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Abstract

We investigate the problem of understanding the message (gist) conveyed by images and
their captions as found, for instance, on websites or news articles. To this end, we propose a
methodology to capture the meaning of image-caption pairs on the basis of large amounts
of machine-readable knowledge that have previously been shown to be highly effective for
text understanding. Our method identifies the connotation of objects beyond their denotation:
where most approaches to image or image-text understanding focus on the denotation of
objects, i.e., their literal meaning, our work addresses the identification of connotations,
i.e., iconic meanings of objects, to understand the message of images. We view image
understanding as the task of representing an image-caption pair on the basis of a wide-
coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist
detection as a concept-ranking problem with image-caption pairs as queries. Specifically,
we approach the problem using a pipeline that: i) links detected object labels in the image
and concept mentions in the caption to nodes of the knowledge base; ii) builds a semantic
graph out of these ‘seed’ concepts; iii) applies a series of graph expansion and clustering
steps on the original semantic graph to include additional concepts and topics within the
semantic representation; iv) combines several graph-based and text-based features into a
concept ranking model that pinpoints the gist concepts. Understanding the gist can be useful
for tasks, such as image search and recommending images for texts.

As gist detection is a novel task, to the best of our knowledge, there is no dataset
available. Thus, we create a dataset allowing for simultaneous evaluation of literal and non-
literal image-caption pairs. The gold standard gist concepts are from a common knowledge
base (Wikipedia) and the provided ranks are detailed with levels 0 to 5, which supports
various benchmarking tasks, e.g., ranking according to different levels of granularity and
classification. Furthermore, as our proposed gist detection pipeline touches on different
research areas, we provide a detailed gold standard for each of our pipeline steps, such as
entity linking or object detection in the images. Our gist detection pipeline is evaluated in a
detailed ablation study, investigating aspects of twelve different research questions. These are
elaborated in the evaluation section via human-assessment or cross-validation and provide
detailed insights into the gist of image-caption pairs. Furthermore, we show in an end-to-end
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setting the feasibility of state-of-the-art methods combined with our gist-detection pipeline
and point to future research directions.

Our experiments show that the candidate selection and ranking of gist concepts is a
more difficult problem for non-literal image-caption pairs than for literal image-caption pairs.
Furthermore, we demonstrate that using features and concepts from both modalities (image
and caption) improves the performance for all types of pairs – a finding which is in line
with results from research on multimodal approaches for other related tasks. Additionally, a
feature ablation study shows the complementary nature and usefulness of different types of
features, which are collected from different kinds of semantic graphs of increasing richness.
Finally, we experimented with a state-of-the-art image object detector and caption generator
to evaluate the performance of an end-to-end solution for our task. The results indicate that
using state-of-the-art open-domain image understanding provides us with an input that is
good enough to detect gist concepts of image-caption pairs, with nearly half of the predicted
gist concepts being relevant. However, it also demonstrates that improved object detectors
could avoid a drop of 38% mean-average precision. Additionally, the caption contains useful
hints especially for non-literal pairs.

Gist image identification is a small, yet arguably crucial part of the much bigger task of
interpreting images beyond their denotation. Within a use case scenario of an established
research problem, we show that gist detection in the form of concept ranking is useful
for downstream tasks such as multimedia indexing, in that it outperforms shallow and
deep approaches. Finally, we conclude that it could be useful also for image search and
recommendation.



Kurzfassung

Wir untersuchen die Problematik des Verstehens der Kernbotschaft (Kern), die durch Bilder
und ihren Bildunterschriften, wie sie z.B. auf Webseiten oder in Nachrichtenartikeln zu
finden sind, vermittelt wird. Zu diesem Zweck präsentieren wir eine Methodik zur Erfassung
der Bedeutung von Bild-Bildunterschriften-Paaren auf Basis von großen Mengen maschinen-
lesbaren Wissens, welches sich in der Vergangenheit für Textverständnis als sehr effektiv
erwiesen hat. Unsere Methode identifiziert die Konnotation von Objekten jenseits ihrer
Denotation: Während die meisten Ansätze zum Bild- oder Bild-Text-Verständnis sich auf
die Benennung von Objekten, d.h. ihrer wörtlichen Bedeutung, konzentrieren, beschäftigt
sich unsere Arbeit mit der Identifikation von Konnotationen, d.h. ikonischen Bedeutungen
von Objekten, um die Botschaft von Bildern zu verstehen. Wir betrachten das Bildverstehen
als die Aufgabe, ein Bild-Bildunterschriftenpaar auf Basis eines umfangreichen Vokabulars
von Konzepten, wie sie in Wikipedia bereit gestellt werden, zu repräsentieren und gehen das
Bild-Kern Verstehens als Konzept-Ranking Problem mit Bild-Bildunterschriften-Paaren als
Abfrage an.

Konkret bedeuted dies, dass wir uns dem Problem mit Hilfe einer Pipeline nähern, die: i)
die gefundenen Objektbeschriftungen im Bild und Konzepterwähnungen in der Bildunter-
schrift mit Knoten der Wissensbasis verknüpft; ii) die einen semantischen Graphen aus diesen
’Kern’ Konzepten erstellt; iii) die eine Reihe von Graphen-Erweiterungs und -Clusterings
Schritte auf dem originalen semantischen Graphen anwendet, um zusätzliche Konzepte und
Themen in die semantische Repräsentation des Paares einzubeziehen; iv) die mehrere graph-
und textbasierte Merkmale zu einem Konzept-Ranking-Modell zusammenfasst, welches die
wesentlichen Konzepte, die die Kernaussage des Bildes aufzeigen, bestimmt. Das Verstehen
der Kernaussage eines Bildes ist nützlich für die Bildersuche oder die Bildempfehlung zu
Texten.

Da das Verstehen der Kernaussage ein neue Problemstellung ist, existieren - nach unserem
besten Wissen - hierzu keine Datensätze. Folglich erstellen wir einen Datensatz, der die
gleichzeitige Auswertung von literalen und nicht-literalen Bild-Bildunterschriften-Paaren
ermöglicht. Die Goldstandard Kernkonzepte stammen aus einer allgemeinen Wissensbasis
(Wikipedia) und ihre Rankinglevel sind detailliert mit den Stufen 0 bis 5 gesetzt. Dieser
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Goldstandard unterstützen verschiedene Benchmarking-Aufgaben, z.B. Ranking nach ver-
schiedene Stufen der Granularität und Klassifizierung. Außerdem, da unsere vorgeschlagene
Pipeline zum Verstehen der Kernaussage, verschiedene Forschungsgebiete vereint, bieten
wir einen detaillierten Goldstandard für jeden einzelnen unserer Pipeline-Schritte, wie z.B.
Entity-Linking oder Objekterkennung in den Bildern.

Unsere Pipeline zum Verstehens der Kernaussage wird in einer detaillierten Ablation-
sstudie evaluiert und untersucht Aspekte von zwölf verschiedene Forschungsfragen. Die
Evaluationen, auf die im Evaluationsteil näher eingegangen wird, werden entweder mit Hilfe
von manueller Annotation oder Kreuz-Validierung durchgeführt. Sie geben detaillierte Ein-
blicke in das Verstehen der Kernaussage von Bild-Bildunterschriften-Paaren. Darüber hinaus
zeigen wir in einem End-to-End-Aufbau die Machbarkeit von State-of-the-Art Methoden in
Kombination mit unserer Pipline zum Verstehen der Kernaussage und weisen auf zukünftige
Forschungsrichtungen hin. Unsere Experimente zeigen, dass die Auswahl und das Ranking
der Kandidaten für die Konzepte zur Repräsentation der Kernaussage ein schwierigeres
Problem für nicht-literale Paare als für literale Paare ist. Dennoch demonstrieren wir, dass
die Verwendung von Merkmalen und Konzepten aus beiden Modalitäten (Bild und Text
der Bildunterschrift) die Performance für alle Arten von Paaren verbessert. Dies ist ein
Befund, der mit Ergebnissen aus der Forschung zu multimodalen Ansätzen für andere ver-
wandte Aufgaben übereinstimmt. Zusätzlich zeigt die Ablationsstudie, die komplementäre
Natur und Nützlichkeit der verschiedenen Arten von Merkmalen, welche aus verschiedenen
Arten von semantischen Graphen mit zunehmendem Informationsgehalt gesammelt werden.
Schließlich experimentierten wir mit einem weitreichend akzeptierten Bildobjektdetektor
und Bildunterschriften-Generator, um die Leistungsfähigkeit einer End-to-End-Lösung für
unsere Aufgabe zu evaluieren.

Die Ergebnisse der Nutzung der modernen Open-Domain Verfahren zum Bildverständnis,
deuten darauf hin, dass diese Informationen lieferen, die gut genug sind, um die grundlegen-
den Konzepte der Kernaussage von Bild-Bildunterschriften-Paaren zu erkennen. Hierbei sind
fast die Hälfte der vorhergesagten Kernaussage Konzepte relevant. Darüber hinaus zeigen wir
aber auch, dass verbesserte Objektdetektoren einen Rückgang der mittleren Genauigkeit um
38% vermeiden könnten. Zusätzlich enthält die Bildunterschrift nützliche Hinweise speziell
für nicht-literale Paare.

Die Identifikation der Kernaussagen von Bildern ist ein kleiner, aber wohl entscheidender
Teil des viel größeren Problems Bilder jenseits ihrer literalen Bedeutung zu interpretieren.
Im Rahmen eines Anwendungsfalls eines etablierten Forschungsbereichs, zeigen wir, dass
die Erkennung der Kernaussage in Form eines Konzept-Rankings sinnvoll für nachgelagerte
Aufgaben, wie z.B. die Multimedia-Indizierung ist, da diese Methodiken aus dem Shallow
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und Deep-Learning übertrifft. Abschließend kommen wir zu dem Fazit, dass das Verstehen
der Kernaussage eines Bildes auch für die Bildsuche und die Empfehlung von Bildern zu
beispielsweise Texten, nützlich sind.
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Figure 1 "The mind loves the unknown. It loves images whose meaning is unknown, since
the meaning of the mind itself is unknown." René Magritte
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• Weiland et al. [2017]: Weiland, L., Hulpuş, I., Ponzetto, S. P., and Dietz, L. (2017).
Using object detection, nlp, and knowledge base to understand the message of images.
In Lecture notes in computer science MultiMedia Modeling : 23rd International
Conference, MMM 2017, Reykjavik, Iceland, January 4-6, 2017, Proceedings, Part II;
405-418, Springer International Publishing, Cham, 2017.

• Weiland et al. [2018a]: Weiland, L., Hulpuş, I., Ponzetto, S. P., Effelsberg, W., and
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Chapter 1

Introduction

The goal of this thesis is to understand the message (gist) of images. Transmitting a meaning
with the use of images is probably as old as humankind. The intention of conveying a
meaning is very faceted and is strongly influenced by the answer to the question, whether
one wants to convey a literal (a denotation of an object) or a non-literal (a connotation of
an object) meaning. Furthermore, the intention of a sender of a meaning is not necessarily
equivalent to the perception of the receiver of the meaning. To frame the image into context
and to narrow the risk of potential misconceptions, we focus on images in the context of
short texts, i.e., captions.

An object depicted in an image can be used in its literal meaning, where the intention
is to refer to itself, e.g., an image of a coffee cup sleeve conveys the literal meaning coffee
cup sleeve (cf. Figure 1.1a). Following a different intention, a coffee cup sleeve can be used
in terms of a non-literal meaning, where the object triggers some association to a visually
non-recognizable higher-level meaning, e.g., the coffee cup sleeve triggers the association
of the amount of waste produced by disposable food packaging, where a coffee cup with
its sleeve is an example of (cf. Figure 1.1b). This type of association is commonly used
and learned, e.g., in that it is transmitted by media or appears in knowledge bases, such as
Wikipedia. However, an image of a coffee cup can also trigger a personal association, which
is not part of common knowledge, e.g., this coffee cup reminds me of my weekly coffee
with my friend Anna. To decode the message of an image, besides common knowledge a
person has also access to knowledge created from own experiences, on the cultural and social
background.

Moreover, the intended meaning and the knowledge someone makes use of are strongly
influenced by the time periods (e.g., during the industrial revolution smoking stacks are
probably rather associated with productivity and useful inventions than with global warming).
Referring to our example, based on the image alone it remains unclear, whether a literal



2 Introduction

(a) COFFEE CUP SLEEVE:"Coffee cup sleeve
on a coffee cup, sleeve makes it easy to hold
hot drinks."

(b) DISPOSABLE FOOD PACKAG-
ING:"According to the U.S. Environmental
Protection Agency, paper and plastic food-
service packaging discarded in the country’s
municipal solid waste stream accounted 1.3
percent in 2007 (by weight) of municipal
solid waste."

Figure 1.1 Image and context, e.g., captions, convey a meaning. (a) Literal example about
coffee cup sleeves. (b) Non-literal example about environmental concerns related to dispos-
able food packaging. (a, b: https://en.wikipedia.org/wiki/File:Coffee-cup-sleeve.jpg, Nirzar,
CC-BY-SA 4.0, last accessed: 08/30/2017).

or non-literal meaning applies. Additionally, whether one uses associations created from
personal or common knowledge, cannot be disambiguated by the image alone. Consequently,
it turns out, context helps to disambiguate the image. In our example, the image is used within
paragraphs raising associations to different topics: coffee cup sleeves and environmental
concerns related to disposable food packaging. Images can be contextualized by other images
or by media of other types, e.g., by captions or surrounding text. Finally, the context can be
given by several combinations of media types.

Within our research the images are framed in the context of short text. We leave the
investigation of context given by other images to future research. Furthermore, we focus on
associations that can be derived from commonly accessible knowledge, where we limit the
knowledge to the time periods 2015-2017 (duration of this research) and to English speaking
annotators from Europe.

What sounds like a typical problem from philosophy, communication scientists, or
linguists, becomes obviously crucial with respect to computer science, e.g., cognitive systems
that will be capable of understanding images.
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1.1 Motivation

Image understanding is a major goal in the research areas of computer vision, multimedia
indexing and modeling. However, the main emphasis has been put on the literal meanings of
images or descriptive image-text pairs [Bernardi et al., 2016; Hodosh et al., 2013]. This focus
becomes more clear, when reviewing the titles of publications in the area of multimodal
modeling, i.e., indexing or classification, or cross-modal modeling and retrieval, where
the terms ’descriptive’ and ’descriptions’ occur very often (e.g., [Elliott and Keller, 2013;
Karpathy and Li, 2015; Kulkarni et al., 2011; Mitchell et al., 2012]). This focus is even
more underlined by the characteristics of existing image or multimodal datasets, with their
corresponding texts and gold standard annotations (cf. Section 3 for a detailed review on Data
Resources). Most of the images are accompanied with descriptive texts and/or captions. The
other datasets are collected from social media platforms, e.g., Flickr, provided with captions,
without explicitly given classification of the type of affiliated caption or text. As the category
of these platforms already suggests, the caption sometimes contains personal knowledge
making it nearly unfeasible decoding without having access to this kind of information.

The gold standard annotations aim at the goals of generating or retrieving descriptive
captions or retrieving images that best match textual descriptions. A classification of the type
of pair is not necessarily needed to achieve these goals. The observation about the scope
of the annotations holds true independent from the type of methodology (cf. Chapter 2.3,
Table 2.1).

We outline the pipeline of our approach to understand the message of literal and non-literal
images by the use of our introductory examples (cf. Figure 1.1), it starts with understanding
(detection, recognition, and annotation) of objects and the scenery (interactions of objects
with each other, background, etc.) depicted in an image, thus, a literal assessment, e.g.,
coffee-cup and table. Similarly, the caption text is processed with a standard natural-language
processing pipeline to detect nouns and noun phrases. The object and scenery names from the
image and the nouns and noun phrases of the caption are candidate concept mentions. The
second step of our pipeline is the linking of these candidate concept mentions to candidates
from the reference knowledge base. With graph-based traversal strategy, we expand the initial
set of candidate concepts in step three. In step four, we apply a semantic relatedness-based
strategy of additional concepts, which are in semantically close proximity of the previously
collected and initial concepts, conduct a clustering and a final focused selection of concepts
that potentially represent the gist of an image-caption pair. Finally, the potential gist concepts
are ranked.

Consequently, before creating and interpreting any kind of association a precise output
of state-of-the-art detectors are a preliminary. Before the recent advances in image under-
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standing based on deep learning, increasing the precision in established vision understanding
challenges, such as object detection, was one of the main objectives, thus, moving non-literal
image meanings beyond the scope of researchers.

Beside this fact, only a few researchers mentioned the existence of non-literal pairs and
gave reasons for their decision to focus on literal meanings [Hodosh et al., 2013]: non-literal
meanings with their tendency to trigger associations, require knowledge that is often not
encoded in the image-caption pair itself, which makes approaches dependent on additional
data sources, e.g., lexical hierarchies like WordNet. Finally, and most importantly, going
untrodden paths requires to create novel datasets and gold standard annotations, which are
extensively human-labored tasks, often subject to discussions, optimizations, and changes.

The question we want to answer is: Can we actually teach machines to make sense of
hard, complex use cases of image usages in context? Considering a use case such as search,
one cannot computationally model the information need of a human query, while ignoring an
important communicative means and without fully understanding human communication.
Especially, with respect to the rapidly growing amount of multimodal data, which needs to
be supplemented, complemented, indexed etc., the full range of type of intentions needs to
be modeled to guarantee utilization of the data (and not only for the sake of collecting), e.g.,
in that a retrieval of abstract messages becomes possible. Furthermore, an improvement of
tasks like caption generation, indexing, or image retrieval is expected, motivated by the fact
that an image can be affiliated with a caption complementing the image-caption to a literal or
even a non-literal message (cf. Figure 1.1).

This research was originally inspired by the question of understanding media-iconic
images from the domain of global warming. Media-iconic images are a subclass of non-
literal image caption pairs and per definition known so well by the people, because these
have been published and used so widely that a textual context does not necessarily have to be
given. Examples of media-iconic images are the tank man 1, the fall of the Berlin Wall (cf.
Figure 1.2a), death of Carlo Giuliani 2, a polar bear on a melting ice-floe [Perlmutter, 1997],
or the Fukushima Daiichi nuclear disaster (cf. Figure 1.2b) etc.

Even though we investigate the step which is before an established media-iconic image,
thus, the creation, development, and computationally understanding of non-literal pairs, we
put special focus to media-iconic pairs. These can be decoded with common knowledge and
they are publicly accessible. Furthermore, the theme coverage of our data in this research
rather focuses on the domain of global warming. It is a very diverse, controversial, and often
differently conveyed theme, so that it is rich in media-iconic image-caption pairs.

1https://en.wikipedia.org/wiki/Tank_Man, due to copyright an image cannot be shown here
2https://en.wikipedia.org/wiki/Death_of_Carlo_Giuliani, due to copyright an image cannot be

shown here

https://en.wikipedia.org/wiki/Tank_Man
https://en.wikipedia.org/wiki/Death_of_Carlo_Giuliani
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(a) People atop the Berlin Wall near the Bran-
denburg Gate on 9 November 1989.

(b) The Fukushima I Nuclear Power Plant af-
ter the 2011 Tōhoku earthquake and tsunami.

Figure 1.2 Media-iconic image examples (a: https://en.wikipedia.org/wiki/File:
Thefalloftheberlinwall1989.JPG, Lear21 at English Wikipedia, b: https://en.wikipedia.org/
wiki/File:Fukushima_I_by_Digital_Globe.jpg, Digital Globe, both: CC BY-SA 3.0, last
accessed: 10/20/2017).

Finally, one must note that the distinction between literal and non-literal is a rather
gradually than a binary classification task. Even though we are talking as if there exists a
binary choice, we are completely aware that sometimes just one element of an image or a
caption changes a pair from one type to the other. Especially non-literal pairs contain literal
elements or encode several aspects in one, e.g., cf. Figure 1.2a, "People atop the Berlin Wall"
is literal and non-literal at the same time: it is literal because it describes what can be seen on
the image, however, knowing that standing on top of the Berlin Wall was life threatening,
before the fall of the Berlin Wall, makes it non-literal. This gradient-like transition from one
type to another and the ambiguity in parts of the pairs are one of the reasons why we are
following a ranking and not a classification approach.

1.2 Contribution

The core contributions of this thesis build upon initial exploratory studies that focused on the
viability of creating datasets of non-literal image usages with minimal supervision [Weiland
et al., 2014], and a mixed-method analysis of the problem combining computational and
qualitative methods [Ponzetto et al., 2015]. The result of these researches have shown that
media-iconic images are of very diverse nature, consequently, hard to detect and to understand
by purely vision-based approaches, without providing additional context [Ponzetto et al.,
2015; Weiland et al., 2014]. The context frames an image in such a way that it becomes
clear(er), which kind of knowledge one has to apply to decode the respective message of an
(iconic) image. If no further context is given (cf. Fig 1.1, our introductory example of a paper
cup), the image can have multiple meanings, e.g., coffee cup sleeve and disposable food

https://en.wikipedia.org/wiki/File:Thefalloftheberlinwall1989.JPG
https://en.wikipedia.org/wiki/File:Thefalloftheberlinwall1989.JPG
https://en.wikipedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg
https://en.wikipedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg
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packaging, where the intended meaning cannot be finally pinpointed. Yet, the results provided
a foundation to the definition of non-literal images, thus, insights for the computational
modeling of non-literal and literal images.

The work is summarized in:

• Weiland et al. [2014]: Weiland, L., Effelsberg, W., and Ponzetto, S. P. (2014). Weakly
supervised construction of a repository of iconic images. In Proceedings of the
Workshop on Vision and Language 2014 (VL ’14) at the 25th International Conference
on Computational Linguistics (COLING ’14).

• Ponzetto et al. [2015]: Ponzetto, S. P., Wessler, H., Weiland, L., Kopf, S., Effelsberg,
W., and Stuckenschmidt, H. (2015). Automatic classification of iconic images based
on a multimodal model : an interdisciplinary project. In Wildfeuer, J., editor, Sprache
- Medien - Innovationen- Building bridges for multimodal research : international
perspectives on theories and practices of multimodal analysis, 7, pages 193–210,
Frankfurt am Main ; Bern; Wien. Peter Lang Edition.

Taking advantage of our preliminary research, the contribution to the task of understand-
ing the gist of images in context of short texts is three-fold:

First, a novel dataset of image-caption pairs - containing literal and non-literal examples -
is presented. Furthermore, extensive human-labeled annotations are provided, e.g., concept
ranking to represent the message of a pair, entity linking to represent the initial pairs as
entities, and labeled bounding box image annotations. Second, an approach to understand
the messages, with definitions that are necessary for the research, thus, the computational
model, and comprehensive evaluation of the approach, is provided. Third, the usefulness
of understanding the gist of image-caption pairs is shown in an established use case, i.e.,
multimedia indexing.

1.2.1 Multimodal dataset of literal and non-literal image-caption pairs

In Chapter 3 we give a comprehensive overview of image-only and multimodal datasets. As
there is no dataset satisfying all requirements to allow for a study of non-literal pairs and
the understanding of the message of images, we provide a novel dataset. We describe the
gist dataset and all required human labeled and evaluated gold standard annotations (also in
Chapter 3).

• Novel dataset: 328 non-literal and literal image-caption pairs in one dataset. This
feature allows the first time for a direct comparison of an approach for both types of
communicative means.
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• Human-labeled annotations: The dataset provides different annotations, which are
assessed or created by human annotators.

– Ranked gist annotations: The gist of an image-caption pair is a ranked list of
concepts from a knowledge base. Human annotators have assigned concepts from
the knowledge base to a pair and for each of the concepts assigned a ranking
according to how well the concepts represent the gist.

– Entity linking annotations: Information retrieval has shown the benefits of
entity linking. The image-caption pairs are transferred to a list of entities best
representing the pair. The gold standard annotation allows for a comparison of
different entity linking methods.

– Image annotations: Each of the images is provided with textual image object
annotations from a pre-defined list of concepts. Additionally, the position of an
object in an image is marked with a bounding box.

– Visual linking annotations: Correspondences between image objects and nouns
or noun phrases in the text are set manually. This annotation helps to investigate
which parts of the two modalities are descriptive, literal, and in line with each
other - contrasting to the complementary parts of a pair.

• State-of-the-art system annotations: The amount of multimedia data is rapidly
growing, thus, the required human input for initial image or pair annotation also grows.
Finally, text generation is a barrier as it needs to be conducted by human annotators.
Deep and neural network technologies are promising directions towards overcoming or
at least lowering this barrier. To allow for an evaluation of the performance of state-of-
the-art systems the dataset provides also the results of a deep learning approach. These
results are neither created with additional human labor, nor checked for validity.

– Image annotations: Each image is associated by the system with tags from
a vocabulary of around 2,000 recognizable objects. A recognized object is
accompanied by a confidence value.

– Caption generations: The tags of recognized objects in an image are used as
input for a caption generation approach. As a result one image is described by
one caption accompanied with an overall confidence value, too.

The work is summarized in:

• Weiland et al. [2016]: Weiland, L., Hulpuş, I., Ponzetto, S. P., and Dietz, L. (2016).
Understanding the message of images with knowledge base traversals. In Proceedings
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of the 2016 ACM on International Conference on the Theory of Information Retrieval,
ICTIR 2016, Newark, DE, USA, September 12- 6, 2016, pages 199–208.

• Weiland et al. [2017]: Weiland, L., Hulpuş, I., Ponzetto, S. P., and Dietz, L. (2017).
Using object detection, nlp, and knowledge base to understand the message of images.
In Lecture notes in computer science MultiMedia Modeling : 23rd International
Conference, MMM 2017, Reykjavik, Iceland, January 4-6, 2017, Proceedings, Part II;
405-418, Springer International Publishing, Cham, 2017.

• Weiland et al. [2018a]: Weiland, L., Hulpuş, I., Ponzetto, S. P., Effelsberg, W., and
Dietz, L. (2018). Knowledge-rich Image Gist Understanding Beyond Literal Meaning.
In Journal on Data & Knowledge Engineering, 2018, Elsevier, 2018.

1.2.2 Understanding the Message of Images

Chapter 2 starts with the definition of non-literal image-caption pairs, media-iconic images,
and their differentiation to literal pairs. Paying special attention to these definitions and
the important differences between non-literal to literal pairs, our dataset with gold standard
is created. Both, data and gold standard, are used within all contributions of the thesis.
Furthermore, a pipeline combining entity linking, leveraging from external knowledge, and
using a learning to rank approach to detect the message of images is created and evaluated
(cf. Chapter 4 and Chapter 5, respectively). The contributions are:

• Novel task definition: We formulate the novel task of detecting the gist of image-
caption pairs using the vocabulary and topics provided by a reference external resource,
i.e., a knowledge base.

– Definition of Gist: the preliminary to computationally approaching the under-
standing of the gist of images is a definition about what is a message of an image
in the context of a short text. Gist can be expressed by concepts in a knowledge
base.

– Depictable vs. non-depictable: Differentiation of depictable and non-depictable
objects. As a preliminary to the definition of literal and non-literal one needs
to distinguish concepts that can in principle be depicted, e.g., visible objects,
recognizable by humans and object detectors, from those that are non-depictable
concepts, i.e., in that they are abstract, such as global warming, thus, not recog-
nizable by object detectors.
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– Literal vs. non-literal image caption pairs: Differentiation of literal and non-
literal image usages. Literal image caption pairs are self-contained, often descrip-
tive. Non-literal pairs are often complementary, conveying an abstract message.

• Approach: A pipeline to detect and rank potential messages for an input pair as query.
This pipeline addresses several characteristics of using images in the context of short
text as a query, such as enhancing the query with external knowledge.

– Benefit from external knowledge: The usage of external knowledge, i.e., the
knowledge base Wikipedia, addresses the characteristic of image-caption pairs
that are not self-contained but pointing towards common knowledge and connec-
tions between facts. Entries in the knowledge base are referred to as concepts.

– Benefit from the knowledge graph structure: Considering that facts and
knowledge is connected with each other, the knowledge is represented by a
graph. Leveraging from the structure, thus graph connectivity measures, supports
to derive these connections between query and gist concepts.

– Benefit from textual content measures: Knowledge and especially more com-
plex matters are dependent of textual content, which explains the details and gives
explanations especially to complex themes. The proposed approach considers
also the textual content of concepts, in that the article texts from the knowledge
base corresponding to a concept are used to generate content-based measures.

• Evaluation: An extensive analysis of our approach is conducted, considering different
types of features and features collected at different stages of the proposed methodology.

– Benefit of different components of our approach: Analysis of what strategy
and what features reveal the best gist concepts. This evaluation provides detailed
insights into the proposed approach and each of its stages.

– Benefit from combining the modalities (multimodal approach): Analysis
whether using the combination of signals from both modalities (image and text)
performs better than using one of the modalities (image or text) as query.

– End-to-end gist detection: (assessing the quality of Deep Learning in context
of image message understanding). A more realistic scenario is investigated by the
use of a Deep Learning API, which is capable of detecting objects in an image
and generating a caption for a given image.
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– Benefit of visual linking: Addressing the descriptive nature of literal pairs and
the complementary nature of non-literal pairs, the visual linking provides useful
information about the initial query pair.

The work is summarized in:

• Weiland et al. [2015]: Weiland, L., Dietz, L., and Ponzetto, S. P. (2015). Image with a
message: Towards detecting non-literal image usages by visual linking. In Proceedings
of the 2015 EMNLP Workshop on Vision and Language (VL’15), pages 40–47.

• Weiland et al. [2016]: Weiland, L., Hulpuş, I., Ponzetto, S. P., and Dietz, L. (2016).
Understanding the message of images with knowledge base traversals. In Proceedings
of the 2016 ACM on International Conference on the Theory of Information Retrieval,
ICTIR 2016, Newark, DE, USA, September 12- 6, 2016, pages 199–208.

• Weiland et al. [2017]: Weiland, L., Hulpuş, I., Ponzetto, S. P., and Dietz, L. (2017).
Using object detection, nlp, and knowledge base to understand the message of images.
In Lecture notes in computer science MultiMedia Modeling : 23rd International
Conference, MMM 2017, Reykjavik, Iceland, January 4-6, 2017, Proceedings, Part II;
405-418, Springer International Publishing, Cham, 2017.

• Weiland et al. [2018a]: Weiland, L., Hulpuş, I., Ponzetto, S. P., Effelsberg, W., and
Dietz, L. (2018). Knowledge-rich Image Gist Understanding Beyond Literal Meaning.
In Journal on Data & Knowledge Engineering, 2018, Elsevier, 2018.

1.2.3 Using Gist Detection for Multimedia Indexing

In Chapter 6 we modify the presented pipeline for understanding the gist, to demonstrate its
benefit when applied to an established research problem, such as multimedia indexing.

• Use Case: We apply the approach of understanding the gist to an established research
problem. On a benchmarking dataset with 25,000 instances it can be shown that also
established research tasks, such as multimedia indexing benefits from gist detection in
an end-to-end approach.

• Evaluation: We again conduct an extensive analysis of our approach using the bench-
marking dataset, where we analyze the impact of each pipeline component and the
proposed modifications. Furthermore, we study the benefits of the different gist
candidates collected from the two modalities and the different graph expansion steps.
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The work is summarized in:

• Weiland et al. [2018b]: Weiland, L., Ponzetto, S. P., Effelsberg, W., and Dietz, L.
(2018). Understanding the Gist of Images - Ranking of Concepts for Multimedia
Indexing. In arXiv preprint, arXiv:1809.08593, 2018.

1.3 Outline

In Chapter 2 we review the related work from the perspective of communication scientists
and linguists as a fundamental to build a computational model. Furthermore, the perspective
of the computer scientists shows the novelty and difficulty of our work. In Chapter 3 datasets
from the image processing and multimodal domain are revised. Owed to the fact that there is
neither a dataset covering both types of pairs (at least classified as such), nor gist concept
annotations, a dataset with detailed gold standard annotations satisfying this need is created
and described. The main contributions of this thesis can be found in Chapter 4 and Chapter 5,
where the approach is explained in detail and where the extensive evaluation of the proposed
approach can be found, respectively. Chapter 6 is about the use case: within a comparative
study we show the usefulness of understanding the gist to standard questions from the
multimodal domain, e.g., multimedia indexing. Finally, in Chapter 7 the thesis is concluded
with a discussion of the objectives and the outlook.





Chapter 2

Related Work

The understanding of images is a complex and faceted field of research. To allow for a
contextualization and classification of the research, the discussion of the related work is
grouped according to the three different levels representing the development of the proposed
approach. First, the definition for image understanding with the focus on media-iconic
images and the delimitation to other multimodal research areas need to be set. Second, an
overview of approaches from computer science on how to handle and benefit from multimodal
data, which mainly focuses on the combination of image and text, is given. Third, as the
proposed approach facilitates methodologies from information retrieval and entity linking,
these domains are further discussed.

The goal of this chapter is to study the different definitions of iconic images and to merge
those to one definition, which is used within the proposed approach. From the computer
science perspective it will be discussed, how to benefit from existing multimodal approaches,
however, it will be shown that our research is more difficult due to the lack of direct related
work. Furthermore, the importance and novelty of this research domain will be demonstrated.

2.1 Iconic Images and Semiotic

This section starts with a perspective of the communication scientists and linguists to the
understanding of images in context of texts, a definition of news iconic images, and their
approaches to dissect and analyze images. The goal of the subsection is to leverage one
definition of news icons that the research works with, furthermore, to delimit from image
interpretation aspects that are currently not considered. Additionally, within a perspective of
computer science about iconic images we show the novelty of the research branch.
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2.1.1 A Perspective from Communication Science and Linguistics

From the perspective of communication scientists and linguistics, there are a lot of related
works. These works are not free from complexity or controversy. Furthermore, these are
influenced different schools, so that in the following we try to give an overview about related
works, which help to understand iconic images. The goal is to end up with a definition of
iconic images, that can be computationally modeled.

When talking about the understanding of iconic images, one stumbles the sooner than
later, over the semiotic theory written by Charles Sanders Peirce in the 1860s. Semiotic,
defined as the theory and study of signs, is not invented by Peirce, as signs are nearly as old
as human mankind, however, for his thorough works on semiotic he is considered to be one
of the most famous representatives. Due to this detailed nature, we do not discuss Peirce’s
theories and definitions, but instead review works that are closer to our purpose and domain
of media-iconic images.

Tight coupling of images and texts. Within this research we focus on images in the
context of short texts, i.e., captions. This focus is motivated by the fact that the combination
is well studied in linguistic and communication science. Furthermore, creating meaning
by the use of the combination of text and images, is not an invention of modern times, if
one thinks about visually stunning illustrations of Biblical texts [Harrison, 2003], but it is
undergoing a revival. One of the most relevant aspects is given by Horn, who calls this
multi-modal mix visual language [Harrison, 2003]:

".. the tight coupling of words, images, and shapes into a unified communication
unit. "Tight coupling" means that you cannot remove the words or the images
or the shapes from a piece of visual language without destroying or radically
diminishing the meaning a reader can obtain from it [Horn, 1999, p. 27].

Social semiotics. From social semiotics three important principles can be extracted (names
of principles are adapted from [Harrison, 2003, p. 48]), which should be considered when
studying visual social semiotics, thus, iconic images. Additionally, these principles motivate
our choice to conduct the research on one language (English) with data from one semiotic
system (USA) which is close to our European semiotic system.

1. Social conventions.

Although things may exist independently of signs we know them only
through the mediation of signs. We see only what our sign systems allow
us to see. [...] Semioticians argue that signs are related to the signified by
social conventions which we learn. We become so used to such conventions



2.1 Iconic Images and Semiotic 15

in our use of various media that they seem "natural," and it can be difficult
for us to realize the conventional nature of such relationships [Chandler,
1994].

2. Social and cultural bias.

Meaning of signs is created by people and does not exist separately from
them and the life of their social/cultural community. Therefore, signs have
different meanings in different social and cultural contexts - meanings can
range from very different [...] to subtle and nuanced [...]. [...] The growing
number of books and articles on this subject attests to the difficulties writers
face when trying to create messages for people whose semiotic systems are
different from theirs. [Harrison, 2003, p. 48]

3. Affect and alter meanings.

Semiotic systems provide people with a variety of resources for making
meaning. Therefore, when they make a choice to use one sign, they are not
using another. [...] The ability to choose gives communicators a certain
amount of power to use signs in unconventional ways and, therefore, affect
and even alter meanings [Lemke, 1990].

Visual social semiotics. Semiotics is generally described as the "study of signs" [Harrison,
2003, p. 47]. A sign represents or conveys a meaning, which is named the signified. A
derivative of semiotics is the visual social semiotics. Jewitt and Oyama defines the visual
social semiotics as

the description of semiotic resources, what can be said and done with images
(and other visual means of communication) and how things people say and do
with images can be interpreted. [Jewitt and Oyama, 2001, p. 136]

Categories of images. According to [Irene Hammerich, 2002, pp.140-142] there are three
categories of images, which are necessary to be aware of to understand that images are
connected to a meaning in different ways and as such need to be approximated differently.
Icons are used to refer to something which is similar or a resemblance of what is depicted in
the image. An index is given when a reader can obtain the meaning of the index due to its
relationship to its meaning. An index does not have any similarity or resemblance. Symbols
do neither have a similarity nor have a direct relationship to its meaning, it is something
established, something we’ve learned.
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The goal of our research is to understand the meaning of iconic images, especially those
presented in news and media (news icons according to Perlmutter and Wagner [2004]).

Definition of news icon. In general Perlmutter defines a news ’icon’ (interchangeably used
with photo-journalistic icon) as a celebrated product of photojournalism [Perlmutter and
Wagner, 2004, p. 91]. More strict than the definition of an image being iconic, which is
given "[...] if it bears a similarity or resemblance to what we already know or conceive about
an object or person" [Harrison, 2003, p. 50] (adapted definition from [Irene Hammerich,
2002, pp. 140-142]), an image of a news icon functions metonymically [Perlmutter and
Wagner, 2004, p. 100]. Special attention needs to be payed to the fact that images can
have a metonymical or metaphoric function - two language constructs that should not be
interchanged. Recall, a metonym is something that is used to stand for something else, e.g.,
the famous image of ’tank man’, has become a news icon for the student demonstrations in
Tiananmen in 1989. Different from that a metaphor is used to explain something having the
same functionality, e.g., depicting burnout, which can be shortly explained by an unbalanced
inner life, as an unbalanced scale. Perlmutter defined a typology, about the making of
an icon [Perlmutter, 1998; Perlmutter and Wagner, 2004]. Therefore, he has defined the
standard elements of a photo-journalistic icon. These include: (1) importance of the event
depicted, (2) metonymy, (3) celebrity, (4) prominence of display, (5) frequency of use, and
(6) primordality.

Each of these typologies need to be examined for an image to allow it to be used as an
encapsulation and exemplification of complex issues.

Furthermore, from the theory on the analysis of iconic images in general, we learn that
according to Kress and van Leuven [Gunter R. Kress, 1996] an image performs three kinds of
meta-semiotic tasks to create meaning. These tasks are called the representational metafunc-
tion ("what is the picture about?"), interpersonal metafunction ("How does the picture engage
the viewer?"), and compositional metafunction ("How do the representational and interper-
sonal metafunctions relate to each other and integrate into a meaningful whole?") [Harrison,
2003]. We are mostly interested in the representational and compositional metafunction, and
less in the interpersonal perspective.

Nevertheless, there are also discrepancies in the definition of news icons. Thus, according
to Perlmutter [Perlmutter and Wagner, 2004, p.95] news professionals use as the most
standard analogue the description of natural ’windows’ onto the world to define news
icons. However, he disagrees and claims that these images (photojournalism’s output) are
manufactured and framed for consumption as any other news product.
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Ambiguity and bias of news icon. Ambiguity is resolved for the viewer when the
respective mainstream media sources frame the image for reader consumption through
captions [Perlmutter and Wagner, 2004, p.102].

The linguistic and communication science perspective on semiotics and the definition of
non-literal and iconic images is very faceted and complex. With respect to the computational
modeling of non-literal and iconic images, the complexity of these definitions need to be
reduced in that some restrictions and delimitations need to be set. Thus, when investigating
iconic images, we use images with their affiliated captions as input. This is in line with
the observation that image and text build a communicative unit, which in turn can contain
complementary or similar information. Furthermore, as the channels and ways of trans-
mitting news and how news reach the people have changed a lot, we refer to media-iconic
images [Drechsel, 2010], instead of the term news icons. However, the characteristic of
an image being rather a metonymy than a metaphor still applies. Additionally, to build a
counterpart to the descriptive nature of literal image-caption pairs, we use the terminology of
non-literal images as the parent-class (hypernym) of media-iconic images.

2.1.2 A Perspective from Computer Science

Just recently computer scientists from the domain of computer vision moved away from only
considering things that can be seen in an image. Jiang et al. [2017] allow for a learning and
retrieval of abstract concepts that are inevitably connected to concepts that are in principle
depictable and in their training data represented as visible objects in the images. Examples
of depictable concepts are, cake, presents, and kids. These visually recognizable concepts
are connected to the more abstract concept of birthday (example from [Jiang et al., 2017]).
The translation from concrete to abstract concepts and their retrieval is a step towards the
understanding of images, but it does not tackle the even harder problem of understanding
non-literal images. Most related to the understanding of non-literal images and their messages
is the research area of understanding metaphors in texts. This connection is given by the
fact that non-literal images can be a metonymy or a metaphor. Similar to the semiotics, the
multimedia view on these kinds of focus areas has only recently become attractive. Shutova
et al. [2016] benefit from a fusion of text and visual features to identify textual metaphors.
They compare different stages of fusion (middle and late fusion) for the learned textual and
visual embeddings and evaluate the ’metaphoricity’ of an input text based on several cosine
measures, where the thresholds of a text being a metaphor are learned from two annotated
corpora, containing metaphors. Additionally, their approach relies on external resources,
whereas textual embeddings are trained with a Wikipedia corpus and the visual embeddings
are trained on images retrieved from Google image search with keyword-based queries.
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However, to the best of our knowledge there is no research about tackling the problem of
automatically understanding non-literal image usages conveying abstract topics as meanings.

2.2 Multimodal Modeling

Recent years have seen a growing interest for interdisciplinary work which aims at bringing
together processing of visual data such as video and images with NLP and text mining
techniques. This is no surprise, since text and vision are expected to provide complementary
sources of information, and their combination is expected to produce better, grounded models
of natural language meaning [Bruni et al., 2012], as well as enabling high-performing
end-user applications [Aletras and Stevenson, 2012].

However, while most of the research efforts so far concentrated on the problem of
image-to-text and video-to-text generation – namely, the automatic generation of natural
language descriptions of images [Feng and Lapata, 2010a; Gupta et al., 2012; Kulkarni et al.,
2011; Yang et al., 2011], and videos [Barbu et al., 2012; Das et al., 2013b; Krishnamoorthy
et al., 2013] – few researchers focused on the complementary, yet more challenging, task
of associating images or videos to arbitrary texts – [Feng and Lapata, 2010b] and [Das
et al., 2013a] being notable exceptions. However, even these latter contributions address
the easier task of generating literal descriptions of depictable objects found within standard,
news text, thus disregarding other commonly used, yet extremely challenging, dimensions
of image usage such as media icons [Drechsel, 2010; Perlmutter and Wagner, 2004]. The
ubiquity of non-literal usages has not received much attention yet in the fields of automatic
language and vision processing: researchers in Natural Language Processing, in fact, only
recently started to look at the problem of automatically detecting metaphors [Shutova et al.,
2013] (cf. Subsection 2.1.2), whereas research in computer vision and multimedia processing
did not tackle, to the best of our knowledge, the problem of (media) iconic images at all.
However, there are a lot of related works in broader related domains. These related works
are reviewed, as they might be able to solve the challenge of understanding the message
of images or at least parts of the problem. Since non-literal image-caption pairs (in the
following also referred to as non-literal images or non-literal pairs), at least according to
the definition and data we use in our research, are multimodal due to their tight coupling
between caption and image, we mainly review approaches and insights from the domain of
multimedia modeling and multimedia analysis in the following. Surveys, which give broad
while detailed overviews about different approaches to a specific domain or field of problem,
typically group approaches according to the existence or absence of labeled data, thus, group
according to supervised, semi-supervised (a mix between labeled and unlabeled data), and
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unsupervised approaches. We review all three types of data, however, in Table 2.1, which
is an extended version of the table provided by Bernardi et al. [2016], we do not group
according to the presence or absence of labeled data during training, but according to the
type of approach. These approaches are very diverse and often inspired by works from single-
modality relatives. We review in Table 2.1 the following groups of approaches: statistical and
probabilistic, (shallow) machine learning, neural network, deep learning, common, latent,
and hamming space, tree and (scene) graph, knowledge base, and mathematical optimization.
The latter approaches, such as knowledge base approaches, are less popular.

Furthermore, in Table 2.1, we indicate (marked with x), which tasks are conducted. We
review the tasks of annotation, indexing, retrieval, and generation. We review approaches
working with the modalities text, image, video, and their combinations. The column headers
I, V, and T are abbreviations for the respective modalities, e.g., [Jeon et al., 2003] proposes
a probabilistic model to conduct the tasks of image annotation and image retrieval (cf.
Table 2.1, ID 1).

In the following we distinguish between multimedia indexing and classification and
cross-media retrieval and generation, where the objectives are to represent and to retrieve
or to generate the data, respectively. The approaches follow in principle two different ideas
of representing the training data, either learning one space for each modality type (single
space), e.g., an image and a text space, or jointly learning a common space, representing
both modalities in one space. The results have shown that a common space outperforms
single space approaches. In turn, multimedia modeling usually refers to the combination
of modalities as fusion and the approaches are distinguished by the level of fusion. The
levels are distinguished according to an early, a late, and a hybrid fusion strategy [Atrey
et al., 2010]. An early fusion combines the features from the different modalities, a late
fusion combines the decision of a decision unit for each modality separately (e.g., a classifier
assigns a feature vector to a class), and a hybrid approach uses a mixture between these two.
The retrieval and generation tasks can further be grouped according to the modality that is
retrieved or generated, thus, whether a text or an image is retrieved or generated. Our focus
is put on cross-media approaches, which uses one modality as a query, e.g., an image, to
retrieve the other modality, e.g., a text.

If the approach uses single spaces for the representation of the training data, the retrieval
or generation is conducted via a detour: first, similarities between the query instance and the
training instances are exploited. Second, the affiliated instances of the other modality of the
most similar training instance(s) are used or concatenated as result, e.g., for a query image
the most similar images in the image space are collected, the captions of those images are
presented as the result, ranked by the similarity score between the query and training image.
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2.2.1 Multimedia Indexing and Classification

The task of multimedia indexing is mainly about representing the respective multimedia data.
Representing multimedia data is approached as a classification task, where the goal is to
assign the multimedia instances to one or several classes best representing the content of
the instance. In the context of multimedia data, which consists of image and text, i.e., the
best representing class(es) is given as the class that best describes the most salient object(s)
in the image [Huiskes and Lew, 2008]. The originators of the MIR Flickr benchmarking
dataset presented two different approaches for classification of the data. A Support Vector
Machine (SVM) and a Linear Discriminant Analysis (LDA) based classification. Both
approaches are trained with different feature sets: one using uni-modal features (low-level
features from the vision domain) and one combining the low level visual features with the
textual tags as features [Mark J. Huiskes and Lew, 2010]. There are several successors using
various types of approaches. These are shallow, such as the mentioned SVM or LDA [Mark
J. Huiskes and Lew, 2010], or vector space representations, e.g., high-dimensional vector
space representations based on a cross-lingual latent semantic indexing [Hare and Lewis,
2010]. Furthermore, because of the recent advances in deep learning, there are several deep
approaches. [Srivastava and Salakhutdinov, 2012] present a multimodal deep Boltzman
machine (DBM) for representing multimodal data and for generating for one given modality
the other missing modality (e.g., caption generation for a query image). The approach
benefits from the simpler Restricted Boltzman Machine (RBM) that represents the texts
as binary vectors and from a Gaussian-Bernoulli RBM that represents the image with real-
valued vectors. The DBM is compared to a multimodal version of a Deep Belief Network
(DBN), which is a directed network and where the multimodal modeling takes place in the
joint layer (which is not the case for DBMs, here this responsibility is spread across the
entire network) [Srivastava and Salakhutdinov, 2012]. In [Wang et al., 2016] the problem
is approached with a regularized deep neural network (RE-DNN) making use of the same
feature set as in [Srivastava and Salakhutdinov, 2012] (PHOW, GIST, MPEG-7) compared
with CNN features (features extracted from the last layer before the classification layer of a
Convolutional Neural Network). Finally, in [Chen et al., 2016] the multimodal representation
and image retrieval is addressed with a multi-label hashing approach.

2.2.2 Cross-Media Retrieval and Generation

Similar to multimedia indexing, the cross-media retrieval and generation approaches represent
the multimodal data. As opposed to indexing, the cross-media tasks are evaluated with respect
to the quality of the retrieval and generation tasks, often human annotators are consulted to
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assess the result quality or to build a gold standard, e.g., [Elliott and de Vries, 2015]. In
the following we review related works according to the type of modality that is used for
querying. We separately review both types of modality as the approaches often do not present
a bi-directional approach or do only claim, but not evaluate the bi-directionality; [Chen and
Zitnick, 2015; Verma and Jawahar, 2014] being notable exceptions (cf. Table 2.1, IDs 14
and 19, respectively). Furthermore, we want to get a detailed notion about the ability of each
approach to address literal and non-literal aspects for each modality.

Retrieval or generation of a text for a query image. If approaches make use of single
modality spaces, the image is taken as the query. The method consists of learning the visual
representations and the retrieval of a ranked list of similar images based on detected objects,
detected interactions between objects, detected attributes, and the detected scene. Then often
the ranked list is re-ranked according to visual or textual information [Bernardi et al., 2016].

To learn the visual representations low-level features (e.g., color, texture, and contrast),
higher level features, or descriptors (e.g., SIFT, HOG, Gabor, Haar) are extracted from
the training images. A ranked result list is either retrieved by the similarity to the query
image [Gupta et al., 2012; Ordonez et al., 2011; Patterson et al., 2014] or by a combination
of separate rankings retrieved according to the similarity between image regions of the query
image and training images [Kuznetsova et al., 2012]. The re-ranking is then conducted by
the use of additional visual information [Gupta et al., 2012; Ordonez et al., 2011; Patterson
et al., 2014] or textual information [Gupta et al., 2012; Mason and Charniak, 2014]. The final
caption(s) for the query image are either also presented in a ranking [Hodosh et al., 2013] or
combined to one caption [Kuznetsova et al., 2012].

To summarize the reviewed related works, the focus is clearly on the retrieval and
generation of descriptions or (literal) captions. The objective of these works is to understand
the interconnection of images and texts when both form a communicative unit to convey a
meaning. Consequently, these methodologies are evaluated for their performance to generate
or retrieve literal captions or to understand the pure visually recognizable content of an
image, by making use of the output of object detectors and visual features. This focus is
underlined by the mostly literal datasets that are used in the related works to train and test
the methodologies. Their gold standard annotations which are consulted to evaluate the
respective approaches also address the literal focus (cf. Chapter 3 for further details). In
principle, the presented approaches would be able to retrieve or generate non-literal captions
to a given query image. However, as the data lacks the annotation of non-literal and literal
pairs, it is open for speculation how the models perform if both types of texts are represented
in such a model. Compared to our novel task of gist detection, the objective of generating
or retrieving texts takes place before our actual gist detection, thus, it can serve as input for
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our approach, but it cannot solve the task of understanding the gist of non-literal images or
image-caption pairs (cf. Chapter 5, RQ8 and 9).

Retrieval of an image for a query text. Similar to the research area described in the
previous subsection, there are different tasks that can be solved using a textual query within
a multimodal training data approach, e.g., image annotation, image retrieval, or image
generation. Also similar to the previously described research area there are different ways to
handle the multimodal data. The most relevant difference is the change between query and
target spaces, if the data is represented in single modality spaces. The query is conducted
in the textual space, whereas the target is selected from the vision space. Nevertheless, we
want to review also this domain, as it closes the circle of the question on how image and text
interact with each other.

Some of the works used for text retrieval and generation have also shown to perform well
when the type of modality for query and result are exchanged. Bidirectional mapping of
image and text are often represented in deep learning models [Karpathy et al., 2014] and
compositional semantics, using e.g., KCCA [Hodosh et al., 2013; Socher and Fei-Fei, 2010],
however these approaches annotate the images as a whole, without considering detailed
expressiveness when the relations of objects are changed. Approaches representing images
and texts in scene-graphs [Johnson et al., 2015; Schuster et al., 2015] or so-called visual
dependency representations (VDR) [Elliott et al., 2014] allow for such an exchange as they
better represent the details of the image-text interplay, e.g., image regions do have a tight
coupling to textual labels, attributes, etc.

Similar to the visual query approaches, the textual query approaches of cross-modal
research focus on literal image-text pairs - this focus is again due to the nature of the datasets.
Also similar to the previous conclusion, it remains open for speculation how the models
perform when trained on non-literal or both types of pairs. Besides the fact that non-literal
pairs are out of scope of the focus areas, the question whether the literal meaning is different
from the task that has been approached and solved so far remains unanswered. However,
understanding the meaning of literal image-text pairs is not yet finally solved and thus
remains an active research area. Finally, - and even more important - one can conclude that
understanding the meaning of non-literal image-text pairs is a novel task.
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Table 2.1 Overview of the different multimodal approaches and their tasks (extended version of Bernardi et al. [2016]). Ordered by
the type of approach to represent data.

ID Name Task Methodology

(I)mage, (V)ideo, (T)ext

Annotation Index Retrieval Generation

I V T I V T I V T I V T

Statistical/Probabilistic Approaches

1 Jeon et al. [2003] x x Probabilistic Model

2 Feng and Lapata [2008] x Joint Probabilistic Model, Latent Variable

3 Farhadi et al. [2010] x Probabilistic Model: Markov Random Fields
(MRF)

4 Mark J. Huiskes and Lew
[2010]

x x LDA

5 Kulkarni et al. [2011] x Probabilistic Model: Conditional Random
Fields (CRF)

6 Yang et al. [2011] x Probabilistic Model: Hidden Markov Model
(HMM)

7 Srivastava and Salakhutdinov
[2012]

x x Deep Boltzman Machine (DBM)

8 Gupta et al. [2012] x Probabilistic Model

9 Hodosh et al. [2013] x Kernel Canonical Correlation Analysis

10 Mason and Charniak [2014] x Probabilistic Model
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Table 2.1 Overview of the different multimodal approaches and their tasks (extended version of Bernardi et al. [2016]). Ordered by
the type of approach to represent data.

ID Name Task Methodology

(I)mage, (V)ideo, (T)ext

Annotation Index Retrieval Generation

I V T I V T I V T I V T

11 Yatskar et al. [2014] x Probabilistic Model

12 Johnson et al. [2015] x CRF and scene graphs

13 Schuster et al. [2015] x CRF and scene graphs (Johnson et al. [2015])

14 Verma and Jawahar [2014] x x LDA and CCA

Deep Learning/Neural Network Approaches

15 Karpathy et al. [2014] x x Common Embedding Space (Image
Object-Sentence Tree Embeddings)

16 Socher et al. [2014] x x Dependency Tree RNN (DT-RNN)

17 Mao et al. [2015] x x Multimodal-RNN (m-RNN)

18 Vinyals et al. [2015] x x Neural Image Caption (CNN and RNN)

19 Xu et al. [2015] x x Neural Image Caption and Attention Model
(Stochastic and Deterministic)

20 Chen and Zitnick [2015] x x x RNN with latent variables

21 Donahue et al. [2017] x x Long-term Recurrent Convolutional
Networks (LRCNs)

22 Devlin et al. [2015] x Maximum Entropy (ME) and RNN
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Table 2.1 Overview of the different multimodal approaches and their tasks (extended version of Bernardi et al. [2016]). Ordered by
the type of approach to represent data.

ID Name Task Methodology

(I)mage, (V)ideo, (T)ext

Annotation Index Retrieval Generation

I V T I V T I V T I V T

23 Fang et al. [2015] x ME, CNN, and Multiple Instance Learning
(MIL)

24 Jia et al. [2015] x x Long Short Term Memory (LSTM, extended)

25 Karpathy and Li [2015] x x Multimodal RNN

26 Kiros et al. [2015] x x Joint embedding and LSTM

27 Lebret et al. [2015] x x Common space CNN

28 Yagcioglu et al. [2015] x FC-7 and Distributional Semantics

Common Embedding/Latent/Hamming Space Approaches

29 Gong et al. [2014] x Common Latent Space (Image-Sentence
Embeddings)

30 Ushiku et al. [2015] x Common Subspace for Model and Similarity
(CoSMoS)

31 Chen et al. [2016] x x Multi-label hashing

Machine Learning Approaches

32 Mark J. Huiskes and Lew
[2010]

x x SVM
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Table 2.1 Overview of the different multimodal approaches and their tasks (extended version of Bernardi et al. [2016]). Ordered by
the type of approach to represent data.

ID Name Task Methodology

(I)mage, (V)ideo, (T)ext

Annotation Index Retrieval Generation

I V T I V T I V T I V T

33 Ordonez et al. [2011] x Linear regression, SVM

34 Patterson et al. [2014] x Im2Text [Ordonez et al., 2011]

Knowledge Base Approaches

35 Altadmri and Ahmed [2009] x x x x VisualNet (Knowledge base)

Tree and Scene Graph Approaches

36 Mitchell et al. [2012] x Syntactic Trees (Description Generation)

37 Elliott and Keller [2013] x Visual Dependency Representations (VDR)

38 Elliott et al. [2014] x VDR

39 Elliott and de Vries [2015] x VDR

40 Lin et al. [2015] x Scene/Parse Graphs and Semantic Trees

41 Ortiz et al. [2015] x Statistical Machine Translation Model and
VDR

Mathematical Optimization

42 Kuznetsova et al. [2014] x Tree Composition, Integer Linear Programing
(Description Generation)
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Table 2.1 Overview of the different multimodal approaches and their tasks (extended version of Bernardi et al. [2016]). Ordered by
the type of approach to represent data.

ID Name Task Methodology

(I)mage, (V)ideo, (T)ext

Annotation Index Retrieval Generation

I V T I V T I V T I V T

43 Kuznetsova et al. [2012] x Visual Similarity (Candidate retrieval),
Integer Linear Programing (Description
Generation)

44 Li et al. [2011] x Phrase fusion n-grams
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2.3 Gist Pipeline-Specific Preliminaries

To the best of our knowledge there is no explicit related work for the task of gist detection.
However, this work touches on different research communities evolving around the fields
of object detection from images, entity linking and retrieval. Furthermore, it benefits from
graph structure and content of knowledge bases, which we discuss in detail in the following.

Object detection from images. There are a lot of related works about object detection in
images as it has been in the scope of researchers for decades. In the following we review a
short selection of more recent works. Triggered through benchmark collections for image
retrieval [Thomee and Popescu, 2012] and benchmarking tasks [Russakovsky et al., 2015], a
large body of works focuses on how to detect objects in images [Everingham et al., 2010; Lin
et al., 2014; Ordonez et al., 2011, inter alia]. These either train object detectors from images
with bounding box annotations, use captions to guide the training, or generate captions for
images, based on an unsupervised model from the spatial relationship of such bounding
boxes [Elliott and de Vries, 2015].

Since many images are accompanied by captions, approaches have been devised so that
the usage of text passages from the captions aid the detection of objects and actions - whereas
actions refer to activities that can be detected from still images, such as sitting, riding a bike,
walking - depicted in the image. This idea is exploited using supervised ranking [Hodosh
et al., 2013], using entity linking and WordNet distances [Weegar et al., 2014], and using deep
neural networks [Socher et al., 2014]. One application is image question answering [Ren
et al., 2015]. Research to this end has thus far focused on literal image-caption pairs, where
the caption enumerates the objects visible in the image. In contrast, the emphasis of this
work is on non-literal image-caption pairs with media-iconic messages, which allude to an
abstract gist concept that is not directly visible.

Even though datasets such as ImageNet provide over 14 million images, only 8% have
bounding boxes, which are crucial for training object detectors. The lack of such training
material is the only barrier for application in our domain. For this reason and to facilitate
reproducibility of our research, we simulate object detection or rely on an external system
such as the Microsoft API. While this work builds on object detection tags, it has been shown
that object classes available in ImageNet are insufficient to capture objects found in images
on topics of global warming [Weiland et al., 2015].

Knowledge Bases. DBpedia [Lehmann et al., 2015] is a structured knowledge base, which
extracts knowledge from Wikipedia. It extracts information from categories, the category
hierarchy, or infoboxes. As DBpedia uses a single ontology to represent classes and properties,
it can map content from different language versions of Wikipedia. Furthermore, it uses
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Semantic Web and Linked Data technologies, to provide the structured information. The
ontology is rich in classes and properties (relation types), e.g., currently there are 685 classes
and 2,795 properties (as of 2017).

BabelNet [Navigli and Ponzetto, 2012a] is a multilingual semantic lexicon (network),
which combines information from several different resources, such as WordNet, Wikipedia,
and ImageNet. Similar to DBpedia it provides a SPARQL endpoint and a linked data interface
to provide access to its content and structure. BabelNet reports its statistic on an instance
level: it contains over 13 mio. Babel synsets (concepts) and over 380 mio. lexico-semantic
relations 1.

Similar to DBpedia, Yet Another Great Ontology (YAGO [Suchanek et al., 2007]) is
a knowledge base making benefit of information and content from Wikipedia, where the
information instances are organized according to an ontological structure. Different to
DBpedia, YAGO focuses on, e.g., the spatial and temporal dimension 2.

Entity linking. Detecting entity mentions in text and linking them to nodes in a knowledge
base is a task well studied in the TAC KBP venue. Most approaches include two stages. The
first stage identifies candidate mentions of entities in the text with a dictionary of names. The
second stage disambiguates these candidates using structural features from the knowledge
graph, such as entity relatedness measures [Ceccarelli et al., 2013; Hulpuş et al., 2015] and
other graph walk features [Talukdar et al., 2008]. A prominent entity linking tool is the
TagMe! system [Ferragina and Scaiella, 2010]. A simpler approach, taken by DBpedia
spotlight [Mendes et al., 2011], focuses on unambiguous entities and breaks ties by popularity.
We evaluate both approaches in Chapter 5.

Entity retrieval. We cast our gist detection task as an entity retrieval and ranking task, with
an image-caption pair as the query. As we are using articles and categories as candidates
we will refer to concept retrieval instead of entity retrieval in later chapters. Entity retrieval
tasks have been studied widely in the IR community in INEX and TREC venues [Balog et al.,
2010; Demartini et al., 2009]. The most common approach is to represent entities through
textual and structural information in a combination of text-based retrieval models and graph
measures [Zhiltsov et al., 2015].

Different definitions of entities have been explored. Recently, the definition of an entity
as “anything that has an entry in Wikipedia” has become increasingly popular. Using
entities from a knowledge base that are (latently) relevant for a query for ad-hoc document
retrieval has lead to performance improvements [Dalton et al., 2014; Raviv et al., 2016].

1http://babelnet.org/stats, last accessed 10/26/2017
2https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/faq/, last accessed 10/26/2017

http://babelnet.org/stats
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/faq/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/faq/
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Moreover, using text together with graphs from article links and category membership for
entity ranking has been demonstrated to be effective on free text entity queries such as "ferris
and observation wheels" [Demartini et al., 2008]. In contrast to this previous work, our
paper focuses on a graph expansion and clustering approach.

In order to facilitate a robust ranking behavior, clustering is often combined into a back-
off or smoothing framework. This has been successfully applied for document ranking
by Raiber and Kurland [2013], and our approach adopts it for the case of concept ranking.

Entity relatedness. The purpose of entity relatedness is to score the strength of the semantic
association between pairs of concepts or entities. Similar to concept retrieval, we will refer to
concept relatedness instead of entity relatedness in later chapters. The research on this topic
dates back several decades [Zhang et al., 2013], and a multitude of approaches have been
researched. Among them, we place particular emphasis on measures that use a knowledge
base for computing relatedness. We distinguish two main directions: (i) works that use the
textual content of the knowledge base [Gabrilovich and Markovitch, 2007; Hoffart et al.,
2012], particularly Wikipedia, and (ii) works that exploit the graph structure behind the
knowledge base, particularly Wikipedia or Freebase hyperlinks [Milne and Witten, 2008],
DBpedia [Hulpuş et al., 2015; Schuhmacher and Ponzetto, 2014].

Topic and document cluster labeling. Other research directions that are closely related to
ours are concerned with labeling precomputed topic models [Hulpuş et al., 2013; Mei et al.,
2007] and with labeling document clusters [Carmel et al., 2009]. Topic model labeling is the
task of finding the gist of a topic resulting from probabilistic topic modeling. Solutions to
this related problem make implicit or explicit use of knowledge about words and concepts
harvested from a document corpus. Such knowledge is not available for our problem,
rendering most of these approaches inapplicable.

2.4 Conclusion

The perspective of linguists and communication scientists has provided a detailed analysis of
the message of images and their usage, where the focus of our review is put on the special
form of media-iconic images. Furthermore, these studies have shown that framing images
in the context of text helps to solve ambiguity in the meaning and the perception of images.
Finally, they have spotted several sources of ambiguity, e.g., different semiotic systems due to
a cultural and social bias. Considering the principle how meaning is created and the different
sources of ambiguity, one might notice that the distinction of media-iconic (non-literal)
images from literal images is often not a binary decision. Much more it is a gradient-like
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transition from one to the other, as especially non-literal pairs contain literal elements to
convey a message. With our concept ranking approach we are addressing this fact, however,
to approach the problem of these untrodden paths of understanding the gist, we are talking
about the two classes as of a binary decision problem. These findings serve as foundation
when creating the gold standard and while developing the approach.

Research with multimodal data has gained a lot of attention, especially due to the great
success of deep learning-based approaches in this domain. Despite this trend, multimodal
approaches vary a lot. However, they have some important commonalities. There is a strong
focus on the literal aspects of the data. Thus, objects and activities that can be seen in an
image are annotated with textual labels or described in more detail in a caption. Rarely,
the provided self-contained information of the data is enriched with additional knowledge,
beyond the insights provided by the training data, e.g., Altadmri and Ahmed [2009] aims at a
higher recall in a retrieval process with supplementing the list of annotations with additional
synonyms or hyponym/hypernym relations, i.e., a relation of the type isA representing child-
parent relations, e.g., a Shire horse is a horse. To the best of our knowledge there is no work
representing an image-caption pair as entities of a knowledge base to benefit from common
sense knowledge in a computationally accessible way. Furthermore, none of the previously
mentioned related works have gist annotations, where the information gain is devised a step
further. However, all the multimodal related works show to outperform single modality
approaches. This observation indicates - at least for the literal data - a complementary nature
of images and captions, which results in one of our working hypotheses.

As a novel task is often accompanied by the need of creating at least a corresponding
gold standard annotation, which is conducted and/or assessed by humans, we want to study
existing datasets and gold standards in detail in the next chapter.





Chapter 3

Data Resources

Compared to other research domains, the field of multimodal modeling, especially the fusion
of visual and textual modalities, is relatively young. However, there have already been several
datasets created and a lot of benchmarking challenges conducted. Similar to the related work
chapter the datasets can be grouped according to their different purposes of generating and
retrieving either descriptions or captions.

3.1 Image Datasets

Before starting with an overview of multimodal datasets, unimodal datasets, which as their
name already suggests, consider only one modality, will be reviewed first. They have shown
to be a good foundation when creating multimodal datasets. Finally, their additional material
and own structure (e.g., annotations from lexical hierarchies) already indicate the tight
coupling between vision and text.

ImageNet [Russakovsky et al., 2015] is the visual equivalent to WordNet. WordNet [Fell-
baum, 1998] itself is a hierarchy of lexical concepts allowing for a computational querying
and modeling of linguistic hierarchies and connections. Meaningful concepts, referred to
as synsets, where the majority are nouns, are represented with a collection of images in
ImageNet, e.g., synset: police dog, definition: any dog trained to assist police, especially
in tracking. According to the statistics 1, there are more than 14 million images distributed
over nearly 22,000 synsets, following the aim of providing 1,000 images per synset (current
average number of images per synset is 645). Around 8% of the images have precomputed
descriptors, such as SIFT [Lowe, 2004], and nearly the same amount of images have bound-
ing boxes. The bounding box frames the object depicting the synset itself or higher level

1http://image-net.org/about-stats, latest update: 04/30/2010, last access: 04/30/2017

http://image-net.org/about-stats
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concepts of the synset, e.g., police dogs have bounding boxes referring to the higher level
concept dog.

Between 2005 and 2012 the PASCAL Visual Object Classes (VOC) challenge has
taken place annually. The project had started with two challenges about object detection and
classification of images. Similar to the growing number of challenges, the original dataset
with 4 object classes and 1,578 images from 2005 has grown with each year. Thus, the
final dataset consists of 20 different object classes represented by nearly 12,000 images.
Additionally, 27,450 annotated regions of interest (ROIs) are provided, where, comparable
to bounding boxes, a rectangle frames an object and assigns a corresponding label to the
object frame. Finally, nearly 7,000 segmentations of objects are provided, which aims at
a more detailed understanding of object contours and object-to-object delimitation. The
PASCAL VOC dataset has been fully or partially used and extended with the missing textual
modality in several works from multimodal modeling, e.g., VDR [Elliott et al., 2014], Visual
Phrases [Sadeghi and Farhadi, 2011].

The amount and diversity of available image training data has massively grown. Never-
theless, if one does not want to calculate and search for similarities, but wants to train and
detect objects or phrases (cf. [Sadeghi and Farhadi, 2011]) in an image instead of global
annotations, bounding boxes or segmentations are required to delimit the object from the rest
of the image. These annotations as produced or at least checked by a human, thus, being very
expensive, are often just provided for a limited vocabulary size. Consequently, there is a lack
of adequate training data for less common or more complex object classes, e.g., solar panels.

3.2 Multimodal Datasets

In the following two different classes of multimodal datasets are reviewed. First, datasets
where images are accompanied with descriptions or descriptive captions. In general a
descriptive caption aims at everything that can be seen in the image and that is self-contained,
thus, being understandable without prior information or external knowledge. Second, datasets
where images are accompanied by captions from newspapers and media. These captions
can be descriptive, but they can also be non-descriptive (non-literal). In general a non-literal
caption is a caption that often complements the information conveyed by the image and that
often refers to abstract and not visually recognizable concepts, as found, for instance, in an
external knowledge base.
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1. A large wild cat is pursuing a horse across a
meadow.

2. A lioness chases a black animal with horns.

3. A lioness closes in on its prey.

4. a lioness is chasing a black bison across a
grassy plain.

5. The lioness attacks a wildebeest on a plain.

Figure 3.1 An example image with five descriptive captions from the Flickr8k/30k datasets.
The captions are created by human annotators and sometimes not completely correct, e.g.,
wrong object names, spelling errors. (image by Steve Johnson (CC BY-NC-SA 2.0), http://bit.ly/2wBfeol, last accessed
09/21/2017.)

3.2.1 Images and Descriptive Texts

The Flickr8k [Hodosh et al., 2013] and its extension Flickr30k have 8,092 and 30,000
images, respectively, collected from six different groups from flickr.com. These groups, e.g.,
Wild-Child (Kids in Action), contain images that show humans and animals performing an
activity. However, to guarantee diversity across the dataset the images are manually selected.
Within an extensive crowd-worker project for each of the images five different human written
descriptive captions were collected. On average the captions have 11.8 words. Only 21% of
the images do not have any verb or common verbs (i.e., sit, stand, look) in their descriptions,
which reflects the focus of the actions.

Similar to the previous dataset, the MIR flickr 2 dataset [Huiskes and Lew, 2008] collects
images and texts from Flickr as a resource. In 2008 the MIR flickr consisted of 25,000
images, in 2010 the dataset increased to 1 million. However, instead of complementing the
images with the descriptions from Flickr, the tags and exif metadata are provided. Both text
types are given in the original version from Flickr and in an edited version, where spaces and
punctuations are removed and upper-cases are substituted by lower-cases. The dataset targets
at different challenges, such as visual concept/topic recognition, tag propagation, and tag
suggestion. Thus, besides the tags a user has assigned to an image, the images are assigned
to at least one topic. The annotators can select from a pre-defined list of 10 general and 19
subtopics. Furthermore, they assess whether a topic is relevant or potentially relevant for an
image, e.g., to address the fact that the annotator is not fully confident about whether or not a
topic is relevant for an image [Huiskes and Lew, 2008].

2http://press.liacs.nl/mirflickr/, last accessed 09/22/2017

http://press.liacs.nl/mirflickr/


36 Data Resources

<TITLE>Salvador - Pelourinho</TITLE>
<DESCRIPTION>A narrow, rising street with
colourful houses on both sides, among them a
green house with balconies and a white car parked
in front of it, and a blue-and-white church on the
right; one car is going up the street; there are a few
people in the street and a large thundercloud in the
background;</DESCRIPTION>
<NOTES>The old town of Salvador (Pelourinho)
has been announced world cultural heritage by
the UNESCO; the name of the church is Nossa
Senhora do Rosário dos Pretos;</NOTES>
<LOCATION>Salvador, Brazil</LOCATION>
<DATE>March 2002</DATE>
<IMAGE>images/00/42.jpg</IMAGE>

Figure 3.2 An example image from the IAPR TC-12 dataset with English annotation, such as
title and description. (available free of charge and without any copyright restrictions, last accessed 09/22/2017.)

The IAPR TC-12 [Grubinger et al., 2006] dataset is also an upstart from an evaluation
campaign initiated by ImageCLEF (Cross Language Evaluation Forum). It contains 20,000
images, each with a descriptive caption in three different languages (in fact, not all images
have a caption in all languages). Image titles pin down the name of the location or the
event. As a part of the images is provided by a travel agency, beside sports, actions, animals
and people, also landscapes and cities are represented in the collection. Additionally, to
the diversity of the photo motifs, there is a variety in the scenery conditions, e.g., cities in
different lighting or different seasons. All textual information is generated by humans and
proofed within an additional iteration for correctness according to rules, e.g., cardinality
of named objects. The segmented and annotated IAPR TC-12 (SAIAPR TC-12) dataset
takes a step further and provides segmented images and masks with object labels of those
for all 20,000 images. The dataset is supplemented with image features and relationship
information between regions in one image.

The SBU Captioned Photo Dataset [Ordonez et al., 2011] resulted from a research
about automatically generating descriptive captions. It contains 1 million images with corre-
sponding descriptive captions. As the image-caption pairs are collected using a text-based
query from Flickr, where noise is a major issue, the pairs are manually and automatically
proofed for certain criteria. Thus, in each caption at least one prepositional word, which
describes visible relationships or interactions between objects, and at least two terms from a
pre-defined term must be used to be accepted. The pre-defined list of terms includes objects,
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Images of the ruins of Patras castle on the hill over-
looking the city. A view over the city.

Figure 3.3 An example image from the SBU Captioned Photo Dataset. (image by Automatomato (CC
BY-SA 2.0), http://bit.ly/2hnf89g, last accessed 09/22/2017.)

attributes, actions, scenes, and other things. Based on this pre-defined list also the initial
queries to collect the pairs are manually created.

The BBC News Database [Feng and Lapata, 2008] has 3,361 items, each consisting of a
triple of an image, a caption, and an article text. These triples are collected from the news
website of BBC (http://news.bbc.co.uk/). The dataset aims at the task of automatic image
annotation. Instead of using expensive manual annotation of the images, three annotation
baselines are proposed. Thus, the baseline annotations consist of top-k annotations according
to tf-idf, the document title, and the output from the continuous relevance model [Lavrenko
et al., 2004]. For the first and second baseline (tf-idf and title, respectively), only nouns,
verbs, and adjectives are considered. The later baseline is trained on image captions.

The SVCL Cross-Modal Multimedia Retrieval 3 dataset [Rasiwasia et al., 2010] con-
sists of a selection of around 2,800 featured articles from Wikipedia, which are grouped
according to categories, i.e., arts, music, sports. The dataset consists of pairs of one image
and one text, where the text is the paragraph text in which the image appears in the original
Wikipedia article. All other aspects of a Wikipedia article, e.g., links to other articles, the
paragraph title, or the image caption, are discarded in the dataset. Instead, for all images the
SIFT [Lowe, 2004] features are provided.

Compared to the days when data was only available on CDs, it is now more than ever
feasible to collect large amounts of data. The proof of the data itself and the generation
of gold standards or baselines are most often conducted by humans. Summarizing the
focus of the presented datasets, the majority of datasets considers literal, thus, descriptive
texts (captions or descriptions). Only the BBC News Database is collected from a source
(news), which typically plays with metaphoric language, associations derived from additional
knowledge, and a stronger dependency on the interplay between the image and the caption.

3http://www.svcl.ucsd.edu/projects/crossmodal/, last access: 04/30/2017

http://news.bbc.co.uk/
http://www.svcl.ucsd.edu/projects/crossmodal/
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Figure 3.4 Example article from the BBC dataset with image and caption (excerpt). No
further annotation is provided. (http://bbc.in/2yhEXhV, last accessed 09/22/2017.)

Figure 3.5 The SVCL Cross-Modal Multimedia Retrieval dataset contains images of featured
articles and the affiliated paragraphs in which the images appear. Note: Some elements, such
as the caption or titles, of the article are not included in the dataset. The image shows an
excerpt of one of the contained featured Wikipedia articles PRINCE’S PALACE OF MONACO
(https://en.wikipedia.org/wiki/File:Monte_Carlo_Casino.jpg, Wigulf commonswiki, CC BY 2.5, last accessed 09/22/2017).
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Table 3.1 Overview of the different datasets and their additional material, e.g., image object
segmentation

Name Images Text

# of Images Object Location given? # per Image Type

BBC News (Feng and Lapata [2008]) 3,361 - 1 Article and Caption
Déjà-Image Caption (Chen and Zitnick [2015]) 4,000,000 - Varies Descriptive Caption
IAPR-TC12 (Grubinger et al. [2006]) 20,000 - 1-5 Descriptive Caption
SAIAPR-TC12 (Escalante et al. [2010]) 20,000 Annotated Segments 1-5 Descriptive Caption
Pascal1K (Rashtchian et al. [2010]) 1,000 Bounding Boxes 5 Descriptive Caption
VLT2K (Elliott and Keller [2013]) 2,424 Region Annotations 3 Descriptive Caption
Flickr8K (Hodosh et al. [2013]) 8,108 - 5 Descriptive Caption
Flickr30K (Young et al. [2014]) 31,783 - 5 Descriptive Caption
Abstract Senses (Zitnick and Parikh [2013]) 10,000 Annotated Segments 6 Descriptive Caption
MS COCO (Lin et al. [2014]) 164,062 Annotated Segments 5 Descriptive Caption
SBU1M Captions (Ordonez et al. [2011]) 1,000,000 - 1 (Descriptive) Caption
MIR Flickr 25k (Huiskes and Lew [2008]) 25,000 - avg 8.94 Tags
SVCL Cross-Modal (Rasiwasia et al. [2010]) 2,866 - 1 Article (Main Section)
ImageNet (Russakovsky et al. [2015]) 14,197,122 Bounding Boxes - -

None of the mentioned datasets provides gist annotations to pinpoint the message of an
image-caption pair, nor do the datasets contain both types of pairs, texts, or images (literal
and non-literal).

3.3 Gist Dataset

To conduct the experiments we use the dataset for understanding the message of images
covering the topic of non-literal and literal image-caption pairs first introduced in [Weiland
et al., 2016]. Previously, there has not been any dataset aiming at the detection of non-literal
pairs, consequently, none of the existing datasets included neither non-literal, nor both (literal
and non-literal) types of pairs 4.

We define the understanding of image-caption pairs as a concept retrieval and ranking
task with image-caption pairs as query. The image-caption pair queries are represented by
concepts in the knowledge base. We detail the corresponding entity linking gold standard in
subsection 3.3.1. As the message of an image is represented by several concepts assigned
with a ranking value, we discuss the gold standard for the concept ranking in subsection 3.3.2.

From the newspaper The Guardian, Our World magazine, and the website of the organi-
zation ‘Union of Concerned Scientists’ 5 we collect image-caption pairs related to the topic

4Our previous work in [Weiland et al., 2014] provides us only with images.
5https://www.theguardian.com; https://ourworld.unu.edu; http://www.ucsusa.org
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Table 3.2 Overview of the themes and their amount of instances in the dataset.

Topic Non-literal Literal Instances

Sustainable energy Wind energy Windmill 15
Sustainable energy Solar power Solar panel 17
Endangered species Endangered species (rainforest) Orangutan 18
Endangered places Coral bleaching Coral reef 17
Climate change Flash flood and flooding Rain and river 17
Climate change Heat waves and drought Ground and paddock 18
Deforestation Deforestation Rainforest 20
Endangered species Endangered species (arctic) Polar bear 19
Pollution Air pollution Smokestacks and smog 19
Pollution Waste Disposable cups 4

of global warming. We consider six related narrower topics: sustainable energy, endangered
places, endangered species, climate change, deforestation, and pollution. Whereas each of
the narrower topics have sub-themes used to collect dataset instances, e.g., solar power and
wind energy are sub-themes of sustainable energy. Each of the sub-themes have a literal
pendant. In Table 3.2 we give a complete overview of the instance per sub-theme distribution.

The collected pairs are non-literal pairs. As these pairs convey gists based on common
knowledge, they satisfy the requirement for a realistic, but challenging dataset. Alternative
descriptive captions are created for each image to obtain literal image-caption pairs. The
result is a balanced collection of 328 image-caption pairs (164 unique images). Compared to
other benchmarking datasets it is a small dataset, but the pure number of images is misleading,
as one has to consider the ranking of gist nodes (over 8,000 in total) and a diverse concept
coverage used in the images and captions of around 800 different entities. Furthermore, this
is the first test collection for literal and non-literal image-caption pairs with gold standard
gist annotations and simulated object tags 6. In order to benchmark the proposed approach
for selecting and ranking the gist nodes, and to narrow the potential risk of noise given by
automatic object detection, we let annotators assign bounding boxes and object labels to the
image from a predefined list of concepts. To arrive at a baseline, that is comparable with
automatic image object detectors, the list of selectable concepts has to be limited to objects
that are in principle depictable. The annotators used a set of 43 different concepts (e.g.,
Windmill, Solar panel, Orangutan) to annotate the visible objects in the images. The images
are annotated with an average of 3.9 concepts per image, which is a total of 640 annotated
bounding boxes for the complete dataset (cf. Table 3.3 for the number of occurrences per
concept).

6https://github.com/gistDetection/GistDataset
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Table 3.3 Overview of the number of image objects according to their label, 43 labels with
640 bounding boxes in total, avg. 3.90 per image.

Label Amount Label Amount Label Amount Label Amount

Windmill 72 Coral 23 Bus 3 Crane 1
Vegetation 59 Smoke 17 Cow 3 Kite 1
Person 54 Snow 15 Sign 3 Mountain 1
Floor 53 Fish 13 Smog 3 Roof 1
Building 44 Tree 13 Backhoe 2 Street 1
Solar Panel 38 Car 8 Monument 2 Sun 1
Ocean 31 Cup 8 Straw Bale 2 Water 1
Polar Bear 30 Cooling Tower 6 Traffic Sign 2
Orangutan 28 Coral Reef 6 Wood 2
Grass 27 Trunk 5 Bird 1
Smokestack 27 Bicycle 3 Cloud 1
Sky 25 Boat 3 Construction 1

3.3.1 Query Representation: Entity Linking

The set of labels for the images are provided to the annotators. These were selected from the
knowledge base. Consequently, for every image label the corresponding entity link is already
existing.

The captions, which are collected from the web and created from human annotators,
require - due to their complexity and the tendency of language of being ambiguous - another
approach to create the initial gold standard entity links. The captions are therefore pre-
processed with a typical pipeline from natural language processing containing part-of-speech
extraction and lemmatization, resulting in a set of nouns and noun phrases in their lemmatized
form. For each of the nouns and noun phrases we provide candidates generated with three
different methodologies. For the first method a concept from the knowledge base, which
matches the string of the noun or noun phrase, is retrieved. If the result is a page of an
ambiguous term, each of its concepts is collected. An annotator decides for a given image-
caption for each of its nouns and noun phrases with candidate concepts, whether the concept
represents the mentioned noun (binary decision). For ambiguous pages, the question to be
answered is which of the candidate concepts best represent the entity mention in the caption.
The same approach is conducted for categories in the knowledge base. For the second
method the candidates for the entity mentions are generated based on a query likelihood
model on the texts associated with the concepts. Again, annotators have to decide whether
the concept represents the entity mention in the caption. The third methodology relies on
TagMe! [Ferragina and Scaiella, 2010], an external API with the purpose of entity linking.
Here, instead of linking already extracted nouns and noun phrases, the whole captions are
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used to generate the entity links. Annotators decide about whether the proposed entities
represent the marked entity mention. The results of the annotation process of all three
methodologies build the gold standard. We are aware of the fact that in the gold standard
entity mentions can be linked to multiple concepts in the knowledge base, e.g., one method
resolves the orangutan to the main page of ORANGUTAN and another resolves it to the page
of BORNEAN ORANGUTAN. However, an entity linking method is considered correct if one
of the gold standard links is found. This way, we allow for diverse set of entities, which are
more complex, while producing a common sense for those which are less ambiguous. Entity
linking strategy optimization is not in the scope of our research, we rather focus on taking
advantage of the knowledge base.

3.3.2 Gist Ranking

In order to evaluate the results of our gist selection and ranking, experts select concepts
from the knowledge base which best represent the message. Additionally, they grade the
concepts based on relevance levels ranging from 0 (non-relevant) to 5 (most relevant). In the
following we will refer to concepts with grade 5 as core gists and to concepts with level 4
or 5 as relevant gists. A pair can only have one concept graded with level 5. This concept
represents the most relevant aspect of the gist.

Of the 8,191 non-zero gist node annotations in total (≈25 per pair), 3,100 obtain a grade
of 4 or higher. The list of gold standard gists in the dataset are grouped by topical gists,
which can be seen as some sort of core gist.

For the non-literal pairs it is often the case, that the core gist corresponds to one of the
before mentioned six aspects of the domain of our testbed, such as Endangered Species. A
corresponding literal core gist is Orangutan. Among all relevant nodes in this study: 54.6 %
of all gist nodes are entities and 45.4% are categories.

3.3.3 Visual Linking

Finally, in order to provide us with a ground truth to evaluate whether the visual linking as
a feature (RQ11) improves the performance of the concept ranking, annotators separately
assessed links between nouns and noun phrases from the caption to labels of the objects in
the image.

Multiple linking is allowed in an NxM manner: As one caption noun can link to several
image objects, e.g., an image showing two polar bears and the caption just mentions "polar
bears", both of the image objects are linked to "polar bears". In turn, as image objects are
not labeled according to their parts, it is allowed to link several caption nouns to one image
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object, e.g., the caption nouns "man" and "shoulder" are linked to the corresponding "person"
image object. In the dataset there are 640 image labels, with 43 different object categories,
1433 entity mentions for the non-literal captions, and 849 entity mentions for the literal
captions, with 801 different entity mentions. 23 of those cannot be mapped to any entity,
however, they are considered as candidates for the visual linking.

Annotators are provided with the image, the caption, and an overlay of image objects with
their label and the nouns and noun phrase passages in the caption we have previously extracted
via the NLP pipeline. The task is to find for the labels in the image a correspondence in the
caption, with the caption concept itself being necessarily a depictable (visually recognizable)
object. To help the annotators with this assessment they are provided with concepts from
ImageNet (cf. Section 3.1 for further details on ImageNet). Consequently, links can be a
string match of the lemma forms between image object label and caption noun - a principle
that is quite comparable to the entity linking procedure. However, a link can also be
something which has a concept hierarchy-based hyponym/hypernym relation, e.g., plant and
tree. Therefore, the WordNet hierarchy is also provided to the annotators.

For the literal pairs 523 of the 640 image labels can be connected via manual visual
linking to correspondences in the caption. 84 of them are multi-links, e.g., a caption noun is
linked to two or more correspondent objects in the image. For the non-literal pairs 297 of
such correspondences can be found, with 57 being multi-links.

3.4 Conclusion

Compared to other test collections in computer vision, our gist dataset of 328 “queries” is
a rather small collection. However, this is the first test collection for literal and non-literal
image-caption pairs with gold standard gist annotations, labeled image object bounding
boxes, entity linking of entity mentions in the text and the image, and visual linking. This
makes this dataset a valuable source to foster further research on the topic of gist detection
and understanding. Finally, it allows for an analysis with respect to the distinction between
non-literal and literal image-caption pairs.





Chapter 4

Understanding the Message of Images

4.1 Introduction

Newspaper articles and blog posts are often accompanied by figures, which consist of an
image and a caption. While in some cases figures are used as mere decoration, more often
figures support the message of the article in stimulating emotions and transmitting intentions.
This is especially the case in matters of controversial topics, such as, for instance, global
warming, where emotions are conveyed through so-called media icons [Drechsel, 2010;
Perlmutter and Wagner, 2004]: images with a high suggestive power that illustrate the topic.
A picture of a polar bear on melting shelf ice is a famous example cited by advocates stopping
carbon emissions [O’Neill and Smith, 2014]. As such, many image-caption pairs are able to
broadcast abstract concepts and emotions [O’Neill and Nicholson-Cole, 2009] beyond the
physical objects they illustrate.

As mentioned, previous research in image understanding has focused on the identification
and labeling of objects that are visible in the image (e.g., PascalVOC [Everingham et al.,
2010], MS COCO [Lin et al., 2014], Im2Text [Ordonez et al., 2011], to name a few, cf. also
Section 2.3). Recently, the captionbot system [Tran et al., 2016] was proposed to generate
captions for a given image. However, all these approaches focus on the description of what
can be explicitly found, i.e., is depictable, within pictures 1. For the example in Figure 1b,
captionbot generates the caption: “I think it’s a brown bear sitting on a bench.”. But despite
many research efforts having focused on the so-called problem of bridging the semantic gap
in both automatic image and text analysis – namely, the process of replacing low-level (visual
and textual) descriptors with higher-level semantically rich ones – few people looked at the

1Throughout the paper, we use the terms depictable and non-depictable to refer to concrete and abstract
aspects of image-caption pairs and their gists, respectively.
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Mammals of Southeast Asia, Trees,

Orangutans, Botany, Plants

(a) Literal Pairing

Habitat Conservation, Biodiversity,

Extinction, EDGE species, Deforestation

(b) Non-literal Pairing

Habitat Conservation, Biodiversity,

Extinction, Politics, Protest

(c) Non-literal Pairing

Figure 4.1 Example image-caption pairs sharing either images or captions with their
respective gist nodes (a, b: http://reut.rs/2cca9s7, REUTERS/Darren Whiteside, c:
http://bit.ly/2bGsvii, AP, last accessed: 10/20/2016.)

complementary, even more challenging problem of bridging the intentional gap, namely
understanding the intention behind using a specific image in context [Kofler et al., 2016].

We take a first step towards addressing this hard problem by presenting a method to
identify the message that an image conveys, including also abstract (i.e., non-depictable)
topics. Specifically, we look at the task of identifying and ranking concepts that capture the
message of the image, hereafter called gist. Starting from the visible objects in the image
and entity mentions in the caption, we study the use of external knowledge bases for the
identification of concepts that represent the gist of the image. Thus, we cast the problem
of gist detection as a concept retrieval and ranking task with the following twist: Given an
image-caption pair, retrieve and rank concepts from Wikipedia according to how well they
express the gist of the image-caption pair.

4.2 The Problem of Image Gist Understanding

Our goal is to understand the gist conveyed by a given image-caption pair. In this work
we make a first step in this direction by algorithmically identifying which concepts in a
knowledge base describe the gist best. We cast the task of gist detection as a concept ranking
problem – namely, to predict a ranking of concepts (i.e., Wikipedia articles and categories)
from a knowledge base ordered by their suitability to express the gist of a given image-caption
pair.
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Task Definition: Predict a ranking of concepts from the knowledge base ordered by their
relevance to express the gist of the message.

Given: An image instance and its associated textual caption, and knowledge base, viewed
as a graph consisting of a vocabulary of concepts or entities (i.e., nodes), associated textual
descriptions, and semantic relations between them (i.e., edges).

Output: A ranked list of concepts expressing the message conveyed by the image.

Terminology: seed vs. gist knowledge base nodes. In order to leverage the content and
structure of the knowledge base, a link between the objects that are visible in the image, the
linguistic expressions (i.e., nouns, proper names) found in the caption and their corresponding
concepts in the knowledge base is established using so-called linking methods: we call the
corresponding nodes in knowledge graph seed nodes. Here, we aim to rank the nodes of
the knowledge graph based on their relevance to the seed nodes, thus, the initial query. The
highly ranked ones then become the gist of the image-caption pair. A node that corresponds
to the gist of an image-caption pair is referred to as gist node: as a consequence, in this
work a gist concept can refer to any node in a given knowledge graph, envisioning any of the
general-purpose knowledge bases that are congruent to Wikipedia (including DBpedia [Bizer
et al., 2009], YAGO [Hoffart et al., 2013], etc.).

Beyond literal meaning: literal vs. non-literal image-caption pairs. We define an image
and its affiliated textual caption as image-caption pair. We define further two types of
pairs, depending on the kind of message they convey. Literal pairs are those in which the
caption describes or enumerates the objects depicted in the image. Figure 4.1a) exemplifies a
literal image-caption pair. Non-literal pairs, of which media icons are an example, are those
conveying an abstract message and where images and captions often contain complementary
information. Figure 4.1b) shows a non-literal pair with the gist HABITAT CONSERVATION.

We claim that in order to understand the gist of images, both the image and the caption
are needed. As they together form a union, an image-caption pair can encode a different
gist by changing the caption. Vice versa, combining a caption with a different image can
shift the focus of the gist or change the semantics. To illustrate the effects of different image-
caption pairs, we show three different pairs as examples in Figure 4.1. Two of the pairs are
media icons commonly used to convey the message of species threatened by deforestation.
One is a literal pair (cf. Figure 4.1a), which lacks the connection to threat, extinction, and
deforestation. The caption describes the image showing an orangutan in what seems to be a
national park. The gist of the pair is BORNEAN ORANGUTAN.

By exchanging the caption it becomes apparent that the gist is habitat conservation to
save an endangered animal (cf. Figure 4.1b). Considering the corresponding caption thus
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helps in the disambiguation of the gist. On the other hand, captions alone are often brief,
and when taken out of the context of the image, they fail to convey the entire gist. For
instance, by inspecting only the caption Fight to save Indonesia’s jungle corridors key for
endangered orangutan, it is not clear whether the focus is on endangered species as victims
of deforestation, as depicted Figure 4.1b, or on people who fight for habitat conservation, as
depicted in Figure 4.1c. That is, only an image can disambiguate the gist. We consequently
consider an image-caption pair as the targeted query for which gist concepts are ranked.

4.3 Preliminaries

The main idea behind our approach is that a general-purpose knowledge base such as
Wikipedia can aid the algorithmic understanding of the message conveyed by image and
caption. We hypothesize that the way articles and categories are connected in Wikipedia can
be exploited to identify nodes that capture the gist of the image-caption pair. In the following,
we shortly explain preliminaries that are applied within our pipeline, but that are not part of
our contribution.

4.3.1 Knowledge Graphs

Given a knowledge base, we define a knowledge graph as the directed or undirected graph
KG(V,E,T ) such that the set of nodes V contains all nodes representing concepts in the
knowledge base, every edge ei j ∈E, E ⊆V ×T ×V corresponds to a relation in the knowledge
base between two nodes vi and v j, and the set T contains the relation types in the knowledge
base 2.

Node properties. One of the most commonly used properties of nodes is their degree [Grif-
fiths et al., 2007]. The degree of a node is the count of all edges that are adjacent to it.
Another property of nodes is their tendency of being part of triangles called local clustering
coefficient [Griffiths et al., 2007]. It is computed as the probability that any two random
neighbors of a node are connected themselves.

Our intuition is that these measures help to find a balance between specific and trivial
nodes, and thus, the correct gist nodes. The degree and clustering coefficient of nodes are
local measures that describe the nodes only in their closest vicinity.

Graph centrality measures. In the domain of network analysis, a wide range of graph cen-
trality measures have been used with the purpose of locating the most important or influential

2We consider the knowledge graph to be undirected, unless specified otherwise. Additionally, we denote
labeled edges in the graph as (vi, t,v j), which is assumed to imply: i) vi,v j ∈V , ii) (vi, t,v j) ∈ E, iii) t ∈ T .
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nodes in the network. The PageRank [Brin and Page, 1998] scores nodes based on their
stationary probability that a random surfer will visit them. Betweenness centrality [Freeman,
1978] defines a node as more important the more often it lies on the shortest path between
any two nodes in the graph.

Given a knowledge graph KG, as we detail later, our approach makes use of a distance
metric σ (−1) : V ×V → ℜ+ between two nodes. This metric captures the inverse of a simi-
larity, relatedness, or semantic association measure between the concepts that are represented
by the nodes. There are two of the main classes of measures: (i) those based on textual
content associated with nodes and (ii) those based on a graph measure. In this work we are
interested in using both content and graph structure.

4.3.2 Entity Relatedness

Content-based relatedness. Additionally we incorporate a content-based measure of re-
latedness. As each node in the DBpedia knowledge graph has a corresponding article in
Wikipedia, we leverage a retrieval index on Wikipedia articles.

For a given entity mention, an object tag, or textual representation of the whole image-
caption pair, we can use a retrieval model, which uses a query likelihood, to associate a
measure of relevance with each node.

Graph-based relatedness. A great variety of semantic relatedness measures have been
studied [Zhang et al., 2013]. We follow Hulpuş et al. [Hulpuş et al., 2015] who introduce the
exclusivity-based measure, which we use as a node metric σ (−1). The authors found that it
works particularly well on knowledge graphs of categories and article membership (which
we use also) for modeling concept relatedness. It was shown to outperform simpler measures
that only consider the length of the shortest path, or the length of the top-k shortest paths, as
well as the measure proposed in [Schuhmacher and Ponzetto, 2014].

The exclusivity-based measure assigns a cost for any edge s r→ t of type r between source
node s and target node t. The cost function is the sum between the number of alternative
edges of type r starting from s and the number of alternative edges of type r ending in t, as
shown in Formula 4.1.

cost(s r→ t) = |{s r→∗}|+ |{∗ r→ t}|−1, (4.1)

where 1 is subtracted to count s r→ t only once.
The more neighbors are connected through the type of a particular edge, the less infor-

mative that edge is, and consequently the less evidence it bears towards the relatedness of
its adjacent concepts. By summing up the costs of all edges of a path p, one can compute
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the cost of that path, denoted cost(p). The higher the cost of a path, the lower its support for
relatedness between the nodes at its ends. Thus, given two nodes, s and t, their relatedness is
computed as the inverse of the weighted sum of the costs of the top-k shortest paths between
them (ties are broken by cost function). Each path’s contribution to the sum is weighted with
a length-based discounting factor α:

σ(s, t) =
k

∑
i=1

α
length(spi)× 1

cost(spi)
(4.2)

where spi denotes the ith shortest path between s and t. α ∈ (0,1] is the length decay
parameter and k is a number of shortest paths to consider.

4.4 Methodology

The main idea behind our approach is that a general-purpose knowledge base such as
Wikipedia can be used to understand the message conveyed by an image and its caption. To
this end, we develop a framework for gist detection based on the following pipeline: First,
detected objects in the image and entity mentions in the caption are linked to a reference
machine-readable repository of knowledge, i.e., a knowledge base such as the one provided
by Wikipedia [Hovy et al., 2013]. Our hunch is to exploit the content and connectivity of the
knowledge base, i.e., Wikipedia, which we view as a graph (hence a ‘knowledge graph’), in
order to identify relevant topics that capture not only the content of the image-caption pair,
but also its intended meaning. By using the knowledge base as a graph, we can represent
the concepts collected through object detection (in the image) and entity detection (in the
caption), as nodes. Next, the neighborhood of these projected nodes in the knowledge
graph is inspected to provide a set of candidates of possible gists. Finally, we combine
(1) content-based features, extracted from the analysis of Wikipedia text, and (2) graph-
based features obtained by analyzing Wikipedia’s underlying article-category graph. These
features are combined into a node ranking model that pinpoints the gist concepts for a given
image-caption pair.

At the heart of our method lies the idea that we can leverage the content and structure of
a knowledge base to identify concepts (i.e., Wikipedia pages in our case) that capture the gist
of the image-caption pair. Our hunch is that, given a knowledge graph that covers the subject
of the image-caption pair, the gist concepts lie in the proximity of those mentioned in the
caption or depicted in the image, namely the seed nodes. We define features of candidate
gist nodes based on their graph relations or textual content according to their corresponding
concept page in the knowledge base. These, in turn, are used to build a supervised ranking
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Figure 4.2 Our gist extraction and ranking pipeline (edges between nodes removed for
simplicity).

model that is able to rank concepts on the basis of their relevance for the image-caption pair.
By using the knowledge base, our method is able to identify gist concepts that are neither
visible in the image nor explicitly mentioned in the caption. We expect this hypothesis to be
true especially for pairs with an abstract gist, e.g., media icons. Examples of such concepts
transmitting the message referred to as gist are GLOBAL WARMING, ENDANGERED SPECIES,
BIODIVERSITY, or SUSTAINABLE ENERGY 3. Despite not being depictable and consequently
identifiable by image recognition, the gist nodes will likely be in close proximity in the
knowledge graph to the objects in the image that are visible, as well as to the concepts
mentioned in the captions.

We present our approach as a pipeline (Figure 4.2). For explanatory purposes, we make
use of the media icon of Figure 4.1b to provide us with a running example to illustrate each
step of our pipeline.

4.4.1 The Wikipedia and DBpedia Knowledge Graphs

Wikipedia provides a large general-purpose knowledge base [Hovy et al., 2013]. Furthermore,
and even more importantly for our approach, the link structure of Wikipedia can be exploited
to identify topically associative nodes. In this work, our knowledge graph contains as
nodes all articles and categories from the English Wikipedia. As for edges, we consider
the following types of relations T , named by their DBpedia link property, which have been
previously found to provide useful information for topic labeling [Hulpuş et al., 2013]:

• Page-category links: The category membership relations that link an article to the
categories it belongs to (e.g., page Wildlife corridor is categorized under WILDLIFE

3We use Sans Serif for words and queries, SMALL CAPS for gists, Wikipedia pages and categories.
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CONSERVATION). These relations provide topics for different aspects of the concepts
described by the Wikipedia page.

• Super- and sub-category links The relationship between a category and its parent
category (e.g., WILDLIFE CONSERVATION is a sub-category of CONSERVATION), as
well as its children categories (e.g., CONSERVATION is a super-category of EDGE
SPECIES). Relations between categories can be taken to capture a wide range of topical
associations between concepts of different granularities [Nastase and Strube, 2012],
including semantic generalizations and specializations [Ponzetto and Strube, 2011].

4.4.2 Step 1: Image and Caption Node Linking

Initially, we project objects depicted in the image and concepts mentioned in the caption onto
nodes in the knowledge base. That is, given an image-caption pair (C, I), we want to collect a
set of seed nodes S in the knowledge graph (Section 4.2). Here, we view the caption as a set of
textual mentions C = {m1, . . . ,mn}, namely noun phrases that can be automatically extracted
using a standard NLP pipeline (in this work, we use the StanfordNLP toolkit [Manning et al.,
2014]). Next, each mention m ∈ C is linked to a set of corresponding concepts from the
knowledge graph VC ∪λ ⊂ V , namely the caption nodes, or λ , a conventional symbol to
represent the ‘undefined concept’. The image is viewed as consisting of a set of object labels
I = {l1, . . . , ln} that are either manually given, or are taken from the output of an automatic
object detector. Similarly to the captions’ mentions, each of the labels l ∈ I needs to be
linked to a set of knowledge graph concepts VI ∪λ ⊂V , namely the image nodes. Finally,
we take the union of mapped textual mentions and object labels, namely caption and image
nodes as the set of seed nodes – i.e., the concepts from the knowledge base that correspond
to the entities and objects found in the image-caption pair:

S =VC ∪VI, S ⊂V (4.3)

There exist many different ways to link string sequences such as textual mentions (from
the caption) and object labels (from the images) to concepts in a knowledge base – i.e.,
the so-called problem of entity linking, which has received much attention in recent years
(cf. Chapter 2). Here, we opt for a simple iterative concept linking strategy that is both
applicable to captions’ mentions and images’ object labels, and is particularly suited for
short object labels for which no textual context is available to drive the disambiguation
process. First, we attempt to link mentions and labels to those Wikipedia articles whose title
matches lexicographically, e.g., INDONESIA. Additionally, whenever we find a title of a
disambiguation page ORANGUTAN (DISAMBIGUATION), we include all redirected articles
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Figure 4.3 Example of intermediate graph for the image-caption pair in Figure 4.1b.

that can be reached with two hops at most from previously linked nodes along the Wikipedia
graph. In our experiments (cf. Chapter 5), we demonstrate that this simple approach is, for
the purpose of our task, as good as TagMe [Ferragina and Scaiella, 2010], a state-of-the-art
entity linking system.

Example. In our working example (Figure 4.1b), objects in the image have been associated
with labels like orangutan, sign, trunk, tree, ground, and vegetation. The NLP pipeline,
instead, extracted mentions from the caption like fight, Indonesia, jungle, corridor, key,
and orangutan. These, in turn, are linked to seed nodes such as INDONESIA and WILDLIFE

CORRIDOR, among others (Figure 4.3, depicted in grey).

4.4.3 Step 2: Intermediate Graph Expansion

Especially for media-iconic pairs, one cannot assume that the gist corresponds to any of
the concepts found among those obtained by linking either the image labels or the textual
captions. For instance, in the case of our example (Figure 4.1b), we cannot find the gist node
EDGE SPECIES among any of the seed nodes identified in Step 1 (i.e., those highlighted in
gray in Figure 4.3). That is, Step 1 may not be sufficient to identify such gists by simple entity
linking, especially in the case of abstract, non-depictable concepts that are rarely mentioned
explicitly in the caption.

We operationalize our hypothesis that gist nodes will be found in the knowledge base on
paths between seed nodes as follows. We start with the seed nodes from Step 1 and build
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a query-specific knowledge graph by extracting all the paths that connect pairs of seeds –
similar in spirit to previous approaches for knowledge-rich lexical [Navigli and Lapata, 2010]
and document [Schuhmacher and Ponzetto, 2014] understanding.

To produce our semantic graphs, we start with the seed nodes S and create a labeled
directed graph GI = (VI,EI) as follows: a) first, we define the set of nodes VI of GI to
be made up of all seed concepts, that is, we set VI = S; b) next, we connect the nodes in
VI based on the paths found between them in Wikipedia. Nodes in VI are expanded into
a graph by performing a depth-first search (DFS) along the Wikipedia knowledge graph
(Section 4.4.1) and successively adding all simple directed paths v,v1, . . . ,vk,v′ ({v,v′} ∈
S) of maximal length L that connect them to GI , i.e., VI = VI ∪ {v1, . . . ,vk}, EI = EI ∪
{(v, t1,v1), . . . ,(vk, tk,v′)}, ti ∈ T . As a result, we obtain a subgraph of Wikipedia containing
the initial concepts (seed nodes), together with all edges and intermediate concepts found
along all paths of maximal length L that connect them. In this work, we set L = 4 (i.e., all
paths with a length shorter than 4), based on a large body of evidence from previous related
work [Hulpuş et al., 2013; Navigli and Ponzetto, 2012a; Schuhmacher and Ponzetto, 2014,
inter alia]. We call the nodes along these paths, except the seed nodes, intermediate nodes,
I =VI \S. The graph resulted from combining all the nodes on these paths (including the
seeds) as well as the edges of the paths, is what we call the intermediate graph:

KGI(VI,EI,T ), VI = S∪ I (4.4)

Example. The graph shown in Figure 4.3 is obtained by connecting three concepts, namely
ORANGUTAN, INDONESIA and WILDLIFE CORRIDOR with connecting paths found in
Wikipedia.

4.4.4 Step 3: Border Graph Expansion and Node Relatedness

The intermediate graph can be used to identify the region of the reference knowledge graph
(i.e., Wikipedia) that covers the topics of the image-caption pair. However, while graphs of
this kind have been extensively shown to be useful for text lexical understanding [Navigli and
Lapata, 2010; Navigli and Ponzetto, 2012b; Ponzetto and Navigli, 2010, inter alia], it might
still be the case that they do not contain relevant gist nodes – e.g., in the graph in Figure 4.3
we cannot find any of the gists HABITAT CONSERVATION, BIODIVERSITY, EXTINCTION,
EDGE SPECIES or DEFORESTATION from our example (Figure 4.1b). We additionally expand
the intermediate graph to include all neighbors and their connecting paths that can be reached
within two hops from the nodes it contains.
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Figure 4.4 Border graph example for the image-caption pair in Figure 4.1b. For simplic-
ity, the image does not make the distinction between article nodes and category nodes,
and it also omits edge directions and edge costs.

To expand our semantic graphs we use a procedure similar in spirit to the one we used
to create intermediate graphs. We start with the nodes from the intermediate graph VI and
create a labeled directed graph GB = (VB,EB) as follows: a) first, we define the set of nodes
VB of GB to be made up of all nodes from the intermediate graph by setting VB = VI; b)
next, we expand the set of nodes in VB using a DFS along Wikipedia, such that for all
paths v,v1, . . . ,vk,v′ (v ∈VI , v′ ∈V ) of maximal length 2 we set VB =VB∪{v1, . . . ,vk,v′} and
EB = EB ∪{(v, t1,v1), . . . ,(vk, tk,v′)}, ti ∈ T . The nodes that are added to the graph by the
expansion are called border nodes, as they lie between the seeds, intermediates, and the rest
of the knowledge graph, i.e., B =VB \VI . We name the resulting graph the border graph:

KGB(VB,EB,T ), VB = S∪ I ∪B (4.5)

Figure 4.4 shows a part of the border graph obtained from the intermediate graph of Fig-
ure 4.3.

Given a knowledge graph KG, our approach makes use of a distance metric σ (−1) :
V ×V →R+ between two nodes: this metric captures the inverse of similarity, relatedness, or
semantic association measure between the concepts that are represented by the nodes in the
knowledge graph. A great variety of semantic relatedness measures have been studied [Zhang
et al., 2013]. We follow Hulpuş et al. [2015], who introduce the exclusivity-based measure
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that we use here as a node metric. The authors found that it works particularly well on
knowledge graphs of categories and article membership (which we use also) for modeling
concept relatedness. It was shown to outperform simpler measures that only consider the
length of the shortest path, or the length of the top-k shortest paths, as well as the measure
proposed in [Schuhmacher and Ponzetto, 2014].

This metric is used in two ways when extracting the top gist candidates:

• Step 4a) clustering the seed and intermediate nodes;

• Step 4b) selecting border nodes close to clusters as gist candidates.

Example. According to Figure 4.4, this leads to a richer semantic graph that includes the
concepts HABITAT, BIODIVERSITY, and EDGE SPECIES. Some of these constitute good
candidates for gist nodes. Besides, their inclusion affects the pairwise metric distance
between the seed nodes. From the sparse information in the intermediate graph (Figure 4.3),
it is already clear that INDONESIA is much closer than WILDLIFE CORRIDOR. Now, the
border graph encloses a semantic relatedness, which might prefer structural further away
concepts or penalize structural closer concepts, such as the mentioned INDONESIA and
ORANGUTAN, just because they are connected over paths that are semantically less relevant.
However, in our example, the structural short distance is in line with the semantic relatedness:
we find that INDONESIA and ORANGUTAN are much closer than WILDLIFE CORRIDOR and
ORANGUTAN.

4.4.5 Step 4a: Cluster Seed and Intermediates

After the previous step, we obtain a graph that contains all the concepts from the image and
its caption, as well as other concepts from the knowledge graph that lie in close proximity. As
previously stated, our assumption is that the gist nodes are part of this graph, and that graph
properties will make them identifiable. However, a challenge is that often, an image-caption
pair covers multiple sub-topics. These sub-topics represent different aspects of the core
topic (cf. core gist) of an image-caption pair, e.g., the core gist HABITAT CONSERVATION

has the aspects of habitat conservation in general and region-specific habitat conservation
(cf. Fig 4.6, expressed by the clusters in dashed lines). Applying the border graph strategy
directly on the seed and intermediate graph in the presence of multiple topics will most often
result in a semantic drift and low-quality results.

Consequently, we identify weakly related sub-topics of an image-caption pair by cluster-
ing the set of seed and intermediate nodes: for this, we apply Louvain clustering [Blondel
et al., 2008], a nonparametric network clustering algorithm, to the border graph KGB,
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Figure 4.5 Example of seeds and intermediates, clustered based on their pairwise metric.

weighted using our metric σ . The clustering results in groups of seed and intermediate
nodes C = {C1, . . . ,Cn} (Ci ⊆ S∪ I) that broadly correspond to different sub-topics of the
image-caption pair.

Example. Figure 4.5 shows two clusters identified for our example (Figure 4.4): C1 is about
wildlife conservation, containing the seed node WILDLIFE CORRIDOR, and C2 covers instead
topics about Indonesia, including both ORANGUTAN and INDONESIA.

4.4.6 Step 4b: Selecting Gist Candidates

In the next step, we identify suitable border nodes that make good gist candidates. We
hypothesize that these are the border nodes that are close to any of the clusters according to
the metric σ . We therefore compute for every border node x ∈ B its average distance σ̄ to
each cluster Ci ∈C:

σ̄(x,Ci) =
1
|Ci| ∑

y∈Ci

σ(x,y) (4.6)

For each cluster Ci, we select its candidate border nodes as the top-k scoring concepts GistCi .
The final set of candidate gist nodes is built as the union of the top-k border nodes across all
clusters, together with the set of seed and intermediate nodes:

Gist =
⋃

Ci∈C

GistCi ∪S∪ I (4.7)

These nodes constitute the candidate node set which is ranked in the following step.

Example. The association of top-border nodes with the two example clusters is illustrated in
Figure 4.6. For instance, the extended wildlife cluster C1 includes HABITAT and BIODIVER-
SITY, whereas both ORANGUTAN CONSERVATION and the geographic region KALIMANTAN
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Figure 4.6 Example of clusters of seeds and intermediates, extended with their most related
border nodes (top borders). The border nodes that have only weak semantic associations
to the clusters are filtered out (e.g., TOOL-USING MAMMALS and URBAN STUDIES AND

PLANNING TERMINOLOGY).

are associated with the extended cluster C2. The border node CONSERVATION is associated
with both clusters. These border nodes are included in the candidate set, in contrast to border
nodes with a high distance such as URBAN STUDIES AND PLANNING TERMINOLOGY or
TOOL-USING MAMMALS which are left out.

Important to note is that the clusters are generated according to the current intermediate
graph with the current seed and intermediate nodes. Thus, concepts, which are left out for
one image-caption pair, however, can be included for another pair, by changing the caption
or the image, e.g., another caption might lead the gist candidate selection method to include
TOOL-USING MAMMALS and to leave out CONSERVATION.

4.4.7 Step 5: Supervised Node Ranking

For our task, we train a supervised learning model on labeled data, a method which has been
shown to provide robust performance across a wide range of information retrieval and natural
language processing tasks [Li, 2011]. Moreover, it provides us with a clean experimental
setting to evaluate the contribution of different information sources (i.e., relevance indicators).

The objective of the learning-to-rank method is then to learn a retrieval function such that
the computed ranking scores produce the best possible ranking according to some evaluation
or loss function. For each of the candidate nodes among those found in the set Gist, a feature
vector x is created and ranked for relevance with supervised learning-to-rank. Many of our
features rely on the topography of the graphs we built as part of our pipeline, including node
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degree and local clustering coefficient [Griffiths et al., 2007], as well as graph centrality
measures like PageRank [Brin and Page, 1998] and betweenness centrality [Freeman, 1978].
Consequently, the feature vector consists of the features listed in Table 4.1 collected from the
various steps of the pipeline:
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Table 4.1 Features for supervised re-ranking

Feature Pipeline Feature set type

Step seed intermediate border other baseline

1. is seed node? 1 X

2. is intermediate node? 2 X

3. Page Rank on intermediate graph 2 X

4. Betweenness centrality on 2 X

intermediate graph

5. is border node? 3 X

6. max node-cluster relatedness 4 X X

7. avg node-cluster relatedness 4 X

8. sum node-cluster relatedness 4 X

9. is member of cluster with 4 X

most seed nodes?

10. is member of cluster with 4 X

most seeds/intermediates?

11. fraction of seeds in cluster 4 X

12. fraction of seeds and 4 X

intermediates in cluster

13. query likelihood on KB text - content (text) X
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Table 4.1 Features for supervised re-ranking

Feature Pipeline Feature set type

Step seed intermediate border other baseline

14. Jensen-Shannon divergence on KB text - content (text)

15. in-degree of node - global (KB)

16. clustering coefficient - global (KB)
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Seed and intermediate features (#1–4, Steps 1–2). Seed and intermediate nodes are distin-
guished by two binary features. For all the nodes in the intermediate graph, we compute and
retain their betweenness centrality and their PageRank score as features.

Border features (#5–12, Steps 3–4). We introduce a feature indicating the border nodes.
We leverage information from the clustering step by associating each node with its average
proximity σ̄(x,Ci) (Equation 4.6) to the nearest cluster Ci. This feature is also used as an
unsupervised baseline in the experimental evaluation. Since border nodes can be associated
with more than one cluster (cf. CONSERVATION in Figure 4.6) we additionally add features
capturing the sum (and average) proximity to all clusters, i.e., ∑Ci∈C σ̄(x,Ci).

We assume that the more seed nodes are members of a cluster, the more relevant this
cluster is for expressing the gist of the image-caption pair. This assumption is expressed in
two features: a binary feature indicating nodes which are members of the cluster containing
the highest number of seed nodes; and a fraction of all seed nodes that this node is sharing a
cluster with (summing fractions for nodes with multiple cluster memberships). Exploiting
the potential benefit of the joint set of seed and intermediate nodes, we further indicate
membership of the cluster with the highest number of nodes that are seed or intermediate
nodes, as well as the fraction of all seed or intermediate nodes in shared clusters.

Content features (#13–14). We include two content-based similarity measures for image-
caption pairs. For this we concatenate all (distinct) entity mentions from the caption and
all object annotations from the image as a keyword query. We use the query to retrieve
textual content associated with article and category nodes using a query likelihood model
with Dirichlet smoothing (cf. study of smoothing methods in language models [Zhai and
Lafferty, 2004]). The retrieval model is then used to rank nodes in the candidate set relative to
each other. We use this ranking as a baseline for the experimental evaluation and include the
reciprocal rank as a node feature. Complementary, in later experiments (cf. Chapter 5, from
RQ 8) we also add the Jensen-Shannon divergence, which is calculated between the Wikipedia
article texts associated with concepts (category concepts are associated with the text of the
equivalent article). The former addresses the topical relevance [Croft et al., 2009] and the
later addresses the textual similarity between the texts of query and candidate concepts. As
the texts of category pages are very short or consist only of link names to Wikipedia articles,
we use a substitution strategy for the categories also in these later experiments: if there is a
corresponding article to a category, we use the article text for the content features instead.

Global features (#15–16). Finally, we include global node features that are independent of
the image-caption pair. These include the in-degree of a node in the knowledge base (i.e.,
the number of incoming links for a Wikipedia page or category), as well as its clustering
coefficient.
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Learning-to-rank model. Our generated feature vectors serve as input for a list-wise
learning-to-rank model [Li, 2011]. In a learning-to-rank setting, the image-caption pairs
are the set of documents D, with di as the i-th document (following the notation of [Li,
2011]). The themes described in Table 3.2 of Section 3.3 are the set of queries, denoted
by Q, where qi is the i-th query. The j-th image-caption pair for a query qi is represented
as a feature vector xi, j = φ(qi,di, j) of feature functions φ , such as Betweeness Centrality.
Finally, S′ = (xi,yi) represents the training data for qi, with y denoting the set of labels
{1,2, ...,5}. The objective is to find a parameter setting φ̃ that maximizes the scoring
function: π̃ = argmaxπi∈Πi

S(xi,πi). Specifically, we use RankLib 4, trained with respect to
the target metric Mean-Average Precision (MAP). For optimization we use coordinate ascent
with a linear kernel [Metzler and Bruce Croft, 2007].

4.5 Conclusion

We presented a knowledge-rich approach to discover the message conveyed by image-caption
pairs. We focused on a heterogeneous dataset of literal image-caption pairs – whose topic is
described through objects and concepts found in either the picture or the accompanying text –
as well as non-literal ones – i.e., referring to abstract topics, such as media-iconic elements
found in news articles. Using a manually labeled dataset of literal and non-literal image-
caption pairs, we cast the problem of gist detection as a ranking task over the set of concepts
provided by an external knowledge base. Specifically, we approached the problem using a
pipeline that: i) links detected object labels in the image and entity mentions in the caption
to nodes of the knowledge base; ii) builds a semantic graph out of these ‘seed’ concepts; iii)
applies a series of graph expansion and clustering steps of the original semantic graph to
include additional, non-depictable concepts and topics within the semantic representation;
iv) combines several graph-based and text-based features into a node ranking model that
pinpoints the gist nodes.

4https://sourceforge.net/p/lemur/wiki/RankLib





Chapter 5

Experiments

In the following, we investigate our proposed approach according to several aspects formu-
lated in twelve different research questions (RQs). Our concept ranking task is benchmarked
in RQs 1 through 4, where we first evaluate our entity linking strategy to create the seed nodes
(RQ1), look at the suitability of different semantic graphs (RQ2), perform extensive feature
analysis (RQ3), and conduct an analysis of the clustering (RQ4). RQ5 and RQ6 evaluate
different aspects related to the benefit of filtering gist candidates. RQ7 studies whether
gist concepts are in principle depictable (visually recognizable). The role of automatic
object detection and caption generation is addressed in RQ8 to RQ11. Finally, in RQ12 we
investigate the impact of visual linking between caption and image concepts.

Gold standard. We use the dataset and the gold standard for understanding the gist of
non-literal and literal pairs, as described in Chapter 3. In order to benchmark the proposed
approach for selecting and ranking the gist nodes, and to narrow the potential of noise given
by automatic object detection, we use the manually assigned object labels for the experiments
in RQ1–5. For the evaluation of RQ1, additionally, the query representation via entities is
used (cf. Section 3.3.1). All learning-to-rank experiments are evaluated on the Gist Ranking
described in detail in Section 3.3.2. RQ11 uses the visual links as described in Section 3.3.3.
Similar to the simulated object detector RQ11 uses the ’perfect’ visual links to evaluate the
impact of this feature on the overall gist ranking without additional noise from imperfect
linking between image and caption concepts.

Experimental setup. We use a combined knowledge base aligning Wikipedia (WEX dump
from 2012), Freebase (from 2012), and DBpedia (from 2014). This knowledge base is
used for concept linking, deriving edges for the graph, and the content-based retrieval
methods. Concepts in DBpedia are referred to by an URI. The last part of the URI is the
same as the last part of the URL of an Wikipedia article, e.g., the URI http://dbpedia.org/

http://dbpedia.org/resource/Orangutan
http://dbpedia.org/resource/Orangutan
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resource/Orangutan and the URL https://en.wikipedia.org/wiki/Orangutan denote the same
concept. The URLs of categories in Wikipedia have the prefix ’Category:’, DBpedia uses
the same prefix, e.g., https://en.wikipedia.org/wiki/Category:Mammals_of_Indonesia and
http://dbpedia.org/resource/Category:Mammals_of_Indonesia, respectively. As articles and
categories are concepts, and concepts are nodes in the knowledge graphs, the previously
described mapping between URLs and URIs can be used to align the nodes from one
knowledge graph to the equivalent node of the other knowledge graph. We benefit from
the fact that the different knowledge bases provide us with different edges, e.g., DBpedia
provides us with typed edges such as "rdf:type", whereas Wikipedia provides us with Wiki
links (e.g., links in the Wikipedia article text to another Wikipedia article). These different
edges and thus, the different graph structures allow us to calculate a diverse set of features
(cf. Table 4.1).

As relatedness measure (Section 4.4.4), we use the metric σ (−1) from Hulpuş et al. [2015].
We use their settings for hyperparameters α = 0.25 and take the k = 3 shortest paths.

Evaluation metrics. We evaluate with five-fold cross validation using standard retrieval
metrics such as Mean Average Precision (MAP), Normalized Discounted Cumulative Gain
(NDCG), and Precision (P), which are calculated until a given rank indicated by @k, e.g.,
@10. Unless noted otherwise we binarize the assessments to relevant and non-relevant gists.

Baselines. We compare our approach with four different baselines. The first is a content-
based method using the texts of Wikipedia article and category pages to construct a query
likelihood model with Dirichlet smoothing [Zhai and Lafferty, 2004]. A query likelihood
model ranks documents of a collection according to their likelihood of being relevant for the
query. The likelihood can be calculated in different ways, e.g., based on the term probabilities
(unigram language model). Smoothing is a method to regularize, in that the probability
0 for unseen data is avoided (thus, the chance of overfitting the data is regularized). For
a given image-caption pair used as the query, we evaluate the resulting ranking of gist
candidates according to the ranking of the probabilities given by the query likelihood model
(cf. Table 5.5, Baseline Wikipedia). The second baseline generates a ranking according to the
relatedness measure computed in Step 4b. As a candidate node can be a member in several
clusters, we consider the maximum relatedness score for the ranking (cf. Table 5.5, Baseline
Max relatedness node-cluster). A third baseline randomly ranks the seed nodes instead
(Table 5.6, Baseline Random Seeds), so as to assess the need for external knowledge. Finally,
as a fourth baseline the confidence values of each detected object from the Microsoft Services
API (in the following referred to as MS tag) are used to generate a ranking (Table 5.7,
Baseline MS tag confidence). This baseline is compared to the experiments using the
state-of-the-art object detector.

http://dbpedia.org/resource/Orangutan
http://dbpedia.org/resource/Orangutan
https://en.wikipedia.org/wiki/Orangutan
https://en.wikipedia.org/wiki/Category:Mammals_of_Indonesia
http://dbpedia.org/resource/Category:Mammals_of_Indonesia
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Table 5.1 Number of image and caption nodes after entity linking.

Non-Literal Literal Overall

Image Caption Image Caption

Unique nodes 43 674 43 298 806
Total occurrences 640 1612 640 894 3780

5.1 RQ1: Seed node linking (Step 1) – Which strategy finds
the best seed nodes?

We first evaluate the entity linking performance of the simple string-match method used in
Step 1 to produce a set of image nodes and caption nodes. These together form the set of
seed nodes. We use a separate gold standard to evaluate the correctness of the established
links (i.e., not the same gold standard used in RQ2 and RQ3). That is, in order to provide
us with a ground truth to evaluate RQ1, annotators separately assessed links between entity
mentions from the caption and objects of the image to nodes in the knowledge base, which
were validated for correctness.

Image and caption nodes. Table 5.1 shows that a total of 806 different Wikipedia concepts
(i.e., pages or categories) are linked across all pairs of images and captions for a total of
3,780 links. Overall, only five noun phrases in captions could not be linked to the knowledge
base (e.g., underwater view). Images make use of an object vocabulary of 43 different
nodes with a total of 640 links across all images (since each image is manually paired with a
literal and a non-literal caption, there is no difference between the columns). We observe a
much wider range of nodes when linking entity mentions in the caption. In particular we
notice a smaller vocabulary for literal image-caption pairs (298 unique nodes) compared to
non-literal pairs (674 unique nodes), where each concept is mentioned about three times on
average. However, we find that the caption nodes from literal versus non-literal pairs nearly
have no overlap.

Entity linking. The set of seed nodes is given by the union of image and caption nodes. In
Step 1 we link object labels and entity mentions to article nodes (String2Article). However,
the same procedure could have been applied to category names as well (String2Category).
We first compare these two methods to entity links produced by TagMe, a state-of-the-art
system [Ferragina and Scaiella, 2010]. Furthermore, we use the retrieval index of texts
associated with nodes and output the top ranked node (Wikipedia index). Table 5.2 presents
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Table 5.2 Correctness of different entity linking methods for image and caption nodes.

Linking Method P R

String2Article 0.9 0.97
String2Category 1.0 0.27
TagMe 0.7 0.83
Wikipedia index 0.81 0.98

precision and recall achieved by these four methods on the set of all 806 unique image/caption
nodes. We find that all methods perform reasonably well, where only the category-based
linking strategy cannot associate a vast majority of 581 objects/mentions. In particular, we
find that our heuristics in Step 1 outperform TagMe and are better in precision than retrieving
from the Wikipedia index.

Discussion. The TagMe system poorly performs on our dataset despite being a strong state-
of-the-art entity linking system. Manual inspection revealed that TagMe is particularly strong
whenever interpretation and association is required, for instance to disambiguate ambiguous
names of people, organizations, and abbreviations. In contrast, the concepts we are linking in
this domain are mostly common nouns, for which Wikipedia editors have done the work for us
already. In the remaining cases that need disambiguation, our heuristic is likely to encounter
a disambiguation page. At this point, we are using a well-known disambiguation heuristic
by using graph connections to unambiguous contextual mentions/objects. We conclude that
our simple entity linking method on articles works much better than on categories and better
than TagMe.

Summary of findings. We propose to use objects that have been manually extracted from the
image and entity mentions from the caption of the pair, and apply a simple string-matching
strategy for linking those objects and entity mentions to nodes, which we call the seed nodes,
without direct disambiguation. The actual disambiguation is then implicitly achieved in the
subsequent steps of graph traversal and re-ranking. We show that this straightforward “lazy”
linking strategy provides comparable results to state-of-the-art algorithms.
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Table 5.3 Quality of the gist candidate selection method. Significance is indicated by *
(paired t-test, p-value ≤ 0.05).

Avg cands. P R F1 ∆F1%

Seeds 8.6 0.18 0.16 0.17 0.0
Intermediates 11.4 0.19 0.22 0.21 +19.0%*
Top Borders 31 0.09 0.30 0.14 -21.4%*

5.2 RQ2: Distribution of relevant gist nodes (Steps 2–4) –
Which graph is best?

Benefits of graph expansion. We first investigate whether good gist nodes are found in close
proximity to the depicted and mentioned seed nodes. To this end, we distinguish proximity
in the three expansion layers of seed, intermediate, and top-k border nodes (Step 1, 2, and 4b,
respectively), and evaluate the benefits of each graph expansion by studying how precision
and recall change with respect to the selection of relevant gist nodes for each expansion
step. The results are presented in Table 5.3, where we provide precision, recall, and balanced
F-measure, together with the number of average candidates per image-caption pair. In order
to judge the significance of improvement for F1 we evaluate the relative increase in precision,
on a per-image-caption-pair basis, and report the average (denoted ∆). Significance is verified
with a paired-t-test with level 0.05.

We find that especially the expansion into the intermediate graph increases both recall
and precision. While the increase in F1 is relatively small, it is statistically significant across
the image-caption pairs, where it yields an average increase of 19%. The expansion into the
border graph of Step 3 and its contraction to the closest border nodes in Step 4b yields the
new set of top border nodes. While it increases recall quite drastically, the loss in precision
leads to a significant loss in F1 (over the seed set).

Distribution of high-quality gists. We next change perspective and ask in which expansion
set the majority of high-quality gists are found. Initially, we hypothesized that especially
for non-literal image-caption pairs, fewer good gists will be found in the seed set, which
motivated the graph expansion approach. Accordingly, we separately report findings on
literal and non-literal subsets. We study two relevance thresholds in Table 5.4, for relevant
gists (grade 4 or 5) as well as a stricter threshold including the core gists (grade 5 only).

Focusing on the distribution of relevant gists, we notice that more than half of the gists
are already contained in the seed set, and about 20% are found in the intermediate set. The
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Table 5.4 Statistics about proportion of relevant (grade 4 and 5) and core gists (grade 5).

Grade 4 or 5 Grade 5

All Non-Lit. Literal Non-Lit. Literal

Seeds 53.79% 53.46% 53.96% 57.89% 70.75%
Intermediates 21.05% 21.70% 20.73% 07.89% 17.92%
Borders 25.16% 24.84% 25.32% 34.21% 11.32%

much larger border set still contains a significant portion of relevant gists. Focusing on
the differences between literal and non-literal pairs, we find that there are no significant
differences between the distributions. Where gists with grade 4 or 5 are highly relevant, they
still include the most important visible concepts for non-literal image-caption pairs. However,
regarding the distribution of gists with grade 5, we notice that 71% of the high-quality gists
in literal pairs are found in the seed set, which is in contrast to only 58% for non-literal pairs.
Also, for non-literal image-caption pairs we found the most useful gists in the set of border
nodes with a high cluster proximity.

Discussion. We confirm that many relevant and high-quality (grades 4 and 5) gists are found
in the seed set and the node neighborhood. The large fraction of nodes available in the border
set (compared to the intermediate set) suggests that limiting the intermediate graph expansion
in Step 2 to be between seed nodes is too restrictive. We see our initial assumption confirmed
in that literal image-caption pairs, which is where most of the related work is focusing on,
contain more visible gists, and those are directly visible in the image or mentioned in the
caption. For non-literal pairs, the high-quality gists are not only invisible, but also more often
only implicitly given. Nevertheless, the graph-based relatedness measures are able to identify
a reasonable candidate set.

Summary of findings. We study the distribution of highly relevant gist nodes and whether
good gist nodes are found in close proximity to the depicted and mentioned seed nodes. We
distinguish proximity in the three expansion layers of seed, intermediate, and top-k border
nodes and evaluate the benefits of each graph expansion. We show that while the gist nodes
for about half of the studied image-caption pairs are among the seed nodes, for the other half
one must look for the gist further away from the seeds, especially for non-literal pairs.
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5.3 RQ3: Learning to rank image gists (Step 4–5) – Which
features reveal the gist nodes?

We next evaluate the overall quality of our supervised node ranking solution (Section 4.4.7).
We further inspect the question of whether features generated by global and local graph
centrality measures, especially those derived from border graph expansions, enhance the
overall gist node ranking. Moreover, we use our supervised learning-to-rank approach to
evaluate the benefit of the feature sets collected over the various steps of our pipeline. To
this end, we train a learning-to-rank model using the ground-truth judgments of relevant
gist nodes (cf. the previous description of our gold standard). Due to the limited amount of
image-caption pairs, we opt for a 5-fold cross validation using each image-caption pair as
one “query”: in this way we are able to predict 328 node rankings for all image-caption pairs,
while keeping training and test data separate.

We study the research question with respect to both, non-literal, and literal pairs and
report ranking quality in terms of mean-average precision (MAP), NDCG@10, and precision
(P@10) of the top ten ranks. We train and compare four models based on our feature set
(Table 4.1): (i) all features, (ii) all features except for the border features, (iii) all features
except for the intermediate features, (iv) the subset of border features only. This helps us to
understand and assess the different aspects of content and graph-based semantic relatedness.
Moreover, we implemented two baselines (using the features highlighted in Table 4.1): One
retrieves Wikipedia text using the query likelihood model on all entity mentions and object
annotations concatenated, the other is based on an unsupervised ranking according to the
maximal node-cluster relatedness measure σ described in Step 4. The results, presented in
Table 5.5, are tested for significance (p-value ≤ 0.05).



72
E

xperim
ents

Table 5.5 Entity ranking results (grade 4 or 5) of supervised learning-to-rank. Significance is indicated by * (paired t-test, p-value
≤ 0.05).

Both Non-Literal Literal

MAP ∆% NDCG P MAP ∆% NDCG P MAP ∆% NDCG P

@10 @10 @10 @10 @10 @10

All Features 0.69 0.0 0.73 0.7 0.56 0.0 0.6 0.56 0.82 0.0 0.87 0.84

All But Borders 0.66 -4.4* 0.7 0.67 0.54 -6.9* 0.57 0.55 0.78 -4.9* 0.83 0.8

All But Interm. 0.69 -0.3 0.71 0.7 0.56 +0.7 0.57 0.57 0.81 -1.0 0.85 0.83

Only Borders 0.63 -8.7* 0.64 0.64 0.52 -10* 0.54 0.52 0.73 -11* 0.74 0.76

No Clusters 0.70 +1.4 0.74 0.70 0.55 -1.7 0.59 0.54 0.83 +1.2 0.87 0.83

Baselines

Wikipedia 0.43 -38* 0.48 0.37 0.43 -24* 0.46 0.37 0.44 -46* 0.37 0.49

Max relatedness
node-cluster

0.27 -57* 0.57 0.30 0.24 -57* 0.59 0.31 0.31 -62* 0.31 0.54
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Overall results. Our approach achieves a relative high ranking performance of 0.69 MAP
across all image-caption pairs. As expected, ranking non-literal image-caption pairs is much
harder (MAP: 0.56) than for literal pairs (MAP: 0.82). Yet, even in the non-literal case,
more than half of the nodes in the top-10 are relevant. Thanks to our approach, we are
able to beat the baselines by a large margin. The baseline which ranks nodes by the query
likelihood model on all entity mentions and objects achieves a MAP of 0.43 (being 38%
worse). The baseline which just includes the max node-cluster relatedness obtains an even
worse performance of 0.27 for MAP, even though both achieve the same P@10 performance.

Feature analysis. We next look at the contribution of different types of features (cf. Ta-
ble 4.1), and compare the performance changes in an ablation study (cf. Table 5.5). When
only the border features are used the ranking quality drops significantly, by up to 11%. This
indicates the importance of the global graph, intermediate graph, and content-based features.
The maximum quality drop is for literal pairs, which indicates that the literal pairs benefit less
from the graph expansion to two hops around seeds and intermediates than the non-literal
pairs. When we use all the features except the border ones, the performance drops by up
to 7%. This drop is stronger for non-literal pairs, reinforcing the fact that non-literal pairs
benefit more from the border features. This performance drop cannot be detected when
the intermediate features are not considered (not significant), the results are more or less
comparable to the results of the complete feature set.

Summary of findings. We thoroughly analyze global and local graph features, as well as
content features for image gist ranking using a learning-to-rank approach. We show that the
combination of the two types of features achieves the highest accuracy. Furthermore, we
show the superiority of our solution in comparison with both supervised and unsupervised
baselines. The fact that our full re-ranking pipeline improves so drastically over both a
retrieval and a cluster-relatedness baseline demonstrates the benefit of our approach.



74 Experiments

5.4 RQ4: What is the impact of clustering the candidate
nodes?

As the pipeline is already very complex and consists of different steps, we ask whether we
can simplify it further. In this research question we evaluate the need for a clustering of the
candidate nodes and investigate if this step changes the gist candidates and the final ranking.
We use the same set of features in the same learning-to-rank approach. However, skipping
the clusters has a direct impact to the border features (#5-–12), in that they might not differ
in their sub-groups, e.g., the features maximum, average, and sum of the relatedness values
for each node become the same (#6–8): the sum over all relatedness values for a node.

The MAP for both types of pairs without clustering the candidates is 0.70 (cf. Table 5.5,
No Clusters). The MAP results compared to the clustering are better for literal pairs (MAP:
0.82 vs. 0.83) and worse for non-literal pairs (MAP: 0.56 vs. 0.55). However, none of the
results are significant.

Summary of findings. There can be no significant difference reported between clustering
the candidates or considering all candidates at once. However, the clustering can have a
positive impact to the calculation performance, because the calculation of all shortest paths
between candidates evolves quadratic in worst case, whereas the clusters reduces the number
of pairs to consider. Consequently, we keep the clustering in our pipeline and evaluate all
subsequent research questions with respect to features that might be different because of the
clustering.
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5.5 RQ5: Ranking different sets of candidate gists – Which
node types reveal the gist?

The statistics from Table 5.4 indicate that gist nodes are scattered across all sets of concepts
gathered throughout our pipeline (i.e., seeds, intermediate and border nodes). Consequently,
we next investigate the ability of our supervised model in detecting gists across these different
regions: we benchmark this by conducting an ablation study and comparing different sets
of candidate gists as input, which are collected from the different regions of our semantic
graphs. We evaluate the performance of our learning-to-rank approach on four different node
sets: (i) seed nodes, (ii) seed and border nodes, (iii) seed and intermediate nodes, and (iv) all
three node types. Across all combinations we only consider the top-k nodes (k = 20). We
compare this against a baseline that uses a random subset of the seed nodes.

The results, shown in Table 5.6, indicate that the best MAP scores can be achieved with
the complete set of candidate nodes (S, I & B MAP: 0.68), that is, by providing candidate
gists as found among all seed, intermediate and border nodes. This observation holds for
both - non-literal and literal - types of pairs. Throughout both types of pairs, the candidate
set provided by seed and intermediate nodes performs better than the one provided by seed
and border nodes. An additional interesting aspect is the performance comparison of the
seed nodes with respect to the literal and non-literal pairs, where the MAP for the non-literal
pairs is half (MAP: 0.42 vs. 0.21).
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Table 5.6 Evaluation of different candidate sets, abbreviated as seeds (S), intermediate (I), and border (B) nodes. Entity ranking results
(grade 4 or 5) of supervised learning-to-rank. Significance is indicated by * (paired t-test, p-value ≤ 0.05).

Both Non-Literal Literal

MAP ∆% NDCG P MAP ∆% NDCG P MAP ∆% NDCG P

Top 20

S, I & B 0.69 0.00 0.73 0.7 0.56 0.00 0.6 0.56 0.82 0.00 0.87 0.84

S, I 0.57 -17* 0.71 0.68 0.46 -18* 0.58 0.54 0.67 -16* 0.83 0.81

S, B 0.48 -30* 0.65 0.58 0.31 -45* 0.47 0.38 0.64 -20* 0.83 0.78

S 0.31 -54* 0.61 0.52 0.21 -63* 0.43 0.33 0.42 -48* 0.80 0.72

All

S, I & B 0.56 -18* 0.62 0.61 0.43 -23* 0.50 0.50 0.68 -15* 0.74 0.72

Baseline

Random Seeds 0.17 -75* 0.41 0.35 0.14 -75* 0.35 0.26 0.2 -76* 0.49 0.35
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Summary of findings. We investigate which node types help reveal the gists, and evaluate
the performance on four different node sets. We show that the best results are achieved
with the complete node set. Furthermore, we confirm our previous finding that it is harder
to detect the gist of non-literal image-captions than literal ones. This effect can especially
be observed for the seed-only candidate set: even though the amount of relevant gists for
non-literal and literal pairs are nearly equal, the non-literal pairs have less core gist within
the seeds (cf. Table 5.4), which directly influences the quality of the ranking. This is because
the gist of non-literal pairs cannot be found explicitly among the entity mentions.
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5.6 RQ6: Filtering candidate gists – Do related concepts
better reveal the gist?

Although results for RQ4 show that the best results can be achieved by considering all node
types as input to the supervised model, we are still left with the question of whether some
candidates are better than others. Consequently, we next look at whether considering only
the top-k nodes from the candidate set of seed, intermediate, and border nodes helps improve
the results – i.e., by assuming that there are only a few nodes related to the initial query (the
seed nodes). We propose to use our relatedness measure [Hulpuş et al., 2013] as an indicator
to select the top-k most relevant nodes and filter out distracting ones.

In Table 5.6 we compare the performance using the complete set of candidate nodes (S, I
& B, for seed, intermediate, and border nodes in line 5) with a subset obtained by selecting
its top-20 elements (line 1). The performance loss of nearly 20% for both types of pairs
(MAP: 0.56) indicates the usefulness of using a relatedness measure as a pre-filtering step.
The non-literal pairs benefit more from the relatedness-based selection than the literal pairs
(∆%: -23 vs. -15), arguably the hardest subset of data.

Summary of findings. We propose to identify the gists by ranking only the top-k candidates,
obtained using a relatedness measure: the results indicate that relatedness-based filtering
helps for both image-caption pair types, literal and non-literal.
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5.7 RQ7: Finding relevant gist types – Are image gists de-
pictable concepts?

One of the main objectives of our work is to develop a framework to identify the message
(gist) conveyed by images and their captions, when used either literally or non-literally
(Section 4.2). Consequently, we next investigate the type of concepts that humans find
suitable as gists, that is, whether the gist concepts as selected by annotators tend to be
depictable or non-depictable. Note that here, we are not looking for the visibility of concepts
in a specific image [Dodge et al., 2012], but rather investigate whether the message of the
image-caption pair can in general be depicted. Our hypothesis is that the problem of gist
detection is particularly challenging for image-caption pairs whose gist is a concept that is
not depictable.

For the gold standard pairs, annotators labeled each relevant gist concept as depictable,
non-depictable, or undecided. An example concept, where the annotators assigned ’un-
decided’, is ARCTIC SEA ICE DECLINE. On average the fraction of depictable core gists
is 88% for literal pairs versus only 39% for the non-literal pairs. On the larger set of all
relevant gists, 83% are depictable for literal pairs versus 40% for the non-literal pairs. The
annotation task, in practice, tends to be rather difficult for humans themselves, as reflected in
an inter-annotator agreement (Fleiss’ kappa [Fleiss et al., 1971]) of κ = 0.42 for core gists
and κ = 0.73 for relevant gists.

Summary of findings. We study whether gists are in principle depictable or not. The results
of our annotation study are in line with our initial assumption that literal pairs tend to have
depictable concepts as gist, whereas the message of non-literal pairs is conveyed through
a predominant amount of non-depictable concepts. Generally, this indicates that the core
message of images does not necessarily correspond to objects that are depicted, i.e., explicitly
to be found within the image: as such, it motivates semantic approaches like ours that aim
at going beyond what is found explicitly in the image and accompanying text, to detect the
purpose for which an image is used.
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Table 5.7 Ranking results (grade 4 or 5) according to different input signal and their combination (automatically generated and single
signals). ‘M’ and ‘A’ indicate manually and automatically produced object labels and caption text, respectively. Significance is
indicated by * (paired t-test, p-value ≤ 0.05).

Both Non-Literal Literal

# object caption MAP ∆% NDCG P MAP ∆% NDCG P MAP ∆% NDCG P

labels text @10 @10 @10 @10 @10 @10

Image + caption

1 M M 0.74 0.0 0.78 0.74 0.64 0.0 0.69 0.62 0.84 0.0 0.87 0.86

2 M A 0.48 -35* 0.63 0.56 0.36 -44* 0.45 0.38 0.61 -27* 0.80 0.73

3 A M 0.43 -42* 0.58 0.53 0.40 -38* 0.49 0.44 0.46 -45* 0.68 0.61

4 A A 0.14 -81* 0.28 0.23 0.09 -86* 0.17 0.14 0.20 -76* 0.39 0.32

Image only

5 M – 0.48 -37* 0.65 0.57 0.28 -47* 0.40 0.33 0.68 -28* 0.89 0.82

6 A – 0.13 -84* 0.24 0.20 0.06 -90* 0.13 0.11 0.20 -80* 0.35 0.29

Caption only

7 – M 0.38 -50* 0.54 0.49 0.31 -52* 0.40 0.35 0.45 -48* 0.67 0.63

8 – A 0.07 -92* 0.15 0.12 0.05 -93* 0.10 0.08 0.09 -89* 0.19 0.16

Baseline

9 MS tag confidence 0.02 -97* 0.26 0.05 0.01 -98* 0.15 0.03 0.03 -98* 0.36 0.07
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5.8 RQ8: Manual vs. automatic object detection – Do we
need manual object labeling?

All experiments carried out so far relied on a gold standard where human annotators manually
assigned bounding boxes and object labels to image objects in our dataset. Consequently, we
now investigate the performance of our system when the objects in the image are automatically
detected with state-of-the-art image annotation tools. We make use of the Computer Vision
API 1 from Microsoft Cognitive Services [Fang et al., 2015] – a Web service that provides a
list of detected objects and is also capable of generating a descriptive caption of the image.
This experiment provides an evaluation of our method in a realistic, end-to-end setting, where
images are given with accompanying captions but without manually labeled image object
tags.

We first compare the tagging output of the automatic versus manual object labeling. The
manual gold standard is based on a vocabulary of 43 different object labels used to annotate
640 instances over the complete dataset. The automatically labeled data amounts to 171
unique object labels used to tag 957 instances. There are 131 overlapping instances between
manual and automatic tags, which amounts to less than one shared tag per image, and 20%
overlap over the complete dataset.

We next compare the performance on our concept ranking gold standard (Table 5.7, lines
1 vs. 3). A higher performance is achieved with manual tags (MAP: 0.74), as the automatic
approach suffers from a mild yet clear decrease in performance (MAP: 0.43). Thus, our
experiments show that while there is a certain quality loss in the output predictions, our
approach is stable enough to provide useful gists even when applied to the more noisy output
of an automatic image annotation system.

Summary of findings. The overlap between automatic and manual image tags is rather low
(20%), and the detected objects are not always correct (e.g., a polar bear is detected as a herd
of sheep). However, the automatic tags in combination with the human captions lead to a
mild drop in performance on gist detection. Thus, the results indicate the viability of framing
the gist detection as the proposed concept ranking task in an end-to-end setting.

1https://www.microsoft.com/cognitive-services/en-us/computer-vision-api

https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
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5.9 RQ9: Manual vs. automatic caption generation – Do
we need human captions?

The state-of-the-art image understanding system provided by Microsoft’s Computer Vision
API is able not only to tag images, but also to generate descriptions of the content of the im-
ages. As such, it provides us with a high-performing system to generate image captions [Fang
et al., 2015]. Consequently, we next investigate a research question complementary to the
previous one, namely how the performance of our method is affected when the caption is
automatically generated, as opposed to having been manually produced.

Similarly to RQ7, we first compare the tagging output of the automatic versus manual
captions. Performing the entity linking (Step 1, Section 4.4) with the manually created
captions results in around 300 and 700 different entities (seed nodes) for the literal and non-
literal pairs (Table 5.1). When using the automatically generated captions, these numbers
shrink to 130 different detected entities only – thus indicating that the automatic captions
are less heterogeneous in meaning than the manual ones. Arguably, this is due to the fact
that automatic detectors are trained to produce literal captions. To evaluate the suitability of
automatic captions for gist detection, we pair manual or automatic captions with the manual
image tags and provide them as input for our pipeline (Figure 4.2). The results, shown in
Table 5.7 (lines 1 and 2), indicate that similar to the case of automatic image labeling, our
approach suffers from a mild yet clear decrease in performance (MAP: 0.74 vs. 0.48). Finally,
we test the performance of the system when using both automatic object labels and captions
(Table 5.7, line 4): in this case, the dramatic performance decrease (MAP: 0.14) indicates
that our method is robust whenever it is provided with at least one signal source (i.e., visual
or textual) that is manually produced and cannot cope with purely automatically generated
input.

Summary of finding. The overlap between the entities found within automatic and manual
captions is low (3-10%). The automatic captions are often short, and the focus of the captions
does not always match the focus of the manual caption (e.g., the example in Figure 4.1a
receives the caption "There is a bench", without considering the orangutan, although it
was detected as a monkey by the automatic image tagging). The results on gist detection,
however, are similar to those obtained using automatic image tagging, but drastically drop
when providing the system with a purely automatically generated input (i.e., automatically
generated image labels and captions).
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5.10 RQ10: Manual vs. automatic input – Does an auto-
matic approach capture more literal or non-literal as-
pects?

In the previous two RQs we benchmarked the performance degradation of a manual versus
automatically generated input, i.e., image labels (RQ8) and captions (RQ9). We now turn
to the complementary question of which kind of image-caption pairs are better captured by
an automatic approach. That is, we investigate the question: is the output of a state-of-art
image tagger and caption generator better suited to identify the gist of literal or non-literal
image-caption pairs? Again, we rely on the Computer Vision API of Microsoft for such
purpose. As shown in Table 5.7 (line 4) using both automatic image tags and captions
leads to a moderate ranking for the literal pairs (MAP: 0.20), whereas performance for the
non-literal pairs is much lower (MAP: 0.09). This effect is likely due to the fact that the
image understanding system we use is trained on a much different kind of data and with a
purpose other than detecting (possibly, abstract) image gists. Microsoft Cognitive Service
uses, in fact, a network pre-trained on ImageNet and includes a CNN, which assigns labels
to image regions trained on Microsoft COCO data [Lin et al., 2014]. Similarly, the language
generation uses a language model built using 400,000 (literal) image descriptions.

Compared to the approach that uses the manual assigned image object labels, the ‘realistic’
approach (i.e., the one using human captions and automatic image labels) has a consistent
performance decrease of around 40% for both image-caption pair types (5.7, line 3 and 1 –
MAP: 0.43 vs. 0.74). Substituting only the manual captions with the automatic ones (5.7, line
2), instead, results in a lower performance drop than when using automatic image tags for the
literal pairs (MAP: 0.61 and 0.46, respectively), but a lower overall performance for the non-
literal pairs (MAP: 0.36 and 0.40, respectively). Again, this is likely to be due to the caption
generator being able to leverage background knowledge for literal, i.e., descriptive caption
generation on the basis of the underlying language model. Such an approach, however,
cannot, and is not meant to generate non-literal, topically abstract captions. This finding is
even more underlined considering the performance decrease: while the literal pairs have a
higher performance drop, when the automatic object detection is combined with the manual
captions, compared to the manual object detection and the automatic caption (-45% vs. -27%),
the non-literal have a lower decrease when the automatic object detection is combined with
the manual captions, compared to the manual object detection and the automatic captions
(-38% vs. -44%)
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Summary of findings. The evaluation results across all input signal combinations confirm
that gists of non-literal pairs are generally more difficult to detect. Automatic approaches
can account for descriptive pairs by detecting important objects in the image and describe
those in the caption. However, the automatic approaches are not able to produce high-level,
abstract image descriptions that are salient to detect the gist of non-literal pairs. That is,
to detect the gist of non-literal image-caption pairs, to date, we need to rely on manually
produced captions, a requirement that can be dropped to detect the message of literal pairs
only.



5.11 RQ11: Visual vs. textual information 85

5.11 RQ11: Visual vs. textual information – Does the im-
age or the caption convey the gist?

Motivated by the significant benefit over single modality approaches, observed from the
multimedia community when using different types of modalities fused in one approach, we
also look at the role of different kinds of signals within our approach. To this end, we test the
performance on gist detection when using only visual (5.7, lines 5–6) or textual (lines 7–8)
information separately. For each modality, i.e., visual or textual, we additionally benchmark
performance as obtained when using automatically versus manually created image labels or
captions. That is, we additionally cast RQs 8 and 9 in a single modality setting.

Given the manual image tags as input signal only (line 5), gist detection on literal pairs
suffers from a lower performance drop as when compared to non-literal pairs (MAP: 0.68
and 0.28, respectively). Using automatic object labels (line 6) only additionally lowers
performance, with a massive drop for non-literal gists (MAP: 0.06 and 0.20). These very
same trends are shown also when using either manually (line 7) or automatically (line 8)
generated captions only: using textual information only leads to a high performance decrease
for both image-caption pair types (MAP: 0.45 and 0.31), which is even higher in the case
of automatically generated captions (MAP: 0.09 and 0.05). Nevertheless, all configurations
are able to outperform a baseline obtained by using the Vision API’s confidence values for
each image directly to establish the ranking (line 9). When investigating different signal
sources separately, we are able to corroborate our previous findings that the gists of literal
pairs are easier to detect than the gist of non-literal ones. Besides, given that performance
substantially decreases when using only the image tags or captions, we show that image
and caption are complementary sources of information to effectively detect the message
of image-caption pairs. This is in line with many previous contributions from the field of
multi-modal modeling that have demonstrated improvements by combining textual and visual
signals.

Summary of findings. The evaluation results across different modalities indicate the com-
plementary nature of visual and textual information for detecting the gist of both, literal and
non-literal image-caption pairs. That is, by showing that performance on gist detection is
reduced when the image tags or only the caption are provided, we show that both image and
caption are required in order to capture the message of images.
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5.12 RQ12: Visual Linking – Benefit of measuring the de-
scriptiveness of image and caption?

One characteristic of literal pairs is a caption that describes the image, whereas typically a
strong focus is put on the most interesting, salient object(s), interaction(s) of object(s), and
their attributes etc. In consequence, things that are mentioned in the caption, can typically be
seen in the image. Additionally, the predominant amount of depictable gists within literal
pairs and the high amount of depictable concepts in the seed nodes (cf. statistical evaluation
of RQ 6), motivates this RQ.

We call the connection between a component of a caption, e.g., part(s) of speech, that
refers to a component in the image, e.g., an object, a visual link. There are different strategies
to find and create the visual links, such as the one proposed by [Weegar et al., 2014], who
benefit from lexical hierarchies. In contrast to our previous work [Weiland et al., 2015],
where we build upon similarity measures and object detector outputs to create a visual link
between image objects and caption nouns, we again take a step back and similar to the
manual object detection in the images, we use a manual created visual linking (gold standard).
This procedure allows us to investigate, whether the gist ranking can be improved with this
feature.

As we want to investigate the impact of the visual linking feature to the overall under-
standing of the gist, we compare with all features, which is the best performing feature
combination. We again evaluate the results according to literal, non-literal, and both types of
pairs.

Contrasting to the assumption that there is a clear separation between literal and non-
literal pairs, the gold standard (cf. Section 3.3) for the visual linking reveals that non-literal
pairs tend to encapsulate literal elements. Non-literal pairs can have visual links between
objects in the image and parts of the text. Nevertheless, as the amount of non-literal visual
links is per pair and on average over all pairs lower than for the literal pairs, we study the
respective feature.

Comparing between all features and the combination of all and the visual linking features,
shows a significant loss in the performance for both types of pairs when including the visual
linking (MAP: 0.74 vs. MAP: 0.70, cf. Table 5.8). The study of the different types of pairs,
reveals that the performance degradation is more drastically for the non-literal pairs. The
non-literal pairs lose nearly 10% with respect to MAP, when the visual linking feature is
considered (MAP: 0.64 vs. MAP: 0.58). Even the literal pairs have a lower MAP of 0.82
than without the visual linking (MAP: 0.84).
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Table 5.8 Evaluation of the feature set enhanced with Visual Linking. Entity ranking results (grade 4 or 5) of supervised learning-to-rank.
Significance is indicated by * (paired t-test, p-value ≤ 0.05).

Both Non-Literal Literal

MAP ∆% NDCG P MAP ∆% NDCG P MAP ∆% NDCG P

@10 @10 @10 @10 @10 @10

All Features 0.74 0.0 0.78 0.74 0.64 0.0 0.69 0.62 0.84 0.0 0.87 0.86

All Features + Visual
Linking

0.70 -5.4* 0.73 0.69 0.58 -9.6* 0.60 0.56 0.82 -2.1 0.86 0.83
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On the first sight it might seem surprisingly that the literal pairs have a decrease in
performance. However, there are two important aspects to note. First, there are commonly
used phrases in the media, which are not represented by an article or a re-direct, e.g., solar
park which often occurs in media does not exist as an article in Wikipedia, hence the visually
recognizable object ’solar panel’ cannot be linked to the textual phrase ’solar park’. There are
concepts that contain the noun phrase ’solar park’, e.g., GUJARAT SOLAR PARK, however,
as we are using a string-match based concept linking approach the solar park is not matched
to one of these instances (cf. RQ1 for the details on concept linking). Consequently, no or
misleading visual links can be found. Second, on the vision side there are texture-like image
properties conveying important aspects of the gist - such as smog - which can neither be
assigned with an object label, nor be delimited via object contours from other objects, as
smog just covers the whole scenery.

In turn, the non-literal pairs contain visual links, which also exist in their literal pendants.
The usage of correspondences between image and caption components (visual links) follow
an explanatory objective: the association which is required to understand the image-caption
pair and its gist, is sometimes far to abstract, difficult, or unknown. Supplying the association
between the pair and its gist by pointing and explaining the visually recognizable objects,
helps to convey the meaning. Despite the fact that encoding the visual-links helps a human
to understand the gist of non-literal pairs, it confuses the machine and distracts from learning
the gist of literal versus non-literal pairs.

Summary of findings. Even if the visual linking feature does not improve the performance
of the gist detection, it helps to understand the nature of image-caption pairs, which convey a
meaning. One must note that non-literal pairs contain literal elements and vice versa - which
makes the distinction between those two types of pairs even more difficult. However, being
aware of these characteristics helps to understand the gist of image-caption pairs.
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5.13 Conclusion

Our experiments show that the candidate selection and ranking of gist concepts is a more
difficult problem for non-literal image-caption pairs than for literal image-caption pairs.
Nevertheless, we demonstrated that using features and concepts from both modalities (image
and caption) improves the performance for all types of pairs – a finding which is in line
with research on multimodal approaches for other related tasks. Additionally, a feature
ablation study shows the complementary nature and usefulness of different types of features,
which are collected from different kinds of semantic graphs of increasing richness. We
compare manually to automatically gathered information created by automatic detectors.
The evaluation is conducted on the complete test collection of 328 image-caption pairs,
with respect to the different input signals, signal combination, and single signal analysis.
Finally, we experimented with a state-of-the-art image object detector and caption generator
to evaluate the performance of an end-to-end solution for our task.

The results indicate that using state-of-the-art open-domain image understanding provides
us with an input that is good enough to detect gists of image-caption pairs, with nearly half
of the predicted gists being relevant. However, it also demonstrates that improved object
detectors could avoid a drop of 38% mean-average precision. Additionally, the caption
contains useful hints especially for non-literal pairs. However, without considering the
information of the image the performance is significantly degraded.





Chapter 6

Using Gist Detection for Multimedia
Indexing - A Use Case

Since gist detection is a novel research problem, devising the existing research directions
further, we take a step back and evaluate the performance of the gist detection pipeline in an
established research problem, such as multimedia indexing for image and text. Multimedia
indexing is about representing multimedia data according to syntactic and semantic features,
often accompanied by a classification according to the features to conduct and allow for a
retrieval of the respective data. The most important difference between multimedia indexing
and gist detection is the missing distinction of literal and non-literal pairs. Furthermore, the
topics for semantically classifying the data are often based on the salient objects, which
can be seen in the image. This fact does apply for non-literal image-caption pairs, instead,
most often the gist of non-literal pairs is something which cannot be visually recognized.
In this use case study, we want to demonstrate the benefits and review the disadvantages
within a detailed evaluation of the gist detection pipeline applied to an established task such
as multimedia indexing. The goal is to point to future work in bridging the gap between
established and novel research directions.

6.1 Introduction

Conveying meaning by the use of different modalities is probably as old as human mankind.
Nowadays, where everyone takes pictures constantly, storage is cheap, and several plat-
forms allow for the distribution, sharing, and modification of multimodal data, the need of
adequately representing the content of such multimodal data is more important than ever.
Research on multimedia data, independent of the goal - i.e., whether it is modality generation,
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modality retrieval, or representation of the modalities - have shown to perform better with a
joint representation of the different modalities. Thus, multimedia researchers motivate the
joint modeling by observing ("people often caption an image to say things that may not be
obvious from the image itself, such as the name of the person, place, or a particular object in
the picture." [Srivastava and Salakhutdinov, 2012, p. 2950]). This is what communication
scientists and linguists also report as research results: modalities such as images and text form
a communicative unit, with often complementary information [Horn, 1999]. Multimedia
indexing, which is in the literature also referred to as classification or representation, requires
to adequately represent the respective multimedia data. There are different options on how to
represent multimedia data, such as semantic or syntactic classes, by features and similarity
measures, or by meta-information.

Representing the multimedia data is relevant to allow for a retrieval which is accurate
and precise, while at the same time allowing for a diverse result, in terms of a query, e.g., a
user’s information need. Sometimes the multimedia representation is a pre-processing of a
cross-media retrieval task, where given an image as query, retrieve or generate a caption that
best describes the image.

In this work, we focus on multimedia representation. Thus, we make use of the MIR
Flickr dataset [Huiskes and Lew, 2008], which provides - besides the images and their
affiliated tags - a gold standard multi-label annotation, where the labels represent semantic
class topics, such as ’sky’ or ’people’. A lot of research has been conducted providing a
detailed analysis on the MIR Flickr dataset, these works can be mainly grouped into deep
learning, auto-encoder, hashing-based and other approaches. To the best of our knowledge,
none of the previous works have made benefit from knowledge bases, such as Wikipedia.

Task: Given an image and its tags, represent this pair by concepts from a knowledge base.
Furthermore, create a mapping between the concepts, which represent a pair, to the target
class topics.

To represent images, we adapt, modify, and expand the work of Weiland et al. [2016]. Their
task is to understand the gist (equivalent to meaning or message) of an image-caption pair.
Their idea is to represent an image-caption pair by concepts. Based on these initial concepts,
additional concepts, which are semantically close to the initial ones are collected from the
knowledge base. For each concept a feature vector is generated. This feature vector consists
of a diverse set of 15 different features, such as text-similarity or graph-connectivity measures.
In a learning-to-rank setting these concepts are ranked. The final ranking represents the gist
of an image-caption pair.

There are two modifications in the original understanding the gist pipeline presented in
Chapter 4. First, we need to create a mapping between the ranked list of concepts and the
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target class topic(s) to conduct the multimedia indexing. Second, we encode only one of
the two methods for collecting additional concepts. Namely, the one which searches for
commonalities between the initial concepts.

This modified gist pipeline is an end-to-end setting, in that the method relies on out-of-
the-box object detectors and a model that has been pre-trained on a dataset with the purpose
of gist understanding. We follow two assumptions. First, according to Weiland et al. [2017]
the performance for understanding the gist is better when considering information from the
image - even though this might include false positive detections from a less precise automatic
object detection - than discarding the image information. The second assumption is that
training a model for gist detection in one domain, is able to produce a valuable ranking
of concepts representing the gist of a query image-text pair of another domain. In deep
learning domain adaption as a part of transfer learning has gained more popularity. Thus, our
approach benefits from domain adaption in that we make use of a model that has been trained
on the annotated gist dataset of Weiland et al. [2016]. Consequently, we do not manually
annotate nor rank the concepts representing each of the 25,000 image-text instances of the
benchmarking dataset.

In an experimental evaluation, we study the per class and the overall performance of
the modified gist pipeline. We compare these results with shallow, deep, hashing, and
auto-encoder approaches. We demonstrate the usefulness of the concept representation
in that it outperforms shallow and auto-encoder approaches and competes, especially for
infrequent represented classes, with deep and hashing approaches. Furthermore, we evaluate
the modifications of the pipeline and study the effect of using different sets of concepts, e.g.,
concepts generated from the Flickr tags only.

We find that not only representing the pair as concepts, but the expansion steps to collect
semantically related concepts, has a positive impact to the overall performance. Overall, we
confirm that the combination of tags and a deep learning based automatic object detection
- even though the latter encodes noise - achieves better performance than single modality
representations.

6.2 Methodology

Since we base our method on the pipeline introduced by Weiland et al. [2016] (cf. Fig. 4.2),
we focus on our novel changes (cf. Fig. 6.1). However, we start with an overview of the
complete pipeline and indicate where required the modifications compared to the original
pipeline.
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Figure 6.1 The twice-learning-to-rank pipeline for the multimedia indexing task. Image-text
pairs are represented as concepts from a knowledge base (Image #24706: Flickr/clare savory,
CC BY 2.0).

The main idea of the approach is to represent the images and their affiliated text by
concepts from a knowledge base, such as Wikipedia.

In the knowledge base representation of Wikipedia we are using, article pages and
categories are the concepts (which is the reason, why we are referring to concept instead
of entity linking). Besides the representation of Wikipedia as a knowledge base, we benefit
from a representation as a knowledge graph, where categories and articles are nodes in the
graph. The article redirects and the category links are the edges in the graph.

Using different strategies, based on semantic relatedness and graph traversal, additional
potentially relevant concepts are collected from the knowledge base and added to the set of
concepts. In a learning-to-rank (l2r) setting these concepts are ranked. The final ranking
represents the gist of an image-text pair. The top-k concepts of such a ranking are transferred
to a feature vector. This feature vector serves as input for a second learning-to-rank setting,
with which the multi-label classification is conducted and a mapping between gist concepts
and class topic(s) is achieved.

6.2.1 Seed Node Linking

There are a few preliminaries for the respective data to fulfill, before the actual concept
linking (following the idea of entity linking) can be conducted. The objects in the image,
their interactions, and the complete scenery need to be detected. To achieve this, we benefit
from a state-of-the-art image processing API, such as Microsoft Cognitive Services 1. The

1Note: By End of 2017 the API is integrated into Microsoft Azure. The images had been annotated before
this integration.
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result of this API are textual object labels, categories, and captions. The objects name what
can be seen in an image, e.g., car. The categories, categorize the scenery of the image, e.g.,
outdoor. The captions describe how objects in the image in the specified scenery relate
to each other, e.g., there is a yellow car on the street. We use the textual object labels as
candidates for concept mentions (cf. entity mentions) for the concept linking step.

If the image is accompanied by a text, which is not already tokenized, a NLP pre-
processing pipeline consisting of tokenization, lemmatization, noun, and noun phrase de-
tection is applied, whereas the nouns and noun phrases serve as concepts mentions for the
concept linking step. Otherwise, if the text is already tokenized, the tokens serve as candi-
dates for concept mentions for the concept linking step. In the MIRflickr25k benchmarking
dataset, the Flickr tags directly serve as candidates for the concept linking.

Via a string-match based concept linking, the concept mentions from both, the image and
the text, are linked to concepts of a knowledge base. The resulting set of concepts is what
is called the seed nodes, consisting of nodes with origin in the image or the textual Flickr
tags, in the following we refer to these concepts as Si and St , or to their combination as St,i,
respectively.

6.2.2 Intermediate Graph Creation

Under the assumption that the image and the text convey some specific - sometimes comple-
mentary - aspect of a common meaning, the next step is to search for semantic connections
between the image and its text. Given the seed nodes from the previous step, we collect all
category nodes on shortest paths (up to length 4) between all pairs of seed nodes. Therefore
edges representing category links are followed. The result is a sub-graph, which consists
of seed nodes, the collected category nodes (called intermediate nodes) and the edges con-
necting the seed and intermediate nodes. In the following we refer to this procedure as the
intermediate graph creation and to concepts collected in this step to as I. The gist under-
standing pipeline consists of two different strategies for collecting additional candidates.
The intermediate graph creation is the first strategy. It searches for common concepts on
paths, thus semantic commonalities, between the seeds of an instance. In fact, as several
instances, which are similar and sometimes differ only slightly, are assigned to a class topic,
the intermediate graph creation achieves some kind of normalization between instances of
the same class topic. Example: One instance has the seed nodes volvo and car, where a node
on the intermediate path is Category:Motor vehicles. Another instance has the seed nodes
motorcycle and traffic, which are also connected to Category:Motor vehicles. Consequently,
the instances which initially did not share a concept, now share a concept.
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6.2.3 Border Graph Expansion and Clustering

Given the intermediate graph, we are now collecting all top-k (k = 3) shortest paths up to
length 4, between all seed and intermediate nodes in the knowledge graph. The nodes on
these paths are called the border nodes and the resulting graph a border graph.

The border graph creation is the second strategy to collect additional concepts. Different
to the intermediate graph, which helps to find common concepts and semantic commonality
between seeds and instances of the same class, the border graph targets at the fine-grained
differences between similar instances. Thus, in contrast to Weiland et al. [2016], we do not
include these in the set of candidates for the concept ranking. Instead, we benefit from the
borders to achieve a clustering and a valuable relatedness measure computation for each
concept. Even though we do not use the border nodes in the set of concepts, preliminary
experiments have shown that the border nodes help to produce a better quality in clustering
and the relatedness measure for the seed and intermediate nodes. By applying Louvain
clustering [Blondel et al., 2008] based on the path based semantic relatedness measure
of Hulpuş et al. [2015], we address the fact that an instance can be assigned to several class
topics, consequently, the seed concepts are not about one semantic topic.

6.2.4 Ranking the Nodes

For the seed and intermediate nodes, 16 different features encoding graph connectivity and
content based measures are calculated: 5 Boolean features (e.g., is seed node?), Page Rank
and Betweenness Centrality on intermediate graph, Jenson-Shannon Divergence between the
texts of the article pages of a concept, in-degree of the node, clustering coefficient, 3 features
with the relatedness measure (max, avg, sum), 2 numerical features about the clusters, and
the query likelihood on the text of the article pages of a concept (for further details, please
refer to [Weiland et al., 2016]).

As there is no gold standard about the relevance of the so far collected concepts given
(recall: a concept in the knowledge base has an equivalent node in the knowledge graph, but
as we are not doing a graph ranking, we switch back the notation of concept), we rely on
a pre-trained model using the data and gold standard of Weiland et al. [2016] to rank the
concepts.

Learning-to-rank model (l2r). Our generated feature vectors serve as input for a list-
wise learning-to-rank model [Li, 2011]. In a learning-to-rank setting, the image-caption
pairs are the set of documents D, with di as the i-th document (following the notation
of [Li, 2011]). For each instance the candidate concepts are the set of queries, denoted
by Q, where qi is the i-th query. The j-th image-text pair for a query qi is represented



6.2 Methodology 97

as a feature vector xi, j = φ(qi,di, j) of feature functions φ , such as Betweeness Centrality.
Finally, S′ = (xi,yi) represents the training data for qi, with y denoting the set of labels
{1,2, ...,5}. The objective is to find a parameter setting φ̃ that maximizes the scoring
function: π̃ = argmaxπi∈Πi

S(xi,πi). Specifically, we use RankLib2, trained with respect to
the target metric Mean-average precision (MAP). For optimization we use coordinate ascent
with a linear kernel [Metzler and Bruce Croft, 2007]. The result is a ranked list of concepts
for each image-text pair.

6.2.5 Image per Topic Ranking

As the objective is not a ranking of concepts, that best represent the gist of an image-text
pair, but a multi-label classification, the ranked list of concepts representing an image needs
to be mapped to the class topics, allowing one feature vector to be assigned to multiple
classes. There are several ways of creating such a mapping, such as using lexical and
conceptual hierarchies (e.g., WordNet), textual similarities and/or pre-trained models of
textual similarities etc. The issue with these methods is that each single gist concept needs to
be matched to the MIR topics, but tags and images in their single instances are not completely
semantically coherent with the topic of a class, e.g., a building will not be matched to the
class topic people. However, the combination of the gist concepts make the meaning, e.g.,
crowd, man, street, building as gist concepts of an image showing a crowded city street that
can be assigned to the class topic people.

Hence, we benefit from an additional learning-to-rank approach, with a feature vector
representing the ranked gist concepts of an input image-tag pair. Each entry of the feature
vector is one concept. If the concept is in the list of the ranked gist concepts for the respective
pair, the value of the ranking score of the first l2r setting is its feature value. If it is not in
the ranked gist of the respective pair, its value is set to zero. Across all ranked concepts we
build a lexicon, where the size of the lexicon is the number of dimensions for the feature
vectors, which will be created. Each concept in the vector has a unique id. The feature ids
of the ranked concepts, which represent an image, are assigned the relevance values of the
respective concept. Given the class as a query, the task is to rank images that fit the class
highest.

2https://sourceforge.net/p/lemur/wiki/RankLib
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6.3 Experimental Evaluation

In the following, we study the performance of framing the multimedia indexing as a modified
gist understanding task. We investigate each pipeline step to allow for a detailed analysis
of flaws and benefits, where we focus on both, the gist understanding and the dataset
particularities. Given an image-tags pair the task is to assign at least one label of the 29 (38
assuming the distinction between potential and relevant topic labels as being different classes)
class topics to such a query pair. We provide a comparison to state-of-the-art approaches
of the multimedia indexing task conducted on the same MIR Flickr benchmarking dataset.
However, only a few evaluate using the complete dataset. Others use only a subset of the
data, where either the selection criteria remains unclear and/or they do not report the results
according to all evaluation measures, or use a lower rank (e.g., just 20 instead of the first
50 results for precision). Consequently, we compare on a per class topic basis to the results
reported by Mark J. Huiskes and Lew [2010]. Additionally, we compare to Chen et al. [2016]
and Srivastava and Salakhutdinov [2012] on an overall basis (calculating the evaluation
measures across all classes). Finally, we compare the performance of the extended gist
pipeline, when considering three different sets of concepts in the gist ranking task: concepts
from the seed nodes of the tags (Gist(St)), concepts from the seed nodes of the tags and the
images (Gist(St,i)), and concepts from the seed and the intermediate nodes (Gist(St,i, I).

Dataset and Gold Standard. We evaluate the applicability of the modified gist detection
on the MIR Flickr dataset [Huiskes and Lew, 2008]. The MIR Flickr dataset contains around
25,000 images from Flickr with textual tags. These image-tag pairs are assigned to 10
general- and 19 subtopics, e.g., sky, clouds (cf. first column in Table 6.1). Whereas an image
can be assigned to several of these class topics. Furthermore, there are two levels of classes:
the topic is relevant to the image or it is partially/potentially relevant, resulting in 38 class
topics. Some of the topics have less image instances than the other, resulting in an instance
per topic range between 116 to 10,373 for the topics baby (relevant) and people (potential),
respectively (cf. second column indicated with ’#’ in Table 6.1). In the MIR flickr 25,000
dataset some of the proposed subtopics have not been annotated -these are not considered for
the evaluation (i.e., architecture city/urban, building, house, bridge, road/street).

There are no image object annotations provided with the dataset. Thus, even though we
extend the dataset with image object annotations generated with the Computer Vision API of
Microsoft Cognitive Services 3, we cannot afford a gold standard for these.

At the time of conducting the experiments we do not know, whether the predicted image
objects from Microsoft Cognitive Services are correct, but we follow the working hypothesis

3https://www.microsoft.com/cognitive-services/en-us/computer-vision-api

https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
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Table 6.1 Numbers (#) of images per General Topic and per Subtopic according to type of
annotation: potential or relevant (the latter is marked with (r)). Classification performance
of the gist detection pipeline per topic according to MAP and P@50, compared to the four
methods from [Mark J. Huiskes and Lew, 2010] (the two low-level settings are abbreviated
with LL. Original table from [Mark J. Huiskes and Lew, 2010]).

MAP P@50

General Topic # Gist(St,i, I) LL LDA LDA LL SVM SVM Gist(St,i, I) LDA SVM

sky 7,912 63.33 74.9 80.0 77.5 82.3 92.0 87.6 100.0
water 3,331 58.47 35.7 57.5 44.8 52.7 92.0 89.6 89.6
people 10,373 61.91 62.8 73.1 63.1 74.8 84.0 79.2 99.6
people(r) 7,849 62.32 54.4 66.4 55.8 56.5 94.0 79.6 72.4
night 2,711 58.32 51.5 61.5 55.4 58.8 92.0 83.2 89.6
night(r) 669 63.90 25.2 42.0 39.0 45.0 92.0 62.8 68.8
plant life 8,763 61.45 64.2 70.3 68.7 69.1 68.0 83.6 96.4
animals 3,216 60.30 26.8 53.7 27.8 53.1 98.0 86.0 96.8
structures 9,992 60.72 61.5 70.9 62.6 69.5 80.0 81.2 94.0
sunset 2,135 56.63 42 52.8 58.8 61.3 94.0 84.8 98.0
indoor 8,313 60.53 58.2 66.3 60.5 68.3 100.0 60.4 89.2
transport 2,895 63.79 25.2 41.1 29.8 36.9 86.0 80.0 76.0
food 990 48.62 19.6 43.9 29.3 30.8 84.0 86.0 66.8

MAP P@50

Subtopic Gist(St,i, I) LL LDA LDA LL SVM SVM Gist(St,i, I) LDA SVM

cloud 3,700 60.65 57.7 65.1 65.1 69.5 96.0 87.6 99.2
cloud(r) 1,350 63.60 44.5 52.8 51.1 43.4 98.0 77.6 69.6
sea 1,322 65.95 25.5 47.7 36.6 52.9 90.0 82.0 91.2
sea(r) 214 63.61 9.1 19.7 12.6 20.1 76.0 32.8 28.8
river 894 67.90 3.0 31.7 17.9 15.8 90.0 74.8 26.0
river(r) 149 72.32 6.9 13.4 10.2 10.9 76.0 20.0 12.4
lake 791 66.15 13.9 25.8 18.8 20.7 92.0 59.2 40.0
portrait 3,931 65.50 43.2 54.3 49.3 48 98.0 78.0 76.4
portrait(r) 3,829 59.88 42.9 54.1 49.3 55.8 98.0 78.0 89.6
male 6,081 61.13 35.6 43.4 40.7 41.3 94.0 60.0 58.8
male(r) 3,647 63.33 26.7 35.4 29.4 33.5 92.0 58.8 61.2
female 6,148 58.19 40.4 49.4 46.1 46.5 96.0 70.4 68.0
female(r) 3,982 60.62 34.2 45.4 38.9 45.1 98.0 73.6 75.6
baby 259 66.31 6.9 28.5 8.4 20.0 76.0 60.8 39.6
baby(r) 116 75.65 6.6 30.8 8.8 16.5 74.0 42.0 20.4
tree 4,683 61.35 43.4 51.5 51.4 55.9 90.0 78.8 94.4
tree(r) 668 62.72 14.4 34.2 20.5 32.1 98.0 57.2 64.4
flower 1,823 55.74 30.1 56.0 46.9 48.0 96.0 92.4 96.0
flower(r) 1,077 41.24 31.8 62.3 51.9 71.7 64.0 86.0 98.4
dog 684 66.97 10.8 62.1 15.5 60.7 92.0 95.6 96.8
dog(r) 590 62.01 11.2 66.3 15.6 64.1 86.0 94.4 92.8
bird 742 62.54 9.7 42.6 12.8 44.3 90.0 92.4 94.8
bird(r) 484 54.70 9.6 50.0 12.9 52.0 84.0 89.2 88.8
car 1,177 63.74 14.2 29.7 17.9 33.9 94.0 73.2 86.8
car(r) 380 53.24 12.2 38.9 22.7 43.4 64.0 72.4 75.2
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Table 6.2 Number of candidates and seed nodes after the concept linking according to Flickr
Tags (text) or image as their origin.

Total Unique Empty Instances

Candidates Seed Nodes Candidates Seed Nodes

Tags 223,537 157,473 74,427 34,127 2,128
Images 514,819 487,724 976 964 166

that the method is robust enough to handle eventual noise and overall benefit from the image
object labels. This assumption is in line with the findings of the study of Weiland et al.
[2017], who have reported an improvement of using automatic object detection combined
with the manual given text for an image-caption pair, over just using the text only and discard
the visual information.

Evaluation Measures. As there is no explicit gold-standard gist annotation and ranking
provided, the output of the candidate gist ranking of the learning-to-rank approach cannot
be evaluated directly. However, since the task of multimedia indexing is accomplished as
a classification, we benefit from learning and evaluate the mapping between a ranked list
of gist candidates to a class. We report the results according to the evaluation measures
Mean Average Precision (MAP) and Precision of the first 50 positions of our ranking output
(P@50).

6.3.1 Seed Node Linking

There are no gold standard entity links provided in the dataset and it is not feasible to annotate
the entity links for all of the 25,000 pairs. Consequently, we provide a statistical overview
on how many of the concept candidate mentions are actually linked to a concept in the
knowledge base. In Table 6.2 the total number of candidates and the finally total number of
linked entities are given, which we refer to as seed nodes. We provide the numbers separately
according to the texts and the images. Furthermore, we study how many unique candidates
and seed nodes are found across the dataset.

The sum of all tags for all image instances (25,000) of the dataset, is over 223,000 tags (cf.
Table 6.2), which results in an average of 9 tags per image. However, around 2,000 images do
not have a tag at all (cf. Table 6.2, Empty Instances). For the images around 500,000 image
objects are detected and annotated by the Computer Vision API, which is an average of 20
visually recognizable objects per image. On 166 images no visually recognizable object is
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detected, whereas 2 images could not be processed by the API due to an extreme format (e.g.,
500px width, 49px height).

For both types of media - image and text - around half of the candidate concept mentions
can be linked to actual concepts in the knowledge base. This results in 157,473 and 487,724
seed nodes for the texts and the images, respectively. The statistics about uniqueness across
the dataset reveals that the tags are more diverse than the visually recognizable objects: Even
though the total number of visually recognizable objects are twice the number of tags, the
image objects are from 976 semantic concepts, whereas the tags are from 74,427 semantic
concepts.

6.3.2 Multimedia Classification (Multimedia Indexing)

In the gist detection task, [Weiland et al., 2016] have shown that selecting a top-k set of
the highest ranked gist concepts, improves the performance of the gist understanding. One
image instance is per average assigned with 9 Flickr tags. One of our methods we compare is
provided with the Flickr tags only, the other methods are provided with more candidates, e.g.,
by using the object labels and the tags. Consequently, a normalization to make the methods
comparable is required. Therefore, we use the top-k (k@10) ranked gist concepts. These
top-10 concepts are used to build the feature vector for the final ranking of the image-tags
pairs for a class.

After performing the entity linking for the candidates of the query pair (image and
tags), the intermediate graphs are created. 175 image-tag pairs are not represented by an
intermediate graph, because none of their candidate mentions are linked to a seed node
(empty query). Furthermore, 157 intermediate graphs contain only one seed. These empty
and one-seed pairs are left out of the multimedia indexing evaluation.

In the following we study the per class and overall performance. Furthermore, we evaluate
variations of the modified gist detection pipeline.

Per Topic Evaluation. The modified gist detection pipeline performs best for five of thirteen
topical classes of the general topics, e.g., water with MAP: 58.47 (cf. Table 6.1). The
two comparison classification approaches using the low-level image features only, never
outperform. Both classifiers LDA and SVM based on the combination of low-level image
features and the textual description of visual objects perform best in four classes each.

For the sub-topic classification the extended gist detection pipeline outperforms the four
other approaches in 21 of 25 cases (cf. Table 6.1). Even for the four remaining classes the gist
detection performance is pretty close to the performance of the best approach, e.g., flower,
Gist Detection MAP: 55.74 vs. LDA MAP: 56.0 (cf. Table 6.1). Again, the classifiers, which



102 Using Gist Detection for Multimedia Indexing - A Use Case

Table 6.3 Classification performance of the different gist detection pipeline settings across
all topics according to MAP and P@50, compared to the two best methods from [Mark
J. Huiskes and Lew, 2010] (the two low-level settings are discarded here. Original numbers
from [Mark J. Huiskes and Lew, 2010]), the random baseline, the Deep Boltzmann Machine
(DBM) (numbers and approach of [Srivastava and Salakhutdinov, 2012]), and the 32-bit
robust multi-label hashing (RMLH) of [Chen et al., 2016].

Method Gist(St,i, I) Gist(St,i) Gist(St ) LDA SVM Random RMLH, 32-bit DBM

MAP 61.42 45.56 35.87 49.2 47.5 12.4 65.6 52.6
P@50 88.3 53.71 49.18 74.5 75.8 12.4 - 79.1

are using the combination of features perform best for the four remaining classes, whereas
the low-level approaches never perform best.

Overall Performance Evaluation. We compare the overall classification results of our
gist detection to five other methods from related works, relying on their results without
re-implementation. We provide a per class evaluation, compared to only one work [Mark
J. Huiskes and Lew, 2010], as the others do not provide a per class evaluation.

The extended gist detection pipeline outperforms all of the comparison approaches in
terms of precision (88.3, cf. Table 6.3). Additionally, all but one approach are outperformed
according to Mean Average Precision (MAP: 61.42) by the extended gist detection pipeline
(cf. Table. Only, the multi-label hashing method performs better (MAP: 65.6). However,
there is no result reported for this approach with respect to precision.

Modified Gist Pipeline - Variation Comparison. We study three different variations of
the modified gist pipeline. The modified gist pipeline (Gist(St,i, I)), applies the gist concept
ranking to the nodes collected from both types of seed nodes and the intermediate nodes
(cf. Section 6.2, St and Si, and I). This is our main approach, which we have used in the
experiments from the previous subsections.

A variation is to leave the intermediate graph creation out and to apply the clustering
and ranking border graph produced by the set of seed nodes only (Gist(St,i)). This variation
is studied to evaluate whether the modified gist pipeline with all of its required steps does
increase the performance of the multimedia indexing task.

The third variation is to leave out the intermediate graph creation and the seed nodes
from the image. This variation - called Gist(St) - allows to study the question, whether the
multimedia indexing can be achieved in the simplified pipeline without the intermediate
graph creation step and with the seed nodes linked from the Flickr tags only (and discard any
visual information).
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The lexicon of Gist(St,i, I) consists of 1,538 different top-10 concepts. This is an average
of 40.5 concepts of representing one class. The lexicon of Gist(St,i) and Gist(St) contain
5,809 and 11,755, respectively. The higher number of concepts for Gist(St) underlines the
diversity across the concepts using the tags only (cf. Seed Node Linking) - which might not
be the best characteristic to find semantic similarity.

That the main of our methods (Gist(St,i, I) has the smallest number of different concepts,
confirms the idea which is described in Section 6.2.2 of finding common concepts with the
modified gist understanding pipeline. Studying the concepts which most often appear as
representation for an instance in the main method, reveals true semantic connections between
the concepts and the class topics, e.g., for the class car the concepts are Category:Automobiles,
Category:Roads in Lahore, Category:Streets in Los Angeles County, California. However,
it also reveals weaknesses, as the concept Category:Rainbow appears in nearly every class.
The reason is that the object detector is highly confident with assigning color labels, such as
white, blue, green.

The comparison of all three variations shows that the extended gist pipeline performs best
in terms of MAP and P@50 (MAP: 61.42 and P@50: 88.3, cf. Table 6.3). Comparing the
MAP results (MAP: 45.56 vs. 35.87) of the two simplified pipelines Gist(St,i) and Gist(St),
indicate the benefit of including information from the image even though it might contain
false positive detections. This observation is also confirmed by the result of P@50: 53.71 vs.
49.18).

This study demonstrates that all pipeline steps and the automatic object detection, which
allows for an end-to-end approach, increase the performance in the multimedia indexing task.
Finally, it confirms the benefit of understanding the gist of multimedia pairs, such as images
and texts, in established research domains.

Summary of Findings. The evaluation of the modified gist detection pipeline has shown to
perform well on established tasks, such as multimedia classification. Especially the detailed
per class evaluations have demonstrated the robustness of our approach with respect to
classes with fewer or very few instances. In nearly 40% of the general topic and 84% of the
sub-topic cases, the extended gist detection pipeline outperforms the comparison approaches.
The classifier approaches LDA and SVM, which use the combination of low-level and
visual concepts as features, are the best performing comparison approaches. Nevertheless,
these encode the textual visual concepts as features, which highly overlap with the target
classes, e.g., sky is both a visual concept and a target class topic. Comparing the overall
performance, the gist detection pipeline outperforms the Deep Boltzmann Machine approach
and is comparable to the robust multi-label hashing approach (cf. Table 6.3, DBM and
RMLH, respectively), where for the latter one no result is given for precision. Finally, it can
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be shown that the modified gist pipeline helps to find common concepts for instances of the
same class topic and that these common concepts are semantically close to the target class
topics. As future work, optimizations towards initial concept filtering should be conducted to
lower the influence of concepts that occur in several classes with a very high frequency, such
as the mentioned color problem (cf. Modified Gist Pipeline - Variation Comparison) e.g., by
tf-idf filtering over the complete collection. Furthermore, an in-depth study on how many
concepts are required to represent an image-text pair and its gist would provide useful insights
not only to multimedia indexing, but also to other domains, e.g., image understanding or
question-answering.

6.4 Conclusion

To lower the barrier of fostering novel research tasks, such as the one of gist detection and
understanding far beyond the literal meaning of images, we have shown that established
research questions with multimedia data benefit from understanding the gist. Understanding
the gist is framed as: Given an image-text pair represented by concepts from a knowledge
base, collect semantically-related additional concepts, and finally rank these concepts, ac-
cording to which best represent the gist. To achieve this goal typically two strategies of
collecting additional concepts are combined. The first searches for semantic commonalities
between the concepts representing the pair and the second adds concepts, which are highly
related to these concepts and which allows for a fine-grained distinction between very similar
pairs. We have modified this gist pipeline to benefit from the strategy of finding semantic
commonalities, while conducting a clustering based on relatedness. Both aspects address the
characteristic of the multimedia indexing task: instances can be assigned to several classes,
as they convey different semantic meanings, however, at the same time, they share semantics
with instances assigned to the same class. As we make use of a benchmarking dataset, we
are able to compare the achieved performance of the modified gist detection pipeline to other
methodologies, ranging from low-level features with SVM classification to deep-learning
based approaches. Overall, the modified gist pipeline reaches a comparable performance or
even outperforms the other approaches, e.g., DBM, SVM, LDA, while being less affected of
classes with small numbers of training data.







Chapter 7

Conclusion

In this thesis we formulate the novel task of understanding the gist of image-caption pairs
using a reference external source, i.e., a knowledge base. The task defines the gist of an image
represented by a ranked list of concepts with the image-caption pair - also represented as
concepts - as query. As reference knowledge base the proposed approach utilizes Wikipedia.
Besides concepts and their structure in the knowledge base, the proposed approach benefits
from graph connectivity and relatedness measures, and different content-based measures,
such as Jenson-Shannon divergence between Wikipedia article texts, generated with the texts
affiliated to a concept in the knowledge base. Within a detailed analysis and evaluation, we
have shown that the understanding of gist, thus, the initial candidate concept selection and
the concept ranking for non-literal pairs, is an even harder problem. However, within an
experimental study of applying the approach to the problem of indexing image-text pairs, we
have shown the usefulness of gist detection.

In Chapter 3, we have revised image and multimodal datasets and proofed the observation
that previously there has not been any dataset combining literal and non-literal pairs, and
providing gist annotations. In turn, and based on research we have conducted before, we
built a novel dataset, addressing the task of understanding the gist of image-caption pairs.
Therefore we collect from news media sources non-literal image-caption pairs related to the
topic of global warming. For each of the images of the collected pairs, annotators provide an
alternative descriptive caption. As these pairs convey gists based on common knowledge,
it is a realistic, but challenging dataset. In order to allow for an extensive study of the
problem formulation of understanding the gist, the dataset is provided with a gold standard
addressing several aspects. The objects in the images are assigned with bounding boxes
and textual labels, allowing to conduct evaluations of methodologies to understand the gist,
without the influence of noise from automatic image object detectors. Representing the gist
as concepts from a knowledge base requires at some point the mapping from the initial query
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to concepts in the knowledge base, known as entity linking. To benefit the most from the
knowledge base and its structure as a graph, the entity linking step is directly in the beginning
of the application. Consequently, the image-caption pair is represented by concepts in the
knowledge base. The gold standard provides human evaluated entity linking annotations
for each image-caption pair. The most important part of the gold standard, is provided with
the human annotated ranking of concepts representing the gist for an image-caption pair.
Even though the dataset is compared with others rather small (328 pairs), the annotators
have annotated more than 8,000 gist concepts. Finally, the gold standard provides human
labeled annotations whether the concepts are in principle visually recognizable (depictable
vs. non-depictable). This annotation is the complementary information to descriptive texts,
with the goal of describing what can be seen in an image.

Based on the task definition, we have proposed in Chapter 4 a pipeline which benefits
from external knowledge, several graph and content measures. From each pipeline step
different features are collected and utilized in a learning-to-rank framework. The evaluation
is conducted with a 5-fold cross validation. The results indicate that the gist of non-literal
pairs are generally more difficult to detect. Overall, with the proposed approach a reasonable
gist ranking for image-caption query pairs can be produced.

As the proposed approach considers very different methodological aspects, we study
the impact of the pipeline steps separately. The simple string match-based entity linking
approach with graph-based heuristic to resolve ambiguous links, is compared with two state
of the art entity linkers, TagMe! and Wikipedia-based retrieval index of texts. The evaluation
result indicates whenever interpretation and association in linking entities is required, the two
state of the art systems are strong systems. However, using the simple approach performs
better in our use case, because the concepts that need to be linked are common nouns, which
can easily be found in a knowledge base such as Wikipedia.

In each pipeline step several features are generated. Furthermore, there are content- and
graph connectivity-based features that are collected globally. To evaluate the contribution of
different types of features, an ablation study, which helps the feature selection is conducted.
Overall, the results indicate the relevance of the selected diverse set of different features. The
best results can be achieved, when content, graph, locally (on sub-graphs) and globally (on
the knowledge base) generated features are combined.

The concepts that represent the image-caption query are used to traverse the knowledge
base. Different strategies to generate a sub-graph containing the query (seed) concepts and
the gist candidates are realized. To investigate which of these strategies have an impact to
the candidate selection, we evaluate on single strategy and strategy subsets. Overall, the
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combination of all graph expansion steps performs best, indicating the relevance of close
neighbors and related concepts in the proximity of the seed concepts.

Considering the results of previous studies, we investigated on the complete feature and
candidate set the question, whether a top-k candidate selection does help to identify the gists.
Better gists can be identified, when ranking only the top-k candidates.

Furthermore, we have tested the influence of the clustering to the gist candidate selection.
Again, we have compared on the complete feature and node set. The difference for the
candidate selection is negligible, nevertheless, clustering lowers the computational cost (cf.
all shortest paths calculation on the complete sub-graph vs. on sub-graphs of the clusters).

Encoding the correspondences between image objects and the caption text nouns as
feature, which is called visual linking, reveals that across the non-literal pairs literal elements,
which follow an explanatory objective, can be found. Vice versa, literal pairs can contain
descriptions that are not necessarily visually recognizable or image objects that are not part
of the caption. Even if the visual linking feature does not improve the performance of the gist
detection, it helps to understand the nature of image-caption pairs and their gists. Finally, it
underlines the difficulty of the task of understanding the gist and the gradient-like transition
from literal to non-literal, or vice versa.

Even though multimedia studies have proven the usefulness of combining different media
types, e.g., images and text, it is also an interesting research direction for gist detection. The
evaluation results across different modalities indicate the complementary nature of visual
and textual information for detecting the gist of both, literal and non-literal image-caption
pairs. Consequently, both image and caption are required to capture the gist.

Instead of using the manual image object labels, in an end-to-end approach, we benefit
from the image object detection results of an automatic image object detector (Microsoft
Cognitive Services API) instead. The objects in the images are not always detected correctly,
nevertheless in combination with the human captions, a reasonable gist ranking can be
achieved. These results confirm the strength and robustness of our approach. Substituting
the manual captions by results of the caption generation of the same API and combining
those with the manual image object labels, reveal the ability of automatic caption generation
approaches to detect important objects in an image. Yet, such an approach cannot produce
high-level abstract image captions. Both experiments involving state-of-the-art object detec-
tion and caption generation, confirm that understanding the gist of non-literal pairs are an
even harder problem.

The task of understanding the gist of images, also requires to understand the characteristic
of a gist. Thus, different statistics using the gold standard and our pipeline are calculated.
Statistics reveal that around half of the relevant gist nodes can already be found among the
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seed nodes, for the other half one must look further away from the seeds. This effect is
significantly stronger for the core gists of the non-literal pairs - nearly 35% of the core gists
are found across the border nodes (nodes that are collected via the relatedness measure). The
need for semantic methods when approaching the gist is also confirmed by results to the
question whether gists are depictable - thus, visually recognizable - concepts. It can be shown
that a predominant amount of gists for non-literal pairs is non-depictable. Investigating
the descriptiveness of automatic approaches, we can conclude that automatic approaches
account for descriptive aspects of an image-caption pair, but automatic approaches fail to
produce high level abstract captions and image aspects, that are necessary to detect the gist
of non-literal pairs with its predominant non-depictable (abstract) nature.

These statistics about distribution of gist across all types of nodes, the amount of non-
depictable gists, and the amount of literal or non-literal aspects of automatic approaches,
are in line with our motivation: it is not sufficient to detect what objects are on an image,
but what message the image conveys in combination with the caption - thus, detecting the
non-depictable gist. Finally, in an use case scenario, we have shown the benefit of gist
detection in established research problems. Within a comparative study, we have shown that
gist detection is able to compete with or even outperforms shallow and deep approaches
for multimedia indexing. This result is an important finding, as it underlines the need of
methods that are capable of representing abstract aspects and additional knowledge, such as
associations to broader, complex, or visually not-recognizable domains. Finally, it indicates
that gist detection is useful for downstream tasks, some of which are image search and
retrieval, or cross-domain search and retrieval, i.e., recommending images for texts.

7.1 Future Tasks and Limitations

Independent from the combinations of features or strategies, the non-literal gist detection
remained the most challenging. Even though we report the results on a realistic and chal-
lenging dataset, it has a focus on the theme global warming. Thus, it would be interesting to
see, whether the reported conclusions also hold true for other themes, especially those with
non-literal gists. Based on the use case scenario one can already get a notion for the results
of understanding the gist applied to bigger datasets.

Generally, the question exists, whether there is one approach that can handle the gist
detection for both types of pairs and satisfy the requirements given by literal and non-literal
pairs? This general question is accompanied by the concrete idea that the type of pair first
should be identified to select different strategies, which better account for the specifications,
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e.g., their distribution across the node types or their depictability, of the gist for literal versus
non-literal pairs.

In Chapter 2 we are talking about the linguistic and communication science perspective
of the message conveyed by an image-caption pair. There, we find that the message is
strongly influenced by social, cultural, and also by time periods. These findings motivated
the decision to use as a core component a knowledge base like Wikipedia, which exists
in multiple languages and also versions from multiple time periods. Interesting questions
are whether the gist changes during time (recall the initial example of smoking trains and
smokestacks during the industrial revolution, in these days they might have been less effected
by a negative connotation). In turn, the question for cultural and language differences might
reveal completely new research directions: whilst some images are without ambiguous
meaning, some others might not (e.g., its not always a wedding when people are dressed in
white) and maybe our detectors are ’taught’ too much in western language and culture.

Gist image identification is a small, yet arguably crucial part of the much bigger problem
of interpreting images beyond their denotation. As such, we see this study as a starting
point for research on gist-oriented image search and classification, detection of themes in
images, and recommending images from the web when writing new articles for news, blogs,
or Wikipedia. But even in the simple form of casting image understanding as a concept
ranking problem, we see many potential benefits for a wide range of applications: with our
method, for instance, large image collections, such as Wikimedia Commons (more than 30
million images) could potentially be explored in a new way by annotating the contained
images with (possibly abstract) concepts from Wikipedia. We leave the exploration of such
high-end task that could profit from gist detection for future work.
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