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Abstract

Today, technologies such as machine learning, virtual reality, and the Internet of

Things are integrated in end-user applications more frequently. These technologies

demand high computational capabilities. Especially mobile devices have limited

resources in terms of execution performance and battery life. The offloading

paradigm provides a solution to this problem and transfers computationally

intensive parts of applications to more powerful resources, such as servers or cloud

infrastructure. Recently, a new computation paradigm arose which exploits the

huge amount of end-user devices in the modern computing landscape – called

edge computing. These devices encompass smartphones, tablets, microcontrollers,

and PCs. In edge computing, devices cooperate with each other while avoiding

cloud infrastructure. Due to the proximity among the participating devices, the

communication latencies for offloading are reduced. However, edge computing

brings new challenges in form of device fluctuation, unreliability, and heterogeneity,

which negatively affect the resource elasticity.

As a solution, this thesis proposes a computation placement framework that

provides an abstraction for computation and resource elasticity in edge-based

environments. The design is middleware-based, encompasses heterogeneous plat-

forms, and supports easy integration of existing applications. It is composed of

two parts: the Tasklet system and the edge support layer. The Tasklet system is

a flexible framework for computation placement on heterogeneous resources. It

introduces closed units of computation that can be tailored to generic applications.

The edge support layer handles the characteristics of edge resources. It copes with

fluctuation and unreliability by applying reactive and proactive task migration.

Furthermore, the performance heterogeneity and the consequent bottlenecks are

handled by two edge-specific task partitioning approaches. As a proof of concept,

the thesis presents a fully-fledged prototype of the design, which is evaluated

comprehensively in a real-world testbed. The evaluation shows that the design is

able to substantially improve the resource elasticity in edge-based environments.
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1. Introduction

The modern computing landscape consists of a vast amount of heterogeneous

end-user devices. From that, a new paradigm emerged, called edge computing.

It describes the decentralized collaboration of end-user devices while avoiding

the use of centralized infrastructure, such as the cloud. Recent edge devices are

equipped with fairly powerful hardware that may runs idle. While this computing

power remains unused, other devices work to full capacity and would benefit from

additional computing resources. As a solution, computation placement executes

computationally intensive parts of applications on remote resources and augments

the computational capabilities of devices that are limited in performance.

The goal of the thesis is to design an elastic computation placement framework

that is focused on edge resources. Thus, computation can seamlessly be exchanged

among heterogeneous edge devices. Software developers write programs in any

programming language without being aware of whether the computation is ex-

ecuted locally or on heterogeneous remote devices. Every device can share its

computing power and contribute to a worldwide network of edge resources. As a

result, the borders of physical devices vanish and computation becomes a common

good that can be exchanged.

The remainder of this chapter motivates the thesis and states the problem as

well as the research questions. Further, it gives an overview of the scientific

contributions and the structure.

1.1. Motivation

Recent technologies such as machine learning, virtual reality, and the Internet

of Things (IoT) require high computational performance and responsiveness.

These technologies are embedded in common software running on mobile and

desktop end-user devices. The resource demand of these applications, however,

1



1.2. Problem Statement

may exceed the performance that is locally available. As a solution, computation

placement augments the computational capability of weak end-user devices to run

applications with high performance requirements. It bundles up computationally

intensive application parts and transfers them to a more powerful remote resource

where the computation takes place. After that, the result is sent back to the

application. This entire process is highly complex in terms of network handling,

computation abstraction, or resource heterogeneity. As an abstraction, middleware

developers create software that hides these complexities and provides an easy-to-

use application programming interface (API) to place computation.

1.2. Problem Statement

Traditional offloading systems place the computation on rather static infrastruc-

tures like dedicated servers [48], computational grids [5], or clouds [55]. Cloud

resources are elastic, meaning, that the provisioning of resources adapts to the

current performance demand [93]. While offering nearly unlimited resources, the

cloud has major drawbacks in terms of trust, security, privacy [102, 207], and

communication latency [24].

As an alternative, user-controlled edge devices can serve as computational re-

sources. The modern computing landscape consists of a plethora of heterogeneous

computing entities at the edge, all serving a certain purpose. It includes devices

such as smartphones, tablets, laptops, and PCs, equipped with graphics pro-

cessing units (GPUs). In case these devices run idle, they can contribute their

computational performance to a global distributed computing system. Compared

to cloud resources, the edge exploits the locality of resources leading to short

communication latencies and a high responsiveness for task executions. Moreover,

edge devices potentially provide more trust, security, and privacy, if they are

not hosted by a third party. Apart from that, devices in the edge have several

drawbacks such as limitations in performance and reliability, fluctuation and

errors, as well as different kinds of heterogeneities. To cope with errors and

fluctuation, edge-specific fault tolerance mechanisms are required to increase the

reliability of end-user devices. Further, a computation abstraction in combination

with a middleware-based system solution is needed to overcome heterogeneities.

The performance of edge environments is, however, limited by nature since it

2



1.3. Objective and Research Questions

depends on the number of participating devices in proximity. The integration of

specific computing architectures, like GPUs, and an efficient scheduling approach

are required to exploit the maximum performance of the available resources.

1.3. Objective and Research Questions

Based on the motivation and the problem statement, the objective of the thesis is

defined as: The development of a computation placement framework that provides

an abstraction for computation and resource elasticity in edge-based environments.

Derived from the objective, this thesis will answer the following research questions:

1. How can elastic computation placement in edge environments be achieved?

2. How is the application model of a computation placement system defined?

3. How can a lightweight computation abstraction be realized?

4. How do heterogeneous edge devices perform in comparison?

5. How can a system compensate unreliability and heterogeneity in the edge?

1.4. Thesis Contributions

To answer the research questions, this thesis presents an approach for elastic com-

putation placement in edge computing environments. It includes a computation

placement framework that abstracts computation to handle various types of het-

erogeneity. A middleware encompasses the assembly, distribution, and execution

of closed computation units as well as edge-centric mechanisms to increase fault

tolerance and resource efficiency. Based on a literature review, the research gap is

identified and the system design is developed. This design is implemented in a

fully-fledged prototype which is the foundation for an evaluation in a real-world

testbed. The six main contributions of the thesis are as follows:

(i) Analysis of the State of the Art: The thesis presents an exhaustive analysis

of the state of the art in distributed computing systems. Related approaches

from areas such as cluster, grid, volunteer, cloud, fog, and edge computing are

investigated. For the literature analysis, a classification is developed that is used

to categorize the existing approaches and to identify the research gap.
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1.4. Thesis Contributions

(ii) Application Model for Computation Placement: Not all applications

benefit from computation placement. The second contribution is a model that

classifies applications by means of different characteristics. Based on these charac-

teristics, the model determines to what extent an application benefits from remote

computation placement.

(iii) Lightweight Computation Abstraction: For the integration of hetero-

geneous computation platforms, the thesis defines a computation abstraction in

form of closed units of computation – called Tasklets. Regardless of the computing

architecture, the abstraction extracts the plain computational capabilities of a

device. This includes PCs, smartphones, tablets, and GPUs. The abstraction

is lightweight to incorporate thin devices, like microcontrollers and embedded

devices.

(iv) Framework for Elastic Computation Placement on Edge Resources:

The main contribution includes the design of a framework for elastic computation

placement. It is middleware-based, encompasses heterogeneous platforms, and sup-

ports easy integration of existing applications. Further, it includes a performance

measure for remote computation placement. This design especially considers the

characteristics of edge devices, thus, it improves the fault tolerance and avoids

performance bottlenecks. A so called edge support layer encompasses this func-

tionality. It offers task migration and performance-aware workload partitioning

algorithms that are specialized for edge resources.

(v) Comprehensive Prototype Implementation: The thesis contributes a

fully-fledged prototype implementation of the presented design. The prototype

integrates the creation, distribution, and execution of closed computation units

as well as the edge support layer. For testing and evaluating purposes, several

applications from different domains were implemented for the system. While these

applications conform to the application model, they have different placement

characteristics in terms of data and computation intensity.

(vi) Evaluation in a Real-World Testbed: Finally, the thesis includes an

exhaustive evaluation of the prototype by means of several experiments. These

experiments use different applications and environment settings. All settings

consist of a real-world testbed with different combinations of devices to show

specific behavior and characteristics of the system.
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1.5. Structure

This thesis is structured as follows: After the introduction, Chapter 2 describes the

theoretical background and the terminology of the thesis. This includes the areas

distributed computing systems, computation placement, and pervasive computing.

Then, Chapter 3 derives the functional and non-functional requirements of the

thesis by means of a scenario. In Chapter 4, related work is classified and the

research gap is identified. Afterwards, Chapter 5 presents the design of the

two-layered research approach. It consists of the framework for computation

placement – the Tasklet system – and the edge support layer. Based on that,

Chapter 6 describes the implementation of the full-fledged prototype. After that,

the approach is evaluated in Chapter 7 by means of seven experiments. These

experiments include a qualitative evaluation of the requirements from Chapter 3

and a quantitative evaluation of all system parts. Finally, the thesis is closed in

Chapter 8 with a conclusion and an outlook on future work.
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2. Background

This section introduces the background and the fundamental concepts of relevant

research areas of the thesis. After a brief definition of distributed systems, various

types of distributed computing systems are presented. Then, the section introduces

computation placement as a paradigm to execute computationally intensive tasks

on remote machines. Lastely, context-aware computing is discussed to incorporate

environmental information into task distribution strategies. In order to exploit

user-controlled devices at the edge, the concept of context-awareness is crucial.

The term distributed systems has been defined in literature several times. Van

Steen and Tanenbaum argue that none of these definitions are satisfactory and

gave a loose characterization [184, p. 2]: “A distributed system is a collection of

autonomous computing elements that appears to its users as a single coherent

system.” This definition emphasizes two main characteristics of distributed systems

that are relevant for this thesis: First, it consists of autonomous collaborating

elements that are connected by a network and second, for the user/application

the system appears as a single entity. In addition to that, Coulouris et al. define

distributed system in [47, p. 2] “as one in which hardware or software components

located at networked computers communicate and coordinate their actions only by

passing messages.” Coulouris et al. further define challenges of these systems as

heterogeneity, openness, security, scalability, failure handling, concurrency, and

transparency [47, p. 16-25]. These challenges influence the design principles of

the approach of this thesis. Distributed systems research is broad and includes

a wide variety of types, such as the Internet [47, p. 3], mobile computing [47,

p. 6], distributed information systems [184, p. 34], pervasive systems [184, p. 40],

and distributed computing systems [184, p. 25]. The latter – also called high

performance distributed computing more recently – is the main focus of the thesis

and is therefore inspected in detail.
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2.1. Distributed Computing Systems

A distributed computing system is a special distributed system focused on harvest-

ing computational capabilities of remote resources. Several research areas emerged

to reduce execution times of complex computing problems. Before the emerge

of distributed computing, large and specialized supercomputers were the only

option to obtain sufficient computing power. This solution, however, implies some

drawbacks, like asset and maintenance costs as well as building complexity. As an

alternative, a set of physical remote machines can operate as computing resource –

the so called resource providers [32]. Assuming that a task can be split up into

several independent parts, these parts can be executed on resource providers in

the system. After the execution, the system collects and accumulates the result

and forwards it to the application. This application is executed by the so called

resource consumer [32]. This paradigm is used to speed up applications from

various areas like scientific computing, economic predictions, machine learning,

and video rendering.

In particular in particle physics, large amounts of data need to be processed. One

example is the large hadron collider that records data of subatomic particles, which

emerge from near lightspeed particle collisions. Each year, the large hadron collider

generates roughly one peta byte of data [13], which is analyzed by a large compute

cluster [121, 171]. This huge amount of data can only be processed by harvesting

the computing power of a plethora of powerful devices. From this general idea,

several research areas arose, which are cluster, grid, and volunteer computing.

Over time, cloud computing evolved as a more centralized and service-oriented

paradigm. Recently, with the appearance of powerful and mobile end-user devices,

mobile cloud, fog, mobile edge, and edge computing emerged as decentralized

approaches. Next, the section describes these research areas in their chronological

order.

2.1.1. Cluster Computing

A compute cluster [53, 79, 205] consists of a large set of compute nodes and

one master node [184, p. 17 f]. All components are built from off-the-shelf

hardware, which makes the cluster more affordable compared to supercomputers.
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The entities of a cluster are linked via a high-speed network to exchange data

and execution information. Clusters are rather homogeneous in terms of their

hardware and are tightly coupled. Thus, to improve the execution performance,

software is tailored to the characteristics of the specific cluster it is executed on.

To execute applications, the user submits jobs via the master node, similar to the

batch computing paradigm. The master node controls all running jobs and their

workflows. Different examples for clusters exist. One well-known cluster is the

Beowulf cluster [17], which is Linux-based. Beowulf incorporates a middleware to

maintain a tightly coupled cluster. A more lightweight approach was developed by

Engelmann et al. [64], where the software stack on the compute nodes is reduced

to a minimum to increase the computational performance of the cluster. From

the software perspective, approaches like MapReduce [53] increase the usability

and reduce the execution times of jobs that run on a cluster. It is a programing

model with an API that distributes workloads and collects results. MapReduce

offers parallelization as well as mechanisms for redundancy and fault-tolerance

for large-scale data-intensive applications. While MapReduce is specialized on

applications that have an acyclic data flow model, Spark [205] by Zaharia et al.

focuses on applications, which use data sets across multiple parallel operations.

Other approaches focus on the energy efficiency of job execution on cluster systems

or fault tolerance in cluster environments [204]. A comprehensive survey on energy

efficient cluster computing can be found in [183].

2.1.2. Grid Computing

In grid computing, resources are rather loosely coupled and more heterogeneous,

but still dedicated for task execution [30, 41, 49, 94, 143]. Contrarily to clusters, no

assumptions are made regarding their homogeneity. This implies that grid nodes

have various hardware architectures, operating systems, network connections,

security policies, and administrative domains. Therefore, the grid system supports

mechanisms that overcome these heterogeneities and provide the access to remote

resources from different administrative domains [184, p. 25 ff]. Different types of

grids exist: computational grids, access grids, data grids, and data-centric grids

[150]. In focus of this thesis are computational grids.
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Figure 2.1.: Grid Computing Architecture by Foster et al [74].

Foster et al. defined the “grid problem”, which describes the sharing of resources in

so called virtual organizations that federate multiple systems and are collaborations

of multiple institutions [73, 74]. As a solution for the grid problem, Foster et al.

proposed a grid architecture that is based on the hour glass model of IP and is

shown in Figure 2.1. It has five layers: the fabric, connectivity, resource, collective,

and application layer. The fabric layer abstracts functionalities from the physical

resources in the system and implements the local, resource specific operation.

Communication protocols in the connectivity layer facilitate the exchange of data

between fabric resources based on the TCP/IP stack. On this layer, network

protocols, transport protocols, and application protocols, such as IP, ICMP, TCP,

UDP, DNS, and OSPF, are used. The resource layer provides sharing operations

on individual resources. Based on communication and authentication protocols, it

provides secure mechanisms for negotiation, monitoring, and accounting. Together

with the communication layer, the resource layer represents the neck of the hour

glass model. So far, the layers are focused on individual interactions. The collective

layer facilitates the collaboration of multiple resources. It considers global states,

manages workload, and schedules tasks. The application layer is on top of the

architecture. The layers below provide APIs that are used by the application to

perform the desired action. Comprehensive surveys on grid computing can be

found in [114, 129, 203].

2.1.3. Volunteer Computing

Volunteer or desktop grid computing systems aim to harvest idle resources of

desktop computers [7, 9, 35, 132]. These resources are located at the edge of

the Internet and contribute their computational capability to high throughput
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applications. Compared to grid computing, volunteer or desktop grid computing

does not only consist of more heterogeneous and loosely coupled nodes, but also

integrates end-user devices [44]. Hence, the computing nodes are less reliable,

have changing network connections, and fluctuate. Resource providers in desktop

grids are individually administrated by their users and not dedicated for execution.

Therefore, the user can shut them down or cancel task executions at every point

in time leading to a high resource volatility [45]. Resource providers can also

behave maliciously, consequently reducing the execution quality of the overall

system. Desktop grid systems have to cope with these characteristics by means of

fault-tolerance mechanisms.

From the application perspective, standard grid applications often have depen-

dencies between tasks and are focused on a high system performance. In contrast

to that, desktop grid applications have no dependencies between tasks and are

focused on high throughput. According to Choi et al. [45], volatility, dynamic

environments, lack of trust, failures, heterogeneity, scalability, and voluntary

participation are the main challenges in desktop grid computing. These challenges

have an impact on resource management and scheduling in desktop grids. Promi-

nent systems like BOINC [5], Condor [132, 179], and Entropia [35, 43] cope with

these challenges by means of fault tolerance mechanisms and specifically designed

scheduling algorithms. A survey on volunteer computing can be found in [44].

2.1.4. Cloud Computing

Cloud computing is based on the idea of utility computing, which was mentioned

by John McCarthy in 1961 at the MIT’s centennial celebration. In this vision,

computing is a public utility similar to the telephone system. Users need to pay

only for the resources that they actually use. Today, different cloud providers offer

services that fulfill McCarthy’s idea (e.g., Microsoft Azure1, Amazon Web Services2,

and Google App Engine3). The national institute of standard and technology

(NIST) defines cloud computing as follows [140]: “Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

1Microsoft Azure: https://azure.microsoft.com/, accessed: 10/01/2019
2Amazon Web Services: https://aws.amazon.com/, accessed: 10/01/2019
3Google App Engine: https://appengine.google.com/, accessed: 10/01/2019
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configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.”

In the year 2006, Amazon made cloud computing popular and offered parts of

their infrastructure as a service. Based on the economy of scale, they deployed

large global data centers and linked them to the Internet via high bandwidth

connections. Originally, Amazon built the infrastructure for their own use to host

their marketplace. They observed that parts of their infrastructure are unused

most of the time. This over-provisioning is expensive, but necessary to keep

up with performance peaks. Amazon started renting these excess capacities to

customers.

From the customer perspective, cloud computing provides high flexibility based

on the pay-as-you-go principle. It offers a pool of various IT resources to the user

that are scalable, simple to use, and centrally administered, without the need

of up-front investments [82]. Using 1000 servers for one hour leads to the same

cost as using one server for 1000 hours. This established new possibilities for

companies that make use of data analytical batch jobs [10]. In [76], Foster et al.

compare cloud and grid computing comprehensively. The result shows that the

visions, architectures, and technologies are similar. However, in terms of security,

programming model, business model, compute model, data model, application,

and abstractions, grid and cloud systems differ.

Cloud computing introduces three different service levels: infrastructure as a

service, platform as a service, and software as a service [140]. Zhang et al. [207]

further introduced a more comprehensive perspective on cloud computing, shown

in Figure 2.2. On the bottom, the hardware layer consists of physical servers,

routers, switches, power, and cooling systems. The infrastructure layer sits on top

of the hardware and realizes virtualization of data centers. With virtualization

technology like XEN [15] or vManage [118], physical hardware resources can

be partitioned into virtual machines. The infrastructure layer allocates and

manages the cloud resources to tailor virtual machines to the specifications of

the cloud customers. Examples for infrastructures as a service on that level are

Amazon Elastic Compute Cloud4 (EC2) and Flexiscale5. The third layer facilitates

4Amazon EC2: https://aws.amazon.com/de/ec2/, accessed: 10/01/2019
5FlexiScale: http://www.flexiscale.com/, accessed: 10/01/2019
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Figure 2.2.: Cloud computing architecture by Zhang et al [207]. The different layers and their
respective abstraction level are presented. On the left and right side the service
levels and examples for services are shown, respectively.

platform as a service based on operation systems and application frameworks.

This higher level abstraction offers an easy development and fast deployment of

cloud applications. As an example, the Google App Engine provides an API to

implement all elements of a typical web application. On top of the architecture,

the application layer runs the cloud application, which can be scaled automatically

in contrast to standard applications. This layer provides software as a service, such

as Salesforce.com6, which offers cloud-based customer relationship management

solutions.

In general, cloud computing provides several service types. Amazon Web Services

provides more than 90 different services, such as compute, storage, artificial

intelligence, and IoT services. All of these services can be integrated mutually

to tailor a specific cloud application. Especially compute services are in the

focus of this thesis. Besides the EC2 that offers customized virtual machines,

Amazon Lambda provides the execution of single methods without provisioning or

managing cloud servers. Other services facilitate auto-scaling of cloud applications

6Salesforce.com: https://www.salesforce.com/, accessed: 10/01/2019

13



2.1. Distributed Computing Systems

depending on the workloads. Since 2006, cloud computing faced many challenges

regarding privacy, security, latencies, and costs [100, 155, 178]. Surveys on cloud

computing can be found in [34, 153].

2.1.5. Mobile Cloud Computing

The term mobile cloud computing (MCC) is used for different types of systems

and describes a special form of cloud computing with mobile devices as resource

consumers [57]. Based on the MCC idea, resource-scarce mobile devices can

augment their computational capabilities with cloud resources and, for example,

offload computationally intensive tasks. The challenges of these systems are the

limited network connection, heterogeneity, device mobility, and system security.

Recently, the term MCC is also used for approaches that deploy smaller cloud

servers at the edge of the network in proximity to the users like Cloudlets [158,

159, 160]. Other approaches define so called mobile ad-hoc clouds that consist of

as set of close-by mobile end-user devices. In case these devices agree on sharing

their resources, they join a nearby group and exchange computational capabilities.

Yaqoob et al. present a survey in [199].

2.1.6. Fog Computing

The fog computing paradigm was introduced by Cisco [24] to extend cloud com-

puting with resources deployed at the edge of the Internet. This is based on

the emerge of the IoT, which introduced new requirements for computational

resources, such as mobility support, location-awareness, and lower latencies [23].

Fog computing is defined as “a highly virtualized platform that provides compute,

storage, and networking services between end devices and traditional Cloud Com-

puting Data Centers, typically, but not exclusively located at the edge of network”.

Based on that, fog computing works in conjunction with cloud computing, pairing

the strength from both areas. This leads to a system with high performant cloud

and low latency fog resources. Gradually, the fog paradigm became more and more

independent from cloud computing, which led to a high performance heterogeneity

amongst the fog nodes [154]. As a result, a three-tier architecture with clients,

fog nodes, and central cloud servers [134] arose, offering new opportunities for fog

computing. This architecture can be applied in different application areas such as
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Figure 2.3.: From the cloud to the edge by Li et al [128].

augmented reality [85], cyber-physical systems [176], and application in vehicle to

vehicle and vehicle to infrastructure communication [109]. Comprehensive surveys

on fog computing approaches can be found in [137, 201, 202].

2.1.7. Edge Computing

The term edge computing – as it is used in this thesis – was first mentioned in

2014 by Vaquero et al. [185] and became a standalone paradigm for decentralized

computing. Edge and fog computing are used interchangeably by some authors

[42, 170]. In this thesis, they are handled separately with different emphases.

In a nutshell, edge computing is more decentralized and more focused on the

collaboration of user-controlled devices than fog computing.

While cloud resources offer enormous capacities, they entail fundamental problems.

According to Lopez et al. [77] these problems are: the loss of privacy and social

data, the delegation of application and service control, and the large amount of

communication overhead. As a solution, the edge computing paradigm deducts

applications, data, and services from central cloud resources and deploys them on

user-centric edge devices. The approach retains the cloud as a central support

infrastructure for a few number of tasks. Figure 2.3 shows the edge-oriented

perspective on the Internet based on Li et al. [128]. In the center is the core that

is based on clouds and data centers. On the next layer, smaller web servers are

located. At the edge of the Internet, user-controlled devices such as PCs, mobile
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phones, and sensors take over the majority of tasks. Their advantages encompass

proximity, intelligence, trust, control, and human-centered applications at the

edge [77]. Comprehensive surveys on edge computing can be found in [128, 190].

2.1.8. Mobile Edge Computing

IBM and Nokia first mentioned mobile edge computing (MEC) in 2013 when they

introduced a platform to run applications at mobile network base stations. One

year after that, the European Telecommunications Standard Institute (ETSI)

launched a MEC group [148] to create a new standard. The general idea of MEC is

to deploy infrastructure with cloud capabilities at the edge of the mobile network

[154]. This infrastructure can be deployed at different locations in the Radio

Access Network, such as the LTE/5G base stations, 3G radio network controllers,

or multi-radio access technology call aggregation sites. Mobile network operators

are responsible for the installation and maintenance of mobile edge hardware.

Based on the ETSI white paper by Patel et al. [148], the main characteristics of

MEC are as follows: (1) On-premises: the mobile edge is local and can be used if

isolated from the rest of the network. (2) Proximity: it is close to the source of

information to support computationally intensive applications. (3) Lower latency:

due to the device proximity, low latencies and high bandwidths contribute to a

high user experience. (4) Location awareness: edge devices use low level signaling

to obtain location information of the participating devices. (5) Network context

information: applications and services can use real-time information about the

network to offer better services. In [2], Abdelwahab et al. apply the mobile edge

paradigm and design a solution based on LTE networks. More recently, Tran et al.

[181] published their vision of a MEC framework in the 5G network. Based on that,

new technologies can be supported such as IoT, augmented reality, and connected

cars [95]. Comprehensive surveys on MEC can be found in [1, 136, 138, 190].

2.2. Computation Placement and Offloading

In this thesis, computation placement and computation offloading are used as

separate terms. The latter depicts the process of extracting a computationally

intensive part of an application and transferring it to a remote resource for execu-
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tion. The result is sent back to the calling application afterwards. Computation

placement, on the other hand, adds further abstractions to offloading. It decides on

a distribution strategy for application intensive parts and splits them up such that

resources are used optimally. Computation placement encompasses performance-

aware tailoring of workloads as well as runtime migration of application parts to

facilitate the required level of resource elasticity in the system.

The device intending to place computation remotely is referred to as the local

device. Computation placement can have multiple reasons such as, improving

scalability, saving energy, migrating code transparently, and optimizing respon-

siveness. Nevertheless, it entails challenges that need to be considered to exploit

these benefits. Flores et al. [69] proposed a generic offloading architecture and

structured their analysis on the following questions: what, when, where, and how

to offload to obtain a time and/or energy benefit for the local device. Kumar

et al. have a similar model for their literature analysis in [116]. Based on that,

the rest of the section is structured by means of these questions to examine the

characteristics of computation placement and offloading.

What to Offload?

The question of what to offload refers to parts of code of the consumer application.

A computationally intensive part of an application is selected for offloading, if a

remote execution saves time, energy, or both. Depending on the approach [116],

the level of granularity of these parts may vary from methods [8, 90], tasks [36, 65],

applications [43, 66], to entire virtual machines [113]. The identification of these

parts, however, is not trivial. Some approaches, such as MAUI [48] or ThinkAir

[112] use annotations in the source code. These annotations are provided by

the developer during the application development phase. This rather manual

approach assumes knowledge about the runtime behavior and the complexity of

the program. This assumption does not always hold. Therefore, other approaches

apply a different strategy that is rather dynamic in term of what to offload. These

approaches make the offloading decisions based on static code analysis or history

traces. The component that decides on what to offload is called a code profiler [69].
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When to Offload?

When to offload refers to the decision if a part that is selected by the code profiler

is actually offloaded or not. This decision depends on the current situation of

the local device and is made by the so called decision engine [69]. The decisions

can be made statically or dynamically. In the static case, the parts that were

selected by the profiler are always remotely executed, regardless of the current

context. This may lead to bad responsiveness or even higher energy consumption.

Therefore, most computation placement systems monitor the local devices in

terms of their performance, battery status, and network connection. Based on

that and the required data transmission size, approaches decide if offloading is

beneficial or not. They define the benefit of offloading depending on computation

and communication effort [117, 116]. If the time for a local execution is longer

than the remote execution plus the data transmission time, offloading is beneficial

in terms of performance. Energy saving benefits are computed analogously. If the

local execution consumes more energy compared to the remote execution plus the

energy for data transmission, offloading is favored. Therefore, local execution is

the default and code offloading is optional and only done if beneficial.

So far, this section assumes offloading systems that employ stable cloud resources

as providers. With unstable and fluctuating edge resources, the when question

is far more complex to answer. In case of plenty powerful edge resources with

good network connections, computation placement is potentially more beneficial

compared to a situation with only a few unreliable devices in the environment.

Thus, the when question is influenced by the where question.

Where to Offload?

Where to offload refers to the remote resource provider that executes the offloaded

code. This location can again be static and dynamic. In case of stable cloud

resources or other dedicated servers, the approach is static. Dynamic placement

decisions in terms of resource providers are more complex, since context informa-

tion of devices in the environment must be considered. In computation placement

systems that utilize edge resources this has a major influence, since these re-

sources are user-controlled. The current amount of available resources and their

stability also determines if remote computation placement is even beneficial or
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not. To collect context information, all devices in the environment are monitored.

The gathered information is used to make the scheduling decisions. The system

component that monitors the environment is called system profiler [69].

How to Offload?

How to offload refers to the remote executions mechanism. The so called surrogate

platform is the remote execution instance in a computation placement scenario [69].

It recreates the state and runtime environment of the consumer device. Therefore,

it is able to execute the methods, tasks, application, or virtual machines in

the same way the local device does. Depending on the granularity and the

level of abstraction, this is achieved by remote procedure calls (RPC), bytecode

transmissions, virtualization, or even by running clones of entire virtual machines.

The parallel execution of offloaded tasks is also achieved by the surrogate platform.

This can be realized through different mechanisms that provide redundant task

scheduling or task partitioning.

2.3. Pervasive Computing and Context-aware Computing

Especially in pervasive systems and the IoT where thin and resource scarce devices

are common, the potential benefit of the proposed approach is substantially.

Moreover, the benefit of offloading from edge devices is largely determined by

their current context. Therefore, context, context-awareness, and IoT are relevant

for this thesis and are introduced next.

In his article ’The Computer for the 21st Century’ [191] that he published in 1991,

Mark Weiser laid the foundation for modern pervasive and ubiquitous computing

systems, including the IoT. In his vision, computers and other interconnected

computational devices become interwoven with objects of our everyday life and at

some point in time vanish into the background entirely. To realize his vision, these

systems require context-awareness. The concept of context and context-awareness

was defined in 1994 by Schilit et al. [168]. According to them, context has three

key features, which are: (i) the user’s location, (ii) the user’s social group at

the same location, and (iii) the nearby resources. The perspective on context

changed over time and authors like Schmidt et al. proposed new working models
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for context that are focused on sensor-based context-aware applications. The most

prominent and general definition of context is given by Dey [56]: “Context is any

information that can be used to characterise the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves.”

Similar to context, the definition of context-aware computing evolved steadily

over time. In 1999, Dey and Abowd published their perspective on context-aware

computing: “A system is context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy depends on the user’s

task.” They further described the three categories of features that a context-aware

application can support [4]: “(i) presentation of information and services to a

user, (ii) automatic execution of a service for a user, and (iii) tagging of context

to information to support later retrieval.”

The Internet of Things is a modern paradigm that is based on this foundation.

According to Atzori et al. [11], IoT consists of three visions: the Things-oriented

vision, the Internet-oriented vision, and the Semantic-oriented vision. The first

vision refers to things which are everyday objects equipped with computing

hardware, such as RFID tags, sensors, or actuators. The Internet-oriented vision

describes the networking aspect of the paradigm. It includes specialized versions

of IP for smart objects or the Internet as a general medium of communication.

The semantic-oriented vision refers to any data reasoning and semantic technology

that makes it possible to control the huge amount of integrated elements. IoT is

closely related to the edge computing paradigm, since application in this domain

rely on low latency computing resources [198]. Hence, IoT is a key enabler of fog

and edge computing [92]7.

This chapter discussed the background of this thesis with respect to distributed

computing systems, computation placement and offloading, as well as pervasive

and context-aware systems. The following chapter introduces a scenario and

derives requirements for the design of this thesis.

7[92] is joint work with M. Heck, J. Edinger, and C. Becker
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This chapter conducts a requirement analysis based on the research questions

of this thesis. Therefore, a scenario is introduced that describes all players and

system entities as well as their interactions. Based on that, the functional and non-

functional requirements for the design are derived in Section 3.2 and 3.3. These

requirements are the foundation for the design and prototype implementation.

3.1. Scenario

In the modern computing landscape various devices exist that have computational

excess capacities. Thus, a vast amount of computational power is unused. This

capacity is contributed to a global distributed computing system. These devices

range from standard user-controlled devices like desktop PCs, smartphones, and

tablets to specialized hardware solutions, such as in cloud and grid computing

environments. As a solution, a middleware serves as an abstraction on top of this

computing landscape and hides the distribution complexities from the application

developer. It abstracts the plain computational capabilities from the otherwise

heterogeneous devices owned by resource providers. This middleware offers an

easy-to-use API allowing the integration of generic applications from all kinds of

domains. Artificial intelligence, virtual reality, and machine learning, are only a

few of recent trends that require a large amount of resources. These applications

can benefit from offloading computation via the middleware.

To do that, the developers first identify the computationally intensive parts of

the application. They replace these parts with API calls to the middleware in

order to initiate the remote execution. To tailor the task execution, developers

specify the required quality of service level, in terms of, for example, reliability,

speed, or responsiveness. Additionally, they specify how a task can be partitioned,

so that the system can exploit parallel execution of a task. Depending on the

application requirements, the middleware transparently enforces the task execution
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Figure 3.1.: In this scenario, computation is seamlessly exchanged between applications and
any local or remote edge resource that contributes to the computation placement
system. The resource intensive parts of an application are allocated on idle resource
providers. These remote resources execute the offloaded tasks (dark gray) and
return the results (light gray) back to the application. These resource providers can
be in the proximity of the resource consumer to provide low latencies.

by scheduling on suitable resource providers. When scheduling on unreliable

edge resources, the middleware provides robustness by ensuring that the task

is eventually executed. In case that the application requires high performance

resources for long-running tasks, the middleware may schedule the execution

on cloud resources or on remote edge resources with high performance. For

applications that need high responsiveness or security, resources in proximity

are used for execution. In many cases, applications demand a high execution

performance and responsiveness. To facilitate both, the middleware can increase

the responsiveness of cloud resources or increase the performance of edge resources.

The first approach integrates cloud resources into the nearby environment of

the user – known as fog computing – to reduce response times. The second

approach employs edge resource more efficiently to increase their performance.

The scheduling mechanism ensures elasticity in the edge by means of an optimal

workload distribution and resource provisioning. It also decides on the optimal

strategy for the application. After the execution on the resource provider, the

result is sent back to the application. The scenario is illustrated in Figure 3.1.
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The system model for this scenario assumes the participation of the majority of

the existing edge devices. Further, these devices must be able to communicate

with each other via a network. From the consumer application perspective, it is

assumed that the computationally intensive parts of an application are identified

by application developers.

3.2. Functional Requirements

From the scenario, a set of seven functional requirements is derived in this section.

These requirements are relevant to the approach that is designed and implemented

in this thesis, which is referred to as “the system”.

REQF1 Computation Placement: The major purpose of the system is to place

computation on remote resource providers. This requires a well-defined API that

allows to specify computationally intensive parts of an application. Depending

on the context, the system should decide on the most suitable resource provider

and provide means to tailor the execution behavior of tasks. Some applications

demand a specific set of execution requirements to run successfully, such as

high performance, responsiveness, or reliability. The system shall consider these

requirements and allow the developer to tailor the execution accordingly. Finally,

the system must deliver the computation result to the application according to

application requirements.

REQF2 Lightweight Computation Abstraction: The system requires a com-

putation abstraction to represent the computational logic of a task and to enable

its execution on any device in the system. It must be lightweight to keep the

communication costs reasonable and to allow small devices the execution.

REQF3 Edge Support: The integration of edge resources is a major requirement

of this approach. The system shall abstract the capabilities of edge resources to

approximate the execution quality of cloud resources without their drawbacks.

Therefore, the nature of edge resource must be considered, namely, fluctuation,

unreliability, and locality. The system shall cope with these shortcomings and fully

exploit the benefits of these resources, especially locality. Due to their significance,

edge elasticity and heterogeneity are handled separately.
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REQF4 Edge Resource Elasticity: The elasticity of resources in the edge

is required to provide the system with a sufficient set of resources. In cloud

computing, the ad-hoc provision of resources and the adaptation to the current

resource demand is called elasticity [93]. The system shall adapt the provisioning

of edge resources to the demand of the user application and the current workload

of the system. This assumes that a certain amount of users participate in the

system and contribute their resources.

REQF5 Overcoming Edge Heterogeneity: Especially at the edge, hetero-

geneities come in different forms such as hardware architecture, operating system,

programming language, accessibility, and task characteristics [166]1. To achieve

the vision of computation as a common good, the heterogeneity of the computing

landscape must be tackled by the system. This includes the interoperability of

all participating devices, regardless whether the devices have different operating

systems, hardware architectures, network connections, or computational perfor-

mances. Besides, heterogeneities of consumer applications such as programming

language and specific execution requirements must be considered as well.

REQF6 Hiding Complexities: The process of computation placement entails

major complexities. The system should hide these complexities from all system

participants. The API of the system should support the application programmer

with well-defined methods to determine the required execution quality on an

abstract level. Further, resource consumers should not be aware of the system ex-

ecuting tasks remotely. Thus, the system shall include access, location, migration,

replication, and failure transparencies.

REQF7 Unobtrusive: On the resource provider side, the execution of tasks

shall not interfere with the local user. The system should monitor the local usage

and adjust the amount of task execution accordingly. This guarantees that the

local user should not be aware of the execution of tasks for resource consumers.

1[166] is joint work with J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker
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3.3. Non-Functional Requirements

In addition to the functional requirements, the system must fulfill a set of four

non-functional requirements.

REQNF1 Performance: The system performance is a key factor for compu-

tation placement. It can be measured by different metrics like reduced energy

consumption, response time, and network cost. At least one of these factors

must be positive to decide for a remote task execution. The system requires a

performance measure which is focused on the response time and data overhead.

It neglects the energy consumption of devices.

REQNF2 Scalability: Neumann defined three dimensions for scalability of

distributed systems [144]: numerical scalability, geographical scalability, and

administrative scalability. Numerical scalability refers to the number of users,

meaning, that by adding more users and resources, the system does not decrease

its performance. The second type of scalability targets functionality of the

system despite the geographical distance between the participants and the arising

communication delays. Administrative scalability refers to a system that spans

over several independent organizations and is still manageable. The proposed

system shall considers all three dimensions of scalability and be able to manage

an unlimited amount of resources from various organizations that are globally

distributed.

REQNF3 Robustness: The system must cope with errors, failures, and malicious

behavior of participating nodes. Especially in edge computing environments where

end-user devices are used as resource providers, malicious behavior is likely. The

system shall apply mechanisms to increase the execution qualities of edge resources

despite of their unreliable nature. These mechanisms are transparent for the user

and the application developer.

REQNF4 Extensibility: The system should be extensible in terms of hardware

architectures, application requirements, and mechanisms for robustness. Due

to the fast evolution of the computational landscape, an easy extension and

replacement of software components is important for the research design.

After the requirements analysis, related approaches are investigated in the next

chapter.
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4. Related Work

This chapter presents the related work of the thesis. First, a classification for the

literature analysis is developed. Second, the different related areas are examined

by presenting the most prominent approaches. Third, the literature analysis

is summarized by means of an overall classification of the approaches and the

identification of the research gap.

4.1. Classification

The classification reflects the requirements of the previous chapter. Four general

classes emerge from that: heterogeneity, edge support, elasticity, and usability.

These classes are divided into subclasses. Heterogeneity consists of operating

system, hardware architecture, programming language, accessibility, and task.

Especially accessibility and task heterogeneity require explanation. Accessibility

includes different network technologies as well as bandwidths and latencies in

the same system. Task heterogeneity means the irregularity of tasks considering

their computational effort. The classification of heterogeneity is based on [167]1,

where further detail can be found. The second class is edge support, which

describes the general ability of using edge devices as resources, as well as to

cope with device churn and mobility. The third class is elasticity which has

two subclasses: adaptability and efficiency. Adaptability describes to which

degree a system can adjust to the current workload demand of the applications.

This is influenced by the efficiency, which determines, how well a system can

exploit the existing resources. The last class is usability, which is determined by

abstraction, transparency, and obtrusiveness. The first subclass determines if a

system offers a computation abstraction for the application developer. In order

to do that, systems may offer certain programming models or entire frameworks.

The transparency of a system, which is also relevant for the application developer,

1[167] is joint work with J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker
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Figure 4.1.: Overview of the literature classification approach.

is determined by the level of complexity that is hidden. This encompasses access,

location, migration, replication, and failure transparencies. Obtrusiveness is a

relevant usability factor for the providers who share their resources. It is defined

by the degree of perceptible interference that is implicated by the task execution

for other participants. Figure 4.1 shows an overview of the classification.

4.2. Literature Analysis

After the classification, the relevant approaches are presented in this chapter. In

general, the literature evaluation encompasses approaches with different scopes.

Some are comprehensive and tackle various challenges of distributed computing

systems while others are solutions to rather specific problems. In both cases, the

approaches are classified to determine their relation to the thesis.

The literature review does not claim to be exhaustive, since the relevant period

ranges over three decades and encompasses several areas of distributed computing

systems: First, cluster and grid computing systems are described and classified.

Second, the chapter analyzes volunteer computing approaches. Third, cloud

and MCC approaches are presented and categorized. Fourth, the area of edge

computing is examined. It consists of fog computing, mobile data clouds, and

hybrid approaches. Lastly, computation offloading systems are discussed.
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4.2.1. Cluster and Grid Approaches

The resources in cluster and grid computing are more stable, more homogeneous,

and closer-coupled compared to edge computing. Nevertheless, research in these

areas laid the foundation for computation placement systems in terms of re-

source management (e.g.[19, 30, 41, 49]), overcoming heterogeneity (e.g.[182]),

and workload balancing (e.g.[41, 129]). Other approaches deal with trust [12, 197],

economy [31, 33, 194], virtualization [67, 115, 174], energy-awareness [79, 183]

or data management [94, 111]. In the following, cluster and grid approaches are

presented.

MapReduce [52, 53] by Dean and Ghemawat is a programming model as well as

an implementation for processing large data sets on clusters. The computation

abstraction for the programmer is handled with the map and the reduce function,

both written by the user. The map function takes an input key/value pair and

generates an intermediate key/value pair. The reduce function takes intermediate

key/value pairs with the same key and produces zero or one output values. Thus,

with MapReduce, the programmer splits up the job into the smallest granularity

possible and, after that, the system automatically handles the parallelization.

This includes tasks, such as partitioning, allocation and scheduling, fault-handling,

and communication among nodes. MapReduce is, however, limited to a certain

set of applications, in particular those using a working set only once.

For many applications from the machine learning and graph algorithm domains,

this limitation is a problem. As a solution, Spark [205] by Zaharia et al., is focused

on applications that reuse working sets across multiple parallel operations. Spark

uses so called resilient distributed datasets which are read-only collections of

objects. These objects can be used across different parallel operations. Most early

cluster approaches assume that the nodes in a compute cluster are homogeneous,

which is rarely the case. Over time, Zaharia et al. integrated several operating

systems. Further, they tackled performance heterogeneity in [206] to reduce

the loss of computational power. In order to do that, the authors present the

LATE (longest approximated time to end) scheduling algorithm that is robust to

heterogeneity. It, however, only operates under the assumption that the progress

of a task is linear to the completion time.
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The Dryad approach [99], presented by Isard et al., has a similar goals as MapRe-

duce, but achieves them with a different design. It supports coarse-grained

applications and has a graph-based representation, where vertices are computa-

tion and edges are communication channels. A job manager handles the execution

of the graph. In case all inputs of a vertex are available, it is runnable and can be

executed. While the map function of MapReduce can only take one input, each

vertex of Dryad can have multiple inputs.

In [108], Kim et al. presented SnuCL, an OpenCL-based framework for heteroge-

neous CPU/GPU clusters. This framework exploits closely-coupled clusters that

consist of CPU and GPU computing hardware. With SnuCL, standard OpenCL

programs can be deployed and distributed on mid-size clusters transparently for

application programmers. Similar to that, LibWater [81] by Grasso et al. extends

OpenCL for heterogeneous clusters as well. In contrast to SnuCL, LibWater offers

further abstraction and eases the programmability in terms of data transfer and

MPI handling. The LibWater runtime system optimizes the efficiency of programs

transparently and is more scalable.

Next, grid approaches are dicussed. The Globus project [72] by Foster and Kessel-

man focuses on the configuration and performance optimization of metacomputer

environments. In their definition, a metacomputer is a networked virtual super-

computer that is dynamically built from distributed computing resources, also

known as grid. Globus enables the modular deployment of a grid system by

providing different kinds of services, such as security, resource management, data

management, and communication. With these services, it forms an adaptive

wide-area resource environment. Further, Globus adds a quality of service (QoS)

component [75] that is based on resource reservation and application adaptation.

Buyya et al. introduced Nimrod/G [30] as an extension of the Globus middleware.

Nimrod/G is a resource broker and focused on the management and scheduling

of computation within a grid environment. Further, it adds an computational

economy and introduces a market-based model for resource management.

The problem of many early grid approaches is the barrier of users to participate

in a system. The OurGrid approach [7] by Andrade et al. is an easy-to-access,

open, and extensible grid platform. It is based on a network of favors, meaning,

that users who contribute a large part of their resources are prioritized when they

request resources from others. OurGrid is focused on so called bag of task (BoT)
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applications. A BoT application consists of a set of independent tasks that are not

required to communicate with each other during execution. These applications

are suitable to be executed in a grid environment.

The SpeQuloS approach [54, 55] by Delamare et al. combines grid and cloud.

They identify bottlenecks as one of the main problems of BoT executions on best

effort grids. As a solution, SpeQuloS improves the QoS for these applications

in three ways: first, it reduces the completion time. Second, it improves the

execution stability, and third, it informs the user about a statistical prediction of

the BoT completion time. To do so, SpeQuloS detects potential bottlenecks and

counteracts with scheduling critical tasks on reliable cloud resources. It monitors

the task execution and uses different resource provisioning strategies for the cloud.

In case of an execution on cloud resources, SpeQuloS checks the accountability of

the user and predicts a task completion time.

Gridbot [172] by Silberstein et al. creates a single virtualized computing platform

from multiple grids, cluster, and volunteer environments. The approach facilitates

the execution of a BoT application across different grids concurrently. Gridbot

unifies all grid infrastructures by establishing an overlay of resource providers.

It focuses on a rapid turnaround time by resource allocation mechanisms, task

replication, and dynamic bundling of tasks for the same grid type. Gridbot

encompasses prioritization policies to execute multiple BoTs concurrently. The

implementation of Gridbot is based on the BOINC framework.

Compared to clusters, grids are less reliable, which is tackled by grid-specific fault

tolerance approaches, such as [83, 87, 97, 101, 106, 173]. These approaches use

task replication strategies or a proactive fault prediction to increase the reliability

and the throughput of the grid. In [180], Townend and Xu construct a failure

model for grids and identify timing, omission, and interaction faults as prevalent.

They cope with failures and malicious behavior by applying replication and

majority voting mechanisms. A similar approach [131] by Litke et al. uses static

replication, meaning, the number of replications is not changed in case of failures.

In [156], Rood and Lewis increase the efficiency of replication by predicting the

likelihood of a successful job execution. Thus, jobs are only replicated in the

grid if necessary. Hence, they drastically reduce the number of replications while

retaining the success rate of execution nearly stable. Likewise, the approach by

Gurun et al., presented in [84], uses a Bayesian approach for the prediction of the
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reliability. Another similar approach by Huda et al. [96] analyzes the different

failure sources in a grid, namely hardware, application, operating system, network,

software, response, and timeout faults. They use a so called schedule advisor to

prepare a recommendation for the execution plan. In [78], Garg and Singh discuss

checkpointing and migrating in combination with replication of tasks to increase

the fault tolerance in a grid environment.

Other approaches in grid computing optimize the dispatching and scheduling of

tasks (e.g. [59, 88, 123, 127, 193]). Falkon [151], uses a multi-level scheduler that

separates resource allocation and task dispatching and exploits bundling of tasks to

reduce communication effort. Xhafa and Abraham [195] define the grid scheduling

problem and present different heuristics and meta-heuristics as a solution. In

[124], Legrand and Touati analyze the behavior of multiple independent and non-

cooperative application-level schedulers in a single grid system while executing

BoT applications. As a result, they show that cooperation increases the overall

efficiency of the grid dramatically.

4.2.2. Volunteer Computing Systems

In general, this thesis is strongly related to volunteer computing, since end-user

devices are used as offloading resources. However, most volunteer computing

approaches are static in terms of resource integration [40], application support

[5, 40, 43], or resource characteristics [5, 187].

HTCondor [132, 179] was one of the first desktop grid approaches and initially

introduced by Litzkow et al. in 1988. HTCondor gathers idle workstations in so

called resource pools and allows to share computation amongst the participants.

It provides a remote system call mechanism to preserve the local environment

of the consumer application on each resource provider. The so called collectors

receive and store service advertisements from all participating resources in the

system. Based on the classified advertisement language, resource requests can

be formulated and send to the centralized scheduler system that answers with

a set of potential resource for execution. During the execution, checkpointing

and migration mechanisms support the fault tolerance of the system. However,

HTCondor is limited in terms of QoS measures as well as security, unobtrusiveness,

and protection from malicious applications.
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The Spawn approach [187] by Waldspurger et al. harnesses idle computation

time of workstations similar to HTCondor, but with further contributions. It

creates a computational economy based on the otherwise idle computing resources.

Participants in the system can be resource buyers as well as sellers, both attend-

ing auctions to buy and sell idle computing times. Compared to HTCondor,

Spawn provides fair dynamic load sharing and supports resource management for

concurrent computations in a decentralized fashion.

The Berkeley Open Infrastructure for Network Computing (BOINC) [5] is a

platform for scientific computing projects. With BOINC, scientists can create and

operate volunteer computing projects. It especially supports applications with

large storage and communication requirements. The participants can select the

project that they want to support and contribute their computational capabilities.

The design of BOINC reduces the entry barrier of research projects to exploit

public volunteer resources and provides different incentives for participants. The

architecture of BOINC includes scheduling servers, which allocate tasks on workers,

and data servers that manage the exchange of input and output files. Redundancy

mechanisms provide fault tolerance and the system scales to millions of users.

Example projects are Seti@Home [6], which aims at finding extraterrestrial life

forms, and Folding@Home [16], which simulates protein folding to get a better

understanding of diseases such as Alzheimer’s and Parkinson’s. With BOINC,

however, the coupling of participants and projects is rather fixed, leading to a

single-application system. Further, the application structure is limited to batch

jobs.

Similar to HTCondor and BOINC, XtremWeb [37, 66] builds a global-scale com-

puting platform for scientific applications. The authors claim that the approach

is more decentralized. XtremWeb uses three different types of nodes: clients,

workers, and coordinators. The exchange of messages is based on RPC. XtermWeb

uses sandboxing to provide data privacy and protection against malicious nodes.

To increase the fault tolerance, replication and checkpointing mechanisms are

added in a later approach [58]

In contrast to BOINC, Entropia [35, 43] by Chien et al. supports a variety of

applications. Entropia offers sandboxing based on virtualization technology that

runs entire processes of various programming languages in an isolated environment.

By means of that, it supports security for the application as well as for the resource
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owner. Further, the execution of these jobs can be stopped in case the resource

owner requires the performance locally. All data is encrypted and the file system

API calls are mapped from the standard directory to the Entropia environment

respectively. Entropia, however, only offers coarse-grained offloading of entire

applications.

The Nebula system [40, 103, 157, 192] is a volunteer approach that is designed

for data-intensive applications. It uses end-user devices to deploy more dispersed

and less managed infrastructures compared to other approaches. With Nebula,

the interaction between compute and storage nodes is closely coupled to gain

location-awareness within the resource management. It employs fault tolerance

mechanisms, considers performance heterogeneity of the participating nodes, and

deploys the MapReduce programing model. Nebula, however, does not consider

different hardware architectures, sandboxing, nor APIs for the integration of

generic applications.

Device failures and fluctuation can cause large bottlenecks in volunteer computing

systems. In [152], Ren et al. propose a failure prediction model that is based

on a semi-Markov process. With this model, two types of failures are predicted

with an accuracy of over 86%. The system proactively creates checkpoints of

the progress and triggers a migration to another computation resource. As a

result, the computation is continued on an error-free devices without any lost

computation. The migration process, however, introduces a message and data

transfer overhead. In the literature, several approaches [38, 39, 188] apply similar

strategies for fault-tolerance.

4.2.3. Cloud Computing Systems

In this section, offloading to cloud resources is examined. Cloud computing focuses

on virtualization technology and copes with virtual machine creation, management,

and migration [15, 67, 120, 135, 149]. These virtual machines can be images of

single applications or entire operating systems. The approaches optimize the

resource provisioning to enable elasticity for offloading systems. Compared to

volunteer and edge computing, offloading to cloud resources comes at higher cost.

Cloud computing research is distantly related to the thesis, since it is focused
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on providing platforms for static infrastructures [36, 186]. Compared with that,

MCC is often used for computation offloading and augments the capabilities of

mobile devices and is therefore more relevant.

In [105], Justino et al. present a mobile offloading approach that uses the

Aneka cloud computing framework to augment the computational capability of

Android devices. On the Android side, they developed the so called Aneka mobile

client library, which provides an easy integration of existing apps to delegate

resource intensive tasks. It further connects the cloud resources and manages

serialization, de-serialization, and the message exchange. On the other side, the

Aneka cloud platform handles the resource provisioning, the job scheduling, and

is able to encapsulate different cloud providers. The system transparently offloads

computation from the mobile devices to the cloud platform.

The POMAC system [90] by Hassan et al. is focused on the question, whether

to offload computation to the cloud or not. Further, the approach aims at a

transparent offloading process without any necessary source code changes. Thus,

they present a dynamic decision engine that works at method level. Similar

approaches, such as Phone2Cloud [196] and [70] by Flores et al., are also focused

on the offloading decision

The Avatar framework [25] is rather focused on a cloud architecture for offloading

then on making decisions. As a solution, Borcea et al. generate a so called Avatar

in the cloud for each mobile device. An Avatar is a virtualized and closely coupled

representative of the local device with the same operating system. The framework

provides a high level programming model in combination with a middleware. In

their vision, the cloud architecture is redesigned to serve billions of mobile devices.

The Avatar prototype is implemented on Android and the cloud side on an x86

Android operating system version.

4.2.4. Edge Computing Approaches

This section refers to all approaches that employ resources at the edge, including,

edge, fog, and mobile edge computing. The distinction between these areas is blurry

and the classification of approaches is not unambiguous. The MEC paradigm is

only distantly related to the thesis, since it implicates equipping mobile network

base stations with dedicated computing hardware. This allows mobile devices to
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offload computation to these resources within one hop (e.g., [2, 104, 133, 181]).

The European Telecommunications Standards Institute published in [95] the idea

of integrating MEC within the 5G network. Based on the fact that MEC requires

the extension of the mobile network base stations with computing infrastructure,

it is not further elaborated.

Next, the literature from three edge-related research areas is discussed: fog

computing, mobile device clouds, and hybrid approaches.

Fog Computing

The major drawback of cloud computing is the latency that emerges for each

communication between the local device and the cloud resource. As a solution,

Satyanarayanan et al. proposed the concept of Cloudlets [158, 159, 160] in 2009.

The idea is to reduce the communication latency by moving cloud resources to

the edge of the network. Cloudlets are geographically distributed computing and

storage resources that serve nearby end-user devices to augment their performance

and memory capabilities. Cloudlets exploit locality and the user can reach it

within the first network hop. They are deployed at public places or directly linked

to base stations of the mobile network. Other researchers adopted the idea of

Cloudlets and apply them in further areas, such as military [126], authentication

[26, 175], and virtual reality [22]. The Cloudlet paradigm, however, requires large

effort and investment into new hardware infrastructure.

In [89], Hasan et al. introduce Aura, an IoT-based cloud infrastructure. Aura

creates a local device cloud based on IoT devices, which can be used by mobile

phones in proximity to offload computation. It further facilitates the migration of

data and computation transparently, in case the mobile device changes its location.

As an incentive, the sharing of resource is paid with micro payments so that users

devote their unused computing cycles to the system. The prototype is based on

the Contiki IoT operating system and a lightweight MapReduce implementation.

The system, however, only uses dedicated IoT devices for offloading and does not

consider desktop PCs.

Datta et al. present an IoT use case for fog computing in the area of smart traffic

[50, 51]. Their approach uses so called machine-to-machine gateways to connect

smart vehicles with road side units or fog nodes. Based on that, the system
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provides the vehicles with services, such as mobility support, traffic information,

and public safety announcements. The architecture has three levels: the vehicles,

the road side units with fog infrastructure, and a central cloud. The vehicles

provide data to the system and get access to services, depending on their location.

Compared to the previous approach, Datta et al. present a more flexible approach

for fog computing in a smart vehicle scenario. The approach, however, focuses on

this particular use case and does not provide ways to integrate generic applications.

The CaRDIN [122] approach by Le et al. uses a combination of ARM processors

and field programmable gate array (FPGA) at the edge. These FPGAs can be

reconfigured to serve a certain task. CaRDIN aims at sensor-based IoT application

and offers a middleware and a toolset for the integration of their FPGA hardware

architecture. The system, however, is limited to the coupling of the CaRDIN

hardware and software and does not support any other platform.

PiCasso [125] by Lertsinsrubtavee et al. offers a lightweight edge computing

platform with a QoS-sensitive deployment of service at the edge. Therefore,

dedicated edge nodes are deployed which host the services for other devices and

monitor different contexts. So called service orchestrators accumulate the context

information gathered by the nodes and decide on an optimal service allocation.

The approach does not consider heterogeneous edge devices and assumes dedicated

devices deployed as edge nodes.

Mobile Device Clouds

The first approach that created so called mobile device clouds (MDC) was intro-

duced by Mtibaa et al. in [142]. They coordinate the collaboration of intermittently

connected mobile devices to share computational capabilities. In the evaluation,

they improve the responsiveness and energy consumption compared to Cloudlets

and traditional cloud offloading. In [141], the authors extend the approach with

power balancing across the participating mobile devices. Based on that, similar

approaches arose:

The Serendipity approach [169] by Shi et al. provides offloading among intermit-

tently connected devices. It differentiates between initiators and workers. The

tasks are represented as blocks in a directed acyclic graph and are organized based

on pre- and post-process dependencies. The scheduler uses that task knowledge
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and considers the churn rate of nearby devices. In their evaluation, Shi et al.

developed an emulation environment as well as a prototype as a proof-of-concept.

Serendipity, however, assumes a structural task knowledge and relies on a complex

job profiling method.

FemtoClouds [86] by Habak et al. presents an approach for the collaboration

of co-located mobile devices. The architecture is dynamic, self-configuring, and

considers the churn of mobile devices. FemtoClouds assembles a MDC and focuses

on the scheduling of tasks. Hence, an optimization problem is formulated that

is approximated by a greedy heuristic. Similar to Serendipity, FemtoClouds are

evaluated based on a simulation and a proof-of-concept prototype development.

In [139], Marinelli proposes Hyrax, an Android application that forms clusters

of mobile devices. On that cluster, computationally intensive problems can be

computed based on Hadoop2, a MapReduce implementation. Hyrax uses a central

server to coordinate the mobile workers, which communicate directly via 802.11g.

All MDC approaches, however, are limited to offload computation from the local

device to other mobile devices in proximity. They do not consider edge devices,

such as PCs equipped with GPUs, to increase the performance as well as the

resource elasticity.

Hybrid Approaches

Several approaches use a so called three tier architecture [128] that combines

remote cloud resources with fog and edge resources. Consequently, mobile devices

at the edge, fog infrastructure in proximity of the end-user, as well as the cloud

are used as computational resources in one system. Each of these three resource

types has advantages and disadvantages.

In [208], Zhang et al. present a hybrid offloading platform that uses MDCs as

well as cloud infrastructure. They aim at a higher scalability based on the elastic

use of the two resource types. In addition, they reduce the energy consumption

by deciding between a local execution, an ad-hoc execution on nearby devices,

and an execution in the cloud. The approach, however, does not consider the

execution on standard edge hardware, such as standard CPUs or GPUs.

2http://hadoop.apache.org
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In [91], Hassan et al. introduce a more generic approach for fog computing. They

identify the potential of edge resources to offload data as well as computation.

The approach is rather focused on the decision itself, than on a concrete fog

architecture. Hassan et al. present a variety of fog and cloud computing resources

that vary in network bandwidth, latency, CPU performance, and memory capacity.

Based on these characteristics, the approach makes a computation offloading

decision to the most suitable resource.

CloudAware [145, 146] by Orsini et al. proposes a context-adaptive middleware

for a mobile edge and cloud applications. It combines nearby edge and cloud

infrastructure to offload computationally intensive application parts. Further,

CloudAware supports elasticity and scalability for mobile applications. The

execution strategy considers cloud resources, cloudlets, and a local execution as

fallback. The Android-based prototype is evaluated based on the Nokia MDC

data set. However, CloudAware does not consider offloading computation to other

end-user devices at the edge.

In [20], Bhattcharya and De employ two sorts of resources for computation

offloading. First, they use standard cloud resources and, second, end-user devices

from the edge of the network. These edge devices are smartphones, tablets,

routers, and laptop. Bhattcharya and De formulate a mathematical model based

on directed acyclic graphs to represent the offloading problem. They compare the

overall performance of the used resources based on different applications. Due

to the fact that the approach is not implemented, major issues in relation to

heterogeneity, network, and device fluctuation are not addressed in this approach.

To complement cloud resources, Fernando et al. propose a work stealing model

for mobile resource clouds, called Honeybee [68]. Mobile devices form so called

mobile crowds to provide a low latency computation service. Fernando identifies

heterogeneity, unknown resource capabilities, and dynamism as main challenges

of mobile crowds. As a solution, the Honeybee work stealing approach is applied,

balances the load, and compensates the missing knowledge about processing

capabilities. To cope with dynamism, Fernando et al. integrate fault-tolerance

mechanisms that accommodate device leaves and failures. The approach does

not directly consider the irregularity of jobs. Further, edge devices other than

smartphones are not integrated, which leads to a large loss of computational

capabilities.
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4.2.5. Computation Offloading Systems

In this section, computation offloading approaches are presented. The approaches

from the previous areas were focused on the infrastructure and resource perspective

of a distributed computing system. In computation offloading, the focus is on the

offloading decision as well as on the mechanism that facilitates it. Offloading is

based on the RPC paradigm, which was first implemented by Birrell and Nelson

[21] in 1984.

The MAUI approach [48] by Cuervo et al. presents a system for fine-grained

offloading from mobile devices to a fixed infrastructure. The approach is energy-

aware and minimizes the effort of application programmers. MAUI has a decision

engine that decides during runtime which method should be executed remotely.

In order to do that, two versions of the application exist: one on the mobile device

and one running on the remote infrastructure. These two parts are connected

via programming reflection and type safety to identify and transfer remote parts.

During runtime, a profiler gains knowledge about the methods behavior. Using

this information, the amount of data to be transferred, and the current network

conditions, the decision engine chooses the local or remote execution. MAUI

aims at maximizing the energy saving and reduces the method runtime. Due to

the continuous profiling, MAUI is highly dynamic. However, the offloading is

limited to the fixed infrastructure and the scalability of the infrastructure is not

considered. Several approach are similar to MAUI and differ in certain aspects:

exploitation of resource locality (e.g., [98]), more sophisticated APIs (e.g., [119]),

fault-tolerance measures (e.g., [18, 189]), or code partitioning scheme (e.g., [209]).

Similar to MAUI, Chun et al. introduced CloneCloud [46], a mobile code offloading

system. CloneCloud automatically transforms unmodified mobile applications

to virtualized versions, so that they can benefit from offloading to the cloud.

Therefore, it uses application-level virtualization on the mobile device as well as

on the cloud resource. In particular, they use the Dalvik VM and the Java VM

respectively. The system profiles the application and dynamically decides when

to offload an application thread from the mobile device to the cloud. Compared

to MAUI, CloneCloud supports remote execution of native functions based on

the virtualization technique. It further is more transparent for the programmer

and includes mechanisms for migration and merging of methods.
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Both approaches, however, have shortcomings that are addressed by ThinkAir

[112]. ThinkAir considers the dynamic behavior of mobile environments in a

more detailed way compared to MAUI. It also focuses on a more sophisticated

resource provision in the cloud to realize a higher efficiency. In comparison with

CloneCloud, ThinkAir provides parallel execution on cloud resources to further

increase the performance. In [14], Barbera et al. presented CDroid, an extension

of ThinkAir, that further deploys cloud services. CDroid closely couples the

cloud instance of a mobile device and synchronizes the two constantly while

considering energy consumption. In case of a computationally intensive task

execution, the required data is already stored on the cloud instance, which reduces

the execution delay and battery consumption. A similar approach named Cuckoo

[107] is presented by Kemp et al. Cuckoo has a looser coupling between the cloud

and the mobile device, thus, it rather offloads only computationally intensive parts

then having an entire application clone in the cloud. Cuckoo is Android-based

and focuses on an easy-to-use application integration. However, these approaches

only consider cloud or fixed infrastructure as remote resources. Further, they use

closely coupled virtual images in the cloud, which makes the approaches inflexible

in terms of resource migration.

The Clone2Clone approach [113] by Kosta et al. places device-clones on cloud

resources. Based on that, not only computation is offloaded to the cloud, but

also the smartphone-to-smartphone communication. Devices that cooperate

with each other do not communicate directly, but rather let their device-clones

in the cloud handle all communication. The unreliable and unstable ad-hoc

communication between the real world devices is therefore avoided and offloaded

to the cloud, where communication takes place within a high-bandwidth and

low latency environment. Kosta et al. argue that this mechanism increases the

performance and the battery life time.

The COMET approach [80] by Gorden et al. is an offloading approach that

migrates jobs to a static computing infrastructure. It is based on the Android

operating system and the Dalvik VM. Instead of using RPC to initiate the remote

executions, COMET uses distributed shared memory to connect the resource

with the offloading device. Thus, the approach develops a specialized version of

distributed shared memory that reduces the communication between the client

and server. It supports multi-threaded computation offloading and allows the
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migration of threads between local device and remote resource at any time. In

case the connection to the remote resource is cancelled, the computation can

seamlessly continue on the local device.

The approaches so far discussed make an offloading decision based on predefined

policies, application parameters, and current system context. The MALMOS

approach [65] by Eom et al. introduces a further improvement in terms of offload-

ing decisions. It uses previous decisions in combination with their correctness.

Based on that data, MALMOS applies three online machine learning algorithms,

namely, instance-based learning, perceptron, and naive Bayes. It facilitates a high

adaptability to network conditions as well as the computing capabilities of the

participating devices. MALMOS increases the accuracy of the offloading decision

by 10.9%-40.5%.

Next, workload partitioning in code offloading systems is discussed.

Workload Partitioning

In an offloading scenario, partitioning can be done in three different ways: ap-

plication, code, and data partitioning. Partitioning of applications describes the

deployment of distinct application parts on different devices in the environment.

The partitioning of code implies splitting up tasks into parts that are offloaded and

parts that are executed locally. Lastly, data partitioning means the partitioning of

a task’s data in several parts and running these tasks on distinct devices. These

parts are not necessarily sized equally, depending on the approach. For this thesis,

splitting up applications is out of scope and is therefore not covered.

The automatic code partitioning is addressed by several researchers from different

domains, such as, [130] and [209]. In [110], Kopfler et al. present an automatic

approach for code partitioning in heterogeneous environments consisting of CPUs

and GPUs. They use a machine learning approach that is based on an Artificial

Neural Network to predict the benefits of partitioning. This prediction model uses

static program features and dynamic, input-sensitive features. As an example for

a feature, the task complexity is computed during compile time or approximated,

if runtime information is necessary. Internally, the approach computes all parti-
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tioning options with a 10% granularity and decides on the most promising one.

The approach does not specify any type of computing environment characteristics,

but is rather focused on the task perspective of workload partitioning.

The approach [182] by Travedi et al. is focused on data partitioning on volunteer-

based grid environments. They aim at a high throughput and consider device

heterogeneity in terms of performance and connectivity. The approach decomposes

the workload in fine-granular and uneven parts depending on the performance of

the participating devices. Faster machines receive a larger part of the workload

and vice versa. The approach however, does not consider irregularity in task

structures, which can also lead to bottlenecks.

4.3. Summary

This section summarizes the related work. Table 4.1 on page 44 shows the

classification of the evaluated approaches from the literature. The table does not

contain all examined approaches, but rather a selection of the most important

representatives from each research area. First, the general observations regarding

the classification are presented, which corresponds to the vertical interpretation of

the table. After that, the research areas are discussed in detail, i.e., the horizontal

perspective on the evaluation table.

The classification is developed referring to the derived requirements from Chapter

3 and, thus, reflects the relation between the researched literature and the thesis.

Independent from the research area, heterogeneity is a major challenge and not

covered by most approaches, except from accessibility heterogeneity. The reason

for that fact is, that one of the most distinctive characteristic of distributed

systems are the use of different network technologies. This leads to diverse

bandwidths, latencies, and stability of the participating nodes. Without coping

mechanisms, systems were not able to function properly. Several systems handle

task heterogeneity to a limited extend, i.e., they use QoS measures to tailor

computation. However, they do not consider the irregularity of tasks, which can

lead to bottlenecks. The hardware and operating system heterogeneity is rarely

covered by the evaluated approaches. The most intricate heterogeneity refers to

the programming language.
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MapReduce [52, 53] ◦ ◦ ◦ • • •
Spark [205, 206] ◦ ◦ ◦ ◦ ◦ • • ◦
Dryad [99] ◦ ◦ ◦ • •
LibWater [81] • ◦ • • •
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OurGrid [7] ◦ • •
SpeQuloS [54, 55] ◦ ◦ • ◦ ◦ • ◦
GridBot [172] ◦ • • ◦ • ◦ •
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HTCondor [132, 179] • ◦ ◦ ◦ ◦ ◦
Spawn [187] • ◦ ◦ ◦ ◦ ◦
BOINC [5, 6] • • ◦ ◦ ◦ ◦
XtremWeb [66, 37] • • • ◦ ◦
Entropia [43, 35] • ◦ ◦ • •
Nebula [40, 157, 103] ◦ • ◦ ◦ • • ◦
Ren et al. [152] • ◦
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Justino et al. [105] • • • ◦ •
POMAC [90] • ◦ • •
Borcea et al. [25] • ◦ • • •
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Cloudlets [158, 159, 160] ◦ ◦ ◦ ◦ ◦ •
Aura [89] ◦ ◦ ◦ • ◦ ◦ ◦ • ◦
Datta et al. [50, 51] ◦ • ◦
PiCasso [125] ◦ ◦ ◦
Mtibaa et al. [141, 142] • ◦ • • ◦ • ◦
Serendipity [169] • ◦ ◦ • ◦ ◦ •
FemtoClouds [86] • ◦ • ◦ ◦ ◦
Hyrax [139] • ◦ ◦ ◦ ◦ •
Zhang et al. [208] • ◦ ◦ ◦ • ◦ ◦ • ◦
Hassan et al. [91] ◦ ◦ ◦ ◦ ◦
CloudAware [145, 146] ◦ ◦ ◦ ◦ • ◦ ◦ •
Bhattcharya [20] et al. ◦ ◦ ◦ ◦ ◦ ◦ ◦
Fernando et al. [68] ◦ • ◦ ◦ • • ◦ ◦ •
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MAUI [48] ◦ •
CloneCloud [46] • •
ThinkAir [112] ◦ • • •
Clone2Clone [113] ◦ ◦ • • •
COMET [80] ◦ ◦ • •
MALMOS [65] ◦ ◦ ◦ ◦ •
Kofler et al. [110] ◦ • ◦ • • • •
Trivedi et al. [182] • ◦ • ◦ ◦

Table 4.1.: Classification of related work. The result of the literature review introduces the
research gap for the thesis. None of the presented approaches fulfills the requirements.
The table encompasses the most important approaches as representatives for each
research area. (• - fulfilled, ◦ - partially fulfilled or mentioned without further
specification.)

The support of edge resources is only covered by the respective fields of volunteer

and edge computing. Both largely cover the churn of devices. Their mobility

is primarily covered by edge approaches. The resource elasticity in terms of

adaptability and efficiency are handled by diverse approaches from different fields.
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Regarding usability, many of the evaluated approaches introduce a programming

abstraction as well as distribution transparency. However, the interference with

the resource providers is not considered by the most frameworks. Next, the

research areas are individually discussed in more detail.

In general, cluster computing approaches are based on homogeneous computing

infrastructure that is closely coupled with high capacity networks. As a result,

these systems do not require mechanisms to cope with heterogeneity, except from

performance. These performance gaps are classified as hardware heterogeneity

and cluster computing approaches often apply work stealing mechanism, to

ensure weighted workload balancing. As depicted in Table 4.1, the focus of

cluster computing is on efficiency and computation abstraction to facilitate high

performance computing.

Grid computing environments consist of distributed and dedicated computing

resources, which are comparable to clusters in terms of heterogeneity. Especially

accessibility heterogeneity as well as transparency are tackled by these research

approaches. The infrastructure is static and less efficient in terms of elasticity.

Further, grid computing approaches do not support generic applications, but

rather single-application environments.

In volunteer computing, user-controlled edge devices are used as computing

resources. These approaches especially cope with accessibility and churn of

devices. The level of usability of volunteer computing approaches is low and often

only single-application systems are supported with no abstraction for computation.

Since the resources in these systems are stationary, these approaches do not

support mechanisms to cope with device mobility.

In cloud computing, a fixed and homogeneous computing infrastructure is used.

Therefore, these approaches are rather focused on the resource consumers than on

the providers side. Especially, the transparencies as well as the resource elasticity

are covered in great detail.

Edge approaches cope with device churn as well as mobility, but they do not

cover heterogeneity issues. The resource elasticity is partially covered by the

majority of the approaches in contrast to the efficiency. In terms of usability, edge

computing approaches rarely provide computation abstraction or solutions for

unobtrusiveness. Similar to cloud computing, fog computing relies on dedicated
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infrastructure that is deployed in proximity of the users. On the other side,

MDCs solely use smartphones of end-users as resource providers. Also the hybrid

approaches mostly combine fog and MDC resources and do not consider the full

range of user-controlled edge devices. Many approaches in this area are specific

for a certain use case and do not offer frameworks for the integration of generic

applications.

Offloading approaches provide computation abstractions, transparencies, and

offloading decision support. Mostly, static infrastructure or cloud resources are

used as providers and no edge devices are incorporated. Similar to cloud computing,

the resource perspective on these approaches is not given.

As visualized by Table 4.1, none of the presented approaches from the examined

research areas fulfills the requirements, leading to the research gap which is covered

by this thesis. Especially overcoming different heterogeneities and the support

of edge devices are two major issues, which are rarely addressed together by

the same approach. Therefore the objective of the thesis ‘the development of a

computation placement framework that provides an abstraction for computation

and resource elasticity in edge-based environments.’ is not achieved by approaches

from literature.

This chapter discussed the related work of the thesis. Therefore, a classification

was developed based on the research requirements from Chapter 3. The next

chapter introduces a system design to close the identified research gap by answering

the research question and meeting the requirements.
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Edge-based Environments

After the literature analysis which identified the research gap, the following

chapter presents the design to answer the stated research questions and to fulfill

the requirements from Chapter 3. The design of the thesis is twofold. The

first part is the Tasklet system that is a computation placement framework. It

is the foundation for construction, execution, and distribution of independent

computational units – so called Tasklets. The Tasklet system is designed in

compliance with the requirements of distributed systems, however, it is not

designed to support edge environments in particular. The second part of the

design is an edge support layer that extends the Tasklet system to handle the

characteristics of edge devices.

The remainder of this chapter is structured as follows: First, the design principles

as well as the overall architecture are presented. Second, the application model is

introduced which categorizes applications and determines the general assumptions

for computation placement. Third, the Tasklet system and fourth, the edge

support layer are introduced.

5.1. System Overview

The system overview consists of two parts: First, the general design principles

and the system design are shown. Second, the overall system architecture is

introduced.

5.1.1. Design

Multiple computation offloading approaches exist which could potentially be

extended to solve the stated research questions. However, most of these approaches

are problem specific and work only with a certain type of resource (e.g., [48, 112,
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Tasklets

face recognition, image rendering, 
simulations, artificial intelligence, image 
processing, IoT applications, machine 

learning, industry 4.0, …

smartphones, laptops, computers, 
wearables, microcontrollers, embedded 
devices, tablets, GPUs, FPGAs, cloud 

resources, servers, HPC…

latency, reliability, cost, 
response time, real-time, 

energy, …

Partitioning, migration, 
virtualization, hybrid 

scheduling, redundancy, … 

Application Layer

Quality of Service Layer

Computation Abstraction Layer

Resource Abstraction Layer

Computation Hardware Layer

Figure 5.1.: System concept based on the hourglass model of the internet architecture. The
overall purpose is to offload computationally intensive parts of generic applications
to heterogeneous edge computing hardware (right side). The concept consists of
five layers, each of which provides another level of service abstraction. In the center
of the model, Tasklets create the best-effort based, lightweight, and interoperable
computation abstraction, which is surrounded by the resource abstraction and
the quality of service layer, that integrate edge resource and execution guarantees,
respectively.

113]), a fixed infrastructures (e.g., [3, 53, 111]), or for specific applications (e.g.,

[6, 53, 200]). Furthermore, most of the approaches are not built to be extended

with algorithms and mechanisms to cope with the stated challenges: They do not

offer a suitable level of flexibility for applications and adaptability for altering

contexts. Consequently, the presented design cannot extend an existing system.

Therefore, it is a fully-fledged system approach, consisting of the Tasklet system

and the edge support layer.

Certain design principles can be derived from the requirements. The overall

goal is to facilitate task offloading from generic applications to heterogeneous

edge computing resources. Figure 5.1 shows the main concept of the approach.

The design is inspired by the Internet architecture, where the IP is the link

between various lower layer technologies and upper level application protocols.

On both ends of this architecture, the variety of applications and protocols is

huge. In the center, however, the IP facilitates the core functionalities and

establishes interoperability. The IP is lightweight and offers best-effort service,

which means that it does not provide any communication guarantees. Higher layer

protocols have this responsibility. In case of the Internet architecture, physical

48



5.1. System Overview

layer and data link protocols are on the bottom of the model. These protocols

facilitate basic one-to-one communication. In the present computation placement

architecture, the lowest layer consists of computation hardware such as PCs, GPUs,

or smartphones. The resource abstraction layer’s responsibilities are to abstract

the functionality of the lower layer and to overcome edge resource specific issues

like heterogeneity, faults, and fluctuation. Therefore, hardware virtualization and

algorithms for partitioning, migration, context-awareness, fault-tolerance, and

hybrid scheduling are enforced on this layer. The computation abstraction layer is

located in the center of the model. Analogous to the IP, it is lightweight, provides

interoperability, and is extensible. This layer consists of Tasklets, which offer

best-effort computation placement. On top of Tasklets, a quality of service layer

adds application tailored guarantees, which optimize the task allocation. Finally,

the application layer interacts with all kinds of applications that are suitable for

offloading. The overall approach is created from scratch and offers full flexibility

and adaptability on every level. The main design principles of the system are

further elaborated:

Lightweight: The major focus of this thesis are edge environments which consist

of heterogeneous devices. For their integration of the thin devices, a lightweight

runtime environment and architecture are crucial.

Interoperable: The aim is to integrate all kinds of resources into one computation

placement system. Therefore, tasks are allocated to various resources, which

requires the shipment and remote execution of tasks. Interoperability between

these resources facilitates this task exchange.

Portable: The device heterogeneity entails various computing platforms and

architectures like GPUs, CPUs, or System on a Chip. All these physical devices

operate differently in terms of memory, instructions, and parallelism. To cope

with this diversity, a common abstraction for computation must be established.

Extensible: In contrast to a standard task offloading system, which assumes

grid or cluster resources, the present system needs to be extensible in terms of

algorithms and mechanisms that enable the utilization of edge resources. The

specific characteristics of these resources require measures that are added to the

general functionality of the system componentwise.
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Physical MachinePhysical Machine

Tasklet System

Hardware

Virtualization

Edge Support

Orchestration Middleware ... ... 

Hardware

Virtualization

Edge Support

Assembly Interface

Application

QoC

Assembly Interface

Application

QoC

Figure 5.2.: Overall system architecture. It consists of four layers, which sit on top of the compu-
tation hardware and below the consumer application. It is composed of an assembly
interface, an orchestration middleware, an edge support, and a virtualization layer.

5.1.2. System Architecture

Figure 5.2 shows the overall system architecture. Each physical machine runs the

Tasklet middleware. It connects all participating devices in the system. On top

of the layered architecture, the consumer application initiates computationally

intensive tasks. Depending on the required quality level, the application uses the

so called Quality of Computation (QoC) layer to tailor the quality of service level

of remote task executions. Based on that, an assembly interface connects the

application with the rest of the Tasklet system. The orchestration middleware

allocates tasks in the system and enforces the stated QoC goals. The hardware

layer supports various types like CPUs, GPUs, smartphones, and microcontrollers.

To abstract the computational capabilities of these physical machines, a virtualiza-

tion layer handles hardware heterogeneity and offers homogeneous computation.

Compared to traditional offloading resources, edge resources are more volatile,

unpredictable, and erroneous. Therefore, the edge support layer offers stability,

reliability, and homogeneity in terms of computational performance.

The next chapter derives an application model to classify applications in terms of

their offloading capabilities.
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Figure 5.3.: Taxonomy of applications that are offloading candidates. The eight characteristics
can have multiple dimensions.

5.2. Application Model

Since not all applications are suitable for computation placement systems, this

section categorizes applications and narrows them down considering the focus

of this thesis. First, the relation of applications, tasks, and subtasks is defined.

After that, the taxonomy of applications for computation placement is introduced.

Finally, a conclusion for the present thesis is drawn.

The computationally intensive parts of a consumer application are defined as tasks.

Computation placement systems allocate these tasks on remote machines to save

local resources. To enhance the benefit, some tasks can be split up into several

subtasks. This increases the parallel computation and reduces the response times.

All subtasks are required to assemble the overall result of a task, which is then

submitted to the consumer application. Therefore, the last subtask that arrives

determines the task completion time.

5.2.1. Taxonomy

Figure 5.3 shows the taxonomy of applications. This taxonomy is not exhaustive,

but rather describes the relevant characteristics of applications that are offload-

ing candidates. The main characteristics are data dependency, parallelizability,

computational intensity, data intensity, user interaction, task structure, runtime

behavior, confidentiality, and real-time. Characteristics can have multiple dimen-

sions that each describe a specific application behavior. Next, all characteristics

are presented in detail.
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Figure 5.4.: Taxonomy of parallelizability of tasks. a) shows fully parallelizable tasks where all
computationally intensive subtasks (in light gray) are executed in parallel. In b), the
structure is partially parallelizable, since there are serial computations necessary. In
c), the tasks are completely serial, and therefore there is no potential performance
gain due to parallel executions.

Data dependencies characterize the execution constraints of tasks on data level.

The three dimensions are: (1) no dependencies, (2) full dependencies, and (3)

partial dependencies. In case the data of a task consists of 100 chunks and each

chunk can be processed in an individual subtask without accessing other parts

of the data, the data has no dependencies. An example are image rendering

applications like ray tracing, where each pixel can be computed individually.

This kind of application benefits from offloading. For tasks that have full data

dependencies, each subtask needs the entire data for the computation of the

subproblem. An example for that is a face recognition approach, where each

subtask compares an image against the database. In this case, all subtasks need

access to the complete data, which reduces the benefit of computation placement

drastically. Application data with partial dependencies are in between these two

cases, meaning, that for each subtask execution, a subset of the data is necessary.

This is the case for image filtering algorithms, especially for those, where for the

computation of a pixel each adjacent pixel is necessary.

Parallelizability describes how well the workflow of a task can be parallelized.

Compared to the data dependencies, the parallelizability refers to the process

flow of a task and has no relation to data. Figure 5.4 shows the three dimensions,

namely, fully parallelizable, partially parallelizable, and non parallelizable or serial.

The first dimension are tasks that are fully parallelizable which has the largest

potential offloading benefit. The workflow of these tasks has no serial parts,
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which is often the case for image rendering applications. The second dimension

is partially parallelizable, meaning, that the workflow of the computationally

intensive parts of an applications has serial parts. This is shown in Figure 5.4 b).

Therefore, the execution consists of different stages. Some of them can be executed

in parallel and others are serial. For that, the intermediate results are collected

and the serial part is either executed locally or remotely. In case another parallel

part follows, the task can be split up again and remotely executed in parallel. It

depends on the ratio between parallel and serial stages of a workflow if a task is

suitable for parallel task offloading. A task’s workflow can also be entirely serial,

as shown in Figure 5.4 c). With no parallel execution, computation placement

is conditionally beneficial. For example, if long-running serial executions are

computed on a very powerful resource, the time and local energy consumption

can be improved.

Computational and data intensity are two relevant characteristics. Especially

their relation determines if applications can benefit from remote placement. Tasks

that are computationally intensive with only a small amount of data are suitable,

since the transfer costs are neglectable. However, the placement of tasks that

require a large amount of data for processing can be rather inefficient. As a

solution for computationally and data intensive tasks, a data management system

can distribute the data before the task execution. By applying different data

distribution strategies, the system copes with the overhead of data distribution.

User interaction limits the capabilities for remote task execution. Although

the user interaction takes place on the resource consumer it can be transferred

to the remote resource providers at overhead costs. The point in time of a user

interaction can be deterministic or non-deterministic. Further, some interactions

can be made by the user before runtime of a task and others only during the task

runtime, since they depend on an intermediate result. Therefore, the user needs

information to make a decision.

Task structure describes the computational intensity of a task throughout

its parameter range. There are two different types of tasks in terms of task

structure, consistent and irregular. A consistent structure implies, that over

the entire parameter range, the computational effort is equal or at least similar.

Applications which are based on Monte Carlo simulations where several thousand

simulations are executed within a task are consistent – see Figure 5.5 a). Contrary
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Figure 5.5.: Consistent and irregular task structures. a) shows a consistent task complexity,
indicating, that each segment of a task is equal in terms of computational complexity.
b) shows an irregular task complexity, meaning, that the computation of the segment
0− 10 is less complex compared to 90− 100. c) Shows an example based on the
task structure of the Mandelbrot set. The left side of c) shows a part of a MBS
image with a marked section. On the right side, the graph shows the computational
effort that is required for the computation of this part of the MBS.

to that, an irregular task structure implies that the computational effort varies

throughout the parameter range, as shown in Figure 5.5 b). An example for that

is the computation of a Mandebrot set (MBS), where the color of each pixel can

be calculated with complex numbers. Figure 5.5 c) shows the relation between

the computed section of the MBS and the respective computational effort in form

of iterations. Irregular task behavior can lead to bottlenecks when splitting up

tasks in several subtasks and offloading them on remote resource providers.

Runtime behavior is another general characteristic of applications. It is dis-

tinguished in two different dimensions, deterministic and non-deterministic. A

deterministic task always produces the same output, assuming the same parame-

ters. Therefore, it has no random factor. A non-deterministic task, on the other

hand, can have different results, even with the same input parameters. This limits

the predictability of the task’s runtime.

Confidentiality is a term for data security and privacy. Some applications

require a certain level of security and privacy when dealing with sensitive data.

Many approaches take care of these issues in distributed computing systems and

especially for offloading systems.
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Real-time task execution is required by some applications. Real-time in general

means that a task execution is timely and has to be done within a certain time

interval to retain the functionality of the application [29, p. 2 f]. There are three

different kinds of real-time: First, hard real time, which implies that no deadline

can be missed without causing a total system failure. Hard real-time systems are

used in industrial process controller or medical devices, like heart pacemakers.

Second, firm real-time deadlines, meaning, that missing a few deadlines is tolerable

but degrades the quality of the system. Further, results that miss the deadline

cannot be used. The third type of real-time assumes soft deadlines, implying that

the application quality decreases after a deadline is missed, but the results are

still used. Real-time is hard to guarantee in offloading scenarios.

5.2.2. Application Model Summary

The application model summarizes all assumptions regarding the offloading suit-

ability of applications. Considering the data dependencies, the presented approach

is not limited, however, the benefit increases with decreasing data dependencies.

Thus, the approach does not introduce algorithms to reduce the impact of data

dependencies. This is analogous to the parallelizability of tasks. The placement

mechanism of the basic Tasklet system can also be used for serial task offloading,

which is not the focus of this thesis. This area is well researched by systems like

MAUI [48] or Thinkair [112], and focuses on offloading strategies that consider

energy consumption. Fully parallel tasks exploit the entire benefit.

Task offloading is beneficial for computationally intensive applications. Data

intensive application, however, require an appropriate data management which

is not in the focus of this thesis. The approach assumes that user interactions

are made before runtime and interaction during runtime are excluded from the

design. One main focus of this thesis is to overcome heterogeneity. Therefore,

irregularity of task structures is considered by the present approach. In terms of the

runtime behavior, the approach encompasses deterministic and non-deterministic

applications. Security and privacy are not in focus of this thesis as well as hard

and firm real-time task execution. However, for soft real-time applications, the

approach is applicable.
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5.3. The Tasklet System

This section is based on [166]1 and introduces the Tasklet system, which is the

foundation of the thesis’ design. The section is structured as follows: After a brief

characterization of Tasklets, it describes the domain of Tasklet applications. Next,

the section introduces the Tasklet system model, the Tasklet lifecycle, and the

Tasklet middleware in depth. Thereto, the three layers of the Tasklet system are

explained, namely, the construction, execution, and distribution layer. Finally,

the Quality of Computation paradigm is briefly introduced, which is an execution

quality concept for Tasklets.

5.3.1. Tasklets

Tasklets are fine-grained units of computation that make use of heterogeneous

processing entities. They can run on many idle computational resource, regardless

of their architecture, operating system, location, or network connection. Thus,

Tasklets overcome the heterogeneity of computing environments to aggregate

computational capabilities.

Tasklets are not entire programs, but extracted subroutines of computationally

intensive applications. The duration of Tasklet executions is not fixed and can

range from few seconds to several minutes. To use Tasklets, programmers identify

computationally intensive parts of applications and transfer them into Tasklets.

The Tasklet API and an Eclipse Plug-in support this process. During runtime,

these applications initiate a Tasklet request and hand over the control of execution

to the Tasklet middleware.

By default, the Tasklet system offers best-effort computation. It is neither evident

for the developer where and how the execution takes place, nor whether the Tasklet

is executed at all. This defines the lowest possible degree of execution quality for

a Tasklet. While this is sufficient for some applications, most applications need

further guarantees for the execution of Tasklets. To tailor the computation to

these requirements, developers can set so called Quality of Computation (QoC)

goals for each Tasklet. The Tasklet system supports different QoC goals, such as

reliability, cost, privacy, speed, and multiple execution. QoC goals are enforced in

1[166] is joint work with J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker
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the Tasklet middleware. This is done transparently to the user and the application

programmer. Depending on the current environmental context and on the QoC

goals that are set by the developer, the middleware decides on the most promising

execution strategy. The environmental context contains the amount, stability,

performance, mobility, and distance of available devices.

Tasklets are self-contained, meaning, that they include source code, data, parame-

ters, and QoC information. Thus, a Tasklet is transferred with all components

that are necessary for the execution. With the Tasklet system, computationally

intensive parts of an application can be further split up into several Tasklets

and executed in parallel. This can be done automatically, semi-automatically,

and manually, depending on the application’s structure. The Tasklet middleware

distributes the subtasks and returns a single result in the end.

To define the logic of a Tasklet, the application programmer writes the source code

in C--, the Tasklet language. C-- is a C-like procedural programming language,

which is especially designed for remote executions. It is designed from scratch

to consider special requirements and allow adaptability and extensibility. The

middleware assembles Tasklets as closures. Thus, they contain all necessary

elements for execution. This also includes data for the computation, which is sent

along with each Tasklet. The Tasklet system decides, where to execute a Tasklet

and possibly ships it to remote resource providers. After the Tasklet arrived, the

so called Tasklet Virtual Machine is responsible for its execution.

5.3.2. Tasklet System Model

The Tasklet system model consists of three types of entities: resource consumers,

resource providers, and resource brokers. Resource consumers run computationally

intensive applications and initiate Tasklet executions to offload complex application

parts to remote machines. These machines are called resource providers and they

contribute their computational capabilities to the system in form of Tasklet Virtual

Machines (TVM). Each provider can start multiple instances of the TVM to allow

concurrent Tasklet executions. A participating node can be both, a provider

and a consumer, at the same time. Resource brokers are responsible for the

resource management in the Tasklet system and run on dedicated trusted server.

Depending on the number of concurrent providers and consumers, the system
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Figure 5.6.: The Tasklet system model. Resource providers (P) offer their computation power
in the form of Tasklet Virtual Machines (TVMs) to resource consumers (C). The
peer-to-peer broker overlay performs the scheduling. Providers and consumers
exchange Tasklets and results directly with each other.

scales the number of brokers and balances the resource management workload

among them. The brokers communicate via a broker-overlay to exchange state

information. To join the system, providers register at a broker with benchmark

information and the number of virtual machines they contribute. Therefore,

providers as well as consumers need the address of at least one broker for the

bootstrapping. For the initiation of a Tasklet execution, the resource consumer

requests resources from the broker. This resource request contains the level of

QoC that the execution requires. Based on these information and the current

state of the system, the broker selects suitable resources for the tasks. The broker

replies to the consumer with the respective address and performance information.

After that, the exchange of Tasklets and results is done directly between the

consumer and provider. In order to achieve the cooperation of the system entities

each of them runs an instance of the Tasklet middleware. Figure 5.6 shows the

system model of the Tasklet system.
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Figure 5.7.: The architecture of the Tasklet middleware. An application initiates the creation
and execution of a Tasklet. The factory compiles C-- source code and assembles
the Tasklet to a self-contained unit of computation. The distribution layer forwards
Tasklets to resource providers and returns the results to the user application. The
Tasklet execution is performed by virtual machines.

5.3.3. Tasklet Middleware

The Tasklet middleware consists of three layers: construction layer, execution

layer, and distribution layer. Figure 5.7 pictures the structure of the middleware

on consumers, providers, and on nodes that have both roles. The resource

consumer runs an user application, which offloads computationally intensive parts

via the Tasklet system. This application utilizes the Tasklet library that offers an

API for creating, parameterizing, and starting Tasklets. Further it handles all

communication with other components and forwards the plain and unprocessed

data of a Tasklet request to the factory. The factory then compiles the C-- source

code to bytecode, assembles the Tasklet as a closure, and delivers the Tasklet to

the distribution layer. In the distribution layer, the Tasklet orchestration links the

nodes in the system and is responsible for requesting resources from the broker

and communicating Tasklets and their results. After a Tasklet is delivered to the

assigned resource provider, the local orchestration forwards it to the execution

layer. The local resources are managed by a TVM manager that assigns the

Tasklets to a TVM for execution. The middleware transfers the results back to
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the consumers orchestration after the execution. The orchestration gathers all

results of a Tasklet and forwards them via the Tasklet library to the application.

In the following, each layer and its components are discussed in depth.

5.3.4. Construction Layer

The construction layer is the interface between the application and the Tasklet

middleware. For the construction of Tasklets, two options exist: first, the inte-

gration into a general language and, second, using a factory approach for the

construction of Tasklets. With the first option, overcoming programming language

heterogeneity is not possible, since the construction functionality is done in the

consumer application directly. The presented design uses the second option, due

to the flexibility and interoperability.

As a result, the construction layer consists of the user application, the Tasklet

library, and the Tasklet factory. Consumer applications utilize the library and use

its API to initiate and forward Tasklet requests to the factory. The Tasklet library

is language-specific and, therefore, needs to be implemented for each programing

language individually. These languages are also called host languages. The host

language concept describes the integration of the Tasklet environment into another

language. Tasklets can also be sent directly to the factory via Sockets without

using the Tasklet library. However, using the library is more comfortable and

hides several complexities from the developer.

Next, the Tasklet factory, the Tasklet library, the Tasklet compiler, and the

Tasklet language are described.

Tasklet Factory

The host application submits the Tasklet request to the middleware and the

Tasklet factory assembles the Tasklet. The Tasklet request is a yet unassembled

Tasklet which is sent from the consumer application to the Tasklet middleware

and is, henceforth, referred to as plain Tasklet. After receiving the plain Tasklet

the workflow of the factory involves the following steps: (1) retrieving and

unmarshalling the plain Tasklet data, (2) checking the data for integrity, (3)

extracting the source code, (4) running the Tasklet compiler to generate bytecode,
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(5) checking for compiling errors, (6) assembling the Tasklet closure, and (7)

forwarding the Tasklet to the orchestration. The Tasklet factory can serve

multiple applications concurrently.

One feature of the Tasklet factory is the so called bytecode caching. Most applica-

tions send a sequence of the same type of Tasklet at irregular time intervals. In

these cases, the parameters, the data, and the QoC goals may change, but not the

source code. The middleware caches the compiled bytecode of each Tasklet. After

the initial full transmission, the application sends a special message, which omits

the source code transmission. The middleware retrieves the bytecode from the

cache and substitutes the parameters directly in the bytecode. This eliminates

not only the redundant transmission of the source code, but also the compilation

process.

The Tasklet Library

The main focus of the library is to ease the use of Tasklets by reducing the

integration overhead and lower the development effort. Therefore, it offers an

API to create, parameterize, and start Tasklets, as well as to retrieve their results.

From the application developer’s perspective, the Tasklet integration takes place

as follows: (1) identifying computationally intensive parts, (2) re-writing the logic

in the Tasklet language, (3) including the Tasklet library, and (4) replacing the

computationally intensive parts with the Tasklet API calls.

Besides, the goal is to allow any language to use Tasklets based on the host

language concept. To exchange data between the middleware and the consumer

application, inter-process communication is required. Several options are possible,

for example, message queues, files system, pipes, message passing, shared memory,

or sockets. Also higher level middleware-based abstractions, such as CORBA, are

an alternative. However, not all of them are available on all operating systems

and others are not well-integrated into programming language libraries. Sockets

are widely supported by programming languages, well known by application pro-

grammers, and offer flexibility as well as communication performance. Therefore,

the library is based on Sockets and the Tasklet communication protocol. The

developer can write code in the most convenient language and use the Tasklet

language for computationally intensive subtasks. This approach embeds the

61



5.3. The Tasklet System

Tasklet system into each host language that supports Sockets. For the use of

the Tasklet system, the application programmer has two options: the manual

mode and the library-supported mode. In the manual mode, the developer has to

construct byte arrays that represent the plain Tasklet request manually. Next,

the developer has to send a message over TCP that contains the Tasklet request.

This message has to conform to the Tasklet protocol and has to be sent to the

local middleware. The middleware returns a result handle and after the execution

is finished, the results are retrieved over the TCP connection.

Writing the messages by hand can be cumbersome for developers. The library-

supported mode helps developers to communicate with the Tasklet middleware

while hiding complexities. The library offers an API to create and manage Tasklets,

as well as handling Tasklet results. To create a Tasklet, the developer passes a

source code file with the Tasklet logic via the API. Next, parameters and data

can be attached to the Tasklet. Application tasks can also consist of several parts,

each represented by a single Tasklet. These Tasklets are packed into a so called

Tasklet bundle and represent the overall application task. To define the required

quality of service level, the developer can set QoC goals for a Tasklet. After the

Tasklet is started, the library API offers functions to handle all Tasklet results.

The library-based solution is more comfortable for developers, however, the library

must be developed for each language individually.

Tasklet Compiler

The Tasklet compiler generates bytecode from Tasklet language source code. It is

designed from scratch to enable high flexibility and adaptability in terms of the

language and bytecode formats. The compiler validates the source code while the

bytecode is generated. This includes a type checking for the variables that are

passed over from the host language. The bytecode format is lightweight to reduce

the traffic of Tasklet transmissions. After the compilation process, the factory

checks for compiling errors and sends feedback to the consumer application, if

necessary. In case of an error-free compilation process, the factory starts the

Tasklet closure assembly.
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Tasklet Language

The main idea of Tasklets is to execute computationally intensive parts of appli-

cations on remote resource providers. In order to do this, the logic of these parts

needs to be transferred into the Tasklet representation. For the design of this

representation three options arise: (1) using the native language of each individual

consumer application, (2) using an existing language to exchange computationally

intensive parts, or (3) developing a new language from scratch. The benefits of the

first approach are the native execution performance and that developers must not

rewrite the Tasklet logic in a second language. However, brokers can only select

providers that offer the same execution environment as the one the consumer

application runs in. Moreover, for each language and runtime environment, a

Tasklets integration must be implemented that enables remote executions.

The second alternative uses a single existing language, which is adapted for the

use of Tasklets. The benefit of this solution is that all Tasklets can be executed on

all participating providers, since they have the same local execution environment.

However, several changes to the language are necessary to implement features like

QoC or fault tolerance. Many programming languages are not designed for remote

execution. Besides, the adaptability and extensibility are major issues. To realize

the Tasklet design with a third party language, many features of a language are

not viable. For example, paradigms and tools like object orientation, complex

data types, and native file system libraries complicate the transfer of tasks to a

remote provider. Object orientation potentially increases the overhead for task

transmissions. Further, these languages offer files system access, which may leads

to privacy as well as security issues and allows malicious behavior.

The third approach introduces a new programming language that is especially

designed for remote execution and is implemented from scratch. Developers have

to identify and extract the computationally intensive parts of applications and

rewrite the code in the Tasklet language, similar to the second alternative. The

benefit is that the language can be tailored to the requirements of the Tasklet

system. Thus, it is fully adaptable to features like QoC, task migration, and

data partitioning. One disadvantage of this solution is the overhead of rewriting

the code as well as of supporting an interface between the Tasklet language

and the original programming language an application is written in. Moreover,
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int lower, upper, result;

procedure int checkprime (int a){…}

>>upper; 

>>lower; 

while(lower<upper){

result := checkprime(lower);

if(result # 0){

<<result;

}

lower++;

}

Figure 5.8.: An example for a C-- source code. This code computes all prime numbers within
the interval between lower and upper.

developing a domain specific language for task offloading implicates high design

and implementation effort. For a research design, adaptability and extensibility

are crucial, since adjustments are common. The first two alternatives have several

constraints that may interfere with the requirements of the thesis. This especially

applies to the requirement REQF5 overcoming edge heterogeneity. Therefore, the

design decision is made in favor of the third approach, which results in developing

the Tasklet language C--, a lightweight language for remote task executions.

C-- is built to support distributed, generic, and lightweight computation. C-- code

represents a single thread of computation in an imperative manner. Further, it

provides some additional features to break the boundaries of remote execution,

meaning, it is specifically designed to be compiled and executed on different

physical machines. It is not standalone, but programming languages can integrate

C-- as host languages. Thus, it overcomes programming language heterogeneity

in distributed computing environments.

The goal of the Tasklet Language is to express frequently-computed subtasks of

algorithms while hiding the complexity of remote execution from the application

programmer. Hence, major design goals of the language are to separate the

compilation and execution environment, to allow easy marshalling, and to manage

the trade-off between a powerful and lightweight language. The structure of

programs written in C-- is predefined to improve readability and reduce the

potential for programming errors. Each program starts with a definition of global

variables and constants. After that, arbitrarily nested procedures follow, which

consist of variable and inner procedure definitions, a sequence of statements, and
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a return value, if required. The Tasklet code ends with a collection of statements

that represent the main function, meaning, the starting point of the Tasklet.

Figure 5.8 shows a simplified example source code. It neither offers memory

pointers nor a system call library, since sandboxing is an important design goal

for a code placement system. With the ability to execute system calls on a remote

provider, malicious Tasklets are able to compromise the provider. Further, this

eases the marshalling of Tasklet bytecode.

As the execution of a Tasklet is usually not local, the language has no standard I/O

functions. Therefore, input parameters that are used during the task execution

are integrated in the Tasklet closure. This applies only to inputs, which are

already known during the compile time of a Tasklet. Other inputs depend on

intermediate results and are transferred later on. The output of a Tasklet is

aggregated during its execution on the provider side and returned to the consumer

afterwards. To include the execution parameters and create results, the Tasklet

language offers two remote I/O operators. These two operators bridge the gap

between the consumer application and the remote execution provider.

The Tasklet input operator >> transfers input parameters from the host language

to the Tasklet logic. Thus, variables in the C-- source code can be initialized with

values from the host application. Therefore, the initiating application assembles a

list with all Tasklet parameters. For that, explicit data type information is stated

as well as a consistent variable naming throughout both programing languages.

During the byte code generation, the compiler inserts the parameters from the

consumer application’s list into the byte code. After that, the byte code is ready

for execution. In Figure 5.8, the variable values of lower and upper are passed

on from the host language to the Tasklet source code. The byte code is also

cached by the middleware for the code reuse mechanism. In order to do that, the

parameters are substituted with placeholders. In case of a byte code reuse, these

placeholders are replaced with the respective set of parameters.

The << operator is the output operator and transfers Tasklet results from C--

back to the consumer application. The output operator attaches a result and its

explicit data type information to the Tasklet result message, which is transmitted

to the host application after the Tasklet is terminated. The structure of a language

is defined by its grammar (or productions), which can be found in Appendix A.
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5.3.5. Execution Layer

The execution environment of Tasklets consists of a TVM and a TVM Manager,

which orchestrates all TVM instances on a host. The TVM Manager further

allocates incoming Tasklets to idle TVMs.

Tasklet Virtual Machine

There are two options to design an environment for the execution of Tasklets:

using an existing execution environment for Tasklets or developing a virtual

machine from scratch. There is a multitude of existing virtual machines, which

can potentially be used for Tasklet execution. For example Google’s V82, which

runs on several operations system and executes JavaScript code. However, this

entails several issues: Instead of having a lightweight intermediate byte code

format, heavy JavaScript source code is shipped between consumers and providers.

Further, all local system resources can be accessed by the V8 engine, which

implicates security issues when executing unknown code. Other open source

solutions are JamVM3 or Avian4. Both are based on Java, lightweight, and run

on multiple platforms. However, adaptability, extensibility, and the isolation from

system resources are issues of these solutions. Contrary to that, developing a

virtual machine from scratch can solve that at the cost of development effort and

restricted execution performance. Especially for requirements like QoC algorithms,

unobtrusiveness for the user, and migration, flexibility and adaptability are vital.

Therefore, the Tasklet Virtual Machine (TVM) is designed and developed from

scratch with the focus on adaptability and extensibility.

The TVM provides a homogeneous abstraction for otherwise heterogeneous re-

sources. It encompasses a stack-based bytecode interpreter that holds all temporary

values on an operand stack without using any general-purpose registers. These

temporary values include arithmetic operands, parameters, memory references,

and result values. The memory of the TVM has four different segments for the

stack, the program text, the constant pool, and the heap. The program text

segment stores the bytecode of the current Tasklet and the constant pool all

2Google’s V8: https://opensource.google.com/projects/v8/, accessed: 10/01/2019
3JamVM: http://jamvm.sourceforge.net/, accessed: 10/01/2019
4Avian: https://github.com/ReadyTalk/avian, accessed: 10/01/2019
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constant values, as well as the parameters transferred from the host language.

Both segments are read-only. Similar to the stack segment, the heap segment

changes in size during runtime. The heap space stores all dynamic data that does

not fit on the stack, including arrays of all kind. Further, the TVM holds special

registers for the program counter, the base address, and a pointer to the top of

the stack.

The TVM is built to be lightweight with a minimal memory footprint of about

400 KB in idle state in order to run on thin clients. TVMs are single threaded

processes and do not support multi-threading themselves. They sequentially exe-

cute incoming Tasklets without interruptions, similar to batch systems. However,

the resource owner may terminate a TVM at any time, for example in an excess

capacity scenario, where users contribute resources as long as they do not need

them locally. TVMs do not support system calls or access to any system resources

from the Tasklet logic written in C--. To achieve isolation from other system

components, each TVM runs in a separate process. During execution, code,

parameters, and data of a Tasklet never leave the volatile memory of a physical

machine. For communication, TVMs have two channels. The first for incoming

Tasklets and outgoing results, and the second one for administrative messages,

such as Tasklet cancellation. The error handling of the TVM is straightforward

and in best-effort manner. If a runtime error occurs, the execution is terminated

and the Tasklet is dropped. QoC goals, as reliability, are handled in the upper

layers of the middleware. Finally, the TVM resets itself entirely after each Tasklet

execution and does not store any state.

Two options exist, on which abstraction level the TVM can be executed: First, in

the application level of the operating system. This is the standard way, where

the TVM is compiled as a process for the respective platform and scheduled

by the underlying operating system. Second, the TVM is integrated into the

operating system kernel and runs on a dedicated processing core. This avoids

the overhead of the operating system scheduler and applies a non-preemptive

scheduling mechanism as long as resources are available. In case the user requires

the system resource, all Tasklet executions are stopped. This approach is more

performant, but requires high development effort, as well as customization for

each operating system. Further, the operating system must be available in source

code to extend it with the Tasklet execution environment.
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TVM Manager

On each resource provider, a TVM manager handles the lifecycles of all TVMs

that run locally on the respective device. It starts and stops the TVMs according

to the device’s context, including the number of physical processing cores and the

current workload of the system. In the default setting, the TVM manager starts

one TVM per processing core and schedules Tasklets preferably on idle TVMs.

In case of excess capacities where users share their private resources, the TVM

manager terminates or pauses TVMs when the resources are needed locally. This

avoids the user to be disturbed by the Tasklet system. Ideally, the user does not

even recognize that Tasklets are executed. Further, the TVM manager monitors

node failures, the Tasklet throughput, and turnaround times. Additionally, the

TVM manager provides information about the state of each individual TVM for

the system’s resource management.

5.3.6. Distribution Layer

So far, the thesis introduced the construction and execution of Tasklets. To

allocate Tasklets in the system remotely, the distribution layer combines an

orchestration with a broker network overlay. Furthermore, it manages the Tasklet

and result exchange among all instances in the system and federates all local

TVMs through the TVM manager. The orchestration schedules Tasklets on local

or remote TVMs. It therefore requests available resources from the resource broker

and forwards Tasklets for execution. The orchestration of the executing instance

sends the results to the orchestration on the device of the user application. An

application protocol supports the structured message exchange. Further, the

orchestration enforces QoC goals, which are stated by the application developer.

As a result, QoC extends the otherwise best-effort execution of Tasklets with

various guarantees.

The resources in the system, in other words, the TVMs, are globally managed

by the resource brokers. The initial bootstrapping in the system is realized in

a mediator-based fashion. Consumers and providers receive a list of brokers,

ping them, and connect to the one with the shortest round trip time (RTT). For

load balancing and request forwarding, the brokers themselves are organized in a

peer-to-peer overlay. Each broker has a target size of managed TVMs, with an
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upper bound to assure responsiveness and a lower bound to be able to provide

sufficient resources for consumers. Brokers can merge or split up their pools of

providers to deal with fluctuation in the system. Providers can spawn zero to

many TVMs on startup, as well as start or stop TVMs at runtime. Each TVM

registers itself at its broker and de-registers once it is terminated via the TVM

manager. A heartbeat channel detects implicit leaves of providers. Further, it

informs the broker about current Tasklet executions. Thus, the brokers have

consistent information about all resource providers.

Quality of Computation

The main idea of the QoC concept is that one generic underlying system can

be used by a large variety of applications. For some applications, a best-effort

execution is appropriate, but for the majority further qualities are required.

Therefore, the QoC layer is introduced to allow developers to tailor the level

of computation quality to each application individually. They can define fine-

granular execution requirements for each computationally intensive part of an

application with negligible additional programming effort. This results in the

flexibility to request different guarantees in the same application. The QoC

concept is further divided into two parts: the QoC goals and the QoC mechanisms.

A QoC goal represents the type and the level of a particular execution quality for

the application developer regardless of its enforcement. The QoC mechanisms,

on the other hand, represent a particular mode of execution, that can support

different QoC goals. Hence, a developer sets a QoC goal and the middleware uses

QoC mechanisms to enforce it. For example, if a developer wants a fast execution

for Tasklets, the Speed QoC can be applied. For its enforcement, the middleware

decides on an mechanism that fits best, depending on the current system state.

Two options are: (1) scheduling multiple copies of a Tasklet and using the first

arriving result or (2) selecting the fastest available resource provider. The first

option does not only improve the execution speed, but also increases the reliability

of the execution. In edge environments, devices fluctuate constantly and may

leave the system ungracefully, which leads to execution failures. Therefore, n+ 1

copies of the same Tasklet are able to cope with n failures. This example shows

that a QoC goal can be enforced by multiple mechanisms and a mechanism can

enforce multiple goals.
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Figure 5.9.: Lifecycle of a Tasklet execution. For the execution, the Tasklet middleware on the
consumer side prepares the Tasklet and transfers it to the providers side. After
the execution, the results are forwarded to the consumer application. The numbers
(0-9) indicate all execution steps.

To augment the best-effort execution that the Tasklet system offers, various

QoC goals are required. These goals are aligned with the requirements of the

application model from Section 5.2. The goals are reliability, speed, precision,

privacy, cost, and energy. The enforcement of these goals is taken over by various

QoC mechanisms, like multiple execution, strong distribution, local execution, and

retransmission. Both, QoC goals and mechanisms are out of the focus of this

thesis. More detail about QoC can be found in [166]5.

5.3.7. Tasklet Lifecycle

After the description of all core components of the Tasklet system, the Tasklet

lifecycle is introduced. The lifecycle is illustrated in Figure 5.9 and each step is

marked with a number. The Tasklet application initiates a Tasklet request by

calling the respective API functions. After that, the plain Tasklet is passed on

to the middleware (step 1). The factory generates the bytecode and assembles

the Tasklet closure (step 2). Then, the factory forwards the Tasklet to the

orchestration, which assigns the Tasklet an identification handle. Further, the

5[166] is joint work with J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker
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QoC parameters are extracted and analyzed. Based on that, the orchestration

prepares a resource request and sends it to the responsible resource broker (step

3). The resource broker runs matching algorithms that consider the stated QoC

parameters and the current state of all resources in the system. With the results

of that allocation process, a response message is prepared and sent back to the

orchestration of the consumer (step 4). The consumer retrieves the messages

and the orchestration forwards the Tasklet to one or multiple assigned resource

providers (step 5).

After the provider’s orchestration receives the Tasklet, it forwards it to a free

TVM (step 6). On the TVM, the Tasklet is demarshalled and the stack machine

as well as the memory segments are filled with its data. Next, the TVM starts

the execution. In case of failures or aborts, the TVM stops the execution and

dedicates the handling to the orchestration layer. After the execution successfully

terminates, the TVM assembles a result message, which the system finally forwards

to the Tasklet application via the orchestration (step 7-9).

5.3.8. Performance Measure

This section is based on [164]6. The performance of the distributed computing

system can be measured in multiple ways. For providers, the average utilization

and the throughput are important measures. The average utilization is the work-

idle-ratio of a provider in a certain time window and the throughput is the number

of successfully executed Tasklets per time. For consumers, the cost of executing

Tasklets should be minimized. Cost, in this case, can refer to either energy

consumption, turnaround time, or monetary compensation for providers. This

thesis focuses the overall turnaround time of a Tasklet as a measure of performance,

since it reflects the experienced quality for consumers and the potential throughput

for providers.

The total turnaround time (T ) to execute a Tasklet is the sum of the scheduling

time (S), the time for computation on the TVM (C), and the time to send the

result back to the consumer (R). It can be stated as follows:

T = S + C +R (5.1)

6[164] is joint work with J. Edinger, M. Breitbach, and C. Becker
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The scheduling time describes the time to offload the Tasklet to a remote provider.

Initially, the offloading process starts with a resource request from the consumer

to the broker. The broker selects a suitable provider and returns the information

to the consumer. Subsequently, the consumer forwards the Tasklet to the provider.

The time depends on the size of the Tasklet, the network characteristics, and the

performance of the scheduling algorithm. The computation time measures the

time difference between the beginning and the end of the execution on the TVM.

Thus, the time depends on the computational effort of the Tasklet, which can be

measured in number of instructions that have to be executed and the performance

of the underlying hardware. The result handling time states the required time to

forward the result back to the consumer, which depends on the result size and

the current network state.

The turnaround time of T in Equation 5.1 holds under the assumption that no

faults occur. That implies that the offloading process and result handling happen

exactly once and that the computation is performed without any interruptions.

This assumption does not hold in unpredictable edge computing environments

where faults and device fluctuation cannot be avoided. The extended Equation

5.2 considers these faults and calculates the required time when n faults occur.

T = S +
n∑

i=0

(Di +RSi + C ′i) + C +R (5.2)

Ceffective ≤
n∑

i=0

(C ′i) + C ′′ (5.3)

The scheduling time (S), computation time (C), and the result handling time (R)

are similar to the values in the simplified Equation 5.1. Additionally, the term

in the sum operator measures the delay that is caused by n faults. It consists

of the time required to detect the fault (D), the time required for rescheduling

the Tasklet (RS), and the time spent for each computation attempt (C ′). In

terms of computation time, Equation 5.3 describes the relation between the final

computation time (C ′′), the sum of all lost computations (C ′i), and the effective

computation time (Ceffective). This holds for all unpredicted system faults. In

case of a graceful system leave of a provider, the detection time (D) is equal to

zero.
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Tbundle = max
1≤i≤n

(Ti) (5.4)

So far, T is considered as the overall execution time of a single Tasklet. To

distribute the computational load, a task can be split into multiple Tasklets,

which run in parallel. The execution time of a bundle of Tasklets (Tbundle) is

shown in Equation 5.4 and indicates that the Tasklet with the longest execution

determines the bundle execution time. Especially in edge environments, this

can lead to bottlenecks which become larger due to device performance and task

heterogeneity.

Based on the design of the Tasklet system, the edge support layer is now introduced

to cope with the characteristics of user-controlled devices.

5.4. System Support for Edge Environments

The challenges in edge environments are platform heterogeneity, task requirements,

fluctuation, failures, performance heterogeneity, and irregular task structures. This

section introduces the edge support layer that handles these challenges subse-

quently. First, based on virtualization and specific architectures, the system copes

with platform heterogeneity. Second, by combining cloud and edge environments,

task requirements regarding latency and performance are fulfilled. To scale-up

the performance of the edge, the parallelization degree is increased. Therefore, a

broader range of devices is harnessed. This may include less performant and more

unstable devices, which leads to a higher device fluctuation and more execution

failures. Thus, reactive and proactive migration is introduced to reduce the im-

pacts of fluctuation and failures. Further, the probability for execution bottlenecks

is increased as well. Bottlenecks can have two sources: slow resource providers

and irregular tasks structures. Two algorithms are introduced to cope with both

problems: performance-aware partitioning and microtasking. Performance-aware

microtasking is a combination of both approaches and handles bottlenecks that

are caused by both issues.
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5.4.1. Platform Heterogeneity

The core of the Tasklet system copes with a certain level of platform heterogeneity

already. Based on the TVM, various operating systems, like Windows, MacOS,

and Linux, as well as desktop computing architectures are integrated. In edge and

IoT environments, the platform heterogeneity is higher than in traditional cloud,

cluster, or grid systems. Especially mobile devices, microcontrollers, and GPUs

introduce architectures that are different from standard computing hardware.

Further, these kind of devices are prominent in the modern computing landscape.

Mobile devices and microcontrollers use system on a chip architectures, which

are integrated circuits that include all components of a computer, like CPU,

memory, buses, interfaces, and a GPU. GPUs are specialized processing units,

which are optimized for highly parallel graphics rendering. However, with general

purpose programming models for GPUs, like OpenCL [177], the scope of GPUs is

extended. This section presents the integration of mobile devices, microcontrollers,

and GPUs into the Tasklet system.

Mobile Tasklets – Integration of Mobile Devices

Mobile devices are ubiquitous, but their resources are limited. They must be

capable to run computationally intensive software, for example for image stitching,

face recognition, and simulation-based artificial intelligence. As a solution, mobile

devices can use computation placement systems to increase the performance of

applications. This section presents the design of Mobile Tasklets [163]7 and its

overall architecture. To use mobile devices in a distributed computing environment,

special challenges must be tackled. These challenges are attributable to the

architecture and mobile behavior of these devices. Some examples for that are

context dynamism, heterogeneity, faults, network connection, and energy efficiency.

Architecture: The architecture of Mobile Tasklets has two layers and is shown in

Figure 5.10. The layers are designed to overcome the issues with mobile devices

by considering their context. The bottom layer is the service application that

consists of the Tasklet core components and a service wrapper. It interacts with

the plain resources of the mobile device and is a standalone application. When

7[163] is joint work with J. Edinger, T. Borlinghaus, J. M. Paluska, and C. Becker

74



5.4. System Support for Edge Environments

Mobile Device

N
at

iv
e

E
n
v
.

A
p
p
 R

u
n
ti
m

e 
E

n
v
ir
on

m
en

t

S
er

v
ic

e 
A

p
p
li
ca

ti
on

Tasklet System Core

A
p
p
li
ca

ti
on

Tasklet System
Wrapper

Mobile Tasklet
Library

User Interface
Client Application

Tasklet Service
Binder

Figure 5.10.: Overall architecture of the Mobile Tasklet approach. On the upper layer, the
consumer application interacts with the user and makes use of Tasklets. It runs
the Mobile Tasklet library and a component for binding the Tasklet service. The
lower layer of the system runs the service application and contains the Tasklet
system core and the Tasklet system wrapper.

the service application is started, the device may provide its resources to others.

The unmodified C code of the Tasklet core is executed in the native execution

environment of the mobile device. The Tasklet system wrapper closes the gap

between the host language environment and native execution environment of the

device. The top layer consists of the consumer application itself, the Tasklet

service binder, and the Mobile Tasklet library. The application represents all kind

of mobile applications that benefit from code offloading. It integrates the Tasklet

service binder, which facilitates means of communication to the lower layer. To

integrate the Tasklet system, the application includes the Mobile library, analog

to the standard Tasklet library. All requests to the library done via the Tasklet

binder.

To go one step further, the integration of even smaller devices is introduced next.

The Tasklet Gateway – Integration of Thin Devices

Tasklets are designed to be initiated by almost any device. However, creating and

executing Tasklets is problematic for devices that do not support the execution

of the Tasklet runtime environment, as well as for embedded systems with very

limited resources, such as sensors, actuators, or microcontrollers. The tasks on the

resource consumer side regarding Tasklet compilation, assembly, scheduling, and

result handling assume computational capabilities that these thin devices often
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Figure 5.11.: Architecture of the Tasklet gateway. The embedded device runs the consumer
application that uses the thin Tasklet library. This library is connected to the
Tasklet gateway that takes over the majority of the tasks. The gateway acts as an
application proxy: it forwards the plain Tasklet request to the middleware and
returns the execution results back to the embedded device.

not have. Further, especially scheduling can become tedious for mobile devices

that frequently change their network connectivity. They might either change

their IP address or disconnect from the network entirely, resulting in lost result

messages, as the executing provider would try to send the result to a deprecated

IP address.

In such settings, a separation of application and Tasklet middleware is desirable.

For this, the Tasklet gateway in combination with the thin Tasklet library is added

to the system’s landscape. The Tasklet gateway reduces the required effort for

Tasklet submission to an absolute minimum and serves as a reliable and stable

endpoint for the connection to the executing instance. The thin Tasklet library is

tailored to the characteristics of resource-limited devices. From the application

perspective, the thin library is similar to the standard Tasklet library. In addition,

it connects the application to the gateway and offers functionality to find a gateway

device, manage the gateway connection, and reduce the network traffic for Tasklet

requests.

Figure 5.11 shows the architecture of the approach. The gateway runs on dedicated

resource providers and connects applications running on thin clients in its nearby

environment to the Tasklet system. The application sends the same request to
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the gateway as it would send to a local middleware. One major difference is that

the Tasklet request is sent over a network to the gateway. This can be a local

network or the Internet.

On the dedicated resource provider, the gateway acts as an application towards

its local middleware. That is, it manipulates the Tasklet request message and

pretends to be the initiator of the Tasklet. Consequently, the middleware treats

the request like any other request from a local application, and the executing

instance sends the results back to the respective gateway. The gateway, again,

manipulates the information in the result message and forwards it to the actual

application on the thin client. One Tasklet gateway is able to serve multiple

thin devices. To achieve this, each device is uniquely identified and requests are

handled separately. In case multiple Tasklets are started as a bundle, the gateway

gathers the results and transfers them efficiently. The thin Tasklet library in

combination with the gateway provide thin devices, like sensors, microprocessors,

and IoT devices, the use of the Tasklet system.

Next, the integration of GPUs in the Tasklet system landscape is presented.

The GTVM – GPU-Accelerated Tasklet Execution

In edge computing systems, computation is rather offloaded to nearby resources

than to the cloud due to latency reasons. However, the performance demand

in the edge grows steadily, which makes nearby resources insufficient for many

applications. Additionally, the amount of parallel tasks in the edge increases,

based on trends like machine learning, Internet of Things, and artificial intelligence.

The trade-off between high performance of the cloud and low latency of the edge

has to be considered for the scheduling. Many edge devices have powerful co-

processors in form of their graphics processing unit (GPU), which are mostly

unused. These processing units have specialized parallel architectures, which are,

different from standard CPUs, rather complex to use. Exploiting GPUs increases

the performance of edge devices drastically. This section presents the design of

GPU-accelerated task execution [161]8 for edge computing environments.

8[161] is joint work with J. Edinger, and C. Becker
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Figure 5.12.: The Tasklet system architecture with GPU extension. The construction layer
generates Tasklet request and consists of the Tasklet factory and library. The
distribution layer uses the Tasklet orchestration to allocate Tasklets remotely. The
execution layer contains Tasklet virtual machines, which run on heterogeneous
devices. The new system extension uses the GTVM manager and the GTVM to
support GPU-accelerated Tasklet execution.

The design consists of two parts: First, an orchestration module for GPU resources

on the provider and, second, a specialized version of the TVM – the so called

GPU-based Tasklet Virtual Machine (GTVM). The overall objectives of the design

include parallelization, overcoming heterogeneity, and unobtrusiveness. The

standard TVM does not support any kind of parallelism. When application

programmers want to make use of parallel execution, they have to split the task

up on application level and initiate multiple Tasklets. In contrast to that, the

GTVM utilizes the parallel architecture of GPUs. Since there are different GPUs

with diverse architectures on the market, the design has to cope with heterogeneity.

The last design focus is unobtrusiveness for the user. The main responsibility

of the GPU is rendering the graphical user interface (GUI) for the user, which

should not be compromised by the design. Figure 5.12 shows the integration of

the new components. Each provider has a GTVM manager and one GTVM per

installed GPU. Depending on the task size, the memory consumption, and the

current workload, each GTVM starts multiple Tasklet threads. Next, the three

main design characteristics are described.

Parallelization: The standard TVM assumes the process isolation of the operating

system to protect Tasklets from mutual violation and malicious behavior. However,

the memory allocation on GPUs works differently. All running programs can
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access the GPU memory. Thus, there is no natural process isolation. For that

reason, the architecture supports two different GPU execution modes. Both modes

do not allow different Tasklets on the same GTVM concurrently. The first mode

executes multiple instances of the same Tasklet in parallel. The second mode

executes the same Tasklet several times, but with different execution parameters.

Therefore, the Tasklet is forwarded to the GPU together with a set of parameters.

Heterogeneity: GPUs are highly heterogeneous regarding their architecture, num-

ber of processing entities, and memory structure. The GTVM overcomes these

heterogeneities in proposing a design that copes with diverse GPU models. There-

fore, OpenCL is used, which enables to compile the same GTVM version to various

GPUs. This comes at cost of overhead that emerges from running non-native GPU

code. Further, systems with multiple GPUs are considered. The GTVM manager

optimizes the scheduling strategy and considers different GPU characteristics.

Besides, the GTVM copes with different kinds of operating systems.

Unobtrusiveness: The main task of the GPU is rendering the GUI. Compared

to a CPU, a GPU is scheduled in a non-preemptive manner, which makes mul-

tiprogramming complex. Thus, while the GPU is used as a co-processor (e.g.,

to run Tasklets) the operating system cannot render the GUI. In this case, the

Tasklet execution interferes with the user through judder effects or even a blocked

GUI. The present approach stops the Tasklet execution on the GPU to yield the

execution periodically. To realize that, a snapshot is created and used to resume

the Tasklet execution after the operating system rendered the GUI. Hence, no

Tasklet progress is lost and the user is not disturbed. In multi-GPU systems, one

GPU renders the GUI while other GPUs are dedicated for Tasklet execution.

After the three platform integrations, scheduling is the focus of the following

section. Especially the role of cloud in combination with nearby resources is

presented. Therefore, a hybrid scheduling is introduced that uses remote cloud

and ad-hoc edge computing resources.

5.4.2. Hybrid Tasklet Scheduling

MCC enables mobile devices to augment their computational capabilities with

powerful centralized resources. However, due to latency issues, MCC is unsuitable

in many situations. Edge computing appeared as a more decentralized paradigm,
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which utilizes resource consumers that are in the proximity of the consumer device.

It benefits from the continuously increasing amount as well as the enhancing

performance of end-user devices and their network performance. Compared to

MCC, nearby resources are limited, but reachable with a substantially shorter

latency. Therefore, a combination of both approaches can drastically improve the

performance of mobile applications. Based on the introduced application model,

applications that are executed in the edge can have two specific requirements:

performance and latency. In case of long-running, complex executions, it is

required to have a high performance resource for execution. Other applications

require a timely execution with a low latency.

This section introduces a hybrid scheduling approach in edge and cloud environ-

ments [165]9. It combines the benefits of resource-rich cloud computing with the

high responsiveness of edge computing. In addition to the centralized scheduling

on remote edge and cloud resources, an ad-hoc scheduling mechanism for nearby

edge environments is introduced. Depending on the device context and the task

structure the system decides between (i) powerful and stable cloud resources, (ii)

low latency and lightweight edge resources, or (iii) powerful and low-priced remote

edge resources, as shown in Figure 5.13.

Considering the diverse characteristics of edge and cloud devices, the scheduling

process of Tasklets is rather complex. For the execution on remote resources, the

system uses centralized scheduling via the broker. This implies one RTT for the

request from the consumer to the broker and one RTT between the consumer and

the provider for the Tasklet and results exchange. On the contrary, for nearby

edge resources, the Tasklet is allocated in an ad-hoc manner with a direct message.

However, due to their movement, mobile devices can have high churn rates. This

increases the error rate, since a Tasklet result is lost, if the consumer or provider

is not in range anymore. Moreover, the performance as well as the power supply

of mobile devices are limited. To exploit the benefits of cloud, remote edge, and

nearby edge resource, a hybrid architecture is proposed.

9[165] is joint work with J. Edinger, J. Eckrich, M. Breitbach, and C. Becker
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Figure 5.13.: The hybrid scheduling model. The three layered model combines (i) cloud resources
with (ii) local and (iii) remote edge resources.

Cloud resources are stable and reliable, since the respective cloud instances are

designated to execute Tasklets. The scheduling is centralized within the broker

network. Cloud resources are especially suitable for long-running tasks with a

high priority, which require high execution performance. However, scheduling

latencies are involved and these resources are more expensive.

Remote edge resources are similar to the cloud regarding the scheduling latency.

Further, their execution speed is similar to the cloud, since full-fledged computers

with high performances can be selected with QoC. Nevertheless, remote edge

resources strongly differ in terms of stability and reliability, since they can leave

the system at any time. Again, long-running Tasklets, which require heavy

computation are suitable for this kind of resource, but without high priorities,

reliability, or dependencies.

Nearby edge resources are spontaneously-connected groups of devices in proximity.

They have a very short communication delay, but also limited execution perfor-

mance. This resource is especially suitable for bursts of short Tasklets, which

require high responsiveness.
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The design of the hybrid scheduling approach is twofold: On the one hand it

consists of the centralized scheduling system of the standard Tasklet system,

the so called remote resource broker. On the other hand a decentralized ad-hoc

scheduling for Tasklets is introduced. With this approach, mobile devices can

spontaneously form groups that exchange Tasklets with low latencies and without

involving centralized cloud resources. This set of features is realized in the local

broker component. Depending on the situation, the Tasklet system can use the

local or the remote scheduling system.

Since Tasklet allocation on remote resources is a part of the core system, this

section focuses on the nearby edge scheduling. To achieve this, the Mobile Tasklet

architecture is extended with the local broker and a component that decides

on the most suitable resource type for each Tasklet. This leads to different

scheduling strategies: in case of short and highly responsive Tasklets, the system

schedules within the nearby edge. In contrast, an important long-running Tasklet

is scheduled via the remote resource broker to a stable and powerful cloud resource.

Other long-running Tasklets that are not as critical are scheduled to remote edge

devices. Not only the Tasklet characteristics are crucial for the scheduling decision,

but also the environment and the device itself. In case the nearby environment

has a high churn rate or the device itself is moving, the probability for a remote

scheduling approach is high. Next, the design of the local broker is explained in

detail.

Scheduling in the Edge

Figure 5.14 presents the system model of the local broker. Each participating

device runs the local broker component. It creates and manages local groups of

devices and provides the same service as the centralized broker of the Tasklet

system. Within the group, context information is exchanged to allow context-

aware Tasklet allocation. The local broker is designed as an extension of the

Mobile Tasklets approach. It adds three components to the architecture: the

Tasklet connector, the context engine, and the network handler. The Tasklet

connector implements the system integration of the Tasklet core system and the

new local broker component. The context engine reasons internal context of a

device. Further, it collects external context information of nearby devices by
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Figure 5.14.: The Local Broker system model. Decentralized scheduling with Tasklets in
spontaneously-formed groups of edge devices, each of which has one group owner
(marked in bold).

means of which it calculates a utility ranking for Tasklet allocations. The network

handler establishes spontaneous connections between nearby devices. Therefore,

it uses a network underlay, which utilizes peer-to-peer technology and a network

overlay that is used for Tasklet allocations. Next, the context engine and the

influence of context are explained in more detail.

Context-awareness For the nearby scheduling of Tasklets, the device’s context

is considered to improve the execution quality. This is done by the so called

context engine and independent from the QoC goals that are set by the developer.

The context currently encompasses the CPU utilization, the CPU temperature,

the battery level and status, as well as the Wi-Fi signal strength. The battery

is an important factor. It determines whether a device is charging and what

the current battery level is. The Wi-Fi signal strength has an impact on the

data transfer rate between the participating devices. Further, a decreasing signal

strength may indicate that a device will leave the group soon. The CPU utilization

and temperature is balanced by the system among all devices of a group. Since

smartphones regulate the CPU temperature by adjusting the CPU clock, the

temperature is also important. A device that is charging and exposed to direct

sunlight, has a high temperature without doing heavy computation. Therefore,

the clock speed is reduced. Based on these context values, a utility function is used

83



5.4. System Support for Edge Environments

to calculate a utility value for each device. Each context value ci is normalized

and multiplied with corresponding weight wi to calculate the utility value Ui for

a device:

Ui = w1 ∗ c1 + w2 ∗ c2 + . . .+ wn ∗ cn (5.5)

Additionally, the context engine has a set of rules. An example rule set could

be, that the battery must be above 10% and the CPU temperature below 60◦C

to execute a Tasklet. In case one of the rules is infringed, the devices obtains

an utility value Ui of 0. This mechanism establishes load balancing among the

participating devices and increases the execution reliability. The context engine

collects the external context and the local context of the device itself. This process

is done periodically, depending on the changing of context values. When the

alternation rate is high, the intervals are shorter and vice versa.

Based on that design, a hybrid scheduling is realized. Next, the performance

increase of edge and cloud resources is further examined.

5.4.3. Enhancing Performance of Low Latency Edge Resources

So far, the computing landscape of the Tasklet system is extended with typical

edge devices. The hybrid scheduling approach demonstrates the ability to use low-

latency edge and high-performance cloud resources in one system. The subsequent

question is, how can the performance in the edge be improved further?

The dark gray space in Figure 5.15 marks an optimal environment regarding

performance and latency. To approach it, two options exist. First, the latency

of cloud environments can be reduced, which has been done by fog computing

approaches and most prominently by Cloudlets [158]. Generally, the idea is to

distribute cloud infrastructure and deploy them in proximity of the edge.

The second approach is to increase the performance of the edge. Edge resource

providers, however, are limited in number and their individual serial execution

performance. A first step in that direction was the integration of GPUs, which is,

however, limited to a certain kind of application that benefits from highly parallel

architectures. Thus, scaling up the resources is not straightforward, but can be

solved with a higher degree of parallelization by accumulating multiple resource
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Figure 5.15.: Improvement potential for Edge and Cloud resources. Edge resources have low
latencies, but are limited in performance. Cloud resources, on the other hand, are
very powerful, but introduce higher communication latencies. The dark gray area
marks the target space that can be reached by reducing the latency of the cloud
or increasing the performance of the edge.

providers. This applies only for tasks that can be fully parallelized. The static

partitioning of a task done by the application developer before runtime is not

adjustable and does not consider any runtime information. Thus, tailoring the

task partitioning to the current state of the environment enables to dynamically

decide on an optimal strategy. As a solution, automatic data level partitioning is

introduced. The application developer specifies the smallest granularity a task

can be split in and information about the task structure. The middleware applies

this information in combination with the number of available resource providers

to split the task dynamically during runtime. As a result, the middleware can find

the optimal strategy for distributing the workload to the nearby edge environment.

Based on that, a large amount of computational performance can be accumulated.

However, this approach has two major drawbacks that increase the response times

drastically: faults and bottlenecks.

Especially in edge environments, device fluctuation and unreliable task execution

can occur frequently and generate large execution delays. To cope with this

problem and increase the fault tolerance, two task migration algorithms are

introduced in Section 5.4.4. The second problem are bottlenecks, which can
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Figure 5.16.: The impact of execution failures. Error free (bottom) versus an erroneous (top)
remote task execution. The black line indicates the delay caused by the error.

emerge from device heterogeneity and irregular task structures. Section 5.4.5

introduces algorithms that utilize environment information in combination with

risk distribution strategies to handle both sources of bottlenecks.

5.4.4. Task Migration for Fault Tolerance

Figure 5.16 shows the impact of failures in comparison with an error free execution.

Analogous to Equation 5.2, for each failure occurrence, the times for failure

discovery, rescheduling, and redundant computation are added to the overall

execution time. To reduce the overall response time of Tasklets, four options for

the improvement of fault tolerance are feasible. First, the number of faults n can

be reduced by selecting the resource provider based on historic behavior. This

algorithm is called fault avoidance, is published in [63]10, and focuses on remote

desktop grid environments. However, fault avoidance may restrict the number

of potential providers and is not optimized for nearby edge environments. In

environments where resources are already restricted in number, filtering reduces

the allocatable resources to a minimum. The second solution is to reduce the

discovery time D, which can be done by increasing the heartbeat rate and reducing

the timeout. This approach, however, increases the overhead and may lead to

unwanted parallel executions of the same task. Third, the time for rescheduling

RS after a fault occurred can be reduced. Therefore, decentralized scheduling

10[63] is joint work with J. Edinger, C. Krupitzer, V. Raychoudhury, and C. Becker
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based on cache lists is proposed in [61]11. It minimizes the communication with

the central broker to accelerate the resource requests. However, this solution

is only optimized for desktop grid environments and not for edge computing.

Further, the scheduling in the nearby edge works without any centralized entity,

as described in Section 5.4.2. The fourth option for improvement is to reduce the

redundant computation C ′. In case of an execution fault, the computation does

not start from the beginning, but continues based on an intermediate execution

state. As a solution, this section introduces two algorithms for task migration to

cope with implicit and explicit faults. This approach is based on [164]12.

An explicit system leave implies that a resource provider executing a task leaves

the system with notice. Therefore, the middlware can gracefully transfer the

computation to another provider. Explicit leaves can happen when the network

connection becomes worse, the battery state changes, or the user closes the

middleware. In contrast, an implicit leave is not foreseeable. The provider stops

all task execution and opts out without any notice. Implicit leaves arise when the

user shuts down the device, forcibly exists the middleware, or suddenly loses the

network connection. The following migration algorithms cope with both types of

leaves.

Task migration describes the process of recording and transferring an execution

state from one resource provider to another in order to continue execution of

the task there. The Tasklet system uses the TVMs to provide a homogeneous

runtime environment on all participating devices. The state of these TVMs

is recorded in a snapshot, which for example includes the state of the stack,

heap, and the program counter. Furthermore, intermediate results of the task

execution are recorded. After each instruction of a TVM, a provider can halt the

execution, create a snapshot, and send the snapshot to the respective resource

consumer or another provider. Moreover, the provider can continue the execution

right after the snapshot is created. The memory footprint of a snapshot is

determined by the complete size of all elements which are necessary to continue

the execution elsewhere. Further, each snapshot contains the computational effort

that was necessary to achieve its state. This effort is measured in virtual machine

instructions to make the effort comparable among different resource providers.

11[61] is joint work with J. Edinger and C. Becker
12[164] is joint work with J. Edinger, M. Breitbach, and C. Becker

87



5.4. System Support for Edge Environments

ReschedulingComputationScheduling

Rescheduling Computation Result Handling

Reactive Migration

Scheduling Computation Result Handling

Error free

time

ComputationScheduling Rescheduling Computation Result Handling

Rescheduling and 
lost computation

Error without migration

Figure 5.17.: The reactive task migration approach with an explicit leave. An error without any
migration generates an additional delay of the rescheduling time (RS) plus the
time for the lost computation (C ′). When reactive migration is used, this time is
reduced to only the rescheduling time (RS).

In traditional distributed computing environments, task executions can be aborted

by the user or by a system error. Mobile devices are more dynamic in terms

of battery status, network status, temperature, and location, which makes task

abortion more likely. This leads to a higher risk of task abortions and must be

handled differently. In case of a low battery, a decreasing network quality, or

a rising device temperature, the middleware can explicitly stop the execution.

However, a spontaneous location change or network disconnection would cut off

the device completely and the execution progress is lost.

The task migration algorithm ensures no loss of execution for explicit system leaves.

For implicit system leaves, the approach offers a quick start snapshot algorithm,

which backups the computational progress in changing intervals. Therefore, the

approach consists of two algorithms: reactive and proactive migration.
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Reactive Migration

Figure 5.17 compares the execution delay of an unhandled error with the reduced

delay of the reactive task migration algorithm. This illustration holds for explicit

leaves or a task abortion, where executions are stopped gracefully. After stop-

ping the virtual machine, a snapshot is created, and transferred to the resource

consumer. The snapshot contains the complete execution progress done so far.

Therefore, the resource consumer is able to reschedule the task without any loss

of computation. The rescheduling is done analogously to the initial scheduling

process.

Reactive migration has three effects on the overall computation time T from

Equation 5.2. First, the fault detection time Di is zero, since the middleware

starts acting before a fault occurs. Second, the intermediate computation time

C ′i is not lost. After the task is rescheduled, the execution starts exactly where

the last TVM stopped. Therefore, the sum for all intermediate computation is

equal to the computing effort with no errors occurring. Assuming that all devices

are homogeneous in terms of performance and Tasklet executions are not paused,

Cnofault = C +
∑n

i=0(C ′i) holds, independent from n. Third, the RSi includes the

transfer of the snapshot, which is influenced by the size of its footprint.

Proactive Migration

Figure 5.18 compares the execution delay of an unhandled error with the reduced

delay of the proactive task migration algorithm. In this case, an implicit system

leave occurred, where mobile devices are disconnected from the network or shut

down by the user spontaneously. Thus, the system cannot trigger the reactive

migration. The intermediate state of a task is lost and the computation has to be

re-initiated entirely. As a solution, proactive migration is introduced. It creates

and sends snapshots to the consumer continuously. On the consumer side, only

the latest snapshot of a task is stored. The middleware uses heartbeats to detect

faults on the provider side. In case of missing heartbeats, the consumer re-initiates

the task with the latest snapshot.
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Figure 5.18.: The proactive task migration approach with an implicit leave. An error without any
migration generates an additional delay of the discovery delay (D), the rescheduling
time (RS), plus the time for the lost computation (C ′). When proactive migration
is used, this time is reduced to only the rescheduling time (RS) and the discovery
delay (D).

In terms of the overall computation time T , proactive migration can be adjusted

through the interval length between snapshots. There are two options: First, the

application programmer can set a fixed amount of time in between two snapshots.

Second, the quick start algorithm is developed that determines a snapshot sending

interval depending on the current computational effort and the snapshot memory

footprint size. At the beginning of a task execution, the interval is short and

increases over time. The reason for that lies in the heterogeneity of tasks and

relates to the execution effort of tasks. For short and highly responsive tasks, it

is important to backup the early progress. For long running tasks, the snapshot

interval can increase fast, since the potential relative loss is smaller.

Beside of the computational effort, the size of the footprint, the available band-

width of the resource consumer, and the relative performance of the provider are

important factors to determine the sending interval. This thesis only considers the

footprint size. Figure 5.19 shows two examples of asymptotic wait functions that
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Figure 5.19.: Two different graphs to determine the snapshot frequency. The first one (1) is for
short tasks with a small footprint, the second one (2) for long running tasks with
a big footprint. According to Equation 5.6, the parameters Γ and ν are defined
by the task properties. Based on these parameters, the function is determined by
means of which the snapshot interval is computed.

are used to determine the corresponding snapshot interval. Equation 5.6 presents

the general formula for the quick start approach. The parameter t determines the

current computational effort of the task. The aforementioned factors influence

the values Γ and ν. Γ determines the values that the wait function converges

to and ν affects its slope. A high snapshot frequency decreases the potential

loss of progress brought by a fault. However, this leads to overhead in terms of

data transfer and virtual machine interruptions which are necessary to maintain

consistency. Hence, the application programmer has to decide on that trade-off,

which is application dependent.

wait(t) =
Γt

ν + t
(5.6)

Since snapshots are created during the task execution time, the virtual machine

is stopped for a short time period. This time is added to C ′i and C respectively.

Implicit leaves are not predictable, which prevents proactive migration from re-

covering all states and data from the faulty resource provider. The computational

effort that has been made between the last snapshot that arrived at the consumer

and the fault that occurs on the provider determines the amount of lost computa-

tion. Therefore, Cnofault ≤ C +
∑n

i=0(C ′i) holds. The time for the detection of a

fault Di depends on the heartbeat rate and the sensitivity of re-initiation, which

is the number of missing heartbeats until a task is re-initiated. In case of a high
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Figure 5.20.: The impact of execution bottlenecks. A task is split into four parts that are all
required for the result assembly. The execution takes place on different resource
providers (P1-P4). The slowest task determines the overall execution time of the
task.

heartbeat frequency and sensitivity, Di is short at the cost of heartbeat message

overhead. Besides, false re-initiations of tasks can cause multiple concurrent

executions of the same task on different providers. Once the middleware detects

a fault, the rescheduling RSi is analogous to reactive migration.

So far, fault tolerance mechanisms for computation placement in edge environments

were presented, that cope with fluctuation and failures. Next, algorithms are

proposed to avoid execution bottlenecks in heterogeneous environments.

5.4.5. Workload Partitioning for Bottleneck Avoidance

The second source for execution delays in edge environments are bottlenecks, which

are shown in Figure 5.20. To parallelize computationally intensive applications,

tasks are split in several subtasks and sent to different resource providers. After

the computation, the consumer application requires all results of each subtask 13 to

assemble the overall result of a task. This reduces the response times, but can also

lead to large bottlenecks for two reasons: First, the computational capabilities

of the employed resource providers are heterogeneous. Edge environments in

particular are heterogeneous, since many different device types, like smartphones,

laptops, and stationary PCs contribute their resources. Consequently, the slowest

13A computationally intensive part of an application is defined as a Tasklet bundle or task.
Each Tasklet bundle consists of several Tasklets or subtasks. These Tasklets are all required
to assemble a result for the consumer application. Thus, the latest Tasklet arriving at the
consumer determines the runtime for its Tasklet bundle. Tasklets can further be split into
several microtasks to reduce the risks of bottlenecks.
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device will slow down the overall computation time. The second source of

bottlenecks are irregular task structures, meaning, that the computational effort

of a task is not linear to its parameter range. The last subtask of a computation

can be much more complex compared to the first subtask. Further, both sources

can occur at the same time, which aggravates the effect even more. In Figure

5.20, subtask 4 slows down the overall execution time and creates a bottleneck,

which can be referable to provider P4, subtask 4, or both. This section presents a

solution to cope with these bottlenecks based on [164]14.
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Figure 5.21.: Problems of environment heterogeneity and irregular task structures. In the
optimal case (a), the computing environment is homogeneous and the structure of
a task consistent. With heterogeneous devices in the environment (b), bottlenecks
are likely. The same can happen when the structure of tasks is not consistent
(c). When combining both (d), the impact is even stronger. As a solution,
performance-aware partitioning and microtasking is introduced to cope with both
issues.

Figure 5.21 pictures the problems of bottlenecks in more detail and outlines

the solution design for environment heterogeneity and irregular task structures.

Optimally, all devices in a computation environment and the offloaded tasks

14[164] is joint work with J. Edinger, M. Breitbach, and C. Becker
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are homogeneous, causing that the subtasks can be split evenly and scheduled

randomly (see Figure 5.21a). Considering only the execution times, there are

no bottlenecks in this case, since all devices process the subtasks in the same

time. However, when the participating devices and tasks are not homogeneous,

the chances for bottlenecks grow. The partitioning mechanism compensates for

environment heterogeneity and task irregularity without any assumptions on

runtime behavior or runtime estimation. According to Flynn’s taxonomy [71],

data level parallelism is therefore applied to the Tasklet system.

Automatic Data Level Parallelization

For the automatic parallelization task specific information is necessary that

describes how a task can be split up dynamically during runtime. Therefore, the

application programmer uses an API to specify information about the task data

characteristics. The goal is to define the smallest possible granularity in which a

task can be partitioned. Hence, the middleware can decide in how many subtasks

a task is split up during runtime. This decision is made based on the current state

of the computing environment, including number of resources, computational

capabilities, utilization, and network connection.

Since the structure of task data can be different, the application programmer

has three different categories to indicate its characteristics. These categories

are sets, ranges, and runs. Sets encompass tasks that have numeric or symbolic

input parameters without any sequence. One example for this parameterization

is a k-means clustering implementation, where all potential cluster centers are

parameters that are bundled into sets. With ranges, numeric intervals can be

defined, by means of which a task can be parallelized. For that, image rendering

algorithms are one example application. In this case, the range for the overall

task starts with the first pixel and ends with the last pixel. Further, the smallest

data granularity can be the computation of each pixel individually, depending on

the algorithm. With this kind of task, the middleware has a high partitioning

flexibility. The runs setting defines how often the same task is executed, which can

be used for simulation applications. For example, a Monte Carlo-based method

can use the runs setting to define how often a randomized experiment is executed
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to achieve a certain accuracy. These three categories are able to represent most

computationally intensive parts of applications limited by the application model

from Section 5.2.

Additionally, the approach includes so called late parameter binding. Therefore,

it sends the data partitioning parameters along with the task to each resource

provider. Before execution, the middleware replaces placeholders in the bytecode

with the actual parameters, which are designated for the respective TVM instance.

This decouples the compiling process from the scheduling as well as from the

workload allocation. So far, the mechanisms only supports automatic data

parallelism, without any consideration of heterogeneity or irregularity. Next, the

improvements for automatic workload partitioning are presented.

Heterogeneous Environments

In contrast to a homogeneous environment, the devices in a heterogeneous en-

vironment can have the same accumulated computational performance, but not

equally distributed among all of them. When tasks are split up into subtasks of

the same size, the slowest device creates a bottleneck, since all subtask results

are required to finish an execution. Especially with mobile devices, the perfor-

mance range is large. This example is illustrated in Figure 5.21 b) by the black

bars. Subtask two is scheduled on a slow machine and causes a bottleneck. The

performance-aware partitioning approach is developed to cope with environment

heterogeneity. The approach claims that it can achieve similar task completion

times in heterogeneous environments. Therefore, each device runs benchmarks to

determine its computational capability. Based on that, a performance index (CI)

is calculated for each device individually and promoted in the system.

The resource query for a task contains the desired amount of computational perfor-

mance. Depending on the current state of the environment, devices are selected to

accumulate a reasonable performance index. The resource consumer middleware

then starts the partitioning process. Based on the environment knowledge, it splits

up the task in subtasks, by means of the three partitioning indicators mentioned

above. These subtasks are not equally sized, but tailored to the allocated resource

providers in terms of their performance indices. Consequently, a provider that

can compute twice as much receives double the workload of another provider. In
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Figure 5.21 b), the gray bars indicate the possible improvement introduced by

performance-aware partitioning. As a result, the degree of performance distri-

bution (or degree of heterogeneity) among a set of resource providers does not

influence the Tasklet bundle runtime.

Irregular Tasks

In homogeneous environments, bottlenecks can also be evoked by task irregularity.

Thus, it is not trivial to split them in unequal parts, since their structure is not

consistent. For example, the computational effort to compute all prime numbers

in an interval is not consistently distributed. The computation for the interval

100− 200 implies less computational effort than the interval 10, 100− 10, 200.

Therefore, a solution for heterogeneous tasks is introduced. Each subtask is split

further into so called microtasks, which are then shuffled among the subtasks.

Consequently, each subtask consists of non-sequential parts of the problem that

all are executed in parallel on distinct providers. Hence, the risk of allocating a

computationally heavy subtask to a single resource provider is spread, as shown in

Figure 5.22. This means that a computationally heavy task T is split into several

subtasks T1 - T4. These subtasks are split up further into microtasks (T11 - T14,

T21 - T24, T31 - T34, and T41 - T44). These microtasks are shuffled among the

four Tasklets, thus, decreasing the risk of receiving only heavy microtasks. This

mechanism comes at the cost of allocation overhead and starting and stopping the

virtual machine to execute non sequential partitions of a task. In Figure 5.21 c),

the initial situation of task heterogeneity is shown by the black bars. Thus, the

microtasking leads to smaller bottleneck risks and reduces the overall computation

time, as shown by the gray bars in Figure 5.21 c). Figure 5.22 a) and b) visualize

the microtasking approach in more depth analogously.

Heterogeneous Environments and Irregular Tasks

The most complex scenario combines a heterogeneous environment with irregular

task structures. In this case, the potential for bottlenecks is the highest, since

slow providers can receive computationally intensive subtasks. The solution is a

combination of both algorithms, the so called performance-aware microtasking. To
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Figure 5.22.: A computationally intensive problem that is split into four Tasklets. The more
complex a microtask is, the darker is its shade. a) shows the initial state, without
any optimization. In this case, Tasklet 1 has the smallest and Tasklet 4 the
highest computational effort. In b), the microtasking mechanism is applied and the
microtasks are shuffled. This reduces the risk of including all complex microtasks
in the same Tasklet. In c), performance-aware microtasking is applied and the
number of microtasks per Tasklet is tailored to each resource provider individually.

realize that, the task is split into microtasks which are allocated to the providers

considering their performance index. Hence, a more powerful device will receive

more microtasks. For instance, a provider twice as fast will receive twice as

many microtasks. In Figure 5.21 d), the third provider only executes one single

microtask, compared to provider two, which executes seven microtasks. Figure

5.22 c) further illustrates performance-aware microtasking on Tasklet level.

5.5. Summary

This chapter presented a computation placement framework for edge environments,

including an application model. It consists of the Tasklet middleware that supports

the construction, orchestration, and execution of closed units of computation. To

employ edge devices as elastic computation resources, the edge support layer was

presented. This layer integrates different platforms, realizes ad-hoc as well as

hybrid scheduling, and copes with fluctuation and heterogeneity at the edge. The

next chapter introduces the implementation of the prototype.
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The previous chapter presented the design of the Tasklet system and the edge

support layer. This chapter describes the implementation of the prototype, which

is the foundation for the evaluation. The prototype implements the entire design of

Chapter 5 and consists of several integrated artifacts. Due to the similarity of the

design and the prototype implementation, the following chapter does not describe

the entire architecture again but rather focuses on implementation-specific features

of single components. The chapter is structured as follows: First, an overview over

the general implementation details is given. In Section 6.2, the core Tasklet system

is characterized. Third, the integration of various platforms is discussed. Here, the

implementation details for various operating systems and hardware architectures,

such as mobile devices, GPUs, and microcontrollers are given. Fourth, in Section

6.4, the implementation of the edge support layer features are presented: hybrid

scheduling, workload partitioning, and task migration.

6.1. Overview

The prototype consists of several integrated artifacts facilitating different features.

The first feature is the Tasklet core system that realizes the fundamental func-

tionality of the design. It consists of about 9,400 lines of code and is written in

C11. The core system is platform-independent and portable to most computing

architectures with few exceptions. Especially the integration of GPUs involves

some changes in the core system code, which is realized by an OpenCL GTVM

implementation. The integration of mobile devices is based on Android and reuses

the core system code entirely within Android Native Development Kit. Addition-

ally, there is a component built in standard Android, to facilitate the interaction

with the consumer application. This source code encompasses 740 lines of Java 8

source code and further 900 lines for the implementation of the decentralized

broker component. The footprint of the thin Tasklet library is 20 kilobytes and
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Physical Machine

Operating System (Windows, MacOS, Linux)

Consumer Application

Tasklet Library

Tasklet Middleware

Orchestration

Factory

Tasklet Virtual 
Machine

Tasklet Virtual 
Machine

Tasklet Virtual 
Machine

Tasklet Virtual 
Machine

Tasklet Virtual 
Machine

TVM Manager

Tasklet System

Consumer Application

Tasklet Library

Figure 6.1.: Process model of the Tasklet system core. The Tasklet middleware consists of the
factory, the orchestration, and the TVM manager. As separate processes, the TVMs
run directly on top of the physical machine’s operating system.

optimized for embedded devices. The implementation of a language-specific library

supports the developer with an easy-to-use API for Tasklets. Therefore, libraries

for Java, C#, and Android are implemented. The Java library consists of 26

classes, 2900 lines of Java 8 code. The C# library is similar to the Java library in

terms of lines of code and functionality.

To extend the approach with elastic edge resources, a decentralized task allocation

on nearby user-controlled devices is implemented, called the local broker. It runs

on each participating device and extends the Mobile Tasklet implementation to

collect context information, decide on resources for execution, and support the

direct exchange of Tasklets. This approach is integrated into a hybrid scheduling

mechanisms, combining cloud and edge resources. To increase the capabilities

of edge devices as computing resources, their lack of reliability and homogeneity

is taken into account. Therefore, the prototype includes the implementation of

task migration and workload partitioning. Both mechanisms extend the standard

Tasklet system components on several levels, ranging from the library’s API to

the TVM’s parameter demarshalling.

6.2. Tasklet System Core

The Tasklet system core is divided into three parts: the middleware, the TVM,

and the library. Figure 6.1 shows an overview of the implemented Tasklet system

core. The middleware encompasses the factory, the orchestration, and the TVM
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manager. It is a standalone process. The factory is the main thread of the

middleware and starts the orchestration as well as the TVM manager. In idle

state, the middleware runs 10 threads simultaneously. After the TVM manager

was started, it checks the user settings and starts TVMs accordingly. In the default

setup, the TVM manager initializes one TVM per local CPU core. Each TVM

runs in an individual process and communicates via the Tasklet protocol with the

other components. The process isolation separates the TVMs from each other.

Since unknown code is executed on the TVMs, this isolation ensures that heavy

workloads, malicious code, or failures do not affect other TVM instances on the

same physical machine. The third component is the Tasklet library, which is used

by the consumer application. It facilitates the marshalling of Tasklet requests,

the result handling, and the interaction with the Tasklet middleware via protocol

messages. The broker is an additional component that runs a special version

of the Tasklet middleware. All components written in C integrate the so called

Tasklet Environment Library, which encompasses all system wide functionalities,

including the Tasklet protocol, wrapper functions for portability support, and

abstractions for Tasklet list implementations.

6.2.1. Java Library

This section presents the Tasklet Java library in detail. The C# library has

similar functionalities and structure with some language-dependent exceptions.

The library together with the Tasklet factory connect the consumer application to

the Tasklet system. The library marshalls the plain Tasklet request and manages

the connection with the Tasklet middleware. As seen in Figure 6.2 a), the library

API provides an easy-to-use abstraction.

Figure 6.2 further shows the use of the Java Tasklet library and the corresponding

C-- source code. In the first step, the Java variables are initialized and a Tasklet

is created based on an existing source code file. This file is shown in Figure 6.2

b). Second, the variables are added to the Tasklet as parameters. The library

supports a type-safe API that also considers the variable names. In case the

execution requires data, the developer attaches it analogously to the parameters.
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public static void main(String[] args) 

{

int lower = 100, upper = 1000;

Tasklet t = new

Tasklet(“primes.cmm”);

t.addInt(“lowerBound”, lower);

t.addInt(“upperBound”, upper);

t.setQoCReliable(GUARANTEED);

t.setQoCSpeed();

t.start();

int[] primes = t.waitForResult();

}

1

2

3

4

int lowerBound, upperBound, result;

procedure int checkprime (int a){…}

>> upperBound; 

>> lowerBound; 

while(lowerBound<upperBound){

result := checkprime(lowerBound);

if (result # 0){

<<result;

}

lowerBound ++;

}

1

2

3

4

a) b)

Figure 6.2.: Integration of Tasklets into a Java host application for prime number computation.
In a) the code is presented to (1) create a Tasket, (2) add parameters, (3) set QoC
goals, and (4) start the Tasklet and receive its results. b) shows the respective
C-- code file that consists of (1) variable declarations, (2) procedure declarations,
(3) definition of variables with values from the host language, and (4) the main
statement.

In the third step, the QoC goals for the Tasklet are set. Finally, the Tasklet is

started and the results are retrieved. The last function call will block the program

execution until the result has arrived entirely.

After a Tasklet is started, the library checks the validity of parameters and

QoC goals. Next, it marshalls the entire Tasklet information and generates a

Tasklet protocol message (presented in Section 6.2.3) with the plain Tasklet as

payload. It forwards this message to the factory and waits for results. The library

also supports a so called Tasklet bundle, which represents multiple Tasklets. The

Tasklets in a bundle have the same source code and data, but can be parameterized

individually. Based on that, the developer can split up tasks manually. Further,

the Tasklet bundle is used by the partitioning mechanisms. The Tasklet bundle

implements a further result handling method, called waitForAllResults. This

method blocks until all results of a bundle are received. Tasklets have a timeout

that is important for unreliable Tasklet executions. If the application is blocked

and waits for results that will never arrive, the applications are in a deadlock.

The timeout prevents this situation. After the results are received completely, the

library unmarshalls the results and forwards them to the application.
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To further improve the usability of Tasklets, an Eclipse IDE plug-in is developed.

It offers a Tasklet language editor, a compiler integration, and a development

support toolbar. The editor highlights keywords and functions of the Tasklet

language and the compiler integration eases debugging of Tasklet code. The

toolbar links the Tasklet language with the host language and gives an overview

of variables that are transferred between the two languages for remote executions.

6.2.2. Factory

The factory compiles and assembles a Tasklet based on the plain Tasklet request

from the consumer application. Each Tasklet middleware has one factory, which

can be instantiated multiple times. In case of several consumer applications

running on one physical machine simultaneously, the factory initiates one instance

per application. Each application information is stored for unique identification

to allocate incoming Tasklet results. Further, two distinct TCP connections are

used for the transmission of plain Tasklet requests and Tasklet results.

The plain Tasklet request consists of the source code, the QoC goals, the param-

eters, and data. The source code is written in the Tasklet language C--, which

is implemented according to the design. In general, the language has a C-like

syntax and offers a subset of C’s functionality. It supports integer, float, char, and

bool data types for constants, variables, arrays, and function returns. Further,

procedures can be parametrized, called recursively, and have a void return value,

as most programming languages. The productions of the Tasklet language in

extended Backus-Naur form can be found in Appendix A. C-- comprises 12 stan-

dard functions for math and array operations. Beside of the standard operators,

it offers the Tasklet input << and output >> operator, as well as an array copy

A− > B operator. The array copy operator makes a deep copy of the left array

A and stores it to the array on the right side B. In case that B is smaller than A,

additional memory is allocated for B. In case A fits in B, B is overwritten with

the content of A for the length of A.

The factory runs the C-- compiler that translates source code into byte code.

Based on the host language concept, Tasklet parameters and data can be passed

from the host language to the Tasklet. The factory unmarshalls the parameters

and data from the plain Tasklet request. The compiler starts the translation
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process, incorporates the parameters, and links the data to the byte code according

to position of the Tasklet input operators << in the source code. While doing

that, the compiler checks the data types and validates if the correct parameters

were parsed. Constant values of primitive data types are directly inserted in the

byte code. The same applies for variable parameters but, further, their positions

are marked in the byte code. This speeds up the execution in the TVM, but also

gives the opportunity to change the parameters later on. Larger data is written

in the constant pool of a Tasklet and inserted as references in the byte code. The

constant pool is a well known construct for building bytecode interpreters [147,

p. 242] and stores all elements that do not fit into a 4-byte integer.

Regardless of the type of parameter or data that is transferred from the host

language into the Tasklet, the compiler marks the positions and caches the

bytecode in the factory. The reason for that is the reparameterization of Tasklets,

which is used to speed up the Tasklet assembly time. Most consumer applications

start the same Tasklet with different parameters or data several times. After the

first Tasklet request is sent from the library to the factory, the library eliminates

the overhead of sending the source code repeatedly. Therefore, it sends a specific

code reuse message, which only contains parameters and data. The factory directly

assembles the Tasklet and uses a bytecode reparameterization mechanism. This

mechanism retrieves the bytecode from the factory cache and places the new

parameters and data accordingly. By applying this mechanism, data transfer and

compiling overhead can both be reduced.

6.2.3. Orchestration

The orchestration implementation consists of the Tasklet protocol, the broker

network, and the QoC mechanisms.

The Tasklet middleware uses the Tasklet protocol, which facilitates the internal and

external communication. It encompasses 32 different message types, which can be

subdivided into four message classes. Interface messages are for external commu-

nication with the consumer application in both directions. Broker messages realize

the communication with brokers. Both, consumers and providers communicate

with their broker for requesting and registering resources, respectively. Tasklet

messages are messages that contain assembled Tasklets or their results. This
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type of message is used to transmit a Tasklet from the consumer to the provider

orchestration, but also for sending the Tasklet to the TVM locally. Messages

that contain a Tasklet snapshot for migration belong to this class as well. All

other types of messages are management messages, which are used for example

for heartbeats, status updates, and Tasklet cancellations. The Tasklet protocol

data units consist of a header with a magic, a version number, the corresponding

message type, and the message payload. Additionally, each message has an own

header that specifies its payload. The Appendix B contains an overview over the

protocol messages.

The prototype uses a single broker instance rather than a network of multiple

brokers. The single broker instance was capable of serving around 200 providers

in the evaluation [166]. To further scale up the system, multiple brokers can be

used to balance the load of requests. The broker is started on a stable node in the

network. Resource consumer and provider register at the broker and therefore

need to know its IP address.

The Tasklet orchestration facilitates the QoC mechanisms such as reliability,

multiple execution, and speed. The orchestration extracts the QoC settings of

each Tasklet message that arrives and triggers the corresponding mechanisms.

Depending on the QoC, this can lead to Tasklet duplication, monitoring of

heartbeats, or a specific resource selection. The further implementation of QoC

mechanisms is not in scope of this thesis. More information can be found in [166].

6.2.4. Tasklet Virtual Machine

The TVM is the runtime environment for Tasklets. All TVMs on a provider are

managed by the TVM manager, which allocates Tasklet in round-robin fashion

on idle TVMs. The TVM encompasses a stack-based bytecode interpreter and

a runtime environment, which enables Tasklet executions similar to batch jobs.

The TVM is single-threaded and does not support concurrent Tasklet executions.

It is non-preemptive and therefore does not support context switching between

Tasklets. The bytecode interpreter consists of a stack, a stack pointer, a program

counter, a base address, a constant pool, and a heap memory for dynamic data

types. For each procedure call, a new activation record is created on the stack.
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int [2] aGlobal;

Int [5] bGlobal;

procedure void c(){

float[] aC;…}

procedure void b(int a, int b, int c){

float[a] aB;

int[b] bB;

int[c] cB;

c(3);…}

procedure int a(int a, int b){ 

float[a] aA;

int[b] bA;

b(11,9,7);…}

<<a(4,6);

***heap

level 0
level 1
level 2
level 3

element 0
element 1

element 0
element 1
element 2

element 0

element 0
element 1

a) b)

1 4000 7123 4334 8321 6893
type length data

Figure 6.3.: Structure of the heap space. a) shows the state of the heap, after function c was
called. It further shows an example integer (type = 1) array with the length of 4.
b) shows the respective code that creates the heap space from a).

The heap structure is analogous to these activation records, i.e., for each function

call a new heap level is created. The heap is represented by a pointer that has

three indirections. The first indirection determines the activation record level of

the stored data item. A global array of a Tasklet would be created on the lowest

level and is therefore visible on all higher levels. The second indirection defines

the element within a scope, which then points to a byte array that stores the

actual values. Each byte array begins with five bytes, describing the type and the

length of the element. The heap structure facilitates the allocation of dynamic

data types. With the array copy operator, arrays can be re-sized during Tasklet

runtime. Figure 6.3 a) shows the state of the heap space with the respective .cmm

code right after function c was called as well as the structure of a heap entry.

The workflow of the TVM is as follows: (i) After a TVM starts, it runs a benchmark,

initializes sockets, variables, and registers at the TVMM locally. The benchmark

determines the performance index of a resource to evaluate its relative computation

capability in the system. (ii) It starts the main thread and a management thread,

which is responsible for pausing, resuming, and terminating the TVM. (iii) The

main thread waits for new incoming Tasklet executions. (iv) When receiving a

Tasklet, the TVM is initialized with the byte code, the constant pool, and the

execution parameters. (v) The byte code interpreter starts the Tasklet execution

and adjusts the stack size, if necessary. (vi) After the execution finished, the TVM

checks for execution error. If the execution was completed without errors, the
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Tasklet result is send to the local orchestration. In case of errors or an incomplete

execution, the orchestration if notified. (vii) The interpreter is reset and the TVM

goes back to step (iii).

After the description of the Tasklet core system implementation, the realization

of the platform support is presented next.

6.3. Platform Support

A major goal is to include common computing platforms to utilize computational

resources in the environment. The Tasklet system core is written in C and,

thus, originally not platform-independent. As a solution, the platform-dependent

system calls in the Tasklet prototype are encapsulated in the so called wrapper

environment. This includes the socket communication, the thread management,

the mutex operations, the file system accesses, and other calls that return the

current system time or the number of CPU cores. The wrapper environment

knows on which operating system it is executed and uses the corresponding library.

For example, the libraries that Windows needs for managing threads and using

sockets are process.h and winsock2.h, respectively. For Unix-based systems, the

pthreads.h and sys/socket.h libraries are used. Based on that, the prototype runs

on Windows, Linux, and MacOS systems. Other computing platforms like mobile

devices, GPUs, and microcontrollers differ from standard PC architectures in such

a way that they need a more tailored implementation.

Next, the integration details of these platforms are elaborated.

6.3.1. Smartphones and Tablets: Mobile Tasklets

The following section is based on [163]1. The Mobile Tasklets prototype is written

for the Android operating system. The properties of Android had influences

on the implementation of the approach. Android activities are responsible for

user interactions but not suitable for computational load. In contrast, Android

services are specialized on computational intensive background tasks. The Android

Native Development Kit allows the developer to run C code and to access the

1[163] is joint work with J. Edinger, T. Borlinghaus, J. M. Paluska, and C. Becker
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Mobile Tasklet Application Mobile Service 
Application

User Interface
MainActivity

TaskletActivity

…

Mobile Tasklet 
Binder

ApplicationService

TaskletIntentService

TaskletResultService

Android
Tasklet Library

Tasklet

TaskletBundle

TaskletResults
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TaskletResultWorker

…

ContextMonitoring
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Tasklet System
Wrapper

TWrapperService
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Figure 6.4.: Mobile Tasklet implementation. It encompasses an Android specific library and a
Mobile Tasklet Binder that together link the consumer application with the Tasklet
system. On the service side, the Tasklet system core is running within the Android
NDK environment.

physical device components. Consequently, the design has two components that

are represented as two distinct applications running on an Android device for

the integration. First, the Mobile Tasklet Application handles the application

interaction, the creation of Tasklet requests, and the initialization of the Tasklet

core. Second, the Mobile Tasklet Service is a background service that enables

the interaction with the Tasklet system core. These components run natively in

the kernel of the Android device. Figure 6.4 shows an overview of the Android

implementation and the interaction of the components. The Mobile Tasklets

architecture is fitted to Android devices, however, with some adaptations also

other platforms can be integrated. Since iOS also runs native C code, the transition

to Apple devices would also be possible.

Next, the application and the service are explained in more detail.

Mobile Tasklet Application

The Mobile Tasklet Application handles the interaction with the user, assembles

and dispatches Tasklets, and holds a component to monitor the device’s context.

The Android Tasklet library provides an API and can be included in any Android
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application. Tasklets can easily be created, started, and their results can be re-

trieved. The Android Device Monitor observes battery, network, and temperature

states. Thus, it enables to react on certain events to retain quality of service

levels. The Tasklet Binder connects the user interface to the Tasklet library. The

Mobile Tasklet application only handles light computational tasks to guarantee a

smooth user interface.

The Mobile Tasklet Binder interacts with the user application to exchange Tasklet

requests and Tasklet results. It abstracts the underlying file system by converting

Android file accesses into Tasklet file formats. It further decouples the user

interface from operations like data conversion and Tasklet request generation.

The Android Tasklet Library interacts with the user application. It is not doing

heavy computational work other than the assembling and dispatching of the

plain Tasklet requests. Further, it is accessed through the Mobile Tasklet binder,

to ensure encapsulation and isolation from the user interface. Thus, the user

interface does not need any information about the Tasklet library. The Android

Tasklet library is similar to the standard Tasklet library, but enables an easy-

to-use Android app integration. To implement custom Tasklet applications, the

developer has to extend the TaskletActivity-class. It encapsulates the entire logic

for binding the app to the Mobile Tasklet binder and the Tasklet system wrapper.

Further, it offers an easy-to-use API for all Tasklet related functionalities.

The Android Device Monitor acquires the device’s context and triggers notifi-

cations. It is a subcomponent of the Android Tasklet library. It monitors the

network connection, the battery usage, the temperature, and the workload of the

device. For example, it pushes notifications about network or power mode changes.

Depending on the event, the execution of Tasklets can be aborted, paused, or

continued.

Mobile Service Application

The Mobile Service Application is designated for long-running tasks. It does not

receive direct user input, but coordinated messages from the mobile application.

The Mobile Tasklet service is responsible for initializing and maintaining the

Tasklet system core. Further, it identifies times when devices are idle and sets

the Tasklet system in standby mode to safe energy.
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The Tasklet System Wrapper connects the Tasklet system core and the user

application. All applications that run on a device and use Tasklets first send an

initiation request via Java native interface (JNI) to the wrapper. The wrapper

keeps track of these applications and enables a fair resource allocation among

them. As long as there are applications using the Tasklet system, the wrapper

keeps the Tasklet system running or in standby.

The Tasklet System Core contains the entire runtime environment of the Tasklet

system. This includes the mobile versions of the orchestration, the factory, and

the TVM. The components are similar to the non-mobile version of the Tasklet

core.

Next, the implementation of the integration of thin devices is presented.

6.3.2. Thin Clients: The Tasklet Gateway

For the integration of thin devices, such as embedded devices, microcontrollers,

and IoT sensors, two independent components were implemented: the thin Tasklet

library and the Tasklet gateway. The Tasklet gateway is written in Java 8 and

consists of 1, 000 lines of code. It is built to run on a stable host, which can be

an edge or cloud resource. The gateway mimics a standard consumer application

from the perspective of the Tasklet system. For thin devices, however, it offers

a stable end point and takes over computational load for Tasklet creation and

scheduling. The thin Tasklet library is written in C11, consists of 1, 100 lines of

code, and has a memory footprint of 20 kilobytes. It runs on all thin devices that

are C-compatible and connects the thin device with a Tasklet gateway. Hence, the

thin device does not need to run the Tasklet middleware and the computational

load is handled by the Tasklet gateways. The thin Tasklet library offers a simple

API for the developer that provides functions to connect to the gateway, send

a plain Tasklet request, and retrieve the results. The abstraction, however, is

on a lower level, compared to the standard Tasklet library. Marshalling and

unmarshalling of data is not entirely done by the library.

To identify an application after it changes its network connection, the gateway

maintains unique identifiers for all its clients, decoupling the application from

the device’s IP address. Further, the gateway buffers results in case it cannot

contact the initiating applications immediately. This is important, since thin
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devices may be connected via an unreliable network link. The thin Tasklet library

sends updates about its connectivity status and IP address changes in order for

the gateway to forward the results to the correct device. To reduce the network

traffic for Tasklet execution requests, the gateway caches entire execution requests.

In case the same Tasklet is started again, the initiation can be triggered with

minimal message effort.

While the gateway integrates the thinnest devices of the computing landscape,

the GTVM exploits GPUs as computational resources, as presented in the next

section.

6.3.3. GPU-Acceleration: The GTVM

The section is based on [161]2. For the integration of GPUs, the two components

presented in the design were implemented. The GTVM manager is a standard

operating system process that runs on the CPU. It administrates the second

component, the GTVM, running on the graphics card of the resource provider.

The GTVM is written in OpenCL to create a portable solution, which can be

deployed on all kinds of GPUs. The alternative for this approach would have been

to implement a native CUDA program for NVIDIA GPUs, resulting in a better

performance at cost of portability.

Figure 6.5 shows the overall architecture of the implementation of the GPU

integration. It considers the special characteristics of GPUs as stated in the

design. Each Tasklet provider runs a GTVM manager component, which identifies,

benchmarks, and manages all GPUs of a computer system. For each GPU, a proxy

is started. On each execution instance, a kernel runs a Tasklet thread, which

represents a single Tasklet execution and is comparable to a standard TVM. The

proxy compiles a kernel based on a Tasklet that is then transferred to the GPU

for execution. The GTVM uses shared memory to provide common resources, like

the program text, to all concurrent execution instances. In Figure 6.5, the system

has two GPUs, which is common for most Intel computer systems, since they have

an integrated GPU in their CPU. Therefore, the larger GPU can be dedicated

as a co-processor for GPU-accelerated Tasklet execution. The communication

between the GPU and the CPU is done via status flags. Each Tasklet kernel has

2[161] is joint work with J. Edinger, and C. Becker
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Figure 6.5.: Overall architecture of the GPU-based Tasklet Virtual Machine (GTVM). The
GTVM manager and GTVM proxy run on the host side of the system - on the
CPU. Depending on the number of streaming multiprocessors and processing cores
of the GPU, the GTVM proxy compiles and starts several kernels on the GPU.
Each kernel runs a Tasklet execution in form of a Tasklet thread.

a flag, which represents the current state of the thread. In case the thread is

terminated, the corresponding flag indicates that the results can be retrieved or

an error has happened. The following section goes into detail about the execution

process and the adjustments to the Tasklet runtime environment.

Execution Process

To execute Tasklets on the GPU, the following process is necessary. The GTVM

manager and proxy are the so called host side. They are processes executed on the

CPU. The actual execution kernel runs on the GPU, the so called device side. The

host side takes over all pre- and post-processing as well as the execution monitoring.

This includes kernel compilation, memory allocation, data management, kernel

invocation, and result handling. During the Tasklet execution, the host side

monitors the GPU based on the status flags. Besides, the GTVM manager

establishes the connection to the Tasklet middleware.

After receiving a Tasklet request, which is designated for the GTVM, the respective

proxy initializes the setup. Then, the memory allocation is done depending on

the Tasklet size. The host side compiles the OpenCL kernel, which consists of
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the interpreter and the bytecode. The GTVM is reset to clear all prior execution

states. Next, the GTVM proxy copies the kernel to the GPU memory, including

the bytecode, the parameters, and the data. The kernels are now invoked and the

execution state is observed. In case of runtime errors, the execution terminates

and communicates the error via the status flags.

After the execution, the results are retrieved. Three different result retrieval

strategies are part of the design: WaitForAll, JustInTime, and Overflow. Wait-

ForAll implies that the result is retrieved as soon as all Tasklet threads have

terminated. This strategy maximizes the memory bandwidth utilization between

the host and the device side. However, results may wait some time on the device

side before they are forwarded. The JustInTime strategy handles the results of

kernels individually and retrieves them as soon as they are completed. A major

advantage of this strategy is that, right after an execution, the occupied memory

space is cleared. Therefore, new Tasklet threads can be invoked. Moreover,

time-critical results can be forwarded directly. However, since every result is

copied individually, this reduces the effective usage of the memory bandwidth

between the host and the device side. The Overflow strategy retrieves the results

immediately when the allocated result memory of a kernel is full. In scenarios

where only a small amount of memory can be allocated for the results or the

result size is large, this strategy can be beneficial.

Parallel Architecture Support

Parallel computing architectures like GPUs differ strongly from a standard x86

architecture in terms of memory, execution modes, and scheduling. Therefore,

some parts of the Tasklet system need to be adapted to integrate GPUs without

changes in the Tasklet API. The computation abstraction is the same, meaning,

that the same bytecode runs on GTVMs and TVMs. The adaptation of the Tasklet

system mostly takes place in the TVM and in the orchestration, which interact

directly with the TVM. The core of the TVM is translated into the OpenCL kernel,

which is instantiated on the GPU several times to achieve parallelism. Minor

adjustments affected programming language specifics, like function arguments,
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address spaces, arrays, and random number generation. However, the main

challenges of the integration are memory management, multiprogramming, and

kernel caching, which are described in particular.

Memory Management: The memory management in the standard TVM uses the

dynamic memory model of C11. The system design is based on OpenCL version

1.2., which is necessary to support NVIDIA devices. However, this OpenCL

version only offers static memory management, meaning, that the memory cannot

be reallocated at runtime. The TVM has three different memory types: text, stack,

and heap. The stack and heap sections grow during the execution of a Tasklet.

Therefore, further mechanisms are necessary to allocate memory in the GTVM

dynamically. The standard Tasklet system uses dynamic memory management in

form of reallocation. For the GTVM, a memory management was implemented.

It statically allocates memory before the execution, splits the memory in even

parts for all concurrent Tasklet threads, and allocates the residual memory during

runtime. In case of memory overflows, the number of running kernels is reduced.

Multiprogramming: In computer systems with only a single GPU, the operating

system needs the GPU periodically to display the GUI. The GPU is scheduled

non-preemptively, i.e., the executing process cannot be stopped by the operating

system gracefully . In case a user program blocks the GPU for a certain amount

of time, the operating system kills all GPU user processes to regain the control.

Thus, the GTVM pauses and resumes Tasklet executions periodically, to allow the

operating system in the intervening time to render the GUI. For this, the entire

memory state of the OpenCL kernels needs to be stored. There are three types

of memory on the GPU, which have different behaviors regarding their volatility.

The private and local memory of a streaming multiprocessor is highly volatile

compared to the global memory, which is not cleared in between process switching.

Therefore, the state must be stored in the global GPU memory. Furthermore,

the time intervals between two execution pauses can be adjusted. With short

execution intervals, the GUI can run smoothly, however, this introduces a large

overhead and slows down the GTVM performance. On the other hand, long

intervals of execution are more effective in terms of Tasklet performance, but the

probability of disturbing the user is high. The evaluation investigates different

options for this parameter to achieve high performance without interfering the

user.
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Caching Strategies: The GPU architecture introduces caches, which can optimize

the runtime by reducing memory latencies. With OpenCL, constant variables are

automatically placed in the local memory of a streaming multiprocessor. This

has rather a small benefit, since the amount of constants in the present system is

small. The kernel has three caching options: stack, code, and both. Depending on

the selected option the stack, the code, or both are transferred from the global to

the local memory cache. This cache is cleared when the execution is paused due

to the multiprogramming mechanisms. Therefore, to protect changes in the data,

the content is flushed to the global memory. Compared to the bytecode, which

is static, the stack is constantly changed during the execution and, hence, must

be stored in the global memory every time. This introduces a certain overhead,

which is investigated in the evaluation.

After the platform implementations the next section introduces the components

that support elasticity and fault tolerance in edge environments.

6.4. Edge-centric Components

So far, the chapter presented a system implementation that facilitates code of-

floading from generic applications to heterogeneous platforms for computation.

Next, analogously to the design, the system is specialized towards edge-based

computation placement. The characteristics of edge computing are heterogeneity,

fluctuation, and unreliability [164]. In this section, the implementation of decen-

tralized edge scheduling, task migration, and workload partitioning is presented.

Together, these system components allow the Tasklet system to make elastic use

of edge resources while taking their characteristics into account.

6.4.1. Decentralized Scheduling in the Edge

This section is based on [165]3. The local broker is a standalone Android applica-

tion, which is connected to the Mobile Tasklet application via JNI. It has three

components: the network handler, the context engine, and the Tasklet connec-

tor. It runs in parallel to the standard Mobile Tasklet application, explained in

3[165] is joint work with J. Edinger, J. Eckrich, M. Breitbach, and C. Becker
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Figure 6.6.: The local broker has three components: the network handler, the context engine,
and the Tasklet connector. On the left side, the Mobile Tasklets service is shown that
is connected to the local broker via JNI. On the right side, an ad-hoc environment
is shown. The local broker instance is connected with all devices in the environment
via Wifi Direct.

Section 6.3.1, which was extended with the hybrid scheduling mechanisms. This

mechanism checks the available network connections and decides to schedule on

remote or nearby resources. This decision takes place when a Tasklet request was

submitted and assembled by the factory. Subsequently, the orchestration requests

resource providers at the broker. At this point, the hybrid scheduling decides

whether to request the remote broker system or the local broker system. For the

remote request, the Tasklet orchestration uses the standard mechanisms via a

TCP connection to the broker. The nearby resources are requested from the local

broker, which runs in the mobile device’s Java environment. This request is sent

by the Tasklet orchestration from the native Android environment via JNI. The

local broker network is connected via Wi-Fi direct. To realize the use of remote

and nearby scheduling in parallel, two options exist: A mobile device can use

the 3G mobile network for remote scheduling, while connected to a nearby edge

group via Wi-Fi. For the second option, tethering is used within the ad-hoc Wi-Fi

environment to connect all devices to the Internet as well. However, this approach

has the major drawback that all devices communicate through the access point

with remote resources. Figure 6.6 shows the implemented prototype of the local

broker.
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Next, this section explains further detail about the context engine and the network

handler. The Tasklet connector is not further examined, since its main functionality

is connecting the Mobile Tasklets system with the local broker.

The Context Engine

The context engine gathers information about the local device. A major benefit

of implementing the local broker in the Java environment and not in the native

kernel of the device is the easy accessibility of all kinds of context information

via the Android API. It offers all sorts of classes to easily read information about

the network, temperature, battery, and other device contexts via Android intents.

By using Android’s WifiManager class, the Wi-Fi signal strength is read and

automatically classified into a level between zero and five. Information of the

battery state is also classified into the categories unknown, charging, discharging,

not charging, and full. Additionally, the battery level is requested via an Android

intent. The temperature of the device must be read from a file, which is located

in a system directory in the internal memory. Lastly, the additional information

about the device, like number of processors, current CPU utilization, or the

hardware model can be read via the DeviceInfo class. This context information is

gathered by the local broker and used for the allocation of Tasklets. The current

prototype applies the CPU temperature, the signal strength, and the battery

context.

The Network Handler

The network handler component handles all network- and connection-related

tasks. The approach uses a network underlay, which is built with Android WP2P

technology, and a network overlay that is used for Tasklet allocations. Android

WP2P complies to the Wi-Fi Direct specification, which enables device-to-device

connectivity based on the IEEE 802.11 infrastructure mode. Therefore, a device

can act as a standard client or as a so called group owner (GO), which takes over

the tasks of an access point (AP). A special feature of Wi-Fi Direct is that these

roles are negotiated dynamically during the network initiation. After two devices

created a P2P group, other device can join as clients. The GO acts as a gateway

to the Internet.
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The standard way of connecting devices based on the Android WP2P involves

user interaction for confirmation. Since the local broker runs autonomously, this

is not applicable. As a solution, a well-known workaround is used. It makes use

of the idea of initially creating multiple GOs and deleting the redundant ones

after the network has been initialized. It consists of seven steps4: (i) Each local

broker instance that does not belong to a group creates a Wi-Fi AP. (ii) The

local broker extracts the password from the created network. (iii) It advertises

the SSID and password by using a broadcast in the nearby Wi-Fi. (iv) Each local

broker switches to a service discovery mode periodically to receive the broadcast

of others. (v) When it receives a broadcasts from another AP, it extracts the

SSID as well as the password. (vi) The local broker then connects to the other AP.

(vii) Finally it deletes its own advertising service as well as the AP. This identifies

one of the brokers as the GO. After the network has been initiated between two

devices, others may join. In case the GO leaves the system, all participants start

the mechanism again and determine a new GO.

Next, the Tasklet migration and workload partitioning implementations are

presented next. Both section are based on [164]5.

6.4.2. Tasklet Migration

The implementation of the migration mechanisms is mostly realized in the Java

library, the orchestration, and the TVM. In the library, a new API method was

added to activate and parameterize the migration algorithms:

TaskletBundle.setMigration(boolean reactiveMigration ,

boolean proactiveMigration , int timeInterval);

The first two boolean parameters enable the reactive and proactive migration

approach respectively. In case the proactive migration is enabled, the third

parameter can be used to set a fixed time interval in between two snapshots. To

use the context-aware determination of the snapshot interval, the developer has to

set the value of the last variable to zero. The migration information is appended

to the Tasklet closure and can be obtained anytime.

4Based on solution of Dr. Jukka Silvennoinen: https://github.com/DrJukka
5[164] is joint work with J. Edinger, M. Breitbach, and C. Becker
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The creation of snapshots is essential for both migration algorithms. A snapshot

represents the entire state of the TVM including the program counter, the stack,

the heap, and all intermediate results, which were created by the Tasklet execution

so far. To create a snapshot, the TVM is interrupted and paused until all states

are copied. An interrupt thread runs in parallel with the execution thread and has

all information about the desired snapshot interval settings. After an interrupt

occurred, the thread computes the time to wait until the next interrupt. This is

based on the memory footprint of the snapshots, the computational effort, and

the bandwidth between the provider and the consumer. To interrupt the TVM,

the interrupt thread sets a vector to a certain value. After each instruction, this

vector is checked by the TVM. If it is not zero, the TVM interrupt handler is

scheduled. After that, the TVM may resume the Tasklet execution.

In case the reactive migration is enabled and the provider stops the Tasklet

execution gracefully, a snapshot is created. Afterwards, the snapshot is sent to the

orchestration of the resource consumer. The provider then stops the execution of

the Tasklet. The orchestration receives the snapshot and requests a new provider

to continue the execution. Next, the Tasklet snapshot is transferred to the new

provider, which continues the execution right at the point, where the last provider

has stopped. To do that, the program counter, stack, heap, as well as intermediate

results are loaded into the TVM and the execution is started.

In case the proactive migration is activated, the TVM sends a snapshot to the

orchestration of the respective consumer and continues the execution. After

receiving the snapshot, the orchestration looks up the corresponding Tasklet entry

and stores the snapshot. Only the most recent snapshot is stored and old versions

are deleted immediately. When the orchestration detects that a provider left the

system without notice via the standard heartbeat mechanisms, the orchestration

looks up if a snapshot is stored. If that is the case, the snapshot is used for the

re-initiation of the Tasklet execution.

Next, the implementation of the workload partitioning algorithms is presented.
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public static void main(String[] args) {

int lower = 100, upper = 1000;

Tasklet tB = new Tasklet(“primes.cmm");

tB.setPartitioning(lower, upper, 1, true, true);

tB.start();

int[] primes = tB.waitForAllResults();

}

int lower, upper, result;

procedure int checkprime(int a){…}

lower := rangeLowerBound;

upper := rangeUpperBound;

while(low<high){

result:=checkprime(low);

if(result#0){<<result;}

lower++;

}

a) b)

Figure 6.7.: Code example for Workload Partitioning. a) shows the library call in Java. A
Tasklet for primes computation is created and performance-aware microtasking
is activated. b) shows the respective C-- code that contains the two keywords to
support workload partitioning.

6.4.3. Workload Partitioning

The workload partitioning implementation encompasses the four algorithms that

were presented in the design chapter: automatic partitioning, performance-aware

partitioning (PAP), microtasking (MT), and performance-aware microtasking

(PAM). For this implementation, several components of the core Tasklet system

have been modified.

The Java library is extended with a method to pass information about the data

structure of a task to the Tasklet system. The design proposed three different

API modes: range, set, and runs. In the prototype, the range and runs modes are

implemented. The range partitioning library method has five parameters: start,

end, minSplit, envHet, as well as taskIrreg :

TaskletBundle.setPartitioning(int start , int end , int minSplit ,

boolean envHet , boolean taskIrreg);

Analogous to this integer version, a version for float values is part of the prototype.

Figure 6.7 shows an example code of the workload partitioning. The start and

end parameter describe the range of the data a task is working with. The minSplit

parameter defines the smallest possible granularity a task can be split into in

terms of its data. In the example in Figure 6.7, this parameter is equal to one.

The fourth parameter determines if the execution should take heterogeneous

environments into account. In case this parameter is set to true, the PAP is

enabled. If the last parameter is enabled, the approach copes with irregular task
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structures and activates MT. Once both parameters are set to true, the PAM is

enabled and heterogeneous environments and irregular task structures are handled.

More exhaustive code examples can be found in Appendix C.

As seen in Figure 6.7 b), the Tasklet language has two additional keywords to realize

workload partitioning: rangeLowerBound and rangeUpperBound. Transparent for

the developer, multiple Tasklets are initialized when the partitioning is used. Even

with envHet and taskIrreg set to false, the automatic partitioning mechanism

splits up the workload in several equally-sized Tasklets and randomly assigns

them to providers in the system. Each of these Tasklets computes a different part

of the overall task and, therefore, has to be parameterized individually. The C--

code must be written such that this parameterization can be done during runtime.

As a solution, the two keywords work as placeholders, which are initialized with

the respective values later on. In the Tasklet factory, the byte code is compiled

with these placeholders for a late binding between Tasklets and data. Further,

the Tasklet closure is assembled. This process is done only once and the Tasklet

is forwarded to the local orchestration. The orchestration then requests resources

from the broker. Depending on the setting that the developer made via the library

method call, the orchestration decides on a partitioning strategy. If PAP and

MT are deactived, the orchestration considers the number of resource providers

that were assigned by the broker for the automatic partitioning. The Tasklet is

duplicated respectively and for each duplicate, the partitioning parameters are set

individually such that each Tasklet computes another part of the task. In case of

automatic partitioning, all parts have the same size.

If MT is enabled exclusively, each Tasklet is further subdivided into so called

microtasks considering the minSplit parameter as the smallest possible granularity.

The number of microtasks is not necessarily as small as possible, but is determined

by the current context. In the current prototype, the number of microtasks can

be determined by the developer manually. Before the orchestration forwards the

Tasklets, it shuffles the microtasks among all Tasklet based on a deterministic

function that is invertible. By doing so, the number of Tasklets does not change.

If PAP is activated exclusively, the aggregated performance index Pagg of the

assigned providers is computed. Based on that and the performance index pi
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of each provider, the individual share ri of the task is calculated, as shown in

Equation 6.1. The orchestration employs this information and the data structure

information given by the developer to assign each provider a respective share.

Pagg =
n∑

i=1

pi ri =
pi
Pagg

(6.1)

When MT and PAP are activated, the hybrid PAM algorithm is applied. Therefore,

not the parameter range is used to tailor the computational shares for each provider,

but the number of microtasks that each provider has to compute. Based on their

individual performance pi, the aggregated performance Pagg, and the total number

of microtasks, each provider gets a certain amount of microtasks assigned. As an

example, if provider A is twice as fast as provider B, A computes twice as many

microtasks as B.

Next, the orchestration forwards the Tasklets to the providers accordingly and

each TVM inserts the parameters into the byte code. In case MT is enabled,

each Tasklet encompasses several non-sequential parts of a task. The TVM runs

each microtask individually by applying a reset after each one. The results are

concatenated and provided with explicit partitioning data. After execution, the

results are sent back to the orchestration of the resource consumer. If MT or

PAM is enabled, the results have to be re-ordered, since the MT algorithm shuffles

microtasks among the Tasklets. Therefore, after all results were delivered, the

inverted deterministic shuffle function is used to bring the results in the correct

order.

6.5. Summary

This section presented the implementation of the prototype of the Tasklet system

and the edge support layer. The implementation encompasses the entire design

from Chapter 5 and consists of the Tasklet system core, the platform support, and

the edge-centric components. All parts are integrated and can cooperate within a

single distributed computing system to share computational capabilities. In the

next chapter, the prototype is evaluated exhaustively based on six experiments

and a qualitative analysis.
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After the design and the implementation chapter, the presented prototype is

evaluated comprehensively. The evaluation is divided in seven experiments. The

structure of the chapter is as follows: First, an evaluation overview in terms of

setup, applications, and structure is given. Then, seven experiments are conducted,

the results are presented and discussed.

7.1. Overview

The course of the evaluation started with a first large test run in a university

computer lab. Thereto, 78 office computers of two different generations were

used and contributed their computational performance to the Tasklet system. An

application for image rendering and an artificial intelligence application served as

the first resource consumers. Since then, the Tasklet system was steadily extended

and further evaluated. The presented evaluation is an excerpt of experiments that

support the stated research questions. Evaluation results of the initial tests, the

Tasklet gateway, and the benefits of quality of computation are out of this thesis’s

scope.

Although the Tasklet gateway is a key contribution, the results are narrowed down

to a qualitative analysis. The reason behind this decision is that the gathered

quantitative evaluation results show the plain benefit of computation offloading,

which are shown by the basic Tasklet system functionality already. The focus of

the Tasklet gateway is on its architecture that facilitates the integration of thin

devices in the first place.

123



7.1. Overview

Experiment Objective Device Types Page

0 Requirements Evaluation – 125
1 Tasklet Baseline PC 127
2 Mobile Tasklet Smartphone, PC, Laptop 130
3 GPU-Acceleration PC, GPU 135
4 Platform Comparison GPU, PC, Smartphone 139
5 Hybrid Scheduling PC, Cloud 140
6 Task Migration and Partitioning PC, Laptop, Smartphone 142

Table 7.1.: Overview of evaluation content.

General Setup

Most of the setup is specific for the individual experiment and, thus, described in

the corresponding section. All experiments were conducted in real-world testbeds,

consisting of heterogeneous office computers, laptops, smartphones, tablets, GPUs,

as well as cloud resources. Each experiment has a particular combination of

devices. The benchmarks indicate the single core performance of the device by

solving a deterministic and standardized problem. This method is simplified and

does not consider turbo clocks and behavior that is caused by active or passive

processor cooling systems. All evaluation runs were executed at least 50 times if

not stated differently and the average values were used. Several applications were

developed for Tasklets, including applications for k-means computation, image

rendering and processing, face recognition, and option pricing. These applications

cover different domains and belong to the group of applications that benefit from

offloading, as categorized in Chapter 5.2. Several applications for Tasklets were

presented in [62]1 and [162]2. For the presented evaluation results, mainly five

application were used: option pricing, ray tracing, rendering of an MBS, prime

number finder, and gray scale filter. These applications are all conform to the

application model.

Structure

The structure of the experiments is as follows: First, the derived requirements from

Chapter 3 are evaluated qualitatively. Second, the Tasklet baseline performance is

measured by investigating the parallel execution of Tasklets, the remote placement

1[62] is joint work with J. Edinger, M. Breitbach, and C. Becker
2[162] is joint work with J. Edinger, M. Breitbach, and C. Becker
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REQ Tasklets
Middle-
ware TVM

Host
Lang. QoC

Ad-hoc
Hybrid Migr.

Workl.
Part.

REQF1

REQF2

REQF3

REQF4

REQF5

REQF6

REQF7

Table 7.2.: Summary of the requirement evaluation

of Tasklets, and the scalability of parallel Tasklet executions. Third, the execution

of Tasklets on mobile devices is examined as well as the execution behavior.

Fourth, the GPU-acceleration of Tasklet is tested and the optimal parallelization

granularity is identified. Fifth, the three introduced platforms are compared

with each other and possible offloading benefits are demonstrated. Sixth, the

hybrid scheduling approach is examined and a threshold for a decision between

edge and cloud is defined for the used application. Seventh, the shortcomings

of edge environments as resource providers are measured. It is shown that task

migration and workload partitioning can counteract these effect, making edge

devices applicable as elastic resource providers. The content of the evaluation is

shown in Table 7.1.

7.2. Experiment 0: Requirement Evaluation

The functional requirements REQF1-REQF8 from Chapter 3 are qualitatively

evaluated in this experiment and summarized in Table 7.2. The first Requirement

Computation Placement (REQF1) is tackled by the Tasklet core system presented

in Chapter 5.3. It consists of a middleware that provides the construction,

distribution, and execution of Tasklets. The middleware includes an integration

mechanisms for application via the host language concept and has a well-defined

API. For the application programmer, the entire process is transparent. Further,

the tailoring of computation is supported by the QoC concept as well as the hybrid

scheduling on cloud and edge resources. Based on that, Tasklet execution can be

tailored to the application requirements, such as responsiveness or performance.
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The requirement Lightweight Computation Abstraction (REQF2) is tackled by the

concept of closed units of computation, the so called Tasklets, in combination

with their runtime environment – the TVM. Tasklets enclose all elements that are

necessary for their remote execution, namely, logic, parameters, QoC goals, and

data. They are executed on a TVM, which abstracts plain computation power of

otherwise heterogeneous devices, including PCs, smartphones, tablets, and GPUs.

The Edge Support (REQF3) requirement is supported by the task migration and

workload partitioning mechanism. They tackle the characteristics of edge devices,

namely, fluctuation, errors, and performance heterogeneity. Further, the edge

typically runs application that have irregular task structures, which is covered by

microtasking as well.

The fourth requirement Edge Resource Elasticity (REQF4) is addressed by a

combination of different artifacts. The ad-hoc scheduling realizes the low latency

scheduling of edge devices within proximity, which lays the foundation for elasticity.

The characteristics of edge devices naturally counteract the elasticity. Therefore,

the two approaches task migration from Chapter 5.4.4 and workload partitioning

from Chapter 5.4.5 increase the overall resource efficiency and performance. Based

on that, the resource elasticity in edge environments is established.

The fourth requirement Overcoming Edge Heterogeneity (REQF5) has different

dimensions. The platform heterogeneity is tackled by the lightweight computation

abstraction of Tasklets, the different TVM runtime environments, and the platform

specific architectures, such as the gateway or the GTVM. The distribution layer of

the orchestration addresses the accessibility heterogeneity, including network con-

nection, fluctuation, and connection errors. The host language concept overcomes

the programming language heterogeneity. Application heterogeneity is covered by

the QoC concept and the hybrid scheduling. Both take the requirements as well as

the characteristics of application into account and execute tasks correspondingly.

The irregularity of task structures is also a heterogeneity, which is tackled by the

microtasking approach.
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Device Type CPU Benchmark (sec) Amount

Amazon EC2 - t2.mirco 1 x 2.9 GHz 3.61 100
Amazon EC2 - m1.xlarge 4 x 2.0 GHz 11.65 10
Amazon EC2 - c4.xlarge 4 x 2.9 GHz 2.89 40
Amazon EC2 - c4.8xlarge 36 x 2.9 GHz 2.87 5
Office Computer (Intel Q6600) 4 x 2.4 GHz 9.26 4
Office Computer (Intel i7-4770) 8 x 3.4 GHz 2.72 1
Intel NUC (Intel i5-4350U) 4 x 2.6 GHz 3.62 1
Nexus 5/7 SD S800/S4 29.9 2

Total 163

Table 7.3.: Overview of the resource provider pool. The resources were geographically distributed
across Dublin (Ireland), Frankfurt (Germany), and Mannheim (Germany).

The Hiding Complexities (REQF6) requirement is covered by using a middleware-

based approach, since the main task of a middleware is to hide the complexity from

developers. However, developers still have a certain control over the execution of

Tasklets. The middleware copes with access, location, migration, replication, and

failure transparency.

Lastly, the Unobtrusive (REQF7) requirement is tackled by two components: First,

the GPU mechanisms that pauses Tasklet executions to let the operating system

render the GUI. Second, the mechanisms to drop or pause Tasklets at any point in

time, in case local users need resources themselves. With increased fault tolerance,

Tasklet drops can be coped without decreasing the application quality, which

provides the system with a high degree of flexibility.

7.3. Experiment 1: Tasklet Baseline Performance

In this first experiment, the basic functionality of parallel execution and remote

task placement are investigated. First, the setup of the experiment is described

and after that the results of the measurements are shown. The following question

should be answered: Can Tasklets exploit parallelism and how do they behave

when placed on remote providers? This experiment is based on [166]3.

3[166] is joint work with J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker
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Setup

For this part of the evaluation, a pool of heterogeneous Amazon EC2 instances,

local office computers, Nexus 7 tablets, Nexus 5 smartphones, and an Intel NUC

were used. From this pool, about 163 machines with a total of 518 CPU cores

served as resource providers, as shown in Table 7.3. One additional office PC

acted as resource consumer and an IBM Blade Center with a Xeon E5345 was

used as the resource broker. During the evaluation, more than 2,000,000 Tasklets

were executed in 1,400 CPU hours. The application that was used renders an

image of a MBS. An MBS is a set of complex numbers that, for a given sequence

z1 = z2
0 + c, does not converge to infinity [27]. The calculation is computationally

intensive and thus a candidate to be offloaded. The MBS application is used as a

representative for any computationally intensive algorithm that can be split into

independent subroutines and has few input and output data. Hence, during the

evaluation, the MBS is split up into several Tasklets and executed in parallel. As

the measure, the Tasklet bundle turnaround time for the computation of the same

image section of a 640× 480 pixel MBS is used.

Results

Since modern computing systems have multiple CPUs, splitting up the workload on

a local device might result in a faster execution. First, this evaluation determines

how suitable the Tasklet middleware is to support parallel computation. The

Tasklet system provides a convenient way for the programmer to issue multiple

parametrized Tasklets. The MBS image is split up into sets of lines and the time

is measured until the last part of the Tasklet bundle arrives at the consumer

application. The number of parallel Tasklets depends on the number of physical

cores to see how the different devices perform. Figure 7.1 shows the results of the

parallel executions. The time decreases with the number of physical cores. Once

the parallelization equals the number of cores there is no further improvement.

There are two phenomena to be pointed out: First, the improvement of physical

cores is greater then for logical cores. Second, for the large EC2 instance, the

improvement is minimal between 10 and 16 cores but peaks when the number

of cores equals the number of Tasklets instances executed in parallel. In this
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benchmark, the computation time C still accounts for the majority (> 95%) of

the total time T . For further improvements, the Tasklets are placed on remote

resource providers.
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Figure 7.1.: Baseline of the Tasklet system on the example of the computation of a 640× 480
pixel MBS. The baseline on the left shows the total execution time of the local
computation on four devices (three physical machines and one EC2 virtual machine).
The same task is then split up into 2 to 8 chunks for the physical and 2 to 60 chunks
for the virtual machine. The results indicate the performance increase for local
parallelization. The remote task placement divided the task in up to 160 parts.
This further accelerated the execution.

Offloading grants access to a huge pool of resources, however, it comes at the cost

of scheduling overhead and network delay. To evaluate how far distribution can

improve the applications, the computation of the same MBS image is split up

further into even finer granularity between 20 to 160 single Tasklets. For this test,

remote resources are used exclusively. Again, each Tasklet has to be compiled,

scheduled, executed, and the results have to be sent back to the application.

Figure 7.1 shows that remote task placement can significantly benefit the total

turnaround time of the MBS application.
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Device Name Operating System Processor
Frequency

(MHz)
Cores
(P/L)

Benchmark
(Seconds)

HTPC Windows 10 64Bit AMD Phenom II X4 965 x86 3400 4/4 6.86
Ultrabook Windows 7 64Bit Intel Core i5-3317U x86 1700 2/4 13.58
Office PC Windows 7 32Bit Intel Core2Duo E7400 x86 2800 2/2 7.08

Google Nexus 5 Android 5.1.1 Qualcomm Krait 400 ARM 2300 4/4 29.98
Sony Xperia Z1 Android 5.1.1 Qualcomm Krait 400 ARM 2200 4/4 30.06
Samsung Galaxy S3 Android 4.4.2 ARM Cortex-A7 2300 4/4 68.25
Elephone P2000 Android 4.4.2 ARM Cortex-A7 1700 8/8 37.71
Amazon Kindle Fire FireOS 4.5.4 ARM Cortex-A9 1500 2/2 42.04
Google Nexus One Android 2.3.1 Qualcomm Scorpion ARM 1000 1/1 69.34

Table 7.4.: Device landscape of the real-world testbed

7.4. Experiment 2: Mobile Tasklet Performance

In this section, the performance of Mobile Tasklets is evaluated. Therefore,

different characteristics, such as the performance, network influence, and energy

consumption, are examined. This section is based on [163]4 and [165]5.

Setup

For the evaluation, two applications are used. The first application – the prime

number finder – determines all prime numbers within a given interval. The purpose

of this application is to represent all computationally intensive applications that

only require the transfer of a small amount of data. The second application is

a gray scale filter application. This application takes a colored image as input

and creates a gray-scale version of it. In contrast to the primes application, this

application is data-centric with small computational complexity.

The real world testbed consists of a set of heterogeneous devices that are shown

in Table 7.4. The main mobile device for the evaluation is a Google Nexus 5.

Throughout the evaluation, the following parameters were changed: the number

of devices that are involved, the number of splits of a Tasklet, and the network

speed that is assumed for all devices. By changing the number of splits, the

overall problem size is constant, but it is shared among multiple Tasklets that are

computed in parallel. The problem size of the primes application is static with a

range from 90, 000 to 100, 000.

4[163] is joint work with J. Edinger, T. Borlinghaus, J. M. Paluska, and C. Becker
5[165] is joint work with J. Edinger, J. Eckrich, M. Breitbach, and C. Becker
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Figure 7.2.: Response times of mobile devices for the primes application. The Tasklet executions
on the Nexus 5 are local and on the other two devices are remote, thus the network
times are included.

Results

The section answers the following questions systematically: (1) How do mobile

devices perform local Tasklet executions? (2) Can mobile devices benefit from

remote Tasklet placement? (3) What is the influence of the network connection

and device temperature? (4) How does the execution of Tasklet influence the

energy consumption of mobile devices?

Performance of Mobile Devices

Figure 7.2 shows the turnaround times for parallel Tasklet executions on the

Nexus 5 and on two remote devices – the HTPC and the Ultrabook. For that,

the range of Tasklet splits is between 1 and 8. The findings of these experiment

show a similar behavior of mobile devices compared with the setup in experiment

1. Splitting up the workload into two Tasklets cuts the turnaround time in half

compared to a single Tasklet execution. This holds true for every device. Moreover,

splitting up the workload into four Tasklets cuts the turnaround time in again

half on the HTPC. The ultrabook, however, is only able to speed up the execution

by about 30% when splitting up the workload into four instead of two Tasklets.

Increasing of the number of Tasklets further than eight does not influence the

execution time on any device. This means that increasing the number of Tasklet

splits is only beneficial if a device posses enough physical processor cores.
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Mobile Task Placement

To evaluate the offloading feasibility, the complete set of devices from Table 7.4

create a heterogeneous computing environment. Figure 7.3 shows the results. The

combination of these devices offers 31 physical cores in total. For this evaluation,

the Hyper-Threading Technology has been disabled on the respective processors.

The standard deviation of this measurement is much higher than in the previous

results, which is referable to the heterogeneity of the computing environment

and even-sized splits of Tasklets. Further, the scheduling is random and does

not choose devices by execution speed. Hence, in the best case, the scheduler

picks the HTPC, which reduces the computation time to one-tenth compared to

the slowest device in the environments, which is the Nexus One. This evaluation

shows the problems of bottlenecks, meaning, that the computational weakest

device determines the total execution duration. Splitting up the task in smaller

parts may reduce the effect, but the more Tasklets are in the system, the more

likely the slowest device is selected. To cope with highly heterogeneous device

landscapes, the automatic task partitioning is evaluated later.
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Generation Technology Down Up

2G GSM GPRS 115 Kbit/s 115 Kbit/s
2G GSM EDGE 237 Kbit/s 237 Kbit/s
3G UMTS HSPA 14.4 Mbit/s 5.8 Mbit/s
3G GSM EDGE-Evo. 1.6 Mbit/s 0.5 Mbit/s
4G HSPA+ 21-672 Mbit/s 5.8-168 Mbit/s
4G LTE 100-300 Mbit/s 50-75 Mbit/s

Table 7.5.: Network bandwidths
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Figure 7.4.: Execution times for the gray-scale filter and the primes application with altering
network speeds.

Influence of Network and Temperature

So far, the network connection was not considered in the evaluation. For the

primes application, offloading is the best choice in terms of performance. The

reasons are that resource providers have a higher performance compared to the

local performance of the mobile device and only little data has to be transferred.

In contrast, the gray-scale filter represents a task with a larger amount of data

and less computation. As a result, such tasks highly depend on the quality of

the available network and its bandwidth. Table 7.5 shows today’s theoretical

available network standards and their maximum bandwidth, which are used for

this evaluation.

Figure 7.4 illustrates the performance of both applications in relation to the

available bandwidth. For this evaluation, the task is split into four Tasklets. The

prime number finder is rather independent from the available bandwidth, since only

a little amount of data needs to be transferred. Contrarily, the image greyscale
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filter highly depends on the available data connection. The two applications

are used to show the two extremes in terms of computation- and data-intensity

ratio. Other applications are in between these two. As a result, the decision

to place a computation remotely always depends on at least these three factors:

computational intensity, data intensity, and the effective network speed between

a consumer and the provider.

Other context variables may influence this decision as well. The temperature

of mobile devices has an influence on their computational capabilities. Most

of them are equipped with an ARM processor using a temporal overclocking

or downclocking mechanism in case of high temperatures or low battery power.

Especially during the relatively short benchmark, the processors activate their

overclocking mechanism and work with full performance. During the long runs of

evaluation, the temperature of the devices is increased and slows down the Tasklet

execution. To reconstruct this effect, Tasklet executions were done on a Moto G4

Plus under different device temperatures. Therefore, the devices was cooled down

to 5◦C (41◦F) and a long running Tasklet over 37.26 seconds was executed. The

same Tasklet was executed on a device that was warmed up to 45◦C (113◦F). This

resulted in a runtime of 39.19 seconds. As a result, the temperature differences

within that range do not have a major influence on the execution speed, but

are noticeable. When approaching the maximal temperatures, the CPU speed is

further reduced and the effect is enhanced.

Energy Consumption of Mobile Tasklets

The battery life time is an important context for mobile devices. Thus, the

evaluation examines the influence of the Mobile Tasklet system and the local broker

on the battery consumption. For this setting, four Moto G4 Plus smartphones

formed an ad-hoc network by means of the local broker. Figure 7.5 shows 60

minutes runtime of three different setups. The benchmark line is an idle device

with no additional applications running. After that, the energy consumptions of

the local broker without the execution of Tasklets is measured. A local broker

instance running as client consumes roughly the same energy as a group owner.

Hence, both are represented with a single line in the graph. However, when
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Figure 7.5.: Comparison of the energy consumption. The baseline shows the energy consumption
of a Moto G4 Plus without any additional software running for 60 minutes. The
other two lines present the mobile energy consumption while running the local
broker system and executing Tasklets respectively.

starting the Tasklet system and executing Tasklets, the energy consumption rises

substantially. Consequently, the strategy for Tasklet allocation on battery powered

devices is crucial and is considered by the utility function from the design chapter.

7.5. Experiment 3: GPU-Acceleration Performance

In this chapter, the performance of GPUs is evaluated including the execution

performance, the system usability, and the caching strategies. This part of the

evaluation is based on [161]6.

Setup

All tests are executed on a personal computer with a NVIDIA GTX 750 with 2

GB of memory and 512 Cuda processing cores running OpenCL version 1.2. The

computer is equipped with an Intel Core i5-2500k with 3.3 GHz, 8 GB of RAM,

and Windows 8.1. For this evaluation, the primes application is used with three

different problem sizes: (1) small: 0−1, 024, (2) medium: 0−10, 240, and (3) large

0− 102, 400. The problem is split into smaller units on the GPU, called Tasklet

threads. The size of the Tasklet threads determines the fraction of the problem

6[161] is joint work with J. Edinger, and C. Becker
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that the Tasklet has to compute. For example, a Tasklet thread size of five means

that each thread validates five prime numbers. Tasklet threads are grouped into so

called work groups, each of which is executed on one streaming multiprocessor. The

test investigates various granularities of parallelization, ranging from 1 to 20 items

per Tasklet thread and 8 to 512 Tasklet threads per work group. All runs were

executed 100 times and the average values were used. This evaluation focuses on

the computation times C plus the time for copying the data from the host CPU to

the GPU as well as marshaling and unmarshaling operations. The communication

times are neglected, as this evaluation focuses on the computational performance.

Results

The following questions are answered successively: (1) How does the degree of

parallelism influence the execution performance? (2) Does the work group size

affect the performance? (3) How does GPU-accelerated task execution affect the

usability of the system? (4) What is the influence of different caching strategies?

Exploiting Parallelism

In the first measurements, the optimum for parallel executions on the GPU is

identified. Therefore, two parameters can be adapted: the work group size and the

Tasklet thread size. Figure 7.6 a) shows the results for a large problem size and

indicates that a fine-grained parallelism improves the execution time. Checking

two numbers per Tasklet thread yields the best results and is nearly twice as fast

as computing a single item. On the other hand, increasing the Tasklet thread size

raises the execution time by at least 13%. Thus, for this example, the trade-off

between the parallelization overhead and a coarse granularity is optimal at two

items per Tasklet thread. NVIDIA recommends a work group size of 32 items

for that particular GPU model. Figure 7.6 a) confirms that recommendation.

The optimum for the work group size is between 32 and 128 work group items,

with the best result at 32. Reducing the work group size to 16 items impairs the

runtime drastically, since the parallel performance of the GPU cannot be utilized,

due to idle resources. Also the number of memory accesses increases.
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Figure 7.6.: The runtimes of two different problem sizes: a) large and b) medium problem size.
For both, different degrees of parallelism were measured by executing different
amounts of tasks per steaming multiprocessor. Further, the work group sizes were
altered. NVIDIA recommendation for the GTX 750 is a work group size of 32, which
is confirmed by the evaluation. Further, a Tasklet thread size of two is optimal.

The results for a medium problem size are similar, as Figure 7.6 b) shows. However,

the influence of changing the work group size has a smaller effect. Still, the thread

size has a larger influence and the optimum is two items per thread with a work

group size of 32. Doubling the thread size increases the runtime by nearly 50%,

because the degree of parallelism is decreased. This leads to a situation where

some of the 512 GPU cores are idle, while others execute large chunks of the

problem. This effect is smaller with the larger problem size, since more work is

available. Further, the effect of the irregular task structure of the prime finder

increases with the higher range, which leads to uneven execution times. While

work group sizes smaller than 32 increase the runtime for fine-grained parallelism,

the runtime of coarse-grained settings decreases. This is caused by the utilization

of the streaming multiprocessors, since checking 20 numbers per Tasklet thread

results in a total of 512 kernels, which is equal to the number of GPU cores. In a

large work group setting, like 512, only one streaming multiprocessor is used due

to the coarse-grained structure. In contrast, when reducing the work group size

to 32 for this problem, all processors are utilized. A work group size of 8 is even

more beneficial, since the memory access times are hidden more efficiently.

137



7.5. Experiment 3: GPU-Acceleration Performance

0

50

100

150

200

250

300

350

400

R
u
n
ti
m

e 
in

 m
s

a) Instructions per interval

Medium Problem Size

0

2000

4000

6000

8000

10000

12000

14000

R
u
n
ti
m

e 
in

 m
s

b) Instructions per interval

Large Problem Size
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Unobtrusiveness

Figure 7.7 shows the results of the usability measurement. The number of

instructions per interval describes how many instructions are executed in between

two execution pauses. During these pauses, the operating system renders the GUI.

The interval size also influences the Tasklet runtime. The shorter the computation

phases between pauses, the longer takes the overall computation. The shade of

gray of the bars indicate the subjective perception of the system usability. As

stated above, the execution of Tasklets should not compromise the use of the

system. For a medium problem size computing 30, 000 instructions is appropriate

and has no usability interference. However, the runtime improvement between

6, 000 and 30, 000 is neglectable. For a large problem size, the usability is different,

since the overall GPU utilization is much higher. With 6, 000 instructions, the

Tasklet execution is already noticeable. After that, it becomes even worse and

the system is unusable. However, with the 200 and 1, 200 settings, it is possible

to watch a video without any interference. Besides, there are only small runtime

improvements after 1, 200 instructions. Under the given circumstances, the setting

with 1, 200 is a good option. However, this measurement highly depends on the

used hardware and only acts as a rough indication.
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Figure 7.8.: Influence on the runtime of the different caching strategies. None implies that no
caching is used. Bytecode means that only the bytecode of a Tasklet is written into
the cache and the stack strategy means the same for the stack. With both, the stack
and the bytecode are cached.

Caching Strategies

Figure 7.8 shows the influence of the different caching strategies for a small and

a medium problem size. Caching the bytecode in the local memory benefits the

small setting by about 20% and the medium setting by 14%. When caching both,

the bytecode and the stack, the execution time can be decreased by 26% for the

small problem size. However, it is not beneficial for medium problem sizes to

cache the stack in the local memory, due to its small sizes. This effect is even

stronger for larger problem sizes. Contrarily, caching the bytecode always leads

to faster execution times.

7.6. Experiment 4: Platform Comparison

The final platform measurement compares the execution of three different edge

resource types: a Moto G4 Plus smartphone, a PC with a Intel Core i5-2500k CPU,

and the NVIDIA GTX 750 GPU. This section is based on [161]7. Figure 7.9 shows

the results and the potential benefit of GPU-Accelerated Tasklet execution in edge

environments. Similar to the last experiment, the prime number finder application

is used. For a small problem size of 1, 024, the PC shows the best performance,

7[161] is joint work with J. Edinger, and C. Becker
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Figure 7.9.: Comparison of execution times on a mobile device, a standard PC, and a GPU
for three problem sizes. In the small setting, the GPU-acceleration is not able to
compensate the involved overhead. However, for the medium and the large problem,
the GPU-acceleration outperforms the other devices by up to 33 times.

since it has a higher CPU clock than the mobile phone. The overhead for the

execution on the GPU dominates in this setting. However, the smartphone has

the highest execution time, due to the low CPU clock rate. In the medium setting

with 10, 240 numbers, the GPU outperforms both by far. The GPU-accelerated

execution is approximately 19 times faster compared to the smartphone and nearly

three times faster than the CPU. With the large problem size, the GPU can utilize

the parallel architecture even more, hence, it is nearly five times faster than the

CPU and 33 times faster compared to the smartphone. This evaluation shows the

performance heterogeneity in today’s computing landscape. Exploiting GPUs in

the edge environment can drastically increase the overall performance of a system.

Most dedicated GPUs are meant for rendering complex gaming graphics and,

thus, are overpowered for standard GUI rendering jobs. In an idle state, GPUs

can serve as a powerful edge resource.

7.7. Experiment 5: Hybrid Scheduling Performance

This experiment is based on [165]8. At this point, cloud resources are integrated

into the real-world edge computing testbed. Therefore, three Amazon EC2 t2.micro

instances are launched in different data centers as resource providers and remote

8[165] is joint work with J. Edinger, J. Eckrich, M. Breitbach, and C. Becker
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Figure 7.10.: Hybrid scheduling: comparison of edge and cloud computing. In the beginning,
the edge outperforms the cloud resources because of the low latency. For 600
pixels, both resources perform similar. After that, the cloud exploits the better
performance and compensates the higher communication latencies.

broker. The single core computing performance of the cloud resources is roughly

three times higher than performance of the Moto G4 devices. For this evaluation,

the ray tracing application is used that generates images with high quality and

visual realism. It supports several optical effects, like depth of field, reflection,

or chromatic aberration. Therefore, it has a high computational complexity.

Offloading benefits ray tracing, since the input parameters are formulas that

describe the objects and their features. It is used with different image sizes,

ranging from 100 to 1, 800 pixels. Each Tasklet is executed on remote cloud

providers as well as on nearby edge devices, using the decentralized scheduling of

the local broker which connects the edge devices to an ad-hoc group.

The results are shown in Figure 7.10. Shorter computations (from 100 to 600 pixels)

can benefit from the short communication delay of the ad-hoc edge resources.

Although the nearby devices are three times slower, the short latency compensates

for. For 100 pixels, the edge is 2.73 times faster compared to the cloud. Cloud

resources are faster for larger computations and in the 600 pixels setting both

perform similar. The gap between edge and cloud resources for a 900 pixel image

is already substantial and grows steadily with an increasing number of pixels.

Compared to the edge devices, which nearly increase the turnaround times sixfold

over the measured range, cloud resource are also more stable. For the largest

setting of 1, 800 pixels, the cloud is 1.62 times faster than the edge resources. Both
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approaches have their merits and the evaluation shows that a hybrid solution

can benefit short and long Tasklet executions by scheduling on the most suitable

resource. Further, the problem size can be tailored to the environment to optimize

the trade-off between low latency and high performance. By increasing the degree

of parallelization, the responsiveness of medium or long running Tasklets can

also be increased. Hence, in case of a sufficient amount of nearby resources,

responsiveness can be maintained even for large Tasklets by splitting them in

smaller subtasks and allocating them in the nearby edge.

To further increase the capabilities of edge resources, workload partitioning and

task migration are evaluated next.

7.8. Experiment 6: Fault Tolerance and Bottleneck

Avoidance

This chapter evaluates the proposed fault tolerance and bottleneck avoidance

mechanisms – task migration and workload partitioning – within a real-world

testbed. This experiment is based on [164]9. After introducing the experimental

setup, the applications, and the baselines, this section systematically answers the

following questions: (1) How do characteristics of edge environments influence

execution latencies in distributed computing systems? (2) Can task migration

handle explicit and implicit system leaves? (3) What is the overhead of task

migration? (4) Can performance-aware partitioning improve the execution la-

tencies in heterogeneous environments? (5) How does microtasking influence

the task responsiveness? (6) Can a combination of both mechanisms handle

highly heterogeneous environments and irregular task structures? (7) What is the

overhead of handling heterogeneity and irregularity? (8) How do the mechanisms

perform in a medium and highly utilized environment?

Setup

This evaluation uses a real-world testbed with 21 physical devices. As shown

in Table 7.6, the testbed consists of smartphones, laptops, and PCs, which

corresponds to an average nearby device environment in an office. The last two

9[164] is joint work with J. Edinger, M. Breitbach, and C. Becker
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Device Name Operating System Processor
Frequency

(MHz)
Cores
(P/L)

Benchmark
(Seconds)

2 x PC Fast Windows 10 64Bit Intel Core i7-8700k 3700 6/12 2.39
2 x PC Medium Windows 7 64Bit Intel Core i5-3500 3300 4/4 5.61
2 x PC Slow Windows 7 Intel Quad Q6600 2400 4/4 9.26
3 x Dell Laptop Windows 7 Intel Dual-Core P9400 2400 2/2 10.96
2 x Dell Laptop Windows 7 Intel Core i5-2520M 2400 2/4 6.46
8 x Motorola G4 Plus Android 7.0 Snapdragon 617 1500 8/8 22.34

Lenovo T430 Windows 10 64Bit Intel Core i5-3320M 2600 2/4 (8.58)
Lenovo T410s Windows 7 32Bit Intel Core2Duo M520 2400 2/4 (18.10)

Table 7.6.: Device landscape of the heterogeneous real-world testbed. P and L stands for physical
and logical processing cores respectively.

Abbreviation Description
BLOP Baseline Option Pricing
BLRT Baseline Ray Tracing
HOMS Homogeneous Environment Slow
HOMF Homogeneous Environment Fast
HET Heterogeneous Environment; 0% Error
PAPOP Performance-aware Partitioning; Option Pricing
PAPRT Performance-aware Partitioning; Ray Tracing
MT Microtasking; Ray Tracing
PAMOP Performance-aware Microtasking; Option Pricing
PAMRT Performance-aware Microtasking; Ray Tracing

BL0−30 Baseline; 0-30% Error; Option Pricing
RE0−30 Reactive Migration; 0-30% Error; Option Pricing
PRO0−30 Proactive Migration; 0-30% Error; Option Pricing
REPRO0−30 Reactive and Proactive Migration; 0-30% Error; Option Pricing

Table 7.7.: Evaluation key

devices are used as the resource consumer and the resource broker respectively.

All other devices contribute their computational resources as providers. Further,

the benchmark indicates the heterogeneous characteristics of the environments.

The average benchmark is 13.62 seconds with a standard deviation of 7.76 seconds.

Both edge optimization approaches – migration and partitioning – are evaluated

within this environment. For the migration part, two different artificial system

error rates are induced. In the first setting, 30% of the Tasklets and in the second

setting 10% of the Tasklets are dropped. The relation between implicit and

explicit Tasklet drops is even. When a Tasklet is dropped, the drop happens after

40%-60% of its overall computation time. In Table 7.7, all abbreviations for the

run settings are summarized. To enable comparability, all runs with connection

errors are excluded from the results. The overhead measurements are conducted

with Wireshark.
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Figure 7.11.: Baseline evaluation BL0 is done in a homogeneous error free environment that
executes homogeneous tasks. Next, slow and fast homogeneous environments are
displayed (BLOPHOMS/HOMF ). The following measurements are for heteroge-
neous tasks (BLRTHOMS/HOMF ). Run BLRTHET shows the full impact of
heterogeneity by using the ray tracer application in a heterogeneous environment.
The last result BL30 introduces errors to the homogeneous system.

For this evaluation, two different applications are used: option pricing and ray

tracing. The first is an option pricing algorithm that approximates the Black-

Scholes model. This financial algorithm determines a value of a European buy or

sell option. The option values is approximated by means of a Monte Carlo-based

method, which uses simulations on application basis. This method gains accuracy

the more simulation steps are executed. The algorithm is easy to parallelize based

on the number of simulations. Thus, the runs partitioning setting of the API is

used to define the number of parallel simulations per Tasklet. Every run of option

pricing is executed with 90, 000 simulations. The second application is the ray

tracing algorithm. In this evaluation, the result is a 1, 080× 720 image for each

computation. The computation is partitioned by means of the image height and

use of the range partitioning setting. Both applications are split in 12 Tasklets in

each setup evaluation. Thus, in case of an even distribution, each Tasklet executes

64, 800 pixels or 7, 500 Monte Carlo simulations for the ray tracing and the option

pricing application respectively. These 12 Tasklets are combined in a Tasklet

bundle, since they are all required to assemble the application’s result.
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Results

For the baseline measurements, an error free environment with all devices from

Table 7.4 is used. Regarding fault tolerance improvement, the baseline BL0 in

Figure 7.11 marks the lower bound. The influences of errors is indicated by

measurement BL30, where the high error rate is applied and the basic reliability

mechanism based on heartbeats is used. This mechanism makes use of heartbeats

and timeouts to enable Tasklet restarts.

The first error rate setting (BL10) increases the average Tasklet execution time

by approximately 18% and the high setting (BL30) by 44% (both not shown

in figure). The effect is even stronger when observing the completion time of

a Tasklet bundle, which represents one application execution. There, the times

increase to about 55% and 120% (BL30 in Figure 7.11) respectively, which is

accountable to the bottleneck effect that intensifies based on a higher error rate.

The baseline measurement also analyzes the influence of device heterogeneity.

Three different settings for this measurement are used: (1) a slow homogeneous

HOMS, (2) a fast homogeneous HOMF , and (3) a heterogeneous environment

HET . The first setting only consists of the slow smartphones. The second setting

consists of all devices that have a benchmark faster than 10 seconds and the

last setting consists of all devices. The second setting, however, is not entirely

homogeneous, but has a certain variance, which can be seen in the deviation

of Figure 7.11 HOMF . Figure 7.11 shows the baseline measures for all three

environmental settings executed with the option pricing application, which is

homogeneous. For the migration evaluation solely option pricing is used, to exclude

task irregularity from the results. Next, the edge optimization mechanisms are

applied.

Task Migration

As the baselines indicate, errors have a major influence on execution latencies.

Based on the performance measure from the design chapter, the impact of errors

can be reduced by different means. Especially in edge computing, devices are

unstable and fluctuation of devices is very likely. With the Tasklet migration
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Figure 7.12.: Evaluation result for all Tasklet migration mechanisms in medium and highly
erroneous environments compared to an error free baseline (BL0). In both error
settings, reactive (RE), proactive (PRO), as well as hybrid migration (REPRO)
are applied and the results are compared to the baseline BL respectively.

mechanisms, the loss of computation progress is reduced, as shown in Figure 7.12.

Hence,
∑n

i=0(C
′
i) + C ′′ is reduced to a minimum, which, in an optimal case, is

equal to the effective computation time Ceffective.

In a first step, the reactive migration mechanism with a medium error rate (RE10)

is applied, which reduces the average execution time by 42% compared to the

baselines (BL0 and BL10), as shown in Figure 7.12. The proactive migration

(PRO10) has an even stronger effect and improves the execution time by 67%.

This is based on the fact that 50% of the leaves are implicit. For implicit leaves,

the reactive approach has no benefit at all, whereas the proactive migration

backups and reuses the progress since the last snapshot. Further, the standard

deviation of proactive migration is nearly half compared to reactive migration,

since outliers are more likely without proactive migration. The combination of

both mechanisms (REPRO10) outperforms the baseline on average by 84% and

the standard deviation is again reduced. Compared to an error free environment

(BL0), the execution times are increased by 8%.

The right part of Figure 7.12 shows the high error rate setting. As expected, the

execution times without migration (BL30) are strongly influenced by the error

rate and the standard deviation is increased. However, especially for proactive

migration (PRO30), the measurements only differ slightly compared to the medium

error setting (PRO10). The proactive migration (PRO30) achieves an improvement
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Figure 7.13.: Overhead measurement of Tasklet migration. The baseline BL10 without any
migration mechanism in the medium erroneous environment is compared to all
three migration techniques.

of around 55%. The reactive migration (RE30) improves the reliability baseline

(BL30) by 62%. The combination of both migration mechanisms (REPRO30)

reduces the application runtime by 72%.

Lastly, the overhead of the two migration mechanisms is evaluated. The reactive

migration operates under the assumption that system leaves are done gracefully.

Thus, the overhead (RE10) compared to the baseline (BL10) is nearly zero, as

shown in Figure 7.13. However, proactive migration is also able to cover implicit

system leaves. This improves the fault tolerance of the system, but comes at the

cost of extra interval snapshot messages (see Figure 7.13, PRO10 and REPRO10).

As a result, the TCP traffic is increased by factor 2.3.

Workload Partitioning

The baseline measurements show that heterogeneity in the edge and task structure

irregularity have a major influence on the turnaround times. The completion

time of a Tasklet bundle is equal to the completion time of the slowest Tasklet,

as formalized in Equation 5.4 in the design chapter on page 73. Especially

in edge environments, devices can have enormous performance gaps. Figure

7.14 shows the influence of heterogeneous environments on the overall execution
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Figure 7.14.: Evaluation results for performance-aware partitioning. The baseline of slow and
fast homogeneous (BLOPHOMS/HOMF ) and heterogeneous BLOPHET envi-
ronments are compared to the optimization of performance-aware partitioning
PAPOPHET .

time. PAPOPHET displays the benefit of performance-aware partitioning. It

achieves an acceleration of about 40% in an heterogeneous environment on average

compared to the baselines.

Heterogeneity is not only present in the device landscape, but also in the tasks

that are executed. Therefore, the evaluation investigates the behavior of tasks

with an irregular structure in homogeneous environments. The results are shown

in Figure 7.15 for both, fast and slow homogeneous environments. When applying

the microtasking approach in both setups, the execution times are improved by

35% for slow (MTRTHOMS) and 21.4% for fast (MTRTHOMF ) environments.

The variation of these results relates to the fact that the fast environment is not

completely homogeneous compared to the slow environment, which consists of

exactly the same devices. This can be observed through the deviation indicators

of the respective bar diagrams. In settings where environmental heterogeneity is

entirely excluded, the full performance of the microtasking approach emerges.

So far, the focus of this experiment is on one kind of heterogeneity at the time.

In the next step, environment heterogeneity and task irregularity are combined

and the optimization strategies are applied subsequently. The results of that

measurement are shown in Figure 7.16. Performance-aware partitioning (PAPRT )

achieves an improvement of 31% over the baseline (BLRT ), however, only the

device heterogeneity is handled by this approach. Next, microtasking (MTRT )
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setting includes all devices with a benchmark below 10 seconds. The ray tracing
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Figure 7.16.: Results for performance-aware microtasking. The heterogeneous ray tracing appli-
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environment. Starting from the baseline BLRT , the evaluation successively ac-
tivates performance-aware partitioning PAPRT , microtasking MTRT and finally
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Figure 7.17.: Overhead measurements for the partitioning mechanisms. Based on message and
data traffic, the performance-aware partitioning, microtasking, and performance-
aware microtasking are compared to the baseline.

is applied under the same circumstances, which outperforms the baseline by

37%. Based on these results it can be concluded, that the task irregularity has a

stronger influence in this setting compared to the performance heterogeneity of

the devices. Using another application, or another computing environment may

change this fact. Finally, both optimizations are combined to the performance-

aware microtasking (PAMRT ). As a result, it achieves an improvement of the

Tasklet bundle completion time of 53%. This outperforms all other measurements

substantially. The standard deviation, however, is higher in approaches that apply

performance-aware mechanisms.

Next, the number of resource consumers in the system is scaled up and multiple

applications issue Tasklet executions concurrently. This measurement shows how

the optimization performs in a medium and highly utilized environment. Therefore,

the combination of the irregular application structure, the heterogeneous devices,

and the performance-aware microtasking (PAMRTHET ) approach is used. First,

two applications ran simultaneously, meaning that the resource utilization of the

real-world testbed is approximately at 40%. In that test, no performance decrease

was noticeable nor measurable compared to the setting with a single application

issuing Tasklets. Second, four applications ran simultaneously, which led to a

resource utilization of about 80%. This additional overhead extends the average

execution time of the applications by approximately 10%.
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Figure 7.17 shows the overhead of all three optimization mechanisms compared

to the baseline. Message and traffic overhead is shown. In the evaluation, the

overhead of performance-aware partitioning, microtasking, and performance-aware

microtasking is neglectable. However, both, option pricing and ray tracing, have

only a small amount of input data. One drawback of partitioning is that late

binding requires all input data for a Tasklet. Therefore, each Tasklet has to be

transferred to the resource provider with the entire input data.

7.9. Summary

This chapter presented the evaluation of the prototype that encompassed seven

experiments. First, the qualitative analysis showed that all derived requirements

are fulfilled by the approach. In a baseline evaluation, the parallel execution

performance of different devices was compared and the offloading capabilities of

the Tasklet system illustrated. After that, the characteristics of the Mobile Tasklet

approach and the parallel execution of Tasklets on GPUs were examined. The

evaluation compared the computational performance of mobile devices, CPUs, and

GPUs as well as the benefit of a hybrid scheduling approach. Finally, the evaluation

of Tasklet migration and workload partitioning showed that the drawbacks of

edge devices can be compensated. The next chapter concludes the thesis and

presents directions for future work.
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With trends such as machine learning, virtual reality, and IoT, the computational

demand of today’s applications grows steadily. In the past decade, these tech-

nologies were more and more applied on user-controlled devices. These devices

are limited in terms of computing power, which led to the offloading paradigm.

Offloading executes computationally intensive tasks on more powerful resources

instead of locally. While most of the existing approaches from literature exclusively

offload computation to the cloud or other mobile devices, the proposed system

exploits user-controlled edge devices of all kinds as resource providers.

Therefore, this thesis presented the Tasklet system and the edge support layer.

The resulting system gathers idle computation capabilities of devices at the edge

and allows exchange of computationally intensive tasks. The requirements for the

design were derived in Chapter 3 and, based on that, a classification for related

work was developed in Chapter 4. The literature analysis was conducted and the

research gap was identified by means of the classification.

As a solution, Chapter 5 proposed the thesis’ design which consists of two major

artifacts. The first artifact is the Tasklet system, which laid the foundation for

the exchange of computation. Tasklets are fine-grained units of computation

that are built as closures, i.e., they include all necessary elements to be executed

remotely. The Tasklet system offers an abstraction for computation, a factory

approach to assemble Tasklets, an orchestration to allocate them, and a runtime

environment for their execution. For the integration of edge devices the edge

support layer was proposed, which extends the functionality of the Tasklet system.

It integrates several hardware platforms and copes with the challenges of edge

devices: fluctuation and heterogeneity. As a solution, the design introduced two

Tasklet migration approaches as well as three bottleneck avoidance mechanisms.

The migration mechanisms are able to cope with explicit and implicit system leaves

at minimal and moderate costs, respectively. The three bottleneck avoidance

mechanisms cope with performance heterogeneity of devices as well as with the
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irregularity of task structures by applying workload partitioning. In combination,

the migration and bottleneck avoidance approaches facilitate the elasticity of edge

resources. The proposed design was implemented in a full-fledged prototype that

was presented in Chapter 6.

Finally, the approach was evaluated comprehensively in Chapter 7, including a

qualitative evaluation of the requirements as well as a quantitative evaluation.

All functional requirements from Chapter 3 are fulfilled by the presented design

and implementation. The non-functional requirements were examined in the

quantitative evaluation that was conducted in a real-world testbed with different

environment settings. The evaluation compared the execution performances of

the different platforms and the hybrid scheduling approach. The integration

of GPUs resulted in a substantial performance gain of the edge environment.

Further, the evaluation analyzed the benefit of the migration and partitioning

approaches that increase the fault tolerance and the bottleneck avoidance. As a

result, the performance of the system was improved by 39% and 53%, respectively.

Based on these results, the elasticity of edge computing resources can be increased

considerably.

The thesis provides the technical foundation to fulfill the vision: ‘computation as

a common good’. The proposed system offers seamless exchange of computation,

a generic interface for applications, and elasticity of resources. Consequently,

the next step is to incentivize users to contribute to the system. On the one

hand, the participation in well-known systems from the literature, such as BOINC

[5] and HTCondor [179], are based on altruism or gamification, which refers to

their characteristics: they are single-application system with a specific objective

and gather computational power for scientific use cases. On the other hand, in

cryptocurrencies users contribute their computational resources for monetary

compensation. These two examples show that the type of resource sharing

system affects the way users are incentivized. The proposed system lays the

ideal foundation for further examination of these incentives, since a variety of

applications is covered. A first study is presented in [60]1.

1[60] is joint work with J. Edinger, L. M. Edinger-Schons, A. Stelmaszczyk and C. Becker
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Outlook

Edge computing is an emerging field of research with many open research challenges.

The presented system serves as a foundation for future research:

First, the data management of the Tasklet system offers potential for future

research. The current system integrates data into the Tasklet closure. Thus,

data is closely coupled to each individual Tasklet. In order to exploit further

scheduling options, the data can be separated from the closure and scheduled

individually from the Tasklet. By doing so, data can be allocated on resource

providers before the actual Tasklet execution takes place. Further, data can be

replicated to increase the fault tolerance and enable parallel executions. This

strategy improves the execution time as well as the responsiveness. The approach

implies several challenges considering the garbage collection, fault tolerance, and

data traffic overhead. In [28]2, a data placement system for Tasklets is proposed.

Second, the runtime environment of Tasklets can be improved by optimizing

the TVM performance and by integrating the TVM on kernel level. With this

approach, a dedicated CPU core is assigned to execute the TVM exclusively. This

integration makes the Tasklets independent from the operating system scheduler

and facilitates a non-preemptive execution. To issue a Tasklet execution, system

calls of the respective operating system can be used.

Third, a future direction for research is the development of a multi-hop scheduling

approach for ad-hoc networks. The ad-hoc scheduling currently creates disjunct

groups of devices that can share their computational capabilities. In a next step,

the scheduling of Tasklets should be possible across the group boundaries to

enable a better load balancing. Intermediate nodes in the ad-hoc group facilitate

the link to an adjacent group to exchange Tasklets.

Lastly, a large-scale simulation of the approach can identify further directions.

So far, the evaluation took place in a real-world testbed that recreates a nearby

office scenario as well as a distributed evaluation with cloud resources and roughly

160 resource providers. In the future, a large scale simulation and real world

evaluation with more than 1000 providers and consumers as well as multiple

resource brokers should be conducted.

2[28] is joint work with M. Breitbach, J. Edinger, and C. Becker
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[18] F. Berg, F. Dürr, and K. Rothermel. Optimal predictive code offloading. In

Proceedings of the 11th International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services. ICST, 2014.

xviii



Bibliography

[19] F. Berman and R. Wolski. The apples project: A status report. In Proceed-

ings of the 8th NEC Research Symposium. Citeseer, 1997.

[20] A. Bhattcharya and P. De. Computation offloading from mobile devices:

Can edge devices perform better than the cloud? In Proceedings of the Third

International Workshop on Adaptive Resource Management and Scheduling

for Cloud Computing. ACM, 2016.

[21] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM

Transactions in Computer Systems, 2(1):39–59, 1984.

[22] S. Bohez, J. D. Turck, T. Verbelen, P. Simoens, and B. Dhoedt. Mobile,

collaborative augmented reality using cloudlets. In Proceedings of the

International Conference on Mobile Wireless Middleware, Operating Systems,

and Applications. Springer, 2013.

[23] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. Fog computing: A platform

for internet of things and analytics. In Proceedings of the Big data and

Internet of Things: A roadmap for smart environments. Springer, 2014.

[24] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role

in the internet of things. In Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing. ACM, 2012.

[25] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and H. Debnath.

Avatar: Mobile distributed computing in the cloud. In Proceedings of

the International Conference on Mobile Cloud Computing, Services, and

Engineering. IEEE, 2015.

[26] S. Bouzefrane, A. F. B. Mostefa, F. Houacine, and H. Cagnon. Engineer-

ingcloudlets authentication in nfc-based mobile computing. In Proceedings

of the International Conference on Mobile Cloud Computing, Services, and

Engineering. IEEE, 2014.

[27] B. Branner. The mandelbrot set. In Proceedings of Symposium in Applied

Mathematics, 1989.
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Appendix

A. Tasklet Language

〈program〉 ::= 〈block〉 .

〈block〉 ::= { 〈constDef 〉 } { 〈varDekl〉 } { ‘PROCEDURE’ 〈datatype〉 〈ident〉 〈parameterList〉
‘{’ 〈block〉 ‘}’ } ‘{’ statement ‘}’ .

〈statement〉 ::= { ( 〈simpleStatement〉 ‘;’ )

| 〈conditionalStatement〉
| 〈loopStatement〉 } .

〈simpleStatement〉 ::= 〈ident〉 [ 〈index 〉 ] ‘:=’ 〈expression〉 | 〈procedureCall〉
| 〈taskletInput〉 | 〈taskletOutput〉
| 〈ident〉 ‘:=’ 〈assignArray〉 | 〈ident〉 ‘:=’ 〈string〉
| ‘RETURN’ 〈expression〉 | 〈ident〉 〈incrOrDecr〉
| 〈ident〉 〈arrayCopy〉 〈ident〉 .

〈conditionalStatement〉 ::= ‘IF’ ‘(’ 〈condition〉 ‘)’ ‘{’ 〈statement〉 ‘}’ [ ‘ELSE’ ‘{’ 〈statement〉
‘}’ ] .

〈loopStatement〉 ::= ‘WHILE’ ‘(’ 〈condition〉 ‘)’ ‘{’ 〈statement〉 ‘}’ .

〈condition〉 ::= ‘!’ 〈expression〉
| 〈expression〉 〈relationalOp〉 〈expression〉 .

〈stdFunc〉 ::= ‘length’ ‘(’ 〈ident〉 ‘)’

| ‘random’ ‘(’ 〈expression〉 | 〈datatype〉 ‘)’

| (‘nroot’ | ‘pow’ ) ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘)’

| ( ‘sqrt’ | ‘sin’ | ‘cos’ | ‘tan’ | ‘log’ | ‘log2’ | ‘log10’ | ‘exp’ ) ‘(’ 〈expression〉 ‘)’

.

〈keyword〉 ::= ( ‘rangeLowerBound’ | ‘rangeUpperBound’

| ‘rangeLowerBoundF’ | ‘rangeUpperBoundF’ ) .

〈varDekl〉 ::= 〈datatype〉 [ 〈index 〉 ] 〈ident〉 { ‘,’ 〈ident〉 } ‘;’ .

〈constDef 〉 ::= ‘CONST’ 〈datatype〉 〈ident〉 ‘:=’ 〈value〉 { ‘,’ 〈ident〉 ‘:=’ 〈value〉 } ‘;’ .
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A. Tasklet Language

〈procedureCall〉 ::= 〈ident〉 〈parameters〉 .

〈taskletInput〉 ::= ‘>>’ 〈ident〉 .

〈taskletOutput〉 ::= ‘<<’ 〈expression〉 .

〈expression〉 ::= [ 〈plusOrMinus〉 ] 〈term〉 { 〈plusOrMinus〉 〈term〉 } .

〈term〉 ::= 〈factor〉 { ( ‘*’ | ‘/’ | ‘%’ ) 〈factor〉 } .

〈factor〉 ::= 〈ident〉 [ 〈index 〉 ]

| 〈value〉
| ‘(’ 〈expression〉 ‘)’

| 〈procedureCall〉
| 〈stdFunc〉
| 〈keyword〉 .

〈index 〉 ::= ‘[’ 〈expression〉 ‘]’ .

〈arrayCopy〉 ::= ‘->’ .

〈parameterList〉 ::= ‘(’ [ 〈datatype〉 〈ident〉 { ‘,’ 〈datatype〉 〈ident〉 } ] ‘)’ .

〈parameters〉 ::= ‘(’ [ 〈value〉 { ‘,’ 〈value〉 } ] ‘)’ .

〈relationalOp〉 ::= ( ‘=’ | ‘#’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ ) .

〈plusOrMinus〉 ::= ( ‘+’ | ‘-’ ) .

〈incrOrDecr〉 ::= ( ‘++’ | ‘--’ ) .

〈string〉 ::= ‘"’ { 〈digit〉 | 〈character〉 | 〈symbol〉 } ‘"’ .

〈assignArray〉 ::= ‘{’ 〈value〉 {‘,’ 〈value〉 } ‘}’ .

〈ident〉 ::= { 〈character〉 } .

〈symbol〉 ::= ( ‘.’ | ‘:’ | ‘,’ | ‘-’ | ‘_’) .

〈value〉 ::= ( ‘’’ 〈character〉 ‘’’ | 〈number〉 | 〈boolean〉 ) .

〈datatype〉 ::= ( ‘INT’ | ‘FLOAT’ | ‘CHAR’ | ‘VOID’ | ‘BOOL’ ) .

〈boolean〉 ::= ( ‘TRUE’ | ‘FALSE’ ) .

〈number〉 ::= ( 〈integer〉 | 〈float〉 ) .

〈float〉 ::= 〈integer〉 ‘.’ 〈digit〉 { 〈digit〉 } .

〈integer〉 ::= ‘1...9’ { 〈digit〉 } | ‘0’ .

〈character〉 ::= ( ‘A...Z’ | ‘a...z’ ) .

〈digit〉 ::= ‘0...9’ .
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B. Tasklet Protocol Overview

This section gives an overview of the protocol messages. The entities in the system

are: the consumer application (APP), the consumer middleware (CM), the broker

(B), the provider middleware (PM), and the provider TVM (PTVM). In case

of a local execution, the consumer acts also as provider. The overview can be

found in Table B.1. The messages for the visualization of the Tasklet execution

are omitted. The first four messages, starting with the prefix i, are the interface

messages between the application and the middleware on the consumer side. The

seven broker messages realize the broker communication. They have the prefix b.

All Tasklet messages have the prefix t and the management message start with

an m.

Type Sender Receiver Description

iRequestMessage APP CM plain Tasklet request

iResendRequestMessage APP CM reparameterization based on previous Tasklet

iResultMessage CM APP return of Tasklet result

iCodeDebugMessage CM APP debug information for Tasklet developers

bIPMessage B CM/PM initial reply of broker

bHeartbeatMessage CM/PM B heartbeat to the broker

bBenchmarkMessage PM B benchmark information

bRequestMessage CM B request for providers

bResponseMessage B CM resource response

bVmUpMessage PM B idle TVM message

bVmDownMessage PM B busy TVM message

tForwardMessage CM PM forwarding Tasklet to assigned PM

tExecuteMessage PM PTVM Tasklet transferred for execution

tResultMessage PTVM/PM PM/CM result forwarded to PM or CM

tSnapshotMessage PTVM/PM PM/CM snapshot message to CM

tHeartBeatMessage PM CM reliable Tasklet execution

mTvmJoinMessage PM PTVM registers TVM at TVMM

mTvmRequestStatusMessage PM PTVM request execution information

mTvmStatusMessage PTVM PM execution information exchange

mTvmPauseMessage PM PTVM pauses a Tasklet execution

mTvmContinueMessage PM PTVM a paused execution is resumed

mTvmSnapshotStopMessage PM PTVM forces snapshot and cancellation

mTvmCancelMessage PM PTVM cancels current Tasklet

mTvmTerminationMessage PM PTVM terminates TVM

Table B.1.: Overview of the Tasklet protocol messages. Messages for visualization
of Tasklet execution are omitted.
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C. Example Code

C.1. Option Pricing

C--Code

float S, dt , sigma ,K, r, T, value , nSimulationsF , result;

int nSimulations , call , nSteps;

procedure float uniformInterval(float a, float b){

return a + random (1.0) * (b-a);

}

procedure float marsagliaPolar (){

float d, x, y, n;

x:= uniformInterval (-1.0, 1.0);

y:= uniformInterval (-1.0, 1.0);

d:=x*x + y*y;

n:=d;

while (n >= 0.0){

if(n < 1.0){

if( n > 0.0){

n := -1.0;

}

}

if(n > 0.0){

x:= uniformInterval (-1.0, 1.0);

y:= uniformInterval (-1.0, 1.0);

d:=x*x + y*y;

n:=d;

}

}

return x * sqrt (-2.0 * log(d) / d);

}

procedure float optionPricing (){

float price , value;

int i,j;

price := 0.0;

value := 0.0;

i := 0;

while(i < nSimulations){

price := S;

j := 0;

while(j < nSteps){

price := price + r * price * dt + sigma * price * sqrt(dt) *

marsagliaPolar ();

j++;
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}

if(call =1){

if(( price - K) > 0.0){

price := price - K;

}else{

price := 0.0;

}

}else{

if((K-price) >= 0.0){

price := K - price;

}else{

price := 0.0;

}

}

value := value + price;

i++;

}

return (( value / nSimulationsF) * exp(-r * T));

}

>>S;

>>K;

>>r;

>>sigma;

>>dt;

>>T;

>>call;

>>nSteps;

nSimulations := rangeUpperBound;

nSimulationsF := rangeUpperBoundF;

result := optionPricing ();

<<result;

Java Code

public float [] europeanOption(float stockPrice , float strikePrice , float

volatility , float interestRate ,

float maturity , boolean isCall) {

float dt = (float) (maturity * 1.0 / (nTimeSteps - 1));

float nSimulationsF = nSimulations;

TaskletBundle taskletBundle = TaskletBundle.fromFile("optionPricing.cmm");

taskletBundle.addFloat("S", stockPrice);

taskletBundle.addFloat("K", strikePrice);

taskletBundle.addFloat("r", interestRate);

taskletBundle.addFloat("sigma", volatility);

taskletBundle.addFloat("dt", dt);

taskletBundle.addFloat("T", maturity);
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if (isCall) {

parameterList.addInt("call", 1);

} else {

parameterList.addInt("call", 0);

}

taskletBundle.addInt("nSteps", nTimeSteps);

if(timerActivated){

taskletBundle.setTimeout(maxTime);

}

else{

taskletBundle.setTimeout (2000000L);

}

taskletBundle.getQoCList ().setReliable ();

taskletBundle.getQoCList ().setMigration(true , true , 0);

taskletBundle.getQoCList ().setPartitioning (0, nSimulationsF , 1, true ,

false);

taskletBundle.start();

TaskletResultPool allResults = taskletBundle.waitForAllResults ();

return allResults;

}
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C.2. Mandelbrot Set

C-- Code

float rReal , rImg , startReal , startImg , xShift , yShift , hDiff , vDiff , zoom ,

width , height , startHeight , endHeight , i, j;

int maxIterations;

procedure float abs(float aReal , float aImg){

return sqrt(aReal * aReal + aImg * aImg);

}

procedure void mul(float aReal , float aImg , float bReal , float bImg){

rReal := (aReal * bReal) - (aImg * bImg);

rImg := (aReal * bImg) + (aImg * bReal);

}

procedure void square(float aReal , float aImg){

mul(aReal , aImg , aReal , aImg);

}

procedure void sub(float aReal , float aImg , float bReal , float bImg){

rReal := aReal - bReal;

rImg := aImg - bImg;

}

procedure void add(float aReal , float aImg , float bReal , float bImg){

rReal := aReal + bReal;

rImg := aImg + bImg;

}

procedure float iterate(float zReal , float zImg){

square(zReal , zImg);

zReal := rReal;

zImg := rImg;

add(zReal , zImg , startReal , startImg);

return abs(rReal , rImg);

}

procedure int main(){

int counter;

float result;

counter := 1;

rReal:= 0.0;

rImg:= 0.0;

result := iterate(rReal ,rImg);

while(result < 2.0){
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if(counter >maxIterations){

return counter;

}

result := iterate(rReal ,rImg);

counter ++;

}

return counter;

}

>>xShift; >>yShift;

>>width; >>height;

>>zoom;

>>maxIterations;

startHeight := rangeLowerBound;

endHeight := rangeUpperBound;

hDiff := 3.0/( width -1.0);

hDiff := hDiff / zoom;

vDiff := 2.0/( height -1.0);

vDiff := vDiff / zoom;

i := startHeight;

while(i < endHeight +1.0){

startImg := 1.0 - yShift - (i * vDiff);

j := 0.0;

while(j < width){

startReal := -2.0 + xShift + (j * hDiff);

<<main();

j := j+1.0;

}

i := i + 1.0;

}

Java Code

public BufferedImage computeCurrentImage(int width , int height , ZoomParameter

currentZoomParameters) {

int startHeight = 0;

int endHeight = 0;

TaskletBundle taskletBundle = TaskletBundle.fromFile("mandelbrot.cmm");

taskletBundle.addFloat("xShift", (float) currentZoomParameters.getxShift ()

);
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taskletBundle.addFloat("yShift",(float) currentZoomParameters.getyShift ())

;

taskletBundle.addFloat("width",(float) width);

taskletBundle.addFloat("height",(float) height);

taskletBundle.addFloat("zoom" ,(float) currentZoomParameters.getZoom ());

taskletBundle.addInt("maxIterations",GlobalParameters.ITERATIONS);

taskletBundle.getQoCList ().setReliable ();;

taskletBundle.getQoCList ().setMigration(true , true , 0);

taskletBundle.getQoCList ().setPartitioning(startHeight , endHeight , 1, true

, true);

taskletBundle.setTimeout (200000L);

taskletBundle.start();

TaskletResultPool allResults = taskletBundle.waitForAllResults ();

// iterate over every tasklet

int color = 0;

int j = currentTaskletIndex;

for (TaskletResult result : allResults.values ()) {

System.out.println("Getting results for tasklet: " + j);

// get all RGB values for the pixels

for (int i = 0; i < result.size(); i++) {

color = result.getInt(i);

if (color < GlobalParameters.ITERATIONS) {

color %= 255;

color ++;

if(i / width + (j - currentTaskletIndex) * numberOfRowsPerTasklet

< height){

canvas.setRGB(i % width , i / width + (j - currentTaskletIndex)

* numberOfRowsPerTasklet ,

(new Color(color , Math.abs(color - 120), 255 - color).

getRGB ()));

}

}

}

j++;

}

this.currentZoomParameters = currentZoomParameters;

widthOfTheCurrentImage = width;

heightOfTheCurrentImage = height;

return canvas;

}
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C. Example Code

C.3. Prime Number Finder

C-- Code

int low ,high ,result;

procedure int checkprime (int a){

int c;

c:=2;

while(c<=(a-1)){

if((a%c)=0){

return 0;

}

c:=c+1;

}

if(c=a){

return a;

}

}

low:= rangeLowerBound;

high:= rangeUpperBound;

while(low <high){

result := checkprime(low);

if(result # 0){

<<result;

}

low:=low +1;

}

Java Code

public int[] computePrimes(int low , int high) {

TaskletBundle taskletBundle = TaskletBundle.fromFile("primesPartitioning.

cmm");

taskletBundle.getQoCList ().setReliable ();

taskletBundle.getQoCList ().setMigration(true , true , 0);

taskletBundle.getQoCList ().setPartitioning(low , high , 1, true , true);
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C. Example Code

taskletBundle.start();

TaskletResultPool allResults = taskletBundle.waitForAllResults ();

return allResults;

}
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