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Abstract

The increasing complexity and size of information systems result in an in-
creasing effort for maintenance. Additionally, miniaturization of devices leads
to higher mobility and the need for context-adaptation, especially in new types
of systems, such as Cyber-physical Systems or Internet of Things. Self-adaptive
Systems (SASs) has the ability to adapt to changes in their environment or the
system resources and address the aforementioned challenges. So far, however, de-
velopment of these systems is frequently tailored towards the requirements of use
cases. The research for frameworks and reusable elements — for implementation
as well as design processes — is often neglected. Integrating reusable process
and implementation artifacts into a framework and offering a tool suite to devel-
opers would make development of SASs faster and less error-prone. This thesis
presents the Framework for Engineering Self-adaptive Systems (FESAS). It offers
a reusable implementation of a reference system, tools for implementation and
design as well as a middleware for controlling system deployment.

Due to distribution of systems and an increase of available information, the
complexity for adaptation reasoning increases. This can lead to uncertainty at
runtime resulting in incompleteness or obsolescence in adaptation goals, models
or rules. Therefore, the need for changing the adaptation reasoning arises. As a
second contribution, this thesis introduces a new approach for self-improvement of
SASs. It complements the SAS with an additional module for meta-adaptation.
Unlike existing approaches, the approach is not limited to a specific type of
adaptation nor to specific implementation frameworks. The thesis describes the
integration of the module for self-improvement with the FESAS Framework.

Following a design science approach, this thesis explains the design of the
artifacts based on requirements derived from an analysis of related work. For
evaluation, prototypes of the artifacts are implemented in a proof by prototyping
approach and discussed regarding their usability, applicability, and performance.
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Glossary

Adaptation Logic Manager (ALM)

The ALM is an external layer on top of a SAS for addressing the
need for self-improvement. It integrates a MAPE-K cycle for reason-
ing. Further, it communicates with the adaptation logic of the SAS
through clearly defined interfaces (cf. Section 6.2 for the system model
and Section 7.4 for the prototype implementation).

FESAS Adaptation Logic Template

It offers a model for the adaptation logic. The functionality for rea-
soning on adaptation follows the MAPE-K model. It is separated
from complementary modules that handle the context data and the
connection to the managed resources (cf. Section 6.1.1).

FESAS Component Template

Model for a specific MAPE component. It separates generic func-
tionality, such as communication between MAPE components, and
specific code for the functional logics of the MAPE components to
improve the reusability of code (cf. Section 6.1.1).

FESAS Framework

The FESAS Framework combines the FESAS Adaptation Logic Tem-
plate, the FESAS Component Template, the FESAS Middleware,
the FESAS Repository, and the FESAS Workflow for development
of SASs. It is complemented by the FESAS IDE for convenient usage
of the FESAS Framework and the ALM for self-improvement.
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FESAS IDE

The FESAS IDE extends the Eclipse IDE with two plug-ins: the
FESAS Development Tool and the FESAS Design Tool (cf. Sec-
tion 7.1). The system developer uses the FESAS Development Tool
for developing the functional logics’ code, which is then stored in the
FESAS Repository. Using the FESAS Design Tool, the system de-
signer configures the components of an adaptation logic and specifies,
which code the FESAS Middleware loads at runtime. Both plug-ins
incorporate the FESAS Workflow.

FESAS Middleware

The FESASMiddleware components – JSON Config Parser, Proxy ALM,
Middleware Starter, and Local Repository – interact with the FESAS
Repository and the ALM (in case of self-improvement) during the de-
ployment of a SAS and for self-improvement (cf. Section 6.1.4 for the
system model and Section 7.3 for the prototype implementation).

FESAS Repository

Code repository which stores the code of the functional logic elements
with metadata. This repository is used during deployment and self-
improvement (cf. Section 6.1.3 for the system model and Section 7.2
for the prototype implementation).

FESAS Workflow

Captures the FESAS development process. It is divided into two
parts: designing the adaptation logic and developing the functional
logic elements. The FESAS Middleware controls the deployment and
integrates the design models and code for the functional logics (cf. Sec-
tion 6.1.2).
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Glossary

Self-adaptation

The self-adaptiveness property aggregates the functionality of the
self-* properties to offer autonomous reaction to changes in the system
and the environment (cf. Section 2.1).

Self-adaptive System (SAS)

A self-adaptive system (SAS) is able to adjust its behavior in response
to its perception of the environment and the system itself. The "self"
prefix indicates that the SAS decides autonomously (i.e., without or
with minimal interference) how to adapt or organize to accommodate
changes in its context and environment (cf. Section 2.2).

Self-improvement

Self-improvement of the adaptation logic is the adjustment of the
adaptation logic to handle former unknown circumstances or changes
in the environment or the managed resources (cf. Section 2.1.4).
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1. Introduction

Today, people are surrounded by smart and connected devices. Gartner Inc.
estimated that 8.4 billion devices are connected in the IoT worldwide in 2017,
reaching 20.4 billion by 2020 [144]. The growing number of mobile and embedded
devices in combination with the omnipresence of (wireless) network connections
results in an increased distribution of Information Technology (IT). This increases
the complexity of these systems, but also enables new types of systems, such
as Cyber-physical Systems (CPSs) that integrate computation, networking, and
physical processes [200]. This facilitates new applications, such as autonomous
driving, ambient assisted living / smart home, or Industry 4.0. However, it re-
quires integration of all available, highly specialized, and heterogeneous devices,
ranging from embedded sensor nodes to servers in the cloud. Further, the in-
clusion of data streams with sensor data and web data leads to an increasing
complexity in system development. Additionally, as these system are mobile,
changing environmental conditions increase the complexity even further.

Self-adaptive Systems (SASs) adjust parameters or adapt components to re-
flect changes in their operating environment or in the system [229, 278]. They
are seen as one solution to the aforementioned complexity issues as they can
adapt (i) to new environmental conditions and (ii) to requirements that are not
known at design time. These systems separate (i) resources that offer the sys-
tem functionality to users / backend systems and (ii) the adaptation logic that
controls these resources [11, 198, 229]. While SASs can reduce the complexity in
the aforementioned system domains, developing and configuring SASs is a very
difficult, error-prone, and time-consuming task [76]. As identified in [96, p. 2]
"we need [..] systematic development, deployment, management and evolution"
of SASs. Various works [76, 96, 229] describe specific design and implementation
challenges for SASs. This thesis aims at reducing the complexity in the develop-
ment of SASs and presents a development approach that focuses on reusability,
continuous improvement, and integration of development activities.
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1.1. Problem Definition

1.1. Problem Definition

The developed SASs are often use case specific and optimized to their ap-
plication areas or devices. While this might result in an optimized SAS, this
reduces the reusability of artifacts. Various elements of the adaptation logic
can be reused, such as distribution structures (e.g., [401]), communication mech-
anisms (e.g., Pub/Sub systems), structures for handling knowledge (e.g., dis-
tributed databases), or components of reference architectures. Literature sug-
gests that reusable development processes and components in the adaptation
logic can reduce the complexity in the development of SASs [76, 229]. Addition-
ally, agile methods or rapid prototyping support shorter development cycles to
avoid expensive changes late in the project [181]. These methods require well-
defined interfaces for modules and fine granular exchange of system’s code. This
granularity enables simplified exchange and reuse of algorithms for reasoning on
adaptation in other systems. However, as we have shown in [228], literature
does not address sufficiently the reusability of code on a fine granular level in
SASs [228]. This granularity would enable to store code in a repository and reuse
it in a well-defined architecture for the adaptation logic. The architecture facili-
tates to focus on the implementation of specific adaptation reasoning algorithms
and can abstract from common issues as communication in the adaptation logic.

Established concepts to reason about adaptations in SASs use models, rules,
goals, or utility functions [234]. Uncertainty at runtime can lead to incomplete-
ness or obsolescence of goals, rules, or models as well as non-optimized util-
ity functions. Accordingly, in [229], we identified the challenge of integrating a
mechanism for self-improvement, i.e., adapting the adaptation logic. Some au-
thors already offer self-improvement, e.g., [9, 115, 194, 274, 298, 363]. We showed
the shortcomings of these approaches in [226, 227]. They mainly focus on either
structural or parametric self-improvement as well as either on reactive or proac-
tive reasoning for self-improvement. The approaches react on different triggers:
changes in the context, managed resources, or user preferences, i.e., change of
goals. Monitoring of triggers and execution of self-improvement is often specific
for an application. An open issue is to separate generic elements and application-
specific parts that need customization as well as offering self-improvement as a
self-contained module that can easily be integrated with frameworks for devel-
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oping SASs. Additionally, for offering flexibility to developers, the approaches
should integrate development support for reactive and proactive self-improvement
as well as not focus on only structural or parametric self-improvement. None of
the available approaches addresses all issues.

As shown in [224], approaches for developing SASs offer different types of
support. This includes reference implementations, tools, or rather abstract defi-
nitions of methodologies. However, often an approach targets only one develop-
ment activity. None of the approaches covers all activities of the development
of SASs and also integrates self-improvement. Further, the approaches restrict
developers to specific settings or do not address reusability. To lower complexity
in developing SASs, it is beneficial to complement reusable components for the
adaptation logic with a generic development process. To abstract from specifics of
the process, tools should encapsulate the development activities. As mentioned,
the integration of a library of reusable code can further speed up the development.
Last, self-improvement at runtime should be integrated.

1.2. Research Questions

Following the problem definition, the objective of this thesis is:

The integrated support of the development of a reusable and improvable
adaptation logic for SASs throughout the whole lifecycle.

Marked in bold letters are the main elements for this thesis: (i) supporting the
developer throughout the whole lifecycle of a SAS with (ii) reusable artifacts –
including tools, processes as well as reusable components for SASs – and (iii) self-
improving the system, i.e., adaptation of the adaption logic. Accordingly, the
thesis will answer the following three research questions:

RQ1 Reusability: How to make the adaptation logic more reusable?

RQ2 Self-improvement: How to adapt the adaptation logic at runtime?

RQ3 Integrated development: How to support the development of SASs with
tools and processes throughout the complete lifecycle?
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1.3. Contributions

This thesis presents a generic framework for developing reusable SASs inte-
grating self-improvement. Its main contributions are as follows.

First, a thorough analysis of the state of the art is presented. Based on several
publications [220,224,226,227,229], the analysis is tripartite and analyzes subsets
of the available approaches focusing on (i) adaptive systems in general, (ii) de-
velopment approaches for SASs, and (iii) self-improvement of SASs. Throughout
this thesis, the results of the analysis act as knowledge base for the definition of
requirements (cf. Chapter 5) and the design of the main artifacts. However, it can
be used by other researchers to identify further research gaps in SASs research.

Second, the design of the first main artifact is the FESAS Framework that
targets the development of reusable SASs. If integrates a reference architecture
with reusable components, a well-defined process enriched with tools as well as
deployment support. Further, it offers several elements to support the integra-
tion of a module for self-improvement though adapting the adaptation logic at
runtime. Accordingly, in contrast to related approaches, the FESAS Framework
offers end-to-end development support throughout the lifecycle of a SAS.

Third, the second main artifact is the so called Adaptation Logic Manager
(ALM) for self-improvement. It aims at simplifying the development by offering a
reusable, flexible, and customizable approach which extends the flexibility offered
by other approaches in literature that are often optimized for a specific setting.
The ALM is self-contained and can be integrated in frameworks for developing
SASs. Accordingly, we present it separated from the FESAS Framework in this
thesis. However, it is perfectly integrated with the FESAS Framework as the
FESAS Framework offers all necessary elements for integration.

Fourth, this thesis describes an integrated prototype implementation that com-
bines the tools and elements of the FESAS Framework with the ALM. Specifically,
this thesis presents the implementation of the FESAS Framework, including the
FESAS IDE, the FESAS Middleware, the FESAS Repository, and the ALM. The
implementation is the foundation for a proof by prototyping evaluation.

Last, this thesis evaluates the prototype. Therefore, the FESAS Framework
and the ALM were applied for implementation of several SASs. In these case
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studies, we analyze the usability of the tools, the performance of the ALM, as
well as the degree of reusability that the FESAS Framework enables.

1.4. Structure

The structure of the thesis reflects these contributions. Next, Chapter 2 in-
troduces the concepts self-* properties and self-adaptive systems, presents con-
trol structures for SASs and sorts SASs into the research landscape. Chapter 3
explains the research methodology for this thesis based on the Design Science
Research Methodology Process Model according to Peffers et al. [289]. As knowl-
edge base for the requirements specification and the design, Chapter 4 analyzes
related approaches and identifies their shortcomings. Based on the analysis of
related work, Chapter 5 derives the requirements for the FESAS Framework
and the ALM. Chapter 6 presents the design of (i) the FESAS Framework,
(ii) the ALM as well as (iii) the integration of both in an end-to-end devel-
opment approach. Following the design, Chapter 7 describes the implementation
of an integrated prototype for both design artifacts. However, both artifacts –
FESAS Framework and ALM – can be used independently from each other.
Subsequently, Chapter 8 presents the evaluation of the prototypes. Chapter 9
integrates the evaluation results in a cross-case discussion of the suitability of
the design artifacts in regard of the research questions and presents future work.
Last, Chapter 10 concludes the thesis with a summary of the results.

1.5. Formal Conventions

In order to structure the work semantically different font styles are incorpo-
rated. Important terms or names are formatted in an italic font style. The term
Self-adaptive System is an example for this convention. Code or any other tech-
nical textual content is displayed in the following manner: Class. Regarding
the styles for citations, four different types are present. The [Ref] citation is
the normal citation style for indirect citations. An extended [Ref,page] citation
with a page number marks direct citations or indirect citations of monographs.
The citation "e.g., [Ref1,Ref2,...]" is used for naming a subset of references while
"c.f. [Ref1(,...)]" specifies one or several references for additional information.
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2. Background

The previous chapter motivated the present thesis and specified its research
questions as well as its contributions. This chapter introduces the theoretical
background by defining important terms and presenting related concepts. At
first, Section 2.1 presents an overview on the self-* properties that establish self-
management of (self-)adaptive systems. Based on that, Section 2.2 discusses
different definitions for the term Self-adaptive System (SAS) and presents the
commonly accepted system model which divides the managed resources – that
perform the system’s functionality – from the adaptation logic which controls
the adaptation of the managed resources. Following, Section 2.3 compares dif-
ferent control structures for implementing the adaptation logic of a SAS. Last,
Section 2.4 distinguishes SASs from similar concepts in the research landscape.

2.1. Self-* Properties

In the literature, self-* properties are seen as fundamental for self-management
of software systems [198, 234, 320]. According to Salehie and Tahvildari [320],
these properties can be ordered hierarchically into three levels: (i) primitive level,
(ii) major level, and (iii) general level. On the primitive level, self-awareness and
context-awareness are the basic functionality to retrieve information about the
system resources as well as the surrounding environment (cf. Section 2.1.1). The
Self-CHOP properties of the major level use the awareness to offer autonomic
system functionality (cf. Section 2.1.2). On the general level, systems that fulfill
the self-adaptiveness property aggregate the functionality of the major level and
offer autonomous reaction to changes in the system and the environment (cf. Sec-
tion 2.1.3). Figure 2.1 shows the hierarchy of the self-* properties. Additionally
to these three levels, recent research (e.g., [112,226,315,361]) identified the need
to not only adjust the system resources but also the control mechanism for adap-
tation. Section 2.1.4 describes the corresponding self-improvement functionality.
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Figure 2.1.: Hierarchy of the self-* properties according to [320]. Based on the
primitive functionalities of self-awareness and context-awareness, the
Self-CHOP properties enable autonomic behavior. Self-adaptation
subsumes and controls the Self-CHOP functionality.

The set of the here presented self-* properties focuses on the relevant ones for
this thesis. Additional properties may be found in the literature, e.g., [41, 234].

2.1.1. Primitive Level: Self-awareness and Context-awareness

For reasoning on adaptation, the system has to be aware of itself as well as
its environment. The primitive level describes this basic functionality of any
adaptive system. These functionalities are self-awareness and context-awareness.

Whereas some researches define self-awareness as the ability of the system
to represent itself, i.e., modeling its software and hardware resources as well as
current system state and behavior (e.g., [183]), the outcome of a Dagstuhl seminar
on self-aware computing includes the reasoning on adaptation into the definition
of self-awareness [216]. In this thesis, we refer to the first perspective as self-
awareness whereas the second includes the reasoning which is seen as part of the
adaptation decision. Hence, self-awareness describes the ability of a system, to
be aware of itself, i.e., to be able to monitor its resources, state, and behavior.

The second aspect of the primitive level refers to the awareness of the system’s
context. Context-awareness describes the system’s awareness of its operational
environment, the so called context [325]. Again, different definitions of context
exist. From a human-machine interaction perspective, Dey formulated a broad
definition of context:
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Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an appli-
cation, including the user and application themselves. [101, p. 5]

Contrary, researchers in the domain of SASs define context-awareness more
specific as the operational environment of the system (e.g., [285], [278], [76],
or [56]). As this definition complements this thesis’ definition of self-awareness,
in this thesis, context-awareness refers to the system’s environment. For achieving
context-awareness, the system has to (i) use sensors to collect information about
its environment and (ii) reason about the information [229].

The distinction of self- and context-awareness offers further advantages.
For self- and context-awareness, the system has to observe different elements.
Whereas for self-awareness most often virtual sensor’s have to observe the in-
ternal system state, for context-awareness often a combination of virtual sensors
– e.g., for network bandwidth – and physical sensors – e.g., for conditions of
the physical environment, such as light or location – have to gain the necessary
information. This conceptually differs for the implementation, hence, the divi-
sion of self- and context-awareness. Whereas all adaptive systems should react
to changes in the system and the environment, i.e., be aware of itself and its
environment, not all of them are context-adaptive, i.e., change the environment.

2.1.2. Major Level: Self-CHOP Properties

The major level integrates four properties: self-configuration, self-healing, self-
protection, and self-optimization [198]. In this thesis, the name self-CHOP prop-
erties is used (cf. [234]). Other works refer to them as self-* or self-management
properties (e.g., [198]). Self-configuration implies that the system is able to con-
figure itself instead of requiring an error-prone manual installation and configu-
ration [234]. Self-healing contains detecting and patching issues without human
support. This is linked to self-diagnosing [311] and self-repairing [93]. Self-
protection refers to automatic defense against malicious attacks and actions [320].
Self-optimization is mainly important during the operation phase of a system.
Software is permanently monitoring its own performance in order to adjust tun-
ing parameters to changes in the environment. Some researchers refer to this
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property as self-tuning or self-adjusting [346]. As the Self-CHOP properties rely
on information of the system resources and the surrounding environment, they
are build upon self-awareness and context-awareness.

2.1.3. General Level: Self-adaptation

Different taxonomies for self-adaptation or adaptation have been developed
over the years. Rohr et al. describe a classification schema for self-adaptation
research [313] among the dimensions origin, activation, system layer, controller
distribution, and operation. Salehie and Tahvildari present an overview on the
landscape of self-adaptive software and related research challenges, including their
own taxonomy for self-adaptation [320] based on the object to adapt, realization
issues, temporal characteristics, and interaction concerns. Handte et al. [167]
classify the adaptation support for pervasive applications into time, level, con-
trol, and technique. Macías-Escrivá et al. [244] cluster in their survey approaches,
research challenges, and applications for SASs, however, they do not define self-
adaptation. Bashari, Bagheri, and Du [30] classify adaptation in goal, cause,
and mechanism. Additionally, several works discuss aspects of self-adaptation.
Zhang and Cheng distinguish different types of adaptation – one-point adaptation,
guided adaptation, and overlap adaptation – according to the functional interac-
tion of the old and new system configuration [413]. McKinley et al. highlight
the difference regarding parameter vs. compositional adaptation [254]. In [278],
the authors discuss the spectrum of adaptation from static activities to dynamic
ones. Three Dagstuhl seminars in 2008, 2010, and 2013 focused on research issues
regarding the engineering of SASs [76,94,96] in modeling, development processes,
decentralization, or verification. All these works provide important insights into
the field of SASs. However, none of them gives an integrated view, incorporat-
ing different existing works and aspects focusing on self-adaptation rather than
the system or its implementation, which is often domain-specific. In [229], we
state such a uniform taxonomy for self-adaptation. In the following, this section
presents our taxonomy on self-adaptation (see Figure 2.2).

The first dimension of the taxonomy, time, describes when an adaptation is
executed in relation to an event which triggers the adaption. The facets are
proactive and reactive adaptation. Even though a proactive adaptation is de-
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Figure 2.2.: The taxonomy of self-adaptation [229] describes self-adaptation with
the dimensions time, reason, level, technique, and adaptation control.
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sirable from the users’ point of view, reactive approaches are predominant as
proactive adaptations are more difficult to develop [167]. Both techniques can
be applied simultaneously: reactive adaptation might act as backup if proactive
adaptation fails.

The system has to analyze the potential reasons for adaptation, hence, it
requires to observe these triggers. Linked to self- & context-awareness, the tax-
onomy clusters the reasons into:

• environment (e.g., the state of an environment variable changes),

• managed resources (e.g., hardware or software fault), or

• user (e.g., a change in the composition of the user group or the user’s
preference).

The dimension level describes where to adapt. This can be the application,
system software, communication, technical resources, or context. The user or
other backend systems interact with a single application or an ensemble of dis-
tributed applications. Hence, for distributed applications, communication is rele-
vant. Regarding communication, two perspectives are relevant w.r.t. adaptation:
a switch of the logical communication patterns – e.g., from a point-to-point com-
munication to a publish-subscribe approach – or a technical adaptation of the
network connection, e.g., an adaptation of a mobile device’s Internet connection
from using 3G/4G to Wifi. System software which can be the operating system
or middleware abstract from hardware. Technical resources subsume all types of
hardware. All of these hardware and software components are subsumed as man-
aged resources. Last, the context, i.e., the system environment, can be adapted.

[254] describes two techniques for adaptation: Parameter adaptation is bound
to the adjustment of parameters, structural adaptation triggers changes of the
algorithms or system components. In [229], we add context adaptation.

Whereas the previous four dimensions describe properties of self-adaptation,
the last dimension refers to how to enable the self-adaptation. First, while in-
ternal approaches integrate the control for adaptation with the resources that
should be adapted, external ones split them in separated modules [128]. Second,
different criteria for the adaptation decision are present in literature: models,
rules and policies, goals, and utility functions [234]. These approaches might be
combined. Third, the degree of decentralization for the adaptation control can
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vary between totally decentralized systems, in which each subsystem has a full
adaptation control functionality that controls a specific part of the system, and
totally centralized ones in which only one subsystem controls adaptation of the
whole system [401]. Hybrid approaches are possible as well.

2.1.4. Self-improvement

As mentioned above, the control mechanism for adaptation relies on differ-
ent metrics for the adaptation reasoning, namely: (i) models, (ii) rules/policies,
(iii) goals, or (iv) utility functions. However, they have some shortcomings. Due
to uncertainty in SASs at run-time (cf. [307] for a discussion of factors for uncer-
tainty), there is a gap between the design time and the runtime. This might result
in outdated or incomplete metrics for the adaptation decision. Some researchers
try to tackle this gap by shifting design activities to the runtime and integrating
learning of system metrics at runtime (e.g., [361]). However, some uncertainty
still exists as it is not guaranteed that the runtime design procedures can handle
all situations. Additionally, the configuration space for adaptation decisions is
rather large. For example, an evaluation of Lightstone [238] examined that typ-
ical middleware products provide between 384 and 1200 configuration/registry
parameters. This results in between 10115 and 10361 system configurations. Ob-
viously, a rule set with adaptation rules can not cover all configurations. On
the other hand, models may provide freedom and support learning the specific
configuration at runtime. However, they introduce additional uncertainty due
to abstraction provided by models. All these issues lead to the requirement of
an additional self-* property: the self-improvement property. As there was no
common definition present in literature, we define self-improvement in [226] as:

Self-improvement of the adaptation [control mechanism] is the adjust-
ment of the adaptation logic to handle former unknown circumstances
or changes in the environment or the managed resources. [226]

Similar to self-improvement, other authors use the terms meta-adaptation
[149,161,182,291], system evolution [9,274,291,353] andmeta-self-awareness [216]
to describe self-improvement. Hillmann and Warren define meta-adaptation as
"adaptation in the adaption process itself " [182, p. 297]. System evolution de-
scribes an adaptation of the adaptation control [291]. Meta-self-awareness de-
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scribes "a system’s awareness of its own self-awareness" [216, p. 8], in which
self-awareness is defined similar to self-adaptation (cf. [216]).

In accordance to these definitions, in our understanding, a system can only
self-improve if the adaptation control itself changes. Otherwise, the adaptation
control can neither handle unknown situations nor improve the performance of
adaptations. In contrast, self-optimization changes the managed resources but
not the adaptation control. The same is true for hierarchical self-optimizing ap-
proaches (e.g., [193] or [154]) as the hierarchy offers decision-making on different
levels but does not change the adaptation control mechanism in a substantial
way. The increasing importance of self-improvement is reflected in the research
community by arising workshops, such as the International Workshop on Self-
Improving System Integration. This thesis contributes to this research with an
inclusion of a generic reusable approach to self-improvement at runtime.

2.2. Self-adaptive Systems

The term Self-adaptive System encompasses, in its broadest definition, dif-
ferent types of systems which are able to adapt themselves, such as the ad-
justment of the human eye to the conditions in the environment. A narrower
definition just refers to Self-adaptive Software (Systems). When using the term
Self-adaptive System in this work, the second, more specific meaning of Self-
adaptive Software System is addressed. However, often these terms are used
interchangeably [76,229,278]. The literature provides several definitions of SASs.
The following gives a comparison of definitions in order to show the evolution
and variety of SASs. Additionally, it presents the system model of such systems.

One of the first definitions of SASs is presented by Laddaga in a DARPA Broad
Agency Announcement on SASs in 1997 and became later the first commonly
agreed definition:

Self Adaptive Software evaluates its own behavior and changes behav-
ior when the evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or performance
is possible. [233, p. 17]
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Two years later, Oreizy et al. define SASs in a similar way:

Self-adaptive software modifies its own behavior in response to changes
in its operating environment. By operating environment, we mean
anything observable by the software system, such as end-user in-
put, external hardware devices and sensors, or program instrumen-
tation. [278, p. 55]

In contrast to Laddaga, Oreizy et al. include user input explicitly as change
reason. In 2009, Salehie et al. summarize the core of SASs to be as follows:

The key point in self-adaptive software is that its life-cycle should not
be stopped after its development and initial set up. This cycle should
be continued in an appropriate form after installation in order to eval-
uate the system and respond to changes at all time. Such a closed-loop
deals with different changes in user requirements, configuration, secu-
rity, and a number of other issues. [320, p. 4]

This way, the authors point out the importance of the capability of a SAS to
make and implement decisions at runtime without an interruption of the system.
Hence, the capability to improve the system at runtime in regard to unfore-
seen events becomes an important characteristic. The participants of the first
Dagstuhl seminar on Software Engineering for Self-adaptive Systems agreed on
the following, quite generic definition:

[Self-adaptive systems] are able to adjust their behaviour in response
to their perception of the environment and the system itself. [76, p. 1]

Additionally, the participants of the Dagstuhl seminar clarified the term self :

The "self" prefix indicates that the systems decide autonomously (i.e.,
without or with minimal interference) how to adapt or organize to
accommodate changes in their contexts and environments. [56, p. 49]

In contrast to this non-specific view, a recent definition from a Dagstuhl sem-
inar on verification in SASs focuses on the triggers for adaptation:

Self-adaptive software systems adapt to changes in the environment,
in the system itself, in their requirements, or in their business objec-
tives. [328, p. 1]
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The collection of definitions is not exhaustive but shows that the perception
of SAS in literature varies in the details of what triggers adaptation. First,
definitions as the one from Oreizy et al. [278] focus on changes in the environment.
This is for the understanding of SASs in this thesis not enough, as changes in the
system itself – leading to self-healing – are not included. Hence, to distinguish
from context-aware systems, this thesis includes changes in the system. Second,
some authors as [328] detail the elements that might be changed. However, this
might be too narrow. Further, different understandings of these elements might
limit the applicability of the definitions, e.g., for the definition of [328] it is not
clear, whether the user is responsible for the change in business objectives or it
is part of the environment. In contrast, the third category of definitions is rather
generic regarding the adaptation reasons. Additionally, the third category shifts
from self-adaptive software systems to self-adaptive systems, which highlights
the fact that these systems not only adapt software but also hardware resources.
Hence, this thesis follows the definition of the first Dagstuhl seminar:

[Self-adaptive systems] are able to adjust their behaviour in response
to their perception of the environment and the system itself. The "self"
prefix indicates that the systems decide autonomously (i.e., without or
with minimal interference) how to adapt or organize to accommodate
changes in their contexts and environments. ( [76, p. 1]; [56, p. 49])

From an architectural point of view, a SAS is composed of two parts: a manag-
ing system as well as a managed system [76,96,328]. For both elements, different
terms are present in literature. The managed system is often denoted as man-
aged resources (e.g., [229]), managed elements (e.g., [198]), adaptable subsystem
(e.g., [327]), or system under observation and control (e.g., [361]). In this thesis,
we use the term managed resources. The managed resources are a set of re-
sources MR = {mr1, ...,mrn } with mri as any kind of software and hardware,
e.g., servers, laptops, smart phones, robots, or unmanned vehicles. In litera-
ture, the terms control mechanism (e.g., [327]), observer/controller (e.g., [361]),
adaptation logic (e.g., [229]), autonomic manager (e.g., [198]), or adaptation con-
trol (e.g., [167]) are used interchangeably for the managing system. This thesis
uses the term adaptation logic. The adaptation logic AL = {al1, ..., aln} is
a set of software modules ali that observes the environment and the managed
resources, analyzes the need for adaptation, plans such adaptations as well as
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Adaptation Logic

Managed Resources

Figure 2.3.: System model of a SAS from an architectural point of view (adapted
version: in contrast to [328], the adaptation effects the environment).

controls the execution of the adaptation. Hence, the common SAS is defined as
a tuple SAS = (AL, MR) with the adaptation logic AL and the managed
resources MR [229]. Figure 2.3 shows the architectural model of a SAS.

Our survey [229] showed that most approaches do not sufficiently include con-
text. Whereas most approaches monitor the context, explicit adaptation of con-
text is often not included and the environment remains uncontrollable for the
adaptation logic [11]. This can lead to undesired adaptation results especially in
system domains with mobile systems. Therefore, this thesis uses the concept of
context-altering SAS as proposed in [229]. The context-altering SAS does not just
(accidentally) affect the environment, but it deliberately adapts it through mod-
eling context and context-altering capabilities as a construct to enables reasoning
about it1. This extends the SAS to a triple SAS = (AL, MR, Ctx) with the
adaptation logic AL, the managed resources MR, and the context Ctx. Different
context variables – e.g., temperature, noise, location, or available devices – define
the physical context [329]. Additionally, users, social interactions, or their task
define the user context [329]. They are influenced via actuators of the managed
resources. Therefore, the context is modeled as set Ctx = {ctx1, ..., ctxn} where
each ctxi symbolizes a context variable, e.g., the temperature.

1In the following, this thesis omits the extension context-altering and just uses SAS.

17



2.3. Control Structures for Adaptation Control

The adaptation control characteristic of the taxonomy for self-adaptation [229]
describes general implementation issues, abstracted from the implementation of
the adaptation logic for a specific use case. The adaptation logic can be inter-
twined with the rest of the application or separated. For analyzing and plan-
ning of the adaptation, the adaptation logic can use rules/policies, goals, mod-
els, or utility functions. Another issue is the degree of decentralization of the
logic resulting in a distribution of the adaptation control functionality on dif-
ferent sub-system parts. Further, the task of the adaptation logic is to imple-
ment functionality that addresses the other four dimensions of the taxonomy on
self-adaptation [229] (cf. Section 2.1.3) as these are relevant for the adaptation
decision. Next, Section 2.3 compares control structures for the adaptation logic.

Robustness Flexibility

Dead space Dead space
Z1

Z2 Z2

Z1

Figure 2.4.: Model of an adaptive system according to [327]. The left side shows
a robust reconfiguration, the right side shows a flexible one.

2.3. Control Structures for Adaptation Control

The goal of the adaptation logic is to fulfill the adaptation targets. Accord-
ing to [327], five dimensions describe the adaptation logic’s functionality. First,
the adaptation logic has to determine the current state of the system and its
environment. Second, it has to evaluate the current system performance w.r.t.
some evaluation criteria. Third, if the system’s performance is not in the target
space or acceptance space, it has to be adapted by the adaptation logic. Fourth,
the adaptation logic has to tolerate disturbances of the system performance as
long as the system is in a survival space, i.e., it can achieve a system state that
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is acceptable through adaptation. Last, the adaptation logic has to define a re-
configuration of the system for implementing changes in the resources. These
reconfigurations lead to a reconfiguration path of different intermediate settings
with the objective to either adjust the system to the given objectives, called ro-
bustness, or the adjustment to new objectives, hence, new target and acceptance
spaces, called flexibility [327]. Figure 2.4 presents this model of adaptive systems.

In case of a robot, the adaptation Target could be to move to a certain tar-
get. For the reconfiguration, the adaptation logic determines adaptation actions.
These actions have an influence on both the environment and system resources.
The adaptation logic detects these changes in a subsequent analysis. Using the
example again, it could be that the robot moved a few steps, but appeared to
be in front of an obstacle so the movement speed drops to zero. This way, a
continuous feedback loop is created that is reinforced by positive feedback, while
negative feedback triggers a change [56]. This feedback loop is a core principle of
the adaptation logic [56,76,198].
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plan 

Planner

Load 

objectives

Analyze 

data

Analyzer
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Transform  
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Sensor Effector

Analyzed 
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Adaptation 

Plan

System & 

Context

Model
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Adaptation Logic

Figure 2.5.: MAPE Cycle according to Kephart and Chess [198]. Own visualiza-
tion based on [221]. The knowledge base is omitted here.

Figure 2.5 shows the MAPE cycle by Kephart and Chess [198], a specific feed-
back loop structure from the Autonomic Computing domain. The MAPE cycle
is named by its four main steps: monitor, analyze, plan, and execute. The mon-
itor function collects data of the system and the environment and pre-processes
it, e.g., through filtering, reliability analysis, or categorization. Afterwards, the
analyzer decides if adaptation is needed by comparing the monitored data and
system objectives. The planner computes the adaptation plan based on the mon-
itored information and interpretations of the analyzer. If more than one possible
adaptation is found, the planner has to decide which one matches the given sys-
tem objectives best. Finally, the executor allocates the planning instructions and
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sends them to the corresponding managed resources. This way, the adaptation
is triggered in the managed resources. Afterwards, the process starts over again.
Sensor and effectors are interfaces to gain data from managed resources or send
instructions, respectively.

The MAPE cycle is the de facto standard for control loops of SASs [76,
229, 384]. Other authors propose similar feedback control for SASs, such as,
the sense-plan-act control [218], the autonomic control loop [105], the mod-
els@run.time reference architecture [21], the requirements reflection architec-
ture [39], the observer/controller architecture [362], or the MIAC/MRAC con-
trollers [56]. Patikirikorala et al. [288] provide an overview on such structures.
However, all implement a feedback loop structure similar to the MAPE cycle.
Some structures subsume analyzing and planning as reasoning [234]. Addition-
ally, feed-forward loops can enable proactive adaptation. However, their complex-
ity hinders implementation. Further, current machine learning frameworks elim-
inate the need of proficient mathematical knowledge for implementing prediction
of future system states. In combination with the increasing computational power
as well as omnipresent cloud resources, proactive adaptation based on predictive
analysis can be implemented on top of the well-known feedback loops. This is a
suitable alternative for implementing proactive adaptation in feed-forward loops.

The taxonomy on self-adaptation defines the required functionality an adap-
tation logic has to offer. Obviously, the MAPE components have to integrate this
functionality. In [229], we mapped the dimensions time, reason, level, and tech-
nique of the taxonomy to the MAPE functionality. The time dimension influences
the decision of analyzing algorithms as proactive recognition of the need for adap-
tation has other requirements – especially the need for predictions – as reactive
detection of changes. Monitoring should be continuous no matter whether the
adaptation is proactive or reactive. The reason dimension influences monitoring,
analyzing, and planning, as it describes the reasons for adaptation and, therefore,
the aspects that should be monitored, where analyzing has to determine changes
as well as the issues, that must be addressed with the adaptation plans. The
level for adaptation is obviously important for planning and executing as these
activities must be aware of the elements that should be adapted. Monitoring
has to determine the elements for the levels that are present in the managed
resources. The technique dimension influences the planning and executing, as
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planning describes which adaptation techniques to use on which elements and
executing controls the application of the techniques. The fifth dimension adapta-
tion control describes the structure of the adaptation logic and is not related to
any specific MAPE functionality as this dimension is concerned with the imple-
mentation details of the aforementioned four dimensions. Table 2.1 presents the
mapping of the MAPE functionality to the dimensions of our taxonomy.

Table 2.1.: Mapping of the MAPE functionality to the dimensions of the taxon-
omy from [229] (cf. Section 2.1.3).

Time Reason Level Technique
Monitoring Continuous What to moni-

tor
Identification of
the levels

—

Analyzing Algorithms vary
for reactive and
proactive adap-
tation

Where to ana-
lyze

— —

Planning — What should
planning influ-
ence

Adaptation
plans address
these levels

Plans for per-
forming the
techniques

Executing — — Execution of
the change on
the levels

Execution of
the techniques
on different
elements

2.4. Research Landscape

SASs are related to other research disciplines and areas. On the one hand,
SAS research integrates concepts from other research domains. On the other
hand, some research disciplines are similar to SAS. This section sorts the SAS
research into the research landscape and introduces related concepts.

First of all, there are different terms that are used interchangeably to de-
scribe the same concept: Dynamically Adaptive Systems (e.g., [414]), Autonomic
Systems (e.g. [320]), Self-managing Systems (e.g., [320]), Self-adaptive Systems
(e.g., [76]), or Self-adaptive Software Systems (e.g., [279]). This thesis constantly
uses the term Self-adaptive Systems. All of them follow the system model of
Section 2.2. Further, there are other approaches that are similar to SASs.

The mostly related concept is Autonomic Computing [198,234]. In the Auto-
nomic Computing domain, researchers integrate principles from biology, mainly
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from the autonomous nervous system [234], to equip systems with autonomic
capabilities. The former presented MAPE control loop arose in the Autonomic
Computing area. Researchers relate Autonomic Computing and SASs differ-
ently. Whereas Salehie and Tahvildari [320] consider SASs as a subcategory of
Autonomic Computing, McCann and Huebscher [191] use the terms interchange-
ably. We argue that SASs are the overarching concept [229] as both include
self-adaptation, but Autonomic Computing is rooted in Cloud Computing.

In contrast to the definition of self-awareness provided in Section 2.1.1, the
authors of [216] add capabilities to (i) reason on the knowledge of self-awareness
and (ii) acting accordingly. This makes their definition of self-aware computing
systems identical to this thesis view on SASs. However, in accordance with other
works (e.g., [183], [234], and [229]), this thesis clearly distinguishes self-awareness
– capturing knowledge on itself – and self-adaptation, i.e., acting on self-awareness
and context-awareness. Similarly, the term context-awareness – sometimes re-
ferred to as situation-awareness [61] – might be defined as in Section 2.1.1 or in
an extended version with the reasoning process on context-awareness [325].

For the first International Conference on Self-Adaptive and Self-Organizing
Systems, the program chairs defined SASs as top-down systems with central con-
trol [24], whereas Self-organized Systems (SOSs) are dedicated units that organize
themselves without a central instance [24], i.e., they work bottom-up. However,
reviewing the current literature of SASs shows that SASs offer both, centralized
and decentralized system control [229]. Hence, the division from [24] does neither
fit for defining SASs nor for distinguishing SASs and SOSs anymore. The "ded-
icated units" in SOSs might be implemented as SASs. Accordingly, the proper
relation seems to be that a SOS can be composed of SASs.

Pervasive/Ubiquitous Computing [388] aims at the seamless integration of IT
and everyday devices to support humans by smart IT. These systems are often
context-aware and adaptive. However, they target solutions in the IoT domain
rather than generic systems.

Organic Computing is associated with systems that use bio-inspired concepts
to implement organic behavior [268]. Similar to SAS, Organic Computing systems
try to achieve the self-* properties (cf. Section 2.1). In contrast, they focus on
(i) the integration of principles from nature-inspired computing, (ii) emergence of
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systems for shifting design activities to runtime, and (iii) the human-in-the-loop
as first class entity rather than an element to avoid.

Additionally to these closely related research domains, the domain of SASs
relies on approaches from many other domains for different tasks, such as rea-
soning, modeling, implementation of the adaptation logic, or adaptation en-
actment. These include control theory, artificial intelligence, reflective com-
puting, models@run.time, ad-hoc networks, dependable computing, embedded
systems, Multi-agent Systems (MASs), Service-Oriented Architectures (SOAs),
Aspect-Oriented Programming (AOP), Component-Based Development (CBD),
distributed systems, fault-tolerant computing, nature-inspired computing, or
robotics [76, 234,320].

This thesis sees SASs as general concept of systems that can adapt themselves
and, through that, also the environment for handling changes in the system or its
environment. They are not grounded on a specific application domain (e.g., as
Autonomic Computing) nor on a specific system model (e.g., as MASs). Hence,
the results of this thesis are generically applicable to many of the presented
different research streams.
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3. Research Methodology

Information Systems research offers several facets. The objective of this thesis
is to develop a new framework for engineering SASs focusing on reusability of
code. This fits the design science paradigm, which "seeks to extend the bound-
aries of human and organizational capabilities by creating new and innovative
artifacts" [180, p. 75].

Design science roots in the work of Simon [337]. It is centered around the idea
to create and evaluate one or more initial design alternatives that fit the prob-
lem of interest. Iteratively, the alternatives and revised designs are evaluated
until the best solution to the problem is identified. Design science is a research
paradigm [31] which is embodied in different methodologies (e.g., [180,289]). This
work follows the methodology of Peffers et al. [289] as it covers the traditional
phases of Software Engineering, hence, it is compatible with software develop-
ment activities. Peffers et al. defined six steps [289]: (i) problem identification
and motivation, (ii) definition of the objectives for a solution, (iii) design and
development, (iv) demonstration, (v) evaluation, and (vi) communication (cf.
Figure 3.1). In the following, this section explains the different steps in detail
and maps these steps to the procedure used within this thesis.

Step (i) identifies the problem and motivates its relevance. For the identifica-
tion of the problem, sufficient knowledge of the problem is necessary [289]. In this
thesis, this knowledge is represented by an analysis of related work. Accordingly,
Chapter 4 identifies the problem by analyzing the current state of the art in engi-
neering adaptive systems, development support for SASs, and self-improvement
for identifying research gaps. Often, for such overviews, the systematic literature
review technique is used to get a complete systematic overview on the field and
identify all relevant literature [208]. As the mentioned topics are very broad and
the characteristics of the publications are highly diversified, instead of a system-
atic literature, we did a systematic mapping [292] to identify the structure of the
research field and analyze the most relevant literature.
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Figure 3.1.: Design Science Research Methodology Process Model according to
Peffers et al. [289] (own visualization based on [289]).

Based on the problem identification, step (ii) defines the objectives. Pef-
fers et al. divide quantitative and qualitative objectives [289]. Quantitative ob-
jectives define measurements in which the new artifact outperforms current so-
lutions. Qualitative ones describe how the new artifact provides solutions to
problems that have not been addressed so far. For both categories of objectives,
the problem identification acts as source of knowledge. In this work, the require-
ments analysis in Chapter 5 represents the identification of qualitative objectives.

Step (iii) is the most important step as it involves creating the artifact,
i.e., the solution to the problem. The solution can be models, methods, con-
structs, or other instantiations. More general, Peffers et al. define the artifact
as "any designed object in which a research contribution is embedded in the de-
sign" [289, p. 55]. The artifact created in this thesis is the FESAS Framework
including the Adaptation Logic Manager. Accordingly, Chapter 6 describes the
design of both and their components.

Showing the feasibility of the created artifact is split in two steps. First,
step (iv) demonstrates the applicability of the artifact to solve one or more of
the issues defined in the problem identification (step (i)). This can be done by
using the artifact, e.g., in experiments, case studies, simulations, or proofs of
concept [289]. Following a proof by prototyping approach, Chapter 7 describes
the implementation of a prototype of the FESAS Framework following the design
from Chapter 6. Second, step (v) covers the analysis of the performance of the
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artifact for fulfilling the defined objectives. This thesis provides a mixture of
evaluation methods: functional testing, static and dynamic analyses, controlled
experiment, field study, and informed arguments. Chapter 8 presents details on
the evaluation. Following, Chapter 9 discusses the evaluation and the fulfillment
of the identified underlying problem, i.e., the requirements defined in Chapter 5.

Step (vi) includes the communication of the solution, e.g., in research publica-
tions or to management (in business settings). Mapped to this thesis, on the one
hand, the thesis itself communicates the solution. Further, parts of the presented
work have been published in various scientific papers (cf. Figure 3.2).

The methodology of Peffers et al. [289] enables the flexibility to start at almost
any step. As this thesis starts at step (i), it follows a problem-centered initiation
approach (cf. Figure 3.1). Further, it targets an iterative process with jumps back
to the design (step (iii)). This thesis presents the different steps in sequential
order. However, the process of working out the content was not sequential as
newer publications extend the contributions of older ones. Figure 3.2 presents
the adapted version of the process for this thesis as well as the mapping of steps
to chapters. Additionally, the figure provides an overview on the iterations and
their corresponding communication in form of publications.
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Figure 3.2.: Research methodology based on an adapted version of the Design
Science Research Methodology Process Model of Peffers et al. [289].
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4. Related Work

This chapter presents related work in three areas: (i) engineering adaptive
systems, (ii) development approaches for SASs, as well as (iii) approaches for self-
improvement. First, Section 4.1 introduces concepts for engineering SASs and
concepts from related research areas as the ones presented in Section 2.4. The
section is based on the survey of [229] as well as the technical report of [220] which
provides an updated version1. Second, Section 4.2 compares different develop-
ment approaches, focusing on frameworks, guidelines, tools, design processes, and
methodologies. This is a more narrow overview on development approaches which
focuses on the specific requirements for developing SASs. The section presents
the results of the analysis of such approaches in [224]2. Third, Section 4.3 sum-
marizes the comparison of systems that offer self-improvement. Its foundations
are the survey of [226] as well as the updated technical report of [227]3. Last,
Section 4.4 demarcates this thesis from related work by analyzing shortcomings
of the presented related work and motivating the research gap for this thesis.

4.1. Engineering Methods for Self-adaptive Systems

As described in Section 2.4, the research of SASs is related to different other
domains. Hence, it makes sense to integrate these related disciplines when an-
alyzing related works. Therefore, in [220] and [229], we analyze engineering ap-
proaches for research disciplines that are related to SASs for showing the diversity
of approaches and the type of development support (cf. research question RQ1 )
that are present in literature. In the following, this section presents a summary
of [220] and [229]. Appendix A.1 presents the captured data of the most relevant

1 [220] and [229] are joint works with M. Breitbach, F. M. Roth, S. VanSyckel, G. Schiele,
and C. Becker.

2 [224] is joint work with M. Pfannemüller, V. Voss, and C. Becker.
3 [226] and [227] are joint works with M. Pfannemüller, F. M. Roth, and C. Becker.
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approaches. For further details of the analysis, the interested reader is referred
to [220] and [229].

4.1.1. Model-based Approaches

Models are one of the four decision criteria for adaptation [229, 234]. Run-
time models or models@run.time support monitoring – e.g., by representing the
system and its environment – and reasoning, e.g., by comparing a model cap-
turing the actual system state with a desired system state. According to [191]
and [400], three types of models are used for monitoring and reasoning in a SAS:
(i) system models, (ii) adaptation decision models, and (iii) environment mod-
els. Three types of system models can be found in literature. Architectural
models represent the system’s architecture (e.g., [128,140,279]). Feature models
capture the functionality of software (e.g., [4, 32, 72, 112, 262, 263]). Behavioral
models describe the behavior of the system and the possible transitions or its
performance (e.g., [26, 152, 153, 213]). Adaptation decision models subsume goal
models, rules/policies, utility functions, or its requirements. If the system does
not fulfill its goals, adaptation is required. These models support reasoning and
the creation of adaptation plans (e.g., [75,155,218,253,290,383]). Last, environ-
ment models capture the system’s context (e.g., [43] or [329]).

Different approaches for SASs use model-driven techniques, e.g., Dynamic
Software Product Lines (DSPL) (e.g., [4, 28, 30, 38, 72, 85, 157, 164, 262, 293, 294,
321], combinations with model-driven development (e.g., [128, 145, 154, 163]),
metamodel-based automatic reasoning (e.g., [237, 378–380, 382]), verification
of system states (e.g., [127, 330, 414]), or models@run.time for SAS construc-
tion (e.g., [35, 46, 115, 129, 261, 381]). However, models only support monitoring
and reasoning and need to be accompanied by mechanisms for adapting the man-
aged resources, such as Aspect-Oriented Programming (AOP) (e.g., [127, 263]),
Component-Based Development (CBD) (e.g., [36, 157]), architecture-based ap-
proaches (e.g., [35, 140,278]), or service-oriented approaches (e.g., [163,255]).

4.1.2. Architecture-based Approaches

A SAS must be aware of its structure (cf. Section 2.1.1). Architecture-based
approaches use software architectures for representing the system structure and
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reasoning about adaptation [83, 105, 140]. Some approaches use agent-related
techniques for implementing architectural change (e.g., [393, 403]) or dedicated
architectural components for controlling the adaptation (e.g., [140, 147, 218, 278,
279]). Architecture-based approaches are accompanied by factors for control-
ling the adaptation, such as strategies (e.g., [140]), policies (e.g., [146, 147, 193,
198, 403]), goals (e.g., [174, 218, 351]), task characteristics (e.g., [295, 344]), or
constraints (e.g., [140]). Architecture-based adaptation is complemented with
architectural patterns (e.g., [23, 100, 139, 305, 401]), resource prediction for im-
proving self-adaptation (e.g., [82]), or dynamic architectural styles (e.g., [280]).
All architecture-based approaches implement MAPE components or components
with comparable functionality. Architectural models for monitoring the re-
sources (e.g., [35–37, 62, 79–81, 128, 140, 247, 278, 279, 335]) or Architecture De-
scription Languages (ADLs) for describing architectural models (e.g., [7, 62, 78,
79,81,114,148,243,245,279,390,391]) are used in combination with metrics – such
as policies, goals, strategies, or constraints – for reasoning about adaptation. All
analyzed approaches are external, i.e., they have a dedicated adaptation logic.

4.1.3. Reflection-based Approaches

Reflection is the ability of software to examine and possibly modify its struc-
ture (structural reflection) or behavior (behavioral reflection) at runtime [49,248].
Reflection is divided into two activities: introspection refers to the observation
of an application’s own behavior, intercession is the reaction on introspection’s
results [254], i.e., structural, parameter, or context adaptation. Reflection can be
used on different levels. Architectural reflection (or structural reflection) enables
to reflect on the software architecture of an application, i.e., its components,
interconnections, or data types (e.g., [69, 107, 142, 165, 254, 264, 309, 359, 359]).
Behavioral reflection refers to reflection on the behavior of the software, e.g., al-
gorithms for computation or communication mechanisms [254, 355, 389]. Reflec-
tive middleware (e.g., [13, 48, 86, 211, 212]) can support runtime reconfiguration
of a component-based system. Additionally, Sawyer et al. propose the use of
reflection techniques for introspection of requirements at runtime [323].
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4.1.4. Programming Techniques

Different programming paradigms support the execution of parameter and
structural adaptation. In Component-Based Development (CBD), also known
as Component-Based Software Engineering (CBSE) and Component-Based Pro-
gramming (CBP), software components encapsulate functionality that can inde-
pendently from each other be developed, deployed, and composed [352]. Differ-
ent authors propose adaptation on a component level (e.g., [6, 33, 36, 37, 47, 107,
187, 189, 195, 209, 218, 239, 254, 275, 335, 351]). In Aspect-Oriented Programming
(AOP), software is divided in distinct concerns. The goal is to re-use generic
functionality in different classes (cross-cutting concerns). Therefore, logical con-
cerns are separated from the specific implementation [203]. McKinley et al. pro-
pose AOP for enabling separation of concerns, which leads to simplified composi-
tional adaptation [254]. Different authors integrate techniques from AOP in their
SASs (e.g., [73, 162, 188, 262, 263]). Other authors propose generative program-
ming for SASs [254, 276, 402]. In generative programming, software is built with
the help of high-level descriptions that are mapped to generic classes, templates,
aspects, and components [88]. Adaptive programming techniques can support
the development of SASs [3, 158, 339] through learning of new behavior at run-
time. In Context-oriented Programming (COP), the context is incorporated as
a first-class construct in programming languages (e.g., [22, 184, 197, 322]. COP
enables reasoning on the context and to appropriately adapt. The presented
programming techniques mainly support planning and executing compositional,
reactive adaptation.

4.1.5. Control Theory-based Approaches

Section 2.3 highlights the importance of control structures for the adaptation
logic [56]. Control structure engineering for SASs focuses on feedback loops which
results in reactive adaptation. It poses different challenges: developing reference
architectures for control loops, creating a catalog of control loop structures, mid-
dleware support for control loop integration, verification & validation techniques
to test and evaluate control loops’ behavior, and integration of the user [76].
To address these issues, knowledge from control theory can be used for the de-
velopment of SASs [124]. Researchers propose learning approaches in order to
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dynamically adapt the control law (e.g., [210]), modeling of feedback loops as first
class design elements (e.g., [175,232,267]), or using control theory for automatic
design of controllers for reasoning (e.g., [104,123]). The reader is referred to [288]
for further information on using control theory for designing SASs.

4.1.6. Service-oriented Approaches

Services are encapsulated and autonomous units of software that fulfill a spe-
cific task [255]. In Service-Oriented Computing (SOC) such services are used to
"support the development of rapid, low-cost, interoperable, evolvable, and mas-
sively distributed applications" [284, p. 64]. The key for SOC is the Service-
Oriented Architecture (SOA), which enables finding, using, and connecting ser-
vices. The service approach can be mapped to SASs. The naive approach for
building a service-oriented SAS is to model the managed resources’ functional-
ity as services. The adaptation logic decides, which services should run and in
which order. Therefore, dynamic exchange of services enables structural adapta-
tion [103]. Different frameworks for SASs use service-oriented techniques as de-
scribed (e.g., [60,102,128,145,156,163,240,255]). Other approaches combine AOP
and SOC for building SASs (e.g., [73,188]), take advantage of SOAs as technical
base for implementing the variability of DSPL (e.g., [28]), integrate agent-based
approaches and SOAs (e.g., [138]), use component models which are instantiated
with service implementations at runtime (e.g., [71, 195]), apply requirements en-
gineering techniques for building service-oriented SASs (e.g., [303]), adopt the
Active Components concept for engineering decentralized control (e.g., [296]),
or focus on Quality of Service (QoS) aspects within service-oriented self-
adaptation (e.g., [65, 178]). Often, models are used for reasoning, which services
need to be adjusted/changed (e.g., [163, 195, 255]). The re-composition or ex-
change of services concerns the planning and executing activities and needs to be
accompanied by monitoring and analyzing procedures.

4.1.7. Agent-based Approaches

A software agent is a piece of software that solves a specific problem au-
tonomously and cooperatively [110]. A Multi-agent System (MAS) is a system of
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agents that share common goals and, therefore, communicate and cooperate. Sev-
eral authors discussed aspects in the construction of self-organizing / self-adaptive
MASs, such as dynamics and decentralized control in a MAS (e.g., [97,393,403]),
emergence and self-organization for MASs (e.g., [98]), a methodology for engineer-
ing self-organizing MASs (e.g., [40, 99]), as well as architectures (e.g., [250, 358])
and design patterns for adaptable MASs (e.g., [87, 100, 139]). Other authors in-
tegrate a MAS and SOA for building SASs (e.g., [138]) or use CBD for designing
autonomous agents as components (e.g., [26]). The variety of agent-based ap-
proaches offers (in theory) both temporal aspects of self-adaptation. Adaptation
happens mainly on the application level, but other levels are feasible, too. Most
approaches rely on a decentralized adaptation logic as a MAS should not be con-
trolled by a central unit. Self-adaptive MASs focus on the planning functionality.

4.1.8. Nature-inspired Approaches

Systems in the nature are composed of independent but interacting compo-
nents [272]. Each component adapts individually. The resulting system be-
havior is different from the behavior of the individual components (cf. emer-
gence) [56, 98]. Nature-inspired systems can be categorized into four key
metaphors: biological, physical, chemical, and social. In the following, we present
examples for nature-inspired mechanisms in SASs. Biological mechanisms, such
as flocking [249,333,412], foraging [50,106,249], nest building [249], molding [249],
local inhibition [272, 334, 357], lateral inhibition [356], chemotaxis [68, 236, 272],
embryogenesis [249], morphogen gradient [272], local monitoring [272], quorum
sensing [249, 256, 272], consensus [68, 272], firefly synchronization [392], stig-
mergy [68, 236, 249, 365], web weaving [52, 249], brood sorting [249], and the
human immune system [68, 90] or human autonomous nervous system [198, 249]
have been applied in SOSs or SASs. Physical approaches mainly focus on the
metaphor of potential fields pioneered by Kathib who employed them for obstacle
avoidance in path planning in [201], e.g., used for SASs in [68,250,310,338,395].
Chemical approaches copy behavior observed in chemical reactions and find their
application in SASs as a mean for programming service composition (e.g., [27]) or
coordination modeling (e.g., [68, 376]). Social approaches concentrate on market
mechanisms and norms (e.g., [319, 366, 373]). Most approaches focus on plan-
ning. [120,244,411] provide overviews on nature-inspired computing.
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4.1.9. Formal and Verification-based Approaches

Dynamic behavior through self-CHOP properties aggravates to prove the
correctness of SASs [160, 271]. However, a SAS requires to ensure behav-
ioral and structural guarantees [96], especially in safety-critical domains, such
as traffic light systems [298]. In contrast to regular software, SASs fur-
ther require verification at runtime to match requirements and adaptation de-
cisions [59]. For these tasks, different simulation-based verification frame-
works (e.g., [135,194,205–207,251,396,400]), (formal) design methods (e.g., [150,
159, 160, 213, 271, 297, 340]), language specifications (e.g. [92, 275, 371]), model
checking techniques (e.g., [18, 85, 122, 125, 257, 415]), Domain Specific Languages
(DSLs) for describing self-adaptation (e.g., [8, 17, 78, 348]), or stochastic ap-
proaches (e.g. [58, 130]) exist. These approaches mainly address the analyzing
and planning part of the MAPE loop. A comprehensive overview on existing
techniques for assurance of SASs and corresponding challenges is given in [328].
Further information on formal methods in SASs can be found in [397].

4.1.10. Machine Learning-based Approaches

Learning in a SAS is tightly coupled to self-optimization. A SAS continu-
ously optimizes structure, parameters, or algorithms of the managed resources
in order to become more efficient with regard to performance or cost [198].
Learning in a SAS focuses on structural optimization (e.g., [108, 112, 113, 126,
281, 286, 298, 358]). Several approaches use reinforcement learning for struc-
tural optimization (e.g., [63, 108, 204, 282, 349, 416]). Other works address pa-
rameter optimization (e.g., [25, 53, 354]). Algorithmic optimization aims at op-
timizing the algorithms of the managed resources (e.g., [196, 278]). The field
of Search-based Software Engineering (SBSE) [171] applies search-based meta-
heuristic techniques to software engineering – e.g., genetic programming – for
examining large search spaces of candidate solutions to find a (near) opti-
mal solution to problems in designing software [173]. Contrary to the tra-
ditional approach, dynamic SBSE applies the principles of SBSE at runtime
to determine the most suitable system configuration during planning of self-
adaptation (e.g., [14, 169, 170, 172, 255, 304, 308, 385, 386, 417, 418]). Learning
approaches mainly support the planning component. Adequate procedures for
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monitoring, analyzing, and executing have to be added. Further, learning can
be used for meta-adaptation of the adaptation logic, e.g., through learning new
rules for adaptation (e.g., [2, 134,362]).

4.1.11. Requirements-oriented Approaches

For SASs, a specialized form of Requirements Engineering (RE) is needed as
the dynamic nature of a SAS potentially results in uncertainty at runtime [323],
due to a lack of information at design time [76]. Literature provides more in-
formation on causes for uncertainty at runtime (cf. [307,405]). Different authors
propose to include runtime capabilities for RE, e.g., modeling requirements at
runtime (e.g., [29,168,259]) or reasoning through requirements reflection at run-
time (e.g., [39,265,287,336]). Additionally, different authors present requirement
languages tailored to SASs (e.g., [29,76,89,155,302,404,409]). However, most of
them do not explicitly support uncertainty. Runtime capabilities for managing
requirements are important for reasoning on adaptation. RE approaches usually
address the whole MAPE cycle. As requirements represent one type of goals the
SAS should fulfill, RE approaches are mainly goal-based.

4.1.12. Further Approaches

There are further approaches, which cannot be categorized into one of the cat-
egories presented above. In task-based adaptation, the system determines suit-
able adaptation policies based on the users’ task characteristics [295,344]. Some
approaches use middleware-centric adaptation for achieving structural adapta-
tion (e.g., [165, 262, 317]). Additionally, some authors propose development pro-
cesses (e.g., [11,238,331,361,414]) and modeling dimensions (e.g., [12,55]) for the
engineering of SASs. Further, different authors propose the use of design patterns
for SASs (e.g., [23, 87,100,120,132,133,139,270,305,341,401]).

4.2. Development Approaches for Self-adaptive Systems

The previous section presented a rather exhaustive overview on approaches for
engineering (self-)adaptive systems that covers a broad range from rather abstract
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concepts – as programming paradigms or mathematical theories for verification
of systems properties – to specific approaches for reasoning on adaptation or
architectural models for the adaptation logic. However, it did not focus on the
type of development support – e.g., tools, guidelines, or frameworks – offered by
the approaches. This section presents the results of [224], where we analyzed and
classified development approaches specific for SASs into frameworks, guidelines,
tools, design concepts, and methodologies. This section analyzes the research
gap in current state of the art approaches for developing SASs focusing on the
research questions RQ1 and RQ2. In the following, this section first presents our
descriptions of the five categories. After, it discusses the results of the analysis
presented in [224]. Parts of this section are taken from [224]4.

In general, a framework is an abstraction providing generic functionality that
can be extended by user-written code. In the context of SASs, approaches based
on frameworks often provide a combination of a reference architecture, tools,
middleware, development process definitions, or component libraries. Guide-
lines support designers and developers by offering a detailed sequence of working
steps that have to be performed. Typically, they do not offer tools, libraries,
or reference architectures, but they can be accompanied accordingly. The provi-
sion of design and development tools can make the software engineering process
more efficient as they automatize parts of development processes and lower error-
proneness. Some approaches offer only one tool for a specific task. By contrast,
others offer whole tool suites supporting several development activities. Design
concepts are focused on design time activities and, therefore, do not directly tar-
get implementation activities. These include design principles and patterns, but
do not offer libraries or specific implementation proposals. However, they can in-
tegrate tools, e.g., for modeling. In general, a software development methodology
is a strategy or procedure to deal with a certain problem. It can be limited to
a specific task or cover the whole development process. Besides, it can include
process definitions, modeling languages, or analysis techniques. However, it is
not as extensive as a framework and is not bound to a step-by-step guideline.

In [224], we worked out a taxonomy for comparing development support of
approaches for developing SASs. The taxonomy has 18 dimensions related to:
the users (here: developers and designers), the context of use, the type of sup-

4 [224] is joint work with M. Pfannemüller, V. Voss, and C. Becker.
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port, the support for integrating adaptation, and proof of concept. Appendix A.2
describes the dimensions in detail. Using the taxonomy, we analyzed 26 devel-
opment approaches for SASs. Additionally, we categorized these approaches into
the five categories mentioned above. Table 4.1 shows an aggregated overview
on the approaches. Furthermore, Appendix A.3 provides the full data of the
comparison from [224]. In the following, this section discusses the results of the
comparison. As the various categories of development approaches are fundamen-
tally different, approaches of the same category are compared with each other.
This guarantees that the comparison of the development approaches provides
meaningful findings. Due to the variety of tools but also the fact that many tools
are not publicly available, we omitted them for this comparison.

The analysis identified architecture-based, model-based, service-oriented,
agent-based, and component-based frameworks. Most offer support at runtime,
some also at design time. All frameworks consider reusability on the adaptation
infrastructure level. However, they differ regarding reusable processes and com-
ponents as well as middleware. Furthermore, none of the approaches focuses on
reusing existing code on an intra-component level. The support of adaptation
mechanisms differs. Adaptation is achieved through models, adaptation services,
coordination mechanisms, or middlewares. All frameworks offer compositional
adaptation, confirming their component-based structure. Some frameworks claim
to provide comprehensive tool support, e.g., Rainbow [140] or MUSIC [163]. The
comparison of the approaches indicates that present frameworks do not only fo-
cus on runtime support but also include design time activities into their support.
But support for self-improvement is often not integrated and, hence, they often
do not cover the whole lifecycle.

Our overview [224] compared three guidelines. The Software Engineering
Guideline [331] is agent-based and achieves adaptation through the construction
and execution of the Organic Design Pattern. The Development Approach and
Automated Process [5] is architecture-based and achieves adaptation through dif-
ferent modules. However, both provide support at design- and runtime, as [331]
includes a design pattern and [5] provides a reference architecture. Last, the
SE processes for SAS [11] describe a rather generic applicable process that does
not specify the adaptation support. None of the guidelines offer libraries for
supporting the development process.
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Table 4.1.: Overview on the development approaches analyzed in [224]. For
this thesis, we added the approaches EUREMA [377, 380] and
DESCARTES [190,215]. Arch. = Architecture

Name of approach Year Type of
approach

Type of
support

Rainbow [77,140] 2004 Arch.-based Framework
Model-Driven Approach [66] 2008 Model-based Framework
Meta-Self [102] 2008 Service-oriented Framework
SodekoVS [347] 2009 Agent-based Framework

MUSIC [163] 2012 Model-based,
Service-oriented Framework

Architectural Framework for
Self-Configuration & Self-Improvement [362] 2011 Arch.-based Framework

FUSION [112] 2010 Model-based Framework
SASSY [255] 2011 Service-oriented Framework
Zanshin [336] 2012 Control-based Framework
StarMX [20] 2009 Arch.-based Framework
MOSES [65] 2012 Service-oriented Framework
Software Mobility Framework [247] 2010 Arch.-based Framework
GRAF [10] 2012 Model-based Framework

DESCARTES [190,215] 2016/17 Model-based Framework

EUREMA [377,380] 2018 Model-based Framework
Software Engineering Guideline [331] 2010 Agent-based Guideline
Development Approach and Automatic
Process [5] 2015 Arch.-based Guideline

SE Processes for SAS [11] 2013 not defined Guideline
Modeling Dimension [13] 2009 Design concept Concept
Design Space [55] 2013 Design-driven Concept

High Quality Specification [242] 2013 Model-based Methodol-
ogy

Behavioral corridors [271] 2010 Verification-
based

Methodol-
ogy

General Methodology for Designing
SOSs [151] 2007 Design concept Methodol-

ogy

FORMS [398] 2010 Model-based Methodol-
ogy

DYNAMICO [375] 2013 Control-based Methodol-
ogy
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Both analyzed design concepts provide reusable design principles for designing
SASs. The designer involvement is similar as they have to explore and apply
design dimensions or answer design questions. Both approaches do neither use
libraries, processes, nor reference architectures, but are extendable. In general,
both design concepts are very similar and offer abstract support for developers.

Methodologies tend to be focused around a procedure dealing with a specific
problem. For instance, Gershenson’s General Methodology [151] gives a standard-
ized view on the development process of SASs. Two approaches, FORMS [398]
and DYNAMICO [375], provide reference models, but do not provide an im-
plementation of them. Opposite, the other methodologies share a high level of
abstraction as they focus on giving generic guidance on the development process.
Hence, their specific implementation support is rather abstract and limited.

4.3. Approaches to Self-improvement

In [226], we present a comparison of approaches for self-improvement. The
technical report of [227] extends [226] with recent approaches. Parts of both
works5 are integrated in this section. In the following, this section discusses the
approaches for self-improvement to show the relevance of research question RQ2.

Approaches for self-improvement target different system domains, such as
model-driven evolutionary systems, DSPLs, machine learning-based approaches,
and requirements-aware systems. Such approaches reconfigure the adapta-
tion logic using reasoning procedures based on goal models [194, 218, 274, 350,
353] or runtime models [121, 161, 377], formal/verification methods [194, 273],
architecture-based approaches [274], machine learning algorithms [9, 109, 115,
116, 298, 363], requirements-awareness [287, 291], and rules/strategies [149, 342].
In [226] and [227], we compared 18 approaches for self-improvement using the
taxonomy for self-adaptation from [229] (presented in Section 2.1.3). Table 4.2
shows the results of the comparison with an additional approach [377]. In the
following, this section summarizes the state of the art for self-improving systems.
For detailed information about the approaches, the reader is referred to [226]
and [227].

5 [226] and [227] are joint works with M. Pfannemüller, F. M. Roth, and C. Becker.
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Most of the approaches integrate reactive self-improvement, only three com-
bine reactive and proactive behavior. A single approach works purely proactive.
In many cases, a reactive self-improvement can be sufficient as usually the adap-
tation logic should find an appropriate adaptation for the managed resources.
However, proactive self-improvement is necessary to avoid situations that the
adaptation logic cannot handle. Such situation would lead to delays in the sys-
tem and malfunction in the worst case. There is a high diversity regarding the
adaptation reason indicating that the reason might be use case specific. The ma-
jority of the methods offers parametric self-improvement. Only three approaches
provide both types of self-improvement. Additionally, none of the approaches
with structural self-improvement has proactive behavior. This might be benefi-
cial to better fit changes in the managed resources or the context. The fact that
almost every method works with an external approach corresponds to the findings
of [128]. There, the authors claim that an external approach offers better main-
tainability as well as extensibility. Only one approach works decentralized. All
remaining approaches offer a centralized approach to self-improvement as a cen-
tralized setting facilitates a global view on the SAS. However, a central approach
leads to a higher processing time as the amount of data for analysis is higher
than for decentralized, local decision making. Weyns et al. describe different
time scales for response times of hierarchical layers in a SAS [401]. There might
occur situations in which the adaptation logic is unable to adapt its managed
resource adequately. In this case, self-improvement should provide an adaptation
as fast as possible. However, usually self-improvement executes runtime intensive
optimization modules in order to find the best plan to improve the adaptation
logic. Hence, the advantage of global decision-making for self-improvement out-
weighs the prolonged response time. The decision criteria are mixed for reactive
self-improvement. This reveals that the used decision criteria might be use case
specific.

In [226] and [227], we present further approaches that do not focus on but
could handle specific aspects for self-improvement. For the comparison above,
these approaches were excluded as they are not integrated into an automatic
approach for self-improvement at runtime. In the following, we summarize them.

Other authors propose design methodologies or patterns for interaction of
adaptation loops (e.g., [18, 92, 300]). In [283], the authors describe a technique
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for synthesizing changes of different versions of controllers (comparable to an
adaptation logic). DYNAMICO adds an additional layer for monitoring and rea-
soning on adaptation objectives [375]. Hölzl et al. present a software development
lifecycle that relies on the connection of three loops [186]. For self-improvement,
the adaptation loop feeds the design process with feedback, hence, developers
can update the system. However, these approaches mainly target design time
or only offer concepts. Through machine learning, it is possible to improve the
adaptation logic, e.g., through learning new rules or updating goals. For fur-
ther information about these approaches, the interested reader is referred to the
overviews presented in [116] or [229]. However, most of these approaches are
highly use case dependent [116] or cannot cope with new context situations [229].

One has to mention, that it might be possible to achieve self-improvement
by considering the adaptation logic itself as managed resource and adding an
additional component for self-improvement. This way, common approaches for
building SASs (e.g., Rainbow [140] or Archstudio [278]), or some of the approaches
presented in Section 4.1 could be used for self-improvement. However, current
research projects have not addressed this so far.

4.4. Demarcation of this Thesis from Related Work

This section discusses the former presented related work. It focuses on
the main aspects of the research questions: the degree of reusability, self-
improvement, and the integrated support for development of SASs.

As presented in Section 4.1, many approaches might be used for developing
SASs. Architecture-based approaches have in common that specific components
or layers control and execute adaptation. Often, approaches are based on models
for controlling adaptation. For the composition of artifacts, service-based tech-
niques are beneficial. Here, services can be composed in different chronological
orders and service implementations are exchangeable for handling changing (en-
vironmental) requirements. Therefore, service architectures are commonly used
for simplifying the compositional adaptation. Beside others, Organic Comput-
ing [268] or Autonomic Computing [198] are derived from principles of adaptation
found in biology, physics, or chemistry that are transferred to IT. However, most
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systems based on the above mentioned approaches are lacking the ability of gen-
eralization as they are tailored to specific use cases. Design decisions related to
the specific needs of the use cases complicate reusability of the resulting artifacts.
The reusability is additionally limited as reusable and well-defined processes and
components for design and implementation are often missing [96] or offer a non-
optimal level of abstraction. Furthermore, the authors mostly focus on one of
the categories (architecture-based, model-based, or service-based) instead of com-
bining them in order to benefit from their advantages – e.g., the abstraction of
service orientation and ease of model-driven design – while minimizing the respec-
tive drawbacks – e.g., the fixation on specific use case requirements for improving
reusability (cf. research question RQ1 ). Further approaches integrate control
theory or formal methods for runtime verification. These methods often provide
high-level concepts and neither reference implementations nor prototypes.

The Dagstuhl seminar in 2009 identified a lack of frameworks tailored to-
wards designing and engineering SASs [76]. This changed in the recent years as
presented in [224]. Beside of frameworks that combine different artifacts for sup-
porting the implementation of SASs, process definitions, reference architectures,
modeling approaches, guidelines, methodologies, or tools that are customized to
the specific requirements of developing SASs are presented in the recent years.
However, most of the above mentioned shortcomings are true for most of the
development approaches presented in Section 4.2. Especially, there is a lack
regarding generic process elements for SAS design and development in combina-
tion with reusable implementations of artifacts such as component libraries or
reference architectures [96]. Furthermore, an implementation library of reusable
components like control structure elements would support the development of
the adaptation logic for a SAS [96]. If available, these libraries require the use
of specific programming concepts or programming languages. Integrating the
process definitions and a library of components into a framework enhanced with
tools would simplify the development of SASs and results in faster and less error-
prone development (cf. research question RQ1 and RQ3 ). From the analyzed
development approaches, the MUSIC framework [163], EUREMA [377,380], and
DESCARTES [190, 215] are the most complete approaches as they combine a
model-driven approach, development process, tools, and a reference system. How-
ever, they are related to a specific modeling approach. All approaches except of
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EUREMA [377,380] and FUSION [112] do not offer end-to-end support address-
ing all phases: design, deployment, and self-improvement at runtime.

Section 4.3 presents approaches for self-improvement. The spectrum ranges
from examples for parametric self-improvement – such as the integration of a rule
learner that is able to learn rules at runtime after a context change (e.g., [9,298])
– to approaches that focus on the structural self-improvement of the feed-
back loop at runtime (e.g., [274, 363]). Our analysis of approaches for self-
improvement [226, 227] (cf. Section 4.3) shows different shortcomings of exist-
ing approaches. They mainly focus on either structural or parametric self-
improvement of the adaptation logic as well as either on reactive or proactive
reasoning. The approaches react on different triggers: changes in the context,
managed resources, or the user, i.e., change of goals. However, monitoring of
triggers and execution of self-improvement is often specific for an application.
Therefore, it might be beneficial to separate generic elements and application-
specific parts that require customization. This enables reuse of the approach
for self-improvement. Additionally, for offering flexibility to developers, the ap-
proaches should integrate development support for reactive and proactive self-
improvement and not focus on only structural or parametric self-improvement.
As shown in [226] and [227] (cf. Section 4.3), none of the available approaches
addresses all issues.

The FESAS Framework presented in this thesis addresses these shortcomings.
It complements a process definition for developing SASs with development tools
that abstract from common tasks, such as implementation of communication
between the MAPE components in the adaptation logic. Further, it separates
reusable components for building the adaptation logic and specific algorithms
within the MAPE component (cf. research question RQ1 ). Additionally, it con-
trols the deployment of the system. At runtime, the FESAS Framework offers
an approach to self-improvement (cf. research question RQ2 ). Hence, the FE-
SAS Framework offers end-to-end support from design time to deployment and
runtime (cf. research question RQ3 ). The following chapter describes the concept
of the FESAS Framework in more detail and derives requirements, the framework
components have to fulfill. The identified shortcomings of existing related work
influence these requirements.
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5. Requirements Analysis

Based on the analysis of related work as knowledge base, this chapter de-
rives requirements for the artifacts considering the research questions. First,
Section 5.1 presents a high-level concept for the FESAS Framework. Parts of
this section are based on [219] and [231]1. Following, this chapter derives the
requirements for the FESAS Framework based on the concept. These require-
ments target (i) the support offered by the framework at design time and for
system deployment (cf. Section 5.2) as well as (ii) the self-improvement function-
ality at runtime (cf. Section 5.3). These requirements influence the system design
presented in Chapter 6 as well as the implementation presented in Chapter 7.

5.1. Concept for a Framework for Developing Reusable
Self-adaptive Systems

Deriving from research question RQ1, the FESAS Framework should offer
generic support for engineering reusable SASs. Therefore, it integrates generic
applicable development processes and reusable components. The term "generic"
denotes the applicability in different system domains. This is complemented with
support for self-improvement based on meta-adaptation [219,228,231] to meet re-
search question RQ2. The combination of these functionalities in an end-to-end
process that offers support (i) at design time but also (ii) for self-improvement at
runtime targets research question RQ3. Figure 5.1 shows the conceptual design of
the framework. The framework provides tools for designing and developing a SAS,
a reference architecture for the adaptation logic, and a library with reusable com-
ponents for building the adaptation logic. The design is based on model-driven
engineering. A design model captures requirements, goals, constraints, and an
initial architecture connecting the adaptation logic and managed resources. The

1 [231] is joint work with S. VanSyckel and C. Becker.
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Systems

FESAS Framework transforms the design model into a runtime system model.
The system model offers an initialization of the system based on a reference ar-
chitecture. The reference architecture is designed in a general way in order to
apply to many different application domains and consists of a communication
middleware and containers for the MAPE elements. These containers integrate
two elements: (i) a communication module and (ii) the business logic. The com-
munication module enables data exchange in the adaptation logic. The business
logic is the functionality of a MAPE component, e.g., for observing the managed
resources or planning adaptation. Whereas the containers and communication
modules are generic, the business logic might be implemented specifically for a
SAS or one of the available business logics of the library is used. At runtime, the
FESAS Framework equips containers for the MAPE components of the adapta-
tion logic with business logic functionality and distributes them on sub systems
according to the system model. Further, the FESAS Framework connects adap-
tation logic and managed resources as specified in the system model.

Design Model:

 Goals

 Constraints

 Initial 

Architecture

Tools
Reference 

Architecture
Library

transforms determines

System Model:

 Architecture 

 Connection to 

Managed 

Resources

Adaptation Logic:

 MAPE 

Components

 Comunication 

 Ctx Manager

Self-improvement:

 MAPE 

Components

 Modules for 

Reasoning
Meta-

Adaptation

System 

State

Figure 5.1.: The FESAS Framework supports designers and developers at the de-
sign time and during deployment of SASs with the focus on reusabil-
ity and integrates self-improvement at runtime.

As pointed out by [161] and [278], within changing environments or for mobile
systems it is not sufficient if only the adaptation logic adapts the managed re-
sources. Also the adaptation logic behavior itself should evolve to reflect changes
as the used adaptation reasoning approach has to reflect substantial environmen-
tal changes. Therefore, once the system is running, newly detected requirements
and constraints for the system are used for refinement of the system model,
which can trigger the reorganization of adaptation logic components, i.e., self-
improvement. The FESAS Framework offers corresponding modules for that
purpose as well as integrates development support for these tasks in its processes
and tools.
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Finally, development tools enables capturing information for the system model
and supporting developers in implementing the business logics. As reusability of
code is one of the main design considerations, this needs to be reflected in the
tools for reusing code and system designs.

5.2. Requirements for the Development Framework

Based on the analysis of related work (cf. Section 4) and the research questions
RQ1 and RQ3, we identified the following requirements for the FESAS Frame-
work to support developers in building reusable SASs:

RDev1: External control The adaptation logic and the managed resources
should be separated for higher maintainability and reusability.

RDev2: Reference architecture The adaptation logic requires to be built on a
reference architecture that supplements (i) a well-known standard control
structure with (ii) modules that offer supportive functionality.

RDev3: Flexible adaptation control A framework for developing SASs should
(i) support different adaptation control patterns and (ii) offer deployment
mechanisms for initializing the MAPE structure according to the patterns.

RDev4: Context management Integrating a context manager that maps spe-
cific retrieved context data to generic context models enables reuse of con-
text reasoning algorithms.

RDev5: Generic adaptation support The framework should support (i-a) para-
metric and structural self-adaptation as well as context adaptation, (i-b)
reactive and proactive adaptation, and (i-c) all adaptation decision criteria,
i.e., rules/policies, goals, models, and utility functions. Therefore, (ii) en-
capsulation of the adaptation mechanism is required.

RDev6: Connection to managed resources The adaptation logic requires to be
connected to the managed resources. Developers should be supported with
(i) communication modules and (ii) configuration procedures.

RDev7: Integrated Development A development process with development
tools should integrate a reference architecture and reusable implementa-
tion artifacts with self-improvement at runtime.
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In the following, this section explains these requirements and their rationales.
Related to research question RQ1 the requirements for the FESAS Framework
are centered around the reusability of code for the adaptation logic. For build-
ing the adaptation logic, there are two different approaches present in litera-
ture (cf. Section 2.2): The managed resources and the adaptation logic can be
(i) integrated (internal approach) or (ii) separated (external approach). As we
aim at a reusable adaptation logic, the adaptation logic should be separated
from the managed resources for improving maintainability [128, 229], hence, en-
abling reusability. Otherwise, the adaptation logic would be intertwined with the
managed resources, which results in optimized but highly customized and less
reusable systems. Accordingly, the FESAS Framework requires to support an
external approach for the adaptation logic (requirement RDev1).

As shown in the analysis of related work (cf. Section 4), all approaches have
in common that the adaptation logic is composed of: (i) control structure com-
ponents and (ii) supportive components. The supportive components implement
generic functionality, e.g., for handling data or communication. In many ap-
proaches in literature, this functionality is intertwined with the control structure
components or not present at all. If present, it is often highly specific for an
approach. This limits its reusability. Therefore, for supporting the developers,
on the one hand, it is important that the adaptation logic follows a well-known
control structure (requirement RDev2.i). On the other hand, the functionality of
supportive components requires to be abstracted and modularized for simplified
reusability (requirement RDev2.ii). This includes clearly defined interfaces and
processes – which might be codified in tools – for using these components. Both
requirements lead to the definition of a reference architecture for the adaptation
logic that supplements a well-known control structure with modules that integrate
common supportive functionality (requirement RDev2). To support this, it is nec-
essary that designers can use tools that are able to abstract from the low-level
requirements of specific system implementation by offering a high-level abstrac-
tion and integrating the generic supportive functionality. Specific requirements
might be implemented separately, but – once implemented – will be integrated
into the SAS autonomously by the framework.

In [401], the authors propose patterns for decentralized control of SASs. De-
centralized control means that at least one MAPE function is distributed on sev-
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eral MAPE components. For a fully decentralized control pattern, each MAPE
functionality would be present in all sub-systems of the adaptation logic (cf. Fig-
ure 5.2a). In contrast, Figure 5.2b shows a fully central adaptation logic having
one MAPE component for each MAPE function. A hybrid pattern combines cen-
tralized and decentralized MAPE elements. As an example, Figure 5.2c shows
the master slave pattern from [401]. This hybrid pattern integrates centralized
analyzing and planning, however, monitoring and execution are distributed.
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Figure 5.2.: Comparison of adaptation logic structures (AL = adaptation logic,
MR = managed resources, M,A,P,E = MAPE components).

The locus of control is independent from the distribution of the MAPE com-
ponents to hardware. A decentralized adaptation control is not necessarily dis-
tributed. It might be possible, that the decentralization results from a split of
responsibilities, however, still all MAPE components are running on the same
system. As an example, for a smart home system that controls the heater it
makes sense to have several monitors: one for monitoring the room temperature,
one for monitoring the heater as well as one for monitoring whether the window
is opened or closed. Contrary, this system would have one planner as the setting
for the heater might be adjusted to the room temperature but also to the state
of the window: if the window is opened in winter, it does not make sense to turn
on the heater; rather, the planner informs the inhabitant about the open win-
dow. However, all of these MAPE components are part of the same central smart
home control system. So comparable to network design, the adaptation control
can be divided into a logical overlay – the locus of adaptation control which
might be centralized, decentralized, or hybrid – and a physical underlay, which
describes the mapping of the control pattern to MAPE components and their
distribution on the hardware. A framework for developing SASs requires to offer
(i) design support for different adaptation control patterns (requirement RDev3.i)

51



5.2. Requirements for the Development Framework

and (ii) deployment support for deploying the MAPE components at runtime ac-
cording to the defined patterns (requirement RDev3.ii).

The survey of [229] showed that SASs often do not sufficiently include the
context (cf. Section 2.2). Whereas almost every approach monitors the context,
explicit alteration of context is often not addressed and the environment remains
uncontrollable for the adaptation logic [11]. Even if context adaptation is not
intended, context-awareness is essential because of the necessity to respond to
environmental changes with self-adaptation. Additionally, an abstraction from
specific context information improves reusability. Extending the adaptation logic
with a context manager that (i) offers a knowledge base for context information
and (ii) maps retrieved context data to generic context models enables reuse of
context reasoning algorithms (requirement RDev4).

Related work [76,229,254] identified three basic mechanisms for self-adaptation:
(i) parameters, (ii) the system’s structure, or (iii) the context. Further, literature
distinguishes [229] reactive adaptation and proactive adaptation. Last, different
adaptation decision criteria – rules/policies, goals, models, and utility functions
– can be found in literature [229,234]. The framework should be flexible enough
to support all of them (requirement RDev5.i). However, in combination with the
reference architecture (cf. requirement RDev2), [161] describes a new challenge:
the composition of the modules. Therefore, it is important to encapsulate the
adaptation mechanisms (requirementRDev5.ii) and make them accessible through
clearly defined interfaces. This supports the integration of existing approaches
for adaptation reasoning and, hence, reusability (cf. research question RQ1 ).

An external adaptation logic requires a connection to the managed resources.
Different communication technologies are available, such as socket-based 1:1 con-
nection or using a communication middleware. As the connection relies on
generic technologies, it can be offered to developers in communication mod-
ules (requirement RDev6.i). Additionally, support for the configuration of the
connection between managed resources and adaptation logic is necessary (require-
ment RDev6.ii). The design of the reference architecture (cf. requirement RDev2)
also requires to appropriately consider the connection to managed resources.

Related to research question RQ3, the approach requires to support the whole
lifecycle of the SAS. Accordingly, the FESAS Framework should integrate im-
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plementation support in form of a reference architecture (cf. requirement RDev2)
and reusable implementation artifacts (cf. research question RQ1 ) with runtime
support for self-improvement (cf. research question RQ2 ) through a well-defined
development process and development tools (requirement RDev7).

5.3. Requirements for Self-improvement at Runtime

As demanded by research question RQ2 and RQ3, the FESAS Frame-
work should be complemented by an approach for self-improvement, i.e., meta-
adaptation of the adaptation logic at runtime. On the one hand, this approach
should be integrated with the FESAS Framework. On the other hand, to not lim-
iting its reusability, it should be self-contained so that it can be integrated with
other frameworks for developing SASs. As the self-improvement logic is a ded-
icated reusable element, this thesis presents the approach for self-improvement
separated from the FESAS Framework, however, the reader should always keep in
mind that both are an integrated system to support the whole lifecycle of SASs.
Based on the shortcomings we identified in [226] and [227] (cf. Section 4.3), we
define the following requirements for an approach that enables self-improvement
within SASs:

RSI1: Meta-adaptation mechanisms As reasoning for meta-adaptation seems
to be application-specific (cf. [226, 227]), the approach (i) should support
modules for parametric and structural self-improvement and (ii) modules
must be exchangeable.

RSI2: External control Implementation may not be intertwined with the adap-
tation logic and, therefore, supports different types of adaptation logics.

RSI3: Monitoring Generic monitoring mechanisms should support developers.

RSI4: Proactive reasoning The approach should offer generic prediction pro-
cedures which can be easily integrated into specific reasoning modules.

RSI5: Flexible control The approach requires to support centralized, decentral-
ized, and hybrid control structures for self-improvement.

RSI6: Integration To offer a generic and reusable approach for integrating the
self-improvement control, it should be self-contained.
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In the following, we describe these requirements in detail. Self-improvement
through meta-adaptation of the adaptation logic can have various characteris-
tics. In general, adaptation mechanisms are divided in (i) parameter adaptation,
(ii) context adaptation, or (iii) structural adaptation (including the exchange of
algorithms) [229, 254]. However, as we focus on adapting the adaptation logic,
we neglect context adaptation here. The choice of the meta-adaptation tech-
nique depends on specific objectives, the meta-adaptation should address. As
we showed in Section 4.3, the reason for self-improvement is application-specific.
In accordance, Gui et al. identified that most adaptation frameworks do not
provide clearly defined modules for adaptation reasoning [161]. Further, the im-
plementation of meta-adaptation mechanisms may be application-specific, too.
Requirement RSI1.i claims to support different self-improvement mechanisms.
Therefore, the system has also to support exchangeability of self-improvement
modules for specific applications (requirement RSI1.ii).

The control for self-improvement can be (i) intertwined with the system – here:
the adaptation logic – or (ii) implemented in external elements. [342, 401] de-
scribe trade-offs of an additional layer for self-improvement: increased execution
time, complexity, risk of failure, and better control. In a layered approach for
self-improvement, this means the reaction time for self-improvement is higher
in contrast to the one for normal self-adaptation of the adaptation logic. The
adaptation logic can still react to problems in the managed resources and adapt
them, however, these adaptations might be non-optimal. Further, the changes
performed by the self-improvement layer are more substantial. Consequently,
the increased reaction time for self-improvement resulting from the layered ap-
proach can be neglected. The complexity might be increased with an additional
layer as further interactions are necessary. This is definitely a shortcoming which
also introduces a higher risk of failure. The alternative would be an internal
approach: The integration of the self-improvement functionality into the (dis-
tributed) adaptation logic of a SAS. In [128], the authors showed that an external
approach offers a better maintainability. Further, [342] states that an external
approach improves implementation control. Last, the additional layer offers gen-
eral applicability supporting requirement RSI1 for exchangeability of elements
that demands this flexibility. Therefore, requirement RSI2 claims an external
approach for the control instance for self-improvement.
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The self-improvement approach has to provide mechanisms to monitor meta-
adaptation triggers (requirement RSI3), such as failures in the resources or con-
text changes [229]. As we discussed in [226], those triggers for self-improvement
are the context of the system, the managed resources, or the user(s), i.e., changing
goals. For example, concept drift – i.e., a substantial change over time of the sta-
tistical properties of the relevant variables – can make the model in the adaptation
logic obsolete and, in this case, analysis for triggers delivers faulty results. Addi-
tionally, triggers can change over time. Hence, proactive analysis of data – which
can recognize concept drift – must be supported (requirement RSI4). Further,
proactive reasoning enables proactive meta-adaptation and can reduce delays as
meta-adaptation can happen faster than reactive meta-adaptation [229]. How-
ever, the support of reactive meta-adaptation as back-up mechanism if proactive
meta-adaptation fails – e.g., a situation was wrongly predicted – is still necessary.

Control within an adaptation logic can be decentralized, hybrid, or central-
ized [401]. A decentralized approach benefits from higher robustness but intro-
duces coordination overhead. A centralized approach reduces coordination over-
head at the cost of having a potential performance bottleneck and single point of
failure. Our analysis in [226] showed that most approaches for self-improvement
are centralized. Centralization simplifies to have a global view on the system,
which is necessary for self-improvement. However, interaction patterns such as
the ones presented by Weyns et al. [401] can be applied to the adaptation control
for self-improvement. Decentralized settings may perform faster meta-adaptation
decisions in large systems. Consequently, approaches for self-improvement should
support centralized and decentralized coordination patterns (requirement RSI5).

The approaches analyzed in Chapter 4 offer either development support for
SASs or for self-improvement. Except FUSION [112] and EUREMA [377, 380],
none of them offer an integrated approach. We claim that this is necessary for
accessing the full potential. Accordingly, the ALM should be integrated with the
development approach for the adaptation logic to offer a continuous workflow
for developers. Further, this increases reusability as approaches or algorithms
for self-adaptation might be reused for self-improvement. Supporting research
question RQ3, requirement RSI6 demands an end-to-end development support
for integrating the development of the adaptation logic with the logic for self-
improvement.
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6. A Framework for Engineering Reusable and
Self-improving Self-adaptive Systems

Based on the concept and the requirements defined in Chapter 5, this chapter
presents the design of the FESAS Framework. It covers the whole lifecycle of
a SAS. First, during development, the framework supports the developers and
designers of SASs with a process that defines the workflow of the development.
This workflow is accompanied by a template that supports the reusability of
the adaptation logic components as well as artifacts that control the deployment
of the adaptation logic. Additionally, tools can incorporate the concepts of the
design and simplify the development process. Section 6.1 presents the workflow,
the architecture template as well as the artifacts that control the deployment.
Second, the framework should support self-improvement at runtime. Section 6.2
introduces the concept of the Adaptation Logic Manager (ALM) that adds an
additional layer on top of the SAS for self-improvement through meta-adaptation
of the adaptation logic. As the ALM is self-contained and not restricted to the
FESAS Framework, it is presented separately.

6.1. System Model for the FESAS Framework

The concept presented in Section 5.1 is the underlying concept for the
FESAS Framework. According to research question RQ1, the main design ra-
tionale is the striving for reusability of modules for the adaptation logic of
SASs. Hence, the FESAS Framework requires to offer a reference architecture
for the adaptation logic. This reference architecture is based on the MAPE
model (cf. Section 2.3). The focus lies on the division of specific, customized code
and reusable modules, e.g., for communication, knowledge distribution, or stan-
dard adaptation modules, such as rule-based planning approaches. This enables
the integration and combination of existing approaches and frameworks, such as
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the ones presented in Section 4.1 and Section 4.2. Further, the FESAS Frame-
work is not restricted to one specific adaptation decision criterion and can inte-
grate modules for analyzing and planning based on rules/policies, goals, models,
or utility [229, 234] (cf. requirement RDev5). Section 6.1.1 presents the FESAS
Adaptation Logic Template which is designed with reusability in mind and acts as
underlying reference architecture for the adaptation logic (cf. requirement RDev2).

One important aspect for reusability beside of the division of customized and
reusable code modules is the definition of a process for (i) developing new ele-
ments, (ii) integrating existing elements, and (iii) storing these elements as well
as using them at runtime for system deployment. This process should be com-
plemented by tools and artifacts for improving the process usability (cf. research
question RQ3 and requirement RDev7). Both, tools and artifacts, should be
independent from specific programming languages. Hence, it is important to de-
fine a reusable workflow independent from specific implementation technologies.
Section 6.1.2 defines such a process workflow.

Last, for the deployment of the adaptation logic – i.e., the distribution and
integration of the reusable modules as well as plugging in the customized code
– specific artifacts are required. The FESAS Framework integrates the use of a
repository for code and adaptation logic modules. Again, the repository should
be independent from specific technologies, i.e., a reusable design is necessary.
Section 6.1.3 presents the design of the FESAS Repository as well as its in-
teraction with the SAS. Finally, the FESAS Middleware brings everything to-
gether: it controls the deployment of the adaptation logic, i.e., according to
the process workflow, it sets up the adaptation logic modules and adds code
from the FESAS Repository to the components of the reference architecture as
defined in the design model of the SAS. Section 6.1.4 describes the activities
the FESAS Framework handles during deployment of the adaptation logic when
starting a SAS as well as its artifacts.

6.1.1. FESAS Adaptation Logic Template

For building the adaptation logic, there are different approaches present in
literature. The managed resources and the adaptation logic can be integrated
following the internal approach or separated according to the external approach.
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As we aim at a reusable adaptation logic, the adaptation logic should be sep-
arated from the managed resources as this improves reusability (cf. require-
ment RDev1). All approaches have in common that the adaptation logic is com-
posed of [229, 403]: (i) control structure components including components for
the connection to the managed resources and, optionally, (ii) supporting compo-
nents (cf. requirements RDev2.i and RDev2.ii), such as the context manager spec-
ified by requirement RDev4. Figure 6.1 shows the elements of the FESAS Adap-
tation Logic Template. Integrating this reference architecture presented in [228]
into the FESAS Framework satisfies requirement RDev2. In the following, this
section introduces the FESAS Adaptation Logic Template. Parts of this section
are taken from [228]1.
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Figure 6.1.: The FESAS Adaptation Logic Template extends the MAPE cy-
cle with a context manager for abstraction from specific informa-
tion (cf. [228]). Left: concept, right: component model.

Within the SASs research community, the MAPE-K model [198] is the common
approach for an adaptation logic control structure [76,229,320,384]. Accordingly,
the FESAS Adaptation Logic Template integrates this model for adaptation con-
trol. The knowledge component acts as a central repository for all kinds of data
used in the adaptation logic and supports the MAPE functionality. Often, a
SAS is a system-of-systems and the adaptation logic is distributed in these cases.
Therefore, the adaptation logic template offers flexibility for decentralization and
distribution of its components (cf. requirement RDev3.i). This requirement is
addressed in the FESAS Adaptation Logic Template as the components for the

1 [228] is joint work with F. M. Roth, S. VanSyckel, and C. Becker.
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MAPE functionality are optional for a specific subsystem, but must be present
in the global view of the SAS. Furthermore, one subsystem can have multiple
MAPE loops, e.g., for supporting different self-CHOP properties [198]. Follow-
ing the MAPE-K model [198], the template provides sensors and effectors for
interaction with the managed resources. Sensors read information from so called
probes. These probes store information about (i) the resources themselves (self-
awareness), (ii) the environment (context-awareness) – collected by the managed
resources using physical sensors (e.g., GPS, infra-red sensor, or camera) –, and
(iii) information about the users. An effector uses specified interfaces, so called
actuators, to enact the adaptation actions. These actuators trigger changes of
the managed resources or adapt the environment using context actuators of the
managed resources.

Additionally to the MAPE functionality, the FESAS Framework integrates
the context manager [228] to improve the context-awareness and support context
adaptation (cf. requirement RDev4). The context manager (i) receives context in-
formation which is gathered through physical sensors of the managed resources,
(ii) aggregates the data of sensors, and (iii) maintains a context model. Fur-
thermore, the context manager integrates an architectural model of the managed
resources. This way, the MAPE functionality can be decoupled from the specific
data retrieved from the managed resources. Therefore, the MAPE components
can operate on a higher level of abstraction. This improves the reusability of the
MAPE components and algorithms within these components as there is no need
to customize them for each use case.

The FESAS Adaptation Logic Template is a rather high level concept. Driven
by the idea of further improving reusability, in [228], we presented the FESAS
Component Template for a MAPE component. In the following, the section
presents this template. Based on the Template Method pattern [137], the MAPE
components are composed of an exchangeable logic – e.g., for an analyzer, this
would be an algorithm for analyzing the monitored data – and logics for communi-
cation and data handling, i.e., serialization and access to a knowledge repository.
The communication logic offers methods for receiving and sending data to other
components as well as requesting data from other components. Figure 6.2 shows
the template for a MAPE component.
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Figure 6.2.: The FESAS Component Template (cf. [228]) separates generic func-
tionality, such as communication between MAPE components, and
specific code for the algorithms of the MAPE functionality. This
improves the reusability of code. Most of the methods are imple-
mented by components of the FESAS Framework. Developers can
focus on implementing the functional logic (bold marked box). Ap-
pendices B.1 and B.2 provide the descriptions of the interfaces.

The separation of the functionalities in reusable communication sub-components
and customizable functional logics supports reusability. Further, encapsulating
a specific algorithm within a functional logic element enables a separation from
reusable methods for using the communication module or controlling the work-
flow. In object-oriented programming languages, inheritance supports this struc-
ture. Functional logic elements inherit most methods from an abstract logic.
Only the callLogic() method for its function has to be implemented or the
developer has to specify which logic should be loaded from a repository. Addi-
tionally, one MAPE component can integrate various functional logics, e.g., a
monitoring component with different algorithms for different sensor types. The
component template enables reusability w.r.t. different aspects. First, the com-
ponent itself is reusable. It offers a skeleton of methods for calling the functional
logic, communication, and knowledge handling. Furthermore, exchanging the
functionality is simplified as the interfaces stay stable. Additionally, it is possible
to use the same component skeleton for all adaptation logic components. Only
the functional logic must be customized to its purpose, which satisfies require-
ment RDev5.ii. Second, reusability is offered as the interfaces provide generic
mechanisms for communication and knowledge handling.
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6.1.2. FESAS Development Process

The previous section introduced the FESAS Framework’s system model. This
section is based on [225]2 and presents how developers can use the FESAS Frame-
work for building SASs. Having a defined process for SASs development com-
bined with a reference architecture addresses the lack of (i) reusable processes
and specific implementation guidelines as well as (ii) implementation components
identified in [96] and [11]. This addresses research question RQ3 and require-
ment RDev7. The process integrates two roles: the system developer who writes
code and the system designer who defines the configuration of a SAS. In the fol-
lowing, this section describes the workflow for developing a SAS and shows how
the FESAS Framework supports developers of SASs (cf. Figure 6.3).

At design time, system developers implement the functional logics for the
MAPE components of SASs using the FESAS Development Tool. Further, the
developers have to define metadata for these elements. Appendix B.3 shows this
metadata. This metadata is used during deployment by the FESAS Middleware
for identifying functional logics that fit the system design. The code including
the metadata is stored in the FESAS Repository. System designers specify the
system’s design for a specific application using the model-based FESAS Design
Tool. The FESAS Design Tool translates the created design models to system
models (cf. Appendix B.4 for the syntax of these models). Section 7.1 describes
the implementation of the prototypes for these tools. Both tools abstract from
learning the syntax for the system models and the metadata of functional logics
for reducing error-proneness as well as simplify the use of the FESAS Adaptation
Logic Template and the FESAS Component Template.

At runtime, the FESAS Middleware configures the adaptation logic using the
information in the system design model as well as the descriptions of the imple-
mented components that the FESAS Repository stores. Based on the selected
algorithms in the functional logics, parameter and/or structural adaptation (in-
cluding algorithmic adaptation) can be initiated by the adaptation logic (cf. re-
quirement RDev5.i). It is possible for system designers to use the FESAS Reposi-
tory as a kind of app store just by defining the metadata of the functional logics.
This is enabled by the abstraction of the context manager from specific managed

2 [225] is joint work with F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and A. Schürr.
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Figure 6.3.: Workflow for developing SASs with the FESAS Framework (cf. [225]).
An ’F’ indicates that a device runs the FESAS Middleware.
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resources. On the other hand, if customized functionality is required, a system
developer can write code according to definitions of the system designer. The
FESAS Framework offers reference implementations of the FESAS Adaptation
Logic Template for a specific system infrastructure, i.e., a specific programming
language and/or communication middleware (cf. Section 7.3). When starting a
SAS, the FESAS Framework uses the FESAS Repository to initialize the adapta-
tion logic with the functional and communication logics as specified in the system
model. Once the initialization is finished, the adaptation logic controls the SAS.

6.1.3. FESAS Repository

The formerly presented FESAS Adaptation Logic Template as well as the
FESAS Component Template offers reusability of code and exchangeability of
functional logics that implement customized MAPE functionality. For supporting
developers in the exchange of functional logics (cf. requirement RDev5.ii), the
FESAS Framework integrates a mechanism for dynamic code reloading from the
FESAS Repository. First, This section presents the concept. Next, it introduces
the process for this mechanism as well as the design of the FESAS Repository.
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Figure 6.4.: Concept for dynamic code reloading of the functional logic for MAPE
components out of a code repository.
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Figure 6.4 shows the mechanism for loading a new functional logic ele-
ment. When the system discovers the need for change inside the adaptation
logic (cf. step (1) in Figure 6.4), it initiates a reloading process by sending a re-
quest containing a contract to the code repository (cf. step (2)). Loading a logic
can be necessary for several reasons, such as starting the initialization of the
adaptation logic or meta-adaptation for self-improvement. The repository stores
the functional logic that consists of source code and metadata information. It
processes the request by mapping the metadata from the contract to the stored
information, for finding the corresponding source code (cf. step (3)). Once found,
the source code of the appropriate functional logic element is sent back to the
SAS (cf. steps (4)). There, the code of the functional logic is integrated into the
corresponding MAPE component (cf. step (5)).

The mechanism is divided into two tiers. The Local Repository serves as
an intermediate repository within the adaptation logic that loads new code for
functional logics from the Remote Repository. As depicted in Figure 6.5, every
MAPE component is connected to the Local Repository.
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Figure 6.5.: System model for the dynamic code reloading mechanism. The figure
omits the SAS Setup Service which enables loading of a functional
logic from the Local Repository.

When one MAPE component triggers loading code (cf. Figure 6.6), it specifies
a contract. This JSON-based contract formally describes the properties of the
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requested functional logic. It provides information about general attributes of
the required functional logic element as well as specific functional properties, a
description, and possible dependencies to other files. Appendix B.5 shows this
metadata. Due to the dynamism of the functional logics, the Local Repository
always first sends a request for analysis of the contract to the Remote Repository.
If an appropriate element is available, the Remote Repository sends a metadata
description back. The Local Repository compares the metadata with the logic
elements that are stored locally. If the same logic element has been requested
recently, it is still available locally and can be used. If the logic is requested for the
first time or an updated version is available, the Local Repository forwards the
request to the Remote Repository. The Remote Repository marshals and ships
the corresponding archive file to the Local Repository. The Local Repository
demarshals the file, stores it, and returns the code to the MAPE component.
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Figure 6.6.: The activity diagram shows the process for dynamic code reloading
using the FESAS Repository.
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Appendix B.6 shows the interface of the Remote Repository. It offers methods
for loading a functional logic, storing/updating a new functional logic as well as
removing a functional logic. These methods have to be implemented in case an
individual repository should be used. Further, the SAS needs to implement the
interface for the Local Repository and offers a mechanism for integrating the
loaded code into the MAPE components. As part of this thesis, both is done for
the prototype implementation of the FESAS Framework in Java (cf. Section 7.3).

6.1.4. FESAS Middleware

The deployment of the system follows the process described in Section 6.1.2.
As this process involves different types of activities, the FESAS Middleware in-
tegrates various components for enabling a separation of concerns. At start,
the FESAS Middleware components on each subsystem read files that specify
the information of the system model, start the corresponding MAPE compo-
nents, adjust settings of the components, and load the specified functional logic
elements. Furthermore, these configuration files determine the communication
structure between MAPE components. Appendix B.4 shows the syntax and ex-
amples of these model files. In the following, this section presents the components
of the FESAS Middleware and how it supports deployment of a SAS.

Figure 6.7 shows the components of the FESAS Middleware. The starting
method of the SAS (e.g., the main() method in Java) triggers the start of the
FESAS Middleware – i.e., the component Middleware Starter is started – and
hands over the configuration files as parameters for the starting process. Ap-
pendix B.7 presents these configuration files in detail. The middleware starter
uses the configuration files with the start parameters to configure the SAS and
controls the deployment process. Next, it configures the JSON Parser, loads the
specified JSON files containing the system model for the SAS, parses them, and
loads the adaptation logic components with the specified functional logic ele-
ments using the FESAS Repository (cf. Section 6.1.3). The Local Repository is
the connection of the FESAS Middleware to the FESAS Repository. It acts as a
local storage of the code of functional logic elements.

The SAS needs to implement the FESAS Adaptation Logic Template as well
as to offer the SAS Setup Service specifically implemented for the used platform,
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Figure 6.7.: The FESAS Middleware components – JSON Config Parser,
Proxy ALM, Middleware Starter, and Local Repository – inter-
act with the FESAS Repository and the ALM (in case of self-
improvement). Developers additionally have to implement the SAS
Setup Service for the target platform of the SAS.

i.e., the used programming language or communication middleware. Therefore
an interface defines methods for (i) creating adaptation logic components, (ii) ini-
tializing communication channels between adaptation logic components, (iii) ini-
tializing communication with the managed resources, as well as (iv) starting the
system after the completion of the initialization (cf. Appendix B.8). The FESAS
Middleware uses this service to integrate the code of the functional logics – which
is loaded into the Local Repository – in the skeletons of the MAPE components,
i.e., for initializing the adaptation logic with its specific MAPE functionality.

Afterwards, the FESAS Middleware controls the initialization of the com-
munication between the MAPE components and between adaptation logic and
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managed resources. Therefore, the specified communication modules are loaded
into the MAPE components and are configured according to the system model
using the methods of the SAS Setup Service (addressing requirement RDev3ii).
Additionally, the FESAS Middleware establishes the connection of adaptation
logic and managed resources. Therefore, it loads the functional logics for sensors
and effectors of the adaptation logic and configures them (addressing require-
ment RDev6.ii). This configuration might range from specifying IP addresses
and ports for 1:1 push-based socket connections, opening ports for pull-based
socket connections, or setting up more advanced approaches, e.g., a web server,
bus system, or publish/subscribe middleware. It is possible to integrate ap-
proaches from related work, e.g., such as the Probe/Gauge Reporting Bus from
the Rainbow Framework [77, 141], the Touchpoint concept from the IBM Auto-
nomic Computing Reference Model [193], or the ProbeMeister system [74]. For
offering the highest possible configurability and flexibility, again, the sensors and
effectors support the definition of own functional logic elements and the FESAS
Frameworks supports the integration of own communication modules (addressing
requirement RDev6.i). Developers just have to ensure that the managed resources
are compatible with the chosen communication approach, e.g., if a sensor shall use
a pull-based socket communication, the managed resources must open a socket
according to the information of the system model.

Additionally, the start of the middleware invokes the start of the Proxy ALM
if the self-improvement functionality is enabled in the configuration files. The
Proxy ALM connects to the Adaptation Logic Manager (ALM) which controls
the self-improvement of the SAS at runtime. Through this connection, the ALM
receives information about the SAS (i.e., its adaptation logic and managed re-
sources) and can trigger adaptation of the adaptation logic. Therefore, the
Proxy ALM is informed by the MAPE elements in case of structural or parameter
changes, such as the integration or substitution of functional logic elements. Ad-
ditionally, the Proxy ALM periodically checks the adaptation logic for changes.
On request of the ALM, the Proxy ALM sends the current system state and re-
ceived data from the managed resources. The next section presents the design of
the ALM and the Proxy ALM.
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6.2. System Model for the Adaptation Logic Manager

In [281], the authors discuss a trade-off in planning self-adaptation. On the
one hand, the planning process has to be fast, hence, sub-optimal planning tech-
niques – e.g., rules or simplified model-based approaches – are prominent as
they offer a fast response by keeping the complexity low. However, these do
not provide an optimized solution. On the other hand, the fast sub-optimal
planning in combination with uncertainty result to non-optimal or even wrong
adaptation decisions. As a consequence, authors propose to use optimal planning
approaches, such as dynamic SBSE [169]. However, for these approaches the plan-
ning time as well as the required computational resources increase extensively.
Meta-adaptation might offer the solution: simple but fast planning approaches
can be used in the adaptation logic whereas self-improvement can improve the
planning process over time without delaying the planning. It is an external layer
on top of a SAS which addresses the need for self-improvement [182] as identified
in, e.g., [161,278] (cf. Section 2.1.4).

This section presents the design of the ALM and the functionality of its compo-
nents. [315]3 presents a first concept of an approach that offers self-improvement.
This first draft was further conceptualized in [223]. The works published in [223]4,
and [230]5 both used the design presented in this section to complement SASs
with the functionality of the ALM.

6.2.1. Design of the Adaptation Logic Manager

The ALM adds an adaptation logic on top of an existing SAS. Hence, it sees
the adaptation logic of the SAS itself as managed resources and might switch it
through meta-adaptation, i.e., adaptation of the MAPE components through:

Structural meta-adaptation: Switch of the interaction pattern between MAPE
components or exchange of MAPE components; in the FESAS Framework,
the latter includes a change of the functional logic.

3 [315] is joint work with F. M. Roth and C. Becker.
4 [223] is joint work with J. Otto, F. M. Roth, A. Frömmgen, and C. Becker.
5 [230] is joint work with T. Sztyler, J. Edinger, M. Breitbach, C. Becker, H. Stuckenschmidt.
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Algorithmic meta-adaptation: This specific form of structural adaptation trig-
gers the exchange of the internal structure of a MAPE component; in the
FESAS Framework, this changes an encapsulated algorithm within a func-
tional logic.

Parametric meta-adaptation: Adjustment of one or several parameters of the
functional logic of a MAPE component including adding new rules.

In the following, this section explains the design of the ALM. Further, it
describes the connection of the ALM to a SAS.

As an external approach – which splits the managed resources and the adap-
tation logic – benefits from higher maintainability and reduced dependability,
we applied an external approach to the ALM and added a layer on top of the
SAS (requirement RSI2). Hence, the resulting system is composed of three lay-
ers. First, the Managed Subsystem Layer contains the managed resources that
offer their functionality to users or backend systems. Second, the Self-Adaptation
Layer contains the adaptation logic. Both layers build up the SAS. Third, on top,
the Self-Improvement Layer contains the ALM. Comparable to the adaptation
logic itself, the ALM uses the MAPE model as feedback loop structure as this is
well established in the domain of SASs [56]. This MAPE loop controls the adap-
tation logic as managed resource. Figure 6.8 visualizes the system model of the
ALM. Due to simplicity reasons, the figure shows a centralized approach. How-
ever, the concept of the ALM is not restricted to a central approach but supports
decentralized or hybrid interaction patterns for the ALM (requirement RSI5).

The ALM interacts with the Proxy ALM which has to be integrated into the
adaptation logic. This component captures the structure of the adaptation logic
and collects the configuration of the MAPE components, such as the used rules.
Further, it collects the data of the managed resources that is captured by the
sensors of the adaptation logic. The Proxy ALM sends all captured data to the
ALM. Vice versa, the Proxy ALM receives instructions from the ALM. Then, it
uses the SAS Setup Service for changing (i) the structure of the adaptation logic
or (ii) parameters of the MAPE components, e.g., adding new rules. We defined a
protocol between ALM and adaptation logic as well as interfaces the Proxy ALM
and the adaptation logic have to support for reconfiguration at runtime. This
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Figure 6.8.: System model of the integration of the ALM into a SAS. Due to
simplicity reasons, the figure shows a centralized ALM, however, a
decentralized variant is possible. Sensors, effectors, and supportive
elements of the adaptation logic are omitted. The adaptation logic is
distributed on two systems, the managed resources on three systems.

protocol6 supports operations to (i) activate or deactivate MAPE components,
(ii) change rules in a MAPE component, as well as (iii) change connections be-
tween MAPE elements, i.e., the distribution of the adaptation logic. Correspond-
ingly, the adaptation logic must implement interfaces that support these opera-
tions. Consequently, the ALM is not restricted to the FESAS Framework and
could be integrated into SASs implemented with different frameworks (cf. Sec-
tion 4.2). The only requirements are the provision of a SAS Setup Service for
meta-adaptation of the adaptation logic and a corresponding Proxy ALM imple-
mentation following the interface presented in Listing 6.1. This clear separation
of ALM and adaptation logic combined with the well-defined interaction pro-
tocol supports requirement RSI6. In the following, this section introduces the
functionality of the MAPE components of the ALM.

6.2.2. Components of the Adaptation Logic Manager

As shown in Figure 6.8, the main components of the ALM are: (i) ALM Mon-
itor, (ii) ALM Analyzer, (iii) ALM Planner, and (iv) ALM Executor. The

6Appendix C.1 presents a detailed description of the protocol.
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1 interface IProxyALM {
2

3 public ALMData getSystemState();
4

5 public ALMData getConnections();
6

7 public void updateSystemStatus(AdaptationLogicElement status);
8

9 public void updateConnection(Connection newConn,boolean delete);
10

11 public ALMData changeComponents(ALMData request);
12

13 public ALMData changeCommunication(ALMData request);
14

15 public ALMData changeLogic(ALMData request);
16

17 public ALMData changeRulebase(ALMData request);
18

19 public ALMData getSensorData();
20

21 public void updateSensorData(String data);
22

23 public ALMData changeAlgorithm(ALMData request);
24 }

Listing 6.1: Interface of the Proxy ALM with methods for structural and
parametric self-improvement. The interface is written in Java.

ALM Analyzer is supported by a data prediction module. Both, the ALM Ana-
lyzer and the ALM Planner can use different improvement modules for analyzing
and planning self-improvement. The connection between ALM and Proxy ALM
is managed by the ALM Sensor and the ALM Effector. The remainder of this
section presents the functionality of the different elements.

The ALM Sensor collects from the Proxy ALMs (i) the structure of the adap-
tation logic, (ii) information about the MAPE components as well as (iii) data
collected from the managed resources. The data is handed to the ALM Monitor
which pre-processes it for the reasoning process (requirement RSI3). Further, the
ALM Monitor stores the data captured from managed resources to a data base
and the information on the adaptation logic composition to a graph structure.
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Both is easily accessible through well-defined interfaces by developers for ana-
lyzing and planning of self-improvement. Additionally, the monitor triggers the
analysis of the data in the ALM Analyzer.

The ALM Analyzer uses the data from the managed resources to reason about
their performances and characteristics. The process supports proactive and re-
active reasoning (requirement RSI4). For fulfilling the requirement for exchange-
ability (requirement RSI1.ii), developers can define which analyzing modules the
ALM Analyzer should use. Each of the modules implements algorithms for re-
active or proactive analysis and decides if meta-adaptation is necessary. These
modules require minor customization for the specific application only or own
modules can be integrated. Further, the ALM Analyzer integrates prediction.
Prediction enables to forecast future states and classify current states of the
managed resources based on machine learning procedures for forecasting, clas-
sification, and clustering. Developers can use the prediction service within own
developed analyzing modules. The ALM Analyzer collects the results from the
analyzing module(s) and then sends the information to the ALM Planner.

The ALM Planner integrates different improvement modules for planning.
One improvement module can integrate different types of meta-adaptation. The
concept of planning modules supports different types of meta-adaptation. This
fulfills requirement RSI1.i. In order to enable developers the implementation of
planning modules for specific applications, generic interfaces for the three types
of self-improvement are integrated within the ALM Planner. These types can be
extended with individual ones. As the ALM Planner has to decide at runtime
between various modules for planning of self-improvement, the ALM supports
different executions strategies following the Strategy Design Pattern [137]:

• PREDEFINED: The ALM Planner calls the specified planning modules in a
predefined order and the first module that is able to handle the analyzed
situation will be used for planning.

• RUNTIME: All planning modules run concurrently and the ALM Planner uses
the first plan that is returned.

• UTILITY: The ALM Planner calls all approaches and collects utility values –
specifying the benefit of self-improvement using the corresponding planning
approach – and uses the plan with the highest utility.
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The ALM Planner collects the results of the improvement modules depend-
ing on the specified execution strategy. Then, it triggers the adaptation pro-
cess by transferring the relevant plan to the ALM Executor which translates
the plan to specific instructions for change in the adaptation logic. Last, the
ALM Effector sends the instructions to the corresponding Proxy ALM which
uses the SAS Setup Service for adapting the MAPE components. Therefore,
similar for monitoring the adaptation logic, the SAS must implement the ALM
Protocol (cf. Appendix C.1). Additionally, the adaptation logic must integrate a
component that implements the interface for the Proxy ALM (cf. Listing 6.1).

The layered approach is comparable to the hierarchical decentralization pat-
tern described in [401]. As the authors claim in [401], the reaction time increases
in higher layers. However, as described in Section 5.3, this additional execution
time is not an issue as self-improvement is a back-up for self-adaptation. Ad-
ditionally, integrating proactive self-improvement reduces the delays that results
due to different time scopes.
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The previous chapter described the concept of the FESAS Framework. The
framework spans the whole lifecycle of a SAS, from design time to runtime in-
cluding self-improvement at runtime through meta-adaptation of the adaptation
logic. For proving the feasibility and usefulness of the framework, we applied
a proof by prototyping approach (cf. Chapter 3). Therefore, prototype imple-
mentations addressing the different elements of the concept have been imple-
mented1. All are grounded on a set of interfaces defined in Java based on the
design of the FESAS Framework from Chapter 6. The Maven module fesas-
libs-structure provides interfaces for all components of the FESAS Framework.
It is structured into four packages: almStructure, frameworkLogicStructure,
logicRepositoryStructure, and sasStructure (cf. Figure 7.1). Each of them
contains interfaces for the components that are part of the corresponding elements
of the FESAS Framework. The package almStructure offers the interfaces for
the elements of the ALM and a package with the metadata, e.g., for registration
at the ALM or for the ALM protocol for communication between adaptation logic
and ALM. The package frameworkLogicStructure is divided into packages for
the data, interfaces for the components that the adaptation logic has to offer for
using the FESAS Framework – e.g., for the SAS Setup Service –, and for starting
the FESAS Middleware. The package logicRepositoryStructure contains the
relevant interfaces for the functionality of the FESAS Repository. Last, the pack-
age sasStructure subsumes all interfaces for implementing the FESAS Adapta-
tion Logic template and the FESAS Middleware. Figure 7.1 shows the structure
of the Maven module.

This chapter presents the prototypes ordered by the phase of the software life-
cycle they support. First, Section 7.1 describes the FESAS IDE. The FESAS IDE
offers tools that encapsulate the development tasks of the FESAS workflow as pre-

1These are public available on the FESAS project website: https://fesas.bwl.uni-man
nheim.de/
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7 Prototype Implementation

Figure 7.1.: The fesas-libs-structure Maven module that contains the Java
interfaces and packages for the components of the FESAS Frame-
work. It is divided into four packages: almStructure,
frameworkLogicStructure, logicRepositoryStructure,
and sasStructure.
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sented in Section 6.1.2 and supports developers and designers of SASs in using the
FESAS Adaptation Logic Template. Second, the FESAS Repository is a central
element for the deployment of SASs using the FESAS Framework. Section 7.2 ex-
plains the implementation of the FESAS Repository and the connection between
adaptation logic and FESAS Repository. Third, Section 7.3 presents the imple-
mentation of the FESAS Middleware. The FESAS Middleware provides different
elements that support the deployment of SASs. Further, it is complemented by a
Publish/Subscribe (Pub/Sub) system for communication between the MAPE el-
ements. Fourth, the FESAS Framework integrates the ALM for self-improvement
of the adaptation logic at runtime. Section 7.4 describes the implementation of a
prototype of the ALM. Additionally, the FESAS Framework offers different ref-
erence systems that might be used as foundation for implementing a SAS. Their
implementations are presented in Section 7.5.

Figure 7.2.: This figure shows the SmartHighway system after a structural self-
improvement was triggered by the self-improvement layer in response
to an accident. The dashed elements in the adaptation logic indicate
its structure before the adaptation.

Besides the implementation of the prototype, this section also describes how to
use the prototype to implement a SAS using the following example scenario. The
SmartHighway traffic management system controls digital traffic signs installed
on a highway and self-driving vehicles2 via Vehicle-to-Infrastructure (V2I) com-
munication. Traffic cameras measure the amount of vehicles and the system
calculates the current traffic flow. High density with heterogeneous velocities can
lead to traffic jams [364]. Such situations are analyzed for reacting accordingly
by adjusting speed limits to homogenize the traffic flow. Additional modules en-

2Each self-driving vehicle itself is a SAS. However, in our research we do not target to build
self-driving cars and see them as black box systems.
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able congestion avoidance through re-routing and releasing shoulders. Figure 7.2
shows the SmartHighway system that represents the adaptation logic. Each sec-
tion of the highway is managed by a dedicated adaptation logic to optimally adapt
the traffic flow. However, as traffic patterns might change abruptly due to con-
gestion or accidents, this decentralized setting might contradict the adaptation
goal. A switch of the communication pattern in the adaptation logic, e.g., from
a fully decentralized setting to a coordinated one (as presented in [401]) would
enable region-wide planning with single components for analysis and planning.
Figure 7.2 illustrates structural self-improvement as a response to an accident.

7.1. Implementation of the FESAS IDE

The FESAS Middleware supports the development of reusable SASs. However,
a study with Master students (cf. Section 8.2.2) showed that implementing the
functional logics and writing the configuration files manually is error-prone as
well as time-consuming since the developer has to learn the specific syntax for
the configuration files and the development workflow. The FESAS IDE [225]
addresses these issues. In the following, this section presents the FESAS IDE.
Parts of this section are based on [225]3.

The FESAS IDE extends the Eclipse IDE with two plug-ins: the FESAS De-
velopment Tool and the FESAS Design Tool. We choose the Eclipse IDE as it is
open-source and commonly used. Both tools are implemented using the Plug-in
Development Environment (PDE), a customized version of Eclipse for plug-in
development. Eclipse itself is implemented using OSGi4 and Java. OSGi enables
a modularization of Java code. With PDE, full access to all modules of Eclipse
is available. This enables, e.g., changing the menu bar of Eclipse or extending a
development perspective as well as using the functionality of perspectives, e.g.,
the syntax highlighting offered by the Java perspective. Therefore, developers
have to specify extension points that hook into the Eclipse system and change
the program flow.

The system developer uses the FESAS Development Tool for developing the
functional logics’ code, which is then stored in the FESAS Repository. Using the

3 [225] is joint work with F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and A. Schürr.
4OSGi’s website: https://www.osgi.org/
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FESAS Design Tool, the system designer configures the components of an adap-
tation logic and specifies, which code the FESAS Middleware loads at runtime.
Mapped to the SmartHighway scenario, the developer implements code – e.g., for
analyzing the current traffic conditions – and the designer defines the structure
of the adaptation logic as well as the information exchange between sections.
Through this separation of concerns, designers can build a SAS almost without
coding effort by using the FESAS Repository as "app store" for finding suitable
MAPE functionality. Both plug-ins are integrated by extending the menu bar
of Eclipse. Next, this section introduces the FESAS Development Tool and the
FESAS Design Tool. Further, it describes how the system designer and system
developer can use the plug-ins to speed up the development of a SAS as well as
the implementation of the tools.

7.1.1. FESAS Development Tool

The FESAS Development Tool supports developing the functional logics of
MAPE components in Java. Developers can use an existing Eclipse installation
and solely have to add the FESAS Development Tool plug-in. The process for
using the FESAS Development Tool is divided into five steps: (i) creating a
FESAS project, (ii) initializing a logic element and its metadata file, (iii) writ-
ing source code and testing the functionality, (iv) preparing the elements for the
repository, and (v) committing the prepared elements to the FESAS Repository.
Figure 7.3 shows the different steps and the corresponding dialogs in Eclipse.
Next, this section provides general implementation details for the FESAS Devel-
opment Tool. Afterwards, it illustrates the implementation of the five steps for
development.

As the plug-in is integrated as menu bar into the Eclipse IDE, developers can
use all known features, such as syntax highlighting, on-the-fly compilation, and
simplified integration of libraries. All functionality of the plug-in is controlled
via the menu bar or context menus. Therefore, extension points are specified for
each entry of the FESAS Development Tool menu group. Each of these extension
points is linked to a class that extends the org.eclipse.jface.dialogs.Dialog
class for building a dialog in Eclipse. For implementation of a dialog, the method
createDialogArea(..) is overwritten for specifying the look-a-like of the dialog.
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Figure 7.3.: Different steps of the workflow with the FESAS Development Tool
mapped to the menu entries. The first step for configuration of the
tool is omitted.

Additionally, at least the method okPressed() is implemented to handle the ac-
tion when the developer clicked the dialog’s OK button. These handlers might rely
on additional functionality, e.g., to set up a functional logic or the test environ-
ment. Additional handlers are implemented for updating of the dialog triggered
by user input or handling an abortion. The plug-in relies on Eclipse functionality
and uses the GUI, the project wizard as well as the Java developer tools. Fur-
ther, it extends the Java perspective with a view for the metadata of functional
logics and integrates custom elements. In the following, this section describes the
different activities of using the plug-in as well as their implementation.

As prerequisite, a developer has to create a FESAS project, which is a cus-
tomized Maven project. The plug-in configures this project, i.e., it defines the
dependencies to the FESAS Middleware Maven library in the Maven pom.xml
of the project, sets the properties, and creates all relevant folders as well as the
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package structure. The process is integrated into the Eclipse Project Wizard for
creating a new project, i.e., it is identical to the creation of any other project
in Eclipse, however, it is triggered by the menu bar of the plug-in. Next, the
developer has to generate a logic element, e.g., for the SmartHighway system,
this could be a planning logic that calculates a speed limit depending on the
current traffic situation. The developer specifies the metadata of the functional
logic which is used by the repository to identify the purpose of the functional
logic.

1 public class CLASSNAME extends AbstractLogic implements LOGIC_INTERFACE {
2

3 public CLASSNAME() {
4 super();
5 SUPPORTED_INFORMATION_TYPES
6 this.informationType = OWN_INFORMATION_TYPE;
7 type = LogicType.LOGIC_TYPE;
8 shortName = "CLASSNAME";
9 }

10

11 public void initializeLogic(HashMap<String, String> properties)
12 { [...] // code removed }
13

14 public String callLogic(IKnowledgeRecord data) {
15 if (data instanceof KnowledgeRecord) {
16 if (data.getData() instanceof OBJECT) { [...] // code removed }
17 return "Not the expected data type! It is: " + data.getData().

getClass().getSimpleName();
18 }
19 return "Not a KnowledgeRecord! It is: " + data.getClass().

getSimpleName();
20 }
21 [...] // code removed
22 }

Listing 7.1: Template for a functional logic (omitting comments with
instruction for developers). All terms in capital letters (except
of OBJECT) are wildcards, which are substituted with the
information captured in the creation dialog. The method
callLogic(..) runs when the functional logic is called.
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The tool initializes a Java source code file as well as a JSON file that contains
the metadata. For both files, templates exist. These templates contain wildcards
for the information captured by the plug-in through a dialog. Listing 7.1 shows
such a template for the functional logic. The template is a Java class that contains
different wildcards written in capital letters. These wildcards are substituted
by the metadata, e.g., the wildcard CLASSNAME is substituted by the name of
the functional logic, the wildcard SUPPORTED_INFORMATION_TYPES by an array
with all supported information types as specified in the creation dialog. The
FESAS View extends the Eclipse GUI and offers an overview on the metadata of
a selected functional logic source code file.

Further, developers can start a system for testing. Using dialogs in Eclipse, the
developer configures the relevant subset of MAPE components as well as defines
sample data for simulating input of managed resources. Therefore, developers
have to specify the components they would like to test and add the input data. As
an example for the SmartHighway system, the analyzer and planner can be spec-
ified as functional logics that should be tested and the output of the monitor in
form of traffic flows can be coded as sample data. The FESAS Development Tool
uses pre-defined Java classes as templates and generates the test environment.
The test system provides the debugging support known from Eclipse as it can be
executed as Java program. This allows detecting errors early in the development
process without the need to set up the full SAS.

After finishing the implementation and testing phase, the FESAS Develop-
ment Tool packs the code into archive files. We implemented two different proto-
types which can be used depending on the type of FESAS Repository implemen-
tation. For the first prototype, the archive file contains the metadata as JSON
file and the functional logic as well as files containing referenced code, so called
dependencies, as Java byte code. The plug-in calculates the dependencies using
the ASM ClassReader library5. Therefore, the class file of the functional logic
is loaded and the plug-in searches recursively in the byte code for any related
classes that are not part of the Java library or FESAS libraries through analyz-
ing the imports, related classes, as well as referenced libraries. The plug-in adds
all identified dependencies to the archive file.

5ASM ClassReader website: http://asm.ow2.org/asm33/javadoc/user/org/objectweb
/asm/ClassReader.html
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So far, this section has described the prototype presented in [225]. We built
a second prototype which relies on the Maven structure for analyzing the depen-
dencies of a functional logic. First, this prototype builds one Maven module for
the functional logic, one for dependencies classes that is used for all functional
logics, and one parent module that combines a functional logic module with its
dependencies. Second, this prototype reads the pom files from the parent devel-
opment project and, through that, from the functional logic and related projects
with dependencies. Third, it generates an aggregated pom file that integrates all
dependencies specified in Maven. This enables the repository of the FESAS Mid-
dleware at deployment to load all Maven dependencies directly from a Maven
repository, hence, the resulting archive file is smaller. User-defined classes are in-
tegrated into the archive file similar to the former described version of the plug-in,
however, they have to be specified in the project of the functional logic or the
dedicated dependency project (which is set up by the FESAS Development Tool).

Using the plug-in, a developer sends the functional logics to the FESAS Repos-
itory using a connection via Java RMI. Developers can specify the connection to
the FESAS Repository in a configuration file. A SAS that runs the FESAS Mid-
dleware loads the code from the repository as described in Section 7.3.1. With
the help of the FESAS Design Tool, which is described in the next section, the
system designer writes the configuration files that specify which logic should be
loaded at system deployment.

7.1.2. FESAS Design Tool

Besides implementing the functional logics of the MAPE components, the SAS
has to be designed. The FESAS Design Tool supports the system designers who
specify which (sub)systems host which parts of the managed resources and/or the
adaptation logic. Additionally, the system designer specifies the functional logic
that the components load. Further, the system designer uses the FESAS De-
sign Tool to describe the connections between the components, such as which
sensor retrieves data from which managed resources or from which monitor an
analyzer receives information. This allows the implementation of distribution
patterns, such as the ones from [401].
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The FESAS Design Tool is an Eclipse plug-in that supports model-driven
development for designing the system. It provides a graphical editor in which
the system designer specifies the configuration of the adaptation logic. Further,
the plug-in is complemented with a generator for JSON files representing the
information specified in the editor. These files are used in the system deployment
process to configure the SAS. The FESAS Design Tool is based on the Eclipse
Modeling Framework (EMF)6, the Graphical Modeling Framework (GMF)7, and
the Acceleo8 code generator. Figure 7.4 depicts the creation of configuration files
using the FESAS Design Tool. Next, this section presents the implementation of
the editor using EMF and GMF and the JSON file generation with Acceleo.

Acceleo

Metamodel / PIM JSON FilesSystem Model / PSM

EMF/
GMF

Figure 7.4.: Process of JSON configuration file generation with EMF / GMF and
Acceleo.

EMF and GMF are Eclipse plug-ins. As other model-driven development
approaches, EMF specifies a Platform Independent Model (PIM) and a Platform
Specific Model (PSM). The PIM represents the metamodel and is implemented as
an Ecore model with EMF. It is based on the FESAS Adaptation Logic Template
presented in Section 6.1.1. Elements of the metamodel represent the MAPE
components with their properties, including the contracts for functional logics
that have to be loaded at runtime. The meta elements of the PIM are the
elements that describe the SAS, i.e., the MAPE components. The EMF generator
model generates code based on the PIM and, hence, act as Decorator [137].
The PIM’s elements are the base for the implementation of PSMs. A PSM
specifies the components of a specific adaptation logic, its configuration, and the
connections between the components. For each SAS, a PSM is generated using
the Ecore model. Having the EMF files only, a developer would have to write the

6 EMF’s website: https://eclipse.org/modeling/emf/
7 GMF’s website: http://www.eclipse.org/modeling/gmp/
8 Acceleo’s website: http://www.acceleo.org/pages/welcome/en
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PSMs manually by writing XML files complying to the EMF syntax. For a more
convenient use of the plug-in, we implemented a GMF-based graphical editor.

GMF supports the development of graphical editors for all types of models and
purposes. The GMF runtime engine combines different components: Graphical
Definition, Tooling Definition, Mapping Definition, and GenModel. The GMF
Graphical Definition describes the different elements, the editor should be able
to draw (e.g., a box for representing a monitor component). Further, it describes
their lookalike on the diagram canvas. The GMF Tooling Definition defines the
tools, e.g., for each component that the user should create on the diagram canvas,
a tool has to be specified. The tools are shown in the so called palette. The GMF
Mapping Definition maps the tools and their graphical definition with the EMF
Ecore model. This enables an automatic creation of an element in the PSM, once
an element is added to the diagram canvas. Further, the system designer can only
use the elements of the palette. The structural correctness of the model is guar-
anteed as EMF/GMF permits to use the elements of the palette only as specified
in the metamodel, e.g., it prohibits to connect a monitor directly to a planner
component. The GMF GenModel combines all these information in a definition of
the editor and generates an Eclipse plug-in that represents the editor’s function-
ality. GMF offers functionalities to generate all of the required components out
of an Ecore model. Accordingly, for implementation of the FESAS Design Tool,
we first needed to define the PIM as Ecore model. With GMF we than automat-
ically generated all components for the editor and adjusted them slightly, e.g.,
delete elements that should not be drawable or change the colors and symbols
for elements in the editor. The logic of the editor and storing of the content of
the diagram canvas to the model file is offered by GMF out of the box.

System designers can drag and drop elements from the palette into the can-
vas (e.g., an analyzer component), specify the functional logic of these elements,
and add connections (e.g., to a planner or another analyzer). Connections be-
tween components are represented by arrows in the canvas and by elements in
the palette. Further, arrows between device and managed element as well as
adaptation logic groups indicate which physical device deploys which adapta-
tion logic elements and which parts of the managed resources. Figure 7.5 shows
the diagram canvas with a subset of the SmartHighway system. The system fol-
lows the fully decentralized pattern as each section is managed by a dedicated
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Figure 7.5.: Diagram canvas with an exemplified SAS. The left side shows the ed-
itor. There, a subset of the SmartHighway system showing elements
of one section is specified. The right side shows the palette with the
available elements for system design.

part of the adaptation logic with full MAPE functionality. Further, the designer
defines the connection between managed resources – e.g., traffic cameras and
traffic signs – and the adaptation logic using the plug-in.

For further convenience, it is possible to choose a distribution pattern. The
plug-in offers a fully centralized pattern, a fully decentralized pattern – i.e., the
adaptation logic is separated into several subsystems that all have full MAPE
functionality, however, no connection between each other –, and the decentral-
ization patterns from [401]. This functionality is a custom implementation and
does not extend the EMF/GMF functionalities. As a first experiment for the
vision of having a self-* IDE, we implemented a mechanism that can choose a
suitable pattern depending on system properties, such as scalability, responsive-
ness, and local vs. global optimization. We added this mechanism as additional
functionality of the FESAS Design Tool. However, as this is in preliminary stage,
that function is excluded from further investigation in this thesis.
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1 [template public generateComm(aDiagram :DiagramElement)]
2 [file ((’config_Comm.json’), false, ’UTF-8’)]
3 {
4 "COMM_ADAPTATIONLOGIC": [’[’/]
5 [for (anAdaptationLogic:AdaptationLogicElement | aDiagram.

diagramAdaptationLogicConn)]
6 [for (sensor: SensorElement | anAdaptationLogic.sensorALConn)]
7 [for (sen_mon: SensorMonitorComm | sensor.mon_sen)]
8 [for (aLogic: ALLogicElement | sensor.AL_LOGIC)]
9 {

10 "COMM_ELEMENT": {
11 "COMM_TYPE": "[sen_mon.COMM_TYPE/]",
12 "COMM_RECEIVER": "[sen_mon.RECEIVER.AL_ID/]",
13 "COMM_SENDER": "[sen_mon.SENDER.AL_ID/]",
14 "COMM_INFO_TYPE": "[sen_mon.COMM_INFO_TYPE/]",
15 "COMM_INFO_CATEGORY": "[sen_mon.COMM_INFO_CATEGORY/]"
16 }
17 },
18 [/for]
19 [/for]
20 [/for]
21 ... // code removed
22 }
23 [/file]
24

25 [/template]

Listing 7.2: Excerpt of an Acceleo template showing the template that is filled
with the data collected in the editor for the connections between
the MAPE components.

Once the system is designed in the editor, the next step is the creation of
configuration files. For that, the plug-in uses the functionality of the open source
code generator Acceleo. Acceleo enables the transformation of EMF models to
various formats, such as HTML, XML, or JSON. Acceleo uses the EMF-based
PSM and templates of the JSON files as input for the configuration file genera-
tion. The templates are composed of static JSON data and wildcards. During
file generation, the Acceleo generator replaces the wildcards with the values of
the PSM represented by the model specified in the editor. Listing 7.2 shows an
excerpt of such an Acceleo template. For each device, Acceleo creates one JSON
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file with the information about the components as well as one file with the in-
formation regarding connections. The FESAS Middleware uses these files during
the deployment of a SAS as specified in Section 6.1.2. Acceleo offers reference
implementations in Java based on EMF models. We extended and customized
these implementations.

1 {
2 "DEVICE_PROPERTIES": [
3 {
4 "TYPE": "device_id",
5 "VALUE": "fesasID-123_0_000"
6 },... // code removed],
7

8 "AL_ADAPTATIONLOGIC": [{
9 "AL_TYPE": "MONITOR",

10 "AL_ID": "fesasID-123_1_001",
11 "AL_NAME": "Device_km1_monitor",
12 "AL_LOGIC": [
13 {
14 "SUPPORTED_INFORMATION_TYPES":[
15 "Context_CAMERA_DATA"],
16 ... // code removed],
17 "AL_PROPERTIES" :[... // code removed
18 ],
19

20 "MANAGEDRESOURCES": [{
21 "MR_RESOURCE": {... // code removed}},
22 ]
23 }

Listing 7.3: Excerpt of a generated JSON file for showing its structure with
some data from the SmartHighway system.

Listing 7.3 shows the structure of a resulting configuration JSON file. As a
lightweight and language-independent representation, JSON suits this use case.
The file for a device has a JSON element for the device as root element. This ele-
ment contains the device’s properties as JSON attributes and JSON elements for
the adaptation logic, managed resources, and the communication. Each JSON
element represents an array with the adaptation logic components and/or the
probes and actuators of the managed resources. The communication links be-
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tween MAPE elements are specified in a dedicated file. The adaptation logic
components have contracts for the logic they should load. The combination of
editor and code generator is optimized for the FESAS Framework, however, not
restricted to it. The separation of the editor and configuration file generation en-
ables to use the plug-in for other languages by adjusting the Acceleo templates.

7.2. Implementation of the FESAS Repository

As described in Section 6.1.3, the FESAS Repository stores the functional log-
ics for MAPE components. Throughout the development of the FESAS Frame-
work, we experimented with different implementations of the FESAS Repository.
The implementations also influenced the generation of functional logic elements.
However, all use the same principle: the separation of code and metadata. Fur-
thermore, the metadata syntax stayed stable and the mechanisms for storing the
metadata and code in the FESAS Repository also were reused in the different
variants. In this section, we describe the three variants of the FESAS Repository.

As presented in Section 4.1, aspect-oriented approaches are promising for the
separation of code that should be adapted and cross-functional concerns that
are not influenced by adaptation. Hence, it seems legit to use this approach
also in the adaptation logic to separate cross-functional concerns as data han-
dling and aspects: application-specific concerns, i.e., the implementation of the
MAPE functionality. This is in accordance with the nature of the FESAS Adap-
tation Logic Template and Component Template. We implemented a prototype
using the TRAP-J software tool [318] which extends Java with AOP capabili-
ties. Furthermore, in contrast to usual AOP-based approaches where the "weav-
ing" process – i.e., the integration of aspects – happens at system deployment,
TRAP-J supports weaving at runtime. Using this in the adaptation logic sup-
ports self-improvement. Packaging during development just required to bundle
the aspect and all dependencies as well as adding the metadata. Furthermore,
the mechanism for loading code in the adaptation logic is offered by TRAP-J.
We implemented a fully-fledged prototype. However, the prototype comes with
the cost of learning a new syntax as TRAP-J introduces additional programming
concepts and extends the Java syntax as well as the need of additional tools. For
the sake of usability, we decided to implement an alternative.
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The second variant (called original variant in the following) does not change
the developers workflow [225]. It does not require developers to learn a new
tool. For loading code into the adaptation logic, we implemented a dynamic code
reloading mechanism based on the Java class loader. However, the approach
did not proof its applicability for development in large systems as sometime
dependencies are not identified and the calculation time increases with the project
size. The FESAS IDE offers this mechanism for small-scale projects.

Figure 7.6.: System model for the FESAS Repository with all involved elements.

As Maven enables the loading of dependencies in the form of jar packages and
its common usage in Java development projects, we decided to extend the existing
mechanism with support for Maven (called Maven variant in the following). The
obvious advantage is that Maven specifies all integrated external dependencies
in a pom file. This reduces the search for dependencies to only searching newly
developed classes. We decided to re-design the FESAS IDE, so that all dependent
classes that are newly implemented by developers are stored in the same project
and are automatically packed together with the functional logic classes. Figure 7.6
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presents the Maven-based approach. In the following, this section describes how
the FESAS Repository works. Any differences between the last two mentioned
variants are described.

Using the FESAS IDE, the developer can send a functional logic package
to the FESAS Repository. This package contains the metadata, the code of
the functional logic, the code of custom implemented dependent classes, and
the pom file in case of the Maven variant or all other dependent classes for the
original variant, respectively. The FESAS Repository is implemented in Java.
The main class is RemoteLogicJarRepository which implements the interface
IRemoteLogicRepository (cf. Appendix B.6).

Figure 7.7 shows the sequence diagram for the interaction between FE-
SAS IDE, FESAS Repository, and FESAS Middleware. In the following, this
section explains the most important methods of the FESAS Repository. The
first method is called addLogicToRepository() and is responsible for receiving
new logic packages from the FESAS IDE. The method is called by the FESAS De-
velopment Tool via Java RMI when sending the packaged jar files. When called,
the method first stores the incoming logic package into a temporary folder. It
then extracts the JSON files and reads the metadata information, creating a
LogicElementMetadata object and stores the package. For the Maven variant,
also the pom file is stored. Analysis of the pom file happens at the FESAS Mid-
dleware. The file path of the stored package is added to a nested hash map. The
first layer of the hash map groups the logic elements by logic type. The logic
metadata object is then used as a key to the logic file path on the second layer.
This results in the following nested hash map scheme:
HashMap<LogicType; HashMap<LogicElementMetadata; String»

The second major method of the repository is findLogicElement() and re-
solves a JSON contract for finding the most suitable logic package. The method
first filters all available logic packages by the logic type and programming lan-
guage specified in the contract. A utility function is used to measure the similarity
of contract and logic metadata. The method returns to the FESAS Middleware
the JSON metadata that describes the logic with the highest utility value.

The FESAS Middleware calls the method loadLogicFromRepository() if the
logic named by the method findLogicElement() is not yet stored locally in
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Figure 7.7.: Sequence Diagram for the interaction of FESAS Development
Tool, FESAS Repository, and SAS (created using websequencedi-
agrams.com).

the adaptation logic. The method call includes the JSON metadata which was
determined by the method findLogicElement(). It performs a look-up on the
nested hash map in order to get the file path of the requested logic package. The
logic package is then returned to the FESAS Middleware. The following section
explains the handling of the package in the adaptation logic.

7.3. Implementation of the FESAS Middleware

Based on the design of the FESAS Framework presented in Section 6.1, the
FESAS Middleware controls the system deployment, connects managed resources
and adaptation logic as well as adaptation logic and ALM, manages the context,
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and offers modules for communication between the MAPE elements. This section
introduces the implementation of (i) the prototype of the FESAS Middleware
and (ii) a publish/subscribe communication system for communication between
MAPE elements. The prototype is implemented in Java as it (i) offers support for
many different operating systems as well as (ii) can be used for developing mobile
apps for Android devices. Subsequently, Section 7.3.1 present the implementation
of the components of the FESAS Middleware which control the deployment of
the adaptation logic and self-improvement. Afterwards, Section 7.3.2 describes
a reusable Pub/Sub approach which is used for communication between MAPE
components of the adaptation logic.

7.3.1. FESAS Middleware Components

The FESAS Middleware consists of different components. It is responsible
for the deployment of the adaptation logic at the start of the system. In this
first prototype, the following components are implemented in Java: the Middle-
ware Starter, the Local Repository, the Proxy ALM, the JSON Parser, and the
SAS Setup Service. The Java-based implementation of the middleware is avail-
able as Maven library and can easily be integrated into an adaptation logic that
follows the system model from Section 6.1.

The Middleware Starter is triggered when starting the system. It is imple-
mented as Singleton and controls the start process by loading the Proxy ALM,
the Local Repository, the JSON Parser, and the SAS Setup Service. Figure 7.8
shows a sequence diagram of the start-up procedure and the interplay of the
components. Next, this section describes the components in detail.

If self-improvement is enabled, the Proxy ALM is started at first. The
Proxy ALM is implemented as a Singleton. Several elements of the system in-
teract with it. First, all MAPE elements send updates of their state if they add
or remove a functional logic to the Proxy ALM. Second, the sensor or monitor
has to transmit the data received from managed resources to the Proxy ALM.
This has to be triggered by developers through calling the updateSensorData
method. The Proxy ALM caches these data and sends it to the ALM on request.
Third, the Proxy ALM is responsible for the registration at the ALM. There-
fore, three options are implemented: (i) Java RMI, (ii) WebSockets, or (iii) local
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Adaptation Logic FESAS Middleware

Figure 7.8.: The sequence diagram shows the interaction of the FESAS Middle-
ware components with the MAPE components during the start of
the system. Interactions with the ALM and the FESAS Repository
as well as sub-modules of the components are omitted (created using
websequencediagrams.com).

method calls. Whereas the first two options are used for SASs which separate the
ALM from the adaptation logic, the third option is used for the single module
ALM. The registration is done by the RegistrationHandler component of the
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Proxy ALM. It sends registration requests to the ALM. Last, the Proxy ALM
contains the ALMProxyRequestHandler which processes all requests from the
ALM and transmits them to the Proxy ALM which uses the SAS Setup Ser-
vice to adapt the adaptation logic, e.g., add/remove a functional logic. After
the initial registration, Proxy ALM and ALM communicate using sockets. All
requests between Proxy ALM and ALM use the JSON format according to the
protocol presented in Appendix C.1. The Gson9 library supports marshalling
and demarshalling of the data from Java objects to JSON and vice versa.

Additionally, the Local Repository is started and sets up a connection to the
FESAS Repository. Depending on whether a dedicated, remote repository on
a server or a local, integrated variant of the FESAS Repository is used, the
connection is either established via Java RMI or local method calls. Besides a
mechanism for transferring a Java class including demarshalling of the class and
implemented dependencies from binary data to a Java class object, the reposi-
tory integrates a mechanism for dynamic class loading based on the standard Java
class loader. Further, the Local Repository caches loaded classes in a HashMap
in case they are requested again. The original variant of the FESAS Reposi-
tory from [225] uses this mechanism to load all files from the archive. For the
Maven variant described in Section 7.2, the Maven pom file specifies dependencies
that are available as Maven archives. Therefore, the Local Repository uses the
MavenXpp3Reader class from the Apache Aether10 library to resolve the depen-
dencies defined in the pom file and load the classes accordingly. Hence, the mid-
dleware supports both approaches of loading dependent classes: from a archive
file as well as from Maven repositories. Finally, the Local Repository triggers
loading the functional logic into the Java Virtual Machine, returns an object of
it, and the MAPE component that started the loading process integrates this
object. Figure 7.9 shows a sequence diagram with the dynamic class loading
process in the adaptation logic from the extended Maven variant.

9Gson library on Github: https://github.com/google/gson
10Apache Aether website: http://maven.apache.org/aether.html
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Figure 7.9.: The sequence diagram shows the process of dynamic class loading in
the adaptation logic. This process involves the FESAS Repository,
the Local Repository, and additional modules for handling the jar
files in the FESAS Repository (JarFileHandler) as well as dynamic
loading of jar files from the Maven repositories using Apache Aether
(created using websequencediagrams.com).
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Crucial for the deployment process is the analysis of the system model stored
in JSON configuration files. These files are processed by the JSON Parser. It
also integrates the Gson9 library to read JSON data. After parsing the JSON
configuration files, the JSON Parser returns a list with all MAPE elements and
their configurations to the Middleware Starter. The Middleware Starter than
initializes the adaptation logic using the SAS Setup Service.

The SAS Setup Service loads MAPE elements and configures the adaptation
logic. The prototype’s implementation of the SAS Setup Service implements the
interface described in Section 6.1.4 (cf. Appendix B.8 for the interface definition).
It receives the information for a MAPE element from the Middleware Starter and
uses the reference system’s implementation of MAPE elements based on the FE-
SAS Adaptation Logic Template (cf. Section 6.1.1) to start each MAPE element.
Additionally, using the Local Repository, it loads the functional logic and config-
ures the MAPE element. After starting all MAPE elements, the SAS Setup Ser-
vice sets up the communication between the MAPE elements. At runtime, the
SAS Setup Service enables self-improvement through exchange of functional log-
ics or change of the communication pattern between MAPE elements.

During deployment, the middleware configures the sensors for sensing infor-
mation from managed resources. The prototype of the FESAS Middleware offers
several communication modules for connecting managed resources and adapta-
tion logic. Developers just need to specify the preferred communication approach
and configure it using the FESAS IDE, i.e., no coding is necessary.

The first communication approach enables a push-based communication: The
sensor can open a server socket and awaits data from the managed resources.
Second, for pull-based communication, the sensor can start a client socket which
is configured with IP addresses and ports of managed resources. The sensor uses
this information and the socket to regularly request new data from managed re-
sources. This approach can be used for effectors, too. Third, the adaptation logic
might be implemented as web server. For the implementation of the web server,
the Socket.IO Java Server11 is used. This library enables to run a lightweight,
stand-alone Java-based web server and supports the WebSocket protocol. Sensors
use this functionality to open a WebSocket. After receiving a request from the
managed resources, the connection is stored and the effector can use it for sending

11Socket.IO library on Github: https://github.com/scalecube/socketio
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instructions back to the managed resources. These three approaches can be used
out-of-the-box and are integrated into the reference systems (cf. Section 7.5).

Figure 7.10.: Architecture of the probe bus: The interaction modules can be pro-
vided as library to developers. The prototype is implemented using
the ActiveMQ JMS broker as Pub/Sub Service and MongoDB as
NoSQL database.

Additionally, we experimented with the implementation of a probe bus (cf. the
Probe/Gauge Reporting Bus from the Rainbow Framework [77,141]). Figure 7.10
shows the architecture of the probe bus. The implementation is based on the Java
Message Service (JMS) API. Implementations of a JMS require a message server,
the so called JMS broker. As the underlying technology for the JMS broker,
the ActiveMQ12 server is used. Data is stored in the NoSQL database Mon-
goDB13. The system follows a topic-based approach as known from Pub/Sub
systems (cf. [118]). Therefore, topics are defined based on the context feature
space presented by Schmidt, Beigl, and Gellersen in [329]. Probes of the man-
aged resources can send data to the JMS broker. The sensors of the adaptation
logic can subscribe for specific topics. Vice versa, the effectors push data to
the JMS broker, actuators of the managed resources can register for this data.
Contrary to the former three communication approaches, this approach supports

12Apache ActiveMQ website: http://activemq.apache.org/
13MongoDB website: https://www.mongodb.com/
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n:m communication, i.e., settings with a distributed adaptation logic where the
information from the managed resources is shared between the instances of the
adaptation logic. However, as the bus system requires a message server as well
as a database, this approach is only suitable for larger systems and systems with
at least one fully-fledged device that can host the JMS broker. The system is
not fully integrated in the FESAS IDE. Therefore, it requires manual integration
effort from the developers.

As described in Section 6.1.4, the context manager is responsible for storing
the information captured by the sensors as well as offering an abstraction from
the managed resources. The former presented JMS broker-based approach for
connection of adaptation logic and managed resources could be used as context
manager. It satisfies all functional requirements: (i) stores context data in a
database, (ii) offers access to this data for all MAPE components, and (iii) pro-
vides a clear interface between the effectors and actuators for controlling the
adaptation of the managed resources. However, as the approach requires a mes-
sage server it is only suitable for systems that integrate fully-fledged devices. An
alternative implementation is provided in the PROACTIVE framework [369]. It
integrates the context broker [368, 370] for context management. The context
broker offers a Pub/Sub approach for context management. We also built a pro-
totype using the PROACTIVE context broker. However, for both approaches, a
clear definition of the context data and the interfaces to the actuators are nec-
essary. Such a definition can rely on context models (cf. [43, 329]). So far, for
the FESAS Framework, the context model is not standardized. Accordingly, no
reference implementation for the context manager is integrated.

For the SmartHighway system the components of the FESAS Middleware
are used without any modification. The connection to the highway devices is
established via sockets. The FESAS Middleware configures the sockets based
on information defined in configuration files through the designer by using the
FESAS Design Tool. The context information is managed implicitly by sending
the relevant data from one MAPE component to another. This is possible as
historical context data is not relevant in the SmartHighway scenario. Mapping
of context information to sections and vice versa of instructions to sections is
done using the information specified in the system model. There, a sensor and
an effector is specified for each section.
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7.3.2. A Reusable Publish/Subscribe Approach for Communication
in the Adaptation Logic

In a SAS, there are four types of communication: within the adaptation logic,
between adaptation logic and managed resources, within the managed resources,
as well as between the managed resources and their environment, such as legacy
systems. The former section presented the connection between adaptation logic
and managed resources. In contrast, this section presents a reusable approach
for communication within the adaptation logic. Parts of this section are taken
from [228]14. The connection between different managed resources and managed
resources and the environment is out of scope of this work.

As the adaptation logic can be decentralized, the communication shall not
be coupled to specific elements, but instead to the information itself (requires
space decoupling). Furthermore, the different subsystems of the adaptation logic
may have various MAPE loops. Their activities are not synchronized (requires
synchronization decoupling) and have varying execution times due to different
hardware, algorithms, and purposes (requires time synchronization). A Pub-
lish/Subscribe (Pub/Sub) approach offers decoupling from space, synchroniza-
tion, and time, and is not restricted to a specific implementation approach or
language [118]. Further, Pub/Sub approaches decouple sender and receiver. If
a component wants to receive some specific data, it can register itself at the
Pub/Sub service and becomes a subscriber. The registration bases on topics
(predefined keywords), content (e.g., event properties), or event types and can be
event-specific or related to a pattern of events [118]. When a component wants
to make data available, it sends the data to the Pub/Sub service and becomes a
publisher. A Pub/Sub service can be a central component or distributed.

The Pub/Sub service implements the interface specified in Listing 7.4. The in-
terface offers the typical methods for a Pub/Sub system as proposed in literature,
e.g., [118]. These are methods for subscribing, deleting existing subscriptions,
publishing data, and notifying the availability of new data. For supporting the
distributed nature of the Pub/Sub system, the interface offers additionally meth-
ods for subscription at remote elements of the Pub/Sub system. In the following,
this section describes the implementation of the Pub/Sub system.

14 [228] is joint work with F. M. Roth, S. VanSyckel, and C. Becker.
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1 {
2 public interface IPubSub {
3 public void subscribe(eventCategory, publisher, subscriberID);
4 public void subscribe(eventCategory, subscriberID);
5 public void subscribe(eventType, publisher, subscriberID);
6 public void subscribe(eventType, subscriberID);
7 public void subscribeExternal(eventCategory, subscriber);
8 public void subscribeExternal(eventType, subscriber);
9 public void unsubscribe(eventCategory, publisher,

10 subscriberID);
11 public void unsubscribe(eventCategory, subscriberID);
12 public void unsubscribe(eventType, publisher, subscriberID);
13 public void unsubscribe(eventType, subscriberID);
14 public void unsubscribeExternal(eventCategory, subscriber);
15 public void unsubscribeExternal(eventType, subscriber);
16 public void publishEvent(event);
17 public void notify(event, publishingSystem);
18 }

Listing 7.4: Interface for the Pub/Sub system. The interface is written in the
Java syntax and offers the typical methods for Pub/Sub systems.

In our approach, components register based on information categories and
information types. Categories relate to MAPE component types according to a
topic-based Pub/Sub approach [118]. Additionally, use-case dependent informa-
tion types can be used. Furthermore, our approach divides between registration
of events of a specific system (compared to event-specific registration) vs. regis-
tration for all systems (event patterns). Besides other properties, the event has
a knowledge ID which enables subscribers to load data that is related to the
event. Subscribers may first receive the event and request relevant data with this
knowledge ID. The process of registration and publication of events is shown in
Figure 7.11. In the following, we discuss subscription and publication of events.

The degree of domain and deployment knowledge influences the design of the
Pub/Sub system (cf. Table 7.1). On the one hand, having more deployment
knowledge enables a fine-granular registration which avoids message overhead as
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Knowledge

Pub/Sub
Publishing side of an Event Subscribing side of an Event

(1.2) 
subscribe(…)

(1.3) subscribeExternal(…)

(2.2) 
saveData(Data)

(2.3) 
getID
(DataID)

(2.4) 
publishEvent(Event)

(2.5) notify(Event,System)

(2.6) receiveData
(Event)

(2.8) getData(DataID)

(2.9) receive(Data)

(2.7) 
getData(DataID)

(2.10) 
receive(Data)

Knowledge

Fct.Com.
(2.1) 
sendData
(Data)

Fct.Com.

(1.1) 
register(…)

Pub/Sub

(2.11) 
callLogic(Data)

Figure 7.11.: The reusable Publish/Subscribe system enables communication be-
tween MAPE elements. The split of event data and knowledge, i.e.,
the data itself, reduces communication workload. Com. = Commu-
nication Logic, Fct. = Functional Logic.

the relevance of received events is increased but is more static. On the other
hand, integrating more domain knowledge reduces message overhead, too, but
leads to more customization and reduces reusability. In the following, this section
describes the Pub/Sub system.

Domain knowledge
Yes No

Deploy-
ment
knowledge

Yes Registration for specific event
types of specific instance

Registration for general event
categories of specific types

No Registration for specific event
types

Registration for general event
categories

Table 7.1.: Trade-off between deployment knowledge and domain knowledge for
the topic registration at the Pub/Sub service when choosing between
registration for event types vs. event categories and between specific
systems or all systems.

Subscribing for events: The functional logic of a component specifies which
data it requires (cf. step (1.1) in Figure 7.11). The communication logic uses
the appropriate subscribe() method (1.2), depending on whether it uses the
information type or category and whether the scope of the registration is one
specific subsystem or the entire system. The Pub/Sub service adds the subscriber
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to its list for the specified events. If the subscription is for a local component,
the subscription is completed at this stage. For a remote component, the local
Pub/Sub service subscribes for relevant events at the remote Pub/Sub service(s)
of the corresponding subsystem(s) or all systems (1.3). Unsubscribing has the
same workflow like subscription, hence, it is omitted here.

Publishing an event: If a functional logic calls the sendData() procedure
(2.1), the communication logic first stores the data (2.2/2.3), and, then calls
the publishEvent() procedure (2.4). The Pub/Sub service notifies all other
Pub/Sub services that have subscribed for the event (2.5) and transmits the
event. After receiving an event, the Pub/Sub service hands the information to
the subscribed components (2.6) which use the communication logic for reading
the data. If the event is relevant for a component, the communication logic loads
the event’s data (2.7 - 2.10) and starts the callLogic() procedure with the
data (2.11).

The FESAS Middleware incorporates two implementations of the Pub/Sub
system: one is based on local methods calls for a centralized adaptation logic,
the other uses the BASE middleware [34] for communication across sub-systems of
the adaptation logic. In literature, different alternatives to the Pub/Sub approach
can be found. Closest related to the field, Sykes, Magee, and Kramer presented
FlashMob, which offers a gossip-based protocol for supporting the information
exchange for decentralized decision making in SASs. Additionally, [118] discusses
different alternative communication paradigms.

7.4. Implementation of the Adaptation Logic Manager

Based on the design presented in Section 6.2, prototypes for the ALM have
been implemented. In [223], we present a first version of the ALM prototype.
This version adds a layer on top of the adaptation logic according to the de-
sign presented in Section 6.2. Additionally, we implemented three modules for
planning structural and parametric self-improvement and evaluated them in the
SmartHighway scenario. This first prototype and the modules were further ab-
stracted from the use cases, hence, in the current version, they are reusable. Based
on this reusable version, we present a single module version of the ALM in [230].
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This modularized ALM targets smaller SASs, where in contrast to the layered
version, the ALM does not need to coordinate different parts of the adaptation
logic running on various systems. We used this version in combination with a
customized planner module in a fall detection system to adapt the fall detection
algorithm according to the position of the fall detection device. However, as both
variants of the ALM – the layered ALM and the single module ALM – base on
the same implementation, the single module ALM is not described in detail.

This chapter describes the implementation of the ALM prototype as well as the
three modules for planning structural and parametric self-improvement. First,
Section 7.4.1 presents the implementation of the ALM according to the design
presented in Section 6.2. Second, Section 7.4.2 explains the implementation of
the three modules for planning structural and parametric self-improvement. A
detailed discussion of the ALM’s performance in the SmartHighway scenario fol-
lows in the evaluation part of this thesis (cf. Section 8.3.2). Parts of this section
are based on [223]15.

7.4.1. Adaptation Logic Manager: Reference System

The implementation of the ALM follows the design presented in Section 6.2.
Hence, the ALM is implemented as an additional layer on top of the adaptation
logic and integrates a MAPE-K feedback loop structure [198]. The prototype of
the ALM is implemented using Java 8. In the following, this section presents the
implementation of the ALM’s MAPE components.

Figure 7.12 presents the registration process of a SAS. The ALM has an
RegistrationHandler component that continuously listens for registration re-
quests from a Proxy ALM RegistrationHandler. After receiving a request for
registration, the information is stored in the ALMRegistry. The connection can
be established with WebSockets, Java RMI, or method calls.

The ALM Sensor loads the registered Proxy ALMs from the ALMRegistry
when it senses information. The ALM collects the following data from the regis-
tered Proxy ALMs: (i) the structure of the adaptation logic, (ii) the properties of
the MAPE components as well as (iii) the data that the adaptation logic collected

15 [223] is joint work with J. Otto, F. M. Roth, A. Frömmgen, and C. Becker.
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Figure 7.12.: The diagram shows the interaction between ALM and Proxy ALM
for the registration of a subsystem of the adaptation logic as well
as a request for sensing information. The connection between the
components of the adaptation logic and Proxy ALM is abstracted,
only the start of the Proxy ALM and two updates of information
are shown (created using websequencediagrams.com).
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1 {
2 "domainNodes": [{
3 "fesasID": "streetSection1",
4 "name": "Street section",
5 "type": "DOMAIN",
6 "properties": [{
7 "key": "roadCondition",
8 "value": "good"
9 },... // code removed

10 }]
11 },... // code removed
12 }],
13 "domainRelations": [{
14 "from": "streetSection1",
15 "to": "fesasID-123_1_008",
16 "type": "directed",
17 "labels": ["ManagedBy"],
18 "properties": [{
19 "key": "utilization",
20 "value": "0.9"
21 }]
22 }... // code removed
23 }

Listing 7.5: Example JSON description of the domain knowledge for the
SmartHighway scenario from [223]. The ALM appends this
information to the FESASGraph.

from the managed resources. For each type of data, the ALM has one ALM Sensor
that periodically connects to the registered Proxy ALMs. The ALM Monitor pre-
processes the data from the adaptation logic and stores the data collected from
managed resources into a MongoDB16 NoSQL database. Later, the data can be
used for prediction, analysis, and planning self-improvement. Through specified
service interfaces, developers can access the data. Further, the ALM Monitor
builds a graph of the adaptation logic’s structure – the so called FESASGraph –
that can be used for reasoning, e.g., for structural meta-adaptation of the adapta-
tion logic. The GraphStream17 library was selected for the implementation of the
FESASGraph. Using the Observer pattern [137], it is possible to register observers

16MongoDB website: https://www.mongodb.com/
17GraphStream website: http://graphstream-project.org/
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that are informed when the graph changes. This can trigger an update of data in
registered analyzing or planning modules. Using this, developers can access data
about the adaptation logic’s structure and use this data for reasoning. Conse-
quently, developers do not have to implement the monitoring of the adaptation
logic and the managed resources.

As analysis may require the integration of domain-related information into
the FESASGraph, we implemented the DomainKnowledgeAppender following the
Decorator pattern [137]. It reads information from a JSON file which specifies
additional elements and connections and appends it to the graph. Therefore,
only the path to the file has to be defined. Furthermore, this approach supports
the separation of development and design tasks as a designer without imple-
mentation experience can specify the file. Listing 7.5 shows an example of such
a JSON file for the SmartHighway scenario which adds information about the
street conditions.

The ALM Analyzer integrates a prediction module that offers different oper-
ations for analyzing the data collected from the managed resources based on the
Waikato Environment for Knowledge Analysis (WEKA) [185] machine learning
framework. The prediction module is a generic component. Through WEKA,
a large set of regression learners can be used in the prediction module, such as
Bayesian Networks, Multilayer Perception/Artificial Neural Networks, or Sup-
port Vector Machines for Regression. Developers use the prediction through
minor configuration of specified parameters, such as the amount of considered
data items, specifying the machine learning algorithm, or the amount of forecast
steps. For the SmartHighway system [223], we implemented time-series forecasts
based on Support Vector Machines for Regression in the data prediction module
for prediction of traffic situations. Whereas the prediction can be used out of the
box, minor customization for interpreting the results is necessary. Our approach
supports the developer through encapsulation of the generic elements, clearly de-
fined interfaces to the customization parts, and documentation on how to use the
prediction module. Additionally, implementing specific interfaces, developers can
implement analyzing modules that use the prediction module and provide a use
case specific analysis of the data. The ALM Analyzer informs the ALM Planner
about the analysis results.
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The ALM Planner decides which improvement modules should run. Fig-
ure 7.13 shows the interfaces. Each of the planning modules implements
at least one of the interfaces for parameter, structure, or algorithm meta-
adaptation. The interface IRuntimeOptimization enables the support of mul-
tiple types of meta-adaptation. This interface defines functions that all meta-
adaptation techniques must provide: besides the method getName(), the methods
getExpectedUtiliy() and getExecutionRank() are required for the implemen-
tation of the different execution strategies: predefined order, shortest execution
time, and utility-based (cf. Section 6.2). Apart from that, the interface extends
the Java interface Callable to support multi-threading for parallel processing of
ALM Planner modules. The ALM Planner starts the modules and waits for the
results based on the defined execution strategy.

Figure 7.13.: Interface hierarchy of runtime optimizations. For each type of meta-
adaptation – algorithmic, structural, and parametric – one interface
exist. All extend the generic IRuntimeOptimization interface. At-
tributes and specific methods of the extended interfaces are omitted.

In [223], we focused on structural self-improvement mapped to a graph struc-
ture of the adaptation logic. Therefore, every specific implementation of struc-
tural self-improvement has to be able to: (i) generate new and identify obso-
lete connections, (ii) return new and obsolete connections, and (iii) serialize
new and obsolete connections. The ALM offers implementations of the five
patterns from [401] in form of abstract classes that implement the interface
IStructuralAdaptation in order to provide as much reusable code as possible.
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As an example, for adapting a Regional Planning pattern or switching from
another pattern to it, every structural self-improvement implementing this pat-
tern has to identify a regional planner, connected analyzers, connected execu-
tors, and obsolete planners. Moreover, dispensable planners have to be identi-
fied. Listing 7.6 contains the code of the method for generating new connec-
tions. The methods automatically generates the list of new connections based
on the information, which nodes are the regional planners, their new connected
analyzers, and executors. The connections from analyzers to the new regional
planner are generated in lines 4-10 while connections from the regional planner
to executors are generated in lines 12-18 of Listing 7.6. Similarly, the method
generateObsoleteConnections() processes obsolete connections but is not dis-
cussed in detail.

1 public void generateNewConnections() {
2 Iterator<Node> iterator;
3

4 iterator = connectedAnalyzers.iterator();
5 while (iterator.hasNext()) {
6 Node node = (Node) iterator.next();
7 newConnections.put(node, regionalPlanner);
8 newConnectionsSerializable.put(node.getAttribute("fesasID").

toString(),
9 regionalPlanner.getAttribute("fesasID").toString());

10 }
11

12 iterator = connectedExecutors.iterator();
13 while (iterator.hasNext()) {
14 Node node = (Node) iterator.next();
15 newConnections.put(regionalPlanner, node);
16 newConnectionsSerializable.put(regionalPlanner.getAttribute("

fesasID").toString(),
17 node.getAttribute("fesasID").toString());
18 }
19 }

Listing 7.6: Method for generating new connections in the class
AbstractRegionalPlannerPattern.

In case the ALM Planner has found an adaptation plan for self-improving the
adaptation logic, it sends the plan to the ALM Executor. For the sake of demon-
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strating the complete approach, in the following a structural self-improvement is
presented. First, the ALM Executor checks the type of meta-adaptation spec-
ified in the plan in order to call different subsequent operations depending on
the type of meta-adaptation. In case of structural meta-adaptations, the method
executeStructuralAdaptation() is called. It expects an input parameter of
the type StructuralAdaptationData (cf. Listing 7.7). This method is respon-
sible for creating a JSON string that includes the instructions which are sent to
the Proxy ALM for the implementation of self-improvement. In case of structural
meta-adaptations it consists of which connections are to add or remove in order
to create the target structure of the system. Lines 4-28 of Listing 7.7 contain
exemplary code for the creation of instructions for adding new connections. Fur-
thermore, the changes are also implemented in the FESASGraph to keep a current
state of the systems structure within the ALM. Using socket-based connections,
the ALM Effector sends these instructions to the corresponding Proxy ALMs.
A Proxy ALM uses the SAS Setup Service (cf. Section 6.1.4) for triggering the
changes in the adaptation logic, such as switching the coordination pattern or
changing parameters of MAPE components.

All of the described components are integrated into the reference sys-
tem (cf. Section 7.5). The FESAS Framework directly supports the distribution
of the MAPE components of the ALM, fulfilling requirement RSI5. Figure 7.14
shows an overview on all elements of the ALM prototype. The main focus on the
implementation is the connection between the adaptation logic and the ALM as
well as the provision of data for reasoning on self-improvement. Therefore, all
the gray elements from Figure 7.14 can be used without any adjustments. These
elements trigger the sensing of information from the adaptation logic subsystems
about their structure, components, as well as the captured data from managed
resources. The sensed information is stored in the FESASGraph and the MongoDB
database. Clear interfaces enables developers of self-improvement reasoning mod-
ules to access this data for analyzing and planning self-improvement. The module
for prediction on the data about the managed resources can be easily configured
and the results are integrable into the developed analyzing modules. Only the
storing of data collected about the managed resources and the reasoning pro-
cess require customization. In the following, this section describes the provided
support for the necessary customizations.
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1 private void executeStructuralAdaptation(StructuralAdaptationData
structuralAdaptation) {

2

3 [...] // code removed
4 newConnections = structuralAdaptation.getNewConnections();
5 obsoleteConnections = structuralAdaptation.

getObsoleteConnections();
6 Iterator<Entry<String, Collection<String>>> iterator =

newConnections.entrySet().iterator();
7 Iterator<String> innerIterator;
8 [...] // code removed
9

10 while (iterator.hasNext()) {
11 Entry<String, Collection<String>> newConnection = iterator.next

();
12 from = FesasGraph.getInstance().getNode(newConnection.getKey().

toString());
13 targets = (List<String>) newConnection.getValue();
14

15 innerIterator = targets.iterator();
16 while (innerIterator.hasNext()) {
17 String target = (String) innerIterator.next();
18 to = FesasGraph.getInstance().getNode(target);
19

20 String system = from.getId().substring(16, 17);
21 String almProxyX = to.getId().substring(8, 11) + "0000";
22

23 [...] // code removed
24 instructions.add(wire(almProxyX, connectionType, to.

getAttribute("fesasID").toString(), from.getAttribute("
fesasID").toString(), InformationType.Analyzing_TRAFFIC,
InformationCategory.ANALYZER));

25

26 [...] // code removed
27 FesasGraph.getInstance().addEdge(from.getId() + "-TO-" + to.

getId(), from, to);
28 }
29 }
30 [...] // code removed
31 }

Listing 7.7: An example of the method for generic execution of structural meta-
adaptations in the ALM Executor.

113



7.4. Implementation of the Adaptation Logic Manager

ALM Sensor

Proxy ALM
Adaptation

Logic

ALM

ALM Monitor

ALM Analyzer ALM Planner

ALM Executor

ALM Effector

Plans

Raw

Data

Monitor

Data

Current Situation / Forecast

Plan

Instruc-

tions

Data Result

Prediction Module

Analyzing Modules

A1

Data

A1 A2 ... An P1

Planning Modules

...P2 P3 Pn

Comp. Str. Data

State Handler

Registration 

Handler

ALM 

Registry

Domain Data 

Adapter

MongoDB 

Database

FESAS 

Graph

Structural Patterns

Domain

Knowledge 

Appender

Figure 7.14.: Overview on the implemented components of the ALM. The ALM
prototype presented in this section provides all gray elements.
White elements need to be implemented or adjusted by the de-
velopers. The three modules for the planning process presented
in Section 7.4.2 are available and generically usable. The mod-
ules of the SmartHighway system for analyzing require adjust-
ments. The complex in the middle of the ALM – FESASGraph,
DomainKnowledgeAppender, DataAdapter, MongoDBDatabase, and
StructuralPatterns – act as knowledge repository.
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The captured data of the managed resources depends on the use case. There-
fore, a flexible solution for storing data is necessary. The non-SQL MongoDB
database enables this flexibility. In theory, developers can store the data as
captured. For a more structured approach, the IDataAdapter interface can be
extended (cf. Appendix C.2). A reference implementation of such an extension
shows the necessary steps for developers: definition of a pattern for parsing data
and mapping the parsed information to JSON. This minor customization enables
the storing of any kind of captured information adjusted to the use case.

The data of the adaptation logic is stored automatically in the graph-based
structure of the FESASGraph. Developers do neither need to take care of the
storing nor the capturing processes if they use the FESAS Framework. Further,
they can access this data through specified methods. If necessary, the data can be
enriched with use case specific information of the managed resources. Therefore,
a JSON file for the DomainKnowledgeAppender has to be specified as described
above. For future work, we plan to extract the information automatically with
the FESAS Design Tool.

As analyzing and planning of self-improvement is often application-specific
[226], developers might need to adjust existing modules or implement new ones
and plug them into the ALM Analyzer or the ALM Planner, respectively. There-
fore, the prototype implementation of the ALM offers a wide support for the
developers. For the analyzing procedure, developers can use the prediction mod-
ule. Further, the access to the automatically captured data of the adaptation logic
and the managed resources is possible. The combination of different analyzing
modules support the integration of a backup mechanism if proactive reasoning
fails. The same is true for planning of self-improvement: Through the strategies,
the ALM Planner can manage different planning modules simultaneously. The
necessary adjustments on existing planning modules are documented. Further,
various patterns for planning of structural self-improvement exist. The following
section presents three reusable planning modules for self-improvement [223].

Execution of self-improvement is simplified through the integration of the FE-
SAS Framework as it implements the interfaces for meta-adaption. However,
the ALM can be integrated with other frameworks for developing SASs that im-
plement the ALM protocol (cf. Appendix C.1) for communication between the
Proxy ALM and the ALM.

115



7.4. Implementation of the Adaptation Logic Manager

7.4.2. Adaptation Logic Manager: Planning Modules

In the following, this section describes the implementation of three planning
modules used for self-improvement in the SmartHighway system [223]. These
modules have been further standardized. They offer (i) dynamic parametric self-
improvement through rule learning, (ii) structural self-improvement based on a
fixed rule set, and (iii) dynamic model-based structural self-improvement. For
all three approaches, this section highlights the generic reusable parts and the
parts that require customization. Alternatively, it is possible to use related work,
e.g., the strategies for meta-adaptation presented in [149], the mechanism for
generating adaptation paths to achieve the desired target system configuration
from [304], or one of the other approaches analyzed in Section 4.3.

7.4.2.1. Parametric Self-improvement

The first module offers continuous meta-adaptation of the adaptation logic’s
Event-Condition-Action (ECA) rule set. Such a rule consists of events speci-
fied by a set of conditions and a set of corresponding actions for adapting the
managed resources. These actions are applied if the conditions are met by the
managed resources or the environment variables. Having found a matching rule,
the planner returns the corresponding action(s).

Rule Evaluator

Request Candidate
rules

Rule Learner

Utility Function
Best 
rule

New 
rule Rule

Adapter

Rule 

Generator

Simulation

Figure 7.15.: The module for learning rules generates and evaluates new rules. If
the rule learner finds an optimized rule, the module for parametric
self-improvement adapts the rule set in the adaptation logic.

The ALM is able to change the adaptation logic’s rule set, i.e., adding, remov-
ing, or updating rules. Figure 7.15 presents the module for rule learning. The
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learning module integrates a simulation of the managed resources. The simula-
tion is constantly started with new parameter combinations that represent the
properties of managed resources and rules for adaptation. The module uses the
simulations to retrieve the reaction of the managed resources to the adaptation
specified by the rules. As a next step, a utility function is applied to the col-
lected data of the simulation runs. The function assigns a utility value to each
simulation run, i.e., to each combination of condition and action of a rule candi-
date. Then, the module analyzes which rule is the best for a specific situation by
comparing the utility values of the runs.

1 public ALMData changeRulebase(ALMData request) {
2

3 if (request.getPropertyValue("action").equals(ALMProperty.
ADD_RULE)) {

4 addRule(request.getPropertyValue("element"), request.
getPropertyValue("rule"));

5 }else if (request.getPropertyValue("action").equals(ALMProperty.
REMOVE_RULE)) {

6 removeRule(request.getPropertyValue("element"), request.
getPropertyValue("rule"));

7 }else {
8 return new ALMData(ALMMsgType.ERR, ALMCommand.LOG);
9 }

10

11 return new ALMData(ALMMsgType.RESP, ALMCommand.RUL);
12 }
13

14 private void addRule(String ALObject, String rule) {
15 [...] // code removed
16 }
17

18 private void removeRule(String ALObject, String rule) {
19 [...] // code removed
20 }

Listing 7.8: Implementation of the method for rule meta-adaptation in the
Proxy ALM.

The ALM Planner triggers an update of the rules in the adaptation logic.
The FESAS Framework integrates a mechanism for exchanging rules. Listing 7.8
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provides the implementation of this mechanism in the Proxy ALM. The ALM uses
this mechanism for modifying the rule set. It is possible to use other frameworks
for the adaptation logic if they offer a rule change mechanism.

The simulator and the utility function are application-specific. Through mod-
ularization, it is possible to exchange the simulator and the utility function.
Consequently, the mechanisms for learning can be reused by integrating another
simulator and defining the relevant parameters for learning and the utility func-
tion. This allows to customize the learning module for a specific application.

In [223], we presented a rule learner for the SmartHighway scenario. This
learning module calculates the speed limit for a specified traffic flow using the
SUMO traffic simulation18. As learning parameter, different speed limits for a
specific traffic flow are applied. The module uses the following utility function
for finding the best rule for a traffic situation:

UHighway := α−
(
β ∗

∑
wait +

∑
lostTime

)
(7.4.2.1)

∑wait is the accumulated number of simulation steps where the speed of a
vehicle was below 0.1 m/s, ∑ lostTime is the accumulated number of seconds that
each vehicle lost due to driving below its target speed. These values are logged by
the SUMO simulation for every vehicle. Simulation runs with different weighting
factor β lead to a weighting factor of 7 for a balanced utility function. However,
for having a correlation between a large result and a high utility, the function
subtracts the sum of the two parts from a constant factor α. Simulation runs
showed that the sum does not exceed 1,000 for the track used in the simulation,
therefore, we chose 1,000 for the factor α. It may vary for other tracks. The
module then uses the result with the highest utility and constructs a new rule
consisting of the average flow per lane as the condition and the calculated speed
limit as the action. Listing 7.9 shows an example for such a rule. This rule states
that if the amount of vehicles exceeds 600 vehicles/hour the speed limit is set to
100 km/h (33.33 m/s). Section 8.3.2 presents the evaluation of the module.

18SUMO’s website: http://www.dlr.de/ts/sumo/en/
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1 <rules>
2 <condition>
3 <entry>
4 <key>flow</key>
5 <value>600.0</value>
6 </entry>
7 </condition>
8 <action>
9 <entry>

10 <key>speedLimit</key>
11 <value>33.333</value>
12 </entry>
13 </action>
14 <attributes />
15 </rules>

Listing 7.9: An example for a rule in the SmartHighway scenario from [223].

7.4.2.2. Structural Self-improvement

The structure of the adaptation logic and the managed resources can be mod-
eled as a graph, i.e., changes in the adaptation logic and managed resources are
reflected as changes in the graph. We implemented two graph-based modules for
structural self-improvement. Both modules integrate a graph-based representa-
tion of the SAS structure with rule-based and model-based planning for structural
self-improvement. They specify when to switch the coordination pattern of the
adaptation logic as shown in Figure 7.16. There, the approaches have triggered
a switch from a fully decentralized non-coordinated setting to a hybrid Mas-
ter/Slave pattern (cf. [401]). Next, this section presents a graph-based structural
self-improvement approach using a static rule set and the Topology Adaptation
Rule Language (TARL) [345]. Afterwards, this section introduces a variant using
a dynamic rule set implemented with the Neo4j graph database.

The TARL Module

TARL [345] offers a general topology adaptation model. A TARL rule consists
of a condition specification and an execution specification. The condition contains
(potentially multiple) graph patterns and matches those on the input graph. The
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corresponding execution statement specifies the changes to the input graph. If a
condition matches, the corresponding execution statement is triggered. Contrary
to the dynamic rule learner, for structural meta-adaptation of the adaptation
logic, the current state of the adaptation logic (e.g., its distribution) is relevant.
Therefore, TARL registers as an observer for the FESASGraph to receive updates
when the adaptation logic changes. TARL compares the graph with the pat-
terns that are defined in the TARL rules. The patterns integrate the current
or predicted traffic situation. If TARL finds corresponding patterns, it returns
the associated execution parts of the matching rules. The execution statements
contain adaptation actions. The functionality of the module is generically usable
and, hence, can be used in different applications. However, developers have to ad-
just the module by specifying patterns and writing corresponding TARL rules. A
listing showing the implementation can be found in Appendix C.3. Appendix C.4
provides an example of a TARL rule from the SmartHighway system [223].

The Neo4j Module

We implemented a second module for structural improvement using the
Neo4j19 graph database (called Neo4j module in the following). When the ALM
Planner triggers the Neo4j module, the module generates queries for the Neo4j
graph database using pre-defined but customizable rule templates. The Neo4j
module registers as observer at the FESASGraph, hence, it gets informed about the
current structure of adaptation logic and uses the information of the FESASGraph,
the data captured from the managed resources as well as the predicted data of
the ALM analyzer to build up the query. These queries change the graph of the
adaptation logic structure stored in the Neo4j graph database. The Neo4j module

19Neo4j website: https://neo4j.com/

Figure 7.16.: The figure shows structural self-improvement of a distributed adap-
tation logic. The distribution pattern switches from a fully decen-
tralized pattern to a hybrid Master/Slave pattern.
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then compares the current status of the adaptation logic stored in the FESASGraph
with the version in the database after performing the queries. Differences trigger
self-improvement for adjusting the adaptation logic structure.

The methods for querying the database as well as the comparison of the graph
structures are generically usable. Developers have to adjust the queries. List-
ing 7.10 shows the query for switching the current pattern to a Regional Planning
pattern in the SmartHighway scenario. At first, a highway section which includes
the attribute jam=true has to be found. This is realized by matching a node s
labeled as :DOMAIN for which where s.jam=true applies. In case a match exists,
the corresponding node is stored in the variable s. Afterwards, the regional plan-
ner has to be determined. The most posterior section with a jam on the highway
becomes the regional planner. Once the query is defined, Neo4j tries to find a
match on the current graph. In case a situation is present in which a jam section
exists and the other parts of the query also apply, the result has to be processed.
Our system uses this module for structural meta-adaptation of the adaptation
logic. However, the modules can integrate other types of meta-adaptation or com-
binations thereof. Section 8.3.2 presents the evaluation of the presented modules.
A listing showing the implementation can be found in Appendix C.5.

1 try (Transaction tx = graphDb.beginTx()) {
2 result = graphDb.execute("match (x)-[*1..3]->(c:CONTEXTMANAGER)

-[*2]->(t:DOMAIN)-[*1..6]->(s:DOMAIN)<-[*4]-(p:PLANNER)
where s.jam=\"true\" and ((x:ANALYZER)OR(x:EXECUTOR))
return distinct p,x");

Listing 7.10: Neo4j-based implementation of a structural self-improvement
showing the creation of the query for the Neo4j database.

7.5. Implementation of Reference Systems

Beside of the middleware components and the FESAS Repository, an im-
plementation of the MAPE components of the FESAS Adaptation Logic Tem-
plate (cf. Section 6.1.1) for the adaptation logic is necessary for using the FE-
SAS Framework. Different reference implementations of a SAS are available.
The systems are implemented in Java and offer implementations of the SAS
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Setup Service as well as components for the MAPE elements based on the FE-
SAS Component Template (cf. Section 6.1.1). Further, these reference systems
integrate the FESAS Middleware and the Pub/Sub system as well as support the
implementation of centralized and distributed adaptation logics. Additionally,
they are used as foundation for the ALM. In the following, this section presents
the reference systems and reusable functional logics for MAPE elements.

7.5.1. Reference Systems

Two variants are available for implementing a SAS with a central adaptation
logic. The first reference system can be used for a central, non-distributed adap-
tation logic. Interactions between MAPE components are based on Java method
calls. The second reference system integrates an http server. It can be used for
implementing client-server based SASs which use WebSockets for the connection
between managed resources and adaptation logic, e.g., for connecting Android
devices as managed resources. Both reference systems can also be used as base
for implementing the layered version of the ALM.

A third reference system targets the implementation of distributed adaptation
logics. This reference system uses the BASE middleware [34] for data transmis-
sion via the network. BASE has been tailored towards the requirements of per-
vasive environments with many heterogeneous devices. Accordingly, the MAPE
elements are implemented as BASE services. Further, the Pub/Sub system is
adjusted to integrate the BASE communication mechanisms.

All of these reference systems are complemented by so called wrappers. Fig-
ure 7.17 shows its structure. Similar to the composition pattern [137], they
integrate adaptation logic and middleware components, trigger the start of the
reference system, and store the configuration files including the system models
and specific configuration properties. Additionally, in case of using an internal
FESAS Repository, these wrappers also store the functional logics for the SAS.
Wrappers and reference systems can be used for implementing an adaptation
logic or the ALM. For the SmartHighway scenario, the adaptation logic uses the
wrapper for the decentralized referenced system as communication across sys-
tems is necessary after a structural self-improvement. Further, the ALM for the
system uses the wrapper with the central reference system.
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Figure 7.17.: The FESAS Wrapper combines the reference system contained of
the FESAS Middleware and the MAPE components with the con-
figuration files. Further, in case of a self-contained version, code for
the functional logics is integrated. Otherwise, the system loads the
code from the FESAS Repository.

7.5.2. Adaptation Logic Modules

The reference systems contain an implementation of the MAPE components,
however, not of functional logic elements. Through the modularity of the
FESAS Adaptation Logic Template it is possible to integrate different functional
logics that can be found in literature, such as the self-managing framework for
resources discovery / monitoring from [246], Plato [308] for identifying target
system states for supporting analyzing, or Hermes [304] for generating plans for
adapting managed resources. Additionally, we implemented different modules
that can be reused. In the following, this section presents some modules for the
adaptation logic. Former, Section 7.4.2 described modules for the ALM.

For the SmartHighway system, we implemented a rule-based planner. This
planner can be reused by defining rules in an XML file. [222] complements a
rule-based planner with a reusable analyzer. For improving usability compared
to [223], developers can define rules in a spreadsheet without the need to learn a
syntax, such as XML. These rules combine the expected state for the analyzer as
well as the corresponding actions for planning. This approach offers functional
logics for monitoring, analyzing, planning, and execution. Only minor adjust-
ments for monitoring and executing are necessary. Figure 7.18 shows the process
for reasoning using the spreadsheet rule-based approach. For extending the plan-
ning process, developers can integrate a specific extended planner module.
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Figure 7.18.: Process for rule-based reasoning from [222] with spreadsheet-based
rule definition mapped to the elements of the adaptation logic.
Note: The knowledge base is omitted.

Rule-based analyzing and planning is efficient and easy to use. However, it
is limited in its applicability as large systems either require a large rule set for
covering all possible system states or some degree of freedom, which might lead to
situations for which rules do not exist. To address these shortcomings, we imple-
mented a DSPL approach for analyzing and planning [293]. Figure 7.19 shows an
overview of the architecture of the DSPL approach. In contrast to usual DSPL
approaches, our approach integrates a context feature model additional to the
system feature model. Modeled as Constraint Satisfaction Problem (CSP), both
models are linked. Hence, changes in the context of the system are mapped to
new configurations in the system feature model. Additionally, costs of adapta-
tions and priorities support the adaptation decision, e.g., priorities are used to
solve conflicts. The implementation can be reused with minor customizations in
the MAPE functionalities – mainly the monitoring and executing functions – and
a definition of the models for the system features and the context relations.

In [316], we present a nature-inspired approach to conflict resolution in adap-
tation planning. There, we target smart peer groups, i.e., devices that interact
in a shared environment. Consequently, as these devices can adapt their context,
context adaptation by one device might influence the performance of others. Our
module uses the flocking [249,333,412] principle for mediating individual config-
uration parameters of several devices. The module can be used for planning in
SASs, however, it is not integrated in the FESAS Framework as functional logic.
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Figure 7.19.: Extended MAPE-K cycle with a DSPL context feature model
and additional information for adaptation planning from [293].
Sys = System Features Model, Ctx = Context Model, SAT Map-
ping = Satisfiability Model Solver.

Additionally, the FESAS Framework offers several functional logics that are
in preliminary states and have not been published yet. In the following, those are
described on an abstract level. For the SmartHighway system, different utility-
based approaches to adjust the speed limit have been implemented in Bachelor
and Master theses as an alternative for the ECA rule-based approach. Addition-
ally, a Bachelor student built an aggregating analyzer that controls several sub
modules each analyzing a different parameter of the system and aggregates the
result. In two Bachelor theses, students used the FESAS Framework and added
modules that use machine learning to handle freedom in planning. A self-learning
analyzer offers an automatic adaptation of the prediction algorithm for analyzing.
Besides, we implemented a planner that optimized pre-configured plans based on
reinforcement learning.

This chapter provided an overview on the prototypes of the FESAS Framework
and the ALM. This prototype is a proof of concept for the design presented in
Chapter 6. For proving its applicability, the prototype was evaluated in several
case studies. The following chapter presents these evaluations.
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The Design Science Research Methodology Process Model of Peffers et al. [289],
used in this thesis (cf. Chapter 3), integrates two central elements: the de-
sign of the artifact and its evaluation. Chapter 6 presented the design of the
FESAS Framework. This chapter presents the second central element: the eval-
uation of the FESAS Framework and the ALM based on the proof of concept
prototype implementation presented in Chapter 7.

Table 8.1.: Design evaluation methods according to Hevner et al. [180].
Observational Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact in multiple projects

Analytical

Static Analysis: Examine structure of artifact for static qualities (e.g.,
complexity)
Architecture Analysis: Study fit of artifact into technical IS architecture
Optimization: Demonstrate inherent optimal properties of artifact or pro-
vide optimality bounds on artifact behavior
Dynamic Analysis: Study artifact in use for dynamic qualities (e.g., per-
formance)

Experimental Controlled Experiment: Study artifact in controlled environment for qual-
ities (e.g., usability)
Simulation: Execute artifact with artificial data

Testing Functional (Black Box) Testing: Execute artifact interfaces to discover
failures and identify defects
Structural (White Box) Testing: Perform coverage testing of some metric
(e.g., execution paths) in the artifact implementation

Descriptive Informed Argument: Use information from the knowledge base (e.g., rel-
evant research) to build a convincing argument for the artifact’s utility
Scenarios: Construct detailed scenarios around the artifact to demon-
strate its utility

The evaluation integrates various methods based on the description of design
evaluation methods from Hevner et al. [180] (cf. Table 8.1). For further informa-
tion on the design evaluation methods, the interested reader is referred to [180].
In the following, this section describes how the methods are applied for the eval-
uation of the FESAS Framework. Afterwards, Chapter 9 combines the results of
the evaluations in a cross-case discussion.
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Section 
8.1

• Functional (Black Box) Testing: Studying the artifact while using for implementation 
of example systems

Section 
8.2

• Controlled Experiment: Analyzing the usability of the FESAS IDE (cf. Section 8.2.1)

• Field Study: Comparing two user groups using the FESAS Framework with and 
without the FESAS IDE (cf. Section 8.2.2)

Section 
8.3

• Static analysis: Analyzing the degree of reusability with the FESAS Framework 
(cf. Section 8.3.1)

• Dynamic Analysis: Evaluating the performance of the ALM (cf. Section 8.3.2)

Section 
8.4

• Informed Argument: Assessing the FESAS Framework (cf. Section 8.4.1) and the 
ALM (cf. Section 8.4.2) through a comparison with related work

Figure 8.1.: This thesis combines different design evaluation methods from [180]
for evaluating the FESAS Framework, the FESAS IDE, and the ALM
for developing SASs.

The evaluation of the FESAS Framework addresses all five categories of eval-
uation methods from [180]. Figure 8.1 subsumes the used evaluation methods.
Asadollahi et al. [20] proposed several quality attributes for frameworks for de-
veloping SASs: flexibility, extendibility, usability, reusability, performance, and
scalability. In the following, we analyze these attributes except of scalability for
the FESAS Framework and the ALM.

First, Bachelor, Master and PhD students used the FESAS Framework to im-
plement SASs within student projects, theses, or conference publications. These
works proved the generic applicability as well as the functional correctness of
the FESAS Framework and represent functional testing. Section 8.1 presents the
application domains of these systems.

Second, Section 8.2 presents the results of two experiments on using the
FESAS IDE. The experiments focus on the quality attributes flexibility in de-
velopment, usability of the FESAS IDE, extendibility of the existing elements,
and the perceived performance for development. The first part of the section
shows the results for evaluating the usability of the FESAS IDE. This study was
first published in [225]. The second part of the section presents the results of an
experiment with Master students. One group was allowed to use the FESAS IDE
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for implementation of SASs, a second group had to implement SASs using the
FESAS Framework without FESAS IDE support. This experiment shows the
benefits of the FESAS IDE but also of the FESAS Framework in general. Ac-
cording to Hevner et al. [180], both evaluations represent controlled experiments
and field studies from the category of observational evaluation methods.

Third, Section 8.3 explains the results of two analytical evaluations focus-
ing on reusability of code, flexibility at runtime, and performance at runtime of
the ALM. Based on a static analysis of systems implemented with the FESAS
Framework components and the FESAS IDE, we analyzed the degree of reusabil-
ity contributed by the FESAS Framework. These static analyses were published
in [225] and [228]. Additionally, in [223] we performed a dynamic analysis of the
prototype implementation of the ALM and the modules presented in Section 7.4.

Last, Section 8.4 evaluates the FESAS Framework and the ALM in contrast
to the related work presented in the Sections 4.2 & 4.3 in a qualitative catego-
rization using the taxonomies from [229] and [224]. This represents an informed
argument (cf. [180]).

Similar to other PhD theses in the area of SASs [91,242], we use a protocol for
the evaluations presented in Section 8.2-8.4 to support a structured analysis.
Based on [408], Luckey [241, p. 180] propose the following structure for an
evaluation which is used in this thesis:

• Evaluation Design.

– Evaluation Questions.

– Evaluation Propositions.

– Units of Analysis.

– Linking Data to Propositions.

– Interpretation Criteria.

• Evaluation Execution. (opt) Description of the evaluation process and
created artifacts.

• Evaluation Results & Discussion. Description and interpretation of
the results.

129



8.1. Case Study based Testing Evaluation

8.1. Case Study based Testing Evaluation

This evaluation includes testing of the artifacts’ functionalities and focus on
whether the artifact performs it functions correctly rather than how it performs.
Bachelor / Master students used the FESAS Framework, FESAS IDE, and the
ALM to implement SASs and SOSs in theses and student projects. Addition-
ally, PhD students used the FESAS Framework for implementing SASs within
conference publications (cf. [221, 223, 228, 230, 293]). This conforms an unstruc-
tured functional testing (cf. [180]). As students are less experienced than senior
developers, this also shows the ease-of-use of the FESAS Framework. The sys-
tem domains are in accordance with SASs research (cf. the use cases mentioned
in [77, 199, 331]). As the focus lies on the functionality of the FESAS Frame-
work rather on its performance, this testing evaluation does not address specific
requirements from Chapter 5 explicitly. This unstructured evaluation does not
follow the aforementioned protocol but presents each case separately.

In the following, this section presents the implemented SASs in the domains:
(i) smart traffic management, (ii) platooning coordination, (iii) adaptive cloud
management, (iv) Industry 4.0, (v) smart home infrastructure, (vi) smart vacuum
cleaner, (vii) fall detection, (viii) adaptive tunnel lighting, and (ix) code offload-
ing. All domains are associated with CPSs, autonomous robotics, and cloud
computing. All implementations used the FESAS Framework, including the ref-
erence system and FESAS IDE for building the adaptation logic of the SASs and
implementing a connection to managed resources. Some of the implementations
resulted in the reusable functional logic modules presented in Section 7.5.2. Fur-
ther, all these systems are part of the settings in which the data for the human-
oriented experimental evaluation (cf. Section 8.2) and the technology-oriented
analytical evaluation (cf. Section 8.3) were collected. Parts of this section are
taken from [221]1, [222]2, [223]3, [225]4, [228]5, [230]6, and [293]7.

1 [221] is joint work with M. Breitbach, J. Saal, C. Becker, M. Segata, and R. LoCigno.
2 [222] is joint work with G. Drechsel, D. Mateja, A. Pollkläsener, F. Schrage, T. Sturm,

A. Tomasovic, and C. Becker.
3 [223] is joint work with J. Otto, F. M. Roth, A. Frömmgen, and C. Becker.
4 [225] is joint work with F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and A. Schürr.
5 [228] is joint work with F. M. Roth, S. VanSyckel, and C. Becker.
6 [230] is joint work with T. Sztyler, J. Edinger, M. Breitbach, C. Becker, H. Stuckenschmidt.
7 [293] is joint work with M. Pfannemüller, M. Weckesser, and C. Becker.
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8.1.1. Smart Traffic Management

Different works proposed use cases for SASs centered around traffic man-
agement, e.g., routing [407], adaptive control of traffic lights [151, 298, 363],
self-healing traffic cameras [13, 18, 384, 399], or self-organized traffic manage-
ment [299, 343]. In accordance, students built the SmartHighway traffic man-
agement system which is presented in the introduction of Chapter 7.

The adaptation logic of the SmartHighway traffic management system is im-
plemented using the FESAS Framework. The different modules for adaptation of
the traffic flow – speed limits, re-routing, and releasing shoulders – use the same
MAPE components and communication logics, only their functional logics differ.

SUMO and TraCI simulate the managed resources. The SUMO8 traffic simula-
tor simulates human-driven and self-driving vehicles as well as the infrastructure,
i.e., V2I communication, traffic signs, and traffic cameras. TraCI 9, an addition
to SUMO, allows to change parameters during the simulation and, therefore, to
control (i) traffic signs, releasing shoulders, or re-directions and (ii) reactions
of self-driving vehicles to V2I communication. The adaptation logic’s sensors
and effectors communicate with TraCI via sockets. TraCI adapts the simulation
parameters accordingly, e.g., by setting a speed limit.

The implementation of the system is published in [225, 228]. Additionally,
in [223], we present an extension of the SmartHighway system with the ALM
that offers structural self-improvement and parametric self-improvement through
learning of adaptation rules (cf. Section 7.4.2).

8.1.2. Infrastructure-aided Platooning Coordination

Platooning is driving in convoys of semi-automated vehicles with a distance of
only a few meters between them [312]. Vehicles need to drive autonomously or at
least control the longitudinal distance. In the iCOD project10, we implement a
system for self-organized infrastructure-aided cooperative driving through coor-
dination of platoons. The Platoon Coordination System (PCS) coordinates the

8SUMO’s website: http://www.dlr.de/ts/sumo/en/
9TraCI’s website: http://sumo.dlr.de/wiki/TraCI

10iCOD project website: http://icod.bwl.uni-mannheim.de/
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formation of platoons. It receives information from drivers, e.g., their destina-
tion, searches a suitable platoon, and navigates the vehicle to the platoon. After
reaching the platoon, a vehicle uses vehicle-to-vehicle communication and sensors
(e.g., distance sensors) for controlling the joining process. Once in a platoon, the
vehicle autonomously keeps the lane and the distance to preceding vehicles. Fur-
ther, if a platoon meets another platoon, the PCS decides whether they should
merge or overtake. The PCS receives updates from vehicles about their positions
constantly and, hence, can determine when a vehicle should leave a platoon or a
platoon should be dissolved. Figure 8.2 shows the platooning process.

Figure 8.2.: The platooning process on a highway controlled by the PCS. A vehi-
cle leaves platoon (1), platoon (2) overtakes platoon (3) and,
additionally, a vehicle joins platoon (2).

Bachelor / Master students used the FESAS Framework to build the
PCS which controls a demonstrator for coordinating self-driving Mindstorms
robots [221]11. Additionally, a team project with Master students integrated the
PCS and the platooning simulator PLEXE [332] into a testbed for infrastructure-
aided platooning coordination for evaluating various coordination strategies.
There were able to reuse sub-modules of the analyzing and planning algorithms
used for platooning coordination in the demonstrator.

11A video showing the platooning demonstrator can be found at: https://www.youtube.
com/watch?v=Nnrbq-4Dn24
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8.1.3. Adaptive Cloud Management

Within the Autonomic Computing domain, the focus is on self-adaptive man-
agement of data centers and cloud resources, e.g., [16, 140, 199, 214]. We also
build such a system for the evaluation of the FESAS Framework [228] and the
FESAS IDE [225]. The underlying use case is a cloud scenario comparable to
the Amazon EC2 cloud service. Each data center has one adaptation logic for
self-management to (i) start new servers in case of high utilization, (ii) migrate
virtual machines (VMs) from one server to another for workload balancing or in
case of server defects, and (iii) shut down servers in case of reduced workload.

Clients

VM

AL
P

M

A

E

Data Center

AL
P

M

A

E

Data Center

AL
P

M

A

E

Data Center

VM 

Request

VMVMVM

VMVMVM
VMVMVM

VM 

Request

VMVMVM

VMVM

Request

VM
VM 

Request

VM 

Request

VM 

Request

LB

D
at

a 
C

en
te

r

D
at

a 
C

en
te

r

D
at

a 
C

en
te

r

Figure 8.3.: The distributed adaptation logic controls several data centers and
their servers as well as VMs. Client requests are simulated.
LB = Load balancer, AL = Adaptation Logic.

Figure 8.3 shows the system. The managed resources are composed of servers
and VMs; both are simulated. Different data centers host servers. Each data cen-
ter has one adaptation logic performing the aforementioned adaptations. Com-
munication between a data center and an entity that simulates requests from
clients for starting a VM is established with the BASE middleware [34].

8.1.4. Industry 4.0

Industry 4.0 applications integrate CPSs, IoT, and Cloud Computing for seam-
less interactions of humans and machines in the smart factory [179]. Several
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authors apply SASs in the field of Industry 4.0 mainly for building intelligent
production cells (e.g., [160, 331, 347, 360]). We implemented three example SASs
in the area of Industry 4.0: (i) the iCasa Verde system, (ii) the smart warehouse
control, and (iii) the collaborative industry robots. All have been developed in
student projects with Master students using the FESAS Framework and the rule-
based reasoning module from [222]. Moreover, for the iCasa Verde and the smart
warehouse only the rule table was adjusted.

(a) Architecture of the iCasa Verde sys-
tem based on [222].

(b) The collaborative industry robots
based on [222].

The iCasa Verde system incorporates the smart home simulation iCasa12,
which enables developers to create and configure smart home devices, e.g., lights,
humidity, or presence sensors. In the context of iCasa Verde, iCasa simulates
a self-adaptive greenhouse: Various sensors and actuators pursue the goal of
creating an optimal environment for distinct plants in different zones. A custom
REST API for iCasa supports accessing data measured by the sensors and adapt-
ing devices through the effector (cf. Figure 8.4a). As a second use case, students
implemented a smart warehouse based on the iCasa Verde system. The system
controls different warehouse zones, e.g., adjusts the temperature differently.

As third system, students implemented collaborative industry robots13. These
robots (cf. Figure 8.4b) construct a two dimensional assembly of LEGO bricks
through (i) sorting the bricks according to their color as well as (ii) assembling
the product. Each robot is responsible for either sorting or building. If one robot
fails, the other one performs both tasks.

12iCasa web site: http://adeleresearchgroup.github.io/iCasa/snapshot/index.html
13A video of the robots can be found at: https://youtu.be/XH9tFyKVOU8
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8.1.5. Smart Home

Smart home technology enables the intelligent use of everyday objects
equipped with computing resources and connected via a network. An adapta-
tion logic receives measurements of the environment – such as temperature, light
intensity, or movements in the house – and reacts through actuators, e.g., turn on
the heater, close the shutter, or perform an emergency call. Several authors pro-
pose the use of SASs within the context of smart homes (e.g., [54,72,192,244,404]).

Using the FESAS Framework, Master students implemented adaptation logics
for two smart home systems in six weeks student projects. In both systems,
the environment of the house is simulated in Java. Both systems adjust the
temperature through a heater and air condition, if the difference between the
current temperature and the desired target temperature exceeds a threshold.
Further, the system published in [225] regularly checks the number of people in
a room and can turn off the light, if the room is empty. Figure 8.5 sketches the
system model of the two systems.
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Figure 8.5.: System model of the smart home systems. The adaptation logic cap-
tures the data measured with sensors and controls the environment
through actuators.

8.1.6. Smart Vacuum Cleaner

In accordance with literature (e.g., [131]), two Master students implemented
in a six weeks study project a simulation of a Smart Vacuum Cleaner (SVC). The
robot is simulated in an environment that can be configured (size and amount of
cells to clean). The logic of the robot is implemented with the FESAS Frame-
work. This system was one of the use cases of [225]. In a Bachelor’s thesis,
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the simulation was extended (cf. Figure 8.6a) to identify the best algorithm for
different room setups [221]. Additionally, the student tested the system with a
Mindstorms robot14 (cf. Figure 8.6b). Both are published in [221]. Using the
FESAS Framework, an adaptation logic adds intelligence to the robot by acting
as smart path finding system. It analyzes the sensor data of the robot – e.g., to
identify obstacles – and adjusts the robot’s next actions, e.g., calculates a new
path. For the simulation and the robot demonstrator, the same adaptation logic
was used. Minor adjustments were only necessary for the communication between
managed resources and adaptation logic.

(a) The SVC simulation. The left part shows the knowl-
edge of the robot, the right part the simulated room.

(b) The SVC robot. Lines
abstract the navigation.

Figure 8.6.: The SVC simulation and the SVC robot demonstrator.

8.1.7. Self-improving Fall Detection

In literature, different systems for fall detection are present. These approaches
can be clustered in (i) wearables, (ii) ambient-based, and (iii) vision-based [266].
Wearables include different types of devices with sensors that are attached to
a human’s body. Ambient-based approaches integrate different sensors into the
environment for detecting falls using vibration, video, and audio signals. Vision-
based fall detection systems combine various algorithms to detect falls in video
streams. In [230], we present a wearables-based self-improving fall detection
system based on the FESAS Framework in combination with the ALM. One
outcome of the paper was the self-improvement module mentioned in Section 7.4.

14The focus was on the driving and navigation functions and omitted cleaning.
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Algorithms for wearable fall detection systems integrate a specific sequence of
actions [266,410]: (i) data acquisition, (ii) data pre-processing, (iii) fall detection,
and (iv) fall alert. We mapped these activities to the MAPE cycle: The MAPE
components capture the data (action (i) and (ii)), analyze whether a fall has hap-
pened (action (iii)), and plan the respective reaction (action (iv)), e.g., informing
caregivers in case of a fall. Additionally, the self-improvement module in our fall
detection system detects a position change of the wearable device and adapts
the fall detection algorithm in the analyzer accordingly. Figure 8.7 presents the
system design.
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Figure 8.7.: Design of the self-improving fall detection system (taken from [230]).
The adaptation logic’s MAPE elements enable fall detection. The
self-improvement module detects the current position of the device
and adapts the fall detection algorithm in the analyzer accordingly.

8.1.8. Adaptive Tunnel Lighting

In [225], we presented an adaptive tunnel lighting system. Having a high con-
trast of the light within a tunnel compared to the outside brightness can dazzle
drivers. Therefore, lights in tunnels need to be adapted according to outside light
circumstances. The brightness of the environment can change multiple times per
day through the change between day and night light or through weather condi-
tions such as rain, snow, or sunshine. Using the FESAS Framework, two Master
students implemented an adaptive lighting system of a tunnel similar to [70] in a
six weeks student project. The lighting of the tunnel as well as the light sensors
as managed resources are simulated on a web server implemented in JavaEE. A
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light-weight context model simulates the environment of the web server. The
connection between the tunnel as managed resources and the adaptation logic is
established via HTTP. The adaptation logic controls the light intensity based on
the environmental light conditions. Additionally, a graphical user interface shows
the tunnel lighting. This is controlled via JSON and HTTP requests. Figure 8.8
presents the system and its components.
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Figure 8.8.: The components of the adaptive tunnel lighting system and the in-
teraction. The system is composed of a web server simulating the
tunnel, the adaptation logic as well as the user interface. Interaction
is enabled through HTTP requests.

8.1.9. Code Offloading

Using the DSPL approach for adaptation planning from [293], we imple-
mented a SAS for managing the Tasklet system. The Tasklet system provides
a middleware-based infrastructure for distributed computing on heterogeneous
devices [324]. Therefore, three entities are available: resource providers, resource
consumers, and resource brokers. Resources providers offer a Tasklet virtual ma-
chine for running code. Each resource provider registers at a broker. Brokers
form a peer-to-peer overlay network. Resource consumers send requests for re-
source providers to a broker. A resource consumer may specify different Quality
of Computation goals for a Tasklet, e.g., reliability, speed, or security. For more
details on the Tasklet system, the interested reader is referred to [324]. Figure
8.9 shows an overview of an example overlay network topology.
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Figure 8.9.: Schema of an example Tasklet network topology with resource con-
sumers, providers, and brokers based on [324]. P = Tasklet Producer,
C = Tasklet Consumer. The Broker manager is omitted.

In [293], we simulated the Tasklet system using the simulation presented
in [111]. Additionally, we extended the simulation by a Broker Manager. It
stores a list with all brokers. The Broker Manager monitors all brokers and
adapts their behavior by changing their configurations according to the instruc-
tions of the adaptation logic implemented using the FESAS Framework.

8.1.10. Summary

This section introduced several SASs implemented using the FESAS IDE and
the FESAS Framework, some in combination with the ALM. Often, students
could reuse different elements, e.g., functional logics, system design, or the whole
adaptation logic. Further, as mostly less experienced Bachelor/Master students
implemented the SASs in an often short time frame, this shows the ease of use
of development with the FESAS Framework. Additionally, the implementation
of these system with the FESAS Framework supported the functional testing
of its elements. In the following evaluations, we target the usability, applica-
bility, enabled reusability as well as the performance of the FESAS IDE, the
FESAS Framework in general and the ALM. For these evaluations, we analyzed
the example SASs and interviews with the developers.
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8.2. Human-oriented Experimental and Observational
Evaluation

This section presents the evaluation of the FESAS IDE and the FESAS Frame-
work in general. For both evaluations, we asked students to use the FESAS Frame-
work and the FESAS IDE to implement SASs. The first evaluation was originally
published in [225]. For this thesis, we tripled the amount of students participat-
ing in the experiment to receive more reliable results. The purpose is to show
the usability of the FESAS IDE. For the second evaluation, we performed an
observational evaluation in the form of a field study. For this experiment, Master
students that attended a lecture on SOSs and SASs in two different years were
asked to implement SASs. The first group had to implement their systems us-
ing the FESAS Framework without the FESAS IDE. The second group used the
FESAS IDE. This evaluation measures the suitability of the FESAS IDE to sup-
port the use of the FESAS Framework. Next, Section 8.2.1 presents the usability
evaluation. After, Section 8.2.2 shows the results of the applicability evaluation.

8.2.1. Controlled Experiment: Usability of the FESAS IDE

We asked Bachelor, Master, and PhD students that used the FESAS IDE
for developing SASs to evaluate the usability of the FESAS Development Tool.
As the implementation of the SASs and the evaluation of the FESAS Develop-
ment Tool happened in a controlled environment, this represents an experimental
evaluation (cf. [180]). Parts of this section are taken from [225]15.

Evaluation Design

For the evaluation, we neglected the FESAS Design Tool. The students mostly
implemented SASs with a central adaptation logic and reused existing configura-
tion files for the system models. Students had to fill out questionnaires after the
use of the FESAS IDE. The evaluation is structured according to the protocol
defined in the introduction of Chapter 8.

Evaluation Questions: This evaluation is driven by the question of the
suitability of the FESAS IDE – here: the FESAS Development Tool – to support
the development of SASs. Hence, we derive the following evaluation questions:

15 [225] is joint work with F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and A. Schürr.
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EQEE1 Does the FESAS IDE hide process details of the FESAS Framework?

EQEE2 Has the FESAS IDE high usability?

EQEE3 Does the FESAS IDE accelerate the development of SASs?

Evaluation Proposition: According to the evaluation questions, we propose:

P REE1 The FESAS IDE does not require developers to learn the FESAS Frame-
work workflow.

P REE2 The FESAS IDE is easy to learn and easy to use.

P REE3 The FESAS IDE supports the development of reusable SASs.

P REE4 The FESAS IDE supports the testing of SASs.

P REE5 The FESAS IDE accelerates the development of SASs.

Units of Analysis: Bachelor, Master, and PhD students used the FESAS IDE
for implementing SASs. Afterwards, they filled out a questionnaire (cf. Ap-
pendix D.1). We derived the following question items from the ISO 9241-11
Guidance on Usability standard and the definition of usability in the ISO/IEC
9126-1 Software Product Quality Model standard:

QIEE1 The tool has a short training period.

QIEE2 The tool facilitates using FESAS.

QIEE3 The tool is easy to use.

QIEE4 The tool supports reusability of code.

QIEE5 The tool supports simplified exchange of MAPE algorithms.

QIEE6 The tool eliminates the implementation of general issues.

QIEE7 The tool supports testing in the development phase.

QIEE8 The tool is well integrated into the FESAS development process.

QIEE9 The tool accelerates development with FESAS.

QIEE10 The tool accelerates development in general.

Linking Data to Propositions: The 10 question items and the propositions
can be linked with each other:
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• PREE1 is linked to QIEE2, QIEE8, and QIEE9.

• PREE2 is linked to QIEE1 and QIEE3.

• PREE3 is linked to QIEE4 and QIEE5.

• PREE4 is linked to QIEE7.

• PREE5 is linked to QIEE6 and QIEE10.

Interpretation Criteria: All participants of the experiment could rate their
consensus with the question items on a 5 point Likert scale ranging from Strongly
disagree to Strongly agree. Additionally, it was possible to not answer. A
majority of (strongly) agreed answers indicates support for a question item.

Evaluation Execution

We accompanied Bachelor, Master, and PhD students that used the FESAS IDE
for implementing SASs in all aforementioned domains except the fall detection
system. In total, we asked 2 Bachelor, 13 Master, and 3 PhD Students. The
13 Master students built different SASs in six weeks student projects. The 2
Bachelor students used the FESAS IDE within their theses. The PhD students
used the FESAS IDE for implementation of SASs for conference publications.
We acknowledge, that this is a rather small set of participants. Hence, repetition
on a broader size is future work. The evaluation was done two times. The first
group of participants results from the publication in [225]. The second group of
Master students attended a lecture about SOSs and SASs in the fall term 2017.

Evaluation Results & Discussion

The tool seems to be well integrated in the FESAS workflow (QIEE8), ab-
stracts from FESAS specific activities (QIEE2), and, therefore, accelerates the
process of development with the FESAS Framework (QIEE9). This supports
proposition PREE1. Regarding proposition PREE2, the results indicate that
the FESAS Development Tool needs only a short training period (QIEE1) and
is easy to use (QIEE3). Further, it supports reusability of code (QIEE4) and
simplifies the exchange of algorithms in the MAPE components (QIEE5). This
promotes proposition PREE3. Additionally, participants perceived an accelera-
tion of the development in general (QIEE10) and through eliminating the imple-
mentation of general issues (e.g., communication) in specific (QIEE6), backing
proposition PREE5. However, the developers of the example systems identify that
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the integration of the testing process could be improved (QIEE7). This disproves
proposition QIEE4. Table 8.2 shows the aggregated results of the interviews.

Table 8.2.: Answers of students using the FESAS Development Tool to implement
a SAS (n=18 students).

(Strongly)
disagree

Neutral Agree Strongly
agree

No
answer

QIEE1 The tool has a
short training period. 11.1% 16.7% 38.9% 27.8% 5.6%

QIEE2 The tool facilitates
using FESAS. 0.0% 5.6% 33.3% 55.6% 5.6%

QIEE3 The tool is easy to
use. 0.0% 22.2% 55.6% 16.7% 5.6%

QIEE4 The tool supports
reusability of code. 0.0% 0.0% 61.1% 27.8% 11.1%

QIEE5 The tool supports
simplified exchange of
MAPE algorithms.

0.0% 0.0% 33.3% 66.7% 0.0%

QIEE6 The tool eliminates
the implementation of
general issues.

0.0% 11.1% 22.2% 55.6% 11.1%

QIEE7 The tool supports
testing in the development
phase.

0.0% 22.2% 38.9% 16.7% 22.2%

QIEE8 The tool is well
integrated into the FESAS
development process.

0.0% 16.7% 44.4% 27.8% 11.1%

QIEE9 The tool accelerates
development with FESAS. 0.0% 5.6% 44.4% 44.4% 5.6%

QIEE10 The tool
accelerates development in
general.

0.0% 27.8% 27.8% 44.4% 0.0%

8.2.2. Field Study: Applicability of the FESAS IDE

Additionally, we asked students to implement different SASs using the
FESAS Framework in a field study, an observational evaluation method (cf. [180]).
In the following, the section presents the evaluation results.

Evaluation Design

One group of students only used the FESAS Framework components, the other
group used the FESAS IDE. Having the two group of students using different
tool sets, enables us to compare the use of the FESAS Middleware manually in
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contrast to using the FESAS IDE. The evaluation is structured according to the
protocol defined in the introduction of this chapter.

Evaluation Questions: The main evaluation question is:

EQF S1 Does the FESAS IDE improve the applicability of the FESAS Frame-
work for implementing SASs?

Evaluation Proposition: According to the evaluation question, the propo-
sitions focus on the differences of the application of the FESAS Middleware in
contrast to the use of the FESAS IDE:

P RF S1 The FESAS IDE simplifies the initialization and configuration of the
FESAS development environment.

P RF S2 The FESAS IDE simplifies the development of SASs compared to manu-
ally using the FESAS Framework components and corresponding workflow.

P RF S3 The perceived benefits of using the FESAS Framework for developing
SASs are increased when using the FESAS IDE.

Units of Analysis: Two groups of Master students attending a lecture on
SOSs and SASs implemented SASs using the FESAS Framework and FESAS IDE,
respectively. These students were interviewed afterwards. Their answers are
captured in a questionnaire (cf. Appendix D.2). As most of the students re-
used existing JSON configuration files, we target the FESAS Development Tool
with this evaluation. In accordance with the ISO 9241-11 Guidance on Usability
standard and the definition of usability in the ISO/IEC 9126-1 Software Product
Quality Model standard, we define the following question items:

QIF S1 It is easy to configure the FESAS16 tool set.

QIF S2 I had problems in installing the FESAS tool set.

QIF S3 I was able to directly start programming with the FESAS tool set.

QIF S4 FESAS was helpful for implementing a self-adaptive system.

QIF S5 I had problems in configuring my self-adaptive systems (writing config-
uration files).

16The term FESAS describes either the FESAS Framework or the FESAS IDE depending
on the group.
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QIF S6 I had problems in writing code for the functional logic elements for the
adaptation logic.

QIF S7 I had problems in adding the functional logic elements to the repository.

QIF S8 I had problems in implementing the sensors/effectors.

QIF S9 I had problems in connecting managed resources and adaptation logic.

QIF S10 Overall, FESAS helped me in the implementation.

QIF S11 Overall, it was easy to use FESAS.

QIF S12 Overall, I think FESAS speed up the development.

QIF S13 Overall, I would recommend FESAS for implementing a SAS.

Linking Data to Propositions: The 13 question items and the proposition
can be linked:

• PRF S1 is linked to QIF S1 to QIF S3.

• PRF S2 is linked to QIF S4 to QIF S9.

• PRF S3 is linked to QIF S10 to QIF S13.

Interpretation Criteria: Identical to the former evaluation of the usability
of the FESAS IDE, participants rate their consensus with question items using a 5
point Likert scale. The scale ranges from 1 (Strongly disagree) to 5 (Strongly
agree) with the possibility to answer with "No answer possible".

Evaluation Execution

The first group of 11 students implemented their SASs in the fall term 2015
using only the components of the FESAS Middleware and the reference systems.
In the fall term 2017, a second group of 12 students implemented their SASs using
the FESAS IDE. Again, we neglected the FESAS Design Tool as the students
reused existing configuration files for the system models. As the sizes of the group
are almost identical, the results are comparable.

All students had six weeks to implement their SASs in teams of 2-3 students.
The course instructors were available for support. The students studied Busi-
ness with a specialization in IT or Business Informatics. They had mostly small
to medium experience in the implementation of software in general and no ex-
perience in the implementation of adaptive systems. The SASs cover almost
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all domains presented in Section 8.1 with the exception of the domains of fall
detection and adaptive authentication.

Evaluation Results & Discussion

While the first group without the FESAS IDE had a larger, manually setup ef-
fort, the second group was guided by the FESAS IDE and the setup procedures of
the Eclipse IDE. Accordingly, the results of the evaluation are not surprising: the
second group perceived an easier configuration (QIF S1) and installation (QIF S2)
of the FESAS development environment and was more often able to start di-
rectly (QIF S3). This supports the proposition PRF S1.

Using the FESAS Framework without the FESAS IDE forces developers to
learn the syntax for the metadata of the code for the functional logics. This results
in different issues, visible in the captured data of the evaluation. Students from
the group that used the FESAS IDE agreed more often that FESAS was helpful in
the implementation (QIF S4). They also encountered less issues in (i) configuring
the SASs (QIF S5), (ii) implementing (QIF S6) and handling (QIF S7) code of
the functional logics, and (iii) connecting managed resources and the adaptation
logic (QIF S8 & QIF S9). This promotes proposition PRF S2.

Last, proposition PRF S3 targets the perceived benefits of the FESAS Frame-
work. The students that used the FESAS IDE agreed more often that the
FESAS Framework (i) supports them in the development (QIF S10), (ii) is easy
to use (QIF S11), (iii) accelerates the development (QIF S12), and (iv) that they
would recommend FESAS (QIF S13). The Tables 8.3 & 8.4 show the results.

8.3. Technology-oriented Analytical Evaluation

This section provides an analytical evaluation (cf. [180]) of the artifacts, i.e.,
the FESAS Framework and the ALM. The section is twofold. First, Section 8.3.1
provides a static analysis for evaluating the degree of reusability enabled by the
FESAS Framework and the FESAS IDE. The focus is on the support of the
FESAS Framework for developers rather than the performance of the imple-
mented SAS. Hence, comparisons of systems without adaptation logic to self-
adaptive variants are omitted as this would evaluate the MAPE functionality
rather than the development support offered by the FESAS Framework. Second,
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Section 8.3.2 evaluates the performance of the ALM in a dynamic analysis. Here,
the focus is on the runtime performance and the additional benefits introduced
through self-improvement.

8.3.1. Static analysis: Reusability through the FESAS Framework

The main objective of the FESAS Framework is the reusability of code. To
measure this, we performed a static analysis (cf. [180]) of the FESAS Framework.
We measured the degree of reusability of systems that have been implemented
using the FESAS Framework (cf. [228]) and the FESAS IDE (cf. [225]). First,
this section presents the evaluation design. Second, it describes the execution
of the reusability measurements on the system level. Last, this section shortly
discusses the results. Parts of this section are taken from [225]17 and [228]18.

Evaluation Design

This evaluation analyzes the degree of reusability that the FESAS Framework
offers. This includes not only the code that is offered by the FESAS Framework
– e.g., the implementation of the FESAS Adaptation Logic Template – but also
the code generated with the FESAS IDE, e.g., parts of a functional logic. Ad-
ditionally, the reusability of the design elements, i.e., the system model and the
configuration files, is analyzed. It follows the protocol presented in the introduc-
tion of Chapter 8.

Evaluation Questions: The static analysis has the evaluation questions:

EQSA1 How much code of a SAS implemented using the FESAS Framework
can be reused?

EQSA2 Are parts of the code generated for the functional logic reusable?

EQSA3 Are parts of the system models reusable?

Evaluation Proposition: The proposition is that the SASs implemented
using the FESAS Framework are reusable to a large extent. Hence, the
FESAS Framework should meet the following criteria:

17 [225] is joint work with F. M. Roth, C. Becker, M. Weckesser, M. Lochau, and A. Schürr.
18 [228] is joint work with F. M. Roth, S. VanSyckel, and C. Becker.
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P RSA1 Except the functional logic code, most parts of SASs implemented using
the FESAS Framework are reusable.

P RSA2 The MAPE components generated with the FESAS Framework are
reusable with the exception of clearly defined parts.

P RSA3 The system models are reusable with minor customizations, only.

Units of Analysis: First, this section analyzes the reusability on the com-
ponent level, i.e., the reusability of code within one MAPE component. Second,
reusability measurements on the system level are presented. Third, the reusability
within the design of the systems is studied. We apply these three measurements
to various implementations of SASs in different system domains.

Linking Data to Propositions: The resulting data is the degree of reusabil-
ity offered by using the FESAS Framework on a component level (cf. proposi-
tion PRSA1), the system level (cf. proposition PRSA2), and within the system
design (cf. proposition PRSA3) analyzed in different use cases.

Interpretation Criteria: In accordance with literature (cf. [77, 377]), we
used the Eclipse plug-in CodePro AnalytiX to measure the Source Lines of
Code (SLoC) that is provided by the FESAS Framework and generated by the
FESAS IDE in contrast to the code developers have to implement. This is linked
to the propositions PRSA1 and PRSA2. For proposition PRSA3, we manually
compared the overlap in the used JSON configuration files for system models.

Evaluation Execution

In [228], we analyzed the reusability on the component level – i.e., the level
of reusability within a MAPE component – enabled through the FESAS Frame-
work. For this analysis, we focus systems for the SmartHighway (cf. Section 8.1.1)
and the adaptive cloud (cf. Section 8.1.3) scenarios. For each scenario, we im-
plemented two system variants with fully decentralized control and using the
Regional Planning control pattern.

Additionally, we analyzed the reusability on a system level in [228] and [225].
As the FESAS Framework was extended from [228] to [225] and [225] presented
five example systems instead of only two, this section presents the results of the
analysis of reusability from [225]. The relevant systems were implemented in six
weeks student projects accompanying a Master’s lecture. The students imple-
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mented SASs in the domains: (i) SmartHighway, (ii) adaptive cloud, (iii) smart
home, (iv) smart vacuum system, and (v) adaptive tunnel lighting.

We further analyzed the reusability within the system design, i.e., the reusabil-
ity of the system model in form of the JSON configuration files (cf. Section 6.1.4).
This was done by a qualitative analysis of the used configuration files.

Evaluation Results & Discussion

As an example for the degree of reusability on the component level, we focus
the Analyzer of the highway use case. It is composed of: (i) an AdaptationLogic
superclass, (ii) the CommunicationLogic, (iii) a reusable Analyzer implementa-
tion, and (iv) the functional logic, which is composed of an AbstractLogic, and
a subclass with a customized callLogic() implementation. All implement cor-
responding interfaces. The implementation has in total 538 SLoC. The functional
logic itself has 70 SLoC (13% of the component’s code). The analyzer component
with the communication logic has 468 SLoC (87%). Hence, only a small amount
of code is customized to the use case, supporting proposition PRSA1.

Table 8.5 shows the results of the evaluation of reusability on a system level.
As all systems can use the FESAS reference system without customization, all
implementations have 7,608 SLoC for the adaptation logic components. Only
the configuration files and the functional logics vary. As most use cases have a
centralized adaptation logic, their configuration files are almost identical (except
the logic contracts’ properties). We divided the SLoC of the functional logics in
lines that are offered by the FESAS Framework or generated by the FESAS IDE
and SLoC written by the developers. For the example cases, the developers
implemented between 101 and 216 SLoC in all functional logic elements whereas
between 117 and 142 additional lines are generated. Moreover, all developers
had to implement functional logics and their dependencies (between 0 and 283
SLoC for the example cases). As a result, the degree of generated code is between
93.93% and 97.59%. This supports the criteria for proposition PRSA2.

In [228], both systems rely on the same configuration files for system deploy-
ment. Both, the distribution of the MAPE functionality as well as the com-
munication structure can be reused for the two settings of fully decentralized
control and the Regional Planning pattern. Four of the five example systems rely
on a centralized pattern. Only the SmartHighway system integrates a different
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Table 8.5.: SLoC that the FESAS Framework provides or the FESAS IDE gen-
erates versus SLoC implemented by the developers (percent values
indicate share of systems’ SLoC). AL = adaptation logic.

Cloud Highway Tunnel Home Cleaner
AL components 7,608 7,608 7,608 7,608 7,608
Functional logics 243 320 253 333 316

Implemented 101 193 129 216 191
Generated 142 127 124 117 125

Dependencies 238 246 80 283 -X-
Total SLoC 8,089 8,174 7,941 8,224 7,924
Generated code 95.81% 94.63% 97.37% 93.93% 97.59%

pattern. For reusing the patterns, only the information type, the name of the
functional logic that should be used, and the amount of sensors and effectors vary.
Therefore, it is possible to describe decentralization patterns with the configura-
tion files and reuse them, which addresses proposition PRSA3. The FESAS IDE
enables additional support for the reusability as it enables the definition of pat-
terns out of the box.

We acknowledge that the presented example cases are rather small and simpli-
fied. However, all systems offer full functionality. As a metric, we measured the
SLoC. We acknowledge, that SLoC is not the perfect measurement variable as
code can be written differently. However, it can be used as an indicator for show-
ing the amount of code that is offered by the FESAS Framework and generated
by the FESAS IDE versus the amount the developer has to write. Further, this
evaluation approach is in line with SASs research ( e.g., [77]). Still all propositions
are supported and, hence, the evaluation questions are answered successfully.

8.3.2. Dynamic Analysis: Evaluation of the Adaptation Logic
Manager

In [223], we evaluated the performance of the ALM and the three modules
for the parametric and structural self-improvement from Section 7.4.2 in the
SmartHighway use case system (cf. Section 8.1.1). The evaluation represents a dy-
namic analysis (cf. [180]) of the ALM. Parts of this section are taken from [223]19.
Appendices E.1, E.2, and E.3 provide charts with the detailed evaluation results.

19 [223] is joint work with J. Otto, F. M. Roth, A. Frömmgen, and C. Becker.
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Evaluation Design

Following the protocol presented in the introduction of this chapter, this sec-
tion presents the evaluation results of the feasibility of our ALM. We performed
various simulations of a German highway in different settings. First, we analyzed
the performance of the adaptation logic having subsystems controlling each sec-
tion of the highway independently. As there is no self-improvement involved, this
is the baseline measurement. Second, we analyzed the rule learning component.
Third, we compared the two modules for structural adaptation. Due to the differ-
ent time horizons of the runtime optimization modules – continuous rule learning
vs. spontaneous structural adaptation – we separated the tests.

Evaluation Questions: In the evaluation, we want to analyze the utility of
self-improvement offered by the ALM. We omit algorithmic self-improvement in
the use case and addressed the following evaluation questions:

EQDA1 Does parametric self-improvement enhance the performance?

EQDA2 Does structural self-improvement enhance the performance?

Evaluation Proposition: The evaluation questions can be mapped to the
following propositions:

P RDA1 Parametric self-improvement enhances the system performance.

P RDA2 Structural self-improvement enhances the system performance.

P RDA3 Self-improvement in general enhances the system performance.

Units of Analysis: To study the ALM and the three ALMmodules presented
in Section 7.4.2, we applied self-improving capabilities to the SmartHighway sys-
tem and observe a part of the German highway A8 between the interchange
Stuttgart and the junction Stuttgart-Degerloch near Stuttgart airport. Fig-
ure 8.10 presents the simulated area of the highway. We used real traffic datasets
from the German Federal Highway Research Institute (BASt)20 and [326]. During
the simulation, the volume of traffic is adjusted hourly to reflect a typical working
day. The simulated period varies between 5 hours (from 6am to 11am) for the
evaluation of self-improvement through structural adaptation and up to a whole
day starting at midnight for the rule learner. Our simulated highway includes

20BASt website: https://www.bast.de/BASt_2017/DE/Home/home_node.html
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a track of around 10 kilometers. We divided it into 4 sections. For structural
adaptation, we simulated an accident as well as a daily road work.

Figure 8.10.: An overview of the highway that is controlled by the SmartHighway
system and the ALM. Because of the construction site in section 4
and an accident in section 1, the gray marked areas are closed in
the second setting for evaluation of structural self-improvement.

We ran the system on different desktop PCs and laptops with Windows. The
adaptation logic and the ALM run with Java version 8. TraCI used Python 2.7.
For the simulation, a slightly modified version of SUMO is used which is based
on the source code of Version 0.23.0. The modifications are necessary in order to
collect the raw data of the traffic cameras.

Linking Data to Propositions: The different propositions are studied in
the SmartHighway use case. Hence, they are directly related to performance data
of the use case system and the specific implementation of the ALM modules.

Interpretation Criteria: As performance measurement for evaluating a sim-
ulation run, we used the average waiting time of vehicles during a simulation run
for all vehicles of a specific time interval. The waiting time is the time where the
speed of a vehicle was below 0.1 m/s. Hence, the lower the waiting time is, the
better it is as vehicles spend less time in traffic jams. The number is logged by the
SUMO traffic simulation. We calculated the average waiting time for five minute
intervals based on all vehicles that started during that interval in a simulation
run. To get more reliable values that are not influenced by random deviations,
the simulation runs are repeated 50 times. Finally, we calculate the average of
the waiting time for an interval over all runs. To make the settings comparable,
the integral of the values is calculated using the Romberg method [314], which is
a numerical procedure for integral estimation.

Evaluation Execution

As baseline measurements of the adaptation logic’s performance, we first ran
two series of 50 simulations each without an adaptation logic as well as with an
adaptation logic using a fixed rule set for both tracks. The self-improvement layer
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is inactive. Hence, there are no rules added during the simulation and structural
self-improvement is not active. The adaptation logic is able to set three different
speed limits. The speed limit is set to unrestricted if the status of the highway
is free. In case of congested traffic, a limit of 120 km/h is set and finally, for
stop-and-go traffic the speed limit is reduced to 80 km/h. Congested traffic and
stop-and-go traffic situations are detected using measurements of the amount of
vehicles on the track as well as their average velocity.

As a second measurement, we measured the performance of the parametric
self-improvement, hence, the rule learner. The recommended speed limits are
learned while the system is running. The system starts with an empty rule set
and the rule set evolves over time.

It is not preferable to learn rules for a spontaneous, non-durable event as time
is needed for the simulation to learn rules. Contrary, structural adaptation can
react fast to changing conditions. Therefore, we decided to introduce additional
events to the evaluation setting that trigger structural self-improvement of the
adaptation logic. Reaction to events is not restricted to reactive adaptation
only, but includes a proactive adaptation as reaction to forecasted events. We
additionally simulate an accident that leads to closing the ramp of the junction in
section 1. Additionally, we introduce a daily road work in the last section of the
track. Further, as structural adaptation is event-based, we simulated the road
work during the morning rush hour between 6am and 11am. The blocked parts
of the highway are shaded in Figure 8.10. For the detailed evaluation parameters,
the interested reader is referred to [223].

Evaluation Results & Discussion

Table 8.6 subsumes the results of the evaluation. The integral of the baseline
without the adaptation logic is 21,308, the one with the adaptation logic having a
fixed rule set decreases to 14,950, which is an improvement of 30 %. However, as
traffic jams happen even with the adaptation logic, this is an indicator that the
adaptation logic could be improved though meta-adaptation. Adding the para-
metric self-improvement module for rule learning, the integral of the measurement
decreases by further 1,139 points which is a 7.6 % improvement compared to a
fixed rule set and an improvement of 35 % compared to the baseline.
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Table 8.6.: Aggregated average waiting time
Setting Integral Decrease
Without AL (scenario 1) 21,308 —
Static AL (scenario 1) 14,950 (−30 %)
Parameter 13,811 (−35 %)
Without AL (scenario 2) 18,128 —
Static AL (scenario 2) 13,032 (−28 %)
Structure Neo4j 14,055 (−23 %)
Structure TARL 13,713 (−24 %)

For the setting with the daily road work, the integral of the baseline without
the adaptation logic is 18,128, the one with the static adaptation logic decreases
to 13,032. This represents an improvement of 28 %. For measuring the effects of
structural self-improvement, we compared the Neo4j and the TARL modules. The
Neo4j module has an integral of 14,055, the TARLmodule performs slightly better
with 13,713. Both, Neo4j and TARL, do not outperform the static adaptation
logic. Several optimizations are possible: (i) learn new rules for the situation, (ii)
optimize the speed limits with variable speed limits for the sections of a region,
and (iii) optimize the parameters for prediction. However, they still improve
the traffic compared to the situation without adaptation by more than 23 %.
Additionally, the regions homogenize the traffic flow which increases safety [364].

The results support the benefits of self-improvement in the studied use case
as well as the concept of the ALM. Accordingly, for the studied scenario,
it can be concluded that parametric self-improvement increased the perfor-
mance (cf. proposition PRDA1) while structural self-improvement do not im-
prove the quantitative performance, however, still offers benefits (cf. proposi-
tion PRDA2). As for both studied types of self-improvement the performance
of the SAS does not decrease and both offer advantages, proposition PRDA3
holds. [223] provides a detailed discussion of the performance of the modules.

8.4. Assessment-based Descriptive Evaluation

This section presents informed arguments (cf. [180]) – a type of descriptive
evaluations – for assessing the FESAS Framework and the ALM. Therefore, this
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section compares them with the knowledge base (cf. Section 4.2 & 4.3), i.e., the
related work from [224,226,227]. We neglect the FESAS IDE here as the tools in
literature show a high variance regarding their functionality and many tools are
not publicly available for testing. Next, Section 8.4.1 presents the assessment of
the FESAS Framework. Afterwards, Section 8.4.2 evaluates the ALM.

8.4.1. Informed Argument: Assessment of the FESAS Framework

This section provides an informed argument (cf. [180]) evaluation that com-
pares the FESAS Framework to related work discussed in [224] (cf. Section 4.2).

Evaluation Design

Following the protocol presented in the introduction of this chapter, this sec-
tion presents the metrics for the evaluation, categorizes the FESAS Framework
using the taxonomy from [224] (cf. Section 4.2), and compares it to related work.

Evaluation Questions: The evaluation covers the following questions:

EQIAF 1 Does the FESAS Framework differ from related approaches?

EQIAF 2 Does the FESAS Framework offer more reusability as related work?

Evaluation Proposition: The main proposition is that the FESAS Frame-
work offers more reusability as related work. This can be refined to the criteria:

P RIAF 1 The FESAS Framework offers more reusability on the MAPE compo-
nent level as related approaches.

P RIAF 2 The FESAS Framework offers more flexibility for developers in imple-
menting the MAPE functionality as related approaches.

P RIAF 3 The FESAS Framework offers a better integration of design/develop-
ment actives and runtime support as related approaches.

Units of Analysis: Relevant are the related work from [224] (cf. Section 4.2)
and the taxonomy from [224] for the categorization of the FESAS Framework.

Linking Data to Propositions: We categorize the FESAS Framework using
dimensions of the taxonomy from [224] that are related to the propositions:

• PRIAF 1 is linked to the dimensions level of abstraction, reusability, libraries,
and reference architecture.
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• PRIAF 2 is linked to the dimensions type of support, support of adaptation
mechanisms, type of approach, special demands on developer, applicability,
type of adaptation, and language specificity.

• PRIAF 3 is linked to the dimensions temporal scope of support, use of pro-
cesses, use of tools, involved roles, and development phase.

Interpretation Criteria: Differing manifestations in the dimensions of the
taxonomy for the FESAS Framework in contrast to related work are seen as
support of the propositions.

Evaluation Execution

The execution followed a qualitative approach. The FESAS Framework was
assessed in the aforementioned described categories of the taxonomy from [224].

Evaluation Results & Discussion

This section compares the FESAS Framework with related approaches. The
dimension engineering context is not further analyzed as it is equal for almost
every approach. Table 8.7 presents an overview of the categorization of the
FESAS Framework and related approaches with similar manifestations.

Proposition PRIAF 1 is linked to the dimensions level of abstraction, reusability,
libraries, and reference architecture. Whereas several approaches offer a similar
level of abstraction [5, 37, 66, 140, 163, 360] and also integrate a MAPE-K based
reference architecture [65, 112, 215, 247, 360, 375, 377, 398] or a similar reference
architecture [5, 20, 66, 255, 336], besides the FESAS Framework, only three ap-
proaches integrate reusable components with processes [255,336,347] and only one
accompany them with a pattern library [347]. In contrast to the FESAS Frame-
work, [347] does not integrate a reference architecture implementation. This fully
supports proposition PRIAF 1. Only the FESAS Framework focuses on reusability
on the intra-component level, offers an implementation of the reference architec-
ture, and integrates reusable processes and design/development elements. This
enables a higher degree of reusability in contrast to related approaches.

The dimensions type of support, support of adaptation mechanisms, type of
approach, special demands on developer, applicability, type of adaptation, and lan-
guage specificity are related to the proposition PRIAF 2. Model-based approaches
abstract from implementation details and are used to transfer design knowledge
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Table 8.7.: Comparison of the FESAS Framework with related work
Dimension FESAS Framework Similar approaches
Type of approach model-based [10, 11, 37, 66, 112, 163, 215,

242,377,398]
Type of support framework, tools, design

concept
[215,377]

Temporal scope design, deployment, run-
time

[112]

Involved roles Developer, Designer Only [163, 215, 377] ad-
dresses several characteris-
tics.

Reusability Reusable processes and
components

Only [255, 336, 347, 377] of-
fers both.

Development phase Design & Implementation [5,10,20,37,65,102,163,215,
255,331,336,347,377]

Engineering context Forward engineering Only [13, 151] support re-
verse engineering

Applicability SAS All except of [66,151,331]
Special requirements for devel-
opers

none Most do not have special
demands except [10, 112,
140,242,271,336]

Level of abstraction Low [5,37,66,140,163,360]
Use of processes Workflow for development

& deployment
Only [102] addresses design
and runtime.

Use of reference architecture FESAS Adapta-
tion Logic Template

MAPE-K based [65, 112,
215, 247, 360, 375, 377, 398]
and others [5, 20, 66, 255,
336].

Use of libraries FESAS Repository Catalog of coordination
pattern [347]

Use of tools FESAS IDE [10, 20, 37, 65, 112, 140, 163,
215,247,255,360,377]

Language specificity Prototype in Java [10,20,65,112,140,163]
Support of adaptation mecha-
nisms

At runtime through self-
improvement

Only [377] can support self-
improvement

Type of adaptation Parameter, structural, self-
improvement

None integrate self-
improvement

Evaluation Case studies Only [10, 37, 77, 102, 112,
215, 255] offer several real
implementations.

to the runtime. The adaptation logic can use this information for decision-
making. In line with related approaches [10,11,37,66,112,163,215,242,377,398],
the FESAS Framework is model-based to benefit from the mentioned advan-
tages. Uniquely, the FESAS Framework integrates a framework, tools, and a
design concept. None of the other approaches offer this whole set of develop-
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ment support. Another unique feature is the support for parametric and struc-
tural self-adaptation as well as self-improvement by the ALM. None of the other
approaches offer this type of end-to-end support. However, the support at de-
sign time is not integrated out of the box and depends on the available func-
tional logics for the MAPE components. Further, FESAS is not restricted to
a specific type of SAS. Whereas many approaches claim this, only some ap-
proaches [10, 37, 77, 102, 112, 215, 255] offer implementations in several different
case studies analogous to the FESAS Framework. The FESAS Framework con-
ceptually does not have special demands on the developers. Only the prototype
implementation requires Java knowledge, however, this seems to be a common
approach for developing SASs (cf. [10,20,65,112,140,163]). Especially taking the
exceptional characteristics of the FESAS Framework for the dimensions type of
support, type of adaptation, and support of adaptation mechanisms into account,
proposition PRIAF 2 is strengthened by the analysis.

Proposition PRIAF 3 is linked to temporal scope of support, use of processes,
use of tools, involved roles, and development phase. Besides [102], only the
FESAS Framework addresses development and runtime (through the ALM) in
an integrated solution. In the development phase, the FESAS Framework sup-
ports design and implementation activities. Other approaches supports also both
types [5,10,20,37,65,102,163,215,255,331,336,347,377]. However, except of the
FESAS Framework, only [163] splits the development responsibilities into two
roles. For the two activities, the FESAS Framework integrates two roles: develop-
ers and designers. This enables fine granular support of the development of SASs.
Several approaches [10,20,37,65,112,140,163,215,247,255,360,377] offer tool sup-
port for the development of SASs. However, most tools support specific aspects
only, rather than offering an integrated approach for connecting development and
deployment/runtime. Accordingly, the FESAS Framework does not exclusively
cover characteristics in all dimensions. MUSIC [163], DESCARTES [190, 215],
and EUREMA [377,380] offer a broad support for designers and developers, how-
ever, they focus on a specific modeling approach and do not offer a high flex-
ibility for integrating existing works. The combination of characteristics that
the FESAS Framework offers, provides the broadest coverage of design and de-
velopment activities and more flexibility as other approaches. The FESAS IDE
integrates these activities. Hence, proposition PRIAF 3 is supported.
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8.4.2. Informed Argument: Assessment of the Adaptation Logic
Manager

This section provides an informed argument (cf. [180]) evaluation of the ALM
through a comparison with related work [226,227] (cf. Section 4.3).

Evaluation Design

The evaluation follows the protocol presented in the introduction of this chap-
ter. After the presentation of the relevant metrics, this section categorizes the
ALM using the taxonomy on self-adaptation from [229] (cf. Section 2.1.3) and
compares it with the related work presented in [226,227] (cf. Section 4.3).

Evaluation Questions: As Section 8.3.2 evaluated the functionality of the
ALM, this assessment is centered around the following evaluation question:

EQIAA1 Does the ALM offer more flexibility than related approaches?

Evaluation Proposition: The main proposition is that the ALM offers a
higher flexibility as related approaches. This is refined to:

P RIAA1 The ALM supports reactive and proactive self-improvement.

P RIAA2 The ALM supports parametric and structural self-improvement.

P RIAA3 The ALM supports several adaptation decision criteria.

P RIAA4 The ALM supports centralized and decentralized decision making.

Units of Analysis: The collection of related work [226,227] (cf. Section 4.3)
and the taxonomy on self-adaptation from [229] (cf. Section 2.1.3) for the cate-
gorization of the ALM are the units used within the analysis.

Linking Data to Propositions: All dimensions of the taxonomy on self-
adaptation from [229] (cf. Section 2.1.3) are used for categorizing the ALM. Es-
pecially, the following propositions and dimensions are linked to each other:

• PRIAA1 is linked to the dimension time.

• PRIAA2 is linked to the dimension technique.

• PRIAA3 is linked to the dimension decision criteria.

• PRIAA4 is linked to the dimension degree of (de)centralization.
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Interpretation Criteria: Different manifestations in the dimensions for the
ALM in contrast related work are seen as support of the propositions.

Evaluation Execution

This evaluation compares the categorization of the ALM to the categorizations
of the other related approaches [226, 227] for analyzing the fulfillment of the
propositions. Therefore, the ALM is analyzed and evaluated qualitatively. The
results are presented in the following.

Evaluation Results & Discussion

In the following, this section discusses the ALM in contrast to related work
from the overviews on self-improvement in [226, 227] (cf. Section 4.3). Table 8.8
shows the categorization of the ALM.

Table 8.8.: Comparison of the ALM with related work.
Dimension Characteristic ALM Similar approaches
Time Reactive & Proactive [9, 115,363]
Reason Implemented:Context & MR;

Supported: User
Both are supported by [116,
121, 149, 194, 218, 273, 291,
342,377].

Technique Parameter & Structure [273,342,363]
Adaptation Control:
Approach

External All, except of [121,287,377]

Adaptation Control:
Decision Criteria

Implemented: Rules/Utili-
ty/Models; Supported: Goals

None support more than
two

Adaptation Control:
(De)centralization

Centralized (Prototype) &
Decentralized (Concept)

None offer both

The ALM is in line with research for the dimensions reason and approach
for adaptation control. Eight other approaches [116, 121, 149, 194, 218, 273, 291,
342] supported context and managed resources as reasons for self-improvement.
Four of them [194, 218, 273, 291] even support all three possible reasons. All
others (except [274]) support either context or managed resources. Except of two
approaches [121, 287], all analyzed approaches for self-improvement follows the
external design of separating adaptation logic and self-improvement logic.

As discussed in [226,229], a proactive reaction might shorten delays and avoids
different issues in the system, but should always be supported by a reactive one
as backup. The ALM support reactive and proactive self-improvement simulta-
neously. Only three other approaches [9,115,363] offer this flexibility for the time
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dimension. All others support only one of the two characteristics. Hence, propo-
sition PRIAA1 is partly supported as only three approaches cover the time dimen-
sion identically. Similarly, the ALM supports both meta-adaptation techniques.
Again, only three other approaches support also parametric and structural self-
improvement [273,342,363]. For offering the highest flexibility to developers, both
approaches should be supported. Further, the modularity of the ALM MAPE
components additionally offers a unique flexibility through its reusability and ex-
tensibility. Accordingly, the analysis of the dimension techniques mainly supports
proposition PRIAA2.

Regarding the remaining two dimensions, the ALM provides unique features.
The ALM is the only approach for self-improvement that is not restricted in its
support of decision criteria for adaptation control. Again, this enables maximum
flexibility for developers as they are not restricted to a given approach. Besides
the offered three modules for self-improvement, the modularization enables them
to integrate any approach they want to use. This way, many approaches stud-
ied for self-adaptation might be integrated and also used for self-improvement.
Finally, the ALM is the only approach that support a centralized and decentral-
ized/distributed self-improvement module. As we used the FESAS Framework
prototype to build the ALM, this is supported. Decentralized decision making
leads to faster reactions and locally optimized (meta-)adaptation decisions [401].
However, the main reason for the restriction of most approaches to centralized
adaptation control for self-improvement might be the fact that self-improvement
needs global knowledge for optimal decision making [226]. For that reason, we also
focused on centralized decision making in our prototype of the ALM. A mecha-
nism for supporting the decentralized decision making and sharing the knowledge
for a global view is part of future work. However, the discussion of the dimensions
decision criteria for adaptation control (PRIAA3) and (de)centralized adaptation
control (PRIAA4) fully supports the remaining propositions.

As seen in the discussion of related work, the ALM provides several features
which are unique or at least not commonly present in related work. From the
studied approaches, [363] is the closest as it offers flexibility by integrating proac-
tive and reactive self-improvement as well as offering parametric and structural
self-improvement. However, the ALM is unique in the support of adaptation
decision criteria and the supported degree of (de)centralization.
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9. Discussion

The evaluation showed that the FESAS Framework with the ALM offers
a unique type of support for developing SASs. Similar approaches like EU-
REMA [377,380] orMUSIC [163] also target the full stack of development support
– design of the SAS and the development of the adaptation logic’s components –
or runtime support for self-improvement (e.g., [112,360,377]). However, they do
not provide the same flexibility in development as the FESAS Framework. The
FESAS Framework abstracts from any specific modeling approaches and enables
the inclusion of existing work as long as it can be transformed to the MAPE
model. In contrast, related approaches target directly to model and implement
support for adaptation reasoning, i.e., targets the MAPE functionality. They (i)
come with the necessity to learn and apply a specific modeling approach, (ii) are
limited to a specific component model, or (iii) are limited in their support for
adaptation techniques. The FESAS Framework is more flexible and enables de-
velopers to integrate different approaches and concepts for adaptation reasoning
through its openness. Further, the FESAS Repository acts as an "app store" and
offers MAPE functionality to developers. Accordingly, it is possible to build the
adaptation logic without the need to implement the MAPE functionality.

Based on the evaluation presented in the previous section, this section dis-
cusses the results of this thesis. It is structured similar to [372] in theoretical
contributions, limitations, theoretical implications, and practical implications.
Section 9.1 explains the theoretical contributions, i.e., how this thesis contributes
to the research questions and the identified requirements derived from the knowl-
edge base. It further analyzes threats for validity. Based on that, Section 9.2 ex-
plains limitations of the prototypes for the FESAS Framework, the FESAS IDE,
and the ALM and how to address them in future work. Section 9.3 relates the
results of the thesis to the research trends for SASs. Therefore, it presents cur-
rent challenges in the field and how the FESAS Framework contributes to them.
Last, Section 9.4 explains contributions of this thesis for practitioners.
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9.1. Theoretical Contributions

This section describes the theoretical contributions of this thesis to extend
the knowledge base, i.e., the compliance with the requirements and the research
questions. First, Section 9.1.1 discusses the results of the evaluations and the
fulfillment of the evaluation propositions and maps the evaluation results to the
research questions. Second, based on the evaluation results, Section 9.1.2 analyzes
the coverage of the requirements defined in Chapter 5. Third, Section 9.1.3
describes relevant threats for validity of the evaluation results. Based on these
three elements, the following Section 9.2 depicts potential future work for the
FESAS Framework, the FESAS IDE, and the ALM.

9.1.1. Discussion of Evaluation Results

This section discusses the results of the evaluation. Next, it summarizes the
support of the evaluation results for the evaluation propositions. Afterwards, it
maps the support of evaluation propositions to the research questions defined in
Section 1.2.

Discussion of the Evaluation Propositions

Table 9.2 provides an overview of the evaluation propositions defined for the
analytical, observational, experimental, and descriptive evaluations of the FE-
SAS Framework, the FESAS IDE, and the ALM presented in the Sections 8.2-
8.4. As the column "Support" shows, none of the evaluation propositions is dis-
carded by the evaluation results. For a detailed discussion of the fully supported
propositions (marked with 3), the reader is referred to the presentations of the
corresponding evaluation in the Sections 8.2-8.4. Here, we discuss the six partly
supported evaluation propositions (indicated by the (3) symbol) out of the 21
evaluation propositions in total.

Proposition P REE4. The FESAS IDE offers a mode for testing the adapta-
tion logic without the need to set up the whole SAS, i.e., avoiding a connection to
managed resources. The results of the experimental evaluation (cf. Section 8.2.1)
indicate that the users of the FESAS IDE see potential for improvement in the

166



9.1. Theoretical Contributions

Ta
bl
e
9.
1.
:C

ov
er
ag
e
of

th
e
ev
al
ua

tio
n
pr
op

os
iti
on

s
fo
r
th
e
ev
al
ua

tio
ns

of
th
e
FE

SA
S
Fr
am

ew
or
k,

th
e
FE

SA
S
ID

E,
an

d
th
e
A
LM

(3
in
di
ca
te
s
fu
ll
su
pp

or
t,
(3

)
in
di
ca
te
s
pa

rt
ly

su
pp

or
t)
.

Id
en
ti
fie

r
P
ro
po

si
ti
on

Su
p-

po
rt

Usability
FESASIDE

P
R

E
E

1
T
he

FE
SA

S
ID

E
do

es
no

t
re
qu

ire
de

ve
lo
pe

rs
to

le
ar
n
th
e
FE

SA
S
Fr
am

ew
or
k
w
or
kfl

ow
.

3

P
R

E
E

2
T
he

FE
SA

S
ID

E
is

ea
sy

to
le
ar
n
an

d
ea
sy

to
us
e.

3

P
R

E
E

3
T
he

FE
SA

S
ID

E
su
pp

or
ts

th
e
de

ve
lo
pm

en
t
of

re
us
ab

le
SA

Ss
.

3

P
R

E
E

4
T
he

FE
SA

S
ID

E
su
pp

or
ts

th
e
te
st
in
g
of

SA
Ss
.

(3
)

P
R

E
E

5
T
he

FE
SA

S
ID

E
ac
ce
le
ra
te
s
th
e
de

ve
lo
pm

en
t
of

SA
Ss
.

3

Applicability
FESASIDE

P
R

F
S

1
T
he

FE
SA

S
ID

E
sim

pl
ifi
es

th
e
in
iti
al
iz
at
io
n
an

d
co
nfi

gu
ra
tio

n
of

th
e
FE

SA
S
de

ve
lo
pm

en
t

en
vi
ro
nm

en
t.

3

P
R

F
S

2
T
he

FE
SA

S
ID

E
sim

pl
ifi
es

th
e
de

ve
lo
pm

en
t
of

SA
Ss

co
m
pa

re
d
to

m
an

ua
lly

us
in
g
th
e

FE
SA

S
Fr
am

ew
or
k
co
m
po

ne
nt
s
an

d
co
rr
es
po

nd
in
g
w
or
kfl

ow
.

3

P
R

F
S

3
T
he

pe
rc
ei
ve
d
be

ne
fit
s
of

us
in
g
th
e
FE

SA
S
Fr
am

ew
or
k
fo
r
de

ve
lo
pi
ng

SA
Ss

ar
e
in
cr
ea
se
d
w
he

n
us
in
g
th
e
FE

SA
S
ID

E.
3

Reusability
FESAS

P
R

S
A

1
Ex

ce
pt

th
e
fu
nc

tio
na

ll
og
ic

co
de

,m
os
t
pa

rt
s
of

SA
Ss

im
pl
em

en
te
d
us
in
g
th
e
FE

SA
S
Fr
am

ew
or
k

ar
e
re
us
ab

le
.

3

P
R

S
A

2
T
he

M
A
PE

co
m
po

ne
nt
s
ge
ne
ra
te
d
w
ith

th
e
FE

SA
S
Fr
am

ew
or
k
ar
e
re
us
ab

le
w
ith

th
e
ex
ce
pt
io
n

of
cl
ea
rly

de
fin

ed
pa

rt
s.

3

P
R

S
A

3
T
he

sy
st
em

m
od

el
s
ar
e
re
us
ab

le
w
ith

m
in
or

cu
st
om

iz
at
io
ns
,o

nl
y.

(3
)

Perf.
ALM

P
R

D
A

1
Pa

ra
m
et
ric

se
lf-
im

pr
ov
em

en
t
en

ha
nc

es
th
e
sy
st
em

pe
rf
or
m
an

ce
.

3

P
R

D
A

2
St
ru
ct
ur
al

se
lf-
im

pr
ov
em

en
t
en

ha
nc
es

th
e
sy
st
em

pe
rf
or
m
an

ce
.

(3
)

P
R

D
A

3
Se

lf-
im

pr
ov
em

en
t
in

ge
ne

ra
le

nh
an

ce
s
th
e
sy
st
em

pe
rf
or
m
an

ce
.

(3
)

Assessment
FESAS

P
R

I
A

F
1

T
he

FE
SA

S
Fr
am

ew
or
k
off

er
s
m
or
e
re
us
ab

ili
ty

on
th
e
M
A
PE

co
m
po

ne
nt

le
ve
la

s
re
la
te
d

ap
pr
oa
ch
es
.

3

P
R

I
A

F
2

T
he

FE
SA

S
Fr
am

ew
or
k
off

er
s
m
or
e
fle

xi
bi
lit
y
fo
r
de

ve
lo
pe

rs
in

im
pl
em

en
tin

g
th
e
M
A
PE

fu
nc

tio
na

lit
y
as

re
la
te
d
ap

pr
oa
ch
es
.

3

P
R

I
A

F
3

T
he

FE
SA

S
Fr
am

ew
or
k
off

er
s
a
be

tt
er

in
te
gr
at
io
n
of

de
sig

n/
de

ve
lo
pm

en
t
ac
tiv

es
an

d
ru
nt
im

e
su
pp

or
t
as

re
la
te
d
ap

pr
oa
ch
es
.

(3
)

Assessm.
ALM

P
R

I
A

A
1

T
he

A
LM

su
pp

or
ts

re
ac
tiv

e
an

d
pr
oa
ct
iv
e
se
lf-
im

pr
ov
em

en
t.

3

P
R

I
A

A
2

T
he

A
LM

su
pp

or
ts

pa
ra
m
et
ric

an
d
st
ru
ct
ur
al

se
lf-
im

pr
ov
em

en
t.

3

P
R

I
A

A
3

T
he

A
LM

su
pp

or
ts

se
ve
ra
la

da
pt
at
io
n
de

ci
sio

n
cr
ite

ria
.

3

P
R

I
A

A
4

T
he

A
LM

su
pp

or
ts

ce
nt
ra
liz

ed
an

d
de

ce
nt
ra
liz

ed
de

ci
sio

n
m
ak

in
g.

(3
)

167



9.1. Theoretical Contributions

usability of the testing mode (proposition PREE4). One reason might be that the
mode is not perfectly integrated into the FESAS IDE. The FESAS IDE just cre-
ates the relevant Java classes. Running the testing mode and automatic analysis
of the results are not integrated into the FESAS IDE.

Proposition P RSA3. The static analysis (cf. Section 8.3.1) of the degree of
reusability with the FESAS Framework shows that the system models can be
reused (proposition PRSA3). This is supported by an analysis of the use case
systems presented in Section 8.1 as well as by the interviews with developers who
used the FESAS Framework or the FESAS IDE. However, this bases on rather
small systems. For large, highly distributed adaptation logics, this might not be
the case, hence, the proposition can only be partly supported by the evaluation
results.

Propositions P RDA2&P RDA3. We analyzed the performance of the ALM
and the implemented modules for analyzing and planning self-improvement in
a dynamic analysis (cf. Section 8.3.2). There, we found that parametric self-
improvement offers a quantitative measurable performance gain in the use case,
whereas structural self-improvement offers only a qualitative deducible advan-
tage: increased safety through homogenizing the traffic flow. Hence, the propo-
sition PRDA2 – describing that structural self-improvement enhances the sys-
tem performance – is only partly supported by the results of the SmartHighway
use case as only qualitative benefits are perceived. Accordingly, also proposi-
tion PRDA3 – which targets the improvement for self-improvement in general –
can only be partly supported.

Proposition P RIAF 3. Proposition PRIAF 3 claims that the FESAS Frame-
work offers a better integration of design/development activities with runtime
support compared to related approaches. This was evaluated based on a com-
parison with the knowledge base (cf. Section 8.4.1). The evaluation indicates
that the FESAS Framework offers a better integration than most of the re-
lated approaches. Some approaches also integrate design/development activi-
ties with runtime support, e.g., DESCARTES [190, 215], EUREMA [377, 380],
FUSION [112], or ArchStudio [278, 279]. However, these approaches are either
more specialized (e.g., EUREMA [377, 380] or FUSION [112]) which limit their
flexibility to integrate other existing approaches or do not offer self-contained
runtime support comparable to the ALM (e.g., DESCARTES [190,215] or Arch-
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Studio [278, 279]). Still, we acknowledge that these approaches have capabilities
similar to the FESAS Framework, such as model-based development, implemen-
tation of adaptation logic components, or (partly) support for self-improvement.
Accordingly, proposition PRIAF 3 is only partly fulfilled.

Proposition P RIAA4. Section 8.4.1 compares the ALM to the knowledge
base focusing on the dimensions adaptation decision criteria, adaptation time,
adaptation technique, and adaptation control. Whereas the first three factors are
fully supported by the ALM, the last dimension is only partly supported (propo-
sition PRIAA4). The ALM supports centralized and decentralized distribution of
the decision making through the implementation using the FESAS Framework.
However, we did not evaluate decentralized decision making in the ALM within
this thesis.

Discussion of the Research Questions

All of the former presented evaluation propositions contribute to answer one
of the three research questions we motivated in Section 1.2:

RQ1 Reusability: How to make the adaptation logic more reusable?

RQ2 Self-improvement: How to adapt the adaptation logic at runtime?

RQ3 Integrated development: How to support the development of SASs with
tools and processes throughout the complete lifecycle?

RQ1 Reusability. First, research question RQ1 targets the most impor-
tant concern for this thesis: reusability of elements of the adaptation logic.
Within the evaluation, we proved that the FESAS Framework supports this
reusability aspect. The static analysis of the degree of reusability achieved
with the FESAS Framework (cf. Section 8.3.1) clearly proves that using the
FESAS Framework, developers are able to reuse (i) code for the functional log-
ics (proposition PRSA1), (ii) the MAPE components of the reference implemen-
tations (proposition PRSA2), and (iii) the system models with only minor cus-
tomization (proposition PRSA3). Further, the descriptive evaluation (cf. Sec-
tion 8.4.1) shows that the FESAS Framework does not only focus more on the
reusability aspect than other related approaches (proposition PRIAF 1), but also
targets a higher flexibility for enabling developers to better integrate existing
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approaches (proposition PRIAF 2). Accordingly, research question RQ1 is suc-
cessfully addressed in this thesis.

RQ2 Self-improvement. The second research question RQ2 demands the
inclusion of an approach for self-improvement. Therefore, we implemented the
ALM. It is self-contained, but well integrated with the FESAS Framework.
We evaluated the ALM in the SmartHighway scenario. The support of the
evaluation propositions PRDA1-PRDA3 shows that all implemented modules
for planning self-improvement influence the qualitative aspects of the adap-
tation logic. The parametric self-improvement module also significantly en-
hances the performance in quantitative measurements. Further, the ALM of-
fers a higher flexibility than other approaches as it supports (i) reactive and
proactive self-improvement (proposition PRIAA1), (ii) parametric and structural
self-improvement (proposition PRIAA2), (iii) several adaptation decision crite-
ria (proposition PRIAA3), and (iv) centralized and decentralized decision mak-
ing (proposition PRIAA4). Except for the decentralized decision making for self-
improvement, the evaluation results supported all the propositions. Accordingly,
this thesis answers research question RQ2.

RQ3 Integrated development. Third, research question RQ3 focuses on
the integration of development activities with runtime support. In this thesis,
we presented three elements: (i) the FESAS IDE for the design and development
of SAS, (ii) the FESAS Framework for integrating a reference implementation
of the adaptation logic and deployment support, as well as (iii) the ALM for
runtime support. These elements are connected with the FESAS Workflow. The
evaluation showed that the FESAS IDE is a central element for connecting all
these elements (propositions PRF S1-PRF S3) and increasing their usability by
abstracting from learning details of them (propositions PREE1-PREE5). Com-
pared to related work, the FESAS Framework’s components in combination with
the FESAS IDE and the ALM offer (i) a better integration of design/development
actives and runtime support as most related approaches and (ii) an integration
of these elements while observing the flexibility to integrate different develop-
ment paradigms and existing approaches (proposition PRIAF 3). Consequently,
research question RQ3 is confirmed by the evaluation propositions.
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9.1.2. Requirements Coverage

Based on the evaluation results, this section discusses the requirements cov-
erage of the FESAS Framework and the ALM. As assessment, the requirements
from Section 5.2 and Section 5.3 are discussed individually.

Requirements Coverage: FESAS Framework

RDev1: External Control. The FESAS Adaptation Logic Template sup-
ports the separation of adaptation logic elements and the managed resources (re-
quirement RDev1). Moreover, it specifies clear interfaces for interaction between
both parts. This increases reusability, as the adaptation logic is not adjusted to
specific managed resources.

RDev2: Reference Architecture. The FESAS Adaptation Logic Template
enables the fulfillment of requirement RDev2. It integrates the well-known MAPE
control functionality (requirement RDev2.i) with additive components for sup-
porting the deployment of the adaptation logic and offers runtime support for
the MAPE components (requirement RDev2.ii). Furthermore, the FESAS Com-
ponent Template abstracts from unnecessary implementation details and enables
the developers to focus on the MAPE components’ functionality.

RDev3: Flexible Adaptation Control. The evaluation results for the ex-
ample cases show that the reference system can be reused without adjustments.
This significantly increases the level of code reuse within the different systems as
well as reduces complexity in the development of SASs. The FESAS IDE hides
the complexity in using the reference system. For the adaptation logic, develop-
ers only have to implement functional logic elements. Further, the reused code
handles issues that the developers do not have to cover, such as the communica-
tion between the MAPE elements (requirement RDev3.i) and the deployment of
the adaptation logic (requirement RDev3.ii). As it is highly reusable, it reduces
the complexity of the development of SASs significantly.

RDev4: Context Management. An open issue is the context manage-
ment (requirement RDev4). The idea of the context manager is to systematically
abstract the adaptation logic from specific context information of managed re-
sources. Therefore, a generic context model is needed as well as a mechanism
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for handling the context data. We experimented with a JMS-based approach.
However, this is only suitable for fully fledged systems due to the need of a data
base and JMS broker. Further, the approach is not fully integrated into the
FESAS Middleware and we did not integrate a systematical mapping of context
information to a context model, such as the one presented in [329].

RDev5: Generic Adaptation Support. The high variety of use cases shows
the generic applicability of the FESAS Framework. Within these use cases, dif-
ferent types of adaptations can be encountered: parametric, structural, and con-
textual adaptation as well as reactive and proactive adaptation. Further, the use
cases integrated all adaptation decision criteria, i.e., rules/policies, goals, models,
and utility functions. The FESAS Framework and the FESAS IDE support all of
these facets through the modularization offered by the FESAS Component Tem-
plate (requirements RDev5.i−a – RDev5.i−c). Furthermore, the FESAS Compo-
nent Template enables the encapsulation of the adaptation mechanisms (require-
ment RDev5.ii) which also increases their reusability. Additionally, the analysis
of the example systems shows that the integration of existing code is simplified
through the use of the FESAS Development Tool as it offers a clear interface for
adding code based on the modularization principle.

RDev6: Connection to Managed Resources. For each use case in Sec-
tion 8.1, the adaptation logic is implemented in Java using the FESAS Framework
and FESAS IDE. However, the implementation of the managed resources varies.
We use Java, JavaEE, Python, C++, and Lejos (a JavaVM for Lego Mindstorms
robots). For some systems, the managed resources are simulated in a simplified
way. For others, we use fully fledged simulators, robots, or real life systems.
The connection between managed resources and the adaptation logic follows var-
ious communication approaches: HTTP requests to web servers, XML-RPC,
Java-based method calls, communication middlewares, and sockets connecting
the Java-based adaptation logic with managed resources implemented in Java or
other programming languages. The FESAS Framework offers various communi-
cation modules to support the variance of communication approaches (require-
ment RDev6.i). Through the generic FESAS Adaptation Logic Template and its
interfaces, the connection between adaptation logic and managed resources can
be adjusted by changing the functional logic and/or properties of a sensor/effector
component using the FESAS IDE (requirement RDev6.ii).
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Table 9.3.: Coverage of the requirements by the implementation of the FE-
SAS Framework / FESAS IDE and the results of the evaluation.

Requirement Explanation Support
RDev1: External
control Implemented as external layer. 3

RDev2: Reference
architecture

The FESAS Adaptation Logic Template
separates MAPE components and additive one. 3

RDev3: Flexible
adaptation control

Different patterns supported and deployment
mechanism integrated. 3

RDev4: Context
management Prototype exists; context modeling missing. (3)

RDev5: Generic
adaptation support

Generated code supports the full spectrum of
adaptation mechanisms. 3

RDev6: Connection to
managed resources

The FESAS Framework offers various
communication modules. The FESAS IDE
supports the configuration of the
communication.

3

RDev7: Integrated
development

FESAS IDE, FESAS Middleware, and ALM
support the whole lifecycle and are integrated. 3

RDev7: Integrated Development. Without the FESAS IDE, developers
are required to learn the syntax for the metadata to describe code of the functional
logics. The same is true for the system designer who would need to learn the
syntax of the configuration files. Having both integrated into Eclipse enables to
hide the details of the syntax. Further, the integration into Eclipse enables the
use of implementation workflows known from IDEs. This reduces the learning
time. The FESAS Middleware supports the deployment of the adaptation logic
at runtime and the connection to the managed resources. Further, the ALM adds
self-improvement. Accordingly, requirement RDev7 is fully covered.

Requirements Coverage: Adaptation Logic Manager

RSI1: Meta-adaptation Mechanisms. The evaluation shows that the
ALM enables self-improvement with different types of meta-adaptation of the
adaptation logic (requirement RSI1.i). To consider application-specific charac-
teristics, we propose the integration of structural and parameter meta-adaptation
of the adaptation logic. This increases the flexibility for developers. The mod-
ularization concept enables to exchange analyzing and planning algorithms (re-
quirement RSI1.ii).
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RSI2: External Control. The idea of adding a self-improvement layer to
an SAS offers a generic approach for self-improvement that can be customized
through plugging in modules for reasoning. Through the introduction of the
ALM as an external layer (requirement RSI2), we improved its maintainability
and reusability.

RSI3: Monitoring. The ALM monitors the adaptation logic and captures
data of the managed resources (requirement RSI3). The Proxy ALM periodically
sends the relevant data. The managed resources’ data is stored in a database
using a generic approach. However, it needs minor configuration by specifying
the expected data structure. The information of the adaptation logic’s structure is
stored in a graph and accessible for modules for reasoning. Developers of modules
can rely on these mechanisms and do not need to implement monitoring.

RSI4: Proactive Reasoning. An approach for self-improvement should
combine reactive as well as proactive reasoning for compliance in various appli-
cations. Proactive self-improvement is supported by the prediction module, that
offers a prediction of future states (requirement RSI4). The encapsulated pre-
diction, based on WEKA [185], can be used out of the box by developers with
minor configuration only.

RSI5: Flexible Control. Existing approaches for self-improvement focus
on centralized reasoning [226]. Our system design supports the definition of a
decentralized self-improvement layer as the various elements are encapsulated.
Furthermore, the FESAS Framework and its system model offer the possibility
to distribute the components, hence, they support different degrees of distribution
and decentralization (requirement RSI5).

RSI6: Integration. As the ALM is self-contained, all frameworks for build-
ing SASs that offer interfaces for changing the adaptation logic and a Proxy
ALM implementation can be connected to the ALM (requirement RSI6). In the
evaluation, we showed this for the FESAS Framework.

We discussed in this thesis the layered version, only. The modularized version
from [230] offers similar characteristics. Additionally, it is a second use case which
supports the claim for flexibility (addressing requirements RSI1, RSI2, and RSI6).
Table 9.4 summarizes the coverage of the requirements.

175



9.1. Theoretical Contributions

Table 9.4.: Coverage of the requirements by the implementation of the ALM and
the results of the evaluation.

Requirement Explanation Support
RSI1:
Meta-adaptation
mechanisms

Modules for parametric and structural
self-improvement tested. Different modules
integrated in ALM.

3

RSI2: External
control Implemented as external layer. 3

RSI3: Monitoring Generic monitoring integrated in ALM. 3

RSI4: Proactive
reasoning Prediction integrated in ALM. 3

RSI5: Flexible
control

Decentralization supported by design; not
evaluated. 7

RSI6: Integration Self-contained, clearly defined interfaces; not
evaluated with other frameworks. (3)

9.1.3. Threats to Validity

In line with other works (e.g. [241]), this section discusses potential threats
for validity of the evaluation results based on the principles of experiments1 in
software engineering as presented in [406].

Figure 9.1.: Principles of experiments (taken from [241, p. 203], based on [406]).
The theoretically proposed cause-effect relation is mapped to obser-
vations, that are analyzed to confirm the proposed relations.

The upper part of Figure 9.1 shows the objective of an experiment. With the
help of an experiment, scientists want to prove the relation between a cause and

1Note: The term "experiment" differs from the more narrow meaning of the term "experi-
ment" used in Chapter 8. Here, experiment refers to an evaluation in general.
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an effect as proposed in their theory, the so called cause-effect construct. The
lower part of Figure 9.1 depicts the mapping of the evaluation objective to the
actual execution of the experiment. For the execution, different treatments can
be defined and executed. The outcomes of these treatments must be analyzed to
identify the support of them for the proposed theory. Several types of validity
are present, each indicated by the corresponding number in Figure 9.1 [241,406]:

1. Conclusion Validity: This describes a statistically proven relation be-
tween the treatment and the outcome of an experiment.

2. Internal Validity: Given conclusion validity, this property ensures that
only variables under control influence the results.

3. Construct Validity: This type of validity describes the correct reflection
of cause to treatment and effect to outcome.

4. External Validity: This type of validity is concerned with the generaliza-
tion of the results.

Threats to Conclusion Validity

Parts of the evaluation are based on qualitative measurements and, hence,
subjective (cf. [20, 374, 377]). To address this, we try to provide quantitative
evidence if possible. Additionally, for the results of the interviews with developers
especially for the evaluation of the FESAS IDE we emphasize that the results
are subjective as perceived by the participant of the studies. This subjectivity
of the metrics for the FESAS IDE might also support "fishing" for results. To
avoid that, we used standard measurements in form of Likert scales to codify the
answers of students and provide the full results for transparency.

While being accepted in literature (e.g., [77, 377]), the metric SLoC has some
drawbacks. First, code can be written differently which influences the results. As
mainly Master students participated, one can assume that these students have
a comparable level of development knowledge and, hence, the SLoC numbers
are comparable. Thus, SLoC can act as a quantitative measurement. Ideally,
we could analyze the "intelligence" of the code that has been produced with the
FESAS IDE. On the one hand, this is difficult to measure as the quality of the
adaptations is highly use case specific. On the other hand, the intention was not
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to evaluate the performance of systems generated with the FESAS Framework
but to show that the developers only have to implement a minor part of the
adaptation logic. Therefore, we think SLoC is an acceptable indicator.

Threats to Internal Validity

The heterogeneity of the groups of participants can be a threat to internal
validity. Indeed, the students have different study backgrounds and experiences
with development. However, we did not account any effects. In general, to address
this, control groups can be used. This is the case for the field study presented
in Section 8.2.2. There, we tried to avoid differences in the control groups by
composing the two groups in equal sizes and with students that attended the
same lecture.

The instrumentation for the studies can be an additional threat for internal
validity. This includes the design of the questionnaires as well as the setup of the
analytical evaluations. We tried to tackle this by using references for the design
of the questionnaires, such as the ISO 9241-11 Guidance on Usability standard
and the definition of usability in the ISO/IEC 9126-1 Software Product Quality
Model standard. For the static analysis of the degree of reusability, we integrated
various systems from different application domains. The dynamic analysis is
based on waiting time as the performance metric since it describes the system
performance relevant to the users. Additionally, we used real traffic data for a
realistic setting. Further, the heterogeneity of the various evaluations is a threat
for internal validity. To handle this, we applied the structured evaluation protocol
from Luckey [241] which is based on [408] in all evaluations except of testing.

Threats to Construct Validity

Mono-operation bias is a common threat for construct validity. To avoid this,
most evaluations base on several use case systems for different application do-
mains. Exceptional for the ALM, we analyzed a single case only in this work.
However, [230] presents the application of the ALM in a second use case. Also
for the FESAS IDE, we performed a single case analysis. A comparison with
other tools might be an option for future work. This was already planned for
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this thesis, however, this failed due to several issues: The access to some of the
tools was restricted as they are not publicly available, whereas other tools were
not usable as the documentation was incomplete or their code dependencies were
outdated.

As subjects in tests usually know the purpose of the evaluations, it might be
possible that they want to support the evaluation with suitable answers. In case of
students as participants, this effect can be strengthen as they are graded. To avoid
this, the questionnaires were anonymized for interpretation and, furthermore, the
work of the students was not graded based on their quality. Students only received
a bonus for participation.

An additional threat is the expectancies of the researcher. Often, a single
person interprets the results. The interpretations might be biased by the expec-
tations of this person. In combination with subjectivity of the metrics introduced
by the qualitative evaluations, this threat can be intensified. For this study, we
reduced the risk of a threat for construct validity introduced by the expectancies
of the researcher through the application of the evaluation protocol, transparency
of results and interpretations, as well as the use of quantitative metrics if appli-
cable.

Besides possible threats resulting from the chosen metrics, another threat re-
sults from the mapping of the objectives to the treatment in the evaluation. One
possible issue here can be the fact that some aspects of the FESAS Framework
are evaluated using the FESAS IDE. This issue is reduced by having two evalua-
tions for separating the usability of the FESAS IDE from the applicability of the
FESAS Framework. Additionally, the comparison of two control groups – one
using the FESAS Framework components, one the FESAS IDE – reduces this
threat.

Threats to External Validity

Threats to external validity influence the generalization of the results. One
issue for generalization of the results of the evaluation is the target group. In this
work, we evaluated the FESAS IDE and the FESAS Framework with students and
researchers. However, the target group also includes practitioners. An analysis
of the generalizability of the results also for practitioners is an open issue.
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In the research domain of SASs, the evaluation of frameworks focuses on the
performance of the SASs (e.g. [177,374,377]). This is not the case in this thesis.
Thus, it seems likely that it might be a threat for validity as the results of other
publications cannot be compared with this thesis. However, the performance
of the SASs tests the performance of MAPE algorithms. This is mapped to
the performance of functional logics. Accordingly, this does not measure the
performance of the support for development offered by the FESAS Framework.
As we focus in this work on the development support, the performance of the
developed SASs is a secondary issue and, hence, not the target of the evaluation.

As described in Section 9.1.3, the amount of example systems is large and
covers a high variability, but the sizes of the systems are rather small. The same
is true for the groups of developers that participated in the evaluations. Both can
be potential threats for validity, especially for the measurements of the degree of
reusable code and the usability as well as the applicability of the FESAS IDE.
It might be possible that these results are not transferable to large systems or
do not prove their statistical significance when integrating larger user groups.
Accordingly, one stream for improvements can be to integrate larger systems
and more users for more reliable results. One additional use case in which the
FESAS Framework is currently applied is the distributed adaptive authentication
system presented in [19].

Often, the applicability of development approaches for SASs is shown in only
one or two use cases. This increases the threats to external validity as the results
might be use case specific. In this work, we applied the FESAS Framework in
nine different application domains to reduce the threat for external validity.

9.2. Limitations of the Prototypes

Based on the previously discussed theoretical contributions of the thesis to
the research questions and the requirements derived from the related work, this
section describes limitations and potential for future work to enhance the pro-
totypes. The section has three parts. First, Section 9.2.1 presents the potential
future work for the FESAS Framework. Second, Section 9.2.2 describes potential
future work to improve the usability of the FESAS IDE. Third, Section 9.2.3
derives future work for the ALM from its requirement coverage.
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9.2.1. Limitations of the FESAS Framework Prototype

Context Manager. Requirement RDev4 for the FESAS Framework describes
the handling of context information. The idea is to separate the information
sensed from the managed resources with the information used for reasoning in
the adaptation logic. Therefore, the information needs to be mapped to a generic
context model, so that the adaptation logic can reason on the generic structure.
However, the definition of this context model is future work. Existing context
models might be integrated, e.g., [329]. Additionally, the context manager’s ref-
erence implementation is a prototype so far, which requires a fully-fledged device
for the JMS server. This might contradict some use cases, e.g., in the IoT domain.
Again, it might be reasonable to integrate related approaches for managing the
context information especially in distributed settings with resource-poor devices,
e.g., the context broker from the PROACTIVE framework [370].

Functional Logic Contracts. So far, the description of the contracts for
functional logics of the MAPE components is not restricted. This provides devel-
opers the highest possible degree of flexibility and enables to integrate different
approaches for modeling the contracts (e.g., [33, 44]). However, this comes with
the disadvantage that the same properties might be described differently. For
a more systematic mapping of functional logic attributes to the components,
it might be beneficial to define a SAS component ontology. This can also im-
prove the reasoning process for finding functional logic components in the FE-
SAS Repository.

Pub/Sub Approach. Table 7.1 shows the trade-off between deployment
knowledge and domain knowledge for topic registrations. Adding more deploy-
ment knowledge enables to register for information of specific components only,
e.g., for a specific monitoring component instead of a specific type of monitoring
data. However, for that, the mapping of responsibilities in the monitoring process
to components must be known. Furthermore, this responsibility might change at
runtime. Hence, we added the possibility to register for topics. Therefore, the
developers do not require to have distribution knowledge. However, this might
result in communication overhead and receiving information that an instance is
not interested in. The analysis of this trade-off is part of future work.

Adaptation Execution. One important functionality for performing adap-
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tation is quiescence detection. Quiescence describes a state of the system in
which all processes are passive and no activation message is in transit [217,252].
Weyns and Iftikhar [396] state that a SAS should be adapted only when it is
in a quiescent state. This is especially important for structural adaptations,
as otherwise components might refer to non-existing components. Contrary, as
strong quiescence may decrease system performance because components that are
not involved in the adaptation process might also need to reach a passive state,
Ramirez et al. [304] argue to weaken this requirement. In accordance with Van-
dewoude et al. [367], they propose tranquility as a weaker requirement as it "does
not require neighboring components to reach passive states before a component
undergoes a reconfiguration" [304, p. 227]. So far, the FESAS Framework does
not automatically offer quiescence detection to developers. One type of develop-
ment support could be to add a functional logic based on [387], which enables
execution of adaptation in decentralized settings while ensuring quiescence.

9.2.2. Limitations of the FESAS IDE Prototype

Self-* Patterns IDE. The evaluation of the FESAS Framework and the
FESAS IDE is based on rather qualitative metrics, such as SLoC and interviews
with developers. In an optimal case, the quality of the adaptation logic’s code
would be the metric. A possible metric for the quality of the resulting software
can be the self-* properties. These properties are part of the functional logics
that are implemented by the developer. We plan to extend the FESAS IDE
with a mechanism to offer further support for the decisions of the developer, e.g.,
regarding self-* properties. With this, we could evaluate the performance of the
FESAS IDE for automated development of the resulting SASs. Therefore, the
FESAS IDE can be a first step to an IDE for self-* properties and could be used
to learn, how to capture the relevant properties. For this vision, we need to
find a way to map system requirements to adaptation requirements and system
goals to adaptation goals. This includes the definition of metrics for adaptation
requirements as well as the inclusion of a generic goal modeling approach and
metrics for the goals.

Integrating Design and Development. As the design and the develop-
ment of the adaptation logic is divided into two parts, changes in the design do
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not necessarily lead to changes in the development of code and vice versa. The
need for changes in the code after changes in the design depends on the spe-
cific implementation of the logic elements. In case the design switches from a
decentralized planner to a central approach, it can be necessary to change the
planner’s functional logic as it now relies on different analyzers’ values and needs
to combine their results. For future work, we plan to elaborate this and provide
code fragments that support a specific type of design and, therefore, a specific
decentralization pattern.

Testing. The evaluation showed that the use of the testing mode in the
FESAS IDE was not fully satisfiable for the developers. So far, the developer can
configure the test system by specifying which functional logics should be tested.
Further, the developer has to define the test data. The FESAS IDE than creates
the test system which can be started by using Eclipse’s functionality. However,
the specification of data as a JSON String could be improved. Further, the
use of the test mode and the analysis of the results are not integrated into the
FESAS IDE. Optimization of the workflow for the testing mode is part of future
work. Additionally, it might be possible to better integrate the debug mode of
Eclipse and JUnit tests.

Integration of the ALM. As a second stream for future work related to the
FESAS IDE, we identified the integration of the ALM into the FESAS IDE. So
far, the components of the ALM are well integrated into the FESAS reference
systems. Further, the FESAS IDE can be used to implement functional logics for
the ALM. However, the support for modules for analyzing and planning of self-
improvement can be extended. So far, this support is limited to code examples
and the existing modules from the SmartHighway scenario. On the one hand,
we plan to further abstract the reusable parts of the existing modules and better
separate them from specific code. Additionally, this involves clear interfaces for
changing the elements that require customization, e.g., the simulator in the rule-
based module for parametric self-improvement or the definition of rule models for
the Neo4j module. On the other hand, we plan to simplify the development of new
modules by further assistance for developers, e.g., through a better integration
of the functionalities that the ALM offers, such as the access to captured data.
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9.2.3. Limitations of the Adaptation Logic Manager Prototype

Decentralized Decision Making. One important requirement for the ALM
is the flexibility in the adaptation control (requirement RSI5). Whereas most of
the related approaches support only central decision making for self-improvement,
the system model for the ALM is not limited to that and supports decentralized
decision making, too. As we used the FESAS Framework for implementation of
the ALM, decentralization through distribution of the ALM’s MAPE components
is supported. However, distribution of the MAPE components is only one side
of the coin. Having a decentralized decision making might also involve trade-offs
in the components for analyzing and planning self-improvement. We did not
implement a use case system with ALM in a decentralized setting, yet. This is
part of future work.

Supported Frameworks. The ALM prototype is implemented as a self-
contained module which is decoupled from the adaptation logic for fulfilling the
requirement RSI6. Therefore, we specified (i) interfaces for the necessary com-
ponents that the adaptation logic has to offer and (ii) the ALM protocol (cf. Ap-
pendix C.1) for interaction between adaptation logic and ALM. Accordingly, the
ALM can be connected with every adaptation logic that integrates the necessary
elements for the interaction with the ALM. However, in this thesis we only used
the FESAS Framework for the implementation of the adaptation logic. Connect-
ing the ALM with adaptation logics implemented using other frameworks is part
of future work.

Modules for Self-improvement. In this thesis, we presented the imple-
mentation of three modules for planning self-improvement. These modules are
reusable. However, for future work, we plan to offer developers additional mod-
ules for analyzing and planning. Possible approaches exist in related work.
Ramirez et al. presented approaches for generating target system configura-
tions [308] and automatically generating adaptation paths to achieve the tar-
geted system configuration [304]. Gerostathopoulos et al. [149] derived compo-
nents from meta-adaptation strategies for automatically adjusting knowledge dis-
tribution of sensor values, configuring parameters for scheduling, and changing
analyzing parameters. Further, it is possible to integrate one of the approaches
presented in Section 4.3. Additionally, we have to solve complexity and concur-
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rency issues with the self-improvement layer itself. In the evaluation, we focused
on the different self-improvement modules separately. This is reasonable because
the modules have different timescales and perform well in different settings. How-
ever, we did not test an integrated version which has to choose the best module
for a specific setting. This requires balancing of trade-offs. The ALM supports
this through the different runtime modes for planning self-improvement. For fu-
ture work, we plan to evaluate trade-offs that the ALM Planner has to consider
for different runtime modes and concurrent planning modules.

9.3. Theoretical Implications

The research in the field of software engineering for SASs tremendously
changed in the previous years. These changes are triggered by an increasing
interest in the field, which arose through Dagstuhl seminars but also the suc-
cess of conferences like the International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) or the increased interests of main
conferences like the International Conference on Autonomic Computing (ICAC)
and the International Conference on Self-Adaptive and Self-Organizing Systems
(SASO) for software engineering. This leads to a change of the research foci.
The participants of the first Dagstuhl seminar in software engineering for SASs
in 2008 [76] and the second one in 2010 [96] identified several challenges related to
modeling, requirements engineering, adaptation logic engineering, and develop-
ment processes. In contrast, the last seminar in this row in 2013 [94] focused on
assurance and control theory; both had a minor importance before. This shows
that research shifts from basic issues – such as how to build the adaptation logic
– to issues in composition and verification of the adaptation logic.

A recent overview by Weyns [394] identified several waves of research in the
field of software engineering for SASs. According to this overview, the upcoming
big challenges in research for the development of SASs are related to unantici-
pated change and control theory as foundation for SASs. This section describes
the challenges uncertainty – which triggers the need for unanticipated change
– and assurance, which includes control theory. Second, it explains how the
FESAS Framework contributes to these challenges.
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9.3.1. Uncertainty

The dynamic nature of the environment of SASs leads to a gap between design
time and runtime [361]. This gap is further strengthened due to uncertainty at
runtime. Ramirez et al. provide a definition of uncertainty:

Uncertainty is a system state of incomplete or inconsistent knowledge
such that it is not possible for a [SAS] to know which of two or more
alternative environmental or system configurations hold at a specific
point. [307, p. 101]

Further, Ramirez et al. categorize reasons for uncertainty into a taxonomy.
Triggers for this uncertainty are ambiguously defined requirements, wrong de-
sign assumptions, unpredictable elements or unexpected environment states, and
situations that the adaptation logic cannot handle due to incomplete and incon-
sistent information as consequence of imprecise, inaccurate, or unreliable sensors
or monitoring functionality [307].

The FESAS Framework addresses uncertainty with the ALM to adjust the
adaptation logic to performance and adaptation issues related to uncertainty.
Additionally, the flexibility of the FESAS Framework enables to integrate addi-
tional support for handling uncertainty in the adaptation logic.

For taming uncertainty, different requirement modeling languages exist, e.g.,
A-LTL [413], FLAGS [29], CARE [301, 302], Tropos4AS [258, 259], and RE-
LAX [404, 405]. These languages are customized to handle degrees of freedom
resulting from the uncertainty due to the gap between design time and runtime.
As part of future work, it might be interesting to integrate such a language into
the FESAS Design tool to support handling uncertainty.

Some approaches integrate such modeling languages to provide a more holistic
approach for handling uncertainty. LOREM integrates the RELAX language and
the KAOS modeling approach and provides a multi-level process to requirements
modeling based on the level of requirements engineering from [42]. Ramirez et al.
combines the RELAX language with the concept of claims, which are "markers
of uncertainty that document how design assumptions affect goals" [306, p. 53].
POISED [117] offers an approach to evaluate positive and negative consequences
of uncertainty using possibility theory. Additionally, POISED integrates this as-
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sessment in the adaptation logic to include reasoning on uncertainty for the adap-
tation decision. Casanova et al. describe an approach to derive the health state
of components in case of incomplete monitoring information [67]. Moreno et al.
recently presented tactics to reduce uncertainty depending on uncertainty coming
from simplified design assumptions, noise, model drift, context issues, human-in-
the-loop, or decentralization [260]. Through the flexibility and openness of the
FESAS Framework, it is possible to integrate such approaches for handling un-
certainty as functional logics or into the context manager and offering those as
building blocks to developers of SASs.

9.3.2. Assurance

Another challenge that recently gained increased importance in the research
domain of SASs is assurance. The participants of the Dagstuhl seminar on as-
surance in SASs in 2013 defined assurance accordingly:

[Assurance in SASs describes] the collection, analysis and synthesis
of evidence that the system satisfies its stated functional and non-
functional requirements during its operation in the presence of self-
adaptation. [94, p. 3]

First, perpetual assurance describes the evidence that the SAS still complies
to its requirements [94]. Due to uncertainty, the monitored information might
be incomplete, outdated, or unreliable. Accordingly, assurance must ensure the
reliability of the monitoring information as it also describes the solution space
for possible adaptations. Second, decentralization leads to the need of composing
and decomposing assurances for goals and tactics as they are applied in a decen-
tralized way, so that an entire re-validation of the whole system is not required at
runtime [328]. Third, runtime verification and validation is an important aspect
to guarantee the correct adaptation of a system [95]. For this purpose, [94] pro-
poses a mixture of discrete and continuous control with procedures from control
theory in CPSs. Further, adaptive control is recommended. [94] describes these
three challenges – perpetual assurance, (de)composition of assurance, and control
theory for SASs – in more detail.

On the one hand, the generic modules enabled by the FESAS Framework
improve the reusability. However, this comes with the costs of abstractions. For
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composition of an adaptation logic with such modules, assurance is necessary to
guarantee the compliance of all MAPE procedures. On the other hand, meta-
adaptation of the adaptation logic involves complexity due to specifics of use
cases and interaction of the control loops within the adaptation logic. Hence, an
approach for validation of self-improvement has to be integrated. Control theory
might contribute to this issue [124]. Results from the research on assurance in
SASs could be integrated into the FESAS Framework and the ALM as future
work. Additionally, also the proposed extension of the FESAS IDE to a self-*
properties IDE requires the inclusion of assurance. The FESAS Framework is
flexible enough so that assurance can be integrated at several points.

9.4. Practical Implications

Several developments influence the current trends in software engineering and
development from a point of view of practitioners. This thesis addresses the
development of SASs mainly in the domain of CPSs. In the following, this section
describes different trends in industry related to the development of CPSs and
which practical implications the results of this thesis and the FESAS Framework
have related to the domain of CPSs.

As mentioned in the introduction of this thesis, the importance and influence
of IoT devices for our daily lives increased significantly in recent years and will
further increase in future. These devices pervade all aspects of human living and
support their users as ubiquitous, invisible helpers. Gartner Inc. estimated that
8.4 billion devices are connected in the IoT worldwide in 2017. Estimations for
the next three years range from 20.4 billion IoT devices by 2020 [144] up to 50
billion2 IoT devices by 2020 [119]. The heterogeneity of IoT devices – ranging
from small, mobile devices over embedded systems to large-scale cloud resources
– as well as the heterogeneity of their execution environments lead to the need of
(self-)adaptation. The FESAS Framework can significantly contribute as it offers
an open, flexible platform for engineering reusable SASs. Further, it enables the
consolidation of different development approaches.

2However, this number is doubted recently as being too high [277].
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To keep abreast of the fast technological changes triggered by IoT hardware,
the development processes need to be flexible and agile. Accordingly, the im-
portance of agile software development methods as Scrum or Kanban increases.
The FESAS Framework also contributes to this development. The flexibility in
the exchange of the functional logics in combination with the provided code for
generic tasks as communication not only accelerates development but also fosters
the exchange of code as demanded by rapid prototyping methods. This suits agile
methods for software development well. However, so far we focused on evaluating
the FESAS Framework with students. An evaluation with practitioners in the
field of developing SASs or IoT devices is part of future work.

Another type of practical implications is related to the users of the systems.
SASs try to exclude the user per definition from active participation in the adap-
tation process. As described in Section 2.2, the user might influence this process
by changing the system goals. However, a SAS requires procedures to capture the
relevant information, such as the preferences of the users. Further, the adaptation
logic has to include reasoning on this information. The FESAS Framework sup-
ports this through a simplified integration of sensors, the context manager, and
the possibility to add the necessary functionality for reasoning as functional logic.
As IoT systems are often CPSs which integrate humans and machines seamlessly,
this requires another type of human-computer interaction and human-in-the-loop
integration. Munir et al. [269] motivate the need for integrating models that cap-
ture human behavior. Due to the flexibility of the FESAS Framework and as it
is not restricted to a specific modeling approach, such models can be integrated
into the FESAS Framework either in the context manager or as functional logics.
The participants of the Dagstuhl seminar on "Self-aware computing systems" de-
fined several challenges that arise from human-in-the-loop integration [45]. First,
the systems need to integrate confidential data for reasoning of adaptation, which
might result in privacy issues. Second, trust of the users in the system capabilities
can be an issue. Third, as the SAS performs autonomic adaptations, account-
ability and liability issues might arise. Development processes and frameworks
for SASs have to take these issues into account. For the FESAS Framework, this
influences the context manager since it integrates potentially confidential data
and the ALM because it might influence the design of the adaptation logic and,
hence, accountability of the meta-adaptations must be traceable.
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This thesis presented a framework for developing SASs which focuses on
reusability. Following the Design Science Research Methodology Process Model
of Peffers et al. [289], this thesis grounds on a thorough analysis of approaches
in the field of developing SASs. The analysis identified a lack of approaches that
combine reusable processes and implementation artifacts with tools. Further,
approaches do often not address self-improvement. If an approach addresses self-
improvement, this is not combined with an approach for supporting the developer
throughout the lifecycle of a SAS. Accordingly, the objective of this thesis is:

The integrated support of the development of a reusable and improvable
adaptation logic for SASs throughout the whole lifecycle.

This thesis derived requirements from the analysis that an approach has to ful-
fill to support this thesis’ objective. Those are centered around the issues reusabil-
ity, self-improvement, and integrated development. Correspondingly, this thesis
defined two artifacts: the Framework for Engineering Self-adaptive Systems (FE-
SAS) and the Adaptation Logic Manager (ALM).

The FESAS Framework is a component framework supporting the develop-
ment of SASs. It focuses on the reusability of the developed SASs. Therefore,
the FESAS Framework offers reusable processes, the FESAS Repository compo-
nent library, and an implementation of reference architecture components. These
elements support developers and designers during the whole lifecycle of a SAS,
from design and implementation, to deployment, and, additionally, at runtime
through self-improvement. Further, it supports developers in adding all types of
self-adaptation, i.e., adaptation of parameters, structure, and context. The sepa-
ration in (i) designing the interaction in the adaptation logic and (ii) developing
the functional logics for the MAPE components is supported by the FESAS IDE.
The FESAS IDE also abstracts from the FESAS workflow for SAS development.
Additionally, the FESAS Framework supports the development of MAPE algo-
rithms through focusing on low level code activities and dividing generic, reusable
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code elements and specific ones. The concept of the FESAS Framework neither
restricts the developers to specific development concepts (except of using forward
engineering approaches) nor requires the developers to use/learn any concepts.
As presented in the former sections, the FESAS Framework was evaluated in
different case studies focusing the implementation of real SASs.

The FESAS Framework is complemented by the second artifact of this thesis,
the ALM. The ALM supports both, reactive and proactive self-improvement. In
the example system from [223], we combined the reactive structural approach
with the proactive rule learning approach. As a trigger for self-improvement, the
ALM reacts to changes in the managed resources as well as the context. The ALM
supports parametric and structural self-improvement. Therefore, the reference
implementation of the ALM offers one module for parametric self-improvement
in the form of rule learning and two modules for model-based/rule-based struc-
tural self-improvement. The adaptation control for meta-adaptation through the
ALM follows the external approach to separate a specific adaptation logic from
a generic self-improvement layer. This improves maintainability leading to im-
proved reusability. The ALM is not restricted to specific adaptation decision cri-
teria. In the prototype of the ALM, rules and utilities are used to control the ex-
ecution of the self-improvement modules. Further, the ALM modules themselves
integrate rules (TARL module), models (Neo4j module), and utility functions
(rule learner module). Last, the prototype implementation offers a centralized
approach for self-improvement. However, as the ALM prototype itself is imple-
mented using the FESAS Framework, distribution is supported out of the box.
Therefore, the concept of the ALM as well as the foundation for the implementa-
tion enables centralized and decentralized patterns for the MAPE components of
the self-improvement layer. The ALM is well integrated with the FESAS Frame-
work. However, as it is self-contained and as the interaction between ALM and
adaptation logic is well-defined with (i) the ALM Protocol (cf. Appendix C.1) as
well as (ii) the interfaces for the necessary components, the ALM can be inte-
grated with other frameworks for developing SASs.

This thesis evaluated the artifacts in a proof by prototyping approach. As part
of this approach, we implemented prototypes for the FESAS Framework, the
FESAS IDE, and the ALM. Those are evaluated using observational, analytical,
experimental, testing, and descriptive evaluation methods with the objectives to
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analyze (i) the correct functionality, applicability, and achievable reusability of
the FESAS Framework, (ii) the usability of the FESAS IDE, as well as (iii) the
performance of self-improvement achieved with the ALM. The evaluation results
support most of the evaluation propositions. As these are directly linked to the
research questions, this indicates that the thesis contributes to them. Based on
the results of these evaluations, we derived limitations and future work.

The prototypes cover most of the requirements defined in Chapter 5. For the
FESAS Framework, an open issue is a fully integrated context manager in com-
bination with a standardized context modeling approach. Further, a systematic
ontology for functional logic contracts and integration of functional logics for qui-
escence detection might be potential future work. The FESAS IDE proved its
usability and supported the applicability of the FESAS Framework. The evalua-
tions identified possible improvements for the usability: better integration of the
testing mode, extended support for designing self-* properties, and integrated
development support for ALM modules. Regarding the ALM, we claim that de-
centralized settings are supported. From a technical point of view, this is given
since the underlying FESAS Framework supports this. However, we did not in-
vestigate the issues that arise from decentralized reasoning. Further, testing the
ALM with other frameworks for implementing the adaptation logic instead of the
FESAS Framework and offering additional modules for analyzing and planning
of self-improvement are potential future work.

Additionally, we discussed the relation of the theoretical contributions to cur-
rent trends in the research field. We focused on the challenges of uncertainty and
assurance. Works from these areas can be integrated into the FESAS Framework
as functional logic elements. As complementary perspective, we also derived
practical implications. The FESAS Framework contributes to the current trend
of IoT systems because it supports the integration of different platforms and fos-
ters implementation of adaptive behavior. Further, development cycles for these
systems are short and the use of agile development methods is state of the art.
The FESAS Framework fits these methods since it enables rapid prototyping.
Additionally, necessary human-in-the-loop integration is possible in SASs that
are implemented with the FESAS Framework.
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A. Appendix to the Related Work

This chapter present further information regarding the analysis of related work
from Chapter 4. First, Section A.1 presents the overview on the analyzed ap-
proaches from [220] and [229]. Second, Section A.2 introduces the dimensions of
the taxonomy from [224]. Last, Section A.3 shows an overview of the comparison
of development approaches from [224].

A.1. Overview of the Engineering Approaches from [229]
and [220]

Table A.1 shows an overview of the most relevant approaches that we pre-
sented in Section 4.1 and shows their relation to MAPE activities, the taxonomy
presented in Section 2.1.3, and the issues for implementing an adaptation logic
of Section 2.2. It is based on [220] and [229]. Within the table, we used the
following abbreviations:

• M/A/P/E = Monitoring, Analyzing, Planning, Executing

• Re = Reactive; Pro = Proactive;

• Ctx = Context; TR = Technical resources; U = User(s);

• App = Application; Com = Communication; Sys = System Software;

• Tec = Technique; Par = Parameter; Str = Structure;

• Appr = Approach; Ext = External; Int = Internal;

• DC = Decision Criteria; G = G; M = M; U = U; P = P

• DDec = Degree of Decentralization; Hyb = Hybrid; Dec = Decentralized;
Cen = Centralized

Cell marked with "-" indicates that the approach does not have a specific
requirement or that no further information is given.
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Approach

M
A
P
E

T
im

e

R
ea
so
n

L
ev
el

T
ec

A
pp

r

D
C

D
D
ec

M
od

el
-b
as
ed

(Dynamic) Software Product Lines
[1,4,28,30,38,51,72,85,136,157,164,
166,235,262,293,294,321]

A/P R Ctx/
TR/
U

App/
Com/
TR

Par/
Str

Ext G, P,
U

-

MUSIC [128,145,163] All R Ctx/
TR

App/
Com

Par/
Str

Ext M, U Hyb/
Cen

Meta-M/ MegaM [378,379,381,382] All - - - - Ext M -
MechatronicUML [154,176] All R Ctx/

TR
TR Par/

Str
Ext M All

A
rc
hi
te
ct
ur
e-
ba

se
d Rainbow Framework [140] All R TR App/

TR
Par/
Str

Ext M, P All

3L Approach [218] All R Ctx/
TR

App/
TR

Par/
Str

Ext G All

Architectural Run-time Configura-
tion Manager [147]

All R TR App/
TR

Par/
Str

Ext P, M -

Archstudio [278,279] All R Ctx/
TR

App/
TR

Par/
Str

Ext M All

R
efl

ec
tio

n-
ba

se
d

Introspection [254] M/A - Ctx/
TR/
U

- - Both - -

Intercession [254] P/E - - All All Both - -
Reflection Reference Model [13] All R Ctx/

TR
App/
TR

Par/
Str

Ext (Meta)
M

-

FORMS See category "Formal Modelling and Verification
Approaches"

Reflex [355] All R TR App/
TR

Par/
Str

Ext (Meta)
M

-

Kava [389] All R TR App/
TR

Par/
Str

Ext (Meta)
M

-

Reflective Middleware [48,64,212] P/E - - Sys/
Com

Par/
Str

- - -

CARISMA [64] All R Ctx/
TR

App/
TR

Par Ext P Dec/
Hyb

Pa
ra
di
gm

s

Component-Based SE [6, 33, 36, 37,
47, 107, 187, 195, 209, 218, 240, 254,
275,335,351]

P/E - - App/
TR

Str Ext All All

Aspect-Oriented Programming [162,
202,262,263]

P/E - - App/
TR

Str Ext All All
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Approach

M
A
P
E

T
im

e

R
ea
so
n

L
ev
el

T
ec

A
pp

r

D
C

D
D
ec

Generative Programming [254, 276,
402]

P/E - - App/
TR

Par/
Str

Ext All All

Adaptive Programming [3, 158,339] Addresses various aspects in the development of
SAS

Context-oriented Programming [22,
184,197]

A/P/
E

R Ctx/
TR

App/
TR/
Ctx

All - M, G -

C
on

tr
ol

T
he

or
y

Autonomic Computing [198] All R TR/
Ctx

Sys Par Ext P, G Dec

Autonomic Communication [105] All R TR/
Ctx

Com Par/
Ctx

- - -

Control Loop Patterns [267] All R Ctx Sys/
TR

Par - M -

Control Loop UML Profile [175] All R TR Com Par/
Str

Ext - Dec

Control Theory Foundation [104] All R TR/
Ctx

Sys Par Ext M -

Se
rv
ic
e-
or
ie
nt
ed

MUSIC See category "Model-based Approaches"
SASSY Framework [156,255] All R Ctx/

TR
App Str Ext G, U Dec/

Hyb
MetaSelf [102] All R Ctx/

TR
App Str Ext P,

Rules
All

QoSMOS [60] All R Ctx/
TR

App Str Ext M Cen

Aspect-oriented and Service-
oriented Computing [73,188]

P/E - - App Str Ext - -

Agent systems and SOA See category "Agent-based Approaches"
Component M and services [71,195] All R TR App Str Ext - -
CARE method [303] A,P,E R Ctx/

TR/
U

App Str Ext G, U Cen

MOSES Framework [65] All R TR App Str Ext G, U Cen

A
ge
nt
-b
as
ed

MOCAS [26] All R Ctx Sys Par - P Dec

Design Patterns [100] P R Ctx App Par - M Dec
Agent-Based Modeling, Dynamical
Systems Analysis, and Decentral-
ized Control [97]

All R Ctx App Par - M Dec/
Hyb
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Approach

M
A
P
E

T
im

e

R
ea
so
n

L
ev
el

T
ec

A
pp

r

D
C

D
D
ec

Unity See category "Learning Approaches"

N
at
ur
e-
in
sp
ire

d

Optimization [106,333,412] P R TR/
Ctx

Sys Par/
Str

- U Dec

Autonomic Computing for Pervasive
ICT [334]

P R TR App/
Sys

Par/
Str

- - Dec

Frequency Planning [356,357] P R TR App Par - - Dec
Data Harvesting [236] P R Ctx App Par - U Dec
Network Synchronicity [392] P R TR Sys Par - - Dec
Region Detection [52] P R Ctx App Par - - Dec
Immune System [90] P R Ctx Sys Par - - Dec/

Hyb
Obstacle Avoidance [201] P R Ctx App Par Int U -
Potential Fields [68,310,338] P R Ctx App Par - - Dec/

Hyb
Task Assignment [395] P R Ctx App Par - U Dec
Ecosystem Framework [373] - R Ctx App Par - U Dec
RAPPID [366] P R Ctx App Par - - Dec
Social Conventions [319] P R Ctx App Par - - Dec

Fo
rm

al
M
et
ho

ds FORMS [400] All R TR/
Ctx

Sys/
TR

Par/
Str

Ext M -

Restore-Invariant Approach [159,
160,271]

A R TR TR Str - - -

Self-Testing Framework [205,206] A R TR/
Ctx

Sys Par Ext - Dec

Stochastic Modeling [130] M , A,
P

R /
Pro

TR/
Ctx

TR Par/
Str

Ext M, U Cen

Markov Chains [122,125] A, P R TR/
Ctx

TR Par/
Str

Ext M Cen

Abstract State Machines [18] All R TR/
Ctx

TR Par/
Str

Ext M All

Timed Hazard Analysis [297] A/P R TR TR Str Ext M -
MAPE-K Formal Templates [92] All R TR/

Ctx /
U

TR Par/
Str

Ext M -

ActiveFORMS [194,396] All R TR/
Ctx /
U

App/
Sys

Par/
Str

Ext M Cen
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Approach

M
A
P
E

T
im

e

R
ea
so
n
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ev
el

T
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A
pp

r

D
C

D
D
ec

Le
ar
ni
ng

Unity [358] P R TR Sys Par - G, U Dec

FUSION [112,113] P R TR/
Ctx

App/
Sys

Par/
Str

- G, U -

Reinforcement Learning [63, 108,
204,282,339,349,416]

P R TR/
Ctx

App Par/
Str

Ext U All

Evolutionary Algorithms [25,57,298,
362,363]

All R Ctx App Par Ext U All

Control-Based Framework [2] P R Ctx Sys Par Ext M Cen
Fossa A, P Provides learning of rules at design time
SBSE [14, 15, 84, 170, 172, 173, 255,
308,385,386,417,418]

P R All App Par /
Str

Ext M, U Cen

R
E-

ba
se
d LoREM [155] All R - - Par - M -

Requirements@Runtime [287] A/P R U App Par/
Str

- G -

Zanshin [336] All R Ctx App Par - G -

Fu
rt
he
r Task-based adaptation [143, 295,

344]
A/P - - App/

TR
- - G, U -

Middleware-centric adaptation [165,
262,317]

All R Ctx/
TR

App/
TR

Par/
Str

Ext All Dec/
Hyb

Adaptation languages [8, 17,78,348] Different type of support: Some support reason-
ing on adaptation, some the design of adaptive
systems

Processes [11,231,238,331,361,414] Does support the design/development activities of
all types of SAS; does not influence the actual sys-
tem at run-time adaptation

Modeling Dimensions [12,55] Support of design, rather than the specific imple-
mentation of the adaptation logic

Design patterns [23,87,100,120,132,
133,139,231,270,305,341,401]

Does support many different aspects, e.g., design
of the adaptation logic, information dissemina-
tion, reasoning, or execution

Table A.1.: Overview of the Approaches of the Surveys in [220] and [229].
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A.2. Taxonomy of the Development Approaches
from [224]

In the following, this section presents the dimensions of the taxonomy. Figure
A.1 provides of the taxonomy. Table A.2 summarizes the 18 dimensions of the
taxonomy as well as their characteristics. In the following, this section presents
the dimensions of the taxonomy.

Figure A.1.: Taxonomy for comparing the development approaches for SASs.

Type of approach describes the underlying key concept the approach is
based on. In accordance with [229], possible manifestations are "model-based",
"architecture-based", "control-based", "service-oriented", "agent-based", "nature-
inspired", and "design concepts".

Type of support helps to find a suitable approach for a certain problem.
Due to the diversity of development approaches, also the form of support is very
diverse. It includes "framework", "tools", "design principles", "guidelines", and
"methodologies".

Temporal scope of support signifies the temporal scope of the different
components that provide support. The temporal scope can be "design-time",
"run-time" or both.

Involved roles describes which parties are involved in an approach. Some
approaches make a clear and precise statement regarding involved parties, some
only distinguish between designers and developers.
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Reusability refers to the reusability an approach offers. This includes, e.g.,
reusable process elements and components, reference architectures, component
and design libraries, generic middleware, modeling languages, and design con-
cepts. Some approaches consider reusability at a high abstraction level neglecting
lower abstraction levels [228], others do not consider reusability at all.

Development phase states in which phase of the software engineering pro-
cess the approach should be applied. This covers phases of traditional and modern
engineering processes.

Engineering context describes the engineering context and, thus, the inte-
grability of an approach with the chosen software development process. Several
approaches limit their application possibilities to traditional forward engineering,
some broaden the applicability to modern engineering contexts, and others do not
limit them at all.

Applicability of an approach can be general or specific. SAS are deployed
in many different system domains. Hence, SAS can differ in their structure
and functionality, based on specific system domain requirements. To meet these
requirements, several approaches support the design and construction of specific
system types.

Special demands on developer covers requirements a developer or designer
must possess, such as specific programming / modeling languages or others.

Level of abstraction describes the degree of abstraction of the provided
support. Design principles have a high-level abstraction and do not offer concrete
implementations, whereas tools and frameworks provide a low-level abstraction,
as they directly facilitate the construction of software artifacts.

Use of processes describes the existence and content of processes. Several
approaches provide new software development processes tailored to the develop-
ment of SAS. By contrast, others do neither name nor explain their processes.

Use of reference architectures describes whether an approach makes use
of a reference architecture and how it is used. Reference architectures serve
as architectural templates for the construction of software systems with self-
adaptivity properties. However, the structure and functionality can differ.

Use of libraries contains information about libraries, such as component
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libraries (e.g., based MAPE [198]), design pattern libraries (e.g., [23]), and coor-
dination mechanisms (cf. [401]).

Use of tools can support the specification of requirements, the system de-
sign, the implementation, or the system validation. Some approaches include
proprietary tools that support the software system development, whereas others
reference common and open-source software or do not specify tools.

Language specificity states whether an approach is bound to any specific
programming or modeling language. Often, frameworks and run-time oriented
approaches integrate adaptation logic components and a middleware that are
programming language specific. In addition, some approaches require the use of
a specific modeling language for designing the SAS.

Support of adaptation mechanisms describes how the approach supports
adaptation. Dependent on the temporal scope of the support, the approaches
consider adaptation at design- or run-time. Furthermore, adaptation can be
achieved e.g., through adaptation and coordination patterns, middleware services,
design principles, or the refinement of a model.

Type of adaptation states the granularity of adaptation. It can be "compo-
sitional adaptation", "parameter adaptation", or a combination of both.

Evaluation captures the type and extent of evaluation. It is inevitable to
use the approaches for developing real-world systems for examining their benefits
and challenges. Proofs of concept include case studies, prototypes, or interviews.

Dimension Captured Information Characteristics

Type of approach What is the key concept? What as-
pects does it focus on?

model-based, architecture-based,
control-based, service-oriented,
agent-based, nature-inspired, design
concept, verification

Type of support What kind of support does it pro-
vide? What elements does the ap-
proach include?

framework, tools, design concept,
guidelines, methodology

Temporal scope of
support

Which temporal scope does the sup-
port by the approach affect?

design-time, run-time, both

Involved roles Which kind of parties are involved
in the development process? What
people does the approach aim at?

Designer, developer, tester, not
specified
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Dimension Captured Information Characteristics

Reusability Is reusability considered? How is it
achieved?

reusable process elements, reusable
components, reference architec-
tures, component libraries, design
patterns, generic middleware, mod-
eling languages, design concepts

Development
phase

In which step(s) of the software de-
velopment process can it be applied?

design, implementation, both

Engineering con-
text

Which software engineering context
does it suit?

Forward Eng., reverse engineering,
not specified

Applicability Which systems can the approach be
applied on?

SAS, CPS, adaptive systems

Special demands
on developer

What requirements does the devel-
oper have to fulfil? What type
of and how much knowledge is de-
manded in order to use the ap-
proach?

none, modeling languages, program-
ming languages, not specified

Level of abstrac-
tion

What is the level of abstraction of
the approach? Does it solve certain
development issues explicitly?

High, medium, low, not specified

Use of processes Is(are) there any process(es) deter-
mined?

Provided, not provided

Use of reference ar-
chitecture

Does the approach provide a refer-
ence architecture? How is it inte-
grated and what is its purpose?

Provided, not provided

Use of libraries What do they consist of? How are
they used?

provided, not provided, not specified

Use of tools How do the tools support the devel-
opment? When are they applied?

proprietary tools, open-source tools,
no tools

Language speci-
ficity

Does the approach require a spe-
cific programming or modeling lan-
guage?

programming language, modeling
language, independent

Support of adapta-
tion mechanisms

How does the approach handle the
system‘s adaptation? What mecha-
nisms does it utilize?

At design-time (requirements), at
run-time (adaptation logic)

Type of adaptation What is the granularity of the adap-
tation?

Compositional adaptation, parame-
ter adaptation, both

Evaluation Has the approach already been eval-
uated? How is it tested?

Case studies, Industry cooperations,
prototyping, surveys, no evaluation

Table A.2.: Taxonomy of Development Approaches [224]
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A.3. Overview of the Development Approaches from [224]

The appendix presents the analysis of development approaches from [224].
Additionally, for this thesis, EUREMA [377, 380] and DESCARTES [190, 215]
are added. The comparison is based on the aforementioned taxonomy. Tools
are omitted due to the variety of tools but also the fact that many tools are not
publicly available.
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Table A.3.: Analysis of Development Approaches (1)
Title of Approach Year Type of

Approach
Type of
Support

Temporal
Scope

Rainbow [77,140] 2004 Architecture-based Framework, Tools Run-time
Model-Driven Approach [66] 2008 Model-based Framework Run-time

Meta-Self [102] 2008 Service-oriented Framework Design-time,
Run-time

SodekoVS [347] 2009 Agent-based Framework Design-time,
Run-time

MUSIC [163] 2012 Model-based,
Service-oriented

Framework, Tools,
Modeling language

Design-time,
Run-time

Arch. Fr. for Self-Conf. &
Self-Impr. [362] 2011 Architecture-based Framework Run-time

FUSION [112] 2010 Model-based Framework Run-time

SASSY [255] 2011 Service-oriented Framework, Tools Design-time,
Run-time

Zanshin [336] 2012 Control-based Framework Design-time,
Run-time

StarMX [20] 2009 Architecture-based Framework Design-time,
Run-time

MOSES [65] 2012 Service-oriented Framework Design-time,
Run-time

Software Mobility
Framework [247] 2010 Architecture-based Framework Run-time

GRAF [10] 2012 Model-based Framework Design-time,
Run-time

DESCARTES [190,215] 2016/17 Model-based Framework Design-time,
Run-time

EUREMA [377,380] 2018 Model-based Framework Design-time,
Run-time

Software Engineering
Guideline [331] 2010 Agent-based Guideline, Pattern Design-time,

Run-time

Development Approach and
Automatic Process [5] 2015 Architecture-based

Guidelines,
Reference
Architecture

Design-time,
Run-time

SE Processes for SAS [11] 2013 Model-based Process Design-time

Modeling Dimensions [13] 2009 Design Concept Design principles
and concepts Design-time

Design Space [55] 2013 Design Concept Design principles
and concepts Design-time

High Quality
Specification [242] 2013 Model-based Specification

methodology Design-time

Behavioral corridors [271] 2010 Verification-based Methodology Design-time
General Meth. for
Designing SOSs [151] 2007 Design concept Methodology Design-time

FORMS [398] 2010 Model-based Methodology Design-time

DYNAMICO [375] 2010/
2013 Control-based Methodology Design-time
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Table A.4.: Analysis of Development Approaches (2)
Title of Approach Involved

Parties Reusability Development
Phase

Engi-
neering

Rainbow [77,140] Developer Infrastructure,
Architecture Implementation not

specified

Model-Driven Approach [66] Developer Architecture, Processes Implementation not
specified

Meta-Self [102] Designer,
Developer Infrastructure Design,

Implementation
not
specified

SodekoVS [347] Developer,
Designer

Components,
Architecture, Library

Entire
development
process

Forward

MUSIC [163] Developer,
Designer Middleware Entire

development Forward

Arch. Fr. for Self-Conf. &
Self-Impr. [362] Developers Architecture Implementation Forward

FUSION [112] Developers Architecture Implementation Forward

SASSY [255] Developer,
Designer

Processes,
Components,
Architecture

Design,
Implementation Forward

Zanshin [336] Developer,
Designer

Processes,
Components, Reference
Architecture

Design,
Implementation Forward

StarMX [20] Developer,
Designer Components Design,

Implementation Forward

MOSES [65] Developer Methods, Components Design,
Implementation Forward

Software Mobility
Framework [247] Developers Architecture Implementation Forward

GRAF [10] Developer,
Designer Architecture Design,

Implementation Forward

DESCARTES [190,215] Designer,
Developer Processes, Components Design Forward

EUREMA [377,380] Designer,
Developer Method, Components Design Forward

Software Engineering
Guideline [331]

Designer,
Developer

Design Pattern,
Method

Design,
Implementation Forward

Development Approach and
Automatic Process [5]

Developer,
Designer

Architecture,
Guidelines

development
process Forward

SE Processes for SAS [11] Designer Process Design Forward

Modeling Dimensions [13] Designer Concepts Design Forward,
Reverse

Design Space [55] Designer Concepts Design not
specified

High Quality
Specification [242] Designer Modeling Language Design Forward

Behavioral corridors [271] Designer Concepts Design Forward
General Meth. for
Designing SOSs [151] Design-time not specified Design Forward,

Reverse
FORMS [398] Design-time not specified Design Forward
DYNAMICO [375] Design-time not specified Design Forward

LXXXIV



A.3. Overview of the Development Approaches from [224]

Table A.5.: Analysis of Development Approaches (3)

Title of Approach Applicability
Special
Demands on
Developer

Level of
Abstraction

Rainbow [77,140] SASs Mathematical
knowledge Low

Model-Driven Approach [66] Pervasive Systems not specified Low
Meta-Self [102] SASs and SOSs not specified not specified
SodekoVS [347] SASs not specified not specified
MUSIC [163] SASs not specified Low
Arch. Fr. for Self-Conf. &
Self-Impr. [362] SASs and SOSs not specified Low

FUSION [112] SASs Machine Learning High
SASSY [255] SASs not specified High

Zanshin [336] SASs Requirements
Modeling High

StarMX [20] SASs not specified High
MOSES [65] SASs not specified High
Software Mobility
Framework [247] SASs not specified High

GRAF [10] SASs TGraphs Medium

DESCARTES [190,215] SASs
Descartes
Modelling
Language

High

EUREMA [377,380] SASs Eurema Modelling
Language High

Software Engineering
Guideline [331]

Resource Flow
Systems none Medium

Development Approach and
Automatic Process [5] SASs not specified Low

SE Processes for SAS [11] SASs none High
Modeling Dimensions [13] SASs none High
Design Space [55] SASs none High
High Quality
Specification [242] SASs Modeling language

(ACML) High

Behavioral corridors [271] SASs and SOSs
ITL+, Simple
Programming
Language

High

General Meth. for
Designing SOSs [151] SOSs none High

FORMS [398] SASs none High
DYNAMICO [375] SASs none High
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Table A.6.: Analysis of Development Approaches (4)
Title of Approach Use of Processes Use of Reference

Architecture
Use of
Libraries

Rainbow [77,140] not specified not specified none

Model-Driven Approach [66] not specified
Architecture based on
communication
channels

not specified

Meta-Self [102] Design- and run-time
activities not specified none

SodekoVS [347] Self-Organized
Coordination Engineering

Configuration and
integration of
self-organizing
processes

Catalog of
coordination
patterns

MUSIC [163]
Model-driven development
methodology with tasks for
every development phase

none none

Arch. Fr. for Self-Conf. &
Self-Impr. [362] not specified Observer/ Controller

architectures None

FUSION [112] not specified MAPE-K based None

SASSY [255] Model-driven development
methodology

Service-oriented
architecture none

Zanshin [336] not specified Automated monitoring None

StarMX [20] Workflow for the entire
development process

Execution Chain
Architecture none

MOSES [65] not specified MAPE-K based -
Software Mobility
Framework [247] not specified MAPE-K based None

GRAF [10] For modeling Transformation of
runtime models in rules None

DESCARTES [190,215] For modeling MAPE-K based None
EUREMA [377,380] not specified MAPE-K based None
Software Engineering
Guideline [331]

Development guideline with
different steps none none

Development Approach and
Automatic Process [5]

Workflow for the entire
development process

Reference architecture
consisting of modules none

SE Processes for SAS [11] Workflow for the entire
development process none none

Modeling Dimensions [13] Application of the design
dimensions none none

Design Space [55] Application of the design
space principles none none

High Quality
Specification [242]

Application of the ACML
within the requirements
specification, analysis and
design phases

none none

Behavioral corridors [271] Workflow for entire
development process none none

General Meth. for
Designing SOSs [151]

Workflow for entire
development process none none

FORMS [398] Workflow for entire
development process MAPE-K based none

DYNAMICO [375] Workflow for entire
development process MAPE-K based none
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Table A.7.: Analysis of Development Approaches (5)
Title of Approach Support of Adaptation Mechanisms Programming

Language Specifity
Rainbow [77,140] not specified Java, XML
Model-Driven Approach [66] At run-time, Adaptation through models none

Meta-Self [102]
At run-time, Adaptation through
application of coordination/adaptation
services

none

SodekoVS [347] At design-time, Adaptation through
coordination mechanisms not specified

MUSIC [163] At run-time, Adaptation through MUSIC
middleware Java, OSGi

Arch. Fr. for Self-Conf. &
Self-Impr. [362] At run-time, Adaptation through modules not specified

FUSION [112] At run-time, Adaptation through modules Java
SASSY [255] At run-time, Adaptation through modules not specified
Zanshin [336] At run-time, Adaptation through modules not specified
StarMX [20] At run-time, Adaptation through modules J2EE

MOSES [65] At design- and run-time, Composition of
SOAs J2EE

Software Mobility
Framework [247] At run-time, Adaptation through modules not specified

GRAF [10] At design- modeling; at run-time,
Adaptation through modules Java, XML

DESCARTES [190,215] At run-time, Adaptation through modules not specified
EUREMA [377,380] At run-time, Adaptation through modules not specified

Software Engineering
Guideline [331]

At design- and run-time, Adaptation
through construction and execution of
Organic Design Pattern

not specified

Development Approach and
Automatic Process [5] At run-time, Adaptation through modules not specified

SE Processes for SAS [11] not specified none

Modeling Dimensions [13] At design-time, Adaptation through
design dimension exploration none

Design Space [55] At design-time, Adaptation through
design space principles none

High Quality
Specification [242]

At design-time, Adaptation through
separation of self-adaptivity concerns UML

Behavioral corridors [271] At design-time, definition of adaptive
behavior none

General Meth. for
Designing SOSs [151]

At design-time, definition of adaptive
behavior none

FORMS [398] At design-time, definition of adaptive
behavior none

DYNAMICO [375] At design-time, definition of adaptive
behavior none
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Table A.8.: Analysis of Development Approaches (6)
Title of Approach Use of Tools Granularity

Adaptation Evaluation

Rainbow [77,140]
Stitch script editor,
Rainbow development
toolkit

Composi-
tional Case studies

Model-Driven Approach [66] not specified Composi-
tional not specified

Meta-Self [102] none Composi-
tional Case studies

SodekoVS [347] not specified Composi-
tional not specified

MUSIC [163]
Tools for modeling,
implementation, testing and
validation

Composi-
tional,
Parameter

Trial development,
Testing of a collection
of applications

Arch. Fr. for Self-Conf. &
Self-Impr. [362] MASON simulation tool

Composi-
tional,
Parameter

Case study

FUSION [112] XTEAM, WEKA,
PRISM-MW

Composi-
tional Case studies

SASSY [255] XTEAM, xADL, GME,
GReAT

Composi-
tional Case studies

Zanshin [336] not specified Parameter Case study
StarMX [20] IBM ABLE, Imperius Parameter Case study

MOSES [65] BPEL
Composi-
tional,
Parameter

Case study

Software Mobility
Framework [247]

XTEAM, DeSI,
PRISM-MW

Composi-
tional,
Parameter

Case study

GRAF [10] TGraph Parameters Case studies

DESCARTES [190,215] Various tools
Composi-
tional,
Parameter

Case study

EUREMA [377,380] Modeling tool based on
EMF

Composi-
tional Case study

Software Engineering
Guideline [331] None not specified Case study

Development Approach and
Automatic Process [5] not specified not specified Case study

SE Processes for SAS [11] none not specified Case study

Modeling Dimensions [13] none
Composi-
tional,
Parameter

Case studies

Design Space [55] none none Case study
High Quality
Specification [242] none none Case studies, Projects

involving students
Behavioral corridors [271] none Parameter Case study
General Meth. for
Designing SOSs [151] none not specified Case study

FORMS [398] none not specified Case study
DYNAMICO [375] none not specified Case study
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B. FESAS Documentation

This chapter provides documentation for the FESAS Framework. Sections B.1
and B.2 describes the interfaces for adaptation logic components and functional
logic elements, respectively. Section B.3 provides a description of the metadata
of functional logics. Section B.4 presents the syntax of the system model files
and is split in a description of the devices’ information and the communication
information. Section B.5 describes the functional logic contracts. Section B.6
presents the interface of the FESAS Repository. Section B.7 outlines the syn-
tax of configuration files for configuring the FESAS components, the SAS, and
the connection between SAS and FESAS Repository. Section B.8 explains the
interface of the SAS Setup Service.

B.1. Adaptation Logic Component Interface

The following listing presents the interface for components of the adaptation
logic, especially MAPE components. It is written in Java. The FESAS Frame-
work and the reference systems provides implementations of all methods.

1 public interface IAdaptationLogic {
2

3 /** This method is called by the Setup service, after the initialization. */
4 public void start();
5

6 /** This method is called by the setup service before the element is
destroyed. */

7 public boolean stop();
8

9 /** Implement/deplement the specified logic or change an algorithm. */
10 public void implementLogic(Contract contract) throws

LogicRepositoryNotFoundException;
11 public boolean deplementLogic(Contract contract);
12 public boolean changeAlgorithm(String logicString, String algorithm);
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13

14 /** Implements the communication logic for the input/output channel. */
15 public void implementInputCommunicationLogic(String communicationType,

String communicationID) throws Exception;
16 public void implementOutputCommunicationLogic(String communicationType,

String communicationID) throws Exception;
17

18 /** Called by predecessor for push of data. */
19 public Object receiveData(String sender, String informationType, Object data

);
20

21 /** Called by successor for pull of data from element. */
22 public void externalRequest(String sucessor);
23

24 /** Called for sending data. */
25 public void prepareDataForSending(Object data, String type);
26

27 /** Initialize communication channels. */
28 public void addCommunicationToByType(String receiver,

CommunicationInformation properties);
29 public void addCommunicationFromByType(String sender,

CommunicationInformation properties);
30 public void addCommunicationToByCategory(String receiver,

CommunicationInformation properties);
31 public void addCommunicationFromByCategory(String sender,

CommunicationInformation properties);
32

33 /** Knowledge management. */
34 public String saveKnowledge (IKnowledgeRecord knowledge);
35 public IKnowledgeRecord getKnowledge(String knowledgeID);
36

37 /** Get information about service. */
38 public String getName();
39 public String getFesasID();
40 public HashMap<String, String> getProperties();
41 public void setProperties(HashMap<String, String> properties);
42 public void addProperty(String key, String value);
43 }

Listing B.1: Interface of the FESAS Repository

XC



B.2. Functional Logic Interface

B.2. Functional Logic Interface

The following listing presents the interface for functional logic components. It
is written in Java. The FESAS Framework and the reference systems provides
implementations of all methods except of callLogic(..). Developers might
overwrite the initializeLogic(..) method if specific actions should be trig-
gered while initialization of the functional logic element.

1 public interface ILogic {
2

3 /** Call Logic Method performing the functionality. */
4 public String callLogic(IKnowledgeRecord data);
5

6 /** Setter for the corresponding adaptation logic element. */
7 public void setAL(IAdaptationLogic al);
8

9 /** Checks wheter the logic is compatible with the specified data type. */
10 public boolean isCompatibleDataType(String dataType);
11

12 /** Called when the element is initialized. */
13 public void initializeLogic(HashMap<String, String> properties);
14

15 /** Called for changing the algorithm within the functional logic. */
16 public void changeAlgorithm(String algorithm);
17

18 /** Getter for the logic type. */
19 public LogicType getLogicType();
20

21 /** Getter for the logic short name. */
22 public String getShortName();
23

24 /** Getter for the information category. */
25 public InformationCategory getInformationCategory();
26

27 /** Getter for the information category. */
28 public String getInformationCategoryAsString();
29

30 /** Setter for the information category. */
31 public void setInformationCategory(InformationCategory informationCategory);
32

33 /** Getter for the information type. */
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34 public InformationType getInformationType();
35

36 /** Getter for the information type as String. */
37 public String getInformationTypeAsString();
38 }

Listing B.2: Interface of the FESAS Repository

B.3. Metadata Description of Functional Logics

The following information is part of a JSON file for defining the metadata of
a functional logic.

< ID > = String with ID (assigned by the remote repository).
< NAME > = String with a name.
< SHORT_NAME > = String with the class name only.
< DESCRIPTION > = Object with Description.
< LOGIC_TY PE > = Logic Type.
< INFORMATION_TY PE > = String with the information type of
generated output.
< PROGRAMMING_LANGUAGE > = String with the program-
ming language.
< DEPENDENCIES > = Array with dependent classes.
< SUPPORTED_INFO_TY PES > = Array with the supported in-
formation types (input).
< PROPERTIES > = Array with properties as tuples (key [String],
value [String]).

Example for a metadata description in JSON:
1 {
2 "ID": "",
3 "NAME": "de.test.Monitoring_123",
4 "SHORT_NAME": "Monitoring_123",
5 "DESCRIPTION": "Bla Blubb",
6 "LOGIC_TYPE": "Monitoring",
7 "INFORMATION_TYPE": "Monitoring_DEFAULT",
8 "PROGRAMMING_LANGUAGE": "Java",
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9 "DEPENDENCIES": ["Class A", "Class B"],
10 "SUPPORTED_INFO_TYPES": "[Sensor_DEFAULT,Sensor_CLOUD]",
11 "PROPERTIES": [{"key": "a_k","value": "a_v"},{"key": "b_k","value": "b_v"}]
12 }

Listing B.3: Example for a Metadata Description in JSON

B.4. Syntax of the System Model Files

This section provides the syntax of the system model.

B.4.1. Adaptation Logic System Model

The following information is part of a JSON configuration file for specifying
the adaptation logic of a (sub)system:

< AL_ADAPTATIONLOGIC > = An array containing the AL com-
ponent objects.
< AL_ELEMENT > = One AL component object.
< AL_TY PE > = The type of the AL component.
< AL_ID > = The FESAS ID of the AL component.
< AL_NAME > = The name of the AL component.
< AL_LOGIC > = An array with multiple contracts for specifying
logic elements that should be loaded (cf. Section B.5 for teh structure of
a contract).
< AL_PROPERTIES > = Array with properties as key value pair
(both are Strings).
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The following excerpt shows an example for a JSON file specifying the AL
(containing one AL component):

1 {
2 "AL_ADAPTATIONLOGIC": [
3 {
4 "AL_ELEMENT": {
5 "AL_TYPE": "MONITOR",
6 "AL_ID": "fesasID-123_1_001",
7 "AL_NAME": "1Var_monitor",
8 "AL_LOGIC": [
9 {

10 "LOGIC_TYPE":"MONITOR",
11 "PROGRAMMING_LANGUAGE":"Java",
12 "CONTRACT_PROPERTIES": [
13 {
14 "VALUE":"MonitorLogicDummy_1Var",
15 "UTILITY":0.75,
16 "KEY":"SHORT_NAME"
17 }
18 ]
19 }
20 ],
21 "AL_PROPERTIES" :[
22 {
23 "KEY":"port",
24 "VALUE":"12345"
25 }
26 ]
27 }
28 },//Definitions of further AL elements omitted
29 ]
30 }

Listing B.4: Example System Model for the Adaptation Logic

B.4.2. Communication System Model

The following information is part of a JSON configuration file for specifying
the adaptation logic of a (sub)system:
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< COMM_ADAPTATIONLOGIC > = An array containing the con-
nections’ specifications.
< COMM_ELEMENT > = One communication element for each
connection.
< COMM_TY PE > = The type of the communication mechanism.
< COMM_RECEIV ER > = The receiver of information (String with
FESAS ID).
< COMM_SENDER > = The sender of information (String with
FESAS ID).
< COMM_INFO_TY PE > = The type of information sent.
< COMM_INFO_CATEGORY > = The category of information
sent.

The following excerpt shows an example for a JSON file specifying the com-
munication for one AL component (containing one connection):

1 {
2 "COMM_ADAPTATIONLOGIC": [
3 {
4 "COMM_ELEMENT": {
5 "COMM_TYPE": "PUBSUB",
6 "COMM_RECEIVER": "fesasID-123_1_002",
7 "COMM_SENDER": "fesasID-123_1_001",
8 "COMM_INFO_TYPE": "Monitoring_SIMPLESAS",
9 "COMM_INFO_CATEGORY": "MONITOR"

10 }
11 },//Definitions of further AL elements omitted
12 ]
13 }

Listing B.5: Example System Model for the Communication Structure

B.5. Functional Logic Contract

The adaptation logic uses the SAS Setup Service to generate contracts that
describe the properties of a functional logic that should be loaded. These con-
tracts are specified in JSON. The following information is part of such a JSON
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contract file.
< LOGIC_TY PE > = Logic Type.
< INFORMATION_TY PE > = String with the information type of
generated output.
< SUPPORTED_INFORMATION_TY PES > = Array with the
supported information types (input).
< PROGRAMMING_LANGUAGE > = String with language.
< CONTRACT_PROPERTIES > = Array with properties as triples
(key [String], value [String], utility [double between 0.0 and 1.0]).

Example for a JSON contract file:
1 {
2 "LOGIC_TYPE": "Monitoring",
3 "INFORMATION_TYPE": "Monitoring_DEFAULT",
4 "SUPPORTED_INFORMATION_TYPES": "[Sensor_DEFAULT,Sensor_CLOUD]",
5 "PROGRAMMING_LANGUAGE": "Java",
6 "CONTRACT_PROPERTIES": [{"KEY": "a_k","VALUE": "a_v","UTILITY": 0.5},
7 {"KEY": "b_k","VALUE": "b_v","UTILITY": 0.8}]
8 }

Listing B.6: Example of a Functional Logic Contract

B.6. Interface of the FESAS Repository

The remote repository RemoteLogicRepository implement the interface
IRemoteLogicRepository, which provides methods for adding and removing
logic elements, finding a logic element that fits a contract, delivering the path
to .class files, and loading logic classes and their dependencies. The following
listing shows the code of IRemoteLogicRepository. The interface is written in
the Java syntax.

1 public interface IRemoteLogicRepository extends Remote {
2

3 /**
4 * This method returns a logic element as JSON string that suits
5 * to the specified logic description (as JSON string).
6 */
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7 public String findLogicElement(String contractString) throws RemoteException
;

8

9 /**
10 * Delivers the path to the .class file of a specified class name
11 * (full name including package).
12 */
13 public String getPathToClass(String className, String type) throws

RemoteException;
14

15

16 /**
17 * This methods expects a JSON string with the logic metadata and
18 * loads the specified logic or callLogic method, respectively.
19 */
20 public byte[] loadLogicFromRepository(String jsonString) throws

RemoteException, LogicNotFoundException;
21

22

23 /**
24 * This methods expects a string specifying a dependent class
25 * loads the specified logic or callLogic method, respectively.
26 */
27 public byte[] loadDependencyFromRepository(String className) throws

RemoteException, LogicNotFoundException;
28

29 /**
30 * Used for adding a logic to the repository at runtime.
31 */
32 public boolean addLogicToRepository(LogicElementMetadata metadata, File file

)
33 throws RemoteException, LogicNotFoundException;
34

35 /**
36 * Used for removing a logic from the repository at runtime.
37 */
38 public boolean removeLogic() throws RemoteException;
39 }

Listing B.7: Interface of the FESAS Repository
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B.7. Syntax of the Configuration Parameters

The wrapper projects contain three configuration files that are used for con-
figuration of the adaptation logic. These files contains configuration parameters
regarding the FESAS Framework, parameters for the adaptation logic as well as
parameter to configure the connection to the FESAS Repository. In the following,
the section describes these parameters.

B.7.1. FESAS Constants

FESAS constants are parameters, that are relevant for the FESAS middle-
ware, e.g., for handling the configuration files, for the logic repository (such as
connection information or location of the remote repository), or for the initial-
ization process of the developed SASs. The class FESASConstants in the pack-
age de.mannheim.wifo2.fesas.settings saves these parameters. The following
listing presents these parameters.

1 public static final String PARSER_TYPE = "JSONFileParser";
2

3 // (Temporary) config files
4 /** Link to the config files directory. */
5 public static final String CONFIG_FILE_PATH = "C:" + File.separator + "

ConfigFiles"
6 + File.separator;
7 /** Link to the location of the logic binaries. */
8 public static final String LOGIC_ELEMENTS_PACKAGE_PATH = "de" + File.

separator +
9 "mannheim" + File.separator + "wifo2" + File.separator + "fesas" +

10 File.separator + "logicRepository" + File.separator + "logicElements" +
File.separator ;

11 /** Link to the location of the JDK for compiling logic binaries. */
12

13 public static final String JDK_JAVA_HOME = "C:\\Program Files"
14 + File.separator + "Java" + File.separator
15 + "jdk1.8.0_31" + File.separator + "jre";
16

17 /** Link to the location of binaries for the logic data types. */
18 public static final String DEPENDENCIES_PACKAGE_PATH = "de" + File.separator

+
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19 "mannheim" + File.separator + "wifo2" + File.separator + "fesas" +
20 File.separator + "logicRepository" + File.separator + "dependencies" +

File.separator ;
21

22 // System Deployment
23 /** Timeout between creation of the elements and establishment of

connections. */
24 public static final long INITIALIZATION_WAITING_TIME = 3000;
25

26 // Logic Repository
27 /** IP of the logic repository. */
28 public static final String LOGIC_REPOSITORY_ADRESS = "127.0.0.1"; //

localHost
29 /** Port of the logic repository. */
30 public static final int LOGIC_REPOSITORY_PORT = 9999;
31 /** Logic repository registry RMI identifier. */
32 public static final String LOGIC_REPOSITORY_IDENTIFIER = "LogicRepository";
33 /** Port of the logic repository registry. */
34 public static final int LOGIC_REPOSITORY_REGISTRY_PORT = 1099;
35

36 // ALM
37 /** IP of the logic repository. */
38 public static final String ALM_ADRESS = "127.0.0.1"; //localHost
39 /** Port of the ALM for registration. */
40 public static final int ALM_REGISTRATION_PORT = 5555;
41 /** Port of the ALM proxy. */
42 public static final int ALM_PROXY_PORT = 7777;
43

44 // Logging
45 /** Enable / Disable logging. */
46 public static final boolean USE_LOGGING_IN_FILE = false;
47 /** Path to the log files. */
48 public static final String LOGGING_IN_FILE_PATH = "C:" + File.separator + "

LogFiles"
49 + File.separator;

Listing B.8: Syntax of the Configuration Files for the FESAS Constants
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B.7.2. SAS Constants

SAS constants are parameters, that are relevant for an SAS, e.g., initializign
the communication middleware or logging settings. The class Constants in the
package de.mannheim.wifo2.fesas.settings saves these parameters. The fol-
lowing listing presents these parameters.

1 // BASE
2

3 /** Timeout between creation of the BASE structure and establishment of
connections. */

4 public static final int DEVICE_TIMEOUT = 5000;
5 /**
6 * The amount of time that the service will wait after
7 * it has been started (BASE).
8 */
9 public static final long PERIOD_INIT = 3000;

10 /**
11 * The amount of time that the service will wait between
12 * the lookup calls (BASE).
13 */
14 public static final long PERIOD_CYCLE = 1500;
15 /**
16 * The amount of time that the pub/sub service will wait between
17 * the lookup calls (BASE).
18 */
19 public static final long COMMUNICATION_PERIOD_CYCLE = 500;
20

21 /** Specifies, if the ALM is run locally. In this case, a random port is
used by the ALM proxy. */

22 public static final boolean LOCAL_ALM_DEBUG_MODE = true;
23

24

25 // Settings of the adaptation logic
26

27 /**
28 * The amount of time between two requests of the sensor to the MRs.
29 */
30 public static final long ENV_SENSOR_PERIOD_CYCLE = 1000;
31

32

33 // Debugging
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34

35 /** Debug the initialization of the adaptation logic. */
36 public static final boolean DEBUG_FESASSETUP = false;
37 /** Debug the saving and getting of knowledge. */
38 public static final boolean DEBUG_KNOWLEDGE = false;
39 /** Debug the communication and pub sub component. */
40 public static final boolean DEBUG_COMMUNICATION = false;
41 /** Debug the ID conversion. */
42 public static final boolean DEBUG_IDCONVERSION = false;
43 /** Debug the logic element. */
44 public static final boolean DEBUG_LOGIC = true;
45 /** Debug the remote logic repository. */
46 public static final boolean DEBUG_REMOTE_LOGIC_REPOSITORY = false;
47 /** Debug the GUI of the remote logic repository. */
48 public static final boolean DEBUG_REMOTE_LOGIC_REPOSITORY_GUI = false;
49 /** Debug the logic logic repository. */
50 public static final boolean DEBUG_LOCAL_LOGIC_REPOSITORY = true;
51 /** Debug the result of the input for a logic (in callLogic()). */
52 public static final boolean DEBUG_LOGIC_RESULT = false;
53 /** Debug the result of the JSON parser. */
54 public static final boolean DEBUG_JSON_PARSER = true;
55 /** Debug the ALM. */
56 public static final boolean DEBUG_ALM = true;

Listing B.9: Syntax of the Configuration Files for the SAS Constants

B.7.3. Logic Repository Constants

Logic repository constants are parameters, that are relevant for the configu-
ration of the FESAS repository. The class LogicRepositoryConstants in the
package de.mannheim.wifo2.fesas.settings saves these parameters. The fol-
lowing listing presents these parameters.

1 /** Path to the temporary destination for zip files. */
2 public static final String ZIP_TEMP_PATH = "res" + File.separator +
3 "temp_zip" + File.separator;
4 /** Path to the temporary destination for JSON files. */
5 public static final String JSON_TEMP_PATH = "res" + File.separator +
6 "temp_json" + File.separator;
7 /** Path to the temporary destination for .java files. */
8 public static final String JAVA_TEMP_PATH = "res" + File.separator +
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9 "temp_java" + File.separator;
10

11 /** Link to the folder containing the logic elements that should be loaded
at start of the repository. */

12 public static final String REPOSITORY_START_ELEMENTS_FOLDER= "C:\\
logicElements\\";

13

14 /** Logic elements that should be loaded at start of the repository. */
15 public static final String[] REPOSITORY_START_LOGIC_ELEMENTS = new String[]{
16 REPOSITORY_START_ELEMENTS_FOLDER + "AnalyzerLogicDummy_1VarLargerX.zip",
17 REPOSITORY_START_ELEMENTS_FOLDER + "ExecutorLogicDummy_Var.zip",
18 REPOSITORY_START_ELEMENTS_FOLDER + "KnowledgeLogicWithHashMap.zip",
19 REPOSITORY_START_ELEMENTS_FOLDER + "MonitorLogicDummy_1Var.zip",
20 REPOSITORY_START_ELEMENTS_FOLDER + "ExecutorLogicDummy_Var1.zip",
21 REPOSITORY_START_ELEMENTS_FOLDER + "PlannerLogicDummy_VarDecentralized.

zip",
22 REPOSITORY_START_ELEMENTS_FOLDER + "ALMAnalyzerLogicDummy.zip",
23 REPOSITORY_START_ELEMENTS_FOLDER + "ALMExecutorLogicDummy.zip",
24 REPOSITORY_START_ELEMENTS_FOLDER + "ALMMonitorLogicDummy.zip",
25 REPOSITORY_START_ELEMENTS_FOLDER + "ALMPlannerLogicDummy.zip"
26 };

Listing B.10: Syntax of the Configuration Files for the FESAS Repository

B.8. Interface of the SAS Setup Service

The following listing show the interface for the SAS Setup Service. The inter-
face is written in the Java syntax.

1 public interface ISASSetupService {
2

3 /**
4 * Becomes active, if the middleware is running and all data is transmitted.
5 */
6 public void configureSetupService(FesasDeviceID fesasID, IDeviceType type);
7

8 /**
9 * Get the FESAS ID assigned from the config file

10 */
11 public String getFESASID();
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12

13 public void setFESASID(String id);
14

15 public IDeviceType getDeviceType();
16

17 public void setDeviceType(int type) throws InitializationException;
18

19 public String getDeviceName();
20

21 public void setDeviceName(String deviceName);
22

23 public void setDeviceProperty(KeyValueProperty p);
24

25 public void setElementProperty(String fesasID, KeyValueProperty p);
26

27 public void changeAlgorithmOfLogic(String ALObject, String logic, String
algorithm);

28

29 /**
30 * Start the SAS’s AL after the initialization.
31 */
32 public void startAdaptationLogic();
33

34 /**
35 * This method start a new AL element.
36 */
37 public String implementAdaptationLogicElement(AdaptationLogicElement

adaptationLogicElement, boolean startDirectly);
38

39 public boolean deactivateAdaptationLogicElement(AdaptationLogicElement
adaptationLogicElement);

40

41 public boolean activateAdaptationLogicElement(AdaptationLogicElement
adaptationLogicElement);

42

43 /**
44 * Inializes a communication channel.
45 */
46 public void implementCommunicationStructure(Connection connection);
47

48 public void destroyCommunicationStructure(Connection connection);
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49

50 /*
51 * Change the implemented logics
52 */
53 public void addFunctionalLogicToComponent(String fesasID, Contract contract)

;
54

55 public void removeFunctionalLogicFromComponent(String fesasID, Contract
contract);

56

57 /*
58 * Change the rule base
59 */
60 public void addRule(String ALObject, String rule);
61

62 public void removeRule(String ALObject, String rule);
63 }

Listing B.11: Interface of the SAS Setup Service
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C. ALM Documentation

This chapter provides a documentation of various aspects of the ALM. First,
Section C.1 provides an overview on the ALM protocol. Second, Section C.3
presents the implementation of the TARL module and Section C.4 outlines a
TARL transition rule Last, Section C.5 presents the implementation of the Neo4j
module.

C.1. ALM Protocol

The data exchanged between the ALM and the ALM proxy has a specified
protocol, the ALM protocol. It can be expressed in JSON. In the reference imple-
mentation, it is represented at runtime as Java objects. The header is represented
as PROTOCOL - TYPE -COMMAND; the body as INFORMATION with command-specific
information. So far, the PROTOCOL1 has version 0.9. The TYPE can be:

• REQ for request,

• RESP for a reply of a request, and

• ERR for an error.

The COMMAND can be:

• REG for registration at the ALM,

• SYS for system state information of a SAS,

• COM for changes of the communication structure,

• LOG for changes of an logic element, and

• RUL for changes of rules.
1The use of the PROTOCOL parameter is omitted so far.
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INFORMATION is represented as key-value pairs. For transfer between compo-
nents, the information can be represented as JSON string having the following
properties:

< ALM_MSG_TY PE > = Type of the message (can be REQ for re-
quest, RESP for response,or ERR for an error).
< ALM_COMMAND > = Command describing the action (can be
REG, SYS, COM, LOG, and RUL).
< PROPERTIES > = Array with properties as tuples (key [String],
value [String]). These properties are the actual information.

The following excerpt shows an example for a metadata description in JSON.
This string is a request for registration, send from the ALM proxy to the ALM.
As information, the IP and the port of the ALM proxy is added.

1 {
2 "ALM_MSG_TYPE": "REQ",
3 "ALM_COMMAND": "REG",
4 "PROPERTIES": [
5 {
6 "key": "IP",
7 "value": "123.123.123.123"
8 },{
9 "key": "Port",

10 "value": "12345"
11 }
12 ]
13 }

C.2. Data Adapter

Listing C.1 shows the implementation of the IDataAdapterMongoDB interface
within the class DataAdapterSHData.

1 public class DataAdapterSHData implements IDataAdapterMongoDB {
2 public List<Document> convertData(String dataElement) {
3 [...] // Attribute declaration
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4 Pattern pattern = Pattern.compile("(fesasID-\\d+_\\d+_\\d+)\\s:\\s(\\d+)\\
s:((?:\\s\\d+\\s#\\s\\((\\d+,\\s)+\\d+\\)\\s#\\s\\[([\\d\\.-]+\\,\\s)
+[\\d\\.-]+\\]\\s-)*)");

5 Matcher matcher = pattern.matcher(dataElement);
6

7 while (matcher.find()) {
8 fesasID = matcher.group(1);
9 timestamp = Integer.parseInt(matcher.group(2));

10 detectors = matcher.group(3);
11 }
12

13 pattern = Pattern.compile("(\\d+)\\s#\\s\\((\\d+),\\s(\\d+),\\s(\\d+),\\s
(\\d+)\\)\\s#\\s\\[([\\d\\.-]+)\\,\\s([\\d\\.-]+)\\,\\s([\\d\\.-]+)
\\,\\s([\\d\\.-]+)\\]\\s-");

14 matcher = pattern.matcher(detectors);
15

16 while (matcher.find()) {
17 doc = new Document("fesasID", fesasID).append("timestamp", timestamp);
18 numOfVehicles = Integer.parseInt(matcher.group(6));
19 meanSpeed = Double.parseDouble(matcher.group(7));
20 jamLengthVehicles = Integer.parseInt(matcher.group(8));
21 jamLengthMeters = Double.parseDouble(matcher.group(9));
22 doc.append("detector", matcher.group(1));
23 doc.append("numOfVehicles", numOfVehicles);
24 doc.append("meanSpeed", meanSpeed);
25 doc.append("jamLengthVehicles", jamLengthVehicles);
26 doc.append("jamLengthMeters", jamLengthMeters);
27 trafficAnalzyer = new TrafficAnalyzer(meanSpeed, numOfVehicles);
28 doc.append("density", trafficAnalzyer.getDensity());
29 doc.append("flow", trafficAnalzyer.getFlow());
30 doc.append("velocity", trafficAnalzyer.getVelocity());
31 doc.append("trafficStatus", trafficAnalzyer.getStatus().toString());
32 docs.add(doc);
33 }
34 return docs;
35 }
36 }

Listing C.1: DataAdapterSHData implementing the IDataAdapterMongoDB
interface.
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The conversion of the data format shown in Listing C.2 is carried out utilizing
a two stage regular expression. Line 11 of Listing contains the first pattern which
matches the fesasID, timestamp, and the actual detector values using capture
groups. The second pattern, also employs subgroups that match an arbitrary
amount of Strings like 2\#(16,17,24,25)\#[10,14.96,0,0.0]- correspond-
ing to atomic sets of sensors ids and sensor values per detector (in the example
2 is the id of the detector), respectively (cf. line 21 of Listing C.1). Finding
multiple concurrences of this pattern is mandatory as each system sends the
data of all managed detectors in one line for each timestamp. This way, lines
25 - 48 of Listing C.1 subsequently take care of the creation of an Object of
the type Document for every parsed detector and map the sensor ids to properly
named and typed attributes. Furthermore, the parsed raw data of the sensor is
used to calculate some further features like density, flow, velocity, and the
trafficStatus of this highway section. Finally, the Document is added to a List
that is returned after all items have been parsed and enriched. Hence, the caller
of the convertData method can store the data in the MongoDB, which is in this
case the ALM Monitor.

1 fesasID-123_2_001 :64148:2# (16, 17,24,25) # [10,14.96, 0,0.0] - 3
# (16, 17,24,25) # [18,11.39, 0,0.0] - 4# (16, 17,24,25) # [31,
4.5, 3,20.53] - 5# (16, 17,24,25) # [26,7.47, 6,45.65] - 6# (16
, 17,24,25) # [2,19.67, 0,0.0] -

2 fesasID-123_2_002 :64148:7# (16, 17,24,25) # [6,17.90, 0,0.0] - 8#
(16, 17,24,25) # [6,17.34, 0,0.0] - 9# (16, 17,24,25) # [17,15
.09, 0,0.0] - 10# (16, 17,24,25) # [0,-1.0, 0,0.0] -

3 fesasID-123_2_003 :64148:11# (16, 17,24,25) # [6,25.99, 0,0.0] - 1
2# (16, 17,24,25) # [8,26.25, 0,0.0] - 13# (16, 17,24,25) # [6,
26.71, 0,0.0] -

Listing C.2: Example of sensor values captured from the cameras for the
SmartHighway scenario.
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C.3. TARL Module Implementation

Listing C.3 illustrates the call() method of the RegionalPlannerAdapta
tionTarl class from [223]. In order to match the requirements of TARL, a
TopologyProvider is created for the manipulation of the graph in line 3. The
class FesasTopologyProvider contains the information about how to add and
remove nodes to and from the TARLGraph, respectively. Lines 14-38 of Listing
C.3 show how the result of the AccidentAdaptationTarl class, which contains
the matching of the rule, is processed in terms of assigning the regional planner,
new and obsolete connections, as well as the generation of these connections.

1 public IRuntimeOptimization call() {
2 final Host host = new DummyHost(42);
3 final FesasTopologyProvider topProv = new FesasTopologyProvider(host);
4 final AccidentTransitionTarl tarl = new AccidentTransitionTarl(host, topProv

, topProv);
5

6 Node fromNode = null;
7 Node toNode = null;
8 Node regionalPlanner = null;
9 Multimap<String, String> nodes;

10

11 tarl.checkAccident();
12 nodes = topProv.getNewConnections();
13

14 Iterator<Entry<String, String>> iterator = nodes.entries().iterator();
15

16 while (iterator.hasNext()) {
17 Map.Entry<String, String> entry = (Map.Entry<String, String>) iterator.

next();
18 fromNode = FesasGraph.getInstance().getNode(entry.getKey());
19 toNode = FesasGraph.getInstance().getNode(entry.getValue());
20

21 if (fromNode.getAttribute("type").equals("ANALYZER")) {
22 addConnectedAnalyzer(fromNode);
23 if (regionalPlanner == null) {
24 regionalPlanner = toNode;
25 setRegionalPlanner(toNode);
26 }
27 }else {

CIX



C.4. TARL Transition Rule

28 addConnectedExecutor(toNode);
29 if (regionalPlanner == null) {
30 regionalPlanner = fromNode;
31 setRegionalPlanner(fromNode);
32 }
33 }
34 }
35 }
36

37 generateNewConnections();
38 generateObsoleteConnections();
39

40 return this;
41 }

Listing C.3: TARL-based implementation of a structural adaptation extending
the class AbstractRegionalPattern.

C.4. TARL Transition Rule

Listing C.4 shows the rule for the TARL module that triggers a switch from
the fully decentralized to the Regional Planning pattern.

1 public AccidentTransitionTarl(final Host host, final AdaptableTopologyProvider
provider,

2 final ObservableTopologyProvider obProvider) {
3 super(new LocalTransitionEngine(host));
4

5 this.host = host;
6 this.provider = provider;
7

8 logger.info("Starting accident transition");
9

10 localTransitionEngine.setConnectsWithGlobalTransitionEngine(false);
11

12 final TransitionModel transitionModel = new TransitionModel(host, MODEL_FILE
);

13 localTransitionEngine.setTransitionModel(transitionModel);
14 localTransitionEngine.getEventConditionEvaluator().getExecutionManager().

setTopologyProvider(provider);
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15

16 // Construct a new TARL Rule
17 TopologyGraphPatternMatchTerm tgpmt1 = new TopologyGraphPatternMatchTerm(

provider, TOP_PROVIDER_NAME,
18 new ConstantStringTerm("FesasTopology"),
19 new DirectedEdgeTerm("eefst0", new NodeTerm("ef0"), new NodeTerm("st0")),

1);
20

21 StringGraphAttribute sgaACC = new StringGraphAttribute("st0", "jam");
22 StringGraphAttribute sgaEF0 = new StringGraphAttribute("ef0", "type");
23 StringGraphAttribute sgaST0 = new StringGraphAttribute("st0", "type");
24

25 StringEqualTerm setACC = new StringEqualTerm(sgaACC, new ConstantStringTerm(
"true"));

26 StringEqualTerm setEF0 = new StringEqualTerm(sgaEF0, new ConstantStringTerm(
"EFFECTOR"));

27 StringEqualTerm setST0 = new StringEqualTerm(sgaST0, new ConstantStringTerm(
"DOMAIN"));

28

29 BooleanAndTerm batFilter1 = new BooleanAndTerm(setST0, setACC);
30 BooleanAndTerm batFilter0 = new BooleanAndTerm(setEF0, batFilter1);
31

32 ApplyBooleanTerm abt0 = new ApplyBooleanTerm(tgpmt1, batFilter0);
33

34 TopologyGraphPatternMatchTerm tgpmt2 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

35 new ConstantStringTerm("FesasTopology"),
36 new TopologyAndTerm(new DirectedEdgeTerm("ecef0", new NodeTerm("c0"), new

NodeTerm("ef0")),
37 new DirectedEdgeTerm("eexc0", new NodeTerm("ex0"), new NodeTerm("c0")

)),
38 1);
39

40 StringGraphAttribute sgaC0 = new StringGraphAttribute("c0", "type");
41 StringGraphAttribute sgaEX0 = new StringGraphAttribute("ex0", "type");
42

43 StringEqualTerm setC0 = new StringEqualTerm(sgaC0, new ConstantStringTerm("
CONTEXTMANAGER"));

44 StringEqualTerm setEX0 = new StringEqualTerm(sgaEX0, new ConstantStringTerm(
"EXECUTOR"));

45
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46 BooleanAndTerm batFilter3 = new BooleanAndTerm(setC0, setEF0);
47 BooleanAndTerm batFilter2 = new BooleanAndTerm(setEX0, batFilter3);
48

49 ApplyBooleanTerm abt1 = new ApplyBooleanTerm(tgpmt2, batFilter2);
50

51 TopologyGraphPatternMatchTerm tgpmt3 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

52 new ConstantStringTerm("FesasTopology"),
53 new DirectedEdgeTerm("eplex0", new NodeTerm("pl0"), new NodeTerm("ex0")),

1);
54

55 StringGraphAttribute sgaPL0 = new StringGraphAttribute("pl0", "type");
56

57 StringEqualTerm setPL0 = new StringEqualTerm(sgaPL0, new ConstantStringTerm(
"PLANNER"));

58

59 BooleanAndTerm batFilter4 = new BooleanAndTerm(setPL0, setEX0);
60

61 ApplyBooleanTerm abt2 = new ApplyBooleanTerm(tgpmt3, batFilter4);
62

63 JoinMatchTerms jmt1 = new JoinMatchTerms(abt0, abt1);
64 JoinMatchTerms jmt2 = new JoinMatchTerms(abt2, jmt1);
65

66 TopologyGraphPatternMatchTerm tgpmt4 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

67 new ConstantStringTerm("FesasTopology"),
68 new TopologyAndTerm(
69 new TopologyAndTerm(new DirectedEdgeTerm("estst0", new NodeTerm("st1"

), new NodeTerm("st0")),
70 new DirectedEdgeTerm("estst1", new NodeTerm("st2"), new NodeTerm(

"st1"))),
71 new DirectedEdgeTerm("estst2", new NodeTerm("st3"), new NodeTerm("st2

"))),
72 1);
73

74 StringGraphAttribute sgaST3 = new StringGraphAttribute("st3", "type");
75 StringEqualTerm setST3 = new StringEqualTerm(sgaST3, new ConstantStringTerm(

"DOMAIN"));
76

77 BooleanAndTerm batFilter5 = new BooleanAndTerm(setST3, setST0);
78 BooleanAndTerm batFilter51 = new BooleanAndTerm(setACC, batFilter5);
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79

80 ApplyBooleanTerm abt3 = new ApplyBooleanTerm(tgpmt4, batFilter51);
81

82 TopologyGraphPatternMatchTerm tgpmt6 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

83 new ConstantStringTerm("FesasTopology"),
84 new TopologyAndTerm(
85 new TopologyAndTerm(new DirectedEdgeTerm("eefst1", new NodeTerm("ef1"

), new NodeTerm("st3")),
86 new DirectedEdgeTerm("ecef1", new NodeTerm("c1"), new NodeTerm("

ef1"))),
87 new DirectedEdgeTerm("eexc1", new NodeTerm("ex1"), new NodeTerm("c1")

)),
88 1);
89

90 StringGraphAttribute sgaC1 = new StringGraphAttribute("c1", "type");
91 StringGraphAttribute sgaEX1 = new StringGraphAttribute("ex1", "type");
92 StringGraphAttribute sgaEF1 = new StringGraphAttribute("ef1", "type");
93

94 StringEqualTerm setEF1 = new StringEqualTerm(sgaEF1, new ConstantStringTerm(
"EFFECTOR"));

95 StringEqualTerm setC1 = new StringEqualTerm(sgaC1, new ConstantStringTerm("
CONTEXTMANAGER"));

96 StringEqualTerm setEX1 = new StringEqualTerm(sgaEX1, new ConstantStringTerm(
"EXECUTOR"));

97

98 BooleanAndTerm batFilter6 = new BooleanAndTerm(setEF1, setST3);
99 BooleanAndTerm batFilter7 = new BooleanAndTerm(setC1, batFilter6);

100 BooleanAndTerm batFilter8 = new BooleanAndTerm(setEX1, batFilter7);
101

102 ApplyBooleanTerm abt5 = new ApplyBooleanTerm(tgpmt6, batFilter8);
103

104 TopologyGraphPatternMatchTerm tgpmt7 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

105 new ConstantStringTerm("FesasTopology"),
106 new TopologyAndTerm(new DirectedEdgeTerm("eplex1", new NodeTerm("pl1"),

new NodeTerm("ex1")),
107 new DirectedEdgeTerm("eanpl1", new NodeTerm("an1"), new NodeTerm("pl1

"))),
108 1);
109
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110 StringGraphAttribute sgaPL1 = new StringGraphAttribute("pl1", "type");
111 StringGraphAttribute sgaAN1 = new StringGraphAttribute("an1", "type");
112

113 StringEqualTerm setPL1 = new StringEqualTerm(sgaPL1, new ConstantStringTerm(
"PLANNER"));

114 StringEqualTerm setAN1 = new StringEqualTerm(sgaAN1, new ConstantStringTerm(
"ANALYZER"));

115

116 BooleanAndTerm batFilter9 = new BooleanAndTerm(setPL1, setEX1);
117 BooleanAndTerm batFilter10 = new BooleanAndTerm(setAN1, batFilter9);
118

119 ApplyBooleanTerm abt6 = new ApplyBooleanTerm(tgpmt7, batFilter10);
120

121 JoinMatchTerms jmt3 = new JoinMatchTerms(abt3, jmt2);
122 JoinMatchTerms jmt4 = new JoinMatchTerms(abt5, jmt3);
123 JoinMatchTerms jmt5 = new JoinMatchTerms(abt6, jmt4);
124

125 TopologyGraphPatternMatchTerm tgpmt8 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

126 new ConstantStringTerm("FesasTopology"),
127 new TopologyAndTerm(
128 new TopologyAndTerm(new DirectedEdgeTerm("estst3", new NodeTerm("st4"

), new NodeTerm("st3")),
129 new DirectedEdgeTerm("estst4", new NodeTerm("st5"), new NodeTerm(

"st4"))),
130 new DirectedEdgeTerm("estst5", new NodeTerm("st6"), new NodeTerm("st5

"))),
131 1);
132

133 StringGraphAttribute sgaST6 = new StringGraphAttribute("st6", "type");
134 StringEqualTerm setST6 = new StringEqualTerm(sgaST6, new ConstantStringTerm(

"DOMAIN"));
135

136 BooleanAndTerm batFilter11 = new BooleanAndTerm(setST6, setST3);
137

138 ApplyBooleanTerm abt7 = new ApplyBooleanTerm(tgpmt8, batFilter11);
139

140 TopologyGraphPatternMatchTerm tgpmt9 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

141 new ConstantStringTerm("FesasTopology"),
142 new TopologyAndTerm(
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143 new TopologyAndTerm(new DirectedEdgeTerm("eefst2", new NodeTerm("ef2"
), new NodeTerm("st6")),

144 new DirectedEdgeTerm("ecef2", new NodeTerm("c2"), new NodeTerm("
ef2"))),

145 new DirectedEdgeTerm("eexc2", new NodeTerm("ex2"), new NodeTerm("c2")
)),

146 1);
147

148 StringGraphAttribute sgaC2 = new StringGraphAttribute("c2", "type");
149 StringGraphAttribute sgaEX2 = new StringGraphAttribute("ex2", "type");
150 StringGraphAttribute sgaEF2 = new StringGraphAttribute("ef2", "type");
151

152 StringEqualTerm setEF2 = new StringEqualTerm(sgaEF2, new ConstantStringTerm(
"EFFECTOR"));

153 StringEqualTerm setC2 = new StringEqualTerm(sgaC2, new ConstantStringTerm("
CONTEXTMANAGER"));

154 StringEqualTerm setEX2 = new StringEqualTerm(sgaEX2, new ConstantStringTerm(
"EXECUTOR"));

155

156 BooleanAndTerm batFilter13 = new BooleanAndTerm(setEF2, setST6);
157 BooleanAndTerm batFilter14 = new BooleanAndTerm(setC2, batFilter13);
158 BooleanAndTerm batFilter15 = new BooleanAndTerm(setEX2, batFilter14);
159

160 ApplyBooleanTerm abt8 = new ApplyBooleanTerm(tgpmt9, batFilter15);
161

162 TopologyGraphPatternMatchTerm tgpmt10 = new TopologyGraphPatternMatchTerm(
provider, TOP_PROVIDER_NAME,

163 new ConstantStringTerm("FesasTopology"),
164 new TopologyAndTerm(new DirectedEdgeTerm("eplex2", new NodeTerm("pl2"),

new NodeTerm("ex2")),
165 new DirectedEdgeTerm("eanpl2", new NodeTerm("an2"), new NodeTerm("pl2

"))),
166 1);
167

168 StringGraphAttribute sgaPL2 = new StringGraphAttribute("pl2", "type");
169 StringGraphAttribute sgaAN2 = new StringGraphAttribute("an2", "type");
170

171 StringEqualTerm setPL2 = new StringEqualTerm(sgaPL2, new ConstantStringTerm(
"PLANNER"));

172 StringEqualTerm setAN2 = new StringEqualTerm(sgaAN2, new ConstantStringTerm(
"ANALYZER"));
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173

174 BooleanAndTerm batFilter17 = new BooleanAndTerm(setPL2, setEX2);
175 BooleanAndTerm batFilter18 = new BooleanAndTerm(setAN2, batFilter17);
176

177 ApplyBooleanTerm abt9 = new ApplyBooleanTerm(tgpmt10, batFilter18);
178

179 JoinMatchTerms jmt6 = new JoinMatchTerms(abt7, jmt5);
180 JoinMatchTerms jmt7 = new JoinMatchTerms(abt8, jmt6);
181 JoinMatchTerms jmt8 = new JoinMatchTerms(abt9, jmt7);
182

183 Condition condition = new Condition(jmt8);
184

185 EdgeRemoveTopologyTransitionInstance erttiPl1Ex1 = new
EdgeRemoveTopologyTransitionInstance(

186 new TopologyTransitionDescription("Remove Edge"), "ex1", new
TopologyTransitionAddressing("pl1",

187 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

188

189 EdgeRemoveTopologyTransitionInstance erttiAn1Pl1 = new
EdgeRemoveTopologyTransitionInstance(

190 new TopologyTransitionDescription("Remove Edge"), "pl1", new
TopologyTransitionAddressing("an1",

191 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

192

193 EdgeRemoveTopologyTransitionInstance erttiPl2Ex2 = new
EdgeRemoveTopologyTransitionInstance(

194 new TopologyTransitionDescription("Remove Edge"), "ex2", new
TopologyTransitionAddressing("pl2",

195 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

196

197 EdgeRemoveTopologyTransitionInstance erttiAn2Pl2 = new
EdgeRemoveTopologyTransitionInstance(

198 new TopologyTransitionDescription("Remove Edge"), "pl2", new
TopologyTransitionAddressing("an2",

199 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

200

201 EdgeAddTopologyTransitionInstance eattiAn1Pl0 = new
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EdgeAddTopologyTransitionInstance(
202 new TopologyTransitionDescription("Add Edge"), "pl0", new

TopologyTransitionAddressing("an1",
203 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("

FesasTopology")));
204

205 EdgeAddTopologyTransitionInstance eattiPl0Ex1 = new
EdgeAddTopologyTransitionInstance(

206 new TopologyTransitionDescription("Add Edge"), "ex1", new
TopologyTransitionAddressing("pl0",

207 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

208

209 EdgeAddTopologyTransitionInstance eattiAn2Pl0 = new
EdgeAddTopologyTransitionInstance(

210 new TopologyTransitionDescription("Add Edge"), "pl0", new
TopologyTransitionAddressing("an2",

211 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

212

213 EdgeAddTopologyTransitionInstance eattiPl0Ex2 = new
EdgeAddTopologyTransitionInstance(

214 new TopologyTransitionDescription("Add Edge"), "ex2", new
TopologyTransitionAddressing("pl0",

215 new ConstantStringTerm(TOP_PROVIDER_NAME), new ConstantStringTerm("
FesasTopology")));

216

217 SequentialTransitionInstance sti7 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 7"),

218 eattiAn2Pl0, eattiPl0Ex2);
219

220 SequentialTransitionInstance sti6 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 6"),

221 eattiPl0Ex1, sti7);
222

223 SequentialTransitionInstance sti5 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 5"),

224 eattiAn1Pl0, sti6);
225

226 SequentialTransitionInstance sti4 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 4"),
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227 erttiAn2Pl2, sti5);
228

229 SequentialTransitionInstance sti3 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 3"),

230 erttiPl2Ex2, sti4);
231

232 SequentialTransitionInstance sti2 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 2"),

233 erttiAn1Pl1, sti3);
234

235 SequentialTransitionInstance sti1 = new SequentialTransitionInstance(new
TopologyTransitionDescription("Seq 1"),

236 erttiPl1Ex1, sti2);
237

238 ECARule rule = new ECARule(0, condition, sti1, new EveryMatchRepetitionMode
(), new EveryMatchExecutionMode(),

239 Location.local);
240

241 // Register Rule
242 localTransitionEngine.getEventConditionEvaluator().addECARule(rule);
243

244 host.registerComponent(localTransitionEngine);
245 host.registerComponent(transitionModel);
246

247 obProvider.addTopologyObserver(this);
248 }

Listing C.4: TARL Transition Rule

C.5. Neo4j Module Implementation

Listing C.5 shows the query for switching the current pattern to a Regional
Planning pattern in the mentioned SmartHighway scenario from [223]. At first, a
highway section which includes the attribute jam="true" has to be found. This
is realized by matching a node s labeled as :DOMAIN for which where s.jam=true
applies. In case a match exists, the corresponding node is stored in the variable
s. Afterwards, the regional planner has to be determined. The most posterior
section with a jam on the highway becomes the regional planner. This section is
searched with the query in line 12. Once the query is defined, Neo4j tries to find a
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match on the current graph. In case a situation is present in which a jam section
exists and the other parts of the query also apply, the result has to be processed.
Lines 17-37 of Listing C.5 show the processing of the result which consists of
the regional planner and the analyzers and executors that have to be connected
to the planner. Our system uses this module for structural adaptation of the
adaptation logic. However, the modules can integrate other types of adaptation
or combinations thereof.

1 public IRuntimeOptimization call() {
2 GraphDatabaseService graphDb = Neo4jService.getInstance().getGraphDb();
3 Node node = null;
4 Relationship relationship;
5 List<Node> toPlanner = new ArrayList<Node>();
6 List<Node> fromPlanner = new ArrayList<Node>();
7 Node centralPlanner = null;
8 String fesasID = "";
9 Result result = null;

10

11 try (Transaction tx = graphDb.beginTx()) {
12 result = graphDb.execute("match (x)-[*1..3]->(c:CONTEXTMANAGER)-[*2]->(t:

DOMAIN)-[*1..6]->(s:DOMAIN)<-[*4]-(p:PLANNER) where s.jam=\"true\" and
((x:ANALYZER)OR(x:EXECUTOR)) return distinct p,x");

13

14 while (result.hasNext()) {
15 Map<String, Object> row = result.next();
16 for (Entry<String, Object> column :row.entrySet()) {
17 node = (Node) column.getValue();
18 logger.info(column.getKey().toString() + ": " + node.toString() + node.

getProperty("fesasID") + node.getLabels().toString());
19

20 if (column.getKey().equals("p")) {
21 centralPlanner = node;
22 fesasID = (String) centralPlanner.getProperty("fesasID");
23 setRegionalPlanner(FesasGraph.getInstance().getGraph().getNode(

fesasID));
24 }else if (node.getLabels().toString().equals("[ANALYZER]")) {
25 fesasID = (String) node.getProperty("fesasID");
26 addConnectedAnalyzer(FesasGraph.getInstance().getGraph().getNode(

fesasID));
27 toPlanner.add(node);
28 }else if (node.getLabels().toString().equals("[EXECUTOR]")) {
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29 fesasID = (String) node.getProperty("fesasID");
30 addConnectedExecutor(FesasGraph.getInstance().getGraph().getNode(

fesasID));
31 fromPlanner.add(node);
32 }
33 }
34 }
35

36 generateNewConnections();
37 generateObsoleteConnections();
38 }
39 }

Listing C.5: Neo4j-based implementation of a structural adaptation extending
the class AbstractRegionalPattern.
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D. Evaluation Questionnaires

For capturing the answer of the student for the evaluations in Section 8.2, we
used the following questionnaires.

D.1. Questionnaire FESAS IDE

This appendix presents the questionnaire used for the analysis of the suitability
and usability of the FESAS IDE in Section 8.2.

We derived the following question items from the ISO 9241-11 Guidance on
Usability standard and the definition of usability in the ISO/IEC 9126-1 Software
Product Quality Model standard
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PROF. DR. CHRISTIAN BECKER 

CHAIR OF INFORMATION SYSTEMS II 

 

 

 

Evaluation Form for FESAS IDE 
Christian Krupitzer (christian.krupitzer@uni-mannheim.de) 

 

 

Please use this form for evaluating the FESAS tool set and describing your experience while using it. If you had 

to mark in the first section “Strongly disagree” or “Disagree”, please comment this in detail in the second section. 

If you cannot answer a question, please indicate “No answer possible” and not “Neutral”. 

 

Further, you should document your implementation steps as well as problems and the solutions you found. This 

information is relevant for your final presentation, too.  

 

Your name:  

 

 

1. Questions concerning the Use of FESAS 
 

 Strongly 
disagree 

Disagree Neutral Agree 
Strongly 

agree 

No 
answer 
possible 

Using FESAS Development Tool 

The tool has a short training period.      
 

The tool facilitates using FESAS.       

The tool is easy to use.       

The tool supports reusability of code (e.g., communication).       

The tool support simplified exchange of MAPE algorithms.       

The tool eliminates the implementation of general issues (e.g., 
communication)      

 

The tool supports testing in the development phase.      
 

The tool is well integrated into the FESAS development process.       

The tool fastens development with FESAS.       

The tool fastens development in general.       

Using FESAS Design Tool 

The tool reduces the learning time.       

The tool facilitates using FESAS.       

The tool is easy to use.       

The tool supports reusability of code (e.g., communication).      
 

The tool support simplified exchange of MAPE algorithms.      
 

The tool eliminates the implementation of general issues (e.g., 
communication)      

 

The tool supports testing in the development phase.       

The tool is well integrated into the FESAS development process.       

Figure D.1.: Questionnaire for the FESAS IDE (1)
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 Page 2  

 

 

The tool fastens development with FESAS.       

The tool fastens development in general.       

General 

Overall, I would recommend the FESAS IDE for implementing a self-
adaptive system.      

 

 

2. Person: 
 
Bachelor in: 

 

 

Master in: 

 

 

Years of Master / Bachelor: 

 

 

 

Experience in Software Development (studies, jobs, freelancer, …): 

 

 

 

Figure D.2.: Questionnaire for the FESAS IDE (2)
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D.2. Questionnaire FESAS Framework

This appendix presents the questionnaire used for the comparison of the
FESAS Framework and the FESAS IDE as well as the analysis of the appli-
cability of the FESAS Framework in general in Section 8.2.2.

We derived the following question items from the ISO 9241-11 Guidance on
Usability standard and the definition of usability in the ISO/IEC 9126-1 Software
Product Quality Model standard
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PROF. DR. CHRISTIAN BECKER 

CHAIR OF INFORMATION SYSTEMS II 

 

 

 

Evaluation Form for FESAS 
Christian Krupitzer (christian.krupitzer@uni-mannheim.de) 

 

 

Please use this form for evaluating the FESAS tool set and describing your experience while using it. If you had 

to mark in the first section “Strongly disagree” or “Disagree”, please comment this in detail in the second section. 

If you cannot answer a question, please indicate “No answer possible” and not “Neutral”. 

 

Further, you should document your implementation steps as well as problems and the solutions you found. This 

information is relevant for your final presentation, too.  

 

Your name:  

 

1. Questions concerning the Use of FESAS 
 

 Strongly 
disagree 

Disagree Neutral Agree 
Strongly 

agree 

No 
answer 
possible 

Beginning phase 

 It is easy to configure the FESAS tool set.      
 

The FESAS installation guide was helpful for setting up the FESAS tool 
set.      

 

The information in the FESAS installation guide was correct.      
 

The information in the FESAS installation guide was understandable.      
 

I had problems in installing the FESAS tool set.      
 

Use of the FESAS documentation helped me to configure the FESAS 
tool set (if not used, mark “No answer possible”).      

 

Asking the course instructor for help in setting up FESAS was helpful 
(if not asked, mark “No answer possible”).      

 

I was able to directly start programming with the FESAS tool set.      
 

Documentation 

The information in the FESAS documentation was helpful.      
 

The information in the FESAS documentation was correct. 
     

 

I was missing information in the FESAS documentation.      
 

The code documentation was helpful.      
 

The code documentation was correct.      
 

I encountered parts of the code where documentation would be 
helpful but was missing.      

 

Figure D.3.: Questionnaire for the FESAS Framework (1)
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 Page 2  

 

 

 
Strongly 
disagree 

Disagree Neutral Agree 
Strongly 

agree 

No 
answer 
possible 

Using FESAS 

FESAS was helpful for implementing a self-adaptive system.      
 

Asking the course instructor for help in using FESAS was helpful (if 
not asked, mark “No answer possible”).      

 

Bugs reduced the usability of FESAS (if you did not encounter bugs, 
mark “No answer possible”).      

 

I had problems in configuring my self-adaptive systems (writing 
configuration files).      

 

I had problems in writing code for the functional logic elements for 
the adaptation logic.      

 

I had problems in adding the functional logic elements to the 
repository.      

 

I had problems in implementing the managed resources.       

I had problems in implementing the sensors/effectors.      
 

I had problems in connecting managed resources and the adaptation 
logic.       

 

Overall 

Overall, FESAS helped me in the implementation. 
     

 

Overall, it was easy to use FESAS. 
     

 

Overall, I think FESAS speed up the development. 
     

 

Overall, I would recommend FESAS for implementing a self-adaptive 
system.      

 

 

 

Figure D.4.: Questionnaire for the FESAS Framework (2)

CXXVI



D.2. Questionnaire FESAS Framework

 Page 3  

 

 

2. Detailed Feedback 
 

What did you like about FESAS? 

 

 

Which type of support would help you for the integration of the managed resources? 

 

 

 What should/could be improved? What did you miss? If you indicated in the questions above a “Strongly 

disagree” or “Disagree”, please comment this in detail. 

 

 

3. Details to your person: 
 

Your name:  

 

Bachelor in:  

 

Master studies in (semester):  

 

Experience in Software Development (studies, jobs, freelancer, …): 
 

Figure D.5.: Questionnaire for the FESAS Framework (3)
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E. Results of the ALM Evaluation

This chapter provides the detailed results of the dynamic analysis of the ALM
evaluation from Section 8.3.2. First, Appendix E.1 describes the baseline mea-
surements. Next, Appendix E.2 presents the measurments for parametric self-
improvement. Last, Appendix E.3 shows the measurments for structural self-
improvement. All measurements are originally presented in [223].

E.1. Baseline Measurement Results

In order to have baseline measurements of the adaptation logic’s performance,
we first ran two series of 50 simulations each without an adaptation logic as well as
an adaptation logic using a fixed rule set for both tracks. The self-improvement
layer is inactive. Hence, there are no rules added during the simulation and
structural self-improvement is not active. The adaptation logic is able to set
three different speed limits. The speed limit is set to unrestricted if the status
of the highway is free. In case of stop-and-go traffic, a limit of 120 km/h is
set and finally, for traffic jams the speed limit is reduced to 80 km/h. Stop-
and-go traffic situations and traffic jams are detected using measurements of the
amount of vehicles on the track as well as their average speed. The integrals of
the baseline without the adaptation logic is 21,308, the one with the adaptation
logic having a fixed ruleset decreases to 14,950. This is equal to decrease of the
aggregated waiting by 30 %. For the setting with the daily road work, the integral
of the baseline without the adaptation logic is 18,128, the one with the static
adaptation logic decreases to 13,032. This results in a decrease of 28 %. However,
as traffic jams happen even with the adaptation logic, this is an indicator that
the adaptation logic could be improved though meta-adaptation.
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Figure E.1.: Measurements for the parametric self-improvement compared to the
baseline measurements. The x-axis shows the time and the y-axis
the corresponding waiting time.

E.2. Evaluation Results of Parametric Self-improvement

As a second measurement, we measured the performance of the parametric
self-improvement, hence, the rule learner. The recommended speed limits are
learned while the system is executed. The system starts with an empty rule
base and the rule base evolves over time. Figure E.1 shows the results. For
comparison, the results of the baseline evaluation – without adaptation logic and
with an adaptation logic having a static rule set – are added.

The integral of the measurement decreases by 1,139 points which is a 7.6 %
improvement compared to the fixed rule set and an improvement of 35 % com-
pared to the scenario without adaptation logic. When looking at the progression
of the two curves in detail, both start with the same performance. At the be-
ginning of the day, the highway is free. Hence, no speed limits are set. As new
rules are learned, the performance of the online learner increases. For the first
fifteen and the last four hours of the day, the performance of the parametric
self-improvement is constantly better than the baseline with a static adaptation
logic. This means that for the traffic conditions in this time frame the learning
module found better speed limits than the rules of the static adaptation logic. It
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can also be concluded that traffic jams form later and resolve earlier which means
that the traffic remains longer in a flowing state.

E.3. Evaluation Results of Structural Self-improvement
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Figure E.2.: Measurements for the structural self-improvement compared to the
baseline measurements. The x-axis shows the time and the y-axis
the corresponding waiting time.

It is not preferable to learn rules for a spontaneous, non-durable event as time
is needed for the simulations to learn rules. Contrary, structural adaptation can
react fast to changing conditions. Therefore, we decided to introduce additional
events to the evaluation setting that trigger structural self-improvement of the
adaptation logic. Reaction to events is not limited to reactive adaptation only,
but includes a proactive adaptation as reaction to forecasted events. We addi-
tionally simulate an accident that leads to closing the second street in section
1. Additionally, we introduce a daily road work in the last section of the track.
Further, as structural adaptation is event-based, we simulated having the road
work during the morning rush hour between 6am and 11am.

We configured the following parameters of the prediction module: size of the
training set (1,000), amount of forecasted time steps (200), and classifier (time
series forecast based on Support Vector Machines for Regression). We performed
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50 runs using the PREDEFINED execution strategy in the ALM Planner. As TARL
needs more time than Neo4j and both have the same utility, we decided to use
this execution strategy and changed the order after 25 runs. The Neo4j module
has an integral of 14,055, the TARL module performs slightly better with 13,713.
Both approaches perform similarly to the static adaptation logic. Figure E.2
shows the results of the evaluation of the structural self-improvement.

CXXXII



Images Integrated in This Thesis

This list presents the origin of images that are integrated in this thesis. All
other symbol are own drawings in Visio, Powerpoint, or Paint. The origin of the
Visio car shape is unknown.

Figure 2.5

• Server: https://lizenzbilliger.de/img/cms/SERVER.png

• Smartphone: http://picscdn.redblue.de/doi/pixelboxx-mss-68958264/
fee_786_587_png/APPLE-iPhone-6-32-GB-Spacegrau-

• Production robot: http://www.k-aktuell.de/wp-content/uploads/2015/
06/kuka150617-214x300.jpg

• Robot: https://assets.cdn.moviepilot.de/files/fd5aefcbf20ab88e
a57eb4b1032a8c630bd391e59630784de38805aa03b9/limit/960/600/Blec
h_08.jpg

• Car: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSwIMi
pHMGTASKBfY3fDGrD3UL-7BECSj-nCsh1f62R-yIxyWJIBg

Figure 6.3

• User: http://1.bp.blogspot.com/-JGddZ9etXnE/Uhw15ev4vSI/AAAAAAAAFk
0/MvwD1k8eH-k/s1600/excited.jpg

• Toolset: https://files.encuentra24.com/large/28/02/2802564_c69953.
jpg

• Eclipse Screenshot: http://www.irisa.fr/espresso/Polychrony/image
s/sme_environment.png

For further images see list for Figure 2.5.
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Figure 7.15
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Figure 7.17
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Figure 7.18

For all images see list for Figure 2.5.

Figure 8.2
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Figure 8.3

• Load balancer: https://www.1001freedownloads.com/free-cliparts/
?order=popular&tag=server

Figure 8.5

• iCasa screenshot: http://adeleresearchgroup.github.io/iCasa/snaps
hot/index.html

Figure 8.7

• Gyroscope: https://upload.wikimedia.org/wikipedia/commons/thumb
/e/e2/3D_Gyroscope.png/1200px-3D_Gyroscope.png

• Magnetometer: https://www.nxp.com/videos/poster/NXP-SENSOR-PROCESSING-MOTION.
jpg

The origin of the other symbols is unknwon.
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