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Introduction

• Natural Language Processing (NLP) focuses on analysis and synthesis
of natural language

• Linguistic phenomena instantinate in linguistic data, showing
interconnections and relationships

• Graph clustering, as an unsupervised learning technique, captures the
implicit structure of the data

• In this tutorial, we will learn how to do it!

Core Idea: Graphs are a Representation
After constructing it explicitly, we can extract useful knowledge from it.
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Successful Applications

Graph clustering helps in addressing very challenging NLP problems:
• word sense induction (Biemann, 2006)
• cross-lingual semantic relationship induction (Lewis et al., 2013)
• unsupervised term discovery (Lyzinski et al., 2015)
• making sense of word embeddings (Pelevina et al., 2016)
• text summarization (Azadani et al., 2018)
• entity resolution from multiple sources (Tauer et al., 2019)

Other well-known applications of graph-based methods (not clustering):
• PageRank, a citation-based ranking algorithm (Page et al., 1999)
• BabelNet, a multilingual semantic network (Navigli et al., 2012)
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Graph Theory Recap I

• A graph is a tuple G = (V,E), where V is a set of objects called nodes
and E ⊆ V 2 is a set of pairs called edges

• Graphs can be undirected (edges are unordered) or directed (edges
are called arcs)
• The maximal number of edges in an undirected graph is |V |(|V |−1)2
• The maximal number of arcs in a directed graph is |V |(|V | − 1)

• Graphs can be weighted, i.e., there is w : (u, v)→ R, ∀(u, v) ∈ E
• A neighborhood Gu = (Vu, Eu) is a subgraph induced from G

containing the nodes incident to u ∈ V without u
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Graph Theory Recap II

• There is a lot of ways to represent a graph, the most common is
adjacency matrix Ai,j = 1E(Vi, Vj):

A =



0 1 0 1 0 0
1 0 1 1 1 1
0 1 0 0 0 1
1 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0


streambank

1

bank

2

building

3

riverbank4

streamside

5

bank building

6

• Sparse matrices can be efficiently represented in such formats as
CSC (Duff et al., 1989), CSR (Buluç et al., 2009), etc.

• A node degree is the number of nodes incident to this node, e.g.,
deg(riverbank) = 3; the maximal degree ∆ in this graph is 5

• In a directed graph, succ(u) ⊂ V is a set of successors,
which are the nodes reachable from u ∈ V
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Graph Clustering: Problem Formulation

• So, given an undirected graph G = (V,E), we are interested in
obtaining a set cover for V called clustering C of this graph:

V =
⋃

Ci∈C

Ci

• Hard clustering algorithms (partitionings) produce non-overlapping
clusters: Ci ∩ Cj = ∅ ⇐⇒ i 6= j,∀Ci, Cj ∈ C

• Soft clustering algorithms permit cluster overlapping, i.e., a node can
be a member of several clusters: ∃u ∈ V : |Ci ∈ C : u ∈ Ci| > 1

• Like in other unsupervised learning tasks, similar objects are expected
to be close, while non-similar are not

• Every algorithm defines what good clustering is
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Graph Clustering: Example

Hard Clustering

1

2

3

4 567 8

9

10 11

Soft Clustering

streambank bank building

riverbank

streamside bank building
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Can We Trust Graphs?

Graphs representing languistic
phenomena exhibit small world
properties (Biemann, 2012):
• co-occurrence networks tend to

follow the Dorogovtsev-Mendes
distribution (2001),

• semantic networks tend to follow
the scale-free properties
(Steyvers et al., 2005), etc.

Yes We Can
These properties do not depend on a
language w.r.t. the parameters.

Source: Steyvers et al. (2005)
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Clustering Algorithms

We will focus on four different clustering algorithms:
• Chinese Whispers (CW)
• Markov Clustering (MCL)
• MaxMax
• Watset

There are a lot of other clustering algorithms!
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Chinese Whispers (CW)

• Chinese Whispers (CW) is a randomized
hard clustering algorithm for both
weighted and unweighted graphs
(Biemann, 2006)

• Named after a famous children’s game,
it uses random shuffling to induce
clusters

• Originally designed for such NLP tasks
as word sense induction, language
separation, etc.

Source: Pixabay (2015)
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Chinese Whispers: Algorithm

Input: graph G = (V,E), weight : (Gu, i)→ R,∀u ∈ V, 1 ≤ i ≤ |V |
Output: clustering C

1: label(Vi)← i for all 1 ≤ i ≤ |V | . Initialization
2: while labels change do . labels(Gu) is a set of node labels in Gu

3: for all u ∈ V in random order do
4: label(u)← arg maxi∈labels(Gu) weight(Gu, i)

. Pick the most weighted label in Gu

5: C ← {{u ∈ V : label(u) = i} : i ∈ labels(G)}
6: return C
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Chinese Whispers: Label Weighting

Typical strategies to weigh the labels in the neighborhood Gu of u in G:
• Sum of the edge weights corresponding to the label i (top):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=iw(u, v)

• Use the node degree deg(v) to amortize highly-weighted edges
(nolog):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=i

w(u,v)
deg(v)

• Use log-degree for amortization (log):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=i

w(u,v)
log(1+deg(v))
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Chinese Whispers: Example

0 We consider an example on a graph from Biemann (2006, Figure 2)
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Chinese Whispers: Discussion

Pros:
+ Very simple and non-parametric
+ Very fast, the running time is O(|E|)
+ Works well for a lot of NLP tasks

Cons:
− Every run yields different results
− Node oscillation is possible
− No convergence guarantee

Implementations:
® https://github.com/uhh-lt/chinese-whispers

® https://github.com/nlpub/chinese-whispers-python
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Markov Clustering (MCL)

• Markov Clustering (MCL) is a stochastic
hard clustering algorithm that
simulates flows in a graph using
random walks (van Dongen, 2000)

• The algorithm makes a series of
adjacency matrix transformations to
obtain the partitioning: expansion and
inflation

• MCL has been applied in a number of
different domains, mostly in
bioinformatics (Vlasblom et al., 2009)

• Similar to Affinity Propagation (Frey
et al., 2007)

Source: Pixabay (2013)
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Markov Clustering: Algorithm

Input: graph G = (V,E), adjacency matrix A,
expansion parameter e ∈ N, inflation parameter r ∈ R+

Output: clustering C
1: Ai,i ← 1 for all 1 ≤ i ≤ |V | . Add self-loops
2: Ai,j ← Ai,j∑

1≤k≤|V | Ak,j
for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Normalize

3: while A changes do
4: A← Ae . Expand
5: Ai,j ← Ar

i,j for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Inflate
6: Ai,j ← Ai,j∑

1≤k≤|V | Ak,j
for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Normalize

7: C ← {{Vj ∈ V : Ai,j 6= 0} : 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V |}
8: return C
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Markov Clustering: Example

0 We consider an example on a graph from Biemann (2006, Figure 2)
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Markov Clustering: Discussion

Pros:
+ Eventually, the algorithm converges (but there is no formal proof)
+ Works well for a lot of NLP tasks

Cons:
− Relatively slow, the worst-case running time is O(|V |3)
− An efficient implementation requires sparse matrices

Implementations:
® https://micans.org/mcl/
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This Clustering is Very Hard!

• OK, but how about the fact that the
word “bank” is polysemeous?

• Hard clustering algorithms will treat
this word incorrectly

streambank bank building

riverbank

streamside bank building

Source: Pixabay (2015)
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MaxMax

• MaxMax is a soft clustering algorithm
designed for weighted graphs, such as
co-occurrence graphs (Hope et al.,
2013a)

• MaxMax transforms the input
undirected weighted graph G into an
unweighted directed graph G′

• Then, it extracts quasi-strongly
connected subgraphs from G′, which are
overlapping clusters

Source: Pixabay (2016)
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MaxMax: Algorithm

Input: graph G = (V,E), weigthing function w : E → R
Output: clustering C

1: E′ ← ∅
2: for all {u, v} ∈ E do
3: if w(u, v) = maxv′∈Vu w(u, v′) then
4: E′ ← E′ ∪ (v, u)
5: G′ = (V,E′)
6: root(u)← true for all u ∈ V
7: for all u ∈ V do . Can be done using BFS
8: if root(u) then
9: for all v ∈ succ(u) do . Successors of u in G′

10: root(u)← false
11: C ← {{u} ∪ succ(u) : u ∈ V, root(u)}
12: return C
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MaxMax: Example

0 We consider an example from Hope et al. (2013a, Figure 3)
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MaxMax: Discussion

Pros:
+ The algorithm is non-parametric
+ Very fast, the running time is O(|E|), like CW
+ Works well for word sense induction (Hope et al., 2013b)

Cons:
− Assumptions are not clear
− Applicability seems to be limited (Ustalov et al., 2017)
− No implementation offered by the authors
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Graph-Based Word Sense Induction (WSI)

• Dorow et al. (2003) proposed a nice
approach for word sense induction
(WSI) using graphs

• Extract the node neighborhood, remove
the node, and cluster the remaining
graph

• Every cluster Ci corresponds to the
context of the i-th sense of the node

streambank bank building

riverbank

streamside bank building

streambank building

riverbank

streamside bank building

Source: Pixabay (2016)
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Watset

• Watset is not a clustering algorithm
• However, it is a meta-algorithm for

turning hard clustering algorithms into
soft clustering algorithms

• Watset transforms the input graph by
replacing each node with one or more
senses of this node (Ustalov et al., 2017)

• Under the hood Watset does word
sense induction (Dorow et al., 2003)
and context disambiguation (Faralli
et al., 2016)

wat
Source: Pixabay (2016)
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Watset: Algorithm I

Input: graph G = (V,E), algorithms ClusterLocal and ClusterGlobal,
similarity measure sim : (ctx(a), ctx(b))→ R,∀ctx(a), ctx(b) ⊂ V

Output: clusters C
1: for all u ∈ V do . Local Step: Sense Induction
2: senses(u)← ∅
3: Vu ← {v ∈ V : {u, v} ∈ E} . Note that u /∈ Vu
4: Eu ← {{v, w} ∈ E : v, w ∈ Vu}
5: Gu ← (Vu, Eu)

6: Cu ← ClusterLocal(Gu) . Cluster the open neighborhood of u
7: for all Ci

u ∈ Cu do
8: ctx(ui)← Ci

u

9: senses(u)← senses(u) ∪ {ui}
10: V ←

⋃
u∈V senses(u) . Global Step: Sense Graph Nodes
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Watset: Algorithm II

11: for all û ∈ V do . Local Step: Context Disambiguation
12: ĉtx(û)← ∅
13: for all v ∈ ctx(û) do . û ∈ V is a sense of u ∈ V
14: v̂ ← arg maxv′∈senses(v)sim(ctx(û) ∪ {u}, ctx(v′))

15: ĉtx(û)← ĉtx(û) ∪ {v̂}
16: E ← {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)} . Global Step: Sense Graph Edges
17: G ← (V, E) . Global Step: Sense Graph Construction
18: C ← ClusterGlobal(G) . Global Step: Sense Graph Clustering
19: C ← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} . Remove the sense labels
20: return C
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Watset: Example

0 We consider an example from Ustalov et al. (2018a)
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Watset: Discussion

Pros:
+ Conceptually, very simple
+ Scales very well
+ Shows very good results on very different tasks (Ustalov et al., 2017;

Ustalov et al., 2018b)
Cons:
− Slow; computational complexity of disambiguation is O(∆4)

− As good as the underlying clustering algorithms are good
Implementations:
® https://github.com/dustalov/watset

® https://github.com/nlpub/watset-java

The Java implementation of Watset also contains CW, MCL, and
MaxMax. Feel free to play with them!
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Evaluation

• Clustering is an unsupervised task, so evaluation is not easy
• For evaluating hard clustering algorithms, it is possible to use the

evaluation techniques for flat clustering, see Manning et al. (2008,
Chapter 16)

• Evaluation of soft clustering is an even more challenging task, we
will focus on paired F-score and normalized modified purity

• There are a lot of others, such as generalized conventional mutual
information (Viamontes Esquivel et al., 2012), etc.

• Also, apparently, NLP researchers do not pay enough attention to
statistical significance of their results (Dror et al., 2018)
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Paired Precision, Recall, and F1-score

• Every cluster Ci can be represented as a complete graph of
|Ci|(|Ci|−1)

2 undirected edges (pairs) P i

• A clustering C can be then compared to a gold clustering CG using
paired F-score between pair unions P and PG (Manandhar et al., 2010):

TP = |P ∪ PG|, FP = |P \ PG|, FN = |PG \ P |

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 = 2

Pr× Re

Pr + Re

• This is a very straightforward and interpretable approach, but it does
not explicitly assess the quality of overlapping clusters
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Normalized Modified Purity

• Purity is a measure of the extent to which clusters contain a single
class (Manning et al., 2008), which is useful for evaluating hard
clusterings:

PU =
1

|C|

|C|∑
i

max
j
|Ci ∩ Cj

G|

• Kawahara et al. (2014) proposed normalized modified purity for soft
clustering that considers weighted overlaps δCi(Ci ∩ Cj

G):

nmPU =
1

|C|

|C|∑
i s.t. |Ci|>1

max
1≤j≤|CG|

δCi(Ci ∩ Cj
G)

niPU =
1

|CG|

|G|∑
j=1

max
1≤i≤|C|

δ
Cj

G
(Ci ∩ Cj

G)

F1 = 2
nmPU× niPU

nmPU + niPU
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Statistical Significance

• It is not enough just to measure the
clustering quality, it is necessary to
evaluate the statistical significance!

• However, the use of statistical tests is
not yet widespread in NLP
experiments (Dror et al., 2018)

• Use computationally-intensive
randomization tests for precision, recall
and F-score (Yeh, 2000)
• “No difference in means after

shuffling”
• Consider the sigf toolkit (Padó, 2006)

that implements these tests in Java

Source: Pixabay (2016)
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Randomization Test for Average Values

Input: vectors ~A and ~B, number of trials N ∈ N
Output: two-tailed p-value

1: uncommon← {1 ≤ i ≤ | ~A| : Ai 6= Bi}
2: s← 0
3: for all 1 ≤ n ≤ N do
4: ~A′ ← ~A . Copy ~A
5: ~B′ ← ~B . Copy ~B
6: for all i ∈ uncommon do
7: if rand(1) = 0 then . Flip a coin
8: A′

i, B
′
i ← Bi, Ai . Shuffle by swapping the values if tails

9: if |mean( ~A′)−mean( ~B′)| ≥ |mean( ~A)−mean( ~B)| then
10: s← s + 1 . The test is two-tailed
11: return s

N . This value can be compared to a significance level
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Randomization Test for Average Values: Example

Example from Padó (2006):
• ~A = (1, 2, 1, 2, 2,2, 0), mean( ~A) ≈ 1.4286

• ~B = (4, 5, 5, 4, 3,2, 1), mean( ~B) ≈ 3.4286

• uncommon = {1, 2, 3, 4, 5, 7}
• |mean( ~A)−mean( ~B)| = 2

• N = 106

• p ≈ 0.0313

• Given the significance level of 0.05, the difference is significant
This technique can be generalized to F-score and others (Yeh, 2000).
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Case Studies

We describe two case studies in our paper
draft for COLI (Ustalov et al., 2018a):
• Synset Induction from Synonymy

Dictionaries, from our ACL 2017 paper
(Ustalov et al., 2017)

• Unsupervised Semantic Frame
Induction, from our ACL 2018 paper
(Ustalov et al., 2018b)

Source: Pixabay (2017)
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Synset Induction

• Ontologies and thesauri are crucial to
many NLP applications that require
common sense reasoning

• The building blocks of
WordNet (Fellbaum, 1998) are synsets,
sets of mutual synonyms
{broadcast, program, programme}

• Can we build synsets from scratch using
just synonymy dictionaries like
Wiktionary?

Source: Pixabay (2016)
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Synset Induction: Approach

1 Construct a weighted undirected graph using synonymy pairs from
Wiktionary as edges

2 Weight them using cosine similarity between the corresponding word
embeddings

3 Cluster this graph and treat the clusters as the synsets

Code and Data: https://github.com/dustalov/watset
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Synset Induction: Results

• Watset showed the best results as according to paired F1-score

CW MCL MaxMax ECO CPM Watset
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Synset Induction: Example

Size Synset
2 {decimal point, dot}
2 {wall socket, power point}
3 {gullet, throat, food pipe}
3 {CAT, computed axial tomography, CT}
4 {microwave meal, ready meal, TV dinner, frozen dinner}
4 {mock strawberry, false strawberry, gurbir, Indian strawberry}
5 {objective case, accusative case, oblique case, object case,

accusative}
5 {discipline, sphere, area, domain, sector}
6 {radio theater, dramatized audiobook, audio theater, radio play,

radio drama, audio play}
6 {integrator, reconciler, consolidator, mediator, harmonizer, uniter}
7 {invite, motivate, entreat, ask for, incentify, ask out, encourage}
7 {curtail, craw, yield, riding crop, harvest, crop, hunting crop}
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Frame Induction

• A semantic frame is a collection of facts
that specify features, attributes, and
functions (Fillmore, 1982)

FrameNet Role Lexical Units (LU)
Perpetrator Subject kidnapper, alien, militant
FEE Verb snatch, kidnap, abduct
Victim Object son, people, soldier, child

• Used in question answering, textual
entailment, event-based predictions of
stock markets, etc.

• Can we build frames from scratch using
just subject-verb-object (SVO) triples like
DepCC (Panchenko et al., 2018)? Source: Pixabay (2017)
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Frame Induction: FrameNet

Source: https://framenet.icsi.berkeley.edu/fndrupal/luIndex
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Frame Induction: Approach

1 Use word embeddings to embed
each triple t = (s, v, o) in a
low-dimensional vector space as
~t = ~s⊕ ~v ⊕ ~o

2 Construct a weighted undirected
graph using k ∈ N nearest
neighbors of each triple vector

3 Cluster this graph and extract
triframes by aggregating the
corresponing roles
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Code and Data: https://github.com/uhh-lt/triframes
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Frame Induction: Results

• Triframes outperformed state-of-the-art frame induction approaches,
including Higher-Order Skip-Gram (HOSG) and LDA-Frames, on the
FrameNet corpus (Baker et al., 1998) as according to F1 (nmPU)

LDA−Frames NOAC HOSG Trifr. Watset
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40
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F
−

sc
or

e

Element: verb, subject, object, frame
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Frame Induction: Examples I

Subjects: Company, firm, company
Verbs: buy, supply, discharge, purchase, expect
Objects: book, supply, house, land, share, company, grain, which, item,

product, ticket, work, this, equipment, House, it, film, water,
something, she, what, service, plant, time

Subjects: student, scientist, we, pupil, member, company, man, nobody, you,
they, US, group, it, people, Man, user, he

Verbs: do, test, perform, execute, conduct
Objects: experiment, test

Subjects: people, we, they, you
Verbs: feel, seek, look, search
Objects: housing, inspiration, gold, witness, partner, accommodation,

Partner
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Frame Induction: Examples II

Subjects: you, she, he, return, they, we, themselves, road, help, who
Verbs: govern, discourage, resemble, encumber, urge, pummel,

...912 more verbs..., swarm, anticipate, spew, derail, emit, snap
Objects: you, pass, she, he, it, product, change, solution, total, any, wall,

they, something, people, classic, this, interest, itself, flat, place,
part, controversy

Subjects: Word, glue, pill, speed, drug, pot, they, those, mine, item, resource,
this, its, it, something, most, horse, material, chemical, plant,
information, word

Verbs: use, attach, apply, follow
Objects: we, they, you, it, report, he

Subjects: he
Verbs: phone, book
Objects: you
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Which Algorithm to Choose?

? Is your graph relatively small and you need hard clustering?
U Markov Clustering

? Is your graph big and you still need hard clustering?
U Chinese Whispers

? Do you need soft clustering?
U Watset
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...but My Objects are Just Vectors!

It is possible to represent the objects in a
vector space as a graph (von Luxburg, 2007):
• use the k nearest neighbors,
• use all the neighbors within the
ε-radius,

• use a fully-connected weighted graph
Think of a graph as a discretized vector space.

Source: Wikipedia (2007)
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Resources

Events:
• TextGraphs, a Workshop on Graph-Based Algorithms for NLP,
http://www.textgraphs.org/

Books:
• Graph-Based NLP & IR (Mihalcea et al., 2011)
• Structure Discovery in Natural Language (Biemann, 2012)

Datasets:
• Stanford Network Analysis Project,
https://snap.stanford.edu/data/

• Leipzig Corpora Collection (Goldhahn et al., 2012)
• Wiktionary (Zesch et al., 2008; Krizhanovsky et al., 2013)

NLPub, https://nlpub.ru/ (in Russian)
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Conclusion

• A graph is a meaningful representation;
clustering captures its implicit structure as
exhibited by data

• The algorithms are well-developed and ready
to use as soon as a graph is constructed

• Not covered here:
• spectral graph theory, see a great tutorial by

von Luxburg (2007)
• community detection algorithms from

network science, see Fortunato (2010)
• A few promising research directions:

• graph convolutional networks (Marcheggiani
et al., 2017),

• graph embeddings (Goyal et al., 2018)
Source: Pixabay (2016)
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Thank You!

Questions?
Contacts
Dr. Dmitry Ustalov,
Data and Web Science Group,
University of Mannheim
• https://dws.informatik.
uni-mannheim.de/en/people/
researchers/dr-dmitry-ustalov/

• dmitry@informatik.uni-mannheim.de

Revision: 17533ee

Dr. Dmitry Ustalov (UMA) Graph Clustering for NLP October 19, 2018 53 / 53

https://dws.informatik.uni-mannheim.de/en/people/researchers/dr-dmitry-ustalov/
https://dws.informatik.uni-mannheim.de/en/people/researchers/dr-dmitry-ustalov/
https://dws.informatik.uni-mannheim.de/en/people/researchers/dr-dmitry-ustalov/
mailto:dmitry@informatik.uni-mannheim.de


References I

Azadani, M. N., Ghadiri, N., and Davoodijam, E. (2018). Graph-based biomedical text summarization: An itemset mining and sentence
clustering approach. In: Journal of Biomedical Informatics 84, pp. 42–58. doi: 10.1016/j.jbi.2018.06.005.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project. In: Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 1. ACL ’98.
Montreal, QC, Canada: Association for Computational Linguistics, pp. 86–90. doi: 10.3115/980845.980860.

Biemann, C. (2006). Chinese Whispers: An Efficient Graph Clustering Algorithm and Its Application to Natural Language Processing
Problems. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing. TextGraphs-1. New York,
NY, USA: Association for Computational Linguistics, pp. 73–80. url: http://dl.acm.org/citation.cfm?id=1654774.

Biemann, C. (2012). Structure Discovery in Natural Language. Theory and Applications of Natural Language Processing. Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-25923-4.

Buluç, A. et al. (2009). Parallel Sparse Matrix-vector and Matrix-transpose-vector Multiplication Using Compressed Sparse Blocks. In:
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures. SPAA ’09. Calgary, AB, Canada: ACM,
pp. 233–244. doi: 10.1145/1583991.1584053.

van Dongen, S. (2000). Graph Clustering by Flow Simulation. PhD thesis. Utrecht, The Netherlands: University of Utrecht.
Dorogovtsev, S. N. and Mendes, J. F. F. (2001). Language as an evolving word web. In: Proceedings of the Royal Society of London B:

Biological Sciences 268.1485, pp. 2603–2606. doi: 10.1098/rspb.2001.1824.
Dorow, B. and Widdows, D. (2003). Discovering Corpus-Specific Word Senses. In: Proceedings of the Tenth Conference on European Chapter

of the Association for Computational Linguistics - Volume 2. EACL ’03. Budapest, Hungary: Association for Computational Linguistics,
pp. 79–82. doi: 10.3115/1067737.1067753.

Dror, R. et al. (2018). The Hitchhiker’s Guide to Testing Statistical Significance in Natural Language Processing. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). ACL 2018. Melbourne, VIC, Australia:
Association for Computational Linguistics, pp. 1383–1392.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1989). Sparse Matrix Test Problems. In: ACM Transactions on Mathematical Software 15.1, pp. 1–14.
doi: 10.1145/62038.62043.

Faralli, S. et al. (2016). Linked Disambiguated Distributional Semantic Networks. In: The Semantic Web – ISWC 2016: 15th International
Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II. Cham, Switzerland: Springer International
Publishing, pp. 56–64. doi: 10.1007/978-3-319-46547-0_7.

Fellbaum, C. (1998). WordNet: An Electronic Database. MIT Press.
Fillmore, C. J. (1982). Frame Semantics. In: Linguistics in the Morning Calm. Seoul, South Korea: Hanshin Publishing Co., pp. 111–137.
Fortunato, S. (2010). Community detection in graphs. In: Physics Reports 486.3, pp. 75–174. doi: 10.1016/j.physrep.2009.11.002.

Dr. Dmitry Ustalov (UMA) Graph Clustering for NLP October 19, 2018 1 / 4

https://doi.org/10.1016/j.jbi.2018.06.005
https://doi.org/10.3115/980845.980860
http://dl.acm.org/citation.cfm?id=1654774
https://doi.org/10.1007/978-3-642-25923-4
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1098/rspb.2001.1824
https://doi.org/10.3115/1067737.1067753
https://doi.org/10.1145/62038.62043
https://doi.org/10.1007/978-3-319-46547-0_7
https://doi.org/10.1016/j.physrep.2009.11.002


References II

Frey, B. J. and Dueck, D. (2007). Clustering by Passing Messages Between Data Points. In: Science 315.5814, pp. 972–976. doi:
10.1126/science.1136800.

Goldhahn, D., Eckart, T., and Quasthoff, U. (2012). Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100
to 200 Languages. In: Proceedings of the Eight International Conference on Language Resources and Evaluation. LREC 2012. Istanbul,
Turkey: European Language Resources Association (ELRA), pp. 759–765.

Goyal, P. and Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. In: Knowledge-Based Systems
151, pp. 78–94. doi: 10.1016/j.knosys.2018.03.022.

Hope, D. and Keller, B. (2013a). MaxMax: A Graph-Based Soft Clustering Algorithm Applied to Word Sense Induction. In: Computational
Linguistics and Intelligent Text Processing: 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings,
Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 368–381. doi: 10.1007/978-3-642-37247-6_30.

Hope, D. and Keller, B. (2013b). UoS: A Graph-Based System for Graded Word Sense Induction. In: Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013).
Atlanta, GA, USA: Association for Computational Linguistics, pp. 689–694. url: https://aclweb.org/anthology/S13-2113.

Kawahara, D., Peterson, D. W., and Palmer, M. (2014). A Step-wise Usage-based Method for Inducing Polysemy-aware Verb Classes. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. ACL 2014. Baltimore,
MD, USA: Association for Computational Linguistics, pp. 1030–1040. url: https://aclweb.org/anthology/P14-1097.

Krizhanovsky, A. A. and Smirnov, A. V. (2013). An approach to automated construction of a general-purpose lexical ontology based on
Wiktionary. In: Journal of Computer and Systems Sciences International 52.2, pp. 215–225. doi: 10.1134/S1064230713020068.

Lewis, M. and Steedman, M. (2013). Unsupervised Induction of Cross-Lingual Semantic Relations. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. EMNLP 2013. Seattle, WA, USA: Association for Computational Linguistics,
pp. 681–692.

von Luxburg, U. (2007). A tutorial on spectral clustering. In: Statistics and Computing 17.4, pp. 395–416. doi:
10.1007/s11222-007-9033-z.

Lyzinski, V., Sell, G., and Jansen, A. (2015). An Evaluation of Graph Clustering Methods for Unsupervised Term Discovery. In:
INTERSPEECH-2015. Dresden, Germany: International Speech Communication Association, pp. 3209–3213. url:
https://www.isca-speech.org/archive/interspeech_2015/papers/i15_3209.pdf.

Manandhar, S. et al. (2010). SemEval-2010 Task 14: Word Sense Induction & Disambiguation. In: Proceedings of the 5th International
Workshop on Semantic Evaluation. SemEval 2010. Uppsala, Sweden: Association for Computational Linguistics, pp. 63–68. url:
https://aclweb.org/anthology/S10-1011.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.

Dr. Dmitry Ustalov (UMA) Graph Clustering for NLP October 19, 2018 2 / 4

https://doi.org/10.1126/science.1136800
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1007/978-3-642-37247-6_30
https://aclweb.org/anthology/S13-2113
https://aclweb.org/anthology/P14-1097
https://doi.org/10.1134/S1064230713020068
https://doi.org/10.1007/s11222-007-9033-z
https://www.isca-speech.org/archive/interspeech_2015/papers/i15_3209.pdf
https://aclweb.org/anthology/S10-1011


References III

Marcheggiani, D. and Titov, I. (2017). Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. EMNLP 2017. Copenhagen, Denmark:
Association for Computational Linguistics, pp. 1506–1515. url: https://aclweb.org/anthology/D17-1159.

Mihalcea, R. and Radev, D. (2011). Graph-Based Natural Language Processing and Information Retrieval. Cambridge University Press.
Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual

semantic network. In: Artificial Intelligence 193, pp. 217–250. doi: 10.1016/j.artint.2012.07.001.
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