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ABSTRACT

In a time in which computing power has never been cheaper and the possibilities of ex-
tracting knowledge from data seem ever-increasing, the idea of doing this while protecting
the user’s privacy seems too good to be true. However, with the introduction of the first
Fully Homomorphic Encryption scheme in 2009, we now have at our disposal a whole col-
lection of encryption schemes that allow arbitrary computations on encrypted data. With
this primitive, a user can encrypt his data, send it somewhere to be analyzed, and obtain
the encrypted result – all without divulging anything about the data to the computing
party. This is especially useful in the context of Machine Learning: A service provider can
have a model that returns predictions on input data, and a user can obtain these predic-
tions on his data without having to share it with the service provider. This is particularly
important because this data is often of a sensitive nature, e.g. in medical or financial
contexts.

While Fully Homomorphic Encryption schemes solve this problem on a high level, there
are some challenges in practice. A prominent one is the issue of encoding: Real-world data
usually consists of rational numbers, whereas the plaintext space of Fully Homomorphic
Encryption schemes is generally a finite field. Thus, we need an efficient way to encode
the data into these plaintext spaces, and a guideline which of the finite fields to choose in
the first place. Since Fully Homomorphic Encryption schemes are still very slow compu-
tationally, this choice has a huge impact on the performance. The efficiency of different
encoding choices is measured with three metrics: The number of additions we need to per-
form in the underlying plaintext space for a given computation on the rational numbers,
the number of multiplications in the plaintext space, and the multiplicative depth. The
latter measures the number of consecutive multiplications in the plaintext space needed to
perform a computation on rational numbers, and is motivated by the concrete structure
of the Fully Homomorphic Encryption schemes we have today.

In this work, we first show in Chapter 2 that among all finite fields GF (pk), when adding
or multiplying two natural numbers, the choice GF (2) is best in terms of the number
of additions and multiplications. In terms of multiplicative depth there is no generic
optimum, as this depends on the concrete function and the input length of the function
arguments. However, we do show that choosing k > 1 always has worse performance than
choosing GF (p).

Because of this finding, we focus on the encoding base GF (2) in the rest of the work. In
Chapter 3, we extend our analysis to include negative numbers, and thus examine the effort
incurred by the two most popular encoding for signed numbers, Two’s Complement and
Sign-Magnitude. We see that Two’s Complement is better for adding, and Sign-Magnitude
is better for multiplying two numbers. We utilize this fact to invent a new encoding, called
Hybrid Encoding, which essentially switches between the two to minimize the effort. Our
new encoding induces a performance gain of over 70% in some of our applications.

We then extend our analysis from integer to rational numbers in Chapter 4. We propose
several optimizations, which result in an efficiency gain of over 95%. We also propose ways
to speed up the comparison function, and to reduce bitlengths in computations where some
assumptions are met. The latter reduces the runtime by over 76% in our computations.
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In Chapter 5, we apply our findings to algorithms from Machine Learning: We perform a
classification using the Linear Means Classifier, and see the large impact that our Hybrid
Encoding has. We then tackle the more complicated task of training a Machine Learning
algorithm on encrypted data. We use the Perceptron for this, and see that our length
management procedure can decrease runtimes enormously. We also again see that the
Hybrid Encoding vastly outperforms the other two encodings. Lastly, we move to the
clustering problem from the area of unsupervised learning, where we run the K-Means-
Algorithm on encrypted data. We adapt the algorithm to make it efficiently executable in
the Fully Homomorphic Encryption context, and show that the performance of this new
algorithm is similar to that of the original K-Means-Algorithm in terms of clustering accu-
racy. The runtime is reduced by more than 95% compared to straightforward approaches
of executing the K-Means-Algorithm on encrypted data.
We thus see that we can indeed perform algorithms from the world of Machine Learning
on encrypted data, and that by choosing the encoding wisely and employing optimizations
where we can, we can significantly speed up computations. We also see that modifying an
algorithm to make it executable on encrypted data at all can yield results comparable to
the original algorithm, and is thus a promising way to extend the class of algorithms we
can evaluate on encrypted data.
This work is based on the publications [ABC+15], [JA16], [JA17] and [JA18].
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ZUSAMMENFASSUNG

Wir leben in einer Zeit, in der Rechenleistung nie günstiger war und die Möglichkeiten,
Wissen aus Daten zu gewinnen, stetig zunehmen. Die Idee, dies ohne Einschränkung der
Privatsphäre des Nutzers zu tun, klingt hier fast zu gut, um wahr zu sein. Nach der
Entdeckung des ersten vollhomomorphen Verschlüsselungsverfahrens im Jahr 2009 stehen
uns allerdings inzwischen eine ganze Reihe von Verschlüsselungsverfahren zur Verfügung,
die sogar beliebige Berechnungen auf verschlüsselten Daten erlauben. Mit diesem Ansatz
kann ein Nutzer seine Daten verschlüsseln und versenden, um sie von einem Anbieter
analysieren zu lassen, und erhält das verschlüsselte Resultat dieser Analyse zurück – alles,
ohne dem Anbieter den Inhalt der Daten offenzulegen. Dies ist besonders im Kontext des
maschinellen Lernens nützlich: Ein Service-Anbieter kann so über ein Modell verfügen,
welches aus Eingabedaten Vorhersagen berechnet, und der Nutzer kann diese Vorhersagen
für seine Daten erhalten, ohne selbige dem Anbieter offenlegen zu müssen. Dies ist vor
allem dann wichtig, wenn die Daten sensibel sind, z.B. im medizinischen oder Finanz-
Bereich.

Während vollhomomorphe Verschlüsselungsverfahren dieses Problem im Prinzip lösen,
gibt es in der Praxis einige Hindernisse zu überwinden. Ein besonders wichtiger Aspekt
ist hier die Kodierung: Die Daten bestehen meist aus rationalen Zahlen, wohingegen
die Nachrichtenräume der vollhomomorphen Verschlüsselungsverfahren endliche Körper
sind. Man benötigt also einen möglichst effizienten Weg, um die Daten in den Nachricht-
enräumen zu kodieren. Ferner benötigt man eine Richtlinie, welchen endlichen Körper man
überhaupt als Nachrichtenraum wählen sollte. Da vollhomomorphe Verschlüsselungsver-
fahren noch sehr langsam in ihren Berechnungen sind, hat diese Wahl einen enormen
Einfluss auf ihre Performanz. Die Effizienz der verschiedenen Wahlmöglichkeiten der
Kodierung wird anhand von drei Metriken gemessen: Erstens die Anzahl der Additionen,
die im zugrundeliegenden Nachrichtenraum ausgeführt werden müssen, um eine gegebene
Berechnung auf den rationalen Daten auszuführen. Zweitens die Anzahl der Multiplikatio-
nen im Nachrichtenraum, und drittens die multiplikative Tiefe. Letztere misst, wie viele
aufeinanderfolgende Multiplikationen man im Nachrichtenraum ausführen muss, um eine
Berechnung auf den rationalen Daten durchzuführen, und ist in der konkreten Struktur
der heutigen vollhomomorphen Verschlüsselungsverfahren begründet.

In dieser Arbeit zeigen wir zunächst in Kapitel 2, dass die Addition oder Multiplikation
zweier rationalen Zahlen am besten im endlichen Körper GF (2) geschehen sollte, wenn
man die Anzahl der Additionen oder Multiplikationen im Nachrichtenraum als Metrik
betrachtet. Wählt man die mutliplikative Tiefe als Metrik, so existiert kein generisches
Optimum, da die geringste Tiefe von der konkreten Funktion, die berechnet werden soll,
und der Länge der Eingaben dieser Funktion abhängt. Wir zeigen jedoch, dass die Wahl
k > 1 für die endlichen Körper GF (pk) niemals von Vorteil ist, und man stattdessen stets
mit endlichen Körpern der Form GF (p) arbeiten sollte.

Aufgrund dieser Resultate beschränken wir uns im Rest dieser Arbeit auf den Nachricht-
enraum GF (2). In Kapitel 3 erweitern wir unsere Analyse auf negative Zahlen und vergle-
ichen zu diesem Zweck die Kosten für die zwei beliebtesten Kodierungen für ganze Zahlen,
Two’s Complement und Sign-Magnitude. Wir stellen fest, dass Two’s Complement besser
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ist, um zwei Zahlen zu addieren, und dass Sign-Magnitude besser ist, um sie zu mul-
tiplizieren. Wir nutzen diese Tatsache, um eine neue Kodierung zu entwickeln, welche
wir Hybrid Encoding nennen. Sie wechselt im Wesentlichen zwischen Two’s Complement
und Sign-Magnitude, um die Kosten zu minimieren. Unsere neue Kodierung reduziert für
einige unserer Anwendungen die Laufzeit um mehr als 70%.
Wir erweitern anschließend in Kapitel 4 unsere Analyse von den ganzen auf die rationalen
Zahlen. Wir stellen verschiedene Optimierungen vor, welche die Effizienz um mehr als 95%
steigern. Wir zeigen außerdem, wie man den Vergleich von zwei verschlüsselten Zahlen
beschleunigen kann und wie man die Bitlänge unter bestimmten Annahmen verkleinern
kann. Letzteres reduziert die Laufzeit unserer Berechnungen um über 76%.
Schließlich wenden wir in Kapitel 5 unsere Erkenntnisse auf Algorithmen aus dem Bereich
des maschinellen Lernens an: Wir führen zunächst eine Klassifizierung mit dem Linear
Means Classifier durch und sehen, welch großen Einfluss unser Hybrid Encoding hierbei
hat. Anschließend nehmen wir uns die kompliziertere Aufgabe vor, ein Modell auf ver-
schlüsselten Daten zu trainieren. Wir verwenden hierzu das Perceptron und stellen fest,
dass unsere Reduzierung der Bitlängen die Laufzeit enorm verkürzen kann. Wir sehen
zudem auch hier wieder, dass unser Hybrid Encoding deutlich schneller als die anderen
beiden Kodierungen ist. Schließlich wenden wir uns dem Clustering-Problem aus dem
Gebiet des unüberwachten Lernens zu und implementieren den K-Means-Algorithmus auf
verschlüsselten Daten. Wir adaptieren den Algorithmus, um ihn im Kontext der vollhomo-
morphen Verschlüsselung effizient ausführbar zu machen, und zeigen, dass die Genauigkeit
des neuen Algorithmus vergleichbar mit der des ursprünglichen K-Means-Algorithmus ist.
Die Laufzeit wird hierdurch um mehr als 95% reduziert im Vergleich zu trivialen Ansätzen,
den K-Means-Algorithmus auf verschlüsselten Daten auszuführen.
Wir schließen also, dass wir Algorithmen aus dem Bereich des maschinellen Lernens in
der Tat auf verschlüsselten Daten ausführen und so die Privatsphäre des Nutzers schützen
können. Außerdem sehen wir, dass eine geschickte Wahl der Kodierung und die Anwen-
dung verschiedener Optimierungen die Effizienz erheblich verbessern. Wir stellen auch
fest, dass die Modifizierung eines bestehenden Algorithmus mit dem Ziel, ihn auf ver-
schlüsselten Daten ausführbar zu machen, zu einer mit dem ursprünglichen Algorithmus
vergleichbaren Genauigkeit führen kann. Somit können wir die Klasse derjenigen Algo-
rithmen, welche wir auf verschlüsselten Daten ausführen können, erheblich erweitern.
Diese Arbeit basiert auf den Veröffentlichungen [ABC+15], [JA16], [JA17] und [JA18].



machine learning on encrypted data vii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my husband Stefan Wiesberg. You always
provided a much-needed balance to my life, and without your constant love and support I
could not have come this far. I am truly grateful, and I am excited for all the adventures
that our future together holds.
I would also like to thank my advisor, Frederik Armknecht, for guiding me through my
years as a PhD student and creating an environment that made me feel valued and re-
spected. Your feedback helped me improve, not just in the context of this thesis, yet I still
had much freedom to find my academic style. You created many professional opportunities
for me, and were also always supportive in private matters.
Further, I want to thank my family for being there for and supporting me all these years.
You always believed in me and encouraged me to pursue my dreams and ambitions, and
it makes me very happy that we share such a strong bond.
I also want to thank all of my colleagues not just for the many fun times we had, but
for their productive input as well. While my gratitude goes out to all of you, I want
to thank in particular Matthias Hamann and Christian Müller for their invaluable help
in getting things like the encryption libraries to run, and Christian Gorke for the great
companionship – our coffee and lunch breaks are one of the things I will miss most when
I leave the university.
Additionally, I would like to thank Matthias Krause: I learned a great deal not only from
the classes we taught together, but also from the countless conversations we had about
anything and everything, which I truly enjoyed.
Last but not least, I want to thank Colin Boyd not only for agreeing to be the second
advisor on my thesis, but also for the fruitful collaboration we had and especially the great
trip to Norway that resulted from it.



viii machine learning on encrypted data



Machine Learning
on Encrypted Data

1 Introduction 1
1.1 Applications of Fully Homomorphic Encryption . . . . . . . . . . . . . . . . 2

1.1.1 Standalone Applications . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 FHE as a Building Block . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 FHE Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Related Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Existing Schemes and Implementations . . . . . . . . . . . . . . . . 11

1.3 From Theory to Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 The Importance of Encoding . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Cost Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Related Work on FHE Encodings . . . . . . . . . . . . . . . . . . . . 19

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Computing on Natural Numbers 21
2.1 p-adic Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Deriving the Formula for the Carry in Addition . . . . . . . . . . . . . . . . 22

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Formula Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Effort of Evaluating the Carry Formula . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Effort for f1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Effort for f2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Total Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Cost Analysis for Computing on Encrypted Natural Numbers . . . . . . . . 45
2.4.1 The Cost of Adding Two Natural Numbers . . . . . . . . . . . . . . 45
2.4.2 The Cost of Multiplying Two Natural Numbers . . . . . . . . . . . . 48

2.5 Extension to Arbitrary Finite Fields . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1 Encoding for GF (pk) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.2 Effort per Digit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.3 Adding Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Incorporating Negative Numbers 65
3.1 Elementary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Comparison of Unsigned Numbers . . . . . . . . . . . . . . . . . . . 66
3.1.3 Addition of Unsigned Numbers . . . . . . . . . . . . . . . . . . . . . 67
3.1.4 Subtraction of Unsigned Numbers . . . . . . . . . . . . . . . . . . . 68
3.1.5 Multiplication of Unsigned Numbers . . . . . . . . . . . . . . . . . . 69



machine learning on encrypted data

3.2 Two’s Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Addition in Two’s Complement . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Multiplication in Two’s Complement . . . . . . . . . . . . . . . . . . 72

3.2.3 Negation in Two’s Complement . . . . . . . . . . . . . . . . . . . . . 76

3.2.4 Comparison in Two’s Complement . . . . . . . . . . . . . . . . . . . 77

3.3 Sign-Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Addition in Sign-Magnitude . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Multiplication in Sign-Magnitude . . . . . . . . . . . . . . . . . . . . 80

3.3.3 Negation in Sign-Magnitude . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.4 Comparison in Sign-Magnitude . . . . . . . . . . . . . . . . . . . . . 81

3.4 Effort Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.3 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Hybrid Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Rational Numbers 95

4.1 Fractional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.2 Controlling the Bitlength . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Relation to Floating Point Representation . . . . . . . . . . . . . . . 102

4.3 Other Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Easy Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Approximate Comparison . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Length Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Application to Machine Learning 107

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . 108

5.1.2 Implementation Specifications . . . . . . . . . . . . . . . . . . . . . . 110

5.2 The Linear Means Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



machine learning on encrypted data

5.4 Clustering on Encrypted Data . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.2 The Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.3 Implementing the K-Means-Algorithm via Fractional Encoding . . . 126
5.4.4 The Stabilized K-Means-Algorithm . . . . . . . . . . . . . . . . . . . 128
5.4.5 The Approximate Stabilized K-Means-Algorithm . . . . . . . . . . . 137
5.4.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Conclusion and Future Research 145

Bibliography 147

A Overview of Algorithms 155



machine learning on encrypted data



List of Figures

1.1 Steps in homomorphic evaluation . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Number of terms for expanded formula . . . . . . . . . . . . . . . . . . . . . 41
2.2 Effort for expanded formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Effort for addition with varying p . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Effort for multiplication with varying p . . . . . . . . . . . . . . . . . . . . . 53
2.5 Effort for addition for arbitrary finite fields . . . . . . . . . . . . . . . . . . 63

3.1 Two’s Complement vs. Sign-Magnitude addition . . . . . . . . . . . . . . . 83
3.2 Two’s Complement vs. Sign-Magnitude multiplication . . . . . . . . . . . . 84
3.3 Two’s Complement vs. Sign-Magnitude negation . . . . . . . . . . . . . . . 86
3.4 Two’s Complement vs. Sign-Magnitude comparison . . . . . . . . . . . . . . 87
3.5 Hybrid Encoding multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Performance of the Linear Means Classifier . . . . . . . . . . . . . . . . . . 112
5.2 Performance of the Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 The K-Means-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Accuracy of the K-Means-Algorithm for L1 vs. L2-norm . . . . . . . . . . . 126
5.5 Accuracy of the K-Means-Algorithm with increasing rounds . . . . . . . . . 127
5.6 Stabilized vs. exact algorithm for increasing rounds . . . . . . . . . . . . . . 134
5.7 Distribution stabilized vs. exact algorithm, L1-norm . . . . . . . . . . . . . 135
5.8 Distribution stabilized vs. exact algorithm, L2-norm . . . . . . . . . . . . . 136
5.9 Approximate vs. exact algorithm for increasing rounds . . . . . . . . . . . . 138
5.10 Approximate vs. stabilized algorithm for increasing rounds . . . . . . . . . 138
5.11 Distribution approximate vs. exact algorithm, L1-norm . . . . . . . . . . . 139
5.12 Distribution approximate vs. exact algorithm, L2-norm . . . . . . . . . . . 139
5.13 Distribution approximate vs. stabilized algorithm, L1-norm . . . . . . . . . 140
5.14 Distribution approximate vs. stabilized algorithm, L2-norm . . . . . . . . . 141





List of Tables

1.1 First Generation FHE schemes. . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Second Generation FHE schemes. . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Third Generation FHE schemes. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Number of terms in the expanded formula . . . . . . . . . . . . . . . . . . . 41
2.2 Actual vs. theoretical degrees of f1 . . . . . . . . . . . . . . . . . . . . . . . 56
2.3 Actual vs. theoretical degrees of g1 ad g2 . . . . . . . . . . . . . . . . . . . 58

3.1 Two’s Complement vs. Sign-Magnitude addition . . . . . . . . . . . . . . . 83
3.2 Two’s Complement vs. Sign-Magnitude multiplication . . . . . . . . . . . . 85
3.3 Two’s Complement vs. Sign-Magnitude negation . . . . . . . . . . . . . . . 86
3.4 Two’s Complement vs. Sign-Magnitude comparison . . . . . . . . . . . . . . 88
3.5 Hybrid Encoding multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 K-Means-Algorithm: Single-thread runtimes . . . . . . . . . . . . . . . . . . 142
5.2 K-Means-Algorithm: Component runtimes . . . . . . . . . . . . . . . . . . 143





List of Algorithms

1 Unsigned Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2 Reducing Redundancy in Two’s Complement Multiplication . . . . . . . . . 74
3 Two’s Complement Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Sign-Magnitude Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5 Sign-Magnitude Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6 Switching Two’s Complement to Sign-Magnitude . . . . . . . . . . . . . . . . 89
7 Switching Sign-Magnitude to Two’s Complement . . . . . . . . . . . . . . . . 90
8 Hybrid Encoding Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Multiplication using scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10 Approximate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11 Linear Means Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12 Encrypted Linear Means Classification . . . . . . . . . . . . . . . . . . . . . 112
13 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14 OneBitMult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
15 Training the Perceptron on encrypted data . . . . . . . . . . . . . . . . . . . 117
16 The K-Means-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
17 Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
18 The Stabilized K-Means-Algorithm . . . . . . . . . . . . . . . . . . . . . . . 129
19 FindMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130





Chapter 1

INTRODUCTION

Fully Homomorphic Encryption (FHE) describes a class of encryption schemes that in
principle allow arbitrary computations on encrypted data. This makes them a promising
tool for outsourcing sensitive data without compromising privacy. Originally proposed
in 1978 in [RAD78], it wasn’t until 2009 that the first scheme achieving this property
was published in [Gen09]. This initial scheme was highly inefficient and more a proof of
concept than anything else, but many further schemes followed, and efficiency is slowly
approaching real-world feasibility.

Concretely, assume that there is a party A who has some confidential data that they
would like to outsource to party B, perhaps in a cloud setting. If A wants to compute
some function on this outsourced data, like a sum over certain values, or the retrieval of
a subset of the data, they would conventionally have two choices:

1. The data is outsourced in unencrypted form. This means that B has fully flexibility
in computing the function for A and returning only the result, but B also has full
access to the confidential data, thus violating privacy.

2. The data is encrypted before outsourcing it. This maintains data privacy by hiding
the contents from B, but B cannot do anything with the data – if A wants to compute
a function on the data, they must retrieve all the data, decrypt it, and perform the
computation themselves.

We see that conventionally, there is a tradeoff between functionality and privacy. Fully
Homomorphic Encryption, however, offers a solution that guarantees privacy while main-
taining functionality: Here, A can encrypt the data and outsource the ciphertexts to B.
When A requests a function of their data, B can compute this function directly on the
ciphertexts, obtaining the result of the calculation in encrypted form. This result is sent
back to A, who can decrypt it with the secret decryption key. Since B only saw encrypted
data, no information about the underlying confidential data is revealed (except meta-
data, which is unavoidable), and A did not have to download their entire database just to
perform a single computation.

Of course, in practice there are many issues that need to be addressed. A prominent one,
which makes up a large part of this work, is the question of encoding: Most data and
functions that A may want to apply to that data operate over rational numbers, whereas

1
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the plaintext spaces of FHE schemes are usually finite fields. Thus, one needs to map
the input numbers into appropriate plaintext spaces in the most efficient way possible -
a problem we solve in Chapters 2 to 4. Alternatively, another approach is to modify the
underlying algorithm that A wants to apply to the data so that the resulting algorithm
is more FHE-friendly and can be more easily applied by B – we explore this idea in the
context of Machine Learning in Section 5.

The rest of this introduction is structured as follows: Section 1.1 showcases the importance
of FHE by presenting some potential applications. Section 1.2 gives a formal definition
of FHE, explains the differences to related notions, and gives an overview of existing
schemes and implementations. Section 1.3 explains the difficulties that arise in practice
and motivates the contribution of this work.

A large part of the contents of this chapter has been published in [ABC+15].

1.1 APPLICATIONS OF FULLY HOMOMORPHIC ENCRYPTION

In this section, we present some potential applications of FHE to show the magnitude of the
impact this area of research could have when the involved algorithms become sufficiently
efficient.

1.1.1 Standalone Applications

We first examine some scenarios for which Fully Homomorphic Encryption offers a straight-
forward solution, before presenting more complex structure which use FHE as a building
block in Section 1.1.2.

Consumer Privacy in Advertising

Even though advertising has a negative connotation for most people, it can actually be
a useful enhancement if tailored to a user’s needs and preferences, e.g. via recommender
systems or location-based advertising. However, many people are worried about their pri-
vacy: Real-time location sharing essentially allows live tracking of the user, and consumer
preferences may divulge information that the user is not comfortable sharing. Fully Ho-
momorphic Encryption could be used in this scenario by encrypting the user’s location or
preferences, and having the tailored advertisement be the encrypted result, which is only
decrypted locally by the user and thus hidden from the service provider. Examples of this
application area are [JPH13], which presents a recommender system that operates via a so-
cial network and chooses products based on (confidential) tastes of a users friends, [AS11],
where a user can get content from a recommender system without the system knowing
which content was sent, and [NLV11], where a location-based advertising system (e.g. for
discount vouchers of nearby shops) with encrypted location is theoretically conceived. The
latter requires the advertisements to come from a third party which does not collude with
the service provider.

Medical Applications

Among the most privacy-critical data associated with any individual is his medical data.
In order to utilize current knowledge, e.g. to predict diseases or monitor general health
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from things like blood pressure, heart rate, weight or blood sugar readings, a user must
divulge his medical records so that they can be fed into the respective algorithms. By
doing this in encrypted form, the patient’s data remains confidential, and the algorithm is
only applied to the ciphertexts. The user can decrypt the result with his secret key, and
nobody else sees the original data or the result. This approach was described in [NLV11],
and works like [LLN14] and [KL15] examine privacy-preserving genome analysis using
Homomorphic Encryption.

Financial Privacy

In [NLV11], it is proposed that a company which has sensitive data and a proprietary
algorithm, e.g. a stock portfolio and a stock price prediction algorithm in the financial
sector, could upload both in encrypted form in order to outsource computations. However,
Fully Homomorphic Encryption does not guarantee that it is possible to encrypt the
function, i.e., the prediction algorithm in this case. What it does offer is that party A
may have sensitive information like a stock portfolio, and party B may own a proprietary
algorithm like a stock price prediction algorithm. Then A can send their encrypted data
to B, who runs the algorithm on the ciphertexts and returns the encrypted result. Fully
Homomorphic Encryption guarantees that B did not learn anything about A’s data, and
if the encryption scheme has a property called circuit privacy (see Section 1.2.1), it also
guarantees that A learns nothing about B’s algorithm except the result on the input data.
Thus, A may get B’s prediction on their portfolio without either party having to disclose
their information.

Forensic Image Recognition

The goal in forensic image recognition is to detect illegal images in data sets. This can be
done by storing the hash values of forbidden images and comparing them to the hash values
of the data set entries. One major concern regarding this approach is that perpetrators
could obtain the hash database, check if their images match any hash values, and if so,
modify them slightly so that they are no longer detected. In [BPHJ14], a solution to this
problem is proposed: The hash database could be encrypted, and the check is performed
on the hashed and encrypted database so that the result is also encrypted and can only
be decrypted by the database owner (e.g., the police).

Machine Learning

Machine Learning is a field that focuses on extracting information from data. When ap-
plied to very large datasets, it is often referred to as Data Mining. Generally, there are two
approaches in Machine Learning: Supervised and unsupervised. In supervised learning,
there is a training set with known classifications, and the goal is to build a model that
will be able to classify new, previously unseen instances. Both the training and the classi-
fication of new data can be done on encrypted data with FHE. This application was first
proposed in [GLN12], and since then it has been a popular area of research. Many publica-
tions choose (Deep) Neural Networks (see [GDL+16], [CdWM+17], [PAH+17], [BPTG15]
and our publication, [JA16]) and (Linear) Regression or Hyperplane Classification (e.g.,
[LKS16], [EAH17], [BSS+17] or [GLN12]) as their supervised learning algorithms, though
there is also some work on other algorithm classes like decision trees and random forests
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in [WFNL16], or logistic regression e.g. in [BLN14], [KSW+18], or [KSK+18]. A more
detailed overview of works concerning Machine Learning on encrypted data will be given
in Section 5.1.1.3. For the area of unsupervised learning, our publication [JA18] is to our
knowledge the only work concerned with this application of FHE. Our results in applying
Fully Homomorphic Encryption to this fascinating area of research will be presented in
Chapter 5.

1.1.2 FHE as a Building Block

We now present some advanced concepts which could be realized using FHE as a building
block.

Zero Knowledge Proofs

In his PhD thesis [Gen09], Gentry shows how to construct a non-interactive zero knowledge
(NIZK) proof from Fully Homomorphic Encryption: The challenge is to prove knowledge
of a satisfying assignment of input bits to a Boolean circuit without revealing the inputs.
To do this, the prover encrypts the input bits with FHE and evaluates the circuit on the
ciphertexts, which yields the encrypted output bit (which should encrypt 1 if the prover
indeed posesses the knowledge he claims to have). A standard NIZK proof showing that
each input ciphertext encrypted either 0 or 1, and that the output encrypts 1, then suffices
to prove the claim to the verifier.

Verifiable Computation

In cloud computing, the two main functionalities are data storage and outsourcing com-
putations. We have already motivated FHE as a means to keep the data private while
still allowing the user to outsource his computations – however, Fully Homomorphic En-
cryption can be useful even when the data is not sensitive and can be stored in the clear:
If the cloud service only returns the result, the user has no way of being sure that the
result is actually correct, as the service may be faulty or even economically motivated to
cheat on costly computations. Fully Homomorphic Encryption can be used as a tool that
allows the user to verify correctness of the computation, for example through homomor-
phic Message Authentication Codes (MACs). Each input has a tag that was encrypted
with FHE by the data owner, and the party doing the computation can combine these
tags to obtain one which authenticates the result of the computation. It must hold that
verifying the correctness is much more efficient than performing the computation on the
data and only possible with the secret key of the data owner. Additionally, the output
tag should be independent of the size of the dataset. Publications in this field of research
include [CKV10], [GGP10] and [GW13].

Signatures

Homomorphic signatures can be considered as a public key-version of the homomorphic
MACS mentioned in the previous paragraph. The idea is again that the input data has
been signed with the data owner’s private key, and the computing party can compute a
function of the input data and a valid signature for the result of this computation, using
the input signatures and FHE. Anybody can then verify the correctness of the signed
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output with the public key (this is the difference to homomorphic MACs, where only the
owner of the secret key can verify the signature). Fully homomorphic signatures were first
defined in [BF11], and [GVW15] continues this line of work.

Multiparty Computation

Multiparty computation (MPC) is a primitive that is often seen as a rival to FHE in
a sense, as use cases for both approaches are very similar. MPC is usually faster, but
requires interaction in order to perform computations, so the choice depends on the con-
crete scenario. More details on MPC can also be found in Section 1.2.2.3. However, in
some cases, a hybrid approach could have benefits: For example, in [DPSZ12] the authors
propose a way of using FHE1 to perform a costly multiplication in an offline preprocessing
phase, and switch back to MPC for the main computation.

1.2 FHE OVERVIEW

In this section, we will give an introduction to Fully Homomorphic Encryption. We will
first discuss some formal definitions, then we will present an overview of existing work in
the FHE realm, and lastly we will distinguish FHE from other, closely related notions.

1.2.1 Formal Definition

We now present a series of definitions that culminate in the definition of an FHE scheme.
Note that originally, these notions were defined only for the binary case, i.e., when the
plaintext space of the encryption scheme is {0, 1}. We have generalized the definitions
from [ABC+15] to the more general setting of rings as plaintext spaces to accommodate
all current FHE schemes. This was mainly done by replacing the notion of circuits with
polynomials.
We denote the following spaces:

• P is the plaintext space.

• X is the space of fresh encryptions (the image of the encryption algorithm Enc).

• Y is the space of valid evaluation outputs (the image of the evaluation algorithm
Eval).

• Z = X ∪ Y is the space of ciphertexts that are fresh, or valid evaluation outputs.

• Kp,Ks, and Ke are keyspaces for pk, sk, and evk. The public key contains a descrip-
tion of the plaintext and ciphertext spaces.

• P is the set of permitted polynomials, i.e. all the polynomials which the scheme can
evaluate.

1To be exact, they use the related notion Somewhat Homomorphic Encryption, which will be explained
in Section 1.2.2.



6 introduction

Definition 1.1 (P-Evaluation Scheme2). A P-evaluation scheme for a set P of multivariate
polynomials is a tuple of probabilistic polynomial–time algorithms (Gen,Enc,Eval,Dec)
such that:

Gen(1λ, α) is the key generation algorithm. It takes two inputs, the security parameter λ
and an auxiliary input α, and outputs a key triple (pk, sk, evk), where pk is the key
used for encryption, sk is the key used for decryption and evk is the key used for
evaluation.

Enc(pk,m) is the encryption algorithm. As input it takes the encryption key pk ∈ Kp and
a plaintext m ∈ P. Its output is a ciphertext c ∈ X .

Eval(evk, p, c1, . . . , cn) is the evaluation algorithm. It takes as inputs the evaluation key
evk ∈ Ke, a polynomial p ∈ P and a tuple of inputs that can be a mix of fresh
ciphertexts and previous evaluation results. It produces an evaluation output.

Dec(sk, c) is the decryption algorithm. It takes as input the decryption key sk ∈ Ks and
either a ciphertext or an evaluation output and produces a plaintext m ∈ P.

The reason that we differentiate between fresh encryptions and outputs of the evaluation
algorithm is that these can look very different. In fact, it is actually not required that
a fresh ciphertext be decryptable, only that evaluation outputs are. If one wanted to
decrypt a fresh ciphertext, one could run Eval on it with the polynomial p(x) = x to obtain
an evaluation output which is decryptable. In other words, if the decryption algorithm
does not accept fresh ciphertexts, we can replace it by an algorithm that runs all fresh
ciphertexts through the identity function to obtain an evaluation output, and then decrypts
the result with the original decryption function. This results in a decryption algorithm
that can decrypt both fresh ciphertexts and evaluation outputs – i.e., it operates on the
whole space Z = X ∪ Y. Due to this workaround, we ignore this technicality and assume
all ciphertexts are decryptable.
We now move on to a series of attributes that are required of a P-evaluation scheme in
order for it to be called fully homomorphic.

Definition 1.2 (Correct Decryption). A P-evaluation scheme (Gen,Enc,Eval,Dec) is said
to correctly decrypt if for all m ∈ P,

Pr[Dec(sk,Enc(pk,m)) = m] = 1,

where sk and pk are outputs of Gen(1λ, α).

This means that we must be able to correctly decrypt ciphertexts – an attribute always
required of encryption schemes, homomorphic or not. Since we are focusing on homo-
morphic schemes, we would of course also like to require that computations on encrypted
data return the correct result as well: Evaluating a function on ciphertexts and decrypting
the result should yield the same value as as the corresponding computation on the unen-
crypted input data. Due to the structure of all existing schemes, it is not impossible for
this requirement to fail from time to time, so we soften the definition by allowing failure
with negligible3 probability.

2 Definition loosely based on [BV11a].
3A function f(x) is called negligible if for every positive polynomial p(x) there exists an xp such that

for all x > xp, it holds that |f(x)| ≤ 1/p(x). This means that the absolute value of f decreases faster than
the inverse of any polynomial.
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Definition 1.3 (Correct Evaluation4). A P-evaluation scheme (Gen,Enc,Eval,Dec) cor-
rectly evaluates all polynomials in P if for every c1, . . . , cn ∈ X , where mi ← Dec(sk, ci),
for every p ∈ P, and some negligible function ε,

Pr[Dec(sk,Eval(evk, p, c1, . . . , cn)) = p(m1, . . . ,mn)] = 1− ε(λ)

where sk, pk and evk are outputs of Gen(1λ, α).

Definition 1.4 (Correctness). A P-evaluation scheme is correct if it correctly decrypts
and evaluates all polynomials in P.

It may seem like requiring correctness would be enough to define a homomorphic encryp-
tion scheme, but it allows a trivial construction that can evaluate any function and fulfills
these definitions: Take any regular encryption scheme, define Eval to be the identity func-
tion (i.e., Eval(evk, p, c1, . . . , cn) = (p, c1, . . . , cn)) and redefine the decryption function to
decrypt the ciphertexts c1, . . . , cn, apply the polynomial p to theses plaintexts, and return
the result of this computation. Obviously, this construction does not satisfy what we
mean by homomorphic encryption, so we need further requirements to exclude this trivial
scheme. We do this by restricting the size that the output of Eval may have.

Definition 1.5 (Compactness5). A P-evaluation scheme is called compact if there is a
polynomial f such that for any key-triple (sk, pk, evk) output by Gen(1λ, α), any polyno-
mial p ∈ P and any ciphertexts c1, . . . , cn ∈ X , the size of the output Eval(evk, p, c1, . . . , cn)
is not more than f(λ) bits, independent of the size of the polynomial p.

Joining this definition of compactness with our requirement for correctness, we obtain the
notion of compact evaluation:

Definition 1.6 (Compact Evaluation). A P-evaluation scheme (Gen,Enc,Eval,Dec) com-
pactly evaluates all polynomials in P if the scheme is compact and correct.

Before we define Fully Homomorphic Encryption, we present one last auxiliary definition.
It is not technically required for FHE, but it plays an important role for our use case in
Chapter 5, and nearly all modern schemes achieve it. It is called Circuit Privacy because
it was first defined in [Gen09], which had a binary plaintext space and thus utilized circuits
instead of polynomials, but we have adapted it to our setting. Intuitively, it captures the
notion that an output of Eval should not reveal anything about the function that was
applied except what can be derived from the decrypted result.

Definition 1.7 (Perfect/Statistical/Computational Circuit Privacy6). A P-evaluation
scheme (Gen,Enc,Eval,Dec) is said to be perfectly/statistically/computationally circuit pri-
vate if for any key-triple (sk, pk, evk) output by Gen(1λ, α), for all polynomials p ∈ P and
all ci ∈ X , such that mi ← Dec(sk, ci), the two distributions on Z

D1 = Eval(evk, p, c1, . . . , cn)

and
D2 = Enc(pk, p(m1, . . . ,mn)),

both taken over the randomness of each algorithm, are perfectly indistinguishable, statis-
tically indistinguishable or computationally indistinguishable, respectively.

4 Definition based on [BV11a], Def. 3.3.
5 Definition based on [vDGHV10], Def. 3.
6 Definition based on [Gen09], Def. 2.1.6.
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There is also a slightly weaker, but less used notion called function privacy which merely
requires that the outputs of evaluating different functions on encrypted data are perfectly/
statistically /computationally indistinguishable.

We can now define what it means that an encryption scheme is fully homomorphic.

Definition 1.8 (Fully Homomorphic Encryption Scheme7). A P-evaluation scheme is said
to be fully homomorphic if it is compact, correct, and the set of permitted polynomials
P is the set of all polynomials.

This means that the scheme must be able to evaluate any polynomial in a compact fashion
correctly, and the polynomial does not have to be known at encryption time.

Finally, we present one definition that is motivated from the concrete schemes we have
today rather than a theoretical necessity for Fully Homomorphic Encryption. We present
it at this point because it plays a large role for the choices made in the rest of this work.

Definition 1.9 (Bootstrapping). A P-evaluation scheme is said to be bootstrappable if
it is able to homomorphically evaluate its own decryption function and one additional
operation.

The motivation for this is that all FHE schemes we have today are noise-based, where the
plaintext is masked by noise. Each multiplication squares that noise, and when the noise
passes a certain threshold, decryption fails. However, decryption removes all the noise.
Now suppose we have two sets of keys for the same encryption scheme: (sk1, pk1, evk1) and
(sk2, pk2, evk2), where evk2 contains the secret key of the first key set encrypted under the
public key of the second set: evk2 = Enc(pk2, sk1). Let c be a ciphertext that is encrypted
under the first keyset, and has accumulated some noise from previous operations. So
we have Dec(sk1, c) = m for some m. Bootstrapping then essentially means encrypting
c under pk2 (so that it is doubly encrypted), and then homomorphically computing the
decryption function for the first key set using the encrypted secret key:

c′ := Eval(evk2,Dec,Enc(pk2, c)) = Eval(Enc(pk2, sk1),Dec,Enc(pk2,Enc(pk1,m))).

Intuitively, we doubly encrypt the ciphertext so that we can remove the inner encryption
layer with the encrypted secret key. Initially, decryption removes all the noise, but eval-
uating the decryption function introduces its own noise, which often proves very large.
Thus, a scheme that can evaluate its own decryption function and an additional operation
(so that the scheme remains useful) has the special distinction of being bootstrappable.

Note that FHE schemes usually rely on the circular security assumption: Namely, that
security is not impaired by choosing (sk1, pk1, evk1) = (sk2, pk2, evk2), i.e., having only
one key and thus having the evaluation key be the secret key encrypted under its own
public key (evk = Enc(pk, sk)), which allows endless bootstrappings.

1.2.2 Related Notions

In the context of homomorphic encryption, there are many different related notions that
can seem very similar, which is why we explain them in this section.

7 Definition based on [BV11a], Def. 3.5.
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1.2.2.1 Weaker Variants

Often, it is not necessary to have fully homomorphic encryption schemes – if some in-
formation about the function p that will be applied to the encrypted data is known at
encryption time, it is enough to chose a P-evaluation scheme where p ∈ P, and P does not
need to be all functions.

Definition 1.10 (Somewhat Homomorphic Encryption Scheme). A P-evaluation scheme
is said to be somewhat homomorphic if it is correct for some set of permitted polynomials P.

This definition does not require compactness, so the ciphertexts can grow arbitrarily with
each operation. Also, the set of permitted polynomials P can be any (non-trivial) set
of polynomials. Note that in particular, encryption schemes that are homomorphic with
regard to one operation, like RSA [RSA78], ElGamal [Gam84], Paillier [Pai99] and others,
fall into this category.

Definition 1.11 (Levelled Homomorphic Encryption Scheme8). A P-evaluation scheme is
said to be levelled homomorphic if Gen takes an auxiliary input d ∈ α which specifies the
maximum degree of polynomials that can be evaluated. Additionally, the scheme must be
correct, compact, and the length of the evaluation output may not depend on d.

This variant is a bit more restricted than somewhat homomorphic encryption, and has
a close relation to bootstrapping from Definition 1.9: For bootstrapping, we need to
generate a sequence of key sets, where the evaluation key is the secret key of the previous
set encrypted under the current public key: evki = Enc(pki, ski−1) with evk0 being empty.
Since bootstrapping removes noise that builds up during computation, we need to give an
auxiliary parameter d to the algorithm which essentially specifies how many key sets we
need, i.e., how often we will need to remove noise.

Note that the above definition did not restrict P in any way. If we require that the scheme
be able to evaluate all polynomials up to the specified depth, we obtain the concept of
Levelled Fully Homomorphic Encryption:

Definition 1.12 (Levelled Fully Homomorphic Encryption Scheme). A P-evaluation
scheme is said to be levelled fully homomorphic if it is levelled homomorphic and the set
of permitted polynomials P consists of all polynomials with degree at most d.

1.2.2.2 Stronger Variants

Perhaps surprisingly, it turns out that Fully Homomorphic Encryption is not the strongest
requirement that we can have. This is due to the fact that while we require the scheme
to be able to evaluate any polynomial, the output of Eval does not necessarily need to be
a valid input to Eval. In this case, it is not possible to perform further computations once
the initial computation has finished – in other words, for any polynomials f and g, one
can compute Eval(evk, f, c1, . . . , cn), Eval(evk, g, c1, . . . , cm), and Eval(evk, g◦f, c1, . . . , cn),
but not Eval(evk, g,Eval(evk, f, c1, . . . , cn)). Thus, the whole function must be computed
at once, and results cannot be input into future computations.

Schemes that are able to evaluate outputs of Eval thus have an even stronger characteri-
zation, depending on how often one can do this successively.

8 Definition based on [BV11a], Def. 3.6.



10 introduction

Definition 1.13 (i-hop). Let i ∈ N. A P-evaluation scheme is said to be i-hop if it can
correctly evaluate j consecutive calls of Eval for all j ≤ i.

In this case, the number of calls is bounded by an integer – alternatively, it may be bounded
by a polynomial depending on the security parameter λ:

Definition 1.14 (Multi-hop). A P-evaluation scheme is said to be multi-hop if i-hop
correctness holds for all i that are polynomial in the security parameter λ.

If there is no limit to the number of times that we can consecutively call Eval, we have
reached the strongest definition:

Definition 1.15 (∞-hop). A P-evaluation scheme is said to be∞-hop if i-hop correctness
holds for all i.

Note that in practice, these hop-definitions are not very important: Most FHE schemes
achieve some form of circuit privacy (see Definition 1.7), which automatically implies some
of these properties. Concretely, from [ABC+15] we know the following two facts9:

Theorem 1.1. A fully homomorphic encryption scheme that is statistically circuit private
is multi-hop.

Theorem 1.2. A somewhat homomorphic encryption scheme which has perfect circuit
privacy is ∞-hop.

This means that we do not have to worry about this distinction in practice, and we will
implicitly assume that our FHE schemes are at least multi-hop from now on.

1.2.2.3 Other Notions

There exist four other fields of research that seem related to FHE in that they revolve
around computations while keeping something secret, and indeed there is some overlap.

• Functional Encryption [BSW11] allows the generation of different secret keys,
which reveal the value f(m) for some function f encoded in the secret key, where
c = Enc(pk,m). So formally, Dec(skf , c) = f(m). The difference to FHE is a
conceptual one: In FHE, anyone with the evaluation key can perform computations
of their choosing, but cannot see the result because it is encrypted, and only the data
owner has the decryption key. In Functional Encryption, the data owner controls
the function to be applied in issuing the secret keys, and the result is received by
the computing party in the clear.

• Obfuscation [BGI+01] is a largely theoretical notion that tries to formalize the
concept of a black box: The user can see the input and output of the function,
but learns nothing about the steps in between. This would enable the outsourcing
of the function to be applied to the encrypted data without divulging the function
to the computing party, but there is an additional connection between obfuscation
and FHE: Obfuscation could be used to generate an FHE scheme. Concretely, the
black box could contain the decryption and encryption keys, and the function to be

9The proof of these theorems can also be found in [ABC+15], where they are denoted as Theorems 3
and 4, respectively.
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applied. The ciphertexts would then be decrypted inside the black box, the function
computed on the plaintexts, and the result would be encrypted again before leaving
the black box. However, it is questionable whether this construction would be any
more efficient than direct FHE, and the security implications of hiding the decryption
key inside a published program would also have to be carefully examined.

• Secure Multiparty Computation [Yao82] (MPC) is an area of research that
is often considered as a rival of Fully Homomorphic Encryption, as it also allows
computations without revealing the underlying inputs. Concretely, there are several
parties who each hold some confidential data, and Secure Multiparty Computation
allows them to compute a function on their joint data in such a manner that no party
learns anything about the inputs of the other parties. This way of computing a func-
tion on sensitive data is usually much more efficient than using Fully Homomorphic
Encryption, but MPC requires a large number of interactions between the parties.
Fully Homomorphic Encryption, on the other hand, requires no interaction during
the computation phase, and the computational load resides entirely with the party
performing the computation – thus, in the context of outsourcing computations, it is
much more attractive for the client because his computational load is non-existent.
In addition, a circuit private FHE scheme (see Definition 1.7) also allows the function
that is being computed to remain secret.

• Differential Privacy [Dwo06] is a term that quantifies the information that is
leaked about an individual by including the data of that individual in a statistical
database. On a high level, a small amount of randomness is added to the data
in order to create refutability – for example, if a boolean value is being measured,
the value will be flipped with a small probability, and an attacker will not know
for certain whether the value is the true value or not. The focus here is different
than FHE: In Differential Privacy, a function (e.g. the mean or a sum) is computed
on a dataset, and the result is manipulated in a way such that individual data
cannot be inferred. Of course, changing the result reduces its accuracy, which is why
Differential Privacy is used primarily on large datasets where the randomness that
is added can be small relative to the result while still ensuring privacy. In contrast,
with Fully Homomorphic Encryption the data is encrypted, and then any function
that can be computed on the plaintext space of the encryption scheme can also be
computed on the data, and the encrypted result will be exact.

This concludes the theoretical background on Fully Homomorphic Encryption, and we
will now briefly cover existing schemes and implementations before moving on to the
motivation for the work in this thesis.

1.2.3 Existing Schemes and Implementations

As already mentioned, the first Fully Homomorphic Encryption Scheme was proposed
in [Gen09] in 2009 after being an open problem for over 30 years. Since then, many
schemes have followed, greatly improving efficiency from about 30 minutes per operation
in [GH11] in the very beginning to under 0.1 seconds in [CGGI16] for the currently fastest
scheme.
Conceptually, FHE schemes are often categorized into three different generations. In the
following, we briefly present existing cryptosystems for each of the generations (following
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the categorization from [BBL17]), along with asymptotic performance, the problem hard-
ness is based on (which we explain in Section 1.2.3.4), and concrete runtimes when known.
Values for some early schemes are taken from [ABC+15]. Note that the authors often pro-
vide different runtime analyses for their schemes, so the figures may not be comparable.
The concrete experiments have been run by the respective authors on widely different
hardware, but still give an indication. Blank cells are, to the best of our knowledge, not
publicly known.

1.2.3.1 First Generation

The first generation of FHE schemes consisted of a handful of very slow schemes, as
presented in Table 1.1. Note that [GH11] is a slightly optimized variant of [Gen09].

Scheme
Underlying
Problems

Asymptotic Runtime Concrete Runtime

[Gen09]
BDDP/SVP

( [GH11])
& SSSP

O(λ3.5) per gate for bootstrapping
in [SS10].
Key generation is O(log(n) · n1.5)
where n is the dimension of the
lattice in [GH11]

Bootstrapping: From 30 s for small
setting, to 30 min for large setting
in [GH11].

[vDGHV10]
AGCD &

SSSP
Public key size: O(λ10), no gate cost
given.

-

[SV10] PCP & SSSP
Key generation is O(log(n) · n2.5)
where n is the dimension of the
lattice, according to [GH11].

Key generation took several hours
even for small parameters which do
not deliver a fully homomorphic
scheme, for larger parameters the
keys could not be generated.

Table 1.1: First Generation FHE schemes.

1.2.3.2 Second Generation

Shortly after these initial schemes, a new set of schemes based on lattice10 problems
emerged, and this lattice structure allowed them to be more efficient than the first gen-
eration constructions. Some of these techniques were then also adopted to the setting
of [vDGHV10], yielding new schemes in this area as well. An overview of these schemes
is given in Table 1.2.

10A lattice is a discrete additive subgroup of Rn that is isomorphic to Zp for some prime p. A lattice is
given by a basis, and its points are obtained as all linear combinations of the basis using integer coefficients.
Cryptographic schemes based on lattice problems usually utilize the fact that certain problems are hard
to solve given a ”bad“ basis of a lattice, but easy to solve given a ”good“ basis. Thus, a bad basis for a
lattice is used as the public key, and the good basis for the same lattice is the secret key.
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Scheme
Underlying
Problems

Asymptotic Values Concrete Runtime

[BV11a] DLWE
Evaluation key size: O(λ2C log(λ))
where C is a very large parameter
that ensures bootstrappability.

-

[BV11b] PLWE
Very cheap key generation, unknown
for bootstrapping

-

[CMNT11] AGCD
Reduced public key size from O(λ10)
in [vDGHV10] to O(λ7).

14 min 33 s for bootstrapping,
public key size 802 MB.

[Bra12]
Gap-

SVP/LWE

Properties depend on ratio of initial
noise B to ciphertext modulus q. To
evaluate depth d, one needs
q ≈ B · p(λ)d where p(λ) is a
polynomial factor.

The RLWE-variant [FV12] achieves
1.4 ms per addition, 59 ms per
multiplication, and 89 ms per
bootstrapping in [LN14].

[BGV12] RLWE

Per-gate computation overhead
Õ(λ · d3) (where d is the depth of
the circuit) without bootstrapping,
Õ(λ2) with bootstrapping.

36 hours for AES encryption
(supercomputer, [GHS12]). Updated
implementation: AES-128
encryption 2 seconds/block
(batched). With bootstrapping 6
seconds/block. In [HS15]: Vectors of
1024 elements from GF(216) were
bootstrapped in 5.5 minutes, single
CPU core.

[CNT12]
DAGCD &

SSSP
Public key size: O(λ5 log(λ)), no
gate cost given

Recryption takes about 11 minutes.

[LTV12] RLWE

Based on the variant of
NTRU [HPS98] presented in [SS11].
Needs non-standard security
assumption DSPR, which is removed
in [BLLN13].

The scale-invariant
RLWE-variant [BLLN13] achieves
0.7 ms per addition, 18 ms per
multiplication, and 31 ms per
bootstrapping in [LN14]
(multi-core).

[BGH13] LWE

Introduces packing for LWE
schemes, i.e., computing the same
function on several inputs
simultaneously. If one ciphertext
needs dimension n, then m
plaintexts can be encoded in a
ciphertext of dimension n+m.

-

[CCK+13] DAGCD

Introduces packing for schemes
based on [vDGHV10]. Ciphertext
size grows linearly with number of
encoded plaintexts.

12 minutes (amortized) per AES
ciphertext on a desktop computer.

[CLT14] ACGD

Secret key linear in depth d of the
circuit to be evaluated (levelled
FHE). Ciphertext size:
Õ(d2 · λ+ λ2), public key size:
Õ(d4 · λ2 + λ4)

23 seconds (batched setting) per
AES ciphertext on a desktop
computer.

[RC14]
SVP &
RLWE

Modulus-switching approach, moduli
size independent of circuit depth.

Recryption at 275 seconds on 20
cores with 64-bit security.

[SV14]
BDDP &

SSSP
Introduced packing for [SV10].

Different parameter settings, fastest
recryption 15 seconds for toy setting
(6 processors, 47 GB RAM).

Table 1.2: Second Generation FHE schemes.
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1.2.3.3 Third Generation

While the schemes from the second generation were much more efficient than the first
generation asymptotically, the absolute performance in terms of runtime was still astro-
nomical. With [GSW13], new techniques allowing smaller parameter sizes were introduced,
and runtimes decreased several orders of magnitude. The state of the art schemes today
fall into this category, and the implementation of [CGGI16] will be the library used for
our runtime experiments in later chapters. An overview of these third-generation schemes
can be found in Table 1.3.

Scheme
Underlying
Problems

Asymptotic Values Concrete Runtime

[GSW13] LWE

Ciphertext addition and
multiplication are simple matrix
additions and multiplications. For
lattice dimension parameter n, the
scheme can evaluate any depth d
NAND-circuit with gate overhead
Õ((n · d)ω) where ω < 2.3727 is the
performance of the matrix
multiplication algorithm used.

In [KGV16], an optimized version
achieves 0.006 seconds per addition
and 0.372 seconds per multiplication
for their parameter setting on a
CPU, and 2 · 10−4, resp. 3.477 · 10−3

seconds on a GPU.

[BV14] DLWE
Bootstrapping needs p(λ) matrix
(size 5× 5) multiplications, where p
is some (large) polynomial.

-

[AP14]
Gap-SVP &

SIVP

Õ(λ) for bootstrapping and gate
overhead each, resulting in Õ(λ2)
total gate complexity

-

[DM15] LWE

Standard LWE parameters, but new
bootstrapping algorithm and
NAND-computation algorithm. No
asymptotic analysis given.

A bootstrapped NAND-gate is
evaluated in 0.69 seconds
(non-batched).

[CGGI16] TLWE
Instead of matrix multiplications,
the bootstrapping computations are
matrix-vector products.

52 ms per bootstrapping. Further
improvements in [CGGI17] yield 13
ms per gate.

[BBL17] DAGCD

Noise grows polynomially
(polynomial depends on parameter
choice) in λ with each multiplication
or NAND, the noise growth is
asymmetrical. Multiplying two
ciphertexts has complexity γ2 log(γ),
where γ is a parameter from the
DAGCD assumption depending on
λ.

-

Table 1.3: Third Generation FHE schemes.
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1.2.3.4 Underlying Problems

We now quickly give an informal overview of the (presumed) hard problems underlying
the above schemes, more details can be found in the respective papers.

• SSSP: Sparse Subset Sum Problem. As explained in Definition 1.9, removing
noise from a ciphertext requires the scheme to evaluate its own decryption circuit.
This is usually not easily possible, so a trick (called “squashing”) is employed: The
secret key is written as a sum of other elements, which are hidden in a much larger
set of elements. This large set then becomes part of the public key. The new secret
key is only an indicator vector that identifies the set entries involved in the sum
that reveals the secret. The SSSP assumption is that it is not feasible to extract the
secret from the large set without the indicator vector.

• SVP: Shortest Vector Problem. This is the problem of finding the shortest
vector in a given lattice. It also comes in a decisional variant Gap-SVP, which is
parametrized by a value γ, and consists of determining whether there either exists
a vector shorter than 1, or all vectors in the lattice have length at least γ.

• SIVP: Shortest Independent Vector Problem. The goal is to find the shortest
independent vectors in a lattice – in other words, to compute a basis (of a sublattice)
of only the shortest vectors.

• BDDP: Bounded Distance Decoding Problem. This is a version of the Closest
Vector Problem (CVP), where a vector is given, and the challenge is to find the point
on the lattice that is closest to this vector. The BDDP additionally has a guarantee
that the vector is actually very close to the lattice point.

• LWE: Learning with Errors. The computational variant is to extract a secret s ∈
Znq for some n, q from a set of samples of the form (ai, < ai, s > +ei) ∈ Znq ×Zq with
ai ∈ Znq chosen uniformly at random, and ei coming from some error distribution.
The decisional version DLWE is to distinguish the above set of samples from the
uniform distribution over Znq × Zq. The generalization to the real torus is denoted
TLWE.

• RLWE: Ring Learning with Errors. This is very similar to LWE, but takes
place in a ring of the form R := GF (p)[X]/(f(x) for an irreducible polynomial f(x).
The samples then have the form (ai(x), ai(x) · s(x) + ei(x) ∈ R2 for appropriate
distributions of ei and ai. The computational variant is to extract the secret polyno-
mial s(x), the decisional variant is to distinguish such samples from those that were
drawn from the uniform distribution over R2. The variant PLWE is essentially the
same, but has some further constraints on the polynomial f(x).

• AGCD: Approximate Greatest Common Divisor Problem. In this problem,
the task is to find a secret number p given polynomially many near multiples of p
in the form qi · p + ri, with ri much smaller than qi · p. In the decisional variant
DAGCD, there is an additional integer z = x + b · α, where x is of the same form
q · p+ r, α is from some interval depending on the parameters, and b ∈ {0, 1}. The
task is now given z and the near multiples of p, to determine whether b = 0 or b = 1
– in other words, whether z is also a near multiple of p or not.
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• PCP: Polynomial Coset Problem. This is a decisional problem that asks
whether a given value r is the evaluation of a secret polynomial R(x) (subject to some
constraints) on a known input α, reduced mod p where p is known, or whether the
value r was randomly drawn from Zp. Formally: Given r, α and p, decide whether
r = R(α) mod p for some polynomial R, or whether r was drawn randomly from Zp.

1.2.3.5 Implementations

Lastly, we present the existing implementations of Fully Homomorphic Encryption schemes.
We limit ourselves to those libraries that are publicly available.

• Coron’s DGHV [LIBa]: Written in SAGE, this library implements [CNT12],
which is an optimization of [vDGHV10].

• FHEW [LIBb]: This library implements the scheme from [DM15].

• FV vs YASHE [LIBc]: This is the library accompanying the paper [LN14], which
implements both [FV12] and [BLLN13]. It is intended as an experimental library,
not optimized for public use.

• HElib [LIBd]: This was, to our knowledge, the first publicly available FHE library.
It implements the scheme from [BGV12].

• SEAL [LIBe]: Developed by Microsoft, this library implements an optimized ver-
sion of [FV12] described in [CLP17]. The library has no external dependencies and
is possibly the most user-friendly of the implementations.

• TFHE [LIBf]: The currently fastest library, it implements [CGGI16] and the op-
timizations from [CGGI17]. This is the library we use in later sections.

1.3 FROM THEORY TO PRACTICE

Now that we have seen a formal presentation of FHE and an overview of the existing
landscape, we move on to more practical aspects. Colloquially, it is often said that FHE
allows the execution of any function on encrypted data, yet performing a division or taking
the square root remain open problems in this field. We will see in a second that what
seems like a contradiction at first glance is actually due to the imprecision of the colloquial
wording.
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1.3.1 The Importance of Encoding

Concretely, suppose there is a function g : Sn → S for some domain S (e.g., S = R)
which a user wants to evaluate. However, FHE schemes have finite fields11 GF (pk) as
their plaintext spaces – some restricted to GF (2), some allowing arbitrary fields. In any
case, no FHE scheme (or any encryption scheme, to be exact) has a plaintext space of
N or Q or R, or more generally S if S can be chosen arbitrarily. Denoting the plaintext
space of the Fully Homomorphic Encryption scheme with P and the ciphertext space12

with C, we thus first need to map the domain S to a tuple of plaintexts and find a function
f that does the same thing as g, but operates on this tuple of plaintexts rather than S.
Fully Homomorphic Encryption now promises that there is a function f∗ that operates
on a tuple of ciphertexts and computes the same thing as f . Note that this is also the
source of the perceived contradiction mentioned above: FHE allows a user to compute any
function that they can compute on the plaintext space on encrypted data instead – if the
function cannot be expressed on the plaintext space, Fully Homomorphic Encryption offers
no such guarantees. We have illustrated the different conceptual components involved in
homomorphically computing a function in Figure 1.1.

Sn S

(Pk)n Pk

(Ck)n Ck

g

f

f∗

π π−1

Enc Dec

Function Space:

Plaintext Space:

Ciphertext Space:

Figure 1.1: Steps in homomorphic evaluation

Fully Homomorphic Encryption tells us that if the upper half of the diagram is commuta-
tive, then so is the entire diagram. We see that there are three main components to FHE
computations: Mapping the function domain into the plaintext space (upper rectangle,
green), encrypting the plaintexts (middle rectangle, orange), and running the function on
the ciphertexts (lower rectangle, pink), which often involves some effort in expressing g in

11A finite field is an algebraic structure of the form GF (pk) = Zp[X]/(f(X)) for a prime p and an
irreducible polynomial f(X) of degree k. Its elements are of the form

k−1∑
i=0

aiX
i with ai ∈ {0, 1, . . . , p− 1},

i.e., all polynomials of degree at most k−1 with coefficients in {0, 1, . . . , p−1}. Computations are performed
using regular polynomial addition and multiplication, reducing by the coefficients by p and the monomials
by f(X).

12Recall that in Definition 1.1, we differentiated between the space of fresh ciphertexts generated by
encryption, X , and the space of evaluation outputs, Y. Since we implicitly assume circuit privacy, these
two spaces fall together, so that the notion of a ciphertext space is well-defined.
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a way such that it can run on the ciphertexts – i.e., tranforming g into f (resp. f∗).

Research on Fully Homomorphic Encryption schemes and improving their efficiency forms
the orange box - this aspect was covered in Section 1.2. Our work focuses on the remaining
two boxes: We first analyze the costs of different encoding choices with respect to the
underlying plaintext space GF (pk) for natural numbers, integers and rational numbers.
This comprises the green upper box. We then apply our results to concrete algorithms
from the field of Machine Learning, which usually run on rational numbers. We show how
to move from rationals to finite fields for these cases, and modify the algorithms to allow
more efficient evaluation. This constitutes the pink lower box.

1.3.2 Cost Metrics

When we analyze the costs of different encoding bases for FHE computations, the first
question that comes to mind is how to define the cost. As it turns out, there is no definitive
answer to this question, as there are different possible cost metrics.

Suppose a number is encoded by a set of digits, which are finite field elements. Then
encrypting the number means encrypting each digit separately, and computing on the
encrypted number is achieved through manipulation of the individual encrypted digits.
Thus, we need to emulate the original computation (e.g., adding two numbers) through
finite field operations on the plaintext digits that result in a sequence of digits encoding the
correct result of the computation. This digit-wise computation can then also be performed
on the encrypted digits. Consequently, we express the effort with regard to the underlying
finite field operations although in reality, they would be performed on the encrypted digits
in the ciphertext space.

In this work, we examine the following three cost metrics:

• Multiplicative Depth: As we have mentioned in the context of Definition 1.9, all
FHE schemes that we have today are noise-based, in that the plaintext is masked
with noise which accumulates with each operation. Concretely, each multiplication
of ciphertexts doubles the length of the noise, and each addition increases the length
by 1. When the noise passes a certain threshold, decryption fails and the result is lost.
The bootstrapping procedure can remove this noise, but it is a very slow procedure
and often the bottleneck of the computation. For this reason, minimizing the number
of bootstrappings by minimizing the number of consecutive multiplications, also
known as multiplicative depth, has frequently been a goal in FHE computations. As
an example, consider the product of 4 ciphertexts c1·c2·c3·c4. Then the multiplicative
depth depends on the order in which we perform the multiplications: If we compute
c1 · (c2 · (c3 · c4)), we get a multiplicative depth of 3. However, if we were to compute
the product as (c1 · c2) · (c3 · c4), we instead get a depth of only 2. Multiplicative
depth is closely related to the concept of Levelled FHE (Definition 1.12), where
the expected number of bootstrappings determines the number of levels. It can be
considered as the most traditional cost metric in this field.

• Number of Field Multiplications: For most FHE schemes, ciphertext multiplica-
tions are much more expensive than ciphertext additions – so much so that additions
are considered “free” by comparison. Thus, it naturally makes sense to keep track
of this number. Additionally, when using p-adic encoding, the multiplicative depth
quickly becomes so large that bootstrapping is unavoidable, so that minimizing the
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total number of multiplications can significantly speed up computations. To see this,
consider a parameter setting where there is a bootstrapping operation performed af-
ter every multiplication. In this case, the depth is completely irrelevant, and the
total number of multiplications completely dominates the computation time. This
line of reasoning also extends to less extreme parameter settings, so we regard this
as an important metric as well.

• Number of Field Additions: For the first and second generation FHE schemes,
ciphertext multiplications were a lot more costly than ciphertext additions, but we
have always pointed out ( [JA16], [JA17]) that there is no theoretical reason why this
must be the case. With [CGGI16], there now indeed exists a scheme where every
gate is bootstrapped after execution (because they were built from the even more
elementary NAND-gate specifically supported by that scheme), and thus there is no
significant difference between the two. Thus, we also keep track of the total number
of ciphertext additions that need to be performed.

1.3.3 Related Work on FHE Encodings

In the last few years, there has been a large increase in papers about encodings for Fully
Homomorphic Encryption. This illustrates the importance of this field, and we give a
short overview of these works at this point.

One of the first works to address this topic was [NLV11], where integers are encoded
as polynomial ring elements in a bitwise, straightforward fashion. In contrast, our work
also accommodates rational numbers instead of being restricted to integers. [CK16] uses
continued fractions to encode rational numbers, but is restricted to positive rationals and
evaluating linear multivariate polynomials, whereas we allow signed rationals and arbitrary
functions. [CSVW16] and [DGBL+15] focus on most efficiently embedding a computation
into a single large plaintext space, and the latter also offers an implementation. However,
embedding the computation into a large plaintext space is actually Somewhat Homomor-
phic Encryption (see Definition 1.10), as opposed to Fully Homomorphic Encryption as
in our work: The plaintext space must be chosen to accommodate the computations, and
thus the possible computations are in turn limited by the plaintext space. An extension
of [FV12] that allows floating point numbers is presented in [AN16], and [CG15] gives
a high-level overview of arithmetic methods for FHE, but resticted to positive numbers
rather than arbitrary rationals as in our work. In [GC14], integers are encoded by modi-
fying the underlying scheme [BV11b] to allow a natural mapping from an integer quotient
ring, which is of course highly specific to that one encryption scheme, whereas our results
apply to an FHE scheme with a finite field plaintexts space (i.e., all currently known
schemes). [BBB+17] explores a non-integral base encoding, and [XCWF16] presents dif-
ferent arithmetic algorithms including a costly division, though again limited to positive
numbers.

To our knowledge, the only work concerned with the costs of encoding in a base other
than p = 2 is [KT16], which exclusively analyzes [NK15] and uses different cost metrics
than we do. The latter also presents a formula for the carry of a half adder, but merely
considers GF (pk) for k = 1 in the context of homomorphically computing the decryption
step (needed for bootstrapping) of their variation of [vDGHV10], and does not include
an effort analysis. In [CLPX17], an encoding that allows high-precision computations on
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rational numbers, but is highly specific to the underlying (new) variant of the [FV12]
encryption scheme, is presented. Lastly, [CKKS16] allows approximate operations by
utilizing noise from the encryption itself.

1.4 OUTLINE

The remainder of this work is structured as follows: In the following chapters, we will show
how to embed natural numbers (Chapter 2), integers (Chapter 3) and rational numbers
(Chapter 4) into different FHE plaintext spaces – concretely, we will analyze the costs
of different encoding choices with respect to the underlying plaintext space GF (pk). We
thus present optimal choices in p and k for the cost metrics of number of field additions
and multiplications, and show that there is no optimum for the metric of multiplicative
depth.
In Chapter 5, we apply our results to concrete algorithms from the field of Machine
Learning. These algorithms usually run on rational numbers, and it is not trivial to turn
them into corresponding functions on finite fields. In fact, in some cases (like Section 5.4),
it may even be necessary to change the underlying algorithm to allow an efficient mapping
into the plaintext space.



Chapter 2

COMPUTING ON NATURAL NUMBERS

In this chapter, we examine the costs for different choices of encoding bases for natural
numbers – that is, unsigned integers. Concretely, we want to encode a natural number so
that we can then encrypt the digits separately and perform computations on them. The
underlying idea is that on the one hand, the involved functions become more complex
with a larger encoding base, but on the other hand, fewer digits are required to encode
the number, thus reducing complexity. We will see that the first aspect dominates, and
the costs increase with larger encoding bases.
To this end, we will first give an introduction to p-adic encoding in Section 2.1. We derive
the formula to compute the carry digit in the addition of two numbers in Section 2.2 –
addition is an important building block, e.g. for multiplication, and computing the carry
is the main challenge in addition. We also calculate the effort of evaluating this formula
for the carry on encrypted data in Section 2.3. In Section 2.4, we use these results to
derive the total effort of adding and multiplying natural numbers in the different encoding
bases, while also showing how to perform these computations in the optimal way. Lastly,
we extend our analysis to more complex finite fields GF (pk) for k > 1 in Section 2.5. A
summary of the results of this chapter is given in Section 2.6.
We will see that p = 2 is the best choice for total number of additions and multiplications,
and there is no generic optimum regarding depth, as this depends highly on the function
being computed and the size of the numbers. Since we have argued in Section 1.3.2 that
depth quickly becomes irrelevant when bootstrapping is unavoidable, we thus focus on the
otherwise optimal encoding base p = 2 in the rest of this work.
This chapter is largely taken from [JA17].

2.1 p-ADIC ENCODING

In day-to-day life, we usually work with numbers in base 10. This choice, however, is
arbitrary – computers work in base 2 (binary encoding), hexadecimal representation uses
base 16, and in principle any number can be used as a base. When this base is a prime
number p, the underlying structure Zp is a field, which has the property that every element
except 0 is multiplicatively invertible. This is necessary if one wants to perform complex
operations on these numbers.
So suppose we fix a prime p as the base. Then we can write any natural number a as a

21
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sum of powers of p, where the coefficients are less than p:

a =
n∑
i=0

ai · pi (2.1)

with ai ∈ {0, . . . , p− 1}. Then the p-adic representation of a is (anan−1 . . . a1a0).
The following example illustrates this concept:

Example 2.1: Consider the base p = 7 and the decimal number a = 163. Then we can
write 163 = 147 + 14 + 2 = 3 · 72 + 2 · 71 + 2 · 70, so the 7-adic representation of 163 is
(322).
Conversely, consider the number (123) in 5-adic encoding. To get back to the more familiar
base 10, we write (123) = 1 · 52 + 2 · 51 + 3 · 50 = 25 + 10 + 3 = 38.

In the rest of this chapter, we will examine the effect of the choice of p on the cost
of computating on numbers encoded in this way, and later extend the analysis to more
complex finite fields as encoding bases.

2.2 DERIVING THE FORMULA FOR THE CARRY IN ADDITION

In this section and the following Section 2.3, we lay the theoretical foundation for the
effort analysis starting from Section 2.4. More concretely, we derive in this section the
formulas for the digits of the sum of two numbers in p-adic encoding.

2.2.1 Overview

Suppose we have two natural numbers encoded p-adically: a = anan−1 . . . a1a0 and
b = bnbn−1 . . . b1b0. If we wish to add these numbers in this encoding, we can write

an an−1 . . . a2 a1 a0

+ bn bn−1 . . . b2 b1 b0

= cn+1 cn cn−1 . . . c2 c1 c0

(2.2)

To be able to homomorphically evaluate a function on encrypted data, we need to express
the result as a polynomial in the inputs - in this case, we need to be able to write

ci = ci(an, bn, an−1, bn−1, ..., a1, b1, a0, b0) (2.3)

for any i, where ci(. . .) refers to some polynomial. Clearly, it holds that

ci = ai + bi + ri, (2.4)

where r0 = 0, and for i > 0, ri is the carry from position i − 1. Our goal is to express
ri(ai−1, bi−1, ri−1) as a polynomial, which will constitute Theorem 2.1. Addition is defined
mod p, and we will often write ri instead of ri(ai−1, bi−1, ri−1) for simplicity.

We first show in Lemma 1 that ri ∈ {0, 1}, then use that fact to separate the formula
for ri into ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1) in Lemma 2, which has the lowest
depth increase out of all possible formulas because ri−1 only has degree 1. We proceed
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with Corollary 2.1, which derives from Lemma 2, showing that the involved functions
are symmetric. We present Lemma 3 and Lemma 4, which will be needed in later
proofs, and then define an elementary building block in Definition 2.1. Lemma 5
finally concludes the preliminaries to our main theorem. Lastly, Theorem 2.1 on page 26
presents the main result of this section, namely the closed formula for ri.

2.2.2 Formula Derivation

We now proceed with the derivation of the formula for the carry ri(ai−1, bi−1, ri−1).

Lemma 1. The carry ri is either 0 or 1 for all i.

Proof: We prove this by induction over the position i ∈ {0, . . . , n+ 1}.
i = 0: This is the first position and thus there is no carry from a previous position, i.e.,

r0 = 0.

Now for a general position i > 0, suppose it holds that ri−1 ∈ {0, 1}.
Since ak ≤ p − 1 and bk ≤ p − 1 for all k, we have (over the natural numbers, not
mod p):

ai−1 + bi−1 + ri−1 ≤ p− 1 + p− 1 + 1 = 2 · p− 1 < 2 · p.

Since this last inequality is a real inequality, the result has the form

ai−1 + bi−1 + ri−1 = ri · p+ ci

with ri ∈ {0, 1} and ci ∈ {0, . . . , p − 1}. Thus, we need to add ri ∈ {0, 1} to the next
position in the notation of Equation 2.1 – this is exactly the carry.

Having established this, we can now express the carry ri (over N rather than Zp) as:

ri =

0, ai−1 + bi−1 + ri−1 ≤ p− 1

1, ai−1 + bi−1 + ri−1 ≥ p
(2.5)

Next, we show how to elegantly express ri with minimal degree in ri−1:

Lemma 2. The polynomial for computing ri(ai−1, bi−1, ri−1) can be written as

ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1) (2.6)

where f1, f2 are polynomials in two variables with

f1(a, b) =

0, a+ b ≤ p− 1

1, a+ b ≥ p
and f2(a, b) =

1, a+ b = p− 1

0, else
(2.7)

where these sums are again taken over N rather than Zp.
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Proof: We know that ri = f(ai−1, bi−1, ri−1) is a polynomial in three variables, and
since ri−1 ∈ {0, 1} by Lemma 1, the power of ri−1 must be at most 1 (if we are looking
for the most simple form) since 0x = 0 and 1x = 1 for all x ≥ 1, so writing e.g. r5i−1
would always evaluate to the same result as just ri−1. Thus, we can write

ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)

for some polynomials f1, f2 by factoring out ri−1.
For the second part of the claim, consider the function f1(ai−1, bi−1):
Since the other half of the equation for ri is multiplied with ri−1, it evaluates to 0 when
ri−1 = 0. Thus, f1 defines the behavior of the function when the carry-in ri−1 is 0, so
it must hold that

f1(a, b) =

0, a+ b ≤ p− 1

1, a+ b ≥ p.
(2.8)

Now consider the second case where ri−1 = 1, i.e., ri = f1(a, b) + f2(a, b). This means
that we have

ri =

0, a+ b+ 1 ≤ p− 1

1, a+ b+ 1 ≥ p.
=

0, a+ b ≤ p− 2

1, a+ b ≥ p− 1.

Comparing this with the above values for f1(a, b) from Equation 2.8, we see that they
are nearly identical and differ solely when a+ b = p− 1, which results in a carry-out of
ri = 1 if the carry-in is ri−1 = 1. This difference thus constitutes f2:

f2(a, b) = ri − f1(a, b) =

1, a+ b = p− 1

0, else.
(2.9)

We now continue with a corollary from this Lemma, which we will need in the proof of
our main theorem.

Corollary 2.1. Both f1(a, b) and f2(a, b) are symmetric1. By extension, ri(a, b, ri−1)
itself is also symmetric in a and b, i.e., ri(a, b, ri−1) = ri(b, a, ri−1).

Proof: The first claim follows directly from the definition of the two functions f1 and
f2 in Equation 2.7. The second claim can then easily be seen by applying this to
Equation 2.6:

ri(a, b, ri−1) = f1(a, b) + ri−1 · f2(a, b)

= f1(b, a) + ri−1 · f2(b, a) = ri(b, a, ri−1).

1A function f(a, b) is called symmetric if f(a, b) = f(b, a) for all a, b.
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Recall the following well-known fact:

Lemma 3. Over Zp, it holds that ∏
x∈Z∗p

x = −1,

where Z∗p are the invertible elements of Zp.

Proof: The equation x2 = 1 has exactly two roots over Zp : 1 and p − 1. Thus, for
every other element x ∈ Z∗p\{1, p− 1}, it holds that x−1 6= x. This means that

∏
x∈Z∗p x

contains the inverse of every element except 1 and p− 1 (i.e., of all x ∈ {2, . . . , p− 2}).
Thus, all elements except p− 1 “cancel out” by being multiplied with their inverse (as
Zp is commutative), so we get

∏
x∈Z∗p

x = p− 1.

Since p− 1 = −1 in Zp, this proves the claim.

Note that this fact actually holds over any finite field K, not just those of the form K = Zp.
When K = Zp, we can also write

∏
x∈Z∗p

x = (p− 1)!.

The following Lemma will also aid us in the proof of our main theorem:

Lemma 4. For all i ∈ {0, ..., p− 1}, it holds that

p−1∏
j=0
j 6=i

(i− j)−1 = p− 1 mod p.

Proof: We rearrange the product in the following way, with all computations mod p:

p−1∏
j=0
j 6=i

(i− j)−1 =

p−1∏
j=1

j−1 =

(
p−1∏
j=1

j

)−1
=
(

(p− 1)!
)−1 ∗

= (p− 1)−1 = p− 1

The equality marked with ∗ follows from Lemma 3.

To simplify notation, we define the following expression:

Definition 2.1. In the following, denote

li(x) :=

p−1∏
j=0
j 6=i

(x− j).
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These functions were in fact derived through a bilinear Lagrange-approximation in two
variables over the finite field Zp, which we will see in the proof of Theorem 2.1. With δik
denoting the Kronecker-delta, which is 1 when i = k and 0 otherwise, we now present the
last lemma before this main theorem:

Lemma 5. For all i, k ∈ {0, . . . , p− 1} it holds that

li(k) = −δik =

p− 1, i = k

0, otherwise.

Proof: Let k 6= i. Then the term (x − k) is a factor in the product, so evaluating at
x = k yields a factor of (k − k) = 0, thus making the whole product zero.

Now suppose k = i. Then much like in the proof of Lemma 4, we have that

p−1∏
j=0
j 6=i

(i− j) =

p−1∏
j=1

j = (p− 1)! = p− 1 mod p.

We now state the formula for the carry bit using these li(x)-functions:

Theorem 2.1. The formula for computing ri(ai−1, bi−1, ri−1) is

ri(a, b, ri−1) =

p−1∑
k=1

(
lk(b) ·

k∑
j=1

lp−j(a)
)

+ ri−1 · (p− 1) · lp−1(a+ b).

This polynomial is unique in that there is no other polynomial of smaller or equal degree
which also takes on the correct values for ri at all points (ai−1, bi−1, ri−1) with

ai−1, bi−1 ∈ {0, . . . , p− 1}, ri−1 ∈ {0, 1}.

Proof:
Correctness: With the notation of Lemma 2, we only need to show that

f1(a, b) =

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)

(2.10)

and

f2(a, b) = (p− 1) · lp−1(a+ b). (2.11)

We start with f2: Since

f2(a, b) :=

1, a+ b = p− 1

0, else
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by Lemma 2, and

lp−1(x) :=

p− 1, x = p− 1

0, x 6= p− 1,

by Lemma 5, it holds that

(p− 1) · lp−1(x) =

(p− 1)2 = 1, x = p− 1

0, else.

Substituting (a+ b) for x, we get

(p− 1) · lp−1(a+ b) =

1, a+ b = p− 1

0, a+ b 6= p− 1
= f2(a, b).

Moving on to f1(a, b), let a = ã and b = b̃ be fixed but arbitrary. We first observe that
according to Lemma 5, all li(b̃) with i 6= b̃ evaluate to zero.

Since both sums involved in Equation 2.10 start at 1 rather than 0, the sums evaluate
to 0 if ã = 0 (then the terms of the inside sums are all 0) or b̃ = 0 (then the coefficients
of the outside sum are all 0). This is as it should be, as it can easily be seen that
ã+ b̃ ≤ p− 1 if either ã or b̃ is 0, so that f1(ã, b̃) = 0 according to Lemma 2.

Now assume that ã and b̃ are both not 0. Then all li(b̃) = 0 except lb̃(b̃) = p − 1 (by
Lemma 5). We can thus rewrite the right part of Equation 2.10 as

p−1∑
i=1

(
li(b̃) ·

i∑
j=1

lp−j(ã)
)

= lb̃(b̃) ·
b̃∑

j=1

lp−j(ã) = (p− 1) ·
b̃∑

j=1

lp−j(ã). (2.12)

Now we distinguish two cases:
Case 1: ã+ b̃ ≤ p− 1.
This means that f1(ã, b̃) = 0 according to Lemma 2. We also have

ã+ b̃ ≤ p− 1⇔ ã ≤ p− b̃− 1. (2.13)

Looking at the inner sum of Equation 2.10, we can write it out as

lp−1(ã) + lp−2(ã) + · · ·+ lp−b̃(ã).

Since ã < p− b̃ (Equation 2.13), lã(ã) is not included in this sum, and thus all terms of
the inner sum evaluate to 0 (Lemma 5), making the whole sum 0 when ã+ b̃ ≤ p− 1:

p−1∑
i=1

(
li(b̃) ·

i∑
j=1

lp−j(ã)
)

= lb̃(b̃) ·
b̃∑

j=1

lp−j(ã) = (p− 1) ·
b̃∑

j=1

0 = (p− 1) · 0 = 0. (2.14)

Case 2: ã+ b̃ ≥ p.
This means that f1(ã, b̃) = 1 according to Lemma 2.
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By the same argument as in Case 1, we have

ã+ b̃ ≥ p⇔ ã ≥ p− b̃. (2.15)

Thus, lã(ã) is included in the written-out inner sum

lp−1(ã) + lp−2(ã) + · · ·+ lp−b̃(ã),

which evaluates to p − 1 according to Lemma 5. Combining this with Equation 2.12,
the sum now evaluates to

p−1∑
i=1

(
li(b̃) ·

i∑
j=1

lp−j(ã)
)

= lb̃(b̃) ·
b̃∑

j=1

lp−j(ã)

= (p− 1) ·
b̃∑

j=1

lp−j(ã)

= (p− 1) · lã(ã)

= (p− 1) · (p− 1)

= 1,

(2.16)

where computations are mod p.
Combining equations 2.14 and 2.16, we get:

p−1∑
i=1

(
li(b̃) ·

i∑
j=1

lp−j(ã)
)

=

0, a+ b ≤ p− 1 (Case 1)

1, a+ b ≥ p (Case 2)
= f1(a, b). (2.17)

Uniqueness: To prove uniqueness, we take quick look at how our polynomial f1 was
derived by recalling Lagrange’s polynomial interpolation: Given k + 1 points(

xi, yi = f(xi)
)
, i = 0, . . . , k,

the Lagrangian interpolation polynomial (which interpolates the function f through
these points) is given as

L(x) =
k∑
i=0

hi(x) · yi, where hi(x) :=
k∏
j=0
j 6=i

x− xj
xi − xj

.

The idea now is to perform a bivariate Lagrangian interpolation of f1(a, b) by first
performing p interpolations over Zp to obtain the functions fb = f1|b(·) = f1(·, b):

fb(a) =

p−1∑
i=0

hi(a) · f(i, b).

Then, using these polynomials as “values” for f1 at the points b = 0, . . . , p − 1, we
perform a second interpolation over Zp[a] to obtain f1(a, b):

f1(a, b) =

p−1∑
i=0

hi(b) · fi(a) =

p−1∑
i=0

hi(b) ·
( p−1∑
j=0

hj(a) · f(j, i)
)
. (2.18)
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Now note the following: Since we are given the values of the function on all values in
Zp and are also computing in this field, we can write

hi(x) :=
k∏
j=0
j 6=i

x− xj
xi − xj

=

p−1∏
j=0
j 6=i

x− j
i− j

.

Using Lemma 4, we see that

hi(x) =

p−1∏
j=0
j 6=i

x− j
i− j

= (p− 1) ·
p−1∏
j=0
j 6=i

(x− j) = (p− 1) · li(x).

Now we can rewrite Equation 2.18 as

f1(a, b) =

p−1∑
i=0

(p− 1) · li(b) ·
( p−1∑
j=0

(p− 1) · lj(a) · f(j, i)
)

= (p− 1)2 ·
p−1∑
i=0

li(b) ·
p−1∑
j=0

lj(a) · f(j, i)

=

p−1∑
i=0

li(b) ·
p−1∑
j=0

lj(a) · f(j, i).

(2.19)

Lastly, since

f(j, i) =

1, i+ j ≥ p

0, else,

we see that only lj(a) with

i+ j ≥ p⇔ j ≥ p− i⇔ j ∈ {p− i, . . . , p− 1}

are multiplied with f(j, i) = 1, whereas all other values are multiplied with 0.

Likewise, f(j, 0) = f(0, i) = 0 for all i, j, so both the outer and inner sums can disregard
i, j = 0. Thus, we get the formula

f1(a, b) =

p−1∑
i=1

(
li(b) ·

p−1∑
j=p−i

lj(a) · 1
)

=

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)
,

which is exactly the formula we already proved correctness for.

Looking at this derivation of the formula, we consider the following well-known facts:

1. Zp[a] is a factorial ring, as it is a polynomial ring over a field.

2. (Zp[a])[b] ∼= Zp[a, b] is a factorial ring, as it is a polynomial ring over a factorial ring.

3. In a factorial ring (or more generally, an integral domain), a polynomial of degree
n ≥ 1 has at most n roots.
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4. If f(x) and g(x) are polynomials of degree at most p− 1, then h(x) := f(x)− g(x)
also has degree at most p− 1.

Putting all this together, we prove uniqueness in two steps: First, we show that the
fb(a) are unique, then we show that f1(a, b) is unique.
Let b ∈ {0, . . . , p− 1} be fixed but arbitrary and consider the polynomial fb(a), which
was derived through Lagrangian interpolation in the points (a, b) for all
a ∈ {0, . . . , p− 1} as described above.
Now assume that there is a different polynomial g(a) 6= fb(a) of equal or lower degree
(which is p− 1) with g(a) = fb(a) = f1(a, b) for all a ∈ {0, . . . , p− 1}.
Then h(a) := g(a)− fb(a) is a polynomial of degree at most p− 1 (fact 4) with at least
p roots (in a = 0, . . . , p− 1).
This, however, is a contradiction to Zp[a] being a factorial ring (fact 1), since this
polynomial can have at most p− 1 roots in such a ring (fact 3).
Thus, the polynomial g(a) cannot exist.

By exactly the same reasoning (seeing the polynomials fb(a) as points in Zp[a] to per-
form Lagrangian interpolations, and using fact 2), it can be seen that f1(a, b) is also
unique.

Since f1(a, b) is symmetric by Corollary 2.1, the bilinear interpolation is well-defined
in that it yields the same result when interpolating first over Zp[b] in the variable b
(yielding polynomials fa(b)) and then over Zp[b] to obtain f1(a, b).
Thus, the polynomial f1(a, b) is unique.

Regarding the polynomial f2(a, b) = (p − 1) · lp−1(a + b), we write f2 as a polynomial
in one variable u := a+ b.
Then (p−1) ·lp−1(u) has degree p−1 and is fixed on p points: It is 0 for u = 0, . . . , p−2,
and is 1 in u = p− 1.
Since Zp[u] is a factorial ring (fact 1), we can again apply the same reasoning as above:
If there were another polynomial of equal or less degree that is also defined in these
points, subtracting them would yield a polynomial of degree at most p− 1 with p roots
(fact 4), which cannot be the case in a factorial ring (fact 3).

Thus, f2(a, b) is also unique, and as such the entire polynomial ri(ai−1, bi−1, ri−1).

In the next section, we will use this formula to derive the effort of computing a single digit
in adding two natural numbers.



2.3 effort of evaluating the carry formula 31

2.3 EFFORT OF EVALUATING THE CARRY FORMULA

We now compute the costs to compute each digit ci when adding two natural numbers
encoded p-adically by analyzing the formula from Theorem 2.1. Recall that

ci = ai + bi + ri.

Moreover, it holds that ri can be computed as

ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)

(see Theorem 2.1). Note that there cannot be any cancellation between the terms of f1
and f2 due to the variable ri−1. Putting this together, we get as effort for computing ci
for i > 1:

• Field additions: Adds(ci) = 3 + Adds(f1) + Adds(f2)

• Field multiplications: Mults(ci) = 1 + Mults(f1) + Mults(f2)

• Multiplicative depth: d(ci) = max{d(f1),max{d(ri−1), d(f2)}+ 1}

Note that d(fi) denotes the multiplicative depth of fi, and Adds(fi) denotes the number
of field additions incurred through the function fi – i.e., the number of additions we need
to perform on the input digits in the finite field that is our encoding base while computing
the function fi. Likewise, Mults(fi) is the number of field multiplications. We now need
to compute the individual components. The computation is split into three parts:

1. First, the effort for evaluating f1 is derived in Subsection 2.3.1.

2. Then, the effort for f2 is computed in Subsection 2.3.2.

3. Lastly, the results are combined for the total effort for each digit in Subsection 2.3.3.

The effort for f1 is again split into several parts: First, the effort for the closed formula
from Theorem 2.1 is examined, and a time-memory tradeoff that minimizes effort by
precomputing certain values is presented. Then, we compare this to the expanded form
of the formula and include its analysis. This expanded formula suggests a lower optimal
depth, so we take the addition/multiplication costs from the closed formula and the lower
depth value from the expanded formula as best-case costs to be as unbiased as possible.

2.3.1 Effort for f1

Recall the formula for f1:

f1(a, b) =

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)
.

We first present the straightforward way of computation, and then show how to reduce
the number of field multiplications in a time-memory tradeoff, and finally compare it to
using the expanded form of the polynomial.
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2.3.1.1 Straightforward Approach

The straightforward computation consists of the following steps:

1. Compute (a− j) and (b− j) for j = 1, . . . , p− 1:

• Field additions: 2p− 2

• Field multiplications: 0

• Multiplicative depth: +0

2. Compute li(a), li(b) for i = 1, . . . , p − 1 using the precomputed factors from the
previous step:

• Field additions: 0

• Field multiplications: 2 · (p− 1) · (p− 2) = 2p2 − 6p+ 4

• Multiplicative depth: dlog2(p− 1)e for each li(a) and li(b)

3. Compute
i∑

j=1
lp−j(a) for i = 1, . . . , p− 1 recursively by setting for i = 1:

1∑
j=1

lp−j(a) = lp−1(a)

and then computing for i = 2, . . . , p− 1:

i∑
j=1

lp−j(a) =
( i−1∑
j=1

lp−j(a)
)

+ lp−i(a),

which incurs only one field addition for each sum. By computing this way, we get:

• Field additions: p− 2

• Field multiplications: 0

• Multiplicative depth: +0

4. Compute li(b) ·
∑i

j=1 lp−j(a) for i = 1, . . . , p− 1.
This incurs one multiplication for each i and raises the multiplicative depth by
one (recall that when multiplying two factors, each of depth d, the product has
depth d+ 1):

• Field additions: 0

• Field multiplications: p− 1

• Multiplicative depth: +1, so dlog2(p− 1)e+ 1 total

5. Lastly, sum up all the li(b) ·
i∑

j=1
lp−j(a) to obtain

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)

:

• Field additions: p− 2

• Field multiplications: 0

• Multiplicative depth: +0
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In total, we obtain the effort as:

Step Additions Multiplications Depth

1 2p− 2 0 0

2 0 2p2 − 6p+ 4 dlog2(p− 1)e
3 p− 2 0 +0

4 0 p− 1 +1

5 p− 2 0 +0

Total 4p− 6 2p2 − 5p+ 3 dlog2(p− 1)e+ 1

2.3.1.2 Time-Memory Tradeoff

Step 2 of the straightforward approach is obviously far from efficient, since we are com-
puting all li(a), li(b) independently from each other in spite of their close relations. As an
example, consider

l1(a) =

p−1∏
j=0
j 6=1

(a− j) = a · (a− 2) · (a− 3) · · · · · (a− (p− 1))

and

l2(a) =

p−1∏
j=0
j 6=2

(a− j) = a · (a− 1) · (a− 3) · · · · · (a− (p− 1)).

With Step 2 as it is, computing both products would cost us 2 · (p − 2) multiplications.
Imagine, however, if we were to precompute the value

L = a · (a− 3) · · · · · (a− (p− 1)) :

The precomputation can be done with p − 3 multiplications (because there are p − 2
factors), and from this precomputed value, l1(a) = L · (p− 2) and l2(a) = L · (p− 1) can
be computed with one multiplication each, yielding a total of p−1 multiplications instead
of 2p− 4.

From the definition of the li(x), it is obvious that each li(x) contains all factors from
{x, (x− 1), . . . , (x− (p− 1))} except for one (namely (x− i)). Now in a first step, suppose
we divide the factors into two sets

{
x, (x− 1), . . . , (x−

⌊p
2

⌋
)
}

and
{

(x−
⌈p

2

⌉
), . . . , (x− (p− 1))

}
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and multiply the elements in each set to obtain two intermediate products2

L1
2 :=

b p2c∏
j=0

(x− j) and L2
2 :=

p−1∏
j=d p2e

(x− j).

Then for each i = 1, . . . , p − 1, either L1
2 or L2

2 is contained in li(x), and conversely each
li(x) can be calculated from one of the Lj2 with roughly p

2 − 1 multiplications (because

there the are p
2−1 missing factors and Lj2 that need to be multiplied.). Note that of course

p
2 − 1 will not generally be an integer because p is odd (except when p = 2), but when
adding the efforts, we arrive at the correct result since for an odd number, it holds that⌊p
2

⌋
+
⌈p
2

⌉
= p = p

2 + p
2 . Thus, for readability, we simply write p

2 .

Adding the 2 · (p2 − 1) multiplications for computing the two Lj2, we get (p− 1) · (p2 − 1) +
2 · (p2 −1) multiplications for computing all li(a). Since we need to do this for li(b) as well,
we multiply this number by 2 to obtain

2 · ((p− 1) · (p
2
− 1) + 2 · (p

2
− 1)) = (p− 1) · (p− 2) + 2 · (p− 2) = p2 − p− 2

field multiplications for Step 2 instead of 2p2 − 6p+ 4 from before.
Of course, we do not need to stop here: We can also calculate

L1
4 :=

b p4c∏
j=0

(x− j), . . . , L4
4 :=

p−1∏
j=3·d p4e

(x− j).

Each of these Li4 can be computed with p
4−1 multiplications (though some of the products

Li4 will contain one factor less, so this is really an upper bound), so we have a total of
4 · (p4 −1) = p−4 multiplications from these intermediate products. Also, we can compute
L1
2 = L2

4 · L2
4 and L2

2 = L3
4 · L4

4 with only 2 further multiplications, so precomputation
incurs p− 2 multiplications in total.
Now for each of the li(x), we can compute

li(x) = Lj12 · L
j2
4 · r̃ for some j1 ∈ {1, 2}, j2 ∈ {1, 2, 3, 4},

where r̃ consists of the p
4 − 1 remaining terms that are multiplied in trivial fashion. Thus,

we get a total of 1 + 1 + p
4 − 2 = p

4 multiplications for each li from this part of the
computation. Putting this together, the multiplication cost of computing li(x) for all
i = 1, . . . , p− 1 in this manner is p− 2 + (p− 1) · p4 . Since we need to do all this for both
variables values a and b, we get a total of

2 · (p− 2 + (p− 1) · p
4

) =
1

2
p2 +

3

2
p− 4

2 Generally, the notation Lik denotes that we have divided the p factors into k roughly equal sets, and

this is the ith of these sets:

Lik :=

i·b pkc∏
j=(i−1)·d pke

(x− j)
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field multiplications.
Generalizing this idea, if we split the factors into k = 2w groups for some w, we observe that
each Lik has (roughly) p

k elements and can thus be computed with p
k−1 field multiplications.

Doing this for all k Lik’s, we get

k · (p
k
− 1) = p− k

multiplications. Also, computing all Ljk/2 from the Lik only costs additional k
2 multiplica-

tions. Thus, computing all Ljn for n = k
2 down to n = 2 incurs

k

2
+
k

4
+ · · ·+ 2 =

w−1∑
z=1

2z = (
w−1∑
z=0

2z)− 1 = (2w − 1)− 1 = k − 2

field multiplications. In total, precomputation always needs (p − k) + (k − 2) = p − 2
multiplications.
In the same way as above, we can now compute

li(x) = Lj12 · · · · · L
jw
k · r̃

for some ji ∈ {1, . . . , 2i} and r̃ consisting of the remaining p
k − 1 terms that are multiplied

in trivial fashion (incurring p
k −2 multiplications). In addition to the multiplications from

r̃, there are further w = log2(k) multiplications in the formula for li(x), so for each li(x)
we get p

k − 2 + log2(k) field multiplications.
Putting this together and again multiplying by 2 because we need to compute the formulas
for the values a and b, we obtain

2 ·
(
p− 2 + (p− 1) · (p

k
− 2 + log2(k))

)
=

2

k
p2 +

(
2 log2(k)− 2k + 2

k

)
· p− 2 · log2(k)

field multiplications instead of Step 2 in our original effort analysis.
Taking this to the extreme where k = p/2, i.e., we precompute everything down to products
of 2 factors, we get

2

p/2
p2 + (2 log2(p/2)− 2(p/2) + 2

p/2
) · p− 2 · log2(p/2)

= 4p+ (2 · (log2(p)− 1)− 2− 4

p
) · p− 2 · (log2(p)− 1)

= 4p+ 2p · log2(p)− 4p− 4 + 2− 2 · log2(p)

= 2p · log2(p)− 2 · log2(p)− 2

This minimum number of multiplications requires storing

2 · (k +
k

2
+
k

4
+ · · ·+ 2) = 2 · (p/2 +

p/2

2
+
p/2

4
+ · · ·+ 2)

precomputed values. Setting for simplicity reasons p ≈ 2w for some w, we need to store

2 · (2w−1 + 2w−2 + 2w−3 + · · ·+ 2) = 2 · ((
w−1∑
i=0

2i)− 1) = 2 · (2w − 1)− 1 ≈ 2p− 4

numbers.
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Replacing the costs of Step 2 with this new value, we get as effort for computing f1 with
the closed formula:

Step Additions Multiplications Depth

1 2p− 2 0 0

2 0 2p · log2(p)− 2 · log2(p)− 2 dlog2(p− 1)e
3 p− 2 0 +0

4 0 p− 1 +1

5 p− 2 0 +0

Total 4p− 6 2p · log2(p) + p− 2 · log2(p)− 3 dlog2(p− 1)e+ 1

Note that the idea of precomputation only really makes sense if p > 4, so for p ∈ {2, 3},
we use the non-precomputation formulas from the beginning.

2.3.1.3 Using the Expanded Formula

We note at this point that it seems as if the polynomial for

f1 =

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)

has a smaller degree than the expected 2p− 2 when the double sum is expanded. We will
prove some bounds on this degree and discuss the impact of using this expanded formula
instead of the closed one. The results of this analysis are that the closed double-sum
formula is much more efficient regarding the metrics of field additions and multiplications,
and that the best possible depth of dlog2(p)e can be achieved through the expanded formula
at much higher addition and multiplication costs. The difference in multiplicative depth
to the closed formula is at most 1.
We begin with a Lemma regarding the form of the li-functions when expanded:

Lemma 6. In the expanded form of li(x), the term xk has the coefficient ip−(k+1) mod p
where 1 ≤ k ≤ p− 1 and i ∈ {1, . . . , p− 1}. In other words,

li(x) = xp−1 + i · xp−2 + i2 · xp−3 + · · ·+ ip−3 · x2 + ip−2 · x mod p.

Proof: It is a well-known fact that over Zp, it holds that

F (x) :=

p−1∏
j=0

(x− j) = xp − x.

Now note that

li(x) =

p−1∏
j=0
j 6=i

(x− j) =

p−1∏
i=0

(x− j)

x− i
=
F (x)

x− i
=
xp − x
x− i

.
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Performing this division by hand, we get

(xp− x)/(x− i) = xp−1+ i · xp−2+ · · ·+ ip−3 · x2+ ip−2 · x
− (xp −i · xp−1)

i · xp−1 −x
−(i · xp−1 −i2 · xp−2)

i2 · xp−2 −x
. . .

ip−2 · x2 −x
−(ip−2 · x2 −ip−1 · x)

0

where the last line of 0 occurs because i 6= 0 and thus ip−1 = 1 mod p according to
Fermat’s Little Theorem.

Corollary 6.1. The coefficient of the term axby in the expanded polynomial for f1 is

(p− 1)−x ·
p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
.

Proof: We first recall Formula 2.10:

f1(a, b) =

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)
.

Using Lemma 6, we can write this as

f1(a, b) =

p−1∑
i=1

(
(bp−1 + i · bp−2 + · · ·+ ip−2 · b) ·

i∑
j=1

(ap−1 + (p− j) · ap−2 + · · ·+ (p− j)p−2 · a)
)
.

As can easily be seen from this notation, the term ax · by (with x, y ∈ {1, . . . , p − 1})
will have the coefficient

p−1∑
i=1

(
ip−y−1 ·

i∑
j=1

(p− j)p−x−1
)
.

Since the order in the exponent mod p is p− 1, we can equivalently write

p−1∑
i=1

(
i−y ·

i∑
j=1

(p− j)−x
)
.
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Finally, rewriting (p− j)−x = (p− 1)−x · j−x and moving the constant value (p− 1)−x

in front of the sums, we obtain as the coefficient of the term ax · by:

(p− 1)−x ·
p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)
. (2.20)

We now use this formula to establish bounds on the degree of the expanded form of f1:

Theorem 2.2. In its expanded form, f1 has a degree less than the expected 2p− 2, but at
least p.

Proof: We first show that the coefficient of the term ap−1 · b is always p − 1, so the
degree of the polynomial is at least p:
From Corollary 6.1, we know that the coefficient of the term ap−1 · b is

(p− 1)−(p−1) ·
p−1∑
i=1

(
i−1 ·

i∑
j=1

j−(p−1)
)
.

Since both sums start at 1, all involved elements are in Z∗p and thus j−(p−1) = 1 mod p,
meaning we can write the inner sum as

i∑
j=1

j−(p−1) =
i∑

j=1

1 = i.

Substituting this into the entire formula and noting (p− 1)−(p−1) = 1 in the front, we
get

p−1∑
i=1

(
i−1 · i

)
=

p−1∑
i=1

1 = (p− 1) 6= 0.

Thus, the term ap−1 · b, which has degree p, has a non-zero coefficient, implying a total
degree of at least p.
For the second part of our claim, we now show that the coefficient of the term ap−1 ·bp−1,
which is the only term of degree 2p− 2, is always 0.
Using again Corollary 6.1, we know that the coefficient of the term ap−1 · bp−1 is

(p− 1)−(p−1) ·
p−1∑
i=1

(
i−(p−1) ·

i∑
j=1

j−(p−1)
)
.

Again noting that all involved elements g are invertible and thus gp−1 = 1 = g−(p−1),
we rewrite the coefficient as

1 ·
p−1∑
i=1

(
1 ·

i∑
j=1

1
)

=

p−1∑
i=1

i =
(p− 1)

2
· p = 0 mod p
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using the Gaussian sum formula3.

Experimental results suggest the following conjecture:

Conjecture 1. f1 has exactly degree p.

The conjecture held for all p that we tested (all primes under 500, and some additional
larger ones), and we will work with this value when comparing the performance of the
expanded form to that of the closed form. This is justified because the conjecture value is
equal to our lower bound on the degree from Theorem 2.2. As we will see in the following,
the closed formula will turn out to be the better choice even when assuming this lower
bound.
Nonetheless, we present this expanded form of f1 for the first few primes:

p = 2 : f1(a, b) = ab

p = 3 : f1(a, b) =− a2b− ab2 − ab
p = 5 : f1(a, b) =− a4b− 2a3b2 − 2a2b3 − ab4 − 2a3b+ 2a2b2

− 2ab3 − a2b− ab2

p = 7 : f1(a, b) =− a6b− 3a5b2 + 2a4b3 + 2a3b4 − 3a2b5 − ab6

− 3a5b+ 3a4b2 − 3a3b3 + 3a2b4 − 3ab5 + a4b

+ 2a3b2 + 2a2b3 + ab4 − 3a2b− 3ab2

p = 11 : f1(a, b) =− a10b− 5a9b2 − 4a8b3 + 3a7b4 + 2a6b5 + 2a5b6

+ 3a4b7 − 4a3b8 − 5a2b9 − ab10− 5a9b+ 5a8b2

− 5a7b3 + 5a6b4 − 5a5b5 + 5a4b6 − 5a3b7

+ 5a2b8 − 5ab9 − 2a8b+ 3a7b2 − 4a6b3 + 5a5b4

+ 5a4b5 − 4a3b6 + 3a2b7 − 2ab8 − 4a6b− a5b2

+ 2a4b3 + 2a3b4 − a2b5 − 4ab6 − 5a4b+ a3b2

+ a2b3 − 5ab4 − 4a2b− 4ab2

As the polynomial in its expanded form seems to have a degree of only p instead of the
expected 2p − 2 as noted above, this would imply a theoretical best depth of dlog2(p)e
instead of dlog2(p− 1) + 1e from our closed formula. Thus, it seems natural to examine
the effort for computing the polynomial in this expanded form to see if this might be more
efficient. Since the computation of the coefficient

(p− 1)−x ·
p−1∑
i=1

(
i−y ·

i∑
j=1

j−x
)

for each term is not encrypted, it costs nearly nothing compared to the encrypted compu-
tations, so we ignore this cost. Also, we will distinguish between constant multiplication

3The Gaussian sum formula states that
n∑
i=1

i = n(n+1)
2

for all n ∈ N.
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(i.e., multiplying the ciphertext by its plaintext coefficient) and regular field multiplication
of two ciphertexts, as the former is often much more efficient than the latter. We also
assume that constant multiplication does not increase the depth.
Since we implemented precomputation for the closed formula, we will do the same here:

1. Compute a2, . . . , ap−1 and b2, . . . , bp−1, where ak is computed with minimum depth
and only one multiplication from abk/2c · adk/2e:

• Field additions: 0

• Field multiplications: 2p− 4

• Constant multiplications: 0

• Multiplicative depth: At most dlog2(p− 1)e

2. Let nt be the number of terms in the expanded polynomial. Then for each of the
nt terms of the form α · ax · by, multiply the precomputed factors ax and by (1 field
multiplication) and multiply the result by the plaintext coefficient α (1 constant
multiplication):

• Field additions: 0

• Field multiplications: nt

• Constant multiplications: nt

• Multiplicative depth: +1

3. Sum up the nt terms:

• Field additions: nt− 1

• Field multiplications: 0

• Constant multiplications: 0

• Multiplicative depth: +0

As we can see, we now need to estimate the number of terms in the polynomial. To do
this, we calculated the exact number of terms for all primes less than 350. Next, we ran
a quadratic regression on the number of terms with respect to the prime, setting aside 10
values (see below) to check the estimate. The result, with an incredibly high correlation
coefficient of 0.99998, is that the number of terms in the expanded polynomial is about

nt(p) := 0.249657916p2 + 0.869559p+ 3.1487.

The fit of the regression curve can be seen in Figure 2.1. We see that the curve fits the
data extremely well – the values predicted by this formula compared to the actual values
are shown in Table 2.1.
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Figure 2.1: The number of terms for different p, the regression curve from these terms,
and computed actual values.

p 11 43 47 131 151 197 241 269 311 337

predicted 43 502 596 4401 5827 9863 14713 18303 24421 28650

actual 39 503 597 4311 5849 9897 14759 18357 24471 28727

Table 2.1: Actual vs. estimated values for the number of terms in the expanded form of
f1 for the values of the test set.
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Using this formula (rounded to nt(p) ≈ 0.25p2 + 0.87p+ 3.15), we get as a total effort for
the computation4:

Step Additions Field Mults Const Mults Depth

1 0 2p− 4 0 dlog2(p− 1)e
2 0 nt nt +1

3 nt− 1 0 0 +0

Total nt− 1 2p+ nt− 4 nt dlog2(p− 1)e+ 1

(nt) Theoretical best: dlog2(p)e
Total 0.25p2 0.25p2 0.25p2 dlog2(p− 1)e+ 1

+0.87p+ 2.15 +2.87p− 0.85 +0.87p+ 3.15 Theoretical best: dlog2(p)e

We can see that as p increases, the closed formula

f1 =

p−1∑
i=1

(
li(b) ·

i∑
j=1

lp−j(a)
)

has much lower computation effort regarding the number of additions and multiplications,
even when ignoring the constant multiplications in the expanded formula as we do. The
expanded form does, however, promise a slightly lower depth, where the difference between
the two forms is at most 1. Concretely, the number of operations to compute f1 can be
seen in Figure 2.2.
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Figure 2.2: Number of field additions, field multiplications and multiplicative depth to
compute f1 through the closed and expanded forms (for the expanded form, the theoretical
optimal depth is used).

Additionally, we would like to point out that if one were to implement this p-adic encoding,
the closed formula can easily be realized by a loop, whereas it is questionable if one would
actually want to implement the expanded form with e.g. nearly 10000 terms for p = 197.
To be as unbiased as possible, we always took the better of the two values as an upper
bound on the effort. Thus, we use the field addition and multiplication metric from the

4The theoretical best depth comes from the degree of the polynomial being p, and our precomputation
may yield a depth one higher than this optimum. This is because we compute axby = ax ·by, but the depth
optimal way to compute the product might be some other form (ab)w · av · bz with x = w + v, y = w + z.
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closed formula, but the best possible depth of dlog2(p)e from the expanded formula in our
following effort analysis.

2.3.1.4 Summary: Effort for f1

In conclusion, the values we use for the computational effort of f1 are:

Additions Multiplications Depth

4p− 6 2p · log2(p) + p− 2 · log2(p)− 3 dlog2(p)e

2.3.2 Effort for f2

Recall from Theorem 2.1 that f2(a, b) = (p− 1) · lp−1(a+ b) with

li(x) =

p−1∏
j=0
j 6=i

(x− j).

First, note again that we do not count the multiplication with p−1 as a multiplication, as
this is a multiplication with a constant, which is usually cheaper than the multiplication
of two ciphertexts. More importantly, multiplying with p− 1 just switches the sign, so in
schemes that support subtraction of two ciphertexts, we can rewrite

ri = f1(ai−1, bi−1)− ri−1 · lp−1(ai−1, bi−1)

instead of the original

ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)
= f1(ai−1, bi−1) + ri−1 · (p− 1) · lp−1(ai−1, bi−1)

and incur no additional effort at all, which is what we assume here.

This leaves us with the task of computing lp−1(a+ b) =
p−2∏
0

(a+ b− j), which is a product

of p− 1 factors:

1. We require one addition to compute (a+b), and additional p−2 additions to compute
(a + b) − j for each j ∈ {1, . . . , p − 2} (we need no computation for j = 0), which
yields p− 1 additions in total.

2. To multiply the p− 1 factors, we need p− 2 multiplications in total. Implementing
the multiplication in way with the least depth (i.e., in a fanned-out fashion5) we
obtain a depth of dlog2(p− 1)e.

So to compute f2, we incur the following effort:

Step Additions Multiplications Depth

1 p− 1 0 0

2 0 p− 2 dlog2(p− 1)e

Total p− 1 p− 2 dlog2(p− 1)e
5What we mean by this is the balanced way of multiplying using something similar to a binary tree

structure: For example, the product a · b · c · d · e · f would be computed as
(

(a · b) · (c · d)
)
· (e · f) (with

depth 3) rather than (((((a · b) · c) · d) · e) · f) of depth 5.
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2.3.3 Total Effort

Putting these numbers together with the effort for f2 and our analysis from the beginning
of Section 2.3, we will shortly obtain the total cost for computing ci. However, we first
need to make some observations about the depth:

• Firstly, r0 is 0, so we do not need to compute anything at all.

• Second, r1 = f1(a0, b0) and thus automatically has the depth of f1.

• For subsequent ri, in the beginning of Section 2.3 we derived a depth of

d(ci) = max{d(f1),max{d(ri−1), d(f2)}+ 1}.

• Using this formula for r2, we get

d(r2) = max{d(f1),max{d(r1), d(f2)}+ 1}
= max{d(f1), d(f2)}+ 1

= max{dlog2(p)e , dlog2(p− 1)e}+ 1

= dlog2(p)e+ 1

• From here on, it is clear that d(ri) > d(f1) ≥ d(f2), so the depth will increase by 1
with each i, leaving us with a total depth of

d(ri) = dlog2(p)e+ i− 1.

Now, we can give the total cost for computing ci (for i > 1):

Additions Multiplications Depth

f1 4p− 6 2p · log2(p) + p− 2 · log2(p)− 3 dlog2(p)e
f2 p− 1 p− 2 dlog2(p− 1)e
Total 3 + Adds(f1) + Adds(f2) 1 + Mults(f1) + Mults(f2) dlog2(p)e+ i− 1

Total 5p− 4 2p · log2(p) + 2p− 2 · log2(p)− 4 dlog2(p)e+ i− 1

For completeness, we also give the effort for the two least significant and the most signif-
icant digits, as these deviate slightly from the above formulas. This should only have an
impact for computations with very short lengths.
Special cases: The effort for

c0 = a0 + b0

is only 1 field addition, and that for

c1 = a1 + b1 + r1 = a1 + b1 + f1(a0, b0)

is 4p + 4 additions, 2p · log2(p) + p − 2 · log2(p) + 1 multiplications, and dlog2(p)e depth.
Another special case is

cn+1 = rn+1,

which has 2 field additions less than the other ci, i > 1.
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Remark 1. Due to the unique structure when p = 2 (i.e., a, b, and r all have the same
degree 1), there is a more efficient formula:

ri = (a+ b) · (a+ ri−1) + a

which only needs 1 multiplication (see [BPP00]). However, this approach does not carry
over when p > 2, as the carry formula is no longer symmetrical regarding ri−1.

2.4 COST ANALYSIS FOR COMPUTING ON ENCRYPTED NATURAL NUM-
BERS

In this section, we analyze the effort required to add or multiply two natural numbers
encoded p-adically using the polynomial we derived in Section 2.2.
In Subsection 2.4.1, we calculate the cost of adding two numbers in p-adic encoding
by determining the number of digits required for the respective base, and then using the
costs per digit from Section 2.3 to determine the total cost of addition. We also present
Theorem 2.3, which tells us that p = 2 is the best choice in terms of field additions
and multiplications, and that the optimal depth depends on the size of the number being
encoded, or more specifically, the required number of digits.
Lastly, Subsection 2.4.2 analyzes the cost of multiplying two numbers in p-adic encoding,
using the addition from the previous subsection as a building block. We see that the cost
analysis for addition carries over to multiplication and obtain p = 2 as the optimal choice
regarding field additions and multiplications here as well, along with a variable optimum
for depth.

2.4.1 The Cost of Adding Two Natural Numbers

Suppose we have some natural number x (in decimal representation). Then to represent
x in p-adic encoding, we require blogp(x)c + 1 digits. Adding two such numbers, our re-
sult will have blogp(x)c+2 digits. We consider two cases (due to the different effort for c0):

• Case 1: 0 ≤ x ≤ p−1. This means that our number can be encoded with one digit,
and the result will have two digits. We have

• c0 = a0 + b0 with an effort of 1 addition, and

• c1 = r1 = f1(a0, b0) with an effort of 4p−6 additions, 2p·log2(p)+p−2·log2(p)−3
multiplications and a depth of dlog2(p)e.

In total, the cost of adding two 1-digit numbers is:

Additions Multiplications Depth

c0 1 0 0

c1 4p− 6 2p · log2(p) + p− 2 · log2(p)− 3 dlog2(p)e

Total 4p− 5 2p · log2(p) + p− 2 · log2(p)− 3 dlog2(p)e
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• Case 2: p ≤ x. This means that x will be encoded with 2 ≤ ` := blogp(x)c + 1
digits and the result will have `+ 1 digits. We again have

• c0 = a0 + b0 with an effort of 1 addition.

• c1 = a1 + b1 + r1 = a1 + b1 + f1(a0, b0) with an effort of 4p − 4 additions,
2p · log2(p) + p− 2 · log2(p)− 3 multiplications and a depth of dlog2(p)e.
• The last digit c` = r` has a cost of 5p−6 additions, 2p·log2(p)+2p−2·log2(p)−4

multiplications, and a depth of dlog2(p)e+ 1.

• The remaining `− 2 middle digits ci have the normal effort of 5p− 4 additions,
2p · log2(p) + 2p− 2 · log2(p)− 4 multiplications and a depth of dlog2(p)e+ i− 1.

In total, the cost of adding two `-digit numbers, ` ≥ 2, is:

Additions Multiplications Depth

c0 1 0 0

c1 4p− 4 2p · log2(p) + p dlog2(p)e
−2 · log2(p)− 3

c` 5p− 6 2p · log2(p) + 2p dlog2(p)e+ `− 1

−2 · log2(p)− 4

ci 5p− 4 2p · log2(p) + 2p dlog2(p)e+ i− 1

−2 · log2(p)− 4

2` · p · log2(p)

Total (5`− 1) · p− (4`+ 1) +(2`− 1) · p dlog2(p)e+ `− 1

−2` · log2(p)

−(4`− 1)

Keeping in mind that ` := blogp(x)c+ 1 in the general Case 2, we can now clearly see the
main result of this section:

Theorem 2.3. Asymptotically, the costs for adding two natural numbers in p-adic encod-
ing increase as p increases.

Proof: We can see from the above cases that while the required encoding length of a
number x encoded in base p

` = blogp(x)c+ 1 = b log2(x)

log2(p)
c+ 1 = Θ(

1

log2(p)
)

only decreases logarithmically, the effort grows with p as

Θ(` · p) = Θ((b log2(x)

log2(p)
c+ 1) · p) = Θ(p+

p

log2(p)
) = Θ(p)

for additions and as

Θ(` · p · log2(p)) = Θ((b log2(x)

log2(p)
c+ 1) · p · log2(p)) = Θ(p · log2(p) + p) = Θ(p · log2(p))
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for multiplications. The depth

dlog2(p)e+ `− 1 = dlog2(p)e+ b log2(x)

log2(p)
c

also increases logarithmically (Θ(log2(p))). Thus, for all of our cost metrics it holds
that they increase as p increases.

This theorem implies that the best choice is likely a very small prime like p = 2.
We would like to point out again that if the function being evaluated is known beforehand,
choosing p so large that computations do not wrap around mod p is likely to be faster –
however, this is not Fully Homomorphic Encryption but rather Somewhat Homomorphic
Encryption (see Section 1.2.2). Theorem 2.3 holds for p-adic encoding used in true FHE.
We have illustrated this Theorem through Figure 2.3, which shows the effort as p grows
for selected values of x.
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Figure 2.3: Number of field additions, multiplications and depth for adding
x = 20/7000/107 to a number of same size. The horizontal axis is the encoding base
p, the vertical axis is number of operations/depth, and the plots correspond to the three
numbers.

We can see that indeed, the number of additions, multiplications and the depth increase
significantly as the encoding base p increases. We also see that for additions and
multiplications, our result does not only hold asymptotically, but also for the
concrete values: p=2 indeed has the lowest cost and is thus the best choice.
Note that the jags in the first two diagrams occur when the base prime becomes so large
that one digit less is required for encoding than under the previous prime, so the effort
drops briefly before increasing again.
The diagram for depth shows us an interesting phenomenon6 that is hidden in the asymp-
totic analysis: For low primes, it is actually the required number of digits that dominates
the total depth cost. This problem becomes more pronounced the larger the encoded
number is, and vanishes after the first few primes as the expected asymptotic cost takes

6This phenomenon also occurs for the non-optimal depth dlog2(p− 1)e+ `.
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over. This means that if depth is the only cost metric that is being considered (where as
we have explained before, we feel that as soon as bootstrapping is unavoidable, the total
number of multiplications is the more important metric), choosing a slightly larger prime
than 2 yields better results at the cost of significantly increased multiplications. Also, the
optimal choice of p depends heavily on the numbers that are being encoded. For example,
in Figure 2.3, the depth-optimal choices for adding x would be p = 3 for x = 20, p = 7 for
x = 7000, and p = 29 for x = 107.

2.4.2 The Cost of Multiplying Two Natural Numbers

We now analyze the cost of multiplying two natural numbers

a · b = (a`−1 . . . a0) · (b`−1 . . . b0)

in p-adic encoding. We examine the standard multiplication algorithm because the ad-
vanced multiplication algorithms used (on unencrypted data) today usually have many
IF-THEN instructions. Since doing this in encrypted form always requires executing the
entire binary decision tree, we have not yet found an advanced algorithm that translates
well to the encrypted setting, because most of these benefits disappear when computing
the entire decision tree is necessary.
In performing this multiplication, there are two main steps:

• First, we perform a one digit multiplication of each bi with all of a`−1a`−2 . . . a1a0.

• In the second step, we add up the rows we obtained in this way (shifting one space
to the left with each increasing row) using the addition from the previous subsection
as a building block.

Definition 2.2 (Multiplication matrix). The term multiplication matrix refers to the rows
from the first step written beneath each other to form a matrix (with some blank entries),
shifting one space to the left with each increasing row.

As an example, consider the multiplication of two 3-digit numbers:

a2 a1 a0 · b2 b1 b0

x3 x2 x1 x0

y3 y2 y1 y0

z3 z2 z1 z0

c5 c4 c3 c2 c1 c0

The first step is obtaining the rows

x3x2x1x0 = a2a1a0 · b0, y3y2y1y0 = a2a1a0 · b1 and z3z2z1z0 = a2a1a0 · b2.

Except in the case of p = 2, where bi ∈ {0, 1}, so

x3x2x1x0 = x2x1x0 = (a2 · b0)(a1 · b0)(a0 · b0),

this actually requires some computational effort. The multiplication matrix consists of the
three rows x3x2x1x0, y3y2y1y0 and z3z2z1z0, and the second step consists of adding these
rows to obtain the result c5c4c3c2c1c0.
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2.4.2.1 Computing Step 1

In the case that a0 · b0 > p, we have a carry into the next digit. Concretely, we write

ai · bj + ri = ri+1 · p+ xi

with xi < p, where r0 = 0 and ri ∈ {0, . . . , p− 2}.7 Very similarly to the uniqueness proof
of Theorem 2.1, we can obtain the formula for this carry digit through a 3-fold Lagrange
approximation over the variables ai, bi and ri as

p−1∑
y=1

ly(b) ·
y∑
i=1

li(a) ·
i∑

j=1

lj(r).

This means that the formula for the carry ri will be a triple sum over li-functions.
Note, however, that this polynomial is not unique, as it can take multiple values for
r = p − 1. For example, although the degree would generally be expected as 3 · (p − 1),
we have experimentally seen by generating these different polynomials that among them,
there seems to be one which has a degree of only 2 · (p − 1) + 1. Since we aim to always
use the best possible choice for each cost metric, we will use this value as our lower bound
on the depth in our effort analysis. For the number of additions and multiplications, we
instead again use the closed Lagrangian formula as in the previous section, as they promise
a lower cost for these metrics. Using precomputation and the time-memory tradeoff from
Section 2.3.1.2, we obtain the effort for computing ri+1 from (ai, bi, ri) this way through
the following steps:

1. Compute (a− j), (b− j) and (r − j) for j = 1, . . . , p− 1 with 3p− 3 additions.

2. Compute li(a), li(b), li(r) for i = 1, . . . , p − 1 via time-memory tradeoff using the
precomputed factors from the previous step, which needs 3 · (p · log2(p)− log2(p)−1)
multiplications

3. Compute sums
i∑

j=1
lj(r) for all i, needing p− 2 additions.

4. Compute li(a) ·
i∑

j=1
lj(r) for i = 1, . . . , p− 1, which incurs one multiplication per i.

5. Compute sums
y∑
i=1

li(a) ·
i∑

j=1
lj(r) for all y, needing p− 2 additions.

6. Compute li(b) ·

(
y∑
i=1

li(a) ·
i∑

j=1
lj(r)

)
for i = 1, . . . , p− 1, which needs p− 1 multipli-

cations.
7ri cannot be p− 1 because the maximum first carry r1 happens at

(p− 1) · (p− 1) = (p− 2) · p+ 1,

so r1 ≤ p− 2, and subsequently the maximum that can occur is at

ai · b0 + ri = (p− 1) · (p− 1) + (p− 2) = (p− 2) · p+ (p− 1),

so ri ≤ p− 2.
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7. Lastly, compute
p−1∑
y=1

ly(b) ·
y∑
i=1

li(a) ·
i∑

j=1
lj(r), needing p− 2 additions.

With these steps (with the values in parentheses denoting the depth from these steps, and
the final depth as the lowest depth dlog2(2p− 1)e for the experimentally found polynomial
of lowest degree 2 · (p − 1) + 1 as mentioned above), we get a total effort for computing
the carry of:

Step Field Additions Field Multiplications Depth

1 3p− 3 0 (0)

2 0 3p · log2(p)− 3 · log2(p)− 3
(
dlog2(p− 1)e

)
3 p− 2 0 (0)

4 0 p− 1 (+1)

5 p− 2 0 (0)

6 0 p− 1 (+1)

7 p− 2 0 (0)

Total 6p− 9 3p · log2(p) + 2p− 3 · log2(p)− 5 dlog2(2p− 1)e(
dlog2(p− 1)e+ 2

)
Recalling that the digits are computed as ai · bj + ri, each digit (except the special first
and last digit) has the effort of the carry and one additional addition and multiplication
(which does not increase the depth). Thus, each row, which has length ` + 1, roughly
has as its effort (where we increase the depth by log2 of the degree, i.e., log2(2p− 1) with
each i):

Digit Field Additions Field Multiplications Depth

0 0 1 1

i 6p− 8 3p · log2(p) + 2p− 3 · log2(p)− 4 i · dlog2(2p− 1)e
` 6p− 9 3p · log2(p) + 2p− 3 · log2(p)− 5 ` · dlog2(2p− 1)e

Total ` · (6p− 8)− 1 ` · (3p · log2(p) + 2p− 3 · log2(p)− 5) ` · dlog2(2p− 1)e

Doing this for all ` rows, the first of the two steps has the following effort:

Field Additions Field Multiplications Depth

Total `2 · (6p− 8)− ` `2 · (3p · log2(p) + 2p− 3 · log2(p)− 5) ` · dlog2(2p− 1)e

2.4.2.2 Computing Step 2

The second step consists of adding all the rows that we computed in the first step. At this
point, we present a short optimization from [JA16] that saves some effort in this step:

Improving Multiplication:
Having computed the rows that we want to sum up, we can first apply a logarithmic
approach (i.e., with rwi denoting row i, we compute (rw1 + rw2) + (rw3 + rw4) instead of
(((rw1 +rw2)+rw3)+rw4) to keep the involved lengths and thus effort as low as possible.
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Secondly, it is noteworthy that we can save computation power by modifying the addition
operation: As can easily be seen, we are always adding rows of different lengths. While
the näıve approach of padding the right-hand side of the shorter number with 0’s and
applying normal addition would also work, we can save some effort by copying the excess
digits of the longer number and then performing addition on the remaining shorter parts.
Generally, this approach allows us to reduce the input length for the addition subroutine,
which is an important factor in depth optimization.

Example 2.2: As an example, suppose we are multiplying two 4-digit numbers:

a3 a2 a1 a0 · b3 b2 b1 b0

w4 w3 w2 w1 w0

x4 x3 x2 x1 x0

y4 y3 y2 y1 y0

z4 z3 z2 z1 z0

Then the naive way of adding rows 1 and 2 would be to pad row 2 (note that w4 and x4
are at most 1, so there is no carry to form a potential c6):

w4 w3 w2 w1 w0

+ x4 x3 x2 x1 x0 0

= c5 c4 c3 c2 c1 c0

This would mean adding numbers of lengths 5 and 6 together. However, if we just copy
w0 to the result line, we reduce the length:

w4 w3 w2 w1
...w0

+ x4 x3 x2 x1 x0
...

= c5 c4 c3 c2 c1
...w0

Now we only need to add an number of length 4 to a number of length 5. In the next step
(suppose that d6d5 . . . d1d0 is the result of adding rows 3 and 4 in the same way), the effect
is even more pronounced:

c5 c4 c3 c2
...c1 c0

+ d5 d4 d3 d2 d1 d0
...

= w7 w6 w5 w4 w3 w2
...c1 c0

Here, padding the lower row would lead to input lengths 6 and 8, whereas our optimization
reduces them to 4 and 6.

We see that even with such small numbers with input length 4, we have reduced input
lengths to the addition routine by 4 in total, and this effect scales with larger inputs, so
we can indeed save some effort this way.

Applying this optimization to our scenario (and treating the addition of numbers of differ-
ent lengths like the addition of two numbers of the larger length), we first do `

2 additions
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with `+ 1 digits (because the rightmost one is copied). Next, we do `
4 additions with `+ 3

digits, because the rightmost two are copied down. We continue this until we have only
one row left, with Add(x) denoting the respective effort for adding two number of x digits
as computed in the previous subsection.

For the depth, note from the table for Step 1 that the ith digit in each row has depth
i · dlog2(2p− 1)e. Since the depth of the carry grows by 1 with each i in addition, but
the next input has a depth dlog2(2p− 1)e larger, the carry will have at most the depth of
the upper row of the input (i.e., in ci = ai + bi + ri, the depth of ri will be at most that
of max{d(ai), d(bi)}). This means that the depth does actually not increase through the
addition, and the maximum depth remains at ` · dlog2(2p− 1)e.
Thus, we get as total cost of this second step:

Field Additions Field Multiplications Depth
dlog2(`)e∑
i=1

`
2i
· Add(`+ 2i−1 + 1)

dlog2(`)e∑
i=1

`
2i
· Add(`+ 2i−1 + 1) ` · dlog2(2p− 1)e

2.4.2.3 Total Multiplication Effort

Putting the two steps together, we obtain as the total cost for multiplication:

Step Field Field Depth

Additions Multiplications

1 `2 · (6p− 8)− ` `2 · (3p · log2(p) + 2p ` · dlog2(2p− 1)e
−3 · log2(p)− 5)

2
dlog2(`)e∑
i=1

`
2i
· Add(`+ 2i−1 + 1)

dlog2(`)e∑
i=1

`
2i
· Add(`+ 2i−1 + 1) No increase

`2 · (6p− 8)− ` + `2 · (3p · log2(p) + 2p

Total
dlog2(`)e∑
i=1

`
2i
· Adds(`+ 2i−1 + 1) −3 · log2(p)− 5) + ` · dlog2(2p− 1)e

dlog2(`)e∑
i=1

`
2i
· Adds(`+ 2i−1 + 1)

Since this is a complex formula, we have plotted the costs for different inputs in Figure 2.4.

We can see that for additions and multiplications, the effort is lowest at p = 2 and grows
with increasing p, though there are again some sharp drops when the required number of
digits decreases. As one would expect, the issue with depth has propagated from addition,
which we used as a building block in multiplication: The best depth for x = 20 is obtained
for p = 23, the best depth for x = 7000 is obtained for p = 89, and the best depth for
x = 107 is obtained for p = 223. We would like to point out that these values are not the
same values that were optimal for addition (e.g., p = 89 is far from optimal for adding
x = 7000) – thus, if one were to use depth as the sole metric, the optimal choice of p
not only depends on the size of the numbers one is working with, but also on the number
of additions vs. multiplications one wants to perform on these inputs. In the context of
outsourced information, it is also important to note that optimizing the choice of p in this
way could leak unwanted information about the function that was applied to the data,
which may be the computing party’s business secret.



2.5 extension to arbitrary finite fields 53

0 200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Additions

p

A
dd

iti
on

s 
(1

0^
3)

●●●●●●●
●●●●

●●●●
●●●

●●●●
●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●

●●●●●
●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●●●●

●
●

●●
●●

●●●
●
●●●●●●●

●●●●●●●●●●
●

●●●●●●●●
●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●

●●

●

●

●

x=10^7
x=7000
x=20

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

Multiplications

p

M
ul

tip
lic

at
io

ns
 (

10
^3

)

●●●●●●●
●●●●●

●●●●
●●●●●

●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●
●

●●●●●
●●

●
●●

●●
●●●

●
●●●●●●●

●●●●●●●
●●●

●

●●●●●●●
●●
●

●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●

●●

●

●

●

x=10^7
x=7000
x=20

0 200 400 600 800 1000

0
10

20
30

40
50

60

Depth

p

D
ep

th

●
●

●

●●●

●●

●●●

●●●●●●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

x=10^7
x=7000
x=20

Figure 2.4: Number of field additions, field multiplications and multiplicative depth for
multiplying x = 20/7000/107 to a number of same size. The horizontal axis is the encoding
base p, the vertical axis is number of operations/depth, and the plots correspond to the
three numbers.

2.5 EXTENSION TO ARBITRARY FINITE FIELDS

We now generalize our analysis to arbitrary finite fields as encoding bases. Much in the
same way as in Sections 2.3 and 2.4, we have also analyzed the effort incurred when using
GF (pk) for a prime p and a k > 1 as an encoding base. To this end, we first show how
to generalize p-adic encoding to these more general fields in Section 2.5.1. We then
compute the effort for computing each digit when adding two numbers in Section 2.5.2,
and examine the effort for the total addition of two numbers in Section 2.5.3.

2.5.1 Encoding for GF (pk)

First, recall that
GF (pk) ∼= Zp[X]/(f(x))

with f(x) irreducible of degree k. We embed a decimal number between 0 and pk − 1
into GF (pk), whose elements are polynomials over Zp of degree less than k, through the
insertion homomorphism: The element

a =
k−1∑
i=0

αiX
i ∈ GF (pk) (with αi ∈ {0, 1, . . . , p− 1})

encodes the number

ã =

k−1∑
i=0

αi · pi ∈ N.

Generalizing this to numbers larger than pk − 1 is straightforward: We will represent a
natural number ã as anan−1 . . . a1a0, where aj ∈ GF (pk), through

ã =
n∑
j=0

ãj · (pk)j ,

with ãj the natural number in {0, . . . , p− 1} encoded by aj ∈ GF (pk) as above.
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Example 2.3: Suppose we are working over GF (23) ∼= Z2[X]/(X3 +X + 1).
Then the single element X2 + 1 ∈ GF (23) encodes the natural number 22 + 1 = 5, whereas
the single element X ∈ GF (23) encodes the natural number 2.
Using this structure as an encoding base, we can display natural numbers that are larger
than 23 = 8 through tupels of GF (23)-elements. For example, the tupel

(X + 1, 1, X2)

encodes the number

(X + 1) · (23)2 + 1 · (23)1 +X2 · (23)0 7→ 3 · 82 + 1 · 8 + 4 · 1 = 204.

Encoding in the other direction works similarly:
Suppose we want to encode the number 8008 in this fashion, then we first write it a sum
of powers of 23:

8008 = 4096 + 3584 + 320 + 8 = 1 · 84 + 7 · 83 + 5 · 82 + 1 · 81 + 0 · 80

7→ 1 · 84 + (X2 +X + 1) · 83 + (X2 + 1) · 82 + 1 · 81 + 0 · 80

which yields a tuple of
(1, X2 +X + 1, X2 + 1, 1, 0).

2.5.2 Effort per Digit

Having determined the appropriate encoding, we will now analyze the effort of adding two
natural numbers in this encoding. Intuitively, we do not expect this to perform better than
the encoding through Zp: The carry bit formula should roughly have the same effort as for
Zp′ with p′ of size comparable to pk, but the addition is now more complicated. Concretely,
the native addition structure of GF (pk) is that of (Zp)k, i.e., it is done component-wise
with no carry-over into other components, whereas we would need the addition of Zpk to
natively support our encoding. Thus, we must emulate the addition ci = ai + bi + ri in
the same way as we compute the carry bit, so we expect a significantly larger effort here
compared to Zp′ with p′ ≈ pk.
The task at hand is now to compute ri = f(ai−1, bi−1, ri−1) and

ci = f̃(ai, bi, ri) := ai +Z
pk
bi +Z

pk
ri.

We do this as before through bilinear Lagrangian Interpolation.

2.5.2.1 Computing the Carry ri

We first note that as before, the carry can never be more than 1: Since the first carry r0 is 0,
the maximum value that can be reached in this step is for a0 = b0 = pk−1, yielding a result
of 2pk− 2 < 2pk, so the carry r1 is at most 1. Similarly, with a carry ri of at most 1 and a
maximumum value of ai = bi = pk−1, we get a maximum of ai+bi+ri = 2pk−1 < 2pk for
the subsequent positions, so the carry is always at most 1. We then compute the function
returning ri as before by setting

ri = f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)



2.5 extension to arbitrary finite fields 55

where (with all additions over N)

f1(a, b) =

0, a+ b ≤ pk − 1

1, a+ b ≥ pk
and f2(a, b) =

1, a+ b = pk − 1

0, else
(2.21)

The li-functions are defined over these fields as follows:

li(x) =
∏

j∈GF (pk)
j 6=i

(x− j).

Since we again have
f2(a, b) = (p− 1) · lp−1(a+ b),

the function f2 has a degree of pk − 1, which is also the true degree (i.e., the higher-order
terms do not generally vanish) and can be computed with pk−2 multiplications (for pk−1
factors, not counting the multiplication with p − 1 because it is a constant and can be
implemented by subtraction) and pk − 1 additions (one for a+ b, and one for each factor
of lp−1 except (a+ b− 0)). Thus, for f2 we have an effort of

Field Additions Field Multiplications Depth

pk − 1 pk − 2 dlog2(p
k − 1)e

The other part, f1, is obtained by Lagrangian Interpolation over the variables a and b, so
the closed formula we obtain this way implies a theoretical degree of 2 ·pk−2. Concretely,

f1(a, b) =
∑

j∈GF (pk)∗

(
lj(b) ·

∑
i∈GF (pk)∗

li(a) · r̃(i, j)
)

(2.22)

where

r̃(i, j) =

0, i+N j < pk

1, i+N j ≥ pk

is supplied as a known value in Lagrangian interpolation8.

Remark 2. In Equation 2.22, we only sum over the non-zero elements of GF (pk) because
if either i or j is 0, the carry can never be 1 and thus r̃(i, j) = 0. Of course, technically we
could reduce the number of terms even further by only summing up the elements where
r̃(i, j) = 1 as we did in the case of Zp, where the inner sum runs from j = 1 only to
k rather than p − 1 in Theorem 2.1 for exactly this reason. However, due to the more
abstract nature of GF (pk) and its non-trivial mapping to N, it is very complex to express
these non-zero terms in form of an iterator over which we can sum. For this reason, we
will disregard this option since it makes only little difference: Using precomputation again,
the only change is that the total number of ciphertext additions would decrease slightly.
We will, however, not count the multiplication with r̃(i, j) as a multiplication since it is
always either 0 or 1, so we always either add the term or don’t.

8Recall that we can, of course, easily compute these values in the clear when coming up with the
formula for f1. Later, when computing on the encrypted values, f1 will do exactly the same thing as r̃,
but expressed as a polynomial over GF (pk) which we can evaluate on encrypted inputs.
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In reality, we again have the effect that the expanded formula (obtained by multiplying out
the closed formula in Equation 2.22) seems to have a lower degree. Concretely, Table 2.2
shows the actual degree of f1 for different values of p and k and the expected value of
2 · pk − 2. The entry for GF (74) is missing because merely computing the expanded form
from the closed form (using Sage for the finite field arithmetic, without any encryption
involved) would take roughly half a year on our computer.

p\k 1 2 3 4

2 2 5 11 23

3 3 13 43 133

5 5 41 221 1121

7 7 85 631 x

p\k 1 2 3 4

2 2 6 14 30

3 4 16 52 160

5 8 48 248 1248

7 12 96 684 4800

Table 2.2: Actual degree of f1 vs. 2pk − 2

We can see that the degree of f1 seems to be

pk + (p− 1) · pk−1 − (p− 1) = 2 · pk − pk−1 − (p− 1).

Since this is asymptotically the same as the closed formula but would incur significant
effort in computing a very large number of terms in the expanded version, we will stick
with the closed formula in our analysis. As in Section 2.3.1, we use precomputation to
compute intermediate results that are shared between the different li’s in Step 2 of the
following computation, where the notation Liv denotes that we have divided the pk factors
into v roughly equal sets, and this is the ith of these sets. Then computing all such sets

for v = pk

2 , . . . , 2 requires a total of pk − 2 multiplications similar to the explanation in
Section 2.3.1, and computing li from these Lv takes log2(p

k)− 1 per li, of which there are
pk − 1. Remembering to do these computations for a and b each, we can compute all the
li in Step 2 with

2 ·
(
pk − 2 + (pk − 1) · (log2(p

k)− 1)
)

= 2pk · log2(p
k)− 2 log2(p

k)− 2

multiplications. The complete computation is as follows:

1. Compute (a− j) and (b− j) for j ∈ GF (pk)∗:

• Field additions: 2pk − 2

• Field multiplications: 0

• Multiplicative depth: 0

2. Compute li(a), li(b) for i ∈ GF (pk)∗ with precomputation:

• Field additions: 0

• Field multiplications: 2pk · log2(p
k)− 2 log2(p

k)− 2

• Multiplicative depth: dlog2(p
k − 1)e for each li(a) and li(b)
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3. Compute lj(b) ·
∑

i∈GF (pk)∗
li(a) · r̃(i, j) for each j ∈ GF (pk)∗ (recalling that we don’t

count the multiplication with r̃(i, j) as a multiplication because this value is always
in {0, 1} and not encrypted) with effort:

• Field additions: (pk − 1) · (pk − 2) = p2k − 3pk + 2

• Field multiplications: pk − 1

• Multiplicative depth: +1

4. Lastly, sum up all the lj(b) ·
∑

i∈GF (pk)∗
li(a) · r̃(i, j) to obtain

∑
j∈GF (pk)∗

(
lj(b) ·

∑
i∈GF (pk)∗

li(a) · r̃(i, j)
)

:

• Field additions: pk − 2

• Field multiplications: 0

• Multiplicative depth: +0

In total, to compute f1 we get an effort of:

Step Field Additions Field Multiplications Depth

1 2pk − 2 0 0

2 0 2pk · log2(p
k)− 2 log2(p

k)− 2 dlog2(p
k − 1)e

3 p2k − 3pk + 2 pk − 1 +1

4 pk − 2 0 +0

Total p2k − 2 2pk · log2(p
k) + pk − 2 log2(p

k)− 3 dlog2(p
k − 1)e+ 1

And thus, combined with the effort for f2, we get the costs of computing the carry ri for
the encoding base GF (pk) with k > 1 as:

Field Field Depth

Additions Multiplications

f1 p2k − 2 2pk · log2(p
k) + pk dlog2(p

k − 1)e+ 1

−2 log2(p
k)− 3

f2 pk − 1 pk − 2 dlog2(p
k − 1)e

Total p2k + pk − 3 2pk · log2(p
k) + 2pk max{dlog2(p

k − 1)e+ 1, d(ri−1)}+ 1

−2 log2(p
k)− 5
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2.5.2.2 Computing the Addition

As mentioned above, computing ci is not as easy as simply computing ai + bi + ri in the
field GF (pk), as the addition we require corresponds to the different structure Zpk . Thus,
we must also compute the function expressing this alien addition through Lagrangian
interpolation. Concretely, we write

ci = f̃(ai, bi, ri) := ai +Z
pk
bi +Z

pk
ri = (1− ri) · f̃1(a,i , bi) +GF (pk) ri · f̃2(ai, bi)

with
f̃1(a, b) = a+Z

pk
b and f̃2(a, b) = a+Z

pk
b+Z

pk
1. (2.23)

We can do this because the carry ri is at most 1, so we can easily split the function
in this way. Similarly to above, both of these functions are obtained through a double
interpolation over a and b and thus have a theoretical degree of 2 · pk − 2 (except when
k = 1, in this case we use the native addition and thus have degree 0). Since we are
interested in how the degree propagates, it makes sense to rearrange the terms into

ci = g(ai, bi, ri) := ai +Z
pk
bi +Z

pk
ri = g1(ai, bi) +GF (pk) ri · g2(ai, bi)

with
g1(a, b) := f̃1(a, b) and g2(a, b) := f̃2(a, b)− f̃1(a, b) (2.24)

The actual degrees for each and the expected value 2 · pk − 2 can be found in Table 2.3,
with the actual values for GF (74) again missing due to enormous runtimes in computing
the expanded forula from the closed one.

p\k 2 3 4

2 4 10 22

3 9 39 129

5 25 205 1105

7 49 595 x

p\k 2 3 4

2 2 6 14

3 6 24 78

5 20 120 620

7 42 336 x

p\k 2 3 4

2 6 14 30

3 16 52 160

5 48 248 1248

7 96 684 4800

Table 2.3: Degrees of g1 (left) and g2 (middle) and the theoretical value (right).

The rule, which we checked with some additional values of pk not in the table, appears to
be:

deg(g1(a, b)) = 2pk − pk−1 − p2 + p (2.25)

and
deg(g2(a, b)) = pk − p. (2.26)

Since this is relatively close to the degree 2 · pk − 2 from the closed formula (and would
again incur significantly more effort in working with the expanded form), we will use the
closed formula and compute g1 and g2 using Equation 2.24. Thus, we first compute the
effort of f̃1 and f̃2, which have similar costs and also constitute the cost for g1, and then
get the effort for g2 with one additional addition. The effort analysis is very similar to the
computation of f1 above, except that we also compute l0(a) and l0(b) in Step 2 (which
needs 2pk · log2(p

k)−4 multiplications instead of 2pk · log2(p
k)−2 log2(p

k)−2), keep track
of the constant multiplications in Step 3, and sum over all of GF (pk) in Steps 3 and 4.



2.5 extension to arbitrary finite fields 59

Thus, for the effort of computing f̃1 and f̃2 each, we get:

1. Compute (a− j) and (b− j) for j ∈ GF (pk)∗:

• Field additions: 2pk − 2

• Field multiplications: 0

• Multiplicative depth: 0

2. Compute li(a), li(b) for i ∈ GF (pk) with precomputation as above:

• Field additions: 0

• Field multiplications: 2pk · log2(p
k)− 4

• Multiplicative depth: dlog2(p
k − 1)e for each li(a) and li(b)

3. Compute lj(b) ·
∑

i∈GF (pk)

li(a) · ṽ(i, j) for each j ∈ GF (pk) (where ṽ(i, j) is the known

cleartext value i +Z
pk
j, or i +Z

pk
j +Z

pk
1 respectively, incurring a constant multi-

plication) with effort:

• Field additions: pk · (pk − 1) = p2k − pk

• Field multiplications: pk

• Constant multiplications: p2k

• Multiplicative depth: +1

4. Lastly, sum up all the lj(b) ·
∑

i∈GF (pk)

li(a) · ṽ(i, j) to obtain

∑
j∈GF (pk)

(
lj(b) ·

∑
i∈GF (pk)

li(a) · ṽ(i, j)
)

:

• Field additions: pk − 1

• Field multiplications: 0

• Multiplicative depth: +0

Thus, computing f̃1, f̃2 and g1 each has a total effort of

Step Field Field Constant Depth

Additions Multiplications Multiplications

1 2pk − 2 0 0 0

2 0 2pk · log2(p
k)− 4 0 dlog2(p

k − 1)e
3 p2k − pk pk p2k +1

4 pk − 1 0 0 +0

Total p2k + 2pk − 3 2pk · log2(p
k) + pk − 4 p2k dlog2(p

k − 1)e+ 1

and g2 has the same effort, except one additional addition (so p2k + 2pk − 2 in total).
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2.5.2.3 Computing ci

Putting the results from this section together, we get (with all operations in GF (pk)):

ci(ai, bi, ri−1) = g1(ai, bi) + ri · g2(ai, bi)
= g1(ai, bi) +

(
f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)

)
· g2(ai, bi)

(2.27)

Denoting the multiplications with constant (i.e., unencrypted) values as CMults, we can
thus see that the total effort for the number of operations is:

• Field additions: Adds(g1) + Adds(f1) + Adds(f2) + Adds(g2) + 2

• Field multiplications: Mults(g1) + Mults(f1) + Mults(f2) + Mults(g2) + 2

• Constant multiplications: CMults(g1) + CMults(f1) + CMults(f2) + CMults(g2)

However, we note that in computing f̃1 and f̃2 when computing g1 and g2, the first two
steps are the same (computing the li’s), and thus if we save the results, we only have to
do this once. In fact, these are also the same two steps as in the computation of f1 from
the carry computation in the next digit (as f1 is run on the inputs ai−1, bi−1 in round i).
The effort for these two steps is 2pk − 2 additions and 2pk · log2(p

k) − 4 multiplications
(2pk · log2(p

k) − 2 log2(p
k) − 2 for f1), so we will subtract these values in the following

table, denoting this with “Redundancy”:

Field Field Constant

Additions Multiplications Multiplications

f1 p2k − 2 2pk · log2(p
k) + pk − 2 log2(p

k)− 3 0

f2 pk − 1 pk − 2 0

g1 p2k + 2pk − 3 2pk · log2(p
k) + pk − 4 p2k

g2 p2k + 2pk − 2 2pk · log2(p
k) + pk − 4 p2k

Additional 2 2 0

Redundancy −4pk + 4 −4pk · log2(p
k) + 2 log2(p

k) + 6 0

Total 3p2k + pk − 2 2pk · log2(p
k) + 4pk − 5 2p2k

Regarding depth, we have

Depth = max {d(g1),max {max {d(f1),max {d(ri−1), d(f2)}+ 1} , d(g2)}+ 1}

from Equation 2.27. Generally, the degree of ri−1 will be highest in that equation, and if
minimal depth is our main objective, we can compute the term involving ri−1 as

ri−1 · (f2(ai−1, bi−1) · g2(ai, bi)),

increasing the degree by only one in each round. However, this will increase total compu-
tation because we still need to compute

ri =
(
f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)

)
,

as it is an input to the next round. Still, we use the smaller value in our depth analysis,
which can be found in Section 2.5.3.
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2.5.3 Adding Natural Numbers

Using the results from the previous subsection, we calculate the total effort required to
add two natural numbers x ≈ y of the same length ` = blogpk(x)c+ 1. As before, we look
at the special cases c0 and c1, c2 and the last digit c` = r` as well as the “regular” middle
digits.

• c0 = a0 +Z
pk
b0 = g1(a0, b0):

• Field additions: p2k + 2pk − 3

• Field multiplications: 2pk · log2(p
k) + pk − 4

• Constant multiplications: p2k

• Multiplicative depth: dlog2(p
k − 1)e+ 1

• c1 = g1(a1, b1) + f1(a0, b0) · g2(a1, b1) (as r0 = 0):

• Field additions: 3p2k − 2

• Field multiplications: 2pk · log2(p
k) + 3pk − 4

• Constant multiplications: 2p2k

• Multiplicative depth: dlog2(p
k − 1)e+ 2

• c2 = g1(a2, b2) +
(
f1(a1, b1) + r1 · f2(a1, b1)

)
· g2(a2, b2): This entry is merely special

in terms of depth, all other values are the same as the following ci. Note that
r1 = f1(a0, b0), so its depth is dlog2(p

k − 1)e + 1. This is the same as the depth
of g2 and one more than that of f2, so computing r1 · f2 · g2 will yield a depth of
d(c2) = dlog2(p

k − 1)e+ 3. Note that r2 only has a degree of dlog2(p
k − 1)e+ 2, so

it will have no impact in reality.

• ci = g1(ai, bi) + ri · g2(ai, bi) (2 < i < l)
= g1(ai, bi) +

(
f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1)

)
· g2(ai, bi):

As mentioned in the previous subsection, by expanding the formula and multiplying
the term ri−1 · (f2(ai−1, bi−1) ·g2(ai, bi)) in the appropriate order, the depth will only
increase by 1 with each increase in i, and we will have d(ri) = d(ci) (at the cost of
increased computation). Thus, we get as minimum effort:

• Field additions: 3p2k + pk − 2

• Field multiplications: 2pk · log2(p
k) + 4pk − 5

• Constant multiplications: 2p2k

• Multiplicative depth: dlog2(p
k − 1)e+ i

• c` = r` = f1(a`−1, b`−1) + r`−1 · f2(a`−1, b`−1):
Since we already computed the li(a`−1) and li(b`−1) in the previous digit, we do not
need to compute them again and can skip Steps 1 and 2 in the computation of f1.
This leaves us with the following costs:

• Field additions: p2k − pk − 1

• Field multiplications: 2pk − 3
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• Constant multiplications: 0

• Multiplicative depth: dlog2(p
k − 1)e+ `

To summarize (with eff() denoting above costs), we have the following effort:

Case 1: 0 ≤ x ≤ pk − 1. This means that our number x can be encoded with 1 digit,
and the result will have two digits. Remembering that we do not need to compute Steps 1
and 2 when computing f1, the effort is eff(c0) + eff(r1) = eff(c0) + eff(f1), so we have:

Additions Field Constant Depth

Multiplications Multiplications

c0 p2k + 2pk − 3 2pk · log2(p
k) + pk − 4 p2k dlog2(p

k − 1)e+ 1

c1 p2k − 2pk pk − 1 0 dlog2(p
k − 1)e+ 1

Total 2p2k − 3 2pk · log2(p
k) + 2pk − 5 p2k dlog2(p

k − 1)e+ 1

Case 2: pk ≤ x. This means that x will be encoded with 2 ≤ ` := blogp(x)c+1 digits and
the result will have `+ 1 digits. The effort is eff(c0) +eff(c1) + (`−2) ·eff(ci) +eff(c`),
so we get:

Additions Field Constant Depth

Multiplications Multiplications

c0 p2k + 2pk − 3 2pk · log2(p
k) + pk − 4 p2k dlog2(p

k − 1)e+ 1

c1 3p2k − 2 2pk · log2(p
k) + 3pk − 4 2p2k dlog2(p

k − 1)e+ 2

ci 3p2k + pk − 2 2pk · log2(p
k) + 4pk − 5 2p2k dlog2(p

k − 1)e+ i

c` p2k − pk − 1 2pk − 3 0 dlog2(p
k − 1)e+ `

(3`− 1) · p2k 2` · pk · log2(p
k)

Total +(`− 1) · pk +(4`− 2) · pk (`+ 1) · p2k dlog2(p
k − 1)e+ `

−2`− 2 −5`− 1

We now compare the calculated effort to:

1. Encoding the number in base p instead of pk and performing the addition.

2. Encoding the number in base p′ with p′ close to pk.

Figure 2.5 shows the effort of adding two numbers of same size (x = 20/7000/107) in
pk-adic encoding for pk up to 1000. Blue crosses are Zp, pink circles p2, yellow triangles
p3, and the black square groups all bases pk with k ≥ 4, since the primes p with pk ≤ 1000
for increasing k become very few. We have omitted a graph for constant multiplications
because there are none (when the scheme supports subtraction) when the plaintext space
is Zp.
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Figure 2.5: Number of field additions, field multiplications and multiplicative depth for
multiplying x = 20 (first column)/x = 7000 (second column)/x = 107 (right column) to a
number of same size for encoding base GF (pk).
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We see that the pk-encoding performs poorly regarding all metrics, and using Zp as an en-
coding base is the better choice. For multiplication, the difference is not that obvious due
to our optimization of calculating the li-functions only once and using them in different
functions. Without this optimization (which does increase the required memory), multi-
plication for k > 1 performs significantly worse than for k = 1. We have manually checked
(as it is hard to see for small values of pk in Figure 2.5) that even with the optimization,
the effort for k > 1 is indeed always bigger than for the next prime (i.e., the next choice
for k = 1). For addition (and thus also for the total number of operations), the effort for
k > 1 is enormously bigger than for k = 1, and the depth is always lower when choosing
k = 1.

2.6 CONCLUSION

In conclusion, we showed in Section 2.4 that the smaller the encoding base p for a plaintext
space of Zp, the smaller the cost in terms of ciphertext additions and multiplications, and
that the optimal base in terms of multiplicative depth varies. However, the factor that
induces this variation is the required encoding length of the input. We have seen in
Section 2.5 that choosing the encoding base as GF (pk) with k > 1 always performs worse
than choosing the encoding base as Zp. Since we can choose a prime p′ that is close to any
pk (and thus requires roughly the same encoding length) which requires much less effort
as shown in Figure 2.5, there is no case where choosing GF (pk) as an encoding base with
k > 1 brings any benefit. For this reason, pk is always the worst encoding choice and we
are never without an alternative, so we do not continue with the analysis of GF (pk) as an
encoding base.
We have argued in Section 1.3.2 that with digit-wise encoding, bootstrapping quickly
becomes unavoidable and thus depth is not as important as the number of multiplications
or total operations. Also, the optimum for depth depends heavily on the number of digits
of the input and on the specific function, so that choosing the depth-optimal encoding
base may even leak unwanted information about the function. For this reason, we will
focus on p = 2 (and k = 1) in the remainder of this work, as this is optimal in terms of
everything except depth.



Chapter 3

INCORPORATING NEGATIVE NUMBERS

In this chapter, we will extend our analysis to include negative numbers, focusing on
the base Z2 as determined in the previous chapter. To this end, we first present in
Section 3.1 some elementary functions for binary encoding, which we will utilize as
building blocks in subsequent sections. We then examine the two most popular encodings:
Two’s Complement (Section 3.2), which is most commonly used, and Sign-Magnitude
(Section 3.3), which captures the straightforward idea of merely adding a sign bit to
a natural number in binary encoding. Generally, accommodating for signed numbers
will need one bit more than the corresponding unsigned number. Comparing the two
encodings side by side in Section 3.4, we will see that Two’s Complement performs
better when adding two numbers, but Sign-Magnitude is superior for multiplying them.
Thus, in Section 3.5, we present a mix of the two, called Hybrid Encoding, which switches
between the two encodings to always utilize the better one for the operation at hand. We
will see in Chapter 5 the impact this Hybrid Encoding has in practice. To aid the reader
at later points, all the algorithms from this chapter and their respective costs are also
presented as a summary in Appendix A.

This chapter is largely taken from [JA16].

3.1 ELEMENTARY FUNCTIONS

At this point, we briefly present some elementary functions on binary numbers that are
useful in computing on encrypted data and will be utilized as building blocks in our
computations on signed integers in the rest of this chapter.

3.1.1 Multiplexing

A multiplexer (MUX) gate is basically a shorthand way of expressing an IF-ELSE instruc-
tion. Concretely, let c ∈ {0, 1} be the conditional, and let a be the value that is assigned
if c = 1, and b the value that is used if c = 0. Then

MUX(c, a, b) :=

a, c = 1

b, c = 0.

65
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The library we use later on indeed has a MUX gate available, but any FHE scheme over
{0, 1} can implement this functionality through bit additions and multiplication:

MUX(c, a, b) = c · a+ (1 + c) · b = c · (a+ b) + b.

Thus, we count the effort of one MUX operation as:

Field Additions Field Multiplications Depth

Total 2 1 max{depth(a), depth(b), depth(c)}+ 1

By abuse of notation, we may also write MUX(c, a, b) for c ∈ {0, 1} and a and b bitstrings –
in this case, the MUX gate is applied to each bit, and the above addition and multiplication
costs are multiplied by the bitlength. The depth propagation remains the same in that
the maximum input depth increases by 1.

3.1.2 Comparison of Unsigned Numbers

We now show how to compare two natural numbers (i.e., check whether a < b for two
natural numbers a and b) in Algorithm 1, and then later use that as a building block to
compare signed numbers.

Algorithm 1: Unsigned Comparison

Input: Natural number a = an . . . a1a0
Input: Natural number b = bn . . . b1b0
// Set result to 0

1 res = 0
2 for i = 0 to n do

// Set temp to 0 if ai 6= bi and to 1 if ai = bi
3 temp = ai + bi + 1

// If temp = 1 (inputs are equal), don’t change res. If temp = 0
(inputs are unequal), set res = bi

4 res = MUX(temp, res, bi)

5 end
// res = 1⇔ a < b
Output: res

The idea1 is that the variable res is set to 0 and then in each iteration of the for-loop it
denotes the result of the comparison on the previous bits. Thus, if the two bits at position
i are equal (ai = bi), the result res of the comparison does not change. If they are unequal,
the lower bits do not matter anymore and the result is set to res = bi. This works because
if bi = 1, that means ai = 0, so the number ai . . . a1a0 is smaller than bi . . . b1b0. Thus
the outcome should be 1 = bi. If, on the other hand, bi = 0, then ai=1 and the number
ai . . . a1a0 is larger than bi . . . b1b0, so the outcome is 0 = bi.

Of course, starting from the LSB is a bit counter-intuitive: In unencrypted computations,
we would start from the MSB because we could terminate at the first position where the

1Credited to the TFHE team https://tfhe.github.io/tfhe/tuto-cloud.html for this elegant nota-
tion, last accessed May 29, 2018.

https://tfhe.github.io/tfhe/tuto-cloud.html
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bits differ. However, in encrypted computations we cannot see when this is the case and
would have to iterate over the entire length of the inputs anyway instead of stopping early,
so the above method, which uses less elementary operations, is the more efficient way of
computing the comparison.
Note that by changing Line 1 to res = 1, we can test for a ≤ b instead of a < b with
exactly the same effort.
With this algorithm, the effort of comparing two n-bit numbers is:

Line Field Additions Field Multiplications Depth

3 2n 0 0

4 2n n n

Total 4n n n

3.1.3 Addition of Unsigned Numbers

Recall from Remark 1 in Section 2.3.3 that for p = 2, there is an even more efficient way
of writing the formula to compute the carry (because x2 = x mod 2):

ri = (ai−1 + bi−1) · (ai−1 + ri−1) + ai−1.

This is the majority function, as the carry will be 1 if at least two of the three values
ai−1, bi−1, ri−1 are 1.
Thus, we quickly examine the effort for adding two unsigned numbers in binary encoding.

Additions: Using the above formula for the carry, we again have c0 = a0 + b0 (because
r0 = 0) and then ci = ai + bi + ri for i = 1 . . . n − 1. For the last bit cn = rn, we only
have the additions from rn. From the computation of ri, we get 0 additions for r0 = 0
and r1 = a0 · b0, and 3 additions for i = 2, . . . , n.

Multiplications: Likewise, we get 0 multiplications from ci = ai + bi + ri and r0 = 0,
1 multiplication from r1 = a0 · b0, and 1 multiplication from the computation of ri for
i = 2, . . . , n.

Depth: Lastly, for the multiplicative depth, we see that r1 has depth 1, and then depth
increases by 1 for i = 2, . . . , n because ri is multiplied with another value (ai−1 + bi−1).
We obtain a total depth of n.
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Thus, in total, to add two n-bit numbers, we get an effort of:

Additions Multiplications Depth

c0 1 0 0

c1 2 1 1

ci 5 1 +1 (= i)

cn 3 1 n

Total 1 + 2 + 5 · (n− 2) + 3 0 + 1 + (n− 2) + 1

= 5n− 4 = n n

3.1.4 Subtraction of Unsigned Numbers

We now explore how to subtract two unsigned numbers. Of course, the result must also
be an unsigned number, so we require it to be non-negative – that is, we want to compute
a−b for two n-bit numbers a and b with b ≤ a. We use a procedure called the Complement
Method:

1. Flip all bits of b = bn−1 . . . b1b0 to obtain b̄ = b̄n−1 . . . b̄1b̄0.

2. Compute a − b = a + b̄ + 1 using unsigned addition and discarding the (n + 1)th

result bit.

Lemma 7. The Complement Method is correct.

Proof: Consider that b̄i = 1− bi. Then we can write (over N):

a+ b̄+ 1 = a+

(
n−1∑
i=0

b̄i · 2i
)

+ 1

= a+

(
n−1∑
i=0

(1− bi) · 2i
)

+ 1

= a+

(
n−1∑
i=0

2i

)
−

(
n−1∑
i=0

bi · 2i
)

+ 1

= a+ (2n − 1)− b+ 1

= 2n + a− b.

Since we discard the (n+ 1)th result bit, the term 2n disappears from the sum, leaving
us with just a− b as promised.
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We see that we have an effort of n bit additions to flip the bits in Step 1, and then the
effort of two unsigned additions of n-bit numbers, but without the effort for the (n+ 1)th

result bit. Thus, we get:

Step Additions Multiplications Depth

1 n 0 0

2 2 · (5n− 7) 2 · (n− 1) n− 1

Total 11n− 14 2n− 2 n− 1

Regarding depth, we have the same reasoning we had in Section 2.4.2.2: After adding
a+ b̄ := d, digit di of the result has depth i. Inputting this into the second addition with 1
(where each bit has depth 0), the carry adds a depth increase of 1 with each bit. However,
this is also the depth of the next input bit: ci = α + di + ri where α ∈ {0, 1} with depth
0 and di has the same depth as ri and thus ci. Thus, the total maximum depth does not
increase through the second addition.

3.1.5 Multiplication of Unsigned Numbers

As we already stated in Section 2.4.2, the case p = 2, which we are working with for the
rest of this thesis, is a special case because we have no carry in the computation of the
rows of the multiplication matrix (recall Definition 2.2). Since this results in a better
performance than the previous chapter suggests, we present the cost of multiplying two
unsigned binary numbers with encoding base Z2 at this point.
Suppose we are computing an−1 . . . a1a0 · bm−1 . . . b1b0. Then the multiplication matrix
has m rows, each of length n and indented by i − 1 positions. We again use the trick of
copying the excess bits of the upper row from Section 2.4.2.2. We can see that we first
do m

2 additions of length n (because only the lower row counts effort-wise), which result
in m

2 rows of length n+ 2 (because the result is one longer, and we copied one bit at the
back). If m is not divisible by 2, we keep the row and will perform another addition with
effort n later – thus, we see that overall, we will perform

⌈
m
2

⌉
additions of length n. Next,

we do
⌈
m
4

⌉
additions of length n + 2, and the result is n + 5 (because we copy 2 bits at

the back, and the result is one bit longer). We do this until we are left with only 1 row –
so blog2(m)c times.
In total, with NatAdd denoting the addition of unsigned numbers from Section 3.1.3, we
get an effort of:

blog2(m)c∑
i=1

⌈m
2i

⌉
· Eff(NatAdd(n+ 2i−1 + i− 2)),

where Eff is the number of additions or multiplications, respectively. Regarding depth,
we again have the effect that the carry increases the depth by 1 from the maximum of
its three inputs (ri−1, ai−1, bi−1). After one addition, bit i of the output has depth i.
However, the depth does not increase when inputting this into a further addition: As an
example, the input bits a3 and b3 may have depth 3, but the carry from position 2 also
has depth 3, so in adding c3 = a3 + b3 + r3, we get a depth of 3 as we would with fresh
ciphertexts where each input bit has depth 0. Since we start off with depth 0, and then
bit i has depth i in the addition, we get a maximum depth of m+ n− 1.
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We now move on to incorporating signed numbers.

3.2 TWO’S COMPLEMENT

The most popular encoding that incorporates negative numbers is called Two’s Comple-
ment : Here, we write an integer a as

a = an · (−2n) +

n−1∑
i=0

ai · 2i

where n = blog2(a)c+ 1 and ai ∈ {0, 1}. This means that the most significant bit (MSB)
encodes the negative value −2n and is thus 1 exactly when a < 0.

Example 3.1: Consider the bitstring 1011: This encodes

1 · (−23) + 0 · 22 + 1 · 2 + 1 · 1 = −8 + 2 + 1 = −5.

Conversely, to encode the number 12, we write

12 = 0 · (−16) + 1 · 8 + 1 · 4 + 0 · 2 + 0 · 1 = 0 · (−24) + 1 · 23 + 1 · 22 + 0 · 2 + 0 · 1,

so we encode the number as 01100. To encode its negative −12, we write

−12 = 1 · (−16) + 0 · 8 + 1 · 4 + 0 · 2 + 0 · 1 = 1 · (−24) + 0 · 23 + 1 · 22 + 0 · 2 + 0 · 1,

yielding an encoding of 10100.

One important concept when working with Two’s Complement is that of increasing the
bitlength of a number while keeping its original value.

Definition 3.1 (Sign Extension). Let a = an . . . a1a0 be an n + 1-bit number in Two’s
Complement-Encoding. Then sign extension turns a into an n+ 1 + k-bit number for any
k ∈ N by prepending k copies of the most significant bit an to the bitstring:

a = an . . . a1a0 7→ an . . . an︸ ︷︷ ︸
k times

an . . . a1a0.

This operation does not change the value of a:

Lemma 8. Sign extension does not change the value of the underlying number.

Proof: Let a = an . . . a1a0 be the original number and

an . . . an︸ ︷︷ ︸
k times

an . . . a1a0

its sign extension by k bits. Then originally, we have

a = an · (−2n) +

n−1∑
i=0

ai · 2i.
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The sign extended bitstring has the value

a′ = an · (−2n+k) +
n+k−1∑
i=0

ai · 2i

= an · (−2n+k) +

n+k−1∑
i=n

an · 2i +

n−1∑
i=0

ai · 2i

= an · (−2n+k) +
n+k−1∑
i=n

an · 2i +
n−1∑
i=0

an · 2i −
n−1∑
i=0

an · 2i +
n−1∑
i=0

ai · 2i

= an · (−2n+k) + an ·
n+k−1∑
i=0

2i − an ·
n−1∑
i=0

2i +
n−1∑
i=0

ai · 2i

= an · (−2n+k) + an · (2n+k − 1)− an · (2n − 1) +
n−1∑
i=0

ai · 2i

= −an · 2n+k + an · 2n+k − an − an · 2n + an +

n−1∑
i=0

ai · 2i

= an · (−2n) +

n−1∑
i=0

ai · 2i,

which is exactly the original value of a.

The most important operations for numbers encoded in this fashion and the effort incurred
for computing them are presented in the following.

3.2.1 Addition in Two’s Complement

Addition in Two’s Complement encoding works in much the same way as unsigned binary
addition, except for one point: To obtain the correct result when adding two n-bit numbers,
the result must also be encodeable by n bits, and any values past the nth bit are discarded.
Since the result of adding two n-bit numbers is usually n + 1 bits long, we first perform
sign extension by one bit on the inputs so that we can then add two n + 1 bit numbers
whose sum is also encodeable by n+ 1 bits, thus yielding the correct result.
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Example 3.2: Suppose we are adding the 4-bit numbers

−5 = 1011 and 7 = 0111 :

First, we use sign extension to obtain the 5-bit numbers

−5 = 11011 and 7 = 00111,

then we carry out normal addition, resulting in the number

11011 + 00111 = 100010.

Discarding the excess leftmost bit, we obtain 00010, which indeed decodes to
2 = −5 + 7.

Note at this point that addition has been defined for two numbers of equal length, but if
this is not the case we can easily increase the bitlength of the shorter one through sign
extension as described above so that the lengths match.

3.2.1.1 Effort

Recalling the effort of unsigned addition from Section 3.1.3, we realize that to add two
n-bit numbers in Two’s Complement encoding, we have the same effort as for adding two
n + 1-bit unsigned binary numbers, but without the effort of the last bit cn+1 we would
have there.
In total, to add two n-bit numbers in Two’s Complement encoding, we get an effort of:

Additions Multiplications Depth

c0 1 0 0

c1 2 1 1

ci 5 1 +1 (= i)

Total 1 + 2 + 5 · (n− 1) 0 + 1 + (n− 1) 0 + 1 + (n− 1)

= 5n− 2 = n = n

3.2.2 Multiplication in Two’s Complement

When multiplying two numbers in Two’s Complement encoding, we need to follow a few
steps. For maximum generality, we assume that our numbers have lengths m and n,
respectively.

1. Increase the bitlength of both numbers through sign extension (as described above)
to length m+ n.

2. Perform regular binary multiplication of the two resulting numbers. Note that to
add the individual rows, we must use the addition function from above.

3. Keep only the rightmost n+m bits.
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Example 3.3: As an example, we multiply −3 = 101 (m = 3) and 7 = 0111 (n = 4):
First, we sign extend both numbers to length n+m = 4+3 = 7 to obtain −3 = 1111101 and
7 = 0000111. We then compute (always only performing addition up to the cutoff-position
indicated by the vertical dashed line):

1 1 1 1 1 0 1 · 0 0 0 0 1 1 1

| 1 1 1 1 1 0 1

| 1 1 1 1 0 1

| 1 1 1 0 1

| 0 0 0 0

| 0 0 0

| 0 0

| 0

1 1 0 1 0 1 1

This correctly yields 1101011 = −21.

Whenever we refer to the addition of rows during multiplication, we are referring to the
rows of the multiplication matrix (see Definition 2.2) as in the above example, which has
7 rows of lengths 7, 6, . . . , 1, respectively.

3.2.2.1 Removing Redundancy

As can easily be seen, the above approach introduces redundancy because the same product
is calculated several times, which may become costly if bit multiplication is an expensive
operation. As a minimal example, consider the case for n = m = 2:

a1 a1 a1 a0 · b1 b1 b1 b0

a1 · b0 a1 · b0 a1 · b0 a0 · b0
a1 · b1 a1 · b1 a0 · b1
a1 · b1 a0 · b1
a0 · b1

Here, we can see that out of the 10 terms that occur

(generally: (n+m) + (n+m− 1) + · · ·+ 2 + 1 =
(n+m) · (n+m+ 1)

2
terms),

the term a0 · b0 occurs once, and the terms a1 · b0, a0 · b1 and a1 · b1 all occur three times.
As can easily be seen, we actually only have n · m different products, so we can save a
significant amount of computation by avoiding this redundancy.

We now show in detail how to avoid computing the same product several times, which more
than halves the effort of the matrix computation step by bringing it from (n+m)·(n+m+1)

2
to n ·m. To this end, we will think of the rows that are generated as an (n+m)× (n+m)
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- matrix A (with some empty entries) indexed as A[i, j], where i refers to the row and j
to the bit position in the row, i.e., 0 is on the right-hand side.

As an example for the case with n = m = 2 (where we write [i, j] instead of A[i, j]), we
have the following multiplication matrix:

a1 a1 a1 a0 · b1 b1 b1 b0

[0, 3] [0, 2] [0, 1] [0, 0]

[1, 3] [1, 2] [1, 1]

[2, 3] [2, 2]

[3, 3]

With this notation in place, we present the pseudocode instructions for reducing the
number of computations in multiplying two numbers of lengths n and m in Algorithm 2.

Algorithm 2: Redundancy Reduction

Input: an−1 . . . a1a0, bm−1 . . . b1b0
1 for 0 ≤ j ≤ m− 1 do
2 for 0 ≤ i ≤ n− 1 do
3 A[j, j + i] = ai · bj
4 end
5 for n+ j ≤ i ≤ n+m− 1 do
6 A[j, i] = A[j, n+ j − 1]
7 end

8 end
9 for m ≤ i ≤ n+m− 1 do

10 for i ≤ j ≤ n+m− 1 do
11 A[i, j] = A[i− 1, j − 1]
12 end

13 end
Output: A

The output A is now the same multiplication matrix (see Definition 2.2) as we would
obtain by straightforward computation, but we save some effort by computing it this way
because we copy duplicate values rather than computing them anew for each position.
The second step of summing up the rows of this matrix is then done as before.

Note that in the simpler case where one value is known, i.e., multiplication by a constant,
we do not need to do quite as much work: For simplicity, we always assume that the input
b is known. We again first need to do sign extension for Two’s Complement, but in the
next step instead of having to compute n · m terms ai · bj as before, we can just copy
the string a for every bit that is 1 in b, shifting to the left with each bit. This way, we
save n ·m multiplications from the generation of the matrix and reduce the depth by one.
Also, note that we now don’t need to add as many rows, as we only write down those that
correspond to the non-zero bits in b. Thus, we only need to do hm(b) row additions, where
hm(b) is the hamming weight of b. Of course, the complexity and multiplicative depth now
depend on the value of b and are the same as for regular multiplication in the worst case.
However, on average we will only have to do half as many row additions.



3.2 two’s complement 75

3.2.2.2 Effort

We now compute the effort of multiplying two numbers in Two’s Complement encoding.
We use the above method to avoid redundancy, and also copy the bits above blank spaces
to the result rather than padding the shorter row as presented in Section 2.4.2.2, which
means we only have the effort of the shorter row length in the addition. As before, we
add row 1 to row 2, then add that to the result of adding row 3 to row 4 etc., until we are
left with the final result. Note that we disregard (i.e., do not compute) anything past the
(m+ n)th bit.

Example 3.4: Suppose we have generated the rows of our matrix as

a1 a1 a1 a1 a0 · b2 b2 b2 b1 b0

c4 c3 c2 c1 c0

d3 d2 d1 d0

e2 e1 e0

f1 f0

g0

with the appropriate values in the matrix as above. Then we perform the following steps:

• Row 1+Row 2:

c4 c3 c2 c1 c0

+ d3 d2 d1 d0

h4 h3 h2 h1 c0

The result is h4h3h2h1c0, where h4h3h2h1 is the result of adding c4c3c2c1 and d3d2d1d0.
Thus, we have the effort of one addition of length 4, and the result, denoted Row2 1,
has length 5.

• Row 3+Row 4:

e2 e1 e0

+ f1 f0

i2 i1 e0

The result is i2i1e0, where i2i1 is the result of adding e2e1 and f1f0. Thus, we have
the effort of one addition of length 2, and the result, denoted Row2 2, has length 3.

• Row2 1+Row2 2:

h4 h3 h2 h1 c0

+ i2 i1 e0

j4 j3 j2 h1 c0

The result is j4j3j2h1c0, where j4j3j2 is the result of adding h4h3h2 and i2i1e0. Thus,
we have the effort of one addition of length 3, and the result, denoted Row3 1, has
length 5.

• Row3 1+Row 5:

j4 j3 j2 h1 c0

+ g0

k4 j3 j2 h1 c0

The result is k4j3j2h1c0, where k4 is the result of adding j4 and g0. Thus, we have
the effort of one addition of length 1, and the result has length 5.
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It is easy to see that for a length of n + m, we always have one addition each of length
1, 2, . . . , n+m−1. The reason is that the addition effort is always the length of the smaller
of the two inputs, and the result has the length of the larger of the two, which thus gets
input as the shorter input at some later point unless it is the final length n+m.
A row addition of length k has the same effort as a Two’s Complement addition of length
k − 1 (recall the table in Section 3.2.1), as the sign extension has already been done in
the matrix. Thus, for length 1, we only compute a0 + b0 (1 addition), and for length 2,
we compute c0 and c1 for a total cost of 3 additions, 1 multiplication and a depth of 1.
For all lengths ` larger than 2, we have a cost of 5(` − 1) − 2 = 5` − 7 additions, ` − 1
multiplications, and a depth of ` − 1. Note that to compute the rows of the matrix, we
need m · n multiplications and a depth of 1.
Regarding depth, note that the matrix entries start with a depth of 1, and then the depth
propagates through the addition. We always have depth(c0) = depth(c1) = 1 in each row
because c0 is copied from the longer row and c1 = a1 + b1. The first carry r2 = a1 · b1
has depth 2, which is thus also the depth of c2. (Since the result bit in the addition is
ci = ai + bi + ri, we see that its depth is the maximum of the depth of the three input
bits.) As we continue, the carry ri increases by 1 with each bit to the left and the inputs
ai and bi also have depth at most i by the exact same reasoning for the addition that
yielded the respective input row. Thus, the result bit ci has depth i, and since our longest
row is m+ n bits long, the maximum depth we get is m+ n− 1.

In total, to multiply two numbers of lengths m and n in Two’s Complement encoding, we
have an effort of:

• Additions: 1 + 3 +
n+m−1∑
i=3

5i− 7 = 5(m2+n2)−19(m+n)
2 + 5mn+ 10

• Multiplications: m·n+1+
n+m−1∑
i=3

(i−1) = m·n+
n+m−2∑
i=1

i = m·n+ (n+m−2)·(n+m−1)
2

• Depth: m+ n− 1

3.2.3 Negation in Two’s Complement

Negating a given number (i.e., a 7→ −a) in Two’s Complement works as follows:

1. Flip all bits (i.e., XOR them with 1).

2. Add 1 to the resulting number using unsigned addition and discarding the (n+ 1)th

result bit.

Example 3.5: Take the number
−3 = 101 :

Flipping all bits gives us 010, and adding 1 yields

011 = 3.

Correctness can be seen as in Section 3.1.4.
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3.2.3.1 Effort

We see that to invert an n-bit number we need to perform n field additions for the first
step, and then incur the effort of one (n− 1)-bit Two’s Complement addition. This gives
us a total effort of:

Step Additions Multiplications Depth

1 n 0 0

2 5(n− 1)− 2 n− 1 n− 1

Total 6n− 7 n− 1 n− 1

3.2.4 Comparison in Two’s Complement

Recall that in Section 3.1.2, we presented the comparison of unsigned binary numbers in
Algorithm 1. Denoting this subroutine as NatComp, we can compare two numbers in Two’s
Complement encoding as shown in Algorithm 3.

Algorithm 3: Two’s Complement Comparison(a, b)

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Compare as if natural numbers, result is correct if signs are

equal

1 c = NatComp(a, b)
// The sign bits are an and bn

2 res = an · (bn + 1) + (an + bn + 1) · c
Output: res

As can easily be verified, the formula in Line 2 evaluates to c if an = bn, i.e., the signs
are equal – in this case, the result of NatComp(a, b) is correct. If an = 0 and bn = 1, i.e.,
b is negative and a is positive, the formula evaluates to 0, which is correct because a ≮ b.
Lastly, if an = 1 and bn = 0, i.e., b is positive and a is negative, the formula evaluates to
1, which is also correct because a < b. The values can also be seen in the following table:

an bn an · (bn + 1) + (an + bn + 1) · c
0 0 c

0 1 0

1 0 1

1 1 c

Switching from a < b to a ≤ b can be achieved by simply changing the subroutine NatComp
appropriately as described in Section 3.1.2.



78 incorporating negative numbers

3.2.4.1 Effort

To compare two n-bit numbers in Two’s Complement encoding, we thus have an effort of:

Line Field Additions Field Multiplications Depth

1 4n n n

2 4 2 +1

Total 4n+ 4 n+ 2 n+ 1

3.3 SIGN-MAGNITUDE

In contrast to Two’s Complement encoding, Sign-Magnitude formalizes the most intuitive
idea of using regular binary encoding and having an extra bit that determines the sign.
Conventionally, this is the most significant bit, which is 1 when a number is negative
and 0 when a number is positive. Concretely, elements in this encoding have the form
anan−1 . . . a1a0 with ai ∈ {0, 1}, where

a = (−1)an ·
n−1∑
i=0

ai · 2i.

It is easy to see that for positive numbers, this encoding is the same as Two’s Complement.
This encoding suffers from having two representations of 0: 00 . . . 0 and 10 . . . 0.

Example 3.6: Consider the bitstring 1101: This encodes

(−1)1 ·
(
1 · 22 + 0 · 21 + 1 · 20

)
= (−1) · (4 + 1) = −5.

Conversely, its inverse 5 is encoded as

1 · (4 + 1) = (−1)0 ·
(
1 · 22 + 0 · 21 + 1 · 20

)
,

which is expressed as 0101.

Note that to get the absolute value of a number in this encoding (which we will sometimes
need to do in the following), it suffices to delete the MSB and treat the number as an
unsigned integer.

3.3.1 Addition in Sign-Magnitude

Adding two numbers in Sign-Magnitude encoding is surprisingly complex, as we must
consider different cases and combine them via multiplexing. As subroutines, we will need
the following components from Section 3.1:

• Unsigned Addition NatAdd(a, b) = a+ b for 0 ≤ a, b

• Unsigned Subtraction: NatSub(a, b) = a− b if 0 ≤ b ≤ a

• Unsigned Comparison: NatComp(a, b) = 1⇔ a < b.
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Algorithm 4: Sign-Magnitude Addition

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Get numbers without sign bits, i.e., |a| and |b|.

1 ã = an−1 . . . a1a0
2 b̃ = bn−1 . . . b1b0
// res1 is the unsigned addition of |a| and |b| with a’s sign bit.

3 res1 = an||NatAdd(ã, b̃)
// res2 is the unsigned subtraction of |b| − |a| with b’s sign bit.

4 res2 = bn||NatSub(b̃, ã)
// res3 is the unsigned subtraction of |a| − |b| with a’s sign bit.

5 res3 = an||NatSub(ã, b̃)
// c1 = 1 if an 6= bn, and 0 if the signs are equal.

6 c1 = an + bn
// c2 = 1 if ã < b̃, and 0 otherwise.

7 c2 = NatComp(ã, b̃)
// temp = res2 if c2 = 1, and temp = res3 otherwise.

8 temp = MUX(c2, res2, res3)
// res = temp if c1 = 1, and res = res1 otherwise.

9 res = MUX(c1, temp, res1)
Output: res

With these subroutines, we can express the addition of two numbers in Sign-Magnitude
encoding as presented in Algorithm 4.
To see correctness, we will examine the workings of this algorithm. First, consider the
conditional c1 in Line 6: It is 1 if an 6= bn and 0 otherwise. The multiplexer in Line 9
assigns the output of the computation based on this conditional: If the conditional is
0 (i.e., a and b have the same sign), the result will be res1, which is just the unsigned
addition |a|+ |b| with the sign of a (and thus also b) concatenated.
If the conditional is 1, i.e., a and b have different signs, the result will be the value of temp
from Line 8. This itself is the output of a multiplexer on the conditional c2: If c2 = 1
(i.e., |a| < |b|), then temp = res2 = bn||(|b| − |a|). This is correct because when adding
two numbers of different signs, the result sign will be the sign of the input with the bigger
absolute value, and the result absolute value will be the difference between the two input
absolute values. Similarly, if c2 = 0 (i.e., |b| ≤ |a|), we get temp = res3 = an||(|a| − |b|).
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3.3.1.1 Effort

To add two n-bit numbers in Sign-Magnitude encoding, we have an effort of:

Line Field Additions Field Multiplications Depth

3 5n− 9 n− 1 n− 1

4 11n− 25 2n− 4 n− 2

5 11n− 25 2n− 4 n− 2

6 1 0 0

7 4n− 4 n− 1 n− 1

8 2n n +1(= n)

9 2n+ 2 n+ 1 +1(= n+ 1)

Total 35n− 60 8n− 9 n+ 1

3.3.2 Multiplication in Sign-Magnitude

In contrast to addition, multiplying two numbers in Sign-Magnitude encoding is concep-
tually simple: We simply delete the sign bits an and bn, multiply the results as unsigned
integers, and append the sign bit an + bn.
Computing the sign of the result takes one Addition, and using the effort for unsigned
multiplication from Section 3.1.5 (with input lengths m−1 and n−1, and NatAdd denoting
the unsigned Addition from Section 3.1.3), we get an effort of:

• Additions: 1 +
blog2(m−1)c∑

i=1

⌈
m−1
2i

⌉
· Adds(NatAdd(n+ 2i−1 + i− 3))

• Multiplications:
blog2(m−1)c∑

i=1

⌈
m−1
2i

⌉
· Mults(NatAdd(n+ 2i−1 + i− 3))

• Depth: m+ n− 3.

Recalling that the addition of two n-bit numbers has 5n − 4 bit additions and n bit
multiplications, we can also write this as:

• Additions: 1 +
blog2(m−1)c∑

i=1

⌈
m−1
2i

⌉
·
(
5 · (n+ 2i−1 + i)− 19

)
• Multiplications:

blog2(m−1)c∑
i=1

⌈
m−1
2i

⌉
·
(
n+ 2i−1 + i− 3

)
• Depth: m+ n− 3.

3.3.3 Negation in Sign-Magnitude

Negation is very easy, as it can be obtained through a single bit addition: Since the MSB
determines the sign, flipping it (i.e., setting an = an + 1) will transform a number a into
its negative, −a.
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3.3.3.1 Effort

To invert an n-bit number in Sign-Magnitude encoding, we thus have an effort of:

Field Additions Field Multiplications Depth

Total 1 0 0

3.3.4 Comparison in Sign-Magnitude

Again denoting the comparison of unsigned binary numbers from Algorithm 1 in Sec-
tion 3.1.2 as NatComp, we can compare two numbers in Sign-Magnitude encoding as shown
in Algorithm 5.

Algorithm 5: Sign-Magnitude Comparison

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Get numbers without sign bits, i.e., |a| and |b|.

1 ã = an−1 . . . a1a0
2 b̃ = bn−1 . . . b1b0
// Compare absolute values as natural numbers

3 c = NatComp(ã, b̃)
// The sign bits are an and bn

4 res = an + (an + bn + 1) · c
Output: res

The formula in Line 4 evaluates to c if an = bn = 0, i.e., both numbers are positive – in
this case, the result of NatComp(ã, b̃) is correct. If an = bn = 1, i.e., both numbers are
negative, the formula evaluates to 1 + c – in this case, the result of NatComp(ã, b̃) is wrong
and is thus negated. If an = 0 and bn = 1, i.e., b is negative and a is positive, the formula
evaluates to 0, which is correct because a ≮ b. Lastly, if an = 1 and bn = 0, i.e., b is
positive and a is negative, the formula evaluates to 1, which is also correct because a < b.
The values can also be seen in the following table:

an bn an + (an + bn + 1) · c
0 0 c

0 1 0

1 0 1

1 1 c+ 1

The attentive reader may have noticed that technically, there is one input pair where the
above algorithm returns the wrong result: When the two different encodings of 0, namely
10 . . . 00 and 00 . . . 00, are input. If we are computing a < b, the result will be wrong
when a = 10 . . . 00 and b = 00 . . . 00 because a is treated as a negative number and b as a
positive, returning 1, when in reality the correct output is 0. We can fix this by computing

fix = an · (an−1 + 1) · · · · · (a1 + 1) · (a0) · (bn + 1) · (bn−1 + 1) · · · · · (b1 + 1) · (b0 + 1)
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and adding it to res. The value of fix will be 1 exactly when a = 10 . . . 00 and b = 00 . . . 00
and 0 otherwise, so this corrects the wrong case. The additional effort for two n-bit
numbers would be 2n − 1 additions, 2n − 1 multiplications, and a depth of dlog2(2n)e =
dlog2(n) + 1e. However, in our computations, we mostly work with rational numbers (see
Chapter 4) – depending on the parameters, it is highly unlikely that this will happen. For
this reason, we stick with the above almost-correct algorithm, which has a much lower
cost.
Switching from a < b to a ≤ b can again be achieved by simply changing the subroutine
NatComp appropriately as described in Section 3.1.2, at exactly the same cost. The original
code is now correct also when a = 10 . . . 00 and b = 00 . . . 00, but incorrect in the other
case, a = 00 . . . 00 and b = 10 . . . 00. We would thus change the fixing value to

fix = (an + 1) · (an−1 + 1) · · · · · (a1 + 1) · (a0) · bn · (bn−1 + 1) · · · · · (b1 + 1) · (b0 + 1)

to correct this case if it is important.

3.3.4.1 Effort

To compare two n-bit numbers in Sign-Magnitude encoding, we have an effort of:

Line Field Additions Field Multiplications Depth

3 4n− 4 n− 1 n− 1

4 3 1 +1

Total 4n− 1 n n

The total cost with the fixing value would be 6n−2 additions, 3n−1 multiplications, and
a depth of dlog2(n) + 1e.

3.4 EFFORT COMPARISON

Since we have derived the efforts for different operations in Two’s Complement (TC) and
Sign-Magnitude (SM) encoding, we will compare them side by side through the formulas,
graphically, and via some example values. For the runtimes, the implementation specifi-
cations can be found in Section 5.1.2.

3.4.1 Addition

We first recall the formulas for the effort of adding two n-bit numbers in the respective
encodings:

Field Additions Field Multiplications Depth

TC 5n− 2 n n

SM 35n− 60 8n− 9 n+ 1
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We now graph this for different values of n in Figure 3.1.
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Figure 3.1: Number of bit additions, bit multiplications and multiplicative depth for
adding two encrypted numbers of length n.

The concrete values can also been seen in Table 3.1.

Bitlength TC SM TC SM TC SM TC SM

n Adds Adds Mults Mults Depth Depth Time (s) Time (s)

3 13 45 3 15 3 4 0.37 1.15

5 23 115 5 31 5 6 0.59 2.09

10 48 290 10 71 10 11 1.27 5.81

15 73 465 15 111 15 16 1.89 9.62

20 98 640 20 151 20 21 2.50 13.52

25 123 815 25 191 25 26 3.14 16.82

30 148 990 30 231 30 31 3.69 20.56

Table 3.1: Number of bit additions, bit multiplications and multiplicative depth for adding
two encrypted numbers of length n.

We can see that Two’s Complement is much more efficient than Sign-Magnitude in all
aspects, which was to be expected from the formula.
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3.4.2 Multiplication

We now compare the performance for multiplication in both encodings. We again first
recall the formulas for the effort:

Field Additions Field Multiplications Depth

TC 5(m2+n2)−19(m+n)
2

+ 5mn+ 10 m · n+ (n+m−2)·(n+m−1)
2

m+ n− 1

SM 1 +
blog2(m−1)c∑

i=1

⌈
m−1
2i

⌉
·
(
5 · (n+ 2i−1 + i)− 19

) blog2(m−1)c∑
i=1

⌈
m−1
2i

⌉
·
(
n+ 2i−1 + i− 3

)
m+ n− 3

We again give some concrete values, choosing m = n for comparability. The results can
be seen graphically in Figure 3.2 and explicitly in Table 3.2.
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Figure 3.2: Number of bit additions, bit multiplications and multiplicative depth for
multiplying two encrypted numbers of length n.
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Bitlength TC SM TC SM TC SM TC SM

n Adds Adds Mults Mults Depth Depth Time (s) Time (s)

3 43 7 19 2 5 3 3.68 0.21

5 165 59 61 14 9 7 11.22 1.44

10 820 491 271 106 19 17 47.72 9.03

15 1975 949 631 200 29 27 108.60 22.85

20 3630 2046 1141 425 39 37 194.64 42.85

25 5785 2904 1801 599 49 47 304.35 68.81

30 8440 4370 2611 897 59 57 438.18 101.14

Table 3.2: Number of bit additions, bit multiplications and multiplicative depth for mul-
tiplying two encrypted numbers of length n.

We can see that for multiplication, it is the other way around than for addition: Now,
Sign-Magnitude encoding significantly outperforms Two’s Complement encoding.

3.4.3 Negation

First, recall the formulas for the effort from Sections 3.2.3 and 3.3.3:

Field Additions Field Multiplications Depth

TC 6n− 7 n− 1 n− 1

SM 1 0 0

We can already see that Sign-Magnitude is much better here, but we still present the
results in Figure 3.3 and in Table 3.3.
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Figure 3.3: Number of bit additions, bit multiplications and multiplicative depth for
negating an encrypted number of length n.

Bitlength TC SM TC SM TC SM TC SM

n Adds Adds Mults Mults Depth Depth Time (s) Time (s)

3 11 1 2 0 2 0 0.40 0.02

5 23 1 4 0 4 0 0.71 0.02

10 53 1 9 0 9 0 1.38 0.02

15 83 1 14 0 14 0 2.04 0.02

20 113 1 19 0 19 0 2.81 0.02

25 143 1 24 0 24 0 3.52 0.02

30 173 1 29 0 29 0 4.23 0.02

Table 3.3: Number of bit additions, bit multiplications and multiplicative depth for negat-
ing a number of length n.
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3.4.4 Comparison

Lastly, we also look at the costs of comparing two n-bit numbers in each encoding. Recall
that for Sign-Magnitude, we use the cheaper comparison where the input can sometimes
be wrong if the two different encodings of 0 are compared. The efforts for comparing two
n-bit numbers from Sections 3.2.4 and 3.3.4 are:

Field Additions Field Multiplications Depth

TC 4n+ 4 n+ 2 n+ 1

SM 4n− 1 n n

We present some example values in Figure 3.4 and in Table 3.4.
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Figure 3.4: Number of bit additions, bit multiplications and multiplicative depth to com-
pare two encrypted numbers of length n.
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Bitlength TC SM TC SM TC SM TC SM

n Adds Adds Mults Mults Depth Depth Time (s) Time (s)

3 16 11 5 3 4 3 0.24 0.17

5 24 19 7 5 6 5 0.35 0.28

10 44 39 12 10 11 10 0.61 0.52

15 64 59 17 15 16 15 0.84 0.77

20 84 79 22 20 21 20 1.09 1.03

25 104 99 27 25 26 25 1.33 1.28

30 124 119 32 30 31 30 1.58 1.53

Table 3.4: Number of bit additions, bit multiplications and multiplicative depth to com-
pare two encrypted numbers of length n.

We see that to compare two numbers, Sign-Magnitude encoding performs slightly better
than Two’s Complement encoding – however, this difference is almost negligible, as the
two only differ by very small additive factors. If we were to use the fixed circuit for
Sign-Magnitude, we would find that Two’s Complement performs slightly better.

3.4.5 Conclusion

In conclusion, we have seen that for comparison, there is very little difference between
Two’s Complement encoding and Sign-Magnitude encoding. Two’s Complement costs a
lot less than Sign-Magnitude if the task is to add two numbers, but Sign-Magnitude is the
better choice for multiplying two numbers or negating a number. This motivates the next
section, where we will combine both encodings to utilize this performance difference.

3.5 HYBRID ENCODING

Since we have seen that Two’s Complement encoding performs much better for addition,
but Sign-Magnitude is much more efficient for multiplication, we now propose a mix of the
two, called Hybrid Encoding. The idea is to use Two’s Complement encoding, but when we
want to multiply, we switch to Sign-Magnitude encoding, perform the multiplication there,
and then switch back to Two’s Complement for subsequent operations. This switching of
course induces some costs of its own – however, we will see that for real-world applications,
it performs better than each encoding on its own. However the overhead is big enough that
we would not switch for comparison or negation, especially since the latter is part of the
switching procedure, which we will present in Section 3.5.1. We examine the performance
for individual operations in Section 3.5.2, and the performance in real-world problems
from the area of Machine Learning will be seen in Chapter 5.
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3.5.1 Switching

We now explain how to get from one encoding to the other. First, note that for positive
numbers (i.e., an = 0), the two encodings are actually the same: We have

a = an · (−2n) +

n−1∑
i=0

ai · 2i = 0 · (−2n) +

n−1∑
i=0

ai · 2i =

n−1∑
i=0

ai · 2i

in Two’s Complement encoding, and

a = (−1)an ·
n−1∑
i=0

ai · 2i = (−1)0 ·
n−1∑
i=0

ai · 2i = 1 ·
n−1∑
i=0

ai · 2i =
n−1∑
i=0

ai · 2i

in Sign-Magnitude encoding.
Thus, if the number is positive, we do not have to do anything. If the number is negative,
we can negate it in the current encoding (a 7→ −a), so that it is now a positive number
and thus the same in both encodings. Negating it again in the new encoding maps the
input back to its original value, but in the other encoding. We call the negation operations
TCNeg (see Section 3.2.3) and SMNeg (see Section 3.3.3), respectively. Then, to convert a
negative number a from Two’s Complement to Sign-Magnitude, we would compute

aTC
TCNeg7→ −aTC = −aSM

SMNeg7→ aSM .

Of course, because the number is encrypted, we do not know whether the number is
positive or not – thus, we compute both cases and combine them by multiplexing on
the conditional an, the sign bit. The exact workings can be found in Algorithm 6 for
switching from Two’s Complement to Sign-Magnitude, and in Algorithm 7 for switching
from Sign-Magnitude to Two’s Complement.

Algorithm 6: Switching Two’s Complement to Sign-Magnitude

Input: Signed number a = an . . . a1a0 in Two’s Complement encoding
// Get the negative of a in Two’s Complement encoding.

1 ã = TCNeg(a)
// Get the negative of ã in Sign-Magnitude encoding.

2 ā = SMNeg(ã)
// Assign ā to the result if a is negative (an = 1), and assign a

otherwise.

3 res = MUX(an, ā, a)
Output: res

We can see that the costs we get from switching are that of one Two’s Complement
negation, one Sign-Magnitude negation, and one MUX on n-bit numbers. We present the
cost for Algorithm 6, but it is obviously exactly the same for Algorithm 7:

Line Field Additions Field Multiplications Depth

1 6n− 7 n− 1 n− 1

2 1 0 0

3 2n n +1

Total 8n− 6 2n− 1 n
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Algorithm 7: Switching Sign-Magnitude to Two’s Complement

Input: Signed number a = an . . . a1a0 in Sign-Magnitude encoding
// Get the negative of a in Sign-Magnitude encoding.

1 ã = SMNeg(a)
// Get the negative of ã in Two’s Complement encoding.

2 ā = TCNeg(ã)
// Assign ā to the result if a is negative (an = 1), and assign a

otherwise.

3 res = MUX(an, ā, a)
Output: res

We can already asymptotically see that this will likely be more efficient than Sign-Magnitude
multiplication for large enough bitlengths, as the switching adds a cost linear in the input
length, and the two multiplication algorithms have costs quadratic in the input lengths
and differ greatly. We will see some concrete numbers in the next section.

3.5.2 Performance

We now examine the effects of replacing the Two’s Complement multiplication with our
new procedure. Denoting the Sign-Magnitude multiplication of two numbers SMMult and
the switching procedures with SwitchTCSM (Two’s Complement to Sign-Magnitude, Al-
gorithm 6) and SwitchSMTC (Sign-Magnitude to Two’s Complement, Algorithm 7), the
workings can be seen in Algorithm 8.

Algorithm 8: Hybrid Encoding Multiplication

Input: Signed number a = an . . . a1a0 in Two’s Complement encoding
Input: Signed number b = bm . . . b1b0 in Two’s Complement encoding
// Switch a and b to Sign-Magnitude encoding.

1 ã = SwitchTCSM(a)

2 b̃ = SwitchTCSM(b)
// Multiply the values.

3 temp = SMMult(ã, b̃)
// Switch temp back to Two’s Complement encoding.

4 res = SwitchSMTC(temp)
Output: res
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The effort we get from this (where Switching Overhead means everything except the actual
multiplication costs, i.e., the costs we have on top of the Sign-Magnitude multiplication
due to the switching procedures) is:

Line Field Additions Field Multiplications Depth

1 8n− 6 2n− 1 n

2 8m− 6 2m− 1 m

3 1 +
blog2(m−1)c∑

i=1

( ⌈
m−1
2i

⌉ blog2(m−1)c∑
i=1

( ⌈
m−1
2i

⌉
m+ n− 3

·
(
5 · (n+ 2i−1 + i)− 19

) )
·
(
n+ 2i−1 + i− 3

) )
4 8(m+ n)− 6 2(m+ n)− 1 m+ n

Switching Overhead 16(m+ n)− 18 4(m+ n)− 3 m+ n

blog2(m−1)c∑
i=1

( ⌈
m−1
2i

⌉ blog2(m−1)c∑
i=1

( ⌈
m−1
2i

⌉
Total ·

(
5 · (n+ 2i−1 + i)− 19

) )
·
(
n+ 2i−1 + i− 3

) )
m+ n

+16(m+ n)− 17 +4(m+ n)− 3

Note that for depth, we again have the effect that the depth does not increase by perform-
ing these sequential operations. As before, this is because the input bits in the addition
subroutines have the same depth as the carry for that position (as opposed to depth 0
when adding two fresh ciphertexts) and are merely added to the carry, so the depth of
each digit does not change compared to when the inputs are two fresh ciphertexts where
each bit has depth 0.
We again present some example values for the multiplication in Figure 3.5 and Table 3.5.
Note that addition is just Two’s Complement addition, so for this we refer the reader back
to Section 3.4.1.



92 incorporating negative numbers

3 5 10 15 20 25 30

Additions

Bitlength n

0
20

00
60

00

●

TC
SM
Hy

3 5 10 15 20 25 30

Multiplications

Bitlength n

0
50

0
15

00
25

00
●

TC
SM
Hy

3 5 10 15 20 25 30

Depth

Bitlength n

0
10

20
30

40
50

60

●

TC
SM
Hy

3 5 10 15 20 25 30

Runtime (s)

Bitlength n

0
10

0
20

0
30

0
40

0

●

TC
SM
Hy

Figure 3.5: Number of bit additions, bit multiplications, multiplicative depth and runtime
to multiply two encrypted numbers of length n.
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Bitlength TC SM Hybrid TC SM Hybrid

n Adds Adds Adds Mults Mults Mults

3 43 7 85 19 2 23

5 165 59 201 61 14 51

10 820 491 793 271 106 183

15 1975 949 1411 631 200 317

20 3630 2046 2668 1141 425 582

25 5785 2904 3686 1801 599 796

30 8440 4370 5312 2611 897 1134

Bitlength TC SM Hybrid TC SM Hybrid

n Depth Depth Depth Time(s) Time(s) Time(s)

3 5 3 6 3.68 0.21 2.26

5 9 7 10 11.22 1.44 4.89

10 19 17 20 47.72 9.03 16.03

15 29 27 30 108.60 22.85 33.25

20 39 37 40 194.64 42.85 56.70

25 49 47 50 304.35 68.81 85.92

30 59 57 60 438.18 101.14 122.38

Table 3.5: Number of bit additions, bit multiplications, multiplicative depth and runtime
to multiply two encrypted numbers of length n.
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We see that even for relatively small bitlengths, the new multiplication algorithm sig-
nificantly outperforms Two’s Complement multiplication both in theory (as illustrated
by the theoretical values for the number of additions and multiplications in Figure 3.5
and Table 3.5) and in terms of actual runtimes, at the cost of only increasing overall
depth by 1. Recall that the multiplication algorithm is in essence that of Sign-Magnitude
multiplication, but with the additional cost of switching. Thus, it is obvious that Sign-
Magnitude performs better for multiplication alone – however, Hybrid Encoding lets us
use the more efficient Two’s Complement addition, so we can have the best of both worlds
in computations that involve both additions and multiplications.

3.6 CONCLUSION

In conclusion, we have examined the costs of the two most popular binary encodings that
allow for negative integers, and have shown that one (Two’s Complement) is better for
addition, and the other (Sign-Magnitude) is better for multiplication. To utilize the re-
spective benefits, we came up with a new encoding, which essentially replaces the costly
Two’s Complement multiplication algorithm by switching to Sign-Magnitude for multipli-
cation, and then switching back to Two’s Complement for addition. We have seen that this
new encoding, called Hybrid Encoding, vastly outperforms the Two’s Complement multi-
plication, and in Chapter 5 we will further see the impact when using more complicated
real-world functions from the realm of Machine Learning.



Chapter 4

RATIONAL NUMBERS

In this chapter, we show how to incorporate rational numbers into FHE computations. To
this end, we first present an encoding in Section 4.1 that in theory even allows the division
of two encrypted numbers, which is not usually possible. We do this by encoding rational
numbers as fractions with separately encrypted numerator and denominator. We also
discuss the downsides of this encoding, and instead opt to use scaling to map rationals to
integers. In this context, we also show how to keep the precision constant in Section 4.2.
We then present some other improvements in Section 4.3, like accelerated comparison
variants and a method for the management of the bitlength under certain assumptions.
This chapter is largely taken from [JA16] and [JA18].

4.1 FRACTIONAL ENCODING

We present a new encoding for rational numbers, called Fractional Encoding, which builds
on the encodings for integers presented so far but allows the division of two encrypted
ciphertexts, which is not normally possible in Fully Homomorphic Encryption. The idea
is to express the number we wish to encode as a fraction and encode the numerator and
denominator separately. There are many ways to do this, but it is important that the
underlying numbers not be too small, as will be explained in Section 4.1.3. Thus, if we
were to encode a number like 1/4, one should instead use numerator and denominator
like 10000/40000, depending on the parameters. The generic method we use to encode
a number a is to choose the denominator aden randomly in a certain range (like aden ∈
[2k, 2k+1) for some k) and compute the numerator anum as anum = ba · adene. We then
encode and encrypt both separately, so we have a = (anum, aden) with numerator and
denominator encoded bitwise as in the previous chapters.

Example 4.1: Suppose we want to encode the number a = 1.542. Then we could pick
k = 15, i.e., we choose the denominator randomly in the range [32768, 65536). Say we
choose the denominator as aden = 55555, then we compute the numerator as anum =
a · aden = 85665.81, which we round to 85666. Thus, the number a is encoded as

a = (85666, 55555) = (010100111010100010, 01101100100000011).

95
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4.1.1 Operations

If we want to perform computations (including division) on values encoded in this way,
we can express the operations using the subroutines from the binary encoding for integers
through the regular computation rules for fractions. We present these operations in the
following, where Add, Mult and Comp denote the regular routines from the Hybrid Encoding
of Section 3.5, and FracAdd, FracMult, FracDiv and FracComp denote the respective
operations in the Fractional Encoding.

• a+ b : Recall that

anum
aden

+
bnum
bden

=
anum · bden + bnum · aden

aden · bden
.

Thus, we get

FracAdd((anum, aden), (bnum, bden))

=
(
Add(Mult(anum, bden), Mult(aden, bnum)), Mult(aden, bden)

)
.

• a · b : We have
anum
aden

· bnum
bden

=
anum · bnum
aden · bden

,

so

FracMult((anum, aden), (bnum, bden)) =
(
Mult(anum, bnum), Mult(aden, bden)

)
.

• a/b : It holds that
anum
aden

/ bnum
bden

=
anum · bden
aden · bnum

,

so

FracDiv((anum, aden), (bnum, bden)) =
(
Mult(anum, bden), Mult(aden, bnum)

)
.

• a ≤ b : This is slightly more involved. To see this, consider the following: We
basically want to compare anum

aden
and bnum

bden
, so instead of asking whether

anum
aden

≤ bnum
bden

,

we multiply with the denominators and ask whether

anum · bden ≤ bnum · aden.

However, multiplying an inequality with a negative value changes the direction of
the inequality. Thus, if the sign of exactly one of the denominators is negative, this
changes the direction of the inequality operator, so that we would need to compute

bnum · aden ≤ anum · bden

instead. We thus assign the values conditionally through a multiplexer gate before
comparing them: If the XOR of the sign bits is 0 (i.e., the signs are equal), we compare

(e := anum · bden) ≤ (d := bnum · aden),
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and if it is 1, i.e., exactly one of the denominators is negative, we compare

(e := bnum · aden) ≤ (d := anum · bden).

Formally, recall that the MSB determines the sign of the number (1 if it is negative
and 0 otherwise). Let

c := Sign(aden)⊕ Sign(bden) =

0 if the signs are equal

1 if the signs are unequal.

Then we set

d := MUX(c, Mult(anum, bden), Mult(aden, bnum))

and

e := MUX(c, Mult(aden, bnum), Mult(anum, bden))

and output the result as Comp(e, d).

Thus, we can write:

FracComp((anum, aden), (bnum, bden))

=Comp(e, d)

=Comp
(
MUX(c, Mult(aden, bnum), Mult(anum, bden)),

MUX(c, Mult(anum, bden), Mult(aden, bnum))
)
.

Note that if we accept that the result is wrong in the case a = b in our comparison, we
could save some effort by not multiplexing but instead computing

FracComp((anum, aden), (bnum, bden)) = Comp(Mult(anum, bden), Mult(aden, bnum))⊕ c.

This flips the result of the original comparison anum · bden ≤ bnum · aden if the sign bits are
unequal – in other words, it changes anum · bden ≤ bnum · aden to anum · bden > bnum · aden
rather than anum · bden ≥ bnum · aden as would be correct. However, in our computations
in Section 5.4, we will use the correct way described above.

4.1.2 Controlling the Bitlength

Notice that every single one of the operations above requires a multiplication of some sort,
which means that the bitlengths of the numerators and denominators doubles with each
operation because there is no cancellation when the data is encrypted. However, we can
solve this problem using the following Lemma:

Lemma 9. Given a number a and its binary representation an−1 . . . a1a0, deleting the last
k bits corresponds to dividing by a by 2k and truncating the result.
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Proof: Let a =
n−1∑
i=0

ai2
i be encoded through its bits an−1 . . . a1a0. Then removing the

last k bits leaves us with aT := an−1 . . . ak+1ak. This evaluates to

n−1∑
i=k

ai2
i−k =

2k

2k

n−1∑
i=k

ai2
i−k =

1

2k

n−1∑
i=k

ai2
i =

1

2k
(a−

k−1∑
i=0

ai2
i) =

a

2k
−
k−1∑
i=0

ai
2i

2k
.

Now note that the sum being subtracted in the rightmost part is exactly the terms
with a negative power of 2 – in other words, the coeffients that come behind the binary
point. Thus the end result is the integer that we get by disregarding anything past the
binary point, which is exactly what truncation does.

Thus, deleting the last k least significant bits for both numerator and denominator yields
roughly the same result as before, but with lower bitlengths.

Example 4.2: Suppose that we have encoded our integers with 15 bits, and after multipli-
cation we thus have 30 bits in numerator and denominator, e.g. 651049779/1053588274 ≈
0.617936. Then dividing both numerator and denominator by 215 and truncating yields
19868/32152, which evaluates to 0.617939 ≈ 0.617936. The accuracy can be set through
the original encoding bitlength (15 here).

4.1.3 Performance

While we will evaluate the performance of this encoding on a real-world example in Sec-
tion 5.4, we already discuss some inherent problems that we see with this encoding at this
point.
The first issue with this encoding is the runtime. Even though the library we use, [LIBf], is
currently the most efficient FHE library with which many computational tasks approach
practically feasible runtimes, the fact that this encoding requires several multiplications
on binary numbers for each elementary operation slows it down considerably and makes
computation times prohibitively large.
The second issue encountered in Fractional Encoding is the procedure to shorten the
bitlengths that was described in Section 4.1.2. While it works reasonably well for short
computations, we found it nearly impossible to set the number of bits to delete such that
a more involved algorithm ran correctly. The reason is simple: If not enough bits are
cut off, the bitlength grows, propagating with each operation and resulting in an overflow
when the number becomes too large for the allocated bitlength. If too many bits are cut
off, one loses too much accuracy or may even end with a 0 in the denominator. Both these
cases result in completely arbitrary and unusable results. The reason why it is so hard to
set the shortening parameter properly is that generally, numerator and denominator will
not require the same number of bits. Concretely, this will only be the case when the value
of the number being in encoded is in the interval (1/2, 2), and even so, this interval is not
closed under addition or multiplication, so this problem can arise even if plaintexts are
scaled into this range.
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Example 4.3: As an extreme example, suppose we encoded our plaintexts as 10-bit
numbers and want to compute FracMult((45, 555), (91, 600)). Then we get a result of
(4095, 333000) ≈ 0.0123, which we can now shorten. Suppose we shorten by 10, i.e., the
original precision: Then we get (3, 325) ≈ 0.009, which does not seem too bad. However,
note that the numerator is extremely small now – imagine dividing this number by itself
(in lieu of dividing by another number with similar structure), which should result in 1.
Instead, we get (975, 975), which after shortening becomes (0, 0), essentially ruining any
further computation in which it is involved because the result will always be (0, 0).

If, on the other hand, we chose to only shorten by 8 bits instead of 10, the result of
our multiplication would be (15, 1300) ≈ 0.0115. However, the denominator now requires
11 bits to encode. Squaring this number (in lieu of multiplying with a number of similar
structure) results in (225, 1690000), which after shortening by 8 bits becomes (0, 6601). We
can argue that the 0 nominator is close enough to the actual result, but the denominator
now requires 13 bits. This will continue until the bitlength exceeds the allocated amount
and an overflow occurs, so unless more space is allocated with each operation (which leaks
the number of operations performed and may be undesirable, not to mention extremely
inefficient), the computation will fail.

The problem is that because the data is encrypted, we cannot see the actual size of the
underlying data, so the shortening parameter cannot be set dynamically – in fact, if it
were possible to set it dynamically, this would imply that the FHE scheme is insecure.
Also, even setting the parameter roughly requires extensive knowledge about the encrypted
data, which the data owner may not want to share with the computing party.

In conclusion, this encoding is theoretically possible, but we would not recommend it for
practical use due to its inefficiency and hardness of setting the shortening parameter (or
even higher inefficiency if little to no shortening is done). We still compare its performance
to other solutions when evaluating the K-Means-Algorithm in Section 5.4 to see the real-
world performance of this encoding, but the downfalls of this encoding are what led us to
modify the K-Means-Algorithm in Section 5.4.4 to avoid division and be able to use the
scaling variant in the first place. We note, however, that for very flat computations (in
the sense that there are not many successive operations performed), this encoding that
allows division may still be of interest.

4.2 SCALING

To avoid the use of this fractional encoding, we now instead show how to map rational
numbers to integers by scaling. In previous work (e.g. [AEH15]), rational numbers have
often been approximated by multiplying with a power of some number, called the scaling
factor (e.g. 10 or 2), and rounding to obtain an integer. However, note that generally
when multiplying two rational numbers with k bits of precision, we obtain a number with
2k bits of precision (whereas addition does not change the precision). If we were working
on unencrypted numbers, we might just round to obtain k bits of precision again, or we
could truncate (truncation after k bits yields the same accuracy as rounding to k − 1
bits). However, things are more difficult when operating on encrypted data, as rounding
is generally not possible here and thus these extra bits of precision accumulate. To see
this, suppose we would like to work with a precision of k bits, and the scaling factor
w. This means that we multiply a rational number with wk and round (or truncate)
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to the nearest integer, which is then encoded and encrypted as in the previous sections.
Dividing the decrypted decoded number by wk again yields the rounded rational. However,
the problem of doubling precision with multiplication is prevalent here. Consider what
would happen if we were to multiply two such numbers: Suppose we have two rational
numbers a and b that we would like to encode as integers a′ and b′ with k digits of
precision, so we have a′ = da · wkc and b′ = db · wkc. Multiplying a′ and b′, we get
c′′ = a′ · b′ ≈ a · wk · b · wk = (a · b) · w2k. Thus, having reversed the encoding, the
obtained value c′′ must be divided by w2k. This is a problem because we cannot remove
the extra bits by dividing by wk, so the party performing the algorithm must now divulge
what power of w to divide the obtained result by after decryption. This leaks information
about the multiplicative depth of the function used and thus constitutes a privacy breach
for the computing party. Additionally, there is also the problem during computation that
the sizes of the encoded numbers will increase substantially.

Example 4.4: Let a = 1.342 and b = 4.11. We pick a precision of k = 2 and a scaling
factor of w = 10, so we get the integers

a′ = b1.342 · 102e = 134 and b′ = b4.11 · 102e = 411.

Multiplying these two numbers, we get 134 · 411 = 55074. To get the right result, we now
have to divide by (102)2 = 10000, yielding 5.5074 ≈ 1.342 · 4.1 = a · b. Note that the result
has 4 digits of precision even though we encoded the inputs with only 2 digits of precision,
and thus requires a larger bitlength.

Recall from Lemma 9 in Section 4.1.2 that deleting the last k bits corresponds to dividing
by 2k and truncating the result. To utilize this fact, we propose the following approach:
Instead of scaling by a power of an arbitrary number w, we set w = 2 and truncate to
obtain an integer. As in the previous chapters, we encode this integer in binary fashion, so
that we can encrypt each bit separately. This eliminates the above problem: Multiplying
two numbers a′ and b′ with k bits of precision still yields c′′ = (a · b) · 22k, but since we are
encoding bit by bit, we can manipulate the individual bits and thus simply delete the last
k (encrypted) bits of the product, which corresponds to dividing by 2k and truncating as
per Lemma 9. This way, the party performing the computations can bring the product
c′′ back down to the required precision after every step by discarding the last k bits and
thus obtaining c′ = a · b · 2k. This solves the above problem because the party which holds
the data must now always divide the decoded result by 2k no matter what operations
were applied. This has the benefit of not only hiding the data from the computing party,
but also hiding the function from the party with the data while simultaneously avoiding
superfluous bitlength. The exact workings can be seen in Algorithm 9.
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Algorithm 9: Multiplication using scaling

Encoding():
Input: A rational number a
Input: The scaling factor k
// Scale and truncate.

1 a′ := b2k · ac
// Encode with Two’s Complement or Sign-Magnitude or Hybrid

Encoding.

2 ã := Encode(a′)
Output: ã

Multiplication():
Input: A number ã as encoded above
Input: A number b̃ as encoded above
Input: The scaling factor k (must be the same for ã and b̃)
// Multiply using bitwise algorithm of choice

3 c = cn . . . c1c0 := Mult(ã, b̃)
// Delete last k bits

4 c̃ := cn . . . ck+1ck = dn′ . . . d1d0
Output: c̃

Decoding():
Input: A number dn′ . . . d1d0 as encoded above
Input: The scaling factor k
// Obtain integer

5 d′ =
n′∑
i=0

di2
i

// Divide by scaling factor

6 d := d′/2k

Output: d



102 rational numbers

To make the algorithm clearer, consider the following example:

Example 4.5: We return to the above example with a = 1.342 and b = 4.11. We pick a
precision of k = 7, so we get the integers

a′ = b1.342 · 27e = 172 and b′ = b4.11 · 27e = 526.

Multiplying these two numbers, we get 172 · 526 = 90472. To get the right result, we would
now have to divide by (27)2 = 16384. However, we are operating bitwise, so we have the
result (in encrypted form) as 90472 = 10110000101101000.

Deleting the last k = 7 bits, we are left with c′ = 1011000010, which encodes the number
706. If the user receives this encrypted result he can divide be the original scaling factor 27

after decrypting to obtain the final value 706/(27) ≈ 5.52. Thus, the user has obtained the
correct result without needing any further information that depends on the applied function
in order to decode correctly.

Note also that the result c′ in the above example now only has k = 7 bits of precision
instead of 2 · k = 14 as it would traditionally. This is especially important if the value
is an input to further computations, as we have seen in Chapter 3 that most elemen-
tary functions are linear or quadratic in the input length, so shorter lengths mean faster
computation.

4.2.1 Relation to Floating Point Representation

As our scaling approach is somewhat similar to the floating point representation used to
represent rational numbers in unencrypted computations, we briefly discuss differences
and similarities.

In floating point representation, a number is represented by a significand s and and expo-
nent e relative to some base b. The number is then computed as s·be, which of course looks
very similar to our scaling encoding. However, in floating point representation, the expo-
nent is explicitly part of the representation and involved in the computations: To add two
numbers in different representations, one scales the smaller number to have the larger ex-
ponent as well (e.g., in base 10, we would scale 13.21 = 1.321 ·102 to 13.21 = 0.001321 ·105

to get from exponent 2 to exponent 5) and then adds the two significands. To multiply
two numbers, the significands are multiplied and the exponents are added.

Thus, for floating point computations, the exponents would have to be encrypted as well
as the significands, and especially scaling to the same exponent for addition may prove
complex to do homomorphically. If we do not encrypt the exponents, they may leak
information about the operations that were performed. Either way, this approach also
suffers from the issue of doubling precision with each multiplication, though we could
likely manage this by an approach similar to our above one.

In essence, our representation is like the floating point representation, but with a fixed
exponent that stays the same throughout all computations, instead introducing more
variability into the significand. True floating point representation would be somewhat
complex to perform on encrypted numbers, but a combination with our approach (i.e.,
leaving the exponents unencrypted, but reducing precision to hide what computation
was performed) would likely be feasible, though a higher efficiency than our approach is
improbable due to the more complex nature of the computations.
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4.3 OTHER IMPROVEMENTS

We now showcase some other improvements that can reduce runtimes under certain as-
sumptions. These methods are not per se restricted to rational numbers, but for maximum
generality we include them in this chapter.

4.3.1 Easy Comparison

Recall that we have derived elaborate comparison functions in Sections 3.2.4 and 3.3.4.
However, there are numerous use cases where one only has to compare a number to 0,
like in the Perceptron in Section 5.3, and in this case there is a much easier way: Instead
of computing a costly circuit for comparison, it suffices to take the most significant bit
of the number, which will be 0 if the number is greater than zero and 1 if it is less. For
Two’s Complement, it will be 0 also when the number equals 0, but in Sign-Magnitude
it can be either 0 or 1 when using this method, as we recall that there are two encodings
of 0 here. Thus, if what we are comparing is exactly 0, the resulting bit is wrong for
Two’s Complement and can be either wrong or right for Sign-Magnitude. We observe,
however, that when working with rationals of high enough precision, many functions are
highly unlikely to be 0. For example, a weighted sum w1x1 + · · · + wlxl is unlikely to
be exactly 0 if the weights w1, . . . , wl are random rational numbers. Thus, in this case
there should be no change whether the condition for an operation is w1x1 + · · ·+wlxl > 0
or w1x1 + · · · + wlxl ≥ 0, and the easy comparison should return the correct result with
overwhelming probability. Of course, if the coefficient or variable domain space is very
small (e.g., integers in some range) in the more general case, a more involved formula
should be used.

4.3.2 Approximate Comparison

Our second improvement is also concerned with the comparison function, but in the context
of iterative algorithms that converge over time, like the K-Means-Algorithm that we will
examine in Section 5.4. The idea is that in the beginning, there is a lot of change, and
towards the end, the amount of change decreases as we near the final value. If comparisons
are involved in this change, then in the beginning, it will likely (though this of course
depends on the concrete application) not greatly influence the behaviour of the algorithm
if the comparison is occasionally wrong when the difference between the inputs is very
small, but as we converge towards the final value, these small differences may become
more important.

Thus, we now present the following modification which trades in a bit of accuracy for
slightly improved runtime: Since the Compare function is linear in the length of its inputs,
speeding up this building block would make the entire computation more efficient. To
do this, first recall that because we encode our numbers in a bitwise fashion after scaling
them to integers, we have access to the individual bits and can, for example, delete the
S least significant bits, which corresponds to dividing the number by 2S and truncating.
Let ã denote this truncated version of a number a, and b̃ that of a number b. Then
Compare(ã, b̃) = Compare(a, b) if |a − b| ≥ 2S , and may or may not return the correct
result if |a − b| < 2S . However, correspondingly, if the result is wrong, the difference
between the two inputs is no more than 2S . The exact workings of this approximate
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comparison, denoted ApproxCompare, can be seen in Algorithm 10.

Algorithm 10: ApproxCompare(a, b, S)

Input: The two arguments a, b, encoded bitwise
Input: The accuracy factor S
// Corresponds to ã = ba/2Sc

1 Remove last S bits from a, denote ã

// Corresponds to b̃ = bb/2Sc
2 Remove last S bits from b, denote b̃
// Regular comparison function, C ∈ {0, 1}

3 C = Compare(ã, b̃)
Output: C

We showcase the idea in the following example:

Example 4.6: Suppose we have two points X and Y ∈ Rn, and would like to assign
some other points Zi to one of two groups depending on whether they are closer to X or
Y . We would do this by computing the distance of each point Zi to both points X and
Y and comparing the distances to find the smaller one. Suppose all involved numbers are
rationals with a precision of 10 bits (i.e., scaled by 210 and rounded to the nearest integer for
encoding). Then setting S = 5 means that the comparison may be wrong if the scaled values
are at most 25 apart – in other words, if the difference in the two distances between the
underlying rational number Zi and the two points X and Y is at most 25

210
= 2−5 = 0.03125,

so X and Y are almost equally far from Zi. This means that if we were comparing exactly,
a slightly changed value for Zi would assign it to the other group. In a stable algorithm (in
the sense that small input perturbations do not significantly change the outcome), a wrong
assignment of Zi through the approximate comparison should thus not make a difference
for the final result.

We propose to pick an initial S and decrease it over the course of the algorithm, so
that accuracy increases as we near the end. We will see the impact of the approximate
comparison on the accuracy of the K-Means-Algorithm in Section 5.4. Regarding runtime,
we measured the times for the comparison and approximate comparison functions with
35 bits total, and S = 5 bits deleted for approximate comparison. This yielded a drop
in average (over 1000 runs each) runtime from 3.24 seconds for the regular comparison to
1.51 seconds for the approximate comparison. We see that this does make a big difference
and may be of interest for computations involving many comparisons.

4.3.3 Length Management

Recall that by default, each addition and each multiplication increase the bitlength: Ad-
dition increases it by 1, whereas multiplication results in a bitlength that is the sum of the
two input lengths. When performing several multiplications consecutively, this can easily
lead to enormous bitlengths. However, in a scenario where the size of the values can be
estimated, there is a way around this.

To see the validity of such an assumption, consider the scenario of machine learning as
a service, where the person working on the encrypted data is the person who has the
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algorithm for building the model. Here, it is a reasonable assumption that some factors of
the model are known, e.g. from experience. For example, in the data set we will work with
in Section 5.3, the value w0 always takes some value near 10000 no matter what subset of
test subjects we choose – thus, when computing on encrypted data, we might utilize this
knowledge about our algorithm.
In such cases, the service provider who is doing the computations can put a bound on
the lengths (i.e., he is certain that some value will not be larger in absolute value than 2q

for some q). When this is the case, we can reduce the bitlength of the encrypted values
to this size q + 1 by discarding the excess bits: In Two’s Complement, we can delete the
most significant bits (which will all be 0 for a positive and 1 for a negative number) until
we reach the desired length, whereas for Sign-Magnitude we discard the bits following the
MSB (which will all be 0). To save even more computation time, we integrated this into
our multiplication routine for Section 5.3, such that we not only save space, but also effort
because we only compute until we reach the bound in each step.
This shortening operation can be viewed as the inversion of the sign extension introduced
in Definition 3.1 and makes the entire algorithm significantly faster (see Section 5.3), as
we have reduced the quadratic growth of the bitlength in multiplication.

4.4 CONCLUSION

In conclusion, we have developed two different ways of incorporating rational numbers into
our FHE computations. The Fractional Encoding allows division of encrypted numbers,
but has performance issues in practice. Our scaling procedure instead allows us to handle
rationals as though they were integers, merely adding a new component which keeps the
precision constant to the multiplication prodedure. This reduces the bitlength of the result
while also hiding the function that was applied from the decrypting party. Additionally, it
increases usability because the computing party does not need to keep track of the power
of the scaling factor associated with each ciphertext.
In addition, we have showcased some other improvements to speed up the comparison
and multiplication subroutines when certain assumptions hold true. The next chapter
will present the impact of most of these improvements on the runtimes of real-world
applications from the field of Machine Learning: Section 5.4.3 uses Fractional Encoding,
Section 5.4.5 examines the impact of the approximate comparison, Section 5.3 shows the
impact of length management, and the entire chapter (except Section 5.4.3) uses scaling
with constant precision.
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Chapter 5

APPLICATION TO MACHINE LEARNING

The previous chapters have dealt with encodings for FHE computations, which comprised
the green box in Figure 1.1 in Section 1.3. In this chapter, we move on to the red box
– namely applying the results of the previous chapters to algorithms from the field of
Machine Learning, adapting the algorithms as necessary to improve performance or make
them executable under FHE at all.

To this end, we first cover some preliminaries like the required background on Machine
Learning and our runtime specifications in Section 5.1.

We then examine our first Machine Learning algorithm, the Linear Means Classifier, in
Section 5.2. In this section, we assume that the model has already been trained, and
we predict encrypted new unknown cases with this model. The results will showcase the
impact of our Hybrid Encoding from Section 3.5.

We then turn to the other task in supervised Machine Learning, namely training the
model, which we do for the Perceptron (a simple Neural Network) in Section 5.3. This
will show the importance of the bounding procedure from Section 4.3.3 and again the
improvement due to our Hybrid Encoding.

Lastly, we will move to the area of unsupervised learning by executing the K-Means-
Algorithm, a clustering algorithm, on encrypted data in Section 5.4. We attempt to
use the Fractional Encoding from Section 4.1, but we will see that our concerns from
Section 4.1.3 about this encoding were indeed valid. We thus opt to change the underlying
K-Means-Algorithm instead to avoid division, resulting in an FHE-friendly algorithm that
achieves the same task with similar accuracy as the original one.

This chapter is largely taken from [JA16] and [JA18].

5.1 PRELIMINARIES

In this section, we will discuss some preliminaries: First, we will cover the basics of Machine
Learning, including related work concerning Machine Learning on encrypted data. We
then also present our implementation specifications, which were used for all the runtimes
given in this work.
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5.1.1 Introduction to Machine Learning

Machine Learning is a field of research that focuses on extracting information from datasets.
If the dataset is very large, it is also often referred to as Big Data or Data Mining. There
are countless algorithms in Machine Learning with inputs ranging from numeric over cat-
egorical to text-based. The applications today seem endless: We have the first self-driving
cars, which have learned to do this via Neural Networks, we have smartphone keyboards
that predict the next word based on your individual writing style, researchers are working
on algorithms that can predict illness from a set of measured attributes or even a persons
genome, and many more. However, many of these application scenarios involve sensitive
data – people do not feel safe sending e.g. their medical data to a service provider, because
they either do not trust the provider or are worried about a data breach even if they do
trust the provider. This has lead to Machine Learning being a popular topic in the con-
text of privacy-preserving computations in general, and Fully Homomorphic Encryption
in particular.

Generally, Machine Learning can be divided into two categories: supervised and unsuper-
vised learning.

5.1.1.1 Supervised Learning

In supervised learning, there is a dataset consisting of inputs and the correct outputs
(which can be numerical values or classes into which the data is split) for these inputs.
The goal is to build a model that correctly assigns these inputs to the outputs. This model
can then be used to compute the outputs for new inputs, for which we do not know the
correct answers.

Thus, algorithms from supervised learning consist of two parts: In the training phase, we
build the model from the set of data with known outputs. The details of the method for
deriving the model from the data are of course specific to the concrete Machine Learning
algorithm we are using. We will implement this phase on encrypted data in Section 5.3
for the Perceptron, which is the earliest Neural Network.

Once we have a model, we move on to the deployment phase. Here, we feed new data points
into the algorithm and obtain predictions for the outcome. We show how to perform this
phase on encrypted data for the Linear Means Classifier, which classifies data via weighted
sums, in Section 5.2.

Note that we have not mentioned the testing phase here: The concept is that a few data
entries from the training set are put aside before training and are then used to measure the
performance of the model once it has been built by comparing the predicted to the actual
known outcomes. This phase is technically located between training and deployment
phase, but for our high-level view we will simply consider it a part of the training phase.

5.1.1.2 Unsupervised Learning

In unsupervised learning, the situation is slightly different: There are no “correct” labels
provided, so there is no training set – instead, the algorithm attempts to find some struc-
ture in the data on its own. An example of this is the clustering problem, which we will
solve on encrypted data in Section 5.4, where the algorithm assigns the data entries to
different clusters. Of course, the algorithms are not entirely automatic: In the clustering
example, for many algorithms we need to specify how many clusters we expect, and the
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algorithm must also have some kind of cost function, i.e., a way to compare two solutions
to determine which is better. For many applications, this cost function is distance based
(e.g., the average distance between two points in a cluster), but there exist many different
application-specific cost functions.

Note that when developing new unsupervised algorithms, there may very well be a labeled
testing set – these are usually artificially generated data sets for benchmarking purposes
that allow the comparison of different algorithms on the same dataset, e.g. by comparing
the percentage of correctly labeled data points. However, this takes place in the devel-
opment phase of the algorithm and is not part of the Machine Learning process once the
algorithm has been established.

5.1.1.3 Related Work

While some of this related work has already been covered in Section 1.1, we still choose
to give a comprehensive overview at this point, repeating the former as necessary.

Machine Learning as an application for Fully Homomorphic Encryption was first proposed
in [GLN12], and since then it has been a popular area of research. There are many areas
of Machine Learning that have been studied in the context of FHE, and we give a brief
overview of the most popular ones.

The first of these areas that many works have focused on is (Deep) Neural Networks, where
input nodes are connected to output nodes through (sometimes numerous) intermediate
layers. Our publication [JA16] implements the Perceptron [Ros57], which is a Neural
Network without any intermediate layers and is thus a building block for the more compli-
cated versions. In [BMMP17], the bootstrapping procedure of the underlying encryption
scheme is modified to accommodate a discretized Neural Network, whereas [GDL+16]
and [CdWM+17] adapt the different layers of a Deep Neural Network through polynomial
approximations of the functions in question. Works like [PAH+17] and [JVC18] rely on in-
teractive solutions from the realm of Multiparty Computation, often in combination with
FHE building blocks.

First suggested in [BLN14], there has been a recent surge of papers dealing with the task of
logistic regression on encrypted data. This is a widely used algorithm in Machine Learning,
but it is non-trivial to implement on encrypted data because of the non-polynomial Sigmoid
function s(z) := 1

1+e−z involved in the computation. In [KSW+18], this problem is tackled

by using a least-squares approximation for the Sigmoid function, whereas [KSK+18] and
[BV18] use a local polynomial approximation, and [BCG+17] uses multiparty computation
and a Fourier approximation of the Sigmoid Function. In [CGH+18], the problem is solved
in a manner very specific to the underlying FHE library HElib [LIBd], and the user must
solve a linear system of equations to obtain the result of the computation after decrypting.

Another popular area of research is (Linear) Regression or Hyperplane Decision, where a
hyperplane is fitted and data points are classified according to which side of the hyperplane
they lie on. Publications concerned with this task are [GLN12], [BPTG15], [LKS16] and
[EAH17].

Other algorithm classes that have been considered include decision trees and random
forests in [WFNL16], [BPTG15] and [AEH15], Support Vector Machines in [BSS+17], and
Naive Bayes Classification in [AEH15] and [BPTG15], though many of these solutions
rely on Multiparty Computation and thus interaction between the data owner and the
computing party during the computation.
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For the area of unsupervised learning, our publication [JA18], which implements the K-
Means-Algorithm [M+67], is to our knowledge the only work concerned with this re-
search area of unsupervised Machine Learning on encrypted data via FHE. The K-Means-
Algorithm has been a subject of interest in the context of privacy-preserving computations
for some time, but to our knowledge all previous works like [BO07], [JW05], [JPWU10],
[LJY+15] and [XHY+17] require interaction between several parties, e.g. via Multiparty
Computation (MPC). For a more comprehensive overview of the K-Means-Algorithm in
the context of MPC, we refer the reader to [MB12]. While this interactivity may certainly
be a feasible requirement in many situations, and indeed MPC is likely to be faster than
FHE in these cases, we feel that there is nonetheless a need for a non-interactive solution
as we present it: FHE reduces the computational load of the user to zero, and it also
allows the computing party to keep the function secret (if the FHE scheme has circuit
privacy, see Definition 1.7, which all current schemes do). Also, many of these interactive
solutions rely on a vertical (in [VC03]) or horizontal (in [JKM05]) partitioning of the data
between several users for security. In contrast, FHE allows a non-interactive setting with
a single database owner who wishes to outsource the computation.

5.1.2 Implementation Specifications

All runtimes in this thesis, including the ones from previous chapters, were measured
on a virtual machine with 20 GB of RAM and 4 virtual cores, running Ubuntu 16.04
on an Intel i7-3770 processor with 3.4 GHz. We used the TFHE library [LIBf], as it
is currently the fastest one available for {0, 1}-plaintext spaces. We also note that the
documentation for this library states “Since the running time per gate seems to be the
bottleneck of fully homomorphic encryption, an optimal circuit for TFHE is most likely a
circuit with the smallest possible number of gates, and to a lesser extent, the possibility
to evaluate them in parallel.”. This means that we do not need to minimize depth in
our computations, as the total number of gates is the relevant metric. We ran the library
without the SPQLIOS FMA-option that enables faster Fourier transforms, which are used
in the encryption library, as our processor did not support this (runtimes might be faster
when using this option). Note that the TFHE library currently only supports single thread
computations, so only one of the four cores was actually used.
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5.2 THE LINEAR MEANS CLASSIFIER

We start with the most simple case where we already have a model, which may have been
trained on encrypted or unencrypted data, and the task is to apply this model to encrypted
data. This could be the case in the context of Machine Learning as a service, where a
provider owns the algorithm and offers to perform predictions on user data for a fee. It
could also be the case if the algorithm and the data belong to the user, who merely wants
to outsource the computation. By encrypting the data, the user can protect his data and
still use this service. For maximum generality, we assume that the model coefficients are
encrypted as well – however, if the model belongs to the service provider, the coefficients
would likely not be encrypted.

5.2.1 Algorithm Details

As already implied by its name, the Linear Means classifier classifies data – i.e., it assigns
data entries to one of several possible classes. Like [GLN12], we consider the case where
there are two classes, which are determined by the sign of the score function. This score
function is a polynomial of degree 2. More concretely, the model consists of a vector
w = (w1, . . . , wl) and a threshold constant τ , and the data to be classified is a l-dimensional
real-valued vector x = (x1, . . . , xl). The l traits of the data are also known as features.
The score function is then computed as

〈w, x〉+ τ = w1x1 + w2x2 + · · ·+ wlxl + τ, (5.1)

and the sign of the result determines which class the data instance belongs to1. Thus, we
now need to compute the score function for given encrypted values for w and τ . The code
for the unencrypted Linear Means Classifier can be seen in Algorithm 11.

Algorithm 11: Linear Means Classification

Input: The weight vector w = (w1, . . . , wl) and the threshold constant τ
Input: The input vector x = (x1, . . . , xl)

1 Compute sum = 〈w, x〉+ τ = w1x1 + w2x2 + · · ·+ wlxl + τ
2 if sum < 0 then
3 res = 1
4 else
5 res = 0
6 end

Output: res

When the data is encrypted bitwise as in our case, we can easily implement the if-branch
by taking the MSB of the result, which is 1 when the number is negative, and 0 when it is
non-negative. The pseudocode using the subroutines Add and Mult for encrypted addition
and multiplication can be seen in Algorithm 12.

1We will see that this score function is closely related to the classification function of the Perceptron
from Section 5.3, where the focus will be on determining w and τ . Here, we instead see these values as
given and use them to compute predictions on input data.
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Algorithm 12: Encrypted Linear Means Classification

Input: The bitwise encrypted weight vector w = (w1, . . . , wl)
Input: The bitwise encrypted threshold constant τ
Input: The bitwise encrypted input vector x = (x1, . . . , xl)

1 sum = τ
2 for i = 1 to l do
3 temp = Mult(w[i], x[i])
4 sum = Add(temp, sum)

5 end
// Take the sign of the sum:

6 res = MSB(sum)
Output: res

We see that this is easily implemented through routines from the previous chapters, and
we present the performance in the following.

5.2.2 Performance

Using the Linear Means Classifier, we now examine the effects of using different encod-
ings in the unbounded case (i.e., when the product of two n-bit numbers has length up
to 2n). To this end, we measured the runtime of evaluating the score function for inputs
of bitlength 30 for different numbers l of features. Note that of course, the number l of
features is known to the computing party, as it is revealed by the length of the encrypted
data vector. The results can be seen in Figure 5.1.
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Figure 5.1: Runtime for the Linear Means Classifier on encrypted data for different num-
bers of features with encoding length 30.
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We can see that the new Hybrid Encoding outperforms the other two encodings – con-
cretely, its runtime on average is only 29% that of the Two’s Complement encoding, and
88% that of the Sign-Magnitude encoding.

5.2.3 Conclusion

We have seen in this Section that our new Hybrid Encoding can improve runtime by a
significant factor, and also that simple tasks from the realm of Machine Learning can
be performed on encrypted data without complications. Of course, the majority of the
algorithms that are used in practice are significantly more complicated than the Linear
Means Classifier. In this section, we have used an already trained model to predict new
occurrences by evaluating a multivariate polynomial of degree 2 (see Equation 5.1 on
page 111) on encrypted data. The next section will deal with the model training – that
is, the more complicated task of deriving the weights w and the threshold constant τ in
the first place.

5.3 THE PERCEPTRON

We now move on to the task of obtaining a model, e.g. the coefficients for the Linear
Means Classifier above, in the training phase. We use the Perceptron for this – it is
a simple Neural Network that will be explained in Section 5.3.1. In our scenario, the
training data will be encrypted, which would be feasible in e.g. the following scenario:
Suppose one party has developed a new prediction algorithm, and would like to offer it
as a service. However, the accuracy of any predictive algorithm generally improves if the
training data comes from the same population as the new data later on, so for the best
predictions, the model must also be trained on the user data. For example, the population
in our Perceptron dataset is a real-world dataset relating Diabetes to other factors in a
population of female Native Americans from the Pima tribe. It is not hard to imagine
that if the model were trained on the general population (or, say, European males), the
predictive accuracy on Pima Indian females would not be as high as when the model is also
trained on this group. However, if we train the model on the user data, the same privacy
concerns as during the classification phase are relevant – that is, the user would like to
protect his sensitive data through encryption. Thus, this section focuses on training a
model (the Perceptron) on encrypted training data. Once this is done, the party with the
algorithm can either send the algorithm to the user, who can decrypt it and use it on his
own in unencrypted form, or the model can be kept in encrypted form by the algorithm
developer and be used to predict future encrypted instances from the user as a (paid)
service.

This section will also illustrate the impact of the length management procedure from Sec-
tion 4.3.3, as we feel that it fits well into this scenario: It is likely that the algorithm
developer has some information about the ranges of the coefficients of his model, as per-
haps they do not vary wildly across different populations. In this case, he can use the
length management procedure to keep the bitlengths in the neccessary ranges (with enough
room for variations in the values) instead of having them grow quadratically with each
multiplication.
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5.3.1 Algorithm Details

The Perceptron is a simple Neural Network and works by computing a weighted sum

K∑
k=1

wk · xi,k

of K input traits xi,k, which are usually rational numbers, for each subject xi and then
classifying into one of two classes depending on whether this weighted sum is above a
certain threshold or not. In the training phase, the weights wk are adjusted if the computed
classification does not match the known classification ci ∈ {0, 1} of the training instance
xi. The learning rate η determines by how much the weights change through each such
mismatch. A larger η means bigger changes and less stability, whereas for a smaller value,
more rounds may be needed, but the weights are more likely to converge. After training,
the model can be used to classify inputs with no known classification by again computing
the weighted sum and comparing to the threshold. The model consists of the weights,
and the threshold can either be predetermined or flexible (and thus part of the model
being computed). We will work with the latter approach and for notation reasons include
a dummy trait that is always −1, which enables us to compare the scalar product to 0:
Again denoting the threshold as τ , we have

K∑
k=1

wk · xk > τ ⇔
K∑
k=0

wk · xk > 0

for x0 = −1 and w0 = τ .
Note that this is a binary classifier, i.e., it only works with two classes, but the more
complex case of several classes can easily be built by running the Perceptron several times
for different classes or by having more than one output (i.e., computing several sums and
having the targets not be bits, but bitstrings). The exact workings of the Perceptron
are presented in Algorithm 13, and further implementation details can be found in the
following.
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Algorithm 13: The Perceptron

Training():
// m subjects with K traits

Input: Training Data (xi,k, ci), i = 1, . . . ,m, k = 1, . . . ,K, where xi,k are the
features and ci is the class

Input: Learning Rate η
Input: Iteration Number T

1 Write inputs as X, a m× (K + 1)-matrix with first column −1, followed by the
inputs xi row-wise, and m-dimensional target vector ~c with entries ci.

2 for k = 0 to K do
// Initialize weights to small random numbers

3 wk ← Rε
4 end
5 for T iterations do
6 for i = 1 to m do

// Compute prediction for current subject

7 if
K∑
k=0

wk · xi,k > 0 then

8 Set y = 1
9 else

10 Set y = 0
11 end

// If prediction equals class, the weights don’t change. If class

is 0 but prediction is 1, a fraction of that feature value is

subtracted from the weight. If class is 1 but prediction is 0,

a fraction of that feature value is added to the weight.

12 for k = 0 to K do
13 wk ← wk + η · (ci − y) · xi,k
14 end

15 end

16 end
Output: The weights wk, k = 0 to K

Classification():
Input: w0, . . . , wK from Training Phase
Input: Vector x = (x1, . . . , xK) to be classified

17 Set x0 = −1

18 if
K∑
k=0

wk · xk > 0 then

19 Set y = 1
20 else
21 Set y = 0
22 end

Output: The classification y
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Note that to compute the Perceptron on bitwise encrypted data, we merely replace ad-
ditions and multiplications with the appropriate routine on encrypted data. There is,
however, one computation we pay special attention to: To reduce runtime, in our imple-
mentation we chose to rewrite the term η · (ci− y) ·xi,k in Line 13 as η · ci ·xi,k− η ·xi,k · y.
This way, we can precompute the values η · ci · xi,k and −η · xi,k for all i = 0, . . . ,m and
all k = 0, . . . ,K, as these values do not change from round to round.
The multiplication for these terms is easier as well: We first compute the terms η ·xi,k and
−η · xi,k, where we can use multiplication with a constant (denoted ConstMult) because
η is not encrypted (see Section 3.2.2.1). To get the first precomputation term η · ci · xi,k,
we must multiply η · xi,k by ci. However, it holds that ci ∈ {0, 1} – thus, we do not need
a complicated multiplication procedure involving multiple addition subroutines, but can
instead multiply each bit of η ·xi,k by ci – this results in η ·xi,k if ci = 1, and in 0 otherwise.
The same holds in the main loop when we compute (η ·xi,k) ·y: As y ∈ {0, 1}, we only need
to do a simple bit-for-bit multiplication, which is much faster than regular multiplication.
Denoting this bit-for-bit multiplication as OneBitMult (see Algorithm 14), the training
phase on encrypted data with precomputation can be seen in Algorithm 15. The 0-
comparison is the easy comparison from Section 4.3.1, and the significant changes com-
pared to the algorithm on unencrypted data are shaded.

Algorithm 14: OneBitMult(c, a)

Input: An encrypted bit c
Input: A bitwise encrypted number a = anan−1 . . . a1a0

1 for i = 0 to n do
2 resi = c · ai
3 end

Output: res
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Algorithm 15: Training the Perceptron on encrypted data

Precomputation ():
Input: Training Data (xi,k, ci) (encrypted)
Input: Learning Rate η (not encrypted)

1 for i = 1 to m do
2 for k = 0 to K do

// temp = η · xi,k
3 temp = ConstMult(η, xi,k)

// p1i,k = ci · η · xi,k
4 p1i,k = OneBitMult(ci, temp)

// p2i,k = −η · xi,k
5 p2i,k = ConstMult((−η), xi,k)

6 end

7 end
Output: p1i,k and p2i,k for i = 1 to m and k = 0 to K (encrypted)

Training():
// m subjects with K traits (encrypted bitwise)

Input: Training Data (xi,k, ci) (encrypted)

Input: Outputs of precomputation p1i,k and p2i,k (encrypted)

Input: Iteration Number T (not encrypted)
8 for k = 0 to K do

// Initialize weights to small random numbers -- this can be

done in unencrypted form, then the multiplications in the

first iteration of the main loop will be ConstMult instead

of Mult. After that, the weights are encrypted values.

9 wk ← Rε
10 end
11 for T iterations do
12 for i = 1 to m do

// Compute the weighted sum

13 sum = −w0

14 for k = 1 to K do
15 sum = Add(sum, Mult(wk, xi,k))
16 end

// The prediction is the flipped sign of the sum

17 y = Sign(sum)⊕ 1

// Update the weights

18 for k = 0 to K do

19 temp = Add(p1i,k, OneBitMult(y, p2i,k))

20 wk = Add(wk, temp)

21 end

22 end

23 end
Output: The bitwise encrypted weights wk, k = 0 to K
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5.3.1.1 Dataset and Parameters

We will now discuss the parameters and the dataset used in our actual implementation
of the Perceptron. To test our implementation, we used the Pima Indian Dataset [Pim].
This dataset is a subset of a larger dataset collected by the National Institute of Diabetes
and Digestive and Kidney Diseasesis starting in 1965, and was first used in [SED+88]. The
dataset consists of entries for 768 females of at least 21 years of age, and measurements
were taken at various points in time, but only one measurement per subject was included.
The entries consist of 8 different traits and are classified into “developed diabetes within 5
years” or “did not develop diabetes within 5 years”. Since the weights for two attributes
did not seem to converge at all, we reduced the number of traits down to K = 6:

1. Number of times pregnant

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm\Hg)

4. Body mass index weight in kg
(height in m)2

5. Diabetes pedigree function

6. Age (years)

We set the learning rate to η = 0.125 and reserved some subjects for the testing phase (i.e.,
use the weights obtained from the model to classify entries with known class which were
not involved in the generation of the weights and see how many are correct). Note that
the testing phase is not carried out bitwise and does not really belong to our encrypted
model, but we performed it to see how different precision values influenced the accuracy
of our derived model. We used different precision values and bounds on the length, and
these computations were done in unencrypted form, encoded bitwise, as they were only to
determine satisfactory parameter values. As it turns out, 20 bits with 6 bits for precision
is not enough (i.e., there was an overflow and the results were wrong), whereas both
bitlengths 25 (precision 10) and 30 (precision 15) yielded satisfactory results in that the
values were correct for our computations. From previous experiments, we knew that w0

(i.e., the weight multiplied with x0 = −1) always converged to a number around 10000, so
we initialized w0 as 10000 + r where r is a small random number. As already mentioned
above, we feel that this is a feasible scenario because the computing party has some
knowledge about the model that is being trained on the user’s encrypted data. Note that
we could live without this assumption, but we would need more rounds, as the weight only
changes by a small amount in each weight update and it would take many rounds to reach
a value as big as 10000.

5.3.2 Performance

We now present the runtimes for the three parameter sets (20 bits with 6 bits of precision,
25 bits with precision 10, and 30 bits with precision 15) for the case with and without
length management. Note that as for all our runtime measurements, these numbers heavily
depend on the encryption library we used: In [LIBf], which we used, all gates take roughly
the same time, whereas e.g. in [LIBd], bit multiplication takes much longer than bit
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addition. Thus, these runtimes give an indication of the performance gains we can achieve,
but the concrete times are specific to the underlying library. The results can bee seen in
Figure 5.2.
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Figure 5.2: Runtime for one round of the Perceptron on encrypted data for one subject
for encoding lengths 20, 25 and 30, with and without length management.

The times refer to one round for one subject (averaged over 5 runs). We can see that
the length management procedure makes the computations significantly faster – in the
unbounded scenario, the times would increase further with each round and subject due
to increasing bitlengths, making the impact of the length management procedure even
more profound than Figure 5.2 suggests. For the bounded cases, we can expect runtimes
per round to stay constant over the course of the algorithm. The length management
has the biggest impact on the Two’s Complement encoding, which is to be expected:
The multiplication requires sign extension to double the length (see Section 3.2.2), so that
longer input lengths slow this encoding down much more than the other two. However, the
bounding procedure decreases the runtime for all three encodings, leading to significant
efficiency gains.

We can also see from Figure 5.2 that the Hybrid Encoding again outperforms the other
two encodings in all parameter settings: If there is no length management, the Hybrid
Encoding has on average only 22% the runtime of Two’s Complement encoding, and 73%
that of the Sign-Magnitude encoding. In the bounded case, it has 75% the runtime of Two’s
Complement, and 82% that of Sign-Magnitude. The ratio of the best setting (bounded
Hybrid Encoding) and the worst (unbounded Two’s Complement) is 0.176, so we can save
over 82% runtime through our improvements.
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5.3.3 Conclusion

In conclusion, we have shown how even a more complicated procedure like training a neural
network can be accomplished on encrypted data. Furthermore, the choice of the encoding
has a big impact, with our Hybrid Encoding outperforming the other two encodings in
all parameter settings. If we can estimate the size of the involved values in an iterative
computation, we can reduce runtime even further by keeping the bitlength constant and
thus eliminating the bitlength expansion during addition and multiplication.
We have now covered both components (training and prediction) of supervised learning
– the next section will deal with the other main pillar of Machine Learning, namely
unsupervised learning.

5.4 CLUSTERING ON ENCRYPTED DATA

The problem we tackle now is that of clustering: The input consists of some data points,
and the aim is to group entries together that are similar in some way. The number of
clusters may be a parameter that the user enters, or it may be automatically selected by the
algorithm. Clustering has numerous applications like genome sequence analysis, market
research, medical imaging or social network analysis, to name just a few. Many of these
applications inherently involve sensitive data – making a privacy-preserving evaluation
with FHE even more interesting.
The clustering algorithm we choose is the K-Means-Algorithm, which is an established
solution to the problem. We first use the Fractional Encoding from Section 4.1 to imple-
ment the K-Means-Algorithm as it is (though we change the distance metric after showing
that the choice is arbitrary in the first place), but we will see that our concerns about
this encoding from earlier are valid, as the runtime is prohibitively large, and parameters
to ensure correctness are difficult to set. Thus, we instead opt to modify the underlying
algorithm to avoid the division that made the Fractional Encoding necessary. We show
that this modified algorithm performs comparably to the original K-Means-Algorithm in
terms of accuracy while being significantly faster, and also examine how the use of the
approximate comparison from Section 4.3.2 affects the runtime.

5.4.1 Algorithm Details

The K-Means-Algorithm is one of the most well-known clustering algorithms in unsuper-
vised learning. Published in [M+67], it is considered an important benchmark algorithm
and is frequently the subject of current research to this day.
The K-Means-Algorithm takes as input the data

X = {x1, . . . , xm}, xi = (x
(1)
i , . . . , x

(`)
i ) ∈ R`,

and a number K of clusters to be used. It begins by choosing either K random values in
the data range or K randomly chosen data entries as so-called cluster centroids µk. We
will use the latter approach. Then, in a step called Cluster Assignment, it computes for
each data entry xi which cluster centroid µk is nearest regarding Euclidean distance

||xi − µk||2 =

√∑
j

(x
(j)
i − µ

(j)
k )2,
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and assigns the data entry to that centroid (denoted xi ∈ µk). When this has been done
for all data entries, the second step begins: During the Move Centroids step, the cluster
centroids are moved by setting each centroid as the average of all data entries that were
assigned to it in the previous step:

µk =

∑
xi∈µk

xi

|xi ∈ µk|
.

These two steps are repeated for a set number of times T or until the centroids do not
change anymore. We use the first method – a visualization of the K-Means-Algorithm
can be found in Figure 5.3.
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Figure 5.3: An illustration of the K-Means-Algorithm.
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The output of the algorithm is the values of the centroids, or the cluster assignment for
the data entries (which can easily be computed from the former). We opt for the first
approach. The exact workings of the K-Means-Algorithm can be seen in Algorithm 16,
where operations like addition and division are performed component-wise if applied to
vectors. A list of the variables used in the algorithm can be found in Section 5.4.1.1.
Accuracy can either be measured in terms of correctly classified data entries, which as-
sumes that the correct classification is known (there might not even exist a unique best
solution), or via the so-called cost function, which measures the (average) distance of the
data entries to their assigned cluster centroids. We opt for the first approach because our
datasets are benchmarking sets for which the labels are indeed provided, and it allows
better comparability between the different algorithm versions.

5.4.1.1 List of Variables

To aid the reader, we present a brief recap of the variables that we use in dealing with the
K-Means-Algorithm:

• K: Number of clusters.

• µk: Cluster centroid k.

• m: Number of data points.

• X = {x1, . . . , xm}, xi ∈ R`: The dataset.

• `: The dimension of the data.

• dk: Denominator of centroid k in the average computation (i.e., the number of data
entries assigned to that cluster: dk = |xi ∈ µk|).

• T : Number of rounds to run the algorithm.

• ∆: A number to hold distances (later: a vector).

• A: The cluster assignment vector (m-dimensional), later a boolean matrix (m×K).

5.4.1.2 Datasets

To evaluate performance, we use four datasets from the FCPS dataset [Ult05] to monitor
performance:

• The Hepta dataset consists of 212 data points of 3 dimensions. There are 7 clearly
defined clusters.

• The Lsun dataset is 2-dimensional with 400 entries and 3 classes. The clusters have
different variances and sizes.

• The Tetra dataset is comprised of 400 entries in 3 dimensions. There are 4 clusters,
which almost touch.

• The Wingnut dataset has only 2 clusters, which are side-by-side rectangles in 2-
dimensional space. There are 1016 entries.
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Algorithm 16: The K-Means-Algorithm

Input: Data set X = {x1, . . . , xm} // xi = (x
(1)
i , . . . , x

(`)
i ) ∈ R` for some `

Input: Number of clusters K
Input: Number of iterations T
// Initialization (choose random starting centroids)

1 Randomly reorder X
2 Set centroids µk = xk for k = 1 to K
// Keep track of centroid assignments

3 Generate m-dimensional vector A
// Keep track of denominators in average computation

4 Generate K-dimensional vector d = (d1, . . . , dK)
5 for j = 1 to T do

// Cluster Assignment

6 for i = 1 to m do
7 ∆ =∞
8 for k = 1 to K do

9 ∆̃ := ||xi − µk||2 =
√∑

j(x
(j)
i − µ

(j)
k )2

// Check if current cluster is closer than previous closest

10 if ∆̃ < ∆ then
// If so, update ∆ and assign data entry to current

cluster

11 ∆ = ∆̃
12 Ai = k

13 end

14 end

15 end

// Move Centroids, i.e., compute µk =

∑
xi∈µk

xi

|xi∈µk| .

16 for k = 1 to K do
17 µk = 0
18 dk = 0

19 end
20 for i = 1 to m do

// Add the data entry to its assigned centroid

21 µAi = µAi + xi

// Increase the appropriate denominator

22 dAi = dAi + 1

23 end
24 for k = 1 to K do

// Divide centroid by number of assigned data entries to get

average

25 µk = µk/dk
26 end

27 end
Output: {µ1, . . . , µK}
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For accuracy measurements, each version of the algorithm was run 1000 times for number
of iterations T = 5, 10, ..., 45, 50 on each dataset. For runtimes on encrypted data, we used
the Lsun dataset.

5.4.1.3 FHE Challenges

Before we discuss the details of implementing the K-Means-Algorithm, we first address
the two challenges that arise in the context of FHE computation of this algorithm and
quickly explain how we solve them. The line numbers refer to Algorithm 16.

• The distance metric (Line 9, ∆(xi, µk) := ||xi − µk||2 =
√∑

j(x
(j)
i − µ

(j)
k )2):

To our knowledge, taking the square root of encrypted data has not been imple-
mented yet, and discarding the square root and just using the sum of squared differ-

ences
∑

j(x
(j)
i − µ

(j)
k )2 would lead to very large bitlengths and enormous runtimes.

In Section 5.4.2, we will argue that the Euclidean norm is an arbitrary choice in this
context and solve this problem by using the L1-distance

∆(xi, µk) = ||xi − µk||1 :=
∑
j

(|x(j)i − µ
(j)
k |)

instead of the Euclidean distance.

• Division (Line 25, µk = µk/dk) in computing the new centroid value as the average
of the assigned data points:
Recall that in FHE computations, division by an encrypted value is usually not
possible (whereas division by an unencrypted value is no problem). In Section 5.4.3,
we first use the Fractional Encoding from Section 4.1 to allow this division, and
then propose a modified version of the K-Means-Algorithm in Section 5.4.4 that
only needs division by a constant.

5.4.2 The Distance Metric

Traditionally, the distance measure used with the K-Means Algorithm is the Euclidean
Distance

∆(x, y) = ||x− y||2 :=

√∑
j

(x(j) − y(j))2,

also known as the L2-Norm, as it is analytically smooth and thus reasonably well-behaved.
However, in the context of K-Means Clustering, smoothness is irrelevant (as we will not
be taking any derivatives), and we may look to other distance metrics. Concretely, we
consider the L1-Norm2 (also known as the Manhattan-Norm)

∆(x, y) = ||x− y||1 :=
∑
j

(|x(j) − y(j)|).

This has a considerable advantage over the Euclidean distance: Firstly, we do not need
to take a square root, which to our knowledge has not yet been achieved on encrypted

2 [AHK01] in fact argues that for high-dimensional spaces, the L1-Norm is more meaningful than the
Euclidean Norm.
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data. Secondly, of course one could apply the standard trick and not take the root, work-
ing instead with the sum of squared distances – however, this would mean a considerable
efficiency loss. To see this, first note that multiplying two numbers takes significantly
longer than taking the absolute value. Also, recall that multiplying two numbers of equal
bitlength results in a number of twice that bitlength. These much longer numbers then
have to be summed up, and already the summation step is a bottleneck of the whole
computation on encrypted data even when working with short numbers in the L1 norm.
The result of the summation is an input to the algorithm that finds the minimum (Al-
gorithm 19 on page 130), which also takes a significant amount of time and would likely
more than double in runtime if the input length doubled.
Taking the absolute value can easily be achieved by using the MSB as the conditional
(recall that it is 1 if the number is negative and 0 if it is positive) and use a multiplexer gate
applied to the value and its negative. The concrete algorithm can be seen in Algorithm 17.

Algorithm 17: Absolute Value

Input: Value a = an . . . a1a0 in Two’s Complement or Sign-Magnitude encoding
// Set the conditional variable as the MSB

1 C = MSB(a) = an
// Apply the MUX gate

2 d = MUX(C, Invert(a), a)
// If C = 1, i.e., a is negative, d = −a. If C = 0, i.e., a is

positive, d = a. So d = |a|.
Output: d

Thus, using the L1-Norm is not only justified by the arbitrariness of the Euclidean Norm,
but is also much more efficient on encrypted data. To compare the clustering accuracy,
recall that the datasets we are working with are benchmarking sets designed specifically
to compare the performance of different clustering algorithms. For this purpose, the data
points have labels that assign them to the “correct” clusters, so that we can compare
two algorithms by comparing the accuracy, i.e., the percentage of correctly labeled data
points3. Concretely, we calculated the percentage of wrongly labeled data points for
1000 runs (i.e., for each run choosing random starting centroids and then running both
algorithms from these same starting centroids), for both versions of the distance metric.
We then plotted histograms of the difference (in percent mislabeled) between the L1-norm
and the L2-norm for each run. Thus, a value of 0.5 means that starting from the same
centroids, the L1 norm version misclassified 0.5% more data entries than the L2-version,
and −2 means that the L1 version misclassified 2% less data entries than the L2-version.
Each subplot corresponds to one of the four datasets we used. The comparison of the
clustering accuracy can be seen in Figure 5.4.

3Recall that in unsupervised learning, the data generally has no correct outputs provided, and the notion
of “correct” is usually not even well-defined for clustering problems. This special case of a benchmarking
set is an exception that allows us to compare the performance between two different algorithms.
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Figure 5.4: Difference in percent of data points mislabeled for L1-norm compared to the
L2-norm

(
(% mislabeled L1) - (% mislabeled L2), 40 rounds

)
.

We see that indeed, it is impossible to say which metric is better in terms of accuracy – for
the Hepta dataset, the performance is very balanced, for the Lsun dataset, the L1-norm
performs much better, for the Tetra dataset, they nearly always perform exactly the same,
and for the Wingnut dataset, the L2-norm is consistently better. Thus, we will switch to
the L1-norm in our implementation, though we include diagrams for the L2-norm as well
to show that our accuracy results are not specific to the L1-norm.

5.4.3 Implementing the K-Means-Algorithm via Fractional Encoding

Recall the Fractional Encoding from Section 4.1, where we encode the numerator and
denominator separately and perform operations using the computation rules for fractions.
This allows us to perform divisions on encrypted data, which is not normally possible in
FHE computations. Thus, we can perform the K-Means-Algorithm as it is (except that
we use the L1- instead of the L2-norm) on encrypted data, which we refer to as the exact
version of the algorithm in contrast to the modified, more efficient versions that we will
present later in Section 5.4.4. As a baseline, we will now examine the performance of this
exact version. A runtime comparison between all versions of the K-Means-Algorithm will
be presented in Section 5.4.6.
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5.4.3.1 Accuracy

To see how the exact algorithm performs in terms of accuracy with respect to the number of
iterations, we use the four datasets from Section 5.4.1.2. We ran the exact algorithm 1000
times (again with randomly chosen starting centroids in each run) for number of iterations
T = 5, 10, ..., 45, 50, and for sake of completeness we include both distance metrics. These
results were obtained by running the algorithms in unencrypted form. We first examine
the effect of T on the exact version of the algorithm by looking at the average (over the
1000 runs) misclassification rate for both metrics. The result can be seen in Figure 5.5.
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Figure 5.5: Misclassification rate with increasing rounds for the exact algorithm.

We can see that the rate levels off after about 15 rounds in all cases, so there is no reason
to iterate further.

5.4.3.2 Efficiency

As already discussed, we need to shorten the bitlength to avoid a doubling of the length
with each operation, which is not trivial to do. The initial data was encoded with the
numerator in [211, 212) and denominator in roughly the same range, as the data is rea-
sonably small. We also allotted 35 bits for nominator and denominator each to allow a
growth in required bitlength, and set the shortening parameter to 12, but shortened by
11 every once in a while (we derived this approach experimentally, see the discussion of
the shortcoming of this approach in Section 4.1.3). The fractional exact version of the
K-Means-Algorithm was so slow that we could run it only on the first 10 data entries of
the dataset and then extrapolated the runtimes in Section 5.4.6 (Table 5.1 on page 142)
– running the K-Means-Algorithm on the Lsun dataset with Fractional Encoding would
take almost 1.5 years on our computer. Because of this questionable performance and the
issue with the shortening procedure, we instead chose to modify the K-Means-Algorithm
to make it more FHE-friendly (i.e., remove the division), which we will present in the
following.
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5.4.4 The Stabilized K-Means-Algorithm

We now introduce a modification of the K-Means algorithm that avoids the division in the
MoveCentroid-step. Concretely, recall that conventional encodings in FHE do not allow
the computation of c1/c2 where c1 and c2 are ciphertexts, but it is possible to compute
c1/a where a is some unencrypted number. Our algorithm uses this fact to exchange
the ciphertext division in Line 25 of Algorithm 16 for a constant division, resulting in
a variant that can be computed with more established and efficient encodings than the
Fractional Encoding – concretely, we use the Hybrid Encoding from Section 3.5. Note
that this approach of approximating or replacing a function that is hard to compute on
encrypted data is not unusual in the FHE context – for example, [GDL+16] does this for
several different functions in building a neural network on encrypted data.

5.4.4.1 Algorithm Details

Recall that in the original K-Means-Algorithm, the MoveCentroid-step consists of com-
puting each centroid as the average of all data entries that have been assigned to it. More
specifically, suppose that we have a (m × K)-dimensional cluster assignment matrix A,
where

Aik =

1, Data entry xi is assigned to centroid µk

0 else.

Then computing the new centroid value µk can be written as multiplying the data entries
xi with the corresponding entry Aik and summing up the results before dividing by the
sum over the respective column k of A:

µk =

m∑
i=1

xi ·Aik
m∑
i=1

Aik

.

Our modification now replaces this procedure with the following idea: In order to com-
pute the new centroid µk, we add the corresponding data entry xi to the running sum if
Aik = 1, otherwise add the old centroid value µ̄k if Aik = 0. This can be easily done
with a multiplexer gate (applied to each bit of the two inputs) with the entry Aik as the
conditional boolean variable:

µk =

m∑
i=1

MUX(Aik, xi, µ̄k)

m
.

The sum now always consists of m terms, so we can divide by the unencrypted constant
m. It is also now obvious why we call it the stabilized K-Means-Algorithm: We expect the
centroids to move much more slowly, because the old centroid values stabilize the value
in the computation (more so with fewer data entries that are assigned to a centroid).
However, this new algorithm still maintains the spirit of the original K-Means-Algorithm:
It is an iterative centroid-based algorithm that moves the centroids depending on the
values of the data entries that are assigned to it, and the assignment is based on the
smallest distance between data point and centroid. The details of this new algorithm can
be found in Algorithm 18, with the changes compared to the original K-Means-Algorithm
shaded.
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Algorithm 18: The Stabilized K-Means-Algorithm

Input: Encrypted data set X = {x1, . . . , xm} // xi ∈ R` for some `
Input: Number of clusters K (not encrypted)
Input: Number of iterations T (not encrypted)
// Initialization

1 Randomly reorder X
2 Set centroids µk = xk for k = 1 to K
// Keep track of centroid assignments

3 Generate (m×K)-dimensional boolean matrix A set to 0
4 for j = 1 to T do

// Cluster Assignment

5 for i = 1 to m do
6 ∆ =∞
7 for k = 1 to K do

// Compute distances to all centroids

8 ∆k := ||xi − µk||1
9 end

// The ith row of A has all 0’s except at the column

corresponding to the centroid with the minimum distance

10 A[i, ·]← FindMin(∆1, . . . ,∆K)

11 end
// Move Centroids

12 for k = 1 to K do
// Keep old centroid value

13 µ̄k = µk
14 µk = 0
15 for i = 1 to m do

// If Aik = 1, add xi to µk, otherwise add µ̄k to µk

16 µk = µk + MUX(Aik, xi, µ̄k)

17 end
// Divide by number of terms m

18 µk = µk/m

19 end

20 end
Output: {µ1, . . . , µK} (encrypted)



130 application to machine learning

5.4.4.2 Computing the Minimum

As the reader may have noticed in Line 10, we have replaced the comparison step in
finding the nearest centroid for a data entry with a new function FindMin(∆1, . . . ,∆K)
due the change in data structure of A (from an integer vector to a boolean matrix) and
for readability. This new function outputs

A[i, ·]← FindMin(∆1, . . . ,∆K)

such that the ith row of A, A[i, ·], has all 0’s except at the column corresponding to
the centroid with the minimum distance to xi. The exact workings can be found in
Algorithm 19.

Algorithm 19: FindMin(∆1, . . . ,∆K)

Input: Distances ∆1, . . . ,∆K of current data entry i to all centroids µ1 . . . , µK
Input: Row i of Cluster Assignment matrix A, denoted A[i, ·]
// Set all entries 0 except the first

1 Set A[i, ·] = [1, 0, . . . , 0]
// Set the minimum to ∆1

2 Set minval = ∆1

3 for k = 2 to K do
// C is a Boolean value, C = 1 iff minval ≤ ∆k

4 C = Compare(minval,∆k)
5 for r = 1 to k − 1 do

// Set all previous values to 0 if new min is ∆k, don’t change

if new min is old min

6 A[i, r] = A[i, r] · C
7 end

// Set A[i, k] to 1 if ∆k is new min, 0 otherwise

8 A[i, k] = C ⊕ 1
9 if k 6= K then

// Update the minval variable unless we’re done

10 minval = MUX(C, minval,∆k)

11 end

12 end
Output: A[i, ·]

The idea is to run the Compare circuit to obtain a Boolean value:

Compare(x, y) =

1, x < y,

0, x ≥ y.

We start by comparing the first two distances ∆1 and ∆2 and setting the Boolean value
as

C := Compare(∆1,∆2).

Then we can assign the first two entries of A[i, ·] as

A[i, 1] = C and A[i, 2] = C ⊕ 1,
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so there is a 1 in the position of the smaller of the two entries, and a 0 at the other one.
We keep track of the current minimum through

minval := MUX(C,∆1,∆2).

We then compare minval to ∆3 etc. until we have reached ∆K . Note that we need
to modify all entries A[i, k] with k smaller than the current index by multiplying them
with the current Boolean value C: If C = 1, the minimum does not change through the
comparison, and all previous values are preserved. If the minimum does change, i.e., the
current index has the smallest distance, then C = 0 and thus all previous values are set
to 0.

We give a more formal proof of correctness:

Theorem 5.1. The output A[i, ·] ← FindMin(∆1, . . . ,∆K) is correct, i.e., it has a 1 at
the position of the minimum value, and 0 at all other positions.

Proof: We prove this by induction: More specifically, we show that after iteration k
(k = 2, . . . ,K) of the for-loop spanning lines 3 to 12 in Algorithm 19, A[i, ·] is correct
with respect to the first k positions – i.e., it has a 1 at the position of the minimum of
these first k positions, and a 0 at all others. This means that after all K − 1 iterations
of the loop, the final result is correct, as we have reached the length of the entire array.
Also, we show that the minimum value keeps track of the correct value.

For the beginning of our induction, we consider the first iteration of the loop, so k = 2.
We started by initializing A[i, ·] = [1, 0, . . . , 0], and minval = ∆1. Now we compute
C = Compare(minval,∆2) = Compare(∆1,∆2), so we have

C =

1, ∆1 < ∆2

0, ∆1 ≥ ∆2.

We then move on to the inner loop (lines 5 to 7), which just sets A[i, 1] = A[i, 1] · C.
After the inner loop, we set A[i, 2] = C ⊕ 1. To see correctness, we consider two cases:

Case 1: C = 1⇔ ∆1 < ∆2.

Then we have A[i, 1] = A[i, 1] · C = 1 · 1 = 1 and A[i, 2] = C ⊕ 1 = 1 ⊕ 1 = 0, so the
first two entries of A[i, ·] are [1, 0].

Since ∆1 < ∆2, this is correct.

Updating the minimum value yields
minval = MUX(C, minval,∆2) = MUX(1,∆1,∆2) = ∆1, which is also correct.

Case 2: C = 0⇔ ∆1 ≥ ∆2.

Then we have A[i, 1] = A[i, 1] · 0 = 1 · 0 = 0 and A[i, 2] = C ⊕ 1 = 0 ⊕ 1 = 1, so the
first two entries of A[i, ·] are [0, 1].

Since ∆1 ≥ ∆2, this is correct.

Updating the minimum value yields
minval = MUX(C, minval,∆2) = MUX(0,∆1,∆2) = ∆2, which is also correct.
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For the induction step, suppose that we are in iteration k of the outer loop, so the first
k − 1 entries and minval are correct according to the induction assumption. Let k∗

denote the position that is set to 1 in the first k− 1 entries of A[i, ·]. Then we compute

C = Compare(minval,∆k) =

1, minval < ∆k

0, minval ≥ ∆k.

We again consider two cases:
Case 1: C = 1⇔ minval < ∆k.
This means that the minimum did not change, so the position of the minimum should
remain at k∗.
In the inner loop, we compute A[i, r] = A[i, r]·C = A[i, r]·1 = A[i, r] for r = 1, . . . , k−1.
Thus, the first k − 1 entries do not change, so the 1 is still at position k∗.
After the inner loop, we compute A[i, k] = C ⊕ 1 = 1⊕ 1 = 0.
Thus, the first k positions of A[i, ·] are all 0 except for position k∗, which is 1. This is
correct.
Updating the minimum value yields
minval = MUX(C, minval,∆k) = MUX(1, minval,∆k) = minval, which is the old value
and thus also correct.
Case 2: C = 0⇔ minval ≥ ∆k.
This means that the minimum is now ∆k, so the position of the minimum should change
to k.
In the inner loop, we compute A[i, r] = A[i, r] · C = A[i, r] · 0 = 0 for r = 1, . . . , k − 1.
Thus, the first k − 1 entries are now all 0.
After the inner loop, we compute A[i, k] = C ⊕ 1 = 0⊕ 1 = 1.
Thus, the first k positions of A[i, ·] are all 0 except for position k, which is 1. This is
correct.
Updating the minimum value yields
minval = MUX(C, minval,∆k) = MUX(0, minval,∆k) = ∆k, which is also correct.

Thus, when we reach the end of the outer loop, the result A[i, ·] will be all 0 except for
the position of the minimum, which will have a 1.

To make the this algorithm clearer, consider the following example:

Example 5.1: Suppose we have

xi = 5, µ1 = 3, µ2 = 9, µ3 = 4 and µ4 = 0.

Then the distance vector, i.e., the distance between xi and the centroids, is

∆ = (2, 4, 1, 5).

We start with

Ai = [1, 0, 0, 0]
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and

minval = ∆1 = 2.

Round 1:
Compute

C = Compare(minval,∆2) = Compare(2, 4) = 1.

Set

Ai[1] = Ai[1] · C = 1 · 1 = 1

and

Ai[2] = C ⊕ 1 = 1⊕ 1 = 0.

Set

minval = MUX(C, minval,∆2) = MUX(1, 2, 4) = 2,

Ai is now

Ai = [1, 0, 0, 0].

Round 2:
Compute

C = Compare(minval,∆3) = Compare(2, 1) = 0.

Set

Ai[1] = Ai[1] · C = 1 · 0 = 0,

Ai[2] = Ai[2] · C = 0 · 0 = 0,

and

Ai[3] = C ⊕ 1 = 0⊕ 1 = 1.

Set

minval = MUX(C, minval,∆3) = MUX(0, 2, 1) = 1,

Ai is now

Ai = [0, 0, 1, 0].

Round 3:
Compute

C = Compare(minval,∆4) = Compare(1, 5) = 1.

Set

Ai[1] = Ai[1] · C = 0 · 1 = 0,

Ai[2] = Ai[2] · C = 0 · 1 = 0,

Ai[3] = Ai[3] · C = 1 · 1 = 1,

and

Ai[4] = C ⊕ 1 = 1⊕ 1 = 0.

Ai is now

Ai = [0, 0, 1, 0].

This means that centroid 3 (µ3 = 4) has the smallest distance to xi = 5, which can be
easily verified.
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Note that if the encryption scheme is one where multiplicative depth is important, it is easy
to modify FindMin to be depth-optimal: Instead of comparing ∆1 and ∆2, then comparing
the result to ∆3, then comparing that result to ∆4 etc., we could instead compare ∆1 to
∆2 and ∆3 to ∆4 and then compare those two results etc., reducing the multiplicative
depth from linear in the number of clusters K to logarithmic.

Since depth is not important for our implementation choice TFHE (recall from Sec-
tion 5.1.2 that the number of gates is the bottleneck), we implemented the function as
described in Algorithm 19.

We will now investigate the performance of our Stabilized K-Means-Algorithm compared
to the traditional K-Means-Algorithm.

5.4.4.3 Accuracy

The results in this subsection were obtained by running the algorithms in unencrypted
form. As we are interested in relative accuracy as opposed to absolute accuracy, we merely
care about the difference in the output of the modified and exact algorithms on the same
input (i.e., datasets and starting centroids), not so much about the output itself. Recall
that we obtained T = 15 as a good choice for number of rounds for the exact algorithm –
however, as explained above, the cluster centroids converge more slowly in the stabilized
version, so we will likely need more iterations here.

We now compare the performance of the stabilized version to the exact version. We
perform this comparison by examining the average (over the 1000 iterations) difference in
the misclassification rate. Thus, a value of 2 means that the stabilized version mislabeled
2% more instances than the exact version, and a difference of −1 means that the stabilized
version miscassified 1% less data points than the exact version4. The results for both
distance metrics can be seen in Figure 5.6.
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Figure 5.6: Average difference in misclassification rate between the stabilized and the
exact algorithm

(
(average % mislabeled stabilized) - (average % mislabeled exact)

)
.

4Note that Figure 5.6 does not really contain negative values – this is because the plotted values are
averages, and on average the stabilized version usually does slightly worse than the original K-Means-
Algorithm. However, in some individual instances, the stabilized version does perform better and thus
yields a negative value, see e.g. Figure 5.7.
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We see that while behavior varies slightly depending on the dataset, T = 40 iterations is
a reasonable choice since the algorithms do not generally seem to converge further with
more rounds. We will fix this parameter from here on, as it also exceeds the required
amount of iterations for the exact version to converge.

As the reader may have noticed, while the values in Figure 5.6 do converge, they do not
generally seem to reach a difference of 0, which would imply similar performance. However,
this is not surprising – we did significantly modify the original algorithm, not with the
intention of improving clustering accuracy, but rather to make it executable under an
FHE scheme at all. This added functionality naturally comes as a tradeoff, and we will
now examine the magnitude of the loss in accuracy in Figure 5.7 for the L1-norm, and in
Figure 5.8 for the L2-norm.
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Figure 5.7: Distribution of the difference in misclassification rate for stabilized vs. exactK-
Means-Algorithm

(
(% mislabeled stabilized) - (% mislabeled exact)

)
, L1-norm, 40 rounds.

We can see that in the vast majority of instances, the stabilized version performs exactly
the same as the the original K-Means-Algorithm. We also see that concrete performance
does depend on the dataset. In some cases, the modified version even outperforms the
original one: Interestingly, for the Lsun dataset, the stabilized version is actually slightly
better than the original algorithm in about 30% of the cases for the L1-norm. However,
we expect that most of the time, there will be a slight performance decrease. The fact
that there are some outliers where performance is drastically worse can easily be solved by
running the algorithm several times in parallel, and only keeping the best run. This can be
done under homomorphic encryption much like computing the minimum in Section 5.4.4.2,
but will not be implemented here.
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Figure 5.8: Distribution of the difference in misclassification rate for stabilized vs. exactK-
Means-Algorithm

(
(% mislabeled stabilized) - (% mislabeled exact)

)
, L2-norm, 40 rounds.

5.4.4.4 Efficiency

While we will have a more detailed discussion of the runtime of all algorithms on encrypted
data in Section 5.4.6, we would like to already present the performance gain at this point:
Recall that we estimated that running the exact algorithm from Section 5.4.3 on encrypted
data would take almost 1.5 years. In contrast, our Stabilized Algorithm can be run on
encrypted data in 25.93 days, or less than a month. This is less than 5% of the runtime
of the exact version. Note that this is single-thread computation time on our machine,
which could be greatly improved by parallelization as detailed in Section 5.4.6 (though
these improvements would apply to both algorithms, but we expect the ratio between
the two algorithms to stay the same). In conclusion, we feel that by modifying the K-
Means-Algorithm, we have traded a very small amount of accuracy for the ability to
perform clustering on encrypted data in a more reasonable amount of time, which is a
functionality that has not been achieved previously. The next section will deal with an
idea to improve runtimes even more.
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5.4.5 The Approximate Stabilized K-Means-Algorithm

Recall from Section 4.3.2 the idea of the approximate comparison: Since we have encoded
our numbers bitwise, we can delete the S least significant bits, which corresponds to
dividing the number by 2S and truncating. Let X̃ denote this truncated version of a
number X, and Ỹ that of a number Y . Then

Compare(X̃, Ỹ ) = Compare(X,Y ) if |X − Y | ≥ 2S ,

and may or may not return the correct result if |X − Y | < 2S . However, correspondingly,
if the result is wrong, the centroid that is wrongly assigned to the data entry is no more
than 2S further from the data entry than the correct one. Since the Compare function is
linear in the length of its inputs, speeding up this building block could make the entire
computation more efficient.

5.4.5.1 Algorithm Details

In the stabilized K-Means-Algorithm, we merely replace the comparison that is utilized
in the FindMin function (Line 4 in Algorithm 19) by this approximate comparison. We
propose to pick an initial S and decrease it over the course of the algorithm, so that
accuracy increases as we near the end.

5.4.5.2 Accuracy

For the following results, we scaled the data with the factor 220 and truncated to obtain
the input data. This means that for S = 5, a wrongly assigned centroid would be at
most 25 further from the data entry than the correct centroid on the scaled data - or no
more than 2−15 on the original data scale. We set S = min{7, (T/5)− 1} where T is the
number of iterations, and reduce S by one every 5 rounds. We again examine the average
(over 1000 iterations) difference in the misclassification rate to both the exact algorithm
in Figure 5.9 and the stabilized algorithm in Figure 5.10.
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Figure 5.9: Average difference in misclassification rate between the approximate and the
exact algorithm

(
(average % mislabeled approximate) - (average % mislabeled exact)

)
.
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Figure 5.10: Average difference in misclassification rate for approximate vs. stabilized
algorithm

(
(average % mislabeled approximate) - (average % mislabeled stabilized)

)
.

We see that again, T = 40 rounds is a reasonable choice because the algorithms do not
seem to converge further with more rounds – in fact, for some datasets, the performance of
the approximate algorithm actually seems to decrease compared to the stabilized version
(Figure 5.10) when the round number becomes very high. This may indicate that our
shortening parameter S = 7 in the beginning was too high in these cases, which shows
us that the optimal choice of S also depends on the underlying dataset and must be
determined carefully.
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We now again look at the distribution of difference in the misclassification rate. Figure 5.11
shows the distribution for the approximate versus the exact K-Means-Algorithm for the
L1-norm, and Figure 5.12 shows the same for the L2-norm.
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Figure 5.11: Distribution of the difference in misclassification rate for approximate vs.
exactK-Means-Algorithm

(
(% mislabeled approximate) - (% mislabeled exact)

)
, L1-norm,

40 rounds.
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Figure 5.12: Distribution of the difference in misclassification rate for approximate vs.
exactK-Means-Algorithm

(
(% mislabeled approximate) - (% mislabeled exact)

)
, L2-norm,

40 rounds.
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We see that the approximate version is sometimes better and sometimes worse than the
exact algorithm, but generally very close in performance, and that behavior depends on
the dataset – in short, it looks a lot like the Figures 5.7 and 5.8, which compared the
performance of the stabilized to the exact algorithm.
Thus, we lastly compare the distribution of difference in the misclassification rate between
the approximate and stabilized versions of the algorithm in Figure 5.13 for the L1-norm
and Figure 5.14 for the L2-norm .
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Figure 5.13: Distribution of the difference in misclassification rate for approximate vs.
stabilized K-Means-Algorithm

(
(% mislabeled approx.) - (% mislabeled stab.)

)
, L1-norm,

40 rounds.

We see that for the vast majority of the cases, the performance of the approximate version
is almost identical to the stabilized version or at most slightly worse. There is still the
effect in the Lsun dataset that the approximate version outperforms the original K-Means-
Algorithm in a significant amount of cases (though this effect mostly occurs for the L1-
norm), but it rarely does better than the stabilized version. This is not surprising, as it is
in essence the stabilized version but with an opportunity for errors. However, because it
is so close in performance to the stabilized version, we feel that this indeed seems to be a
convenient way of trading in a small amount of accuracy for more efficiency.
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Figure 5.14: Distribution of the difference in misclassification rate for approximate vs.
stabilized K-Means-Algorithm

(
(% mislabeled approx.) - (% mislabeled stab.)

)
, L2-norm,

40 rounds.

5.4.5.3 Efficiency

We now examine how much gain in terms of runtime we have from this modification. In
our experiments, we set S = 5 so that accuracy is comparable to the stabilized version.
Recall that it took about 1.5 years to run the exact algorithm with Fractional Encoding,
and 25.93 days to run the stabilized version. The approximate version runs in 25.79 days,
which means a difference of about 210.7 minutes. Of course, these runtimes are specific
to the library [LIBf] we used – a different choice like [LIBd], where bit multiplication
takes much longer than bit addition, may very well have a more significant improvement
in its runtime. Unfortunately, for our implementation choice, the gain is swallowed by
the magnitude of the total computation time, as the main bottleneck of the stabilized
K-Means-Algorithm is actually the computation of the L1-norm rather than the FindMin-
procedure. Thus, for this specific application and implementation library, the approximate
version may not be the best choice - however, for an algorithm that has a high number of
comparisons relative to other operations, there can still be huge performance gains in terms
of runtime: Recall from Section 4.3.2 that running just the comparison and approximate
comparison functions with the same parameters as in our implementation of the K-Means-
Algorithm (35 bits, 5 bits deleted for approximate comparison) yielded a drop in average
(over 1000 runs each) runtime from 3.24 seconds for the regular comparison to 1.51 seconds
for the approximate comparison. We see that this does make a big difference and may
be of interest for computations involving many comparisons, which is why we choose to
present the modification even though the effect was outweighed by other bottlenecks in
our K-Means-Algorithm computation.

In conclusion, the approximate comparison provides the user with an easy method of
trading in accuracy for faster computation, and most importantly, this loss of accuracy
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can be decreased as computations near the end. However, for the specific application
of the K-Means-Algorithm, these gains were unfortunately swallowed by the rest of the
computation.

5.4.6 Performance

We now present the runtimes for the stabilized and approximate versions of the K-Means-
Algorithm, along with the times for the exact version with the fractional encoding. Recall
that the dataset we used was the Lsun dataset from [Ult05], which consists of 400 rational
data entries of 2 dimensions, and has K = 3 clusters. We used the TFHE library, which
currently supports only single-core computations, and we encoded the numbers by scaling
them to integers with the factor 220 and using Hybrid Encoding of length 35 bits. The
timings we measured were for one round, and the approximate version used a deletion
parameter of S = 5. For the Fractional Encoding, the initial data was encoded with the
numerator in [211, 212) and denominator in roughly the same range. We also allotted 35
bits total for nominator and denominator each to allow a growth in required bitlength,
and set the shortening parameter to 12, but shortened by 11 every once in a while. The
fractional exact version was so slow that we ran it only on the first 10 data entries of the
dataset – we will extrapolate the runtimes in Section 5.4.6.1.

5.4.6.1 Runtimes for the Entire Algorithm on a Single Core

In this subsection, we present the runtimes for the entire K-Means-Algorithm on encrypted
data on our specific machine with single-thread computation. There is some extrapolation
involved, as the measured runtimes were for one round (so we multiplied by the round
number, which differs between the exact version and the other two, see Sections 5.4.3.1,
5.4.4.3 and 5.4.5.2), and in the fractional (exact) case, only for 10 data entries, so we
multiplied that time by 40. Note that these times are with no parallelization, so there is
much room for improvement as discussed in Section 5.4.6.2. The times can be found in
Table 5.1.

Exact (Fractional) Stabilized Approximate

Runtime
per Round

873.46 hours
≈ 36.39 days

15.56 hours 15.47 hours

Rounds required 15 40 40

Total Runtime 545.91 days
≈ 17.95 months

25.93 days
≈ 0.85 months

25.79 days
≈ 0.85 months

Table 5.1: Single-thread runtimes (extrapolated) on encryped data on our machine.

We see that even though the stabilized version needs more rounds than the exact version,
the latter is still significantly slower due to the Fractional Encoding. The approximate
version (always with S = 5 deleted bits in the comparison) would save about 210.7 min-
utes (3.5 hours) here compared to the stabilized algorithm – unfortunately, this is only a
small gain compared to the total runtime, as the bottlenecks in the encrypted K-Means-
Algorithm computation lie elsewhere.
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5.4.6.2 Parallelism

At this point, we would like to address the subject of parallelism. At the moment (last
accessed May 29th 2018), the TFHE library only supplies single-thread computations -
i.e., there is no parallelism. However, version 1.5 is expected soon, and this will allegedly
support multithreading. We first explain why this would make an enormous difference for
the runtime, and then quantify the involved timings.
Looking at all our versions of the K-Means-Algorithm, it is easy to see that they are highly
parallelizable: The Cluster Assignment step trivially so over the data entries (without
any time needed for recombination of the individual results), and the Move Centroids

similarly over the cluster centroids (the latter could also be parallelized over the data
entries with a little recombination effort, which should still be negligible compared to the
total running time). Since both steps are linear in the number K of centroids, the number
m of data entries, and the number T of round iterations, we thus present the following
runtimes as per centroid, per data entry, per round, per core. This allows a more flexible
estimate for when multithreading is supported, as the ability to actually use our 4 allotted
cores would lead to only about 1/4 of the total runtimes presented in Section 5.4.6.1.

5.4.6.3 Round Runtimes

We now present the runtime results for each of the three variants on encrypted data per
centroid, per data entry, per round, per core in Table 5.2. We do not include runtimes
for encoding/encryption and decryption/decoding, as these would be performed on the
user side, whereas the computation would be outsourced (encoding/encryption is ca. 1.5
seconds, and decoding/decryption is around 5 ms).

Exact (Fractional) Stabilized Approximate

Cluster

Assignment

1650.91 s ≈ 27.5 min 35.59 s 35.39 s

Move Centroids 969.47 s ≈ 16.2 min 11.09 s 11.03 s

Total 2620.38 s ≈ 43.7 min 46.68 s 46.42 s

Table 5.2: Runtimes per centroid, per data entry, per round, per core on encrypted data.

We see that the Fractional Encoding is extremely slow, which motivated the Stabilized
Algorithm in the first place. The approximate algorithm is faster than the stabilized
version, but the difference is small, as discussed previously.
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5.5 CONCLUSION

In conclusion, we have shown for different types of algorithms (training phase, classification
phase and unsupervised learning) from the field of machine learning how to implement
them on encrypted data. We have applied the results from the previous chapters, like
Hybrid Encoding, length bounding, and the approximate comparison, to showcase their
effect in improving the performance of these Machine Learning algorithms on encrypted
data. For the K-Means-Algorithm, we changed the underlying algorithm in order to
evaluate it on encrypted data in an efficient manner, resulting in a more FHE-friendly
variant with very similar accuracy to the original and only 5% of its runtime. We thus
saw the different approaches that can be taken when combining these two interesting fields
of research, and many of the building blocks we used may be of independent interest for
other applications of Fully Homomorphic Encryption.
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We have seen in this work that the choice of encoding makes a big difference in terms of
efficiency when performing FHE computations. We saw in Chapter 2 that both in terms of
additions and multiplications (and thus also total operations), it is best to choose the field
GF (2) as the encoding base in p-adic encoding. If multiplicative depth is the metric of
choice, the optimal encoding base depends on the length of the involved numbers and the
specific function to be applied, so there is no generic optimum. Extending the notion of
p-adic encoding to the base field GF (pk) for k ≥ 1, we saw that there is never a situation
where choosing k > 1 is beneficial, as the performance for all metrics is worse than both
encoding bases GF (p) and GF (p′) with p′ roughly the same size as pk.

In Chapter 3, we saw how to incorporate negative numbers, and examined the effort in-
curred by the two most common encodings, Two’s Complement and Sign-Magnitude. We
learned that Two’s Complement performs better when addding two numbers, but Sign-
Magnitude is superior for multiplying two numbers. To bridge this gap, we showed how to
switch from one encoding to the other and used this to construct a new encoding, called
Hybrid Encoding, which essentially replaces the costly Two’s Complement multiplication
by switching to Sign-Magnitude, multiplying there, and switching back. This new multi-
plication procedure is only slightly more costly than Sign-Magnitude multiplication, and
vastly outperforms Two’s Complement multiplication even for very small bitlengths.

To include rational numbers in our computations, Chapter 4 first presented a Fractional
Encoding, where numerator and denominator are separately encoded as integers. How-
ever, because this encoding has some downsides, we then showed how to scale rationals
to integers so that the scaling factor and the precision stay constant throughout arbi-
trary computations, enabling us to then apply all contributions from previous chapters
to these numbers. We also introduced other optimizations like length management to
prevent quadratic growth of the bitlength with each multiplication, and ways to perform
a comparison much faster if we accept a small chance of error.

Chapter 5 applied these contributions to algorithms from the field of Machine Learning,
showcasing the performance gain through our improvements while simultaneously translat-
ing the algorithms (the Linear Means Classifier and the Perceptron) into the FHE building
blocks derived in the previous chapter. Additionally, we took the K-Means-Algorithm,
which cannot be dissected into FHE-friendly functions because there is a division involved,
and instead changed the algorithm. We saw that the accuracy of the new algorithm is
comparable to the original K-Means-Algorithm, and in terms of runtime it far outperforms
Fractional Encoding. We have thus incorporated different types of Machine Learning algo-
rithms into the FHE context – an important endeavor in a time where Machine Learning is
becoming more and more popular, yet awareness for data privacy is simultaneously rising.

For future work, we see two main directions: Firstly, it would be interesting to further
expand the analysis of different encodings (not restricted to p-adic encoding) and also
incorporate more advanced algorithms, especially for multiplication. In unencrypted com-
putations, there are many algorithms that perform much faster than the schoolbook mul-
tiplication we use, but many rely on conditional IF-THEN statements. Since we cannot
see the conditional if it is encrypted, we always need to compute all conditional branches
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and combine them via a multiplexer, which usually makes them prohibitively compli-
cated. However, this need not hold for all of these algorithms – for example, the recursive
Karatsuba Multiplication Algorithm seems promising in this context. The second field of
interest would be to incorporate new classes of Machine Learning algorithms into the FHE
context, possibly changing the algorithms as necessary while preserving performance – pos-
sible choices would be other clustering algorithms, outlier detection, image recognition, or
online learning.
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[JA16] Angela Jäschke and Frederik Armknecht, Accelerating homomorphic compu-
tations on rational numbers, ACNS, 2016.
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[JA18] Angela Jäschke and Frederik Armknecht, Unsupervised machine learning on
encrypted data, In submission, 2018.

[JKM05] Somesh Jha, Louis Kruger, and Patrick D. McDaniel, Privacy preserving
clustering, ESORICS, 2005.

[JPH13] Arjan Jeckmans, Andreas Peter, and Pieter H. Hartel, Efficient privacy-
enhanced familiarity-based recommender system, ESORICS, 2013.

[JPWU10] Geetha Jagannathan, Krishnan Pillaipakkamnatt, Rebecca N. Wright, and
Daryl Umano, Communication-efficient privacy-preserving clustering, Trans.
Data Privacy, 2010.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan,
Gazelle: A low latency framework for secure neural network inference, IACR
Cryptology ePrint Archive (073), 2018.

[JW05] Geetha Jagannathan and Rebecca N. Wright, Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data, SIGKDD, 2005.

[KGV16] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan, SHIELD:
scalable homomorphic implementation of encrypted data-classifiers, IEEE
Trans. Computers, 2016.

[KL15] Miran Kim and Kristin E. Lauter, Private genome analysis through homo-
morphic encryption, IACR Cryptology ePrint Archive (965), 2015.

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon,
Logistic regression model training based on the approximate homomorphic
encryption, IACR Cryptology ePrint Archive (254), 2018.

[KSW+18] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang,
Secure logistic regression based on homomorphic encryption, IACR Cryptol-
ogy ePrint Archive (074), 2018.

[KT16] Eunkyung Kim and Mehdi Tibouchi, FHE over the integers and modular
arithmetic circuits, CANS, 2016.

[LIBa] LIBRARY: Coron’s DGHV, https://github.com/coron/fhe.



152 BIBLIOGRAPHY

[LIBb] LIBRARY: FHEW, https://github.com/lducas/FHEW.

[LIBc] LIBRARY: FV vs YASHE, https://github.com/tlepoint/homomorphic-
simon.

[LIBd] LIBRARY: HELIB, https://github.com/shaih/HElib.

[LIBe] LIBRARY: SEAL, https://www.microsoft.com/en-
us/research/project/simple-encrypted-arithmetic-library/.

[LIBf] LIBRARY: TFHE, https://tfhe.github.io/tfhe.

[LJY+15] Xiaoyan Liu, Zoe L. Jiang, Siu-Ming Yiu, Xuan Wang, Chuting Tan, Ye Li,
Zechao Liu, Yabin Jin, and Jun-bin Fang, Outsourcing two-party privacy
preserving k-means clustering protocol in wireless sensor networks, MSN,
2015.

[LKS16] Wenjie Lu, Shohei Kawasaki, and Jun Sakuma, Using fully homomorphic
encryption for statistical analysis of categorical, ordinal and numerical data,
IACR Cryptology ePrint Archive (1163), 2016.
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Appendix A

OVERVIEW OF ALGORITHMS

For reader convenience, we repeat the building block algorithms from Chapter 3 and their
costs here.

A.1 UNSIGNED NUMBERS

a.1.1 Multiplexing

a.1.1.1 Computation

MUX(c, a, b) = c · a+ (1 + c) · b = c · (a+ b) + b.

a.1.1.2 Effort

Field Additions Field Multiplications Depth

Total 2 1 max{depth(a), depth(b), depth(c)}+ 1
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a.1.2 Comparison of Unsigned Numbers

a.1.2.1 Computation

Input: Natural number a = an . . . a1a0
Input: Natural number b = bn . . . b1b0
// Set result to 0

1 res = 0
2 for i = 0 to n do

// Set temp to 0 if ai 6= bi and to 1 if ai = bi
3 temp = ai + bi + 1

// If temp = 1 (inputs are equal), don’t change res. If temp = 0
(inputs are unequal), set res = bi

4 res = MUX(temp, res, bi)

5 end
// res = 1⇔ a < b
Output: res

a.1.2.2 Effort

Field Additions Field Multiplications Depth

Total 4n n n

a.1.3 Addition of Unsigned Numbers

a.1.3.1 Computation

ci = ai + bi + ri, ri = (ai−1 + bi−1) · (ai−1 + ri−1) + ai−1.

a.1.3.2 Effort

Additions Multiplications Depth

Total 5n− 4 n n

a.1.4 Subtraction of Unsigned Numbers

a.1.4.1 Computation

1. Flip all bits of b = bn−1 . . . b1b0 to obtain b̄ = b̄n−1 . . . b̄1b̄0.

2. Compute a − b = a + b̄ + 1 using unsigned addition and discarding the (n + 1)th

result bit.

a.1.4.2 Effort

Additions Multiplications Depth

Total 11n− 14 2n− 2 n− 1
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a.1.5 Multiplication of Unsigned Numbers

a.1.5.1 Computation

1. Compute ai ·bj for all i = 0, . . . , n−1, j = 0, . . . ,m−1 and arrange into multiplication
matrix.

2. Sum up the rows.

a.1.5.2 Effort

With NatAdd denoting the addition of unsigned numbers:

blog2(m)c∑
i=1

⌈m
2i

⌉
· Eff(NatAdd(n+ 2i−1 + i− 2)),

where Eff is the number of additions or multiplications, respectively. The maximum depth
is m+ n− 1.
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A.2 TWO’S COMPLEMENT

a.2.1 Addition in Two’s Complement

a.2.1.1 Computation

Like unsigned addition, but with sign extension.

a.2.1.2 Effort

Additions Multiplications Depth

Total 5n− 2 n n

a.2.2 Multiplication in Two’s Complement

a.2.2.1 Computation

Assume that our numbers have lengths m and n, respectively.

1. Increase the bitlength of both numbers through sign extension (as described above)
to length m+ n.

2. Perform regular binary multiplication of the two resulting numbers. Note that to
add the individual rows, we must use the addition function from above.

3. Keep only the rightmost n+m bits.

a.2.2.2 Effort

Additions Multiplications Depth

Total 5(m2+n2)−19(m+n)
2 + 5mn+ 10 m · n+ (n+m−2)·(n+m−1)

2 m+ n− 1

a.2.3 Negation in Two’s Complement

a.2.3.1 Computation

1. Flip all bits (i.e., XOR them with 1).

2. Add 1 to the resulting number using unsigned addition and discarding the (n+ 1)th

result bit.

a.2.3.2 Effort

Additions Multiplications Depth

Total 6n− 7 n− 1 n− 1
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a.2.4 Comparison in Two’s Complement

a.2.4.1 Computation

Let NatComp denote the comparison of unsigned binary numbers.

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Compare as if natural numbers, result is correct if signs are

equal

1 c = NatComp(a, b)
// The sign bits are an and bn

2 res = an · (bn + 1) + (an + bn + 1) · c
Output: res

a.2.4.2 Effort

Field Additions Field Multiplications Depth

Total 4n+ 4 n+ 2 n+ 1
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A.3 SIGN-MAGNITUDE

a.3.1 Addition in Sign-Magnitude

a.3.1.1 Computation

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Get numbers without sign bits, i.e., |a| and |b|.

1 ã = an−1 . . . a1a0
2 b̃ = bn−1 . . . b1b0
// res1 is the unsigned addition of |a| and |b| with a’s sign bit.

3 res1 = an||NatAdd(ã, b̃)
// res2 is the unsigned subtraction of |b| − |a| with b’s sign bit.

4 res2 = bn||NatSub(b̃, ã)
// res3 is the unsigned subtraction of |a| − |b| with a’s sign bit.

5 res3 = an||NatSub(ã, b̃)
// c1 = 1 if an 6= bn, and 0 if the signs are equal.

6 c1 = an + bn
// c2 = 1 if ã < b̃, and 0 otherwise.

7 c2 = NatComp(ã, b̃)
// temp = res2 if c2 = 1, and temp = res3 otherwise.

8 temp = MUX(c2, res2, res3)
// res = temp if c1 = 1, and res = res1 otherwise.

9 res = MUX(c1, temp, res1)
Output: res

a.3.1.2 Effort

Field Additions Field Multiplications Depth

Total 35n− 60 8n− 9 n+ 1
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a.3.2 Multiplication in Sign-Magnitude

a.3.2.1 Computation

Delete the sign bits an and bn, multiply the results as unsigned integers, and append the
sign bit an + bn.

a.3.2.2 Effort

To multiply two numbers with n and m bits:

Field Additions Field Multiplications Depth

Total 1 +
blog2(m−1)c∑

i=1

⌈
m−1
2i

⌉
·
(
5 · (n+ 2i−1 + i)− 19

) blog2(m−1)c∑
i=1

⌈
m−1
2i

⌉
·
(
n+ 2i−1 + i− 3

)
m+ n− 3

a.3.3 Negation in Sign-Magnitude

a.3.3.1 Computation

Flip the MSB (i.e., set an = an + 1).

a.3.3.2 Effort

Field Additions Field Multiplications Depth

Total 1 0 0

a.3.4 Comparison in Sign-Magnitude

a.3.4.1 Computation

Denote the comparison of unsigned binary numbers as NatComp.

Input: Signed number a = an . . . a1a0
Input: Signed number b = bn . . . b1b0
// Get numbers without sign bits, i.e., |a| and |b|.

1 ã = an−1 . . . a1a0
2 b̃ = bn−1 . . . b1b0
// Compare absolute values as natural numbers

3 c = NatComp(ã, b̃)
// The sign bits are an and bn

4 res = an + (an + bn + 1) · c
Output: res

a.3.4.2 Effort

Field Additions Field Multiplications Depth

Total 4n− 1 n n
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A.4 HYBRID ENCODING

a.4.1 Switching

a.4.1.1 Computation

Two’s Complement to Sign-Magnitude:

Input: Signed number a = an . . . a1a0 in Two’s Complement encoding
// Get the negative of a in Two’s Complement encoding.

1 ã = TCNeg(a)
// Get the negative of ã in Sign-Magnitude encoding.

2 ā = SMNeg(ã)
// Assign ā to the result if a is negative (an = 1), and assign a

otherwise.

3 res = MUX(an, ā, a)
Output: res

Sign-Magnitude to Two’s Complement:

Input: Signed number a = an . . . a1a0 in Sign-Magnitude encoding
// Get the negative of a in Sign-Magnitude encoding.

1 ã = SMNeg(a)
// Get the negative of ã in Two’s Complement encoding.

2 ā = TCNeg(ã)
// Assign ā to the result if a is negative (an = 1), and assign a

otherwise.

3 res = MUX(an, ā, a)
Output: res

a.4.1.2 Effort

Field Additions Field Multiplications Depth

Total 8n− 6 2n− 1 n
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a.4.2 Multiplication in Hybrid Encoding

a.4.2.1 Computation

Input: Signed number a = an . . . a1a0 in Two’s Complement encoding
Input: Signed number b = bm . . . b1b0 in Two’s Complement encoding
// Switch a and b to Sign-Magnitude encoding.

1 ã = SwitchTCSM(a)

2 b̃ = SwitchTCSM(b)
// Multiply the values.

3 temp = SMMult(ã, b̃)
// Switch temp back to Two’s Complement encoding.

4 res = SwitchSMTC(temp)
Output: res

a.4.2.2 Effort

Field Additions Field Multiplications Depth

blog2(m−1)c∑
i=1

( ⌈
m−1
2i

⌉ blog2(m−1)c∑
i=1

( ⌈
m−1
2i

⌉
Total ·

(
5 · (n+ 2i−1 + i)− 19

) )
·
(
n+ 2i−1 + i− 3

) )
m+ n

+16(m+ n)− 17 +4(m+ n)− 3
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