

on simulated z-tests only appear in the multiperiod multinomial probit model. In this special

case, the inclusion of the concept of the quasi maximum likelihood theory in the simulated

z-test provides comparatively more favourable results.
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Abstract

Within the framework of Monte Carlo experiments, this paper systematically com-

pares different versions of the simulated z-test (using the GHK simulator) in one- and

multiperiod multinomial probit models. One important finding is that, in the flexible

probit models, the tests on parameters of explanatory variables mostly provide robust

results in contrast to the tests on variance-covariance parameters. Overall, neither the

amount of random draws in the GHK simulator nor the choice of a certain version of

the simulated z-test have a strong influence on the test results. This finding refers to

the conformity between the shares of type I errors and the basic significance levels as

well as to the number of type II errors. In contrast, the number of type II errors in

the simulated z-tests on variance-covariance parameters is reduced by increasing the

sample size. Effects of misspecifications on simulated z-tests only appear in the mul-

tiperiod multinomial probit model. In this case, the inclusion of the concept of the

quasi maximum likelihood theory in the simulated z-test provides comparatively more

favourable results.
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1 Introduction

In economic examinations, it is often necessary to study discrete choice models with more

than two alternatives of a qualitative variable. Examples are the analysis of the choice of

living arrangements, the brand choice of consumers, the choice of modes for the journey to

work, the choice of the practice location of general practitioners, or the household portfolio

choice. Due to the flexible structure, multinomial probit models (in contrast e.g. to the

restrictive multinomial logit models) are particularly suitable for the investigation of such

economic problems. In particular, any intertemporal relationship which has an important

influence on economic decisions can be modelled in this approach. Due to the increasing

availability of panel data that include qualitative variables in several periods, such multi-

period multinomial probit models (MMPM) are likely to be applied more frequently in the

future.

For a long time, the application of flexible one- and multiperiod multinomial probit mod-

els was restricted because of the underlying multidimensional integrals. The use of such

approaches has become numerically feasible, however, since the investigation of simulated

estimation methods (see e.g. Lerman and Manski, 1981, McFadden, 1989, Börsch-Supan and

Hajivassiliou, 1993, Keane, 1994, Hajivassiliou and McFadden, 1998). In fact, such simu-

lated (classical) estimations were already used in empirical applications of multinomial probit

models (for the economic problems mentioned above see Börsch-Supan, 1992, Chintagunta,

1992, Bolduc, 1994, Bolduc et al., 1997, Asea and Turnovsky, 1998).

By combining classical estimation methods and simulators, several approaches are possible.

With regard to the empirical use of multinomial probit models, the simulated maximum

likelihood method (SMLM), e.g. the simulated counterpart of the maximum likelihood

method (MLM), including the so called GHK simulator, seems to be preferable. On the one

hand, this can be explained by the favourable numerical properties of the SMLM and the high

precision of the GHK simulator. This simulated estimator is extremely practicable, too, since

the common software packages can be used for the implementation, merely supplemented

by the GHK simulation of the multidimensional integrals in the choice probabilities. In

particular, this simulated estimation method was recently implemented directly in some

software packages (e.g. GAUSSX and LIMDEP). More examples of the empirical use of the

SMLM, including the GHK simulator, in multinomial probit models are Börsch-Supan and

Pfeiffer, 1992, Börsch-Supan et al., 1992, and Bolduc et al., 1996.

The asymptotic properties of simulated classical estimation methods in general and of the

SMLM in particular have been well known for a long time. Furthermore, within the frame-

work of Monte Carlo experiments, properties of the SMLM have been investigated with finite

numbers of observations and with finite numbers of random draws in the GHK simulator
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(see e.g. Keane, 1994, Lee, 1995, 1997a, Hyslop, 1999, Inkmann, 2000, on binary multiperiod

probit models, Börsch-Supan and Hajivassiliou, 1993, Geweke et al., 1994, Mühleisen, 1994,

Stern, 2000, on one-period multinomial probit models, Geweke et al., 1997, on the MMPM,

Ziegler and Eymann, 2001, on one- and multiperiod multinomial probit models). Such sys-

tematic analyses are essential to handle estimation results in the empirical work.

But it is not only the absolute estimated value that is the focus of many empirical applications

of probit models. Often, it is more interesting to know if the choice of an alternative depends

on certain explanatory variables as well as on certain contemporary and/or intertemporal

relationships. Based on the classical MLM, such problems can be examined with z-tests as

special cases of classical test procedures. In a flexible multinomial probit model, however,

the MLM, and thus the z-test, can be computationally infeasible because of the underlying

multidimensional integrals. According to the inclusion of simulators in the MLM, classical

test procedures can also be associated with simulation methods. By embedding a simulator

in the z-test, one gets the simulated z-test. Simulated classical tests in general are discussed,

and their asymptotic properties are derived, in the basic work of Lee (1999). But, in view of

empirical applications of simulated z-tests, the properties with finite sample sizes and with

finite numbers of random draws in the GHK simulator are again more important than the

asymptotic properties.

Such simple simulated counterparts of the z-test were calculated regularly in the previous

empirical SMLM estimations of probit models (see e.g. the literature cited above). The

problem of the inclusion of simulators is left entirely unconsidered in these applications,

however. In particular, it is often unclear which specific version of the simulated z-test is

used. Despite the application in the empirical work, simulated z-tests in probit models (to

my knowledge) have not been systematically examined yet in the literature. Even analyses

of z-tests based on the MLM estimation are rare (so e.g. Guilkey and Murphy, 1993, on

the binary multiperiod probit model). The only Monte Carlo experiments about simulated

classical test procedures are available in Lee (1997b, 1999). Indeed, only selected probit

models are tested in these articles, but tests on single parameters are ignored.

Hence, within the framework of Monte Carlo experiments, the goal of the present paper is to

provide a systematic comparison of different versions of the simulated z-test in multinomial

probit models representative of the applications. In this context, the deviations between the

shares of the type I errors and the basic significance levels are considered as well as the num-

ber of the type II errors. The versions of the simulated z-test differ in the various simulated

estimations of the information matrix. The three most important approaches are examined

(see Lee, 1999). The first version uses the simulated Hessian matrix of the simulated log-

likelihood function. The second estimation of the information matrix is constructed by the

simulated counterpart of an outer product of gradient vectors of the simulated loglikelihood
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function. The third version is derived from the quasi maximum likelihood theory according

to White (1982). This estimation of the information matrix includes the Hessian matrix as

well as the gradients of the simulated loglikelihood function.

Due to the favourable properties, the GHK simulator is included in the SMLM estimation

as well as in the various estimations of the information matrix. Thus, the Monte Carlo

experiments in this paper try to give practical evidence about the handling of simulated

z-tests (including the GHK simulator) in multinomial probit models. One important pur-

pose of the present paper is the examination if the third version of the simulated z-test

provides comparatively more preferable results (particularly when misspecified probit mod-

els are used) because the inclusion of the concept of the quasi maximum likelihood theory

in simulated classical tests seems to outperform the other examined simulated classical tests

in the experiments of Lee (1999).

Furthermore, in view of empirical applications, the number of observations and the number

of random draws in the GHK simulator are varied in this paper. In contrast, Lee (1999)

only examines one sample size. This makes statements about the effect of different numbers

of observations on the results of simulated classical tests impossible. In particular, Lee

only examines binary multiperiod probit models, but he does not analyze the empirically

important multinomial probit models. In contrast, the present paper compares for the first

time test results in one- and multiperiod multinomial probit models. The experimental design

allows the inclusion of contemporary and (in the MMPM) intertemporal relationships. Due

to the different results (in the flexible models), the comparative examination distinguishes

between hypotheses about the coefficients of the explanatory variables and hypotheses about

the variance-covariance parameters.

The organization of this paper is as follows. In the second section, the SMLM estimation in

a flexible MMPM is explained. In the third section, simulated z-tests are described. In the

fourth section, the design of the Monte Carlo experiments is illustrated. The Monte Carlo

results are discussed in the fifth section, and in the last section, some conclusions are drawn.

2 Simulated maximum likelihoood estimation in mul-

tiperiod multinomial probit models

The origin of the microeconomic derivation of the MMPM (as well as of other discrete choice

models) is that an agent chooses among a finite number of mutually exclusive alternatives

of a qualitative variable in each of the considered time periods. In this paper, the following

hypothetical utility function of observation i for alternative j in period t is examined:

υijt = γ
′
zijt + εijt i = 1, . . . , N ; j = 1, . . . , J ; t = 1, . . . , T
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In this function, zijt = (zijt1, . . . , zijtK)′ is a (K-dimensional) vector with alternative specific

attributes weighted by the parameter vector γ = (γ1, . . . , γK)′. Below, the zijt are summa-

rized in the (J ·K-dimensional) vector zit = (z′i1t, . . . , z
′
iJt)

′, and then the zit are subsumed

in the (T · J ·K-dimensional) vector Xi = (z′i1, . . . , z
′
iT )′. One arrives at the MMPM if the

stochastic components εijt are:

εi = (εi11, . . . , εiJ1, . . . . . . , εi1T , . . . , εiJT )
′ ∼ NV (0; Σ)

The (J · T -dimensional) random vectors εi (i = 1, . . . , N) are independent among each

other and are independent of all Xi. Different versions of the MMPM result from various

restrictions about Σ. If Σ is the identity matrix, one arrives at the specific multiperiod

multinomial independent probit model. But in particular, a flexible structure of Σ, and thus,

a flexible approach of the MMPM according to Börsch-Supan et al. (1992) is considered in

the following.

Here, the stochastic utility components εijt permit any contemporary correlation between

the alternatives j = 1, . . . , J as well as time invariant stochastic effects and intertemporal

autoregressive relationships (see also Ziegler and Eymann, 2001):

εijt = αij + νijt i = 1, . . . , N ; j = 1, . . . , J ; t = 1, . . . , T

with

νijt = ρjνi,j,t−1 +
√

1− ρj
2ηijt

or with the assumption νij0 = ηij0

νijt =
√

1− ρj
2

t−1∑

m=0

ρj
mηi,j,t−m + ρj

tηij0

For t = 0, 1, . . . , T it is ηijt ∼ NV (0; σ2
ηj

), whereby the ηijt are uncorrelated over all pe-

riods. For t = 1, . . . , T it is (∀j, j′) cov(ηijt, ηij′t) = σηjj′ . The ρj (whereby |ρj| < 1) are

termed autocorrelation coefficients for category j. Further on, it is αij ∼ NV (0; σ2
αj

) with

cov(αij, αij′) = σαjj′ , whereby the αij and the νijt are uncorrelated with each other. Finally,

the components of the variance-covariance matrix Σ of εi (i = 1, . . . , N ; j, j′ = 1, . . . , J ; t, t′ =

1, . . . , T and t ≥ t′) are:

cov(εijt, εij′t′) = σαjj′ + ρj
(t−t′)

√
1− ρj

2
√

1− ρj′
2

1− ρjρj′
σηjj′

With respect to the formal model identification, in the Monte Carlo experiments of this

paper the coefficients σ2
ηJ

and σ2
ηJ−1

are restricted to the value one and the coefficients

σηjJ
(∀j 6= J) are restricted to the value zero. Upon consideration of the multiperiod

approach, the variance-covariance parameters of the stochastic effects σ2
αJ

and σαjj′ (∀j 6= j′)
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as well as the autocorrelation coefficient ρJ are restricted to the value zero (for the formal

identification of multinomial probit models, see also Bolduc, 1992, Bunch, 1991, Dansie,

1985). Notice that in the basic SMLM estimations of this paper, instead of the variances

σ2
ηj

(j = 1, . . . , J − 2) and σ2
αj

(j = 1, . . . , J − 1), the corresponding standard deviations σηj

and σαj
are included. Furthermore, instead of the covariances σηjj′ (j, j′ = 1, . . . , J − 1; j 6=

j′), the corresponding correlation coefficients corr(ηijt, ηij′t) = σηjj′/σηj
σηj′ are included.

Accordingly, in the Monte Carlo experiments, the formulation of the null hypotheses refer

to these transformed parameters.

Below, all free and estimating coefficients (i.e. the parameters of the explanatory variables

and, in the flexible approach, the variance-covariance parameters) of the examined probit

models are summarized in the vector θ = (θ(1), θ(2), . . .). According to the stochastic utility

maximization hypothesis (see e.g. Börsch-Supan, 1987: 12 ff), the observation i chooses

category j in period t if j maximizes the utility under all J alternatives of the qualitative

variable. Over time, every observation can choose JT different category sequences in a

multiperiod consideration. Thus, in regard to a chosen category sequence s, an observation

has to choose a particular alternative in every period. In the flexible MMPM, the resulting

probability Pis(θ) that observation i chooses category sequence s is a (J − 1) ·T -dimensional

integral.

As J and/or T grow, the computation of these multidimensional integrals is not feasible

with deterministic numerical integration methods. Instead, the choice probabilities Pis(θ)

can be approximated quickly and well with (unbiased) stochastic simulation methods, i.e.

with R repeated transformed draws of pseudo random numbers (see e.g. the overviews in

Hajivassiliou et al., 1996, Vijverberg, 1997). A simulated choice probability P̃is(θ) can be

obtained by including such a simulator. In comparative Monte Carlo experiments, it has

been shown that the GHK (Geweke-Hajivassiliou-Keane) simulator (see Börsch-Supan and

Hajivassiliou, 1993, Geweke et al., 1994, Keane, 1994) outperforms other simulation methods

for approximating the true probability (see also Mühleisen, 1994). Hence, in this paper, only

the GHK simulator is considered.

By connecting an (unbiased) simulation method and the MLM, one obtains the SMLM (see

e.g. Gouriéroux and Monfort, 1996: 41 ff). Below, all explanatory variables are subsumed

in the vector Xi, and the (JT -dimensional) vector Yi = (Yi1, Yi2, . . .)
′ contains the observable

endogenous variables

Yis =





1 if i chooses category sequence s

0 else

whereby s ∈ S, and S represents the set of all potential JT category sequences. By embed-

ding the simulator P̃is(θ) in the MLM approach and considering N independent observations
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(Yi, Xi) in the MMPM, one obtains the particular SMLM estimator:

θ̂SMLM = (θ̂(1)
SMLM , θ̂(2)

SMLM , . . .) = arg max
θ

[
N∑

i=1

∑

s∈S

YislnP̃is(θ)

]

Below, the true unknown and estimating parameter vector is termed θ̇ =
(
θ̇(1), θ̇(2), . . .

)
.

3 Simulated z-tests

Statistical hypotheses about several components θ̇(q) (q = 1, . . . , dim θ) of θ̇ are tested in this

paper. Thus, the null hypotheses have the appearance:

H0 : θ̇(q) = a

To examine such problems, the z-test as a special case of the Wald test (see e.g. Gouriéroux

and Monfort, 1995: 84 ff) is the classical approach. The basis for this test procedure is the

classical MLM estimation. But due to the existence of multidimensional integrals in the

flexible MMPM, the MLM, and thus the z-test, is computationally not feasible if J and/or

T are sizable. Corresponding to the inclusion of simulators in the MLM, such simulation

methods can also be connected with classical test procedures (see Lee, 1999). Specifically,

by embedding an (unbiased) simulator in the z-test, one obtains the simulated z-test. The

test statistic is:

SZT =
θ̂(q)

SMLM − a√
v̂ar

(
θ̂(q)

SMLM

)

Note that the computation of SZT depends on the SMLM estimator θ̂SMLM . In addition, in

the flexible MMPM, more simulations have to be performed in the context of v̂ar
(
θ̂(q)

SMLM

)

and thus in the context of the estimation of the information matrix .

The GHK simulated estimation of the information matrix takes place in different ways

in this paper. The first approach uses the Hessian matrix, the second approach uses the

outer product of gradient vectors of the simulated loglikelihood function. Corresponding to

the quasi maximum likelihood theory (see White, 1982), the third approach includes the

gradients as well as the Hessian matrix of the simulated loglikelihood function. The three

versions of the test statistic of the simulated z-test derived in these ways are referred to as

SZT1, SZT2 and SZT3. Note that the gradients of the simulated loglikelihood function are

calculated analytically in the computation of the various simulated z-test statistics. Indeed,

these gradients are differentiated numerically (by using the GAUSS module OPTMUM).

Neither the inclusion of a specific (unbiased) simulator nor the inclusion of a specific (consis-

tently simulated) estimation of the information matrix in the simulated Wald test in general
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and in the simulated z-test in particular have any influence on the asymptotic properties (see

Lee, 1999). The asymptotic properties of the simulated classical test procedures differ from

the asymptotic properties of the unsimulated classical test procedures, however. This can

particularly be ascribed to the different asymptotic properties between the underlying MLM

and SMLM estimators (see also Gouriéroux and Monfort, 1991, Hajivassiliou and Ruud,

1994, Lee, 1995). The analyses of Lee (1999) implicate that under H0, the test statistic SZT

asymptotically has a normal distribution with mean
√

λ and variance 1, if limN→∞
√

N
R

= c,

in which R is the number of pseudo random draws in the considered simulator, c is a finite

constant, and λ is a noncentrality parameter that arises from the noncentral χ2 distribution

of the test statistics of simulated classical test procedures. If c = 0, then λ = 0, and thus

the asymptotic properties of the unsimulated test procedures are reached so that under H0,

the test statistic SZT asymptotically has a standard normal distribution.

When the simulated classical test procedures are applied to the empirical work, the asymp-

totic properties become less interesting again. Thus, the properties with finite numbers N of

observations and with finite numbers R of random draws in the included simulator are much

more important. Remember that in the following Monte Carlo experiments about simulated

z-tests, the GHK simulator is considered exclusively. This choice refers to the underlying

SMLM estimation as well as to the simulated estimation of the information matrix. Fur-

thermore, it refers to the analysis of independent probit models, too, although the problem

of multidimensional integrals does not appear in that approach, even if J and/or T are high.

This strategy ensures that the influences of the model specification on the test results can

be exclusively examined.

4 Design of the Monte Carlo studies

The following Monte Carlo experiments try to give practical evidence about the handling

of simulated z-tests in one- and multiperiod multinomial probit models. As an example of

the one-period multinomial probit model, the one-period four-alternative probit model is

examined (this model is e.g. applied in Bolduc et al., 1996). In contrast to the consideration

of a simpler one-period three-alternative probit model, in such a model, a more complex

analysis of simulated z-tests on variance-covariance parameters is possible since in the one-

period three-alternative approach, only two coefficients of the contemporary correlations can

maximally be estimated. As an example of the MMPM, the five-period three-alternative

probit model is considered (this model is e.g. applied in Börsch-Supan and Pfeiffer, 1992,

and Börsch-Supan et al., 1992). Besides the common empirical application of such a MMPM,

this choice results from the acceptable computing time, too. A strong increase of the number

T of periods and/or the number J of alternatives would lead to calculating time problems.
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In all experiments, 200 replications of the data generating process (DGP) are considered.

It should be mentioned that this number is rather small for a systematic examination of

test procedures. However, due to the long computing time, it was not possible to use many

more replications of a DGP, even for the considered probit models. Furthermore, the strict

investigation of the conformity with the underlying significance levels is not focussed in this

paper, but the comparative analysis of the various versions of the simulated z-test, of several

multinomial probit model specifications, and of different test problems are. In addition, the

influence of the sample size N and of the amount R of random draws in the GHK simulator is

studied. In this respect, 200 replications of the DGP are sufficient to draw many conclusions.

The tested null hypotheses are

H0 : θ̇(q) = 0

or (if the parameter θ(q) refers to a standard deviation σηj
or σαj

)

H0 : θ̇(q) = 1

Based on the DGP explained below, these formulations of the null hypotheses guarantee

that deviations between the shares of type I errors and the basic significance levels as well

as numbers of type II errors can be investigated. According to the 5% and 10% quantiles

of the standard normal distribution, the relative frequencies of the rejected null hypotheses

in all 200 replications of the DGP are examined. The outcomes are derived from the three

versions SZT1, SZT2 and SZT3 of the simulated z-test statistic which refer to the particular

simulated variance estimations.

The DGP in the considered flexible multinomial probit models are the same as in Ziegler

and Eymann (2001). In this article the SMLM estimations of these specific probit models

are exclusively investigated. By considering the same DGP in the present paper, relations

between the basic SMLM estimates and the simulated z-tests on these parameters can be

examined. In the experiments, the same (pseudo) random generated explanatory variables

are used in all replications of the DGP (even for different numbers R of random draws in

the GHK simulator). The explanatory variables generated at lower N are included in the

SMLM estimation when the number N of observations is increased. By comparison, the

random draws for deriving the GHK simulator are modified for any observation over the 200

replications of the DGP. But when N or R are increased successively, the random draws

generated at lower N or R are included correspondingly.

4.1 Experiment one: One-period four-alternative probit model

Firstly, the following one-period multinomial probit model is examined (i = 1, . . . , N ; j =

1, . . . , 4):

υij1 = γ1zij11 + γ2zij12 + εij1
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The two alternative specific attributes are (i = 1, . . . , N ; j = 1, . . . , 4):

zij11 ∼ NV (0; 2) zij21 ∼ NV (0; 2)

In the DGP, the values of the parameters of these attributes are:

γ̇1 = 1 γ̇2 = 0

In regard to the variance-covariance parameters of the DGP, on the one hand, the inde-

pendent probit model is examined and, on the other hand, contemporary correlations are

considered (since T = 1, it follows αij = ρj = 0; ∀j), so that

σ̇ηj
= 1 (j = 1, . . . , 4)

˙corr(ηij1, ηij′1) = 0 (j, j′ = 1, . . . , 4; j 6= j′)

and

σ̇η1 = 1.5 σ̇η2 = 0.5

˙corr(ηi11, ηi21) = ˙corr(ηi11, ηi31) = ˙corr(ηi21, ηi31) = 0.5

The SMLM estimation is undertaken either in the independent probit model or in the flexi-

ble one-period four-alternative probit model. Here, five variance-covariance parameters are

estimated in the general case. By including the last DGP and by estimating in the indepen-

dent probit, a model misspecification occurs. The number of observations varies between

N = 1000 and N = 2000, and the number of random draws in the GHK simulator varies

between R = 10, R = 50 and R = 200.

4.2 Experiment two: Five-period three-alternative probit model

Concerning the analysis of panel data, the following MMPM is examined (i = 1, . . . , N ;

j = 1, . . . , 3; t = 1, . . . , 5):

υijt = γ1zijt1 + γ2zijt2 + εijt

In view of intertemporal relationships (see also the examinations in Geweke et al., 1997),

the two alternative specific attributes are (i = 1, . . . , N ; j = 1, . . . , 3; t = 1, . . . , 5):

zijt1 = z
(1)
ij1 + z

(2)
ijt1 whereby z

(1)
ij1 ∼ NV (0; 1) and z

(2)
ijt1 ∼ NV (0; 1)

zijt2 = z
(1)
ij2 + z

(2)
ijt2 whereby z

(1)
ij2 ∼ NV (0; 1) and z

(2)
ijt2 ∼ NV (0; 1)

In the DGP, the values of the parameters of these attributes are:

γ̇1 = 1 γ̇2 = 0
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In regard to the variance-covariance parameters of the DGP, on the one hand, the indepen-

dent probit model is examined, and on the other hand, various contemporary and intertem-

poral correlations are considered, so that

σ̇ηj
= 1 (j = 1, . . . , 3) ˙corr(ηijt, ηij′t) = 0 (j, j′ = 1, . . . , 3; j 6= j′)

σ̇αj
= 0 (j = 1, . . . , 3)

ρ̇j = 0 (j = 1, . . . , 3)

and

σ̇η1 = 1.5 ˙corr(ηi1t, ηi2t) = 0.5

σ̇α1 = 1.5 σ̇α2 = 0.5

ρ̇1 = 0.8 ρ̇2 = 0.5

The SMLM estimation is undertaken either in the independent probit model or in the flexible

MMPM. Here, six variance-covariance parameters are estimated in the general case. By

including the last DGP and by estimating in the independent probit model, a misspecification

occurs. The number of observations varies between N = 250 and N = 500, and the number

of random draws in the GHK simulator varies between R = 10, R = 50 and R = 200.

5 Results

5.1 Experiment one: One-period four-alternative probit models

5.1.1 Simulated z-tests on the parameters in the independent probit model

Table 1 reports the results of the simulated z-tests in the one-period four-alternative in-

dependent probit model. The outcomes in the upper part of the table refer to the DGP

characterized by the independent probit model. The results in the lower part of the table

are based on the DGP that consists of contemporary correlations. Consequently, simulated

z-tests are analyzed in a misspecified probit model in this part. Overall, the relative fre-

quencies of the rejection of the null hypotheses H0 : γ̇1 = 0 and H0 : γ̇2 = 0 are illustrated

in the table based on the significance levels 5% and 10%. The use of the three test statistics

SZT1, SZT2 and SZT3 is considered first.

In the table, the analysis of the tested null hypothesis H0 : γ̇1 = 0, and thus the analysis of the

number of the type II errors, is clear (since γ̇1 = 1 in the DGP, the validity of the alternative

hypothesis H1 is considered here). Independent from the number N of observations and the

number R of random draws in the GHK simulator, as well as independent from the various

versions of the simulated z-test statistic, the null hypothesis is correctly rejected without

11



Table 1: Share of the rejection of H0 (simulated z-tests on the parameters in the one-period

four-alternative independent probit model)

DGP: Independent probit model

5% 10%

H0 SZT1 SZT2 SZT3 SZT1 SZT2 SZT3

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.030 0.030 0.030 0.075 0.080 0.065

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.030 0.030 0.030 0.080 0.080 0.080

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 200 γ̇2 = 0 0.030 0.030 0.030 0.075 0.080 0.075

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.060 0.060 0.055 0.110 0.110 0.110

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.050 0.055 0.050 0.105 0.100 0.105

DGP: Contemporary correlations

5% 10%

H0 SZT1 SZT2 SZT3 SZT1 SZT2 SZT3

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.020 0.020 0.020 0.045 0.040 0.045

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.020 0.020 0.020 0.040 0.040 0.045

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 200 γ̇2 = 0 0.020 0.020 0.020 0.050 0.045 0.050

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.005 0.010 0.005 0.035 0.040 0.035

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.005 0.010 0.005 0.035 0.035 0.035

exception. Thus, there is no occurrence of a single type II error. Note that this result holds

if the DGP is characterized by contemporary correlations.

In contrast to the aforementioned analysis, the testing of H0 : γ̇2 = 0, and thus the analysis

of the deviations between the shares of the type I errors and the basic significance levels, is

slightly more sophisticated (since γ̇2 = 0 in the DGP, the validity of the null hypothesis H0 is

considered here). If the DGP is characterized by the one-period four-alternative independent

probit model (see the upper part of table 1), the shares of the rejected H0 have an excellent
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conformity with the underlying significance levels, in particular for N = 2000. Note that

this result holds despite the small number of 200 replications of the DGP. Neither R nor the

various simulated z-test statistics have a systematic influence on the relative frequencies.

If the DGP consists of contemporary correlations, the shares of the incorrectly rejected null

hypotheses H0 : γ̇2 = 0 are below the underlying significance levels (see the lower part of

table 1). This finding holds for all variations of the sample size N and the amount R of

random draws in the GHK simulator. Whereas an increase of N mostly effects a repeated

decrease of the relative frequencies, the various test statistics SZT1, SZT2 and SZT3 as well

as R, again, have no systematic influence. Particularly, the number of the type I errors in this

misspecified probit model is always lower than the corresponding number in the correctly

specified independent probit model (see the upper part of table 1).

5.1.2 Simulated z-tests on the parameters of the explanatory variables

The test results in table 1 refer to the independent probit model. But the examination

of simulated z-tests in the flexible one-period four-alternative probit model is much more

interesting because of its avoidance of a model misspecification. Indeed, contrary to the

analysis in section 5.1.1, the (simulated) estimation of the information matrix is hereby

numerically problematic with the aid of the Hessian matrix of the simulated loglikelihood

function. Repeatedly, negative estimated values of the variances of the SMLM estimates

occur. In these cases, complex values of the test statistic SZT1 appear. Obviously, these

problems are related to the numerical (and not analytical) differentiation of the gradients of

the simulated loglikelihood function. In this respect, the calculation of the two other versions

SZT2 and SZT3 of the simulated z-test statistic are not problematical. Below, SZT1 is not

considered if negative simulated variance estimates occur.

The results of the simulated z-tests on the parameters of the explanatory variables in the

flexible one-period four-alternative probit model are reported in table 2. As in table 1,

this table contains the relative frequencies of the rejected null hypotheses H0 : γ̇1 = 0 and

H0 : γ̇2 = 0 over all 200 replications of both considered DGP. According to the remarks

above, only the test statistics SZT2 and SZT3 are analyzed. The findings on the left side of

table 2 refer to the DGP characterized by the one-period four-alternative independent probit

model. The test results on the right side of the table are based on the DGP that consists of

contemporary correlations.

According to table 2, independently from the sample size N and independently from the

amount R of random draws in the GHK simulator, H0 : γ̇1 = 0 is correctly rejected in every

case if the DGP consists of the independent probit model. Thus, neither in these simulated

z-tests nor in the corresponding tests in the independent probit model (see table 1), does a
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Table 2: Share of the rejection of H0 (simulated z-tests on the parameters of the explanatory

variables in the flexible one-period four-alternative probit model)

DGP: DGP:

Independent probit model Contemporary correlations

5% 10% 5% 10%

H0 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.030 0.030 0.080 0.075 0.030 0.035 0.060 0.050

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.995

R = 50 γ̇2 = 0 0.030 0.025 0.065 0.095 0.025 0.020 0.055 0.065

N = 1000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 0.990 1.000 0.995

R = 200 γ̇2 = 0 0.030 0.025 0.075 0.080 0.030 0.030 0.055 0.055

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.050 0.050 0.110 0.110 0.015 0.010 0.025 0.035

N = 2000 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 0.980 1.000 0.980

R = 50 γ̇1 = 0 0.050 0.050 0.100 0.105 0.015 0.010 0.035 0.040

type II error ever occur (since γ̇1 = 1 in the DGP, the validity of the alternative hypothesis

H1 is considered here again). But also if the DGP consists of contemporary correlations,

the null hypothesis is only sporadically incorrectly maintained (applying the test statistic

SZT3). Consequently, independent from the underlying DGP, type II errors rarely occur in

these simulated z-tests.

In contrast, the testing of H0 : γ̇2 = 0 is again affected by the underlying DGP. If the DGP

is characterized by the independent probit model, there are good conformities between the

relative frequencies of the incorrectly rejected null hypotheses and the basic significance levels

(see the left side of table 2) (since γ̇2 = 0 in the DGP, the validity of the null hypothesis H0

is considered here again). When the number of observations increases to N = 2000, almost

an identity arises between the shares of the type I errors and the underlying significance

levels. In contrast, if the DGP consists of contemporary correlations, most of the shares of

the incorrectly rejected H0 : γ̇2 = 0 are comparatively lower (see the right side of table 2).

The relative frequencies are particularly below the basic significance levels (this is noticeable

for N = 2000). Again, R and the test statistics SZT2 and SZT3 have no systematic influence

on the frequency of the rejected H0 : γ̇2 = 0.

Overall, it should be emphasized that in the considered one-period four-alternative probit

model, the simulated z-test on γ2 is affected by the underlying DGP. If the DGP is charac-

terized by the independent probit model, the relative frequencies of the incorrectly rejected
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H0 : γ̇2 = 0 are close to the basic significance levels. In contrast, if the DGP consists of

contemporary correlations, the corresponding frequencies are below the basic significance

levels. The last result holds in the misspecified independent probit model, too. Thus, no

specific effects of the model misspecification on the testing of H0 : γ̇2 = 0 arise here. Note

that by using the various test statistics SZT1 (in the independent probit model) as well as

SZT2 and SZT3, the shares of the type I errors (independent of N , R and the underlying

DGP) are very similar.

5.1.3 Simulated z-tests on the variance-covariance parameters

The simulated z-tests on the variance-covariance parameters in the flexible one-period four-

alternative probit model give more mixed results. Table 3 reports the shares of the rejected

null hypotheses about the coefficients of the contemporary correlations based on the sig-

nificance levels 5% and 10%. According to the remarks at the beginning of section 5.1.2,

only the test statistics SZT2 and SZT3 are analyzed again. On the left side of the table,

the validity of the various null hypotheses H0 is considered. Thus, the DGP is character-

ized by the one-period four-alternative independent probit model with σ̇η1 = σ̇η2 = 1 and

˙corr(ηi11, ηi21) = ˙corr(ηi11, ηi31) = ˙corr(ηi21, ηi31) = 0. This allows the examination of the

conformity between the shares of type I errors and the basic significance levels. In contrast,

the validity of the various alternative hypotheses H1 is considered on the right side of the

table. Here, the DGP consists of contemporary correlations with σ̇η1 = 1.5, σ̇η2 = 0.5 and

˙corr(ηi11, ηi21) = ˙corr(ηi11, ηi31) = ˙corr(ηi21, ηi31) = 0.5. Hence, the number of type II errors

can be analyzed.

According to the left side of table 3, the testing of H0 : ˙corr(ηi11, ηi31) = 0 leads to the

best conformities between the shares of the type I errors and the underlying significance

levels, but the corresponding shares are also close to the basic significance levels if H0 :

˙corr(ηi21, ηi31) = 0 is tested (applying SZT3). The relative frequencies of the incorrect

rejection of the null hypotheses about the correlation coefficients are above as well as below

the underlying significance levels. In contrast, if H0 : σ̇η1 = 1 and H0 : σ̇η2 = 1 are tested,

the corresponding frequencies are never above the theoretical values of 5% and 10%. This

finding is valid for all variations of the sample size N and the amount R of random draws

in the GHK simulator as well as for both used simulated z-test statistics.

Indeed, the simulated z-tests on these variance parameters (in contrast to the simulated

z-tests on the coefficients of the explanatory variables) show differences between the use

of the test statistics SZT2 and SZT3. When SZT2 is used, the share of the incorrectly

rejected null hypotheses, in particular for N = 1000, is noticeably below the basic significance

levels. The application of SZT3 has a better conformity, however. But also the testing of

H0 : ˙corr(ηi11, ηi21) = 0 shows for N = 1000 different shares of the type I errors when
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Table 3: Share of the rejection of H0 (simulated z-tests on the variance-covariance parameters

in the flexible one-period four-alternative probit model)

DGP: DGP:

Independent probit model Contemporary correlations

(Validity of H0) (Validity of H1)

5% 10% 5% 10%

H0 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3

σ̇η1 = 1 0.015 0.050 0.035 0.080 0.665 0.670 0.775 0.750

N = 1000 σ̇η2 = 1 0.010 0.050 0.030 0.080 0.090 0.235 0.305 0.365

˙corr(ηi11, ηi21) = 0 0.045 0.095 0.060 0.115 0.420 0.475 0.475 0.530

R = 10 ˙corr(ηi11, ηi31) = 0 0.075 0.065 0.090 0.110 0.860 0.860 0.910 0.870

˙corr(ηi21, ηi31) = 0 0.045 0.050 0.065 0.090 0.600 0.615 0.635 0.665

σ̇η1 = 1 0.010 0.040 0.015 0.090 0.540 0.635 0.735 0.745

N = 1000 σ̇η2 = 1 0.010 0.050 0.035 0.080 0.060 0.350 0.235 0.500

˙corr(ηi11, ηi21) = 0 0.055 0.095 0.065 0.130 0.315 0.440 0.365 0.470

R = 50 ˙corr(ηi11, ηi31) = 0 0.060 0.055 0.085 0.095 0.890 0.865 0.935 0.915

˙corr(ηi21, ηi31) = 0 0.050 0.060 0.090 0.100 0.545 0.640 0.580 0.665

σ̇η1 = 1 0.010 0.045 0.020 0.095 0.530 0.630 0.700 0.745

N = 1000 σ̇η2 = 1 0.015 0.040 0.030 0.085 0.045 0.370 0.265 0.475

˙corr(ηi11, ηi21) = 0 0.050 0.095 0.065 0.120 0.275 0.415 0.335 0.490

R = 200 ˙corr(ηi11, ηi31) = 0 0.060 0.055 0.085 0.105 0.870 0.865 0.930 0.920

˙corr(ηi21, ηi31) = 0 0.055 0.050 0.080 0.100 0.485 0.600 0.535 0.655

σ̇η1 = 1 0.020 0.040 0.055 0.080 0.930 0.890 0.965 0.940

N = 2000 σ̇η2 = 1 0.025 0.045 0.065 0.090 0.535 0.625 0.685 0.815

˙corr(ηi11, ηi21) = 0 0.035 0.040 0.050 0.070 0.615 0.625 0.635 0.670

R = 10 ˙corr(ηi11, ηi31) = 0 0.035 0.045 0.100 0.115 0.990 0.975 0.995 0.985

˙corr(ηi21, ηi31) = 0 0.020 0.030 0.065 0.070 0.725 0.740 0.765 0.785

σ̇η1 = 1 0.015 0.025 0.060 0.070 0.920 0.825 0.960 0.915

N = 2000 σ̇η2 = 1 0.025 0.035 0.065 0.075 0.615 0.650 0.790 0.795

˙corr(ηi11, ηi21) = 0 0.035 0.040 0.045 0.075 0.445 0.575 0.515 0.615

R = 50 ˙corr(ηi11, ηi31) = 0 0.040 0.050 0.100 0.100 0.990 0.965 0.995 0.970

˙corr(ηi21, ηi31) = 0 0.030 0.040 0.080 0.080 0.680 0.710 0.720 0.780

the various simulated z-test statistics are applied. Obviously, the use of SZT3, and thus

the inclusion of the concept of the quasi maximum likelihood theory in the simulated z-

test, provides hereby slightly more robust results concerning the conformity with the basic

significance levels. In contrast, R has again no systematic effects.
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Differences occur in particular between the simulated z-tests on the coefficients of the ex-

planatory variables (see table 2) and the simulated z-tests on the variance-covariance pa-

rameters when the number of the type II errors is analyzed. On the right side of table 3,

incorrectly maintained null hypotheses about the parameters of the contemporary correla-

tions arise repeatedly. The smallest number of type II errors, independent of N and R, occurs

in the testing of H0 : ˙corr(ηi11, ηi31) = 0. H0 : σ̇η1 = 1 is also frequently correctly rejected, in

particular for N = 2000. In contrast, for N = 1000, the testing of H0 : ˙corr(ηi11, ηi21) = 0,

and particularly the testing of H0 : σ̇η2 = 1 lead to many type II errors. Again, R has no

systematic influence, whereas the increase of N always generates an increase of the correctly

rejected null hypotheses.

By comparison, the test statistic SZT2 provides a higher number of correct rejections of

H0 : ˙corr(ηi11, ηi31) = 0 than SZT3. This finding holds for all variations of N and R. Indeed,

the values differ little, and are on a high level. In contrast, if H0 : ˙corr(ηi11, ηi21) = 0 and

H0 : ˙corr(ηi21, ηi31) = 0 are tested, and in particular if H0 : σ̇η2 = 1 is tested, much more

type II errors arise. The relative frequencies of the correct rejection of H0 : σ̇η2 = 1 are

very low, especially for N = 1000. In this case, based on a significance level of 5% (and

for R = 50 and R = 200), the share is merely close to the underlying significance level.

By using SZT3, the numbers of the type II errors can be decreased, even if there are still

high values. Overall, it is shown that (also for high N = 2000 and R = 50) even the use

of SZT3 repeatedly leads to type II errors in the one-period four-alternative probit model if

hypotheses about variance-covariance parameters are tested.

5.2 Experiment two: Five-period three-alternative probit model

5.2.1 Simulated z-tests on the parameters in the independent probit model

With regard to the analysis of panel data, first of all, table 4 reports the results of simulated z-

tests in the five-period three-alternative independent probit model. Based on the significance

levels 5% and 10%, the shares of the rejection of the null hypotheses H0 : γ̇1 = 0 and

H0 : γ̇2 = 0 are examined. The results in the upper part of the table refer to the DGP

characterized by the corresponding independent probit model. In contrast, the test results

in the lower part of the table are based on the DGP that consists of contemporary and

intertemporal correlations. Consequently, simulated z-tests are analyzed in a misspecified

MMPM in this part. In order to test the null hypotheses, all versions SZT1, SZT2 and SZT3

of the simulated z-test statistic are considered first.

Just as the analysis of H0 : γ̇1 = 0 in the one-period four-alternative independent probit

model (see table 1), according to table 4, this null hypothesis is also correctly rejected in the

five-period three-alternative independent probit model in all 200 replications of the DGP.
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Table 4: Share of the rejection of H0 (simulated z-tests on the parameters in the five-period

three-alternative independent probit model)

DGP: Independent probit model

5% 10%

H0 SZT1 SZT2 SZT3 SZT1 SZT2 SZT3

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.050 0.060 0.060 0.085 0.085 0.090

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.055 0.060 0.055 0.080 0.080 0.090

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 200 γ̇2 = 0 0.055 0.055 0.055 0.085 0.085 0.090

N = 500 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.040 0.040 0.040 0.095 0.105 0.085

N = 500 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.040 0.040 0.045 0.100 0.095 0.085

DGP: Contemporary and intertemporal correlations

5% 10%

H0 SZT1 SZT2 SZT3 SZT1 SZT2 SZT3

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.170 0.230 0.090 0.220 0.280 0.140

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.165 0.225 0.085 0.220 0.295 0.145

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 200 γ̇2 = 0 0.170 0.230 0.085 0.220 0.295 0.150

N = 500 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 10 γ̇2 = 0 0.140 0.210 0.085 0.185 0.270 0.120

N = 500 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 1.000

R = 50 γ̇2 = 0 0.140 0.205 0.085 0.195 0.275 0.120

Hence, independent of the number N of observations and of the number R of random draws

in the GHK simulator as well as independent of the various versions of the simulated z-test

statistic, there is no single occurrence of a type II error (since γ̇1 = 1 in the DGP, the

validity of the alternative hypothesis H1 is considered here). Note that this test result is

also valid in the misspecified MMPM, i.e. if the DGP is characterized by contemporary and

intertemporal correlations.
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Again, the analysis of H0 : γ̇2 = 0 is more sophisticated. According to the upper part of

table 4, the shares of the type I errors are extremely close to the basic significance levels

(since γ̇2 = 0 in the DGP, the validity of the null hypothesis H0 is considered here). This

result holds for all variations of N and R as well as for all test statistics SZT1, SZT2

and SZT3 again. Note that for a small number N = 250 of observations, in this correctly

specified five-period three-alternative independent probit model, the conformity between the

relative frequencies and the underlying significance levels is more accurate than the (good)

conformity in the correctly specified one-period four-alternative independent probit model

for moderate N = 1000 (see the upper part of table 1).

In contrast, if the DGP consists of contemporary and intertemporal correlations, the shares

of the incorrect rejection of H0 : γ̇2 = 0 are (partially noticeably) higher than the basic

significance levels. Thus, strong impacts on the test results occur in the misspecified five-

period three-alternative independent probit model. Whereas R, again, has no systematic

influence on the frequencies of the type I errors, an increase of N mostly decreases the

number of the incorrect rejection of H0 : γ̇2 = 0, but to a minor degree. In contrast, the

choice of the version of the simulated z-test statistics has stronger effects. When SZT3 is

applied, the shares of the incorrect rejection of H0 : γ̇2 = 0 are closer to the basic significance

levels in comparison to the use of SZT1, and in particular to the use of SZT2. Hence, in this

misspecified independent probit model, the inclusion of the concept of the quasi maximum

likelihood theory in the simulated z-test is preferable. But note that even by applying

SZT3, the relative frequencies of the type I errors are, without exception, all higher than

the underlying significance levels.

5.2.2 Simulated z-tests on the parameters of the explanatory variables

In order to avoid misspecifications, contemporary and intertemporal correlations should

be taken into account in the five-period three-alternative probit model. In this context,

simulated z-tests on the parameter of the explanatory variables are examined now. Table 5

(like table 4) reports the shares of the rejection of H0 : γ̇1 = 0 and H0 : γ̇2 = 0. In accordance

to the remarks in section 5.1.2, only the test statistics SZT2 and SZT3 are analyzed. The

test results on the left side of the table refer to the DGP characterized by the corresponding

independent probit model. The outcomes on the right side of the table are based on the

DGP that consists of contemporary and intertemporal correlations.

According to table 5, H0 : γ̇1 = 0 is correctly rejected in all 200 replications of both DGP

if the test statistic SZT2 is used. This finding holds for all variations of the number N of

observations and the number R of random draws in the GHK simulator. The application of

SZT3 leads to very few type II errors (since γ̇1 = 1 in the DGP, the validity of the alternative

hypothesis H1 is considered here again). Thus, like in the flexible one-period four-alternative
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Table 5: Share of the rejection of H0 (simulated z-tests on the parameters of the explanatory

variables in the flexible five-period three-alternative probit model)

DGP: DGP:

Independent probit model Cont. and intert. correlations

5% 10% 5% 10%

H0 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3

N = 250 γ̇1 = 0 1.000 0.995 1.000 1.000 1.000 0.990 1.000 0.990

R = 10 γ̇2 = 0 0.055 0.065 0.080 0.085 0.075 0.050 0.125 0.115

N = 250 γ̇1 = 0 1.000 0.995 1.000 0.995 1.000 0.990 1.000 0.990

R = 50 γ̇2 = 0 0.055 0.065 0.075 0.085 0.060 0.060 0.115 0.120

N = 250 γ̇1 = 0 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.975

R = 200 γ̇2 = 0 0.055 0.060 0.075 0.090 0.055 0.070 0.110 0.110

N = 500 γ̇1 = 0 1.000 0.995 1.000 0.995 1.000 0.985 1.000 0.985

R = 10 γ̇2 = 0 0.035 0.035 0.095 0.090 0.075 0.060 0.110 0.095

N = 500 γ̇1 = 0 1.000 0.990 1.000 0.990 1.000 0.980 1.000 0.990

R = 50 γ̇2 = 0 0.040 0.040 0.090 0.095 0.070 0.065 0.105 0.110

probit model (see table 2), H0 : γ̇1 = 0 is only sporadically incorrectly maintained. Overall,

the application of SZT2 seems to provide slightly more favourable results in this test problem

in comparison to the test statistic SZT3.

In view of the conformity between the shares of the type I errors and the basic significance

levels, the testing of H0 : γ̇2 = 0 also provides robust outcomes (since γ̇2 = 0 in the DGP,

the validity of the null hypothesis H0 is considered here again). Contrary to the flexible

one-period four-alternative probit model (see table 2), the shares of the incorrectly rejected

null hypotheses are all close to the underlying significance levels. According to the right side

of table 5, this finding also arises if the DGP consists of contemporary and intertemporal

correlations. In this case, H0 : γ̇2 = 0 is, for the most part, only slightly more frequently

rejected than on the basis of the DGP characterized by the independent probit model (see

the left side of table 5). It should be emphasized that neither N nor the test statistics SZT2

and SZT3 have a systematic influence. Furthermore, R still has no specific effects.

5.2.3 Simulated z-tests on the variance-covariance parameters

The simulated z-tests on the variance-covariance parameters in the flexible five-period three-

alternative probit model lead again to substantially more mixed results. Based on the

significance levels 5% and 10%, table 6 reports the shares of the rejected null hypotheses

about the coefficients of the contemporary, time invariant and autoregressive correlations.
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According to the remarks in section 5.1.2, only the test statistics SZT2 and SZT3 are ex-

amined again. On the left side of the table, the validity of the various null hypotheses H0 is

considered. Thus, the DGP is characterized by the five-period three-alternative independent

probit model with σ̇η1 = 1, ˙corr(ηi1t, ηi2t) = ρ̇1 = ρ̇2 = 0. This allows the analysis of the

conformity between the shares of type I errors and the basic significance levels. It should

be taken into account that under the consideration of the null hypotheses H0 : σ̇α1 = 1 and

H0 : σ̇α2 = 1, this analysis is not possible for the two parameters of the stochastic effects,

since it is σ̇α1 = σ̇α2 = 0 in the DGP. On the right side of table 6, the validity of the various

alternative hypotheses H1 is considered. Here, the DGP consists of contemporary and in-

tertemporal correlations with σ̇η1 = 1.5, ˙corr(ηi1t, ηi2t) = 0.5, σ̇α1 = 1.5, σ̇α2 = 0.5, ρ̇1 = 0.8,

ρ̇2 = 0.5. Thus, the number of type II errors can be examined.

According to the left side of table 6, in regard to the conformity with the basic significance

levels, more instabilities occur in comparison with the simulated z-tests on the parameters

of the explanatory variables (see table 5). Independent of N and R, the relative frequencies

of the incorrect rejection of H0 : σ̇η1 = 1 are always below the underlying significance levels,

in particular when SZT2 is used. In contrast, when H0 : ˙corr(ηi1t, ηi2t) = 0 is tested, the

corresponding shares never fall below the theoretical values 5% and 10%. With regard to

the shares of the incorrect rejection of H0 : ρ̇1 = 0 and H0 : ρ̇2 = 0, values above as well as

below the basic significance levels arise. When the last two null hypotheses are tested, the

application of SZT3 leads to noticeably higher shares of the type I errors than the application

of SZT2. Overall, in respect to the conformity with the basic significance levels, no general

advantage of one version of the simulated z-test statistic can be derived. Furthermore, N

and R have no systematic influence on the numbers of the type I errors.

In contrast, the increase of the sample size N (for the same amount R of random draws in the

GHK simulator) leads again (as expected) always to a decrease of the numbers of the type

II errors (see the right side of table 6). Indeed, like in the simulated z-tests on the variance-

covariance parameters in the flexible one-period four-alternative probit model (see the right

side of table 3), incorrectly maintained null hypotheses repeatedly occur. Again, these results

contradict the outcomes when hypotheses about the coefficients of the explanatory variables

are tested (see table 5). It can be recognized that the testing of H0 : ρ̇2 = 0 causes, without

exception, more type II errors than the testing of H0 : ρ̇1 = 0. This finding is not surprising,

however, since in the DGP it is ρ̇1 = 0.8, but ρ̇2 = 0.5

Furthermore, the increase from R = 10 to R = 50 leads (for the same N) to an increase

in the number of the correct rejections of the null hypotheses mentioned at last. It should

be noted, however, that using SZT2 (for N = 250) the share of the incorrectly maintained

H0 : ρ̇1 = 0 rises if the number of random draws in the GHK simulator increases from R = 50

to R = 200. Generally, the increase of R often causes an increase of the number of the type
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Table 6: Share of the rejection of H0 (simulated z-tests on the variance-covariance parameters

in the flexible five-period three-alternative probit model)

DGP: DGP:

Independent probit model Cont. and intert. corr.

(Validity of H0) (Validity of H1)

5% 10% 5% 10%

H0 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3 SZT2 SZT3

σ̇η1 = 1 0.015 0.030 0.035 0.070 0.145 0.190 0.240 0.250

N = 250 ˙corr(ηi1t, ηi2t) = 0 0.090 0.105 0.130 0.140 0.730 0.715 0.805 0.755

σ̇α1 = 1 – – – – 0.685 0.625 0.700 0.665

R = 10 σ̇α2 = 1 – – – – 0.330 0.445 0.475 0.580

ρ̇1 = 0 0.050 0.075 0.070 0.140 0.750 0.635 0.800 0.710

ρ̇2 = 0 0.035 0.095 0.065 0.135 0.260 0.350 0.450 0.465

σ̇η1 = 1 0.020 0.025 0.040 0.070 0.065 0.225 0.115 0.310

N = 250 ˙corr(ηi1t, ηi2t) = 0 0.085 0.085 0.100 0.120 0.700 0.750 0.785 0.805

σ̇α1 = 1 – – – – 0.425 0.455 0.480 0.525

R = 50 σ̇α2 = 1 – – – – 0.060 0.440 0.180 0.550

ρ̇1 = 0 0.055 0.070 0.070 0.115 0.870 0.800 0.910 0.860

ρ̇2 = 0 0.050 0.095 0.075 0.175 0.470 0.605 0.635 0.665

σ̇η1 = 1 0.020 0.030 0.040 0.060 0.060 0.265 0.120 0.335

N = 250 ˙corr(ηi1t, ηi2t) = 0 0.080 0.080 0.105 0.100 0.650 0.755 0.750 0.805

σ̇α1 = 1 – – – – 0.320 0.465 0.395 0.520

R = 200 σ̇α2 = 1 – – – – 0.055 0.460 0.125 0.585

ρ̇1 = 0 0.040 0.060 0.060 0.115 0.855 0.845 0.885 0.880

ρ̇2 = 0 0.040 0.105 0.065 0.165 0.505 0.650 0.655 0.680

σ̇η1 = 1 0.015 0.025 0.065 0.085 0.310 0.235 0.405 0.345

N = 500 ˙corr(ηi1t, ηi2t) = 0 0.080 0.075 0.135 0.125 0.920 0.845 0.960 0.880

σ̇α1 = 1 – – – – 0.800 0.715 0.835 0.755

R = 10 σ̇α2 = 1 – – – – 0.715 0.705 0.785 0.800

ρ̇1 = 0 0.035 0.090 0.060 0.105 0.935 0.825 0.945 0.870

ρ̇2 = 0 0.065 0.090 0.100 0.145 0.640 0.490 0.770 0.595

σ̇η1 = 1 0.015 0.025 0.030 0.065 0.145 0.305 0.270 0.400

N = 500 ˙corr(ηi1t, ηi2t) = 0 0.065 0.070 0.115 0.120 0.835 0.785 0.895 0.835

σ̇α1 = 1 – – – – 0.515 0.520 0.545 0.585

R = 50 σ̇α2 = 1 – – – – 0.330 0.580 0.490 0.680

ρ̇1 = 0 0.055 0.080 0.075 0.115 0.985 0.930 0.995 0.955

ρ̇2 = 0 0.065 0.065 0.090 0.135 0.845 0.650 0.915 0.740
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II errors. Using SZT2, this finding holds in particular when H0 : σ̇α2 = 1 is tested and when

R increases from 10 to 50. The choice between the test statistics SZT2 and SZT3 again

provides no systematic advantage of one version. Overall, it should be emphasized that the

testing of the hypotheses about the variance-covariance parameters in the five-period three-

alternative probit model leads to many type II errors. This important outcome holds when

both versions of the simulated z-test statistic are used, even for high N = 500 and R = 50.

6 Conclusions

Within the framework of Monte Carlo experiments, this paper examines various versions of

the simulated z-test (using the GHK simulator) in one-period four-alternative probit models

and in five-period three-alternative probit models. One important finding is that the tests on

the parameter of the explanatory variables in the correctly specified probit models mostly

provide robust results. This outcome refers to the precise conformity between the shares

of the type I errors and the basic significance levels as well as to the rare type II errors.

Only in the flexible one-period four-alternative probit model, the relative frequencies of the

type I errors are noticeably lower than the basic significance levels. This result only holds

if the DGP consists of contemporary and intertemporal correlations, however. It should be

emphasized that the numbers of the incorrectly rejected null hypotheses about the coefficients

of the explanatory variable are surprisingly not influenced by the sample size N or by the

amount R of random draws in the GHK simulator.

In the context of the simulated z-tests on the coefficients of the explanatory variables, N and

R have no effects on the numbers of the type II errors, too. In the one-period four-alternative

probit model as well as in the five-period three-alternative probit model, the null hypothesis

H0 : γ̇1 = 0 is almost always correctly rejected. This result holds in the correctly specified

probit models as well as in the misspecified independent probit models. It can not be proved

that these test results can be transferred to other probit models, however. It is plausible that

the outcomes are strongly influenced by the parameter formations in the DGP, in particular

by γ̇1 = 1. In the future, more investigations on this test problem are desirable.

Furthermore, the results refer to multinomial probit models which exclusively include alter-

native specific explanatory variables. Own unpublished studies have shown that the added

SMLM estimation of coefficients of individual specific explanatory variables (which do not

vary between the alternatives) can be less precise and less stable than the SMLM estimation

of coefficients of alternative specific variables (for the problem of the identification of the

estimation of one-period multinomial probit models which exclusively include individual spe-

cific explanatory variables, see also Keane, 1992, or the application in Rennings et al., 2001).

Thus, it is not clear if simulated z-tests on parameters of individual specific explanatory
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variables lead to similar results as simulated z-tests on parameters of alternative specific ex-

planatory variables. Since the inclusion of individual specific explanatory variables in probit

models occurs in empirical applications, a systematic examination of simulated z-tests on

such parameters would be very desirable in the future.

In the misspecified five-period three-alternative independent probit model, the shares of the

incorrect rejection of H0 : γ̇2 = 0 are noticeably higher than the underlying significance levels.

In this case, the inclusion of the concept of the quasi maximum likelihood theory (according

to White, 1982) in the test statistic SZT3 of the simulated z-tests is preferable. Hence, in

comparison to the use of the test statistics SZT1 and SZT2, the conformity between the

relative frequencies of the type I errors and the basic significance levels can be noticeably

improved. In contrast, in the misspecified one-period four-alternative independent probit

model, such differences between the various versions of the simulated z-test do not exist.

Indeed, in order to avoid misspecifications in the empirical application, flexible models should

be used, e.g. the flexible one-period four-alternative probit model or the flexible five-period

three-alternative probit model. With regard to the conformity between the shares of the

type I errors and the basic significance levels in simulated z-tests on the coefficients of the

(alternative specific) explanatory variables, the use of SZT3 (surprisingly) does not yield

substantial advantages in these approaches. In contrast, the application of SZT1 can not be

suggested because of the repeatedly occurring numerical problems. It should be remarked

that such computational problems do not appear in the independent probit models, but in

the empirically more important flexible multinomial probit models.

The results of the tests on variance-covariance parameters permit no clear recommendations

of a specific version of the simulated z-test statistic, too. On the one hand, the use of SZT3

seems to provide (as expected) more robust results in the flexible one-period four-alternative

probit model. But, with regard to the deviations between the shares of the type I errors

and the basic significance levels, as well as with regard to the numbers of the type II errors,

this finding does not hold for all formulated hypotheses. In particular, compared to the

use of SZT2, the use of SZT3 is not systematically preferable in the flexible five-period

three-alternative probit model.

In contrast, a clear result is the substantially less stable testing of the hypotheses about

the parameters of the contemporary and (in the five-period three-alternative probit model)

intertemporal correlations compared with the testing of the hypotheses about the coefficients

of the (alternative specific) explanatory variables. This finding corresponds to the likewise

substantially less stable SMLM estimation of the variance-covariance parameters compared

with the SMLM estimation of the parameters of the explanatory variables (see Ziegler and

Eymann, 2001). Consequently, a strong relation between the underlying SMLM estimations

of the coefficients and the corresponding simulated z-tests on these coefficients exists here.
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Concerning the number of the type I errors in the testing of the hypotheses about the

variance-covariance parameters, very uneven values occur when the various simulated z-

test statistics are applied. It should be emphasized that besides the choice of SZT2 and

SZT3, the number N of observations as well as the number R of random draws in the GHK

simulator have surprisingly no systematic influence on the conformities between the shares

of the incorrectly rejected null hypotheses and the basic significance levels. In contrast, the

underlying SMLM estimation of the variance-covariance parameters with lower R and N

provides stronger biases than the corresponding SMLM estimation with higher R and N

(see also Ziegler and Eymann, 2001).

The instability of the simulated z-tests on the variance-covariance parameters particularly

arises for the amounts of the type II errors. For all variations of N and R, hypotheses

about the parameters of the contemporary and intertemporal relationships are very often

incorrectly maintained in the examined flexible multinomial probit models. These outcomes

contradict the results in the simulated z-tests on the coefficients of the (alternative specific)

explanatory variables. Note that in the simulated z-tests on the variance-covariance pa-

rameters, R again has no systematic effect on the numbers of the type II errors. Only if

hypotheses about the autocorrelation coefficients are tested, an increase of R (for the same

N) often (but not without exception) leads to an increase in the numbers of the correctly

rejected null hypotheses.

In contrast, an increase of the number N of observations always has a positive effect on the

numbers of the correct rejections of the null hypotheses. Thus, in the examined flexible one-

and multiperiod multinomial probit models, a rise of N leads to a partly substantial decrease

in the numbers of the type II errors when the simulated z-tests on the variance-covariance

parameters are undertaken. According to the remarks above, this finding indicates that

an increasing number N of observations could also reduce the amount of the incorrectly

maintained null hypotheses about the coefficients of the explanatory variables if the DGP is

characterized by other parameter constellations. Hence, a systematic analysis of this problem

would be desirable in the future, too.
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Börsch-Supan, A., V.A. Hajivassiliou, L.J. Kotlikoff and J.N. Morris (1992), Health,

Children, and Elderly Living Arrangements. A Multiperiod-Multinomial Probit Model

with Unobserved Heterogeneity and Autocorrelated Errors, in: Wise D.A. (Ed.), Topics

in the Economics of Aging, Chicago, 79-104.

Bolduc, D. (1992), Generalized Autoregressive Errors in the Multinomial Probit Model,

Transportation Research B, 26B (2), 155-170.

Bolduc, D. (1994), A Practical Technique to Estimate Multinomial Probit Models in

Transportation: Computational Details and an Application to a Disaggregate Mode

Choice Problem, Série des Documents de Travail du CREST No. 9421, Institut Na-

tional de la Statistique et des Etudes Economique.

Bolduc, D., B. Fortin and S. Gordon (1997), Multinomial Probit Estimation of Spatially

Interdependent Choices: An Empirical Comparison of Two New Techniques, Interna-

tional Regional Science Review 20 (1+2), 77-101.

Bolduc, D., G. Lacroix and C. Muller (1996), The Choice of Medical Providers in Ru-

ral Bénin: A Comparison of Discrete Choice Models, Journal of Health Economics 15,

477-498.

Bunch, D.S. (1991), Estimability in the Multinomial Probit Model, Transportation Re-

search B, 25B (1), 1-12.

Chintagunta, P.K. (1992), Estimating a Multinomial Probit Model of Brand Choice

Using the Method of Simulated Moments, Marketing Science, 11, 386-407.

Dansie, B.R. (1985), Parameter Estimability in the Multinomial Probit Model, Trans-

portation Research B, 19B (6), 526-528.

26



Geweke, J., M. Keane and D. Runkle (1994), Alternative Computational Approaches

to Inference in the Multinomial Probit Model, The Review of Economics and Statistics

LXXVI (4), 609-632.

Geweke, J., M. Keane and D. Runkle (1997), Statistical Inference in the Multinomial

Multiperiod Probit Model, Journal of Econometrics 80, 125-165.

Gouriéroux, C. and A. Monfort (1991), Simulation Based Inference in Models with Het-
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