
11

A Unified Framework for Frequent Sequence Mining

with Subsequence Constraints

KAUSTUBH BEEDKAR, Technische Universität Berlin

RAINER GEMULLA, Universität Mannheim

WIM MARTENS, Universität Bayreuth

Frequent sequence mining methods often make use of constraints to control which subsequences should

be mined. A variety of such subsequence constraints has been studied in the literature, including length,

gap, span, regular-expression, and hierarchy constraints. In this article, we show that many subsequence

constraints—including and beyond those considered in the literature—can be unified in a single framework.

A unified treatment allows researchers to study jointly many types of subsequence constraints (instead of

each one individually) and helps to improve usability of pattern mining systems for practitioners. In more

detail, we propose a set of simple and intuitive “pattern expressions” to describe subsequence constraints

and explore algorithms for efficiently mining frequent subsequences under such general constraints. Our

algorithms translate pattern expressions to succinct finite-state transducers, which we use as computational

model, and simulate these transducers in a way suitable for frequent sequence mining. Our experimental

study on real-world datasets indicates that our algorithms—although more general—are efficient and, when

used for sequence mining with prior constraints studied in literature, competitive to (and in some cases

superior to) state-of-the-art specialized methods.

CCS Concepts: • Information systems → Data mining;

Additional Key Words and Phrases: Data mining, frequent sequence mining, sequential pattern mining, sub-

sequence constraints, hierarchies, finite-state transducers

ACM Reference format:

Kaustubh Beedkar, Rainer Gemulla, and Wim Martens. 2019. A Unified Framework for Frequent Sequence

Mining with Subsequence Constraints. ACM Trans. Database Syst. 44, 3, Article 11 (May 2019), 42 pages.

https://doi.org/10.1145/3321486

1 INTRODUCTION

Frequent sequence mining (FSM) is a fundamental task in data mining. Frequent sequences are use-
ful for a wide range of applications, including market-basket analysis [43], web usage mining and
session analysis [44], natural language processing [29], information extraction [21, 37], or com-
putational biology [13]. In web usage mining, for example, frequent sequences describe common
behavior across users (e.g., the order in which users visit web pages). As another example, frequent

Authors’ addresses: K. Beedkar, Technische Universität Berlin, Berlin, Germany; email: kaustubh.beedkar@tu-berlin.de;

R. Gemulla, Universität Mannheim, Mannheim, Germany; email: rgemulla@uni-mannheim.de; W. Martens, Universität

Bayreuth, Bayreuth, Germany; email: wim.martens@uni-bayreuth.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2019/05-ART11 $15.00

https://doi.org/10.1145/3321486

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

https://doi.org/10.1145/3321486
mailto:permissions@acm.org
https://doi.org/10.1145/3321486

11:2 K. Beedkar et al.

textual patterns such as “PERSON is married to PERSON ” are indicative of typed relations between
entities and useful for natural-language processing and information extraction tasks [21, 37].

In FSM, we model the available data as a collection of sequences composed of items such as
words (text processing), products (market-basket analysis), or actions and events (session analy-
sis). Often items are arranged in an application-specific hierarchy; e.g., is→be→VERB (for words),
Canon 5D→DSLR camera→electronics (for products), or Rakesh Agrawal→scientist→PERSON (for
entities). The goal of FSM is to discover subsequences or generalized subsequences that occur in
sufficiently many input sequences. Since the total number of such subsequences can potentially be
very large and not all frequent subsequences may be of interest to a particular application, most
FSM methods make use of subsequence constraints to control the set of subsequences to be mined.

A large variety of subsequence constraints has been studied in prior work [9, 10, 23, 33, 39, 40,
43, 50]. Commonly proposed constraints include gap or span constraints, where items in the sub-
sequences need to appear “close” in the input sequence, and length constraints, where the number
of items in the subsequences is bounded. In n-gram mining [12], for example, the goal is to mine
frequent consecutive subsequences of exactly n words. Hierarchy constraints allow controlled gen-
eralization according to the item hierarchy to find patterns that do not directly occur in the input
data. Examples include shopping patterns such as “customers frequently buy some DSLR camera,
then some tripod, then some flash” or textual patterns such as “PERSON be born in LOCATION.”
Regular expression (RE) constraints have also been studied in the context of FSM; here, subsequences
must match a given RE.

A number of specialized algorithms for various combinations of the above subsequence con-
straints have been proposed in the literature. In this work, we focus on the questions of (1) how to
model and express subsequence constraints in a suitable way and (2) how to mine efficiently all fre-
quent sequences that satisfy the given constraints.1 We show that many subsequence constraints—
including and beyond the constraints mentioned above—can be unified in a single framework. A
unified framework offers advantages to both researchers and practitioners. In particular, it allows
researchers to study algorithms and properties of subsequence constraints in general instead of
focusing on certain special cases individually. It also helps to improve usability of pattern min-
ing systems for practitioners: They only need to familiarize themselves with one framework and,
perhaps more importantly, do not need to develop customized mining algorithms for a particu-
lar subsequence constraint of interest. In fact, we propose a number of general-purpose mining
algorithms that operate within our framework. Our experimental study (Section 7) suggests that
our methods are often competitive (and sometimes exponentially more efficient) to state-of-the-art
specialized algorithms for the above-mentioned subsequence constraints.

In more detail, we introduce subsequence predicates to model subsequence constraints in a gen-
eral way, and we propose a simple and intuitive pattern expression language to concisely express
subsequence predicates. Our pattern expressions are based on regular expressions, but—in contrast
to prior work on RE-constrained FSM [40, 47]—target input sequences and support capture groups
and item hierarchies. Capture groups are the key ingredient for expressing most prior subsequence
constraints in a unified way; see Table 1 for examples. Direct support for item hierarchies allows
us both to express subsequence constraints concisely and to mine generalized subsequences in a
controlled way. Some example pattern expressions as well as anecdotal results are given in Table 4.

To mine frequent sequences, we propose to use finite-state transducers (FST) as the underlying
computational model. To the best of our knowledge, FSTs have not been studied in the context of
FSM before. We propose the DESQ system,2 which includes two efficient mining algorithms termed
DESQ-COUNT and DESQ-DFS. Both algorithms translate a given pattern expression to a succinct

1A preliminary version of this article appeared in Reference [11].
2https://www.uni-mannheim.de/dws/research/resources/desq/.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

https://www.uni-mannheim.de/dws/research/resources/desq/

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:3

FST (sFST), which is simulated in a way suitable for frequent sequence mining. DESQ-COUNT
is a match-and-count algorithm that aims at highly selective constraints, whereas DESQ-DFS can
handle more demanding pattern expressions and is inspired by PrefixSpan [39].

Both algorithms heavily rely on efficient sFST simulation. We discuss various optimizations for
sFST simulation, which often improve mining performance substantially. First, we show how sFSTs
can be partially determinized and minimized. Second, we discuss methods that allow us to early-
abort sFST simulation whenever possible and without affecting correctness. Third, we propose a
pruning method that enables us to quickly prune irrelevant input sequences, i.e., input sequences
that cannot affect the mining results. Finally, we propose a two-pass approach to sFST simulation
that additionally avoids unnecessary backtracking and show that the two-pass approach can be
exponentially more efficient than the one-pass approach for certain pattern expressions.

We conducted an experimental study on multiple real-world datasets to investigate the expres-
siveness of our pattern expression language, the efficiency of our mining algorithms, and the ef-
fectiveness of our proposed optimizations. We found that our pattern expressions are sufficiently
powerful to express many subsequence constraints that arise in sequence mining applications.
Our algorithms were generally efficient, and when used for pattern expressions that express prior
subsequence constraints, competitive to—and sometimes more efficient than—state-of-the-art spe-
cialized methods. Our sFST optimizations were effective and significantly improved performance
of our mining algorithms. Our results suggests that DESQ is an efficient general-purpose FSM
framework for wide range of sequence mining tasks.

The remainder of this article is organized as follows. In Section 2, we summarize basic concepts
for FSM and establish the notation used throughout this work. In Section 3, we introduce sub-
sequence predicates and formally define the problem of frequent sequence mining with general
subsequence constraints. In Section 4, we propose our pattern expression language and finite-state
transducers as the underlying computational model. Based on these transducers, we derive algo-
rithms for frequent sequence mining in Section 5. In Section 6, we propose various optimizations
for efficiently simulating finite-state transducers. Section 7 reports on our experimental study and
its results. Section 8 discusses additional related work, and Section 9 concludes the article.

2 PRELIMINARIES

Sequence Databases. A sequence database is a set3 of sequences, denoted D = {T1,T2, . . . ,T |D | }.
Each sequence T = t1t2 . . . t |T | is an ordered list of items from a finite set Σ = {w1,w2, . . . ,w |Σ | }
that we call vocabulary.4 We refer toT as a sequence over Σ. We denote by ε the empty sequence, by
|T | the length of sequenceT , by Σ∗ (resp., Σ+) the set of all (respectively, all non-empty) sequences
that can be constructed from items in Σ. Figure 1(a) shows an example sequence database Dex

consisting of six sequences over Σ = {A,a1,a2,B,b1,b2,b11,b12, c,d, e}.

Item Hierarchy. The items in Σ are arranged in an item hierarchy, which expresses how items
can be generalized (or that they cannot be generalized). Figure 1(b) shows an example hierarchy
in which, for example, item a1 generalizes to item A. In general, we say that an item udirectly

generalizes to an item v , denoted u ⇒ v , if u is a child of v in the hierarchy. We further denote by
⇒∗ the reflexive transitive closure of⇒. For the example of Figure 1(b), we have b11 ⇒ b1, b1 ⇒ B,

3The restriction to sets is for expository reasons. In practice, sequence databases are more accurately abstracted as multisets,

but we chose sets to make our definitions clearer. It is not difficult to generalize our approach from sets to multisets and,

in fact, our implementation uses multisets.
4A more general variant of this setting is often considered in literature, in which sequences are formed of itemsets rather

than individual items. In this article, we focus on the special case of sequences composed of individual items (e.g., textual

data, user sessions, event logs, protein sequences, etc.)

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:4 K. Beedkar et al.

Fig. 1. A sequence database and its vocabulary.

and b11 ⇒∗ B. For each item w ∈ Σ, we denote by

anc(w) = {w ′ | w ⇒∗ w ′ }

the set of ancestors of w (including w) and by

desc(w) = {w ′ | w ′ ⇒∗ w }

the set of descendants ofw (again, includingw). In our running example, we have anc(b1) = {b1,B }
and desc(b1) = {b1,b11,b12 }.

Subsequences. Let S = s1s2 . . . s |S | and T = t1t2 . . . t |T | be two sequences over Σ. We say that S is
a generalized subsequence ofT , denoted S � T , if S can be obtained by deleting and/or generalizing
items in T . More formally, S � T iff there exists integers 1 ≤ i1 < i2 < · · · < i |S | ≤ |T | such that
tik
⇒∗ sk for 1 ≤ k ≤ |S |. Continuing our example, we have cBe � T1, ca1 � T1 and a1c � T1.

3 FSM WITH SUBSEQUENCE CONSTRAINTS

The goal of FSM is to discover subsequences that occur in sufficiently many input sequences. This
problem can be challenging, because the total number of distinct subsequences of one input se-
quence T can be exponential in the length of T . This poses two problems: (1) enumerating or
mining frequent subsequences can be expensive and (2) many of the subsequences may not be
useful to applications. To alleviate these problems, FSM methods have focused on specialized sub-
sequence constraints to control which subsequences should be mined and developed specialized
mining algorithms to improve efficiency. We will tackle a more general and unified problem, which
we define in this section.

Subsequence Constraints. A subsequence constraint describes which subsequences of a given in-
put sequence should be considered for frequent sequence mining. Commonly proposed subse-
quence constraints are summarized in Table 1 and include: gap constraints [33, 43], where items in
the subsequences need to appear “close” in the input sequence; length constraints [50], where the
number of items in the subsequences is bounded; hierarchy constraints [10], where items in the sub-
sequences generalize according to the item hierarchy; and regular expression (RE) constraints [2,
23, 40, 47], where subsequences must match a given RE. In this article, our goal is to provide a
general framework to express subsequence constraints, including and going beyond previously
proposed constraints. Our extensions allow to mix-and-match constraints (e.g., gap-constrained
subsequences that match an RE constraint) or to incorporate context constraints (e.g, frequent
relational phrases between named entities [21]).

Consider the following (admittedly contrived) subsequence constraint. We use it as a running
example to explain the features of our framework.

Example 3.1. Consider our example database Dex of input sequences. Suppose that we are in-
terested in doing the following:

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:5

(1) We only want to consider input sequences t1t2 · · · tn , where (i) n ≥ 3, (ii) t1 is c or d , (iii)
tn is e , and (iv) every ti with 1 < i < n can be generalized to A or B.

(2) From these input sequences, we want to extract the subsequence t2 · · · tn−1.
(3) For each such extracted subsequence, we allow the following generalizations to obtain the

subsequences we are interested in: descendants of A can be generalized arbitrarily (or not
at all), whereas descendants of B must be generalized to B.

Notice that a1B � T1 and AB � T1 satisfy this subsequence constraint, whereas a1b12 � T1 and
a1b1 � T1 do not (because they do not generalize descendants of B to B). Furthermore, a1B � T2

and AB � T2 do not satisfy the context constraint (because T2 does not start with c or d).

The subsequence constraint of Example 3.1 combines (i) a gap constraint (condition 2: subse-
quence is consecutive in input), (ii) hierarchy constraints (conditions 1.iv and 3), and (iii) a context
constraint (conditions 1.ii and 1.iii: subsequence occurs between c or d , and e). Prior methods
(cf. Table 1) cannot handle this constraint: none of the methods supports context constraints, and
methods that do support hierarchies do not support controlled (or enforced) generalizations. Note
that the particular context constraint of Example 3.1 can be implemented using suitable prepro-
cessing; such an approach is not possible in general though.

Subsequence Predicates. We propose subsequence predicates as a general, natural model for sub-
sequence constraints. A subsequence predicate P is a predicate on pairs (S,T), whereT ∈ Σ+ is any
input sequence and S � T is a (generalized) subsequence. Subsequence S � T satisfies the con-
straint when P (S,T) holds. Notice that P involves both the subsequence S and the input sequence
T . We denote by

GP (T) = { S � T | P (S,T) }
the set of P-subsequences inT . For each S ∈ GP (T), we say that S is P-generated byT . For example,
let Pex be the subsequence predicate that expresses the subsequence constraint of Example 3.1,
then GPex (T1) = {a1B,AB} and GPex (T2) = ∅.

Subsequence predicates can encode different application needs, including but not limited to the
various subsequence constraints discussed before. Subsequence predicates can act as a filter on the
set of all subsequences ofT (“onlyA’s and B’s” in Example 3.1), but may also consider the context in
which these subsequences occur (“between c or d and e” in Example 3.1) and whether or not gaps
are allowed (“consecutively” in Example 3.1). For example, we can construct subsequence pred-
icates for generating all n-grams, all adjective-noun pairs, all relational phrases between named
entities, all electronic products, or, in log mining, sequences of items that occur before and/or af-
ter an error item. We propose a suitable way to express a wide range of subsequence predicates in
Section 4.

FSM and Subsequence Predicates. Let P be a subsequence predicate. The P-support SupP (S,D) of
sequence S ∈ Σ+ in sequence database D is the set5 of all sequences in D that P-generate S , i.e.,

SupP (S,D) = {T ∈ D | S ∈ GP (T) }. (1)

The P-frequency of S in D is given by

fP (S,D) = | SupP (S,D) |,
that is, the number of sequencesT in D for which S � T and P (S,T) holds. In our example database,
we have SupPex

(Aa1AB,Dex) = {T3,T6 } and thus fPex (Aa1AB,Dex) = 2. Given a support threshold

σ > 0, we say that a sequence S is P-frequent if fP (S,D) ≥ σ .

5Recall our running assumption that D is a set.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:6 K. Beedkar et al.

Problem Statement 1. Given a sequence database D , a subsequence predicate P , and a support

threshold σ > 0, find all P-frequent sequences S ∈ Σ+ along with their P-frequencies.

The set of all Pex-frequent sequences for σ = 2 in our example database is given by

{AAAB:2,AB:2,Aa1AB:2,a1B:2 },
where we also give P-frequencies.

Discussion. The above definitions are generalizations of the notions of frequency and support
used in traditional frequent sequence mining [1, 39, 51]. Efficient mining of P-frequent sequences
is challenging, because the antimonotonicity property does not hold directly: We cannot generally
deduce from the knowledge that sequence S is P-frequent whether or not any of the subsequences
of S are P-frequent as well. For instance, in our running example, AAAB is frequent but AA is not.
One reason here is the context constraint: There are no sequences in the input database that satisfy
condition (1) from Example 3.1 but only have descendants of A between the first and last symbol.
Nevertheless, our mining algorithms make use of suitable adapted notions of antimonotonicity for
subsequence predicates (Lemma 5.1) and pattern expressions (Lemma 5.2).

4 PATTERN EXPRESSIONS

We propose a pattern language for expressing subsequence predicates in a simple and intuitive
way. Our language is based on regular expressions, but adds features that allow us to unify prior
subsequence constraints (see Table 1) and to express constraints that cannot be handled by prior
methods (see Table 4). We subsequently suggest a computational model based on finite-state trans-
ducers (FSTs), and describe the formal semantics of our language.

4.1 Pattern Language

Our language consists of the following set of pattern expressions, defined inductively:

(1) For each item w ∈ Σ, the expressions w , w=, w ↑, and w ↑= are pattern expressions.
(2) . and .↑ are pattern expressions.
(3) If E is a pattern expression, then so are (E), [E], [E]∗, [E]+, [E]?, and for all n,m ∈ N with

n ≤ m, [E]{n}, [E]{n, }, and [E]{n,m}.
(4) If E1 and E2 are pattern expressions, then so are [E1E2] and [E1 |E2].

Pattern expressions are based on regular expressions but additionally include capture groups

(in parentheses6), hierarchies (by omitting =), and generalizations (using ↑ and ↑=). We make use of
the usual precedence of rules for regular expressions to suppress square brackets (but not paren-
theses); operators that appear earlier in the above definition have higher precedence. We refer to
expressions of form (1) or (2) as item expressions. We writeGE (T) to refer to the set of subsequences
“generated” by expression E on input T (see Section 4.3 for a formal definition).

Captured and Uncaptured Expressions. Pattern expressions specify which subsequences to output
(captured) as well as the context in which these subsequences should occur (uncaptured). We make
use of parentheses to distinguish these two cases; the semantics is similar to the use of capture
groups in regular expressions. Given an expression E, only subexpressions that are enclosed in or
contain a capture group will produce non-empty output; all other subexpressions serve to describe
context information. For example, the pattern expression

Eex = [c |d]([A↑ | B↑=]+)e (2)

6We use round parentheses to denote capture groups, because this is the standard syntax in regex engines.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:7

describes precisely the subsequence constraint of Example 3.1. Here, subexpressions [c |d] and e

describe context and ([A↑ | B↑=]+) output.

Item Expressions. Item expressions are the elementary form of pattern expressions and apply to
one input item. If the item expression “matches” the input item, then it can “produce” an output
item; see Table 2 for an overview. Fix somew ∈ Σ. The most basic item expression isw=: it matches
only itemw and produces either ε (if uncaptured) orw (if captured). Using our example hierarchy of
Figure 1(b), we haveGA= (A) = ∅ (note that we ignore output ε),G (A=) (A) = {A }, andG (A=) (a1) = ∅.
Sometimes we do not want to only match the specified item but also all of its descendants in the
item hierarchy (e.g., we want to match all nouns in text mining). Item expression w serves this
purpose: it matches any item w ′ ∈ desc(w) (which includes w) and, when captured, produces the
item that has been matched. For example, we haveG (A) (A) = {A },G (A) (a1) = { a1 }, andG (A) (b1) =
∅. Our language also provides a wild card symbol “.” to match any item. Again, the matched item
is produced when the wild card is captured. For example, G (.) (A) = {A }, and G (.) (a1) = { a1 }.

To support mining with controlled generalizations (e.g., to mine patterns such as “PERSON

lives in CITY”), we use the generalization operator ↑, which generalizes items along the hierar-
chy. Item expressions that use the generalization operator must be captured. More specifically,
item expression w ↑ matches any item w ′ ∈ desc(w) — as does expression w —, and it produces
either the matched input item or any of its ancestors that is also a descendant of w . For example,
G (B↑) (b12) = {b12,b1,B } and G

(b↑1)
(b12) = {b12,b1 }. We also allow the use of a wild card with gen-

eralization operator: expression “.↑” matches any item and produces each of its generalizations.
For example, G (.↑) (b1) = {b1,B }. Our final item expression is used to enforce a generalization:

w ↑= matches any descendant of w and produces w , independently of which descendant has been
matched. For example G

(B↑=)
(b12) = { B }.

Composite Expressions. Item expressions can be arbitrarily combined using operators ? (option-
ality), ∗ (Kleene star), + (Kleene plus), {n,m} (bounded repetition), | (union), and concatenation
to match (sequences of) more than one input item. The semantics of these compositions is as in
regular expressions.

4.2 Comparison to Regular Expression Constraints

The use of pattern expressions allows DESQ to express many prior subsequence constraints in a
unified way; example pattern expressions for common constraints are shown in Table 1. Pattern
expressions are based on regular expressions but—in contrast to prior work on RE constraints
(e.g., [5, 23, 40, 47])—target input sequences instead of output sequences and support hierarchies
natively.

In more detail, the use of capture groups establishes a single formalism for expressing con-
straints with respect to the input (via uncaptured subexpressions; e.g., consecutive subsequences
as in n-grams or non-consecutive subsequences with bounded gap) and with respect to the output
(via captured subexpressions; e.g., subsequences with bounded length or regular expression con-
straints). For example, pattern expressions use uncaptured wildcards to express gap constraints
(or the absence thereof); e.g., the pattern expressions for regular expression constraints with and
without gaps at the bottom of Table 1 differ only in the use of uncaptured wildcards.

In combination with the use of hierarchies and generalizations, pattern expressions support
many customized subsequence constraints that arise in applications succinctly, including con-
straints that cannot be expressed in prior FSM frameworks. Consider, for example, the task of
mining frequent relational phrases between entities from large text corpora as in Reference [21];
e.g., the phrase make a deal with may be frequent between persons and/or organizations. An FSM

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:8 K. Beedkar et al.

Table 1. Pattern Expressions for Prior Subsequence Constraints

Subsequence constraint Examples Pattern expression

All subsequences [5, 6, 39, 43, 51] [.∗ (.)]+

Bounded length [5, 6, 50] length 3–5 [.∗ (.)]{3, 5}
n-grams [12, 33] 3-, 4-, and 5-grams (.){3, 5}
Bounded gap [5, 6, 33, 50] each gap at most 3 (.)[.{0, 3}(.)]+
Serial episodes [32] length 3, total gap ≤ 2 (.)[.?.?(.) | .?(.).? | (.).?.?](.)

Hierarchy [10, 43] generalized 5-grams (.↑){5}
Regular expression subsequences matching [a |b] c∗d (a |b)[.∗ (c)]∗.∗ (d),

[2, 5, 6, 23, 40, 47] contiguous subsequences
matching [a |b] c∗d

([a |b] c∗d)

To increase readability, we omit a leading and trailing “.∗” from each pattern expression.

algorithm that does not support flexible constraints cannot solve such a task: it cannot be tailored
to consider only relational phrases, thereby producing many uninteresting (i.e., non-relational)
patterns, and it does not support context constraints, thereby producing spurious patterns (i.e.,
patterns that do not connect entities). In contrast, this constraint can be expressed succinctly via
the pattern expression ENTITY (VERB+ DET? NOUN+? PREP?) ENTITY (similar to expression
N1 of Table 4). Here the expression inside the capture group describes relational phrases and the
uncaptured part describes the context in which the phrase must occur (i.e., between two entities).
Table 4 lists other examples, in which pattern expressions concisely describe customized sequence
mining tasks in context of information extraction and natural language processing. For example,
expression N2 describes semantically typed relational phrases as in Reference [37], expression N3

describes copular phrases as in Reference [48], expressionsN4 andN5 are based on the subsequence
constraints used to construct the well-known Googlen-gram corpus [28]. Table 4 also includes pat-
tern expressions (e.g.,A1–A4) that describe customer behavior mining tasks and mining of protein
sequences (e.g., P1–P4) that exhibit a given motif [47].

4.3 Computational Model

We translate patterns expressions into finite-state transducers (FSTs), which are a natural compu-
tational model for pattern expressions. An FST is a type of finite-state machine for string-to-string
translation [34]. FSTs are similar to finite-state automata but additionally label transitions with
output strings. Conceptually, they read an input string and translate it to an output string in a
nondeterministic fashion. We will use FSTs to specify subsequence predicates P (S,T): the predi-
cate holds if the FST can output subsequence S when reading input T .

Finite State Transducers. More formally, we consider a restricted form of FSTs defined as follows.
An FST A is a 5-tuple (Q , qS , QF , Σ, Δ), where

• Q is a finite set of states,
• qS ∈ Q is the initial state,
• QF ⊆ Q is the set of final states,
• Σ is an input and output alphabet, and
• Δ ⊆ Q × (Σ ∪ { ε }) × (Σ ∪ { ε }) ×Q is a transition relation.

For every transition (qfrom, in,out ,qto) ∈ Δ, we require that out ∈ anc(in) ∪ { ε } and that when-
ever in = ε then out = ε . Our notion of FSTs differs from traditional FSTs in that we use a common
input and output alphabet and in that we restrict output labels. The latter restriction ensures
that our FSTs output generalized subsequences of their input (Lemma 4.2). Figure 2(a) shows an

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:9

Fig. 2. FST (a), sFST (b), and minimized sFST (c) for [c |d]([A↑ | B↑=]+)e .

example FST A2(a) (for our running example), where qS = q0, QF = {q11 }, and each transition is
marked with in:out labels. We refer to transitions with in = ε (and thus out = ε) as ε-transitions.
These transitions are marked with ε in the figure.

Runs and Outputs. Let T = t1t2 . . . tn be an input sequence. A run for T is a sequence p =
p1p2 . . .pm of transitions where, for each 1 ≤ i ≤ m, we have that pi = (qi ,wi ,w

′
i ,q
′
i) ∈ Δ, q1 = qS ,

qi+1 = q
′
i , and w1w2 . . .wm = T . (Recall that wi ∈ Σ ∪ { ε }, so that m ≥ n). Intuitively, the FST

starts in state qS and repeatedly selects transitions that are consistent with the next input item.
If qm ∈ QF , then we refer to p as an accepting run. The output O (p) of run p is the sequence
S = w ′1 . . .w

′
m of output labels, where we omit all w ′i with w ′i = ε and set S = ε if all w ′i = ε . The

set of sequences generated by FST A is given by

GA (T) = {O (p) � ε | p is an accepting run of A for T }. (3)

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:10 K. Beedkar et al.

Example 4.1. Consider the FST A2(a) of Figure 2(a). The FST corresponds to the constraint of
Example 3.1. A2(a) has two accepting runs for sequence T1 = ca1b12e , which are given by

p1 = q0
ε−→q1

c :ε−−→q3
ε−→q5

ε−→q6
a1:a1−−−−→q8

ε−→q10
ε−→q5

ε−→q7
b12:B
−−−−→q9

ε−→q10
e :ε−−→q11,

with output O (p1) = a1B, and

p2 = q0
ε−→q1

c :ε−−→q3
ε−→q5

ε−→q6
a1:A
−−−→q8

ε−→q10
ε−→q5

ε−→q7
b12:B
−−−−→q9

ε−→q10
e :ε−−→q11,

with output O (p2) = AB. Thus, GA2(a)
(T1) = { a1B,AB }, as desired. There is no accepting run for

T2, so that GA2(a)
(T2) = ∅. Observe that A2(a) generates precisely the P-sequences of Example 3.1.

The following lemma states that our FSTs generate generalized subsequences of their inputs and
thus specify subsequence predicates. Note that the lemma holds for any run, accepting or not.

Lemma 4.2. Let T ∈ Σ∗ be an input sequence and A be an FST. For any run p of A for T , it holds

that O (p) � T .

Proof. The proof is by induction. For T = ε , the assertion holds, because every run for T must
consist of only ε-transitions so that G (p) = ε � T . Now suppose that the assertion holds for some
sequence T ′ ∈ Σ∗. We show that it then also holds for T = T ′w with w ∈ Σ. Let p be an arbitrary
run for T and let S be the sequence O (p). We decompose p into two sequences of transitions: a
prefixp ′ of a run forT ′ with output S ′ and a suffixpw that readsw and outputs Sw . Note that such a
decomposition is always possible. We have S = S ′Sw . Since p ′ is a run forT ′, we have that S ′ � T ′
by the induction hypothesis. Now observe that pw must contain exactly one transition with input
label w and that all other transitions must be ε-transitions, because otherwise p would not be a
run for T . Let w ′ be the output label of the transition with input label w . Then Sw = w

′. By the
definition of FSTs, we must havew ′ ∈ anc(w) ∪ { ε }, which implies thatw ′ � w . Since S ′ � T ′ and
Sw � w , we obtain S = S ′Sw � T ′w = T . �

Note that not all subsequence predicates can be expressed with FSTs. For instance, there is no
FST for predicate “all subsequences of form a∗b∗ with an equal number of a’s and b’s,” since this
predicate cannot be expressed with a finite number of states. FSTs are a suitable trade-off between
expressiveness and computational complexity, however: they can express many subsequence con-
straints that occur in practice and they lend themselves to efficient mining (see Sections 5 and 7).

Translating Pattern Expression. We now describe how to translate a pattern expression E into

an FST A(E). The FST formally defines the semantics of pattern expressions: We set GE (T)
def
=

GA(E) (T).
Each item expression is translated into a two-state FST withQ = {qS ,qF }, whereqS is the initial

andqF the final state. The transitions of the FST depend on the item expression and are summarized
in Table 2, column “FST.”

The translation rules for composite expressions mirror the classical Thompson construction [46]
for translating regular expressions to finite state automata.7 For example, expression Eex of Equa-
tion (2) translates to the FST of Figure 2(a).

Succinct FST. The translation rules above can produce very large FSTs, especially when the vo-
cabulary is large. For example, if the hierarchy has n items and average depth d , the FST for “(.↑)”
has Θ(nd) transitions. To avoid this explosion of FST size, we define a variant of FSTs that has

7All translation rules can be implemented without introducing any ε -transitions; we follow this approach in our actual

implementation but use ε -transitions in our example FSTs for improved readability.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:11

Table 2. Translation Rules for Item Expressions (Where w,w ′,w ′′ ∈ Σ)

Expr. Matches Captured Produces FST Succinct FST

w= w No ε {qS
w :ε−−−→ qF } {qS

w=:ε−−−−→ qF }
Yes w {qS

w :w−−−→ qF } {qS
w=:w−−−−→ qF }

w w ′ ∈ desc(w) No ε {qS
w ′:ε−−−→ qF | w ′ ∈ desc(w)} {qS

w :ε−−−→ qF }
Yes w ′ {qS

w ′:w ′−−−−→ qF | w ′ ∈ desc(w)} {qS
w :$−−−→ qF }

. w ∈ Σ No ε {qS
w :ε−−−→ qF | w ∈ Σ} {qS

.:ε−−→ qF }
Yes w {qS

w :w−−−→ qF | w ∈ Σ} {qS
.:$−−→ qF }

w ↑ w ′ ∈ desc(w) Yes anc(w ′) {qS
w ′:w ′′−−−−−→ qF | w ′ ∈ desc(w), {qS

w :$-w−−−−−→ qF }
∩ desc(w) w ′′ ∈ anc(w ′) ∩ desc(w)}

.↑ w ∈ Σ Yes anc(w) {qS
w :w ′−−−−→ qF | w ∈ Σ, {qS

.:$-�−−−−→ qF }
w ′ ∈ anc(w)}

w ↑= w ′ ∈ desc(w) Yes w {qS
w ′:w−−−−→ qF | w ′ ∈ desc(w)} {qS

w :w−−−→ qF }

compact representations for the types of transitions that we need for capturing item expressions.
We refer to this variant as succinct FSTs (sFSTs) and summarize their types of transitions in column
“succinct FST” of Table 2. The sFST of an item expression has exactly one transition, but input
and output labels are taken from an alphabet larger than Σ. Each transition in the sFST describes a
set of transitions in the corresponding FST in a concise way. More specifically, sFSTs use as input
labels ., w , and w= for all w ∈ Σ. Here, “.” matches all input items, w matches all items in desc(w),
and w= matches only item w . They use as output labels ε , w , $, $-w, and $-� for w ∈ Σ. Each tran-
sition encodes the set of output labels in the corresponding FST: ε and w are as before, $ encodes
the matched input item, $-w the matched input item and all its ancestors that are descendants of
w , and $-� the matched item and all its ancestors. The sFST translations for composite expressions
remain unmodified.

Figure 2(b) shows the sFSTA2(b) for pattern expression [c |d]([A↑ | B↑=]+)e . Observe that the sFST
has fewer transitions than its non-succinct counterpart of Figure 2(a). Here, we used translation
rules for composite expressions that do not introduce ε-transitions, which in this case further
reduces the number of transitions. We subsequently “minimize” our sFSTs, which further reduce
the number of states and transitions; see Section 6.1. For our running example, we finally obtain
the sFST A2(c) shown in Figure 2(c). The sFSTs corresponding to the pattern expressions of Table 1
are shown in Figure 16 (Appendix A).

Simulating sFSTs. Algorithm 1 shows how to “naively” simulate an sFST A = (Q,qs ,QF , Σ,Δ).
Here the transition function

δ (q,w) = { (out ,qto) | (q, in,out ,qto) ∈ Δ, in matches w }

denotes the set of (output label, state)-pairs that can be reached from state q by consuming input
item w (see column “Matches” in Table 2). Intuitively, we simulate the sFST by starting with the
initial state qS of the sFST (line 2) and repeatedly selecting a transition for which the input label
matches the next input item tpos (line 9). If there are multiple such transitions, then we select them
one by one (via backtracking). As we move from state to state, we append items that are encoded by
the output labels (column “Produces” in Table 2) of the selected transitions to an output buffer (S ,
lines 10–19). As before, if a transition encodes more than one output item, we append them one by

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:12 K. Beedkar et al.

ALGORITHM 1: Naive sFST simulation

Require: sFST A = (Q,qs ,QF , Σ,Δ), T = t1 . . . t |T |
Ensure: GA (T)

1: GA (T) ← ∅ // set of generated sequences

2: Step(qS , 1, ϵ)
3:

4: void Step(q,pos, S): // (current state, input pos., buffer)

5: if q ∈ QF and pos > |T | then

6: if S � ϵ then

7: GA (T) ← GA (T) ∪ { S }
8: return

9: for all (out ,qto) ∈ δ (q, tpos) do // empty if pos > |T |
10: switch (out)
11: case ϵ :

12: Step(qto ,pos + 1, S)
13: case w :

14: Step(qto ,pos + 1, Sw)
15: case $:

16: Step(qto ,pos + 1, Stpos)
17: case $-x for x ∈ Σ ∪ {�}:
18: for all w ′ ∈ anc(tpos) ∩ desc(x) do

19: Step(qto ,pos + 1, Sw ′)

one (again via backtracking, lines 18 and 19).8 To keep notation concise, we define desc(�) = Σ.
If we reach a final state after consuming all input items, then we output the buffer, which then
contains a generated sequence (lines 5–8).

Consider the sequenceT3 = da2a1a2b11e of our example database Dex and the sFST A2(c) of Fig-
ure 2(c). In the first invocation of Step, we have q = q0, tpos = t1 = d , and S = ε . Since δ (q0,d) =
{ (ε,q1) }, we proceed to line 12 and invoke Step with q = q1, tpos = t2 = a2, S = ε . We have
δ (q1,a2) =

{
($-A,q2)

}
, so that we proceed to line 19 and invoke Step with q = q2, tpos = t3 = a1,

and S = a2. After consuming input items a1, a2, and b11 in a similar fashion, we invoke step with
q = q2, tpos = t6 = e , and S = a2a1a2B. Since δ (q2, e) = { (ε,q3) }, we proceed to state q = q3 and
pos = 6 without further modifying the buffer. Finally, since q3 ∈ QF is a final state and we con-
sumed the entire input, we add buffered sequence S = a2a1a2B to the set GA2(c)

(T3) in line 7.

The algorithm then backtracks and generates sequences a2a1AB, a2Aa2B, a2AAB, Aa1a2B, Aa1AB,
AAa2B, and AAAB.

Nondeterminism. Naive sFST simulation involves backtracking when multiple transitions leav-
ing a state match the same input item and/or when a transition has an output label of form $-w
or $-�. The standard way to avoid nondeterminism is to use some form of FST determinization.
Mohri [34] showed that the classical powerset construction algorithm by Rabin and Scott [41]
for non-deterministic finite-state automata (NFA) can be extended to determinize sequential FSTs.
However, this approach does not work out of the box for us, since our FSTs are not sequential. We
discuss this issue in Section 6.

8A more efficient procedure, which reduces repeated computations, would be to append a description of all output items

to buffer S . We do not follow this procedure to allow for efficient mining; see Section 5.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:13

5 PATTERN MINING

We now turn our attention to mining P-frequent sequences from a sequence database. We as-
sume that the subsequence predicate P is described by a sFST A; e.g., the sFST can be obtained by
translating a pattern expression and subsequently minimizing it (cf. Section 6). We propose three
methods for mining P-frequent sequences: Naïve, DESQ-COUNT, and DESQ-DFS.

The naïve approach is to compute all P-generated sequences for each input sequence, count how
often each sequence has been obtained, and output the ones that are frequent. DESQ-COUNT im-
proves on the naïve approach by only generating sequences that do not contain globally infrequent
items. Finally, DESQ-DFS is based on depth-first projection-based methods [39, 40] and is generally
more efficient than DESQ-COUNT when the set of P-generated sequences is large.

5.1 Naïve Approach

The naïve “generate-and-count” approach is to computeGA (T) for each input sequenceT ∈ D via
sFST simulation and count how often each sequence has been generated (cf. Equation (1)). The
naïve approach is generally inefficient, because it considers many globally infrequent sequences.
For example, we obtain

GAex
(T3) = {AAAB,AAa2B,Aa1AB,Aa1a2B,

a2AAB,a2Aa2B,a2a1AB,a2a1a2B}

for input sequence T3, but only AAAB and Aa1AB are P-frequent.

5.2 DESQ-COUNT

DESQ-COUNT reduces the number of sequences that are generated and counted by making use
of item frequencies. In more detail, denote by f (w,D) = |{T ∈ D | w � T }| the frequency of item
w . We say that item w is frequent if f (w,D) ≥ σ . Similar to many prior FSM algorithms, DESQ-
COUNT first generates an f-listF , which contains all items along with their frequencies. For our
example database, we obtain f-list

Fex = {A:6, e:6,B:6,a1:6,d :3,b2:3,b1:2, c:2,b12:1,b11:1,a2:1}. (4)

Note that the f-list is independent of the subsequence constraint and can be precomputed. In
DESQ-COUNT, we make use of the f-list to reduce the size of GA (T). Denote by

GF
A (T) = { S ∈ GA (T) | ∀w ∈ S : f (w,D) ≥ σ }

the subset of generated sequences that do not contain infrequent items. ForT3, we haveGFex

A2(c)
(T3) =

{AAAB,Aa1AB}, which is much smaller than the full set GA2(c)
(T3) given above. DESQ-COUNT

proceeds as the naïve approach, but replaces GA (T) by GF
A (T) for each T ∈ D . Note that we do

not fully compute GA (T) to obtain GF
A (T); see below.

The correctness of DESQ-COUNT is established by Lemma 4.2, which states that FSTs specify
subsequence predicates, and the following observation.

Lemma 5.1. Let P be a subsequence predicate and S ∈ Σ+ be an arbitrary sequence. Then for all

items w ∈ S , f (w,D) ≥ fP (S,D).

Proof. Pick anyw ∈ S and input sequenceT ∈ D such that S ∈ GP (T). Since P is a subsequence
predicate, S � T . Since w ∈ S , we have w � S and thus also w � T . We obtain

fP (S,D) = |{T ∈ D | S ∈ GP (T) }|
≤ |{T ∈ D | w � T }| = f (w,D). �

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:14 K. Beedkar et al.

The lemma implies that P-frequent sequences must be composed of frequent items. We thus can
safely prune all sequences that contain infrequent items from GA (T).

As mentioned above, we directly compute the reduced set GF
A (T) by adapting Algorithm 1 to

work with the f-list. In more detail, we stop exploring a path through the sFST (via Step) as soon
as an infrequent item is produced. To do so, we execute lines 14, 16, and 19 of Algorithm 1 only if
the item appended to the buffer S is frequent.

The pruning performed by DESQ-COUNT can substantially reduce the number of candidate
sequences. DESQ-COUNT is inefficient (and sometimes infeasible), however, if pruning is not suf-
ficiently effective and the sets GF

A (T) are very large. The DESQ-DFS algorithm, which we present
next, targets such cases.

5.3 DESQ-DFS

DESQ -DFS adapts the pattern-growth framework of PrefixSpan [39] to FSTs. Pattern growth meth-
ods arrange the output sequences in a tree, in which each node corresponds to a sequence S and
is associated with a projected database, which consists of the set of input sequences in which S
occurs. Starting with an empty sequence and the full sequence database, the tree is built recur-
sively by performing a series of expansions. In each expansion, a frequent sequence S (of l items) is
expanded to generate sequences (of l + 1 items) with prefix S , their projected databases, and their
supports. In what follows, we describe how we adapt these concepts to mine P-frequent sequences.
The corresponding algorithm for sFSTs is shown as Algorithm 2 and illustrated on our running
example in Figure 3.

Projected Databases. For each sequence S , we store in its projected database the state of the
simulations of A on all input sequences that generate S as a partial output. We refer to such a state
as a snapshot for S . The snapshot concisely describes which items have been consumed, which
state the sFST simulation is in, and which output has been produced so far. In more detail, suppose
that we simulate a sFST A on input sequence T = t1 · · · tn . Consider a partial run p = p1 · · ·pm

consisting ofm ≤ n transitions. We generated output S = O (p) and, under our running assumption
that A does not contain ε-transitions (see Footnote 7), consumed prefix T ′ = t1 · · · tm of T at this
time. If the output item of the last transition pm is not empty (and thus agrees with the last item of
S), then we say that triple T [pos@q] is a snapshot for S , where pos =m + 1 is the position of next
input item and q is the last state in p (that is, the current state of A). The projected database for S
consists of all snapshots for S and is given by

ProjA (S,D) = {T [pos@q] | T ∈ D and T [pos@q] is a snapshot for S on A }.
Figure 3(b) shows some projected databases associated with some sequences for our running ex-
ample. For example, we obtained the partial output a1 only from input sequencesT1,T4, andT6. In
each case, we consumed two items (the next item is at position 3) and ended in state q2. We refer
to the number of input sequences that can generate S as a partial output as the prefix support of S :

PresupA (S,D) = {T | ∃pos,q : T [pos@q] ∈ ProjA (S,D)}.

In our example, PresupA2(c)
(a1,Dex) = {T1,T4,T6 }. Note that even if an input sequence has mul-

tiple snapshots for S , it contributes only once to the prefix support.

Expansions. We now discuss Algorithm 2. We start with root node ε and all snapshots for ε
(lines 1 and 2) and then perform a series of expansions (lines 3 and 10). In each expansion, we scan
the projected database sequentially. For each snapshot T [pos@q] (lines 6 and 7), we resume the
sFST forT at item tpos in state q (via IncStep, lines 12–27). The transducer is stopped as soon as an

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:15

Fig. 3. Illustration of DESQ-DFS for Dex , AF ex , and σ = 2.

output item is produced or the entire input is consumed. In the former case, suppose we produce
item w after consuming k more input items from T and thereby reach state q′. We then add the
new snapshotT [pos+k@q′] to the projected database of child node Sw (lines 22, 24, and 27). In the
latter case, if we end up in a final state (lines 13–15), then we conclude that T ∈ SupA (S,D) (see
below). For example, both snapshots of a1B reach final state q3 by consuming all input items and
without producing further output, so that a1B.Sup = {T1,T4 }.

Pruning. The above expansion procedure allows us to prune partial sequences as soon as it
becomes clear that they cannot be expanded to a P-frequent sequence. We use two pruning tech-
niques. First, as in DESQ-COUNT, we consider item w only if it is frequent; otherwise, we ignore
the new snapshot. For example, when expanding a1, we do not create nodes for sequences that
contain infrequent items; e.g., a1b12 has snapshot T1[4@q2] but contains infrequent item b12 (see
Equation (4)). Second, we expand only those nodes S that have a sufficiently large prefix support—
i.e., PresupA (S,D) ≥ σ—and stop as soon as there is no such node anymore. For example, we do
not expand node a1a1, because it contains only one snapshot, but we require snapshots from at
least σ = 2 different input sequences.

Correctness. Note that the size of the prefix support is monotonically decreasing as we go down
the tree but always stays at least as large as the support. This property, which we establish next,
is key to the correctness of DESQ-DFS.

Lemma 5.2. For every sequence S ∈ Σ∗ and item w ∈ Σ, we have PresupA (Sw,D) ⊆
PresupA (S,D).

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:16 K. Beedkar et al.

ALGORITHM 2: DESQ-DFS

Require: D , sFST A = (Q,qS ,QF , Σ,Δ), σ , f-list F
Ensure: P-frequent sequences for A in D

1: S ← ϵ // create root node; initially fields S .Proj = S .Sup = ∅
2: S .Proj← {T1[1@qS], . . . ,T |D |[1@qS]

}
3: Expand(S)
4:

5: void Expand(S):
6: for all T [pos@q] ∈ S .Proj do // simulate sFST for all snapshots

7: IncStep(T ,pos,q, S)
8: if |S .Sup| ≥ σ then yield (S ,|S .Sup|) // Output if P-frequent

9: for all S ′ ∈ S .Children do // expand if prefix support large enough

10: if |{T | ∃pos,q : T [pos@q] ∈ S .Proj
} | ≥ σ then Expand(S ′)

11:

12: void IncStep(T ,pos,q, S): // simulate until an item is produced

13: if q ∈ QF and pos > |T | then

14: if S � ϵ then

15: S .Sup← S .Sup∪ {T } // initially empty

16: return

17: for all (out ,qto) ∈ δ (q, tpos) do

18: switch (out)
19: case ϵ :

20: IncStep(T ,pos+1,qto , S)
21: case w :

22: if f (w,D) ≥ σ then Append(S , w , T , pos+1, qto)
23: case $:

24: if f (tpos ,D) ≥ σ then Append(S , tpos , T , pos+1, qto)
25: case $-x ,x ∈ Σ ∪ { � }:
26: for all w ′ ∈ anc(tpos) ∩ desc(x) do

27: if f (w ′,D) ≥ σ then Append(S , w ′, T , pos+1, qto)
28:

29: void Append(S,w,T ,pos,q):
30: S .Children← S .Children∪ { Sw } // node Sw is created if new

31: Sw .Proj← Sw .Proj∪ {T [pos@q]
}

// initially empty

Proof. Pick any S ∈ Σ∗,w ∈ Σ, andT = t1 · · · tn ∈ D withT ∈ PresupA (Sw,D). Then there ex-
ists a run p = p1 · · ·pm for prefix T ′ = t1 · · · tm and some m ≤ n such that O (p) = Sw . Recall that
inputs (outputs) are consumed (generated) from left to right. We conclude that there exists some
m′ < m such that run p ′ = p1 · · ·pm′ satisfies O (p ′) = S . Pick the shortest such run; then pm′ out-
puts the last item of S . Sincep ′ is additionally a run for t1 · · · tm′ , which is a prefix ofT , we conclude
that T ∈ PresupA (S,D). �

We now establish the correctness of DESQ-DFS.

Theorem 5.3. DESQ-DFS outputs each P-frequent sequence S ∈ Σ+ with frequency fP (S,D). No

other sequences are output.

Proof. Let A = (Q,qS ,QF , Σ,Δ) be a sFST and pick any sequence S ∈ Σ+. We start with
showing that Algorithm 2 correctly computes the P-support of S when expanding node S , i.e.,

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:17

S .Sup = SupA (S,D) after the expansion. First pick any T ∈ Sup(S,D) with T = t1 · · · tn . Then
there is an accepting runp = p1 · · ·pn forT . By arguments as in the proof of Lemma 5.2, there must
be a smallest runp ′ = p1 · · ·pm ,m ≤ n, such thatO (p ′) = S as well. Let qm (qn) be the state reached
in transition pm (pn). We conclude that snapshot T [pos@qm] ∈ ProjA (S,D), where pos =m + 1,
and thus T ∈ Presup(S,D). Since by definition pm+1 · · ·pn must output ε , Algorithm 2 follows
transitions pm+1 · · ·pn without stopping when resuming snapshot T [pos@qm]. By doing so, it
consumes all the remaining items tm+1 · · · tn ofT and reaches final state qn . It thus includesT into
S .Sup (lines 13–15). Now pick T � SupA (S,D). Since there is no accepting run for T , Algorithm 2
cannot reach a final state after consuming T so that it does not include T into S .Sup. Putting
both together, S .Sup = SupA (S,D) after expanding S , as desired. We conclude that Algorithm 2
computes the correct frequency fP (S,D) = | SupA (S,D) |. Therefore, S is output only if it is
P-frequent (line 8). Note that for S = ε , we have ε .Sup = ∅ (see line 13) so that ε is not output.

Let S ∈ Σ+ be a P-frequent sequence. It remains to show that Algorithm 2 reaches and expands
node S . First observe that for any prefix S ′ of S , we have

Presup(S ′,D) ⊇ Presup(S,D) ⊇ Sup(S,D).

Here the first inclusion follows from Lemma 5.2, and the second inclusion follows from the above
arguments. Since S is P-frequent, we have | Sup(S,D) | ≥ σ , which implies | Presup(S ′,D) | ≥ σ .
Since every node on the path from ε to S corresponds to a prefix of S , Algorithm 2 does not prune
any of these nodes due to too low prefix support (line 10). To complete the proof, recall that S
cannot contain an infrequent item by Lemma 5.1. Thus, none of the nodes on the path from ε to S
are pruned due to too low item frequency either (lines 22, 24, or 27). We conclude that Algorithm 2
reaches and expands node S . �

To improve efficiency, our actual implementation of Algorithm 2 does not explicitly compute
supports and prefix supports but directly counts their sizes.

6 OPTIMIZATIONS

sFST simulation forms the basis of our mining algorithms discussed above. In this section, we
discuss four optimizations for sFST simulation, which we also implemented for our experiments in
Section 7. In Section 6.1, we explain how we partially determinize sFSTs to reduce backtracking and
to reduce the number of states and transitions. In Section 6.2, we present a technique that enables
us to detect and stop early runs that provably accept without producing further output, no matter
which input items are still unread. In Section 6.3, we propose a pruning method that enables us to
prune irrelevant input sequences during mining, i.e., input sequences for which the simulation is
guaranteed to have no accepting run. Finally, in Section 6.4, we propose a two-pass approach that
prunes irrelevant input sequences and further removes unnecessary nondeterminism by avoiding
transitions leading to non-accepting runs.

All of our optimizations involve algorithms that take worst-case exponential time in the size
of the FST A (but not in the size of the sequence database). At least for the pattern expressions
considered in our experiments, the methods proposed here did not suffer from such exponential
blow-up and, in fact, led to greatly improved overall running times.

6.1 Determinizing and Minimizing sFSTs

The naive sFST simulation algorithm in Section 4.3 (Algorithm 1) has some obvious optimization
potentials. The first is to try to reduce nondeterminism in the sFST before simulation to avoid
backtracking, which can be very costly. Mohri [34] studied FST determinization and showed that
the classical powerset construction for non-deterministic finite-state automata (NFA) [41] can be

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:18 K. Beedkar et al.

Fig. 4. Minimizing sFST for expression (Ab1 |Ac).

extended to determinize sequential FSTs. Here, an FST is sequential if for each input there is at most
one output. Unfortunately, this algorithm cannot be used naively, because the transformations
expressed by our pattern expressions (and therefore also our sFSTs) are not sequential in general.

An orthogonal way to reduce nondeterminism is to delay some of the output. More precisely,
an FST is p-subsequential if there are at most p outputs per input. For p-sequential transducers, it
is possible to delay output until after the input has been consumed entirely, thus avoiding nonde-
terminism and backtracking. However, our FSTs are often even not p-subsequential. For example,
the number of outputs for expression [.∗ (.)]+ (all subsequences) is exponential in the input size
and thus not bounded by a constant p. Furthermore, delaying the output prevents us from doing
other optimizations (as in DESQ-DFS, in particular). For these reasons, avoiding nondeterminism
without limiting our pattern language is challenging.

We therefore apply a simple strategy that can remove much of the nondeterminism. A bonus
is that the technique also allows us to eliminate unnecessary sFST states and, therefore, to “min-
imize” the sFST (according to a criterion that we make clear later). Observe that FSTs are iso-
morphic to NFAs if we treat input and output labels as atomic labels, that is, instead of having
transitions (qf rom , in,out ,qto) ∈ Δ, we just consider the NFA with transitions (qfrom, in:out ,qto)
and treat in:out as a single symbol. Denote by N (A) the NFA obtained from sFST A in such a way.
We partially determinize and minimize A by determinizing and minimizing N (A).

In principle, we can apply any NFA minimization algorithm to minimize N (A). We imple-
mented Brzozowski’s [15] algorithm, because it is simple and was empirically shown to be very
fast on NFAs in practice, especially when the alphabet is large [4]. Figure 4 illustrates such an
application of Brzozowski’s algorithm to an sFST A for pattern expression (Ab1 |Ac). We start
with A (Figure 4(a)) and construct a reverse sFST R (A) (Figure 4(b)) by (i) reversing the direction
of the transitions of A, and (ii) swapping initial and final states. We then obtain the sFST D (R (A))
(Figure 4(c)) by applying the powerset construction algorithm for converting NFAs to DFAs
on N (R (A)). We then repeat the process one more time (Figures 4(d) and 4(e)) to obtain the
minimized sFST (Figure 4(e)).

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:19

Fig. 5. Example sFST A5 with a final-complete annotation (shown in gray).

The above minimization also helps to reduce nondeterminism in cases when a state has two
transitions with the same input and output label. Consider for example input sequence T = a1c .
When we simulate the sFST of Figure 4(a), we have δ (q0,a1) = { (a1,q1), (a1,q2) } so that sFST
simulation tries both options via backtracking. However, for the minimized sFST of Figure 4(e),
we have δ (q0,a1) = { (a1,q1) } and thus simulation avoids any backtracking.

Note that the algorithm does not always result in a minimal sFST as it is limited by treating input
and output labels as atomic labels. Instead, it computes an sFST that is isomorphic to the minimal
DFA for the language with atomic labels. The sFST in question can still have some nondeterminism,
because, for instance, the two labels .:$ andb1= :b1 are different in the DFA but in the sFST they both
match the input item b1. Indeed, the sFST A5 in Figure 5 is nondeterministic even though N (A5)
is deterministic. In principle, the resulting sFST can be optimized even more by concatenating
successive output labels as in classical FST minimization [35], but we do not explore this direction
further.

We conclude with a note on complexity. Any algorithm that computes a minimal DFA from
a given NFA has an unavoidable exponential blow-up in the worst case [24, Section 2.3.6]. Br-
zozowski’s minimization algorithm on an NFA also runs in (single) exponential time. First, the
computation of D (R (N (A))) is in exponential time and generates an automaton exponential in
|R (N (A)) |. However, there is no double exponential blow-up. Since we implement the compu-
tation of D (R (D (R (N (A))))) such that only reachable states are considered, and since the final
output is the minimal DFA for N (A), which is single exponential in |N (A) | the total output size
is indeed single exponential in |N (A) |.

It is difficult to avoid the worst-case exponential blow-up upon determinization. Typical classes
of languages for which the translation from NFA to DFA can have an exponential blow-up are
defined by (a |b)∗a(a |b)n or by (a |b)∗a(a |b)nb (a |b)∗ (with parametern). The former class tests if the
n + 1st symbol from the right is an a. The latter class tests if the sequence has an a somewhere, such
thatn + 1 positions later, there is ab. Each such expression has an equivalent NFA with Θ(n) states,

but the minimal DFA requires 2Θ(n) states. However, for typical pattern expressions we have seen
in frequent sequence mining (see Table 1 and Appendix A), we did not notice a significant blow-up.

In principle, one can try to avoid such a worst-case blow-up by imposing some kind of deter-
minism constraint already on pattern expressions. But this does not solve the problem, for various
reasons. First, the exponential blow-up is only avoided, because the expressions themselves can
become exponentially larger. Second, and more seriously, the literature on determinism in ordi-
nary regular expressions tells us that the determinism constraints restrict the expressiveness of
regular expressions [14, 17], to such an extent that it breaks closure properties that make regu-
lar languages convenient to work with [30] (e.g., union, intersection, complement). Since we did
not observe a major practical disadvantage in our experiments by allowing non-determinism, we
decided that having a worst-case exponential blow-up was the lesser disadvantage.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:20 K. Beedkar et al.

6.2 Final-Complete Annotations

The simulation algorithm (Algorithm 1) generates output(s) only when the entire input sequence
is matched. We noticed that this often results in overhead of processing input items that do not
affect the final output(s) for accepting runs. To see this, consider the sFST A5 shown in Figure 5
and the input sequence

Tex = e d a1 c b1 c d c b2.

Tex has one accepting run

q0
e :ε−−→q0

d :ε−−→q0
a1:ε
−−−→q0

c :ε−−→q1
b1:b1−−−−→q3

c :ε−−→q3
d :ε−−→q3

c :ε−−→q3
b2:ε
−−−→q3

with outputb1. Observe that the input items in the prefix e d a1 and suffix c d c b2 ofTex do not affect
the final output produced by the accepting run. This overhead of processing prefixes and suffixes
that do not affect the final output is also incurred when we are interested in partially matching a
pattern expression, i.e., when pattern expressions are of the form .∗E.∗ or .∗E, or E.∗.

In an sFST, we want to identify which final states are such that every suffix of the input is
accepted and no more output can be produced. More formally, we call a final state q ∈ QF final-

complete if the following two conditions are satisfied:

(1) the sub-sFST with initial state q accepts every sequence S ∈ Σ∗, and
(2) no transitions that produce an output can be reached from q.

For example, sFST A5 has final-complete state q3, which we mark in gray. Final state q4 is not final-
complete, since it violates both conditions. Final state q2 satisfies the first condition—i.e., accepts

.∗—but has a reachable transition q2
.:$−−→ q4 producing an output and therefore violating the second

condition.
We make use of the final-complete annotations during sFST simulation as follows. Whenever

we reach a final-complete state, we add the output buffered so far to GA (T), whether or not the
entire input has been consumed. In more detail, line 5 of Algorithm 1 (and line 13 of Algorithm 2)
changes to

5: if (q ∈ QF and pos > |T |) or (q is final-complete).

In our running example, we can safely abort the run for Tex after reaching final-complete state
q3, which avoids processing suffix eb1a1d . This approach short-circuits unnecessary processing
of input items that will not affect the produced output for accepting runs. This is useful for our
mining algorithms as we can safely avoid scanning to the end.

We now turn attention to how to determine the set of final-complete states. We consider each
final state in turn. Given a final state q, condition (2) is easily verified by, say, depth-first search
starting from q. Condition (1) is more challenging to verify: The problem of deciding whether the
sub-sFST starting at state q accepts all inputs is equivalent to the problem of deciding whether
a given NFA (obtained from the FST by dropping all output labels) accepts all inputs, which is a
PSPACE-complete problem [45]. Instead, we only perform a test that is sound, but may be incom-
plete. More precisely, we consider the sub-sFST that hasq as its starting state, and we only consider
the transitions labeled .:ε . Notice that this sub-sFST can be seen as an NFA over the unary alphabet
{ . } (by ignoring the output). We then determinize this NFA via the powerset construction and test
if the resulting DFA accepts every word over the alphabet { . }. This happens if and only if the
DFA has no reachable non-final state. This condition is easy to test, since the DFA is over a unary

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:21

Fig. 6. DFA Ad
5 corresponding to sFST A5. Final-complete states are shown in gray.

alphabet, i.e., its set of reachable states form a chain with a single backloop at the end. Note that
this algorithm has worst-case exponential runtime due to determinization.9

Note that final-complete annotations described above only help to avoid processing of suffixes
that do not affect the final output of accepting runs. In Section 6.4, we show how we leverage
final-complete annotations to also avoid repeated processing of certain “unnecessary” prefixes.

6.3 Pruning Irrelevant Input Sequences

We now discuss a pruning technique, which allows us to prune input sequences that are guaranteed
to have no accepting runs. More formally, we say that an input sequence T is A-relevant for an
sFST A if there is at least one accepting run forT . Similarly, we say theT is A-irrelevant if there is
no accepting run forT in A. For example, sequenceTex is A5-relevant, whereasT = a1 c b2 c d c b2

is A5-irrelevant.10 sFST simulation on A-irrelevant input sequences never reaches a final state and
leads to wasted computation of partial output sequences. Thus, pruning such input sequences can
significantly improve overall efficiency of our mining algorithms.

We quickly determine whether or not an input sequence T is A-relevant via a DFA Ad that ac-
ceptsT if and only if it is A-relevant. As mentioned earlier, FSTs are similar to finite-state automata
but transitions are additionally labeled with outputs. Denote by Nin (A) the NFA obtained from
the canonical (non-succinct) FST for A by dropping all output labels. By construction, Nin (A) ac-
cepts an input sequence T if and only if A has an accepting run for T . We convert Nin (A) to an

equivalent DFA Ad def
= D (Nin (A)). Given this DFA, we can determine in linear time whether or

not an input sequence is relevant. In practice, we construct Ad directly from A instead of from
Nin (A) by adapting the subset construction algorithm to sFSTs.

Figure 6 shows the DFA Ad
5 corresponding to sFST A5. Observe that Ad

5 will reject the input
sequenceT = a1 c b2 c d c b2 (which can thus be safely pruned during mining), whereas it will cor-
rectly accept the sequence Tex .

In our running example, the DFA only has six states. In general, the number of DFA states
can grow exponentially with the number of sFST states. Although in our experimental study the
DFA construction worked well for most pattern expressions used there, our implementation also
supports lazy DFA construction for situations where the exponential blow-up is unavoidable. Also
note that the DFA is not succinct, which imposes additional memory overhead. In particular, item
expressions that match many inputs produce many DFA transitions (e.g., . or w when desc(w) is

9And there is little hope to do better: The problem of deciding whether an NFA over a unary alphabet accepts every word

is coNP-complete [45]. As before, we do not expect to see worst-case behavior in practice.
10Cf. Equation (3). GA (T) = ∅ does not necessarily imply that T is A-irrelevant; this can happen when A has an accepting

run with ε output.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:22 K. Beedkar et al.

Fig. 7. Runs for input sequence Tex = e d a1 c b1c d c b2 on sFST A5.

large). Our implementation uses a number of engineering tricks to reduce the memory footprint;
e.g., handling . specially, using bitmap indexes, or sharing data and index structures between DFA
states to the extent possible.

The final-complete annotations described in the previous section also improve DFA construc-
tion and its simulation. During DFA construction, we can ignore all outgoing transitions of final-
complete states, and mark a DFA state as final-complete if any of its corresponding sFST states
is final-complete (cf. Figure 6). Final-complete annotations in the DFA enable us to stop a DFA
simulation early: the DFA accepts an input sequence if it reaches a final state upon consuming the
entire input or if it reaches a final-complete state (even when the input is not entirely consumed).
For example, we can determine the A5-relevance of Tex as soon as we reach state qd

013 of Ad
5 ; we

thus do not need to process suffix c d c b2d .
We integrate pruning A-irrelevant sequences into DESQ-COUNT and DESQ-DFS by only con-

sidering A-relevant input sequences; all other input sequences are pruned upfront. The algorithms
remain unmodified otherwise. Pruning A-irrelevant sequences is beneficial if the sequence data-
base contains many A-irrelevant sequences. In the worst case, when all input sequences are A-
relevant, nothing is pruned and DFA simulation leads to additional overhead. Moreover, even when
an input sequence is A-relevant, sFST simulation may still involve unnecessary backtracking, i.e.,
it may still process non-accepting runs. In the next section, we propose a two-pass approach that
prunes A-irrelevant input sequences and additionally avoids processing non-accepting runs.

6.4 Two-Pass Approach

The naive sFST simulation involves backtracking whenever multiple transitions leaving a state
match the same input item or when a transition has an output label of the form $-w or $-�. While
we try to avoid backtracking whenever possible, we feel that it is acceptable when each backtrack-
ing procedure is useful for producing an output sequence. For example, recall the sFST simulation
example at the end of Section 4.3, where simulating sFST A2(c) of Figure 2(c) on sequence T3 of
our example database involved backtracking to generate all output sequences. In this example,
there was no “unnecessary” backtracking in the sense that it always led to an accepting run. But
this is not always the case. For example, simulating sFST A5 on input sequenceTex involves back-
tracking from non-accepting runs. Figure 7 illustrates all runs forTex , arranged in a trie. Here, the

transitions q0
c :ε−−→q0 and q1

b1:b1−−−−→q1 (marked with “x”) lead to four non-accepting runs. Such back-
tracking leads to wasted computation; we therefore want to avoid it. In what follows, we propose a

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:23

Fig. 8. Reverse sFST R (A5) corresponding to sFST A5.

two-pass approach that completely avoids transitions leading to non-accepting runs and therefore
also avoids such backtracking.

Consider an input sequenceT = t1 . . . t |T | . The key idea in the two-pass approach is to efficiently
precompute (before sFST simulation) sets Q1, . . . ,Q |T | of FST states such that, for each 1 ≤ pos ≤
|T | and each q ∈ Qpos , the suffix tpos+1 . . . t |T | is accepted by A if it starts in state q. We make use
of this information during simulation to only select transitions that lead to accepting runs.

More precisely, let A be an sFST and denote by R (T) = t |T | . . . t1 the reverse of input sequence
T . Similarly, denote by R (A) the sFST obtained from A by reversing all transitions, i.e., replacing
every transition (qfrom, in,out ,qto) by (qto , in,out ,qfrom) and swapping initial and final states. For
example, Figure 8 shows R (A5). Here q2,q3,q4 are the initial states and q0 is the final state. For a
given R (A) and R (T), we have

GR (A) (R (T)) = { R (S) | S ∈ GA (T) },

i.e., the reverse sFST will produce all outputs in reverse. Further, consider an accepting run p
for output sequence S = s1 . . . s |S | ∈ GA (T). Consider the prefix of the run that consumes input
t1, . . . , tpos ; up to this time, we generated partial output s1 . . . spos ′ , and the last transition has form
(q′, tpos ,out ,q). Now consider R (A), R (T) and the reverse run R (p). After consuming partial input
t |T | . . . tpos+1, the reverse run has generated partial output s |S | . . . spos ′+1 and also reaches state q,
ending with a transition of form (q′′, tpos+1,out ,q).

We make use of the above observation in the two-pass approach as follows. Denote by δ ′(q,w)
the set of states in R (A) than can be reached from state q by consuming item w :

δ ′(q,w) = {qfrom | (qfrom, in,out ,q) ∈ Δ, in matches w }, (5)

where Δ is the set of transitions of A. We make two passes over an input sequence T . In the first
pass, we read R (T) and incrementally compute the sets Q |T |, . . . ,Q1,Q0 where, for every |T | ≥
pos ≥ 1, we have

Q |T | = QF

Qpos−1 =
⋃

q∈Qpos

δ ′(q, tpos). (6)

Intuitively, for each state q ∈ Qpos , there exists a path in R (A) from some state in QF to q for the
partial input t |T | . . . tpos+1. (Equivalently, there exists a path from state q to a final state in A for
the partial input tpos+1 . . . t |T | .) Moreover, if qS � Q0, then there exists no accepting run for R (T)
in R (A) and consequently T is A-irrelevant.

The second pass consists of a simulation of A on T that avoids runs that do not lead to accep-
tance. The central idea is the following. Consider an arbitrary partial run of A on a prefix t1 · · · tpos

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:24 K. Beedkar et al.

Fig. 9. Reverse DFA corresponding to sFST A5.

of input T , ending in state q. Then we have

q ∈ Qpos ⇐⇒ there exists an accepting run q0q1 · · ·q |T | of A on T with qpos = q. (7)

Therefore, when we simulate A onT , we will only consider runs in which all states belong to one
of the sets Qpos .

Before we explain our implementation of the algorithm, we illustrate the main idea of the two-
pass approach on input sequence Tex and sFST A5. The following table illustrates the sets Qpos

computed for each tpos (ignore the last row qd
pos for now). Since q0 ∈ Q0, we know that Tex is

relevant.

pos 0 1 2 3 4 5 6 7 8 9

tpos − e d a1 c b1 c d c b2

Qpos {q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q1,q2,
q3}

{q2,q3} {q2,q3} {q2,q3} {q2,q3} {q2,q3,
q4}

qd
pos qd

0123 qd
0123 qd

0123 qd
0123 qd

123 qd
23 qd

23 qd
23 qd

23 qd
234

The second pass of the algorithm consists of simulating A5, while avoiding states not in the sets
Qpos for tpos . For example, if after consuming eda1, we are at state q0, the automaton A5 can go
to states q0 and q1 when reading the next (fourth) item c . But since q0 � Q4, we can safely avoid

the transition q0
c :ε−−→ q0 and immediately move to state q1 ∈ Q4. For the next input item b1, we

can avoid transition q1
c :ε−−→ q1, since q1 � Q5. Figure 7 illustrates various runs for Tex on A5. The

two-pass approach avoids the transitions marked with “x” as desired.

6.4.1 Implementation. We now explain how we implement the two-pass algorithm. In the first
pass, instead of computing the sets Q |T |, . . . ,Q1,Q0 directly using R (A) and Equation 6, we make
use of a reverse DFA, i.e., a DFA obtained from R (A). As the reverse FST, the reverse DFA processes
the input sequence in reverse order. In contrast to the reverse FST, the DFA allows us to process
each input item in constant time in this pass (since we do not need to construct output).

Figure 9 shows the reverse DFA corresponding to sFST R (A5) shown in Figure 8. Each DFA state
is annotated with the set of states of the FST R (A) (and thus also A) to which it corresponds; in
the figure, these states are given as subscripts. For R (Tex), the sequence of DFA states is

qd
0123

e←− qd
0123

d←− qd
0123

a1←−− qd
0123

c←− qd
123

b1←−− qd
23

c←− qd
23

d←− qd
23

c←− qd
23

b2←−− qd
234.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:25

By construction, when we simulate the DFA backwards and reach state qd
pos after consuming

t |T | . . . tpos+1, the set Qpos is directly given by the set of FST states corresponding to qpos . Thus, to
determine the sets Q |T |, . . . ,Q1,Q0, it suffices to run the reverse DFA and record its sequence of
states.

If the reverse DFA does not accept R (T), then we know that T is not relevant and we can im-
mediately abort. Otherwise, we proceed to the second pass, which is the simulation of A on T ,
using only states inQpos . The implementation of the second pass is then straightforward: It essen-
tially consists of Algorithm 1 with one change: In line 9, we additionally test whether qto ∈ Qpos+1

(stored as an annotation of the corresponding DFA state) and ignore the transition if so.
In our actual implementation, we also leverage final-complete annotations in the two-pass ap-

proach to avoid simulating A on the entire input sequence. In particular, such annotations in the
reverse DFA allow us to determine suffixes in R (T), and thereby prefixes in T , that do not affect
the output; these prefixes are ignored in the second pass. We also use final-complete annotations
in A (as described in Section 6.2) to avoid processing suffixes in T that do affect the output.

6.4.2 Worst-Case Runtime of Two-Pass Approach. To shed some light on the potential improve-
ments that the two-pass approach offers, we would like to investigate the worst-case runtime of
computing,

GA (T) = {O (p) � ε | p is an accepting run of A for T },
with the two-pass approach. Recall that this set is directly used in the DESQ-COUNT algorithm;
any improved running time here thus directly translates to an improved running time of DESQ-
COUNT. We consider data complexity throughout, i.e., we treat the FST A and the hierarchy Σ as
constants (so that, for example, the construction of D (R (A)) takes constant time).

Naive sFST simulation computesGA (T) by iterating through all (accepting) runs of A onT , that
is, it implicitly computes

G ′A (T) = {(O (p),p) | p is is an accepting run of A for T }.
That is, it iterates through all accepting runs and, for each such run, addsO (p) to the output if it is
not empty and not in the output already. Algorithm 1 may require exponential time in |T | between
discovering two consecutive elements in G ′A (T), i.e., between two consecutive times it reaches
line 7. We provide an example where Algorithm 1 considers exponentially many partial runs that
turn out to be useless. Assume an item hierarchy with items {a1, . . . ,an } that generalize to A and
likewise for {b1, . . . ,bn } and B. Then, if Algorithm 1 has the input sequence T = a1b1 · · ·anbnc
and an sFST for the pattern expression [.∗ (A).∗]∗c | [.∗ (B).∗]∗d , it will consider 2Θ(n) many partial
runs that capture the bi , but none of them lead to acceptance, since T does not end with d .11 We
will prove that the two-pass approach successfully avoids such exponential computations. More
precisely, it can enumerate the elements ofG ′A (T) in linear delay, i.e., it can compute a first element
inG ′A (T) in timeO (|T |) and, from there on, we can always compute a new elementG ′A (T) in time
O (|T |) or conclude that no such element exists. The total time to produce all accepting runs is thus
O (|T | |G ′A (T) |), where |G ′A (T) | corresponds to the number of accepting runs.

The backward pass simply consists of running D (R (A)) once over R (T). This pass only needs to
be performed once and costs timeO (|T |). (Given a DFA stateqd and an itemw , our implementation
precomputes the DFA transition function δ (qd ,w) that returns the next DFA state in constant time.)
As a result, we obtain the sequence of sets Q0 · · ·Q |T | , where qS ∈ Q0 if G ′A (T) is non-empty.

11Similar examples can also be constructed without item hierarchies; or where the reason why exponentially many partial

runs are unsuccessful is in the middle of T instead of at the end.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:26 K. Beedkar et al.

The forward pass then simulates A on T , taking into account the sets Qi . That is, if we are in a
state fromQi and read input item ti+1, we only consider states fromQi+1. From here on, we essen-
tially perform Algorithm 1, where in line 9, we additionally test if qto ∈ Qpos+1. By performing this
change only, the algorithm will implicitly enumerateG ′A (T): Every execution of line 6 corresponds
to a new accepting run. We can computeG ′A (T) by maintaining in Algorithm 1 the current partial
run r of A. This partial run is easy to maintain, because it is the sequence of states q for which
Step(q,pos, S) has been invoked on the recursion stack. In line 6, the algorithm would find a new
element (O (r), r) ∈ G ′A (T).

From the correctness of Algorithm 1, it immediately follows that the just described algorithm
computes G ′A (T). (It computes exactly the same elements of GA (T) as before, but now we output
on line 6 each S together with the run in which S was obtained.)

We now argue that the time between two consecutive outputs is at most O (|T |), thereby estab-
lishing linear delay. Indeed, after the algorithm produced an output, it backtracks until it discovers

(1) in line 9, a next (out ,qto)-pair with qto ∈ Qpos+1, or
(2) in line 18, a next output w ′ ∈ anc(tpos) ∩ desc(x), or
(3) that there are no additional accepting runs.

This takes time at mostO (|T |). If the algorithm finds another pair or output (conditions (1) and (2)
above), then it resumes the forward recursion. Since it only calls Step using states qto ∈ Qpos+1, it
does not need to backtrack again until it produces the next output (r , S); every call to Step leads to
an accepting run. Each test in condition (1) and (2) takes O (1) time under our assumption that A
and Σ are constants (since all required sets can be precomputed in constant time). The total time
between outputs is therefore O (|T |), since the algorithm has at most |T | calls on the recursion
stack. By a similar argument, the first output can also be produced in time O (|T |).

Theorem 6.1. Assuming that the sFST A and the dictionary Σ have constant size, the elements of

G ′A (T) can be enumerated, without repetitions, with O (|T |) delay.

We conclude with a note explaining why the two-pass approach does not compute GA (T) in
linear delay. Assume thatT = a2n (a length 2n sequence only consisting of a’s) and A is an FST for
the pattern expression [.∗ (a).∗]{n}. In this case, GA (T) = {an }, but the number of accepting runs

of the FST on T is in 2Θ(n log n) .12

6.4.3 Integration in the Mining Algorithms. We now discuss how to integrate the two-pass ap-
proach into our mining algorithms. For both DESQ-COUNT and DESQ-DFS, we first construct the
reverse DFA for A and proceed as follows.

For DESQ-COUNT, we simply replace sFST simulation by the two-pass approach. The second
pass is performed only if the first pass determined that the input sequence is A-relevant.

Integrating the two-pass approach in DESQ-DFS is slightly more involved, since we incremen-
tally simulate A on all input sequences. We proceed as follows: We perform the first pass on all
input sequences during the construction of the initial projected database for root note ε . In more
detail, we read each input sequence T and simulate the reverse DFA. If sequence T is A-relevant,
then we add snapshot T [1@qS] to the projected database of root node ε and record the sequence
of (reverse) DFA statesT .qd

|T |, . . . ,T .q
d
1 ,T .q

d
0 for later reference. We then perform expansions sim-

ilar to DESQ-DFS: The only modification is that, in the IncStep procedure, we additionally check
whether qto ∈ T .Qpos (line 17 of Algorithm 2).

12The number of accepting runs is proportional to the number of different n-element subsets of a 2n-element set. Due to

the binomial formula, this number is 2n!/(n! · n!), which lies between n! and (2n!), both of which are in 2Θ(n log n) due to

Stirling’s approximation.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:27

7 EXPERIMENTAL EVALUATION

We conducted an experimental study on three publicly available real-world datasets: a collection of
text documents (for text mining), a collection of product reviews (for customer behavior mining),
and a collection of protein sequences. Our goal was to investigate whether pattern expressions
are sufficiently powerful to express prior and new subsequence constraints, whether DESQ’s al-
gorithms are efficient and how they perform relative to each other and to prior algorithms, and
whether the optimizations of Section 6 are effective. A summary of our results is as follows:

(1) Many subsequence constraints can be expressed with pattern expressions.
(2) DESQ’s sFST simulation algorithms are more than one order of magnitude faster than the

(more general) methods of the state-of-the-art FST library OpenFST.
(3) DESQ-COUNT was consistently faster than Naïve.
(4) DESQ-COUNT and DESQ-DFS had similar performance in cases where the average num-

ber of P-subsequences per input sequence was small.
(5) When many P-subsequences per input were generated, DESQ-DFS was more than an or-

der of magnitude faster than DESQ-COUNT and Naïve.
(6) The pruning of A-irrelevant sequences sometimes led to substantial runtime improve-

ments. When no or few input sequences were irrelevant, pruning led to only a small over-
head in runtime.

(7) The two-pass approach had similar or better performance than the one-pass approach for
all subsequence constraints.

(8) DESQ was competitive (up to 1.7× slower) to the state-of-the-art specialized sequence
miner prefix-growth for traditional subsequence constraints.

(9) DESQ consistently outperformed (up to 4× faster) RE-constrained FSM miner SMA. For
RE constraints on all output subsequences, DESQ was competitive (up to 2.5× slower)
to the state-of-art FSM constrained miner PPICt and for RE constraints on contiguous
subsequences, DESQ outperformed (up to 10× faster) PPICt.

Our results indicate that DESQ is a suitable general-purpose system for a wide range of subse-
quence constraints.

7.1 Experimental Setup

Datasets. We used three real-world datasets: The New York Times corpus (NYT)13 for text min-
ing, the Amazon product review dataset (AMZN)14 for mining product sequences, and the protein
dataset (PRT)15 for mining protein sequences. Key statistics of these datasets are summarized in
Table 3.

The NYT dataset consists of roughly 50M sentences from 1.8M news articles published during
1987 and 2007. We treat each sentence as an input sequence and each word (token) as an item.
We generated an item hierarchy using annotations from the Stanford CoreNLP tools.16 The NYT
hierarchy consists of named entities, which generalize to their type (PERSON, ORGANIZATION,
and LOCATION) and then to ENTITY, and of words, which generalize to their lemma and then to
their part-of-speech tag. For example, “Maradona”⇒PERSON⇒ENTITY and “is”⇒“be”⇒VERB.

The AMZN dataset consists more than 82M product reviews from over 21M users. We extracted
sequences of products (ordered by review timestamps) for each user. We used the Amazon product

13https://catalog.ldc.upenn.edu/LDC2008T19.
14snap.stanford.edu/data/web-Amazon.html.
15http://www-kdd.isti.cnr.it/SMA/.
16http://nlp.stanford.edu/software/corenlp.shtml.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

https://catalog.ldc.upenn.edu/LDC2008T19
snap.stanford.edu/data/web-Amazon.html
http://www-kdd.isti.cnr.it/SMA/
http://nlp.stanford.edu/software/corenlp.shtml

11:28 K. Beedkar et al.

Table 3. Statistics of the Datasets Used in Our Experimental Study

NYT AMZN PRT
Sequence # Sequences 49,593,066 21,176,522 103,120
database Avg. length 20.15 3.90 482

Max. length 15,009 44,557 600
Total items 997,559,483 82,677,131 49,729,890

Distinct items 7,155,771 9,874,211 25
Hierarchy Total items 9,792,609 10,557,785 103,120

Leaf items 7,155,769 10,528,545 103,120
Interm. items 2,636,817 29,155 0

Root items 23 85 0
Max depth 3 10 1

Avg. fan-out 3.71 482 0
Max. fan-out 2,832,744 1,940,285 0

Avg. fan-in 1.0 1 0
Max. fan-in 1 58 0

hierarchy as our item hierarchy. For example, “Canon 5D” ⇒“Digital Cameras”⇒“Camera &
Photo”⇒ “Electronics.”

The PRT dataset consists of over 100,000 amino acid sequences where each sequence is com-
posed from 25 amino acid codes (items). The hierarchy is flat, i.e., there are no generalizations.

Pattern expressions. We created a set of pattern expressions, which express tasks in informa-
tion extraction (IE), natural language processing (NLP), customer behavior mining, and protein
sequence mining. Our pattern expressions are shown in Table 4 and fall into four categories. The
first category (N1–N5) expresses relevant patterns useful for IE and NLP applications and were
inspired by [21, 37, 48] and Google’s n-grams17; these expressions were used on the NYT dataset.
The second category (A1–A4) expresses patterns relevant to market-basket analysis and apply
to AMZN. Expressions from the third category (P1–P4) are used to mine protein sequences that
match a protein motif (described by regular expressions) from the PRT dataset; the regular expres-
sion constraints were taken from the PROSITE database.18 The dataset and expressions P1 and P3

were used by Trasarti et al. [47] to evaluate the SMA algorithm for RE-constrained FSM. The PRT
dataset was also used by Aoga et al. [5, 6] to evaluate the PPIC algorithms for FSM constraints.
The fourth category (T1–T3) models traditional subsequence constraints commonly studied in the
literature [10, 33, 39, 40, 43, 50, 51]. Note that these expressions are parameterized (see Section 7.6).
We used the NYT with these expressions.

Implementation and setup. We implemented DESQ in Java (JDK 1.8).19 We used ANTLR420

to generate a parser for pattern expressions. The sFST is constructed from the resulting parse
tree and subsequently minimized (as described in Section 6.1). For all pattern expressions E in
Table 4, we construct an sFST for .∗E.∗, i.e., we allow partial matching as discussed in Section 6.2.
We preprocessed the datasets to compute the f-list and assign integer identifiers to each item. Item
identifiers were assigned in descending order of item frequency, thus a more frequent item received
a smaller item identifier. In our implementations, we encoded the sequence database compactly as

17https://books.google.com/ngrams/.
18http://prosite.expasy.org/.
19The source code is publicly available at https://www.uni-mannheim.de/dws/research/resources/desq.
20http://www.antlr.org/.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

https://books.google.com/ngrams/
http://prosite.expasy.org/
https://www.uni-mannheim.de/dws/research/resources/desq
http://www.antlr.org/

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:29
T
a
b

le
4.

E
xa

m
p

le
P

a
tt

er
n

E
xp

re
ss

io
n

s
fo

r
IE

a
n

d
N

L
P

A
p

p
li

ca
ti

o
n

s
(N

1
–
N

5
),

C
u

st
o

m
er

B
eh

a
vi

o
r

M
in

in
g

A
p

p
li

ca
ti

o
n

s
(A

1
–
A

4
),

P
ro

te
in

S
eq

u
en

ce
M

in
in

g
(P

1
–
P

4
),

a
n

d
T

ra
d

it
io

n
a
l

S
eq

u
en

ce
M

in
in

g
(T

1
–T

3
)

P
at

te
rn

ex
p

re
ss

io
n

D
es

cr
ip

ti
o

n
E

x
am

p
le

p
at

te
rn

s
fr

o
m

N
Y

T
d

at
as

et
(f

re
q

u
en

cy
)

N
1
:E

N
T

IT
Y

(V
E

R
B
+

N
O

U
N
+

?
P

R
E

P
?)

E
N

T
IT

Y
R

el
a
ti

on
a
l

p
h

ra
se

b
/w

en
ti

ti
es

w
as

ad
v
is

ed
b
y

(1
18

),
is

p
re

si
d

en
t

o
f

(3
88

)

N
2
:(

E
N

T
IT

Y
↑

V
E

R
B
+

N
O

U
N
+

?
P

R
E

P
?

E
N

T
IT

Y
↑)

T
y

p
ed

re
la

ti
on

a
l

p
h

ra
se

s
O

R
G

o
w

n
ed

b
y

E
N

T
IT

Y
(1

28
0)

,P
E

R
b

o
rn

in
L

O
C

(1
19

5)

N
3
:(

E
N

T
IT

Y
↑

b
e↑ =

)
D

E
T

?
(A

D
V

?
A

D
J?

N
O

U
N

)
C

op
u

la
r

re
la

ti
on

fo
r

a
n

en
ti

ty
P

E
R

b
e

n
o
v
el

is
t

(3
26

),
L

O
C

b
e

g
re

at
p

la
ce

(1
07

),

N
4
:

(.
↑)
{3
}N

O
U

N
G

en
er

a
li

ze
d

3-
g
ra

m
s

b
ef

or
e

a
n

ou
n

N
O

U
N

P
R

E
P

D
E

T
(9

85
48

20
),

D
E

T
A

D
V

A
D

J
(8

22
37

7)

N
5
:(

[.
↑
.
.]
|[.

.↑
.]
|[.

.
.↑

])
G

en
er

a
li

ze
d

3-
g
ra

m
s,

w
h

er
e

a
t

m
os

t
on

e
it

em
is

g
en

er
a
li

ze
d

a
A

D
J

h
o

u
se

(1
29

72
),

d
eg

re
e

fr
o

m
E

N
T

IT
Y

(1
27

48
)

E
x
am

p
le

p
at

te
rn

s
fr

o
m

A
M

Z
N

d
at

as
et

(f
re

q
u

en
cy

)

A
1
:(

E
le

ct
r↑

)[
.{
0,

2}
(E

le
ct

r↑
)]

{1
,4

}
G

en
er

a
li

ze
d

se
q
u

en
ce

s
of

(u
p

to
5)

el
ec

tr
on

ic
it

em
s,

w
h

ic
h

a
re

a
t

m
os

t
2

it
em

s
a
p
a
rt

in
th

e
in

p
u

t
se

q
u

en
ce

s

“M
ic

e”
,“

K
ey

b
o

ar
d

s”
,“

C
o

m
p

u
te

rs
&

A
cc

es
so

ri
es

”
(8

75
),

“T
ab

le
ts

”,
“C

as
es

&
Sl

ee
v
es

”
(8

50
7)

A
2
:(

B
o

o
k

)[
.{
0,

2}
(B

o
o

k
)]

{1
,4

}
Se

q
u

en
ce

s
of

b
oo

k
s

“T
h

e
B

o
u

rn
e

Su
p

re
m

ac
y

”,
“T

h
e

B
o

u
rn

e
U

lt
im

at
u

m
”

(1
6)

A
3
:D

ig
it

al
C

am
er

a[
.{
0,

3}
(.
↑)

]{
1,

4}
T
y

p
e

of
p
ro

d
u

ct
s

b
ou

g
h

t
a
ft

er
a

d
ig

it
a
l

ca
m

er
a

“L
en

se
s”

,“
T

ri
p

o
d

s”
(1

58
),

“B
at

te
ri

es
”,

“S
D

C
ar

d
s”

(1
49

)

A
4
:(

M
In

st
r↑

)[
.{
0,

2}
(M

In
st

r↑
)]

{1
,4

}
G

en
er

a
li

ze
d

se
q
u

en
ce

s
of

m
u

si
ca

l
in

st
ru

m
en

ts
“G

u
it

ar
s”

,“
B

ag
s

&
C

as
es

”,
“I

n
st

r.
A

cc
es

so
ri

es
”

(1
70

)

E
x
am

p
le

p
at

te
rn

s
fr

o
m

P
R

T
d

at
as

et
(f

re
q

u
en

cy
)

P
1
:(

[S
|T

])
.∗

(.
)

.∗
([

R
|K

])
su

b
se

q
u

en
ce

s
th

a
t

m
a
tc

h
R

E
≡[

S
|T

]
.[

R
|K

]
S

L
R

(1
03

09
3)

,T
A

K
(1

02
94

1)
,S

A
K

(1
02

94
6)

P
2
:(

[I
|V

])
.∗

(D
)

.∗
(L

)
.∗

(G
)

.∗
(T

)
.∗

([
S
|T

])
.∗

(.
)

.∗
([

S
|C

])
su

b
se

q
u

en
ce

s
th

a
t

m
a
tc

h
R

E
≡[

I|V
]

D
L

G
T

[S
|T

]
.[

S
|C

]
I

D
L

G
T

T
L

S
(1

02
97

5)
,V

D
L

G
T

S
T

C
(9

26
62

)
V

D
L

G
T

S
D

S
(1

02
90

1)

P
3
:(

[S
|T

]
.[

R
|K

])
co

n
ti

g
u

ou
s

su
b
se

q
u

en
ce

s
th

a
t

m
a
tc

h
R

E
≡[

S
|T

]
.[

R
|K

]
S

L
R

(1
49

95
),

T
A

K
(8

84
0)

,S
A

K
(1

03
97

)

P
4
:(

[S
|T

]
..

[D
|E

])
co

n
ti

g
u

ou
s

su
b
se

q
u

en
ce

s
th

a
t

m
a
tc

h
R

E
≡[

S
|T

]
..

[D
|E

]
S

D
L

E
(2

01
5)

,T
L

E
E

(2
32

9)
,S

G
L

D
(1

05
4)

E
x
am

p
le

p
at

te
rn

s
fr

o
m

N
Y

T
d

at
as

et
(f

re
q

u
en

cy
)

T
1
:(

.)
{1

,λ
}

n
-g

ra
m

s
of

u
p

to
λ

w
or

d
s

g
re

en
te

a
(9

93
),

ed
it

o
r

in
ch

ie
f

(7
43

1)

T
2
:(

.)
[.

{0
,γ

}(
.)

]{
1,

λ
−

1}
Sk

ip
n

-g
ra

m
s

w
it

h
g
a
p

a
t

m
os

t
γ

w
or

d
s

a
n

d
of

u
p

to
le

n
g
th

λ
fl

ig
h

t
fr

o
m

to
(2

03
8)

,s
o

n
o

f
an

d
o

f
(3

76
05

)

T
3
:(
.↑

){
1,

λ
}

G
en

er
a
li

ze
d

n
-g

ra
m

s
of

u
p

to
λ

w
or

d
s

N
O

U
N

P
R

E
P

D
E

T
N

O
U

N
(9

85
48

20
),

P
E

R
SO

N
b

e
N

O
U

N
(4

06
69

)

T
o

in
cr

ea
se

re
ad

ab
il

it
y,

w
e

o
m

it
a

le
ad

in
g

an
d

tr
ai

li
n

g
“.
∗”

fr
o

m
ea

ch
p

at
te

rn
ex

p
re

ss
io

n
.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:30 K. Beedkar et al.

Fig. 10. Average simulation time per input sequence from a random sample of 10,000 input sequences.

arrays of item identifiers and use variable-length byte encoding to compress projected databases.
Unless specified otherwise, DESQ-COUNT and DESQ-DFS refer to the basic one-pass approach of
Sections 5.2 and 5.3, respectively.

To evaluate sFSTs, we compared it against the state-of-the-art FST library OpenFST 1.6.3.21 To
measure the overhead of DESQ for common subsequence constraints, we compared it with various
state-of-the-art methods. For length and gap constraints, we used (1) the Scala implementation of
PPICt [5, 6] available from the authors,22 (2) the C++ implementation of cSPADE [50] from the
author, (3) our implementation of SPADE in Java that additionally handles hierarchy constraints,
and (4) our implementation of prefix-growth [40] in Java. For RE constraints, we used PPICt, prefix-
growth, and a C++ executable of SMA [47] obtained from the authors.

Experiments on the NYT and AMZN datasets were performed on a machine with two Intel(R)
Xeon(R) CPU E5-2640 v2 processors and 128GB of RAM running CentOS Linux 7.1. Experiments on
the PRT dataset were performed on a machine equipped with Intel Core i7-7560U and 16GB RAM
running Windows 10. We used a different setup for the PRT dataset, as the SMA implementation is
provided as a Windows binary only. All experiments were run single-threaded and with the same
JVM memory budget (120GB for NYT and AMZN, 10GB for PRT).

Methodology. For each experiment, we report the performance in terms of the total wall-clock
time between launching the mining task and receiving the final result (excluding I/O to and from
disk). All measurements were averaged over three independent runs. Unless stated otherwise, all
methods produced the same results.

7.2 Comparison of sFST Simulation and OpenFST

We first evaluated the effectiveness of our FST optimizations. We compared sFST simulation using
Algorithm 1 with uncompressed FST simulation using a state-of-the-art FST library OpenFST on
pattern expressions N1–N5. The results are shown in Figure 10 in which we report the average
simulation time per input sequence to generate all P-subsequences (excluding time to construct
the FST) from a random sample of 10000 input sequences from the NYT dataset.

We observed that sFST simulation was 10–40× faster than uncompressed FST simulation using
OpenFST. This is because pattern expressions often translate to excessively large FSTs, which are
inefficient to simulate (see Table 2 and the discussion on sFSTs in Section 4.3). Moreover, OpenFST

21http://www.openfst.org.
22https://sites.uclouvain.be/cp4dm/spm/ppict/.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

http://www.openfst.org
https://sites.uclouvain.be/cp4dm/spm/ppict/

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:31

Fig. 11. Performance of DESQ mining algorithms on (a) NYT and (b) AMZN datasets.

cannot directly handle hierarchies so that uncompressed FSTs get large. Finally, as discussed in
Section 6.1, many of our pattern expressions cannot be determinized, which curtails the classical
FST optimizations supported by OpenFST.

Overall, we conclude that our FST optimizations were effective.

7.3 Comparison of Naïve, DESQ-COUNT, and DESQ-DFS

In our next set of experiments, we evaluated the performance of Naïve, DESQ-COUNT and DESQ-
DFS on pattern expressions N1–N5 and A1–A4. The results are shown in Figures 11(a) and 11(b)
using log-scale for NYT and AMZN datasets, respectively. For each pattern expression, we empir-
ically chose the minimum support threshold σ .

We first discuss the results on NYT shown in Figure 11(a). For pattern expressions N1–N3, Naïve,
DESQ-COUNT and DESQ-DFS had similar performance and finished in under a couple of minutes.
For N4 and N5, however, runtimes were higher and DESQ-DFS was significantly faster than Naïve
(more than 16×) and DESQ-COUNT (up to 13×).

To gain insight into these results, we computed the average number μNaïve and μCount of P-
generated sequences per input sequence for Naïve (average of |GP (T) |) and DESQ-COUNT (of

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:32 K. Beedkar et al.

Table 5. sFST Simulation Statistics

Pat. Expr. (σ) μNaïve μCount A-rel. inputs ηPruning ηTwo-pass

N1(100) 1.04 1.04 1.9% 2.7% 0.3%
N2(1000) 9.37 6.61 1.8% 3.2% 0.7%
N3(100) 2.02 1.71 0.9% 1.3% 0.2%
N4(1000) 133.48 105.08 89.6% 97.9% 48.5%
N5(1000) 130.76 93.09 97.2% 99.9% 73.1%
A1(500) 10,790.01 4,394.37 9.8% 98% 95.9%
A2(100) 180.48 38.54 8.9% 49.4% 12.3%
A3(100) 43,533.84 25,716.88 0.6% 84.4% 83.7%
A4(100) 10,824.27 3,787.64 0.9% 59.8% 55.2%

|GF
P (T) |), respectively.23 These numbers are shown in Table 5 (second and third columns) for each

pattern expression. From these statistics, we observed that μCount is always less than or equal to
μNaïve as asserted by Lemma 5.1, and thus DESQ-COUNT can significantly reduce the number
of candidate sequences that are generated and counted. In what follows, we discuss how these
statistics relate to different runtimes of DESQ’s mining algorithms.

We observed that for small values of μ, Naïve, DESQ-COUNT and DESQ-DFS had similar per-
formance, whereas for larger values of μ, DESQ-DFS was much more efficient. When μ is small,
the simple counting method of Naïve and DESQ-COUNT is expected to work well, because few
sequences are generated and the advanced pruning methods of DESQ-DFS are not needed. When
μ is large, however, both Naïve and DESQ-COUNT can enumerate many sequences that turn out
to be infrequent, which is expensive. DESQ-DFS prunes many of these sequences early on and is
thus more efficient.

On the AMZN dataset (expressions A1–A4; Figure 11(b)), DESQ-DFS consistently outperformed
Naïve and DESQ-COUNT. For A1 and A3, the large number of candidate P-sequences (cf. Table 5)
led to a memory overflow for both Naïve and DESQ-COUNT. However, DESQ-DFS finished in few
hundred seconds, benefiting from its advanced pruning techniques. For A2, DESQ-COUNT and
DESQ-DFS had similar performance (with DESQ-DFS being faster), whereas for A4, DESQ-DFS
was more than an order of magnitude faster than DESQ-COUNT. This behavior is explained by
the observation that μ was large for all pattern expressions.

We conclude that DESQ-DFS consistently worked well in our experiments. Although DESQ-
COUNT was slightly faster in some simpler cases, its performance substantially fell behind DESQ-
DFS for more difficult ones. Thus, we consider it generally safer to use DESQ-DFS in practice.

7.4 Effectiveness of Optimizations

We now study the effectiveness of pruning A-irrelevant inputs (Section 6.3) and of the two-pass
approach (Section 6.4) when integrated with DESQ-DFS. We refer to these methods as DESQ-DFS-
PRUNE and DESQ-DFS-2PASS, respectively.

The results are shown in Figures 12(a) and 12(b) for NYT and AMZN datasets, respectively. For
ease of comparison, we normalize runtime DESQ-DFS time to 100% and show relative times for
DESQ-DFS-PRUNE and DESQ-DFS-2PASS. The absolute (total) runtime of each method is shown
on top of each bar. For each experiment, we split the total mining time into:

23We only considered A-relevant input sequences.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:33

Fig. 12. Effectiveness of pruning irrelevant inputs and the two-pass approach on the (a) NYT and (b) AMZN

datasets. The number on top of each bar denotes the absolute runtime of the corresponding method.

(i) Automata construction, which is the time required for parsing the pattern expression and
constructing the resulting sFST. With pruning and the two-pass, the time required to
construct the DFA and reverse-DFA, respectively, is also included.

(ii) Process input sequences, which is the time to read input sequences (from memory) and
construct the initial projected database. With pruning, this additionally includes time to
check each input sequence against the DFA for relevance. For the two-pass approach, it

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:34 K. Beedkar et al.

additionally includes the time for the first pass (in which we compute the reachable states
in the reverse DFA).

(iii) Mining, which is the remaining time required produce the final output (mainly explo-
ration of the search space via expansions).

Overall, we observed that both techniques significantly improved the performance of DESQ-
DFS. In particular, the performance improvements stem from mining, which was up to 40× faster
with DESQ-DFS-PRUNE and up to 60× faster with DESQ-DFS-2PASS. Both methods, however,
incurred a small overhead in automata construction and processing input sequences. For automata
construction, DESQ-DFS-PRUNE and DESQ-DFS-2PASS additionally require to construct a DFA
and reverse DFA, respectively. This overhead was negligible (up to 2s) for all pattern expressions.
The time to process input sequences increased by up to 1.3× with DESQ-DFS-PRUNE. This is
expected as it additionally simulates the DFA for checking relevance. This increase in runtime is
even more pronounced in DESQ-DFS-2PASS as it additionally computes and stores the reachable
states in the reverse DFA. However, this overhead of processing input sequences is amortized by
the mining time thus making our optimizations effective. As seen in the Figures 12(a) and 12(b),
the effectiveness of these techniques vary depending on the pattern expression.

To gain further insights, we computed for each expression the percentage of A-relevant in-
puts and the fraction η of sFST transitions taken by DESQ-DFS-PRUNE and DESQ-DFS-2PASS
w.r.t.DESQ-DFS without these optimization. These numbers are shown in Table 5; columns 4–6.
We will refer to these numbers in what follows.

Effectiveness of Pruning A-irrelevant Inputs. We first discuss the effectiveness of DESQ-DFS-
PRUNE. On the NYT dataset (Figure 12(a)), we observed an overall speedup of up to 4.5× for
expressions N1, N2, and N3, for which only a small fraction (<2%, cf. Table 5) of input sequences
were A-relevant. Thus the overhead of additionally constructing and simulating the DFA pays off
during mining, since pruning is very effective. For expressions N4 and N5, however, a large fraction
(90% and 97% resp.,) of input sequences were A-relevant and thus DESQ-DFS-PRUNE did not offer
benefits. On the AMZN dataset, expressions A1–A4, DESQ-DFS-PRUNE consistently performed
well as most of the input sequences turn out be A-irrelevant. Overall, pruning of A-irrelevant
input sequences can lead to substantial runtime improvements. When no or few input sequences
were irrelevant, pruning led to only a small overhead in runtime.

Effectiveness of the Two-pass Approach. We now turn attention to DESQ-DFS-2PASS. On
NYT dataset, for pattern expressions N1, N2, and N3, DESQ-DFS-2PASS was up to 4× faster than
DESQ-DFS. But it was however slightly slower (by up to 1.2×) than DESQ-DFS-PRUNE. Although,
when compared to DESQ-DFS-PRUNE, DESQ-DFS-2PASS computes a much smaller fraction of
transitions as a result of avoiding unnecessary backtracking (cf. ηPruning and ηTwo-pass in Table 5),
it offers limited additional benefit in comparison to DESQ-DFS-PRUNE, because only a small
fraction of total input sequences turn out be A-relevant. However, for expression N4, where a large
fraction of input sequences were A-relevant, DESQ-DFS-2PASS offered a speed-up of up to 2×
during mining, which stems from avoiding unnecessary backtracking. This is also supported by
the statistics in Table 5, which shows that DESQ-DFS-2PASS computes less than 50% of transitions
compared to 97% computed by DESQ-DFS-PRUNE. Pattern expression N5 is a notable case, since
the expression is composed of only wild cards, which results in a DFA that accepts every sequence
of length at least 3 and thus more than 99% of the input sequences turn out to be A-relevant.
Compared to DESQ-DFS-PRUNE, which did not offer any significant benefits, DESQ-DFS-2PASS
resulted in a 10% speedup as it was able to avoid 30% of the transitions. Although expression
N5 is composed of only wild cards, DESQ-DFS-2PASS benefits from leveraging final-complete

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:35

Fig. 13. Impact of minimum support threshold σ on optimizations for pattern expression N4.

annotations to avoid processing both prefixes and suffixes that produce only infrequent items.
On AMZN, for expressions A1–A4, DESQ-DFS-2PASS consistently outperformed both DESQ-DFS
and DESQ-DFS-PRUNE as most of the input sequences were A-irrelevant and also because it
computes much smaller fraction of transitions.

Overall, we found that the effectiveness of our optimizations depend on the pattern expression
and the data. We generally consider using DESQ-DFS-2PASS to be the best overall option: its
performance was either similar or better than DESQ-DFS in all our experiments. This is supported
by the theoretical evidence: a guarantee such as the one of Theorem 6.1 cannot be given for DESQ-
DFS and DESQ-DFS-PRUNE.

7.5 Impact of Minimum Support Threshold

We also investigated to what extent the performance and effectiveness of pruning A-irrelevant
inputs and the two-pass approach is affected by the minimum support threshold (σ). We use pattern
expression N4 on the NYT dataset as it is relatively complex (i.e., high number of A-relevant inputs
and high μ-value) and varied σ from 100,000 down to 10. The results are shown in Figure 13.

We observed that for high values of σ (e.g., σ = 100,000), DESQ-DFS-PRUNE had a similar per-
formance as DESQ-DFS. This is because at very high support thresholds, few items (0.02%) are
frequent and DESQ-DFS avoids transitions that output infrequent items (see Lemma 5.1). There-
fore, the benefit of pruning decreases with increasing minimum support threshold. We observed a
similar behavior for the two-pass approach. In particular, for σ = 1000,00, DESQ-DFS-2PASS was
1.5× faster than DESQ-DFS; for σ = 10, it was 2× faster.

7.6 Performance with Traditional Subsequence Constraints

Next, we investigated the overhead of DESQ compared to specialized miners cSPADE [50] and
prefix-growth [40] (based on PrefixSpan [39]) for traditional subsequence constraints. We also
compared against the CP-based FSM miner PPICt. In particular, we considered length and gap
constraints as well as item hierarchies. We map these constraints to pattern expressions and ob-
tainT1–T3 of Table 4. The expressions are parameterized by maximum-length parameter λ and/or
maximum-gap parameter γ . We used the NYT dataset and ran FSM for different configurations of
increasing difficulty w.r.t. output size. The results are shown in Figure 14 using log-scale.

For length and gap constraints (first four groups), PPICt terminated with an out-of-memory
exception. PPICt does not support hierarchies, so we exclude it from the final experiment (fifth
group). We observed that for all configurations, cSPADE was significantly slower than both

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:36 K. Beedkar et al.

Fig. 14. Performance for traditional subsequence constraints.

prefix-growth and DESQ-DFS-2PASS. This is because cSPADE follows a candidate-generation-
and-test approach and suffered from an excessive number of generated candidates [39]. To keep
our study manageable, we stopped cSAPDE after 12h. Compared to prefix-growth, DESQ-DFS-
2PASS was up to 1.5× slower for n-grams (first two groups). For skip grams (third and fourth
group), DESQ-DFS-2PASS was up to 1.7× slower than prefix-growth. The overhead was slightly
more pronounced, because pattern expressions for gap constraints have uncaptured wildcards
(cf. T2 in Table 4), which results in non-determinism and increases the amount of (acceptable)
backtracking during sFST simulation. For generalized n-grams (last group), where we additionally
considered item hierarchies, DESQ-DFS-2PASS was again up to 1.7× slower than prefix-growth
as the amount of backtracking performed by DESQ increased with the depth of hierarchy (cf.
line 26 of Algorithm 2 and the discussion in Section 4.3).

Overall, our experiments indicate that DESQ is competitive with prefix-growth. Although
prefix-growth was indeed faster for FSM with traditional subsequence constraints, the overhead
of DESQ was acceptable.

7.7 Performance with RE Constraints

In our final set of experiments, we evaluated the efficiency of DESQ for mining frequent subse-
quences (all or contiguous) that match a given regular expression. Our pattern expressions allow
us to express REs with their equivalent pattern expressions (cf. Table 1 and expressions P1–P4 of
Table 4). We compared DESQ’s performance against state-of-the-art RE-constrained FSM meth-
ods, namely SMA [47], prefix-growth [40], and CP-based PPICt [5, 6]. We used DESQ-DFS-2PASS
on the PRT dataset for which we obtained suitable RE constraints from the PROSITE database24;
the runtimes are shown in log-scale in Figure 15.

We observed that DESQ-DFS-2PASS was up to 2–4× faster than SMA, up to 3–6× faster than
prefix-growth, and up to 2–2.5× slower than PPICt for P1 and P2, respectively. We do not give
SMA results for P3 and P4, because the implementation produced incorrect results (acknowledged
in private communication by the original authors). We did not investigate this further as the SMA
source is not available. Both DESQ-DFS-2PASS and prefix-growth finished in few seconds on P3

and P4, and were up to 10× faster than PPICt with DESQ-DFS-2PASS being slightly faster.
Our results indicate that DESQ is a suitable method for RE-constrained FSM as well.

24http://prosite.expasy.org/.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

http://prosite.expasy.org/

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:37

Fig. 15. Performance for RE-constrained FSM.

8 RELATED WORK

We now relate ideas put forward in this article to existing prior work, which can be coarsely
categorized into:

Sequential pattern mining. The problem of mining frequent sequential patterns was intro-
duced by Agrawal and Srikant [1]. Their Apriori algorithm follows a candidate-generation-and-test
approach to identify sequential patterns that are frequent in the database. The subsequent GSP al-
gorithm [43] exploits the antimonotonicity property of sequential patterns to efficiently generate
and prune candidate sequences. SPADE by Zaki [51] also generates and prunes candidates, but it
operates on an inverted index structure representation of the database. Pei et al. [39] proposed the
PrefixSpan algorithm, which is based on a more efficient pattern-growth approach that recursively
grows frequent prefixes using database projections. DESQ-DFS can be seen as a generalization of
PrefixSpan to support arbitrary pattern expressions. SPAM [8], which is similar to SPADE, uses
an internal bitmap structure for database representation and employs a pattern-growth approach
to mine frequent sequential patterns. A comprehensive discussion of these methods is given in
Reference [31].

Subsequence constraints. There are many extensions to the basic sequential pattern mining
framework for supporting subsequence constraints. GSP [43] and LASH [10], for example, allow
gap constraints and incorporate item hierarchies. cSPADE [50] handles length, gap and item con-
straints. Wu et al. [49] consider subsequences with periodic wild card gaps, i.e., subsequences
where consecutive items are separated by the same gap in the input. Garofalakis et al. [23] intro-
duced regular expression (RE) constraints that subsequences need to satisfy. The proposed SPIRIT
algorithms translate a given RE into a deterministic finite-state automata and adapts GSP-like
candidate-generation-and-test approach to mine frequent sequential patterns. Along these lines,
Albert-Lorincz and Boulicaut [2] proposed RE-Hackle algorithm, which represents RE via a tree
structure. Pei et al. [40] advocate the prefix-growth method—which we also compare to in our
experimental study—to handle RE as well as length and gap constraints. RE constraints have also
been studied by Trasarti et al. [47]. They proposed the SMA algorithm, which uses Petri nets to
match an RE. In contrast to DESQ, the above methods are less general, because they consider regu-
lar expressions on the output sequence only and do not support capture groups. Some of the above
constraints (e.g., gap constraints), however, target the input sequence, whereas others (e.g., length
constraints, RE constraints) target subsequences. Our pattern expressions unify both targets and
allows us to express all of the above subsequence constraints (e.g., see Table 1).

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:38 K. Beedkar et al.

More recently, constraint programming (CP) methods have been applied to support various
subsequence constraints in sequential pattern mining. In particular, Negrevergne and Guns [38]
modeled sequence mining with length, gap, item, and RE-constraints as a constraint satisfaction
problem, which can be solved using CP. Their approach is not limited to frequent sequence min-
ing but also supports other constraints on the multiset of mined patterns (e.g., maximality and
closedness). Such pattern-set constraints are currently not supported by DESQ. Kemmar et al. [25,
26] proposed prefix-based projection techniques to efficiently handle constraints in CP-based ap-
proaches. Aoga et al. [5, 6] proposed the PPIC and PPICt algorithms, which outperformed other
CP-based algorithms in their experimental study. Like DESQ , their approach allows to mix tra-
ditional constraints like length, item, and gap/span with RE constraints on the output sequences.
DESQ additionally supports hierarchy constraints and context constraints (via REs with capture
groups), which allows DESQ to express many customized subsequence constraints that arise in
FSM applications (e.g., see Table 4).

Finally, this article is an extended version of [11], which originally proposed the DESQ system.
Here, we (1) provide a more accessible and more detailed exposition, (2) include various proofs of
correctness, (3) propose multiple optimizations to extend DESQ, and (4) performed an extended ex-
perimental study. Our optimizations include methods to partially determinize and minimize sFSTs,
to use early-abort during sFST simulation whenever possible and without affecting correctness,
for pruning irrelevant input sequences, and for avoiding unnecessary backtracking via the two-
pass approach. Our experimental study suggests that our optimizations can substantially improve
performance when compared to the basic DESQ system.

Pattern matching. Systems and languages for pattern matching over sequences have been
extensively studied in literature and are related to our work. For example, SystemT’s AQL lan-
guage [22, 27] provides an SQL-like syntax to specify and extract pattern matches from text docu-
ments. Languages based on cascaded grammars such as CPSL [7] are also used in many information
extraction engines. Christ [16] proposed a Corpus Query Language (CQL) based on regular expres-
sions for searching pattern matches in text corpora. Pattern matching is also crucial for complex
event processing tasks [18, 19], which aim to detect pattern matches in (live or archived) event
sequences. In contrast to these systems, we propose a language and system for frequent sequence

mining. This means that we are not interested in finding all matches of a specified pattern expres-
sion as in pattern matching, but are instead looking for frequent sequential patterns themselves.
Our pattern expressions are in some sense simpler than most pattern matching languages, yet
expressive enough to specify many subsequence constraints that arise in sequence mining appli-
cations. Nevertheless, pattern matching languages can conceivably be used to specify subsequence
predicates and mine P-frequent sequences using Naïve, i.e., by first enumerating all matches and
subsequently counting frequencies. Our experiments indicate that this approach is infeasible for
many subsequence constraints. Instead, it is beneficial to integrate pattern matching and mining,
e.g., along the lines of DESQ-COUNT and DESQ-DFS. An interesting direction for future work is
to investigate to what extent such integration is possible for more powerful pattern languages.

Finite state transducers. Finite state transducers (FST, [34, 36]) have been applied in areas such
as speech recognition, machine translation, information extraction, and data mining. In DESQ, we
make use of FSTs as a computational model for pattern matching and mining. In contrast to existing
work on FSTs, our FSTs are often neither sequential nor p-subsequential [35] so that many existing
optimization methods do not apply (e.g., minimization and determinization). We provide methods
to extend, compress, and optimize our special FSTs to effectively handle pattern mining tasks and
large hierarchies. Although traditional FST libraries such as OpenFST [3] can also be used within
DESQ, our succinct FSTs support more efficient matching and mining (see Sections 4.3 and 7.2).

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:39

9 CONCLUSIONS

In this article, we introduced subsequence predicates as a general model for unifying and extend-
ing subsequence constraints for frequent sequence mining. We proposed pattern expressions as
a simple, intuitive way to express subsequence constraints, suggested succinct finite-state trans-
ducers as an underlying computation model, and proposed the DESQ-COUNT and DESQ-DFS
algorithms for efficient mining. We discussed various optimizations that improve simulation effi-
ciency of our succinct finite-state transducers. Our experiments indicate that DESQ is an efficient,
general-purpose FSM framework for various subsequence constraints that arise in applications.

There are a number of directions for extending DESQ, both in terms of efficiency and scalabilty
as well as in terms of functionality. In particular, DESQ’s mining algorithms are sequential and
cannot deal with massive amounts of data. Parallel and distributed mining algorithms that support
flexible constraints are important future work. A first step was recently taken by Renz-Wieland
et al. [42], who proposed distributed mining algorithms based on DESQ for platforms such as
MapReduce and Spark. Another recent vein of work [20] investigates static FST analysis problems
that ask if a given task can be distributed or not.

In this article, we focused solely on sequences of items, although some datasets are more nat-
urally modeled as sequences of itemsets. Extending the pattern expression language as well as
the mining algorithms to support itemsets is an interesting direction for future work. DESQ also
limits its notion of interestingness to subsequence constraints and frequency; it neither supports
set-based constraints, such as maximality and closedness, nor other notions of interestingness
(such as utility), nor mining of partial orders. Adapting these notions in the context of flexible
subsequence constraints is non-trivial, but forms an important next step towards general-purpose
sequential pattern mining systems.

APPENDIX

A EXAMPLE SFSTS FOR PRIOR SUBSEQUENCE CONSTRAINTS

Figure 16 below gives sFSTs corresponding the pattern expressions of Table 1.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:40 K. Beedkar et al.

Fig. 16. sFSTs, for example, pattern expressions of Table 1.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE’95). 3–14.

[2] Hunor Albert-Lorincz and Jean-François Boulicaut. 2003. Mining frequent sequential patterns under regular ex-

pressions: A highly adaptative strategy for pushing constraints. In SIAM International Conference on Data Mining

(SDM’03). 316–320.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

A Unified Framework for Frequent Sequence Mining with Subsequence Constraints 11:41

[3] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. 2007. OpenFst: A general and

efficient weighted finite-state transducer library. In Implementation and Application of Automata. Springer. Vol. 4783,

11–23.

[4] Marco Almeida, Nelma Moreira, and Rogério Reis. 2007. On the performance of automata minimization algorithms.

Technical report DCC-2007-03. Universidade do Porto.

[5] John O. R. Aoga, Tias Guns, and Pierre Schaus. 2016. An efficient algorithm for mining frequent sequence with

constraint programming. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in

Databases (ECML PKDD’16). 315–330.

[6] John O. R. Aoga, Tias Guns, and Pierre Schaus. 2017. Mining time-constrained sequential patterns with constraint

programming. Constraints 22, 4 (2017), 548–570.

[7] Douglas E. Appelt and Boyan Onyshkevych. 1998. The common pattern specification language. In Proceedings of the

Text Retrieval Conference (TIPSTER’98). 23–30.

[8] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential Pattern mining using a bitmap represen-

tation. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (SIGKDD’02). 429–435.

[9] Kaustubh Beedkar, Klaus Berberich, Rainer Gemulla, and Iris Miliaraki. 2015. Closing the gap: Sequence mining at

scale. ACM Trans. Database Syst. 40, 2, Article 8 (2015), 8:1–8:44 pages.

[10] Kaustubh Beedkar and Rainer Gemulla. 2015. LASH: Large-scale sequence mining with hierarchies. In Proceedings of

the ACM International Conference on Management of Data (SIGMOD’15). 491–503.

[11] Kaustubh Beedkar and Rainer Gemulla. 2016. DESQ: Frequent sequence mining with subsequence constraints. In

Proceedings of the IEEE International Conference on Data Mining (ICDM’16). 793–798.

[12] Klaus Berberich and Srikanta Bedathur. 2013. Computing N-gram statistics in MapReduce. In Proceedings of the In-

ternational Conference on Extending Database Technology (EDBT’13). 101–112.

[13] Alvis Brazma, Inge Jonassen, Jaak Vilo, and Esko Ukkonen. 1998. Pattern discovery in biosequences. Lecture Notes in

Computer Science (LNCS’98) 1433 (1998), 257–270.

[14] A. Brüggemann-Klein and D. Wood. 1998. One-unambiguous regular languages. Info. Comput. 142, 2 (1998), 182–206.

[15] J.A. Brzozowski. 1962. Canonical regular expressions and minimal state graphs for definite events. Math. Theory

Automata 12 (1962), 529–561.

[16] Oliver Christ. 1994. A modular and flexible architecture for an integrated corpus query system. CoRR abs/cmp-

lg/9408005 (1994).

[17] Wojciech Czerwinski, Claire David, Katja Losemann, and Wim Martens. 2017. Deciding definability by deterministic

regular expressions. J. Comput. Syst. Sci. 88 (2017), 75–89.

[18] Alan Demers, Johannes Gehrke, and P. Biswanath. 2007. Cayuga: A general purpose event monitoring system. In

Proceedings Conference on Innovative Data Systems Research (CIDR’07). 412–422.

[19] Nihal Dindar, Baris Güç, Patrick Lau, Asli Ozal, Merve Soner, and Nesime Tatbul. 2009. DejaVu: Declarative pattern

matching over live and archived streams of events. In Proceedings of the ACM International Conference on Management

of Data (SIGMOD’09). 1023–1026.

[20] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank Neven. 2019. Split-correctness in

information extraction. In Proceedings of the ACM SIGMOD Symposium on Principles of Database Systems (PODS’19).

To appear.

[21] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying relations for open information extraction. In

Proceedings of the Conference on Empirical Methods on Natural Language Processing (EMNLP’11). 1535–1545.

[22] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2015. Document spanners: A formal ap-

proach to information extraction. J. ACM 62, 2, Article 12 (May 2015).

[23] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. 1999. SPIRIT: Sequential pattern mining with regular ex-

pression constraints. In Proceedings of the International Conference on Very Large Data Bases (VLDB’99). 223–234.

[24] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Automata Theory, Languages, and Computation (3rd

ed.). Addison Wesley.

[25] Amina Kemmar, Yahia Lebbah, Samir Loudni, Patrice Boizumault, and Thierry Charnois. 2017. Prefix-projection

global constraint and top-k approach for sequential pattern mining. Constraints 22, 2 (2017), 265–306.

[26] Amina Kemmar, Samir Loudni, Yahia Lebbah, Patrice Boizumault, and Thierry Charnois. 2016. A global constraint

for mining sequential patterns with GAP constraint. In Proceedings of the Conference on Integration of AI and OR

Techniques in Constraint Programming (CPAIOR’16). 198–215.

[27] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivakumar Vaithyanathan, and Huaiyu

Zhu. 2009. SystemT: A system for declarative information extraction. SIGMOD Rec. 37, 4 (2009), 7–13.

[28] Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brockman, and Slav Petrov. 2012. Syntactic

annotations for the Google books ngram corpus. In Proceedings of the ACL System Demonstrations (ACL’12). 169–174.

[29] Adam Lopez. 2008. Statistical machine translation. ACM Comput. Surv. 40, 3 (2008), 8:1–8:49.

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

11:42 K. Beedkar et al.

[30] Katja Losemann, Wim Martens, and Matthias Niewerth. 2016. Closure properties and descriptional complexity of

deterministic regular expressions. Theor. Comput. Sci. 627 (2016), 54–70.

[31] Nizar R. Mabroukeh and C. I. Ezeife. 2010. A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv.

43, 1, Article 3 (2010), 3:1–3:41 pages.

[32] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. 1997. Discovery of frequent episodes in event sequences.

Data Min. Knowl. Discov. 1, 3 (1997), 259–289.

[33] Iris Miliaraki, Klaus Berberich, Rainer Gemulla, and Spyros Zoupanos. 2013. Mind the gap: Large-scale frequent

sequence mining. In Proceedings of the ACM International Conference on Management of Data (SIGMOD’13). 797–808.

[34] Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Comput. Linguist. 23, 2 (June 1997),

269–311.

[35] Mehryar Mohri. 2000. Minimization algorithms for sequential transducers. Theor. Comput. Sci. 234, 1–2 (Mar. 2000),

177–201.

[36] Mehryar Mohri, Fernando Pereira, and Michael Riley. 2002. Weighted finite-state transducers in speech recognition.

Comput. Speech Lang. 16, 1 (2002), 69–88.

[37] Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. 2012. PATTY: A taxonomy of relational patterns

with semantic types. In Proceedings of the Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CONLL’12). 1135–1145.

[38] Benjamin Negrevergne and Tias Guns. 2015. Constraint-based sequence mining using constraint programming. In

Proceedings of the Integration of AI and OR Techniques in Constraint Programming (CPAIOR’15). Springer International

Publishing, 288–305.

[39] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Meichun Hsu. 2001.

PrefixSpan: Mining sequential patterns by prefix-projected growth. In Proceedings of the IEEE International Conference

on Data Engineering (ICDE’01). 215–224.

[40] Jian Pei, Jiawei Han, and Wei Wang. 2002. Mining sequential patterns with constraints in large databases. In Proceed-

ings of the Conference on Information and Knowledge Management (CIKM’02). 18–25.

[41] M. O. Rabin and D. Scott. 1959. Finite automata and their decision problems. IBM J. Res. Dev. 3, 2 (1959), 114–125.

[42] Alexander Renz-Wieland, Matthias Bertsch, and Rainer Gemulla. 2019. Scalable frequent sequence mining with flexi-

ble subsequence constraints. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’19). 1490–

1501.

[43] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining sequential patterns: Generalizations and performance im-

provements. In Proceedings of the International Conference on Extending Database Technology (EDBT’96). 3–17.

[44] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan. 2000. Web usage mining: Discovery and

applications of usage patterns from web data. SIGKDD Explor. Newslett. 1, 2 (2000), 12–23.

[45] L. Stockmeyer and A. Meyer. 1973. Word problems requiring exponential time: Preliminary report. In Proceedings of

the Annual ACM Symposium on Theory of Computing (STOC’73). 1–9.

[46] Ken Thompson. 1968. Programming techniques: Regular expression search algorithm. Commun. ACM 11, 6 (1968),

419–422.

[47] Roberto Trasarti, Francesco Bonchi, and Bart Goethals. 2008. Sequence mining automata: A new technique for mining

frequent sequences under regular expressions. In Proceedings of the IEEE International Conference on Data Mining

(ICDM’08). 1061–1066.

[48] Immanuel Trummer, Alon Halevy, Hongrae Lee, Sunita Sarawagi, and Rahul Gupta. 2015. Mining subjective proper-

ties on the web. In Proceedings of the ACM International Conference on Management of Data(SIGMOD’15). 1745–1760.

[49] Youxi Wu, Lingling Wang, Jiadong Ren, Wei Ding, and Xindong Wu. 2014. Mining sequential patterns with periodic

wildcard gaps. Appl. Intell. 41, 1 (2014), 99–116.

[50] Mohammed J. Zaki. 2000. Sequence mining in categorical domains: Incorporating constraints. In Proceedings of the

Conference on Information and Knowledge Management (CIKM’00). 422–429.

[51] Mohammed J. Zaki. 2001. SPADE: An efficient algorithm for mining frequent sequences. Mach. Learn. 42, 1–2 (2001),

31–60.

Received April 2018; revised December 2018; accepted February 2019

ACM Transactions on Database Systems, Vol. 44, No. 3, Article 11. Publication date: May 2019.

