
An Interoperability
Framework for Pervasive

Computing Systems

Inauguraldissertation

zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaften

der Universität Mannheim

vorgelegt von

Felix Maximilian Roth

aus Stuttgart

Dekan: Prof. Dr. Dieter Truxius
Erstreferent: Prof. Dr. Christian Becker
Zweitreferent: Prof. Dr. Philippe Lalanda
Tag der Disputation: 29. November 2018
Prüfungsausschuss: Prof. Dr. Christian Becker (Vorsitzender)

Prof. Dr. Hartmut Höhle

ii

Abstract

Communication and interaction between smart devices is the foundation for

pervasive computing and the Internet of Things, where users are surrounded by

numerous computational devices communicating with each other and supporting

users in their daily tasks. Smart devices provide value-added services to appli-

cations, and consequently to users. Pervasive platforms, that support developers

in building new services and applications, have been extensively researched in

the past. Nowadays, a multitude of different pervasive platforms exist. However,

among further dissimilarities, they employ diverse protocols and interaction mod-

els, which prevents inter-platform communication. In real-world deployments,

where usually more than one platform is present, this leads to the formation of

platform-specific silos. Therefore, the need for interoperability between such plat-

forms arises. Under those circumstances, several frameworks have been proposed

targeting developer support for alignment of protocols and/or messages between

pervasive platforms.

Although several interoperability frameworks exist, they do not address all

issues that prevent inter-platform communication and, additionally, are often

tailored to specific cases. For this reason, this thesis presents a framework which

addresses all of those issues and allows for extension and customisation of dif-

ferent aspects, including new platforms as well as transformation mechanisms.

The framework bases on uniform abstractions that support seamless translations

of different features, such as service discovery, service access, and notification

management, among others. The transformation model provides an automatic

transformation mechanism, that can be easily extended or changed, as well as a

manual transformation mechanism, that requires code writing. For evaluation,

a prototype is implemented and assessed, providing support for six very distinct

pervasive platforms. In particular, the feasibility of the proposed framework is

demonstrated with three realistic scenario implementations, an effort evaluation,

as well as a cost evaluation.

iii

Acknowledgements

In the first place, I am deeply grateful to my advisor Prof. Dr. Christian

Becker for his constant support, critique, and encouragement that made the cre-

ation of this thesis possible. Christian, thank you for giving me the opportunity

to work in your research group, for always having an open door, and for invaluable

discussions and conversations – work-related as well as personal. Furthermore, I

want to thank you for sharing your knowledge in food and wine, whether at the

chair, at Dobler’s, in Shanghai, on Hawaii, or elsewhere.

I would further like to thank Prof. Dr. Philippe Lalanda for his input and

willingness to act as second reviewer. Philippe, thank you for priceless challenging

and thought-provoking discussions that greatly helped advancing my work. Also,

I am heavily grateful to you for inviting me to Grenoble for two exceptional

research stays permitting close collaboration with you and your team.

I would like to thank Prof. Dr. Hartmut Höhle for finding the time to join

the board of examiners, as well as for wine recommendations and deliveries from

the Bourgogne.

A special thanks is due to Prof. Dr. Gregor Schiele for his interesting and

vivid lectures during my Master studies that, in the end, led up to pursuing my

PhD at Christian’s chair.

Further, I would like to thank all the people I had the pleasure of working with

throughout the years at the chair, namely Dr. Patricia Arias-Cabarcos, Martin

Breitbach, Janick Edinger, Kerstin Goldner, Benedikt Kirpes, Sonja Klingert, Dr.

Christian Krupitzer, Markus Latz, Jens Naber, Martin Pfannemüller, Dr. Vaskar

Raychoudhury, Dominik Schäfer, Dr. Sebastian VanSyckel, and Anton Wachner.

I certainly enjoyed working with friends, and not just colleagues. Especially,

I want to thank the ‘little Christian’ for supporting and mentoring me with

basically everything when I first started at the chair. Thanks to Dom for giving

an ear to me without getting the needle at the final stage of writing my thesis, as

v

Acknowledgements

well as for entertaining jam sessions. Thanks to Janick for always brightening the

day with – sometimes funny – puns. Thanks to Jens for being a fellow sufferer

with respect to BASE. Additionally, I owe special thanks to Patricia for her

valuable comments and support at finalising my thesis.

Also, I would like to thank all the people I had the pleasure of working

with at Grenoble, namely Colin Aygalinc, Pierangelo Castillo-Mora, Eva Gerber-

Gaillard, and German Vega. Especially, I want to thank German for fruitful

discussions and coding sessions. Moreover, thanks to German and Pierangelo for

helping with the use case implementations.

This work was supported by the German Research Foundation (DFG) under

grant BE 2498/9-1 ‘Interoperable Pervasive Systems’. I would like to thank

each thesis student involved in the project for their contributions, namely Todor

Angelov, Jia Liu, Alica Momann, Johannes Müller, Charlotte Stein, and Felix

Strasser.

Last but not least, I would like to thank my family and friends for always

being there for me. To my parents, Marina and Michael, thank you for your

unconditional support and caring. To Dr. Moritz, thank you for being such an

outstanding brother, quite likely the best. To my grandparents, Irma and Albert,

thank you for still keeping your fingers crossed for me at an age of over 90 years.

To my girlfriend, Lara, thank you for being there for me and motivating me,

regardless of how many hundreds of kilometres in between us.

vi

Contents

Abstract iii

Acknowledgements v

1. Introduction 1

1.1. Motivation . 1

1.2. Research Questions . 3

1.3. Contributions . 3

1.4. Structure . 4

2. Background 5

2.1. Computing Concepts . 5

2.1.1. Service-oriented Computing 5

2.1.2. Pervasive Computing . 8

2.1.3. Internet of Things . 11

2.1.4. Related Concepts . 11

2.2. Interaction Models . 12

2.2.1. Client-server Interaction . 13

2.2.2. Publish-subscribe Interaction 14

2.2.3. Tuple Space Interaction . 15

2.2.4. Overview . 16

2.3. Notification Systems . 17

3. State of the Art 21

3.1. Evaluation Framework . 21

3.1.1. Categorisation of Heterogeneities 22

3.1.2. Categorisation of Solutions 25

3.1.3. Requirements for an Interoperability Framework 31

vii

Contents

3.2. Analysis of Existing Approaches 32

3.2.1. Pervasive Computing Approaches 33

3.2.2. Internet of Things Approaches 44

3.2.3. Summary . 48

3.3. Placement of Thesis . 50

4. An Interoperability Framework for Pervasive Computing

Systems 53

4.1. System Model . 53

4.2. Framework Overview . 56

4.3. Abstractions . 58

4.3.1. Service Model . 58

4.3.2. Service Discovery Model . 60

4.3.3. Service Access Model . 63

4.3.4. Notification Management Model 65

4.3.5. Message Abstraction . 67

4.4. Communication . 68

4.5. Alignment . 71

4.5.1. Transformation Model . 72

4.5.2. Service Definition . 77

4.5.3. Service Description Transformation 78

4.5.4. Service Identifier Transformation 80

4.5.5. Interaction Transformation 80

4.5.6. Application Transformation 87

4.5.7. Non-functional Properties Transformation 92

4.5.8. Notification Transformation 92

4.6. Service Management . 96

4.7. Notification Management . 98

4.7.1. Architecture . 99

4.7.2. Polling for Non-supporting Platforms 101

4.8. Summary . 102

5. Prototype 103

5.1. Implementation Details . 103

viii

Contents

5.2. Prototype Architecture . 103

5.2.1. Modules . 105

5.2.2. Additional Components . 108

5.3. Supported Platforms . 108

5.4. XWARE Plugin . 110

5.5. Limitations . 111

6. Evaluation 113

6.1. Proof of Concept . 113

6.2. Requirements Evaluation . 116

6.3. Development Overhead Evaluation 117

6.4. Cost Evaluation . 120

6.4.1. Service Access . 120

6.4.2. Inter-instance Communication 123

6.4.3. Notification Management 125

6.5. Discussion . 127

7. Conclusion and Outlook 129

7.1. Conclusion . 129

7.2. Outlook . 130

Bibliography xvii

Appendix xxxv

A. Configuration Files xxxvii

A.1. Plugin . xxxvii

A.2. Alignment . xxxviii

A.3. Service Management . xxxviii

A.4. Notification Management . xxxviii

A.5. Filters . xxxviii

B. Exemplary XWSDL Files xxxix

B.1. Intermediate XWSDL File . xxxix

B.2. BASE XWSDL File . xl

ix

Contents

C. Transformation from Subjects to Channels xli

D. Inter-instance Communication Evaluation Values xliii

Publications Contained in This Thesis xlv

Lebenslauf xlvii

x

List of Figures

2.1. Logical View on a Service-oriented Architecture 7

2.2. Pervasive System . 10

2.3. Client-server Interaction . 14

2.4. Publish-subscribe Interaction . 15

2.5. Tuple Space Interaction . 16

2.6. Exemplary Channels . 17

2.7. Exemplary Subject-based Hierarchy 18

2.8. Exemplary Content-based Data Model 19

3.1. Taxonomy of Heterogeneities . 25

3.2. Traditional Middleware . 26

3.3. Logical Mobility . 26

3.4. Interoperability Platform . 27

3.5. Software Bridge . 27

3.6. Transparent Interoperability . 28

3.7. Translation Models . 29

3.8. Taxonomy of Interoperability Solutions 31

3.9. Solution Classification in this Thesis 51

4.1. System Model . 54

4.2. Interoperability Instance Responsibilities 56

4.3. Framework Overview . 57

4.4. Service Model . 59

4.5. Service Discovery Pattern . 61

4.6. Service Discovery Model . 62

4.7. Notification Management Model 66

4.8. Plugin Architecture . 69

4.9. Alignment Architecture . 71

4.10. Pipes and Filters Pattern . 73

xi

List of Figures

4.11. Transformation Selection . 74

4.12. Exemplary Transformation Process of an Application Message . . . 76

4.13. XWSDL Example: Extract of an Intermediate Light Service 78

4.14. XWSDL Example: Extract of a BASE-specific Light Service (Ser-

vice Description Transformation) 79

4.15. Revisit: Common Interactions . 81

4.16. Interaction Pattern from CS to PS 82

4.17. Interaction Pattern from CS to TS 83

4.18. Interaction Pattern from PS to CS 84

4.19. Interaction Pattern from PS to TS 85

4.20. Interaction Pattern from TS to CS 86

4.21. Interaction Pattern from TS to PS 86

4.22. XWSDL Example: Extract of a BASE-specific Name Service (Ap-

plication Transformation) . 88

4.23. Examplary Petrinet: Get Name . 90

4.24. Examplary Petrinet: Set Name . 91

4.25. Service Registry . 97

4.26. Notification Management Architecture 99

4.27. XWSDL Example: Extract of an Intermediate Temperature Sen-

sor (Notification Polling) . 101

5.1. Prototype Overview . 104

5.2. Integrated Filters . 107

6.1. Showcase: Shutter Management 114

6.2. Showcase: Temperature Management 115

6.3. Showcase: Smart Home . 116

6.4. Evaluation Setup: Baseline . 121

6.5. Evaluation Setup: Service Access 121

6.6. Evaluation Setup: Inter-instance Communication 123

6.7. Cost Evaluation of Inter-instance Communication 124

6.8. Evaluation Setup: Notification 125

xii

List of Tables

2.1. Interaction Model Characteristics 16

3.1. Related Work Classification . 49

4.1. Message Content Abstraction . 63

4.2. Interaction Semantics Abstraction 64

4.3. Communication Partner Abstraction 65

4.4. Message Abstraction . 68

4.5. Message Type to Filters Mapping 75

6.1. Development Overhead Evaluation for the Integration of Platforms 119

6.2. Cost Evaluation of Service Access 122

6.3. Cost Evaluation of Notifications 126

D.1. Service Access Time with Three XWARE Instances xliii

D.2. Service Access Time with Five XWARE Instances xliii

xiii

List of Abbreviations

API Application Programming Interface

CPU Central Processing Unit

CS Client-server

DHCP. Dynamic Host Configuration Protocol

ESB Enterprise Service Bus

GB Gigabyte

GHz Gigahertz

GUI Graphical User Interface

HTTP. Hyper Text Transfer Protocol

ID. Identifier

IoT. Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LLOC Logical Lines of Code

MQTT Message Queue Telemetry Transport

PS Publish-subscribe

REST Representational State Transfer

SAWSDL . . . Semantic Annotations for WSDL

SOAP (originally) Simple Object Access Protocol

SOA. Service-oriented Architecture

SOC. Service-oriented Computing

SQL Structured Query Language

TCP Transmission Control Protocol

TS Tuple Space

UPnP Universal Plug and Play

WS-BPEL . . Web Services Business Process Execution Language

WSDL Web Service Description Language

XML Extensible Markup Language

xv

1. Introduction

This chapter introduces the present thesis with a motivation, the research

questions and contributions, and the structure of this work. Subsequently, Chap-

ter 2 presents the theoretical background that is required for the remainder of

the thesis. Parts of this chapter are based on [147]1 and [149]2.

1.1. Motivation

Pervasive computing [170] promotes the integration of smart, networked de-

vices into everyday environments in order to provide added-value services to

people. The development and administration of such pervasive services is espe-

cially complex for several reasons. Services are based on dynamic, heterogeneous

resources (e.g., devices and networks) over which they do not have control. Thus,

these services are in charge of adapting to their environment, and not the other

way around. Also, services are intended to be unobtrusive, requiring minimal at-

tention and intervention from the service recipients (or users). The most adminis-

tration, therefore, has to be performed autonomically by the services themselves.

Moreover, stringent non-functional requirements related to security or privacy,

for instance, must be achieved.

In order to ease the development and administration, pervasive middleware

platforms have been developed. They provide a development model and a set

of technical services. These technical services include, among others, means for

communication between services and applications. This way, developers are not

distracted by sideshow issues, but can focus on application development. Today,

pervasive platforms are well accepted and used in several industrial (e.g., Bosch3,

1[147] is joint work with M. Pfannemüller, C. Becker, and P. Lalanda
2[149] is joint work with G. Vega, C. Becker, and P. Lalanda
3https://www.bosch-smarthome.com/uk/en/home

1

1.1. Motivation

Samsung4, or Panasonic5) and academic settings (e.g., BASE [12] or iPOJO [50]).

Although these platforms are well accepted, their multitude nowadays hurts

the development of rich services in large, distributed environments, like multi-

apartment buildings or towns, due to the formation of platform-specific silos.

Indeed, such environments are characterised by the presence of different plat-

forms and devices using distinct technologies and architectures. Many smart

devices, and consequently platforms, are already installed, e.g., in smart homes,

smart offices, or smart factories. Thus, it is impractical and impossible to replace

those platforms by one common system [65]. If one platform prevailed among the

existing ones, interoperability between these platforms would not be necessitated

[144]. However, this is not expected due to the fact that commercial providers

want to keep users in their silos [157]. Through interworking, different platforms

can synergise and offer more flexibility to the user since a greater variety of de-

vices is available [118]. For this reason, several projects have been launched to

improve interoperability between platforms in view of building large, heteroge-

neous pervasive environments (see, for instance, the European initiative called

IoT-EPI6 promoting several projects on interoperability, e.g., BIG-IoT [27]).

Achieving interoperability between pervasive platforms is a complex task due

to various discrepancies between them. In particular, these discrepancies include

the use of distinct technologies [141], service discovery mechanisms [57], and

interaction models [16], as well as differences in their data representations [21],

service interfaces [86], non-functional properties [21], and update notifications

[147]. Building a solution that solves all of these disparities can rapidly become

hardly comprehensible and understandable. Therefore, developers need to be

supported through a framework. However, existing frameworks do not address

all of the mentioned issues and, further, only provide ad hoc solutions. In this

thesis, an interoperability framework is proposed that is able to manage all of the

identified heterogeneous characteristics of pervasive platforms. Additionally, it

provides development support in order to easily extend and customise solutions,

including the integrated alignment algorithms. This way, tailored interoperability

solutions can be realised, and future platforms and services can be incorporated.

4https://www.samsung.com/us/smart-home/smartthings/
5https://www.panasonic.com/uk/consumer/smart-home.html
6http://iot-epi.eu

2

1.2. Research Questions

1.2. Research Questions

Following the motivation, the main objective of this thesis is the development

of an interoperability framework that, on the one hand, is able to address the

whole set of identified heterogeneities and, on the other hand, provides support for

customisation of the framework’s solution instances. For this, an interoperability

framework must provide means to align protocols and messages, while at the

same time it has to be extensible and flexible with respect to the integration of

new platforms, services, and even algorithms. Therefore, this thesis will answer

the following research questions:

1. What is the state of research in interoperability frameworks for pervasive

computing systems?

2. How can different pervasive platforms be abstracted in a uniform fashion

in order to support interoperability?

3. How can an interoperability framework support developers in building cus-

tom interoperability solutions?

4. What are the costs for achieving interoperability?

1.3. Contributions

This thesis presents a general framework for interoperability between pervasive

computing systems, entirely developed and evaluated on realistic use cases. Its

main contributions are as follows:

First, an evaluation framework is developed for a thorough analysis of existing

interoperability frameworks. It includes a set of heterogeneities that prevent

pervasive platforms from co-operating, a set of interoperability solution designs,

and a set of interoperability framework requirements. Existing approaches then

are assessed with the evaluation framework.

Second, uniform abstractions are developed for messages, services, service dis-

covery, service access, and notifications. These abstractions are based on com-

monalities between different interaction paradigms and support the alignment

between different platforms.

3

1.4. Structure

Third, an integrated alignment process is presented for overcoming the iden-

tified heterogeneities. Unlike in other approaches, here, the alignment process

allows for its easy extension and customisation. Therefore, it provides an auto-

matic approach for transformation of simple service types, as well as a manual

approach where developers are supported in writing code for transformation pur-

poses. Developers can choose to use the automatic or manual tool per platform

and service.

Fourth, a prototype is implemented that integrates a reference architecture

with re-usable components. The prototype integrates the previous contributions

and allows for validation. Further, six diverse pervasive platforms are integrated

in the prototype by using or adjusting the re-usable components, or writing new

ones.

Finally, the prototype implementation is extensively evaluated. Therefore, a

proof of concept is provided based on three realistic smart home scenarios. Fur-

thermore, a requirements evaluation, an effort evaluation regarding the overhead

for developers, as well as a cost evaluation take place. The evaluation underlines

the feasibility of the proposed framework and its reasonable costs for providing

interoperability.

1.4. Structure

The remainder of this thesis is structured as follows. Chapter 2 gives an

overview on the theoretical background of the thesis. Next, Chapter 3 develops

an evaluation framework which subsequently is used to assess existing interop-

erability approaches. Afterwards, Chapter 4 details the system model of this

thesis prior to presenting an interoperability framework for pervasive computing

systems. Chapter 5 gives details on the prototype implementation which then is

evaluated in Chapter 6. Finally, Chapter 7 closes the thesis with a conclusion

and an outlook on future work.

4

2. Background

This chapter provides background information on fundamental terminologies

required for this thesis. First, different computing paradigms are presented in

Section 2.1. Second, Section 2.2 introduces various interaction models since they

are one critical aspect impeding interoperability. Last, for the same reason, Sec-

tion 2.3 familiarises the reader with notification systems. Parts of this chapter

base on [147] and [149].

2.1. Computing Concepts

Most pervasive middleware platforms focus on the notion of service-oriented

computing [130] in order to improve interoperability. Service-oriented computing

facilitates a ‘dynamically adaptable architecture by supporting runtime evolution

and modification of each service independently’ [97]. This architectural adapt-

ability is crucial in pervasive and Internet of Things applications to drive seamless

adaptations when the environment or requirements change. Therefore, this sec-

tion presents fundamentals in service-oriented computing, pervasive computing,

the Internet of Things, and further related concepts.

2.1.1. Service-oriented Computing

Service-oriented computing (SOC) [130] is a widely used concept [96] in per-

vasive computing, the Internet of Things, and further related paradigms, e.g.,

ambient computing. In SOC, services are the fundamental elements of an appli-

cation [130]. Services are re-usable, modular units that implement business logic

for certain functionalities, e.g., a light service may offer a functionality to change

the state of a light (on/off). Applications integrate and/or are composed of one

or several services, i.e., they make use of services in order to perform their task.

For example, a simple light application, requiring a light service and a presence

5

2.1. Computing Concepts

service, turns the light on if a person is present, and turns the light off if no

person is detected any more. Applications bind to the required services at run-

time, and not at design time like in classical software development. This is called

late binding [130]. Therefore, services offer well-defined interfaces such that pro-

vided and required functionality can be specified adequately. Furthermore, the

internal business logic of a service is not known and also not important for an

application. This enables a separation between service functionality (interface)

and service implementation (business logic) [96]. New applications can be easily

built or old ones can be adapted by replacing service bindings at runtime [131],

if they are stateless and have equivalent non-functional properties. Thus, the

service-oriented computing paradigm provides a dynamic, flexible approach that

eases software development [81].

Because service binding happens at runtime, a mechanism must ensure that

services can be discovered and accessed by applications or other services. Service

discovery and access are provided through a service-oriented architecture (SOA)

[130]. A SOA describes relationships and interactions between its three actors:

service consumer, service provider, and service registry. The service consumer

[27, 140] (also service client, e.g., [96, 130], or service requestor, e.g., [138, 173])

seeks to find and use one or more services. The service provider [96, 130] of-

fers one or more services. The service registry [96, 130] (sometimes also service

directory, e.g., [171, 173], or service broker, e.g., [50, 96]) stores service descrip-

tions of registered services and interacts with service consumers as well as service

providers. The basic interactions between these actors are as follows. A ser-

vice provider publishes its service description to the service registry. The service

description includes information on the provided functionality, possibly offered

non-functional properties, as well as the service grounding [110], i.e., how a service

can be accessed with respect to its location and protocols. A service consumer

asks the service registry for a certain service and, if such a service is present

in the system, the service registry returns the service description. The service

request contains the required functionality and, possibly, required non-functional

properties, e.g., security requirements. Then, the service consumer can directly

access the service provider, i.e., it can use the interfaces and service grounding

provided in the service description to interact with the service provider. Figure

2.1 visualises these relations and interactions.

6

2.1. Computing Concepts

Service Registry

Service
Consumer

Service Provider
Bind

Publish Lookup

Figure 2.1.: Logical View on a Service-oriented Architecture (cf. [130]). Service
providers can publish their services to the service registry. Service
consumers can look services up at the service registry. Service inter-
action happens directly between consumers and providers.

Services can be categorised into simple services and composite services [130].

Simple services offer stand-alone functionality, i.e., they encapsulate all required

business logic themselves (e.g., the mentioned light service). Composite services

make use of other services in that their offered functionality can only be realised

by accessing further services. For example, an economic heating service might

make use of a window state service to check if the window is closed before it

regulates to a higher temperature. Composite services can be the result of or-

chestration or choreography. The interested reader is referred to [48] for more

information on orchestration and choreography. Furthermore, an application and

a composite service are similar in that both make use of other (simple or com-

posite) services. However, an application does not publish or offer a well-defined

interface (or service description) for accessing its functionality. Thus, service con-

sumers can be either applications or composite services. Besides, an entity is a

device that acts as provider, consumer, or both.

Moreover, the process of discovering services is called service discovery. It

includes all activities until a consumer is able to communicate directly with the

service, i.e., advertisement of service descriptions by providers, lookup requests

and responses between consumer and service registry, as well as service match-

ing at the service registry. Then, a consumer possibly wants to use (or access)

a discovered service. This process is called service access. According to [130],

services need to meet certain requirements to ensure the working of these mech-

anisms: technology neutrality, loose coupling, and location transparency. Tech-

nology neutral means that a commonly accepted standard should be used to ease

7

2.1. Computing Concepts

service discovery and invocation. Loose coupling is that the service implementa-

tion is transparent to the consumer as the internal processing is not important to

him/her. Location transparency says that providers should be accessible regard-

less of their location.

In order to simplify service and application development in SOC, different

protocols have been developed [144]. Service discovery protocols enable auto-

matic publication and discovery of services without previous knowledge and with

minimal human effort [57, 96]. Also, service access protocols enable transparent

service access. Service-oriented middleware platforms that support developers

in creating services and applications usually include service discovery as well as

service access protocols. Many different service discovery protocols, e.g., service

location protocol (SLP) [75] and simple service discovery protocol (SSDP) [32],

service access protocols, e.g., SOAP [26], and middleware platforms, e.g., Jini [5],

BASE [12], or iPOJO [50], exist nowadays. Naturally, by relying on the SOA,

those solutions satisfy the three requirements introduced in [130]. However, each

of those solutions realises the SOA in a different way, preventing services and

applications developed upon different middleware platforms from co-operating.

A more detailed overview on reasons that hinder services that are developed with

different middleware platforms to interact with each other can be found in Section

3.1. For reasons of simplicity, hereafter, sometimes ‘an entity that is developed

with pervasive platform A’ is abbreviated by ‘an entity of platform A’.

Other distributed computing paradigms, such as pervasive computing or the

Internet of Things, often make use of the service-oriented computing paradigm

[6]. Those are explained in the following sections.

2.1.2. Pervasive Computing

Pervasive computing, or also ubiquitous computing, was first introduced by

Mark Weiser in 1991 [170] who envisioned a change from traditional desktop

computing to the modern computing landscape where the physical environment is

equipped with computational devices that are communicating with each other and

are interwoven with artefacts of the everyday life. These devices further provide

functionality to users in order to seamlessly support them in their everyday tasks,

and thus get more ubiquitous every day [170]. Satyanarayanan also describes this

8

2.1. Computing Concepts

as ‘technology that disappears’ [151]. It becomes clear that pervasive computing

is user-centric. In order to provide meaningful functionality to the user, it makes

use of the context. Context is often defined as ‘any information that can be used

to characterize the situation of an entity’ [43] whereby an entity is a ‘person,

place, or object that is considered relevant to the interaction between a user

and an application, including the user and application themselves’ [43]. In other

words, an entity can be any kind of object that may have an influence on the

application’s behaviour. Context can be, for instance, the temperature in a room,

persons nearby, or also the battery status of a device. In a simple scenario of an

automatic door, the context may only include the presence of a person in front of

the door. In pervasive computing, applications do not only consider the context

to provide user-related functionality, but they are also able to alter the context.

For instance, when the user starts playing a film on the television in the evening,

the lights may be automatically dimmed to maximise the film experience.

Pervasive computing builds upon distributed computing and mobile computing

[151]. Distributed computing permits computers to be connected over a network

and share functionalities, whereas mobile computing targets at mobile devices

having a network connection ‘anytime anywhere’ [150]. Pervasive computing

extends the goal of mobile computing to a proactive information access ‘all the

time everywhere’ [150].

Building upon mobile computing [150, 151], pervasive environments entail

dynamism due to user and device mobility. This means that pervasive computing

environments are volatile in terms of devices and services sporadically entering

and leaving the environment. This characteristic predestines the use of the SOC

paradigm for pervasive computing as it shifts service binding from design time to

runtime. Raverdy et al. even claim that only the SOC paradigm has made the

realisation of the pervasive computing vision possible [142].

The technical realisation of a pervasive computing scenario is attained by a

pervasive system [107]. A pervasive system consists of a set of devices and a set

of users which are located in a physical space. Users interact with the devices.

Devices can be traditional devices, e.g., personal computers and mobile devices,

or smart devices, e.g., sensors or actuators [150]. Mobile devices include smart-

phones, laptops, and alike. Sensors help to measure context, whereas actuators

can be used to realise context adaptations. They are connected through network-

9

2.1. Computing Concepts

ing means and provide functionality, in form of services, to users through per-

vasive applications. A pervasive application is an application that uses and may

alter resources and context of the current physical space. Thus, it is context-aware

(through sensors) and context-altering (through actuators) [107]. Pervasive appli-

cations are usually implemented with the help of a pervasive middleware platform

(henceforth called pervasive platform). A pervasive platform assists in applica-

tion development and administration [49]. Therefore, it offers a development

model and technical services to developers and administrators. These technical

services may include communication, context management, and conflict manage-

ment. Many different pervasive platforms exist for realising pervasive computing

scenarios and, nowadays, most of them are based on the SOC paradigm, e.g.,

BASE [12], iPOJO [50], ubiSOAP [33], SAI [128], nSOM [53], DigiHome [146],

or AutoHome [25], in order to attain flexibility and dynamism. Figure 2.2 sum-

marises the notion of a pervasive system. Besides, pervasive systems have usually

been built as closed systems for one specific purpose.

Pervasive Middleware

Pervasive Networking

Appli-
cation

Appli-
cation

Appli-
cation

Appli-
cation

Pervasive
Device

Pervasive
Device

Pervasive
Device

User
User

Figure 2.2.: Pervasive System (cf. [150]). Devices offer functionality to users and
communicate with other devices. Applications are implemented with
the help of a pervasive middleware.

In industry and academia, many different application areas for pervasive com-

puting have emerged in different domains, such as home (e.g., [78]), healthcare

(e.g., [166]), assisted living (e.g., [134]), office (e.g., [2]), entertainment (e.g., [22]),

manufacturing (e.g., [174]), logistics (e.g., [109]), or agriculture (e.g., [168]).

Pervasive computing further is closely related to the Internet of Things.

10

2.1. Computing Concepts

2.1.3. Internet of Things

The Internet of Things (IoT) can be defined as ‘the worldwide network of

interconnected objects uniquely addressable based on standard communication

protocols’ [10]. A thing (or also object) is actively participating and interacting

within application domains, i.e., it may distribute sensed information or react to

upcoming events [159]. Thus, the IoT vision extends pervasive computing on a

global scale [91, 114]. According to [73], there will be 24 billion potentially inter-

connected devices in the world, which is triple the world’s population nowadays.

This fact is compatible with the IoT (and pervasive computing) vision where

users are surrounded by a multitude of devices located anywhere around them.

For developing IoT applications, developers make use of a middleware plat-

form. Equivalently as in pervasive computing, SOC is the preferred paradigm

of these middleware platforms [6, 73]. Things can be seen as devices providing

services [87, 161] (in this domain also called resources, e.g., [87, 160]). Another

commonality between IoT and pervasive computing is that early IoT systems

were built as closed systems, preventing them from inter-system communication

[91]. Today, this is still the case because IoT product vendors use their own de-

veloped platforms [65] trying to force users into their ecosystem after their first

IoT product purchase.

Furthermore, since IoT is seen as an extension to pervasive computing, their

application domains also overlap. They include [7, 73, 159, 172]: home, enterprise,

community, city, country, agriculture, water, transportation, logistics, healthcare,

energy, aviation, automotive, telecommunications, pharmaceutics, manufactur-

ing, entertainment, insurance, and recycling.

In the following, further related concepts to pervasive computing and the In-

ternet of Things are briefly discussed.

2.1.4. Related Concepts

Pervasive computing (and thus transitively also IoT) is closely related with

context-aware computing, wearable computing, and ambient computing. Context-

aware computing [152] deals with applications that can adapt their behaviour to

the current context. Therefore, sensors can measure relevant context attributes

11

2.2. Interaction Models

and make them available to applications. An example is that a smartphone dis-

play changes its brightness depending on the environmental lighting conditions.

Pervasive applications are also context-aware and further context-altering. This

means that they do not only adapt themselves to the context, e.g., by increasing

the display brightness, but they also adapt the context according to their own

requirements, e.g., by switching the lights off instead of increasing the display

brightness. Wearable computing is concerned with the miniaturisation of net-

worked computing devices in order to wear them on the body [108]. Examples are

smartwatches, head-mounted displays, or fitness trackers. Consequently, wear-

able computing directly contributes to achieve the pervasive computing vision.

Besides, ambient computing also is about the seamless integration of computing

devices in the real world [116]. However, it focuses on an intuitive and natural

user interaction.

The IoT relates to the Web of Things. Like IoT, the Web of Things uses

Web standards (e.g., REST, HTTP, JSON) in order to make networked everyday

objects, e.g., thermometers or heaters, available through the Web [74]. Yet,

it focuses on the application layer, whereas IoT is concerned with establishing

connectivity between devices through the Internet.

As mentioned before, there exists a variety of middleware platforms for per-

vasive computing and IoT – and their related concepts – that support developers

in implementing new applications and services. Though, interaction between

services and applications is usually only possible in their own domain, i.e., inter-

platform interaction is not feasible. The use of distinct interaction models by

those platforms is one reason for this [16]. Therefore, the next section gives an

overview on the most common interaction paradigms.

2.2. Interaction Models

The three most prominent interaction models are [68]: client-server, publish-

subscribe, and tuple space. The following paragraphs explain those interaction

paradigms in more detail. Also, the paradigms are briefly discussed with respect

to service discovery and, furthermore, space coupling, time coupling, and syn-

chronisation coupling. Space coupling is about the identification of sender and

12

2.2. Interaction Models

receiver [51]. It is loose if sender and receiver do not know each other, i.e., they do

not hold references of each other in order to communicate. This can be achieved

with a mediating entity. Otherwise, space coupling is tight. Time coupling de-

scribes the time of presence and availability of sender and receiver [51]. It is loose

if interacting entities do not need to be connected at the same time for interac-

tion. Again, a mediating entity can help to achieve this. Else, time coupling

is tight. Synchronisation coupling determines if sender and receiver are blocked

during communication [51]. It is loose if sender and receiver are not blocked

during communication, i.e., the sender is not blocked until it receives a reply

and the receiver can communicate with several entities at a time. Otherwise,

synchronisation coupling is tight; this is also called synchronous communication.

2.2.1. Client-server Interaction

In the client-server (CS) paradigm, a server provides one or more services,

whereas a client might use these services. In that case, the client sends a request

to the well-known server which processes the request in response. Then, if the

client expects a result, the server sends it to the client.

The Web Service Description Language (WSDL) specification [40] defines four

operations for CS interaction: one-way message, notification, request-response,

and solicit-response. A one-way message is a message from client to server, while

a notification is a message from server to client. A request-response operation is

a request from the client to the server which processes the request and delivers a

response. A solicit-response operation resembles the request-response operation,

but the roles of client and server are interchanged. Basically, one can classify

these operations as one-way interaction (one-way message and notification) and

two-way interaction (request-response and solicit-response) [23]. Henceforth, they

are subsumed as one-way message and request-response operations, respectively.

The CS interaction scheme is summarised in Figure 2.3. There, and also in the

remainder, the notions of client and server are replaced by (service) consumer and

(service) provider, conforming to the terminology introduced in Section 2.1.1.

CS interaction is tightly coupled regarding space because provider and con-

sumer have to know each other for the purpose of communication. Furthermore,

both provider and consumer must be present and available at the same time, in-

13

2.2. Interaction Models

P/C
request

C/P
(reply)

Figure 2.3.: Client-server Interaction. One entity sends a request which is pro-
cessed by the other entity and a result is possibly returned (C -
consumer, P - provider).

dicating a tight time coupling. The consumer is usually blocked until it receives

the reply. Hence, synchronisation coupling is tight. Extensions to the classical CS

model are possible, e.g., using a message queue for loose time and space coupling

[21] or a callback for loose synchronisation coupling [90]. Moreover, platforms

that base on the CS paradigm usually employ a SOA for service discovery, as

explained in Section 2.1.1 (see, e.g., BASE [12] or iPOJO [50]).

2.2.2. Publish-subscribe Interaction

A publish-subscribe (PS) interaction [51] requires three actors: subscriber,

publisher, and broker. Subscribers can subscribe to certain events at the broker.

Publishers can publish events to the broker. The broker checks whether published

events match subscriptions and, if so, forwards them to the relevant subscribers.

The two basic operations are: subscribe and publish. A subscribe operation

contains information on the kind of events in which the subscriber is interested

in form of a filter. A publish operation includes the event itself and possibly some

event category. The event matching mechanism depends on the scheme of filter

and event category. This is discussed in detail in Section 2.3. So far, one can

think of the filter and event category as brief event description, e.g., Temperature

or Humidity. In case that the filter equals the category, the event is forwarded

to the respective subscriber. Figure 2.4 summarises the PS interaction scheme.

There, and also hereafter, the terms subscriber and publisher are replaced by

(service) consumer and (service) provider, respectively.

Space coupling is loose for the PS interaction model since providers and con-

sumers only interact with the broker, and not with each other. Hence, providers

do not know the recipient of its events and consumers do not know the provider

of received events. Also, time coupling is usually loose because neither provider

14

2.2. Interaction Models

publish
P B notify

subscribe
C

Figure 2.4.: Publish-subscribe Interaction. Consumers (C) can subscribe for
events, providers (P) can publish events, the broker (B) checks for
matches and forwards events, if appropriate.

nor consumer have to be available at the same time. The consumer can be absent

at the time an event is published. When it subscribes for this event at the bro-

ker, the broker delivers the event. Furthermore, synchronisation coupling is loose

since neither provider nor consumer are blocked during transmission. According

to [137] and [51], in many PS-based platforms perform, providers advertise cate-

gories of events they potentially publish. Actually, these advertisements are only

meant for the broker for event routing optimisation [137], but can be also used

for service discovery (see Section 4.3.2).

2.2.3. Tuple Space Interaction

In tuple space (TS) interaction [67], entities communicate via a shared TS by

adding and withdrawing tuples. A tuple is a finite sequence of data elements, e.g.,

the tuple (‘lighstate’, ‘on’) indicates that the light is on. A TS is a shared memory

in which data is represented as tuples. For communication, an entity writes a

tuple to the TS, where it stays as long as no entity withdraws the tuple. Entities

withdraw or read tuples by using tuple templates, e.g., the template (‘lightstate’,

?) can be used to receive the above tuple. A tuple template describes a tuple with

actuals – concrete values, e.g., ‘lightstate’ – and formals – wild cards, represented

by ‘?’. Then, the TS looks for tuples that match the template. At this, actuals

have to match exactly the tuple value, whereas formals can be any value.

The three basic operations of TS interaction are [67]: out, in, take. The

out operation, for adding a tuple to the TS, requires a tuple and has no return

value. The take operation, for withdrawing a tuple, requires a tuple template

and returns a tuple. The in operation is like the take operation, but it reads a

tuple without removing it. Figure 2.5 shows the TS interaction scheme. There,

and also in the remainder, a provider is an entity that adds tuples to the TS,

whereas a consumer is an entity that reads/takes tuples from the TS.

15

2.2. Interaction Models

P TS C
out in/take

Figure 2.5.: Tuple Space Interaction. Providers (P) add tuples to the TS, while
consumers (C) access them by using tuple templates.

TS interaction is loosely coupled regarding space. Providers add tuples to

the TS, whereas consumers take/read tuples from the TS. Thus, provider and

consumer do not know each other. As well, time coupling is loose because neither

provider nor consumer have to be available at the same time. Synchronisation

coupling is loose on the provider side. However, the consumer is blocked until it

receives a matching tuple for a take/in operation. Regarding service discovery,

devices often send advertisement tuples containing information on their provided

services. Other entities can read out those tuples from the TS by using an

appropriate template in order to know about present services. Nevertheless, not

all platforms provide such a mechanism, e.g., Lime [136] does, whereas Limone

[60] does not.

2.2.4. Overview

Table 2.1 provides an overview on the differences between these interaction

models with respect to space, time, and synchronisation coupling, as well as

service discovery. It is obvious that the disparate characteristics and service

discovery mechanisms prevent platforms that use distinct interaction paradigms

from interacting.

Model Space
coupling

Time
coupling

Synchronisation
coupling

Service
discovery

CS tight tight tight SOA

PS loose loose loose event category
advertisements

TS loose loose loose on provider
side

advertisement
tuples

Table 2.1.: Interaction Model Characteristics. Differences in space, time, and
synchronisation coupling, also lead to discrepancies in service discov-
ery mechanisms.

16

2.3. Notification Systems

Furthermore, dissimilarities in their notification mechanisms hinder the inter-

working of distinct platforms [149]. For this reason, the next section gives an

overview on notification systems.

2.3. Notification Systems

Pervasive platforms sometimes allow for notifications, independent of their in-

teraction model. In the context of pervasive computing and IoT, a notification

(or also event) is a piece of information in that consumers might be interested.

Delivery of notifications is often performed using the PS interaction paradigm.

Basically, notification systems and the PS interaction model are highly correlated.

However, whereas PS interaction does include means to interact for performing

a task, e.g., change a specific value, the purpose of notification systems is only to

communicate updates, e.g., a value has changed. Thus, in this thesis, PS interac-

tion is about service interaction, whereas notifications are about service updates.

Section 2.2 introduced the PS interaction but omitted details on the filter and

event category. The literature mainly distinguishes three different schemes for

this purpose [37, 155]: channel-based, subject-based (or also topic-based [51]),

and content-based. Among these schemes a trade-off between expressiveness and

overhead exists [51].

In a channel-based system, the event category is represented by channels.

Thus, an event is published to one specific channel, e.g., Temperature, Light,

or Humidity. Consumers can subscribe to one or more of these channels. Sub-

sequently, they will receive all events targeting one of the subscribed channels.

Some exemplary channels are shown in Figure 2.6. On the one hand, channels

have a low expressiveness. But on the other hand, they only require low overhead

due to the simple event matching mechanism.

Light
Temper-

ature
Humidity …

Figure 2.6.: Exemplary Channels. Consumers can subscribe to a specific channel
in order to receive every event targeting this channel.

17

2.3. Notification Systems

In a subject-based system, the event category is represented by subjects. A

subject is part of a hierarchical categorisation. Figure 2.7 depicts an exemplary

subject hierarchy. In this example, if subscribers are interested in the temper-

ature, they subscribe to the subject Physical Environment/Conditions/Temper-

ature. Here, ‘/ ’ denotes the next lower level in the hierarchy. Furthermore,

subject-based systems support the use of wild cards in order to subscribe to a

sub-tree (here denoted by ‘#’) or a specific level of the tree (here denoted by

‘+’), instead of only one subject. For example, subscribing to Physical Environ-

ment/Conditions/# will return each upcoming event that is tagged by a subject

of the sub-tree, e.g,, .../Temperature or .../Light/Level. Subjects have a higher

expressiveness compared to channels, but they also require a higher overhead.

Physical
Environment

Conditions Location

Light Audio
Temper-

ature

Infrastructure

Level Flickering

Figure 2.7.: Exemplary Subject-based Hierarchy (based on [154]). Several levels
of subjects exist. Also wild cards are allowed in order to subscribe
to a sub-tree or level of the hierarchy.

In a content-based system, event-subscription-matching bases on a data model

with a corresponding filter model. These models are usually highly application-

specific. Figure 2.8 shows an extract of a content-based data model. Consumers

can subscribe to events that satisfy certain content requirements, such as temp-

Info.value > 20 and tempInfo.unit = ‘Celsius’. Thus, unlike the two former

schemes, content-based systems do not use any additional event category. More-

over, these systems have a high expressiveness but also a high overhead.

Additionally, notification systems can be classified by their delivery modes

[61]. On both sides – consumer and provider – event delivery can be realised

18

2.3. Notification Systems

Conditions

Temperature tempInfo;
Light lightInfo;
Audio audioInfo;
…

Temperature

Number value;
String unit;

Figure 2.8.: Exemplary Content-based Data Model. Content-based systems re-
quire a complex, application-specific data model.

with a push or pull mechanism. On the consumer side, a push mechanism means

that the notification system pushes events to the consumer, whereas a pull mech-

anism denotes that the consumer pulls for new events at the notification system

periodically or sporadically. On the provider side, a push mechanism implies that

the provider pushes events to the notification system, whereas a pull mechanism

indicates that the notification system periodically or sporadically pulls for new

information at the provider.

Altogether, this chapter discussed the theoretical background with respect to

the service-oriented computing paradigm which often serves as foundation for

pervasive and Internet of Things platforms. Furthermore, different interaction

models and notification systems were reviewed. The next chapter builds upon

these fundamentals while elaborating on interoperability issues, solution designs,

and requirements for an interoperability framework, as well as related interoper-

ability approaches.

19

3. State of the Art

The preceding chapter discussed the theoretical background. This chapter in-

vestigates the state of the art in interoperability frameworks. First, Section 3.1

develops an evaluation framework containing the addressing of heterogeneities

between pervasive platforms, possible solution designs of interoperability frame-

works, as well as general interoperability framework requirements. Subsequently,

Section 3.2 performs a thorough literature analysis where existing interoperabil-

ity approaches are assessed with the developed evaluation framework. Last, the

approach in this thesis is demarcated from literature. Besides, this chapter is

based on and extends the works in [147] and [149].

3.1. Evaluation Framework

Before having a look at the state of the art in interoperability frameworks for

pervasive and IoT systems, one should be on familiar ground with the term inter-

operability itself. An often used definition of interoperability is given by the IEEE

Standard Glossary of Software Engineering Terminology as ‘The ability of two or

more systems or components to exchange information and to use the information

that has been exchanged’ [83]. Although the given definition is quite old (it is from

1990), it clarifies the general understanding. In the context of pervasive comput-

ing, this means that service consumers should be able to discover and access any

available service, i.e., communicate and understand the messages, independent

of its platform. More recent definitions include issues that need to be overcome

(e.g., ‘Interoperability is the ability of two or more software components to co-

operate despite differences in language, interface, and execution platform’ [169]),

include how issues should be addressed (e.g., ‘Ability of a system or a product

to work with other systems or products without special effort on the part of the

customer. Interoperability is made possible by the implementation of standards’

[84]), or are very research field-specific (e.g., ‘Interoperability characterises the

21

3.1. Evaluation Framework

extent to which two software components from different manufacturers, which are

functionally compatible, can be made to work together correctly by reconciling

the differences in their interfaces and behaviours’ [14]). However, as issues might

be extended and new solutions may arise in future, these definitions do not seem

well-suited. Therefore, in this thesis, the definition from [83] is used.

Having defined interoperability, the remainder of this section establishes an

evaluation framework for assessing existing interoperability approaches.

3.1.1. Categorisation of Heterogeneities

Based on literature, the following issues have been identified that hinder inter-

operability in service-oriented pervasive environments: communication, (service)

discovery, interaction paradigm, data, application, non-functional properties, and

notifications. Hereafter, those issues are explained in more detail.

Communication heterogeneity (H1) [47, 96, 116, 141] arises if devices are using

different communication technologies [47], such as Wi-Fi or Bluetooth. Since

a Bluetooth device cannot communicate with a Wi-Fi device, communication

between those devices is impossible without further means. Moreover, a different

management model (infrastructure- or ad hoc-based) might prevent middleware

platforms from communicating. An infrastructure-based model makes use of a

neutral instance, e.g., a router, for exchanging messages, whereas in an ad hoc-

based model devices directly exchange and forward messages between each other.

Therefore, also header information of messages differs.

Discovery heterogeneity (H2) [3, 16, 29, 47, 57, 59, 71, 96, 118, 141, 164, 173]

appears due to disparities in discovery mechanisms. This includes the use of dif-

ferent message syntaxes and semantics [57], i.e., formats and contents. Ganzha

et al. additionally mention discrepancies in the used service models [65]. These

points are consolidated as service discovery language. Moreover, disparate proto-

col behaviour can also lead to difficulties. For instance, UPnP [123] uses the sim-

ple service discovery protocol (SSDP) [32] which bases on the hypertext transfer

protocol (HTTP), whereas BASE [12] employs a proprietary protocol using Java

objects. Zhu et al. differentiate between further variations, such as initial com-

munication method (unicast, multicast, or broadcast), discovery and registration

22

3.1. Evaluation Framework

(query-based or announcement-based), discovery infrastructure (non-directory-

based or directory-based), and service usage (explicitly released or lease-based)

[173]. Here, protocol behaviour summarises these points.

Interaction heterogeneity (H3) [9, 16, 21, 71, 86] exists because platforms use

distinct interaction models [86], e.g., client-server, publish-subscribe, or tuple

space. These different models are not designed to work together (cf. Section

2.2). Furthermore, the specific instantiations of these models [71, 86, 96, 118]

differ between pervasive platforms as diverse protocols and data formats are used.

Data heterogeneity (H4) [16, 21, 47, 86, 141] implies that the same information

is expressed in different ways. There, a syntactic mismatch occurs due to different

data formats [16, 21, 47, 86, 96, 141, 164], e.g., extensible markup language (XML)

or a Java object. Hereby, also the carried information can be different. If the

same information is expressed using a different vocabulary, such as price and

cost, the heterogeneity is of semantic nature [16, 21, 86, 96, 118]. Further,

data can be of different units among middleware platforms, e.g., the price can be

indicated in Euro or Swiss Francs. This also counts into the semantic part of data

heterogeneity. All in all, data heterogeneity is a very general heterogeneity that

also appears in the subsequent heterogeneities, where it may not be explicitly

mentioned.

Application heterogeneity (H5) [16, 86] emerges due to the fact that developers

specify functionality differently with respect to the service interface. Thus, devel-

opers possibly implement business operations in various ways among platforms

[85, 86], e.g., getName versus getFullName. Moreover, operation granularity can

vary between platforms [85, 86], i.e., an operation on one platform might be im-

plemented with two operations on another platform. For instance, it can happen

that the operation getName on one platform is implemented with two separate

operations getFirstName and getLastName on another platform.

Non-functional properties heterogeneity (H6) [21, 57] emerges from different

syntactic (data types) and semantic (e.g., ‘screen size’ versus ‘display size’) data

representation of non-functional properties. Furthermore, different domains of

non-functional properties can exist among middleware platforms. For example,

one platform supports the requirement ‘security’ and another platform supports

the requirement ‘reliability’. Those platforms cannot provide appropriate means

23

3.1. Evaluation Framework

in order to fulfil the other one’s requirements. Non-functional properties do also

include context properties encountering the same problems.

Notification heterogeneity (H7) [149] arises from dissimilarities in the notifi-

cation models of distinct platforms. The first issue is that some platforms do

not even provide/support notifications. However, information of such platforms

might be of interest to others. Hereafter, platforms that do support notifications

are called supporting platforms, whereas platforms that do not are called non-

supporting platforms. Two supporting platforms can differ in their syntactic and

semantic data representations for event categories and/or event contents. For ex-

ample, on one platform the channel Temperature might be the equivalent for the

channel Climate on another platform. Furthermore, they can even use different

notification schemes, e.g., channels or subjects. Last, delivery modes might vary

among platforms for consumers and providers, i.e., push or pull.

Existing literature tries to organise interoperability issues. Some approaches

are in the form of level models (e.g., [91], [129], [158], or [163]), others are clas-

sifications (e.g., [21] or [96]). Especially the approaches from [96] and [158] are

interesting here because they are specifically targeting pervasive computing sys-

tems. Lahmar, Mukhtar, and Beläıd propose a classification into three categories

[96]: network, protocol, and service. While this classification seems very appropri-

ate, their descriptions are partially incomplete: The network category originally

only covers the technology part of communication heterogeneity, the protocol cat-

egory only addresses service discovery protocols, and the service category only

takes data heterogeneity into account. On the other hand, Strang and Linnhoff-

Popien focus on service interoperability, and they are the only ones (out of the

mentioned) that propose an explicit context level [158]. In accordance with [115],

non-functional properties also include context information. Notably, none of the

approaches consider notification heterogeneity. For a complete taxonomy, the

identified heterogeneities are synthesised with the classification from [96]. The

three categories from [96] are employed and the seven identified heterogeneities

are added as sub-categories. There, communication heterogeneity falls into the

network category. Service discovery and interaction heterogeneities are included

in the protocol category. The service category consists of data, application, non-

functional properties, and notification heterogeneities. Figure 3.1 summarises the

resulting taxonomy of heterogeneities between different platforms.

24

3.1. Evaluation Framework

Heterogeneities

Network

Communi
-cation

Technology

Management
model

Protocol

Discovery

Discovery
language

Protocol
behaviour

Inter
-action

Coordination
model

Model
instantiation

Service

Data

Syntactic

Semantic

Appli
-cation

Business
operation

Operation
granularity

Non-func.
props

Domain

Notifi
-cation

Support

Scheme

Delivery
mode

Figure 3.1.: Taxonomy of Heterogeneities. Several heterogeneities exist between
different middleware platforms. According to [96], they can be classi-
fied into three categories: network, protocol, and service. (Non-func.
props - non-functional properties)

Now that the difficulties that need to be overcome for achieving interoperabil-

ity between different platforms are established, the next section builds a cate-

gorisation for interoperability solutions.

3.1.2. Categorisation of Solutions

Different classifications of the design of interoperability solutions have been

proposed, e.g., in [21], [30], and [118]. These concepts are presented in the fol-

lowing. Then, these classifications are aggregated into one taxonomy. Henceforth,

the term language is used for abbreviating communication means, data formats,

protocols, and vocabulary used by a specific middleware platform.

The classification in [21] identifies the following types of interoperability solu-

tions: traditional middleware, logical mobility, interoperability platform, software

bridge, transparent interoperability, and semantic interoperability. The purpose

of traditional middleware is to overcome heterogeneities between different sys-

tems. By using the same middleware platform, heterogeneous systems are able

to communicate. Here, it is agreed upon a language in advance. However, if

25

3.1. Evaluation Framework

different middleware platforms are used, this solution does not work any more.

Indeed, these middleware platforms are the reason for the interoperability prob-

lem, and thus are the subjects to investigate and make interoperable in this thesis.

Figure 3.2 depicts this approach. Examples for it are BASE [12], iPOJO [50],

Limone [60], and UPnP [123].

Entity

Application

Traditional middleware

Middle-
ware

Entity

Middle-
ware

Application

Figure 3.2.: Traditional Middleware (cf. [21]). Traditional middleware provides
interoperability through agreement of the same language in advance.

In the logical mobility approach, after discovery, an entity downloads the ser-

vice software and can then use it. Thus, entities are not required to know imple-

mentation details beforehand. However, entities have to agree on one common

platform for code execution. Figure 3.3 shows the approach. An example for this

is Jini [5].

Entity

Appli-
cation

Logical interoperability

Middle-
ware

Entity

Middle-
ware

Appli-
cation

Code

Figure 3.3.: Logical Mobility. Logical mobility is achieved through transfer of
mobile code for execution (cf. [21]).

Interoperability platforms are middleware platforms that offer an application

programming interface (API) for the purpose of application development and,

further, provide a local mechanism that translates between the native language

and other middleware languages. Thus, applications that are developed with the

interoperability platform can interact with entities of other middleware platforms.

However, existing applications have to be re-implemented upon the interoperabil-

ity platform in order to benefit from services of other platforms. Figure 3.4 shows

this approach graphically. Examples are ReMMoC [71] and MUSDAC [142].

26

3.1. Evaluation Framework

Interoperability platform

Entity

Appli-
cation

Interoperability Platform

Trans-
lation

Substituted
Middleware

Entity

Middle-
ware

Appli-
cation

Figure 3.4.: Interoperability Platform (cf. [21]). Interoperability platforms offer
an API for application development and a mechanism to translate
between languages.

Software bridges enable different middleware platforms to communicate by in-

troducing a bridge - an additional intermediate entity that translates between

languages. Platforms have to be aware of the bridge to interact with it. Thus,

they need to know the bridge’s API. In the basic version, messages are directly

translated between languages. The enterprise service bus (ESB) and enterprise

application integration (EAI) are special forms of a software bridge. The differ-

ence is that they employ an indirect transformation model [79], i.e., a message

is translated into an intermediate language before translating it into the target

language (cf. direct versus indirect translation below). Figure 3.5 summarises

this solution. Examples are IBM WebSphere Message Broker1 and Cilia [66].

Software bridge

Entity

Appli-
cation

Middle-
ware
A

Entity

Middle-
ware

B

Appli-
cation

Entity

Bridge between A to B

Figure 3.5.: Software Bridge (cf. [21]). Software bridges introduce an interme-
diate entity that translates between languages. The intermediate
entity must be known by applications.

Transparent interoperability solutions use an intermediate language and for-

mat, like ESBs, to translate between languages. However, unlike with ESBs,

platforms are not aware of any mediating entity. Thus, existing applications and

platforms do not require any change. Figure 3.6 depicts this approach. Examples

are uMiddle [118] and SeDiM [59].

1https://www-01.ibm.com/software/integration/ibm-integration-bus/library/message-
broker/

27

3.1. Evaluation Framework

Transparent interoperability

Entity

Appli-
cation

Middle-
ware
A

Entity

Middle-
ware

B

Appli-
cation

Entity
Tr. betw.

A and
Inter-

mediary

Tr. betw.
B and
Inter-

mediary

Figure 3.6.: Transparent Interoperability (cf. [21]). Transparent interoperabil-
ity approaches use an intermediate entity and language to translate
between languages. The intermediate entity works transparently for
applications (Tr. - translation).

Semantic interoperability solutions make use of ontologies in order to provide

the same language between platforms. Either platforms are forced to use the same

ontology, or complex ontology alignment [46] or ontology matching [52] mecha-

nisms are employed that translate between ontologies. Semantic interoperability

specifically deals with data heterogeneity.

The categorisation by Bromberg et al. is broader and classifies interoperability

approaches according to the awareness of the solution by entities of different plat-

forms into explicit and transparent approaches [30]. In the transparent approach,

messages are translated and forwarded to the communication partner without

being aware of any intermediate entity or translation routine. Hence, this class

differs from the transparent interoperability approach in the classification in [21]

in that it potentially works with direct and indirect translation. Depending on

the design of the intermediate entity, the integration of new platforms can be

challenging. Nonetheless, existing platforms and entities do not demand modi-

fications. In the explicit approach, an interoperability solution offers an API to

entities, granting a uniform protocol. Hence, there is no need for protocol align-

ment. It also allows to extend existing protocols with further aspects [142], e.g.,

context management. Required translations confine themselves to transforma-

tions on the service level, i.e., data, application, non-functional properties, and

notifications. The integration of a new platform is simple because the interme-

diate entity does not require any changes, only the new platform has to conform

to the API. Hence, this category summarises approaches of interoperability plat-

forms and software bridges in the classification in [21].

Furthermore, Nakazawa et al. propose a categorisation of interoperability so-

lutions by the following dimensions [118]: translation model, distribution, gran-

28

3.1. Evaluation Framework

Platform A Platform B

Platform C Platform D

(a) Direct Translation

Intermediate

Platform A Platform B

Platform C Platform D

(b) Indirect Translation

Figure 3.7.: Translation Models (cf. [92]). In the direct translation, messages are
directly translated between two platforms. In the indirect transla-
tion, intermediate semantics are used in order to decrease the number
of transformers per service.

ularity, and deployment location. With respect to the translation model, two

different designs are possible [118]: direct and mediated (also named indirect).

Direct translation transforms a message of one platform directly into a message

of another platform. The loss of information due to the translation process is

minimal here because the greatest common divisor of information is translated.

However, each service pair requires a transformer. Consequently, for s services

and p platforms, this results in s ·
∑p

i=1(i − 1) transformers. In other words,

for adding support for one new service,
∑p

i=1(i − 1) new transformers have to

be integrated. Usually, the software developers specify the transformers. This

can rapidly become unmaintainable when using the direct model. Figure 3.7a

depicts this with an example of one service and four platforms. There, for every

new service, 6 (=
∑4

i=1(i − 1) = 0 + 1 + 2 + 3) new transformers are required.

Indirect translation, on the other hand, uses intermediate semantics. During the

translation process, it is first transformed from a message in the source format

to an intermediate representation, and then from the intermediate one to a mes-

sage in the target format. Here, transformers are only required between a service

and the intermediate format. Consequently, having s services and p platforms,

the amount of transformers decreases to s · p. In other words, in order to add

support for one new service, p new transformers have to be integrated. This

29

3.1. Evaluation Framework

results in equal or less transformers for the indirect translation model for p ≥ 3.

Furthermore, this lowers the hurdle for adding new platforms and services, and

consequently increases extensibility. However, information might get lost as the

intermediate format might contain less information than the greatest common

divisor between only two platforms [21]. Figure 3.7b shows this with an example

of one service and four platforms. For every new service, 4 new transformers are

required there.

Distribution is concerned with the visibility of translated services [118]. Using

a scattered approach, every service is made visible to any platform using proxy

representations. Thus, every entity can seamlessly access other services. The

aggregated model does not distribute services to other platforms, but stores them

in an intermediate format. Only entities that are implemented with the inter-

mediate platform can access those services, not being visible in other platforms.

The direct translation model implies a scattered visibility, whereas in the indirect

model both solutions, scattered and aggregated, are possible.

The granularity dimension is concerned with the representation of services

[118]. A coarse-grained representation includes service types and operations. If

service types coincide, services are considered to be compatible (syntactic match-

ing). Using this approach, only services that are currently defined can be trans-

lated and accessed. A fine-grained representation includes service semantics, i.e.,

provided and required inputs and outputs together with data types. If a con-

sumer’s provided input and required output matches a service’s required input

and provided output, they are compatible (semantic matching). This dimension

is specific to the indirect translation.

Considering the deployment location, an interoperability solution might be

located in the infrastructure or at-the-edge [118]. If the interoperability solution is

located on the devices themselves, it is referred to at-the-edge. In contrast to that,

it is called in the infrastructure if the solution is deployed on a dedicated node,

such as a router or server, possibly in the cloud [4]. The latter approach usually

does not require changes at existing devices or services, whereas the former one

does. Usually, at-the-edge solutions communicate without any intermediate node,

whereas solutions deployed in the infrastructure, as one can suggest, are deployed

on an intermediate entity.

30

3.1. Evaluation Framework

Interoperability
Solutions

Awareness

Explicit

Transparent

Translation
model

Direct

Indirect

Distribution

Scattered

Aggregated

Granularity

Coarse

Fine

Location

In the infra-
structure

At-the-edge

Figure 3.8.: Taxonomy of Interoperability Solutions. Interoperability solutions
can be classified by several categories.

Figure 3.8 summarises the different categories in one taxonomy with the follow-

ing dimensions: awareness, translation model, distribution, granularity, location,

and discovery model. The classification in [21] is omitted because some types

directly imply other design decisions. Furthermore, the differentiation in [30]

covers a similar aspect but is more general. The next section introduces general

requirements for an interoperability framework.

3.1.3. Requirements for an Interoperability Framework

Several requirements have been identified for interoperability frameworks for

pervasive computing systems. The identified requirements are, on the one hand,

based on the purpose of a framework and, on the other hand, derived from char-

acteristics of pervasive computing systems. In general, a framework is an ab-

straction that provides generic functionality and can be extended by user-written

code. Frameworks usually offer re-usable and customisable components in order

to build application-specific software. The requirements are non-exhaustive.

R1 Extensibility: There already exists a high variety of different middleware

platforms for pervasive computing and IoT and most likely more will be de-

veloped. Furthermore, for each platform, new services will be implemented

in future. That is why an interoperability solution must be extensible with

new platforms and new services [118].

R2 Customisability: Depending on the domain (or also due to future evolu-

tion of middleware platforms), simpler or more sophisticated mechanisms

31

3.2. Analysis of Existing Approaches

(e.g., for message translation) might be desired. These mechanisms and/or

parts of them should be easily customisable, exchangeable, or extensible.

Therefore, this requirement demands explicit support for the developer in

order to customise internal algorithms.

R3 Dynamism: In pervasive environments, there co-exist many mobile de-

vices. Those can be also of mobile nature, such as smartphones, and hence

change their location regularly [21]. The wide usage of the SOC paradigm

enables those entities to join and leave the system at runtime. An interop-

erability solution must be able to cope with this dynamism introduced by

the fluctuation of devices.

The next section introduces related approaches that aim at interoperability

between pervasive computing and IoT platforms, and discusses them with respect

to the elaborated evaluation framework.

3.2. Analysis of Existing Approaches

Literature has presented several reviews regarding interoperability between

different middleware platforms. Some literature reviews exist especially with re-

spect to service discovery heterogeneity in mobile or pervasive computing (e.g.,

[1], [39], [77], [103], [111], [143], [144], and [173]). The review by Zhu et al.

[173] is the most complete one, dividing a service discovery protocol in ten dif-

ferent components: service and attribute naming, initial communication method,

discovery and registration, service discovery infrastructure, service information

state, discovery scope, service selection, service invocation, service usage, and

service status inquiry. The most commonly identified differences in those reviews

is the service discovery infrastructure (or also architecture [39]), i.e., directory-

based versus directory-less. Other reviews do not only consider service discovery

heterogeneity but also include other heterogeneities. Blair et al. show a non-

exhaustive overview on interoperability solutions for complex distributed sys-

tems and classify them according to a set of heterogeneities [21]. There, complex

distributed systems include grid applications, mobile ad hoc applications, en-

terprise systems, and sensor networks. Lahmar [96] presents a non-exhaustive

overview on interoperability approaches for pervasive computing categorised by

32

3.2. Analysis of Existing Approaches

service interoperability, service discovery protocol interoperability, and network

interoperability. In [112], IoT platforms are classified according to some criteria

including their support for heterogeneous devices. Based on the classification,

the authors give recommendations on how to extend each platform in order to

meet the criteria. For more details, the interested reader is referred to [21], [96],

and [113], respectively.

The remainder of this section is partially based on these overviews but gives

a more up-to-date version, also including IoT approaches. Furthermore, the ap-

proaches are evaluated against the above introduced evaluation framework (see

Section 3.1). Each approach is described and assessed one by one. A differentia-

tion is made between approaches targeting interoperability in pervasive comput-

ing environments (see Section 3.2.1) and approaches targeting interoperability in

IoT environments (see Section 3.2.2). If information on certain criteria are not

known about an approach or not identifiable from literature, it is not explicitly

mentioned.

3.2.1. Pervasive Computing Approaches

In the following, related work approaches with respect to pervasive comput-

ing are presented. This includes pervasive computing, context-aware computing,

mobile computing, and ambient intelligence approaches.

Speakeasy [45] is an interoperability platform. It uses a fixed set of generic

interfaces for data transfer, collection, metadata, and control, in order to avoid

making interfaces between heterogeneous services conform. Custom objects that

implement one of these known interfaces are used as return types, and are then

used to access services. Unknown interfaces, data types, as well as protocols can

be loaded through mobile code. As a result, prior knowledge on protocols or data

types is not necessary. Furthermore, applications and services only have limited

knowledge due to the small set of generic interfaces. Thus, the user is the one who

decides when and how to access remote services as the authors assume that users

understand the service-specific semantics intended by developers. This prevents

applications from an automatic execution. Developers have to create bridges that

allow Speakeasy applications to discover and access services. However, existing

applications cannot make use of services running on other platforms. Speakeasy

33

3.2. Analysis of Existing Approaches

fulfils partially service discovery heterogeneity (H2) and syntactic data hetero-

geneity (H4). The authors mention that notifications can be received, but it is

unclear if any transformations happen (H7). Moreover, Speakeasy uses an ex-

plicit interoperability access, indirect translation with aggregated visibility, and

it is deployed at-the-edge. Further, it fulfils the platform extensibility (R1) and

dynamism (R3) criteria.

The approach in [62], hereafter called SQL Broker, is an interoperability at-

tempt for service discovery. It uses a shared data space, service interpreters and

a database. A service interpreter must exist for each supported service discovery

protocol. It monitors the network for service advertisements, translates them

into structured query language (SQL) INSERT statements, and writes them to

the shared data space. The database monitors the shared data space, takes out

SQL statements, and executes them. It stays unclear how translation of service

descriptions, if performed, happens. SQL Broker allows to integrate existing ser-

vices without changes to those. Applications, however, need to use a specified

API in order to query for available services. Furthermore, SQL Broker only solves

a part of the service discovery heterogeneity (H2) because some points remain

unclear, e.g., translation of service descriptions. The approach is explicit and

performs indirect, scattered translation. It is deployed in the infrastructure. Ser-

vice interpreters allow to extend the SQL Broker with new platforms (R1). The

dynamism (R3) criterion is partially tackled as it covers services entering and

leaving the system explicitly.

In [3], the authors present a transparent interoperability approach between

UPnP [123] and Jini [5], here called Jini/UPnP. They use proxies in order to

enable clients in UPnP to use Jini services and the other way around. By this, Jini

clients can discover UPnP services and, respectively, UPnP clients can discover

Jini services. Furthermore, these proxies transform access calls between Jini

and UPnP and interact with the corresponding service. A ‘modest amount of

code’ [3] is required for each of these proxies which incorporate one service type.

For each direction, UPnP to Jini and vice versa, a separate module is needed

that creates proxies. Jini/UPnP tackles service discovery heterogeneity (H2),

syntactic data heterogeneity (H4), and translates between operation names and

parameters (H5). Additionally, it bases on a transparent awareness approach,

employs direct translation with scattered distribution, and is deployed in the

34

3.2. Analysis of Existing Approaches

infrastructure. Also, it fulfils the extensibility (R1) criterion, with respect to

services, as well as the dynamism (R3) criterion.

Koponen and Virtanen present in [92] a transparent interoperability approach,

henceforth called Broker, to allow for service discovery interoperability between

Jini [5] and SLP [75]. It employs a broker engine and, for each supported mid-

dleware platform, an adapter. The broker engine acts as message mediator that

forwards translated service registrations between adapters. Adapters makes use

of transformers in order to translate service registration messages into an abstract

format and representation before passing the messages to the broker engine. A

transformer must exist for every supported service type. Service requests do not

require translations as adapters pass them to either a local lookup service or

directory agent. Service access is not considered in the Broker approach. Be-

sides addressing service discovery (H2) and data (H4) heterogeneities, the Broker

approach is able to send notifications between Jini and SLP (H7). However,

it remains unclear how inter-platform notifications work. The Broker approach

works transparently, uses indirect transformation, scattered distribution, coarse-

grained granularity, and is deployed in the infrastructure. Furthermore, new

platforms can be integrated by adding further adapters, and new services can be

added through new transformers, which requires writing code (R1). Dynamism

is handled as well (R3).

The reflective middleware to support mobile client interoperability (ReMMoC)

[71, 72] is an interoperability platform for mobile environments based on reflec-

tion and a component framework. ReMMoC is implemented based on the Open-

COM component framework [41] and includes a mapping component as well as

further component frameworks for service discovery and binding. The web ser-

vice description language (WSDL) [40] is used to describe services of different

middleware platforms. The mapping component uses WSDL files for mapping

between abstract services and concrete bindings, and vice versa. The service

discovery and the binding component frameworks need to include components

for supported protocols, e.g., remote method invocation (RMI) using SOAP [26].

During runtime, reflection may lead to component replacements. ReMMoC of-

fers an API for developing mobile applications that can interact with services

using different middleware platforms. It does not provide interoperability be-

tween existing services. Only a mobile client that is implemented with ReMMoC

35

3.2. Analysis of Existing Approaches

can access services of other platforms. This requires tremendous changes (re-

implementation with ReMMoC) to existing applications if they want to make

use of ReMMoC. ReMMoC addresses service discovery heterogeneity (H2) and

interaction heterogeneity (H3). It is an explicit approach that uses indirect, ag-

gregated translation, and is deployed at-the-edge. ReMMoC is extensible with

new platforms and services (R1), and copes with a dynamic environment (R3).

The universal middleware bridge (UMB) [117] aims at interoperability for

home network middleware platforms. It consists of a core and several adaptors.

Adaptors abstract middleware-specific devices to the universal device template,

the common device representation employed in UMB. The abstraction happens

with mappers. The abstract device representation is then passed to the core,

where it is stored. Core and adaptors are connected through the network. Uni-

versal metadata messages, which the core routes between the adaptors, allow for

lookup and interaction between heterogeneous devices. Addressed heterogeneities

by UMB are service discovery (H2), data (H4), and partially application (H5)

since operation names and parameters are translated. UMB is a transparent ap-

proach using indirect, scattered, coarse-grained translation, and is deployed in

the infrastructure. It is extensible with new platforms through adding adaptors,

and with new services by adding new device descriptions (R1). As well, it handles

dynamism (R3).

The multi-protocol service discovery and access middleware platform (MUS-

DAC [142] or MSDA [141]) allows for service discovery and access across perva-

sive middleware platforms. MUSDAC uses an explicit interoperability approach

where it registers itself as service at each platform. Applications can use MUS-

DAC through the provided API and the MUSDAC representation for service

discovery and description in order to discover, lookup, and access services. For

each supported platform, a plugin must be present that bears responsibility for

performing local service discovery and access tasks. Within plugins, transformers

extend service descriptions with context information. Managers forward requests

between plugins and/or bridges. Bridges are gateways to other networks where a

MUSDAC instance is present. Clients may restrict the dissemination of certain

requests to specific contexts, e.g., the local network. As others, this approach

makes use of an intermediate message format. For this purpose, the authors

introduce the abstract MUSDAC description format for service descriptions, as

36

3.2. Analysis of Existing Approaches

well as the abstract MUSDAC request format for service requests. MUSDAC’s

explicit approach indeed enables extension of service descriptions. Though, it

requires substantial changes in existing platforms. Furthermore, because clients

already use the abstract formats during communication, transformations due to

heterogeneous data formats is not required. It is unclear if vocabulary is trans-

lated, or a common vocabulary is assumed. MUSDAC copes with communication

heterogeneity (H1) and service discovery heterogeneity (H2). Data (H4) and non-

functional properties (H6) heterogeneities are partially met because it remains

unclear if vocabulary translation happens. It employs an indirect, scattered trans-

lation model and is deployed in the infrastructure. Further, it is extensible with

respect to platforms and services (R1), and handles dynamism (R3).

The pervasive semantic syntactic (PerSeSyn) service discovery platform [17],

as part of the PLASTIC framework [116], aims at interoperable service discov-

ery for ambient computing environments. The communication middleware of the

PLASTIC framework bases on MUSDAC. Hence, managers coordinate the dis-

covery in one independent network, and are able to communicate with managers

from other networks via bridges. Additional technical services are implemented

on top, including a service accessibility and composition service of which the

PerSeSyn platform is a part. The PerSeSyn platform allows for service discov-

ery between syntactic-based and semantic-based service discovery protocols. It

especially focuses on an abstract service specification and on an algorithm for

service matching. The authors propose the PerSeSyn service specification con-

sisting of an abstract model and language. It is based on semantic annotations

for WSDL (SAWSDL) [54] and the web services business process execution lan-

guage (WS-BPEL) [121]. It provides support for syntactic as well as semantic

service descriptions. For service matching, depending on the descriptions of a

request and the service to be checked, a different algorithm may be used, e.g.,

if both request and service are described syntactically, a syntactic matching is

performed. The semantic matching algorithm, which is performed if request and

service are described by semantic capabilities, is based on [115]. Due to the fact

that MUSDAC builds the communication layer, clients can benefit of the PLAS-

TIC framework (and thus of the PerSeSyn platform) by using the provided API.

With respect to the evaluation framework, PerSeSyn covers the same aspects as

MUSDAC.

37

3.2. Analysis of Existing Approaches

The interoperable discovery system for networked services (INDISS) [28, 29]

provides transparent service discovery interoperability through the use of event-

based parsing methods. A monitor component maps messages to a platform based

on the port and address on which the message is received. The corresponding

parser transforms the message into a series of events and passes those to the

responsible composer. The composer then converts the events into a message that

is understood by the target device. A set of mandatory events for service discovery

are proposed. As some platforms offer more functionality than others, platform-

specific events can be integrated. If a composer does not understand certain

events, they are discarded. Parsers and composers can be switched at runtime,

e.g., from an HTTP parser to a SOAP parser, to support platforms that are based

on several protocols, such as UPnP [123]. The coordination of events in parsers

and composers of a platform works with the help of finite state machines. INDISS

addresses service discovery (H2) heterogeneity, neglecting service access. Yet,

it assumes a common vocabulary as no translations between message content is

mentioned. Further, INDISS is transparent, and it performs translations directly.

It is deployable in the infrastructure as well as at-the-edge. Also, it is extensible

with platforms and services (R1), and manages dynamism (R3).

The Amigo interoperability framework [69, 162] targets interoperability for

ambient intelligence in the networked home. It bases on INDISS as interoperable

service discovery mechanism and also takes over the event-based parser concept

for enabling interoperable service interaction. Service matching happens accord-

ing to PerSeSyn [17]. Discovered service descriptions are used to generate stubs

that bridge service invocations between a client and a service. A stub consists of

a parser and a composer unit (cf. INDISS [28, 29]) that generate semantic events

upon message arrival. Furthermore, on the communication protocol level, Amigo

offers ‘per-layer interoperability’ [69], i.e., each layer of the protocol is translated

if the target protocol is sufficiently similar to the source protocol. Thus, for each

layer there has to be a parser and a composer present. Moreover, the Amigo

service repository offers an API that allows clients to lookup services directly.

For this, an alteration of existing client applications is required. Regarding het-

erogeneities, Amigo tackles communication heterogeneity (H1), service discovery

heterogeneity (H2), and partially application heterogeneity (H5) because only op-

eration names and parameters are aligned. Amigo is a transparent solution that

38

3.2. Analysis of Existing Approaches

uses direct translation. Besides, it is deployable in the infrastructure as well as

at-the-edge. Additionally, it is extensible with new platforms and services (R1),

and addresses the dynamism (R3).

Also as part of the Amigo project [69], Uribarren et al. [164] propose a trans-

parent interoperability approach, hereafter called Bridge, that allows applications

to use hardware services, like wireless sensors or RFID locators. It consists of a

drivers layer, a unified model layer, and a bridges layer. In the drivers layer,

drivers communicate with devices, extract service descriptions from available

devices, and generate unified descriptions from those. Each device technology

requires a driver. The unified model layer is, basically, a service registry that

stores the available services in the unified description format. The unified de-

scription of a service includes information on methods, properties, events, and

meta-information. In the bridges layer, for each supported platform, a service

instance is created from a unified service description. Existing applications can

then discover and access the service instances. Unfortunately, the authors do not

give any specifics on required translations. The approach tackles communication

heterogeneity (H1) and service discovery heterogeneity (H2). It is transparent

and uses indirect translation with scattered visibility and coarse-grained granu-

larity. It targets a deployment in the infrastructure. Further, the approach is

extensible (R1) and supports dynamism (R3).

uMiddle [118] is a bridging framework to enable interoperability between mid-

dleware platforms. Therefore, it uses an intermediate representation, mappers,

and translators. For the intermediate representation, the authors propose the uni-

versal service description language [118, 119] (USDL). USDL is based on XML

and consists of a platform-independent and a platform-dependent part. Mappers

discover services of one middleware platform using the platform-specific service

discovery protocol, and import them into the uMiddle registry. They automat-

ically generate USDL files for discovered services. Unfortunately, it is not clear

how this works from the papers. Translators bridge from a platform-specific repre-

sentation into the intermediate uMiddle representation, and vice versa. Moreover,

the uMiddle framework provides an API for developing platform-independent ap-

plications. Only applications that have been developed using the API can access

services of different platforms because discovered services are not propagated to

other platforms. Thus, interoperability between services is only offered when

39

3.2. Analysis of Existing Approaches

using a uMiddle application. uMiddle addresses communication (H1), service

discovery (H2), and syntactic data (H4) heterogeneities. It works transparently,

uses indirect translation with aggregated visibility and a fine-grained representa-

tion, and is deployed in the infrastructure. Moreover, uMiddle covers extensibility

(R1) only partially because clients that are not implemented with uMiddle cannot

benefit from other platforms. Additionally, it deals with dynamism (R3).

Flores et al. present a multi-protocol framework for ad hoc service discovery

(MPFSD) [58, 59]. They distinguish between directory-based and directory-less

service discovery protocols (like, e.g., [39], [143], and [173]) and establish common

interaction patterns for both. Based on this, they identify common components

among several service discovery protocols, such as advertiser, request, reply, net-

work, cache, and policy. For integrating new protocols, these components need

to be implemented. However, this solution neglects the fact that different service

discovery protocols use different service description languages, and hence does not

employ any translation mechanism. Thus, it only enables multi-protocol service

discovery if the same service description language is spoken. Therefore, MPFSD

only tackles part of service discovery heterogeneity (H2) as no translations take

place. It uses a transparent approach. Message translation happens indirectly

for scattered visibility. Moreover, MPFSD is deployed in the infrastructure. The

approach can be extended with new platforms (R1).

SeDiM [57] is a configurable transparent interoperability framework for en-

abling service discovery across platforms and also for developing applications

with the provided API. It is presumably based on the approach of [58, 59], and

extends it with a discovery event abstraction, a domain hub, and a service descrip-

tion abstraction. The discovery event abstraction works as intermediate message

representation. Thus, messages are not translated one-to-one, but indirectly via

the abstraction. The domain hub is responsible for translating messages between

different protocol formats. For every supported platform, there has to be a do-

main socket that is connected to the domain hub. Every message received in a

domain socket is forwarded to the domain hub, translated, and forwarded to the

target domain socket. The service description abstraction enables service lookup

and matching among different middleware platforms. Therefore, they use a for-

mat based on WSDL. Furthermore, according to [57], SeDiM can be configured

dynamically based on the current environment, i.e., if a certain middleware plat-

40

3.2. Analysis of Existing Approaches

form is detected, it is configured. Instances of SeDiM are able to communicate

with each other if both instances overlap in one domain socket. Unfortunately,

the paper is on a very high level and no detailed information about its internal

functioning is provided. SeDiM addresses service discovery heterogeneity (H2).

It employs a transparent approach, indirect and scattered translation, as well as

deployment in the infrastructure and at-the-edge. Further, the approach supports

extensibility with new platforms and services (R1), and dynamism (R3).

The open service discovery architecture (OSDA) [106] enables transparent

cross-domain service discovery through a distributed information storage and

querying model, and an abstract information representation. The authors define

a domain as ‘a federation of network components [...] controlled by a single ser-

vice discovery technology’ [106]. Service brokers bridge between intra-domain and

inter-domain discovery systems. Therefore, service brokers consist of two layers.

The lower layer intercepts messages of the local domain and translates them to the

abstract representation, and vice versa. The upper layer manages communication

on the inter-domain level, i.e., the communication between service brokers. Here,

a structured peer-to-peer overlay network, based on a distributed hash table, is

used to advertise services and process service queries. For an abstract informa-

tion representation, the authors propose the Unified Service Description scheme

as service description format, as well as the Unified Request and Unified Response

schemes for service requests and, respectively, service responses. Their proposed

schemes base on XML. OSDA supports service advertisement and querying, but

no access. Unfortunately, the authors do only provide few information on the

translation mechanism. OSDA tackles service discovery heterogeneity (H2). The

approach is transparent, and it uses indirect, scattered translation. It is deployed

in the infrastructure. Moreover, new platforms and services can be integrated

through new service brokers (R1), and dynamism is addressed (R3).

Smart-M3 [80] is a platform for information sharing among heterogeneous

devices. The approach includes semantic information brokers, knowledge proces-

sors, and the smart space access protocol. Semantic information brokers store

information of a smart space in a database, i.e., context information. They

further must implement operations provided by the smart space access proto-

col. Then, knowledge processors can join/leave semantic information brokers,

insert/remove/update/query information, and subscribe/unsubscribe for certain

41

3.2. Analysis of Existing Approaches

changes in the information. Communication between semantic information bro-

kers and knowledge processors is not fixed, i.e., different semantic information

brokers can use different transport protocols. Knowledge processors further im-

plement an application logic based on a chosen ontology. Information interoper-

ability is actually achieved through ontology standardisation. Hence, Smart-M3

addresses communication (H1) and data (H4) heterogeneity. It is an explicit ap-

proach using indirect transformation, and can be deployed in the infrastructure.

Because Smart-M3 provides data rather than service interoperability, the distri-

bution and granularity classification is not feasible. It tackles extensibility (R1)

and dynamism (R3) requirements.

Kiljander et al. extend Smart-M3 with ucodes (based on the Ubiqitous ID

architecture [93]) to find object information on a world-wide scale [91]. This ap-

proach is referred to as Ubi-M3 hereafter. Virtual entities, representing devices,

and semantic information brokers are identified by ucodes. Entities can commu-

nicate with a resolution infrastructure in order to discover and look other entities

up based on ucodes. The approach uses the same concepts as Smart-M3.

With InterX [132], the authors propose an interoperability gateway for per-

vasive computing devices that runs on smartphones. There, one smartphone

represents one user having several devices with different service protocols. They

assume that service protocols are not known beforehand. Thus, first of all, a

service protocol discovery takes place where InterX instances exchange a list of

their supported service protocols. For non-overlapping protocols, a component is

created that translates service discovery requests and responses. A service proxy

is then instantiated for every discovered service. Translations happen based on

a common abstraction format. The authors underline that interoperability is

enabled at runtime. However, no information is given on how service discovery

components and service proxies are instantiated and configured at runtime. In-

terX requires that devices use the API for exchanging their supported protocols.

Only service discovery (H2) heterogeneity is addressed and happens on a trans-

parent basis. Furthermore, InterX performs indirect, scattered transformation,

and is deployed at-the-edge. It is extensible (R1), and it handles dynamism (R3).

ZigZag [145] is a middleware for service discovery among different networks.

It consists of four components: monitor, connector management, network link,

and aggregator. The monitor component, as introduced by INDISS [28, 29], de-

42

3.2. Analysis of Existing Approaches

tects available service discovery protocols depending on the multicast group ad-

dress and port. Each service gets assigned to a universally unique identifier [102]

(UUID) in order to identify a service globally. For each pair of service discovery

protocols, the connector management component has to instantiate a connector.

Thus, ZigZag uses a direct translation mechanism. The network link component

maintains an overlay network between ZigZag instances for exchanging requests

and services. Because potentially many responses arrive for one request and,

further, existing service discovery protocols are not designed to handle such a

great amount of messages, the aggregator component aggregates these responses,

selects the best matching response, and returns it to the requester. ZigZag is

deployed in the infrastructure, and focuses on service discovery (H2) heterogene-

ity. It is a transparent solution that uses a direct translation model. Also, it

is extensible with new platforms and services (R1), and supports the dynamism

(R3) criterion.

As part of the CHOReOS project [167], the extensible service bus (XSB) [68]

is developed. The XSB bases on an ESB and targets interaction paradigm in-

teroperability. Middleware platforms are abstracted as connector models. The

authors provide connector models for the client-server, publish-subscribe, and

tuple space paradigms. The specific connector models are further abstracted as

a generic connector model. Binding components can convert between the dif-

ferent representations using protocol conversion techniques [100]. Furthermore,

the XSB approach uses a proprietary interface description language (IDL) to de-

scribe deployed services. Binding components are automatically created from the

service descriptions. The approach tackles interaction (H3) heterogeneity. Be-

sides, it is explicit, uses indirect translation, and is deployed in the infrastructure.

Regarding the requirements, it is extensible with new platform and services (R1).

In the CONNECT project [15, 16], software connectors are the basis for inter-

operability. CONNECT shifts all activities to runtime, not requiring any domain-

specific knowledge at design time. Connectors are automatically generated at

runtime if two entities spontaneously decide to interact. This happens with the

help of learning and synthesis techniques [18]. Learning techniques are used to

derive ontologies for services as well as behavioural and semantic specifications

of applications and services [13]. Ontologies are learnt through text categorisa-

tion with support vector machines. For behavioural and semantic specifications,

43

3.2. Analysis of Existing Approaches

CONNECT applies an iterative process in which interactions are actively tested

and refined. In case two systems want to interact, their specifications are syn-

thesised during connector generation. Due to the usage of learning techniques,

erroneous categorisations can conceivably happen. All in all, CONNECT ad-

dresses service discovery (H2), interaction (H3), data (H4), and application (H5)

heterogeneities. Moreover, it is a transparent approach performing direct trans-

lations, and can be deployed in the infrastructure. CONNECT is extensible (R1)

and handles dynamism (R3).

3.2.2. Internet of Things Approaches

In the following, related work approaches with respect to the Internet of Things

are presented. This includes Internet of Things and Web of Things approaches.

Dynamix [34, 35] is a framework for the Web of Things. It allows Web-based

applications to discover and access non-Web-based services (as, e.g., pervasive

computing devices). Dynamix is designed to be executed on smartphones running

the Android2 operating system. Web-based applications (e.g., Web browser or

Android applications) may want to interact with non-Web-based services. There-

fore, an Android service provides representational state transfer (REST) APIs

for Web applications and Android IDL (AIDL) APIs for Android applications.

Abstract protocols have to be created that conform to protocol-specific imple-

mentations. Web-based applications then can send abstract invocations which

the Android service translates to protocol-specific invocations. Furthermore, Dy-

namix provides an API for implementing Web-based applications in order to

communicate with the Dynamix (Android) service. It is not designed for inter-

operability between existing services, but only to access services from Web-based

applications that implement the Dynamix API. The Dynamix approach tackles

service discovery heterogeneity (H2). It works explicitly, uses indirect, aggregated

transformation, and is deployed at-the-edge. Further, Dynamix is extensible (R1)

and handles dynamism (R3).

oneM2M [94, 160] aims at providing semantic interoperability between machine-

to-machine solutions through standardisation, i.e., by developing a global spec-

ification. It bases on FIWARE [139] as service discovery framework. FIWARE

2https://www.android.com/

44

3.2. Analysis of Existing Approaches

is a framework using generic enablers. Those are easily configurable and deploy-

able cloud components. oneM2M builds a layer on top of FIWARE in order to

integrate semantic reasoning and knowledge processing to allow for data inter-

operability. Semantic mediation gateways are placed between these two layers

and are responsible for transforming data representations based on semantic an-

notations. For translation purposes oneM2M employs device and resource ab-

stractions. Further, it provides a common API in order to develop new services.

Interoperability with existing services is mentioned [160], but it stays unclear how

it works. Therefore, oneM2M only addresses data heterogeneity (H4). The ap-

proach is presumably explicit, and uses an indirect, scattered translation scheme.

It is deployed in the infrastructure.

HyperCat [20, 82] refers to itself as ‘IoT interoperability specification’ [82]

with the goal of having one shared representation and query mechanism for IoT

resources. It specifies a hypermedia catalogue format and an API to expose and

query information on IoT resources over the Internet. Service information, or

more specifically the hypermedia catalogue, is stored in so-called hubs and is

represented as statements based on the Resource Description Framework (RDF)

[101]. The API allows to expose services to hubs, and thus, if existing services

should be included, they need to be adjusted to conform with the HyperCat

API. Deletion of information, e.g., in case of leaving/shutting down, takes place

explicitly. HyperCat is an explicit solution that works with indirect translation.

As the approach seeks for data interoperability, the distribution and granularity

classes are not feasible. Instances are deployed in the infrastructure.

The IoT Hub [113] approach provides interoperability by extending existing

middleware platforms with a REST API for communication with an IoT hub.

So-called enablers bridge to devices by using the REST API and so-called IoT

feeds. Things and data are abstracted to such IoT feeds using transformations.

IoT feeds are stored in the IoT hubs that also provide an API for storing and

accessing them. In order to enable interoperability between different IoT hubs,

there exist meta hubs. Meta hubs store information about available services and

IoT hubs. Furthermore, an API is provided for building applications that can

use available services. The approach tackles data heterogeneity (H4). It works

explicitly, employs an indirect approach, and is deployable in the infrastructure.

Again, data interoperability is to the fore, and thus, distribution and granularity

45

3.2. Analysis of Existing Approaches

is not considered. Further, IoT Hub covers the extensibility (R1) and dynamism

(R3) criteria.

The IoT European Platforms Initiative3 (IoT-EPI) is an initiative for IoT

platform development. It aims at building a sustainable IoT ecosystem, and it

comprises seven – still ongoing – projects of which four revolve around interop-

erability at the communication, protocol, or service level. Those are symbIoTe,

bIoTope, BIG IoT, and Inter-IoT.

The symbIoTe [70, 89, 157] project tries to provide interoperability between

IoT platforms through a uniform access to services. It bases on the oneM2M archi-

tecture, uses a common representation, and consists of the Core API, Interwork-

ing API, and the symbIoTe middleware. The symbIoTe middleware is responsible

for service discovery and configuration. For this purpose, it offers a standardised

API. Platform providers have to implement the Interworking API into their plat-

form in order that services can be uniformly accessed. Here, platform-specific

adaptors enable syntactic transformation of data. The Core API can be used by

application developers for service querying. This API needs to be implemented

into existing applications that they can benefit from symbIoTe. Also, the Core

API semantically transforms service queries between the common and platform-

specific representation. The symbIoTe approach addresses communication (H1),

service discovery (H2), and data (H4) heterogeneities. Further, it presumably is

explicit. It uses indirect, scattered translation, and is deployed in the infrastruc-

ture. The approach meets the extensibility (R1) and dynamism (R3) criteria.

bIoTope [63, 95] wants to use standards for enabling interoperability across

IoT platforms. Therefore, it uses the Open Message Interface (O-MI) as commu-

nication abstraction and the Open Data Format (O-DF) as description format.

O-MI specifies an API for RESTful communication that is not bound to HTTP.

No further details are known so far. bIoTope tackles data heterogeneity (H4).

BIG IoT [27] aims at providing platform interoperability for IoT ecosystems.

For achieving this, BIG IoT offers APIs and a marketplace. The marketplace acts

as service registry and also stores usage information of consumers and providers

for charging consumers correctly. APIs exist for the marketplace, as well as

for providers and consumers. The marketplace API offers operations for several

3http://iot-epi.eu

46

3.2. Analysis of Existing Approaches

functions, such as registration, discovery, and charging. The API for providers

and consumers provides operations for accessing services and authenticating at

the marketplace. Here, translations of service calls must happen. In order to

enable interoperability with BIG IoT, existing services or platforms can either

be extended with the API, or so-called gateway services can be implemented

which translate between platforms and BIG IoT, or proxy services can be used

that handle interactions with the marketplace [153]. BIG IoT addresses service

discovery heterogeneity (H2) and data heterogeneity (H4). Further, it works

explicitly and employs indirect, scattered translation, and is deployed in the

infrastructure. BIG IoT is extensible (R1), and it supports dynamism (R3).

INTER-IoT [63, 65] targets a framework for an easy development of inter-

operable IoT devices. Desired outcomes of this project are the INTER-LAYER,

the INTER-FW, and the INTER-METH artefacts. The INTER-LAYER en-

ables interoperability between IoT platforms through virtual gateways, virtual

switches, a ‘super middleware’ [63], a service broker, and a semantics mediator.

The INTER-FW allows to access the INTER-LAYER in order to create inter-

operable IoT services and applications. INTER-METH is a methodology that

helps with the integration of platforms. INTER-IoT covers communication (H1),

service discovery (H2), data (H4), and partially application (H5) heterogeneities.

It is an explicit approach that uses indirect, scattered translation. It can be

deployed in the infrastructure as well as at-the-edge. Moreover, the approach is

extensible (R1) and dynamic (R3).

IoTivity [124] is a framework for seamless connectivity between IoT devices

based on the Open Connectivity Foundation [105, 133] (OCF) standards. The

OCF tries to establish an IoT standard that is also able to bridge between IoT

ecosystems, such as oneM2M or AllJoyn, and integrate devices using traditional

connection technologies, e.g., ZigBee or Bluetooth. IoTivity uses these standards

to enable interaction between heterogeneous, smart, and thin devices. Things

and devices are abstracted as resources, and an API is provided to manipulate

those resources. Addressed heterogeneities are communication (H1), service dis-

covery (H2), and data (H4) heterogeneities. IoTivity is transparent, uses indirect,

scattered translation, and is deployed in the infrastructure. Also, it is extensible

(R1) and handles dynamism (R3).

47

3.2. Analysis of Existing Approaches

As part of the CHOReVOLUTION project4, the eVolution Service Bus (VSB)

[23, 24] aims to overcome interaction heterogeneity between business-oriented and

Things-based services. The VSB is based on an ESB and, thus, provides a com-

mon bus protocol. Binding components translate between concrete interaction

protocols and the common bus protocol. This happens with a description of

a service/thing based on their own generic interface description language. The

description also includes a mapping for operations and data. Binding compo-

nents further make use of a protocol pool which stores supported protocols. Per

service/thing, one binding component is required. The VSB approach addresses

interaction heterogeneity (H3) and partially application heterogeneity (H5) as

operation names and parameters are translated. It works explicitly, employs in-

direct, scattered transformation, and is deployable in the infrastructure. Also,

the VSB approach is extensible with new platforms and services (R1).

3.2.3. Summary

The introduced approaches in this section try to enable interoperability be-

tween pervasive and IoT platforms. However, none of the approaches fulfils all

of the elaborated heterogeneities. Especially, interaction and notification het-

erogeneities are rarely addressed. Many of the IoT solutions try to specify new

standards for developing IoT services and applications. Those approaches also

state that interoperability with existing devices is ensured. Regarding this as-

pect, unfortunately, only few information can be found in the respective papers.

Furthermore, many approaches focus on the semantic data heterogeneity and

neglect other heterogeneities. As they introduce APIs in order to use their so-

lutions, this is feasible. Though, existing services and applications are excluded

in that way. Moreover, the goal of a framework is to support developers for a

specific task. Here, this task is to achieve interoperability between platforms.

Although claiming to be interoperability frameworks, only few of the presented

approaches, however, offer developers freedom with respect to the solution. De-

velopers are constrained to the frameworks’ pre-defined models and cannot choose

between options, e.g., deployment in the infrastructure or at-the-edge. Table 3.1

summarises the assessment of the the presented approaches.

4http://www.chorevolution.eu

48

3.2. Analysis of Existing Approaches

Heterogeneities Solution Design Reqs

Aw. Tr. Di. Gr. Lo.

Project C
o
m

m
u

n
ic

a
ti

o
n

D
is

c
o
v
e
r
y

In
te

r
a
c
ti

o
n

D
a
ta

A
p

p
li

c
a
ti

o
n

N
o
n

-f
u

n
c
.

p
r
o
p

s

N
o
ti

fi
c
a
ti

o
n

T
r
a
n

sp
a
r
e
n
t

E
x
p

li
c
it

D
ir

e
c
t

In
d

ir
e
c
t

S
c
a
tt

e
r
e
d

A
g
g
r
e
g
a
te

d

C
o
a
r
se

-g
r
a
in

e
d

F
in

e
-g

r
a
in

e
d

In
th

e
in

fr
a
st

r
u

c
tu

r
e

A
t-

th
e
-e

d
g
e

E
x
te

n
si

b
il

it
y

C
u

st
o
m

is
a
ti

o
n

D
y
n

a
m

is
m

P
er
v
a
si
v
e
C
o
m
p
u
ti
n
g

Amigo [69, 162] • • ◦ • • • • • • •
Bridge [164] • • • • • • • • •
Broker [92] • • ◦ • • • • • • •
CONNECT [15, 16] • • • • • • • • • •
INDISS [28, 29] • • • • • • • •
InterX [132] • • • • • • •
Jini/UPnP [3] • ◦ ◦ • • • • ◦ •
MPFSD [58, 59] ◦ • • • • • •
MUSDAC [141, 142] • • ◦ ◦ • • • • • •
OSDA [106] • • • • • • • • •
PerSeSyn [17] • • ◦ ◦ • • • • • • • •
ReMMoC [71, 72] • • • • • • • •
SeDiM [57] • • • • • • • • •
Smart-M3 [80] • • • • • • •
Speakeasy [45] ◦ ◦ ◦ • • • • • •
SQL Broker [62] ◦ • • • • • ◦
Ubi-M3 [91] • • • • • • •
UMB [117] • • ◦ • • • • • • •
uMiddle [118] ◦ ◦ ◦ ◦ • • • • • • •
XSB [68] • • • • •
ZigZag [145] • • • • • • • • • •

In
te
rn

et
o
f
T
h
in
g
s

BIG IoT [27] • • • • • • • •
bIoTope [63, 95] •
Dynamix [34, 35] • • • • • • • •
HyperCat [20, 82] • • • • •
INTER-IoT [63, 65] • • • ◦ • • • • • •
IoT Hub [113] • • • • • •
IoTivity [124] • • • • • • • • •
oneM2M [94, 160] • • • • • • • •
symbIoTe [70, 89, 157] • • • • • • • • •
VSB [23, 24] • ◦ • • • •

Table 3.1.: Related Work Classification. None of the presented projects addresses
all of the elaborated heterogeneities and, further, none of the ap-
proaches permits customisation of the alignment process (Reqs - re-
quirements, Non-func. props - non-functional properties, Aw. - aware-
ness, Tr. - translation, Di. - distribution, Gr. - granularity, Lo. - lo-
cation, • - fulfilled, ◦ - partially fulfilled or mentioned without further
specification).

49

3.3. Placement of Thesis

Based on these results, the subsequent section demarcates the proposed frame-

work in this thesis from existing approaches.

3.3. Placement of Thesis

From this insight, this thesis presents a customisable framework for achieving

interoperability between pervasive platforms, granting developers a certain degree

of freedom. The framework should be able to solve all of the heterogeneities while

allowing to adjust the translation process, among other parts, for their needs.

Therefore, the proposed framework should adhere to the presented requirements

– extensibility, customisability, and dynamism – in order to support developers in

their specific task. Further, many pervasive and IoT devices, using existing plat-

forms and running applications and/or services, are already set up [65]. Existing

and also future applications can greatly benefit from such an amount of services

that is already there. In order to integrate those devices neither platforms [29] nor

services/applications [92] must demand complex changes, and ideally no changes

at all. Thus, the transparent awareness approach is employed. Regarding the

translation model, the indirect one promises better extensibility compared to the

direct model. Especially with various integrated platforms this makes sense and

lowers the barrier for integrating new services. Therefore, the indirect transla-

tion model is used. Moreover, discovered services should be distributed to each

integrated platform in order that every entity can benefit. Hence, the framework

applies the scattered distribution model. Granularity basically defines if service

matching happens syntactically or semantically. In order that no platform is dis-

advantaged, the proposed framework should give developers the opportunity to

integrate either of the approaches, i.e., coarse-grained and fine-grained. This has

to be incorporated in common abstractions. Furthermore, developers should have

the choice of deploying an instance of the framework in the infrastructure, which

makes sense in rather static domains like smart homes, and at-the-edge, which

is reasonable in rather mobile environments. The placement of the proposed

framework in this thesis is summarised in Figure 3.9.

In general, as long as there is no standard for interoperability (and also af-

terwards), developers should be able to use the middleware platform they prefer.

Many proposed interoperability solutions include an API to create applications

50

3.3. Placement of Thesis

Proposed
Framework

Awareness

Explicit

Transparent

Translation
model

Direct

Indirect

Distribution

Scattered

Aggregated

Granularity

Coarse

Fine

Location

In the infra-
structure

At-the-edge

Figure 3.9.: Solution Classification in this Thesis. Whereas some dimensions are
fixed, developers can choose for the granularity and location dimen-
sion.

and services. Thus, due to the fact that many of those solutions are proposed,

the interoperability problem is only shifted to an upper level. The proposed

framework in this thesis does not offer another middleware, but a solution where

developers can easily integrate their services and continue their work as usual.

If a standard should be established one day, it will be also possible to integrate

it without making existing services and applications obsolete. Services can be

specified in a common format, however, this is not the target. Therefore, there is

no tool that supports this task. The framework’s main objective is the alignment

of protocols and messages between existing and upcoming platforms.

To summarise, this chapter introduced an evaluation framework that was used

to assess existing interoperability frameworks and solutions. Further, a demarca-

tion of this thesis from existing approaches was given. The next chapter presents

the design of the proposed interoperability framework, including it system model.

51

4. An Interoperability Framework for Pervasive

Computing Systems

The preceding chapter performed a thorough analysis of existing interoper-

ability approaches and demarcated the approach in this thesis from the litera-

ture. Subsequently, this chapter presents the design of a general interoperability

framework, called XWARE. First, Section 4.1 introduces the system model be-

fore Section 4.2 gives an overview on XWARE and its modules. Afterwards,

Section 4.3 displays uniform abstractions that promote interoperability. Then,

the different framework modules are presented with respect to their architecture

and functioning. Besides, XWARE denotes the proposed framework, whereas an

XWARE instance designates an interoperability instance that is instantiated and

configured using XWARE. This chapter bases on and extends [147] and [149].

4.1. System Model

In this thesis, interoperability is provided within a federation. A federation

consists of entities and interoperability instances. An entity is a piece of software

or a device providing functionality and/or requesting functionality to/from other

entities, i.e., an entity executes services and applications. Entities are running

on a specific pervasive platform, such as BASE [12] or iPOJO [50]. A pervasive

platform enables entities that use the same platform to discover each other and

interact. The domain (e.g., vocabulary) within one platform is homogeneous in

order that entities using the same platform understand each other. An inter-

operability instance enables discovery and interaction between entities running

on different platforms, and is built with an interoperability framework. It has

a set of platforms that it supports. For this, an Interworking API is required

for each platform that should be supported. For the purpose of enabling discov-

ery and interaction between entities, interoperability instances use knowledge for

53

4.1. System Model

transforming data. This knowledge is multi-faceted and includes service defini-

tions, transformers, and domain knowledge. Service definitions define services

in an intermediate language used by the interoperability instance. Each service

that should be supported requires a service definition. Transformers translate

service descriptions and messages between different platforms so that they un-

derstand each other. These transformers make use of the service definitions and

domain knowledge of the different platforms. Domain knowledge contains, e.g.,

the used vocabulary within a platform. Furthermore, interoperability instances

can have additional functionalities, e.g., context or conflict management. In the

former case, a context model is created to have a unified context view which

applications can use for their functioning. The latter is concerned with detecting

and resolving conflicts between several pervasive applications, e.g., two pervasive

applications that want to access the same monitor.

Platform A

Platform C

Platform B

Interop.
Instance

Interop.
Instance

Platform Z

Interworking API

Interworking API

Interworking API

Figure 4.1.: System Model. A federation consists of entities and interoperabil-
ity instances including service definitions, domain knowledge, trans-
formers, and possibly additional functionalities. Interoperability in-
stances enable communication between applications and defined ser-
vices from supported platforms. Unsupported platforms (i.e., where
no Interworking API exists, e.g., Platform Z) do not belong to the
federation. Unsupported entities and platforms are depicted in grey.

54

4.1. System Model

Figure 4.1 summarises the notion of a federation. There, the left interoper-

ability instance supports platforms A and B, whereas the right interoperability

instance supports platform C. There is no Interworking API for platform Z, which

means that it is not supported and, therefore, does not belong to the federation.

Furthermore, the figure shows that although a platform is supported only spe-

cific services – those for which there exists a service definition – are included in

the federation. In addition, there can be several interoperability instances in one

federation. They can interact with each other, e.g., in order to advertise services

or forward messages.

Because only services that are specified in the federation can be aligned by

interoperability instances, a federation is uniquely defined by its interoperability

instances including their supported platforms, service definitions, domain knowl-

edge, and transformers, in addition to the present supported entities. Services

for which no service definitions exist – maybe they should only be accessible by

entities of the same platform – do not belong to the federation. However, they

may have an influence on entities within the federation. A minimal federation

consists of one interoperability instance consisting of its supported platforms, ser-

vice definitions, domain knowledge, and transformers. Additional functionalities,

as the ones mentioned, are optional extensions.

Within a federation, different responsibilities are taken over by interoperabil-

ity instances (see Figure 4.2): protocol alignment, message alignment, service

management, notification management, and potentially context management and

conflict management. With protocol alignment, different protocols are made con-

form with each other in order that messages can be exchanged. If messages can

be exchanged, they need to be understood by the communication partners to the

end that the information can be used. This is the matter of message alignment.

These two alignments – which basically are concerned with the introduced het-

erogeneities – allow to perform service management, i.e., service discovery and

service access. Furthermore, they allow to do notification management, which

means that entities can not only access service functionality, but also can get

notified of updated data. As mentioned above, context management provides a

unified context view, whereas conflict management detects and resolves conflicts

within pervasive environments.

This thesis does not consider context and conflict management any further

55

4.2. Framework Overview

Interoperability
Instance

Protocol Alignment

Service Management

Notification Management

Message Alignment

Context Management

Services

Platform A Platform B

Conflict Management

Figure 4.2.: Interoperability Instance Responsibilities. An interoperability in-
stance is responsible for certain alignment and management tasks.
This thesis does not consider context and conflict management.

(the interested reader is referred to [76], [107], or [148] for approaches regard-

ing conflict management, and to [98] or [165] for approaches regarding context

management). Nevertheless, it provides the basis for interoperability by taking

protocol alignment, message alignment, service management, and notification

management into account.

Having presented the system model, the next section introduces the XWARE

interoperability framework.

4.2. Framework Overview

As seen above, achieving interoperability between pervasive platforms includes

several steps. First, services need to be discoverable among different platforms.

Second, entities have to be able to access these services. For both steps several

alignments are necessary with respect to the heterogeneities presented in Section

3.1. However, an interoperability framework should not only deal with the align-

56

4.2. Framework Overview

ment, but also adhere to the requirements. The following part briefly introduces

the XWARE framework before going into detail on its components.

XWARE

Platform B Platform A Platform C

Communication

PA PB PC P…

Service
Management

Notification
Management

Alignment

Context

advertise/lookup/invoke/…

A
b
st

ra
ct

io
n
s

§5.2

§5.3

§5.4

§5.5 §5.6

Figure 4.3.: Framework Overview. XWARE consists of four modules: commu-
nication, alignment, service management, and notification manage-
ment. Each module covers one responsibility (P - plugin).

Figure 4.3 shows an overview of the XWARE framework including references

to the sections where the corresponding part is detailed. The framework offers

abstractions (see Section 4.3) for messages, services, service discovery, service ac-

cess, and notification management. These abstractions allow for a uniform view

and are required for supporting indirect transformation. Further, complying to

the responsibilities of an interoperability instance (see Section 4.1), the functional

components consist of communication, alignment, service management, and no-

tification management modules. Each module covers one responsibility and can

use the uniform abstractions. The communication module (see Section 4.4) per-

forms protocol alignment, i.e., it mirrors a platform’s protocol(s) and forwards

important messages to the alignment module. The alignment module (see Section

57

4.3. Abstractions

4.5) is responsible for message alignment. Accordingly, it transforms messages

between different platforms. The service management module (see Section 4.6)

executes service management tasks, such as keeping track of the available services.

The notification management module (Section 4.7) does, as the name suggests,

notification management. Hence, it can notify entities of certain events. Further,

modules may be added, e.g., for context management. Before presenting these

modules in detail, the next part discusses the uniform abstractions.

4.3. Abstractions

This section presents uniform abstractions that facilitate translation of mes-

sages through a common view. This includes service, service discovery, service ac-

cess, notification management, and message abstractions. Especially with respect

to interaction heterogeneity and its differences in service discovery and service

access, abstractions simplify transformations. Actually, most of the existing ap-

proaches only consider the CS interaction model (cf. Section 3.2 and [88]). Here,

the three presented interaction paradigms – client-server, publish-subscribe, and

tuple space (see Section 2.2) – are taken into account for developing the following

abstractions, if appropriate.

4.3.1. Service Model

The literature review in Section 3.2 mentioned several service models. There,

especially the PerSeSyn [116] and EASY [115] approaches examine a solution for

semantic service discovery that could be also used with syntactic service discovery.

Because developers should be free to use any type of service discovery they like

to use, it makes sense to adopt one of these service models. The PerSeSyn

service model includes the grounding of a service. A separation of the grounding

from the service description makes sense as this information is platform-specific.

Thus, the grounding should be stored separately. Furthermore, the PerSeSyn

service model does not contain non-functional properties. On the other hand,

the EASY service model provides support for non-functional properties, can be

used for syntactic and semantic service discovery, and does not include grounding

information. For completeness, further service models (e.g., from [69], [118],

58

4.3. Abstractions

[142], and [164]) include grounding information, or have been considered to be

too domain-specific or inflexible. Consequently, they are not suitable. Hence, the

EASY service model is adopted. However, a slight modification is introduced, as

described in the following.

Advertised
Capability

Capability

Requested
Capability

Consumer

Service

Category

Output

Input

Property

QoS
Information

Context
Information

Operator

has

has
provides uses

has

consumes

provides

has

provides

consumes

requires

provides

requires

Figure 4.4.: Service Model. The service model is adopted from [115] and slightly
modified. A service provides capabilities, whereas a consumer re-
quests capabilities. A capability consists of a category, inputs, and
outputs. Services and capabilities can have properties for specify-
ing non-functional requirements. Modifications are shown by dashed
arrows.

Figure 4.4 shows the modified service model. A service is characterised by its

advertised capabilities, whereas a consumer is characterised by its requested capa-

bilities. Capabilities have a category, an input, and an output. For instance, in a

client-server system with syntactic discovery, a capability comprises the method

name, the input (input parameters), and the output (result). The category

specifies an ontology, if applicable. Services, consumers, and capabilities may

provide/request non-functional properties, such as quality of service or context

information. This could be, for example, information on the screen size or the

location of a service. Properties use operators as comparison functions. Capa-

bilities are the functional specification of a service, whereas properties are the

non-functional specification. In the original service model of EASY, only capa-

bilities include non-functional properties. However, a service/consumer can also

provide/require such properties (cf. [119] or [164]).

59

4.3. Abstractions

XWARE uses the introduced service model as intermediate service represen-

tation. After having introduced the service abstraction, the next section presents

the service discovery model.

4.3.2. Service Discovery Model

Service discovery aims at finding services for potential interaction. As seen

in Section 2.2, different interaction models additionally deviate in their service

discovery patterns. To the best of the author’s knowledge, existing approaches

for service discovery interoperability only consider service discovery of platforms

using a client-server (CS) interaction, e.g., [17], [29], [45], [57], [71], [106], [115],

[142], or [162]. This is presumably due to the fact that most of the approaches do

not consider interaction paradigm heterogeneity. For both publish-subscribe (PS)

as well as tuple space (TS) interaction service discovery is handled more loosely

due to their characteristics of loose space and time coupling. Since platforms

using CS interaction require to know their communication partner, it is crucial

that communication partners and their capabilities are made available. In the

following, a uniform pattern and model for service discovery among interaction

paradigms are proposed.

Section 2.2 introduced the different interaction paradigms and their service

discovery approaches. Their service discovery patterns are different, but also

show some similarities, i.e., each interaction model uses advertisement messages,

and CS- and TS-based systems may use a lookup mechanism. However, regarding

advertisements, the content of such a message differs for the interaction models,

i.e., event categories are advertised in the PS model, whereas service descriptions

are advertised in the CS and TS models. To encounter this problem, event cat-

egories can be mapped to a service. This is feasible because, according to the

service model, a service contains one or more service capabilities. A capability

in a PS-based system can actually be represented by the event category (see

Section 4.3.3). Thus, an inference from an event capability to a service is pos-

sible. For instance, a PS-based temperature provider periodically publishes the

sensed temperature using the event category Temperature. From that, one can

conclude that the service is a temperature sensor. Even if there are no explicit

advertisements, the same mapping is possible with the actual events. Considering

60

4.3. Abstractions

the TS interaction paradigm, advertisements can either contain provided services

or not. Whereas the former case is simple, the latter case requires changes in

the pervasive platform in order to make services available to other platforms. In

general, if a platform does not advertise its services, entities of other platforms

are not able to consume them. However, entities of this platform can still access

services of other platforms. Thus, here it is assumed that all entities that want to

actively participate in the federation use a proper service discovery mechanism.

By ‘proper’ it is meant that services are discoverable.

Service Registry
Service

Consumer
Service Provider

2 Service registration

1 Registry advertisement

4 Service lookup

6 Service lookup response

3 Service advertisement

5 Service matching

opt

opt

opt

Figure 4.5.: Service Discovery Pattern. Service registries may advertise them-
selves to other entities. Service providers register their services at
the service registry. Services are either advertised by the service reg-
istry or specific services are sent in response to a service request (opt
- optional).

From the differences and similarities in the service discovery mechanisms, a

general pattern can be inferred based on a SOA. Furthermore, the approach for

a generic service discovery design for CS-based platforms in [59] serves as basis.

There, the authors identify two patterns depending on the registry architecture

of platforms: centralised or distributed. In the centralised approach, there is one

central service registry, whereas in the distributed approach, each entity runs its

own service registry. In the former case, an additional registry advertisement mes-

sage is sent from the service registry to other entities. Also, the communication

form may differ message-wise between the two designs, i.e., unicast or multicast.

61

4.3. Abstractions

Here, these two patterns are aggregated into one and incorporate service discov-

ery for CS-, PS-, and TS-based platforms (see Figure 4.5). In PS- and TS-based

platforms, the broker and, respectively the TS, can be seen as service registry

because they receive advertisements for services. According to [59], depending

on the registry organisation, the directory advertises itself so that entities get to

know it and its location (Figure 4.5, step 1). Then, service providers can register

their services (step 2). In PS- and TS-based discovery, services are not advertised

to consumers at all. This happens only in CS-based systems (step 3). However,

TS-based consumers can look service information up at the TS using tuple tem-

plates. This is similar to a service lookup in CS-based systems. Then, the service

registry performs a service matching and sends back the reply (steps 4, 5, and 6).

Furthermore, two service discovery models are presented in [92]: service lookup

translation and service registration translation. Whereas only lookup requests

are translated and passed between domains in the former one, only registration

messages are translated and forwarded between domains in the latter one. Con-

sidering the fact that registration messages are rather static, the latter approach

seems better suited for pervasive environments, reducing translation overhead.

An advantage of registration translation is also that platforms can continue using

their own service matching algorithms.

Platform A

L
RT

LR

Platform B

R
X L

LR

Figure 4.6.: Service Discovery Model. Only service registrations are translated
in the interoperability instance (X). Service queries are processed
without translation. The interoperability instance may use different
service matching algorithms per platform. All translations happen
inside of the interoperability instance (R - registration, L - lookup,
LR - lookup response, a superscript T indicates that a translation
takes place in this step).

Here, in order to comply to the service discovery pattern, registration messages

are translated, but not automatically forwarded. The platform-specific patterns

are then applied, i.e., registrations may be advertised or services may be looked

62

4.3. Abstractions

up. Lookup requests are not translated, but processed with the translated ser-

vices. Hence, each platform can use its specific matching algorithm which can

be based on syntactic or semantic matching due to the employed service model.

Consequently, an XWARE instance may serve as ‘global’ service registry contain-

ing services from each supported platform in the federation. Figure 4.6 depicts

this approach.

This section presented a pattern and model for service discovery. The subse-

quent section introduces the service access model.

4.3.3. Service Access Model

After services have been discovered, they possibly want to be accessed by other

entities. Service access happens through application and application response

messages. Depending on the interaction model, the content of these messages

differ (see Section 2.2). The differences and a way to cope with this are explained

in the following.

Interaction
Paradigm

Action Input Output

CS Method name Arguments Return value

PS Event Category Event Event

TS Template Tuple Tuple

Table 4.1.: Message Content Abstraction. Action, input, and output are abstract
constructs that allow to translate application message content between
interaction paradigms.

Although the content of application and application response messages contain

very diverse information among interaction paradigms, the information concen-

trates basically on one or several of the following aspects [14]: action, input, and

output. Whereas the action provides information on a method or provided/re-

quired data, the input and output add additional information for processing the

action. Table 4.1 shows how these aspects can be mapped to the concrete inter-

action paradigm messages. In CS interaction, a message that contains a method

name (action) and arguments (input) is usually sent. The communication part-

ner, depending if a result is expected, answers with a return value (output). In

PS interaction, a consumer subscribes at a broker by sending an event category

63

4.3. Abstractions

(action). The provider publishes events (input) to the broker including the event

category (action). The broker notifies matching consumers of the event (output).

In TS interaction, providers write tuples (input) into the tuple space. Consumers

can take/read tuples (output) from the TS by using templates (action). By

adopting this abstraction, translation of application message content is possible,

despite different interaction paradigms.

Interaction
Paradigm

One-way Two-way

Abstract post post-get

CS one-way message request-response

PS publish subscribe

TS out in/take

Table 4.2.: Interaction Semantics Abstraction. The post construct does not ex-
pect a response, whereas the post-get construct does.

Furthermore, the different operations have different interaction semantics that

also need to be taken into account. Interaction semantics may contain a different

amount of information depending on the paradigm [68]. Across the paradigms,

there are operations where one or several response messages are expected – CS:

request-response, PS: subscribe, TS: in/take – and there are operations where no

response is expected – CS: one-way message, PS: publish, TS: out. Thus, they

can be abstracted to an operation awaiting responses (post-get) and an operation

without responses (post), in accordance with [23]. Semantics may further include

a lease time to indicate after what time a subscribe (PS) or in/take (TS) message

should be aborted. Table 4.2 summarises the abstract operation and their specific

mappings.

Another difference between service access of the distinct interaction models

is that communication partners are different for the operations. Consumer and

provider interact directly in CS interaction, independent of the operation. In

PS or TS interaction, consumers and providers communicate indirectly via the

broker or TS, respectively. Thus, the source and target of these messages differ.

Table 4.3 gives an overview on how to map the source and target between the

different interaction paradigms.

Based on these service access abstractions, an application message consists

of the operation including action, input, and output, interaction semantics, and

64

4.3. Abstractions

Interaction
Paradigm

Interaction
Semantics Source Target

CS
request-response Consumer Provider
one-way message Consumer Provider

PS
subscribe Consumer Broker
publish Provider Broker

TS
write Provider Tuple space

in/read Tuple space Consumer

Table 4.3.: Communication Partner Abstraction. Source and target of a message
differ depending on the interaction paradigm and semantics.

communication partners. The next section presents a uniform notification man-

agement model.

4.3.4. Notification Management Model

The elaborated disparities in notification systems (see Section 3.1.1) demand

means in order to overcome these differences. Based on those differences and,

further, on the general characteristics of notification systems (see Section 2.3),

Figure 4.7 depicts a general notification management model. In addition to a

notification management, several consumers (C) and providers (P) of different

nature (push, pull, and non-supporting) and pervasive platforms are visible. It is

assumed that the notification management knows about a platform’s support for

notifications, its delivery modes, and notification scheme, in order to do alignment

of messages. Supporting platforms use a local notification system. Local notifi-

cation systems have to communicate with the notification management without

requiring changes. There are two possibilities to achieve this: message intercep-

tion and proxy. The first option is that the management intercepts messages at

the notification system. The other option is that the management acts trans-

parently as proxy, i.e., as notification provider and consumer, subscribes to all

events at a local notification system, and also forwards every upcoming event.

In the following, message interception is assumed (such messages are indicated

with brackets). However, the second option is also feasible for this model, possi-

bly including more messages due to different delivery modes of local notification

systems. Consumers that are interested in certain events (E) have to indicate

their interest by sending a subscription (S) to their local notification system, and

65

4.3. Abstractions

hence, to the notification management. Basically, there are two choices how to

handle incoming subscriptions at the notification management: 1) translate and

forward the subscription or 2) store the subscription and subscribe at local noti-

fication systems. With the former option, event matching happens at the local

notification systems, and only events for which the notification management has

subscribed are forwarded. In the latter approach, event matching takes place

at the notification management. Thus, each event is known at the notification

management, which is the reason for employing this option. Besides, consumers

of non-supporting platforms cannot participate without adjusting them.

Notification
Management

C2
(Push)

P1
(Pull)

P2

(S1) E1
 S2

 E2

Platform A (push/pull)

Notification
System

C1
(Pull) P2

(Push)

E2

Platform B (pull/push)

Notification
System

E1

S1
 (S2) R2

(R2)

R1

(R1)

Platform C (no support)

(E2)

(E1)

C

E2

R2

(S1)

(S2)

Figure 4.7.: Notification Management Model. The notification management en-
ables inter-platform notifications. It deals with platforms that differ
in there delivery mode, event category types, and notification sup-
port. Communication between local notification systems and the
notification management happens either transparently or explicitly
(C - consumer, P - provider, R - registration, S - subscription, E -
event, distinct subscript numbers indicate different event categories).

Furthermore, in order to be aware of the providers, they need to register at the

notification management component. This happens automatically through the

registration messages (R) from service discovery. Thus, no overhead or changes

are implied at those entities. If the provider supports notifications, events are

automatically received by the notification management through message inter-

ception. In case of using the proxy approach, the notification management com-

66

4.3. Abstractions

ponent subscribes at the local notification management for all events of that

provider. Then, events are automatically received from providers using the push

mechanism, or they need to be pulled periodically from providers using the pull

mechanism. If the provider does not support notifications, a periodic polling is

initiated for new values, i.e., events. Incoming events are then matched against

the active subscriptions and forwarded to the respective local notification sys-

tems where the event is distributed to the actual consumers. In the figure, the

subscript numbers indicate different event categories.

So far, the two issues of aligning messages, especially event category types,

e.g., channels to subjects, and polling at non-supporting platforms are implic-

itly assumed here. Their working is explained in detail in Sections 4.5 and 4.7,

respectively. The next section introduces a uniform message abstraction for the

messages known from the service discovery, service access, and notification man-

agement models. Next, a uniform abstraction for messages is introduced.

4.3.5. Message Abstraction

The former sections showed that several types of messages can occur in per-

vasive environments. For service discovery, there are advertisement, registration

(and deregistration), as well as lookup and lookup response messages. For ser-

vice access, application and application response messages exist. Furthermore, for

notification management, there are subscription and unsubscription, and event

messages. Apart from the different purposes of these messages, they also contain

similar information, as shown in the following.

For the design of a query language, Finin et al. use a protocol approach

[56]. They propose a protocol stack with three layers: declaration, content, and

communication. Accordingly, a message is divided into those three parts. Here,

message abstraction takes over this logical separation from [56] and extends it

with an interaction layer for incorporating differences in interaction semantics,

as follows. The declaration provides basic message information, such as the mes-

sage type and identifier. The content represents the actual content of a message.

The communication layer holds the two communication partners for directed

messages, i.e., source and target. The interaction layer is only required for appli-

cation events and stores information on the interaction model, e.g., non-blocking

67

4.4. Communication

client-server interaction. Table 4.4 gives an overview on the layers including an

example.

Layer Message Information Example
Declaration All messages Type, identifier Application, 23

Content All messages Actual content
(depends on message

type)

void setLight(true)

Communi-
cation

All messages Source, target LightConsumer,
LightProvider

Interaction Application
(response)

Interaction model,
interaction semantics

CS, one-way

Table 4.4.: Message Abstraction. All messages include declaration, content, and
communication information, whereas only application (response) mes-
sages include interaction information.

This section elaborated several uniform abstractions that support the integra-

tion of different platforms. Therefore, the abstractions are used in the different

modules of the framework which are discussed in the following section, starting

with the communication module.

4.4. Communication

The general responsibilities of the communication module are the interception

of messages, the actual interaction with entities, as well as performing service

discovery. In order that support for platforms can be easily added or removed

at design time, without having any effect on other platforms, the communica-

tion module uses a plugin-based approach. In general, a plugin is responsible

for supporting one platform, and hence, represents the platform’s Interworking

API. Among other tasks, plugins mimic platform-specific service discovery and

access mechanisms. For this reason, their internal architecture is derived from

the service discovery and access models (see Section 4.3), and is presented in

Figure 4.8.

The connection manager holds the actual connections to services and appli-

cations of a specific platform. Hence, it is responsible for sending and receiving

68

4.4. Communication

Communication

Plugin

Connection Manager

Message Converter

Service Discovery Service Access

Advertisement

Lookup Invocation

Additional

Notification Matching

…

Alignment

Figure 4.8.: Plugin Architecture. Plugins are integrated into the communication
module. The connection manager communicates with entities and
uses the message converter for conversion between the intermediate
message abstraction and platform-specific message formats.

messages to/from entities. It also intercepts service discovery messages, i.e., de-

vice or service advertisement messages as these are usually sent via multicast (cf.

[29]). Each platform uses a unique pair of multicast address and port to multicast

advertisements [29] in order that entities become aware of each other’s presence.

Accordingly, the connection manager joins a respective multicast group to inter-

cept these messages. Before outgoing messages are sent to entities or incoming

messages are processed, they need to be converted. For this, the connection

manager works with the message converter. The message converter converts the

representation of incoming messages to the abstract one, and the representation

of outgoing messages to the platform-specific one. However, no content transla-

tion takes place so far. Each plugin requires its own platform-specific message

converter. A message converter’s implementation has to implement the following

interface which is derived from its conversion directions:

interface IMessageConverter {

Object processAbstractMessage(Message msg);

Message processSpecificMessage(Object data);

} .

69

4.4. Communication

After this conversion step, an outgoing message is handed to the connection

manager for sending, whereas an incoming message, depending on its type, is dis-

tributed to the appropriate component, e.g., a lookup request is forwarded to the

lookup component. Based on the service discovery pattern (see Section 4.3.2), the

three components for service discovery become clear. The advertisement com-

ponent advertises available services and possibly the registry. It further listens

to incoming registration messages and passes them to the alignment module for

translation of the contained services. Additionally, it may react to incoming reg-

istry advertisements by sending lookup requests to the corresponding registry.

The lookup component waits for incoming lookup requests and replies with avail-

able services that match the request. The matching component performs the

matching process. According to the service discovery model, lookups are not

translated and forwarded to other platforms, but handled in the XWARE in-

stance, i.e., in a plugin. Thus, the implementation of the matching component

can vary between plugins. All matching components require the implementation

of the following interface:

interface IMatching {

ServiceDescrs lookup(MatchRequest request);

} .

The invocation component stores information on application messages in order

to relate requests and responses. Additional components, such as a notification

component, process component-specific messages and store related information.

Further components may be added if necessary, e.g., for routing of messages in

an ad hoc-based setting.

Regarding the heterogeneities between platforms, communication heterogene-

ity (H1) can be addressed by implementing several plugins for the same platform

but different technologies. Plugins, together with the proposed service discovery

pattern and model (see Section 4.3.2), permit to overcome service discovery het-

erogeneity (H2) apart from the semantics of service descriptions, as no content

transformation takes place here. Interaction model instantiation heterogeneity,

which is part of interaction heterogeneity (H3), is addressed by mimicking the

platform interactions and extracting information. Moreover, the message con-

verter enables mastering syntactic data heterogeneity (H4).

70

4.5. Alignment

Messages that possibly require alignment, e.g., in order to forward them to

another platform or module, are handed over to the alignment module. Such

messages include registration (and deregistration), application and application

response, subscription (and unsubscription), and event messages. The next sec-

tion explains the alignment module and process in detail.

4.5. Alignment

Alignment can be defined as ‘a state of agreement or cooperation among per-

sons, groups, nations, etc., with a common cause or viewpoint’ [44]. This defini-

tion fits quite well by including also pervasive middleware platforms as agreement

partners. These platforms usually have a common viewpoint, but are not able

to communicate due to the presented heterogeneities (see Section 3.1). Aligning

these heterogeneities, i.e., by using common abstractions (see Section 4.3), makes

interaction possible. The common abstractions represent the agreement between

platforms. Figure 4.9 depicts the general architecture of the alignment module.

Alignment

Transformation Support

Filter

Filter

Filter

Repository

Service Management

Communication

Notification Management

Figure 4.9.: Alignment Architecture. Filters perform independent transformation
steps. Therefore, they may access the repository which stores service
definitions, domain knowledge, and transformers.

The alignment module gets input from the communication, service manage-

ment, or notification management modules. Each arriving message, indepen-

dent of the source module, requires transformation in order to forward it to a

platform (via the communication module), or an upper-level module. Although

such a message is already in the abstract message format, there still are several

71

4.5. Alignment

heterogeneities remaining. Therefore, transformations are necessary. For this,

the alignment module provides the following interface which offers a method for

performing message type-dependent translations and pass aligned messages to

appropriate modules:

interface IAlignment {

void process(Message msg);

} .

Transformations are performed with so-called filters and a repository, allowing

for customisation of the alignment process. Filters execute independent trans-

formation tasks with the help of the repository. The next section explains the

transformation process in detail before presenting means for the purpose of man-

aging further heterogeneities.

4.5.1. Transformation Model

In order to provide customisation of the transformation process, employing

the pipes and filters pattern [31] seems to be appropriate. The pipes and filters

pattern defines an architectural style for processing a data stream by dividing

large tasks into a chain of small, independent processing steps [31]. A filter

represents a processing step and has an input as well as an output. Input and

output types are the same for each filter. During a processing step – or an

application of the filter to the data – incoming data is converted. Conversion can

be through extraction, addition, or replacement of data, and moreover, is defined

by the specific filter. A pipe connects two filters – or processing steps. A source is

a component that can write input data to the initial pipe, whereas a sink receives

output data from the last pipe. Figure 4.10 illustrates the architectural structure

of the pipes and filters pattern. Here, filters perform independent tasks as well.

Though, during the conversion process filters can make direct use of the data.

For instance, a filter can convert a service description, and can directly hand it

over to the service management module.

The pipes and filters pattern allows for extensibility and customisability as de-

scribed in the following. New filters can be easily added or existing ones replaced

because the input and output types are always the same. Here, input as well as

output refers to a set of messages. Thus, if the transformation process requires

72

4.5. Alignment

Pipe Source

Pipe Filter Pipe Filter

data flow

data Pipe

Pipe Filter

data flow

Filter Pipe Pipe Sink

Figure 4.10.: Pipes and Filters Pattern (cf. [31]). Filters represent small, inde-
pendent processing steps while pipes connect them.

changes, it is simple to change the process or only part of it. Further, through

rearrangement of filters, different data streams – or messages – can be processed

according to their specific characteristics. This way, the pipes and filters pattern

can process data in a context-aware manner, where the context consists of the

data type. Recombination of filters allows to re-use existing filters in similar

systems (i.e., a federation where a different transformation process is required).

Here, filters provide the logical flow for different transformation processes. For

this purpose, some filters make use of the repository which stores service defini-

tions, domain knowledge, and transformers to support the process. Transformers

execute rather simple mapping functions, possibly using the service definitions

and domain knowledge. Therefore, a transformer requires the implementation

of the following interface, for transforming service descriptions, operations, and

non-functional properties:

interface ITransformer {

ServiceDescr transformServiceDescr(

String from , String to , ServiceDescr sd);

Operations transformOperation(

String from , String to , Operation op);

Object transformEvent(

String from , String to , Object event)

Properties transformProperties(

String from , String to , Properties props);

} .

Existing interoperability frameworks do not offer any choice to the developer

with respect to the transformation mechanism. Developers are bound to the pro-

vided tools or mechanisms (cf. Section 3.2) that are usually tailored to specific

characteristics. If a service shows divergent characteristics, the built-in trans-

formation mechanism cannot be used. This is why this approach offers, apart

73

4.5. Alignment

from an integrated automatic alignment process, the possibility to specify trans-

formers manually. Developers then have to specify a transformer per service

and platform. Both kind of transformers, automatic and manual, are based on

the ITransformer interface. Furthermore, the integrated automatic alignment

process can be modified, replaced, and extended – in parts or completely.

Incoming
transformation

request

Manual
specifi-
cation
exists?

Transform
with automatic
specification

Transform
with manual
specification

Return result

No Yes

Success
-ful?

Yes

No Success
-ful?

Yes

No

Discard event

Figure 4.11.: Transformation Selection. The manual transformation has a higher
priority as the automatic one. Thus, if such a specification exists
it is employed. The automatic transformation remains as backup
strategy.

As there are two possible transformation algorithms (automatic or manual),

a transformation selector is employed. The manual transformation specification

is prioritised over the automatic one. Consequently, the transformation selector

first checks if there exists a manual specification. If so, it uses it. Otherwise, the

automatic algorithm performs the transformation. Also, if the manual transfor-

mation fails, the automatic one is tried. If the automatic transformation fails,

no further backup strategy exists. The filter then has to decide if the message

is handed over unprocessed to the next filter, or if it is discarded. Since the

probability that a message is understood by another platform, although some

74

4.5. Alignment

transformation steps are missing, is very low, the message is discarded by the

filter. Figure 4.11 illustrates this procedure.

The alignment module decides which filters are applied on a message based

on the message type. A registration message varies in the service description

semantics (H2), content (H4), and non-functional properties (H6). An applica-

tion message differs in the interaction models and semantics (H3), content (H4),

operations and their granularity (H5), and non-functional properties (H6). Sub-

scription and event messages require alignment for differences in their content

(H4) as well as event categories and schemes (H7). Thus, they share semantic

data heterogeneity with respect to the message content. Because solving this

issue is dependent on the message, there is no separate filter proposed for this,

but it should be done by each filter if required. The same is actually true for

non-functional properties. Furthermore, in accordance with the service access

model (see Section 4.3.3), a filter for the transformation of service identifiers, i.e.,

communication partners, is introduced. Consequently, the following filters are

derived and adhere to the heterogeneities: service identifier, discovery, interac-

tion, application, and notification. Table 4.5 summarises the message types, their

corresponding filters, and the addressed heterogeneities.

Message Type Filters Heterogeneities

Registration (and
deregistration)

Discovery H2, H4, H6

Application (and
application response)

Service ID
Interaction
Application

H3, H4, H5, H6

Subscription Service ID
Notification

H4, H7

Event Service ID
Notification

H4, H7

Table 4.5.: Message Type to Filters Mapping. Depending on the message type,
the alignment module employs different filters for transformation (ID
- identifier).

Figure 4.12 shows the exemplary procedure for aligning an application message

using an indirect translation. There, a CS consumer sends a request for the

light state to a PS provider. In a first step, the service identifiers (source and

target) are translated into the intermediate UUID representation by the service

75

4.5. Alignment

identifier filter. Then, the interaction filter transforms the interaction model into

the abstract semantics, i.e., from request-response to post-get. Subsequently, the

application filter transforms the message content. The message is now completely

represented by the intermediate representation and semantics. The same steps are

then applied in reverse order to transform the message into the target semantics.

Paradigm: CS
Interaction: request-response
 Action: boolean getLight()
Input: -
Output: -

Source: cs1
Target: cs2

Paradigm: PS
Interaction: subscribe
 Action: Light
Input: -
Output: -

Source: ps1
Target: ps2

Service ID Filter

Interaction
Filter

Application
Filter

Service ID Filter

Interaction
Filter

Application
Filter

Intermediate
Semantics

Source: abstract1
Target: abstract2

Paradigm: abstract
Interaction: post-get

Action: getLightState
In: -
Out: -

Source: ps1
Target: ps2

Paradigm: PS
Interaction: subscribe

Action: Light
In: -
Out: -

Type: Application
ID: 23

Type: Application
ID: 23

Declaration

Content

Interaction

Communication

Figure 4.12.: Exemplary Transformation Process of an Application Message. Fil-
ters process messages step by step, possibly applying several filters.
Here, the service identifier (ID) filter transforms the endpoints, be-
fore the interaction filter aligns the interaction semantics. The ap-
plication filter translates the actual content. The message is then
completely in the intermediate semantics. Subsequently, the same
filters are applied in reverse order to transform the message into the
target semantics.

Before having a closer look at the different filters, the service definitions are

presented due to the fact that they are used as basis for the automatic transfor-

mation algorithms.

76

4.5. Alignment

4.5.2. Service Definition

Service definitions define which services are supported in a federation. There-

fore, a service definition needs to exist for each supported platform and for the

intermediate representation, in case of indirect translation. They are stored in

the repository. Here, two possibilities are offered on how these service definitions

are specified: by files based on the Web Service Description Language (WSDL)

[40] or by code. The former solution goes hand in hand with the automatic trans-

formation tool, whereas the latter one should be used if manual transformation is

desired/required, i.e., if the automatic tool is not able to do the transformations.

When using manual transformation, the service definition is implicitly contained

in the transformer specification.

WSDL is a language based on XML that can be used to describe web services.

It is widely known as well as used (e.g., [57] or [71]) and provides a fairly human-

readable notation [42]. A WSDL description file contains an abstract and a

concrete part. Whereas the abstract part describes the functional properties of a

service, the concrete part determines protocol and communication details. The

functional part includes sections for data types, messages (capabilities), and port

types (operations). A message element has a name attribute and contains part

elements. A part element represents an argument and has a name and a type

attribute. A portType element is defined by its name attribute. It contains one

or several operation elements. An operation element also has a name attribute

and an input as well as an output element. These elements have a message

attribute. Thus, the port types represent the way of interaction. Because the

concrete part is not relevant here (cf. Section 4.3.1), it is not further explained.

For the automatic transformation tool, WSDL files serve as basis. However,

they are extended with further attributes, e.g., the maps attribute which is used

to specify a mapping between platform-specific and abstract service definitions.

Intermediate definitions do not require any maps attributes. While reading out

the files at start-up, mappings are established between platform-specific and the

intermediate semantics. Placing the mapping specification in the intermediate

definition is not feasible because it would require a mapping for each supported

platform, and thus, reduces transformer extensibility. Those extensions are in-

troduced and explained successively when required in the upcoming sections.

77

4.5. Alignment

Henceforth, extended WSDL descriptions are called XWSDL definitions.

Figure 4.13 shows an extract of a simple light service of an XWSDL definition.

It has two message elements: one for getting the state of the light (on/off), the

other is the response to the first message. This is also indicated by the port

type element since it has an input as well as an output element.

<definitions name=" SimpleLight">

<message name=" getState" />

<message name=" getStateResponse" >

<part name=" result" type=" Boolean" />

</message >

...

<portType

name=" SimpleLightPortType">

<operation name=" getStateOperation" >

<input message =" getState" />

<output message=getStateResponse" />

</operation >

...

</portType >

</definitions >

Figure 4.13.: XWSDL Example: Extract of an Intermediate Light Service.
WSDL serves as basis. The service provides an operation for re-
questing the light state.

In conclusion, two ways of specifying service definitions exist, and the devel-

oper is responsible for doing this. Further, each service requires a service def-

inition for the source platform, the intermediate representation, and the target

platform. Knowing the basic transformation concepts, the next sections present

several transformation steps, starting with service description transformation.

4.5.3. Service Description Transformation

According to the service discovery model (see Section 4.3.2), XWARE in-

stances advertise service descriptions to platforms. Therefore, they must be in

the platform-specific language, and thus, they require transformation. For this,

the use of the automatic tool or manual transformation is possible.

78

4.5. Alignment

For the automatic transformation, the definitions element of an XWSDL

definition is extended with a maps attribute. Figure 4.14 shows an extract of

a BASE-specific description. The introduced maps attribute is underlined. The

attribute indicates that this service definition can be transformed into the inter-

mediate SimpleLight definition (see Figure 4.13). Values of the maps attributes

must match exactly the respective values of the intermediate definition. The au-

tomatic tool performs this mapping and can then read out the matching service

description, if present.

<definitions name="base.light.ILight"

maps=" SimpleLight" >

<message name=" boolean getState ()" >

<message name=" getResponse" >

<part name=" result" type=" Boolean" />

</message >

...

<portType

name=" SimpleLightPortType" >

<operation name=" getOperation" >

<input message =" boolean getState ()" />

<output message=getResponse" />

</operation >

...

</portType >

</definitions >

Figure 4.14.: XWSDL Example: Extract of a BASE-specific Light Service. For
transforming service descriptions, the maps attribute (underlined)
extends the basic XWSDL definitions.

For the manual transformation, developers have to implement the method

ServiceDescr transformServiceDescr(...). The transformer is then auto-

matically used by the transformation selection.

The discovery filter is responsible for this transformation. It is used when a

service registration event is received in the alignment module in order to transform

the original service description. Applying this filter solves the remaining part of

service discovery heterogeneity (H2), i.e., distinct service description semantics.

The next section goes into detail about service identifier transformation.

79

4.5. Alignment

4.5.4. Service Identifier Transformation

Service identifiers refer to the source and target of messages. They are usually

represented by some kind of identifiers. For example, in the BASE [12] platform,

an identifier may be 756dc02333b09d22000000000000000000000000 ffffffffffffffff,

whereas in Limone [60], it may be MyDevice-192-168-1-123-4000:a0:LightService.

Since these endpoints are included in service advertisement and service access

messages, their transformation is mandatory. To the best of the author’s knowl-

edge, most other approaches neglect this transformation (or implicitly assume it)

although it is essential for interoperable service discovery and access.

Here, the foundation is a mapping between endpoint representations using an

intermediate representation. The intermediate representation must be unique

within a federation. Therefore, universally unique identifiers [102] (UUIDs) seem

to be a reasonable choice, and are also suggested in [106]. The mapping itself is

performed with the help of the service management module which is explained

in Section 4.6. When a service is registered, the endpoint mapping is created.

Due to the possibility of communication between interoperability instances, it

can happen that the same service is discovered by several interoperability in-

stances. For a unique identification among them, name-based UUIDs [102] are

used that depend on the original registry and service identifier. Consequently,

each interoperability generates the same UUID for such a service.

Service identifier transformation is performed by the service identifier filter. It

covers part of semantic data heterogeneity (H4). The next transformation step

addresses interaction heterogeneity.

4.5.5. Interaction Transformation

Interaction heterogeneity deals with diverse interaction models. Most exist-

ing approaches do only consider the client-server model and neglect interaction

heterogeneity completely [88]. In [14], [23], and [68], this heterogeneity is ad-

dressed by using a formal description. Here, partially based on these works, a

graphical combination is performed. Considering not only the interaction models

but also their operations, the following overview is more complete than the men-

tioned approaches. From the service access model (see Section 4.3.3), it is known

80

4.5. Alignment

that application message content can be abstracted as <action, input, output>.

Further, the interaction semantics can be mapped using the intermediate seman-

tics post and post-get. However, it is not as simple as that, because operations

cannot be translated one to one. Therefore, the basic interaction patterns are

revisited separately by consumer- and provider-side interaction in the following.

Subsequently, they are visually combined.

Figure 4.15 shows the basic interaction patterns. It is easy to notice that the

interaction patterns are mirrored on consumer- and provider-side. However, it

serves as better illustration because these building bricks are aggregated one by

one together with an intermediate interoperability instance.

Consumer Producer

CS

PS

TS

P
request

(reply)

publish
P B notify

subscribe
C

P TS C
out in/take

request
C

(reply)

publish
B notify

subscribe

TS
out in/take

Figure 4.15.: Revisit: Common Interactions. This figure summarises the common
interactions of different interaction paradigms (C - consumer, P -
provider, B - broker).

The following part presents combinations of these building bricks. An inter-

mediate XWARE instance makes these combinations possible. Communication

that deviates from the basic patterns is emphasised in grey colour. Because the

patterns are not symmetrical, e.g., from CS to PS is not the reverse of PS to CS,

having three interaction paradigms with each two interaction primitives, there

are twelve resulting combinations.

CS to PS: Figure 4.16 presents this combination. In Figure 4.16a, a CS

consumer (C) initiates a request-response interaction to a PS provider (P). The

XWARE instance receives the message and transforms it into a subscribe message

before forwarding it to the broker (B). Either there is a matching event at the

81

4.5. Alignment

1. request
C

5. reply

publish
P B 3. notify

2. subscribe

X

4. unsubscribe

(a) Request-response.

1. message C/P X P/C B
2. publish

notify

subscribe

(b) One-way Message.

Figure 4.16.: Interaction Pattern from CS to PS. It is differentiated between the
CS primitives request-response (4.16a) and one-way message (4.16b)
(C - consumer, P - provider, X - XWARE instance, B - broker).

broker or the PS provider eventually publishes such an event. The broker notifies

the XWARE instance about the event. Then, the XWARE instance translates

the received publish message into a response message, and delivers it to the

consumer. Additionally, the XWARE instance unsubscribes from the broker as

only one response is expected. As a matter of fact, this interaction can only be

safely executed if the request is either asynchronous or a time out is specified.

Otherwise, it can happen that the CS consumer waits for a very long time and,

thus, is prevented from doing other computations.

In Figure 4.16b, a CS consumer (or provider) sends out a one-way message to a

PS provider (or consumer). A consumer might send a message to a provider that

does not expect a response – e.g., a command to turn on the light – or a provider

might notify a consumer of something – e.g., a change in the temperature. In the

first case, it is a PS provider that needs to subscribe to such events, whereas in

the latter case, it is a PS consumer. Regarding the transformation process, the

XWARE instance transforms the one-way message into a publish message. After

that, it forwards the message to the broker. If a consumer has subscribed for that

event, the broker notifies the consumer. Due to the loose time coupling of PS

interaction, the last two steps (i.e., subscribe and notify) are independent from

the previous ones. That is, these steps can happen before or after the message is

published to the broker; therefore, they are are not numbered. Notwithstanding

the time of subscription, the consumer will be eventually notified of the event by

the broker.

82

4.5. Alignment

1. request
C

3. reply

out
P TS

2. take
X

(a) Request-response.

1. message C/P X P/C TS
2. out take

(b) One-way Message.

Figure 4.17.: Interaction Pattern from CS to TS. It is differentiated between the
CS primitives request-response (4.17a) and one-way message (4.17b)
(C - consumer, P - provider, X - XWARE instance).

CS to TS: Figure 4.17 depicts this combination. In Figure 4.17a, a CS

consumer begins a request-response interaction to a TS provider. The request is

transformed by the XWARE instance into a take (or in) message. Subsequently,

the XWARE instance forwards the message to the TS. Either there is a matching

tuple in the TS, or the TS provider eventually writes such a tuple to the TS. The

TS sends the tuple to the XWARE instance. There, it is translated into a response

message, and sent back to the consumer. As with the combination before, this

interaction is only safe if the request-response is performed asynchronously or a

time out is specified.

In Figure 4.17b, a CS consumer (or provider) sends out a one-way message

to a TS provider (or consumer). The XWARE instance transforms the message

into an out message and writes it into the TS. The TS entity reads out the tuple

eventually.

PS to CS: Figure 4.18 shows this combination. In Figure 4.18a, a PS con-

sumer subscribes for an event at the broker. The XWARE instance intercepts

the message. For the purpose of message interception, either event brokers could

be directly executed in the communication plugin, or event brokers often pro-

vide an API (see Section 5.2.1). Afterwards, the XWARE instance translates

the subscribe message into a request before forwarding it to the CS provider.

The CS provider processes the request and sends back a response. The XWARE

instance transforms the response into a publish message and delivers it to the

broker. Then, the broker notifies the PS consumer. Here, two issues come up: 1)

83

4.5. Alignment

1. subscribe
C

6. notify
P X B

4. reply

3. request

5. publish

2. intercept

(a) Subscribe.

1. publish P B C X
2. intercept 3. message

(b) Publish.

Figure 4.18.: Interaction Pattern from PS to CS. It is differentiated between the
PS primitives subscribe (4.18a) and publish (4.18b) (C - consumer,
P - provider, X - XWARE instance, B - broker).

PS consumers subscribe for a time span and not for only one event, and 2) PS

consumers subscribe for every event of a specific event type and not from only one

provider. Regarding the first matter, the XWARE instance can periodically send

out the request. Thus, steps 3 to 6 are executed periodically until the consumer

unsubscribes at the broker from the event. With respect to the second issue,

which is henceforth referred to as target selection problem, there can be different

situations at the point of the subscription. First, if there is currently no provider

present that provides the required functionality, the XWARE instance needs to

wait until there is such a provider. Due to the loose time coupling of PS interac-

tions, this is feasible. Second, if there is exactly one provider that provides the

required functionality, the XWARE instance uses it as target. Last, there can be

several providers with the required functionality. In this situation, the XWARE

instance could send the request periodically to each of those providers, which can

lead to a high overhead, but results in an original PS interaction from the point

of view of the PS consumer. Another possibility is that the XWARE instance

selects a subset (possibly only one) of the available providers. Again, several

options exist for selecting a subset of providers, e.g., randomly or the ‘best’ –

however defined. The decision on how to deal with the target selection problem

should be left to the developer.

In Figure 4.18b, a PS provider publishes an event that is intercepted by the

XWARE instance. There, the event is translated into a one-way message and

sent to the CS consumer(s). Again, the target selection problem exists. However,

84

4.5. Alignment

the reasonableness of this interaction must be raised to question since a publish

message should actually only go to entities that are interested in that message,

i.e., they have subscribed for it.

1. subscribe
C

5. notify
X B

4. publish

2. intercept out
P TS

3. take

(a) Subscribe.

1. publish P X B 2. intercept C TS 3. out take

(b) Publish.

Figure 4.19.: Interaction Pattern from PS to TS. It is differentiated between the
PS primitives subscribe (4.19a) and publish (4.19b) (C - consumer,
P - provider, X - XWARE instance, B - broker).

PS to TS: Figure 4.19 presents this combination. In Figure 4.19a, a PS

consumer subscribes for an event at the broker. The XWARE instance intercepts

the message, transforms it into a take (or in) message, and sends it to the TS.

As soon as the TS provider writes a matching out tuple into the TS, the TS

forwards it to the XWARE instance. There, the message is translated into a

publish message before it is sent to the broker. Then, the broker notifies the PS

consumer of the event. Here again, steps 3 to 5 should be executed periodically

until the consumer unsubscribes at the broker from the event.

In Figure 4.19b, a PS provider publishes an event which is intercepted by the

XWARE instance. There, the message is transformed into an out message and

written into the TS. Eventually, a TS consumer takes the tuple.

TS to CS: Figure 4.20 illustrates this combination. In Figure 4.20a, a TS

consumer sends a take (or in) message to the TS. The XWARE instance inter-

cepts this message and transforms it into a request before delivering it to the

CS provider. The provider processes the request and sends back the response.

On reception, the XWARE instance translates the message into an out message

and writes it into the TS. Subsequently, the TS sends the message back to the

TS consumer. Here again, the target selection problem occurs and is left to the

developer for appropriately dealing with it.

85

4.5. Alignment

1. take
C P X TS

4. reply

3. request

5. out

2. intercept

(a) In/Take.

1. out P TS C X
2. intercept 3. message

(b) Out.

Figure 4.20.: Interaction Pattern from TS to CS. It is differentiated between the
TS primitives in/take (4.20a) and out (4.20b) (C - consumer, P -
provider, X - XWARE instance).

In Figure 4.20b, a TS provider writes an out tuple into the TS. The XWARE

instance intercepts the message and transforms it into a one-way message which is

forwarded to the CS consumer. Here again, the meaningfulness of this interaction

has to be questioned, as the out message is usually only read by entities that are

interested in the tuple.

3. subscribe

C 4. notify X B publish
2. intercept

P
6. out

TS
1. take

5. unsubscribe

(a) In/Take.

3. publish
P X B C TS 1. out

2. intercept subscribe

notify

(b) Out.

Figure 4.21.: Interaction Pattern from TS to PS. It is differentiated between the
TS primitives in/take (4.21a) and out (4.21b) (C - consumer, P -
provider, X - XWARE instance, B - broker).

TS to PS: Figure 4.21 depicts this combination. In Figure 4.21a, a TS

consumer sends a take (or in) message to the TS. The message is intercepted by

the XWARE instance where it is transformed into a subscribe message and sent to

the broker. If there is a matching event, the broker notifies the XWARE instance.

After that, the XWARE instance translates the event into an out message and

forwards it to the TS before unsubscribing from the event at the broker. Then,

86

4.5. Alignment

the TS sends the tuple back to the consumer.

In Figure 4.21b, a TS provider writes an out tuple into the TS. The XWARE

instance intercepts this message, transforms it into a publish message, and sends

it to the broker. In case a consumer has subscribed for the event, the broker

notifies the consumer.

An appropriate implementation of the interoperability instance permits the

preservation of characteristics of the different interaction paradigms. Thus, time

coupling, space coupling, and synchronisation coupling can be retained. However,

if the consumer works synchronously and accesses a PS or TS provider, it can

happen that the consumer has to wait for a very long time for a response.

Summarising, each interaction paradigm might be transformed to each other

although the meaningfulness of some combinations can be raised to question (e.g.,

PS publish to CS or TS out to CS). Furthermore, sometimes the target selection

problem exists. Several possibilities have been presented that show how to deal

with this problem. Yet, the decision is left to the developer.

These interaction transformations happen in the interaction filter and man-

age interaction heterogeneity (H3). Having introduced a way in order to align

interaction models, the next section focuses on application heterogeneity.

4.5.6. Application Transformation

Application heterogeneity deals with differences in the service operations, such

as distinct message and parameter names, or even diverse interfaces. For address-

ing the first problem, additional extensions are introduced to the XWSDL files.

First, message elements hold a maps attribute. This way, different operation

names can be mapped. Second, the part element is extended with a maps at-

tribute. It indicates that these elements can also be mapped to the according

elements of the intermediate definition. This enables a mapping between different

parameters. Last, the part element may hold a unit attribute. This attribute

can be used for parameters and results that hold a unit value. As an example, a

temperature sensor might return 23◦C as result. The requester, however, uses a

different platform and expects Kelvin as unit. If the unit attribute is used, the

value is directly converted from Celsius to Kelvin, preventing result interpretation

errors.

87

4.5. Alignment

The second issue arises from the fact that developers (of smart devices) may

implement functionality differently. For instance, an operation op1 in one plat-

form may be implemented with two operations op2.1 and op2.2 in another platform.

In the following, a personalised service that stores a name serves as illustration.

A consumer can change or look up the name. It can happen that, in one plat-

form, there are two operations for setting and getting the full name. However, in

another platform, there are operations for setting and getting the first name, and

operations for setting and getting the last name. In order to solve this, XWSDL

definitions are further extended. First, an additional maps attribute extends the

operation element. Second, the operation element allows more than one input

and output element now. Thus, one input might be mapped to several inputs and

the other way around; the same holds for outputs. Figure 4.22 illustrates these

modifications at the example of the name service. There, each message, part

and operation element has a maps attribute. Further, the operation element

holds two input elements.

<definitions name="base.name.IName" maps=" SimpleName" >

<message name="void setFirstname(String)"

maps=" setName" >

<part name=" firstname" type=" String" maps="name" />

</message >

<message name="void setLastname(String)"

maps=" setName" >

<part name=" lastname" type=" String" maps="name" />

</message >

...

<portType name=" SimpleNamePortType" >

<operation name=" setName"

maps=" setNameOperation" >

<input message ="void setFirstname(String)"/>

<input message ="void setLastname(String)" />

</operation >

...

</portType >

</definitions >

Figure 4.22.: XWSDL Example: Name Service. For transforming operations, the
maps attributes extend operation elements. Furthermore, several
input and output elements are allowed per operation.

88

4.5. Alignment

Nevertheless, several problems arise here. On the one hand, aggregation and

separation of the message content are not trivial and differ for each operation

and pair of platforms. A generic solution is very difficult to achieve and could

contain further XWSDL extensions, including some regular expression attributes.

A simple solution should be preferred. For that reason, the developer has to do

the aggregation and separation manually. However, for an adequate support,

the building blocks for that are provided. On the other hand, the system has

to coordinate discrepancies in the service interfaces. Considering the example in

Figure 4.22, the operation should only be sent after both input messages have

arrived. Otherwise, the input might be incomplete and, in this case, the full name

is overwritten in the target service by only the first (or last) name. Marked petri

nets [135] help in solving this issue. The proposed approach differs from the one

in [85] in that it considers single methods instead of use cases, and it uses petri

nets instead of labelled transition systems.

A petri net [135] is a process graph, initially conceptualised for modelling

distributed systems. Formally, it can be defined as tuple (S, T,E), where S is a

finite set of places, T is a finite set of transitions, and E is a finite set of directed

edges connecting either a place with a transition or a transition with a place.

A marked petri net extends the tuple with M0, the initial marking. A marking

is a set of tokens that is assigned to places. Further, each edge has a weight.

The weight w of an edge from a place to a transition indicates that at least w

tokens are required in the place in order to fire the transition. The weight w′ of

an edge from a transition to a place indicates that w′ tokens will be produced

at the output place if the transition fires. A transition t ∈ T can fire if each

incoming edge can fire. Firing a transition means that tokens are consumed from

each input place, and tokens are produced at each output place.

Here, each place represents a transformation state. A transition models the

transformation process from one platform representation to another. A petri net

is automatically created when an application message arrives. The petri net is

built with the help of the operation elements in the XWSDL definitions for the

source, intermediate, and target platforms. Thus, the starting place represents

the arriving message, whereas the final place is the desired representation. If the

initiating message expects a response, the response in the source representation

is the final place.

89

4.5. Alignment

template:
name getName

String
getFirstname()

name getName
Response

getFirstname
Response

String
getLastname()

getLastname
Response

1 1 1 1

1

1

1 1 1 1 1

1

1

1

Figure 4.23.: Examplary Petrinet: Get Name. A Limone consumer is asking for
the name from a BASE provider.

Figure 4.23 shows an example for a created petri net. There, a Limone-specific

consumer intents to get the name from a BASE-specific provider. In Limone, the

tuple template is simply name to get the full name, whereas in BASE there are two

methods for getting the first and the last name. When the Limone application

message arrives in the application filter, the petri net is generated. Because the

token is at the place that matches the message’s operation, the petri net is fired,

placing the token in the subsequent place. Also, the message is transformed into

the intermediate format, resulting in a getName operation. As this matches the

place where the token resides, the petri net is fired again. Here, the message is

split into two separate messages because the BASE provider has two methods.

These messages are sent to the provider, and the petri net is fired. After receiving

responses to both of the messages, the net can be fired again, resulting in a state

where the getNameResponse place holds a token. In this step, the two messages

need to be aggregated. The developer is responsible for this aggregation, and

therefore, has to write code. After the last transformation, the petri net is in

the final state, getResponse, and the message is forwarded to the appropriate

communication plugin in order to be sent to the actual entity.

Another example (see Figure 4.24) shows a petri net based on the XWSDL

90

4.5. Alignment

setFirstname(String)

setName changeName

setLastname(String)

1

1 1

1

1

Figure 4.24.: Examplary Petrinet: Set Name. A Limone consumer changes the
name at a BASE provider.

definition of Figure 4.22. There, a BASE-specific consumer intents to set the

name (or part of it) in a Limone-specific name service. In Limone, the tuple with

this intention is simply changeName. A problem arises when a message for setting

the first (or respectively last) name arrives because there is no information on the

last (or respectively first) name. Thus, setting the full name in BASE to only one

part of the name makes no sense. Basically, there are two approaches to encounter

this problem. On the one hand, it is possible to wait until a request arrives to set

the last name and then aggregate the two messages before setting the full name.

Another possibility is that the XWARE instance has knowledge about the state

of the name (e.g., through requesting it) and takes this information to aggregate

the name before forwarding the message. Here, the first option is employed as it

goes hand in hand with the petri net approach and does not yield any overhead.

However, it has to be taken into account that the name will never be changed if

the Limone consumer never sends the second message. Again, the developer is

responsible for writing code for the aggregation of the messages.

Overall, application heterogeneity (H5) can be solved with this approach. Fur-

thermore, simple content translations (semantic data heterogeneity, H4) are au-

tomatically performed in that data types of parameters can be cast as well as

unit conversion takes place. More complex content transformation has be imple-

mented manually using the manual mechanism. For this, a manual transformer

has to implement the method Operations transformOperation(...).

These kind of transformations happen in the application filter. The next

section points out the transformation of non-functional properties.

91

4.5. Alignment

4.5.7. Non-functional Properties Transformation

For the non-functional properties heterogeneity, an automatic solution exists

for platforms where non-functional properties are described as key-value pairs.

Then, a mapping can be performed. In case of a more complex representation

of non-functional properties, developers have to use the manual transformation

mechanism. For that, the interface of a transformer provides the Properties

transformProperties(...) method.

In general, there are some problems with non-functional properties. If a plat-

form does not support non-functional properties, one cannot know if it can meet

specific properties. Thus, these services are not considered by a request that

specifically asks for certain properties. Also, if the sets of non-functional prop-

erties for two platforms are not congruent, difficulties can appear. An example

is if one platform supports only privacy properties, but a request contains se-

curity aspects. Such services should not be considered in the request. Further-

more, the realisation of non-functional properties with an intermediary can be

complex. For instance, taking real-time requirements, the communication and

transformation by the interoperability instance also takes time. This time must

be considered when transforming properties. If a consumer asks for a real-time

execution of 200 milliseconds, the time used by the interoperability instance must

be deducted when looking for such services. Thus, the interoperability instance

itself must include a mechanism for ensuring non-functional properties. For this

reason, only the transformation of non-functional properties (H6) is considered,

not the adherence to those properties.

There is no separate filter for these transformations, but they are performed

when required, e.g., during a service registration. The next section presents

notification transformation.

4.5.8. Notification Transformation

Notifications differ in their schemes, content, and delivery modes among plat-

forms. Some of those platforms even do not support notifications. Whereas a

filter is responsible for dealing with dissimilarities in notification schemes as well

as event contents, the notification management module incorporates mechanisms

92

4.5. Alignment

to manage different types of delivery modes and non-supporting platforms. The

transformations of schemes including the event categories and event content are

explained in the following.

Event category transformation must ensure a translation between platform-

specific schemes and the intermediate scheme. Therefore, the intermediate lan-

guage should provide vocabulary for channels, subjects, and content-based sys-

tems. A mapping can then be used between the platform-specific and the in-

termediate vocabulary of the same schemes. Such a mapping could look like

‘Climate=Temperature’. If the intermediate vocabulary does not hold a match,

either the category could be added to the intermediate vocabulary, or the sub-

scription fails. The first option guarantees completeness. However, it can become

unclear depending on the size of the federation. The second option retains a clear

pre-defined model. Though, subscriptions might fail and, as a result, notifications

are not forwarded. Since usually the administrator defines the federation, this

might be desired. In the following, scheme type transformation is explained. At

this point, event categories are already in the intermediate language.

Scheme transformation deals with the different forms of PS schemes: channel-

based, subject-based, and content-based. For this transformation, a generic so-

lution is desirable. Because content-based notification systems and their data

and filter models are highly application-specific, transformation from, to, and

between such systems is disregarded in this thesis. However, manual mappings

can be specified by developers through code writing.

For the transformations between channel-based and subject-based schemes,

the following part describes the transformation model formally and then by way

of example of the earlier introduced channels (see Figure 2.6) and subjects (see

Figure 2.7). Furthermore, it is assumed that in the intermediate language, chan-

nels and subjects are geared to each other name-wise, i.e., if there is a channel

Temperature, a subject node (as one node in the hierarchy) with the same purpose

is named equivalently. Under those circumstances, a mapping between channel

names and subject names can be used and works as follows.

Formally, let C = {c1, ..., cn} be a set of channels and S = {s1, ..., sm} be a set

of subject nodes that build up the subject tree, n is the number of channels, and

m is the number of subject nodes. The subject node s1 is defined as the root of

93

4.5. Alignment

the subject tree built up by S. A channel c ∈ C is represented by a channel name,

e.g., c = Temperature. A subject node sl ∈ S, l ∈ {1, ...,m}, is a vector (l, nl)

where l is the index and nl is the subject name, e.g., sl = (l,Light). Projections

can be used to access the vector values, i.e., π1(sl) = l and π2(sl) = nl. A path

from the root s1 to the node sl through sa, ..., sk is represented by ṡ1,a,...,k,l =

(s1, sa, ..., sk, sl), where 1 < a < · · · < k < l ≤ m. Here, due to the nature of

subjects, only paths from the root to a subject node are of interest. Further, from

the root to each subject node, there exists exactly one path. Therefore, ṡ1,a,...,k,l

is abbreviated by ṡl for the convenience of the reader. The auxiliary function

n(ṡl) = {s1, sa, ..., sk, sl} transforms the path ṡl into the set of subject nodes that

make up the path from the root to sl. Then, let Ṡ = {ṡ1, ..., ṡm} be the set of all

paths starting at the root.

For the mapping from channels to subjects, first, two auxiliary functions are

introduced in order to simplify the main formula. Let p be an auxiliary function

that maps sets of subject nodes S ′ = {sa, ..., si} ⊆ S to the corresponding sets

of paths from the root: p(S ′) = {ṡa, ..., ṡi} ⊆ Ṡ. Further, the auxiliary function

q(c) = {s ∈ S : π2(s) = c}, c ∈ C, maps from a channel to all matching subject

nodes. Nevertheless, the whole subject paths are necessary here. Thus, the

function mchannel = p ◦ q maps each channel to the corresponding set consisting

of all paths to subjects that match the name. In other words, the translation

from a channel to subjects consists of traversing the subject tree while checking

each subject for a syntactic match. Injectivity and surjectivity of the function

mchannel depend on the sets C and S. They cannot be assumed though. This can

lead to some problems which are pointed out in the following.

If the function mchannel maps a channel c to the set Ṡ ′, there are three possible

outcomes for the number of elements in Ṡ ′: 1) |Ṡ ′| = 0, i.e., there does not

exist a matching subject, 2) |Ṡ ′| = 1, i.e., there exists exactly one matching

subject, and 3) |Ṡ ′| > 1, i.e., there exist several matching subjects. In the first

case, the subscription could be neglected, or the event category could be set to

the whole hierarchy (by using the wild card to subscribe to the whole sub-tree

from the root on). The second option makes sure that no notification is lost.

However, it also brings a lot of overhead with it depending on the amount of

subjects. Further, consumers may get notifications they are not interested in.

As the assumption above indicates that names should be well-matched, it makes

94

4.5. Alignment

sense to neglect the subscription, despite the fact that some events might get lost.

Thus, in the example, the channel Humidity would not have a matching subject.

In the second case, the matching subject replaces the event category. Considering

the exemplary channels and subjects, the channel Temperature would match to

the subject PhysicalEnvironment/Conditions/Temperature. In the third case,

a channel name appears more than once in the subject hierarchy. Then, the

subscription could be made for all matching subjects or only one; they are possibly

chosen randomly or the first one that is found.

For mapping subjects to channels, first, the auxiliary function r is defined as

follows: If ṡl is a subject path and if there are subjects in n(ṡl) for which there

are matching channels in C, then r(ṡl) is defined as the channel c which matches

the subject with the largest index. Due to the fact that subject-based systems

often offer the use of wild cards, which can be represented by a set of subject

paths, the input of the resulting function needs to be a set of subject paths.

Also, as there may be several matches, the output must be a set of channels.

If Ṡ ′ = {ṡa, . . . , ṡi}, then the resulting function msubject(Ṡ
′) = {r(ṡa), . . . , r(ṡi)}

matches from a set of subject paths to a set of channels. Put another way, when

transforming subjects to channels, for each subject, each subject node on the

path to the root is checked against the channel names from the bottom to the

root, and the first match is taken. For example, the subject PhysicalEnviron-

ment/Conditions/Light/Level would be matched to the channel Light because

there is no match for Level. Furthermore, wild cards may be used. Here, ‘#’

indicates a subscription to a sub-tree, whereas ‘+’ denotes a subscription to the

direct children of a subject. When using wild cards, each subject that is included

in this subject set is matched. In the example, PhysicalEnvironment/# matches

to the channels Light, Audio, and Temperature. The subject PhysicalEnviron-

ment/+ does not match anything. For a more formal description of the mapping

from subjects to channels, the interested reader is referred to Appendix C. As

above, injectivity and surjectivity of the function depend on the sets C and S,

but they cannot be assumed. Problems arising from this are pointed out in the

following.

Here again, if the function msubject maps a set of paths Ṡ ′ to the set of channels

C ′, there are three possibilities for the number of elements in C ′: 1) |C ′| = 0, i.e.,

there does not exist a matching channel, 2) |C ′| = 1, i.e., there exists exactly one

95

4.6. Service Management

matching channel, and 3) |C ′| > 1, i.e., there exist several matching channels. The

addressing of these issues works analogously to the cases above when transforming

from channels to subjects.

As a matter of fact, the intermediate scheme should be chosen in a way that

no information is lost. Thus, it should use the most expressive scheme type that

is used by the platforms in the federation. As until now only a mapping between

channels and subjects exist, the subject-based scheme is used as intermediate

scheme here.

Because event content is very application-specific, there is no automatic sup-

port for translation. Therefore, the ITransformer interface provides the Object

transformEvent(...) operation.

Summarising, the notification transformation deals with part of the notifica-

tion heterogeneity (H7), i.e., data and scheme. Furthermore, the notification filter

is responsible for this task. Having discussed the transformation model, the dif-

ferent filters, and how they address the heterogeneities in detail, the subsequent

section gives details on the service management module.

4.6. Service Management

The service management module serves as ‘global’ service registry and, conse-

quently, stores available services and their descriptions in the abstract semantics

and in each supported platform’s semantics. As described in Section 4.3.2, in-

stead of translating lookup requests, an XWARE instance only transforms service

registrations in order to store them. The translation happens in the alignment

module with the help of the discovery filter (see Section 4.5.3). The service

management module contains a registry using the intermediate semantics, the ab-

stract registry, as well as in each supported platform’s semantics, platform-specific

registries. These different registries accelerate service identifier transformation,

service advertisements, and service matching because service descriptions do not

have to be transformed every time, but only at their first registration. Moreover,

lookup requests can be matched against the transformed platform-specific service

descriptions and do not require prior transformation. Thus, each plugin may use

a different service matching algorithm.

96

4.6. Service Management

The overall structure of the service management module is shown in Figure

4.25. The entries differ in the abstract and plugin-specific registries; together,

they henceforth are called the internal registries. An entry in the abstract registry

encompasses the intermediate service identifier (IID) representation as UUID (see

Section 4.5.4), the intermediate service description (ISD), and the lease time

(or time to live (TTL)). Platform-specific registries hold entries containing the

IID, the platform-specific service identifier (ID), and the platform-specific service

description (SD). The IID serves as primary key in order to map between different

identifier representations among the internal registries. From the TTL value,

the abstract registry knows the duration until a service is released, if it is not

updated. Therefore, it regularly checks the abstract entries for outdated services

and removes them from each internal registry, if necessary (implicit leaving). As

some middleware platforms also use an explicit leave mechanism, a service also

is removed if a service deregistration comes in. Additionally, a device/registry

deregistration message actuates the service management to delete all services that

have been advertised from that specific registry. Thus, implicit and explicit leave

mechanisms are supported.

Service Management

Abstract Registry

IID ISD

UUID1
UUID2
UUID3

ISD1
ISD2
ISD3

Registry Platform1

IID SD Platf.1

UUID1
UUID2
UUID3

P1 SD1
P1 SD2
P1 SD3

ID Platf.1

P1 ID1
P1 ID2
P1 ID3

Registry PlatformN

IID SD Platf.N

UUID1
UUID2
UUID3

PN SD1
PN SD2
PN SD3

ID Platf.N

PN ID1
PN ID2
PN ID3

…

TTL

TTL1
TTL2
TTL3

Alignment

Figure 4.25.: Service Registry. Each internal registry holds IIDs as primary keys
to map between different representations ((I)ID - (intermediate)
service identifier, (I)SD - (intermediate) service description).

From that, it follows that the service management has to provide several func-

97

4.7. Notification Management

tionalities. When services are registered, they must be added to the internal

registries. Further, if a service is already registered, the TTL must be updated.

When services deregister or their lease time runs out, they must be removed.

For service matching, available services must be received in the platform-specific

format. Also, service identifiers must be mapped between the intermediate and

platform-specific formats. Furthermore, a service description must be received in

a certain representation. Based on these functionalities, the following interface

has been defined:

interface IServiceMgmt {

ServiceDescr addService(ServiceDescr sd , PluginID pid ,

Number ttl);

void removeService(ServiceID id);

ServiceDescrs getServices(PluginID pid);

ServiceID mapServiceID(ServiceID id, PluginID srcPid ,

PluginID tgtPid);

ServiceDescr getService(ServiceID sid , PluginID pid);

} .

So far, the framework’s design already allows entities of different platforms to

discover and access each other. However, another important functionality is the

support of notifications among them. Therefore, the next section explains the

architecture and functioning of the notification management module.

4.7. Notification Management

The notification management module, as its name lets assume, is responsi-

ble for notification management. In pervasive systems, notifications are usually

referring to contextual information, e.g., temperature, light level, or user pres-

ence. Several middleware platforms, independent of their interaction paradigm,

allow notifications. However, not all platforms support notifications. In order

to have a more holistic context view, it is desirable to integrate them as well.

In the following, first, the architecture of the notification management module is

presented before a mechanism for using non-supporting platforms as providers is

introduced. This section is based on [149].

98

4.7. Notification Management

4.7.1. Architecture

Figure 4.26 shows the architecture of the notification management module. It

consists of several components derived from the notification management model

(see Section 4.3.4): subscription management, provider management, event match-

ing, and storage. At this point, messages are already translated. Thus, they use

the intermediate scheme.

Notification Management

Subscription
Management

Storage

Provider
Management

Event Matching

E

S
S P

P

S

Alignment

S

S

S E

Figure 4.26.: Notification Management Architecture. The notification manage-
ment module consists of the four components: subscription man-
agement, provider management, event matching, and storage (S -
subscription, P - provider, E - event).

The subscription management component receives and processes subscription

messages. Consumers send subscription messages in order to indicate interest

in certain events. Such a message requires the consumer’s service identifier, an

event category or a provider’s service identifier, and optionally a lease time. This

way, consumers can not only subscribe to an event category but also to all no-

tifications of one provider. For instance, in the UPnP platform, consumers can

only subscribe directly to providers. Moreover, a subscription renewal only ne-

cessitates the subscription identifier which is returned in response to a successful

subscription request. Also, when unsubscribing, the subscription identifier has to

be included in order to invalidate the subscription.

The provider management component receives or polls new data from providers.

Service registration messages that are received by the interoperability instance

99

4.7. Notification Management

are also forwarded to the notification management and the provider management.

Furthermore, information on the notification support, used scheme type, as well

as the delivery mode have to be known. This knowledge is assumed to be present

(e.g., through specification at design time). If it is a supporting platform, the

provider management component subscribes to all events from that provider. In

case of a provider using the push mechanism, events are automatically received.

In case of the pull mechanism, the provider management periodically polls for

updates at the provider. Developers can set the time period. If the provider runs

on a non-supporting platform, a periodic polling is employed as well (see Section

4.7.2). Incoming events are then forwarded to the event matching component.

The event matching component takes incoming notifications and checks them

against active subscriptions. This check happens based on the aligned event cat-

egories of event and subscription. In case of channels, the matching component

performs a syntactic check. In case of subjects, the check is of syntactic nature

as well. However, the subscription is inspected for a wild card first. If so, the

matching component tests if the event’s subject is included in the subscription’s

sub-tree or tree level, accordingly. If a match is positive, the respective con-

sumer is notified of the event. Besides, incoming events are stored in the storage

component.

The storage component stores notifications in case that entities request for

historical data. Also, administrators may want to analyse notifications. There-

fore, the IStorage interface provides methods for storing information and for

querying stored information. The storage component implements this interface.

Based on the presented architecture, the notification management module pro-

vides the following interface:

interface INotificationMgmt {

void registerProvider(ServDescr service);

void deregisterProvider(ServiceID provider);

SubscriptionID subscribe(Object eventCategory ,

ServiceID provider , Number ttl);

void unsubscribe(SubscriptionID id);

void publish(ServiceID provider , Event event);

Events query(Object eventCategory , ServiceID provider);

} .

100

4.7. Notification Management

After having introduced the architecture of the notification management mod-

ule, the following section describes the polling mechanisms for platforms that

originally do not support notifications.

4.7.2. Polling for Non-supporting Platforms

From above, one may think that the polling task is quite simple and similar

for supporting and non-supporting platforms. However, there is a big difference.

With a supporting platform, polling can be performed by including the event

category, e.g., Temperature, in the poll message. The provider then can easily

check if new values exist or return the most recent value. With a non-supporting

platform, it is not feasible to use an event category because the platform does not

support such a message. Thus, somehow the actual service has to be accessed.

For this, the system requires knowledge on the provider with respect to the

event category to which the provider can contribute and which method has to be

called for this. Thereupon, a further extension to the XWSDL service definition

files is introduced incorporating this kind of information. Because at this level

the abstract representations are used, it suffices to add the information to the

intermediate service definitions.

<definitions name=" SimpleTemperature"

sensorType =" PhysicalEnvironment/Conditions/Temperature">

<message name=" getTemperature" sensorMethod ="true" />

<message name=" getTemperatureResponse" >

<part name=" temperature" type=" Double"

unit=" kelvin" />

</message >

...

</definitions >

Figure 4.27.: XWSDL Example: Extract of an Intermediate Temperature Sen-
sor. For integrating non-supporting platforms, the sensorType

and sensorMethod attributes further extend the XWSDL file. The
newly introduced attributes are underlined.

In order to embody the information in the intermediate service definition

files, two new attributes are added there. The sensorType attribute extends

the definitions element. There, the event category is indicated. For instance,

101

4.8. Summary

assuming a subject-based scheme, a temperature sensor can hold the sensor type

PhysicalEnvironment/Conditions/Temperature. Furthermore, the message el-

ement is expanded with a sensorMethod attribute which indicates that this

method returns information on the provided event category. These attributes

are optional but must only occur once per intermediate service definition. Figure

4.27 shows an extract of an XWSDL file for an intermediate temperature sensor.

Concluding, the notification module manages the remaining part of notifica-

tion heterogeneity (H7), i.e., support and delivery modes. The next section briefly

summarises this chapter.

4.8. Summary

In this chapter, the framework for interoperability between heterogeneous per-

vasive computing systems, XWARE, has been presented. The framework consists

of several abstractions and four modules, namely, communication, alignment,

service management, and notification management. Together, they address the

whole set of identified heterogeneities, while offering the possibility to extend and

customise parts of the framework, including the alignment process. Furthermore,

automatic as well as manual transformation specifications are supported.

So far, the concepts and models have been presented. The next chapter intro-

duces the prototype before Chapter 6 evaluates the framework.

102

5. Prototype

The previous chapter presented XWARE, a general framework for interoper-

ability between different pervasive middleware platforms. This chapter describes

the prototype implementation of the framework prior to evaluating it in Chap-

ter 6. First, implementation details are given in Section 5.1. Second, Section

5.2 presents the prototype architecture. Then, Section 5.3 outlines supported

platforms and their plugin implementations before Section 5.4 introduces details

on the XWARE plugin that enables communication between XWARE instances.

Last, Section 5.5 discusses the prototype’s limitations.

5.1. Implementation Details

The implementation of the XWARE framework is based on Java, in particular

Java Platform, Standard Edition 8 (Java SE 8 [125]). The framework itself does

not obligatorily require any additional libraries. However, the implemented stor-

age component used in the notification management module relies on a MySQL

database, more specifically the open source database MySQL Server 5.7.16 [126].

Due to the IStorage interface (cf. Section 4.7), this can be easily replaced by

another storage component. Furthermore, the implemented plugins include de-

pendencies to the platform libraries they provide support for.

Prior to presenting the supported platforms in more detail, the next section

describes the overall prototype architecture.

5.2. Prototype Architecture

The current status of the prototype is depicted in Figure 5.1. The architecture

complies to the framework’s architecture. Each module is implemented in a

separate package. Before using the prototype, the administrator has to select the

103

5.2. Prototype Architecture

service definitions, transformers, and domain knowledge, i.e., the XWSDL files

or manual transformers, as well as the supported platforms, that should make up

the federation. When starting the prototype, the system is configured and the

specified components are loaded for the communication module (cf. Section 4.4),

alignment module (cf. Section 4.5), service registry module (cf. Section 4.6), and

notification management module (cf. Section 4.7). The module implementations

are briefly discussed in Section 5.2.1. The prototype, further, includes three

additional components, i.e., context component, graphical user interface, and

XWSDL generator. Section 5.2.2 briefly introduces those components.

XWARE

Service
Management

Notification
Management

Alignment

Context (Location Model)

Communication

GUI

XWSDL
Generator

P3 P2 P1

SD

C

Figure 5.1.: Prototype Overview. The prototype implementation contains the
four modules presented in Chapter 4. It further includes a context
component and a graphical user interface (GUI). An XWSDL gener-
ator supports the developer in specifying XWSDL files. (P - plugin,
C - configuration file, SD - service definition).

The prototype uses an event-based architecture [36] for internal communi-

cation. An event-based architecture increases decoupling among components

through its loose coupling [29, 55]. An event is ‘any transient occurrence of a

happening of interest’ [55]. Components register at an event handler for certain

event types. If such an event is passed to the event handler, it is forwarded

to registered components which process the event. Here, an event is, e.g., the

reception of a message. With respect to the event handler, sometimes two di-

104

5.2. Prototype Architecture

rections of forwarding an event are possible here, e.g., from communication to

alignment or from communication to an entity. Therefore, the event handler

checks the source of an event and then decides on the recipients. In general,

this means that communication that stays within the framework is event-based,

whereas communication with external components, i.e., entities, is message-based

(cf. [29]). Consequently, at the border of the framework, a conversion must hap-

pen from a message to an event at the reception of a message and vice versa

when sending a message. This happens in the message converter. For this, the

declaration information of the message abstraction is extended by a field that

specifies the module that created the event. New components can simply register

for event types without any need to change other components. This allows for

changes in the architecture without great effort, e.g., addition or replacement

of components. Hence, the event-based architecture improves extensibility and

customisability with respect to internal components.

In addition, the framework implementation offers reference and skeleton classes

for different components, e.g., for advertisement, lookup, or matching. This

should ease and speed up development by re-using those components, with or

without adjustment. Furthermore, the pre-implemented components base on in-

terfaces. Thus, developers can implement custom components without affecting

other parts of the prototype, if necessary. Besides, this interface-based program-

ming approach supports simple configuration of the framework at design time.

For this, the prototype uses configuration files. Appendix A shows how such

files look like and presents configuration options for a plugin (see Appendix A.1),

the alignment module (see Appendix A.2), the service management module (see

Appendix A.3), the notification module (see Appendix A.4) and, for the filters

(see Appendix A.5).

In the following, further information is given with respect to the main modules.

5.2.1. Modules

The communication module basically consists of zero, one, or several plugins.

A plugin incorporates support for a specific platform, and therefore, is responsible

for message conversion and communication with entities. The message converter

is platform-specific, and hence, requires a custom implementation for each plat-

105

5.2. Prototype Architecture

form. A skeleton component exists that is based on the IMessageConverter

interface with the intention of supporting developers. Communication between

a plugin and entities relies on message interception which is complex by the fact

that entities do not know the intermediate instance. Basically, there are two

possibilities for this purpose: mimicking communication or using an interception

API. For the first option, several reference components exist which developers can

re-use, e.g., for the connection manager. The connection manager is responsible

for the actual communication with entities. In many platforms, several connec-

tions are used for different purposes. Therefore, the connection manager is able

to hold several server connections, e.g., for advertisement, lookup, and access, or

establish connections as client. Every established connection between the connec-

tion manager and an entity is stored with the identifier of the entity and the type

of connection. Then, when sending a message, the correct connection is selected

through the target identifier together with the message type. In addition, refer-

ence and/or skeleton implementations exist for each step of the service discovery

model (see Section 4.3.2). The developer can assemble the plugin from those

components and/or custom components. Especially for platforms using the CS

interaction paradigm, this option works well. In case of TS (and PS) interaction,

the plugin has to intercept messages from the TS (and broker respectively). Thus,

the plugin has to mimic the TS (and broker respectively). The second option,

using an interception API, is only feasible for interaction paradigms that use an

intermediate entity, i.e., TS and PS. Then, the intermediate entity automatically

forwards each message to the component that implements the interception API

– which would be the plugin in this case. However, because messages are directly

handed over to the interceptor, time coupling becomes tight. By introducing a

mechanism that stores the last events, this disadvantage can be avoided. Several

plugins have been implemented in the prototype (see Section 5.3), by employing

both of the two options.

The alignment module consists of filters and a repository. The prototype

implementation provides a skeleton component for filters. Because filters perform

independent tasks, each filter is implemented as a separate thread in view of

not blocking the main thread. The following filters have been integrated in the

prototype (complying to the framework’s design, cf. Section 4.5): discovery,

service identifier, interaction, application, and notification (see Figure 5.2).

106

5.2. Prototype Architecture

Pipe
Discovery

Filter Discovery
Message

Application
Message

Pipe

Pipe
Service ID

Filter
Pipe

Interaction
Filter

Pipe
Application

Filter
Pipe

Sink Source Pipe Service ID
Filter

Pipe Notification
Filter

Pipe

Notification
Message

Figure 5.2.: Integrated Filters. A discovery message gets processed by the dis-
covery filter, a notification message by the service identifier (ID) and
notification filters, and an application message by the service ID,
interaction, and application filters.

The repository stores service definitions, domain knowledge, and (automatic

as well as manual) transformers in order to support the filters in their transfor-

mation tasks. It reads in this information at start-up. For the manual alignment

approach, transformers must be annotated with a TransformerAnnotation that

allows to specify the platform and functionality of this transformer. At start-up,

the repository scans for classes that are annotated by such an annotation. During

runtime, the repository automatically selects the manual transformer based on

the annotated platform and functionality, if present.

The service management module adheres to its design in Section 4.6. Hence,

it stores service descriptions for discovered services in the abstract registry as

well as in each platform-specific registry. Furthermore, if a service registration of

an already registered service comes in, it checks the description for changes and

updates the entries accordingly.

The implementation of the notification management module complies with its

design in Section 4.7. Automatic transformation between notification schemes

is incorporated for channels and subjects in the notification filter. Regarding a

content-based scheme, the developer can manually write code for transformation.

The next section briefly describes additional components that support the

developer/administrator or enhance the framework’s functionality.

107

5.3. Supported Platforms

5.2.2. Additional Components

A graphical user interface (GUI) has been implemented that keeps track of

the available services. For this, the GUI component only needs to register for

service registration and deregistration events at the event handler of the service

management module.

Additionally, the prototype includes a context component. Until now, this

component considers the location, and therefore, maintains a location model.

The interface of the location model is derived from [11] and allows for position,

nearest neighbour, navigation, and range queries. However, the prototype only

implements range queries so far. In accordance with the service model (cf. Section

4.3.1), the location is stored as service property.

For an additional support of the developer, an XWSDL generator helps in

specifying XWSDL files. This generator takes interface files of services as input

and produces skeleton XWSDL files where the maps and possibly unit attributes

need to be filled. The generator works for BASE and iCasa services and is easily

extensible due to the usage of the strategy design pattern [64].

Having described the prototype architecture, including the module implemen-

tations, the following section presents the platforms that are supported by the

prototype.

5.3. Supported Platforms

So far, the prototype supports the following platforms: BASE [12], iCasa

[99]/iPOJO [50], Cling1/UPnP [123], Limone [60], Moquette2/MQTT [122], and

Redis3. In the following, the different platforms and their plugin implementations

are briefly outlined.

BASE is a research-based lightweight middleware platform designed for per-

vasive systems. Service discovery works through device announcements via mul-

ticast message. Other entities then can perform service lookups directly on the

1https://github.com/4thline/cling
2http://andsel.github.io/moquette/
3https://redis.io

108

5.3. Supported Platforms

devices using unicast messages. Service lookup as well as service access are done

using asynchronous remote method invocation with proprietary Java objects.

BASE uses a proprietary protocol for the interaction between entities and also

a specific identifier representation. The plugin implementation re-uses the refer-

ence components for service discovery and access. As the message converter is

platform-specific it has to be implemented. Furthermore, due to the proprietary

communication protocol, the TCP client connection is customised. Two addi-

tional classes are required for the identifier representation and its conversion.

iCasa is a pervasive environment simulator using iPOJO as underlying per-

vasive middleware platform. iPOJO is a service-oriented component framework

based on OSGi [127]. Communication is performed with Rose [8]. There, a plugin

has been implemented that conforms to the reference communication, discovery,

and access components. Thus, all components can be re-used here. The only

class that must be implemented is the message converter.

Cling is a Java-based implementation of the UPnP protocol stack. UPnP

is a commercial standard for service discovery and access between services and

devices from different manufacturers. Device announcement and lookup requests

take place via multicast. Device and service descriptions then are received via an

HTTP connection. For this, several reference classes have to be changed, such as

multicast, announcement, and HTTP handler. Service invocations are performed

via HTTP as well. Furthermore, data is encoded using standards, such as SSDP,

HTTP, and SOAP. UPnP supports notifications where one service can register for

all notifications of another service. Thus, a notification component needs to be

integrated for converting event identifiers. Device descriptions and notifications

use proprietary syntaxes based on XML. Therefore, auxiliary classes are used for

their conversion. Moreover, the connection manager is changed and the message

converter is implemented.

Limone is a research-based middleware platform to ease application develop-

ment over ad hoc networks. It uses the TS interaction paradigm. Each device

owns a local TS and a list of remote devices for communication. Devices announce

themselves via multicast. Limone does not use a service discovery mechanism.

Therefore, a minor change has been made to devices so that they include the

names of their services in the announcement message. Without that change,

Limone-specific services cannot be used by other entities. Hence, service dis-

109

5.4. XWARE Plugin

covery and access components are re-used. Further, Limone uses a proprietary

identifier representation, requiring two additional classes (for the representation

and the conversion). Last, the message converter requires implementation.

Moquette is an MQTT-compliant broker for Java. MQTT is a connectivity

protocol for IoT devices based on the PS interaction mechanism with subject-

based event categories. Moquette uses Paho4 as client implementation. Further,

it offers an interceptor interface for its message broker. Thus, messages can be

automatically intercepted and processed, i.e., messages are converted into events.

Therefore, reference components are not required but only the interceptor is

used. Moquette does not use any service discovery mechanism. However, when

an event is published, a service is added to the service management module,

where the service functionality is derived from the published event category.

Redis is a data structure store that can be used as message broker in order to

enable IoT solutions. It uses a channel-based PS interaction mechanism. As client

implementation, Jedis5 is used. Like Moquette, Jedis provides an interceptor

interface for its message broker. By nature, Redis has a tight time coupling,

i.e., consumer and provider must be available at the same time. However, by

the introduced mechanism to store events, loose time coupling is enabled for

communication with Redis entities. Jedis does not use any service discovery

mechanism. Therefore, the service management module adds a service based on

the published event category.

Altogether, the integrated platforms are very diverse. This supports the propo-

sition that the presented XWARE framework is extensible and, furthermore, flex-

ible. Henceforth, the supported platforms are called by their platform/protocol

names instead of their specific implementation names, e.g., UPnP instead of

Cling. The next section describes the implementation of the XWARE plugin.

5.4. XWARE Plugin

The XWARE plugin enables communication between several XWARE in-

stances. Like platform-specific plugins, the XWARE plugin allows to discover

4http://www.eclipse.org/paho/
5https://github.com/xetorthio/jedis

110

5.5. Limitations

services that are registered at other interoperability instances and forward service

access or notification messages to other instances. Sent and received messages

have to be in the intermediate representation and semantics. The alignment of

these messages then happen at the XWARE instances that are connected to the

source and target entities.

Reference components of the service discovery model are taken for the ser-

vice discovery mechanism which works as follows: XWARE plugins periodically

multicast their presence. Other XWARE plugins receiving these messages may

perform a service lookup for specific or all services at that instance using a unicast

message. The reply is also sent as unicast message and includes the matching

services.

Furthermore, in ad hoc networks, the topology might prevent interoperability

instances from communicating directly and, thus, from discovering all available

services. Therefore, interoperability instances need to be able to serve as for-

warding entity between other instances. As the messages are in the intermediate

format here, the XWARE plugin only needs to know the next instance on the

route to the target entity. Hence, the topology, or at least the routes between the

instances, has to be known by those plugins. For that, the Echo algorithm [38]

is used in the prototype in order to create a spanning tree of the interoperability

instances. The spanning tree then serves as basis for routing messages to the

correct target instance. In order to keep the routing table up to date, the echo

algorithm is initiated in the following two cases: an XWARE instance is joining

the network, or an instance takes note of another instance’s leaving (or crash),

possibly due to mobility.

5.5. Limitations

The current prototype has the following limitations. First, the automatic se-

mantic data transformation mechanism, so far, only supports primitive data types

and their wrapper classes. Other data types have to be transformed manually.

Second, the prototype supports transformation of non-functional properties,

but it does not contain any mechanisms in order to satisfy them. Such mecha-

nisms are very sophisticated, and an intermediary complicates it even more.

111

5.5. Limitations

This chapter presented the prototype implementation of XWARE. The next

chapter showcases the framework’s functioning as well as evaluates the XWARE

framework on a qualitative and quantitative basis.

112

6. Evaluation

The previous chapter delineated the prototype of the XWARE framework

which is evaluated in the following. Therefore, this chapter concentrates on a

proof of concept and a quantitative evaluation. First, a proof of concept showcases

the framework’s feasibility in Section 6.1 by reference of three realistic use cases.

Subsequently, Section 6.2 performs a qualitative requirements assessment before

Sections 6.3 and 6.4 do a quantitative evaluation with respect to the overhead

for developers and the costs of interoperability. Finally, Section 6.5 discusses the

results.

6.1. Proof of Concept

In order to show the feasibility and working of the proposed approach, three use

cases have been implemented. The first use case considers shutter management,

the second one temperature management, and the third one a smart home with

several applications. The use cases are implemented with the iCasa simulator [99].

Therefore, iPOJO entities can be directly added in the simulator, whereas other

entities are available through the use of an XWARE instance. In the following,

the use cases are explained.

Figure 6.1 depicts the shutter management use case. There is a house con-

sisting of two flats (Alice’s and Bob’s flats) and one attic. Smart devices are

distributed inside and outside of the house, i.e., window shutters are mounted

to several windows and photometers are attached near to those windows outside

of the house. Each photometer has information on its orientation (north, west,

south, or east). As Alice and Bob bought their smart devices independently, they

purchased devices of different manufacturers, and thus, using different pervasive

platforms. Therefore, they are using XWARE (X) as an interoperability solution

to enable their different devices to communicate. Furthermore, in Alice’s flat a

113

6.1. Proof of Concept

shutter management application is executed. This application senses the bright-

ness level at the windows during daytime. Depending on the sensed brightness,

the window shutter is moved down or up. One day, the photometer with south

orientation in Alice’s flat gets broken (1). The shutter management application

notices this (2) and wants to use another photometer that has the same orien-

tation. Because there is no such photometer in Alice’s flat that uses the same

platform, the application asks the XWARE instance for a photometer with south

orientation (3). The interoperability solution finds such a sensor in Bob’s flat

and returns it. Based on that photometer, the application can continue running

with a likely similar result (4).

Alice‘s
Apartment

Bob‘s
Apartment

Attic

Shutter
App

1.

2. 3. (lookup photometer
with orientation = „south“)

4.

X

Figure 6.1.: Showcase: Shutter Management. The photometer with south orien-
tation gets broken. The shutter management application (Shutter
App), therefore, asks at the interoperability solution (X) for a pho-
tometer with the same orientation and uses that one instead.

Figure 6.2 shows the temperature management use case. Again, the use case

bases on the house consisting of Alice’s and Bob’s flats and an attic. Instead

of photometers and shutters, thermometers and heaters are distributed over the

flats. Furthermore, the XWARE instance (X) includes a location management

component. In Bob’s flat a temperature management application is executed.

This application senses the temperature in the flat and adjusts the heaters ac-

cordingly. One day, the thermometer located in Bob’s flat gets broken (1). The

temperature management application notices this (2) and wants to use another

114

6.1. Proof of Concept

thermometer. Because there is no further thermometer in Bob’s flat, the ap-

plication asks the XWARE instance for a thermometer in Alice’s flat (3), with

the help of the location management component. The interoperability solution

finds such a sensor in Alice’s flat and returns it. Based on that thermometer, the

application can continue running (4).

Alice‘s
Apartment

Bob‘s
Apartment

Attic

X

Temp.
App

1.

2.

3. (lookup thermometer with
location=„Alice‘s apartment“)

4.

Figure 6.2.: Showcase: Temperature Management. The thermometer in Alice’s
flat gets broken. The temperature management application (Temp.
App), therefore, asks at the interoperability solution (X) for a ther-
mometer located in Bob’s flat.

The smart home use case is shown in Figure 6.3. It also bases on the house

consisting of Alice’s and Bob’s flat, and an attic. Furthermore, different devices

are distributed that use different middleware platforms, i.e., heaters, window

shutters, lights, thermometers, photometers, and presence sensors. Again, an

XWARE instance (X) is deployed, including the location management compo-

nent. Several applications are running in the infrastructure: a shutter manage-

ment application (see above), a temperature management application (see above),

and a light management application. The shutter and temperature management

applications work as in the use cases above. The light management application

turns the lights in a room on or off depending on whether a person is present.

These use cases show the working, feasibility, and potential of the proposed

interoperability approach due to their closeness to reality. The next section per-

forms a qualitative evaluation regarding the requirements.

115

6.2. Requirements Evaluation

Alice‘s
Apartment

Bob‘s
Apartment

Attic

X

Shutter
App

Temp.
App

Light
App

Figure 6.3.: Showcase: Smart Home. Several applications are running in the
smart home: a shutter application using photometers and window
shutters, a temperature application using thermometers and heaters,
and a light application using presence sensors and lights. The devices
are running on different platforms, but nevertheless work together
through the XWARE instance.

6.2. Requirements Evaluation

After the previous section showed the feasibility of XWARE, this section per-

forms a qualitative evaluation regarding the heterogeneities and requirements.

Regarding the heterogeneities, communication heterogeneity (H1) is tackled

by the plugin-based approach of the communication module (cf. Section 4.4).

For one platform, there can be several plugins each covering different communi-

cation technologies and/or management models. Discovery heterogeneity (H2)

is addressed in several locations. First, the general service discovery pattern

(cf. Section 4.3.2) and its implemented reference components allow the discov-

ery of services from different platforms without great effort. Second, the service

model (cf. Section 4.3.1) abstracts platform-specific service representations and

allows a uniform view on services. Third, the alignment module aligns platform-

specific service semantics in order to make them available for each supported

platform (cf. Section 4.5.3). The framework manages interaction heterogene-

ity (H3) through the service access abstraction that permits the combination of

interaction patterns (cf. Section 4.5.5). Furthermore, difference in the interac-

116

6.3. Development Overhead Evaluation

tion model instantiations are handled in the plugins as they mimic the actual

communication. Data heterogeneity (H4) is, due to the fact that it is a general

heterogeneity occurring in application, non-functional properties, and notification

heterogeneities, solved in the respective locations. Application heterogeneity (H5)

is managed by the petri net approach (cf. Section 4.5.6) as well as a mapping

of operations and parameters. Non-functional properties heterogeneity (H6) is

performed through a mapping between property names (cf. Section 4.5.7). How-

ever, there is no mechanism to ensure the adherence of those properties. Last,

notification heterogeneity (H7) is addressed through transformation of event cat-

egories and schemes (cf. Section 4.5.8), as well as mechanisms to poll data from

non-supporting platforms and support different delivery modes (cf. Section 4.7).

With respect to the requirements, the framework is extensible with new plat-

forms due to the plugin-based communication module (cf. Section 4.4). Fur-

thermore, new services can be added either by including XWSDL files or manual

specification of transformers. Also, the transformation model (cf. Section 4.5.1)

permits to integrate new filters without affecting other ones. Thus, the extensi-

bility requirement (R1) is satisfied. Moreover, the transformation model and the

provided interfaces for filters and transformers, as well as the use of configuration

files, enables customisation of the alignment process. As well, plugins, service

management, and notification management can be easily customised through the

provision of interfaces. Therefore, the customisability requirement (R2) is ful-

filled. Last, the service management modules keeps track of available services

through the use of explicit as well as implicit leave procedures. Hence, the ser-

vice registry is always up to date, and consequently, the dynamism requirement

(R3) is satisfied.

Given these points, the proposed framework covers all of the identified het-

erogeneities as well as requirements. The next section evaluates the overhead for

the integration of new platforms.

6.3. Development Overhead Evaluation

This section describes the overhead for developers in order to integrate a new

platform. This is exemplified by the six platforms that have been added to

117

6.3. Development Overhead Evaluation

the prototype so far, namely, BASE [12], iPOJO [50], UPnP [123], Limone [60],

MQTT [122], and Redis1. The plugin implementations of the different platforms

(see Section 5.3) show that the proposed framework is able to include support for

a diversity of heterogeneous pervasive and IoT platforms. In the following, the

overhead for these plugin implementations is demonstrated.

The overhead is shown in terms of logical lines of code (LLOC). The LLOC

metric seems to be an appropriate indicator for the overhead. It measures the

lines of code excluding non-statements, such as comments or empty lines. Conse-

quently, it is less susceptible to individual coding styles than other lines of code

counting metrics [120]. For the measurement, the CodeCity 2 tool is used.

Table 6.1 shows the number of LLOC for the different plugin implementations.

The amount of LLOC the developer needed to write for a plugin ranges from 24

(XWARE) to 1001 (UPnP). It can be noticed that this number is highly correlated

with the amount of classes that need to be adjusted and/or added. In other words,

the more classes can be re-used from the pre-defined components, the less code

needs to be written. The minimum amount of classes that have to be customised

are two: plugin and message converter. Furthermore, most code needs to be

added for the message converters. It takes between 17 LLOC (84% of the total

amount of LLOC for the plugin) for XWARE and 421 LLOC (53%) for BASE.

This makes sense as the message converter converts between platform-specific

messages and the message abstraction. This is a highly platform-specific task as

a differentiation must be made between various messages. Thus, the amount of

added code is reasonable. Further, the reason that the plugin for iPOJO is only

25 LLOC is that the communication for iPOJO is based on Rose which is plugin-

based. A plugin has been integrated into Rose that uses the same protocol and

message formats as the XWARE plugin to not add an additional translation. All

in all, the overhead in terms of LLOC is acceptable considering that potentially

a great amount of additional services is made accessible by that.

After having implemented a plugin, the developer needs to create the config-

uration file in order that the plugin can properly start. There, components and

further information, e.g., multicast address, have to be specified. Appendix A.1

shows how such a file looks like.

1https://redis.io
2https://wettel.github.io/codecity.html

118

6.3. Development Overhead Evaluation

Platform Component LLOC Rel. LLOC

BASE 794 100%
Plugin 5 1%
MessageConverter 421 53%
TCPClientConnection 231 29%
IDRepresentation 7 1%
Util 130 16%

iPOJO 25 100%
Plugin 4 16%
MessageConverter 21 84%

UPnP 1001 100%
Plugin 14 1%
MessageConverter 408 41%
Announcement 16 2%
Multicast 18 2%
HttpHandler 103 10%
Notifications 59 6%
UPnPDeviceDescription 231 23%
UPnPNotificationFormat 63 6%
ConnectionManager 89 9%

Limone 335 100%
Plugin 17 5%
MessageConverter 300 90%
IDMapper 3 1%
IDRepresentation 15 4%

Moquette 88 100%
Plugin 37 42%
MessageInterceptor 51 58%

Redis 142 100%
Plugin 53 37%
MessageInterceptor 89 63%

XWARE 24 100%
Plugin 8 33%
MessageHandler 17 67%

Table 6.1.: Development Overhead Evaluation for the Integration of Platforms.
Logical Lines of Code (LLOC) are an appropriate metric as they are
less susceptible to individual coding styles. The amount of LLOC for
adding a new platform seems to be very reasonable regarding the fact
that potentially many additional services are made available.

119

6.4. Cost Evaluation

The developer can add XWSDL files to the repository in order to support

specific services. Therefore, knowledge about a service is required in the different

platforms that should be made interoperable. Appendix B shows XWSDL files

for a simple light service in BASE and the intermediate representation. The

XWSDL generator facilitates the task of creating these files.

Summarising, the overhead for developers is very feasible regarding the benefit

of integrating platforms and services. The next section evaluates the costs for

introducing interoperability with XWARE.

6.4. Cost Evaluation

In order to analyse the costs of interoperability, and as a sideline, demonstrate

the functioning and feasibility of XWARE, the costs are measured in terms of time

(in milliseconds ms). For this purpose, three subjects of interest are analysed: 1)

service access, 2) inter-instance communication, and 3) notification management.

The measurements were conducted using two notebooks. One notebook has an

Intel Core i7-3520M CPU (two cores with 2.9 GHz each), 8 GB of main memory,

and is equipped with a 64-bit Windows 7 operating system. The other notebook

has an Intel Core i7-5500U CPU (two cores with 2.4 GHz each), 8 GB of main

memory, and is equipped with a 64-bit Windows 10 operating system. The two

notebooks were connected through a router via Ethernet. For each measurement,

every message was sent over the network. Further, every measurement was per-

formed 100 times. For dealing with outliers, the best and worst 5% of the values

were excluded, and the average was calculated from the remaining 90 values.

The following sections present the different evaluations and analyses, starting

with service access.

6.4.1. Service Access

This section analyses the time to complete an operation, i.e., from sending

a message until a response is received. Henceforth, the time to complete an

operation is called the service access time. The measurement is based on the use

case of requesting the light state of a remote light provider. For the baseline,

120

6.4. Cost Evaluation

the service access time is measured between two entities that are using the same

platform. Then, in order to analyse the costs of interoperability with the proposed

approach, the service access time is measured between every combination of the

supported platforms.

Regarding Limone as provider, during the measurements, there was at least

one matching tuple in the tuple space at the time of an access in order to make

the measurements comparable. Furthermore, in order to make MQTT and Redis

measurements feasible, the consumer subscribed 100 times for an event and the

time was measured until the first event was received. For this, there was at least

one matching event at the time of an access. Due to the introduced mechanism

for storing the last published events (see Section 5.3) in the MQTT and Redis

plugins, this is possible.

Figure 6.4 shows the evaluation setup for the baseline scenario. There, a

consumer (C) is requesting the light state of a provider (P) where both entities

are using the same platform. Thus, they can communicate directly without any

transformations.

C P
post

get

Figure 6.4.: Evaluation Setup: Baseline. A consumer (C) requests the light state
from a provider (P). Both entities use the same platform.

Figure 6.5 depicts the logical setup of the evaluation scenario where an interop-

erability instance is employed in order to enable service access between different

platforms. There, the XWARE instance (X) that performs the alignment has to

be present.

X C P
post post

get get

T

Figure 6.5.: Evaluation Setup: Service Access. Consumer (C) and provider (P)
use different platforms. Therefore, an interoperability instance (X)
has to perform transformations (T) to enable their interworking.

121

6.4. Cost Evaluation

Table 6.2 shows the results of the service access time measurement for the

baseline and for one XWARE instance in ms. The grey cells represent the baseline

measurement. It can be noted that there are no values for the baseline scenario

in the case of iPOJO and Redis. In the case of iPOJO, the reason for that is that

the iCasa simulator is used which does not support inter-instance communication.

Further, Redis uses PS interaction with a tight time coupling, which is rather

unusual. Therefore, if a consumer subscribes at the broker, it will receive the

next event that is published. Since this measurement would be very random, it

is omitted.

C
P

BASE iPOJO UPnP Limone MQTT Redis

BASE 4.9 8.8 13.4 11.0 4.7 5.7
iPOJO 11.6 - 14.9 17.4 4.7 4.7
UPnP 12.7 14.1 10.2 20.7 8.6 8.9
Limone 17.9 19.0 22.8 11.5 13.7 14.0
MQTT 18.2 19.8 23.0 27.4 2.5 14.3
Redis 10.0 9.8 14.6 22.3 5.5 -

Table 6.2.: Cost Evaluation of Service Access. The time (in ms) for complet-
ing an operation to receive the light status was measured between
every combination of supported platforms. For example, the value
8.8 ms (where the BASE row and iPOJO column meet) means that
in the use case a BASE consumer (C) requires 8.8 ms on average to
access an iPOJO provider (P). The grey cells represent the baseline
measurement.

The scenario including an interoperability instance for the alignments show,

on the one hand, that the prototype works and, on the other hand, that the time

for accessing a service is still very feasible. The fastest inter-platform service

access requires 4.7 ms (on average) and happens between a BASE or iPOJO con-

sumer and a MQTT provider, as well as between an iPOJO consumer and a Redis

provider. The most time-consuming service access requires 27.4 ms (on average)

and happens between an MQTT consumer and a Limone provider. In general,

having a maximal service access time of 27.4 ms is very appropriate, especially,

considering the fact that without the XWARE instance a communication among

the platforms would not be possible. Even if users trigger an operation, they

would not perceive any delay. Regarding MQTT as consumer, it is noteworthy

122

6.4. Cost Evaluation

that the service access time increases significantly more between intra- and inter-

platform communication compared to the other platforms. Due to the fact that

the MQTT plugin implementation is quite similar to the Redis plugin implemen-

tation, this is a rather surprising finding. The reason for it might be found at

MQTT’s interception mechanism. Nevertheless, the benefits seem to outbalance

the costs after all.

Next, the costs of inter-instance communication are evaluated which allows

to increase service availability for interoperability instance with rather minimal

configurations.

6.4.2. Inter-instance Communication

This section analyses the overhead of having several XWARE instances with

minimal configurations, i.e., one instance supports the consumer’s platform, one

instance supports the provider’s platform, and possibly other instances serve as

forwarding entities. Here again, the intra-platform service access time is taken

as baseline. The measurement includes every combination of the supported plat-

forms as consumer and provider. The evaluation for Limone, MQTT, and Redis

instances works as in the previous measurement.

C P X

T post

get

post

get

T

X
X

Figure 6.6.: Evaluation Setup: Inter-instance Communication. Consumer (C)
and provider (P) use different platforms. XWARE instances (X)
perform transformations (T). One interoperability instance supports
the consumer’s platform, and one instance supports the provider’s
platform. There may be more instances connecting them.

Figure 6.6 shows the logical setup of the evaluation scenario where several

interoperability instances are employed. Especially on mobile devices, XWARE

instances might only run a minimal configuration with only one supported plat-

form. Communication between such instances can increase service availability.

The translation to the intermediate format takes place on the first XWARE in-

123

6.4. Cost Evaluation

stance, the translation to the target middleware format on the last XWARE

instance on the route. Messages in between are in the intermediate format.

to Base to iPOJO to UPnP to Limone Baseline to MQTT to Redis

0

5

10

15

20

25

30

35

40

45

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

BASE iPOJO UPnP Limone MQTT Redis

T
im

e
[m

s]

Figure 6.7.: Cost Evaluation of Inter-instance Communication. The service access
time (in ms) is measured for each combination of supported platforms
for one, three, and five interoperability instances in between. The
results show an increase of 3.5 ms on average in a linear fashion
when adding one additional instance.

The results are presented in Figure 6.7 for one, three, and five connected

XWARE instances. It depicts the service access time from each platform to ev-

ery other platform. The x-axis denotes the consumer platform, i.e., the platform

that initiates the service access, and the number of interoperability instances.

The y-axis shows the service access time. The horizontal lines show the base-

line (intra-platform service access) for the different platforms. Per additional

XWARE instance in between, the service access time increases in a linear fashion

by approximately 3.5 ms, independently of the used platforms. The most time,

42.0 ms on average, is consumed for a service access from MQTT to Limone with

five interoperability instances. The figure also points out the MQTT observation

noticed above. Its behaviour is consistent though, narrowing the reason down

to a part of the plugin implementation – maybe the interception mechanism.

Appendix D shows the concrete result values for three and five interoperability

instances. On the whole, the overhead per intermediate node is very acceptable,

124

6.4. Cost Evaluation

especially because without XWARE, inter-platform communication would not be

possible.

The next section presents the cost evaluation for the notification management.

6.4.3. Notification Management

For measuring the costs, and testing the feasibility, of the notification man-

agement module, the following scenario is used. There is a thermometer that

serves as provider. It regularly publishes events of the current temperature. A

consumer subscribes for the events of the thermometer for regulating the temper-

ature using a heater. Therefore, the channels and subjects from Figures 2.6 and

2.7 from Section 2.3 are employed. The time is measured for sending an event,

i.e., the time from publishing the event until the consumer receives it.

UPnP, Redis, and MQTT originally support notifications (Redis and MQTT

can be used as notification system due to their PS interaction style). In the

evaluation, a UPnP consumer subscribes to all events from the specific light ser-

vice, a Redis consumer subscribes to the channel Temperature, and an MQTT

consumer subscribes to the subject PhysicalEnvironment/Conditions/Temper-

ature. Respectively, providers of those platforms publish to the respective con-

sumer/channel/subject. BASE, iPOJO, and Limone do not support notifications.

B / X P C publish notify

(T)

Figure 6.8.: Evaluation Setup: Notification. A provider (P) publishes an event of
which a consumer (C) wants to get notified. The event is published
to the broker (B). In the baseline scenario, the broker notifies the
consumer, while consumer and provider use the same platform. In the
case with an XWARE instance (X), the instance intercepts the event,
performs translations, and notifies the consumer. Here, consumer
and provider use different platforms.

Figure 6.8 shows the logical setup of the evaluation scenario. At this point,

the consumer has already subscribed at the broker/interoperability instance. As

baseline, the times are measured for direct notifications, i.e., consumer (C) and

125

6.4. Cost Evaluation

provider (P) run on the same platform. As BASE, iPOJO, and Limone do not

support notifications, a baseline measurement is not feasible. In the case when an

XWARE instance (X) is present, all possible combinations of supported platforms

are measured. There, the interoperability instance intercepts the event from the

broker (B), translates it, and notifies the consumer.

C
P

BASE iPOJO UPnP Limone MQTT Redis

BASE - - - - - -
iPOJO - - - - - -
UPnP • • 5.8 • 13.3 13.3
Limone - - - - - -
MQTT • • 19.3 • 5.7 14.4
Redis • • 9.7 • 8.1 1.9

Table 6.3.: Cost Evaluation of Notifications. The time (in ms) is measured from
publishing an event until it is received by the consumer (C). BASE,
Limone, and iPOJO cannot publish events, however, the notification
management module can poll for new values. ‘•’ denotes the feasibil-
ity of this combination, whereas a ‘-’ denotes the infeasibility of this
combination. Cells in grey show the baseline.

Table 6.3 shows the results of the measurements. BASE, iPOJO, and Limone

cannot be a consumer of events, and therefore, no measurement is possible

there. Also, as the notification management module polls values when they

are providers, the measurement would not be comparable. Therefore, they are

marked with an ‘X’ to indicate that this combination is possible, but no measure-

ment was performed. A possible solution would be to introduce an event service

in those platforms. However, this is a special case and cannot be assumed in

every environment, which is the reason for not measuring it. In general, through

the use of the proposed notification management module, all platforms can be

used as event provider. Further, event category and scheme translation were suc-

cessfully performed between channels (Redis) and subjects (MQTT). Comparing

the measured values with the baseline shows that, using the XWARE instance,

sending an event takes up to 7.5 times as much time (from a Redis provider to

an MQTT consumer). However, the most consumed time for the sending is only

19.3 ms (when sending from a UPnP provider to an MQTT consumer), which

is still very fast. Moreover, when considering the fact that without the XWARE

126

6.5. Discussion

instance notifications would not be possible between different platforms, the ben-

efits outweigh the costs.

Having analysed the costs of the interoperability framework, and thereby also

showed its feasibility, the next section discusses the evaluation results.

6.5. Discussion

The goal of the evaluation was to demonstrate the feasibility of the framework’s

concepts as well as to analyse the costs for introducing interoperability between

different platforms. The proof of concept in Section 6.1 showcases the feasibility

of the concepts and emphasises the benefits of the proposed framework.

The qualitative requirements evaluation proved that XWARE fulfils all of the

elaborated requirements. Indeed, the framework allows developers to extend and

customise each module and the alignment process while satisfying the identified

set of heterogeneities.

The overhead analysis in Section 6.3 showed that the effort for integrating

a new platform is viable. Depending on a platform’s adherence to the refer-

ence components, more or less lines of code have to be added. Especially when

considering the added-value of an integration, the overhead is very reasonable.

Beyond the overhead analysis, the cost evaluation in Section 6.4 demonstrated

the feasibility of the framework with respect to the introduced overhead. Al-

though the overhead of a post-get operation is, in relative terms, quite high, the

average time does not exceed 27.4 ms. Thus, the benefits surpass the costs at

least in non-time-critical environments, such as the smart home use case. For

time-critical environments, the costs are still acceptable in some cases. However,

without the introduction of mechanisms to deal with quality of service properties,

a usage in time-critical environments is not recommended.

Altogether, the evaluation of the prototype showed that the concepts of the

framework presented in Chapter 4 are suitable for interoperability between per-

vasive computing systems, not only in theory but also in practice. The next

chapter concludes this thesis and gives an outlook on future work.

127

7. Conclusion and Outlook

The previous chapter evaluated the prototype of the proposed interoperabil-

ity framework for pervasive computing systems with respect to its working, the

satisfaction of requirements, the overhead for integrating new platforms, and the

costs of interoperability. This chapter closes this thesis with a conclusion and an

outlook on future work.

7.1. Conclusion

The multitude of pervasive platforms nowadays bears several challenges. On

the one hand, distinct languages, protocols, and interaction paradigms prevent

platforms from interacting with each other. On the other hand, a solution that

solves these heterogeneities must satisfy certain requirements, such as extensibil-

ity, in order to be able to cope with future platforms and adapt novel alignment

algorithms. Therefore, this thesis presented XWARE, an extensible and customis-

able interoperability framework for pervasive computing systems that supports

developers in integrating new platforms, services, and alignment mechanisms.

XWARE’s uniform message, service, service discovery, service access, and no-

tification abstractions hide the heterogeneities of distinct platforms. The frame-

work is divided into four functionally independent modules: communication,

alignment, service management, and notification management. The communica-

tion module is responsible for the actual interaction with entities. Its plugin-based

architecture supports the extension of the framework with further platforms. The

alignment module performs transformations between messages with respect to

semantics, operations, interaction models and properties. For this purpose, the

pipes and filters pattern is adopted which enables an easy customisation of func-

tionally independent alignment tasks. Relating to this, the thesis presented an

automatic tool that is able to cope with several heterogeneities using XWSDL

129

7.2. Outlook

files as basis. In addition, the framework includes support for manual transfor-

mation specifications, if the automatic tool is not capable. Further services can

be integrated by including appropriate service definitions and transformers. En-

tities joining and leaving the system are monitored with the help of the service

management module. The notification management module permits to send and

receive notifications across platforms. Additionally, it enables entities to serve as

event providers although they do not support notifications naturally, by using a

periodic poll mechanism. As a whole, all of the elaborated heterogeneities can

be solved.

Finally, the evaluation demonstrated that XWARE is able to enable interac-

tion between a diverse set of pervasive and IoT platforms. There, the costs of

interoperability are feasible with respect to the fact that interactions between

those platforms would not be possible without XWARE. Furthermore, the over-

head evaluation showed that the pre-implemented reference and skeleton compo-

nents facilitate the integration of new platforms.

7.2. Outlook

During the development of this thesis, several issues have come up that may

be worth further investigation.

First, pervasive and IoT applications often require the satisfaction of non-

functional properties with respect to contextual or also technical requirements.

Nowadays, security and privacy are especially in the focus of pervasive systems

and Internet of Things research, e.g., [19] or [156], but other issues are criti-

cal as well, such as real-time access. In order to satisfy these requirements, a

transformation of their semantics is not sufficient. The integration of a com-

plex framework is required for managing and complying to such non-functional

properties.

Second, notification management is performed in a central manner by the

prototype. Having several XWARE instances that support notification manage-

ment may lead to a high overhead as entities receive notifications by several

interoperability instances. Therefore, inclusion of a decentralised organisation of

notification managers, such as in [137], might be useful.

130

7.2. Outlook

Third, XWARE was only tested and evaluated in simulated environments until

now. A real-world study could further demonstrate the framework’s capabilities

and reveal additional issues that have not emerged in the simulations.

Fourth, besides the integration of context and conflict management, the next

step is to integrate support for cyber-physical systems, such as autonomous driv-

ing systems or process control systems. Such systems incorporate not only com-

putational devices and people but also physical processes that influence com-

putations and vice versa [104]. Further, cyber-physical systems are enabled by

pervasive computing and Internet of Things. They often provide backend services

to users for informational purposes. By integrating plugins and service definitions

for these backends into XWARE, such services can be also made available on other

platforms.

131

Bibliography

[1] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba. Resource and

Service Discovery in Large-Scale Multi-Domain Networks. IEEE Commu-

nications Surveys & Tutorials, 9(4):2–30, 2007.

[2] S. Ahmed, M. Sharmin, and S. I. Ahamed. A Smart Meeting Room with

Pervasive Computing Technologies. In Proceedings of International Con-

ference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD) and International Workshop on

Self-Assembling Wireless Networks (SAWN), pages 366–371. IEEE, 2005.

[3] J. Allard, V. Chinta, S. Gundala, and G. Richard. Jini Meets UPnP: An

Architecture for Jini/UPnP Interoperability. In Proceedings of Symposium

on Applications and the Internet, pages 268–275. IEEE, 2003.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A View of Cloud Com-

puting. Communications of the ACM, 53(4):50–58, 2010.

[5] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, and A. Wollrath. Jini

Specification. Addison-Wesley, 1999.

[6] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.

Computer Networks, 54(15):2787–2805, 2010.

[7] D. Bandyopadhyay and J. Sen. Internet of Things: Applications and Chal-

lenges in Technology and Standardization. Wireless Personal Communica-

tions, 58(1):49–69, 2011.

[8] J. Bardin, P. Lalanda, and C. Escoffier. Towards an Automatic Integra-

tion of Heterogeneous Services and Devices. In Proceedings of Asia-Pacific

Services Computing Conference (APSCC), pages 171–178. IEEE, 2010.

[9] L. Baresi, N. Georgantas, K. Hamann, V. Issarny, W. Lamersdorf, A. Met-

zger, and B. Pernici. Emerging Research Themes in Services-Oriented Sys-

xvii

Bibliography

tems. In Proceedings of Service Research & Innovation Institute (SRII)

Summit, pages 333–342. IEEE, 2012.

[10] A. Bassi and G. Horn. Internet of Things in 2020 - Roadmap for the Future.

Technical report, European Commission – Information Society and Media,

2008.

[11] C. Becker and F. Dürr. On location models for ubiquitous computing.

Personal and Ubiquitous Computing, 9(1):20–31, 2005.

[12] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. BASE – A Micro-

broker-based Middleware for Pervasive Computing. In Proceedings of Inter-

national Conference on Pervasive Computing and Communications (Per-

Com), pages 443–451. IEEE, 2003.

[13] N. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny. The role

of models@run.time in supporting on-the-fly interoperability. Computing,

95(3):167–190, 2013.

[14] A. Bennaceur. Dynamic Synthesis of Mediators in Ubiquitous Environ-

ments. PhD thesis, Université Pierre et Marie Curie, 2013.

[15] A. Bennaceur, E. Andriescu, R. S. Cardoso, and V. Issarny. A unifying

perspective on protocol mediation: interoperability in the future internet.

Journal of Internet Services and Applications, 6(1):12, 2015.

[16] A. Bennaceur, G. Blair, F. Chauvel, H. Gang, N. Georgantas, P. Grace,

F. Howar, P. Inverardi, V. Issarny, M. Paolucci, et al. Towards an Ar-

chitecture for Runtime Interoperability. In Proceedings of International

Symposium On Leveraging Applications of Formal Methods, Verification

and Validation (ISoLA), pages 206–220. Springer, 2010.

[17] A. Bertolino, W. Emmerich, P. Inverardi, V. Issarny, F. Liotopoulos, and

P. Plaza. PLASTIC: Providing Lightweight & Adaptable Service Technol-

ogy for Pervasive Information & Communication. In Proceedings of In-

ternational Conference on Automated Software Engineering (ASE), pages

65–70. IEEE, 2008.

[18] A. Bertolino, P. Inverardi, V. Issarny, A. Sabetta, and R. Spalazzese. On-

the-Fly Interoperability through Automated Mediator Synthesis and Mon-

itoring. In Proceedings of International Symposium On Leveraging Ap-

xviii

Bibliography

plications of Formal Methods, Verification and Validation (ISoLA), pages

251–262. Springer, 2010.

[19] C. Bettini and D. Riboni. Privacy protection in pervasive systems: State of

the art and technical challenges. Pervasive and Mobile Computing, 17:159–

174, 2015.

[20] M. Blackstock and R. Lea. IoT Interoperability: A Hub-based Approach.

In Proceedings of International Conference on Internet of Things (IOT),

pages 79–84. IEEE, 2014.

[21] G. S. Blair, M. Paolucci, P. Grace, and N. Georgantas. Interoperability in

Complex Distributed Systems. In Proceedings of International School on

Formal Methods for the Design of Computer, Communication and Software

Systems (SFM), pages 1–26. Springer, 2011.

[22] J. Bohn. The Smart Jigsaw Puzzle Assistant: Using RFID Technology

for Building Augmented Real-World Games. In Proceedings of Workshop

on Gaming Applications in Pervasive Computing Environments at Inter-

national Conference of Pervasive Computing (PERVASIVE), 2004.

[23] G. Bouloukakis. Enabling Emergent Mobile Systems in the IoT: from

Middleware-layer Communication Interoperability to Associated QoS Anal-

ysis. PhD thesis, Inria de Paris, 2017.

[24] G. Bouloukakis, N. Georgantas, S. Dutta, and V. Issarny. Integration of

Heterogeneous Services and Things into Choreographies. In Proceedings of

International Conference on Service-Oriented Computing (ICSOC) Work-

shops, pages 184–188. Springer, 2016.

[25] J. Bourcier, A. Diaconescu, P. Lalanda, and J. A. McCann. Autohome:

an Autonomic Management Framework for Pervasive Home Applications.

ACM Transactions on Autonomous and Adaptive Systems (TAAS), 6(1):8,

2011.

[26] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.

Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP)

1.1, 2000. W3C Recommendation, Retrieved October 3, 2018 from http:

//www.w3.org/TR/SOAP.

[27] A. Broering, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Kaebisch,

xix

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

Bibliography

D. Kramer, D. Le Phouc, J. Mitic, D. Anicic, and E. Teniente. Enabling

IoT Ecosystems through Platform Interoperability. IEEE Software, pages

54–61, 2017.

[28] Y.-D. Bromberg and V. Issarny. Service Discovery Protocol Interoperability

in the Mobile Environment. In Proceedings of International Workshop on

Software Engineering and Middleware (SEM), pages 64–77. Springer, 2004.

[29] Y.-D. Bromberg and V. Issarny. INDISS: Interoperable Discovery System

for Networked Services. In Proceedings of International Conference on Mid-

dleware, pages 164–183. Springer, ACM/IFIP/USENIX, 2005.

[30] Y.-D. Bromberg, V. Issarny, and P.-G. Raverdy. Interoperability of Service

Discovery Protocols: Transparent versus Explicit Approaches. In Proceed-

ings of Mobile & Wireless Communications Summit, 2006.

[31] F. Buschmann, R. Meunier, H. Rohnert, and M. Sommerlad. Pattern-

Oriented Software Architecture – A System of Patterns. John Wiley and

Sons, 1996.

[32] T. Cai, P. Leach, Y. Gu, Y. Y. Goland, and S. Albright. Sim-

ple Service Discovery Protocol/1.0, 1999. IETF Draft, Retrieved

October 3, 2018 from ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/

draft-cai-ssdp-v1-03.txt.

[33] M. Caporuscio, P.-G. Raverdy, and V. Issarny. ubiSOAP: A Service-

Oriented Middleware for Ubiquitous Networking. IEEE Transactions on

Services Computing, 5(1):86–98, 2012.

[34] D. Carlson, B. Altakrouri, and A. Schrader. An Ad-hoc Smart Gateway

Platform for the Web of Things. In Proceedings of International Conference

on Green Computing and Communications (GreenCom) and Internet of

Things (iThings) and Cyber, Physical and Social Computing (CPPSCom),

pages 619–625. IEEE, 2013.

[35] D. Carlson and A. Schrader. Dynamix: An Open Plug-and-Play Context

Framework for Android. In Proceedings of International Conference on

Internet of Things (IOT), pages 151–158. IEEE, 2012.

[36] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in Sup-

xx

ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/draft-cai-ssdp-v1-03.txt
ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/draft-cai-ssdp-v1-03.txt

Bibliography

porting Event-based Architectural Styles. In Proceedings of International

Workshop on Software Architecture, pages 17–20. ACM, 1998.

[37] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of

a WideAarea Event Notification Service. ACM Transactions on Computer

Systems (TOCS), 19(3):332–383, 2001.

[38] E. J. H. Chang. Echo Algorithms: Depth Parallel Operations on General

Graphs. IEEE Transactions on Software Engineering, 8(4):391–401, 1982.

[39] C. Cho and D. Lee. Survey of Service Discovery Architectures for Mobile Ad

hoc Networks. Unpublished Term Paper, Mobile Computing, CEN 5531,

University of Florida, 2005.

[40] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web

Services Description Language (WSDL) 1.1, 2001. W3C Note, Retrieved

October 3, 2018 from https://www.w3.org/TR/wsdl.html.

[41] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An Efficient

Component Model for the Construction of Adaptive Middleware. In Pro-

ceedings of International Conference on Distributed Systems Platforms and

Open Distributed Processing, pages 160–178. IFIP/ACM, Springer, 2001.

[42] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-

awarana. Unraveling the Web Services Web: An Introduction to SOAP,

WSDL, and UDDI. IEEE Internet Computing, 6(2):86–93, 2002.

[43] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous

Computing, 5(1):4–7, 2001.

[44] Dictionary.com. Alignment Definition, 2018. Retrieved October 3, 2018

from https://www.dictionary.com/browse/alignment.

[45] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, and S. Izadi. Chal-

lenge: Recombinant Computing and the Speakeasy Approach. In Pro-

ceedings of International Conference on Mobile Computing and Networking

(MobiCom), pages 279–286. ACM, 2002.

[46] M. Ehrig. Ontology Alignment: Bridging the Semantic Gap, volume 4.

Springer, 2006.

[47] C. El Kaed, A. Chazalet, L. Petit, Y. Denneulin, M. Louvel, and F. G. Ot-

togalli. INSIGHT: Interoperability and Service Management for the Digital

xxi

https://www.w3.org/TR/wsdl.html
https://www.dictionary.com/browse/alignment

Bibliography

Home. In Proceedings of Industry Track Workshop at International Con-

ference on Middleware, pages 3–8. ACM, 2011.

[48] T. Erl. Service-oriented architecture: concepts, technology, and design.

Pearson, 2005.

[49] C. Escoffier, S. Chollet, and P. Lalanda. Lessons Learned in Building Per-

vasive Platforms. In Proceedings of Consumer Communications and Net-

working Conference (CCNC), pages 7–12. IEEE, 2014.

[50] C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: An Extensible Service-

Oriented Component Framework. In Proceedings of International Confer-

ence on Services Computing (SCC), pages 474–481. IEEE, 2007.

[51] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many

Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[52] J. Euzenat, P. Shvaiko, et al. Ontology Matching, volume 18. Springer,

2007.

[53] M. S. Familiar, J. F. Mart́ınez, and L. Lopez. Pervasive Smart Spaces and

Environments: A Service-Oriented Middleware Architecture for Wireless

Ad Hoc and Sensor Networks. International Journal of Distributed Sensor

Networks, 8(4):1–11, 2012.

[54] J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML

Schema. W3C Recommendation, 2007.

[55] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. Engineering Event-

Based Systems with Scopes. In Proceedings of European Conference on

Object-Oriented Programming (ECOOP), pages 309 – 333. Springer, 2002.

[56] T. Finin, R. Fritzson, D. McKay, et al. A Language and Protocol to Support

Intelligent Agent Interoperability. In Proceedings of National Symposium

on Concurrent Engineering (CE & CALS), 1992.

[57] C. Flores, P. Grace, and G. S. Blair. SeDiM: A Middleware Framework for

Interoperable Service Discovery in Heterogeneous Networks. ACM Trans-

actions on Autonomous and Adaptive Systems (TAAS), 6(1):6, 2011.

[58] C. A. Flores-Cortés, G. S. Blair, and P. Grace. A Multi-protocol Framework

for Ad-hoc Service Discovery. In Proceedings of International Workshop on

xxii

Bibliography

Middleware for Pervasive and Ad-Hoc Computing (MPAC), pages 10–15.

ACM, 2006.

[59] C. A. Flores-Cortés, G. S. Blair, and P. Grace. An Adaptive Middleware

to Overcome Service Discovery Heterogeneity in Mobile Ad Hoc Environ-

ments. IEEE Distributed Systems Online, 8(7):1–11, 2007.

[60] C.-L. Fok, G.-C. Roman, and G. Hackmann. A Lightweight Coordination

Middleware for Mobile Computing. In Proceedings of International Con-

ference on Coordination Models and Languages (COORDINATION), pages

135–151. Springer, 2004.

[61] M. Franklin, S. Zdonik, M. Franklin, and S. Zdonik. Data In Your Face:

Push Technology in Perspective. In Proceedings of SIGMOD International

Conference on Management of Data, pages 516–519. ACM, 1998.

[62] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink. Support-

ing Service Discovery, Querying and Interaction in Ubiquitous Computing

Environments. Wireless Networks, 10(6):631–641, 2004.

[63] P. Friess. Digitising the Industry – Internet of Things Connecting the Phys-

ical, Digital and Virtual Worlds. River Publishers, 2016.

[64] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Pearson, 1995.

[65] M. Ganzha, M. Paprzycki, W. Paw lowski, P. Szmeja, and K. Wasielewska.

Semantic interoperability in the Internet of Things: An overview from the

INTER-IoT perspective. Journal of Network and Computer Applications,

81:111–124, 2017.

[66] I. Garcia, G. Pedraza, B. Debbabi, P. Lalanda, and C. Hamon. Towards

a service mediation framework for dynamic applications. In Proceedings of

Asia-Pacific Services Computing Conference (APSCC), pages 3–10. IEEE,

2010.

[67] D. Gelernter. Generative Communication in Linda. ACM Transactions on

Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

[68] N. Georgantas, G. Bouloukakis, S. Beauche, and V. Issarny. Service-

Oriented Distributed Applications in the Future Internet: The Case for

xxiii

Bibliography

Interaction Paradigm Interoperability. In Proceedings of European Confer-

ence on Service-Oriented and Cloud Computing (ESOCC), pages 134–148.

Springer, 2013.

[69] N. Georgantas, V. Issarny, S. B. Mokhtar, Y.-D. Bromberg, S. Bianco,

G. Thomson, P.-G. Raverdy, A. Urbieta, and R. S. Cardoso. Middleware

Architecture for Ambient Intelligence in the Networked Home. In Hand-

book of Ambient Intelligence and Smart Environments, pages 1139–1169.

Springer, 2010.

[70] I. Gojmerac, P. Reichl, I. P. Žarko, and S. Soursos. Bridging IoT is-

lands: the symbIoTe project. e & i Elektrotechnik und Informationstechnik,

133(7):315–318, 2016.

[71] P. Grace, G. S. Blair, and S. Samuel. ReMMoC: A Reflective Middleware

to Support Mobile Client Interoperability. In Proceedings of Confederated

International Conferences ”On the Move to Meaningful Internet Systems”

(OTM), pages 1170–1187. Springer, 2003.

[72] P. Grace, G. S. Blair, and S. Samuel. A Reflective Framework for Discov-

ery and Interaction in Heterogeneous Mobile Environments. ACM SIGMO-

BILE Mobile Computing and Communications Review, 9(1):2–14, 2005.

[73] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Gen-

eration Computer Systems, 29(7):1645–1660, 2013.

[74] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet of

Things to the Web of Things: Resource-oriented Architecture and Best

Practices. In Architecting the Internet of Things, pages 97–129. Springer,

2011.

[75] E. Guttman. Service Location Protocol: Automatic Discovery of IP Net-

work Services. IEEE Internet Computing, 3(4):71–80, 1999.

[76] R. B. Hadj, C. Hamon, S. Chollet, G. Vega, and P. Lalanda. Context-

Based Conflict Management in Pervasive Platforms. In Proceedings of Inter-

national Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), pages 250–255. IEEE, 2017.

xxiv

Bibliography

[77] S. Helal. Standards for Service Discovery and Delivery. IEEE Pervasive

Computing, 1(3):95–100, 2002.

[78] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen.

The Gator Tech Smart House: A Programmable Pervasive Space. Com-

puter, 38(3):50–60, 2005.

[79] C. Hérault, G. Thomas, and P. Lalanda. Mediation and Enterprise Ser-

vice Bus: A position paper. In Proceedings of International Workshop on

Mediation in Semantic Web Services (MEDIATE), pages 67–80, 2005.

[80] J. Honkola, H. Laine, R. Brown, and O. Tyrkko. Smart-M3 Information

Sharing Platform. In Proceedings of Symposium on Computers and Com-

munications, pages 1041–1046. IEEE, 2010.

[81] M. N. Huhns and M. P. Singh. Service-Oriented Computing: Key Concepts

and Principles. IEEE Internet Computing, 9(1):75–81, 2005.

[82] Hypercat Alliance. Hypercat 1.1 Specification, 2013. Interoperability Ac-

tion Plan, Retrieved October 3, 2018 from https://hypercatiot.github.

io/spec1.1.pdf.

[83] IEEE Standards. IEEE Standard Glossary of Software Engineering Termi-

nology, 1990. American National Standard, Retrieved October 3, 2018

from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

159342.

[84] IEEE Standards. Interoperability Definition, 2016. Retrieved Oc-

tober 3, 2018 from https://www.standardsuniversity.org/article/

standards-glossary/.

[85] P. Inverardi, R. Spalazzese, and M. Tivoli. Application-Layer Connector

Synthesis. In Proceedings of International School on Formal Methods for the

Design of Computer, Communication and Software Systems (SFM), pages

148–190. Springer, 2011.

[86] V. Issarny, A. Bennaceur, and Y.-D. Bromberg. Middleware-Layer Connec-

tor Synthesis: Beyond State of the Art in Middleware Interoperability. In

Proceedings of International School on Formal Methods for the Design of

Computer, Communication and Software Systems (SFM), pages 217–255.

Springer, 2011.

xxv

https://hypercatiot.github.io/spec1.1.pdf
https://hypercatiot.github.io/spec1.1.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=159342
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=159342
https://www.standardsuniversity.org/article/standards-glossary/
https://www.standardsuniversity.org/article/standards-glossary/

Bibliography

[87] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet. Revisiting

Service-Oriented Architecture for the IoT: A Middleware Perspective. In

Proceedings of International Conference on Service-Oriented Computing

(ICSOC), pages 3–17. Springer, 2016.

[88] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili,

M. A. Gerosa, and A. B. Hamida. Service-oriented middleware for the

future internet: state of the art and research directions. Journal of Internet

Services and Applications, 2(1):23–45, 2011.

[89] M. Jacoby, A. Antonić, K. Kreiner, R. Lapacz, and J. Pielorz. Semantic

Interoperability as Key to IoT Platform Federation. In Proceedings of In-

ternational Workshop on Interoperability and Open-Source Solutions, pages

3–19. Springer, 2016.

[90] A. Kattepur, N. Georgantas, and V. Issarny. QoS Analysis in Heterogeneous

Choreography Interactions. In Proceedings of International Conference on

Service-Oriented Computing (ICSOC), pages 23–38. Springer, 2013.

[91] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila,

A. Ylisaukko-Oja, J.-P. Soininen, and T. S. Cinotti. Semantic Interoper-

ability Architecture for Pervasive Computing and Internet of Things. IEEE

Access, 2:856–873, 2014.

[92] T. Koponen and T. Virtanen. A Service Discovery: A Service Broker Ap-

proach. In Proceedings of Hawaii International Conference on System Sci-

ences (HICSS), pages 7–13. IEEE, 2004.

[93] N. Koshizuka and K. Sakamura. Ubiquitous ID: Standards for Ubiqui-

tous Computing and the Internet of Things. IEEE Pervasive Computing,

9(4):98–101, 2010.

[94] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall, and M. Zhao. Standards-

Based Worldwide Semantic Interoperability for IoT. IEEE Communications

Magazine, 54(12):40–46, 2016.

[95] S. Kubler, J. Robert, A. Hefnawy, K. Främling, C. Cherifi, and A. Bouras.

Open IoT Ecosystem for Sporting Event Management. IEEE Access,

5:7064–7079, 2017.

xxvi

Bibliography

[96] I. B. Lahmar, H. Mukhtar, and D. Belaid. Interoperability in Pervasive En-

vironments. Pervasive Communications Handbook, pages 12.1–12.16, 2010.

[97] P. Lalanda and C. Escoffier. Resource-oriented framework for representing

pervasive context. In Proceedings of International Congress on Internet of

Things (ICIOT), pages 155–158. IEEE, 2017.

[98] P. Lalanda, E. Gerber-Gaillard, and S. Chollet. Self-Aware Context in

Smart Home Pervasive Platforms. In Proceedings of International Confer-

ence on Autonomic Computing (ICAC), pages 119–124. IEEE, 2017.

[99] P. Lalanda, C. Hamon, C. Escoffier, and T. Leveque. iCasa, a development

and simulation environment for pervasive home applications. In Proceedings

of Consumer Communications and Networking Conference (CCNC), pages

1142–1143. IEEE, 2014.

[100] S. S. Lam. Protocol Conversion. IEEE Transactions on Software Engineer-

ing, 14(3):353–362, 1988.

[101] O. Lassila and R. R. Swick. Resource Description Framework

(RDF) Model and Syntax Specification, 1999. W3C Recommenda-

tion, Retrieved October 3, 2018 from https://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/.

[102] P. Leach, M. Mealling, and R. Salz. RFC 4122: A Universally Unique

Identifier (UUID) URN Namespace. Technical report, Network Working

Group, 2005.

[103] C. Lee and S. Helal. Protocols for Service Discovery in Dynamic and Mobile

Networks. International Journal of Computer Research, 11(1):1–12, 2002.

[104] E. A. Lee. Cyber Physical Systems: Design Challenges. In Proceed-

ings of Symposium on Object Oriented Real-Time Distributed Computing

(ISORC), pages 363–369. IEEE, 2008.

[105] J.-C. Lee, H.-J. Kim, and S.-H. Kim. Bridging OCF Devices to Legacy IoT

Devices. In Proceedings of International Conference on Information and

Communication Technology Convergence (ICTC), pages 616–621. IEEE,

2017.

[106] N. Limam, J. Ziembicki, R. Ahmed, Y. Iraqi, D. T. Li, R. Boutaba, and

F. Cuervo. OSDA: Open service discovery architecture for efficient cross-

xxvii

https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Bibliography

domain service provisioning. Computer Communications, 30(3):546–563,

2007.

[107] V. Majuntke, S. VanSyckel, D. Schäfer, C. Krupitzer, G. Schiele, and

C. Becker. COMITY: Coordinated Application Adaptation in Multi-

Platform Pervasive Systems. In Proceedings of International Conference on

Pervasive Computing and Communications (PerCom), pages 11–19. IEEE,

2013.

[108] S. Mann. Wearable Computing: A First Step Toward Personal Imaging.

Computer, 30(2):25–32, 1997.

[109] C. Marinagi, P. Belsis, and C. Skourlas. New directions for pervasive com-

puting in logistics. Procedia-Social and Behavioral Sciences, 73:495–502,

2013.

[110] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,

D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, et al. Bring-

ing Semantics to Web Services: The OWL-S Approach. In Proceedings of

International Workshop on Semantic Web Services and Web Process Com-

position (SWSWPC), pages 26–42. Springer, 2004.

[111] A. N. Mian, R. Baldoni, and R. Beraldi. A Survey of Service Discovery Pro-

tocols in Multihop Mobile Ad Hoc Networks. IEEE Pervasive Computing,

8(1):66–74, 2009.

[112] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. A gap analysis of

Internet-of-Things platforms. Computer Communications, 89:5–16, 2016.

[113] J. Mineraud and S. Tarkoma. Toward interoperability for the Internet of

Things with meta-hubs. Technical report, Cornell University, 2015.

[114] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things:

Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–

1516, 2012.

[115] S. B. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny, and Y. Berbers.

EASY: Efficient semAntic Service discoverY in pervasive computing envi-

ronments with QoS and context support. Journal of Systems and Software,

81(5):785–808, 2008.

xxviii

Bibliography

[116] S. B. Mokhtar, P.-G. Raverdy, A. Urbieta, and R. S. Cardoso. Interop-

erable Semantic and Syntactic Service Discovery for Ambient Computing

Environments. International Journal of Ambient Computing and Intelli-

gence (IJACI), 4:13–32, 2010.

[117] K.-D. Moon, Y.-H. Lee, C.-E. Lee, and Y.-S. Son. Design of a universal mid-

dleware bridge for device interoperability in heterogeneous home network

middleware. IEEE Transactions on Consumer Electronics, 51(1):314–318,

2005.

[118] J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran. A

Bridging Framework for Universal Interoperability in Pervasive Systems.

In Proceedings of International Conference on Distributed Computing Sys-

tems (ICDCS), page 3. IEEE, 2006.

[119] J. Nakazawa, J. Yura, S. Aoki, M. Ito, K. Takashio, and H. Tokuda. A De-

scription Language for Universal Understandings of Heterogeneous Services

in Pervasive Computing. In Proceedings of International Conference on

Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), pages

161–168. IEEE, 2010.

[120] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm. A SLOC Counting

Standard. Technical report, Cocomo II Forum, 2007.

[121] OASIS. Web Services Business Process Execution Language Version 2.0,

2007. OASIS Standard, Retrieved October 3, 2018 from http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[122] OASIS. MQTT Specification Version 3.1.1, 2014. OASIS Draft, Retrieved

October 3, 2018 from http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/

os/mqtt-v3.1.1-os.html.

[123] Open Connectivity Foundation. UPnP Device Architecture 2.0, 2015. OCF

Specification, Retrieved October 3, 2018 from http://upnp.org/specs/

arch/UPnP-arch-DeviceArchitecture-v2.0.pdf.

[124] Open Connectivity Foundation. IoTivity Architecture, 2017. IoTivity Doc-

umentation, Retrieved October 3, 2018 from https://wiki.iotivity.

org/architecture.

xxix

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
https://wiki.iotivity.org/architecture
https://wiki.iotivity.org/architecture

Bibliography

[125] Oracle Inc. Java SE at a Glance. Retrieved October 3, 2018 from https:

//docs.oracle.com/javase/8/docs/api/index.html.

[126] Oracle Inc. MySQL - The World’s Most Popular Open Source Database.

Retrieved October 3, 2018 from http://www.mysql.com/.

[127] OSGi Alliance. OSGi Service Platform Core Specification, 2007. Retrieved

October 3, 2018 from https://wiki.searchtechnologies.com/javadoc/

osgi/r4.core.pdf.

[128] F. Paganelli, D. Parlanti, and D. Giuli. A Service-Oriented Framework

for distributed heterogeneous Data and System Integration for Continuous

Care Networks. In Proceedings of Consumer Communications and Net-

working Conference (CCNC), pages 1–5. IEEE, 2010.

[129] S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi, and

A. Evesti. Situation-based and self-adaptive applications for the smart

environment. Journal of Ambient Intelligence and Smart Environments,

4(6):491–516, 2012.

[130] M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteris-

tics and Directions. In Proceedings of International Conference on Web

Information Systems Engineering (WISE), pages 3–12. IEEE, 2003.

[131] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-

oriented computing: a research roadmap. International Journal of Cooper-

ative Information Systems, 17(02):223–255, 2008.

[132] H. Park, B. Kim, Y. Ko, and D. Lee. InterX: A Service Interoperabil-

ity Gateway for Heterogeneous Smart Objects. In Proceedings of Inter-

national Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), pages 233–238. IEEE, 2011.

[133] S. Park. OCF: A New Open IoT Consortium. In Proceedings of Interna-

tional Conference on Advanced Information Networking and Applications

Workshops (WAINA), pages 356–359. IEEE, 2017.

[134] D. J. Patterson, O. Etzioni, D. Fox, and H. Kautz. Intelligent Ubiquitous

Computing to Support Alzheimer’s Patients: Enabling the Cognitively Dis-

abled. In Proceedings of International Workshop on Ubiquitous Comput-

xxx

https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/api/index.html
http://www.mysql.com/
https://wiki.searchtechnologies.com/javadoc/osgi/r4.core.pdf
https://wiki.searchtechnologies.com/javadoc/osgi/r4.core.pdf

Bibliography

ing for Cognitive Aids (UbiCog) at International Conference on Ubiquitous

Computing (UbiComp), page 21, 2002.

[135] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universität of

Bonn, 1962.

[136] G. Pietro Picco, A. L. Murphy, G.-C. Roman, and G. Pietro. LIME: Linda

Meets Mobility. In Proceedings of International Conference on Software

Engineering (ICSE), pages 368–177. IEEE, 1999.

[137] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand. Towards a Common

API for Publish/Subscribe. In Proceedings of International Conference on

Distributed Event-based Systems (DEBS), pages 152–157. ACM, 2007.

[138] C. Preist. A Conceptual Architecture for Semantic Web Services. In Pro-

ceedings of International Semantic Web Conference (ISWC), pages 395–

409. Springer, 2004.

[139] F. Ramparany, F. G. Marquez, J. Soriano, and T. Elsaleh. Handling smart

environment devices, data and services at the semantic level with the FI-

WARE core platform. In Proceedings of International Conference on Big

Data (Big Data), pages 14–20. IEEE, 2014.

[140] S. Ran. A Model for Web Services Discovery with QoS. ACM SIGecom

exchanges, 4(1):1–10, 2003.

[141] P. Raverdy, O. Riva, A. de La Chapelle, R. Chibout, and V. Issarny. Ef-

ficient Context-aware Service Discovery in Multi-Protocol Pervasive En-

vironments. In Proceedings of International Conference on Mobile Data

Management (MDM), pages 3–10. IEEE, 2006.

[142] P.-G. Raverdy, V. Issarny, R. Chibout, and A. de La Chapelle. A Multi-

Protocol Approach to Service Discovery and Access in Pervasive Environ-

ments. In Proceedings of International Conference on Mobile and Ubiqui-

tous Systems Workshops, pages 1–9. IEEE, 2006.

[143] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang. Middleware for perva-

sive computing: A survey. Pervasive and Mobile Computing, 9(2):177–200,

2013.

[144] G. G. Richard. Service Advertisement and Discovery: Enabling Universal

Device Cooperation. IEEE Internet Computing, 4(5):18–26, 2000.

xxxi

Bibliography

[145] P. Rodrigues, Y.-D. Bromberg, L. Réveillere, and D. Négru. ZigZag: A Mid-

dleware for Service Discovery in Future Internet. In Proceedings of Inter-

national Conference on Distributed Applications and Interoperable Systems

(DAIS), pages 208–221. IFIP, 2012.

[146] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and

F. Eliassen. The DigiHome Service-Oriented Platform. Software: Practice

and Experience, 43(10):1205–1218, 2013.

[147] F. M. Roth, C. Becker, G. Vega, and P. Lalanda. XWARE – A customizable

interoperability framework for pervasive computing systems. Pervasive and

Mobile Computing, 47:13–30, 2018.

[148] F. M. Roth, C. Krupitzer, S. Vansyckel, and C. Becker. Nature-Inspired

Interference Management in Smart Peer Groups. In Proceedings of Interna-

tional Conference on Intelligent Environments (IE), pages 132–139. IEEE,

2014.

[149] F. M. Roth, M. Pfannemueller, C. Becker, and P. Lalanda. An Interopera-

ble Notification Service for Pervasive Computing. In Proceedings of Inter-

national Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), pages 842–847. IEEE, 2018.

[150] D. Saha and A. Mukherjee. Pervasive Computing: A Paradigm for the 21st

Century. Computer, 36(3):25–31, 2003.

[151] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE

Personal Communications, 8(4):10–17, 2001.

[152] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Appli-

cations. In Proceedings of Workshop on Mobile Computing Systems and

Applications (WMCSA), pages 85–90. IEEE, 1994.

[153] S. Schmid, A. Bröring, D. Kramer, S. Käbisch, A. Zappa, M. Lorenz,

Y. Wang, A. Rausch, and L. Gioppo. An Architecture for Interoperable

IoT Ecosystems. In Proceedings of International Workshop on Interoper-

ability and Open-Source Solutions, pages 39–55. Springer, 2016.

[154] A. Schmidt, M. Beigl, and H. W. Gellersen. There is more to context than

location. Computers & Graphics, 23(6):893–901, 1999.

xxxii

Bibliography

[155] H. Shen. Content-Based Publish/Subscribe Systems. In Handbook of Peer-

to-Peer Networking, pages 1333–1366. Springer, 2010.

[156] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, privacy

and trust in Internet of Things: The road ahead. Computer Networks,

76:146–164, 2015.

[157] S. Soursos, I. P. Žarko, P. Zwickl, I. Gojmerac, G. Bianchi, and G. Carrozzo.

Towards the Cross-Domain Interoperability of IoT Platforms. In Proceed-

ings of European COnference on Networks and Communications (EuCNC),

pages 398–402. IEEE, 2016.

[158] T. Strang and C. Linnhof-Popien. Service Interoperability on Context Level

in Ubiquitous Computing Environments. In Proceedings of International

Conference on Advances in Infrastructure for Electronic Business, Educa-

tion, Science, Medicine, and Mobile Technologies on the Internet, 2003.

[159] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and Chal-

lenges for Realising the Internet of Things. European Commission: Infor-

mation Society and Media, 2010.

[160] Swetina, Jorg and Lu, Guang and Jacobs, Philip and Ennesser, Fran-

cois and Song, Jaeseung. Toward a Standardized Common M2M Service

Layer Platform: Introduction to oneM2M. IEEE Wireless Communica-

tions, 21(3):20–26, 2014.

[161] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas. Service Oriented

Middleware for the Internet of Things: A Perspective. In Proceedings of

European Conference on a Service-Based Internet, pages 220–229. Springer,

2011.

[162] G. Thomson, D. Sacchetti, Y.-D. Bromberg, J. Parra, N. Georgantas, and

V. Issarny. Amigo Interoperability Framework: Dynamically Integrating

Heterogeneous Devices and Services. In Proceedings of European Confer-

ence on Constructing Ambient Intelligence (AmI), pages 421–425. Springer,

2008.

[163] A. Tolk. Composable Mission Spaces and M&S Repositories – Applicability

of Open Standards. In Proceedings of Spring Simulation Interoperability

Workshop, 2004.

xxxiii

Bibliography

[164] A. Uribarren, J. Parra, J. P. Uribe, K. Makibar, I. Olalde, and N. Herrasti.

Service Oriented Pervasive Applications Based On Interoperable Middle-

ware. In Proceedings of International Conference on Pervasive Computing

(Pervasive) Workshops, 2006.

[165] S. VanSyckel. System Support for Proactive Adaptation. PhD thesis, Uni-

versität Mannheim, 2015.

[166] U. Varshney. Pervasive healthcare and wireless health monitoring. Mobile

Networks and Applications, 12(2-3):113–127, 2007.

[167] H. Vincent, V. Issarny, N. Georgantas, E. Francesquini, A. Goldman, and

F. Kon. CHOReOS: Scaling Choreographies for the Internet of the Fu-

ture. In Proceedings of International Conference on Middleware Posters

and Demos Track, page 8. ACM, 2010.

[168] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Va-

lencia, D. Swain, and G. Bishop-Hurley. Transforming Agriculture through

Pervasive Wireless Sensor Networks. IEEE Pervasive Computing, 6(2):50–

57, 2007.

[169] P. Wegner. Interoperability. ACM Computing Surveys (CSUR), 28(1):285–

287, 1996.

[170] M. Weiser. The Computer for the 21st Century. Scientific American,

265(3):94–104, 1991.

[171] C.-L. Wu, C.-F. Liao, and L.-C. Fu. Service-Oriented Smart-Home Archi-

tecture Based on OSGi and Mobile-Agent Technology. IEEE Transactions

on Systems, Man, and Cybernetics), 37(2):193–205, 2007.

[172] G. Xiao, J. Guo, L. Da Xu, and Z. Gong. User Interoperability With

Heterogeneous IoT Devices Through Transformation. IEEE Transactions

on Industrial Informatics, 10(2):1486–1496, 2014.

[173] F. Zhu, M. W. Mutka, and L. M. Ni. Service Discovery in Pervasive Com-

puting Environments. IEEE Pervasive computing, 4(4):81–90, 2005.

[174] D. Zuehlke. SmartFactory - Towards a factory-of-things. Annual Reviews

in Control, 34(1):129–138, 2010.

xxxiv

Appendix

xxxv

A. Configuration Files

This appendix shows different extracts of configuration files with exemplary

information. Those files are used for the start-up of an XWARE instance. For

reasons of clarity, the values and types are shortened.

A.1. Plugin

SELF_ID=Dummy =... String

SELF_LOCATION =(PROTOCOL ://) ADDRESS:PORT(/PATH)=... String

SELF_EXPIRATION =18000=... Long

// connection manager

CM=... connmanager.impl.ConnectionManager =... String

CM_ADVERTISEMENT_CLIENT =... connection.impl.MulticastGroup =... String

CM_LOOKUP_CLIENT =... connection.impl.TCPClientConnection =... String

CM_SERVER_CLIENT =... connection.impl.TCPClientConnection =... String

// advertisement

C_ADVERTISEMENT_SERVER =... connection.impl.MulticastGroup =... String

C_ADVERTISEMENT_ADDRESS =224.12.0.4=... String

C_ADVERTISEMENT_PORT =2238=... Integer

//other

C_SERVER =... connection.impl.TCPServerConnection =... String

C_SERVER_ADDRESS =127.0.0.1=... String

C_SERVER_PORT =55555=... Integer

C_SERVER_CLIENT =... connection.impl.TCPClientConnection =... String

// functions and function -specific options

F_ANNOUNCEMENT =... discovery.impl.SimpleAnnouncement =... String

F_ADVERTISEMENT =... discovery.impl.SimpleAdvertisement =... String

F_INVOCATION =... invocation.impl.SimpleInvocation =... String

F_LOOKUP ... discovery.impl.SimpleLookup =... String

F_MATCHING =... discovery.impl.SyntacticMatching =... String

F_ROUTING =... additional.impl.SimpleRouting =... String

F_NOTIFICATION =.. additional.impl.SimpleEventing =... String

LEASE_TIMEOUT =10000=... Integer

ADVERTISEMENT_PERIOD =4000=... Integer

// notification scheme (1 channels , 2 subjects , 3 content -based)

xxxvii

A.5. Filters

NOTIFICATION_SCHEME =1=... Byte

// message handler

MESSAGE_CONVERTER=DummyConverter =... String

// interaction paradigm (1 CS, 2 PS, 3 TS)

INTERACTION_PARADIGM =1=... Byte

A.2. Alignment

F_ALIGNMENT =... mediator.impl.SimpleAlignment =... String

F_REPOSITORY =... repository.impl.SimpleRepository =... String

F_FILTERS_FILE=filter.properties =... String

A.3. Service Management

F_REGISTRY =... registry.impl.SimpleRegistry =... String

REGISTRY_TABLES =... registry.support.SimpleTable =... String

A.4. Notification Management

F_NOTIFICATION_MGMT =... notification.impl.SimpleNotMgmt =... String

F_NOTIFICATION_STORAGE =... notification.storage.impl.DBStorage =... String

A.5. Filters

The following example shows the filter specification for the integrated filters

(see Section 5.2). The filter tag specifies the filters. The order of the filters

is relevant. The map tag determines which messages will go through which filter

sequence. The numbers here represent certain message types, e.g., 1 is a service

discovery message. Filter initialisation information is omitted here.

start

filter=DiscoveryFilter

map=1

end

start

filter=ServiceIDFilter ,InteractionFilter ,ApplicationFilter

map=3,4,12,13,22,23

end

start

filter=ServiceIDFilter ,NotificationFilter

map=2

end

xxxviii

B. Exemplary XWSDL Files

This part shows two complete XWSDL files for a light service for the inter-

mediate definition (see Section B.1) and the BASE definition (see Section B.2).

Extensions to the original WSDL syntax are underlined.

B.1. Intermediate XWSDL File

<definitions name=" SimpleLight" >

<message name=" setLightState" >

<part name=" value" type="java.lang.Boolean" />

</message >

<message name=" getLightState"

resultType ="java.lang.Boolean" />

<message name=" getLightStateResponse">

<part name=" result" type="java.lang.Boolean" />

</message >

<portType name=" SimpleLightPortType">

<operation name=" setLight">

<input message =" setLightState" />

</operation >

<operation name=" getState">

<input message =" getLightState" />

<output message =" getLightStateResponse" />

</operation >

xxxix

B.2. BASE XWSDL File

</portType >

</definitions >

B.2. BASE XWSDL File

<definitions name="base.light.ILight" maps=" SimpleLight">

<message name="void setState(java.lang.Boolean)"

maps=" setLightState" >

<part name="arg0" type="java.lang.Boolean"

maps=" value" />

</message >

<message name=" boolean getState ()"

maps=" getLightState" resultType ="java.lang.Boolean"/>

<message name=" getStateResponse"

maps=" getLightStateResponse">

<part name=" result" type="java.lang.Boolean"

maps=" result" />

</message >

<portType name=" SimpleLightPortType">

<operation name=" setLight" maps=" setLight">

<input message ="void setState(java.lang.Boolean)" />

</operation >

<operation name=" getState" maps=" getState">

<input message =" boolean getState ()" />

<output message =" getStateResponse" />

</operation >

</portType >

</definitions >

xl

C. Transformation from Subjects to Channels

This section explains the mapping from subjects to channels (cf. 4.3.4) in a

formal manner. Let C = {c1, . . . , cn} be a set of channels, S = {s1, . . . , sm} a set

of subjects, and Ṡ = {ṡ1, . . . , ṡm} a set of subject paths. The auxiliary function

n : Ṡ → P(S) maps from a subject path to the set of subject nodes that build up

the subject path (P(A) denotes the power set of a set A). The auxiliary function

a1 : S × C → {0, 1, . . . ,m} is defined by (for every s ∈ S, c ∈ C):

a1(s, c) =

π1(s) π2(s) = c

0 π2(s) 6= c
.

This means that a1(s, c) is the index of s if c and s match, and it is 0 if c and s

do not match. The auxiliary function a2 : S → {0, 1, . . . ,m} is defined by (for

every s ∈ S):

a2(s) =
∑
c∈C

a1(s, c).

Thus, it holds for every subject s ∈ S:

a2(s) =

π2(s) ∃c ∈ C that matches s

0 ¬∃c ∈ C that matches s
.

Now, define i : Ṡ → {0, 1, . . . ,m} (for every ṡ ∈ Ṡ) through

i(ṡ) =

maxs∈n(ṡ) a2(s) maxs∈n(ṡ) a2(s) > 0

0 maxs∈n(ṡ) a2(s) = 0
.

Then, i(ṡ) is 0 if there is no subject on the path ṡ that matches, and i(ṡ) equals

the greatest index of all subjects that match if there exists a subject s on the

path ṡ which matches a channel. From that, the function r : Ṡ → P(C) can be

xli

C. Transformation from Subjects to Channels

defined (for every ṡ ∈ Ṡ) by

r(ṡ) =

{π2(si(ṡ))} i(ṡ) > 0

∅ i(ṡ) = 0
.

Then, i(ṡ) is the greatest index of a matching subject in ṡ, si(ṡ) is that subject,

and π2(si(ṡ)) is the name of the matching subject, and thus, it is equal to the

matching channel. Consequently, the final function msubject : P(Ṡ) → P(C) can

be defined (for every subset of paths Ṡ ′ ⊆ Ṡ) by

msubject(Ṡ ′) =
⋃
ṡ∈Ṡ

r(ṡ).

xlii

D. Inter-instance Communication Evaluation

Values

In the following, the concrete values of the inter-instance communication evalu-

ation are presented for three XWARE instances (see Table D.1) and five XWARE

instances (see Table D.2).

C
P

BASE iPOJO UPnP Limone MQTT Redis

BASE 16.7 21.7 15.3 12.6 12.7
iPOJO 17.4 22.5 24.8 12.3 12.1
UPnP 21.2 21.8 27.5 16.4 17.5
Limone 25.9 26.8 30.6 22.9 21.5
MQTT 26.0 26.7 31.6 35.2 22.6
Redis 17.7 17.3 21.9 25.2 13.2

Table D.1.: Service Access Time with Three XWARE Instances. (time is denoted
in ms, C - consumer, P - producer).

C
P

BASE iPOJO UPnP Limone MQTT Redis

BASE 23.0 28.4 19.0 19.3 19.0
iPOJO 23.9 29.4 32.0 18.9 18.3
UPnP 28.7 28.8 33.7 24.8 24.3
Limone 32.3 32.5 37.6 28.0 28.2
MQTT 33.1 33.1 38.0 42.0 28.6
Redis 24.4 23.5 28.8 32.1 19.6

Table D.2.: Service Access Time with Five XWARE Instances. (time is denoted
in ms, C - consumer, P - producer).

xliii

Publications Contained in This Thesis

• F. M. Roth, C. Becker, G. Vega, and P. Lalanda. XWARE – A customizable

interoperability framework for pervasive computing systems. Pervasive and

Mobile Computing, 47:13–30, 2018.

• F. M. Roth, M. Pfannemüller, C. Becker, and P. Lalanda. An Interopera-

ble Notification Service for Pervasive Computing. In Proceedings of Inter-

national Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), pages 842–847. IEEE, 2018.

• F. M. Roth, C. Krupitzer, S. VanSyckel, and C. Becker. Nature-Inspired

Interference Management in Smart Peer Groups. In Proceedings of Interna-

tional Conference on Intelligent Environments (IE), pages 132–139. IEEE,

2014.

xlv

Lebenslauf

Seit 09/2013 Akademischer Mitarbeiter

Lehrstuhl für Wirtschaftsinformatik II

Universität Mannheim

08/2008 – 07/2013 Bachelor & Master of Science Wirtschaftsinformatik

Universität Mannheim

xlvii

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Structure

	2 Background
	2.1 Computing Concepts
	2.1.1 Service-oriented Computing
	2.1.2 Pervasive Computing
	2.1.3 Internet of Things
	2.1.4 Related Concepts

	2.2 Interaction Models
	2.2.1 Client-server Interaction
	2.2.2 Publish-subscribe Interaction
	2.2.3 Tuple Space Interaction
	2.2.4 Overview

	2.3 Notification Systems

	3 State of the Art
	3.1 Evaluation Framework
	3.1.1 Categorisation of Heterogeneities
	3.1.2 Categorisation of Solutions
	3.1.3 Requirements for an Interoperability Framework

	3.2 Analysis of Existing Approaches
	3.2.1 Pervasive Computing Approaches
	3.2.2 Internet of Things Approaches
	3.2.3 Summary

	3.3 Placement of Thesis

	4 An Interoperability Framework for Pervasive ComputingSystems
	4.1 System Model
	4.2 Framework Overview
	4.3 Abstractions
	4.3.1 Service Model
	4.3.2 Service Discovery Model
	4.3.3 Service Access Model
	4.3.4 Notification Management Model
	4.3.5 Message Abstraction

	4.4 Communication
	4.5 Alignment
	4.5.1 Transformation Model
	4.5.2 Service Definition
	4.5.3 Service Description Transformation
	4.5.4 Service Identifier Transformation
	4.5.5 Interaction Transformation
	4.5.6 Application Transformation
	4.5.7 Non-functional Properties Transformation
	4.5.8 Notification Transformation

	4.6 Service Management
	4.7 Notification Management
	4.7.1 Architecture
	4.7.2 Polling for Non-supporting Platforms

	4.8 Summary

	5 Prototype
	5.1 Implementation Details
	5.2 Prototype Architecture
	5.2.1 Modules
	5.2.2 Additional Components

	5.3 Supported Platforms
	5.4 XWARE Plugin
	5.5 Limitations

	6 Evaluation
	6.1 Proof of Concept
	6.2 Requirements Evaluation
	6.3 Development Overhead Evaluation
	6.4 Cost Evaluation
	6.4.1 Service Access
	6.4.2 Inter-instance Communication
	6.4.3 Notification Management

	6.5 Discussion

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	Bibliography
	Appendix
	A Configuration Files
	A.1 Plugin
	A.2 Alignment
	A.3 Service Management
	A.4 Notification Management
	A.5 Filters

	B Exemplary XWSDL Files
	B.1 Intermediate XWSDL File
	B.2 BASE XWSDL File

	C Transformation from Subjects to Channels
	D Inter-instance Communication Evaluation Values
	Publications Contained in This Thesis
	Lebenslauf

