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Abstract

The aim of this thesis is to parameterize the isospectral set Iso(u0) for smooth Fermi

curves of two-dimensional Schrödinger operators with doubly periodic real-valued L2-

potential u0 : R2 → R. This isospectral set is the set of all real-valued doubly periodic

L2-potentials u whose Fermi curve F (u) equals the given Fermi curve F (u0). Our

thesis essentially consists of two parts. The �rst part solves the isospectral problem

asymptotically by investigating those part of the Fermi curve outside a su�ciently

large compact set in C2. In this asymptotic setting, the so-called perturbed Fourier

coe�cients will serve as suitable coordinates for the potentials. We parameterize the

asymptotic isospectral set by constructing a homeomorphism mapping it onto a topo-

logical space Ĩsoδ(u0), where Ĩsoδ(u0) can be explicitly determined. The second part

of the thesis connects the asymptotic part with the so far neglected compact part of

the Fermi curve. Under an additional boundedness assumption on Iso(u0), we show

that Iso(u0) is homeomorphic to a Cartesian product Iso(u1) × Ĩsoδ(u0), where u1 is

a potential of �nite type. For unbounded isospectral sets, we will show an analogous

but weaker result. In the entire thesis, we use the so-called moduli m(u) in order to

describe the isospectral sets. These moduli are l1-sequences. We �nally show that each

Fermi curve F (u) is uniquely determined by its moduli m(u). In particular, the moduli

are invariants of the isospectral set.

Zusammenfassung

Das Ziel dieser Arbeit ist die Parametrisierung der Isospektralmenge Iso(u0) für glatte

Fermikurven zweidimensionaler Schrödinger-Operatoren mit doppeltperiodischem reell-

wertigem L2-Potential u0 : R2 → R. Diese Isospektralmenge ist die Menge aller reell-

wertigen doppeltperiodischen L2-Potentiale u, deren Fermikurve F (u) gleich der gegebe-

nen Kurve F (u0) ist. Unsere Arbeit besteht im Wesentlichen aus zwei Teilen. Der

erste Teil löst das isospektrale Problem asymptotisch, indem man jenen Teil der Fer-

mikurve auÿerhalb eines hinreichend groÿen Kompaktums in C2 untersucht. In diesem

asymptotischen Szenario werden die so genannten gestörten Fourierkoe�zienten als

geeignete Koordinaten für die Potentiale dienen. Wir parametrisieren die asympto-

tische Isospektralmenge, indem wir einen Homöomorphismus von ihr auf einen topo-

logischen Raum Ĩsoδ(u0) konstruieren, wobei Ĩsoδ(u0) explizit bestimmt werden kann.

Der zweite Teil der Arbeit verknüpft den asymptotischen Teil mit dem bisher vernach-

lässigten kompakten Teil der Fermikurve. Unter einer zusätzlichen Beschränktheitsvo-

raussetzung an Iso(u0) zeigen wir, dass Iso(u0) homöomorph zu einem kartesischen

Produkt Iso(u1)×Ĩsoδ(u0) ist, wobei u1 ein �nite type Potential ist. Für unbeschränkte

Isospektralmengen werden wir ein analoges, jedoch schwächeres Resultat zeigen. In der

gesamten Arbeit benutzen wir die so genannten Moduli m(u), um die Isospektralmen-

gen zu beschreiben. Diese Moduli sind l1-Folgen. Wir zeigen schlieÿlich, dass jede

Fermikurve F (u) eindeutig durch ihre Moduli m(u) bestimmt ist. Insbesondere sind

die Moduli Invarianten der Isospektralmenge.
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Chapter 1

Introduction

1.1 The inverse problem

We consider the time-independent two-dimensional Schrödinger equation

−∆ψ + u · ψ = λψ (1.1)

with doubly periodic potential u : R2 → C, eigenfunction ψ and eigenvalue λ ∈ C.
Hereby,

∆ :=
∂2

∂x2
1

+
∂2

∂x2
2

denotes the Laplace operator in two dimensions with respect to the variable x =
(x1, x2) ∈ R2. Let Γ ⊂ R2 be the two-dimensional lattice of periods of u, i.e.

u(x+ γ) = u(x) for all γ ∈ Γ. (1.2)

Since u is periodic, any solution ψ of (1.1) must be quasi-periodic (cf. [13], p. 2),
that is, there is a k ∈ C2 such that

ψ(x+ γ) = e2πi〈k,γ〉ψ(x) for all x ∈ R2, γ ∈ Γ. (1.3)

Here, 〈·, ·〉 denotes the complex extension of the canonical euclidean bilinear
form on R2, that is: 〈v, w〉 := v1w1 + v2w2 for v, w ∈ C2. Besides, we write
|v| :=

√
< v, v > for the Euclidean norm of a vector v ∈ C2.

The so-called boundary conditions k ∈ C2 together with the eigenvalues λ ∈ C
constitute the Bloch variety B(u), de�ned by

B(u) :={(k, λ) ∈ C2 × C : there is a non-trivial solution ψ

of the Schrödinger equation (−∆ + u)ψ = λψ with

ψ(x+ γ) = e2πi〈k,γ〉ψ(x) for all x ∈ R2, γ ∈ Γ}.
(1.4)

6
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In this work, we are only interested in the so-called Fermi curves which are
obtained from B(u) by setting λ = 0, that is,

F (u) := {k ∈ C2 : (k, 0) ∈ B(u)}.

There appear two problems: The direct problem and the inverse problem. In
the direct problem, one wants to parameterize for a given potential u the corre-
sponding Fermi curve F (u). It turns out that Fermi curves are subvarieties of
C2 in the sense that at least locally, Fermi curves can be described as the zero
sets of holomorphic functions f : U ⊂ C2 → C (see for example Theorem 2.2.6
in Section 2.2 or [13, Theorem 4.1.3]).
In the inverse problem, one considers the following two subproblems:

• The moduli problem: Parameterize the set of all possible Fermi curves.

• The isospectral problem: Given a �xed potential u0, parameterize the
set of all potentials u such that F (u) = F (u0).

The complete solution of the inverse problem, which has �rstly been posed by
Novikov and Veselov, cf. [22], turns out to be very extensive. As the title
of this thesis already suggests, we will deal with the isospectral problem in this
work. We will anticipate more precisely in Section 1.3 what will be done.

1.2 The doubly periodic Schrödinger equation

As already mentioned, we deal with doubly periodic potentials. We want to
recap some properties induced by this periodicity. First of all, we may restrict,
due to the periodicity with respect to the lattice Γ, the domain of de�nition of
the potential u, namely R2, to the torus

F := R2/Γ

which can be identi�ed with a fundamental domain in R2. Sometimes, we speak,
by abuse of notation, of the fundamental domain F (although F is de�ned as a
torus). If we consider functions de�ned on F (for instance u ∈ L2(F )), this shall
mean (even though we won't always mention it explicitly) that these functions
are periodic with respect to Γ (otherwise, a de�nition on the torus F wouldn't
make any sense). The periodicity of u in the x-coordinates will have e�ects on
the Fermi curve F (u): Fermi curves turn out to be periodic (in k-coordinates,
k ∈ C2) with respect to a (real) lattice Γ∗ ⊂ R2 (cf. [13, Lemma 4.3.1]). The
connection between Γ and Γ∗ is that they are dual to each other. More precisely,
Γ∗ is de�ned as

Γ∗ := {x ∈ R2 : 〈x, γ〉 ∈ Z for all γ ∈ Γ}.
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The Schrödinger equation (1.1) is an eigenvalue equation of the form

Aψ = λψ,

with di�erential operator A := −∆ + u. If one wants to �nd eigenvalues λ ∈ C
for which there exists a nontrivial eigenfunction ψ, one typically examines the
singularities of the resolvent

λ 7→ (λ · id− A)−1, (1.5)

that is, one seeks those λ ∈ C for which the resolvent is not invertible, in other
words ker(λ · id−A) 6= {0}. If there exists a (local) representation of λ · id−A as
endomorphism between �nite-dimensional vector spaces, the latter criterion can
also be expressed as

det(λ · id− A) = 0, (1.6)

as is well-known from linear algebra. All λ ∈ C for which λ·id−A is not invertible
(i.e in the case above, for which (1.6) is satis�ed) constitute the point spectrum
of A. If we consider Fermi curves, we are only interested in the eigenvalue λ = 0.
Now, we want to declare the function spaces the potential u and the solution ψ
shall reside in. To this, we have to make clear at �rst what kind of solutions
we are looking for. An obvious possibility would be to consider Sobolev spaces
H1,2(F ) and H2,2(F ), respectively, if we searched for solutions in the weak or
strong sense, respectively. The most general kind of solutions are those in the
sense of distributions. Since we are interested in as large spaces as possible, we
consider, until further notice, solutions in the sense of distributions. To this,
let S(F ) := C∞(F ) be the Schwartz function space of in�nitely di�erentiable
functions on F (these serve as test functions) and let S∗(F ) be the dual space to
S(F ), i.e. the space of continuous linear functionals on S(F ) - the distributions.
As moreover, we consider doubly periodic potentials, we will often use a Fourier
representation of the potential. An apt possibilty is therefore to consider so-called
Fourier spaces, which are de�ned by (cf. [13, Def. 2.5.1])

FE := {f ∈ S∗(F ) : Ff ∈ E},

where E is some Banach space (in our context, E will be some space of sequences,
such as l2(Γ∗)) and Ff denotes the Fourier transform of the distribution f . Here,
one should keep in mind the de�nition of the Fourier transform of a distribution
(cf. [13, Def. 2.1.12]), namely

(Ff)(κ) := f(ψ−κ), κ ∈ Γ∗, (1.7)

where ψκ denotes the κ-th Fourier mode, i.e

ψκ(x) := e2πi〈κ,x〉 for κ ∈ Γ∗. (1.8)
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In this context, let's recap the "ordinary" Fourier transform of some integrable
function f (compare [13, p. 13]):

(Ff)(κ) :=

∫
F

ψ−κ(x)f(x)dx, κ ∈ Γ∗, (1.9)

where we also write f̂ for Ff . Due to [13, Proposition 2.1.14], it is in some cases of
regular distributions, i.e. distributions f ∈ S∗(F ) for which there exists a smooth
function g such that f(φ) =

∫
F
g(x)φ(x)dx for all test functions φ ∈ S(F ), allowed

to use the "ordinary" Fourier transform instead of the just de�ned "abstract"
Fourier transform in (1.7) because there holds ĝ = Ff due to this proposition.
As we will see in a moment, we can make the quasi-periodic solution ψ periodic
by some transformation. Thus, it makes sense to de�ne for example F l1(Γ∗)
as the space for the eigenfunctions. In [13, Proposition 3.3.15], it was proved
that the resolvent maps F l∞,1(Γ∗) (which is quite a large space, for the precise
de�nition see De�nition 2.2.1) boundedly into F l1(Γ∗) (with suitably chosen λ
in (1.5) such that the resolvent is a well-de�ned operator). This motivates why
we can choose F l1(Γ∗) as the space for the eigenfunctions. For the space of
potentials u : F → C, we choose the Hilbert space L2(F ). Note that f̂ ∈ l2(Γ∗)
for f ∈ L2(F ). Thus, from now on, we require for the spaces of eigenfunctions ψ
and potentials u, respectively,

ψ ∈ F l1(Γ∗), u ∈ L2(F ) (⇒ û ∈ l2(Γ∗)).

The equations (1.1), (1.2) and (1.3) make up the doubly periodic Schrödinger
equation with quasi-periodic boundary condition. In the following, we will often
use an equivalent representation of these equations by using a common formula-
tion (which has also been used in [13, p. 58], for instance), where the boundary
condition k ∈ C2 is already included in the Laplace operator ∆. More precisely,
we de�ne for k ∈ C2

∆k := (∇+ 2πik)2 = ∆ + 4πi 〈k,∇〉 − 4π2k2. (1.10)

Due to (1.3), a solution ψ of (1.1) is only quasi-periodic, but, in general, not
periodic. By setting with suitable boundary condition ful�lling (1.3)

ψp(x) := e−2πi〈k,x〉ψ(x),

a simple calculation (see [13, Lemma 3.1.9]) shows that ψp is periodic with respect
to Γ. The reformulation of (1.1), (1.2) and (1.3) is now as follows (cf. [13,
Theorem 3.1.10]): For u ∈ L2(F ), i.e. u ful�lls (1.2), the quantities k, ψ and λ
ful�ll the equations (1.1) and (1.3) if and only if

(−∆k + u)ψp = λψp. (1.11)
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Thus, (1.1) and (1.3) can be expressed in one single equation (1.11). Let's em-
phasize one more time that another advantage of this formulation is that the
eigenfunctions are periodic. In the sequel, we will, for simplicity, write ψ = ψp
since from now on, we will continue our considerations in the setting of (1.11) so
that there shouldn't be any confusion.

1.3 What is done in this work

The main goal of this work is to solve the isospectral problem as introduced in
Section 1.1 for real-valued potentials with smooth Fermi curve, i.e. to determine
for given real-valued u0 ∈ L2(F ) the isospectral set

IsoF (u0) := {u ∈ L2(F ), u real-valued : F (u) = F (u0)}

(the subscript F in IsoF (u0) stands for Fermi curve), where F (u0) is assumed
to have no singularities, which is expressed by the term smooth Fermi curve. To
begin with, we want to specify more precisely what we mean by "determine"
the isospectral set. The most ambitious way to do this would be to determine
IsoF (u0) as a set of real-valued L2-potentials given by explicit formulas. Indeed,
there are cases where this is possible. As a very important example in this
context, we want to mention the work [23] by Pöschel and Trubowitz which
deals with quite a similar problem, namely with the one-dimensional Schrödinger
equation

−y′′(x) + q(x)y(x) = λy(x),

with eigenvalue λ ∈ C and real-valued potential q ∈ L2([0, 1]). Instead of a Fermi
curve, in [23], the sequence of Dirichlet eigenvalues for some given potential is
considered and the isospectral problem asks to �nd all real-valued potentials in
L2([0, 1]) which share the same sequence of Dirichlet eigenvalues as the given po-
tential. In [23, Theorem 5.2], an explicit solution of the isospectral set in terms
of explicit formulas for the isospectral potentials is given.
For our case of Fermi curves of two-dimensional doubly periodic Schrödinger op-
erators, however, things turn out to be more di�cult so that we cannot expect
such explicit formulas. The goal we are interested in is not to explicitly write
down the elements of IsoF (u0) but to determine its topological structure. More
precisely, we want to �nd a topological space which can be explicitly parameter-
ized and which is homeomorphic to IsoF (u0), i.e. which shares the same topology
as IsoF (u0).
In general, Fermi curves are complex curves (i.e. Riemann surfaces which in gen-
eral may have singularities) of in�nite genus. A �rst step to solve the isospectral
problem would be to consider the special case of �nite genus, i.e. Fermi curves
of so-called �nite type potentials. These are Fermi curves that can be considered
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as compact complex curves in some sense (one crucial property is that their nor-
malization can be compacti�ed). The theory of those �nite type Fermi curves of
two-dimensional doubly periodic Schrödinger operators has been investigated in
the extensive work [19]. For �nite type Fermi curves, one can use the theory of
compact complex curves which allows to use particular methods that can't be ap-
plied in the in�nite type case in general. We don't want to go deeper into details
of �nite type theory of Fermi curves. For readers interested in this topic, we thus
recommend the mentioned work [19]. In our work, however, we want to consider
the general case of Fermi curves of in�nite genus. The general precondition in
our work is that we consider the isospectral problem for �nite type Fermi curves
as solved1. In this sense, we aim to solve the isospectral problem by determining
a homeomorphism

I : Iso(u1)× Ĩsoδ(u0)→ IsoF (u0),

where u1 ∈ L2(F ) is a real-valued �nite type potential with corresponding isospec-

tral set Iso(u1) and the topological space Ĩsoδ(u0) is the "asymptotic remainder"
which will be explicitly parameterized in this work. Hence, provided that I is a
homeomorphism, Iso(u1)× Ĩsoδ(u0) is the topological space we can identify the
isospectral set IsoF (u0) with. For unbounded isospectral sets (i.e. unbounded
with respect to the L2-norm), we will get a weaker result than the homeomor-
phism property which will be discussed in Section 4.2. For isospectral sets with
an additional boundedness condition, however, we will get the homeomorphism
I just mentioned. Now, we want to give a short overview of what is done in the
individual chapters and sections of this work.
Before attending to the isospectral problem, we have to do some preparatory work
concerning properties and important assertions about Fermi curves. This will be
done in Chapter 2. In Section 2.1, we give some basic facts about Fermi curves
which are already well-known. As examples, we mention the free Fermi curve
(associated to the potential u ≡ 0) and the Fermi curve for constant potentials,
cf. [5, III.16] or [13, 4.2,4.4], where the citation of the work [5] by Feldman,
Knörrer, Trubowitz deserves a special emphasis since it turnt out to be quite
helpful for our work. We also recap that every Fermi curve F (u) consists of three
parts (cf. [19, Theorem 2.35]) which, at �rst, has been proved by Krichever
(cf. [16]): Firstly, a compact part of �nite arithmetic genus, then the remain-
der called the asymptotic part consisting of, secondly, two so-called open ends
or regular pieces, which are isomorphic to the complex plane, where countably
many open bounded sets (the so-called excluded domains eν , indexed by ν ∈ Γ∗

with su�ciently large norm) are cut out, and thirdly, the so-called handles which
connect the two regular pieces by some excluded domain in each regular piece,

1Unfortunately, the isospectral problem for �nite type Fermi curves has not been completely
solved in [19], but there have been done great steps towards a solution in [19] so that researchers
interested in this topic may feel encouraged to complete it.
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respectively, compare [5, II.5, III.17, III.18]. In the case that F (u) is not smooth,
handles may "close" to a singularity. Whereas in the compact part, all kinds of
singularites may appear, in the asymptotic part, ordinary double points are the
only possible kind of singularities. In order to index the excluded domains by
ν ∈ Γ∗ with su�ciently large norm, we introduce for δ > 0 su�ciently small the
asymptotic part of the dual lattice

Γ∗δ := {κ ∈ Γ∗ : |κ| > δ−1}.

In Section 2.2, we provide important results needed for the asymptotic analysis
of Fermi curves F (u) which concern that part of the Fermi curve outside an
arbitrarily large compact set in C2 of the just mentioned trisection. Whereas �nite
type theory considers the part of F (u) within the compact set, an investigation
of the in�nite genus case, as it will be done in this work, crucially includes the
asymptotic part of F (u). In this context, we want to mention the work [13] which
also dealt with Fermi curves of in�nite genus and can be considered as a prequel
to our work. In [13], important results for the asymptotic analysis have already
been shown. Some of them can just be taken over to our work (for example
the representation of F (u) in the νth excluded domain eν , ν ∈ Γ∗δ , as the zero
set of detMν , where the 2 × 2-matrix Mν = Dν + Aν is the sum of a diagonal
matrix Dν incoding the informations of a constant potential Fermi curve and a
perturbation matrix Aν representing the deviation of the given Fermi curve from
the respective constant potential Fermi curve, cf. Theorem 2.2.6), whereas some
others require a modi�cation. One reason for this is that [13] considered another
space of potentials than we do. Another important result of this section is the
existence of unique kν ∈ eν such that the diagonal entries ofMν vanish at k = kν .
The corresponding o�-diagonal elements of Mν , the so-called perturbed Fourier
coe�cients, will play an important role in the sequel.
Fermi curves associated to potentials u of the Schrödinger equation are point-
symmetric to 0 ∈ C2, i.e. invariant with respect to the holomorphic C2-involution
k 7→ −k. If u is real-valued, F (u) is even invariant with respect to complex
conjugation, i.e. with respect to the antiholomorphic C2-involution k 7→ k. In
Section 2.3, we will see how the perturbation matrix Aν , the zeroes kν of the
diagonal elements of Mν and the perturbed Fourier coe�cients transform by
these involutions. It turns out that the symmetries of the Fermi curve induce
certain symmetries of these objects. For instance, the second o�-diagonal entry
of Mν at k = kν is already determined by the �rst o�-diagonal entry of Mν .
Hence, it su�ces to consider only this �rst o�-diagonal entry denoted by ǔν , the
νth perturbed Fourier coe�cient.
In Section 2.4, it will be shown in Theorem 2.4.2 that the map

l2(Γ∗δ) −→ l2(Γ∗δ), (û(ν))ν∈Γ∗δ
7−→ (ǔν)ν∈Γ∗δ

.

between Fourier coe�cients and perturbed Fourier coe�cients is locally invert-
ible. This assertion has already been proven in [13] for another space of potentials.
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An important corollary of this theorem is the relation ǔν = ǔ−ν , ν ∈ Γ∗δ , for real-
valued potentials u ∈ L2(F ). By the way, until Section 2.4, we consider both
cases of complex and real-valued potentials u ∈ L2(F ). In other words, Fermi
curves F (u) both with and without antiholomorphic involution are considered.
Moreover, F (u) doesn't necessarily need to be smooth. Hence so far, we are still
in quite a general setting. The reduction to exclusively real-valued potentials
with smooth Fermi curve appears later.
In Section 2.5, we will determine suitable coordinates to parameterize the ex-
cluded domains. Since we will later restrict ourselves to smooth Fermi curves, we
are especially interested in the parameterization of the handles. However, also in
Section 2.5, Fermi curves don't necessarily need to be smooth, yet. By the new
z-coordinates introduced in this section, such a handle H can be parameterized
by

H := {(z1, z2) ∈ C2 : z1 · z2 = c, |z1|, |z2| ≤ 1},

where c ∈ C is the so-called handle quantity. To show that such coordinates exist
and the determination of the corresponding handle quantities cν , ν ∈ Γ∗δ , are the
content of this section. Thereto, we introduce the so-called model Fermi curve as
in [13, Lemma 4.5.53] which turns out to be a good approximation for the given
Fermi curve, at least for real-valued potentials (for complex-valued potentials,
we will face some di�culties). This model curve is the curve that we get by
a linear approximation of the matrix Mν . The advantage of the model curve
is that the z-coordinates and the corresponding model handle quantities c̃ν can
be immediately computed. The main e�ort of Section 2.5 is to yield analogous
results for the actual Fermi curve by analyzing the appearing perturbation terms
which have to be subjected to an asymptotic analysis. A very important tool
is the so-called Quantitative Morse Lemma proved in [5, Lemma B.1, p. 245].
In order to apply this lemma, we verify its conditions in our case. Thereto, we
have to make some estimates which are necessary to keep certain perturbation
terms su�ciently small. In order to �nally determine the handle quantities, we
have to delve into the proof of the Quantity Morse Lemma since the authors in [5]
justify in their proof that one can assume without restriction the case cν = 0. For
the proof in [5], this is an admissible assumption. For our aim to determine the
handle quantities, however, we need to reconsider the general case without any
simplifying assumptions. After having determined the handle quantities cν , we
�nally show that for real-valued potentials, they satisfy together with the model
handle quantities c̃ν the relation

cν
c̃ν

= 1 + o

(
1

|ν|2

)
, as |ν| → ∞,

on the subsequence indexed by ν ∈ Γ∗δ obeying c̃ν 6= 0, cf. Theorem 2.5.9. Here,
the condition that the potential is assumed to be real-valued is crucial. For
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generic complex-valued potentials, the proof doesn't hold (and the assertion is
even expected not to be true).
The asymptotic solution of the moduli problem has already begun in [13], but
it hasn't been �nished yet. In [13], the moduli space has been parameterized
by introducing certain parameters, the so-called moduli m(u) (depending on the
potential u), but it hasn't been shown that these moduli indeed parameterize
Fermi curves, yet, which shall be shown in this work (later in Section 4.3). In
Section 2.6, we introduce these moduli m(u) = (mν(u))ν∈Γ∗δ

, indexed by ν ∈ Γ∗δ ,
which are de�ned by

mν(u) := −16π3

∫
Aν

k1dk2,

as contour integral along the νth A-cycle of the homology basis of F (u). We also
introduce the respective moduli m̃ν for the model curve of Section 2.5. Later, the
moduli mν will turn out to be invariants of the isospectral set. Hence, they are
an appropriate tool in order to determine the isospectral set.
Chapters 3 and 4 are the heart of this work. All potentials in Chapter 3 are
assumed to be real-valued. In Chapter 3, we consider the so-called asymptotic
isospectral set Isoδ(u0) de�ned by the set of potentials u satisfying the property
mν(u) = mν(u0), ν ∈ Γ∗δ , where the �rst �nitely many Fourier coe�cients of
u indexed by ν ∈ Γ∗ \ Γ∗δ are kept �xed. Actually, we'll introduce Isoδ(u0) as
a subset of l2(Γ∗δ) (and not of L2(F )) in terms of perturbed Fourier coe�cients
(which serve as asymptotic coordinates due to Section 2.4). The precise relation
between L2-potentials u and perturbed Fourier coe�cients will be given in that
chapter.
In Section 3.1, we determine the asymptotic isospectral set Ĩsoδ(u0) for the model
curve. As for the handle quantities for the model curve in Section 2.5, also the
asymptotic model isospectral set can be computed explicitly. In Theorem 3.1.1,
we'll parameterize the elements of Ĩsoδ(u0) by �ows indexed by a �ow multi-
parameter t = (tν)ν∈Γ∗δ

∈ [0, 2π)∞ (one independent parameter for each excluded
domain).
In Section 3.2, we make a perturbation ansatz. More precisely, denoting by
r(·) := m(·) − m̃(·) the deviation between moduli and model moduli, we make
the ansatz

mν(u0) = m̃ν(ut + ṽt) + rν(ut + vt) for all ν ∈ Γ∗δ ,

where the real-valued potential ut ∈ L2(F ) is an element of the isospectral �ow
of the model Fermi curve with �ow parameter t, a real-valued vt ∈ L2(F ) is given
and ṽt shall be determined. In order that ṽt can be uniquely determined, we make
an additional linear ansatz for vt and ṽt yielding a map vt 7→ ṽt

2. We'll show

2For technical reasons, the map will look slightly di�erent in Section 3.2 than mentioned
here.



1.3. WHAT IS DONE IN THIS WORK 15

�rstly that this map is well-de�ned, i.e. we have to show that it maps into the
desired space and that some reality condition is ful�lled. Secondly, we'll show
that this map ful�lls the condition of Banach's Fixed Point Theorem. In order
to achieve these two propositions, many asymptotic estimates have to be done.
Eventually, the application of Banach's Fixed Point Theorem yields the existence
of a unique �xed point vt satisfying the initial ansatz

mν(u0) = m̃ν(ut + vt) + rν(ut + vt) = mν(ut + vt) for all ν ∈ Γ∗δ .

Hence, we will have constructed isospectral �ows ut+vt of the actual Fermi curve.
In Section 3.3, we'll show with the results of the foregoing Section 3.2 that there
exists a homeomorphism Ĩsoδ(u0)→ Isoδ(u0).
After having solved the isospectral problem asymptotically for real-valued poten-
tials, we want to determine Iso(u0) in Chapter 4 in the sense described at the
beginning of this Section 1.3. Here, Iso(u0) is de�ned as the set of all real-valued
potentials u ∈ L2(F ) satisfying m(u) = m(u0).
In Section 4.1, we'll show that there exists a �nite set of linear independent holo-
morphic 1-forms ωj on a given Fermi curve F (u) which is dual to the �rst �nitely
many A-cycles Ai of the homology basis of F (u) provided that F (u) is smooth,
i.e. for N ∈ N, there holds∫

Ai

ωj = δi,j for i, j ∈ Γ∗, |i|, |j| ≤ N.

In particular, from now on, we require the smoothness of Fermi curves. A
similar statement with further requirements on the respective Riemann sur-
face has already been shown in [5, Theorem 1.17, Theorem 3.8]. The main
goal of this section is to derive some submersion properties of the moduli map
u 7→ mf (u) := (mν(u))ν∈Γ∗\Γ∗δ . We'll prove these properties both for complex-
valued and for real-valued potentials. At �rst, we consider complex-valued poten-
tials (V,W ) ∈ L2(F )×L2(F ) of the Dirac operator which can be seen as a gener-
alization of the Schrödinger operator. Any Schrödinger potential u ∈ L2(F ) can
be considered as a Dirac potential (V,W ) ∈ L2(F )× L2(F ) by (V,W ) := (1, −u

4
)

or (V,W ) := (−u
4
, 1). The existence of holomorphic 1-forms dual to the �rst

�nitely many A-cycles together with a relation between a symplectic form on
L2(F )×L2(F ) and Serre duality proved in [27, Lemma 3.2] by M. Schmidt will
yield that u 7→ mf (u) is a submersion. The next step is to transfer this result to
real-valued potentials. The smoothness of F (u) is a crucial ingredient in order to
prove the submersion properties of the moduli map.
Section 4.2 is the most important section of Chapter 4. An essential result will
be the construction of a canonical sequence of �nite type potentials (un)n∈N con-
verging to some given real-valued potential u0 ∈ L2(F ), where

mν(un) =

{
mν(u0), ν ∈ Γ∗, |ν| ≤ n

0, ν ∈ Γ∗, |ν| > n
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holds. In Chapter 3, we kept the �rst �nitely many Fourier coe�cients �xed and
determined the remaining coe�cients in terms of perturbed Fourier coe�cients
such that the respective moduli (mν(u))ν∈Γ∗δ

were equal to the given (mν(u0))ν∈Γ∗δ
.

In that procedure, we didn't consider the �rst �nitely many moduli. In fact, by
varying the Fourier coe�cients for ν ∈ Γ∗δ , the �rst �nitely many moduli mν(u),
ν ∈ Γ∗ \ Γ∗δ , won't remain equal to mν(u0) in general. Now in Section 4.2, we
have to ensure that the moduli mν(u) are equal to mν(u0) for all ν ∈ Γ∗ (and not
only for the asymptotic remainder). This will be done in two steps. In the �rst
step, we determine a set (containing the isospectral set) of potentials u whose
moduli (mν(u))ν∈Γ∗δ

are equal to (mν(u0))ν∈Γ∗δ
. In the second step, we pick out

of this set those potentials u whose moduli mf (u) are also equal to mf (u0). This
�nally yields a homeomorphism

I : Iso(u1)× Ĩsoδ(u0)→ Iso(u0).

as already explained at the beginning of Section 1.3 provided that Iso(u0) satis�es
some boundedness condition. If, however, Iso(u0) is unbounded, we intersect
Iso(u0) with balls BR(u0) ⊂ L2(F ) with arbitrarily large R > 0 to gain an
analogous result. This result, however, will be weaker because �rstly, the choice
of δ > 0 in Ĩsoδ(u0) depends on R and secondly, we'll have to take into account
some more technical details induced by the intersection of Iso(u0) with BR(u0).
Finally in Section 4.3, we show the equivalence F (u) = F (u0)⇐⇒ m(u) = m(u0)
yielding IsoF (u0) = Iso(u0), that is, the moduli constitute indeed an invariant
of the isospectral set which justi�es the investigations in the foregoing chapters.



Chapter 2

Fermi curves

2.1 Examples and basic properties

In this section, we summarize some basic properties of Fermi curves. As examples,
we recap the Fermi curve of the zero potential u ≡ 0 (the so-called free Fermi
curve) and the Fermi curve for constant potentials u ≡ const. Furthermore, we
recap the asymptotic freeness and the trisection into a compact part, regular
pieces and handles.
Let's begin with the easiest and at the same time most important example: The
free Fermi curve. Due to [13, Theorem 4.2.5], the free Fermi curve F (0) is given
by

F (0) = R+ Γ∗,

with R := {k = (k1, k2) ∈ C2 : k2 = k2
1 + k2

2 = (k1 − ik2)(k1 + ik2) = 0}. Since
Fermi curves F (u) (for arbitrary potential) are periodic with respect to Γ∗, one
usually considers the quotient F (u)/Γ∗. This quotient is well-de�ned if the pairs
of distinct points (k−κ , k

+
κ ), de�ned by

k−κ :=
1

2

(
κ1 + iκ2

−iκ1 + κ2

)
, k+

κ :=
1

2

(
−κ1 + iκ2

−iκ1 − κ2

)
, κ = (κ1, κ2) ∈ Γ∗,

are identi�ed to double points for all κ ∈ Γ∗ (cf. [13, Theorem 4.2.5]). For an
arbitrary doubly periodic potential u , we consider its Fourier series expansion,
cf. [13], p. 89:

u(x) =
1

µ(F )

∑
κ∈Γ∗

ψκ(x)û(κ) =: 4π2û0︸ ︷︷ ︸
constant part

+
1

µ(F )

∑
κ∈Γ∗\{0}

ψκ(x)û(κ)

︸ ︷︷ ︸
=:ū(x)=non-constant part

, (2.1)

where û0 := û(0)
4π2µ(F )

and µ(F ) denotes the Lebesgue measure of the fundamental
domain F . As to Fermi curves with constant potential, we consider only the

17
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constant part 4π2û0 and get the following parameterization of the corresponding
Fermi curve (cf. [13, Theorem 4.4.1]):

F (4π2û0) = R(û0) + Γ∗,

where R(û0) := {k ∈ C2 : k2 + û0 = 0}. Again, R(û0) serves as a system of
representatives of the quotient F (4π2û0)/Γ∗ provided that the pairs of distinct
points (k−κ (û0), k+

κ (û0)), de�ned by

k−κ (û0) :=
1

2

(
κ1 + iκ2ξ
−iκ1ξ + κ2

)
, k+

κ (û0) :=
1

2

(
−κ1 + iκ2ξ
−iκ1ξ − κ2

)
, κ ∈ Γ∗ \ {0},

(2.2)

with ξ := ξ(û0, κ) :=
√

1 + 4 û0

κ2 , are identi�ed to double points for all κ ∈ Γ∗\{0}.
Fermi curves of constant potentials (including the free Fermi curve as a special
case) therefore have a quite clear structure: They are complex curves with or-
dinary double points as singularities exactly at the points k±κ (û0), 0 6= κ ∈ Γ∗.
Fermi curves (of arbitrary potential u ∈ L2(F )) are subvarieties of C2 (cf. for
example [13, Theorem 4.1.3]), that is, locally, they are described as the zero locus
of a holomorphic function f : U ⊂ C2 → C. Singularities of the Fermi curve are
thus described by the zeroes of the gradient, ∇f = 0, on the curve {f = 0}.
For arbitrary potentials, the corresponding Fermi curves turn out to be much
more complicated than in the case of constant potentials. There can occur singu-
larities of higher order (not only double points), for example. Fortunately, outside
a su�ciently large compact set K ⊂ C2 (depending on the potential), any Fermi
curve approximates the free Fermi curve. The crucial result in this context is
the so-called asymptotic freeness of Fermi curves of arbitrary L2(F )-potentials,
which has been shown in [19, Theorem 2.35]. This means that for every potential
u ∈ L2(F ), the singularities of the corresponding Fermi curve F (u)/Γ∗ in C2 \K
remain well-behaved. More precisely: There is a δ > 0 (depending on u) which
de�nes the asymptotic part Γ∗δ of the lattice Γ∗,

Γ∗δ := {κ ∈ Γ∗ : |κ| > δ−1}, (2.3)

as well as an open set V ⊂ C2 (with 0 ∈ V ) that only depends on Γ∗ such that
all possible singularities outside the just mentioned compact set are contained in
the so-called excluded domains F (u) ∩ (k±κ (û0) + V ), κ ∈ Γ∗δ . Moreover, every
excluded domain contains at most one singularity and double points are the only
kind of singularities that can occur. If there's no singularity in k±κ (û0) + V , we
say that the double point at k±κ (û0) splits up to a handle. Such a handle can
be (up to a di�eomorphism) considered as a cylinder connecting the excluded
domain around k−κ (û0) with the excluded domain around k+

κ (û0) (for the de�nition
of handles, compare [5, II.5, (GH2)] and in particular Section 2.5 for a more
detailed treatment of the handles). If, on the other hand, there is a singularity
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in k±κ (û0) + V , i.e. a double point (as in the free case), we say that the double
point doesn't split up (or equivalently: remains unsplit). Outside the compact set
K, the singularities of F (u)/Γ∗ are thus enumerated by κ ∈ Γ∗δ . We now arrive
at the trisection of the Fermi curve F (u)/Γ∗ stated in [13, Corollary 4.3.9] and
proven in [19, Theorem 2.35]:

• The compact part of F (u)/Γ∗ which is contained in a compact subset K ⊂
C2

• The asymptotic free part of F (u)/Γ∗ which is contained in C2\K and where
the excluded domains are cut o� (this part of F (u)/Γ∗ corresponds to the
regular pieces introduced in [5, II.5, (GH1)], at least to those part of the
regular pieces lying in C2 \ K). Moreover, Fermi curves have two regular
pieces. They can be considered as two complex planes (with corresponding
domains cut o�).

• The handles which connect the two regular pieces of the asymptotic free
part to each other, i.e. which connect the excluded domain around k−κ (û0)
with the excluded domain around k+

κ (û0), κ ∈ Γ∗δ .

2.2 Important results for the asymptotic analysis

In many points of view, this work is a sequel of [13]. In this section, we recap
some important results, often taken from [13] and partially reformulated, which
are needed for our further considerations. In [13], the theorems were more gener-
ally stated for F l∞,1(Γ∗)-potentials. However, many (but not all) of the results
carry over to u ∈ F l2(Γ∗), since l2(Γ∗) ⊂ l∞,1(Γ∗) (cf. [13, Proposition 2.4.3]).
Although we won't use so-called Lorentz spaces like l∞,1(Γ∗) in this work, some
tools for their de�nition (the so-called decreasing rearrangement, for instance)
will appear in some proofs of this work anyway, namely in those proofs taken
from [13] which had to be modi�ed to �t into the setting of l2-sequences. That is
why we give the de�nition of l∞,1(Γ∗) (cf. [13, p. 26] and [13, De�nition 2.4.1]).
We also give the de�nition of the Lorentz space l1,∞(Γ∗) since it will appear in
Lemma 2.2.3 .

De�nition 2.2.1. Let a := (aν)ν∈Γ∗ ∈ l∞(Γ∗) be a bounded sequence of complex
numbers. Then we de�ne the distribution function da of a by

da : (0,∞)→ N0 ∪ {∞}, λ 7→ #{ν ∈ Γ∗ : |aν | > λ}.

The decreasing rearrangement a∗ := (a∗n)n∈N of a is de�ned as

a∗ : N→ [0,∞), n 7→ a∗n := inf{λ > 0 : da(λ) ≤ n− 1}.
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The Lorentz space l∞,1(Γ∗) is de�ned as the set of all sequences a ∈ l∞(Γ∗) such
that

‖a‖∞,1 :=
∞∑
n=1

a∗n
n
<∞.

The Lorentz space l1,∞(Γ∗) is de�ned as the set of all sequences a ∈ l∞(Γ∗) such
that

‖a‖1,∞ := sup
n∈N

(n · a∗n) <∞.

Remark. We can depict the decreasing rearrangement as follows (as has already
been mentioned in [13, p. 27]): If limn→∞ a

∗
n = 0, then a∗ enumerates all values

of (|aν |)ν∈Γ∗ counting multiplicity (except possibly zero) in decreasing order.

We want to give a local description of a given Fermi curve F (u), restricted to
the excluded domains, in terms of the zero set of a holomorphic function f :=
detM : U ⊂ C2 → C (with some matrix-valued function M : U ⊂ C2 → C2×2)
as already seen in (1.6). We start with a de�nition, cf. [13, De�nitions 4.5.1 and
4.5.18].

De�nition 2.2.2. For all k ∈ C2, all u ∈ L2(F ) and all ν ∈ Γ∗δ such that the
operator

1l− (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1ū (2.4)

exists and is boundedly invertible on F l1(Γ∗), letA±,ν(k+k±ν (û0), u), the so-called
perturbation matrix, be the restriction of the operator

ū(1l− (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1ū)−1 (2.5)

to K±ν . Here, ū denotes the non-constant part of u (compare the representation
(2.1)), K±ν := span{ψ0, ψ±ν} denotes the generally (for ν 6= 0) two-dimensional
complex vector space generated by the Fourier modes ψ0 ≡ 1 and ψ±ν (compare
(1.8)) and

πKν : E → Kν , f 7→ f̂(0)ψ0 + f̂(ν)ψν

denotes the projection onto Kν , where E denotes an arbitrary complex Banach
space which contains Kν as a closed subspace.

Remark. In the proof of [13, Proposition 4.5.15], it has been shown that the
operator (2.4) is indeed boundedly invertible on F l1(Γ∗) as required, provided
that δ > 0 is su�ciently small (as to the dependence on δ, note that ν ∈ Γ∗δ
appears in the operator (2.4)).
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We brie�y want to comment on this de�nition. The perturbation matrix A±(k+
k±ν (û0), u) is an operator mapping a subspace of F l1(Γ∗) into a subspace of
F l2(Γ∗). This is due to the fact that (2.4) is boundedly invertible and û ∈
F l2(Γ∗). More precisely, the inverse of (2.4) exists and maps a subspace of
F l1(Γ∗) into F l1(Γ∗). Multiplying with −ū ∈ F l2(Γ∗) (this yields the operator
(2.5)), we get as result a function in F l2(Γ∗) becausê̄u · f = ˆ̄u ∗ f̂ ∈ l2(Γ∗) ∗ l1(Γ∗) ⊆ l2(Γ∗)

for f ∈ F l1(Γ∗) due to Young's inequality for convolutions (cf. [2, p. 199,
Theorem 4.2.4], for instance).
However, since the perturbation operator A±(k + k±ν (û0), u) is, by de�nition,
restricted to K±ν , it can be considered as a 2×2- matrix (with entries depending
on u and k) because K±ν is two-dimensional (we don't consider the case ν = 0
unless explicitly stated). Let's explain some indices and arguments in the term

A±,ν(k + k±ν (û0), u) := πK±ν [ū(1l− (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1ū)−1]|K±ν .
(2.6)

The subscript ± in A±,ν refers to ±ν in πK±ν , the argument k + k±ν (û0) in A±,ν
refers to the corresponding subscript in the Laplacian ∆k+k±ν (û0). Strictly speak-
ing, the subscript ν in A±,ν is redundant since the dependence on ν is already
indicated in the argument k + k±ν (û0). In other words, both the subscripts ν in
A±,ν and in k±ν (û0) always denote the same ν. Yet, we write A±,ν instead of A±
because there are, besides k±ν (û0), also other terms in the perturbation matrix
depending on ν. The rest of the notation should be clear. We emphasize this be-
cause these indices have an e�ect on signs of certain ν appearing in (2.6). When
we will later consider transformation properties of the perturbation matrix, the
knowledge of how to read this notation will get important. We introduce the
following abbreviations (as in [13], equation (4.5.22)) that will turn out to be
handy in the subsequent considerations:

A := ū

B := (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1 = (∆k+k±ν (û0) − 4π2û0)−1(1l− πK±ν )
A±,ν(k + k±ν (û0), u) =: πK±νA(1l−BA)−1|K±ν .

(2.7)

The so-called reduced resolvent B de�ned above will be an important object in
our considerations. The following lemma (cf. [13, Lemma 4.5.9]) deals with its
Fourier transform.

Lemma 2.2.3. There is an open neighbourhood V of 0 ∈ C2 which depends only
on Γ∗ such that

lim
|ν|→∞

inf
k∈V

ρ∈Γ∗\{0,±ν}

|(ρ+ k + k±ν (û0))2 + û0| =∞
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and there is a δ > 0 such that for k ∈ V

g(k, ·, ·) : (ν, ρ) 7→

{
1

(ρ+k+k±ν (û0))2+û0
, ρ 6= 0,±ν

0 otherwise
(2.8)

is in c0(Γ∗δ)⊗ l1,∞(Γ∗), that is, g(k, ·, ρ) ∈ c0(Γ∗δ) with respect to ν and g(k, ν, ·) ∈
l1,∞(Γ∗) with respect to ρ. Here, c0(Γ∗) denotes the subspace of l∞(Γ∗) of all
sequences converging to zero.

We brie�y comment on the just de�ned map (2.8). As mentioned above, the
sequence (2.8) with respect to ρ (for �xed ν) is virtually the Fourier transform of
the reduced resolvent

B := (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1,

introduced in (2.7), more precisely, for f ∈ F l2(Γ∗),

B̂f(ρ) = − 1

4π2

f̂(ρ)

(ρ+ k + k±ν (û0))2 + û0

, ρ ∈ Γ∗ \ {0,±ν}. (2.9)

In particular, B maps F l2(Γ∗) into F l1(Γ∗) due to Hölder's inequality (note that
l1,∞(Γ∗) ⊆ l2(Γ∗), cf. [13, Proposition 2.4.3]). The following lemma provides an
important estimate of ‖g(k, ν, ·)‖l2(Γ∗).

Lemma 2.2.4. The function g (2.8) satis�es

‖g(k, ν, ·)‖l2(Γ∗) = O
(

1/
√
|ν|
)
, as |ν| → ∞

uniformly for all k ∈ V (with V as in Lemma 2.2.3). Moreover, there holds

sup
ρ∈Γ∗\{0,±ν}

|g(k, ν, ρ)| = O

(
1

|ν|

)
, as |ν| → ∞,

uniformly in k ∈ V .

Remark. A reader of the work [13] may possibly ask why we don't use the es-
timate g∗(k, ν, n) ≤ c

n+|ν|2 (with some c > 0) which is stated in [13, De�ni-

tion 4.5.37] because with this estimate, one could conclude the desired estimate

‖g(k, ν, ·)‖l2(Γ∗) = O
(

1/
√
|ν|
)
, as |ν| → ∞, considerably faster than we'll do in

the following proof. The answer is that �rstly, this estimate in [13] is claimed
without any proof and that secondly, there is evidence that this estimate is even
wrong. One could at most expect an estimate like g∗(k, ν, n) ≤ c

n+|ν| . But of
course, also this weaker estimate would need to be proved. The failure of the es-
timate in [13] is, by the way, the crucial point why essential subsequent proofs in
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[13] won't hold for F l∞,1-potentials anymore and we thus decided to consider L2-
potentials instead of (the larger space of) F l∞,1-potentials. Although the proof
of [13, Lemma 4.5.9] (stated in this work as Lemma 2.2.3 above) already uses
this wrong estimate1 in order to prove the c0(Γ∗δ)-assertion in Lemma 2.2.3, the
proof of [13, Lemma 4.5.9] still holds since the estimate of Lemma 2.2.4 implies
the c0(Γ∗δ)-claim. Of course, this is not a circular argument since in the following
proof of Lemma 2.2.4, we will only use the de�nition of g (2.8), not the statement
of Lemma 2.2.3.

Proof. Let κ̂ and κ̌ be two generators of Γ∗. We set |κ| := min{|κ̂|, |κ̌|} which
can be considered as a lattice constant.
Since the domain V only dependent on Γ∗ is bounded, we may without loss of
generality set k = 0 in this proof. In other words, the parameter k ∈ V doesn't
a�ect the decreasing behaviour of ‖g(k, ν, ·)‖l2(Γ∗) with respect to |ν|. Moreover,
for simplicity, we only consider the signature k+

ν (û0) (the other signature k−ν (û0)
is treated completely analogously). With the notation ν⊥ :=

(
ν2

−ν1

)
for ν ∈ Γ∗, we

compute with k±ν (û0)2 + û0 = 0

g(0, ν, ρ) =
1

(ρ+ k+
ν (û0))2 + û0

=
1

ρ2 + 2 〈ρ, k+
ν (û0)〉

=
1

ρ2 + 〈ρ,−ν + iξν⊥〉
=

=
1

(ρ− ν
2
)2 − |ν|2

4
+ iξ 〈ρ, ν⊥〉

(2.10)

for all ν, ρ ∈ Γ∗ with ρ 6= 0, ν. Without loss of generality2, we may assume
û0 ∈ R. Hence, there is an N ∈ N such that ξ ∈ R for all |ν| ≥ N . Therefore,

‖g(0, ν, ·)‖2
l2(Γ∗) =

∑
ρ∈Γ∗\{0,ν}

1(
(ρ− ν

2
)2 − |ν|2

4

)2

+ ξ2 〈ρ, ν⊥〉2
(2.11)

for all |ν| ≥ N . For the rest of the proof, all appearing ν shall ful�ll |ν| ≥ N
(although it won't always be explicitly mentioned). We will estimate the series
(2.11) in two steps. In the �rst step, we use an estimate by setting the second
summand in the denominator in (2.11) equal to zero. In the second step, we use
an estimate by setting the �rst summand in the denominator in (2.11) equal to
zero. In both steps, we estimate the appearing series by corresponding integrals.
This is admissible due to monotonicity properties of the functions f1, f2 de�ned
in the following in their respective domains of consideration.

1This estimate actually appears in the proof of [13, Lemma 4.3.3] which the proof of [13,
Lemma 4.5.9] refers to.

2Since ξ → 1 as |ν| → ∞, cf. the de�nition of ξ after (2.2), a possible imaginary part of ξ
can be neglected since it doesn't disturb our estimates provided |ν| ≥ N for N ∈ N su�ciently
large.
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Figure 2.1: Concerning the estimate of ‖g(0, ν, ·)‖l2(Γ∗)

Let's begin with the �rst step. We consider the function

f1 : R2 \ A→ R, (x, y) 7→
((

(x, y)− ν

2

)2

− |ν|
2

4

)−2

,

where A ⊂ R2 is the annulus centered at ν/2 with inner radius |ν|/2−|κ| and outer
radius |ν|/2 + |κ|. This annulus is depicted in Figure 2.1. Obviously, the level
sets of f1 are concentric circles with center ν/2. The circle with center ν/2 and
radius |ν|/2 is the set of singularities of f1. Hence, f1 is well-de�ned in its domain
of de�nition where A is cut out. We compute the integral

∫
R2\A f1(x, y)d(x, y) by

using polar coordinates and a coordinate shift (x, y) 7→ (x, y) + ν/2:∫
R2\A

f1(x, y)d(x, y) = 2π

∫ |ν|
2
−|κ|

0

r(
r2 − |ν|2

4

)2dr + 2π

∫ ∞
|ν|
2

+|κ|

r(
r2 − |ν|2

4

)2dr.

By the decomposition

r(
r2 − |ν|2

4

)2 =
1

2|ν|

 1(
r − |ν|

2

)2 −
1(

r + |ν|
2

)2

 ,

we get ∫
r(

r2 − |ν|2
4

)2dr =
1

2|ν|

(
− 1

r − |ν|
2

+
1

r + |ν|
2

)
+ const.
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This yields ∫ |ν|
2
−|κ|

0

r(
r2 − |ν|2

4

)2dr =
1

2|ν|

(
1

|κ|
+

1

|ν| − |κ|
− 4

|ν|

)
,

∫ ∞
|ν|
2

+|κ|

r(
r2 − |ν|2

4

)2dr =
1

2|ν|

(
1

|κ|
− 1

|ν|+ |κ|

)

and hence, ∫
R2\A

f1(x, y)d(x, y) = O

(
1

|ν|

)
, as |ν| → ∞. (2.12)

For the second step, we consider the function

f2 : R2 \ S → R, (x, y) 7→
〈(

x

y

)
,

(
ν2

−ν1

)〉−2

= (ν2x− ν1y)−2,

where the strip S ⊂ R2 is de�ned as S :=
{
t ν|ν| + sν

⊥

|ν| : t ∈ R, s ∈ [−|κ|, |κ|]
}
.

Since the set of all (x, y) ∈ R2 ful�lling ν2x − ν1y = 0 is the line {tν : t ∈ R}
through 0 and ν, the map f2 is well-de�ned on R2\S. The strip S is also depicted

in Figure 2.1. Let Ω :=
{
t ν|ν| + sν

⊥

|ν| : t ∈
[
− |ν|

2
− |κ|, |ν|

2
+ |κ|

]
, s ∈ R \ [−|κ|, |κ|]

}
.

Consider the linear map φ : R2 → R2 uniquely de�ned by φ(1, 0) := ν/|ν| and
φ(0, 1) := ν⊥/|ν|. Its functional determinant is equal to detφ′ = (−ν2

1−ν2
2)/|ν|2 =

−1. We thus get∫
Ω

f2(x, y)d(x, y) =

∫
φ−1(Ω)

f2(φ(x, y))| detφ′|d(x, y) =

= 2

∫ |ν|
2

+|κ|

− |ν|
2
−|κ|

∫ ∞
|κ|

1

〈φ(x, y), ν⊥〉2
dy dx =

= 2

∫ |ν|
2

+|κ|

− |ν|
2
−|κ|

∫ ∞
|κ|

|ν|2

〈xν + yν⊥, ν⊥〉2
dy dx = 2

∫ |ν|
2

+|κ|

− |ν|
2
−|κ|

∫ ∞
|κ|

1

|ν|2y2
dy dx =

=
2

|ν|2

∫ |ν|
2

+|κ|

− |ν|
2
−|κ|

1

|κ|
dx =

2

|ν|2|κ|
(|ν|+ 2|κ|) = O

(
1

|ν|

)
, as |ν| → ∞. (2.13)

We now go back to (2.11). We estimate∑
ρ∈Γ∗\{0,ν}

1(
(ρ− ν

2
)2 − |ν|2

4

)2

+ ξ2 〈ρ, ν⊥〉2
≤

≤
∑

ρ∈(R2\A)∩Γ∗

1(
(ρ− ν

2
)2 − |ν|2

4

)2 +
1

ξ2

∑
ρ∈Ω∩Γ∗

1

〈ρ, ν⊥〉2
(2.12),(2.13)

= O

(
1

|ν|

)
,
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as |ν| → ∞. This shows ‖g(0, ν, ·)‖2
l2(Γ∗) = O(1/|ν|), as |ν| → ∞ and the �rst

claim of the lemma is proved.
As to the second claim concerning the estimate of supρ∈Γ∗\{0,±ν} |g(k, ν, ρ)|, we
may again consider without loss of generality the case k = 0 with the same reason
as before. The idea of estimating this term is essentially the same as before with
the only di�erence that we don't estimate integrals of squares of f1, f2 but this
time the supremum of f1, f2. More precisely, we get with κ := |κ| ν|ν|

sup
ρ∈(R2\A)∩Γ∗

1∣∣∣(ρ− ν
2
)2 − |ν|2

4

∣∣∣ = O

 1∣∣∣(ν2 ± κ)2 − |ν|2
4

∣∣∣
 = O

(
1

|ν|

)
,

as |ν| → ∞, since∣∣∣∣(ν2 ± κ)2

− |ν|
2

4

∣∣∣∣ =
∣∣±|κ||ν|+ |κ|2∣∣ ≥ |ν|(|κ| − |κ|2

|ν|

)
.

Likewise (compare Figure 2.1),

sup
ρ∈Ω∩Γ∗

1

| 〈ρ, ν⊥〉 |
≤ sup

{
1

| 〈xν + yν⊥, ν⊥〉 |
: (x, y) ∈ R2, |y| ≥ |κ|

|ν|

}
=

= sup
|y|≥ |κ||ν|

1

|y||ν|2
=

1

|κ||ν|
= O

(
1

|ν|

)
,

as |ν| → ∞. Altogether with (2.10), we get

sup
ρ∈Γ∗\{0,±ν}

|g(0, ν, ρ)| = sup
ρ∈Γ∗\{0,±ν}

1√∣∣∣(ρ− ν
2
)2 − |ν|2

4

∣∣∣2 + ξ2| 〈ρ, ν⊥〉 |2
≤

≤ sup
ρ∈(R2\A)∩Γ∗

1∣∣∣(ρ− ν
2
)2 − |ν|2

4

∣∣∣ +
1

ξ
sup

ρ∈Ω∩Γ∗

1

| 〈ρ, ν⊥〉 |
= O

(
1

|ν|

)
,

as |ν| → ∞. This proves the second claim of the lemma.

As already mentioned, [13] deals with F l∞,1-potentials. In this context, one uses
so-called localised quasi-norms. Since we are interested in L2(F )-potentials, we
can use the ordinary L2-norm (or the l2-norm in the Fourier space, respectively).
In the following, we will recap some assertions of [13] (namely the subsequent
Theorem 2.2.6, Lemma 2.2.7 and Theorem 2.2.8 ) that can be translated into the
L2-potential case without any di�culties by adapting the formulations correspon-
dently. For this purpose, we have to prove the following lemma (the analogon
of [13, Lemma 4.5.13]) which is the crucial statement for the L2-reformulation of
the subsequent assertions.
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Lemma 2.2.5. There is an open neighbourhood V of 0 ∈ C2 which depends only
on Γ∗ such that for all ε > 0 and all u0 ∈ L2(F ), there is a δ > 0 and an R > 0
such that for all k ∈ V , all ν ∈ Γ∗δ and all u ∈ BR(u0) ⊂ L2(F ), there holds

‖(1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1ū‖F l1(Γ∗)→F l1(Γ∗)
(2.7)
= ‖BA‖F l1(Γ∗)→F l1(Γ∗) < ε.

Proof. Let ε > 0 and f ∈ F l1(Γ∗). Then due to Young's inequality for convo-
lutions and the convolution theorem ‖ūf‖F l2(Γ∗) = ‖ˆ̄u ∗ f̂‖l2(Γ∗) (cf. [2, p. 199,
Theorem 4.2.4] or [13, Theorem 2.1.10], for example), we obtain

‖BAf‖F l1(Γ∗) ≤ ‖B‖F l2(Γ∗)→F l1(Γ∗) · ‖ˆ̄u‖l2(Γ∗) · ‖f̂‖l1(Γ∗)

We have (by using the suggestive notation lq(ρ) which shall signify lq(Γ∗) with
respect to ρ)

‖B‖F l2(Γ∗)→F l1(Γ∗) = sup
‖f‖Fl2=1

‖Bf‖F l1 = sup
‖f‖Fl2=1

‖(g(k, ν, ρ) · f̂(ρ))ρ‖l1(ρ) ≤

≤ ‖g(k, ν, ρ)‖l2(ρ)

due to Hölder's inequality. Lemma 2.2.4 yields ‖g(k, ν, ρ)‖l2(ρ) → 0, as |ν| → ∞.

For u ∈ BR(u0) ⊂ L2(F ), there are suitable 0 ≤ r < R, ĥ ∈ B1(0) ⊂ l2(Γ∗) with
û = û0 + rĥ and

‖û‖l2(Γ∗) = ‖û0 + rĥ‖l2(Γ∗) ≤ ‖û0‖l2(Γ∗) +R,

where we made use of Parceval's identity ‖u‖L2(F ) = ‖û‖l2(Γ∗). Choose for exam-
ple R = 1 and δ > 0 such that with ‖û0‖l2(Γ∗) + 1 =: C

‖g(k, ν, ρ)‖l2(ρ) <
ε

C

for ν ∈ Γ∗δ . Thus, ‖BA‖F l1(Γ∗)→F l1(Γ∗) < (ε/C) · C = ε. This shows the assertion.

The reason why we call the object (2.6) perturbation matrix will get clear in the
following Theorem, cf. [13, Theorem 4.5.19].

Theorem 2.2.6. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ L2(F ), there is a δ > 0 and an R > 0 such that
for all k ∈ V , all ν ∈ Γ∗δ and all u ∈ BR(u0) ⊂ L2(F ), the local part of the Fermi
curve F (u) ∩ (V + k±ν (û0)) is described by the zero locus of

k 7→ det(M±,ν(k + k±ν (û0), u)),



28 CHAPTER 2. FERMI CURVES

where M = M±,ν(k + k±ν (û0), u) is de�ned by 3

M :=

(
4π2((k + k±ν (û0))2 + û0) 0

0 4π2((k + k∓ν (û0))2 + û0)

)
+A±,ν(k + k±ν (û0), u). (2.14)

For a constant potential u ≡ const, we have A±,ν(k + k±ν (û0), u) ≡ 0 since ū ≡ 0
in this case and the matrix M is equal to the diagonal matrix in formula (2.14).
If we perturb the constant part of the potential by a non-constant term ū 6= 0,
we get a perturbation term in (2.14), namely the perturbation matrix (2.6). This
explains the name perturbation matrix.
An important lemma is the following (cf. [13, Lemma 4.5.21])

Lemma 2.2.7. There is an open neighbourhood V of 0 ∈ C2 which depends only
on Γ∗ such that for all u0 ∈ L2(F ), there is a δ > 0 and an R > 0 such that for
all k ∈ V , all ν ∈ Γ∗δ and all u ∈ BR(u0) ⊂ L2(F ), the matrix A±,ν(k+k±ν (û0), u)
is continuously di�erentiable in k, and we have

lim
|ν|→∞

∥∥∥∥ ∂∂kA±,ν(k + k±ν (û0), u)

∥∥∥∥ = 0

uniformly in k ∈ V and u ∈ BR(u0). Here, ‖ · ‖ denotes the matrix norm induced
by the standard hermitian vector norm in C2.

Next, we want to introduce the so-called perturbed Fourier coe�cients which will
serve as some kind of asymptotic coordinates for a potential u. First, we need the
following result which states that in every excluded domain, there exists a unique
point in which the matrix (2.14) is o�-diagonal (cf. [13, Proposition 4.5.29]).

Theorem 2.2.8. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ L2(F ), there is a δ > 0 and an R > 0 such that
for all ν ∈ Γ∗δ and all u ∈ BR(u0) ⊂ L2(F ), there is a unique k±,ν ∈ V such that
the diagonal entries of the matrix (2.14) get zero at k = k±,ν, more precisely:

A+,ν(k+,ν + k+
ν (û0), u)11 + 4π2((k+,ν + k+

ν (û0))2 + û0) = 0,

A+,ν(k+,ν + k+
ν (û0), u)22 + 4π2((k+,ν + k−ν (û0))2 + û0) = 0,

A−,ν(k−,ν + k−ν (û0), u)11 + 4π2((k−,ν + k−ν (û0))2 + û0) = 0,

A−,ν(k−,ν + k−ν (û0), u)22 + 4π2((k−,ν + k+
ν (û0))2 + û0) = 0.

3In [13], there occurred a small sign mistake (as the proof of [13, Theorem 4.5.19] shows):
The minus sign in [13, Theorem 4.5.19] in front of the diagonal terms −4π2((k+k±ν (û0))2 + û0)
must be a plus sign. Equivalently, one could also use the sign as in [13] if instead, one de�nes
the perturbation matrix with a minus sign in front of the right hand side of (2.6). We decided
to de�ne the perturbation matrix as in [13] and set plus signs in front of the diagonal terms of
the diagonal matrix in M as just explained.
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Now, we can de�ne the (preliminary) perturbed Fourier coe�cients ǔ1(±, ν)±,
ǔ2(±, ν)± for ν ∈ Γ∗ by (compare [13, De�nition 4.5.31])

ǔ1(±, ν)± := A±,ν(k±,ν + k±ν (û0), u)12,

ǔ2(±, ν)± := A±,ν(k±,ν + k±ν (û0), u)21. (2.15)

Here, the �rst argument ± of ǔ1/2(±, ν)± refers to the subscript ± in k±,ν (which
also corresponds to the subscript ± in A±,ν), the superscript ± of ǔ1/2(±, ν)±

refers to the superscript ± in k±ν (û0).
This is only a preliminary de�nition (cf. De�nition 2.3.3) because in Section
2.3, we will use some transformation properties to get rid of some sub- and
superscripts (cf. equation (2.20)) which complicate the notation at the moment.

2.3 Involutions and their transformation proper-

ties

In this section, we want to consider involutions of C2 and the transformation
behaviour of Fermi curves and their inherent objects (such as the perturbation
matrix) by action of these involutions. The most important involution is the
holomorphic involution

σ : C2 → C2, k 7→ −k.

Due to [13, Proposition 4.5.8], σ leaves a Fermi curve F (u) invariant. More-
over, this proposition shows the statement F (u) = −F (u), which implies that
Fermi curves for arbitrary potential u ∈ L2(F ) are point-symmetric with re-
spect to the origin 0 ∈ C2. Since it has been shown in [13, Proposition 4.5.8]
that (−∆k + u)T = −∆−k + u (which can be easily veri�ed by direct cal-
culation: 〈∆kf, g〉 = 〈f,∆−kg〉 for all f, g ∈ L2(F ), thus ∆T

k = ∆−k, with
〈f, g〉 :=

∫
F
f(x)g(x)dx), the involution σ acts by mapping a Schrödinger op-

erator to its transposed one. Note that, speaking of transposed operators, we
use the euclidean scalar product (extended to complex-valued functions), i.e.
〈f, g〉 =

∫
F
f(x)g(x)dx as de�ned above, not the hermitian form. Therefore,

transposition leaves the potential u invariant (although u doesn't need to be
real-valued in our present consideration). So, in any case, the potential u, con-
sidered as a multiplication operator, is symmetric (uT = u) but in general not
self-adjoint (since u needn't be real-valued).
Now, we want to examine how the perturbation matrix, the diagonal-zeroes k±,ν
(see Theorem 2.2.8) and the perturbed Fourier coe�cients transform by action
of σ. As to the perturbation matrix, we have the following theorem (cf. [13,
Proposition 4.5.24]).
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Theorem 2.3.1. Let u ∈ L2(F ), ν ∈ Γ∗δ and let 0 ∈ V ⊆ C2 with V = −V such
that A±,ν(k + k±ν (û0), u) is well-de�ned for all k ∈ V in the sense of De�nition
2.2.2. Then

A±,ν(k + k±ν (û0), u)T = A∓,ν(−k − k±ν (û0), u), (2.16)(
0 1
1 0

)
A±,ν(k + k±ν (û0), u)

(
0 1
1 0

)
= A∓,ν(k + k∓ν (û0), u). (2.17)

The �rst equation (2.16) indicates the transformation of the perturbation matrix
by action of σ, the second equation (2.17) indicates the transformation behaviour
by changing the ordered base (ψ0, ψ±ν) to (ψ±ν , ψ0). As is well known from linear
algebra, such a base change has the e�ect on the matrix that not only the two
o�-diagonal entries permute (as it is the case in the transposition) but also the
two diagonal entries permute.
The following theorem shows how the transformations in Theorem 2.3.1 a�ect the
diagonal-zeroes k±,ν from Theorem 2.2.8 and the perturbed Fourier coe�cients.

Theorem 2.3.2. For the diagonal-zeroes k±,ν of Theorem 2.2.8 and the perturbed
Fourier coe�cients, de�ned in (2.15), there holds

kν := k+,ν = k−,ν , (2.18)

kν = −k−ν , (2.19)

ǔ1(+, ν)+ = ǔ2(+,−ν)+ = ǔ1(−,−ν)− = ǔ2(−, ν)− (2.20)

for ν ∈ Γ∗δ with suitable δ > 0 depending on the potential as in the conditions of
Theorem 2.2.8. If we de�ne ǔν := ǔ1(+, ν)+, the matrix M from (2.14) is at kν
equal to

M±,ν(kν + k±ν (û0), u) =

(
0 ǔ±ν
ǔ∓ν 0

)
.

Proof. By de�nition of k+,ν , we have by Theorem 2.2.8 and Theorem 2.3.1

0 = A+,ν(k+,ν + k+
ν (û0), u)11 + 4π2((k+,ν + k+

ν (û0))2 + û0) =

(2.17)
= A−,ν(k+,ν + k−ν (û0), u)22 + 4π2((k+,ν + k+

ν (û0))2 + û0) =

(= 0) = A−,ν(k−,ν + k−ν (û0), u)22 + 4π2((k−,ν + k+
ν (û0))2 + û0), (2.21)

where in the last step, we applied once again Theorem 2.2.8, this time considering
the lower signature for the second diagonal entry4. We get equality between the
second and the third line because both terms are equal to zero. Similarly, we get,

4Remember the di�erent signature k∓ν (û0) instead of k±ν (û0) in the corresponding second
diagonal entry of (2.14)
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by using exactly the same arguments (i.e. at �rst upper signature with equation
(2.17) and then lower signature), this time applied to the other diagonal entry:

0 = A+,ν(k+,ν + k+
ν (û0), u)22 + 4π2((k+,ν + k−ν (û0))2 + û0) =

(2.17)
= A−,ν(k+,ν + k−ν (û0), u)11 + 4π2((k+,ν + k−ν (û0))2 + û0) =

(= 0) = A−,ν(k−,ν + k−ν (û0), u)11 + 4π2((k−,ν + k−ν (û0))2 + û0). (2.22)

Due to the equality of the second and the third line of (2.21) and (2.22), respec-
tively, we obtain, by the uniqueness of k±,ν due to Theorem 2.2.8, the claimed
identity (2.18).
Now, set kν := k+,ν . Again, by de�nition of kν , we have by Theorem 2.2.8 and
Theorem 2.3.1

0 = A+,ν(kν + k+
ν (û0), u)11 + 4π2((kν + k+

ν (û0))2 + û0) =

(2.16)
= A−,ν(−kν − k+

ν (û0), u)11 + 4π2((kν + k+
ν (û0))2 + û0).

Since (kν+k+
ν (û0))2 = (−(kν+k+

ν (û0)))2 = (−kν+k+
−ν(û0))2 (note that k+

−ν(û0) =
−k+

ν (û0) by de�nition), the above is equal to

0 = A−,ν(−kν + k+
−ν(û0), u)11 + 4π2((−kν + k+

−ν(û0))2 + û0).

If we apply Theorem 2.2.8 again, this time considering −ν instead of ν (but using
the upper signature as before), we get

0 = A+,−ν(k−ν + k+
−ν(û0), u)11 + 4π2((k−ν + k+

−ν(û0))2 + û0).

Thus, we have obtained

0 = A−,ν(−kν + k+
−ν(û0), u)11 + 4π2((−kν + k+

−ν(û0))2 + û0) =

= A+,−ν(k−ν + k+
−ν(û0), u)11 + 4π2((k−ν + k+

−ν(û0))2 + û0) (2.23)

as a result for the �rst diagonal entry. Similarly, we get for the second diagonal
entry

0 = A−,ν(−kν + k+
−ν(û0), u)22 + 4π2((−kν + k−−ν(û0))2 + û0) =

= A+,−ν(k−ν + k+
−ν(û0), u)22 + 4π2((k−ν + k−−ν(û0))2 + û0). (2.24)

Again by the uniqueness of the kν due to Theorem 2.2.8, we get by (2.23) and
(2.24) the claimed assertion (2.19) provided that A−,ν = A+,−ν which remains to
be proved. But this follows immediately if we write these terms down explicitly:

A−,ν(−kν + k+
−ν(û0), u) = πK−ν [ū(1l− (1l− πK−ν )(∆−kν+k+

−ν(û0) − 4π2û0)−1ū)−1]|K−ν
A+,−ν(k−ν + k+

−ν(û0), u) = πK−ν [ū(1l− (1l− πK−ν )(∆k−ν+k+
−ν(û0) − 4π2û0)−1ū)−1]|K−ν
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Up to the di�erence that in the �rst term, k = −kν , whereas in the second term
k = k−ν , the two terms A−,ν and A+,−ν are equal as claimed.
Now, we'll show (2.20) (which has already been stated in [13, Def. 4.5.31] with
slightly di�erent notation; here, we want to give a full proof). We have

ǔ1(+, ν)+ = A+,ν(kν + k+
ν (û0), u)12

(2.16)
= A−,ν(−kν + k+

−ν(û0), u)21 =

(2.19)
= A−,ν(k−ν + k+

−ν(û0), u)21 = A+,−ν(k−ν + k+
−ν(û0), u)21 = ǔ2(+,−ν)+,

as well as

ǔ2(+,−ν)+ = A+,−ν(k−ν + k+
−ν(û0), u)21

(2.17)
= A−,−ν(k−ν + k−−ν(û0), u)12 =

= ǔ1(−,−ν)−

and

ǔ1(−,−ν)− = A−,−ν(k−ν + k−−ν(û0), u)12
(2.16)
= A+,−ν(−k−ν + k−ν (û0), u)21 =

(2.19)
= A−,ν(kν + k−ν (û0), u)21 = ǔ2(−, ν)−,

where we made use of A−,ν = A+,−ν as before. This proves (2.20).
Finally, by setting ǔν := ǔ1(+, ν)+, we get by (2.20) ǔ2(+, ν)+ = ǔ1(+,−ν)+ =
ǔ−ν . Thus,

M+,ν(kν + k+
ν (û0), u) =

(
0 ǔν
ǔ−ν 0

)
for the upper signature. Because of ǔ1(−, ν)− = ǔ1(+,−ν)+ = ǔ−ν and ǔ2(−, ν)− =
ǔ1(+, ν)+ = ǔν , we obtain

M−,ν(kν + k−ν (û0), u) =

(
0 ǔ−ν
ǔν 0

)
for the lower signature. This proves the theorem.

Now, we de�ne (again with suitable δ > 0) the sequence of perturbed Fourier
coe�cients as it has already been done in (2.15). But this time, due to (2.20),
we can restrict ourselves to the term ǔ1(+, ν)+.

De�nition 2.3.3. Let δ > 0 as in Theorem 2.2.8 (depending on the given po-
tential u ∈ L2(F )). Then we call the sequence (ǔν)ν∈Γ∗δ

de�ned by

ǔν := ǔ1(+, ν)+ := A+,ν(kν + k+
ν (û0), u)12, ν ∈ Γ∗δ ,

the sequence of perturbed Fourier coe�cients of the potential u.
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Remark. The name perturbed Fourier coe�cients will become clear by Theorem
2.4.2 and its proof. There, we will see that the perturbed Fourier coe�cients
can indeed be considered as a perturbation of the (ordinary) Fourier coe�cients
(û(ν))ν . In order to avoid confusions between Fourier coe�cients and perturbed
Fourier coe�cients, we will reserve the notation ǔ for the sequence of perturbed
Fourier coe�cients and (as usual) û for the sequence of ordinary Fourier coe�-
cients.

Next, we introduce two further anti-holomorphic involutions η and τ (where the
latter is just the composition of the two others, τ := η ◦ σ) by

η : C2 → C2, k 7→ k̄

τ : C2 → C2, k 7→ −k̄

Here, k̄ denotes the complex conjugation of k. These anti-holomorphic involu-
tions will be important if we consider real-valued potentials u : F → R. At
�rst, we want to see how the perturbation matrix transforms by action of η and
τ . In analogy to (2.16), we now have to consider the hermitian adjunction (i.e
transposition and conjugation, which shall be denoted by a ∗, i.e. A∗ := ĀT for
a matrix A) instead of transposition.

Theorem 2.3.4. Let u ∈ L2(F ), ν ∈ Γ∗δ and let 0 ∈ V ⊆ C2 such that A±,ν(k +
k±ν (û0), u) (as well as its transformations appearing in the following equations
(2.25),(2.26)) is well-de�ned for all k ∈ V in the sense of De�nition 2.2.2. Then

A±,ν(k + k±ν (û0), u)∗ = A±,ν(k̄ + k±ν (û0), ū), (action by η) (2.25)

A±,ν(k + k±ν (û0), u) = A∓,ν(−k̄ − k±ν (û0), ū) (action by τ) (2.26)

Remark. Here, ū on the right hand side of (2.25) and (2.26), respectively, denotes
the complex conjugation of the potential u, not to be confused with the non-
constant part of u which we denoted until now with ū as well. Below, we will
therefore use the de�nition A := ū (cf. (2.7)) for the non-constant part of u in
order to avoid such confusions.

Proof. We have to see how the individual terms of the perturbation matrix (2.6)
behave by action of the involutions. Let's begin with the projector πKν . In a �rst
step, we claim that πKν is a self-adjoint operator, i.e.

π∗Kν = πKν .

Let

〈f, g〉 :=

∫
F

f(x)g(x)dx
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denote the hermitian L2- scalar product. We compute for (periodic) f, g ∈ L2(F )
by respecting f̂(ν) =

∫
F
f(x)ψ−ν(x)dx = 〈f, ψν〉 and 〈f, g〉 = 〈g, f〉:

〈πKνf, g〉 =
〈
f̂(0)ψ0 + f̂(ν)ψν , g

〉
= f̂(0)ĝ(0) + f̂(ν)ĝ(ν) =

= ĝ(0) 〈f, ψ0〉+ ĝ(ν) 〈f, ψν〉 = 〈f, ĝ(0)ψ0 + ĝ(ν)ψν〉 = 〈f, πKνg〉 .

This shows that πKν is self-adjoint. Consider now the Laplacian with boundary
condition (1.10) ∆k = ∆ + 4πi(k · ∇) − 4π2k2. The Laplacian ∆ is self-adjoint,
∆∗ = ∆, which follows immediately by double integration by parts. Likewise by
integration by parts, one gets (4πi(k · ∇))∗ = 4πi(k̄ · ∇) since∫

F

4πi(k · ∇f)ḡ = −
∫
F

4πif(k · ∇ḡ) =

∫
F

f · 4πi(k̄ · ∇g).

Note that the boundary terms in the formula of partial integration vanish due to
the periodicity of the appearing functions since we integrate over the fundamental
domain F . As to the multiplication operator −4π2k2, one immediately gets
(−4π2k2)∗ = −4π2k̄2. To sum up,

∆∗k = ∆ + 4πi(k̄ · ∇)− 4π2k̄2 = ∆k̄.

We use the abbreviations A, B introduced in (2.7). Considering B∗, we get by
what we have just shown,

B∗ = (1l− πK±ν )(∆k̄+k±ν (û0)
− 4π2û0)−1.

Together with

(A(1l−BA)−1)∗ = ((1l− AB)−1A)∗ = A∗(1l−B∗A∗)−1 = Ā(1l−B∗Ā)−1,

where we used [13, Lemma 4.5.23] in the �rst equality, we obtain the �rst trans-
formation property (2.25). The second identity (2.26) now follows immediately
from the �rst together with (2.16) via A = (A∗)T .

Analogously to Theorem 2.3.2, we can now prove how the transformations of
Theorem 2.3.4 a�ect the diagonal-zeroes (kν)ν and the perturbed Fourier coe�-
cients:

Theorem 2.3.5. Let u ∈ L2(F ) and denote by v := ū the complex conjugation
of u. Let the constant part û0 of u (cf. (2.1)) be real. Then for the diagonal-
zeroes (kν(u))ν∈Γ∗δ

and (kν(v))ν∈Γ∗δ
of Theorem 2.2.8 and the perturbed Fourier

coe�cients (ǔν)ν∈Γ∗δ
and (v̌ν)ν∈Γ∗δ

(cf. Def. 2.3.3), respectively, there holds

−kν(u) = kν(v), ǔν = v̌−ν

for ν ∈ Γ∗δ with suitable δ > 0 depending on the potential as in the conditions of
Theorem 2.2.8.
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Remark. We require the condition û0 ∈ R since then k±ν (û0) = k±ν (v̂0) is satis�ed.
The requirement û0 ∈ R is no severe restriction since we will later consider real-
valued potentials where û0 ∈ R is always ful�lled.

Proof. As in the proof of Theorem 2.3.2, we use Theorem 2.2.8 and the transfor-
mation properties of the perturbation matrix induced by the corresponding in-
volutions, this time those of the anti-holomorphic involutions shown in Theorem
2.3.4. Since the constant part û0 is real, we have û0 = v̂0 and k±ν (û0) = k±ν (v̂0).
We thus obtain by de�nition of kν(u) and kν(v), respectively

0 = A+,ν(kν(u) + k+
ν (û0), u)11 + 4π2((kν(u) + k+

ν (û0))2 + û0) =

(2.26)
= A−,ν(−kν(u) + k−ν (v̂0), v)11 + 4π2((−kν(u) + k−ν (v̂0))2 + v̂0) =

(= 0)
per def.

= A−,ν(kν(v) + k−ν (v̂0), v)11 + 4π2((kν(v) + k−ν (v̂0))2 + v̂0),

for the �rst diagonal entry of (2.14), where we used −k±ν (v̂0) = k∓ν (v̂0) which
holds by de�nition of k±ν (û0) (2.2) for potentials with real constant part û0 (note
that for potentials with non-real û0, this is generally not true). As to the second
diagonal entry of (2.14), we get as well

0 = A+,ν(kν(u) + k+
ν (û0), u)22 + 4π2((kν(u) + k−ν (û0))2 + û0) =

(2.26)
= A−,ν(−kν(u) + k−ν (v̂0), v)22 + 4π2((−kν(u) + k+

ν (v̂0))2 + v̂0) =

(= 0)
per def.

= A−,ν(kν(v) + k−ν (v̂0), v)22 + 4π2((kν(v) + k+
ν (v̂0))2 + v̂0).

Again, by the uniqueness of the kν , we obtain the �rst claim −kν(u) = kν(v).
This, together with (2.26) implies

ǔν = ǔ1(+, ν)+ = A+,ν(kν(u) + k+
ν (û0), u)12

(2.26)
= A−,ν(−kν(u)− k+

ν (v̂0), v)12 =

= A−,ν(kν(v) + k−ν (v̂0), v)12 = v̌1(−, ν)−.

With (2.20), we obtain the second claim

ǔν = v̌1(−, ν)− = v̌1(+,−ν)+ = v̌−ν .

This proves the theorem.

The preceding theorem immediately leads to an important assertion concerning
the perturbed Fourier coe�cients of real-valued potentials u : F → R:

Corollary 2.3.6. Let u ∈ L2(F ) be real-valued. For the diagonal-zeroes (kν)ν∈Γ∗δ
of Theorem 2.2.8 and the perturbed Fourier coe�cients (ǔν)ν∈Γ∗δ

(cf. Def. 2.3.3),
there holds

−kν = kν , ǔν = ǔ−ν

for ν ∈ Γ∗δ with suitable δ > 0 depending on the potential as in the conditions of
Theorem 2.2.8.
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Proof. Due to reality, we have v := ū = u. The assertion then follows from
Theorem 2.3.5.

2.4 The perturbed Fourier coe�cients as coordi-

nates

In this section, we want to prove that the map between (ordinary) Fourier coef-
�cients û(ν) and perturbed Fourier coe�cients ǔν , ν ∈ Γ∗δ , de�ned by

l2(Γ∗δ)→ l2(Γ∗δ), (û(ν))ν∈Γ∗δ
7→ (ǔν)ν∈Γ∗δ

,

is for su�ciently small δ > 0 locally boundedly invertible, provided that the
�rst �nitely many Fourier coe�cients indexed by ν ∈ Γ∗ \ Γ∗δ are kept constant
(otherwise the above map wouldn't be well-de�ned). The purpose of this is that
we will later use the perturbed Fourier coe�cients to parameterize the potentials
(at least asymptotically). The �rst step in proving that the map between Fourier
coe�cients and perturbed Fourier coe�cients is locally invertible in l2(Γ∗δ) will be
to show that the sequence of perturbed Fourier coe�cients (ǔν)ν∈Γ∗δ

is in l2(Γ∗δ),
provided that u ∈ L2(F ) (that is, û ∈ l2(Γ∗)). By de�nition, the perturbed
Fourier coe�cients are certain entries of the perturbation matrix (2.6) evaluated
at k = kν . Therefore, we show in the following theorem that the entries of the
perturbation matrix are in l2(Γ∗δ) (with respect to ν) if u ∈ L2(F ).

Theorem 2.4.1. There is an open neighbourhood V of 0 ∈ C2 which only depends
on Γ∗ such that for all u0 ∈ L2(F ), there is a δ > 0 and an R > 0 such that for
all k ∈ V and all u ∈ BR(u0) ⊂ L2(F ), the entries of the matrix (2.6) are in
l2(Γ∗δ) with respect to ν. Furthermore, (ǔν)ν∈Γ∗δ

∈ l2(Γ∗δ).

Remark. This theorem is the analogon to [13, Theorem 4.5.42], where the as-
sertion was claimed for F l∞,1(Γ∗)-potentials. As already mentioned before, the
proof in [13] unfortunately uses a wrong estimate for g∗(k, ν, n) so that Theo-
rem 4.5.42 in [13] is not proved (it might even be wrong). However, not all is
lost. We will adopt the main ideas of the proof, transfer them to our proof for
L2(F )-potentials and use then di�erent arguments where it is necessary.

Proof. Let u0 ∈ L2(F ) and δ > 0, R > 0 chosen as in Lemma 2.2.5. Let
u ∈ BR(u0) ⊂ L2(F ). Due to Neumann's Theorem (cf. [30, Satz II.1.11]) and
[13, Lemma 4.5.14], the operator

1l− (1l− πK±ν )(∆k+k±ν (û0) − 4π2û0)−1ū

is invertible in F l1(Γ∗) (compare the beginning of the proof of Prop. 4.5.15 in
[13], p. 98). Using the abbreviations of (2.7) again, this means that the operator
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1l−BA is invertible in F l1(Γ∗). Thus, (1l−BA)−1 maps F l1(Γ∗) boundedly into
itself. For f ∈ F l1(Γ∗), we obtain

F(A(1l−BA)−1f) = ˆ̄u︸︷︷︸
∈l2(Γ∗)

∗F((1l−BA)−1f)︸ ︷︷ ︸
∈l1(Γ∗)

∈ l2(Γ∗)

since l2 ∗ l1 ⊆ l2 due to Young's inequality. This shows

A(1l−BA)−1 : F l1(Γ∗)→ F l2(Γ∗). (2.27)

Now, we enter the proof of [13, Theorem 4.5.42]. Therefrom, we have the expan-
sion

A(1l−BA)−1 = A+ ABA(1l−BA)−1. (2.28)

Now, we have to consider the restriction to K±ν , more precisely, we need to
examine the Fourier transform of the term above at κ = 0 and κ = ±ν with
respect to ν. The entries of the �rst summand A (restricted toK±ν) are obviously
in l2(Γ∗) with respect to ν with the same justi�cation as in the proof of [13,
Theorem 4.5.42]. Remember: In order to compute the entry (κ, µ) of ABA(1l −
BA)−1, we have to compute F(ABA(1l−BA)−1e)(κ), where e ∈ F l1(Γ∗) denotes
the µ-th Fourier mode in the Fourier space, i.e. ê(µ) = 1 and ê(λ) = 0 for
λ 6= µ. We are interested in tuples (κ, µ) with suitable κ, µ ∈ {0,±ν}. The
Fourier transform of ABA(1l−BA)−1 yields the entry at (κ, µ) (cf. [13, equation
(4.5.44)]) ∑

ρ∈Γ∗

ˆ̄u(κ− ρ)g(k, ν, ρ)f(k, ν, ρ), (2.29)

where f denotes the Fourier transform of A(1l−BA)−1e with e as above. In the
following, the index µ turns out to be immaterial, so we suppress it. In [13], p.
111, the Fourier transform (2.29) could be estimated via∣∣∣∣∣∑

ρ∈Γ∗

ˆ̄u(κ− ρ)g(k, ν, ρ)f(k, ν, ρ)

∣∣∣∣∣ ≤
∞∑
n=1

û∗(n)g∗(k, ν, n)f ∗(k, ν, n),

where f ∗, û∗ and g∗ are the decreasing rearrangements of f , û and g, respectively,
with respect to ρ (recall De�nition 2.2.1). Now, we leave the proof of [13, Theorem
4.5.42] again. We have to show that5

∞∑
n=1

û∗(n)g∗(k, ν, n)f ∗(k, ν, n) ∈ l2(ν).

5As before, the suggestive notation l2(ν) shall signify l2(Γ∗) with respect to ν.
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Due to Hölder's inequality, we obtain by recalling that f ∗ ∈ l2(n) (cf. (2.27))
together with supn∈N g

∗(k, ν, n) = O(1/|ν|), as |ν| → ∞ (cf. Lemma 2.2.4)

∞∑
n=1

û∗(n)︸ ︷︷ ︸
∈l2

g∗(k, ν, n)︸ ︷︷ ︸
∈l1,∞⊂l∞

f ∗(k, ν, n)︸ ︷︷ ︸
∈l2

≤ ‖û∗‖l2(n) · ‖f ∗‖l2(n) · sup
n∈N

g∗(k, ν, n) = O

(
1

|ν|

)
,

as |ν| → ∞. This is an estimate for the second summand in (2.28). Here, we
used that ‖û∗(n)‖l2(n) is independent of ν and that ‖f ∗‖l2(n) is in l∞(ν) which
is a consequence of the representation A(1l− BA)−1 and Lemma 2.2.4 where we
showed that ‖g(k, ν, ρ)‖l2(ρ) = O(1/|

√
ν|) (this corresponds to the term B), as

|ν| → ∞.
Together with the �rst summand A which we have examined above, we obtain

f(k, ν, ρ) ∈ l2(ν) +O

(
1

|ν|

)
, |ν| → ∞ (2.30)

for �xed ρ ∈ Γ∗. Unfortunately, O
(

1
|ν|

)
isn't an l2(ν)-sequence, yet (note that

Γ∗ is two-dimensional). The estimate thus has to be improved. Inserting f one
more time into the estimate for the second summand in (2.28), we obtain again
by Hölder's inequality (but this time with another decomposition) with (2.30)

∞∑
n=1

û∗(n)︸ ︷︷ ︸
∈l2(n)

g∗(k, ν, n)︸ ︷︷ ︸
∈l2(n)

f ∗(k, ν, n)︸ ︷︷ ︸
∈l∞(n)

≤ ‖û∗‖l2(n) · ‖f ∗‖l∞(n)︸ ︷︷ ︸
=O( 1

|ν|)

· ‖g∗(k, ν, n)‖l2(n)︸ ︷︷ ︸
=O

(
1√
|ν|

) =

= O

(
1

|ν|3/2

)
⊆ l2(ν),

where for the estimate of ‖g∗(k, ν, n)‖l2(n), we used Lemma 2.2.4. Thus, by
one-time iteration, we have improved the preliminary result (2.30) to l2(ν) +

O
(

1
|ν|3/2

)
⊆ l2(ν). Hence, we have proved that the entries of the perturbation

matrix (2.6) are in l2(ν).
It remains to be proved that the associated sequence of perturbed Fourier co-
e�cients (ǔν)ν∈Γ∗δ

is in l2(ν), too. Here, we can copy the end of the proof of
[13, Theorem 4.5.42]: We have to show that the sequence of the diagonal-zeroes
(|kν |)ν (see Theorem 2.2.8) is in l2(Γ∗δ). But this is done literally as in the men-
tioned proof in [13] if we replace the condition used in [13] that the entries of the
perturbation matrix are in l∞,1(ν) by the just proved result that the entries of
the perturbation matrix are in l2(ν).

Before we formulate the main result of this section, we want to state more pre-
cisely how the map (introduced at the beginning of this section) between Fourier
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coe�cients and perturbed Fourier coe�cients is de�ned. We consider the map
(compare [13, (4.5.50)])

l2(Γ∗) −→ F l2(Γ∗) −→ l2(Γ∗δ), û 7−→ u 7−→ (ǔν)ν∈Γ∗δ
(2.31)

The �rst map û 7→ u is the inverse of the Fourier transform u 7→ û which is
as a linear isomorphism of vector spaces globally de�ned on l2(Γ∗). The second
map u 7→ (ǔν)ν∈Γ∗δ

is also well-de�ned by Theorem 2.2.8 and De�nition 2.3.3. If
we restrict Γ∗ to Γ∗δ and require furthermore that the �rst �nitely many Fourier
coe�cients indexed by ν ∈ Γ∗ \ Γ∗δ are kept constant, we thus get a well-de�ned
map

l2(Γ∗δ) −→ l2(Γ∗δ), (û(ν))ν∈Γ∗δ
7−→ (ǔν)ν∈Γ∗δ

. (2.32)

Keeping the �rst �nitely many Fourier coe�cients constant is necessary for the
well-de�nition of (2.32) since by this requirement, it su�ces to know the sequence
(û(ν))ν∈Γ∗δ

to determine the potential u.
Since we will prove in the following theorem in particular the holomorphy of the
map (2.32), let's brie�y recall in this context that the well-known statement from
the �nite-dimensional case that functions which are complex di�erentiable in an
open set are already holomorphic (i.e. expandable into a convergent power series)
also holds in the general case of mappings between complex Banach spaces (maybe
with in�nite dimension). More precisely: A di�erentiable function f : U → F
(with E,F complex Banach spaces and U ⊆ E an open subset) is already holo-
morphic (in the usual de�nition such as [21, p. 33, Def. 5.1]). This can be seen
as follows: If f : U → F is di�erentiable, it is in particular continuous and par-
tially di�erentiable in the sense that the restriction of f to U ∩M is di�erentiable
for all �nite-dimensional subspaces M of E. Then, for an arbitrary functional
ψ ∈ F ∗ (with F ∗ denoting the dual space to F ), ψ ◦ f |U∩M is holomorphic due
to [3, Theorem 3.1.7] (Osgood's Lemma). This in turn implies that f |U∩M is
holomorphic due to [21, Theorem 8.12(b)]. Finally, due to [21, Theorem 8.7], f
is holomorphic on U .
To sum up, in order to show holomorphy, it su�ces to verify complex di�erentia-
bility in an open subset. Now, we can state the main result.

Theorem 2.4.2. For all u ∈ L2(F ), there is a δ > 0 and an R > 0 such
that the map (2.32) is boundedly invertible on BR(û) ⊂ l2(Γ∗δ) provided that the
�rst �nitely many Fourier coe�cients indexed by ν ∈ Γ∗ \ Γ∗δ are kept constant.
Moreover, the maps (2.31) and (2.32) are holomorphic (locally in their respective
domain of de�nition).

Remark. The constraint of keeping the �rst �nitely many Fourier coe�cients
(indexed by ν ∈ Γ∗ \ Γ∗δ) constant is not a severe restriction if we are interested
in solving the asymptotic isospectral problem. Indeed, we will do so in Chapter
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3 anyway (compare also the remark to Corollary 2.4.4). We usually choose this
constant to be equal to (û(ν))ν∈Γ∗\Γ∗δ , the �rst �nitely many Fourier coe�cients
of the initial potential û (expressed in its sequence of Fourier coe�cients), i.e.
the center of the ball BR(û) mentioned in the theorem.

Proof. We prove the theorem with the help of the Inverse Function Theorem.
Thereto, we have to show that the map (2.32) is di�erentiable and that its deriva-
tive is invertible in u ∈ L2(F ). Since the perturbed Fourier coe�cients are certain
entries of the perturbation matrix (2.6), we have to consider the derivative of the
perturbation matrix A±,ν(k + k±ν (û0), u) with respect to the potential u. In [13,
Theorem 4.5.25], this derivative has been calculated (this theorem also yields the
holomorphy of the perturbation matrix with respect to u). In [13, Lemma 4.5.45],
the derivative (evaluated at some �xed potential which is suppressed)

∂

∂u
(A(1l−BA)−1) ∈ L(F l2(Γ∗); F l1(Γ∗)→ F l2(Γ∗))

is splitted into two summands (with the usual A,B notation, cf. (2.7)):

h 7→ πK±ν (1l− AB)−1h̄(1l−BA)−1|K±ν ,
h 7→ πK±ν (1l− AB)−1ABC(h)BA(1l−BA)−1|K±ν ,

(2.33)

where h ∈ F l2(Γ∗) and C(h) is the (diagonal) operator de�ned by

C(h) := diag

(
−8π2i

ξν2

〈
ρ+ k + k±ν (û0),

(
ν2

−ν1

)〉
· ĥ(0)− 4π2ĥ(0)

)
ρ∈Γ∗\{0,±ν}

,

(2.34)

compare [13, p. 104]. In fact, in terms of Fourier coe�cients, C is the derivative
with respect to u of the operator

Ê := diag(−4π2(ρ+ k + k±ν (û0))2 − 4π2û0)ρ∈Γ∗\{0,±ν}, (2.35)

which is the operator E := (1l − πK±ν )(∆k+k±ν (û0) − 4π2û0) in the Fourier space,
compare (2.9). More precisely, (2.34) can be derived as follows: Deriving the
diagonal entries of Ê yields for ρ ∈ Γ∗ \ {0,±ν}

∂Êρρ
∂û

(ĥ) =
∂Êρρ
∂û0

ĥ(0) = −4π2

(
2

〈
ρ+ k + k±ν (û0),

∂k±ν (û0)

∂û0

〉
− 1

)
ĥ(0),

where ∂k±ν (û0)
∂û0

= i
ξν2

(
ν2

−ν1

)
by de�nition (2.2). This shows (2.34).

We now follow the proof of [13, Lemma 4.5.45]. The �rst summand in (2.33) can
be expanded into the four summands

(1l− AB)−1h̄(1l−BA)−1 =

= h̄+ A(1l−BA)−1Bh̄+ h̄BA(1l−BA)−1 + A(1l−BA)−1Bh̄BA(1l−BA)−1.
(2.36)
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The �rst three summands are handled like (2.28), in particular the second and
the third summand like (2.29), the fourth summand similarly (for details, see
[13, p. 113], which can be translated into the F l2 case without any problems
by replacing F l∞,1-functions by F l2-functions at the correspondent positions).
Altogether, the �rst summand in (2.33) maps into l2(Γ∗δ) with respect to ν. As
to the second summand in (2.33), there appears the operator (2.34). Here, we
deviate from the proof in [13], since that proof uses that C boundedly maps
l∞,1(Γ∗)-left multiplications to l∞,1(Γ∗)-left multiplications. In our case, it's not
clear yet whether C(h) maps F l1(Γ∗) into F l2(Γ∗).
We compute for f, h ∈ F l2(Γ∗), ρ ∈ Γ∗ \ {0,±ν}

F(BC(h)Bf)(ρ) =

= g(k, ν, ρ)

(
−8π2i

ξν2

〈
ρ+ k + k±ν (û0),

(
ν2

−ν1

)〉
· ĥ(0)− 4π2ĥ(0)

)
︸ ︷︷ ︸

∈l∞(ρ)

· g(k, ν, ρ)︸ ︷︷ ︸
∈l2(ρ)

· f̂(ρ)︸︷︷︸
∈l2(ρ)

.

Hence, due to Hölder's inequality,

F(BC(h)Bf) ∈ l1(ρ)

and clearly F(BC(h)Bf) ∈ l∞(ν) (recall Lemma 2.2.4). Therefore and since for
f ∈ F l1(Γ∗),

F(A(1l−BA)−1f) ∈ l2(ρ)⊗ l2(ν)

(cf. (2.27) and Theorem 2.4.1), we get for f ∈ F l1(Γ∗), h ∈ F l2(Γ∗)

F(BC(h)BA(1l−BA)−1f︸ ︷︷ ︸
∈l2(ρ)

) ∈ l1(ρ)⊗ l2(ν),

where for the l2(ν)-term, we used Theorem 2.4.1 since BC(h)B is bounded with
respect to ν. Finally, together with (2.27), we obtain for f ∈ F l1(Γ∗), h ∈ F l2(Γ∗)

F(A(1l−BA)−1BC(h)BA(1l−BA)−1f︸ ︷︷ ︸
∈l1(ρ)

) ∈ l2(ρ)⊗ l2(ν), (2.37)

where the l2(ν)-assertion follows again from Theorem 2.4.1.
By using (1l−AB)−1A = A(1l−BA)−1 (cf. [13, Lemma 4.5.23]), this yields that
the second summand in (2.33) maps into l2(ν).
As to the derivative of the perturbed Fourier coe�cients (ǔν)ν∈Γ∗δ

with respect to
u, we obtain by setting A12(k, u) := A+,ν(k + k+

ν (û0), u)12

dǔν
du

=
d

du
A12(kν(u), u) =

∂A12(kν(u), u)

∂k
· dkν(u)

du
+
∂A12(kν , u)

∂u
. (2.38)

Here, the last summand ∂
∂u
A12(kν , u) maps into l2(ν) by what we have just proved.

We have to show that the �rst summand maps into l2(ν), too.
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The derivative ∂
∂k
A(1l − BA)−1 evaluated at some �xed k is (compare the proof

of [13, Lemma 4.5.21]) equal to

k̃ 7→ −A(1l−BA)−1BC̃(k̃)BA(1l−BA)−1, (2.39)

with

C̃(k̃) := −8π2diag
(〈
ρ+ k + k±ν (û0), k̃

〉)
ρ∈Γ∗\{0,±ν}

. (2.40)

The derivation of (2.40) is virtually the same as the derivation of (2.34) except
that this time, we derived (2.35) with respect to k instead of with respect to u.

Comparing C̃(k̃) with C(h) (2.34) above, we get in the same fashion as in the
computations before (cf. (2.37)) that, for f ∈ F l1(Γ∗),

F(A(1l−BA)−1BC̃(k̃)BA(1l−BA)−1f) ∈ l2(ν).

Note that we have virtually the same term as in (2.37) except that here, C̃(k̃)

appears instead of C(h). But both C̃(k̃) and C(h) have the same behaviour in

the sense that the operators BC̃(k̃) and BC(h) are both bounded with respect
to ν (that's the crucial property needed in the computations). In order to show
our current aim that the linear operator (2.38) maps into l2(ν) (more precisely:

(dǔν
du

(h))ν∈Γ∗δ
is in l2(ν) for h ∈ F l2(Γ∗)), we have to show that dkν(u)

du
is bounded

(with respect to ν) which shall be sourced out into Lemma 2.4.3.
Now, the remainder of the proof has actually been done in [13, Lemma 4.5.49].
We brie�y recap it. We show that the derivative of (2.32) is invertible in order
to apply the Inverse Function Theorem. Due to ∂

∂k
A12(kν(u), u) ∈ l2(ν) and(

dkν(u)
du

)
ν∈Γ∗δ

= O
(

1
|ν|

)
, as |ν| → ∞, cf. the following Lemma 2.4.3, the norm of

the �rst summand (∂A12(kν(u),u)
∂k

· dkν(u)
du

)ν∈Γ∗δ
in (2.38) tends to zero as δ → 0. So

let's consider the second summand in (2.38). Recall that the derivative of the
perturbation matrix with respect to u has been decomposed into two summands
(2.33), where the norm of the second summand vanishes as δ → 0 due to Lemma
2.2.5. The �rst summand has been decomposed once again into four summands
(2.36) where the last three summands vanish as δ → 0, again due to Lemma
2.2.5. Only the �rst summand of the decomposition (2.36), namely6

h 7→ πK±ν h̄|K±ν =

(
0 ĥ(±ν)

ĥ(∓ν) 0

)
(2.41)

6The matrix in (2.41) is computed with respect to the ordered basis (ψν , ψ0). Taking the
(maybe more self-evident) ordered basis (ψ0, ψν) for example, the matrix in (2.41) would be(

0 ĥ(∓ν)

ĥ(±ν) 0

)
. Yet, we chose the basis (ψν , ψ0) in order to be consistent with the notations in

[13].
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does not vanish as δ → 0. In fact, the map (ĥ(ν))ν 7→ (ĥ(±ν))ν is boundedly
invertible. Hence, we may apply the Inverse Function Theorem (cf. [23, p. 142],
for example) and the assertion follows.

Remark. Now, we have seen the motivation for the name perturbed Fourier coef-
�cients : The variation of the term

( 0 ǔ±ν
ǔ∓ν 0

)
can be approximated by the term in

(2.41), that is, it equals
(

0 û(±ν)
û(∓ν) 0

)
plus the remaining "perturbation terms"

which, however, vanish as δ → 0.

We owe the proof that the u-derivative of kν is bounded with respect to ν:

Lemma 2.4.3. Let (kν)ν∈Γ∗δ
be the sequence of the diagonal zeros of the matrix

(2.14). Then the derivative (evaluated at some u ∈ L2(F ))

dkν(u)

du
: L2(F ) −→ C2

satis�es (
dkν(u)

du

)
ν∈Γ∗δ

= O

(
1

|ν|

)
, |ν| → ∞,

locally uniform in u. In particular, the derivative dkν(u)
du

is bounded with respect
to ν.

Proof. Set

D1(k) := 4π2((k + k+
ν (û0))2 + û0) + A11(k, u),

D2(k) := 4π2((k + k−ν (û0))2 + û0) + A22(k, u),

where Aij(k, u) := A+,ν(k + k+
ν (û0), u)ij for i, j ∈ {1, 2}.

De�ne

D : V ⊆ C2 → C2, k 7→ D(k, u) :=

(
D1(k, u)

D2(k, u)

)
.

By de�nition of the kν , we have D(kν(u), u) ≡ 0 for all u ∈ L2(F ). Di�erentiating
this equation with respect to u yields

∂D1(kν(u), u)

∂k
· dkν(u)

du
+
∂D1(kν , u)

∂u
= 0,

∂D2(kν(u), u)

∂k
· dkν(u)

du
+
∂D2(kν , u)

∂u
= 0,

which is equivalent to(
∂D1(kν(u),u)

∂k1

∂D1(kν(u),u)
∂k2

∂D2(kν(u),u)
∂k1

∂D2(kν(u),u)
∂k2

)
︸ ︷︷ ︸

=:C

·dkν(u)

du
= −∂D(kν , u)

∂u
.
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The matrix 1
8π2C is invertible because its determinant is equal to

1

64π4

[
∂D1(kν(u), u)

∂k1

· ∂D2(kν(u), u)

∂k2

− ∂D2(kν(u), u)

∂k1

· ∂D1(kν(u), u)

∂k2

]
=

= (kν,1 + k+
ν,1(û0))(kν,2 + k−ν,2(û0))− (kν,1 + k−ν,1(û0))(kν,2 + k+

ν,2(û0)) + o(|ν|) =

= (kν,1 + k+
ν,1(û0))(kν,2 + k+

ν,2(û0) + ν2)− (kν,1 + k+
ν,1(û0) + ν1)(kν,2 + k+

ν,2(û0)) + o(|ν|) =

= (kν,1 + k+
ν,1(û0))ν2 − (kν,2 + k+

ν,2(û0))ν1 + o(|ν|) =

〈
kν + k+

ν (û0),

(
ν2

−ν1

)〉
+ o(|ν|) =

=

〈
kν ,

(
ν2

−ν1

)〉
+

1

2
iξ|ν|2 + o(|ν|) =

1

2
iξ|ν|2(1 + o(1)), as |ν| → ∞, (2.42)

where the o(|ν|)-term in the above computation is a consequence of the multi-

plication of terms of the form ki + k±ν,i(û0) with terms
∂Ajj(kν ,u)

∂kl
(i, j, l = 1, 2), cf.

Lemma 2.2.7. Since C−1 is thus well-de�ned, we get

dkν(u)

du
= −

(
∂D1(kν(u),u)

∂k1

∂D1(kν(u),u)
∂k2

∂D2(kν(u),u)
∂k1

∂D2(kν(u),u)
∂k2

)−1

· ∂D(kν , u)

∂u
=

= −8π2

(
kν,1 + k+

ν,1(û0) + 1
8π2

∂A11(kν ,u)
∂k1

, kν,2 + k+
ν,2(û0) + 1

8π2

∂A11(kν ,u)
∂k2

kν,1 + k−ν,1(û0) + 1
8π2

∂A22(kν ,u)
∂k1

, kν,2 + k−ν,2(û0) + 1
8π2

∂A22(kν ,u)
∂k2

)−1

·

·

(
∂A11(kν ,u)

∂u
+O(1)

∂A22(kν ,u)
∂u

+O(1)

)
, as |ν| → ∞,

where the O(1)-terms re�ect that the derivative of 4π2((k + k±ν (û0))2 + û0) with
respect to u is bounded with respect to |ν|. More precisely, deriving this term

with respect to û0 yields
8π2i
ξν2

〈
k + k±ν (û0),

(
ν2

−ν1

)〉
+4π2, cf. (2.34), which is clearly

bounded with respect to |ν|. Since the entries of the matrix C are O(|ν|), the
entries of its inverse are O

(
1
|ν|

)
, as |ν| → ∞. Due to the boundedness of ∂A11

∂u

and ∂A22

∂u
with respect to ν (see the proof of Theorem 2.4.2), the assertion now

follows.

In Corollary 2.3.6, we have derived a property of real-valued potentials in terms
of their perturbed Fourier coe�cients: ǔν = ǔ−ν for all ν ∈ Γ∗δ . With the help of
Theorem 2.4.2, we are able to prove that this property is also su�cient for the
realness of a given potential, at least in some asymptotic sense. More precisely,
we have the following corollary of Theorem 2.4.2.

Corollary 2.4.4. Let u ∈ L2(F ) and let û = (û(ν))ν∈Γ∗ denote its sequence
of Fourier coe�cients and let (ǔν)ν∈Γ∗δ

denote its sequence of perturbed Fourier
coe�cients (for suitably small δ > 0). Let further

û(ν) = û(−ν) for all ν ∈ Γ∗ \ Γ∗δ . (2.43)
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Then there holds the equivalence

û(ν) = û(−ν) for all ν ∈ Γ∗δ ⇐⇒ ǔν = ǔ−ν for all ν ∈ Γ∗δ . (2.44)

Remark. Before proving the corollary, let's brie�y discuss why this is a su�cient
criterion for realness of u in some asymptotic sense. Let u ∈ L2(F ) and set v := ū
as the complex conjugation of u. By de�nition of the Fourier transform (1.9), we
obtain

v̂(ν) = û(−ν) for all ν ∈ Γ∗. (2.45)

Hence, there holds:

u ∈ L2(F ) is real-valued ⇐⇒ û(ν) = û(−ν) for all ν ∈ Γ∗,

since u is uniquely determined by its Fourier coe�cients û and vice versa. Now,
the right hand side of (2.44) is not su�cient for reality of u since we only consider
indices ν ∈ Γ∗δ such that the left hand side of (2.44) will not hold for all ν ∈ Γ∗, at
least not without the additional assumption (2.43). In this sense, Corollary 2.4.4
provides a criterion for "asymptotic reality". Moreover, we have to require the
condition (2.43) for the �rst �nitely many Fourier coe�cients since in the map
û 7→ u 7→ (ǔν)ν∈Γ∗δ

, the potential u (and consequently the sequence of perturbed
Fourier coe�cients) is determined by the entire sequence (û(ν))ν∈Γ∗ (not only by
the asymptotic remainder indexed by ν ∈ Γ∗δ). However, the condition (2.43) is
not really a severe restriction of generality since in Chapter 3, we will �x the �rst
�nitely many Fourier coe�cients anyway in such a way that in particular, (2.43)
is ful�lled when we will solve the asymptotic isospectral problem (compare for
example (3.2) in Chapter 3).

Proof. Consider the map

l2(Γ∗) −→ F l2(Γ∗) −→ l2(Γ∗δ), û 7−→ u 7−→ (ǔν)ν∈Γ∗δ
.

Set v := ū. Then v̌ν = ǔ−ν , ν ∈ Γ∗δ (due to Theorem 2.3.5) and v̂(ν) = û(−ν) for
all ν ∈ Γ∗ (due to (2.45)). For v, we thus have the mapping

l2(Γ∗) −→ F l2(Γ∗) −→ l2(Γ∗δ), (û(−ν))ν∈Γ∗ 7−→ ū 7−→ (ǔ−ν)ν∈Γ∗δ
.

Due to Theorem 2.4.2, the map (û(ν))ν∈Γ∗δ
7−→ (ǔν)ν∈Γ∗δ

is locally boundedly

invertible. The assertion of the corollary follows if the sequence (û(−ν))ν∈Γ∗δ
is inside the ball BR(û) where invertibility holds due to Theorem 2.4.2. But by
choosing δ > 0 su�ciently small, this can be established7: Choose in a �rst step a
radius R > 0 and δ1 > 0 such that invertibility of the map (2.32) holds in BR(û) ⊂
l2(Γ∗δ1). All we have to show is, by choosing 0 < δ2 < δ1 su�ciently small, that

7Compare also the choice of δ > 0 on p. 72.
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invertibility also holds in the ball BR(û) ⊂ l2(Γ∗δ2) with still the same radius R.
But this follows immediately from the proof of Theorem 2.4.2. There, we showed
that the derivative of the map (2.32) is equal to the identity map plus some
perturbation terms whose norms, however, tend to zero (locally uniformly in u)
as |ν| → ∞. If we want to answer the question how large the ball inside of which
invertibility of the map (2.32) holds can be chosen, we have to recall the proof
of the Inverse Function Theorem which is usually proved by applying Banach's
Fixed Point Theorem: If f denotes the continuously di�erentiable map (between
some Banach spaces) in the Inverse function Theorem whose local invertibility
shall be proved, the ball B around some given point x0 where invertibility shall
hold has to satisfy for example ‖f ′(x)−f ′(x0)‖ ≤ 1/2 for all x ∈ B (cf. the proof
of the Inverse Function Theorem in [23, p. 142], for example). In our case, the
corresponding term ‖f ′(x) − f ′(x0)‖ gets smaller the larger |ν| gets due to the
limit behaviour of the perturbation terms which has just been mentioned. In this
way, one sees that the radius R can be chosen �xed whereas δ > 0 can be chosen
more and more smaller.
Let u ∈ L2(F ) be arbitrary. Choose δ = δ2 > 0 small enough such that ‖û‖l2(Γ∗δ)

is su�ciently small, i.e. (û(ν))ν∈Γ∗δ
is in particular su�ciently close to 0 ∈ l2(Γ∗δ).

However, the radius R (belonging to the initial δ1 > 0) has not decreased such
that we can achieve that (û(−ν))ν∈Γ∗δ

is in the ball BR(û). In other words, we
chose a δ > 0 and a radius R > 0 such that the ball in l2(Γ∗δ) with center 0 ∈ l2(Γ∗δ)
and radius ‖û‖l2(Γ∗δ) is contained in the ball BR(û) ⊂ l2(Γ∗δ) where invertibility of
the map (2.32) holds.

2.5 Parameterization of the handles

In Section 2.1, we roughly introduced the handles in the context of the trisection
of a given Fermi curve. There, we de�ned what we mean by saying that a double
point splits up or remains unsplit. By Theorem 2.2.6, the handles which are
contained in the asymptotic part of a Fermi curve are described by the zero locus
of holomorphic functions, the determinant of the corresponding matrices (2.14),
de�ned in the corresponding excluded domains. Unfortunately, we are in general
not able to see by looking at (2.14) whether the corresponding double point splits
up or not. Therefore, we are interested in a parameterization of the Fermi curve in
the excluded domains which re�ects the handle properties in a more obvious way.
This will require new coordinates z = (z1, z2) ∈ C2 instead of k = (k1, k2) ∈ C2.
In [5, II.5, (GH2)], a model handle is de�ned by

H := {(z1, z2) ∈ C2 : z1 · z2 = c, |z1|, |z2| ≤ 1} (2.46)

with some 0 < c < 1
2
. We allow that this c may also be complex-valued with

0 < |c| < 1
2
. We call c the handle quantity. Here, the upper bound 1

2
is arbitrary.

Since it will turn out that the handle quantities decrease with increasing index
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ν ∈ Γ∗ of the corresponding excluded domain (cf. (2.49) and Theorem 2.5.9), the
absolute value |c| of any handle in the asymptotic part of F (u) will be less than
1
2
for su�ciently small δ > 0 (cf. (2.3)). The aim of this section is to �nd such

coordinates (z1, z2) which parameterize the Fermi curve in the excluded domains
in the form of (2.46). Such a parameterization will turn out to be very helpful
when later, we'll have to estimate certain contour integrals which occur in terms
of the so-called moduli. Let's begin with an approximation, the so-called model
Fermi curve, of the given curve F (u) which is easier to handle than the actual
Fermi curve. In [13, Lemma 4.5.53], it has been proved that the matrixM (2.14)
may be represented as

M = 4π2

(
2 〈k − kν , k±ν (û0)〉 0

0 2 〈k − kν , k∓ν (û0)〉

)
+

(
0 ǔν
ǔ−ν 0

)
+ o(|k − kν |),

(2.47)

as k → kν . If we omit the error term o(|k − kν |), we get a modi�ed matrix

M̃ (the quantities of the model Fermi curve shall be indicated with a tilde). If

we compute, like in Theorem 2.2.6, the zero locus of det M̃ , we obtain locally a
variety close to the Fermi curve in the corresponding excluded domain indexed
by ν ∈ Γ∗δ . We call this approximation the model Fermi curve (note that all
varieties we consider are, of course, described only locally in the corresponding
excluded domains).
For the model curve, the z̃-coordinates are quite easy to calculate. A computaion
of det M̃ = 0 yields (as has already been done in [13, equation (4.5.57)]8)

[(k1 − kν,1)(−ν1 + iν2ξ) + (k2 − kν,2)(−iν1ξ − ν2)]·

· [(k1 − kν,1)(ν1 + iν2ξ) + (k2 − kν,2)(−iν1ξ + ν2)] =
ǔν · ǔ−ν

16π4

(recall the de�nition (2.2)). This representation already has the desired form
since the left hand side is a product. Thus, the factors can be de�ned as z̃1 and
z̃2, respectively:

z̃1 := (k1 − kν,1)(−ν1 + iν2ξ) + (k2 − kν,2)(−iν1ξ − ν2)

z̃2 := (k1 − kν,1)(ν1 + iν2ξ) + (k2 − kν,2)(−iν1ξ + ν2)
(2.48)

Set

c̃ν :=
ǔν · ǔ−ν

16π4
, ν ∈ Γ∗δ , (2.49)

we obtain the desired representation (2.46) z̃1 · z̃2 = c̃ν for the ν-th excluded
domain. Note that the handle quantity c̃ν doesn't have the right scaling, yet,

8The reader may have remarked the di�erent sign compared to [13, (4.5.57)]. This is a
consequence of the (harmless) wrong sign already discussed in a footnote to (2.14).
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since |z1|, |z2| ≤ 1 is required in (2.46). Such a scaling is necessary if we want to
compare di�erent handles of di�erent excluded domains with one another. For
example, for the assertion that the handle quantities decrease with increasing ν,
a consistent scaling is necessary (otherwise, that assertion wouldn't make any
sense). However, if we consider a �xed excluded domain and only need the z-
coordinates because of the desired representation z1 · z2 = c, we can use an
arbitrary scaling (provided that we use the corresponding correct maps z 7→ k
and k 7→ z between the coordinates z and k, respectively). If we wanted to
determine the quantities c̃ν with the correct scaling as in (2.46), we would have
to multiply (2.49) with a term of dimension O (1/|ν|2) since (2.48) is of dimension
O (|ν|) as |ν| → ∞ (note that the domain V the k-coordinates reside in is bounded
and independent of ν).
The map (k − kν) 7→ z̃ = (z̃1, z̃2) between k- and z̃-coordinates is a linear vector
space isomorphism of C2 with inverse z̃ 7→ (k − kν) de�ned by

k1 − kν,1 =
1

2i|ν|2ξ
[(−iν1ξ + ν2)z̃1 + (iν1ξ + ν2)z̃2]

k2 − kν,2 =
1

2i|ν|2ξ
[(−ν1 − iν2ξ)z̃1 + (−ν1 + iν2ξ)z̃2]

(since (−ν1 + iν2ξ)(−iν1ξ + ν2)− (ν1 + iν2ξ)(−iν1ξ − ν2) = 2iξ|ν|2).
Let's go back to the actual Fermi curve again. Here, things turn out to be much
more di�cult than in the model case (the map (k − kν) 7→ z is far away from
being a linear isomorphism, for instance). The most important tool to obtain z-
coordinates will be the so-called Quantitative Morse Lemma (cf. [5, III. Appendix
B, Lemma B.1]) which we denote, however, as a theorem due to its importance
for our purposes:

Theorem 2.5.1 (Quantitative Morse Lemma). Let

f(x1, x2) = x1x2 + h(x1, x2) (2.50)

be a holomorphic function on

Dr := {(x1, x2) ∈ C2 : |x1| ≤ r, |x2| ≤ r}, r > 0,

where h is a holomorphic function that ful�ls the estimates∣∣∣∣ ∂h∂xi (x)

∣∣∣∣ ≤ a,

∥∥∥∥ ∂2h

∂xi∂xj
(x)

∥∥∥∥ ≤ b (2.51)

for x ∈ Dr with constants a, b > 0 such that a < r, b < 1/30. Then f has a
unique critical point ζ = (ζ1, ζ2) in Dr, and

|ζ1| ≤ a, |ζ2| ≤ a.
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Put s = max{|ζ1, |ζ2|}. Then there is a biholomorphic map Φ from D(r−s)(1−10b)

to a neighbourhood of ζ in Dr that contains {(z1, z2) ∈ C2 : |zi− ζi| < (r− s)(1−
30b), i = 1, 2} such that

f ◦ Φ(z1, z2) = z1z2 − c (2.52)

with a constant c ∈ C ful�lling9 |c− h(ζ)| ≤ a2. The derivative DΦ ful�ls

‖DΦ− 1l‖ ≤ 12b.

Remark. In [5, Lemma B.1 (p. 245)], there is the additional normalization re-
quirement that r < 1 (in [5], the r is denoted with δ). Since the x-coordinates in
our case turn out to be O(|ν|) with respect to ν, the possibility that r ≥ 1 in Dr

may occur shouldn't be omitted. If one wants to avoid this and use r < 1, one
can consider a correspondent scaling (by multiplying (2.50) with an appropriate
factor which then a�ects the x-coordinates but has no e�ect on the Fermi curve
locally described by the equation f = 0). But this is not absolutely necessary.

In our case, the holomorphic function f is the function f := detM with matrix
M (2.14), holomorphic in k. In order to get the desired representation (2.52), we
must at �rst �nd suitable intermediate coordinates x = (x1, x2) ∈ C2 such that f
has the form (2.50). To this, we have to compute the zero locus of detM . From
now on, we restrict ourselves to the upper signatures in (2.14) in order to simplify
the notation (the lower signatures are treated completely analogously, of course).
Since k−ν (û0)− k+

ν (û0) = ν for all ν ∈ Γ∗, we don't lose any information. Set (by
suppressing the index ν in d1 and d2)

d1(k) := (k + k+
ν (û0))2 + û0, d2(k) := (k + k−ν (û0))2 + û0

Aνij(k, u) :=
1

4π2
A+,ν(k + k+

ν (û0), u)ij for i, j ∈ {1, 2}.
(2.53)

Thus,

detM = 0 ⇔ (d1(k) + Aν11(k, u))︸ ︷︷ ︸
=:x1

(d2(k) + Aν22(k, u))︸ ︷︷ ︸
=:x2

= Aν12(k, u) · Aν21(k, u).

(2.54)

We want to get x1, x2 into a handier form such that these coordinates can be
compared with the model coordinates. We have, due to d1(kν) = −Aν11(kν , u)
and d2(kν) = −Aν22(kν , u) (cf. Theorem 2.2.8),

x1 := d1(k) + Aν11(k, u) = d1(k)− d1(kν) + Aν11(k, u)− Aν11(kν , u)

x2 := d2(k) + Aν22(k, u) = d2(k)− d2(kν) + Aν22(k, u)− Aν22(kν , u).
(2.55)

9In [5], the authors write |c − h(0)| ≤ a2 instead of |c − h(ζ)| ≤ a2. The proof of Theroem
2.5.4 shows, however, that the term that we use here (i.e. with ζ instead of with 0 in the
argument of h) is more reasonable. Probably, this is a typing error in [5] particularly since in
the proof of [5, Lemma B.1], the authors consider the case ζ = 0.
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We compute

d1/2(k)− d1/2(kν) = (k + k±ν (û0))2 − (kν + k±ν (û0))2 = (k1 +
1

2
(∓ν1 + iν2ξ))

2+

+ (k2 +
1

2
(−iν1ξ ∓ ν2))2 − (kν,1 +

1

2
(∓ν1 + iν2ξ))

2 − (kν,2 +
1

2
(−iν1ξ ∓ ν2))2 =

= (k1 − kν,1)(∓ν1 + iν2ξ + k1 + kν,1) + (k2 − kν,2)(−iν1ξ ∓ ν2 + k2 + kν,2).

Here, we rediscover the map (k − kν) 7→ z̃ = (z̃1, z̃2) from (2.48). Together with
(2.55), we obtain

x1(k) = z̃1(k − kν) + k2 − k2
ν + Aν11(k, u)− Aν11(kν , u),

x2(k) = z̃2(k − kν) + k2 − k2
ν + Aν22(k, u)− Aν22(kν , u).

(2.56)

These are the intermediate coordinates x = (x1, x2). We sometimes express (2.56)
in the following matrix-vector representation

x(k) =: B0 · (k − kν) +B1(k), (2.57)

B0 :=

(
−ν1 + iν2ξ −iν1ξ − ν2

ν1 + iν2ξ −iν1ξ + ν2

)
, B1(k) :=

(
k2 − k2

ν + Aν11(k, u)− Aν11(kν , u)
k2 − k2

ν + Aν22(k, u)− Aν22(kν , u)

)
Moreover, due to (2.54), we can de�ne the holomorphic function h = hν in (2.50)
by

hν(x1, x2) := −Aν12(k(x), u) · Aν21(k(x), u), (2.58)

where we used that the map k 7→ x(k) de�ned by (2.56) is invertible in a neigh-
bourhood of kν . Then, the term k(x) is well-de�ned. This has to be proved:

Theorem 2.5.2. The map k 7→ x(k), locally de�ned by (2.56), is biholomorphic
in a neighbourhood V of 0 ∈ C2 which only depends on Γ∗δ.

Remark. Remember that the map k 7→ x(k) depends on ν ∈ Γ∗δ (even though the
index ν has been suppressed in the notation).

Proof. Let V be the neighbourhood from Lemma 2.2.7. The entries of ∂
∂k
A±,ν(k+

k±ν (û0), u) tend, due to Lemma 2.2.7, to zero as |ν| → ∞. Therefore and because

of the boundedness of V , we have with B−1
0 = O

(
1
|ν|

)
, |ν| → ∞, that

B−1
0 ·

∂

∂k
(k2 − k2

ν + Aν11(k, u)− Aν11(kν , u))→ 0 (2.59)

uniformly in k ∈ V as |ν| → ∞. The same holds for the other component x2

in (2.56). Hence, due to the Inverse Function Theorem (cf. [23, p. 142], for
example), the map k 7→ k − kν +B−1

0 B1(k) and consequently also the map

k 7→ x(k) = B0

(
k − kν +B−1

0 B1(k)
)
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is locally invertible since B0 is invertible. It remains to be proved that the neigh-
bourhood where the map k 7→ x(k) is invertible is independent of the index ν.
This, however, follows from the Inverse Function Theorem, too, more precisely
from its proof: One usually shows the theorem by using Banach's Fixed Point
Theorem. Let's brie�y recap the essential step where the domain V in which the
considered function, in our case x : U ⊂ C2 → C2, shall be invertible, is de�ned10.
Without restriction, one assumes x′(0) = 1l (otherwise, consider a suitable linear
change of coordinates x 7→ x′(0)−1x which, however, doesn't a�ect the choice of
V since x′(0) is independent of k). For given x0 in a neighbourhood of an element
lying in the image of x, the map V → V , de�ned by k 7→ k + (x0 − x(k)) shall
be a contractive map. For this purpose, one chooses V in such a way that for
instance, ‖x′(k) − 1l‖ ≤ 1

2
for all k ∈ V . This is the crucial condition that the

domain V has to satisfy. Let's go back to our proof of the theorem. Choose one
neighbourhood V for �xed κ ∈ Γ∗δ such that the map k 7→ x(k) is invertible in V .
Then for all ν ∈ Γ∗δ with |ν| ≥ |κ|, the corresponding map k 7→ x(k) is invertible
in the same V , a fortiori, due to (2.59) and the method of �nding V which has
just been explained. Therefore, V only depends on Γ∗δ .

In order to apply Theorem 2.5.1, we have to see that its conditions are satis�ed.
These conditions concern estimates of certain partial derivatives of the function
h:

Lemma 2.5.3. Let hν be the function de�ned in (2.58). It ful�lls for i, j ∈ {1, 2}

∂hν
∂xi

(x) = o

(
1

|ν|

)
, as |ν| → ∞,

∂2hν
∂xi∂xj

(x) = o

(
1

|ν|2

)
, as |ν| → ∞.

These estimates are locally uniform in x.

Remark. Actually, one could get even better estimates. For example, one could
use Theorem 2.4.1 where we showed that the entries of the perturbation matrix
are l2-sequences with respect to ν. This would lead to better estimates for the
derivatives of hν to be considered. But this is not necessary here.

Proof. Using de�nition (2.58), we compute

−∂hν
∂xi

=
∂

∂k
(Aν12(k, u) · Aν21(k, u)) · ∂k

∂xi
=

=

(
Aν12(k, u)

∂

∂k
Aν21(k, u) + Aν21(k, u)

∂

∂k
Aν12(k, u)

)
· ∂k
∂xi

(2.60)

10Compare the proof of Corollary 2.4.4 where we already used the proof of the Inverse Func-
tion Theorem, too.
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By (2.57), we get (with a prime denoting the derivative with respect to k)

∂k

∂x
(x) = (x′(k))−1 = (1l +B−1

0 B′1(k))−1 ·B−1
0

(with k = k(x)) since x′(k) = B0 +B′1(k) = B0 · (1l+B−1
0 B′1(k)). Recall that B0 is

invertible. Since B−1
0 = O

(
1
|ν|

)
and B−1

0 B′1(k) → 0 as |ν| → ∞ (as has already

been justi�ed in the proof of Theorem 2.5.2), we obtain

∂k

∂x
= O

(
1

|ν|

)
, |ν| → ∞. (2.61)

Since Aνij(k, u) and ∂
∂k
Aνij(k, u) tend to zero as |ν| → ∞, respectively (Theorem

2.4.1 and Lemma 2.2.7), the �rst assertion of the lemma follows from (2.60).
As to the second claim, we compute

− ∂2hν
∂xj∂xi

=
2∑

n=1

∂2kn
∂xj∂xi

(
Aν12(k, u)

∂Aν21(k, u)

∂kn
+ Aν21(k, u)

∂Aν12(k, u)

∂kn

)
+

+
2∑

n=1

∂kn
∂xi

(〈
∂Aν12(k, u)

∂k
,
∂k

∂xj

〉
∂Aν21(k, u)

∂kn
+

〈
∂Aν21(k, u)

∂k
,
∂k

∂xj

〉
∂Aν12(k, u)

∂kn

)
+

+
2∑

n=1

∂kn
∂xi

(
Aν12(k, u)

〈
∂

∂k

∂Aν21(k, u)

∂kn
,
∂k

∂xj

〉
+ Aν21(k, u)

〈
∂

∂k

∂Aν12(k, u)

∂kn
,
∂k

∂xj

〉)
.

(2.62)

The second summand in the middle is most easily to handle since all terms
occuring there have already been estimated. Due to (2.61) and ∂

∂k
Aνij(k, u) =

o(1) as |ν| → ∞, the second summand is in o
(

1
|ν|2

)
as |ν| → ∞. We don't

know anything about the asymptotic behaviour of the terms ∂2kn
∂xj∂xi

and ∂
∂k

∂Aνij(k,u)

∂kn

appearing in the �rst and third summand, respectively, yet. These terms shall

be considered now. We start with the term ∂
∂k

∂Aνij(k,u)

∂kn
. Thereto, we examine the

second k-derivative of the operator A(1l − BA)−1 (cf. (2.7)). We compute (cf.
(2.39) and (2.40))

∂2

∂k2
A(1l−BA)−1 = − ∂

∂k
[A(1l−BA)−1BC̃BA(1l−BA)−1] =

= − ∂

∂k
[A(1l−BA)−1]BC̃BA(1l−BA)−1 − A(1l−BA)−1BC̃B

∂

∂k
[A(1l−BA)−1]−

− A(1l−BA)−1 ∂

∂k
[BC̃B]A(1l−BA)−1. (2.63)

The �rst two summands are o(1) as |ν| → ∞ due to Lemma 2.2.7 and the

boundedness of BC̃ with respect to ν (as already seen in the proof of Theorem
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2.4.2). As to the third summand, we compute

C2 × C2 3 (x, y) 7→ ∂

∂k
[BC̃B](x, y) =

= −BC̃(x)BC̃(y)B −BC̃(y)BC̃(x)B +B

[
∂

∂k
C̃

]
(x, y)B,

where

∂

∂k
C̃ : C2 × C2 3 (x, y) 7→ −8π2diag(〈x, y〉)ρ∈Γ∗\{0,±ν}.

So, this derivative is both constant with respect to the point k ∈ V where C̃
has been evaluated and constant with respect to ρ ∈ Γ∗ \ {0,±ν}. Thus, the

asymptotic behaviour of B
[
∂
∂k
C̃
]
is even better than that of BC̃. Four our

purposes, however, it su�ces that these operators have bounded operator norm
with respect to ν. In every summand, the operator B whose norm tends to zero
as |ν| → ∞ (cf. the norm of its Fourier transform estimated in Lemma 2.2.4)
occurs. The remaining operators are uniformly bounded as is already well-known
from the preceding investigations. This shows that

∂2

∂k2
A(1l−BA)−1 −→ 0 as |ν| → ∞

and in particular, for i, j, n ∈ {1, 2}

∂

∂k

∂Aνij(k, u)

∂kn
−→ 0 as |ν| → ∞. (2.64)

It remains to estimate the term ∂2kn
∂xi∂xj

: Due to ∂k1

∂k
= (1, 0), ∂k2

∂k
= (0, 1), we get

(0, 0) =
∂

∂xi

(
∂kn
∂k

)
=

∂

∂xi

(
∂kn
∂x
· ∂x
∂k

)
=

(
∂

∂xi

∂kn
∂x

)
· ∂x
∂k

+
∂kn
∂x
· ∂
∂xi

(
∂x

∂k

)
.

⇒ ∂2kn
∂x ∂xi

· ∂x
∂k

= −∂kn
∂x
· ∂
∂xi

(
∂x

∂k

)
. (2.65)

Further (compare also [5, p. 236]),

∂

∂xi

(
∂kn
∂xj

)
=

(
∂

∂x

∂kn
∂xj

)
· ∂x
∂k
· ∂k
∂xi

(2.65)
= −∂kn

∂x
·
(

∂

∂xj

∂x

∂k

)
· ∂k
∂xi

=

= −
2∑

α,β=1

∂kn
∂xα
·
(

∂

∂xj

∂xα
∂kβ

)
· ∂kβ
∂xi

= −
2∑

α,β,γ=1

∂kn
∂xα
· ∂2xα
∂kγ ∂kβ

· ∂kγ
∂xj
· ∂kβ
∂xi

.
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We show that the term ∂2xα
∂kγ ∂kβ

is bounded with respect to ν. Due to (2.61), the

above computation then yields

∂2kn
∂xi∂xj

= O

(
1

|ν|3

)
, |ν| → ∞. (2.66)

By (2.56) and (2.64), we have

∂2xα
∂k2

γ

= 2 +
∂2Aναα(k, u)

∂k2
γ

= 2 + o(1), |ν| → ∞, if β = γ

∂2xα
∂kγ ∂kβ

=
∂2Aναα(k, u)

∂kγ ∂kβ
= o(1), |ν| → ∞, if β 6= γ,

such that in any case, ∂2xα
∂kγ ∂kβ

is bounded as |ν| → ∞. Now, by the estimates of

∂2kn
∂xj∂xi

in (2.66) and ∂
∂k

∂Aνij(k,u)

∂kn
in (2.64) together with (2.61) and the well-known

results about the behaviour of Aνij(k, u) and ∂
∂k
Aνij(k, u) with respect to |ν| → ∞,

also the �rst and the third summand of (2.62) are in o
(

1
|ν|2

)
as |ν| → ∞. Hence,

the claimed error term for ∂2hν
∂xj∂xi

follows.

With the lemma just proved, the conditions for the Quantitative Morse Lemma
(Theorem 2.5.1) are now ful�lled. Due to that Theorem 2.5.1, there exists a
biholomorphic map Φ from D(r−s)(1−10b) (with b, r, s as in Theorem 2.5.1) to a
neighbourhood of ζ in Dr such that

f ◦ Φ(z1, z2) = z1z2 − c

with a constant c ∈ C ful�lling |c − h(ζ)| ≤ a2. With this transformation of
coordinates, the (asymptotic) handles of the Fermi curve are isomorphic to the
correspondent zero sets of f ◦ Φ, i.e.

{z = (z1, z2) ∈ D(r−s)(1−10b) : z1 · z2 = c}.

In the proof of [5, Lemma B.1, p. 246-248], it has been shown that it su�ces
to consider the special case h(0, 0) = ∂h

∂x1
(0, 0) = ∂h

∂x2
(0, 0) = 0 without loss of

generality, which leads to c = 0 in this special case. If we want to determine the
handle quantity c = cν in our case, that special case is not very helpful. So let's
retrace the part of the proof of [5, Lemma B.1] where the map φ is constructed,
but this time without making any simplifying assumptions:

Theorem 2.5.4. Let

f(x1, x2) = x1x2 + h(x1, x2)
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be the function (2.50) with x-coordinates (2.56) and the function h = hν de�ned
in (2.58). Then the handle quantity c = cν obtained in (2.52) is equal to

cν = −(hν(ζν) + ζν,1 · ζν,2) = Aν12(k(ζν), u) · Aν21(k(ζν), u)− ζν,1 · ζν,2,

where ζν = (ζν,1, ζν,2) is the unique zero of ∇f in Dr, due to Theorem 2.5.1.

Remark. If ζν = 0, we obtain the handle quantities from the model curve (2.49),
i.e. cν = c̃ν by k(0) = kν (cf. (2.53), (2.56) and De�ntion 2.3.3).

Proof. To simplify notations, we suppress the index ν. Set for t ∈ [0, 1]

ft(x1, x2) := (x1 − ζ1)(x2 − ζ2) + t · [x1x2 + h(x)− (x1 − ζ1)(x2 − ζ2)− ζ1ζ2 − h(ζ)].

⇒ ∇ft(x) =

 x2 − ζ2 + t
(
∂h
∂x1

+ ζ2

)
x1 − ζ1 + t

(
∂h
∂x2

+ ζ1

)  .

Set further

h̃(x) := x1x2 + h(x)− (x1 − ζ1)(x2 − ζ2)− ζ1ζ2 − h(ζ).

Similarly to [5, (B.1), p. 246], we search for a t-dependent holomorphic vector
�eld X t : Dr(1−4b) → C2 that solves

h̃+∇ft ·X t = 0. (2.67)

This equation is equivalent to

h̃(x) +

〈 x2 − ζ2 + t
(
∂h
∂x1

+ ζ2

)
x1 − ζ1 + t

(
∂h
∂x2

+ ζ1

)  , X t(x)

〉
= 0⇔

⇔ h̃(x) +

〈(
x2 − ζ2 + t ∂h̃

∂x1

x1 − ζ1 + t ∂h̃
∂x2

)
, X t(x)

〉
= 0⇔ g(y) =

〈(
y1

y2

)
, Y t(y)

〉
,

(2.68)

where

y = Pt(x) :=

(
x2 − ζ2 + t

(
∂h

∂x1

+ ζ2

)
, x1 − ζ1 + t

(
∂h

∂x2

+ ζ1

))
g(y) := −h̃ ◦ P−1

t (y), Y t(y) := X t ◦ P−1
t (y).

(2.69)

Note that the map Pt : Dr → C2 is biholomorphic into its image due to Lemma
2.5.3 which becomes obvious by considering its Jacobian

DxPt =

(
t∂

2h
∂x2

1
1 + t ∂2h

∂x2 ∂x1

1 + t ∂2h
∂x1 ∂x2

t∂
2h
∂x2

2

)
. (2.70)
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Pt doesn't mapDr ontoDr, but the image Pt(Dr) containsDr(1−2b) (see [5, (B.6)])
Now, the last equivalence of (2.68) is obviously solved by Y t = (Y t

1 , Y
t

2 ) de�ned
by

Y t
1 (y) :=

1

y1

g(y1, 0), Y t
2 :=

1

y2

(g(y1, y2)− g(y1, 0)).

These functions are holomorphic in Dr as it has been shown in [5, p. 247] (or
equivalently will follow from (2.78)). Thus, by setting X t := Y t ◦ Pt, we obtain,
according to (2.68), the desired vector �eld X t de�ned on P−1

t (Dr(1−2b)) solving
(2.67). Since P−1

t (Dr(1−2b)) contains Dr(1−4b)
11, this yields the claimed domain in

which X t should be de�ned. Now that we have constructed X t, let's consider the
initial value problem12

d

dt
Φt(x) = X t(Φt(x)), Φ0(x) = x. (2.71)

Since x 7→ X t(x) is holomorphic (and continuous with respect to (t, x)), the
problem (2.71) has a unique solution Φt by the Theorem of Picard-Lindelöf (cf.
[24, Satz 2.2.2], for instance). We obtain

d

dt
ft(Φt(x)) = h̃(Φt(x)) +∇ft(Φt(x)) ·X t(Φt(x))

(2.67)
= 0.

Hence, ft(Φt(x)) is constant with respect to t. Due to the initial value Φ0(x) = x,
we therefore obtain f1(Φ1(x)) = f0(x) which is equivalent to

f(Φ1(x))− h(ζ)− ζ1ζ2 = (x1 − ζ2)(x2 − ζ2).

Setting z 7→ Φ(z) := Φ1(z + ζ), we �nally get

f ◦ Φ(z1, z2) = z1 · z2 + h(ζ) + ζ1 · ζ2︸ ︷︷ ︸
=:−c

.

This proves the assertion.

Let's recap how the map Φ looks like. Due to (2.71), we obtain Φ1(z) = Φ0(z) +∫ 1

0
X t(Φt(z))dt and thus, by de�nition of Φ and with Φ0(z) = z,

x = Φ(z) = z + ζ +

∫ 1

0

X t(Φt(z + ζ))dt =: z − ε(z),

with ε(z) := −ζ −
∫ 1

0

X t(Φt(z + ζ))dt,

(2.72)

11See [5, p. 248], where we must use in our case the estimate
∣∣∣ dh̃dxi ∣∣∣ ≤ b(|x1 − ζ1|+ |x2 − ζ2|)

instead of [5, (B.5)]. This estimate will be proved in (2.74) in Lemma 2.5.5. However, the exact
de�nition of the domain, say Dr(1−4b) or Dr(1−10b), for instance, is �nally immaterial for our
purposes.

12Here, our proof di�ers from [5] since the map Φt in [5] obtained by just integrating Xt is
not suitable.
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again with suppressed index ν.
We want to investigate the map k 7→ x 7→ z more precisely. We already know
that, by k 7→ x, kν is mapped to 0. An interesting question would be: By x 7→ z,
0 is mapped to what? It would be nice if 0 was mapped to 0, but there is no
evidence. Yet, we can show that, by z 7→ x, 0 is mapped to the critical point ζ.
In order to prove this, we need to show at �rst X t(ζ) = 0. This follows from the
next lemma which provides even more, namely an estimate of X t:

Lemma 2.5.5. Using the notations of Theorem 2.5.1, there holds

|X t(x)| ≤ o

(
1

|ν|2

)
(|x1 − ζ1|+ |x2 − ζ2|), as ν →∞, (2.73)

for all x ∈ Dr.

Remark. The proof is based on the proof of [5, Lemma B.1] and uses its main
ideas. Since the proof in [5] only treats the special case ζ = 0, its di�erence to
our proof is that we consider the general case including ζ 6= 0 as we already did
before.

Proof. We consider the map h̃ de�ned in the proof of Theorem 2.5.4,

h̃(x) := x1x2 + h(x)− (x1 − ζ1)(x2 − ζ2)− ζ1ζ2 − h(ζ).

By de�nition of the critical point ζ = (ζ1, ζ2), we have ∂h(ζ)
∂x1

+ ζ2 = 0 as well as
∂h(ζ)
∂x2

+ζ1 = 0. Hence, ∇h̃(ζ) = (∂h(ζ)
∂x1

+ζ2,
∂h(ζ)
∂x2

+ζ1) = (0, 0). By the Fundamental
Theorem of Calculus, we have for i ∈ {1, 2}

∂h̃(x)

∂xi
− ∂h̃(ζ)

∂xi︸ ︷︷ ︸
=0

=

∫ 1

0

(
∂2h̃(ζ + t(x− ζ))

∂x1∂xi
· (x1 − ζ1) +

∂2h̃(ζ + t(x− ζ))

∂x2∂xi
· (x2 − ζ2)

)
dt,

and hence by Lemma 2.5.3 (note that ∂2h̃(x)
∂xi∂xj

= ∂2h(x)
∂xi∂xj

for i, j ∈ {1, 2}),∣∣∣∣∣∂h̃(x)

∂xi

∣∣∣∣∣ ≤ b(|x1 − ζ1|+ |x2 − ζ2|), (2.74)

as |ν| → ∞, where we use (according to the notation of Theorem 2.5.1) the
abbreviation b for the term o(1/|ν|2), as |ν| → ∞. Therefore, for i = 1, 2 and
t ∈ [0, 1], ∣∣∣∣∣∂h̃(ζ + t(x− ζ))

∂xi

∣∣∣∣∣ ≤ bt(|x1 − ζ1|+ |x2 − ζ2|).
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Again by the Fundamental Theorem of Calculus,

h̃(x)− h̃(ζ)︸︷︷︸
=0

=

∫ 1

0

(
∂h̃(ζ + t(x− ζ))

∂x1

· (x1 − ζ1) +
∂h̃(ζ + t(x− ζ))

∂x2

· (x2 − ζ2)

)
dt,

this implies

|h̃(x)| ≤ b(|x1 − ζ1|+ |x2 − ζ2|)
∫ 1

0

tdt|x1 − ζ1|+ b(|x1 − ζ1|+ |x2 − ζ2|)
∫ 1

0

tdt|x2 − ζ2| =

=
b

2
(|x1 − ζ1|+ |x2 − ζ2|)2.

With y = Pt(x) as in (2.69), we get by (2.74)

|y1|+ |y2| ≤ |x1 − ζ1|+ |x2 − ζ2|+ t

(∣∣∣∣∣∂h̃(x)

∂x1

∣∣∣∣∣+

∣∣∣∣∣∂h̃(x)

∂x2

∣∣∣∣∣
)
≤

≤ (1 + 2b)(|x1 − ζ1|+ |x2 − ζ2|)
(2.75)

as well as

|y1|+ |y2| ≥ |x1 − ζ1|+ |x2 − ζ2| − t

(∣∣∣∣∣∂h̃(x)

∂x1

∣∣∣∣∣+

∣∣∣∣∣∂h̃(x)

∂x2

∣∣∣∣∣
)
≥

≥ (1− 2b)(|x1 − ζ1|+ |x2 − ζ2|).
(2.76)

Since ∂2h̃(x)
∂xi∂xj

= ∂2h(x)
∂xi∂xj

for i, j ∈ {1, 2}, we can use equations [5, (B.6),(B.7), p.

247], namely∥∥∥∥DxPt −
(

0 1
1 0

)∥∥∥∥ =

∥∥∥∥t ∂2h

∂xi ∂xj

∥∥∥∥ ≤ tb,

∥∥∥∥DyP
−1
t −

(
0 1
1 0

)∥∥∥∥ ≤ tb

1− tb
,

which also follow from (2.70). With g as in (2.69), we thus have together with
(2.74) for i ∈ {1, 2}∣∣∣∣∂g(y)

∂yi

∣∣∣∣ =

∣∣∣∣∣∂h̃(x)

∂x
|x=P−1

t (y) ·
∂P−1

t (y)

∂yi

∣∣∣∣∣ ≤ b(|x1 − ζ1|+ |x2 − ζ2|) ·
(

1 +
b

1− b

)
≤

(2.76)

≤ b

(1− 2b)(1− b)
(|y1|+ |y2|) ≤ b

1 + 2b

1− 2b
(|y1|+ |y2|), (2.77)

where in the last step, we used 1
1−b ≤ 2 for b ≤ 1

2
(this can surely be achieved for

|ν| su�ciently large) which implies 1
1−b = 1 + b

1−b ≤ 1 + 2b. This yields, again
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together with the Fundamental Theorem of Calculus (by using Pt(ζ) = 0 which

implies P−1
t (0) = ζ and g(0) = −h̃(ζ) = 0)

|g(y)− g(0)︸︷︷︸
=0

| ≤
∫ 1

0

|Dg(ty)y|dt ≤
∫ 1

0

(∣∣∣∣∂g(ty)

∂y1

y1

∣∣∣∣+

∣∣∣∣∂g(ty)

∂y2

y2

∣∣∣∣) dt ≤
≤ b

1 + 2b

1− 2b

(
(|y1|+ |y2|)

|y1|
2

+ (|y1|+ |y2|)
|y2|
2

)
=
b

2

1 + 2b

1− 2b
(|y1|+ |y2|)2. (2.78)

Now, we have all estimates we need and can proceed more or less exactly as in the
rest of the proof of [5, Lemma B.1]. For the sake of completeness, we don't refer to
[5] but give the rest of the proof here anyway. We estimate Y t(y) = (Y t

1 (y), Y t
2 (y))

de�ned in (2.69). We get

|Y t
1 (y)| = |g(y1, 0)|

|y1|
≤ b

2

1 + 2b

1− 2b
|y1|.

For Y t
2 (y), we discuss the cases |y2| ≥ |y1| and |y2| < |y1| seperately. In the �rst

case, it is

|Y t
2 (y)| ≤ 1

|y2|
(|g(y1, y2)|+ |g(y1, 0)|) ≤ b

1 + 2b

1− 2b

(|y1|+ |y2|)2

|y2|
=

= b
1 + 2b

1− 2b

(
|y1|2

|y2|
+ 2|y1|+ |y2|

)
|y1|≤|y2|
≤ 2b

1 + 2b

1− 2b
(|y1|+ |y2|).

Now consider the case |y2| < |y1|. For �xed y1, we apply the maximum principle
(recall that y 7→ Y t(y) is holomorphic) to y2 7→ Y t

2 (y1, y2) yielding for |y2| ≤ |y1|

|Y t
2 (y)| ≤ 2b

1 + 2b

1− 2b
(|y1|+ |y1|) = 4b

1 + 2b

1− 2b
|y1|.

Putting the estimates for Y t
1 and Y t

2 together yields

|Y t(y)| ≤ 4
√

2 b
1 + 2b

1− 2b
(|y1|+ |y2|).

By (2.75), we �nally get

|X t(x)| = |Y t(Pt(x))| ≤ 4
√

2 b
(1 + 2b)2

1− 2b
(|x1 − ζ1|+ |x1 − ζ2|).

Since b = o(1/|ν|2) as |ν| → ∞, the lemma is proved.

Now let's go back to our initial question: We wanted to show that, by the map
z 7→ x, 0 is mapped to the critical point ζ. The statement (2.73) impliesX t(ζ) = 0
for all t ∈ [0, 1]. Considering the corresponding initial value problem

d

dt
Φt(ζ) = X t(Φt(ζ)), Φ0(ζ) = ζ,
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the constant function Φt(ζ) = ζ for all t ∈ [0, 1] is obviously the (unique) solution
of the problem. In particular, we have Φ1(ζ) = ζ and thus Φ(0) = Φ1(ζ) = ζ. To
sum up, we have the following mapping

z 7−→ x 7−→ k

∗ 7−→ 0 7−→ kν

0 7−→ ζν 7−→ ∗
(2.79)

where the star ∗ shall denote corresponding values which haven't been deter-
mined, yet.
By the parameterization z1 · z2 = cν of the ν-th excluded domain (up to isomor-
phy, of course), we can now give a characterization of an unsplit double point
since that parameterization allows us to see immediately (by examining whether
cν = 0 or cν 6= 0) if a double point splits or does not.

Corollary 2.5.6. A double point in the ν-th excluded domain (k±ν (û0)+V )∩F (u)
for ν ∈ Γ∗δ remains unsplit if and only if the corresponding handle quantity cν
vanishes, i.e.

cν = −hν(ζν)− ζν,1 · ζν,2 = 0.

The double point splits up to a handle if and only if cν 6= 0.

The handle quantities c̃ν (2.49) of the model curve are easily described by the
product of perturbed Fourier coe�cients ǔν · ǔ−ν . One might ask the following
question: Does c̃ν = 0 already imply cν = 0? In other words: Can the question
whether a double point remains unsplit or not already be answered by looking
at the handle quantities of the model curve? Indeed, for real-valued potentials,
this is the case (see Theorem 2.5.9). If we require a little bit more than only
the condition that the product ǔν · ǔ−ν vanishes, we can even deduce cν = 0 for
complex-valued potentials. More precisely, we have the following theorem.

Theorem 2.5.7. Let u ∈ L2(F ) and let (ǔν)ν∈Γ∗δ
be its associated sequence of

perturbed Fourier coe�cients. Moreover, let ǔν = ǔ−ν = 0 for some ν ∈ Γ∗δ.
Then cν = 0.

Proof. By expanding the matrix M (2.14) into its Taylor series (see the proof of
[13, Lemma 4.5.53]), we get with the usual notations (2.53) 8π2

〈
k − kν , k+

ν (û0) + 1
2

∂Aν11(kν ,u)

∂k

〉
ǔν + 4π2

〈
k − kν , ∂A

ν
12(kν ,u)

∂k

〉
ǔ−ν + 4π2

〈
k − kν , ∂A

ν
21(kν ,u)

∂k

〉
8π2

〈
k − kν , k−ν (û0) + 1

2

∂Aν22(kν ,u)

∂k

〉 +

+ 4π2

(
k2 − k2

ν 0
0 k2 − k2

ν

)
+O

(
|k − kν |2

)
, as k → kν .
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Since k2 − k2
ν = 2 〈k − kν , kν〉+ (k − kν)2, M is equal to 8π2

〈
k − kν , k+

ν (û0) + kν + 1
2

∂Aν11(kν ,u)

∂k

〉
ǔν + 4π2

〈
k − kν , ∂A

ν
12(kν ,u)

∂k

〉
ǔ−ν + 4π2

〈
k − kν , ∂A

ν
21(kν ,u)

∂k

〉
8π2

〈
k − kν , k−ν (û0) + kν + 1

2

∂Aν22(kν ,u)

∂k

〉 
+O

(
|k − kν |2

)
,

as k → kν . We set f : V ⊂ C2 → C de�ned by f(k) := detM . Now let
ǔν = ǔ−ν = 0, in particular c̃ν = 0 by (2.49). We get by the above expansion
f(kν) = 0 (that is, kν is a point on the Fermi curve) as well as

∇f(kν) = −4π2ǔν ·
∂Aν21(kν , u)

∂k
− 4π2ǔ−ν ·

∂Aν12(kν , u)

∂k
= 0,

that is, the Fermi curve has a singularity in the ν-th excluded domain at k = kν .
In other words, the corresponding double point remains unsplit and is, by the
above calculation, equal to kν . Since

∇xf(k(x))|x=k−1(kν) = ∇kf(k)|k=kν ·
dk

dx
|x=k−1(kν) = 0,

the critical point ζν is mapped to kν by the map x 7→ k. Consequently, in the
diagram (2.79), the second and the third row are identical. This implies ζν = 0.
Hence, by the remark to Theorem 2.5.4, we get cν = c̃ν = 0, which had to be
proved.

This leads to the de�nition of so-called �nite type potentials :

De�nition 2.5.8. A potential u ∈ L2(F ) is called �nite type potential if

ǔν = ǔ−ν = 0

for all but �nitely many ν ∈ Γ∗δ (with δ > 0 su�ciently small such that the
perturbed Fourier coe�cients are well-de�ned, cf. De�nition 2.3.3). The corre-
sponding Fermi curve F (u) is then called Fermi curve of �nite type or simply
�nite type Fermi curve.

Due to Theorem 2.5.7, a Fermi curve F (u) of a �nite type potential u ∈ L2(F )
has the property that at most a �nite number of singularities splits up to a handle
whereas in�nitely many double points remain unsplit.
Now, we prove the converse of Theorem 2.5.7 for the case of real-valued potentials:

Theorem 2.5.9. Let u ∈ L2(F ) be real-valued, let δ > 0 su�ciently small and
ν ∈ Γ∗δ. Then

c̃ν = 0 ⇐⇒ cν = 0.
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Furthermore,

cν
c̃ν

= 1 + o

(
1

|ν|2

)
, as |ν| → ∞

on the subsequence indexed by all ν ∈ Γ∗δ satisfying c̃ν 6= 0. This estimate is
locally uniform in u.

Proof. Let ν ∈ Γ∗δ . Assume at �rst that c̃ν = 0. By ǔν = ǔ−ν (cf. Corollary
2.3.6), this implies ǔ−ν = ǔν = 0, cf. (2.49). Due to Theorem 2.5.7, cν = 0
follows.
Conversely, let c̃ν 6= 0 (and consequently |ǔν | = |ǔ−ν | 6= 0, again by Corollary
2.3.6). We have to prove cν 6= 0. Thereto, we estimate the quotient

cν
c̃ν

=
hν(ζν) + ζν,1 · ζν,2

hν(0)
,

with respect to the limit behaviour |ν| → ∞, i.e. we consider at �rst arbitrary
(non-�xed) ν ∈ Γ∗δ ful�lling c̃ν 6= 0. Thus, in the following (even though it is not
always explicitly mentioned), all sequences are indexed by ν ∈ Γ∗δ with c̃ν 6= 0.
These are subsequences13. Firstly, we estimate the critical point ζν . By de�nition
of ζν , we have (cf. (2.60))

ζν,2 = −∂hν(ζν)
∂x1

=

=

(
Aν12(k(ζν), u)

∂

∂k
Aν21(k(ζν), u) + Aν21(k(ζν), u)

∂

∂k
Aν12(k(ζν), u)

)
· ∂k(ζν)

∂x1

,

ζν,1 = −∂hν(ζν)
∂x2

=

=

(
Aν12(k(ζν), u)

∂

∂k
Aν21(k(ζν), u) + Aν21(k(ζν), u)

∂

∂k
Aν12(k(ζν), u)

)
· ∂k(ζν)

∂x2

.

(2.80)

By the Mean Value Theorem (cf. [30, Satz III.5.4(b)]), we have

|Aν12(k(ζν), u)− Aν12(k(0), u)| ≤ sup
k(x)∈V

|∇xA
ν
12(k(x), u)| · |ζν | = o

(
1

|ν|

)
· |ζν |,

as |ν| → ∞, since

∇xA
ν
12(k(x), u) = ∇kA

ν
12(k(x), u) · dk(x)

dx
= o

(
1

|ν|

)
, as |ν| → ∞

13If there are only �nitely many ν ∈ Γ∗δ with c̃ν 6= 0, there is, of course, nothing to prove
since then, the implication cν = 0 ⇒ c̃ν = 0 is trivially ful�lled for ν ∈ Γ∗δ by choosing δ > 0
suitably smaller.
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due to Lemma 2.2.7 and (2.61). We thus obtain

|Aν12(k(ζν), u)| ≤ o

(
1

|ν|

)
· |ζν |+

|ǔν |
4π2

, as |ν| → ∞

since Aν12(k(0), u) = Aν12(kν , u) = ǔν/4π
2 per de�nitionem (cf. (2.53) and De�ni-

tion 2.3.3). In the same fashion, we obtain

|Aν21(k(ζν), u)| ≤ o

(
1

|ν|

)
· |ζν |+

|ǔ−ν |
4π2

, as |ν| → ∞

and moreover for all t ∈ [0, 1] (note that |ǔν | = |ǔ−ν | due to the reality of u)

|Aνij(k(tζν), u)| ≤ o

(
1

|ν|

)
· |ζν |+

|ǔν |
4π2

, as |ν| → ∞ (2.81)

for i, j ∈ {1, 2}, i 6= j. Together with (2.80) and (2.61), this yields by using once
again ∂

∂k
Aνij(k, u) = o(1) as |ν| → ∞

|ζν | ≤ o(1) ·
(
o

(
1

|ν|

)
· |ζν |+ |ǔν |+ o

(
1

|ν|

)
· |ζν |+ |ǔ−ν |

)
·O
(

1

|ν|

)
=

= o

(
1

|ν|

)
(|ζν |+ |ǔν |) , as |ν| → ∞.

Solving for |ζν | yields

|ζν | ≤
|ǔν |

1 + o
(

1
|ν|

) · o( 1

|ν|

)
= |ǔν | · o

(
1

|ν|

)
, as |ν| → ∞, (2.82)

in particular lim
|ν|→∞

|ζν | = 0.

By the Fundamental Theorem of Calculus, we have

hν(ζν) = hν(0) +

∫ 1

0

∇hν(tζν)dt · ζν .

Due to (2.60), (2.61), (2.81), (2.82) and Lemma 2.2.7, we get

|∇hν(tζν)| ≤ |ǔν | · o
(

1

|ν|

)
, as |ν| → ∞

uniformly in t ∈ [0, 1]. Hence, due to (2.82) and hν(0) = c̃ν (2.49),∣∣∣∣hν(ζν)hν(0)

∣∣∣∣ ≤ 1 + sup
t∈[0,1]

∣∣∣∣∇hν(tζν) · ζνhν(0)

∣∣∣∣ = 1 + o

(
1

|ν|2

)
, as |ν| → ∞.
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This shows

lim
|ν|→∞

hν(ζν)

hν(0)
= 1,

still considered on the subsequence indexed by ν ∈ Γ∗δ with c̃ν 6= 0. Further, we
have, again by (2.82),

ζν,1 · ζν,2
hν(0)

= o

(
1

|ν|2

)
· |ǔν |

2

|ǔν |2
= o

(
1

|ν|2

)
, as |ν| → ∞,

which shows

lim
|ν|→∞

ζν,1 · ζν,2
hν(0)

= 0.

Hence,

cν
c̃ν

=
hν(ζν)

hν(0)
+
ζν,1 · ζν,2
hν(0)

= 1 + o

(
1

|ν|2

)
, as |ν| → ∞.

Now, choose δ > 0 so small such that

|hν(ζν)|
|hν(0)|

>
1

2
∧ |ζν,1 · ζν,2|

|hν(0)|
<

1

2
for all ν ∈ Γ∗δ , c̃ν 6= 0 (2.83)

which is possible due to the limits computed above. Now, let c̃ν 6= 0 for some �xed
ν ∈ Γ∗δ . Suppose cν = 0. Then, hν(ζν) + ζν,1 · ζν,2 = 0. Hence, hν(ζν)

hν(0)
= −ζν,1·ζν,2

hν(0)
,

which is a contradiction to (2.83). Therefore, cν 6= 0, which had to be proved.

2.6 De�nition of the moduli

In this section, we introduce a data set which shall characterize a given Fermi
curve and distinguish two di�erent Fermi curves from each other: the so-called
moduli. The crucial statement in this context will be Theorem 4.3.2. Until we
can prove it, there is yet a long way to go.
At �rst, we need to recap the �rst homology group H1(X,Z) of a given com-
pact Riemann surface X of genus g (see [5, Introduction to chapter 1]) with its
canonical homology basis of A-cycles A1, . . . , Ag and B-cycles B1, . . . Bg. In [5,
Def. 1.10], the concept of a canonical homology basis A1, B1, A2, B2, A3, B3, . . .
is generalized to Riemann surfase of in�nite genus: More precisely, the cycles
satisfy14 Ai × Bj = δij, Ai × Aj = Bi × Bj = 0 and for every submanifold
Y ⊂ X with boundary there is an n ∈ N such that the range of the canoni-
cal map H1(Y,Z) → H\

1(X,Z) is contained in the span of Ai, Bi, i = 1, . . . , n,

14As in [5], we denote by γ1 × γ2 the intersection number of two cycles γ1, γ2 ∈ H1(X,Z).
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where H\
1(X,Z) := H1(X,Z)/(subgroup of dividing cycles). Here, σ ∈ H1(X,Z)

is called a dividing cycle if σ×τ = 0 for all τ ∈ H1(X,Z). The authors of [5] refer
to [1, Chapter 1], where it has been shown that there is a canonical homology
basis for every Riemann surface. In the de�nition of our moduli, we only need the
A-cycles so that we don't need to care about the B-cycles in this context. The
A-cycles are just the countour cycles around the waists of the handles (compare
[5, p. 43], in particular the representation of the handle in [5, Lemma 4.3]). If
the Fermi curve is smooth, i.e. it has no singularities, we can obviously choose
the A-cycles such that they are pairwise disjoint. Now, it may happen that our
Fermi curves have singularities. In these cases, the waist of the corresponding
handle (and thus the corresponding A-cycle) is contracted into one point15. In
the de�nition of the moduli, this will be re�ected in the fact that the correspond-
ing contour integral (as integral of the locally bounded 1-form k1dk2 over one
point) will be equal to zero. Due to [27, p. 152, 4.], where the moduli have been
de�ned in a more general setting (namely for Fermi curves of Dirac operators16

instead of Schrödinger operators), the A-cycles Aν can be indexed by the dual
lattice vectors ν ∈ Γ∗. However, we have to make a small exception concerning
the cycle Aν corresponding to ν = 0. If F (u) is a Fermi curve of �nite type, its
normalization can be compacti�ed by adding two points "at in�nity", cf. [19].
It turns out that in this two-point-compacti�cation, the cycle A0 is homologous
to zero and hence not an element of the homology basis. If the Fermi curve,
however, is of in�nite type, such a compacti�cation is not possible. In this case,
A0 is in general not homologous to zero. As a motivation why we neglect A0

also in this case, we only mention that A0 is a dividing cycle, i.e. A0 = 0 as an
element of H\

1(X,Z). This fact won't, however, be needed in the following so that
we don't prove it here. Indeed, the only parts of this work where the question
whether we consider the A-cycles for all ν ∈ Γ∗ or only for ν ∈ Γ∗ \ {0} plays
an essential role are those parts where we make use of the linear independence
of the cycles Aν . For example, in Section 4.1, it will be necessary to exclude the
cycle A0 in the corresponding considerations since in Lemma 4.1.2, for instance,
it is essential that the appearing A-cycles are linearly independent.
Nevertheless, we formally de�ne the moduli mν for all ν ∈ Γ∗ despite the use-
lessness of the modulus m0. We do this in order to avoid that the notations
appearing in the following are too cumbersome. For instance, we will show in the
sequel that the moduli are l1-sequences. We then prefer writing l1(Γ∗) instead of
l1(Γ∗ \ {0}) for sake of legibility.
But now, let's �nally de�ne the moduli (cf. [27, p. 152, 4.] and [13, Def. 4.5.62]).

De�nition 2.6.1. Let F (u) be a Fermi curve (which may have singularities) of
a given potential u ∈ L2(F ), let (Aν)ν∈Γ∗ be the sequence of A-cycles (whose

15In the asymptotic part of the Fermi curve where double points are the only singularities
which can occur, this point is just a double point.

16In Section 4.1, we will deal with this more general Dirac Fermi curves as well.
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elements may also be contracted into one single point in the case a singularity
occurs). Then the sequence of moduli (mν(u))ν , indexed by ν ∈ Γ∗, is de�ned by

mν(u) := −16π3

∫
Aν

k1dk2.

As to the model Fermi curve (cf. p. 47), we indicate the moduli with a tilde as
we did before with the quantities related to the model curve,

m̃ν(u) := −16π3

∫
Ãν

k1dk2 in the model case,

with a corresponding sequence of cycles (Ãν)ν∈Γ∗δ
(which can be considered as the

waists of the handles of the model Fermi curve provided that the corresponding
double points split up to handles).

We have already seen that the model Fermi curve is a lot easier to handle than
the actual Fermi curve. The computation of the handle quantities c̃ν and the
corresponding coordinates z̃1, z̃2 satisfying z̃1 · z̃2 = c̃ν didn't cause any problems.
The same holds for the moduli, at least for those in the asymptotic part of the
Fermi curve, i.e. those with index ν ∈ Γ∗δ (for δ > 0 su�ciently small). One
obtains17 (cf. [13, proof of Theorem 4.5.56])

m̃ν(u) =
ǔν · ǔ−ν
|ν|2ξ

(2.49)
= 16π4 c̃ν

|ν|2ξ
, ν ∈ Γ∗δ , (2.84)

which shows a connection to the handle quantities c̃ν (2.49). Besides, we have
the obvious implications for ν ∈ Γ∗δ

c̃ν = 0 ⇐⇒ m̃ν(u) = 0,

cν = 0 =⇒ mν(u) = 0,
(2.85)

where in the last implication, remember that due to an unsplit double point
(cν = 0), the corresponding cycle Aν degenerates to a point such that the countour
integral in the de�nition of the modulus mν(u) consequently vanishes (mν(u) =
0). In fact, for real-valued potentials, all of the four identities in (2.85) are
equivalent to one another: Due to Theorem 2.5.9, we have c̃ν = 0 ⇔ cν = 0.
Moreover, we will see in Lemma 3.2.2 that m̃ν(u) = 0 ⇔ mν(u) = 0 holds

17The representation m̃ν(u) = ǔν ·ǔ−ν
|ν|2ξ will be used very often in the following. This is, by the

way, the reason why in De�nition 2.6.1, there appears a factor −16π3 in front of the respective
contour integrals. Clearly, one could also de�ne the moduli without this normalizing factor.
But then it would permanently appear in the term for m̃ν(u) instead. By the way, in [13,
De�nitions 4.5.55, 4.5.62], there appears the factor 16π3 (without the minus sign). The reason
why [13, (4.5.59)] still yields the same result as (2.84) is that in [13], there occurred a wrong
sign in the computations (namely −16π4 instead of 16π4 in [13, (4.5.54)]).
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because of the estimate mν(u) = m̃ν(1+o(1)) as |ν| → ∞ which will be shown in
that lemma. Thus, for real-valued potentials u ∈ L2(F ), we anticipate for ν ∈ Γ∗δ
the equivalences

cν = 0 ⇐⇒ c̃ν(u) = 0 ⇐⇒ m̃ν = 0 ⇐⇒ mν(u) = 0,

provided that δ > 0 is su�ciently small. So far, this is all we have to know
about the moduli in order to investigate the asymptotic isospectral set in the
next chapter. When we determine the entire isospectral set later in Chapter 4,
we will get to know some more properties of the moduli.



Chapter 3

The isospectral problem I:

Asymptotics

As already mentioned in Section 1.3, the main goal of this work is to determine
the isospectral set

IsoF (u0) := {u ∈ L2(F ), u real-valued : F (u) = F (u0)}
(the subscript F in IsoF (u0) stands for Fermi curve) for a given real-valued
potential u0 ∈ L2(F ). It will turn out to be convenient to use the moduli m(u) :=
(mν(u))ν∈Γ∗ as a data set locally characterizing the Fermi curve in the sense that
m(u) = m(u0) ⇐⇒ F (u) = F (u0). This important relation between moduli
and Fermi curves will be shown in Theorem 4.3.2. We are not able to show this
equivalence at this point, yet, since its proof will require further properties of the
moduli we will only get to know in subsequent sections.
In this chapter, we want to determine the asymptotical isospectral set Isoδ(u0).
Before we de�ne it, we want to introduce some notation. Recall the map (2.31)
between potentials u, associated Fourier coe�cients û and associated perturbed
Fourier coe�cients ǔ. Let

P : U ⊂ L2(F )→ l2(Γ∗δ), u 7→ (ǔν)ν∈Γ∗δ
(3.1)

be the map which assigns to every potential its associated sequence of perturbed
Fourier coe�cients in some neighbourhood U of the given u0 ∈ L2(F ). Provided
that the �rst �nitely many Fourier coe�cients are kept constant, Theorem 2.4.2
implies that the map û 7→ ǔ (2.32) is locally boundedly invertible on l2(Γ∗δ) for
δ > 0 su�ciently small depending on u0. That is, there exist neighbourhoods
Ǔ of P (u0) and Û of û0 (the Fourier transform of u0) such that every ǔ ∈ Ǔ is
mapped to a û ∈ Û . How do the corresponding potentials u look like? Since we
have the embedding l2(Γ∗δ) ⊆ l2(Γ∗) by setting for (aν)ν ∈ l2(Γ∗δ) the �rst �nitely
many elements equal to zero, more precisely aν := 0 for |ν| ≤ δ−1, the map P
(3.1) is locally invertible if we restrict P to

L2
δ,0(F ) := {u ∈ L2(F ) : û(ν) = 0 for all ν ∈ Γ∗ \ Γ∗δ}.

68
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However, the �rst �nitely many Fourier coe�cients needn't necessarily be equal
to zero for P to be locally invertible. It also su�ces that the �rst �nitely many
Fourier coe�cients are chosen to be constant (this constant needn't be equal
to zero). Since we are interested in the isospectral set Iso(u0) for some given
u0 ∈ L2(F ), it will turn out to be suitable to choose this constant to be equal to
the �rst �nitely many Fourier coe�cients û0(ν), ν ∈ Γ∗ \Γ∗δ of the given potential
u0. More precisely, we de�ne

L2
δ,u0

(F ) := {u ∈ L2(F ) : û(ν) = û0(ν) for all ν ∈ Γ∗ \ Γ∗δ}. (3.2)

If in the following, we write P−1(a) for a ∈ l2(Γ∗δ), we always mean P−1(a) ∈
L2
δ,u0

(F ) such that the inverse P−1 is well-de�ned. Since we are interested in real
isospectral sets, we introduce

l2R(Γ∗δ) := {(uν)ν ∈ l2(Γ∗δ) : uν = u−ν for all ν ∈ Γ∗δ}
(compare the reality condition in Corollary 2.4.4). The asymptotic isospectral set
Isoδ(u0) for given real u0 ∈ L2(F ) is now de�ned as follows:

Isoδ(u0) := {(uν)ν ∈ l2R(Γ∗δ) : mν(u) = mν(u0) for all ν ∈ Γ∗δ , u := P−1((uν)ν)},
(3.3)

where we implicitly use the convention that (uν)ν /∈ Isoδ(u0) if (uν)ν /∈ Ǔ (since
then P−1((uν)ν) doesn't exist in general). Let's brie�y comment on this de�nition
(3.3): By identifying potentials with perturbed Fourier coe�cients (in the usual
asymptotic sense), we clearly haven't determined the potential completely, yet.
In other words, �nitely many degrees of freedom (namely the Fourier coe�cients
for ν ∈ Γ∗ \ Γ∗δ) remain. On the other hand, a Fermi curve isn't described
by (mν(u))ν∈Γ∗δ

, yet. Finitely many restrictions remain to be ful�lled (namely
mν(u) = mν(u0) for all ν ∈ Γ∗ \ Γ∗δ). Thus, we have as many open degrees
of freedom as open restrictions. Note, however, that the isospectral sequences
(ǔν)ν ∈ l2R(Γ∗δ) determined in this chapter may vary when we take in a later step
the remaining degrees of freedom and restrictions into consideration, too.

3.1 Isospectral �ows of the model Fermi curve

In this section, we want to determine asymptotically the isospectral set of a given
model Fermi curve by periodic isospectral �ows. We start our considerations with
the model Fermi curve since things turn out to be easier in the model case. In a
later step in the next section, we will use a perturbation of the model isospectral
set in order to gain the isospectral set for the actual curve. Let u0 ∈ L2(F ) be a
given potential. Analogously to (3.3), we de�ne the asymptotic model isospectral

set Ĩsoδ(u0) by

Ĩsoδ(u0) := {(uν)ν ∈ l2R(Γ∗δ) : m̃ν(u) = m̃ν(u0) for all ν ∈ Γ∗δ , u := P−1((uν)ν)}
= {(uν)ν ∈ l2R(Γ∗δ) : uν · u−ν = ǔ0,ν · ǔ0,−ν for all ν ∈ Γ∗δ} (3.4)
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Note that the quantity ξ appearing in the denominater of (2.84) remains invariant
within the asymptotic model isospectral set since it only depends on the constant
part (cf. (2.1)) of the given potential u0 (compare the de�nition of L2

δ,u0
(F )).

Thus, we can restrict ourselves to the numerator of (2.84). However, we must
keep in mind that the homeomorphism between potentials (or their corresponding
sequence of Fourier coe�cients) and perturbed Fourier coe�cients is de�ned only
locally in BR(û0) 1 in the sense of Theorem 2.4.2. Hence, we must ensure that the
isospectral �ows don't leave this domain BR(û0). The following theorem gives a

parameterization of Ĩsoδ(u0) for real-valued potentials:

Theorem 3.1.1. Let u0 ∈ L2(F ) be a given real-valued potential. Then

Ĩsoδ(u0) = ×ν∈Γ∗δ/σ
{(eitǔ0,ν , e

−itǔ0,−ν) : t ∈ [0, 2π)}.

That is, Ĩsoδ(u0) is in general 2 isomorphic to an in�nite-dimensional torus since
it can be described as an in�nite Cartesian product where every factor consists of
a pair of circles (each one isomorphic to the circle S1) that are run through in
opposite directions.

Remark. Here, the quotient of the lattice with respect to the involution σ, namely
Γ∗δ/σ, has the following meaning: ν, κ ∈ Γ∗δ are equivalent in Γ∗δ/σ if and only if
ν = κ or ν = σ(κ) = −κ. We divide by the involution σ in order not to count
the pairs (ν,−ν) doubly.

Proof. At �rst, let's recall the model moduli (2.84)

m̃ν(u) =
ǔν · ǔ−ν
|ν|2ξ

, ν ∈ Γ∗δ .

Since the sequence of perturbed Fourier coe�cients (ǔν)ν is in l
2(Γ∗δ) because of

Theorem 2.4.1, it follows (m̃ν(u))ν ∈ l1(Γ∗δ) due to Hölder's inequality. Now, let
the potential u ∈ L2(F ) be real-valued. Due to Corollary 2.3.6, we have ǔν = ǔ−ν

for all ν ∈ Γ∗δ . Therefore, ǔν · ǔ−ν = |ǔν |2 ≥ 0. Furthermore, ξ =
√

1 + 4 û0

ν2 > 0

for δ > 0 su�ciently small since û0 is real for real-valued potential u and the
radicand of ξ is positive for δ > 0 su�ciently small. This shows that the model
moduli (m̃ν(u))ν are a sequence of non-negative real numbers. Moreover, they
are even, that is, m̃ν(u) = m̃−ν(u) for all ν ∈ Γ∗δ (the evenness obviously also
holds for non-real potentials). To sum up,

(m̃ν(u))ν ∈
1

|ν|2ξ
· l1+,e(Γ∗δ) ⊆ l1+,e(Γ

∗
δ), (3.5)

1Here, û0 denotes the Fourier transform of the given potential u0 ∈ L2(F ), not to be confused
with the constant part of a potential de�ned in (2.1).

2Of course, if all but a �nite number of ǔ0,ν , ν ∈ Γ∗δ are equal to zero, the torus is only
�nite-dimensional. Likewise, if all ǔ0,ν are equal to zero, we wouldn't speak of a torus, at all.
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where the subscripts e and + denote evenness and non-negativity3, respectively,
and (m̃ν)ν ∈ 1

|ν|2ξ · l
1(Γ∗δ) shall signify (m̃ν · |ν|2ξ)ν ∈ l1(Γ∗δ). The map

l2(Γ∗δ)→ l1+,e(Γ
∗
δ), (uν)ν 7→ (uν · u−ν)ν

is onto. Indeed, for (bν)ν ∈ l1+,e(Γ
∗
δ), de�ne the sequence (aν)ν ∈ l2(Γ∗δ) by

aν :=
√
bν for all ν ∈ Γ∗δ . Since the bν are non-negative, the sequence of the

aν is well-de�ned. We obtain aν · a−ν =
√
|bν |2 = bν for all ν ∈ Γ∗δ , which shows

that the considered map is onto. Now, we want to determine the complete �bre,
that is, for given (bν)ν ∈ l1+,e(Γ

∗
δ) and given ν ∈ Γ∗δ , �nd all aν ∈ C ful�lling

aν = a−ν
4, such that aν · a−ν = bν , or equivalently |aν |2 = bν . Hence, we search

for all aν ∈ C ful�lling |aν | =
√
bν . That is the de�nition of a circle around the

origin 0 ∈ C with (non-negative) radius
√
bν . Thus, the set of aν we are looking

for is described by eit
√
bν , where t ∈ [0, 2π). Due to the relation aν = a−ν , the

�bre corresponding to b−ν is parameterized by e−it
√
b−ν with the same t ∈ [0, 2π).

Therefore, we can combine them as a pair of circles (eit
√
bν , e

−it
√
b−ν), t ∈ [0, 2π).

If now, we choose for bν := ǔ0,ν · ǔ0,−ν the product of the corresponding product
of pairs of perturbed Fourier coe�cients for given ν ∈ Γ∗δ and given potential
u0 ∈ L2(F ), we get due to ǔ0,ν · ǔ0,−ν = |ǔ0,ν |2

(eit|ǔ0,ν |, e−it|ǔ0,ν |), t ∈ [0, 2π) (3.6)

for the �bre corresponding to the pair (−ν, ν). In this fashion, we can proceed
for all ν ∈ Γ∗δ/σ. With this parameterization of the model �ows, we obtain
for t = 0 the sequence (|ǔ0,ν |, |ǔ0,ν |)ν∈Γ∗δ/σ

. However, we would like to choose a
parameterization such that the potential corresponding to t = 0 is equal to the
initial potential u0. By reparametrization, we can easily obtain that the sequence
corresponding to t = 0 equals (ǔ0,ν , ǔ0,−ν)ν∈Γ∗δ/σ

, namely by setting

(eitǔ0,ν , e
−itǔ0,−ν), t ∈ [0, 2π) (3.7)

for all ν ∈ Γ∗δ/σ. Obviously, this is just a reparametrization which parameterizes
the same set as the preliminary �ows in (3.6). This proves the theorem.

We want to remark why we considered real-valued potentials instead of arbitrary
complex-valued potentials in the foregoing theorem. Formally, the asymptotic
model isospectral set for complex-valued potentials u0 ∈ L2(F ) can be computed
similarly. However, in the complex case, the condition ǔν = ǔ−ν for all ν ∈ Γ∗δ
is not satis�ed anymore which has the consequence that the �ow parameters are
t ∈ C instead of t ∈ [0, 2π). The analog result for complex-valued potentials
u0 ∈ L2(F ) would then be given by

Ĩsoδ(u0) = ×ν∈Γ∗δ/σ
{(eit

√
ǔ0,ν · ǔ0,−ν , e

−it√ǔ0,ν · ǔ0,−ν) : t ∈ C}.
3Clearly, l1+,e(Γ

∗
δ) isn't a vector space. It is merely a subset of the vector space l1e(Γ

∗
δ).

4Compare Corollary 2.4.4 where aν = a−ν for all ν ∈ Γ∗δ is justi�ed as some kind of reality
condition for the asymptotic analysis.
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There occurs an essential problem. For t ∈ C, the term eit
√
ǔ0,ν · ǔ0,−ν is not

bounded anymore. If we want to describe potentials by their associated sequence
of perturbed Fourier coe�cients, the corresponding �ow (in terms of perturbed
Fourier coe�cients) may not leave the domain where the map (2.32) is invertibe
due to Theorem 2.4.2. Hence, for unbounded �ows, it's not clear anymore whether
we may describe our potentials by perturbed Fourier coe�cients. The main
problem which occurs with complex-valued potentials is that ǔν and ǔ−ν needn't
have the same absolute value anymore. In other words, the ratio of ǔν and
ǔ−ν may get arbitrarily large. For real-valued potentials, however, the situation
remains clearer. Indeed, the model isospectral �ows don't leave the domain BR(û)
(de�ned in Theorem 2.4.2) provided δ > 0 is chosen su�ciently small: We can
argue as in the proof of Corollary 2.4.4. There, we chose a δ > 0 and a radius
R > 0 such that the ball in l2(Γ∗δ) with center 0 ∈ l2(Γ∗δ) and radius ‖û‖l2(Γ∗δ)

is contained in the ball BR(û) ⊂ l2(Γ∗δ) where invertibility of the map (2.32)
holds. Although in general, (2.32) doesn't map 0 ∈ l2(Γ∗δ) to 0 ∈ l2(Γ∗δ), we can
nevertheless achieve (by choosing δ suitably small) that there exists an R1 > 0
with ‖ǔ‖l2(Γ∗δ) < R1 such that the image of BR(û) under (2.32) contains the ball
BR1(0) ⊂ l2(Γ∗δ). This is due to the holomorphy of (2.32) and the fact that the
derivative of (2.32) is equal to the identity plus some perturbation terms whose
norms tend to zero (locally uniformly in u) as |ν| → ∞, cf. also the remark after

the proof of Theorem 2.4.2. Hence, Ĩsoδ(u0) is contained in the respective image
of (2.32) where invertibility holds.
In the sequel, we will often make use of this choice of δ > 0.

3.2 An ansatz via perturbation of the model �ows

After having examined the asymptotic isospectral set Ĩsoδ(u0) of the model Fermi
curve in Section 3.1, we now want to consider the asymptotic isospectral set of
the actual Fermi curve. This shall be done by perturbing the isospectral �ows of
the model curve:

ǔνt := eitǔ0,ν , t ∈ [0, 2π), ν ∈ Γ∗δ . (3.8)

We write ǔt := (ǔνt )ν∈Γ∗δ
for the �ow in terms of perturbed Fourier coe�cients

and ut for the �ow in terms of L2
δ,u0

(F )-potentials, respectively. Note that the
parameter t in ǔt is strictly speaking a "multi-parameter" since every �ow indexed
by ν ∈ Γ∗δ has its own parameter t = tν depending on ν (with t−ν = −tν , cf. (3.7)).
Writing ǔt, one should keep in mind that t contains the information of the entire
sequence (tν)ν∈Γ∗δ

of parameters. We indicate this by writing t ∈ [0, 2π)∞ in the
sequel. If we consider �xed elements of sequences, such as ǔνt for �xed ν ∈ Γ∗δ ,
we nevertheless write t instead of tν in order to keep the notation as simple as
possible. There shouldn't occur any confusions since it will be clear from the
context when t is a parameter in [0, 2π) and when it is a multi-parameter in
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[0, 2π)∞. For example, for sequences at := (aνt )ν∈Γ∗δ
, bt := (bνt )ν∈Γ∗δ

depending
on the multi-parameter t, we will often use the notation at · bt := (aνt · bνt )ν∈Γ∗δ

.
Clearly, on the left hand side, t ∈ [0, 2π)∞ is a multi-parameter, whereas on the
right hand side, t ∈ [0, 2π) is a scalar parameter.
Again, we consider real-valued potentials. Let u0 ∈ L2(F ) be a given real-valued
potential and consider its sequence of moduli m(u0) := (mν(u0))ν∈Γ∗δ

represented
as

m(u0) = m̃(u0) + r(u0),

where m̃(u0) := (m̃ν(u0))ν∈Γ∗δ
are the model moduli and r(·) := m(·) − m̃(·)

denotes the deviation of the moduli from the model moduli. The asymptotic
isospectral set Isoδ(u0) is de�ned by (recall (3.3))

Isoδ(u0) := {(uν)ν ∈ l2R(Γ∗δ) : mν(u) = mν(u0) for all ν ∈ Γ∗δ , u := P−1((uν)ν)}.

In contrast to the model isospectral set (3.4), we don't have a handy characteri-
zation of the moduli by perturbed Fourier coe�cients.
The perturbation ansatz is now as follows. For every t ∈ [0, 2π)∞, we look for
real-valued vt, ṽt ∈ L2(F ) with assosiated v̌t := (v̌νt )ν∈Γ∗δ

∈ l2R(Γ∗δ) and ˇ̃vt :=

(ˇ̃vνt )ν∈Γ∗δ
∈ l2R(Γ∗δ) such that

mν(u0) = m̃ν(ut + ṽt) + rν(ut + vt) for all ν ∈ Γ∗δ . (3.9)

The motivation for this ansatz is that we would like to have vt = ṽt so that we
could then de�ne (ǔνt + v̌νt )ν∈Γ∗δ

as isospectral �ow. Thereto, we will consider a
map5 vt 7→ ṽt (de�ned on a suitable domain) and show by Banach's Fixed Point
Theorem that this map has a �xed point. In a �rst step, we will construct this
map and show in a second step the desired properties. Let's begin with the �rst
step.
There are many possibilities to construct the perturbation �ows vt and ṽt. We
make a linear ansatz:

v̌t := at · ǔt := (aνt · ǔνt )ν∈Γ∗δ

ˇ̃vt := ãt · ǔt := (ãνt · ǔνt )ν∈Γ∗δ

(3.10)

with6 at := (aνt )ν∈Γ∗δ
, ãt := (ãνt )ν∈Γ∗δ

∈ l∞e (Γ∗δ), that is, we assume in particular
that at and ãt are even (we will see later that this assumption is admissible). We
get due to Hölder's inequality

ǔt + v̌t = (1 + at)ǔt ∈ l2(Γ∗δ).

5The map we will actually consider will be in terms of perturbed Fourier coe�cients, not in
terms of potentials.

6Although at is a sequence and not a potential in some Lp-space, we deliberately write at
(instead of ǎt). The notation ǎt would suggest that ǎt is the sequence of perturbed Fourier
coe�cients of some L2-potential. This, however, needn't be true since at is in l

∞ and (generally)
not in l2.
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The moduli m(·) are functions of L2(F )-potentials (and not of l2(Γ∗δ)-sequences).
So, we have to consider corresponding preimages under the map P (3.1). We set

ut + vt = P−1((1 + at)ǔt) ∈ L2
δ,u0

(F ),

ut + ṽt = P−1((1 + ãt)ǔt) ∈ L2
δ,u0

(F )
(3.11)

with the meaning of P−1 and L2
δ,u0

(F ) explained at the beginning of this chapter.
Let ν ∈ Γ∗δ be �xed for the moment. Then, with rν = rν(P

−1((1 + at) · ǔt))
(respect the notation (1 + at) · ǔt := ((1 + aνt )ǔ

ν
t )ν∈Γ∗δ

), (3.9) yields

mν(u0) =
(1 + ãνt )(1 + ã−νt )|ǔ0,ν |2

|ν|2ξ
+ rν .

Setting a := ãνt = ã−νt for the moment, we obtain

(2a+ a2)|ǔ0,ν |2 = (mν(u0)− rν)|ν|2ξ − |ǔ0,ν |2︸ ︷︷ ︸
=:Rν

and thus the equation

a2 + 2a− Rν

|ǔ0,ν |2
= 0,

which has the two solutions a± = −1±
√

1 + Rν
|ǔ0,ν |2 . Choosing the positive sign,

this motivates the following map with parameter t ∈ [0, 2π)∞

Ψt : U → l∞r,e(Γ
∗
δ), at 7→ ãt = (ãνt )ν∈Γ∗δ

:=

[
−1 +

√
mν(u0)− rν(P−1((1 + at) · ǔt))

m̃ν(u0)

]
ν∈Γ∗δ

,

(3.12)

where U ⊆ l∞r,e(Γ
∗
δ) is a neighbourhood of 0 ∈ l∞r,e(Γ

∗
δ). Here, the subscript e

denotes (as before) evenness and the subscript r shall denote that we consider
sequences of real numbers, i.e.

(aν)ν ∈ l∞r,e(Γ∗δ) :⇐⇒ [(aν)ν ∈ l∞(Γ∗δ), a−ν = aν ∈ R for all ν ∈ Γ∗δ ].

In particular, l∞r,e(Γ
∗
δ) is considered as a real vector space7.

We will have to prove that the map Ψt is well-de�ned. For this, there is a lot
to do so that we will split the proof of well-de�nition into several lemmata. The
main e�ort will be to prove that the deviation term (rν)ν is small with respect to
the model moduli (m̃ν)ν (see Lemma 3.2.2).

7Note that l∞r,e(Γ
∗
δ) is indeed a vecor space, in contrast to l1+,e(Γ

∗
δ) considered before which

is only a subset of the vector space l1r,e(Γ
∗
δ).
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In the above de�nition, we made use of m̃ν(u0) = m̃ν(ut) = |ǔ0,ν |2
|ν|2ξ for all t ∈

[0, 2π)∞ (note that the �ow ut is isospectral with respect to the model curve,
by de�nition). The above de�nition (3.12) only makes sense if m̃ν(u0) 6= 0, i.e.
ǔ0,ν 6= 0 for all ν ∈ Γ∗δ . Assume ǔ0,ν = 0 for some �xed ν ∈ Γ∗δ . Consequently
ǔ0,−ν = 0 and m̃ν(ut) = 0 for all t ∈ [0, 2π)∞. It follows by Theorem 2.5.7 and
(2.85) that mν(ut) = 0 for all t ∈ [0, 2π)∞ as well. Hence, m̃ν(ut) = mν(ut) = 0
for all t ∈ [0, 2π)∞ and t 7→ ǔνt thus leaves the ν

th modulusmν invariant (note that
m(ut) = m(u0) for all t ∈ [0, 2π)∞ is just the criterion for being an isospectral �ow
with respect to the actual curve). Recall that the aim of the following procedure
is constructing isospectral �ows by applying Banach's Fixed Point Theorem to
at 7→ ãt. In the singular case (i.e. ǔ0,ν = 0 holds), we trivially have aνt = ãνt = 0
for all t ∈ [0, 2π)∞ for the considered ν and we're done. The deviation term rν
thus vanishes in this case. More precisely: Exclude the subsequence of (m̃ν(u0))ν
indexed by all ν ful�lling m̃ν(u0) = 0 and apply the following procedure to the
remainder. Let, for the moment, αt denote the �xed point of at 7→ ãt (which
will lead to the desired isospectral �ow) restricted to the subsequence de�ned by
m̃ν(u0) 6= 0. The desired perturbation �ow v̌t will then be de�ned by v̌νt := 0 if
ν ∈ {ν ∈ Γ∗δ : m̃ν(u0) = 0} and v̌νt := ανt · ǔνt otherwise.
In order to prove that Ψt is well-de�ned, we have to show that the radicand of
the square root in (3.12) is real and non-negative. Furthermore, evenness and
boundedness of (ãνt )ν∈Γ∗δ

have to be veri�ed.
We start with the estimate of the deviation term (rν)ν . Thereto, we have to
recall the z-coordinates introduced in Section 2.5. Recall the diagram (2.79) and
in particular the map Φ : z 7→ x between z- and x-coordinates. Due to (2.56)
and (2.72), we have the following representation of z-coordinates

z1(k) = z̃1(k − kν) + k2 − k2
ν + Aν11(k, u)− Aν11(kν , u) + εν,1(k),

z2(k) = z̃2(k − kν) + k2 − k2
ν + Aν22(k, u)− Aν22(kν , u) + εν,2(k).

Here, ε = εν = (εν,1, εν,2) is the "deviation term" between x- and z-coordinates
introduced in (2.72). Originally, ε is a function of z, but due to the biholomor-

phic map z
Φ7→ x 7→ k, we can consider ε as a function of k by ε(k) := ε(z(x(k))).

Analogously to (2.57), we can write the z-coordinates in a matrix-vector repre-
sentation8:

z(k) =: B0 · (k − kν) +B2(k) =: B(k),

B0 :=

(
−ν1 + iν2ξ −iν1ξ − ν2

ν1 + iν2ξ −iν1ξ + ν2

)
,

B2(k) :=

(
k2 − k2

ν + Aν11(k, u)− Aν11(kν , u) + εν,1(k)
k2 − k2

ν + Aν22(k, u)− Aν22(kν , u) + εν,2(k)

)
,

(3.13)

8In order to keep the notation simple, we mostly suppress the dependence on u (as we
already did in (2.57)) if the dependence on u is not explicitly needed. Note, however, that the
deviation term εν for instance also depends on the potential u.
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where B0 is the same as in (2.57) and B2(k) di�ers from B1(k) (2.57) by the
additional ε-term. We compute z′(k) = B0 + B′2(k) = B0 · (1l + B−1

0 B′2(k)) as
we already did in the proof of Lemma 2.5.3 for x′(k). However, we don't know
yet whether B−1

0 B′2(k) = o(1) as |ν| → ∞. Note that, in the proof of Lemma
2.5.3, we could use Lemma 2.2.7, i.e. lim

|ν|→∞
∂
∂k
Aνij(kν , u) = 0. Yet, in the quantity

B′2(k), there occur the terms
∂εν,i
∂kj

for i, j ∈ {1, 2}. These have to be estimated at

�rst:

Lemma 3.2.1. For the error term ε = εν introduced in (2.72), there holds

dεν(k)

dk
= o

(
1

|ν|

)
, as |ν| → ∞.

Proof. We suppress the index ν and write ε = εν . By setting ε(k) := ε(z(x(k))),
we compute

dε

dk
=
dε

dz
· dz
dx
· dx
dk
. (3.14)

We must estimate the three factors of this product.
As to the �rst factor dε

dz
: By the initial value problem (2.71), we get for t ∈ [0, 1]

Φt(z) = z +

∫ t

0

Xs(Φs(z))ds.

By (2.73), we have |X t(x)| ≤ o(1/|ν|2)(|x1 − ζ1| + |x2 − ζ2|) for all x ∈ Dr and
all t ∈ [0, 1], as |ν| → ∞. The radius r of Dr is of dimension O(|ν|) (this is due
to the fact that the bounded domain V the k-coordinates reside in is mapped by
k 7→ x onto a domain of dimension O(|ν|), cf. (2.56)). Hence,

|Φt(z)− z| ≤ sup
s∈[0,1]

|Xs(Φs(z))| = o

(
1

|ν|

)
, as |ν| → ∞.

Since the bound on the right hand side is independent of z and t, Φt(z) converges
to z as |ν| → ∞, uniformly with respect to z and t. Since Φt(z) is holomor-
phic with respect to z, we may, due to the Weierstrass convergence theorem,
interchange derivatives and limits, that is,

d

dz
Φt(z)→ 1l, as |ν| → ∞,

uniformly with respect to z and t. Hence, d
dz

Φt(z) is uniformly bounded with
respect to z and t as |ν| → ∞. This fact gets important now. By (2.72), we have

Φ(z) = z − ε(z) = z + ζ +

∫ 1

0

X t(Φt(z + ζ))dt.

⇒ d

dz
Φ(z) = 1l +

∫ 1

0

d

dz
[X t(Φt(z + ζ))]dt.
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Here,

d

dz
[X t(Φt(z + ζ))] =

d

dx
X t(x)|x=Φt(z+ζ) ·

d

dz
Φt(z + ζ).

The second factor has just been estimated as uniformly bounded. As to the �rst

factor, we have
∣∣∣ ∂∂xiX t(x)

∣∣∣ ≤ 8b = o(1/|ν|2), as |ν| → ∞ 9 for i = 1, 2 due to [5,

p. 246, (B.3)] (where we used Lemma 2.5.3, i.e. b = o(1/|ν|2), for the estimate
of the term b appearing in Theorem 2.5.1). We therefore obtain

d

dz
Φ(z) = 1l + o

(
1

|ν|2

)
, as |ν| → ∞. (3.15)

On the other hand, we have by de�nition d
dz

Φ(z) = 1l− d
dz
ε(z), which yields

dε

dz
= o

(
1

|ν|2

)
, as |ν| → ∞.

For the second factor dz
dx

in (3.14), we obtain by (3.15)

dz(x)

dx
= (DΦ)−1(x) = 1l + o(1), as |ν| → ∞. (3.16)

Finally, the last factor dx
dk

in (3.14) has already been estimated in the proof of
Lemma 2.5.3:

dx

dk
= x′(k) = B0 +B′1(k) = B0 · (1l +B−1

0 B′1(k)) = O (|ν|) , as |ν| → ∞

with a prime denoting the derivative with respect to k. Hence, all factors of
(3.14) are estimated, so that we get

dε

dk
= o

(
1

|ν|2

)
· (1l + o(1)) ·O(|ν|) = o

(
1

|ν|

)
, as |ν| → ∞.

This proves the lemma.

The following lemma states that the deviation term (rν)ν is small with respect
to the model moduli (m̃ν)ν :

9This estimate can also be concluded from the estimates shown in the proof of Lemma 2.5.5.
Some parts of the proof of Lemma 2.5.5 di�ered from the proof of [5, Lemma B.1] (since the
proof in [5] only deals with the special case ζ = 0 - a fact already discussed before) which made
us give a full proof of the estimate (2.73) in this work. The proof of the estimate of ∂

∂xi
Xt(x),

however, can be copied one-to-one from the proof of [5, Lemma B.1] because all tools needed
for this estimate, namely (2.77) and (2.78), are already provided in the proof of Lemma 2.5.5
and are equal to the corresponding estimates in [5]. In other words, at this point, there is no
di�erence between the cases ζ = 0 and ζ 6= 0 anymore such that there is no need to literally
copy a proof already given in another work.
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Lemma 3.2.2. Let u ∈ L2(F ) be real-valued and rν(u) := mν(u)−m̃ν(u), ν ∈ Γ∗δ,
denote the deviation term. Then

rν(u) = O

(
1

|ν|

)
· m̃ν(u), as |ν| → ∞. (3.17)

This estimate holds locally uniformly in u ∈ L2(F ), u real-valued. Moreover,
(rν)ν ∈ l1r,e(Γ∗δ) is even and real with

∀ε>0 ∃δ>0 ‖(rν)ν‖l1r,e(Γ∗δ) ≤ ε · ‖(m̃ν)ν‖l1r,e(Γ∗δ). (3.18)

Proof. In De�nition 2.6.1, we introduced the (model) moduli m̃ν and mν , respec-

tively, as contour integrals around the A-cycle Aν (and Ãν , respectively) over
the form k1dk2. In z-coordinates, a parameterization of the cycle is, due to the
representations z̃1 · z̃2 = c̃ν and z1 · z2 = cν , simply given by

z̃ =
√
c̃ν ·
(

eiϕ

e−iϕ

)
, z =

√
cν ·
(

eiϕ

e−iϕ

)
, ϕ ∈ [0, 2π), (3.19)

respectively. The branch of the square root
√
cν may be chosen arbitrarily as long

as the choice is consistent. Consider at �rst the subsequence of (cν)ν∈Γ∗δ
indexed

by all ν ∈ Γ∗δ such that cν = 0. Due to Theorem 2.5.9, there also holds c̃ν = 0
for the corresponding indices ν. We thus have m̃ν(u) = mν(u) = rν(u) = 0 on
this subsequence and the assertion of the lemma is ful�lled. So let's exclude this
subsequence from now on, i.e. we may assume cν 6= 0 and consequently c̃ν 6= 0
for all ν ∈ Γ∗δ , again by Theorem 2.5.9. In particular, the quotioent cν/c̃ν is
well-de�ned. With the notation (3.13), we compute with the parameterization
(3.19) (a prime denoting the derivative with respect to k)

(B′(k))−1z −B−1
0 z̃ =

(√
cν
c̃ν

(B′(k))−1 −B−1
0

)
z̃ =

=

(√
cν
c̃ν
·
(
1l +B−1

0 B′2(k)
)−1

B−1
0 −B−1

0

)
z̃ =

=

[√
cν
c̃ν
·
(
1l +B−1

0 B′2(k)
)−1 −

(
1l +B−1

0 B′2(k)
)
·
(
1l +B−1

0 B′2(k)
)−1
]
B−1

0 z̃ =

=

((√
cν
c̃ν
− 1

)
· 1l−B−1

0 B′2(k)

)(
1l +B−1

0 B′2(k)
)−1

B−1
0 z̃, (3.20)

Note that the appearing inverse operators are all well-de�ned (for su�ciently
small δ > 0 as always) since B−1

0 B′2(k) → 0 as |ν| → 0: this is due to the well-
known limit behaviour B−1

0 B′1(k)→ 0 as |ν| → 0 (cf. the proof of Lemma 2.5.3,
for example). In Lemma 3.2.1, we also estimated the additional term dε/dk,
which yields the claimed limit behaviour B−1

0 B′2(k) → 0 as |ν| → 0. We now
compute the di�erence of the terms k(z)−k(0) (de�ned on the actual curve) and
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k̃(z̃) − k̃(0)︸︷︷︸
=kν

(de�ned on the model curve, compare (2.48)). By the Fundamental

Theorem of Calculus, we obtain due to dk(z)/dz = [B′(k(z))]−1:

(k(z)− k(0))− (k̃(z̃)− kν) =

=

∫ 1

0

[B′(k(tz))]−1z dt−
∫ 1

0

B−1
0 z̃ dt =

∫ 1

0

(
[B′(k(tz))]−1z −B−1

0 z̃
)
dt =

(3.20)
=

∫ 1

0

((√
cν
c̃ν
− 1

)
· 1l−B−1

0 B′2(k(tz))

)(
1l +B−1

0 B′2(k(tz))
)−1

dt ·B−1
0 z̃.

(3.21)

Di�erentiating the parameterization (3.19) with respect to ϕ, i.e.

dz̃

dϕ
= i
√
c̃ν ·
(

eiϕ

−e−iϕ
)
,

dz

dϕ
= i
√
cν ·
(

eiϕ

−e−iϕ
)
, ϕ ∈ [0, 2π),

we obtain, again by using dk(z)/dz = (B′(k(z)))−1 =
(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 ,

dk =
dk(z)

dz
· dz
dϕ
dϕ =

√
cν
c̃ν
· dk(z)

dz
· dz̃
dϕ
dϕ =

=

√
cν
c̃ν
·
(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 ·

dz̃

dϕ
dϕ,

dk − dk̃ =
dk(z)

dz
· dz
dϕ
dϕ− dk̃(z)

dz̃
· dz̃
dϕ
dϕ =

(√
cν
c̃ν
· dk(z)

dz
− dk̃(z)

dz̃

)
· dz̃
dϕ
dϕ =

(3.20)
=

((√
cν
c̃ν
− 1

)
· 1l−B−1

0 B′2(k(z))

)(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 ·

dz̃

dϕ
dϕ.

(3.22)

Further, we have

(k1(z)− k1(0))dk2(z)− (k̃1(z̃)− kν,1)dk̃2(z̃) =

= [(k1(z)− k1(0))− (k̃1(z̃)− kν,1)]dk2(z) + (k̃1(z̃)− kν,1)d(k2(z)− k̃2(z̃)).
(3.23)

After these preparations, we can estimate the deviation term rν(u). Firstly, note
that for any contant c ∈ C, we have

∫
Aν

(k1 − c)dk2 =
∫
Aν
k1dk2 due to Cauchy's

Integral Theorem. Keeping this in mind, we obtain due to (3.21), (3.22), (3.23):

|rν(u)| = |mν(u)− m̃ν(u)| = 16π3

∣∣∣∣∫
Aν

k1dk2 −
∫
Ãν

k̃1dk̃2

∣∣∣∣ ≤ 16π3(S1 + S2),
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where

S1 := sup
k∈V

∥∥∥∥((√cν
c̃ν
− 1

)
· 1l−B−1

0 B′2(k)

)(
1l +B−1

0 B′2(k)
)−1 ·B−1

0

∥∥∥∥ · |z̃|·
· sup
k∈V

∥∥∥(1l +B−1
0 B′2(k)

)−1
B−1

0

∥∥∥ · ∣∣∣∣√cν
c̃ν

∣∣∣∣ · ∣∣∣∣ dz̃dϕ
∣∣∣∣ · 2π,

S2 :=‖B−1
0 ‖ · |z̃|·

· sup
k∈V

∥∥∥∥((√cν
c̃ν
− 1

)
· 1l−B−1

0 B′2(k)

)(
1l +B−1

0 B′2(k)
)−1 ·B−1

0

∥∥∥∥ · ∣∣∣∣ dz̃dϕ
∣∣∣∣ · 2π.

Now, we estimate the individual terms appearing in S1 and S2. Firstly, Theorem
2.5.9 yields

√
cν/c̃ν = 1 + o(1/|ν|2) as |ν| → ∞. Further, B−1

0 = O(1/|ν|) as

well as B−1
0 B′2(k) = O(1/|ν|) which implies

(
1l +B−1

0 B′2(k)
)−1 · B−1

0 = O(1/|ν|)
as |ν| → ∞. Together with (cf. (3.19))

|z̃| ·
∣∣∣∣ dz̃dϕ

∣∣∣∣ =
√

2 ·
√
|c̃ν | ·

√
2 ·
√
|c̃ν | = 2|c̃ν |

(2.84)
=
|ν|2ξ
8π4

· m̃ν(u),

we obtain for i = 1, 2

Si = O

(
1

|ν|3

)
· |ν|

2ξ

8π4
· m̃ν(u) = O

(
1

|ν|

)
· m̃ν(u), as |ν| → ∞.

This proves the claim (3.17). The assertion concerning local uniformity with
respect to u follows immediately since all estimates above are locally uniform in
u (provided u is real-valued).
Since (m̃ν(u))ν ∈ l1+,e(Γ

∗
δ) (cf. (3.5)) and due to Hölder's inequality, we also

have (rν(u))ν ∈ l1(Γ∗δ) which, at the same time, shows the l1-estimate (3.18). It
remains to prove that (rν(u))ν is even and real. We show these assertions at �rst
for the moduli (mν(u))ν . Due to rν = mν−m̃ν , evenness and reality immediately
follow for the deviation term rν , too.
Evenness of the moduli follows from the point-symmetry of Fermi curves with
respect to 0 ∈ C2, i.e. F (u) = −F (u) (this property is due the holomorphic
involution σ). More precisely, we obtain for ν ∈ Γ∗δ

mν(u)/(−16π3) =

∫
Aν

k1dk2
σ
=

∫
A−ν

(−k1)d(−k2) =

∫
A−ν

k1dk2 = m−ν(u)/(−16π3)

(3.24)

by using the involution σ : k 7→ −k in the second equality (recall that −k±ν (û0) =
k±−ν(û0)). This shows the evenness claim. Since our potential is assumed to be
real-valued, we also have the antiholomorphic involution η : k 7→ k̄. Using this,
together with k±ν (û0) = k∓−ν(û0) and the fact that k±ν (û0) = k∓ν (û0) modulo Γ∗,
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we obtain

mν(u)/(−16π3) =

∫
Aν

k̄1dk̄2
η
=

∫
A−ν

k1dk2 =

∫
Aν

k1dk2 = mν(u)/(−16π3).

(3.25)

Thus, mν(u) = mν(u) for all ν ∈ Γ∗δ . This shows that the moduli (mν(u))ν∈Γ∗δ
are

real provided u is real-valued. Hence, we showed that (mν(u))ν and consequently
(rν(u))ν is even and real. Thus, the lemma is proved.

As a by-product of the above proof, we see that the properties of the model
moduli such as evenness, reality, non-negativity (for ν ∈ Γ∗δ , respectively) and
being an l1(Γ∗)-sequence are inherited by the actual moduli. We state this in the
following corollary.

Corollary 3.2.3. Let u ∈ L2(F ) be real-valued. Then (mν(u))ν ∈ l1+,e(Γ
∗
δ) for

su�ciently small δ > 0.

Proof. The assertion (mν(u))ν ∈ l1(Γ∗) follows from (m̃ν(u))ν , (rν(u))ν ∈ l1(Γ∗δ)
proved in Lemma 3.2.2. Evenness and reality (for ν ∈ Γ∗δ) have already been
proved in Lemma 3.2.2, too. Non-negativity of mν(u) for ν ∈ Γ∗δ follows from
(3.17) and the non-negativity of the model moduli, that is,

mν(u) = m̃ν(u) + rν(u) = m̃ν(1 + o(1)), as |ν| → ∞

(considered on the subsequence indexed by ν with c̃ν 6= 0) is non-negative, at
least for δ > 0 su�ciently small. The case cν = 0 has already been discussed in
the proof of Lemma 3.2.2 yielding mν(u) = 0, too.

Now, we are able to proof that the map Ψt (3.12) is well-de�ned:

Theorem 3.2.4. Let u0 ∈ L2(F ) be real-valued. Then the map Ψt : U → l∞r,e(Γ
∗
δ)

(3.12) is well-de�ned for all t ∈ [0, 2π)∞ for a su�ciently small neighbourhood
U ⊆ l∞r,e(Γ

∗
δ) of 0 ∈ l∞r,e(Γ∗δ). That is, its image consists of real and even sequences:

ãνt = ã−νt ∈ R for all ν ∈ Γ∗δ. Moreover, the perturbation �ows vt and ṽt de�ned
in (3.11) satisfy (3.9).

Proof. Let t ∈ [0, 2π)∞ and U ⊆ l∞r,e(Γ
∗
δ) be a neighbourhood of 0 ∈ l∞r,e(Γ

∗
δ).

Recall the map Ψt : U → l∞r,e(Γ
∗
δ), de�ned by

at 7→ ãt = (ãνt )ν∈Γ∗δ
:=

[
−1 +

√
mν(u0)− rν(P−1((1 + at) · ǔt))

m̃ν(u0)

]
ν∈Γ∗δ

,

where without restriction m̃ν(u0) 6= 0 for all ν ∈ Γ∗δ as has already been discussed
after the de�nition of (3.12). We show at �rst ãνt ∈ R for all ν ∈ Γ∗δ . As to the
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radicand [mν(u0)− rν(P−1((1 + at) · ǔt))]/m̃ν(u0) of (3.12), we obtain by Lemma
3.2.2

mν(u0)

m̃ν(u0)
= 1 +

rν(u0)

m̃ν(u0)
→ 1, as |ν| → ∞ (3.26)

as well as

rν(P
−1((1 + at) · ǔt))
m̃ν(u0)

= (1 + aνt )
2 · rν(P

−1((1 + at) · ǔt))
m̃ν(P−1((1 + at)ǔt))

= O

(
1

|ν|

)
, as |ν| → ∞,

where we used the evenness and boundedness of (aνt )ν ∈ U (with respect to ν).
This shows

mν(u0)− rν(P−1((1 + at) · ǔt))
m̃ν(u0)

= 1 +O

(
1

|ν|

)
, as |ν| → ∞. (3.27)

Now, m̃ν(u0) and mν(u0) are real due to the reality of u0 (cf. (3.5) and Corollary
3.2.3). Moreover, (1 + at)ǔt corresponds to a real-valued potential, too. This
follows from the reality and evenness of at and Corollary 2.4.4 since (1 + aνt )ǔ

ν
t =

(1 + a−νt )ǔ−νt . By Lemma 3.2.2, rν(P
−1((1 + at) · ǔt)) is thus real. This shows

that the radicand of (3.12) is real and, due to (3.27), non-negative for δ > 0
su�ciently small. This in turn shows ãνt ∈ R for all ν ∈ Γ∗δ .
The evenness of (ãνt )ν follows immediately from the evenness of (m̃ν)ν , (mν)ν and
(rν)ν . Boundedness with respect to ν follows from (3.27). Thus, we have proved
that Ψt maps U into l∞r,e(Γ

∗
δ).

Finally, if we de�ne the perturbation �ows v̌t and ˇ̃vt by (3.10) and vt, ṽt by (3.11),
the computations leading to the de�nition (3.12) show that (3.9) is ful�lled if we
retrace those computations. This is admissible since all steps leading to (3.12)
were equivalence transformations as long as the denominator m̃ν(u0) doesn't van-
ish. But this special case has already been discussed and was excluded before.
Thus, the theorem is proved.

In the following lemma, we prove that for given ν ∈ Γ∗δ , the map
at 7→ rν(P

−1((1 + at)ǔt)) appearing in the map Ψt is smooth. This together with
an estimate of the respective derivative will be needed in Theorem 3.2.8 to prove
that Ψt is contractive. Besides, we prove that mν and rν are holomorphic with
respect to u.

Lemma 3.2.5. Let ν ∈ Γ∗δ be �xed. Let mν denote the νth modulus with corre-
sponding deviation term rν. Then, for every u0 ∈ L2(F ), there exists a neigh-
bourhood B(u0) ⊂ L2(F ) of u0 such that the maps

B(u0) −→ C, u 7−→ mν(u),

B(u0) −→ C, u 7−→ rν(u)
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are holomorphic. Here, the neighbourhood B(u0) can be chosen independent of ν.

In particular, for real-valued u0 ∈ L2(F ), ǔ ∈ Ĩsoδ(u0) and U ⊆ l∞r,e(Γ
∗
δ) the ball

de�ned in Theorem 3.2.4, the map

U −→ R, a 7−→ rν(P
−1((1 + a)ǔ))

is smooth.

Remark. Speaking of holomorphic maps, the potentials u appearing in the �rst
part of the lemma concerning the holomorphy assertion are of course arbitrary
complex-valued potentials.

Proof. Let u0 ∈ L2(F ) and ν ∈ Γ∗δ be �xed. The corresponding modulus mν is
de�ned by

mν(u) = −16π3

∫
Aν

k1dk2.

We need to understand the dependence of this quantity on the potential u ∈
L2(F ). Thereto, we consider at �rst the following parameterization of the νth

A-cycle (di�ering from (3.19)):

z =

(
cν · eiϕ
e−iϕ

)
, ϕ ∈ [0, 2π). (3.28)

We �rstly note that we may choose A-cycles arbitrarily up to homology since
the contour integral mν only depends on the respective homology class of Aν .
Obviously, (3.28) describes a cycle homologous to the cycle parameterized in
(3.19). Secondly, the parameterization (3.28) is contained in the image of V ⊂ C2

(the domain the k-coordinates reside in) under the map k 7→ z which can be seen
by (3.13), for instance. The parameterization (3.28) is thus admissible. Let's
brie�y motivate why we consider (3.28) instead of (3.19) in this proof. The
advantage of (3.19) was that the parameterization of Aν in model coordinates
z̃ is proportional to the parameterization in non-model coordinates z. In fact
they only di�er by a factor

√
cν
c̃ν
. This was an esssential ingredient in estimating

the deviation term rν in Lemma 3.2.2. In this proof, however, we are interested
in proving the holomorphy of u 7→ mν(u). Since the square root

√
cν in (3.19)

is in general not holomorphic (for instance, u ∈ B(u0) with cν(u) = 0 would
cause problems in this context), the parameterization (3.28) turns out to be
more appropriate. Now, we de�ne with the matrix-vector representation (3.13)
and the parameterization (3.28) for ϕ ∈ [0, 2π)

Fϕ(k, u) := B0 · (k − kν) +B2(k, u)− z =

= B0 · (k − kν) +

(
k2 − k2

ν + Aν11(k, u)− Aν11(kν , u) + εν,1(k, u)
k2 − k2

ν + Aν22(k, u)− Aν22(kν , u) + εν,2(k, u)

)
−
(
cν · eiϕ
e−iϕ

)
,

(3.29)
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where we write B2(k, u) (instead of B2(k) as before) because now, the depen-
dence on the potential u is essential. The same holds for the error terms εν,1, εν,2.
Let's brie�y outline the procedure of the proof: We'll apply the Implicit Function
Theorem to the equation Fϕ(k, u) = 0 by showing that ∂Fϕ(k, u)/∂k is invertible.
Hence, we can deduce that the locally de�ned map u 7→ k(u), which maps the po-
tential u to the parameterization of the cycle Aν in k-coordinates, is holomorphic
provided that Fϕ(k, u) is holomorphic with respect to k and u. From this, we will
be able to deduce the holomorphy of k1dk2 (more precisely, its parameterization
along the cycle Aν) with respect to u.
Let's continue with the proof. At �rst, we show that the map (k, u) 7→ Fϕ(k, u) is
holomorphic, with k ∈ V (with V the usual domain of de�nition for k which only
depends on Γ∗) and u in a neighbourhood in L2(F ) of the given potential u0. The
holomorphy in k ∈ V is obvious since the only non-trivial terms depending on k
are the entries of the perturbation matrix Aνii(k, u), i = 1, 2, and the error term εν
whose derivative with respect to k has even been estimated in Lemma 2.2.7 and
Lemma 3.2.1, respectively. As to the holomorphy with respect to u, there occur
besides the entries of the perturbation matrix and the term εν some other terms
depending on u, namely kν = kν(u) and cν = −(hν(ζν) + ζν,1 · ζν,2), where the
critical point ζν = ζν(u) depends on u, too. The holomorphy of Aνii(k, u), i = 1, 2
with respect to u was shown in [13, Theorem 4.5.25]. In Lemma 2.4.3, we esti-
mated the derivative of kν with respect to u. In particular, kν(u) is holomorphic
in u as the proof of Lemma 2.4.3 shows10. As to the holomorphy of ζν = ζν(u),
consider for x ∈ Dr (where Dr denotes the polydisc de�ned in Theorem 2.5.1)
and u again in a neighbourhood of u0

G(x, u) := x+

(
∂h(x,u)
∂x2

∂h(x,u)
∂x1

)
,

where ν is suppressed and h = hν is the map (2.58) (obviously depending on u).
By de�nition, the critical point ζ = ζν is determined by the equation G(ζ(u), u) =
0. We obtain by Lemma 2.5.3

∂G(x, u)

∂x
= 1l + o

(
1

|ν|2

)
, |ν| → ∞.

Due to the Implicit Function Theorem (cf. [23, p. 144], for example), the locally
de�ned map u 7→ ζν(u) is holomorphic because G(x, u) is obviously holomorphic
with respect to u and x (recall the de�nition of hν and the holomorphy of the
entries of the perturbation matrix which has already been shown). Hence, also
the handle quantity cν = −(hν(ζν) + ζν,1 · ζν,2) is holomorphic with respect to u.
It remains to show the holomorphy with respect to u of the term ε = εν de�ned

10In fact, the proof of Lemma 2.4.3 already uses an "Implicit Function Theorem" argument
analogous to what we show next.
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in (2.72) by

ε = −ζ −
∫ 1

0

X t(Φt(z + ζ))dt,

where ν is again suppressed. Since the holomorphy of u 7→ ζ(u) has already been
shown above, it remains to show that the vector �eld X t is holomorphic with
respect to u. Then, Φt as the solution of the initial value problem (2.71) also
depends holomorphically on the "parameter" u, as is well-known from the theory
of ordinary di�erential equations. We now have to understand the holomorphy
of X t with respect to u. Let's recap how X t was de�ned: By de�nition, X t(x) :=
Y t ◦ Pt(x), x ∈ Dr, where (cf. the proof of Theorem 2.5.4)

Y t
1 (y) :=

1

y1

g(y1, 0), Y t
2 :=

1

y2

(g(y1, y2)− g(y1, 0)),

g(y) := −h̃ ◦ P−1
t (y),

y = Pt(x) :=

(
x2 − ζ2 + t

(
∂h

∂x1

+ ζ2

)
, x1 − ζ1 + t

(
∂h

∂x2

+ ζ1

))
,

h̃(x) := x1x2 + h(x)− (x1 − ζ1)(x2 − ζ2)− ζ1ζ2 − h(ζ).

The holomorpy of h̃ and Pt with respect to u is obvious (mainly due to the well-
known holomorphy with respect to u of the entries of the perturbation matrix and
their k-derivatives). As to the holomorphy of the inverse P−1

t with respect to u, we
can use the Implicit Function Theorem, this time applied to H(x, u) := Pt(x)−y,
where y ∈ Pt(Dr) is a given point. Deriving H(x, u) with respect to x yields the
Jacobian

∂H

∂x
= DxPt =

(
t∂

2h
∂x2

1
1 + t ∂2h

∂x2 ∂x1

1 + t ∂2h
∂x1 ∂x2

t∂
2h
∂x2

2

)
,

which is invertible due to Lemma 2.5.3 for δ > 0 su�ciently small. Hence,
the holomorphy of u 7→ x(u) = x = P−1

t (y) follows from the Implicit Function
Theorem since H(x, u) is holomorphic in both variables. This shows that the
above terms g(y) and Y t(y) are holomorphic with respect to u and �nally also
X t is holomorphic with respect to u. Together with the above arguments, this
sows that the term ε is holomorphic with respect to u. Hence, we have proved
that Fϕ(k, u) (3.29) is holomorphic in both variables k and u. We thus can apply
the Implicit Function Theorem to the equation Fϕ(k, u) = 0. Deriving Fϕ with
respect to k yields

∂Fϕ(k, u)

∂k
= B0 ·

(
1l +O

(
1

|ν|

))
, as |ν| → ∞,

since k lives in the bounded domain V and the derivatives of Aνij(k, u) and εν(k, u)
with respect to k both tend to zero as |ν| → ∞ (see Lemma 2.2.7 and Lemma
3.2.1). Hence, due to the Implicit Function Theorem, there exists a neigbourhood
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B(u0) of u0 such that the map u 7→ k(u) de�ned on B(u0) is holomorphic.
Recall that the notation k(u) signi�es the parameterization of the cycle Aν in k-
coordinates. Moreover, the neighbourhood B(u0) is independent of ν. In fact, for
all terms in the preceding considerations, there were no restrictions concerning
B(u0) with respect to ν ∈ Γ∗δ (such as having to choose B(u0) smaller the larger
|ν| gets, for instance) so that B(u0) is indeed independent of ν ∈ Γ∗δ (provided
-as always- that δ > 0 has been chosen su�ciently small).
Further, we have in analogy to (3.22) (this time with (3.28) instead of (3.19))

dk =
dk(z)

dz
· dz
dϕ
dϕ =

(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 · i

(
cν · eiϕ
−e−iϕ

)
dϕ.

Along the parameterization (3.28), the form dk is thus holomorphic with respect
to u since for all appearing terms in dk, we have proved above holomorphy with
respect to u. This shows that the contour integral

∫
Aν
k1dk2 is holomorphic with

respect to u. Thus, the νth modulus mν(u) as well as rν(u) = mν(u)− m̃ν(u) are
holomorphic in u (note that the holomorphy of u 7→ m̃ν(u) is obvious due to the
representation (2.84)). The smoothness of a 7−→ rν(P

−1((1 + a)ǔ)) now follows
immediately since P−1 is biholomorphic in the respective domain of de�nition.
The lemma is proved.

In the next lemma, we estimate the derivative of a 7→ rν(P
−1((1 + a)ǔ)), as a

preperation for the proof that Ψt (3.12) is contractive.

Lemma 3.2.6. Let u0 ∈ L2(F ) be real-valued, ǔ ∈ Ĩsoδ(u0) and U ⊆ l∞r,e(Γ
∗
δ) be

the ball de�ned in Theorem 3.2.4. Then for ν ∈ Γ∗δ with ǔν 6= 0, the derivative of
the map

U −→ R, a 7−→ rν(P
−1((1 + a)ǔ))

satis�es ∥∥∥∥ ddarν(P−1((1 + a) · ǔ))

∥∥∥∥ = o(1) · |m̃ν(u0)|, as |ν| → ∞,

where the estimate by the error term o(1) is uniform in a ∈ U . Here, ‖ · ‖ :=
‖ · ‖l∞r,e(Γ∗δ)→R denotes the corresponding operator norm. Moreover, there holds∥∥∥∥ ddurν(u)

∥∥∥∥
L2→R

= o(1) · |ǔν |
|ν|2

, as |ν| → ∞

for all real u ∈ L2(F ) in a (su�ciently small) neighbourhood of u0, again for
ν ∈ Γ∗δ with ǔν 6= 0.
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Remark. The additional requirement in the conditions of the lemma that the
perturbed Fourier coe�cients have to satisfy ǔν 6= 0 is needed in the proof in
order that quotients like cν/c̃ν are well-de�ned. In Lemma 3.2.2, we didn't have to
make this additional assumption since ǔν = 0 impliesmν(u) = m̃ν(u) = rν(u) = 0
due to Theorem 2.5.9 and (2.85). We don't know, however, whether d

du
rν(u) = 0

if ǔν = 0. Therefore, we require the condition ǔν 6= 0. In fact, this is no
severe restriction since later in Theorem 3.2.8, we will apply this lemma to such
subsequences of (ǔν)ν ful�lling this condition (compare the exclusion of the case
m̃ν(u0) = 0 in the discussion after the de�nition of the map Ψt in (3.12)). In
later chapters, we will restrict ourselves to smooth Fermi curves anyway where the
condition that the perturbed Fourier coe�cients don't vanish is always ful�lled.

Proof. For ǔ ∈ Ĩsoδ(u0), we consider potentials of the form

u = P−1((1 + a) · ǔ)

with a ∈ U . Some terms in rν can be derived easily with respect to a (since they
already appear in terms of perturbed Fourier coe�cients), whereas for others, we
use the chain rule d

da
= d ·

du
· du
da
, where (with a prime denoting the derivative of P )

du

da
=

d

da
P−1((1 + a) · ǔ) =

[
b 7→ (P ′|P−1((1+a)ǔ))

−1 (ǔ · b)
]

as a linear operator mapping from l∞r,e(Γ
∗
δ) into L2

δ,u0
(F ). In Theorem 2.4.2, we

have proved that the derivative P ′ approximates the identity for su�ciently small
δ > 0 by identifying L2-potentials with their associated sequence of l2-Fourier
coe�cients. More precisely, we have shown in that theorem that for ν ∈ Γ∗δ ,
there holds

dǔν
du

: L2(F )→ C, v 7→ v̂(ν) + o(1), as |ν| → ∞, (3.30)

where the error term o(1) encodes an operator whose norm tends to zero as δ → 0.
We thus have∥∥∥∥duda

∥∥∥∥
l∞r,e(Γ

∗
δ)→L2(F )

≤ ‖(ǔν)ν‖l2(Γ∗δ) · (1 + o(1)), as δ → 0.

In the following, we sometimes only need rough estimates where ‖du/da‖ = O(1)
(as δ → 0) already su�ces. In these cases, we will just derive the respective terms
with respect to u (instead of deriving with respect to a) without mentioning it
always explicitly. For the proof of the second claim of the lemma concerning the
estimate for d

du
rν(u), we will only need the derivative with respect to u, anyway.

We use the parameterization (3.28) for both model curve and actual curve:

z̃ =

(
c̃ν · eiϕ
e−iϕ

)
, z =

(
cν · eiϕ
e−iϕ

)
, ϕ ∈ [0, 2π). (3.31)
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Let ν ∈ Γ∗δ . In a �rst step, we consider the derivative dz/da. Thereto, we
have to estimate the derivative dcν/du. Due to Theorem 2.5.4, we have −cν =
hν(ζν) + ζν,1 · ζν,2. The function hν(ζν) depends twice on the potential: �rstly,
because of the explicit u-dependence in the o�-diagonal entries of the perturbation
matrix Aνij, secondly, because of the implicit u-dependence in the critical point
ζν = ζν(u). Since ζν satis�es ∇(hν(x) + x1x2)|x=ζν = 0 by de�nition, we obtain

−dcν
du

=
dhν(ζν)

du
+ ζν,1

dζν,2
du

+
dζν,1
du

ζν,2 =

=
∂hν(ζν)

∂x
· dζν
du︸ ︷︷ ︸

=−ζν,2
dζν,1
du
−ζν,1

dζν,2
du

+
∂hν(ζν)

∂u
+ ζν,1

dζν,2
du

+
dζν,1
du

ζν,2 =
∂hν(ζν)

∂u
, (3.32)

that is, the u-derivatives of ζν have been cancelled out and we have to compute
∂hν/∂u evaluated at ζν . This makes some of the following computations a lot
easier since ζν doesn't have to be derived and can virtually be considered as
constant with respect to u in this sense. As in the proof of Theorem 2.5.9, we
get by the Fundamental Theorem of Calculus

hν(ζν) = hν(0) +

∫ 1

0

∇hν(tζν)dt · ζν . (3.33)

We would like to estimate the di�erence ∂hν(ζν)
∂a
− ∂hν(0)

∂a
. Due to (2.60), we have

for all t ∈ [0, 1]

−∇hν(tζν) =

=

(
Aν12(k(tζν), u)

∂

∂k
Aν21(k(tζν), u) + Aν21(k(tζν), u)

∂

∂k
Aν12(k(tζν), u)

)
· dk(tζν)

dx
.

(3.34)

Let's consider at �rst the term d
du

dk
dx
. We claim that we have for n = 1, 2

d

du

dkn
dx

=
d2kn
dx2

dx

du
= O

(
1

|ν|3

)
, as |ν| → ∞. (3.35)

Due to (2.66), we only have to show dx/du = O(1) as |ν| → ∞. By de�nition of
the x-coordinates (2.56), we have

dx1

du
=− dkν,1

du
(−ν1 + iν2ξ)−

dkν,2
du

(−iν1ξ − ν2)− 2kν ·
dkν
du

+

+
∂A11(k)

∂u
−
(
∂A11(kν)

∂u
+
∂A11(kν)

∂k
· dkν
du

)
= O(1), as |ν| → ∞

due to d
du
kν = O(1/|ν|) (cf. Lemma 2.4.3), ∂

∂u
A11 = O(1) (cf. the proof of

Theorem 2.4.2, in particular (2.33) and the fact that the operator BC is bounded



3.2. AN ANSATZ VIA PERTURBATION OF THE MODEL FLOWS 89

and AB, BA both tend to zero as |ν| → ∞, cf. Lemma 2.2.5, in the respective
operator norms) and ∂

∂k
A11 = o(1) (cf. Lemma 2.2.7), as |ν| → ∞, respectively.

The estimate for dx2/du is completely analogous. This proves (3.35).
Again by the Fundamental Theorem of Calculus, we have with k(0) = kν (with
respect to the map x 7→ k(x), recall (2.79)) for all t ∈ [0, 1]

Aν12(k(tζν), u) = Aν12(k(0), u) +

∫ 1

0

∇xA
ν
12(k(stζν), u)ds · tζν =

= ǔν(1 + aν) +

∫ 1

0

∇kA
ν
12(k(stζν), u)

dk

dx
|x=stζνds · tζν ,

as |ν| → ∞. Virtually the same holds for the other entry Aν21(k(tζν), u) which
is shown completely analogously. This together with (3.35) and ∂2

∂u ∂k
Aνij(k, u) =

o(1) as |ν| → ∞ (we postpone the proof of this assertion into the next Lemma
3.2.7 in order not to make the structure of this proof too confusing) implies by
deriving (3.34) and using (2.61), (2.82) (recall that ζν doesn't have to be derived
as explained before: we �rstly derive hν and then evaluate at ζν)

∂

∂a
∇hν(k(tζν)) = |ǔν | · o

(
1

|ν|

)
, as |ν| → ∞. (3.36)

Further, hν(0) = c̃ν = (1 + aν)
2|ǔν |2/(16π4). Hence,∥∥∥∥dz̃da

∥∥∥∥ =

∥∥∥∥dc̃νda ·
(
eiϕ

0

)∥∥∥∥ =

∥∥∥∥ ∂∂ahν(0)

∥∥∥∥ =
2|1 + aν | · |ǔν |2

16π4
=

2

1 + aν
|c̃ν |

{
≤ 4|c̃ν |
≥ 4

3
|c̃ν |
(3.37)

if we choose without restriction the ball U such that ‖a‖l∞ ≤ 1/2 for all a ∈ U .
Summing up, we obtain by the above estimates (3.36), (3.37) together with (2.82)
and (3.33) the estimates∥∥∥∥∂hν(ζν)∂a

− ∂hν(0)

∂a

∥∥∥∥ = |c̃ν | · o
(

1

|ν|2

)
, as |ν| → ∞,∥∥∥∥∂hν(ζν)∂a

∥∥∥∥ =
2

1 + aν
|c̃ν |(1 + o(1)), as |ν| → ∞

and consequently with (3.32)∥∥∥∥dzda − dz̃

da

∥∥∥∥ =

∥∥∥∥(dcνda − dc̃ν
da

)
·
(
eiϕ

0

)∥∥∥∥ = |c̃ν | · o
(

1

|ν|2

)
, as |ν| → ∞. (3.38)

This implies with c̃ν = hν(0), the parameterization (3.31) and (3.32)∥∥∥∥dzda
∥∥∥∥ =

∥∥∥∥dcνda ·
(
eiϕ

0

)∥∥∥∥ =
2

1 + aν
|c̃ν |(1 + o(1))

(3.37)
=

∥∥∥∥ ∂∂ahν(0)

∥∥∥∥ (1 + o(1)) =

=

∥∥∥∥dz̃da
∥∥∥∥ (1 + o(1)), as |ν| → ∞. (3.39)
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In a second step, we consider a decomposition analogous to (3.23) and derive the
individual terms with respect to a, more precisely, we consider

k1(z)dk2(z)− k̃1(z̃)dk̃2(z̃) = [k1(z)− k̃1(z̃)]dk2(z) + k̃1(z̃)d[k2(z)− k̃2(z̃)].
(3.40)

As already mentioned in the proof of Lemma 3.2.2, it makes no di�erence to
add terms which are constant in k since due to Cauchy's Integral Theorem, they
vanish anyway by computing the contour integral mν . We can thus consider as
well (3.23) itself, namely

(k1(z)− k1(0))dk2(z)− (k̃1(z̃)− kν,1)dk̃2(z̃) =

= [(k1(z)− k1(0))− (k̃1(z̃)− kν,1)]dk2(z) + (k̃1(z̃)− kν,1)d(k2(z)− k̃2(z̃)).

Which decomposition we will actually use depends on the respective computa-
tions. We start with the term k1(z) − k̃1(z̃). Deriving with respect to a yields
with the usual representation (3.13) analogously to (3.20)

dk

da
− dk̃

da
=
dk(z)

dz
· dz
da
− dk̃(z)

dz̃
· dz̃
da

= (B′(k(z)))−1 · dz
da
−B−1

0 ·
dz̃

da
=

= B−1
0

(
1l +B′2(k(z))B−1

0

)−1 · dz
da
−B−1

0 ·
dz̃

da
=

= B−1
0

[(
1l +B′2(k(z))B−1

0

)−1 · dz
da
−
(
1l +B′2(k(z))B−1

0

)−1 (
1l +B′2(k(z))B−1

0

) dz̃
da

]
=

= B−1
0 ·

(
1l +B′2(k(z))B−1

0

)−1
(
dz

da
− dz̃

da
−B′2(k(z))B−1

0 ·
dz̃

da

)
= O

(
1

|ν|2

)
|c̃ν |,

(3.41)

as |ν| → ∞, due to (3.37),(3.38) and the well-known estimates for B−1
0 , B′2(k)

(see the proof of Lemma 3.2.2, for instance).

We continue with the term dk2(z). We have dk2 = dk2(z)
dz
· dz
dϕ
dϕ. The derivative

of the term
dz

dϕ
= i

(
cν · eiϕ
−e−iϕ

)
with respect to a is virtually estimated as dz/da. More precisely,

d

da

dz

dϕ
= O(|c̃ν |), as |ν| → ∞ (3.42)

due to (3.37) and (3.39). As to the term d
da

dk2(z)
dz

, we have

d

da

dk2(z)

dz
=
d2k2

dz2
· dz
da
.
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We estimate the term d2k2

dz2 . We have for i, j ∈ {1, 2}

d2k2

dzidzj
=

d

dzi

(
dk2

dx
· dx
dzj

)
=

(
dx

dzi

)T
· d

2k2

dx2
· dx
dzj

+
dk2

dx
· d2x

dzidzj
. (3.43)

Due to (2.66), the entries of the Hessian d2k2

dx2 are O(1/|ν|3) as |ν| → ∞. Fur-
thermore, dx/dz = 1 + o(1) (cf. (3.16)) and dk/dx = O(1/|ν|) (cf. (2.61)) as
|ν| → ∞, respectively. As to the remaining term d2x

dzidzj
, we argue as in the proof

of Lemma 3.2.1, where we deduced the estimate for dx/dz by showing that the
solution Φt(z) of the initial value problem (2.71) converges to z as |ν| → ∞, uni-
formly with respect to z and t. Hence, the second partial derivatives d2

dzidzj
Φt(z)

converge to zero as |ν| → ∞, also uniformly with respect to z and t. This shows

d2x

dzidzj
=
d2Φ1(z + ζ)

dzidzj
= o(1), as |ν| → ∞.

This together with the estimates before yields

d

da

(
dk2(z)

dz
· dz
dϕ

)
=

(
d

da

dk2(z)

dz

)
dz

dϕ
+
dk2(z)

dz
· d
da

dz

dϕ
= |c̃ν | ·O

(
1

|ν|

)
,

(3.44)

as |ν| → ∞.

Next, we want to derive d(k2(z)− k̃2(z̃)) with respect to a. We would like to use
a representation analogous to (3.22). In the former parameterization (3.19), we
had z =

√
cν
c̃ν
· z̃. With the new ("square-avoiding") parameterization (3.31), we

have

z = Cν · z̃, where Cν :=

(
cν
c̃ν

0

0 1

)
∈ C2×2.

The matrix Cν will now take the place of the matrix
√

cν
c̃ν
·1l we considered before.

Note that due to Theorem 2.5.9,

Cν − 1l = o

(
1

|ν|2

)
, as |ν| → ∞. (3.45)

We obtain completely analogously to (3.20) and (3.21) (simply by replacing
√

cν
c̃ν
·1l

by Cν in the respective computations)

(B′(k))−1z −B−1
0 z̃ =

(
Cν − 1l−B−1

0 B′2(k)
) (

1l +B−1
0 B′2(k)

)−1
B−1

0 z̃,

and

(k(z)− k(0))− (k̃(z̃)− kν) =

=

∫ 1

0

(
Cν − 1l−B−1

0 B′2(k(tz))
) (

1l +B−1
0 B′2(k(tz))

)−1
dt ·B−1

0 z̃,
(3.46)
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respectively. The analogon to (3.22) is then

dk = Cν ·
(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 ·

dz̃

dϕ
dϕ,

dk − dk̃ =
(
Cν − 1l−B−1

0 B′2(k)
) (

1l +B−1
0 B′2(k)

)−1
B−1

0 ·
dz̃

dϕ
dϕ.

(3.47)

We have

dk − dk̃ =
dk(z)

dz
· dz
dϕ
dϕ− dk̃(z)

dz̃
· dz̃
dϕ
dϕ =

(
dk(z)

dz
· Cν −

dk̃(z)

dz̃

)
· dz̃
dϕ
dϕ.

(3.48)

Again, we derive the appearing terms with respect to a. We start with the �rst
factor. We have

d

da

(
dk(z)

dz
· Cν −

dk̃(z)

dz̃

)
=

(
d

da

dk(z)

dz

)
· Cν +

dk(z)

dz
· dCν
da
− d

da
B−1

0︸ ︷︷ ︸
=0

. (3.49)

Here,
(
d
da

dk(z)
dz

)
·Cν = |c̃ν | · o(1/|ν|), as |ν| → ∞, due to the above estimates (cf.

the estimates of the �rst summand in (3.44), in particular (3.43)11) and (3.45).
As to the second summand in (3.49), we have to estimate dCν/da. Since

d
da
Cν =

d
da

cν
c̃ν
· ( 1 0

0 0 ), we estimate d
da

cν
c̃ν
. We have (by denotong the derivative with respect

to a with a prime) due to Theorem 2.5.9(
cν
c̃ν

)′
=

1

c̃ν

(
c′ν − c̃′ν ·

cν
c̃ν

)
=

1

c̃ν

(
(c′ν − c̃′ν)− c̃′ν · o

(
1

|ν|2

))
, as |ν| → ∞.

(3.50)

By (3.38), we have c′ν − c̃′ν = |c̃ν | · o(1/|ν|2), as |ν| → ∞. Together with (3.37),
we obtain by (3.50) ( cν

c̃ν
)′ = o(1/|ν|2), as |ν| → ∞. Hence, we have (together with

dk/dz = O(1/|ν|))
dk(z)

dz
·
(
cν
c̃ν

)′
= o

(
1

|ν|3

)
, as |ν| → ∞

and consequently, due to dCν
da

= ( cν
c̃ν

)′ · ( 1 0
0 0 ) 12

(
dk(z)

dz
· dCν
da

)
· dz̃
dϕ

=

 dk1

dz1
·
(
cν
c̃ν

)′
0

dk2

dz1
·
(
cν
c̃ν

)′
0

 · dz̃
dϕ

=

= ieiϕ · c̃ν ·
dk

dz1

·
(
cν
c̃ν

)′
= |c̃ν | · o

(
1

|ν|3

)
, as |ν| → ∞.

11In (3.44), we only considered k2. Clearly, the same estimate holds for k1, too.
12Note that in the parameterization (3.31), z̃ as well as dz̃/dϕ are not O(|c̃ν |) as |ν| → ∞

because -in contrast to (3.19)- the second entry e−iϕ is independent of c̃ν . In this context, it is
essential that the second column of dCνda vanishes.
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Together with the estimate of the �rst summand in (3.49) and with (3.42) and
(3.47), we �nally obtain

d

da

[(
dk(z)

dz
· Cν −

dk̃(z)

dz̃

)
· dz̃
dϕ

]
= |c̃ν | · o

(
1

|ν|

)
, as |ν| → ∞. (3.51)

Now, we have estimated everything we need. In a last step, we now sum up all
these estimates to gain the desired estimate for drν/da. For v ∈ C2, we use the
usual notation v1 and v2 for the �rst and the second component, respectively.
This explains the terms [·]1 and [·]2 in the following.
We have with u = P−1((1 + a) · ǔ), the decompositions (3.23) and (3.40), re-
spectively, as well as by (3.37), (3.41), (3.44), (3.45), (3.46), (3.47), (3.48), (3.51)
and the well-known estimates for B−1

0 , B′2(k) (see the proof of Lemma 3.2.2, for
instance):

−1

16π3

d

da
rν(u) =

d

da

(∫
Aν

k1dk2 −
∫
Ãν

k̃1dk̃2

)
=

=

∫ 2π

0

(
dk1

da
− dk̃1

da

)
dk2

dz
· dz
dϕ
dϕ+

+

∫ 2π

0

(k1(z)− k1(0)− (k̃1(z̃)− kν,1))
d

da

(
dk2

dz
· dz
dϕ

)
dϕ+

+

∫ 2π

0

dk̃1

da

d

dz̃
(k2 − k̃2) · dz̃

dϕ
dϕ+

∫ 2π

0

k̃1
d

da

(
d

dz̃
(k2 − k̃2) · dz̃

dϕ

)
dϕ =

(3.47)
=

∫ 2π

0

(
dk1

da
− dk̃1

da

)[
Cν ·

(
1l +B−1

0 B′2(k(z))
)−1

B−1
0 ·

dz̃

dϕ

]
2

dϕ+

(3.46)

+

∫ 2π

0

[∫ 1

0

(
Cν − 1l−B−1

0 B′2(k(tz))
) (

1l +B−1
0 B′2(k(tz))

)−1
dt ·B−1

0 z̃

]
1

·

· d
da

(
dk2(z)

dz
· dz
dϕ

)
dϕ+

(3.47)

+

∫ 2π

0

[
B−1

0

dz̃

da

]
1

[(
Cν − 1l−B−1

0 B′2(k)
) (

1l +B−1
0 B′2(k)

)−1
B−1

0 ·
dz̃

dϕ

]
2

dϕ+

(3.48)

+

∫ 2π

0

[
B−1

0 z̃
]

1
·

[
d

da

((
dk(z)

dz
· Cν −

dk̃(z)

dz̃

)
· dz̃
dϕ

)]
2

dϕ =

= o

(
1

|ν|2

)
|c̃ν |

(2.84)
= o(1) · |m̃ν |, as |ν| → ∞. (3.52)

This proves the �rst claim of the lemma.
As to the second claim, we can essentially use the results just proven with some
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exceptions. At �rst, we get by the chain rule

d

da
rν(P

−1((1 + a) · ǔ)) =
d

du
rν(u)|u=P−1((1+a)·ǔ) ·

d

da
P−1((1 + a) · ǔ).

In most of the terms above, we have virtually already estimated d
du
rν(u) and

used for the second factor the rough estimate d
da
P−1((1 + a) · ǔ) = O(1), as

δ → 0 such that the above estimates carry over. In other words, we already
derived these terms with respect to u (instead of with respect to a). Things
are di�erent for terms which are already explicitly given in terms of perturbed
Fourier coe�cients. For the term (1 + aν)

2|ǔν |2, for instance, we didn't use the
above chain rule but derived explicitly with respect to aν yielding 2(1 + aν)|ǔν |2.
Deriving the corresponding term with respect to u, however yields

d

du
|ǔν |2 =

d

dǔν
(ǔν ǔ−ν) ·

dǔν
du

(3.30)
= ǔ−ν(1l + o(1)) = O(|ǔν |), as |ν| → ∞.

In other words, we can carry out virtually the same estimates as above with
the restriction that by deriving |ǔν |2, we only get a term O(|ǔν |) instead of the
stronger estimate O(|ǔν |2) as before when we derived (1 + aν)

2|ǔν |2 with respect
to aν , i.e we get a reduction of 1 in the power of |ǔν |. If we retrace the above
proof, we see that the equations a�ected by this are (3.36), (3.37), (3.38), (3.41),
(3.42), (3.44) and (3.51). More precisely, the right hand sides of all of these
equations contain either a term of order 16π4|c̃ν | = |ǔν |2 or |ǔν |. These terms
then reduce to terms of order |ǔν | or |ǔν |0 = 1, respectively, in the sense just
explained. If we plug the corresponding estimates into the big computation (3.52),

the corresponding estimate in (3.52) then yields that d
du
rν(u) equals only |ǔν ||ν|2 o(1)

(instead of |m̃ν(u)|o(1) = |ǔν |2
|ν|2 o(1)) as |ν| → ∞ 13. This shows the desired

estimate and the lemma is proved.

We owe the proof of the following assertion used in the foregoing lemma.

Lemma 3.2.7.

∂2

∂u ∂k
Aνij(k, u) = o(1), as |ν| → ∞.

Proof. In order to determine ∂2

∂u∂k
A(1l − BA)−1, we use virtually the same ex-

pression as in (2.63) where we computed ∂2

∂k2A(1l− BA)−1. This time, of course,

13The reason for this is that each summand of d
durν(u) in the corresponding computation

analogous to (3.52) is due to the product rule a product of a term which is derived with respect
to u (where the mentioned reduction of the power appears) and another term which is not
derived and stays the same as before.
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the second derivative is with respect to u (instead of with respect to k). More

precisely, with the operator C̃ de�ned in (2.40),

∂2

∂u ∂k
A(1l−BA)−1 = − ∂

∂u
[A(1l−BA)−1BC̃BA(1l−BA)−1] =

= − ∂

∂u
[A(1l−BA)−1]BC̃BA(1l−BA)−1 − A(1l−BA)−1BC̃B

∂

∂u
[A(1l−BA)−1]−

− A(1l−BA)−1 ∂

∂u
[BC̃B]A(1l−BA)−1. (3.53)

Let's consider the three summands of this expression seperately. By the proof of
Theorem 2.4.2 (and the respective comment in the proof of the foregoing Lemma

3.2.6), we know that the operators ∂
∂u

[A(1l − BA)−1] and BC̃ are bounded with
respect to |ν|. Moreover, by Lemma 2.2.5, ‖BA‖ = o(1) as |ν| → ∞. Hence, the
�rst summand of (3.53) is o(1) as |ν| → ∞. Due to [13, Lemma 4.5.23], we have
A(1l − BA)−1 = (1l − AB)−1A. Hence, the second summand of (3.53) is o(1) as
|ν| → ∞, as well. As to the third summand, we compute using the operator C
de�ned in (2.34)

C2 × L2(F ) 3 (x, h) 7→ ∂

∂u
[BC̃B](x, h) =

= −BC(h)BC̃(x)B −BC̃(x)BC(h)B +B

[
∂

∂u
C̃

]
(x, h)B,

where for x ∈ C2, h ∈ L2(F ),

∂

∂u
C̃(x, h) = −8π2i

ξν2
diag

(〈(
ν2

−ν1

)
, x

〉
· ĥ(0)

)
ρ∈Γ∗\{0,±ν}

due to ∂k±ν (û0)
∂û0

= i
ξν2

(
ν2

−ν1

)
by de�nition (2.2)

(recall C̃(x) = −8π2diag (〈ρ+ k + k±ν (û0), x〉)ρ∈Γ∗\{0,±ν}, (2.40)). By de�nition of

B,C, C̃, we immediately see (which we have already seen in the proof of Theorem

2.4.2) that the operators BC and BC̃ are bounded with respect to |ν|. Moreover,

by the above calculation, the operator B
[
∂
∂u
C̃
]
is bounded with respect to |ν|,

too. By Lemma 2.2.4, ‖B‖ = o(1) as |ν| → ∞. Hence, the third summand of
(3.53) is o(1) as |ν| → ∞, too. This proves the lemma.

In the following theorem, we state the existence of perturbation �ows by applying
Banach's Fixed Point Theorem.

Theorem 3.2.8. Let u0 ∈ L2(F ) be real-valued. Then for all t ∈ [0, 2π)∞, the
map (3.12) Ψt : U → U with a su�ciently small closed ball U ⊆ l∞r,e(Γ

∗
δ) centered
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at 0 ∈ l∞r,e(Γ∗δ) is contractive. Hence, there exists a unique at = (aνt )ν∈Γ∗δ
∈ U such

that for all ν ∈ Γ∗δ and for all t ∈ [0, 2π)∞

mν(u0) = m̃ν(ut + vt) + rν(ut + vt),

with de�nition (3.11) ut + vt := P−1((1 + at) · ǔt).

Proof. Let t ∈ [0, 2π)∞ and let U ⊂ l∞r,e(Γ
∗
δ) be a ball centered at 0 ∈ l∞r,e(Γ∗δ) (how

small U has �nally to be chosen will become clear in the following). We show at
�rst that Ψt maps U into U . Because of (3.27), we have

Ψt(at) = O

(
1

|ν|

)
, as |ν| → ∞,

uniformly in at ∈ U . Thus, by choosing δ > 0 su�ciently small, one can achieve
that Ψt maps U into U , even into a subset whose closure is still contained in U ,
so that we may choose U to be closed. Note that, in fact, the choice of δ > 0 only
depends on u0 since the model �ows ǔt and even the perturbed �ows (1 + at)ǔt
(by choosing U correspondently small) are contained in a ball in l2(Γ∗δ) around
0 ∈ l2(Γ∗δ) where the map (2.32) is invertible (compare the choice of δ discussed
on p. 72). Next, we show that Ψt is contractive. To this, we have to show that
there is a constant 0 ≤ L < 1 such that for all at, bt ∈ U , there holds

‖Ψt(bt)−Ψt(at)‖l∞(Γ∗δ) ≤ L · ‖bt − at‖l∞(Γ∗δ).

Let at, bt ∈ U . We begin with the estimate of the radicand of (3.12). We have∣∣∣∣mν(u0)− rν(P−1((1 + bt) · ǔt))
m̃ν(u0)

− mν(u0)− rν(P−1((1 + at) · ǔt))
m̃ν(u0)

∣∣∣∣ =

=
1

|m̃ν(u0)|
∣∣rν(P−1((1 + bt) · ǔt))− rν(P−1((1 + at) · ǔt))

∣∣ .
Now, a 7−→ rν(P

−1((1 + a)ǔ)) is smooth due to Lemma 3.2.5. We thus obtain by
the Mean Value Theorem (cf. [30, Satz III.5.4(b)])∣∣rν(P−1((1 + bt) · ǔt))− rν(P−1((1 + at) · ǔt))

∣∣ ≤ sup
a∈U

∥∥∥∥ ddarν(P−1((1 + a) · ǔt))
∥∥∥∥ ·

· ‖bt − at‖l∞(Γ∗δ).

By choosing δ > 0 su�ciently small, we can achieve by Lemma 3.2.6

sup
a∈U

∥∥∥∥ ddarν(P−1((1 + a) · ǔt))
∥∥∥∥ ≤ 1

2
· |m̃ν(u0)|, ν ∈ Γ∗δ .

Now, for x, y in a su�ciently small neighbourhood of 0 ∈ R, we have

|
√

1 + y −
√

1 + x| =
∣∣∣∣(√1 + y −

√
1 + x)(

√
1 + y +

√
1 + x)

√
1 + y +

√
1 + x

∣∣∣∣ =
|y − x|

|
√

1 + y +
√

1 + x|
.
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Setting

x :=
mν(u0)− rν(P−1((1 + at) · ǔt))

m̃ν(u0)
−1, y :=

mν(u0)− rν(P−1((1 + bt) · ǔt))
m̃ν(u0)

−1,

we obtain by (3.27) x, y = O(1/|ν|) as |ν| → ∞. Now, the above estimates imply
with the abbreviations x and y for all ν ∈ Γ∗δ

|Ψν
t (bt)−Ψν

t (at)| =
|y − x|

|
√

1 + y +
√

1 + x|
≤ 1

2

‖bt − at‖l∞(Γ∗δ)

|
√

1 + y +
√

1 + x|
≤ 1

2
‖bt − at‖l∞(Γ∗δ),

where we chose δ > 0 (respecting the above choices) su�ciently small such that
both

√
1 + x ≥ 1/2 and

√
1 + y ≥ 1/2 (still uniformly in at, bt ∈ U). We obtain

‖Ψt(bt)−Ψt(at)‖l∞(Γ∗δ) ≤
1

2
‖bt − at‖l∞(Γ∗δ), (3.54)

which shows that Ψt is contractive since all estimates were uniform in at, bt ∈ U .
Therefore, by Banach's Fixed Point Theorem, Ψt has for each t ∈ [0, 2π)∞ a
unique �xed point at in U . Together with Theorem 3.2.4, this yields

mν(u0) = m̃ν(ut + vt) + rν(ut + vt),

for all ν ∈ Γ∗δ and for all t ∈ [0, 2π)∞ where vt is de�ned analogously to (3.11),
i.e. vt = P−1((1 + at)ǔt)− ut (here, at denotes the �xed point, whereas in (3.11),
at ∈ U was still arbitrary).

3.3 The asymptotic isospectral set

In this section, we want to state a homeomorphism I between the asymptotic
model isospectral set Ĩsoδ(u0) (3.4) and the asymptotic isospectral set Isoδ(u0)
(3.3), where u0 ∈ L2(F ) is a given real-valued potential. We de�ne the map I as
follows:

I : Ĩsoδ(u0) −→ Isoδ(u0), (ǔν)ν∈Γ∗δ
7−→ (ǔν · (1 + aν))ν∈Γ∗δ

=: ǔ · (1 + a).

(3.55)

Let's explain this de�nition more precisely: Let (ǔν)ν∈Γ∗δ
∈ Ĩsoδ(u0) be given.

Then, for each pair of indices {ν,−ν} with ν ∈ Γ∗δ , there is a �ow parameter
t = tν ∈ [0, 2π) such that for all ν ∈ Γ∗δ (cf. (3.7), (3.8))

(ǔν , ǔ−ν) = (eitǔ0,ν , e
−itǔ0,−ν) = (ǔνt , ǔ

−ν
t ).

In this sense, we may write (ǔν)ν∈Γ∗δ
= (ǔνt )ν∈Γ∗δ

=: ǔt with some t ∈ [0, 2π)∞.
Inserting this model �ow ǔt into (3.12), we get a map Ψt which has a unique
�xed point at = (atν)ν∈Γ∗δ

=: (aν)ν∈Γ∗δ
due to Theorem 3.2.8. This yields the

image (ǔν · (1 + aν))ν∈Γ∗δ
of (ǔν)ν∈Γ∗δ

by the map I 14. In the following lemma, we

14To be more precise, one could decorate (3.55) with the parameter t in order that it becomes
clearer where the �xed point (aν)ν∈Γ∗δ

comes from.
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prove that the map I is bijective.

Lemma 3.3.1. The map I : Ĩsoδ(u0) −→ Isoδ(u0) is bijective.

Proof. We prove at �rst that I is one-to-one. To this, let ǔ, v̌ ∈ Ĩsoδ(u0) with
ǔ 6= v̌. Then there are multi-parameters t, t̃ ∈ [0, 2π)∞ with ǔ = (ǔνt )ν∈Γ∗δ

and
v̌ = (ǔν

t̃
)ν∈Γ∗δ

. Since ǔ 6= v̌, there is a ν ∈ Γ∗δ with ǔ
ν
t 6= ǔν

t̃
(with corresponding

parameters in [0, 2π)). This implies arg(ǔνt ) 6= arg(ǔν
t̃
) 15 due to |ǔνt | = |ǔν

t̃
| by

de�nition of the model �ows. Since the corresponding �xed points at and at̃ (cf.
Theorem 3.2.8) are real due to Theorem 3.2.4, we thus obtain

arg(ǔνt · (1 + aνt )) = arg(ǔνt ) 6= arg(ǔν
t̃
) = arg(ǔν

t̃
· (1 + aν

t̃
)),

in particular ǔνt · (1 + aνt ) 6= ǔν
t̃
· (1 + aν

t̃
). Thus I(ǔ) 6= I(v̌). This shows that I is

one-to-one.
We now prove that I is onto. To this, let w̌ ∈ Isoδ(u0). As usual, we write
w̌ = (w̌ν)ν∈Γ∗δ

. Consider an arbitrary ν ∈ Γ∗δ . Set t := arg(w̌ν) ∈ [0, 2π). In
Theorem 3.2.8, we have proved that the map Ψt has a unique �xed point at in
the ball U . Again by Theorem 3.2.8, this assertion is equivalent to saying that
there exists a unique at ∈ U such that with v̌t := ǔt · at and (3.11)

mν(u0) = mν(ut + vt) for all ν ∈ Γ∗δ

holds, in particular for our ν �xed above. In other words, the perturbation �ow vt
is locally unique, i.e. unique for at ∈ U provided that the ansatz (3.10) is ful�lled.
More precisely, to the closed ball U (in Theorem 3.2.8), there corresponds a ball
Uν ⊂ C centered at 0 ∈ C with radius not larger than the radius of U (in the l∞-
norm). Denote this radius of U by R > 0. Consider the segment Sν in C de�ned
by the intersection of Uν with the half-line starting at 0 and going through ǔνt .
The uniqueness of the �xed point of Ψt in U now states that there exists a unique
at ∈ U ful�lling the �xed point condition such that aνt ·

ǔνt
|ǔνt |
∈ Sν for all ν ∈ Γ∗δ .

We now have to see that, by choosing δ > 0 su�ciently small, we can ensure that
for every ǔ ∈ Isoδ(u0), there holds

ǔν ∈ Annν := {eis · ǔ0,ν · (1 + aν) : aν ∈ R, |aν | ≤ R, s ∈ [0, 2π)} (3.56)

for all ν ∈ Γ∗δ (with R > 0 the radius of U as mentioned above). That is, every
component w̌ν of our given w̌ ∈ Isoδ(u0) shall lie in the annulus Annν . If we
have proved this, we are done since elements of Isoδ(u0) whose components are
contained in the annuli Annν , ν ∈ Γ∗δ , lie in the image of I by the preceding
argument of the uniqueness of the considered �xed point.

15For the argument function which is generally multi-valued (i.e. only unique mod 2π), we
choose that branch such that arg takes values in [0, 2π). This makes arg unique.
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To prove (3.56), recall at �rst that due to (3.17), we have for real-valued u ∈
L2(F )

mν(u) = m̃ν(u) ·
(

1 +O

(
1

|ν|

))
=
|ǔν |2

ξ|ν|2
·
(

1 +O

(
1

|ν|

))
,

as |ν| → ∞. Solving this equation for |ǔν |, and replacing mν(u) by mν(u0),

we get by mν(u0)ξ|ν|2 = mν(u0)
m̃ν(u0)

|ǔ0,ν |2 the following estimate for the elements

(ǔν)ν∈Γ∗δ
∈ Isoδ(u0):

|ǔν | =
√
mν(u0)ξ · |ν| ·

(
1 +O

(
1

|ν|

))
=

√
mν(u0)

m̃ν(u0)
· |ǔ0,ν | ·

(
1 +O

(
1

|ν|

))
=

= |ǔ0,ν | ·
(

1 +O

(
1

|ν|

))
, as |ν| → ∞, (3.57)

where in the last step, we used (3.17) (compare also (3.26)). In other words:
Choosing δ su�ciently small ensures that the νth component of any element in
Isoδ(u0) lies in a su�ciently small annulus neighbourhood of the circle centered
at 0 ∈ C with radius |ǔ0,ν |. This annulus neighbourhood is just determined by
the error term 1+O(1/|ν|) in (3.57). Hence, by choosing δ > 0 su�ciently small,
we obtain w̌ν ∈ Annν . This holds for all ν ∈ Γ∗δ . Due to the uniqueness of the
�xed point explained above, we now obtain w̌ν = ǔνt (1 + aνt ). This holds for
arbitrary ν ∈ Γ∗δ . This proves that I is onto.

We now prove that Ĩsoδ(u0) is homeomorphic to Isoδ(u0).

Theorem 3.3.2. The map I : Ĩsoδ(u0) −→ Isoδ(u0) is a homeomorphism.

Proof. We have to show that both I and its inverse I−1 (which exists due to

Lemma 3.3.1) are continuous. Since Ĩsoδ(u0) and Isoδ(u0) are by de�nition sub-
sets of l2R(Γ∗δ), we endow them with the relative topology induced by the topology
of l2R(Γ∗δ). As to the continuity of I, we have to show

∀ǔ∈Ĩsoδ(u0) ∀ε>0 ∃η>0 ∀v̌∈Ĩsoδ(u0)
‖v̌−ǔ‖l2<η

: ‖I(ǔ)− I(v̌)‖l2 < ε. (3.58)

To this, we show that the �xed point a appearing in the map I (3.55) depends
continuously on ǔ. We write a = a(ǔ) in I(ǔ) = ǔ · (1 + a(ǔ)) to emphasize this
dependence. Therefore, we rewrite the map Ψ = Ψt (3.12) as

Ψ : Ĩsoδ(u0)× U → U, Ψ(ǔ, a) :=

[
−1 +

√
mν(u0)− rν(P−1((1 + a)ǔ))

m̃ν(u0)

]
ν∈Γ∗δ

,
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where this time, t is suppressed. In Lemma 3.2.5, we proved that u 7→ rν(u) is
holomorphic. In particular, this map is continuous. Together with the decreasing
behaviour of rν (cf. (3.17)) and the continuity of the maps P−1 and

Ĩsoδ(u0)× U −→ l2R(Γ∗δ), (ǔ, a) 7−→ ǔ · (1 + a)

(continuity immediately follows from

‖ǔ(1+a)−v̌(1+b)‖l2 ≤ ‖ǔ−v̌‖l2 +‖a‖l∞‖ǔ−v̌‖l2 +‖v̌‖l2‖a−b‖l∞ , ǔ, v̌ ∈ Ĩsoδ(u0),

a, b ∈ U), this implies that Ψ is continuous. In particular, for ǔ ∈ Ĩsoδ(u0) �xed,
the map Ψ(ǔ, ·) is Lipschitz continuous (cf. Theorem 3.2.8). We now show that

the �xed point a(ǔ) continuously depends on ǔ. To this, let ǔ ∈ Ĩsoδ(u0) and
let ε > 0. Since Ψ(·, a(ǔ)) is continuous, there exists an η > 0 such that for all

w̌ ∈ Ĩsoδ(u0) with ‖ǔ− w̌‖l2 < η, there holds

‖Ψ(ǔ, a(ǔ))−Ψ(w̌, a(ǔ))‖l∞ <
ε

2
.

We therefore obtain together with the property that for all w̌ ∈ Ĩsoδ(u0), the
map Ψ(w̌, ·) is contractive with Lipschitz constant 1

2
(cf. (3.54)), that for all

w̌ ∈ Ĩsoδ(u0) with ‖ǔ− w̌‖l2 < η, there holds

‖a(ǔ)− a(w̌)‖l∞ = ‖Ψ(ǔ, a(ǔ))−Ψ(w̌, a(w̌))‖l∞ ≤
≤ ‖Ψ(ǔ, a(ǔ))−Ψ(w̌, a(ǔ))‖l∞ + ‖Ψ(w̌, a(ǔ))−Ψ(w̌, a(w̌))‖l∞ <

<
ε

2
+

1

2
· ‖a(ǔ)− a(w̌)‖l∞ .

Hence, ‖a(ǔ)− a(w̌)‖l∞ < ε. This proves that

a : Ĩsoδ(u0) −→ U, w̌ 7−→ a(w̌).

is continuous.
Now, let again ǔ ∈ Ĩsoδ(u0) and ε > 0. Choose η < ε/3 small enough such that

‖ǔ‖l2 · ‖a(ǔ) − a(v̌)‖l∞ < ε/2 for all v̌ ∈ Ĩsoδ(u0) with ‖v̌ − ǔ‖l2 < η. This is

possible due to the just proved continuity of a 7→ a(ǔ). Now, let v̌ ∈ Ĩsoδ(u0)
with ‖v̌ − ǔ‖l2 < η. We may assume that ‖a(v̌)‖l∞ ≤ 1/2 (otherwise choose the
ball U in Theorem 3.2.8 smaller which maybe requires choosing δ > 0 suitably
smaller16). Then we obtain

‖I(ǔ)− I(v̌)‖l2 = ‖ǔ · (1 + a(ǔ))− v̌ · (1 + a(v̌))‖l2 ≤
≤ ‖ǔ− v̌‖l2 + ‖ǔ · a(ǔ)− ǔ · a(v̌)‖l2 + ‖ǔ · a(v̌)− v̌ · a(v̌)‖l2 ≤
≤ ‖ǔ− v̌‖l2︸ ︷︷ ︸

<η

+ ‖ǔ‖l2 · ‖a(ǔ)− a(v̌)‖l∞︸ ︷︷ ︸
<ε/2

+ ‖a(v̌)‖l∞︸ ︷︷ ︸
<1/2

· ‖ǔ− v̌‖l2︸ ︷︷ ︸
<η

< ε.

16Note that, as also mentioned a few times before in a similar context (for example in the
proof of Theorem 3.2.8 where we assured that Ψt maps U into U), that this choice of δ is
admissible and only depends on the initial potential u0.
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This proves (3.58). The inverse map I−1 is given by

I−1 : Isoδ(u0) −→ Ĩsoδ(u0), w̌ 7−→
(
w̌ν
|w̌ν |
|ǔ0,ν |

)
ν∈Γ∗δ

since for ǔ = (ǔν)ν∈Γ∗δ
∈ Ĩsoδ(u0), we have due to |ǔ0,ν | = |ǔν | , ν ∈ Γ∗δ (cf. (3.8)),

I−1(I(ǔ)) =

(
ǔν · (1 + aν)

|ǔν · (1 + aν)|
|ǔ0,ν |

)
ν∈Γ∗δ

=

(
ǔν
|ǔ0,ν |

|ǔ0,ν |
)
ν∈Γ∗δ

= ǔ.

Clearly, this map I−1 is only well-de�ned for ǔ0,ν 6= 0 (which implies w̌ν =
ǔν · (1 + aν) 6= 0 by de�nition of I), ν ∈ Γ∗δ . If we want to prove continuity, we
may assume without loss of generality that ǔ0,ν 6= 0 and thus w̌ν 6= 0 holds for
all ν ∈ Γ∗δ , (w̌ν)ν ∈ Isoδ(u0) (otherwise consider the corresponding subsequence
indexed by all ν ∈ Γ∗δ ful�lling ǔ0,ν 6= 0) by the same reasons as we excluded the
case m̃ν(u0) = 0 by considering the map (3.12) (see the discussion after (3.12))
since I maps components of ǔ which are equal to zero trivially to components
equal to zero.
To begin with, we note that for all v, w ∈ C \ {0}, there holds∣∣∣∣ w|w| − v

|v|

∣∣∣∣ =

∣∣∣∣w|v| − v|w||v||w|

∣∣∣∣ =

∣∣∣∣w(|v| − |w|) + |w|(w − v)

|v||w|

∣∣∣∣ ≤ 2
|w − v|
|v|

. (3.59)

Now let v̌ ∈ Isoδ(u0) and ε > 0 be given. Since
∑
|ν|≥n |ǔ0,ν |2 → 0 as n → ∞,

there is a 0 < δ1 < δ such that ‖ǔ0‖2
l2(Γ∗δ1

) < ε2/8. Because Γ∗δ \ Γ∗δ1 has only

�nitely many elements, the number m := min{|v̌ν | : ν ∈ Γ∗δ \ Γ∗δ1} > 0 is well-
de�ned. Now choose η := mε

2
√

2‖ǔ0‖l2(Γ∗
δ
\Γ∗
δ1

)

> 0, where we use the natural conven-

tion ‖ǔ0‖2
l2(Γ∗δ\Γ

∗
δ1

) :=
∑

ν∈Γ∗δ\Γ
∗
δ1

|ǔ0,ν |2 (which is a �nite sum) for the respective

term in the denominator. Then for all w̌ ∈ Isoδ(u0) with ‖w̌− v̌‖l2(Γ∗δ) < η, there
holds

‖I−1(w̌)− I−1(v̌)‖2
l2(Γ∗δ) = ‖I−1(w̌)− I−1(v̌)‖2

l2(Γ∗δ\Γ
∗
δ1

) + ‖I−1(w̌)− I−1(v̌)‖2
l2(Γ∗δ1

) ≤

(3.59)

≤

(
2 sup
ν∈Γ∗δ\Γ

∗
δ1

|w̌ν − v̌ν |
|v̌ν |

)2

· ‖ǔ0‖2
l2(Γ∗δ\Γ

∗
δ1

) + sup
ν∈Γ∗δ1

∣∣∣∣ w̌ν|w̌ν | − v̌ν
|v̌ν |

∣∣∣∣2︸ ︷︷ ︸
≤(1+1)2=4

‖ǔ0‖2
l2(Γ∗δ1

) <

<
4η2

m2
‖ǔ0‖2

l2(Γ∗δ\Γ
∗
δ1

) + 4
ε2

8
=
ε2

2
+
ε2

2
= ε2,

hence ‖I−1(w̌) − I−1(v̌)‖l2(Γ∗δ) < ε. This proves the continuity of I−1 and the
theorem is proved.



Chapter 4

The isospectral problem II: The

solution

In this chapter, we want to determine the isospectral set Iso(u0) for a given real-
valued potential u0 ∈ L2(F ) with the help of the moduli in an analogous way as
we already did in Chapter 3 when we determined the asymptotical isospectral set
Isoδ(u0). An a priori manifest way to de�ne Iso(u0) would be

{u ∈ L2(F ), u real-valued : m(u) = m(u0)}.

This de�nition, however, has some shortcoming: Whereas in the asymptotic part
of the Fermi curve F (u0), there exists a well-de�ned enumeration of the moduli
(mν(u))ν∈Γ∗δ

(with δ > 0 as in Chapter 3) by the enumeration of the A-cycles in
the excluded domains indexed by ν ∈ Γ∗δ , in the compact part, however, there
doesn't exist such a natural enumeration of the moduli mν(u) for ν ∈ Γ∗ \ Γ∗δ .
Hence, it is not clear which one of the mν(u) we mean when we speak of the
νth modulus. The reason for this problem is that we don't have those excluded
domains suggesting a natural enumeration of the A-cycles in the compact part
of the Fermi curve as we have in the asymptotic part. The question is how to
�nd a suitable enumeration of the �rst �nitely many moduli. We proceed as
follows: For u0, we can just choose an arbitrary but �xed enumeration of the �rst
�nitely many moduli. As long as we consider potentials u ∈ L2(F ) such that
the associated Fermi curve F (u) is only a slight deformation of the initial curve
F (u0), the A-cycles of F (u) are only slight deformations of the A-cycles of F (u0)
as well such that we can assign the νth A-cycle of F (u) to the νth A-cycle of F (u0)
for ν ∈ Γ∗ \Γ∗δ . In other words, the chosen enumeration of the �rst �nitely many
moduli of F (u0) carries over to the enumeration of the �rst �nitely many moduli
of F (u) provided that F (u) ⊆ T , where T ⊂ C2 is a su�ciently small tubular
neighbourhood of F (u0) only depending on u0. The following de�nition of the
isospectral set is thus appropriate and well-de�ned:

Iso(u0) := {u ∈ L2(F ), u real-valued : m(u) = m(u0) andF (u) ⊆ T }. (4.1)
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Later, when we show the equivalence m(u) = m(u0) ⇐⇒ F (u) = F (u0) and
thus determine the isospectral set IsoF (u0) = {u ∈ L2(F ), u real-valued :
F (u) = F (u0)} we are actually interested in, the additional requirement F (u) ⊆
T will turn out to be redundant anyway and can be dropped since F (u0) ⊆ T
is always ful�lled by de�nition. As long as we haven't proved this, however, the
de�nition (4.1) is the appropriate one in order to guarantee the well-de�nition of
the appearing moduli. Whenever, in the sequel, we will use the moduli m(u), we
tacitly remember that m(u) is only well-de�ned for potentials u with F (u) ⊆ T
without always explicitly mentioning it.

4.1 Submersion properties of the moduli

The �rst aim of this section is to show that for given u0 ∈ L2(F ) and associated
Fermi curve X := F (u), there exist for every N ∈ N holomorphic 1-forms ωj on
X, j ∈ Γ∗, 0 < |j| ≤ N such that∫

Ai

ωj = δi,j for i, j ∈ Γ∗, 0 < |i|, |j| ≤ N. (4.2)

In other words, we want to construct a "partial basis" of 1-forms which is dual to
the A-cycles as it has also been done by Feldmann, Knörrer, Trubowitz
in the �rst chapter of [5], for instance. In contrast to [5], we don't require further
properties of X as it has been done in [5, Theorem 1.17, Theorem 3.8]. On the
other hand, we don't construct a complete basis since (4.2) shall only hold for
�nitely many i, j ∈ Γ∗. As in [5], we assume from now on that X is smooth,
i.e. X has no singularities. In the following propositions, this will be explicitly
mentioned by formulations like "let u ∈ L2(F ) with smooth Fermi curve".
The second and main goal of this section is to derive with the help of (4.2) cer-
tain submersion properties of the moduli both in the case of complex-valued
Schrödinger potentials and in the case of real-valued Schrödinger potentials,
i.e. we will prove that the derivative of the moduli is onto in the respective
cases.
To begin with, we make an excursion to Fermi curves of periodic Dirac opera-
tors. The reason for considering this more general setting will become clear in
the subsequent investigations. One important tool will be the equation (4.20)
where the total residue of some di�erential form is related to some symplectic
form Ω that will be de�ned in (4.19). Restricting Ω to Schrödinger potentials,
Ω turns out to be useless since Ω ≡ 0 in that case. This is one aspect which
justi�es the following investigations of the more general Dirac equation. We shall
see that the Schrödinger equation is just a special case of the Dirac equation
and that the results obtained in the Dirac case imply the desired results in the
Schrödinger case. We start with some notations and facts based on the work [27]
by M. Schmidt.
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Let V,W ∈ L2(F ) and let κ̂, κ̌ ∈ Γ∗ be two generators of the dual lattice Γ∗. For
p1, p2 ∈ C, we de�ne the Dirac operator by (cf. [27, p. 42])

D̃(V,W, p1) :=

(
p1π(κ̂2−iκ̂1)−∂̄

κ̌2−iκ̌1

W
κ̌2−iκ̌1

V
κ̌2+iκ̌1

p1π(κ̂2+iκ̂1)+∂
κ̌2+iκ̌1

)
(4.3)

with the Wirtinger operators ∂ := 1
2

(∂x1 − i∂x2) and ∂̄ := 1
2

(∂x1 + i∂x2). The
Fermi curve F (V,W ) can then be de�ned as

F (V,W ) := {k = p1κ̂+ p2κ̌ ∈ C2 | − p2π is an eigenvalue of D̃(V,W, p1)}.

In the following, there might appear both coordinates k = (k1, k2) ∈ C2 and
(p1, p2) ∈ C2 in one equation. Even if it's not always explicitly mentioned, the
crucial relation they satisfy is always k = p1κ̂+ p2κ̌.
In the Dirac case, the moduli can be de�ned in the same way as in De�nition
2.6.1 by

mν(V,W ) := −16π3

∫
Aν

k1dk2,

where the contour integral is taken again over the νth cycle Aν of the Fermi curve
F (V,W ).
The above Dirac operator (4.3) is actually some modi�ed Dirac operator. For the
original Dirac operator, we have in fact completely analogously to the Schrödinger
case discussed in Section 1.2 two possibilities of de�nition depending on the point
of view: We can either consider the boundary condition k ∈ C2 already included
in the operator with corresponding periodic eigenfunctions (compare ∆k and
(1.11)) or we can consider the operator without boundary condition where the
parameter k ∈ C2 then appears in the quasi-periodicity of the eigenfunctions
(compare (1.1) and (1.3) in the Schrödinger case). We now de�ne (cf. [27, p. 15,
p. 17]) analogously to the Laplace operators ∆ and ∆k

D(V,W ) :=

(
V ∂
−∂̄ W

)
, Dk(V,W ) :=

(
V ∂k
−∂̄k W

)
(4.4)

with ∂k := ∂ + πik1 + πk2 and ∂̄k := ∂̄ + πik1 − πk2 as in [13, p. 79]. Let

ψk(x) := exp(2πi 〈k, x〉), k ∈ C2, x ∈ R2. (4.5)

As in the Schrödinger case, one can easily check that ψ̃ is an eigenfunction of
Dk(V,W ) if and only if ψ = ψkψ̃ is a (quasi-periodic) eigenfunction of D(V,W )
ful�lling ψ(x + γ) = e2πi〈k,γ〉ψ(x) (for γ ∈ Γ, x ∈ R2), each with eigenvalue zero.

Furthermore, ψ̃ is an eigenfunction of D̃(V,W, p1) with eigenvalue −πp2 if and

only if ψ̃ is an eigenfunction of Dk(V,W ) with eigenvalue zero, where k and
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p = (p1, p2) are related by k = p1κ̂ + p2κ̌. The latter statement immediately
follows from the equivalences(

p1π(κ̂2 − iκ̂1) + πp2(κ̌2 − iκ̌1)− ∂̄
)
ψ̃1 +Wψ̃2 = 0⇐⇒ −∂̄kψ̃1 +Wψ̃2 = 0

and

(p1π(κ̂2 + iκ̂1) + πp2(κ̌2 + iκ̌1) + ∂) ψ̃2 + V ψ̃1 = 0⇐⇒ ∂kψ̃2 + V ψ̃1 = 0,

where we used πi(k1 ± ik2) = πip1(κ̂1 ± iκ̂2) + πip2(κ̌1 ± iκ̌2).
This motivates the above de�nition F (V,W ) if we compare it to the de�nition
of F (u) for Schrödinger potentials in Section 1.1. In the following lemma, we
see in which sense Schrödinger potentials are a special case of Dirac potentials
where we use the operator Dk(V,W ) in (4.4). For all subsequent considerations,

however, we will mostly use the (modi�ed) operator D̃(V,W, p1) since it will turn
out to be the appropriate operator for our purposes.

Lemma 4.1.1. For u ∈ L2(F ), there holds1

F (u) = F
(
1, −u

4

)
= F

(−u
4
, 1
)
.

In particular, mν(u) = mν

(
1, −u

4

)
= mν

(−u
4
, 1
)
for all ν ∈ Γ∗.

Proof. Setting (V,W ) := (1, −u
4

), we have with (1.11) and (4.4) the equivalences

(
1 ∂k
−∂̄k −u

4

)(
ψ1

ψ2

)
= 0⇐⇒

{
ψ1 + ∂kψ2 = 0

−∂kψ1 − u
4
ψ2 = 0

⇐⇒ −∆kψ2 + uψ2 = 0.

This shows F (u) = F
(
1, −u

4

)
. The case (V,W ) := (−u

4
, 1) is considered com-

pletely analogously. Finally, mν(u) = mν

(
1, −u

4

)
= mν

(−u
4
, 1
)
follows for all

ν ∈ Γ∗ since by de�nition of the moduli, equal Fermi curves have equal mod-
uli.

In [27, Lemma 3.2, p. 60], the following assertion has been shown (its proof can
be found in Lemma A.1 in the Appendix A of this work): Given a meromorphic
function g with �nitely many poles on some open subset of F (V,W )/Γ∗, there
exist a meromorphic function Asingg (the meaning of the superscript sing which
stands for singular will soon get clear) mapping from the complex plane p1 ∈ C
into the bounded operators from the Banach spaces Lp(F )×Lp(F ) into Lp

′
(F )×

Lp
′
(F ) (for all 1 < p′ < p < ∞) as well as unique functions vg, wg ∈ L2(F ) such

1We implicitly use the self-explanatory convention that F (u) with one argument u signi�es
the Fermi curve of the Schrödinger potential u, whereas F (V,W ) with two arguments V and
W signi�es the Fermi curve of the Dirac potential (V,W ).
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that the commutator [Asingg (p1), D̃(V,W, p1)] does not depend on p1 and is equal
to

[Asingg (p1), D̃(V,W, p1)] =

(
0 wg

κ̌2−iκ̌1
vg

κ̌2+iκ̌1
0

)
. (4.6)

Now let an A-cycle Aν , ν ∈ Γ∗ \ {0}, be given. In local coordinates, the inter-
section of some small neighbourhood of Aν in C2 with the Fermi curve can be
represented as an annular domain in C. We denote the image of Aν in this local
coordinates by Âν , i.e. Âν can be considered as a circle in this annular domain
(by choosing the local coordinate appropriately). If in the following, we consider
objects (sets, functions,...) both on the Fermi curve and in local coordinates, we
will sometimes (whenever it helps to avoid confusions) use the hat symbol ˆ in
order to point out that the respective object is considered in local coordinates.
For ẑ0 ∈ Âν , we de�ne a meromorphic function gẑ0 on this annular domain by
gẑ0(ẑ) := 1

ẑ−ẑ0 . Let gz0 be the respective function on the Fermi curve. In order
that gz0 is not only meromorphic in a neighbourhood in F (V,W ) but also in
F (V,W )/Γ∗, we simply de�ne gz0+κ := gz0 on the corresponding neighbourhood
shifted by κ ∈ Γ∗. Since these shifted neighbourhoods by dual lattice vectors are
pairwise disjoint, we don't have any problems concerning well-de�nition.
So far, for each ν ∈ Γ∗ \ {0} and for z0 ∈ Aν

2, the function gz0 is only de-
�ned in a neighbourhood Uν of Aν . Taking the union of these neighbourhoods⋃
ν∈Γ∗\{0} Uν , we would like to extend gz0 onto this union. Since we can choose the

neighbourhoods Uν pairwise disjoint, we can de�ne for z0 ∈ Aν and κ ∈ Γ∗ \ {0}

g̃z0(z) := δκ,νgz0 , z ∈ Uκ, (4.7)

again without having any problems of well-de�nition. In the sequel, we write gz0
instead of g̃z0 since we will use this extension of gz0 from now on. We now de�ne
the L2(F )-potentials

v(Aν) :=

∫
Aν

vgzdz, w(Aν) :=

∫
Aν

wgzdz (4.8)

(with vg, wg for a meromorphic function g as de�ned in (4.6)). In a �rst step, we
want to prove that for |ν| ≤ N , N ∈ N, these functions are linearly independent.

Lemma 4.1.2. Let u ∈ L2(F ) and (V,W ) := (1, −u
4

) with smooth Fermi curve
F (V,W )/Γ∗. Then for all N ∈ N, the potentials (v(Aν), w(Aν)), 0 < |ν| ≤
N , de�ned in (4.8) (associated to F (V,W )/Γ∗), are in L2(F ) × L2(F ) linearly
independent over C.

2By slight abuse of notation, we write for simplicity z0 ∈ Aν instead of the correct notation
z0 ∈ supp(Aν).
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Remark. As we will see, the major part of the proof also holds for arbitrary
potentials (V,W ) ∈ L2(F ) × L2(F ). There is only one part in the proof, where
we use the asymptotics for Fermi curves, more precisely the trisection of Fermi
curves and the asymptotic freeness, cf. the end of Section 2.1, which have been
shown only for Fermi curves F (u) associated to Schrödinger potentials u ∈ L2(F )
and not in the general Dirac case. This is the only reason why we consider
(V,W ) := (1, −u

4
) or (V,W ) := (−u

4
, 1). Since later, we will go back to Schrödinger

potentials anyway, this is not a grave restriction.

Proof. Let X := F (V,W )/Γ∗ be smooth. Let N ∈ N, cν ∈ C, 0 < |ν| ≤ N and
set ∑

0<|ν|≤N

cν(v(Aν), w(Aν)) = 0.

We have to show that cν = 0 for all 0 < |ν| ≤ N . By (4.6) and the bilinearity of
the commutator, we get for any p1 ∈ C ∑

0<|ν|≤N

cν

∫
Aν

Asinggz (p1)dz, D̃(V,W, p1)

 = ( 0 0
0 0 ) . (4.9)

Note that gz clearly depends on ν. In order not to make the notation too com-
plicated, the index ν is suppressed here. Before we can continue, we have to take
a look into the proof of [27, Lemma 3.2., p. 60] (or equivalently, cf. the proof of
Lemma A.1 in the Appendix A) in order to see how Asingg (with meromorphic
g as mentioned above) is de�ned: To this, we introduce the projector P which
maps functions in L2(F )×L2(F ) to eigenfunctions of the Dirac operator (4.3) as
follows: For k ∈ X, we have (up to multiplication with a scalar) unique eigen-
functions ψ(k) of D(V,W ) (4.4) and φ(k) of the transposed operator DT (V,W ),
respectively (cf. [27, p. 32]). The operator P(k) : L2(F )×L2(F )→ L2(F )×L2(F )
is then de�ned by (cf. [27, p. 41])

(P(k))(χ) :=
〈〈φ([k]), ψkχ〉〉
〈〈φ([k]), ψ([k])〉〉

ψ−kψ([k]), (4.10)

with ψk again as in (4.5). The bracket [k] is de�ned as the equivalence class
[k] := {k + ν | ν ∈ Γ∗}. Furthermore, the bilinear form 〈〈·, ·〉〉 is not the usual
euclidean bilinear form on L2(F )× L2(F ) (as in [27, p. 29]), but some modi�ed
bilinear form de�ned by

〈〈φ, ψ〉〉 := 〈φ2, ψ1〉+ 〈φ1, ψ2〉 :=

∫
F

(φ2(x)ψ1(x) + φ1(x)ψ2(x))d2x, (4.11)

cf. [27, p. 36] 3. All we need to know is that with this modi�ed bilinear form,

3Actually, in [27, p. 36], one de�nes for γ =
(
γ1
γ2

)
∈ C2 the bilinear form 〈〈φ, ψ〉〉γ :=

(γ1 + iγ2) 〈φ2, ψ1〉 + (γ1 − iγ2) 〈φ1, ψ2〉. Since in the proof of [27, Lemma 3.2], this γ serves
as one of the two generators of Γ, we can choose without restriction γ =

(
1
0

)
for one of the

generators by a suitable choice of the coordinate system.
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P(k) (4.10) is the suitable spectral projector for the modi�ed Dirac operator (4.3)
(for deeper background information, we refer the reader to [27]). More precisely,
the essential property we need is the following: If we consider X locally as a
(say n-sheeted) covering space over p1 ∈ C, i.e. n points p2,1, . . . , p2,n lie over
p1 with respect to this covering, we have with ki := p1κ̂ + p2,iκ̌, i = 1, . . . , n,

the projector property P(ki)ψ̃(kj) = δi,jψ̃(kj), where the function ψ̃(kj) is the

eigenfunction of D̃(V,W, p1) with eigenvalue −πp2,j. This implies that for k ∈ X,

we have F(p1)ψ̃(k) = g(k) · ψ̃(k), where p1 7→ F(p1) denotes (as in the beginning
of the proof of [27, Lemma 3.2]) the local sum of g ·P over all sheets of X. Hence,

F(p1) and D̃(V,W, p1) have the same eigenfunction ψ̃(k).
Now, we want to see how eigenfunctions transform if k is shifted by some ν ∈ Γ∗

to k + ν. At �rst recall that, as already mentioned, ψ̃(k) := ψ−kψ(k) is an
eigenfunction of (4.3) with eigenvalue −πp2 if and only if ψ(k) is an eigenfunction
of D(V,W ) (4.4) with eigenvalue zero with the relation k = p1κ̂+p2κ̌. As already

discussed in Section 1.2, not both ψ and ψ̃ can be periodic in x ∈ R2 with respect
to Γ. As the de�nition of P already suggests, we are in the following setting: ψ, φ
are quasiperiodic in x ∈ R2 with respect to Γ and periodic in k with respect to Γ∗

(this explains why φ, ψ are functions of equivalence classes [k]), whereas ψ̃, φ̃ are
periodic in x ∈ R2 with respect to Γ, cf. Section 1.2 or as well [27, Fundamental
domain 2.1, Trivialization 2.2, p. 15 f.]. For n = (n1, n2) ∈ Z2, we thus have with
k(n) := k + n1κ̂+ n2κ̌

P(k(n))(ψ−n1κ̂−n2κ̌ψ̃(k)) =

〈〈
φ([k]), ψkψ̃(k)

〉〉
〈〈φ([k]), ψ([k])〉〉

ψ−k(n)ψ(k) = ψ−n1κ̂−n2κ̌ψ̃(k).

Therefore, ψ−n1κ̂−n2κ̌ψ̃(k) is the4 eigenfunction of P(k(n)) with eigenvalue 1. This
implies the quasiperiodic condition in k with respect to Γ∗:

ψ̃(k(n)) = ψ−n1κ̂−n2κ̌ψ̃(k).

Together with F(p1)ψ̃(k) = g(k) · ψ̃(k), we get

F(p1 + n1)ψ−n1κ̂−n2κ̌ψ̃(k) = g(k(n))ψ−n1κ̂−n2κ̌ψ̃(k)

and hence

(ψn1κ̂+n2κ̌F(p1 + n1)ψ−n1κ̂−n2κ̌)(ψ̃(k)) = g(k(n))ψ̃(k).

Thus, the operator de�ned by

Ag(p1) :=
∑
n∈Z2

ψn1κ̂+n2κ̌F(p1 + n1)ψ−n1κ̂−n2κ̌

4If we sometimes speak of the eigenfunction (which suggests uniqueness), we always mean
uniqueness up to multiplication with a scalar.
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has the eigenvalue
∑

n∈Z2 g(k(n)) with eigenfunction ψ̃(k). Note that so far,
the appearing series over n ∈ Z2 are only formal series; we haven't made any
considerations about their convergence, yet. Now, choose for Aν and z ∈ Aν the
function gz (the dependence on ν is suppressed as before) as in the de�nition of
(4.8), de�ned in aneighbourhood of Aν . We then de�ne analogously to (4.8)

AAν (p1) :=

∫
Aν

Agz(p1)dz.

Thus,
∑

0<|ν|≤N cνAAν (p1) has the eigenvalue
∑

0<|ν|≤N cν
∑

n∈Z2

∫
Aν
gz(k(n))dz

with eigenfunction ψ̃(k). Now, we can de�ne the operator Asingg (p1) we are actu-
ally interested in: To this, let Fsing be the singular part of the (in p1) meromorphic
operator F in its Laurent expansion. Then, Fsing is meromorphic in the entire
plane C. We now de�ne (cf. [27, p. 60] or Lemma A.1)

Asingg (p1) :=
∑
n∈Z2

ψn1κ̂+n2κ̌F
sing(p1 + n1)ψ−n1κ̂−n2κ̌

which is meromorphic in the entire plane p1 ∈ C as well (in contrast to Ag which
is not necessarily globally de�ned). The convergence of this series (in the strong
operator topology) has been proved in [27, Lemma 3.2(i)] and can also be retraced
in Lemma A.1 in the Appendix A of this work. Analogously to AAν , we de�ne

AsingAν
(p1) :=

∫
Aν

Asinggz (p1)dz. (4.12)

With this notation, (4.9) reads as ∑
0<|ν|≤N

cνA
sing
Aν

(p1), D̃(V,W, p1)

 = ( 0 0
0 0 ) .

This yields

D̃(V,W, p1)

 ∑
0<|ν|≤N

cνA
sing
Aν

(p1)

 ψ̃(k) =

 ∑
0<|ν|≤N

cνA
sing
Aν

(p1)

 D̃(V,W, p1)ψ̃(k) =

= −πp2

 ∑
0<|ν|≤N

cνA
sing
Aν

(p1)

 ψ̃(k).

Consequently,
∑

0<|ν|≤N cνA
sing
Aν

(p1)ψ̃(k) is an eigenfunction of D̃(V,W, p1) with

eigenvalue −πp2. Since the eigenfunctions of D̃(V,W, p1) are (except for isolated

points) unique up to multiplication with a scalar,
∑

0<|ν|≤N cνA
sing
Aν

(p1)ψ̃(k) is in
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the span of ψ̃(k). In other words, ψ̃(k) is an eigenfunction of
∑

0<|ν|≤N cνA
sing
Aν

(p1).

We denote the corresponding eigenvalue by fsing(k), i.e. ∑
0<|ν|≤N

cνA
sing
Aν

(p1)

 ψ̃(k) = fsing(k)ψ̃(k).

To sum up,
∑

0<|ν|≤N cνA
sing
Aν

(p1) and D̃(V,W, p1) share the same eigenfunction

ψ̃(k). Since
∑

0<|ν|≤N cνAAν (p1) also has the eigenfunction ψ̃(k) as shown above,

the operator
∑

0<|ν|≤N cνA
hol
Aν

(p1) with AholAν
(p1) := AAν (p1) − AsingAν

(p1) has the

eigenfunction ψ̃(k), too. Summing up, with

f(k) :=
∑

0<|ν|≤N

cν
∑
n∈Z2

∫
Aν

gz(k(n))dz, (4.13)

we get ∑
0<|ν|≤N

cνA
sing
Aν

(p1)

 ψ̃(k) =
∑

0<|ν|≤N

cν(AAν (p1)− AholAν (p1))ψ̃(k) =

=

 ∑
0<|ν|≤N

cν
∑
n∈Z2

∫
Aν

gz(k(n))dz −
∑

0<|ν|≤N

cνA
hol
Aν (p1)

 ψ̃(k) = (f(k)− fhol(k))ψ̃(k),

where fhol(k) := f(k)−fsing(k) denotes the corresponding eigenvalue of the oper-
ator

∑
0<|ν|≤N cνA

hol
Aν

(p1). We owe the proof of the convergence of the appearing

series over n ∈ Z2. The crucial terms we have to consider are AAν (p1), AsingAν
(p1),

AholAν
(p1), f(k). It su�ces to prove convergence of AAν (p1) and f(k) since the

convergence of AholAν
(p1) follows from the convergence of AAν (p1) (to be proved)

and AsingAν
(p1) (follows from the convergence of Asingg (p1) proved in [27, Lemma

6.2(i)] or Lemma A.1, respectively).
As to the convergence of AAν (p1), we see that this term is de�ned by integration
over a �xed cycle Aν . This cycle is one element of the homology basis of the Fermi
curve X. The summands in the in�nite sum over n ∈ Z2 are exactly the shifts of
the respective argument k by dual lattice vectors to k(n) = k+n1κ̂+n2κ̌, where
n = (n1, n2) runs through Z2. Since we integrate over exactly one cycle Aν (and
not over in�nitely many cycles {Aν +κ |κ ∈ Γ∗} which we would have to do if we
considered F (V,W ) instead of F (V,W )/Γ∗), all but one of the arguments k(n)
are outside of the cycle Aν , i.e. Aν has winding number zero with respect to k(n)
for all but one n ∈ Z2 (recall the de�nition of gz, namely gẑ(ŵ) := 1

ŵ−ẑ in local
coordinates). Therefore, all summands but one vanish so that the in�nite sum
over n ∈ Z2 has in fact only one summand.
As to the convergence of f(k), we can argue completely analogously with the only
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di�erence that we don't integrate over only one �xed cycle Aν but over �nitely
many cycles Aν , 0 < |ν| ≤ N . This proves the convergence of the considered
terms. The terms fsing(k) and fhol(k) are, by the way, well-de�ned due to the
well-de�nition of AsingAν

(p1) and AholAν
(p1), respectively.

After having justi�ed the convergence of the sums, we go back to the actual proof.
If we cut X along the cycles Aν , 0 < |ν| ≤ N , we get a complex curve with bound-

ary denoted by X̃, where each cycle Aν decomposes into two boundary curves de-
noted by A+

ν and A−ν . Since ψ̃ is a global meromorphic eigenfunction of D̃(·, V,W )
on X and

∑
0<|ν|≤N cνA

sing
Aν

(p1) is de�ned on almost the entire plane p1 ∈ C (ex-

cept for those p1 ∈ {p1 ∈ C : ∃k ∈ (Aν)0<|ν|≤N ∃p2 ∈ C such that k = p1κ̂+p2κ̌}),
the corresponding eigenvalue function fsing is a global meromorphic function on

X̃. Note that neither f nor fhol need to be global functions on X̃. Furthermore,
fsing is in general not continuously extendable onto X as we shall see now. Let
0 < |ν| ≤ N . In local coordinates k 7→ z(k) in a neighbourhood of Aν , we can as-
sume without restriction that Aν is parameterized by the unit circle {z : |z| = 1}
with su�ciently smooth parameterization z : [0, 1] → C, t 7→ z(t). This yields
with the de�nition of gz∫
Aν

gz(k)dz =

∫ 1

0

gz(t)(z(k))ż(t)dt =

∫
|z|=1

1

z(k)− z
dz =

{
0, if |z(k)| > 1,

−2πi, if |z(k)| < 1.

(4.14)

In particular,
∫
Aν
gz(k)dz = 0 for k ∈ Uκ with κ 6= ν, again by the de�nition of

gz0 , cf. (4.7). Let the circle {z : |z| = 1} considered as the (inner) boundary
of {z : |z| > 1} be A+

ν in local coordinates and let {z : |z| = 1} considered
as the (outer) boundary of {z : |z| < 1} be A−ν in local coordinates5. With this
convention, for given k+ ∈ A+

ν and k− ∈ A−ν , there holds f(k) = 0 for all k in some

neighbourhood of k+ in X̃ and f(k) = −2πicν for all k in some neighbourhood

of k− in X̃ (cf. (4.13) and the fact discussed above that only one element in
{k(n) |n ∈ Z2} lies within the circle of Aν). Since A

−
ν and A+

ν are compact, we

get f ≡ 0 in a neighbourhood of A+
ν in X̃ and f ≡ −2πicν in a neighbourhood

of A−ν in X̃. Consequently, df ≡ 0 in both of these neighbourhoods.
As to the function fhol, we don't have a discontinuity as in (4.14) since there aren't
any singularities on the path of integration if we integrate Agz(p1)−Asinggz (p1) along
z ∈ Aν . Hence, the integral remains well-de�ned even if k (corresponding to p1

in the usual relation) lies in Aν . Consequently, fhol|A−ν ≡ fhol|A+
ν
.

The next step is to prove that fsing ≡ 0 on X̃ (and consequently extendable to

zero onto X). To this, we will show at �rst that dfsing ≡ 0 on X̃ by showing that
the norm ‖dfsing‖X̃ is equal to zero, where we de�ne for a meromorphic 1-form λ

5Of course, one could also interchange A+
ν and A−ν . Which one of these two circles is denoted

by A+
ν and which one by A−ν is eventually immaterial for the following arguments.



112 CHAPTER 4. THE ISOSPECTRAL PROBLEM II: THE SOLUTION

on X̃ the norm ‖λ‖2
X̃

:=
∫
X̃
λ ∧ ∗λ with ∗λ := −iλ 6 (for details, see [5, I.1], in

particular [5, Remark 1.14]).
We calculate at �rst the following integral (which will appear later again when
computing the norm ‖dfsing‖X̃): For 0 < |ν| ≤ N , we have∫

A+
ν

fsing · ∗dfsing −
∫
A−ν

fsing · ∗dfsing =

df |Aν=0
= −

∫
A+
ν

(f − fhol) · ∗dfhol +

∫
A−ν

(f − fhol) · ∗dfhol =

= −
∫
A+
ν

f︸︷︷︸
=0

·∗dfhol +

∫
A−ν

f︸︷︷︸
=−2πicν

·∗dfhol +

∫
A+
ν

fhol · ∗dfhol −
∫
A−ν

fhol · ∗dfhol︸ ︷︷ ︸
=0

=

= −2πicν

∫
Aν

∗dfhol
df |Aν=0

= 2πcν

∫
Aν

dfsing = 0. (4.15)

Next, we want to show that for every ε > 0, there is an r > 0 such that
|dfsing(k)| < ε for all k ∈ X̃ ∩ (C2 \ Br(0)) where Br(0) denotes the ball in
C2 with center 0 and radius r. In other words, dfsing shall asymptotically tend to
zero. Fsing obviously ful�lls this property since it is de�ned as the singular part of
the Laurent expansion of some meromorphic function. The same holds for Asingg

and
∑

0<|ν|≤N cνA
sing
Aν

(the appearing sum over n ∈ Z2 in these terms doesn't dis-
turb the asymptotic behaviour because of the same reasons as discussed before
when we justi�ed that at most one element in {k(n) |n ∈ Z2} lies within the
circle of a given Aν). Since singular parts of Laurent expansions of meromorphic
functions (here in the variable p1 ∈ C) are �nite linear combinations of terms like
p−j1 , with �nitely many natural numbers j, such a singular part always ful�lls the
estimate O(1/|p1|) as |p1| → ∞. Now,

|fsing(k)| · ‖ψ̃(k)‖ = ‖fsing(k)ψ̃(k)‖ = ‖
∑

0<|ν|≤N

cνA
sing
Aν

(p1)ψ̃(k)‖ ≤

≤ ‖
∑

0<|ν|≤N

cνA
sing
Aν

(p1)‖ · ‖ψ̃(k)‖,

where the appearing norms are the L2(F ) × L2(F )-norm and the corresponding
operator norm on L2(F ) × L2(F ) → L2(F ) × L2(F ), respectively. Thus, fsing
has the desired asymptotic behaviour. Since fsing is meromorphic on X̃, this
asymptotic behaviour carries over to dfsing as claimed above: For every ε > 0

there is an r > 0 such that |dfsing(k)| < ε for all k ∈ X̃ ∩ (C2 \ Br(0)). By the
asymptotic behaviour of the singular part of the Laurent expansion explained

6A priori, it is not clear whether ‖λ‖X̃ <∞ for the considered 1-forms λ. In the following,
we will, however, apply the just de�ned norm of the respective λ under consideration to a
compact surface with boundary where ‖λ‖ <∞ will be satis�ed.
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above, we even get fsing = O(1/r) and dfsing = O(1/r2) as r → ∞. We now

de�ne a compact curve with boundary denoted by X̃(r) by intersecting X̃ with
a ball Br(0) ⊂ C2 with su�ciently large r > 0 such that ∂Br(0) lies in the
asymptotic part of the Fermi curve. We know due to the asymptotic freeness
that X looks there like two complex planes ∼= C that are connected to each
other by handles (cf. the end of Section 2.1). The intersection of such a complex
plane with Br(0) is bounded by a circle with radius r. Without restriction, we
may assume that this circle intersects no excluded domain. Otherwise, consider
Br(0) \ {excluded domains having non-trivial intersection with ∂Br(0)} instead
of Br(0). In any case, the boundary ∂X̃(r) =: ∂X̃(r)in ∪ ∂X̃(r)out consists of
two parts, namely the "inner" cycles A±ν , 0 < |ν| ≤ N we also considered before

(∂X̃(r)in) and the "outer" boundary ∂X̃(r)out whose length is O(r), as r → ∞,
since this boundary consists of two circles with radius r (or a small deviation
from a circle by possibly circumnavigating the mentioned excluded domains) in

the two complex planes. The essential property is that X̃(r) is compact. We now
get by applying Stokes' Theorem (cf. [18, Theorem 9.6], for instance) that for all
ε > 0 there is an r0 > 0 such that for all r ≥ r0

‖dfsing‖2
X̃(r)

=

∫
X̃(r)

dfsing ∧ ∗dfsing =

∫
X̃(r)

d(fsing · ∗dfsing) =

∫
∂X̃(r)

fsing · ∗dfsing =

=
∑

0<|ν|≤N

(∫
A+
ν

fsing · ∗dfsing −
∫
A−ν

fsing · ∗dfsing
)

︸ ︷︷ ︸
=0, cf. (4.15)

+

∫
∂X̃(r)out

fsing · ∗dfsing ≤

≤ µ(∂X̃(r)out) · sup
∂X̃(r)out

(|fsing| · |dfsing|) = O(r) ·O
(

1

r3

)
< ε,

where µ(∂X̃(r)out) denotes the measure of ∂X̃(r)out. Hence, ‖dfsing‖X̃ = 0. Thus

dfsing ≡ 0 and fsing is constant on X̃. Due to the asymptotic behavior of fsing,

we get fsing ≡ 0 on X̃. Therefore, f = fhol. Due to fhol|A−ν = fhol|A+
ν
and

f |A−ν = −2πicν , f |A+
ν

= 0 for all 0 < |ν| ≤ N , we get cν = 0 for all 0 < |ν| ≤ N
which had to be proved.

As a side note, we remark that in the above proof, we made use of the assumed
smoothness of the corresponding Fermi curveX in essentially two aspects: Firstly,
we made use of the existence of a local coordinate in a neighbourhood of each
cycle Aν , 0 < |ν| ≤ N , and secondly, we applied Stokes' Theorem for compact
smooth manifolds with boundary.
For our next investigations, we have to recap some facts of Fermi curves and their
holomorphic 1-forms in the Dirac setting proved in [27].
The Fermi curve F (V,W )/Γ∗ can locally be described by an equation of the
form R(p, V,W ) = 0 with some holomorphic function R (cf. [27, p. 58] and [27,
Theorem 2.3]), where p := (p1, p2). Since this equation holds in a neighbourhood
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of the given (V,W ), we obtain by computing the directional derivative of R =
R(p, V,W ) in (V,W ) in direction of some (δv, δw) ∈ L2(F )× L2(F ) (with a dot
denoting the directional derivative with respect to (δv, δw)), cf. [27, p. 58]:

R(p, V,W ) = 0⇒ ∂R

∂(V,W )
(δv, δw) +

∂R

∂p1

ṗ1 +
∂R

∂p2

ṗ2 = 0.

⇒
∂R

∂(V,W )
(δv, δw)

∂R
∂p1

dp2 = −ṗ1dp2 −
∂R
∂p2

∂R
∂p1

ṗ2dp2. (4.16)

Here, we brie�y have to comment on the well-de�nition of the appearing direc-
tional derivatives ṗ1 and ṗ2 (an issue which has already been discussed in [27,
p. 58]). A priori, it is not clear in which sense they are well-de�ned since there is
no unique function (V,W ) 7→ (p1(V,W ), p2(V,W )). In other words, by varying
for example p1 in direction (δv, δw), there is no unique p1(V + δv,W + δw). We
can circumnavigate this problem if we require either ṗ2 = 0 or ṗ1 = 0. In the �rst
case, p1 = p1(p2, V,W ) is well-de�ned. The same holds for p2 = p2(p1, V,W ) in
the second case. These are only two examples of choices in order to de�ne unique
directional derivatives ṗ1 and ṗ2. Which choice we take is eventually immaterial
as long as it is consistent. As we will see in a moment, we won't deal any longer
with the directional derivatives ṗ1 and ṗ2 anyway. They appear only here in the
intermediate computations in order to derive the equation (4.18) we are actually
interested in. In equation (4.18), the terms ṗ1 and ṗ2 �nally won't appear any-
more.
Let's continue our computations. For �xed (V,W ) ∈ L2(F )× L2(F ), we have

∂R

∂p1

dp1 +
∂R

∂p2

dp2 = 0,

which implies

dp1 = −
∂R
∂p2

∂R
∂p1

dp2

(
⇐⇒ dp1

∂R
∂p2

= −dp2

∂R
∂p1

)
.

Plugging this into the equation (4.16), yields

∂R
∂(V,W )

(δv, δw)

∂R
∂p1

dp2 = −ṗ1dp2 + ṗ2dp1. (4.17)

From now on, a holomorphic 1-form in the expression of the left hand side of
(4.17) shall be denoted by ω(V,W, δv, δw), more precisely

ω(V,W, δv, δw) :=

∂R(p,V,W )
∂(V,W )

(δv, δw)

∂R(p,V,W )
∂p1

dp2. (4.18)
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With the symplectic form Ω : (L2(F )× L2(F ))2 → C de�ned by

Ω((v, w), (v′, w′)) :=
1

2π2i

∫
F

(vw′ − wv′)d2x, (4.19)

and with (4.17), we obtain with a meromorphic function g de�ned in an open
neighbourhood U in F (V,W )/Γ∗ by [27, Lemma 3.2(iv)] the relation

Ω((δv, δw), (vg, wg)) =
∑
ζ∈U

resζ(g · ω(V,W, δv, δw)) (4.20)

with vg, wg from (4.6). Here, resζ denotes the residue at the point ζ. The proof
of the relation (4.20) can also be retraced in Lemma A.1(iii) in the Appendix A
of this work. With this preliminaries, we can now prove the following theorem.

Theorem 4.1.3. Let u ∈ L2(F ) and (V,W ) := (1, −u
4

) with smooth Fermi curve
F (V,W )/Γ∗. Then for all N ∈ N, there exist holomorphic 1-forms ωκ, |κ| ≤ N ,
on F (V,W )/Γ∗ such that for all ν ∈ Γ∗ with 0 < |ν| ≤ N , there holds∫

Aν

ωκ = δκ,ν . (4.21)

Furthermore, these ωκ can be chosen to be of the form (4.18) with suitable re-
spective directions (δv, δw) ∈ L2(F )× L2(F ).

Proof. Let u ∈ L2(F ), (V,W ) := (1, −u
4

) with smooth Fermi curve F (V,W )/Γ∗,
N ∈ N and set

2g := #{ν ∈ Γ∗ : 0 < |ν| ≤ N}.

This notation is motivated by the fact that we have an even number of lattice
vectors ν ∈ Γ∗ \ {0}, |ν| ≤ N since there corresponds to each ν ∈ Γ∗ \ {0},
|ν| ≤ N the lattice vector −ν satisfying | − ν| ≤ N as well. Due to Lemma
4.1.2, the potentials (v(Aν), w(Aν)), 0 < |ν| ≤ N generate a complex vector
space of dimension 2g. Let V be the complex vector space generated by the
4g potentials (v(Aν), w(Aν)), (w(Aν),−v(Aν)), 0 < |ν| ≤ N whose dimension
m := dimC(V) ful�ls 2g ≤ m ≤ 4g. Let bi, i = 1 . . . ,m, be a basis of V
whose �rst g elements shall be (v(Aν), w(Aν)), 0 < |ν| ≤ N . We restrict the
symplectic form Ω (4.19) onto V and claim that this form Ω : V × V → C is still
symplectic. The properties of being bilinear and alternating obviously carry over
to the restriction to V . We have to show that the form is still nondegenerate.
To this, let 0 6= (v, w) ∈ V . Then (v′, w′) := (−w, v) is also a vector in V by
de�nition of V . We get Ω((v′, w′), (v, w)) = −1

2π2i

∫
F

(|v|2 + |w|2)d2x 6= 0. Hence, Ω
is nondegenerate on V and thus symplectic on V . Now de�ne the linear map

F : V → Cm, (v, w) 7→ (Ω((v, w), bi))i=1,...,m. (4.22)
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We show that ker(F ) = {0}. To this, let (v, w) ∈ V with F (v, w) = 0, i.e.
Ω((v, w), bi) = 0 for all i = 1, . . . ,m. We assume that (v, w) 6= 0. Since Ω is
nondegenerate, there is a (v′, w′) =:

∑m
i=1 λibi ∈ V (λi ∈ C) such that

0 6= Ω((v, w), (v′, w′)) =
m∑
i=1

λiΩ((v, w), bi) = 0,

a contradiction. This proves ker(F ) = {0}. Together with dim(V) = m, this
implies that F is an isomorphism. Consequently, for every j = 1, . . . ,m, there
exists a unique (vj, wj) ∈ V such that F (vj, wj) = ej, i.e. Ω((vj, wj), bi) = δij
for all i, j = 1, . . . ,m (here, ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ Cm denotes the jth

canonical unity vector). In particular by the de�nition of the �rst 2g vectors
b1, . . . , b2g, there exist potentials (vκ, wκ) ∈ V such that

Ω((vκ, wκ), (v(Aν), w(Aν))) = δκ,ν for all 0 < |κ|, |ν| ≤ N.

Together with (4.20) and the de�nition of v(Aν), w(Aν) (4.8), this implies for
0 < |κ|, |ν| ≤ N

δκ,ν = Ω((vκ, wκ), (v(Aν), w(Aν))) = Ω

(
(vκ, wκ),

∫
Aν

(vgz , wgz)dz

)
=

=

∫
Aν

Ω ((vκ, wκ), (vgz , wgz)) dz =

∫
Aν

∑
ζ∈U

resζ(gz · ω(V,W, vκ, wκ))dz =

=

∫
Aν

resz

(
ξ 7→ ω(V,W, vκ, wκ)|ξ

ξ − z

)
dz =

∫
Aν

ω(V,W, vκ, wκ). (4.23)

The theorem is proved.

Since in the following, we will consider pairs (ν,−ν), we recall the notation Γ∗/σ
already well-known from Theorem 3.1.1, more precisely: ν, κ ∈ Γ∗ are equivalent
in Γ∗/σ if and only if ν = κ or ν = σ(κ) = −κ. Moreover, we set

Γ∗N/σ := {ν ∈ Γ∗/σ : 0 < |ν| ≤ N}.

In the foregoing theorem we didn't make use of the property that (V,W ) =
(1,−u

4
) was assumed to be a Schrödinger potential in its full entirety, yet. In-

deed, by using the symmetry of the Fermi curve with respect to the holomorphic
involution σ : k 7→ −k, we get a sharper version stating that the �rst component
δv of the variation (δv, δw) can be chosen to be equal to zero. This will be proved
in Theorem 4.1.5. Before, we prove a lemma that will be needed in the proof of
Theorem 4.1.5.

Lemma 4.1.4. Let A,B be two closed subsets of L2(F ) × L2(F ) and denote by
A⊥ and B⊥ the orthogonal complements with respect to the symplectic form Ω
(4.19). Then

A⊥ +B⊥ = (A ∩B)⊥.
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Proof. Let A be an arbitrary closed subset of L2(F ) × L2(F ). We show at �rst
that (A⊥)⊥ = A, where A⊥ := {x ∈ L2(F ) × L2(F ) : ∀a∈A Ω(x, a) = 0} denotes
the orthogonal complement with respect to the symplectic form Ω (4.19). Let
a ∈ A. Then, by de�nition of the orthogonal complement, Ω(x, a) = 0 for all
x ∈ A⊥. Again, by de�nition of the orthogonal complement, we get a ∈ (A⊥)⊥.
This proves A ⊆ (A⊥)⊥. Conversely, assume that there is an a ∈ (A⊥)⊥ \A. Let
U := span{A, a}. De�ne a bounded linear functional f by

f : U → R, f(x) :=

{
1, if x = a

0, if x ∈ A.

This functional f is well-de�ned since linear maps are already uniquely de�ned if
they are de�ned on a basis. Since A is closed, a cannot be in the closure of A due
to a ∈ (A⊥)⊥ \ A. By Hahn-Banach's Theorem, cf. [30, Theorem III.1.5], there
exists a bounded linear functional F : L2(F ) × L2(F ) → R such that F |U = f .
We remark the relation

〈x, y〉 = 2π2iΩ ((ȳ2,−ȳ1), (x1, x2)) for all x = (x1, x2), y = (y1, y2) ∈ L2(F )× L2(F )

between the symplectic form Ω (4.19) and the canonical hermitian scalar product
〈·, ·〉 := 〈·, ·〉L2(F )×L2(F ). By Riesz's Representation Theorem, cf. [4, Satz 2.25],

there is a z ∈ L2(F )×L2(F ) such that F (x) = Ω(x, z) for all x ∈ L2(F )×L2(F ).
Since by de�nition, F (x) = f(x) = 0 for all x ∈ A, we have z ∈ A⊥. Again by
de�nition of f , we have Ω(a, z) = f(a) = 1. Hence, a /∈ (A⊥)⊥, a contradiction
to our assumption a ∈ (A⊥)⊥. This proves (A⊥)⊥ = A.
In a next step, we show that for closed A,B ⊆ L2(F )× L2(F ), there holds

(A+B)⊥ = A⊥ ∩B⊥. (4.24)

Since A ⊆ A + B, we have (A + B)⊥ ⊆ A⊥. Likewise, since B ⊆ A + B, we
have (A + B)⊥ ⊆ B⊥. This proves the inclusion "⊆" in (4.24). Conversely, let
x ∈ A⊥ ∩B⊥ be given. Hence, Ω(x, b) = Ω(x, a) = 0 for all a ∈ A and all b ∈ B.
By the linearity of Ω, this implies Ω(x, a + b) = 0 for all a ∈ A and all b ∈ B.
Therefore, x ∈ (A+B)⊥. This proves (4.24). This together with (A⊥)⊥ = A for
all closed subsets A ⊆ L2(F )×L2(F ) implies for all closed A,B ⊆ L2(F )×L2(F )

A⊥ +B⊥ = (A⊥ +B⊥)⊥⊥
(4.24)
= (A⊥⊥ ∩B⊥⊥)⊥ = (A ∩B)⊥.

This proves the lemma.

Theorem 4.1.5. Let u ∈ L2(F ) and (V,W ) := (1, −u
4

) with smooth Fermi curve
F (V,W )/Γ∗. Then for all N ∈ N, there exist holomorphic 1-forms ωκ, κ ∈ Γ∗N/σ,
on F (V,W )/Γ∗ such that for all ν ∈ Γ∗ with ν ∈ Γ∗N/σ, there holds∫

Aν

ωκ = δκ,ν .
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Furthermore, these ωκ can be chosen to be of the form (4.18) with suitable respec-
tive directions (0, δw) ∈ L2(F )× L2(F ). In particular, the direction δv in (4.18)
can be chosen to be zero.

Remark. In the Appendix B, we give an alternative proof of this theorem which
we have found earlier. Since the proof given in the following is, however, much
more elegant, we transferred the former proof into the appendix.

Proof. Let u ∈ L2(F ) with (V,W ) := (1, −u
4

) be given. The main e�ort of the
proof will be to show the identity

Ω+ := {ω = ω(V,W, δv, δw) : (δv, δw) ∈ L2(F )× L2(F ) ∧ ω ◦ σ = ω} =

{ω = ω(V,W, 0, δw) : δw ∈ L2(F )} =: Ω0.
(4.25)

Since holomorphic di�erential forms of the form (4.18) with δv = 0 of Fermi curves
of Schrödinger potentials (1, −u

4
) are invariant with respect to the involution σ,

it remains to prove the inclusion "⊆" in (4.25).
We introduce the following subspaces of L2(F )× L2(F ). Let

U := span

{(
vg
wg

)
: g is a meromorphic function on an open subset of F (u)/Γ∗

}
,

U± := span

{(
vg
wg

)
: g ◦ σ = ±g

}
⊂ U

with vg, wg as de�ned in (4.6). We call functions g with g = g ◦ σ symmetric and
functions g with g = −g ◦σ anti-symmetric. For given (δv, δw) ∈ L2(F )×L2(F ),
due to (4.20), we have the following equivalences for ω = ω(V,W, δv, δw):

ω ◦ σ = ω ⇐⇒
∑
ζ∈U

resζ(g · ω(V,W, δv, δw)) = 0 for g anti-symmetric

⇐⇒ Ω((δv, δw), (vg, wg)) = 0 for g anti-symmetric. (4.26)

Denoting by Ω(X) the space of holomorphic 1-forms on X := F (u)/Γ∗, we con-
sider the map

ω : L2(F )× L2(F )→ Ω(X), (δv, δw) 7→ ω(V,W, δv, δw). (4.27)

Due to (4.26), the image of (U−)⊥ under ω equals Ω+, where the orthogonal
complement (U−)⊥ is taken with respect to the symplectic form Ω. Hence,
by the isomorphism theorem, we have Ω+

∼= (U−)⊥/ kerω. We claim that
U⊥ = kerω: If (δv, δw) ∈ kerω, then ω(V,W, δv, δw) = 0. Due to (4.20), this
implies Ω((δv, δw), (vg, wg)) = 0 for all meromorphic functions g in open neigh-
bourhoods of X. Hence, (δv, δw) ∈ U⊥. Conversely, let (δv, δw) ∈ U⊥ be given,
i.e. Ω((δv, δw), (vg, wg)) = 0 for all meromorphic functions g in open neighbour-
hoods of X. Choose g such that it has one pole at some point of X. Due to (4.20),
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ω(V,W, δv, δw) vanishes at this point. Now consider an open neighbourhood of
this point. By the same argument, for all points p in this neighbourhood with g
chosen such that it has exactly one pole at p, we conclude that ω(V,W, δv, δw)
vanishes on this neighbourhood. Since ω is holomorphic, it thus vanishes on
the whole of X. Therefore, (δv, δw) ∈ kerω which proves the claim. Hence,
Ω+
∼= (U−)⊥/U⊥ and we have thus described the space Ω+.

Now, we want to describe the space Ω0. The image of {0}×L2(F ) under the map
(4.27) equals Ω0. Again, by the isomorphism theorem and due to U⊥ = kerω,
we get Ω0

∼= ({0}×L2(F ))/(U⊥ ∩ ({0}×L2(F ))). In order to prove the identity
(4.25), namely Ω+ = Ω0, we have to show that the linear map

α : ({0} × L2(F ))/(U⊥ ∩ ({0} × L2(F )))→ (U−)⊥/U⊥, (0, δw) 7→ (0, δw)
(4.28)

(modulo the respective subspaces) is an isomorphism. At �rst, we show that α is
well-de�ned. By the property of the symplectic form that Ω((0, δw), (0, δw′)) = 0
for all δw, δw′ ∈ L2(F ) and due to Lemma A.2 proven in the appendix, we get
the inclusions

U− ⊆ {0} × L2(F ) ⊆ (U−)⊥. (4.29)

This proves that α is well-de�ned. Next, we show that α is one-to-one. Thereto,
let (0, δw) ∈ kerα be given. That is, (0, δw) ∈ U⊥. In particular, (0, δw) ∈
U⊥ ∩ ({0} × L2(F )). Hence, kerα is trivial and thus, α is one-to-one.
Now, we prove that α is surjective. By de�nition of α, we have to show

(U−)⊥ = ({0} × L2(F )) + U⊥ (4.30)

Due to U⊥ ⊆ (U−)⊥ and (4.29), the inclusion "⊇" is ful�lled so that we have
to show (U−)⊥ ⊆ ({0} × L2(F )) + U⊥. Due to ({0} × L2(F ))⊥ = {0} × L2(F ),
Lemma 4.1.4 and the closedness of U , U−, the identity (4.30) is equivalent to

({0} × L2(F )) ∩ U = U−. (4.31)

The inclusion "⊇" is again trivial and follows from (4.29). So let (0, wg) ∈
({0} × L2(F )) ∩ U be given. We decompose g = 1

2
(g + g ◦ σ) + 1

2
(g − g ◦ σ)

into its symmetric and anti-symmetric part. We denote the symmetric part of g
by gs := 1

2
(g + g ◦ σ). Due to (A.11) proven in the Appendix A, vg is a linear

combination of functions of the form ψ2(k, x)ψ2(−k, x) over certain points k on
the Fermi curve (with ψ2(k, ·) eigenfunction of the Schrödinger equation at k).
Hence, if vg = 0, then also vg◦σ = 0 since vg◦σ is then a linear combination of
functions of the form ψ2(−k, x)ψ2(k, x). Therefore vgs = 0. Due to the second
part of Lemma A.2 proven in the Appendix A, it follows for the symmetric gs
that if vgs = 0, then also wgs = 0. Therefore, the commutator (4.6) vanishes for
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the symmetric gs. By the proof of Lemma 4.1.2, this can only hold if gs = 0.
Therefore, g is anti-symmetric which implies (0, wg) ∈ U−.
In a �nal step, we choose in Theorem 4.1.3 a dual basis of holomorphic 1-forms ωκ
satisfying (4.21) for 0 < |κ|, |ν| ≤ N . We de�ne ω̃κ := ωκ + ωκ ◦ σ for κ ∈ Γ∗N/σ.
These forms ful�ll ω̃κ = ω̃κ ◦ σ for all κ ∈ Γ∗N/σ. Furthermore, by the duality
relation (4.21), the matrix with entries∫

Aν

ω̃κ =

∫
Aν

ωκ +

∫
σ(Aν)

ωκ =

∫
Aν+A−ν

ωκ

at (κ, ν) with κ, ν ∈ Γ∗N/σ has full rank. Here, we de�ned A−ν := σ(Aν) for all
ν ∈ Γ∗/σ which is possible if Aν is not homologous to σ(Aν). The proof of the
latter non-homology statement is postponed into the next Lemma 4.1.6.
Due to (4.25), these ω̃κ can be chosen to be of the form (4.18) with suitable re-
spective directions (0, δw) ∈ L2(F )×L2(F ). By a possible linear transformation,
they �nally satisfy the duality relation (4.21) for all κ, ν ∈ Γ∗N/σ. This proves
the theorem.

Next, we want to prove that forN ∈ N, the locally de�ned map u 7→ (mν(u))ν∈Γ∗N/σ
=

−16π3
(∫

Aν
k1dk2

)
ν∈Γ∗N/σ

, cf. De�nition 2.6.1, mapping Schrödinger potentials to

the �rst �nitely many moduli is a submersion. To simplify the notation, we set
in the following

mN(u) := (mν(u))ν∈Γ∗N/σ
. (4.32)

Furthermore, we use again 2g := #{ν ∈ Γ∗ : 0 < |ν| ≤ N} and thus g = #Γ∗N/σ
as in the beginning of the proof of Theorem 4.1.3. This notation will be used
several times in this work again (without always explicitly recalling its de�nition).
In (4.32), we consider only the half of the a priori 2g moduli mν(u) indexed by
0 < |ν| ≤ N . We want to explain why the remaining neglected g moduli are
redundant. In the asymptotic analysis of Chapter 3, we've already seen this.
More precisely, in (3.24), we saw that mν = m−ν for all ν ∈ Γ∗δ . By de�ning
A−ν to be the image of Aν under σ for all ν ∈ Γ∗/σ, we get by virtually the
same computation as in (3.24) mν = m−ν for all ν ∈ Γ∗ \ {0}. In order to de�ne
A−ν := σ(Aν) for all ν ∈ Γ∗/σ, we have to show that σ(Aν) and Aν are not
homologous to each other. This is justi�ed in the following lemma.

Lemma 4.1.6. For all ν ∈ Γ∗ \ {0}, the cycles Aν − σ(Aν) are not homologous
to zero.

Proof. We consider at �rst the special case for �nite type Fermi curves. In [19,
Theorem 4.23] combined with [19, Lemma 4.13], it has been shown that the
two points "at in�nity" Q+ and Q− of the two-point compacti�cation of the
(normalized) �nite type Fermi curve are the only �xed points of the involution
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σ. Let the normalized Fermi curve be denoted by X. In particular, X is a
compact Riemann surface. As in [19, Proposition A.1], we de�ne the quotient
space Xσ := X/ ∼σ, where k ∼σ k′ if and only if k = k′ or k = σ(k′) = −k′ for
all k, k′ ∈ X. Denote by πσ : X → Xσ the natural projection. In the proof of
[19, Proposition A.1], it is shown that πσ is a two-sheeted covering whose branch
points are exactly the �xed points of σ. By the above, πσ has exactly the two
branch points Q+ and Q−. In [19, Proposition A.9], it has been shown that in this
case, the A-cycles Aν−σ(Aν) together with the corresponding B-cycles Bν−σ(Bν)
constitute a homology basis of H1(X,Z)− := {γ ∈ H1(X,Z) : σ(γ) = −γ} with
dimH1(X,Z)− = 2gσ, where gσ denotes the genus of Xσ. In particular, the cycles
Aν − σ(Aν), ν ∈ Γ∗N/σ are not homologous to zero.
Now, consider the case of in�nite type Fermi curves. By Theorem 2.4.2, in every
neighbourhood in L2(F ) of some potential u ∈ L2(F ), there are potentials v with
the property that all but �nitely many of their perturbed Fourier coe�cients are
equal to zero. In other words, the �nite type potentials are dense in L2(F ) and
there exists a sequence of �nite type potentials (un)n∈N converging to u 7. Hence,
by �nite type approximation, the assertion of the lemma follows for all cycles Aν
whose support is contained in a su�ciently large compact subset of C2 by the
corresponding assertion for �nite type Fermi curves proved before. Together with
the already well-known fact from the asymptotic analysis that the corresponding
cycles outside this compact set, namely Aν − A−ν indexed by ν ∈ Γ∗δ (with
corresponding δ > 0 su�ciently small), are not homologous to zero, the assertion
�nally holds for all cycles.

Due to the choice A−ν := σ(Aν) implying mν(u) = m−ν(u) for ν ∈ Γ∗N/σ, the
moduli mN lie in the space

C̃g := {(v−g, . . . , vg) ∈ C2g : v−j = vj for all j ∈ {1, . . . , g}}

which is obviously isomorphic to Cg (this explains the notation C̃g). Now, we can
prove the announced submersion property of mN which is a corollary of Theorem
4.1.5.

Corollary 4.1.7. Let u ∈ L2(F ) with smooth Fermi curve. Then for all N ∈ N,
the derivative of mN at u, i.e. the linear map

dmN |u : L2(F )→ C̃g

is onto.

Proof. As before, we use the coordinates p = (p1, p2) ∈ C2. Recall that they are
related to the coordinates k = (k1, k2) ∈ C2 by k = p1κ̂+p2κ̌, that is k = (κ̂, κ̌) ·p

7In Lemma 4.2.7, the construction of some canonical sequence of �nite type potentials
(un)n∈N converging to u will be carried out more explicitly.
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with the invertible matrix (κ̂, κ̌) whose columns are the two generators κ̂ and κ̌
of the lattice Γ∗ (cf. the beginning of this section).
For (δv, δw) ∈ L2(F )×L2(F ), we denote with a dot the directional derivative of
p with respect to (δv, δw) as we already did in (4.16), for instance. Let γ be an
arbitrary A-cycle on F (V,W )/Γ∗. Due to 0 =

∫
γ
d(p1ṗ2) =

∫
γ
p1dṗ2 +

∫
γ
ṗ2dp1,

we get −
∫
γ
p1dṗ2 =

∫
γ
ṗ2dp1

8. Together with (4.17), this yields∫
γ

∂R
∂(V,W )

(δv, δw)

∂R
∂p1

dp2 = −
∫
γ

ṗ1dp2 +

∫
γ

ṗ2dp1 = −
∫
γ

ṗ1dp2 −
∫
γ

p1dṗ2 =

= − d

d(V,W )

(∫
γ

p1dp2

)
|(V,W )(δv, δw).

Now, Theorem 4.1.5 (or more precisely equation (4.23) with vκ = 0) implies
together with (4.18) that there is a wκ ∈ L2(F ), κ ∈ Γ∗N/σ, such that9

4
d

du

(∫
Aν

p1dp2

)
|u(wκ) = − d

d(V,W )

(∫
Aν

p1dp2

)
|(V,W )=(1,−u

4
)(0, wκ) =

=

∫
Aν

ω(1, −u
4
, 0, wκ) = δκ,ν (4.33)

for all κ, ν ∈ Γ∗N/σ. Consequently, the linear map d
du

(∫
Aν
p1dp2

)
ν∈Γ∗N/σ

|u has

full rank g. Since the coordinates p and k are mapped to each other by a linear
invertible map as mentioned in the beginning of the proof, the same holds for
d
du

(∫
Aν
k1dk2

)
ν∈Γ∗N/σ

|u. Therefore, dmN |u is onto which had to be proved.

In the sequel, we will often make use of the continuity of u 7→ m(u) which
immediately follows from the De�nition 2.6.1 of the moduli and the fact that
Fermi curves F (u) continuously depend on the potential u. What is not clear a
priori is that the derivative of the map u 7→ m(u) is continuous, too. We prove
in the following lemma that this map is even smooth. We will need this assertion
later. We already prove it here because it �ts well in the context of the assertions
we have just proved.

Lemma 4.1.8. Let u0 ∈ L2(F ) with smooth Fermi curve and O ⊂ L2(F ) a
neighbourhood of u0 such that m(u) is well-de�ned for all u ∈ O. Then for all

N ∈ N, the map O → C̃g, u 7→ mN(u) is smoooth. In particular, the derivative
function

O → L(L2(F ); C̃g), u 7→ dmN |u
8As to the well-de�nition of the directional derivatives ṗ2 and dṗ2, compare the explanation

on p. 114. As before, these directional derivatives of the p-coordinates are only used temporarily.
In the next equation, we already get rid of them again.

9By slight abuse of notation, we denote the νth A-cycle by the same symbol Aν in both p-
and k-coordinates.
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is continuous.

Proof. Let N ∈ N, u0 ∈ L2(F ) and (V0,W0) := (1,−u0

4
) be given. In the proof of

Corollary 4.1.7, we showed for all ν ∈ Γ∗N/σ and for all (δv, δw) ∈ L2(F )×L2(F )∫
Aν

∂R
∂(V,W )

(δv, δw)

∂R
∂p1

dp2 = − d

d(V,W )

(∫
Aν

p1dp2

)
|(V,W )(δv, δw) (4.34)

for all (V,W ) ∈ U with U a suitable neighbourhood of (V0,W0) in L2(F ) ×
L2(F ). Since R = R(p, V,W ) is as a holomorphic function smooth in (V,W ),

the operator
∂R

∂(V,W )
∂R
∂p1

: L2(F ) × L2(F ) → C is smooth in (V,W ), too. Note that

although at �rst sight, the denominator of the latter term might have zeroes,
this term is still bounded which can be seen by (4.17), for instance. Because the

cycles Aν = Aν(V,W ) smoothly depend on (V,W ), the operator
∫
Aν

∂R
∂(V,W )

∂R
∂p1

dp2 is

thus smooth in (V,W ) as well. By (4.34), (V,W ) 7→ dmN |(V,W ) is then smooth,
in particular continuous. Clearly, this continuity is preserved when we restrict
ourselves to Schrödinger potentials, i.e. all considered potentials are of the form
(V,W ) = (1,−u

4
) with u ∈ L2(F ). This proves the lemma.

In the following, we will identify potentials u ∈ L2(F ) with their associated
sequence of Fourier coe�cients û ∈ l2(Γ∗). Our next step is to prove that the
surjectivity statement of Corollary 4.1.7 remains true if we reduce the domain of
de�nition L2(F ) of dmN |u to10

L2
N(F ) := {v ∈ L2(F ) : v̂(ν) = 0 for all |ν| > N} ∼= C2g+1.

In order to prove this, we have to show the following lemma.

Lemma 4.1.9. Let u ∈ L2(F ) with smooth Fermi curve and consider for each
ν ∈ Γ∗ \ {0} the derivative of mν at u, i.e. the linear map dmν |u : L2(F ) → C.
Then the operators dmν |u, ν ∈ (Γ∗ \ {0})/σ are linearly independent over C.

Remark. Linear independence means here that
∑

ν∈(Γ∗\{0})/σ cνdmν |u = 0 (with

a sequence c = (cν)ν ⊂ C such that the series converges in the corresponding
operator norm) implies c = 0.

Proof. At �rst, with the notation x̃ :=
(
x2

−x1

)
for x =

(
x1

x2

)
∈ L2(F ) × L2(F ), we

remark the relation

〈x, y〉 = 2π2iΩ (ỹ, x) for all x, y ∈ L2(F )× L2(F ) (4.35)

10Note that #{ν ∈ Γ∗ : |ν| ≤ N} = 2g + 1 since the Fourier coe�cient corresponding to
ν = 0 is included.
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between the symplectic form Ω (4.19) and the canonical hermitian scalar product
〈·, ·〉 := 〈·, ·〉L2(F )×L2(F ).

Let u ∈ L2(F ) and set (V,W ) := (1, −u
4

). With the potentials v(Aν), w(Aν)
associated to the Fermi curve F (u), cf. (4.8), we introduce the notations aν :=(
v(Aν)
w(Aν)

)
for ν ∈ (Γ∗ \ {0})/σ and A := {aν : ν ∈ (Γ∗ \ {0})/σ}. We consider the

closed subspace spanA ⊆ L2(F )×L2(F ). Since any arbitrarily large �nite subset
M of A is linearly independent by Lemma 4.1.2, and any other a ∈ A\M ful�lls
a /∈ span(M), we may successively apply the Gram-Schmidt orthogonalization.
This yields linearly independent potentials bν ∈ L2(F )×L2(F ), ν ∈ (Γ∗ \{0})/σ,
inductively de�ned by bν′ := aν′ for some arbitrary �xed ν ′ ∈ Γ∗ \ {0} and

bν := aν −
∑
j

〈bj, aν〉
〈bj, bj〉

bj, ν ∈ (Γ∗ \ {0, ν ′})/σ, (4.36)

(where the sum runs over those j ∈ (Γ∗ \{0})/σ for which the orthogonal vectors
bj have already been constructed) which ful�ll with B := {bν : ν ∈ (Γ∗ \ {0})/σ}
the relations spanB = spanA and Ω(̃bκ, bν) = 0, Ω(̃bκ, bκ) 6= 0 for all κ, ν ∈ (Γ∗ \
{0})/σ with κ 6= ν, cf. (4.35). By a suitable normalization, the bν can be chosen

such that Ω(̃bκ, bν) = δκ,ν for all κ, ν ∈ (Γ∗ \ {0})/σ. Due to (4.36) (whose right
hand side has to be multiplied with respective complex numbers 6= 0 according to
the just mentioned normalization), the transformation map T which transforms
a vector in A-coordinates into the respective vector represented in B-coordinates
can be considered as an (in�nite-dimensional) quadratic upper triangular matrix
whose diagonal entries are unequal to zero. By construction, the map G :=
(Ω(̃bκ, ·))κ∈(Γ∗\{0})/σ is the identity in B-coordinates. Hence, by composing G
(in B-coordinates) with T (yielding G in A-coordinates), the entries of T are

equal to Ω(̃bκ, aν), κ, ν ∈ (Γ∗ \ {0})/σ where κ indexes the rows and ν indexes

the columns of T . The matrix whose κth column is de�ned by Ω(̃bκ, aν)ν∈Γ∗ is
therefore the transpose of T , i.e. a lower triangular matrix with diagonal entries
unequal to zero. Hence, {Ω(̃bκ, aν)ν∈(Γ∗\{0})/σ : κ ∈ (Γ∗ \ {0})/σ} is a set of
linearly independent vectors. Together with (4.23) and (4.33) which relate Ω and

dm|(V,W ) to each other, this yields that dm|(V,W )(̃bκ), κ ∈ (Γ∗ \{0})/σ are linearly

independent vectors. Since moreover, the L2(F )×L2(F )-potentials b̃κ are of the

form b̃κ = (0, cκ) for some cκ ∈ L2(F ), the two equations (4.23) and (4.33) even
show that dm|u(cκ), κ ∈ (Γ∗ \ {0})/σ are linearly independent. Since the in�nite
matrix with entries dmν |u(cκ) for κ, ν ∈ (Γ∗ \ {0})/σ is triangular with diagonal
entries unequal to zero, the assertion of the lemma follows.

In the following theorem, we show the announced submersion property of the
moduli restricted to L2

N(F ). Since in the proof of that theorem, we use results
from the asymptotic analysis of Chapter 3 proven for real-valued potentials, we
assume the given potential u in the theorem to be real-valued.
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Theorem 4.1.10. Let u ∈ L2(F ) be real-valued with smooth Fermi curve. Then
there exists an N ∈ N su�ciently large (dependent on u) such that the linear map

dmN |u : L2
N(F )→ C̃g

is onto.

Proof. We choose N ∈ N su�ciently large such that we are for |ν| > N in the
asymptotic setting of the Chapters 2 and 3. In the course of the proof, N might
be chosen even larger in order to guarantee certain asymptotic estimates. For
|ν| > N , the moduli can thus be approximated by the model moduli ξm̃ν(u) =
ǔν ǔ−ν
|ν|2 (2.84) via mν(u) = (1 + O(1/|ν|))ξm̃ν(u), as |ν| → ∞, cf. Lemma 3.2.2

and the de�nition of ξ in (2.2). If, for |ν| > N , we derive ξm̃ν(u) with respect to
ǔ−ν and ǔν , respectively, we get

d(ξm̃ν(u))

dǔ−ν
=

ǔν
|ν|2

=: aν ,
d(ξm̃ν(u))

dǔν
=
ǔ−ν
|ν|2

=
ǔν
|ν|2

= aν (4.37)

We consider the matrix representation

M :=

(
A B
C D

)
, (4.38)

where the respective blocks A,B,C,D are de�ned as follows:

A = (Aν,κ) ∈ Cg×(2g+1), Aν,κ :=
dmν(u)

dû(κ)
, |ν|, |κ| ≤ N,

B = (Bν,κ) ∈ Cg×∞, Bν,κ :=
dmν(u)

dǔκ
, |ν| ≤ N, |κ| > N,

C = (Cν,κ) ∈ C∞×(2g+1), Cν,κ :=
d(ξm̃ν(u))

dû(κ)
, |ν| > N, |κ| ≤ N,

D = (Dν,κ) ∈ C∞×∞, Dν,κ :=
d(ξm̃ν(u))

dǔκ
, |ν|, |κ| > N,

where for all blocks ν ∈ (Γ∗ \ {0})/σ 11 and κ ∈ Γ∗. Our aim is to prove with
the help of Lemma 4.1.9 (stating that dm|u has full rank) that the block A has
full rank g possibly by choosing N even larger than we already did. We now
use the following conventions: The �rst column of M contains the derivative
with respect to the zeroth Fourier coe�cient û(0). All other columns contain
derivatives with respect to higher Fourier coe�cients. Of course, there is no
unique canonical numeration of these columns. We only demand that the norm

11Note that, considering for example the block A, not all 2g lattice vectors ful�lling 0 < |ν| ≤
N have to be considered due to mν = m−ν which explains that A has g rows instead of 2g
rows. Analogous statements hold for the other blocks constituting M .
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|κ| shall be monotonous in the column number, i.e. for two columns ci and cj of
M (i, j ∈ Γ∗) corresponding to some κi and some κj there shall hold: If i < j,
then |κi| ≤ |κj|. In particular, all entries of the block C are equal to zero, i.e.

C = 0,

since ξm̃ν(u) is independent of û(κ), |κ| ≤ N . Furthermore, derivatives with
respect to û(κ) and û(−κ) shall be neighbouring columns. For example, if the
second column of M contains the derivative with respect to û(κ) (for some |κ| ≤
N), then the third column of M contains the derivative with respect to û(−κ)
and so on. In particular, the rows of the block D have the following form: All
entries except the neighbouring entries aκ and aκ (cf.(4.37)) corresponding to
some |κ| > N are equal to zero, i.e. D has the form

D =


aν1 aν1 0 0 0 0 0 . . .
0 0 aν2 aν2 0 0 0 . . .
0 0 0 0 aν3 aν3 0 . . .
...

. . . . . .

 . (4.39)

In a �rst step, we show that Lemma 4.1.9 implies that the matrix M (4.38) has
full rank. The matrix M di�ers from dm|u in essentially two aspects: dm|u is
de�ned for potentials u ∈ L2(F ) which can be identi�ed with their respective
sequence of Fourier coe�cients û ∈ l2(Γ∗), whereas M is de�ned for potentials
in the representation (ûN , ǔ) := ((û(ν))|ν|≤N , (ǔν)|ν|>N). Due to Theorem 2.4.2,
however, which provides a local isomorphism û 7→ (ûN , ǔ), the rank of dm|u
remains invariant if we derive with respect to (ûN , ǔ) instead of with respect to
u. In other words, multiplying dm|u with the inverse of the invertible operator
d(ûN ,ǔ)
dû

=
(

1l 0
∗ I2
)
, where I2 is the invertible matrix with entries dǔν

dû(κ)
indexed by

|κ|, |ν| > N , doesn't change the rank of dm|u.
The second aspect in which dm|u di�ers from M is that in M , the moduli mν

indexed by |ν| > N are replaced by the model moduli m̃ν . In order to deduce
from the full rank of dm|u provided by Lemma 4.1.9 that also M has full rank,
we have to show that (dmN , dm̃δ) := ((dmν |u)|ν|≤N , (dm̃ν |u)|ν|>N) has full rank
if dm|u has full rank. Since dm̃ν |u is only de�ned for |ν| > N , we consider
mδ := (mν)|ν|>N and likewise m̃δ. Because dm|u has full rank due to Lemma 4.1.9,
we may reduce the domain of de�nition of dm|u to a subspace V ⊆ L2(F ) such
that the restriction of dm|u to V is invertible. We consider again the di�erence
rδ(·) = mδ(·) − m̃δ(·) between moduli and model moduli. We can thus write
dmδ = dm̃δ + drδ. Hence, dm|u is a bounded (i.e. continuous) operator due to
Lemma 3.2.6 and since dm̃δ is obviously bounded, compare the representation
D (4.39). We set T := ((dm|u)|V )−1. Then T is a bounded operator, i.e. with
bounded operator norm ‖T‖ < ∞, since T is the inverse of a linear bijective
bounded operator, cf. [30, Korollar IV.3.4]. Lemma 3.2.6 now implies

‖T (dmN , dm̃δ)− 1l‖ = ‖T (dmN , dm̃δ)− Tdm|u‖ ≤ ‖T‖ · ‖drδ‖ = ‖T‖ · o(1),
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as |ν| → ∞, where the respective operators are considered as restrictions onto
V . Therefore, for δ > 0 su�ciently small (or equivalently N su�ciently large),
we have ‖T (dmN , dm̃δ)−1l‖ < 1

2
proving that T (dmN , dm̃δ) and also (dmN , dm̃δ)

is invertible on V due to Neumann's Theorem (cf. [30, Satz II.1.11]). Hence,
we have shown that the full rank (provided by Lemma 4.1.9) of dm|u as a linear
operator de�ned on L2(F ) implies that M (4.38) has full rank if N is chosen
su�ciently large.
In the next step, we use the full rank of M to deduce that the block A has
full rank g. Due to the form of D (4.39), it is clear that the matrix

(
B
D

)
has

at least those linearly independent columns which correspond to aν , |ν| > N in
the representation (4.39) (note that aν 6= 0, |ν| > N , due to the smoothness of
the Fermi curve). We ask if it is possible that

(
B
D

)
has more than those linearly

independent columns. These additional linearly independent columns (if they
exist) must then necessarily be columns corresponding to some aν , |ν| > N in
the representation (4.39).
At �rst, we consider the case 1 that this is never possible. More precisely, we
consider the case that the following holds: Any set of columns of M with the
property that this set contains at least one pair of neighbouring columns of

(
B
D

)
corresponding to aκ and aκ (for some |κ| > N) is linearly dependent. Therefore,
we can cancel the columns of

(
B
D

)
corresponding to aν , |ν| > N without changing

the rank ofM . The thus modi�ed matrix shall be denoted by M̃ . It has the form

M̃ :=

(
A B̃

0 D̃

)
,

where D̃ is a quadratic invertible block. Since the rows of M̃ are linearly indepen-
dent as shown above, this implies that the g rows of A are linearly independent,
too. This proves the theorem in the considered case.
Now, we consider the case 2 that there exists a linearly independent set C of

columns of M with
(
B̃
C̃

)
⊆ C 12 containing linearly independent neighbouring

columns of
(
B
D

)
corresponding to aν and aν (for some |ν| > N). Hence, we may

write
(
B̃
D̃

)
∪ E ⊆ C, where E 6= ∅ is a set of columns of

(
B
D

)
corresponding to

some aν , |ν| > N . If E is �nite, where the last one of the �nitely many columns
constituting E corresponds to some κ̃, choose N ≥ |κ̃| and go back to case 1.
It remains to consider the case that E contains in�nitely many columns. We
show by contradiction that this case cannot occur. So assume that E contains
in�nitely many columns. We proceed as follows. Choose N ′ ≥ N large enough
such that with associated 2g′ + 1 := #{ν ∈ Γ∗ : |ν| ≤ N ′}, the block

(
B′

D′

)
within

12In the notation
(
B̃
C̃

)
⊂ C, we consider the matrix

(
B̃
C̃

)
as the set of its columns.
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the g′ × (2g′ + 1)-matrix

M ′ :=

(
A B′

0 D′

)
,

contains g+1 columns in E. Here, the blocks B′, D′ are the blocks B,D in (4.38)
whose rows and columns are cut o� for |κ|, |ν| > N ′, more precisely:

B′ = (B′ν,κ) ∈ Cg×2(g′−g), B′ν,κ := Bν,κ, |ν| ≤ N, N < |κ| ≤ N ′,

D′ = (D′ν,κ) ∈ C(g′−g)×2(g′−g), D′ν,κ := Dν,κ, N < |ν|, |κ| ≤ N ′.

Due to the representation of D in (4.39), the g′× 2(g′− g)-matrix
(
B′

D′

)
has g′− g

linearly independent columns that are not contained in E. Together with the
additional g + 1 linearly independent columns in E, we have in total (g′ − g) +

(g + 1) = g′ + 1 columns. These are linearly independent since
(
B̃
D̃

)
∪ E ⊆ C.

This, however, is a contradiction since M ′ has only g′ rows and thus cannot have
g′ + 1 linearly independent columns. Hence, the theorem is proved.

From now on, the subspace of L2(F ) of real-valued potentials shall be denoted
by L2

R(F ). Analogously to L2
N(F ), we set for N ∈ N

L2
N,R(F ) := {v ∈ L2

R(F ) : v̂(ν) = 0 for all |ν| > N} ∼= R2g+1.

At �rst, we recall that the Fermi curve F (u) with u ∈ L2
R(F ) has the two further

anti-holomorphic involutions η and τ introduced in Section 2.3. We've seen in
(3.25) that the reality condition implies mν ∈ R for all ν ∈ Γ∗δ . It's not clear if
this also holds for ν ∈ Γ∗ \ Γ∗δ , i.e for |ν| ≤ N (for some N ∈ N su�ciently large)
because we don't know whether Aν is mapped to A−ν by η for |ν| ≤ N . If this
is the case, we can argue as in (3.25) and conclude that mν ∈ R for this ν. In
general, however, we merely know that Aν is mapped to some linear combination
of A-cycles Aκ by η with |κ| ≤ N . We want to justify that we can choose the
homology basis such that η maps Aν to one Aκ with |κ| ≤ N , i.e. that the just
mentioned linear combination can be chosen to be equal to one cycle Aκ of the
homology basis. In the case of �nite type Fermi curves, this has been shown in
[19, Lemma 6.43] together with [19, De�nition 6.42]. In order to show the same
result for Fermi curves of in�nite type, we proceed exactly as in the end of the
proof of Lemma 4.1.6, i.e. we combine the �nite type result with the result for
the asymptotic A-cycles (indexed by Γ∗δ) by using an approximation of �nite type
potentials. To sum up, this choice of the homology basis yields that for each
ν ∈ Γ∗, there is a κ ∈ Γ∗ such that η(Aν) = Aκ. The analogous computation of
(3.25) then yields mν = mκ for this pair ν, κ.

In any case, the dimension 2g of C̃g (considered as a real vector space) the moduli
mN reside in is halved such that real-valued potentials are mapped by u 7→ mN(u)



4.1. SUBMERSION PROPERTIES OF THE MODULI 129

into a vector space of real dimension g which shall be denoted by R̃g. We will
see that the real dimension g is the crucial property. Whether this space is even
equal to Rg or not, won't be needed. We now prove the real analogon to Theorem
4.1.10.

Theorem 4.1.11. Let u ∈ L2
R(F ) with smooth Fermi curve. Then there exists

an N ∈ N su�ciently large (dependent on u) such that the linear map

dmN |u : L2
N,R(F )→ R̃g,

is onto.

Proof. Let u ∈ L2
R(F ) and N ∈ N. We use the notation α := dmN |u. Due to

Theorem 4.1.10, there are g potentials vj ∈ L2
N(F ), j ∈ {1, . . . , g}, such that the

vectors α(vj) ∈ C̃g, j ∈ {1, . . . , g} are linearly independent and constitute a basis

of C̃g which shall be denoted by B.
Let n ∈ {1, . . . , g}. Then there are unique coe�cients λj ∈ C such that

α(vn) =

g∑
j=1

λjα(vj).

If λn 6= −1, we replace α(vn) by α(vn + vn) in B. Because of

α(vn + vn) = (1 + λn)α(vn) +

g∑
j=1
j 6=n

λjα(vj)

the thus modi�ed B is still a basis of C̃g.
If λn = −1, i.e.

α(vn) = −α(vn) +

g∑
j=1
j 6=n

λjα(vj),

we replace α(vn) by α(vn−vn
i

) in B. Because of

α(vn−vn
i

) = −2iα(vn) + i

g∑
j=1
j 6=n

λjα(vj),

the thus modi�ed B is still a basis of C̃g. We carry out this procedure for all
n ∈ {1, . . . , g}, that is, we replace vj by wj ∈ {vj + vj,

vj−vj
i
}, j ∈ {1, . . . , g} such

that the thus modi�ed B is still a basis of C̃g. By construction, wj ∈ L2
N,R(F ) for

all j ∈ {1, . . . , g} and α(w1), . . . , α(wg) are linearly independent over R and thus

a basis of R̃g. This proves the theorem.
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4.2 Construction of the map Iso(u1) × Ĩsoδ(u0) →
Iso(u0)

In this section, we would like to construct a map from the Cartesian product of
some �nite type isospectral set Iso(u1) and some asymptotic model isospectral

set Ĩsoδ(u0) into the isospectral set Iso(u0) of some given real-valued potential
u0. More precisely, for given u0 ∈ L2

R(F ), we want to construct a map

I : Iso(u1)× Ĩsoδ(u0)→ Iso(u0). (4.40)

The desired aim would be to show that the map (4.40) can be constructed in
such a way that it is a homeomorphism. We will see in this section that in the
case of arbitrary generally unbounded isospectral sets, there occur some problems
concerning the choice of some uniform δ > 0 on the whole of Iso(u0) such that we
can merely give a weaker result than the desired homeomorphism property just
mentioned. If, however, we assume some additional boundedness condition on
Iso(u0), we will �nally be able to prove that there exists a homeomorphism (4.40).
In this section, both the case of unbounded isospectral sets (Theorem 4.2.10)
and the special case of isospectral sets with additional boundedness condition
(Corollary 4.2.11) shall be treated.
To begin with, let's recap and state more precisely how the appearing objects
in (4.40) are de�ned: Iso(u0) has been de�ned in (4.1) and Ĩsoδ(u0) has been
de�ned in (3.4). The associated δ > 0 if not stated otherwise is chosen su�ciently
small due to the asymptotic analysis in Chapter 3. We note already here that in
the case of unbounded isospectral sets, we will later have to deal with di�erent
values of δ since δ sensibly depends on the norm of the respective potential. The
moduli of the �nite type potential u1 ∈ L2

R(F ) shall satisfy

mν(u1) =

{
mν(u0), ν ∈ Γ∗ \ Γ∗δ ,

0, ν ∈ Γ∗δ .
(4.41)

So far, it's not clear whether such a potential u1 ∈ L2
R(F ) exists at all. This

will be proved later in Lemma 4.2.7. Clearly in general, (4.41) doesn't uniquely
determine the potential u1, yet.
We now introduce some notations. Whereas in Chapter 3, we dealt with the
asymptotic part Γ∗δ of the dual lattice, we now have to consider its complement
in Γ∗ as well. We denote the �nite part of the dual lattice by

Γ∗f := Γ∗ \ Γ∗δ ,

that is Γ∗ = Γ∗f ∪ Γ∗δ
13. For u ∈ L2

R(F ), we decompose the sequence of the
associated Fourier coe�cients into �nite and asymptotic part by û = (ûf , ûδ)

13Clearly, Γ∗f depends on δ. However, the suppression of δ in this notation should not lead
to confusions since we consider only one �xed δ. If we should consider di�erent values δ, δ′ > 0
at the same time, the notation will be suitably adapted to Γ∗f and Γ∗f ′ , respectively.
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with

ûf := (û(ν))ν∈Γ∗f
, ûδ := (û(ν))ν∈Γ∗δ

.

Likewise, for the perturbed Fourier coe�cients (which are only de�ned for ν ∈
Γ∗δ), we set ǔδ := (ǔν)ν∈Γ∗δ

. We would like to have the decomposition û = (ûf , ûδ)
for all u ∈ Iso(u0) with the same δ > 0. If Iso(u0) is unbounded in L2

R(F ), there
is no evidence that such a uniform δ > 0 exists since we would have to ensure that
we can choose in Theorem 2.4.2 for all u ∈ Iso(u0) the same δ. Since the choice
of δ > 0 essentially depended on the norm of u as the proof of Theorem 2.4.2
showed (the larger the norm of u gets, the smaller δ has to be chosen), cf. also
the end of the proof of Corollary 2.4.4 or the discussion on p. 72 concerning the
choice of δ, such a uniform choice of δ > 0 doesn't seem to be possible (for a more
detailed discussion of this problem, see Chapter 5). If, for some given R > 0,
however, we restrict ourselves to Iso(u0)∩BR(u0) (as before, BR(u0) denotes the
open ball in L2

R(F ) centerd at u0 with radius R), there exists a uniform δ > 0 for
all u ∈ Iso(u0) ∩ BR(u0). Clearly, this δ depends on R. If not stated otherwise,
each δ > 0 in the following shall be associated to the respective given R > 0 in
the sense just explained.
In the discussion on p. 72, we also justi�ed that 0 ∈ l2(Γ∗δ) is contained in the
image of the map û 7→ ǔ provided δ > 0 is chosen su�ciently small. We will
implicitly make use of this property in the following de�nition of the set SR(u0).
For the given u0 ∈ L2

R(F ) and for R > 0, we de�ne with the line segment
[0, ǔ0,δ] := {t · ǔ0,δ | t ∈ [0, 1]} ⊂ l2R(Γ∗δ) this set by

SR(u0) := {u ∈ BR(u0) : ǔδ ∈ [0, ǔ0,δ], ûf = û0,f}, (4.42)

which can be seen as an "asymptotic line segment" in some sense. This line
connects a �nite type potential (su�ciently close to u0) with the given potential
u0. Later, we will not only consider the isospectral set Iso(u0)∩BR(u0) but also
isospectral sets for potentials u ∈ SR(u0) along this line. This will be needed when
we will identify some projection of Iso(u0) ∩ BR(u0) onto the �nite-dimensional
space spanned by the �rst �nitely many Fourier coe�cients with some �nite type
isospectral set. One important property we will make use of later is that SR(u0)
is compact.
In (3.3), we de�ned the asymptotic isospectral set Isoδ(u0) as a subset of l2R(Γ∗δ).
Since it turned out that Isoδ(u0) could be parameterized by l2R(Γ∗δ)-sequences,

namely via the homeomorphism between Isoδ(u0) and Ĩsoδ(u0) (cf. Theorem
3.3.2), the de�nition (3.3) was appropriate to that former situation. In this
chapter, however, we are not interested in the asymptotics alone anymore but in
the parameterization of the entire isospectral set Iso(u0) as a subset of L2

R(F ).
At �rst, we transfer the de�nition of L2

δ,u0
(F ) (3.2) to real-valued potentials: For

v ∈ L2
R(F ), we set

L2
R,δ,v(F ) := {u ∈ L2

R(F ) : û(ν) = v̂(ν) for all ν ∈ Γ∗ \ Γ∗δ}.
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With this notation, we de�ne for u ∈ L2
R,δ,v(F ) the following asymptotic isospec-

tral sets

Isoδ,v(u) := {w ∈ L2
R,δ,v(F ) : mν(w) = mν(u) for all ν ∈ Γ∗δ},

Ĩsoδ,v(u) := {w ∈ L2
R,δ,v(F ) : m̃ν(w) = m̃ν(u) for all ν ∈ Γ∗δ}.

In order not to use same symbols for di�erent objects, however, the former
isospectral sets Isoδ(u) and Ĩsoδ(u) (without additional subscript v) shall still be
de�ned as in (3.3) and (3.4), i.e. as subsets of l2R(Γ∗δ).
Furthermore, using the notation 2g+ 1 := #Γ∗f already well-known from Section
4.1, we introduce the vector space

C2g+1
R := {(x−g, . . . , xg) ∈ C2g+1 : xj = x−j for all j ∈ {−g, . . . , g}},

i.e. the vector space C2g+1 with "reality condition" (which is isomorphic to R2g+1

as a real vector space).
In Chapter 3, we kept the �rst �nitely many Fourier coe�cients �xed (namely
equal to û0,f ) and determined the remaining coe�cients in terms of perturbed
Fourier coe�cients such that the respective moduli (mν(u))ν∈Γ∗δ

were equal to the
given (mν(u0))ν∈Γ∗δ

. In that procedure, we didn't consider the �rst �nitely many
moduli. In fact, by varying the Fourier coe�cients for ν ∈ Γ∗δ , the �rst �nitely
many moduli mν(u), ν ∈ Γ∗f , won't remain equal to mν(u0) in general.
In this chapter, we have to ensure that the moduli mν(u) are equal to mν(u0)
for all ν ∈ Γ∗ (and not only for the asymptotic remainder). This will be done
in two steps. In the �rst step, we determine a set (containing Iso(u0) ∩ BR(u0))
of potentials u whose moduli (mν(u))ν∈Γ∗δ

are equal to (mν(u0))ν∈Γ∗δ
. In the

second step, we pick out of this set those potentials u whose moduli (mν(u))ν∈Γ∗f

are also equal to (mν(u0))ν∈Γ∗f
. The following Lemma 4.2.1 realizes the �rst

step. Before we formulate it, we make a remark on the correspondence between
elements in C2g+1

R and elements in L2
R(F ): Given u ∈ L2

R(F ), we've already
de�ned the associated ûf ∈ C2g+1

R in the decomposition û = (ûf , ûδ) introduced
above. Conversely, given an element û ∈ C2g+1

R which can be considered as
an element û ∈ l2R(Γ∗) by de�ning the elements of the sequence û indexed by
ν ∈ Γ∗δ to be equal to zero, we associate the potential u ∈ L2

R(F ) by the inverse
Fourier transform of û. In the following, we will often implicitly make use of
this correspondence. Moreover, for u0 ∈ L2

R(F ), we denote by BR(u0) ⊂ L2
R(F )

and BR(û0,f ) ⊂ C2g+1
R the balls with radius R > 0 in the respective spaces, as

usual. In order not to make the notation too confusing by using too many indices
(especially in cases where it is not really necessary), we will often suppress some
indices when we simply write v̂ ∈ BR(û0,f ) instead of v̂f ∈ BR(û0,f ) whenever it
is clear from the context that v̂ denotes an element in C2g+1

R (and not an element
in l2(Γ∗)). In cases where we consider both elements in l2(Γ∗) and in C2g+1

R at
the same time, we clearly distinguish between v̂ and v̂f in our notation.
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Lemma 4.2.1. Let u0 ∈ L2
R(F ) with smooth Fermi curve, R > 0 and u ∈ SR(u0)

(4.42). Then there exists a homeomorphism

h : BR(û0,f )× Ĩsoδ(u)→
⋃

v̂∈BR(û0,f )

Isoδ,v(u), (4.43)

with the following property: For v̂ ∈ BR(û0,f ) and ũδ ∈ Ĩsoδ(u) 14, there holds

ĥf (v̂, ũδ) = v̂ as well as an immediate consequence of (4.43)

mν(h(v̂, ũδ)) = mν(u) for all ν ∈ Γ∗δ . (4.44)

Moreover, there exists a natural continuous extension of h (denoted by h as well)

h : BR(û0,f )×
⋃

u∈SR(u0)

Ĩsoδ(u)→
⋃

v̂∈BR(û0,f )
u∈SR(u0)

Isoδ,v(u). (4.45)

Proof. Let u0 ∈ L2
R(F ) and R > 0. Firstly, we may assume that |û(0)|

π2µ(F )ν2 < 1
2

for all ν ∈ Γ∗δ and all u ∈ BR(u0) by choosing δ > 0 (associated to R) small

enough. This yields 1
2
< ξ(u, ν) < 2 for all ν ∈ Γ∗δ and all u ∈ BR(u0) with

ξ(u, ν) :=
√

1 + û(0)
π2µ(F )ν2 de�ned in (2.2).

Now, let u ∈ SR(u0), v ∈ BR(u0) and w ∈ L2
R,δ,v(F ) ∩ BR(u0). We have the

equivalences

∀ν∈Γ∗δ
: m̃ν(w) = m̃ν(u)⇐⇒ |w̌ν |2

|ν|2ξ(v, ν)
=

|ǔν |2

|ν|2ξ(u, ν)
⇐⇒ |w̌ν | = |ǔν |

√
ξ(v, ν)

ξ(u, ν)
.

Hence, the map

Ĩsoδ(u)→ Ĩsoδ,v(u), w̌ 7→ w′,

where w′ ∈ L2
R(F ) is uniquely de�ned by ŵ′f := v̂f and w̌

′
ν := w̌ν

√
ξ(v,ν)
ξ(u,ν)

, ν ∈ Γ∗δ ,

is a homeomorphism since Ĩsoδ(u) is obviously homeomorphic to the image of

the injective map Ĩsoδ(u) → l2R(Γ∗δ) de�ned by w̌ν 7→ w̌ν

√
ξ(v,ν)
ξ(u,ν)

, ν ∈ Γ∗δ (recall
1
2
< ξ(u, ν), ξ(v, ν) < 2 for all ν ∈ Γ∗δ). But this image is homeomorphic15 to

14Since the elements of Ĩsoδ(u) are perturbed Fourier coe�cients (i.e. l2(Γ∗δ)-sequences) and

not L2-functions, we should actually write ˇ̃uδ instead of ũδ. In order not to make the notation
too confusing, we yet write ũδ.

15Recall that we de�ned Ĩsoδ,v(u) as a subspace of L2
R(F ). If we de�ned Ĩsoδ,v(u) as a

subspace of l2R(Γ∗δ) in the same way as Ĩsoδ(u), the mentioned image would be equal (not only

homeomorphic) to Ĩsoδ,v(u).
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Ĩsoδ,v(u) by de�nition of Ĩsoδ,v(u) and the form of asymptotic model isospectral
sets shown in Theorem 3.1.1 (whether the �rst �nitely many Fourier coe�cients
are �xed equal to û0,f or v̂f is immaterial in this context).
In Theorem 3.3.2, we showed (by denoting homeomorphy with the symbol ∼=)

that Ĩsoδ(u) ∼= Isoδ(u). The proof is the same if the �rst �nitely many con-
stant Fourier coe�cients are equal to v̂f instead of equal to û0,f . Therefore,

Ĩsoδ,v(u) ∼= Isoδ,v(u) as well. Together with Ĩsoδ(u) ∼= Ĩsoδ,v(u) shown above,

we thus get Ĩsoδ(u) ∼= Isoδ,v(u) for all v ∈ BR(u0) or as well (using the corre-

spondence between C2g+1
R and L2

R(F ) declared above) Ĩsoδ(u) ∼= Isoδ,v(u) for all

v̂ ∈ BR(û0,f ). Since by de�nition Isoδ,v(u) ∩ Isoδ,v′(u) = ∅ for v̂, v̂′ ∈ BR(û0,f )
with v̂ 6= v̂′, this yields a bijective mapping

h : BR(û0,f )× Ĩsoδ(u)→
⋃

v̂∈BR(û0,f )

Isoδ,v(u).

We have to prove that both h and its inverse h−1 are continuous (with respect to
the usual relative topologies of C2g+1 × l2(Γ∗δ) and L

2
R(F )). As to the continuity

of h, we need to adapt the proof of Theorem 3.3.2. There, we showed that the
map (in order to recall the notations, see the proof of Theorem 3.3.2 if needed)

Ψ : Ĩsoδ(u0)× U → U, Ψ(ǔ, a) :=

[
−1 +

√
mν(u0)− rν(P−1((1 + a)ǔ))

m̃ν(u0)

]
ν∈Γ∗δ

is continuous. Now, we have to show the continuity of the map

Ψ : BR(û0,f )× Ĩsoδ(u)× U → U,

(v̂, ǔ, a) 7→

−1 +

√
mν(u)− rν(P−1

v̂ ((1 + a)ǔ))

m̃ν(u)


ν∈Γ∗δ

,

(4.46)

with the restriction Pv̂ := P |L2
δ,v(F ) with P as de�ned in (3.1). As well as the map

P−1 that we used in Chapter 3 was well-de�ned as the inverse of P |L2
δ,u0

(F ), the

map P−1
v̂ is well-de�ned as the inverse of P |L2

δ,v(F ).

In order to prove continuity of the modi�ed map Ψ, we don't have to prove any-
thing new since as in the proof of Theorem 3.3.2, it is ultimately the continuity
of the map u 7→ rν(u) (cf. Lemma 3.2.5) and the decreasing behaviour of rν (cf.
(3.17)) which yield the desired continuity of Ψ. Now, we can copy the rest of the
proof of the continuity of I in the proof of Theorem 3.3.2 and the continuity of
h follows.
As to the continuity of h−1, we show that BR(û0,f ) × Ĩsoδ(u) is compact. Due
to an elementary result of calculus (cf. [10, p. 233, p. 713 (Aufgabe 158.6)], for
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instance) stating that the inverse of a bijective continuous map from a compact
metric space onto some other metric space is continuous, the continuity of h−1

then follows.
Since BR(û0,f ) ⊂ C2g+1

R is compact, it remains to show that Ĩsoδ(u) is compact.

We use the representation of Ĩsoδ(u) from Theorem 3.1.1 in the following. First of

all, we remark that Ĩsoδ(u) is a bounded subset of l2R(Γ∗δ) (which immediately fol-

lows from Theorem 3.1.1). Let ε > 0 and a sequence (an)n∈N ⊂ Ĩsoδ(u) be given.
We show that there exists a convergent subsequence of (an)n. Due to the represen-

tation in Theorem 3.1.1, there is a 0 < δ1 < δ such that ‖(an(ν))ν∈Γ∗δ1
‖l2 <

√
ε

2
√

2

for all n ∈ N. We decompose an =: (bn, cn) with bn := (an(ν))ν∈Γ∗δ\Γ
∗
δ1

and

cn := (an(ν))ν∈Γ∗δ1
, n ∈ N. Since (bn)n is a bounded sequence in a �nite-

dimensional vector space (with �nite dimension #(Γ∗δ \ Γ∗δ1)), there exists a con-
vergent subsequence (bnk)k. Hence, there exists aK ∈ N such that for all j, k ≥ K

‖ank − anj‖2
l2 = ‖bnk − bnj‖2

l2 + ‖cnk − cnj‖2
l2 ≤

≤ ‖bnk − bnj‖2
l2 + (‖cnk‖l2 + ‖cnj‖)2 <

ε

2
+

(
2

√
ε

2
√

2

)2

= ε

Thus, (ank)k is a Cauchy sequence and converges in l2R(Γ∗δ) because l2R(Γ∗δ) is

a Banach space. Since Ĩsoδ(u) is a closed subset of l2R(Γ∗δ) by de�nition (as
a preimage of a closed set under a continuous map), the limit of (ank)k lies

in Ĩsoδ(u). This shows that Ĩsoδ(u) is compact and thus proves that h is a
homeomorphism.
The continuity of the extension of h to BR(û0,f ) ×

⋃
u∈SR(u0) Ĩsoδ(u) follows in

the same manner as we proved the continuity of h above, where in addition, we
also have to use the continuity of u 7→ mν(u).

The proof of Lemma 4.2.1 already implies the compactness of Iso(u0) ∩BR(u0).
We state this important result in the following corollary.

Corollary 4.2.2. Let u0 ∈ L2
R(F ) with smooth Fermi curve and R > 0. Then

Iso(u0)∩BR(u0) is compact. In particular, if Iso(u0) is bounded in L2
R(F ), then

Iso(u0) is compact.

Proof. Let R > 0. Then Iso(u0) ∩ BR(u0) is contained in the image of the map
h (4.43) for u = u0. But this image is compact since h is a homeomorphism due
to Lemma 4.2.1. Due to the closedness of Iso(u0) and since closed subsets of
compact sets are compact, the compactness of Iso(u0) ∩BR(u0) follows.
In particular, if Iso(u0) is bounded in L2

R(F ), choose R > 0 such that Iso(u0) ⊂
BR(u0) and the compactness of Iso(u0) follows also in this case.

In the next step, we want to show that for a convergent sequence (un)n∈N ⊂ L2
R(F )

with limn→∞ un = u0, there is an N ∈ N such that also the set(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩BR(u0) is compact.



136 CHAPTER 4. THE ISOSPECTRAL PROBLEM II: THE SOLUTION

Lemma 4.2.3. Let u0 ∈ L2
R(F ) with smooth Fermi curve, R > 0 and (un)n∈N ⊂

BR(u0) be a convergent sequence with limn→∞ un = u0. Then there exists an
N ∈ N such that

(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩BR(u0) is compact.

Proof. Let (un)n∈N ⊂ BR(u0) with limn→∞ un = u0. In the same fashion as
the map h (4.43) could be extended to (4.45), we can naturally extend h to a
continuous map

h : BR(û0,f )×

(
Ĩsoδ(u0) ∪

⋃
n≥N

Ĩsoδ(un)

)
→

⋃
v̂∈BR(û0,f )
n=0∨n≥N

Isoδ,v(un),

withN ∈ N su�ciently large. By construction of the map h, the image of this map
contains

(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩ BR(u0). In order to show the compactness

of the latter set, we proceed as in the proof of Lemma 4.2.1. At �rst, we show the

compactness of BR(û0,f ) ×
(
Ĩsoδ(u0) ∪

⋃
n≥N Ĩsoδ(un)

)
, where it su�ces again

to show that Ĩsoδ(u0) ∪
⋃
n≥N Ĩsoδ(un) is compact. As in the proof of Lemma

4.2.1, let ε > 0 and a sequence (ak)k∈N ⊂ Ĩsoδ(u0) ∪
⋃
n≥N Ĩsoδ(un) be given. If

there is an n ≥ N or n = 0 such that Ĩsoδ(un) contains in�nitely many elements
of (ak)k∈N, the sequence has a convergent subsequence due to the compactness of

Ĩsoδ(un). So consider the other case that for n = 0 and for all n ≥ N , Ĩsoδ(un)
contains at most �nitely many elements of the sequence (ak)k∈N. Then there exist

sequences (kj)j∈N ⊆ N and (nj)j∈N ⊆ N such that akj ∈ Ĩsoδ(unj) for all j ∈ N.
Due to the representation of Ĩsoδ(un) in Theorem 3.1.1, there is a sequence (tν)ν
with tν ∈ [0, 2π) such that akj ,ν = eitν ǔnj ,ν . Furthermore, there is a 0 < δ1 < δ

such that ‖ǔ0‖l2(Γ∗δ1
) <

√
ε

4
√

2
. Due to limn→∞ un = u0, we have ‖ǔn− ǔ0‖l2(Γ∗δ) → 0

as n → ∞ and hence, ‖ǔnj − ǔ0‖l2(Γ∗δ1
) <

√
ε

4
√

2
for j ≥ J with J ∈ N su�ciently

large. Therefore,

‖akj‖l2(Γ∗δ1
) ≤ ‖ǔnj − ǔ0‖l2(Γ∗δ1

) + ‖ǔ0‖l2(Γ∗δ1
) <

√
ε

2
√

2
for j ≥ J.

From this on, we can virtually copy the end of the proof of Lemma 4.2.1 yielding
that the sequence (akj)j≥J has a convergent subsequence. For sake of complete-
ness, we mention the essential steps one more time: We decompose akj =: (bkj , ckj)
with bkj := (akj ,ν)ν∈Γ∗δ\Γ

∗
δ1
and ckj := (akj ,ν)ν∈Γ∗δ1

, j ≥ J . Since (bkj)j is a bounded

sequence in a �nite-dimensional vector space, there exists a convergent subse-
quence, without restriction (bkj)j itself. Hence, there exists a K ≥ J such that
for all j, l ≥ K

‖akj − akl‖2
l2 = ‖bkj − bkl‖2

l2 + ‖ckj − ckl‖2
l2 ≤

≤ ‖bkj − bkl‖2
l2 + (‖ckj‖l2 + ‖ckl‖)2 <

ε

2
+

(
2

√
ε

2
√

2

)2

= ε
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yielding that (ak)k has a convergent subsequence (compare the end of the proof

of Lemma 4.2.1). Hence, both BR(û0,f )×
(
Ĩsoδ(u0) ∪

⋃
n≥N Ĩsoδ(un)

)
and con-

sequently also its image
⋃
v̂∈BR(û0,f )
n=0∨n≥N

Isoδ,v(un) under the continuous map h are

compact. Since closed subsets of compact sets are compact and(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩ BR(u0) ⊂

⋃
v̂∈BR(û0,f )
n=0∨n≥N

Isoδ,v(un), the compactness of

the set
(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩ BR(u0) follows by proving that it is closed.

To show the closedness, let a convergent sequence
(vk)k∈N ⊂

(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩ BR(u0) with limit v ∈ BR(u0) be given.

If there is an n ≥ N or n = 0 such that in�nitely many elements of (vk)k lie in
Iso(un) ∩ BR(u0), this de�nes a subsequence (vkj)j ⊂ Iso(un) ∩ BR(u0) which

converges to v (due to limk→∞ vk = v). Since Iso(un) ∩ BR(u0) is closed (re-
call that Iso(un) is de�ned as the preimage of the closed set {m(un)} under
the continuous moduli map), v ∈ Iso(un) ∩ BR(u0) follows. If otherwise, each
Iso(un)∩BR(u0) contains at most �nitely elements of the sequence (vk)k, there ex-
ist subsequences (unj)j∈N and (vkj)j∈N with vkj ∈ Iso(unj)∩BR(u0) for all j ∈ N.
Due to continuity, it follows m(v) = limj→∞m(vkj) = limj→∞m(unj) = m(u0),

hence v ∈ Iso(u0)∩BR(u0). This shows the desired closedness and the lemma is
thus proved.

The next lemma shows that Iso(u0)∩BR(u0) can be uniformly approximated by
isopectral sets Iso(u)∩BR(u0) provided that u ∈ L2

R(F ) is in a su�ciently small
neighbourhood of u0.

Lemma 4.2.4. Let u0 ∈ L2
R(F ) with smooth Fermi curve and R > 0. Then

∀ε>0 ∃η>0 ∀u∈Bη(u0) ∀v∈Iso(u)∩BR(u0) : dist(v, Iso(u0) ∩BR(u0)) < ε,

where dist(v, Iso(u0) ∩BR(u0)) := minx∈Iso(u0)∩BR(u0) ‖x− v‖L2(F ), v ∈ L2
R(F ).

Proof. Let ε > 0 and assume that the assertion to be proved doesn't hold, i.e.

∀η>0 ∃u∈Bη(u0) ∃v∈Iso(u)∩BR(u0) : dist(v, Iso(u0) ∩BR(u0)) ≥ ε.

Hence, for all n ∈ N, there is a un ∈ B1/n(u0) (which yields a convergent sequence

(un)n∈N ⊂ BR(u0) converging to u0) and a vn ∈ Iso(un) ∩ BR(u0) such that
dist(vn, Iso(u0) ∩ BR(u0)) ≥ ε. Due to Lemma 4.2.3, there is an N ∈ N such
that

(
Iso(u0) ∪

⋃
n≥N Iso(un)

)
∩ BR(u0) is compact. Hence, we may assume

without loss of generality that the sequence (vn)n≥N converges to some v ∈ BR(u0)
(otherwise, consider a convergent subsequence). Due to continuity of the moduli,
we have m(v) = limn→∞m(vn) = limn→∞m(un) = m(u0). This yields m(v) =
m(u0), and hence v ∈ Iso(u0) ∩ BR(u0). This, however, is a contradiction to
dist(v, Iso(u0) ∩BR(u0)) ≥ ε and the assertion follows.
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With the notation mf (u) := (mν(u))ν∈Γ∗f
, the space R̃g as in Theorem 4.1.11, the

map h (4.45) and BR(û0,f ) ⊂ C2g+1
R as in Lemma 4.2.1, we de�ne the map

φ : BR(û0,f )×
⋃

u∈SR(u0)

Ĩsoδ(u)→ R̃g, (v̂, ũδ) 7→ mf (h(v̂, ũδ)). (4.47)

Recall that mν(h(v̂, ũδ)) = mν(u) for all ν ∈ Γ∗δ , u ∈ SR(u0) by (4.44), i.e. the
moduli indexed by ν ∈ Γ∗δ are already correct16. In a next step, we would like to
achieve the same for the moduli mf , i.e. the moduli indexed by ν ∈ Γ∗f .

We use the notation φ′ := ∂φ
∂v̂

for the partial derivative with respect to the �rst
argument of φ. The aim is to apply the Implicit Function Theorem to φ. At �rst,
we show that φ′ has full rank:

Lemma 4.2.5. Let u0 ∈ L2
R(F ) with smooth Fermi curve and R > 0. Let further

ũδ ∈
⋃
u∈SR(u0) Ĩsoδ(u), v̂ ∈ BR(û0,f ) be given and denote φ′ := φ′(v̂, ũδ). Then

the linear map

φ′ : C2g+1
R → R̃g, ŵ 7→

(
dmf (h(v̂, ũδ))

dv̂

)
ŵ

has full rank g.

Proof. As several times before, we use again the local isomorphism L2
R(F ) →

l2R(Γ∗), u 7→ (ûf , ǔδ) (cf. Theorem 2.4.2) which locally allows us to identify
L2
R(F )-potentials with a decomposition into �nitely many Fourier coe�cients and

in�nitely many perturbed Fourier coe�cients in the asymptotic remainder. If for
u ∈ SR(u0), we compose h (4.43) with this map, we get a map denoted by h̃:

h̃ : BR(û0,f )× Ĩsoδ(u)→ l2R(Γ∗), (v̂, ũδ) 7→ (ĥf (v̂, ũδ), ȟδ(v̂, ũδ)) = (v̂, ǔ′δ),
(4.48)

where we recall that by de�nition of h, we have ĥf (v̂, ũδ) = v̂ and ǔ′δ ∈ l2R(Γ∗δ) is
de�ned (as well by de�nition of h) as

ǔ′δ,ν := (1 + aν) · ũδ,ν ·

√
ξ(v, ν)

ξ(u, ν)
, ν ∈ Γ∗δ , (4.49)

see (3.55) to recall the de�nition of aν and the mapping between Ĩsoδ(u) and
Isoδ(u) as well as the construction of h in the proof of Lemma 4.2.1 to recall the
terms under the square root. We recall that with the notation

L2
R,f (F ) := {v ∈ L2

R(F ) : v̂(ν) = 0 for all ν ∈ Γ∗δ} ∼= R2g+1,

16Of course, we are especially interested in the case u = u0.



4.2. CONSTRUCTION OF THE MAP ISO(U1)× ĨSOδ(U0)→ ISO(U0) 139

the map

dmf |u : L2
R,f (F )→ R̃g

(with slightly di�erent notations compared to Theorem 4.1.11) is onto due to
Theorem 4.1.11. By using an analogous matrix representation of dmf |u as in the
proof of Theorem 4.1.10, we thus get

dmf (h(v̂, ũδ))

dv̂
=
dmf (u)

dû
|û=(v̂,û′δ)

· d(v̂, û′δ)

dv̂
=
(
A B

)
·
(

1l

∗

)
, (4.50)

where due to Theorem 4.1.11, A is a g × (2g + 1)-matrix with full rank g, B is a
g ×∞-matrix and 1l is the (2g + 1) × (2g + 1) unity matrix. By de�nition, the
columns of (A B) are the images of the Schauder basis B := {ûκ}κ∈Γ∗ de�ned by
ûκ(ν) = δκ,ν for κ, ν ∈ Γ∗ under the map dmf |u. Denote Bf := {ûκ}κ∈Γ∗f

. The

matrix (A B) can be transformed into the matrix (A 0) by elementary column
transformations, more precisely by adding to each column of B a suitable linear
combination of the 2g + 1 columns of A such that all entries of the considered
column of B are then equal to zero. This is possible due to the full rank of A. The
matrix (A 0) obtained this way is thus the representation matrix of dmf |u with
respect to the Schauder basis B′ := Bf ∪B′δ, where the elements of B′δ are exactly
the basis vectors ûκ, κ ∈ Γ∗δ plus a suitable linear combination of elements in Bf
(namely that linear combination we had to add in order to make the columns of B
equal to zero). Note that the �rst 2g+ 1 elements of both B and B′ are identical,
namely equal to the elements of Bf . We thus get that

dmf (h(v̂,ũδ))

dv̂
has the same

rank as (A 0) ·
(

1l
∗

)
= A. Since A has full rank g, the lemma is proved.

Concerning the smoothness properties of φ, we also prove the following statement
which we will need later.

Lemma 4.2.6. The map φ (4.47) is smooth. In particular, for given ũδ ∈⋃
u∈SR(u0) Ĩsoδ(u), the derivative function v̂ 7→ φ′(v̂, ũδ) is continuous.

Proof. By the chain rule (compare also (4.50)), we have to show that both
dmf (u)

dû
|û=(v̂,û′δ)

and the term
d(v̂,û′δ)

d(v̂,ũδ)
are smooth in (v̂, ũδ). The smoothness of

dmf (u)

dû
|û=(v̂,û′δ)

, however, follows from Lemma 4.1.8. It remains to prove the

smoothness of (v̂, ũδ) 7→
d(v̂,û′δ)

d(v̂,ũδ)
. Due to (4.49), it su�ces to prove the smoothness

of the �xed point a of the �xed point equation Ψ(v̂, ũδ, a(v̂, ũδ)) = a(v̂, ũδ) with
Ψ as in (4.46). Deriving this equation yields

da(v̂, ũδ)

d(v̂, ũδ)
=

∂Ψ

∂(v̂, ũδ)
(v̂, ũδ, a(v̂, ũδ)) +

∂Ψ

∂a
(v̂, ũδ, a(v̂, ũδ)) ·

da(v̂, ũδ)

d(v̂, ũδ)
.

=⇒ da(v̂, ũδ)

d(v̂, ũδ)
=

(
1l− ∂Ψ

∂a
(v̂, ũδ, a(v̂, ũδ))

)−1
∂Ψ

∂(v̂, ũδ)
(v̂, ũδ, a(v̂, ũδ)).
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All operators in this equation are well-de�ned due to the smoothness property
of Ψ (which is an implication of Lemma 3.2.5) and the contraction property of
Ψ (see Theorem 3.2.8) yielding that 1l − ∂Ψ

∂a
is su�ciently close to 1l and hence

invertible. The smoothness of (v̂, ũδ) 7→ da(v̂,ũδ)
d(v̂,ũδ)

now follows from the mentioned
smoothness of Ψ. The lemma is proved.

The property proven in Lemma 4.2.5 that φ′ has full rank allows us now to prove
the existence of potentials u1 ∈ L2

R(F ) satisfying (4.41). We prove a slightly more
general result in the following lemma.

Lemma 4.2.7. Let u0 ∈ L2
R(F ) with smooth Fermi curve. Then there exists an

N ∈ N and an associated sequence of �nite type potentials (un)n≥N ⊂ L2
R(F ) with

limn→∞ un = u0 satisfying the following condition: For all n ≥ N ,

mν(un) =

{
mν(u0), ν ∈ Γ∗, |ν| ≤ n

0, ν ∈ Γ∗, |ν| > n.

Proof. Let u0 ∈ L2
R(F ) with associated δ′ > 0 and Γ∗f ′ = Γ∗ \ Γ∗δ′ as de�ned at

the beginning of this section. We decorate δ′ with a prime since this δ′ is only
preliminary because the actual 0 < δ < δ′ will be chosen possibly smaller (for

δ > 0, we will then consider Γ∗f = Γ∗ \ Γ∗δ). Due to Theorem 4.1.11,
dmf ′

dûf ′
|u0 has

full rank. Therefore,
∥∥∥dmf ′dûf ′

|u0

∥∥∥ =: c > 0. For all 0 < δ < δ′, we have Γ∗f ′ ⊂ Γ∗f
and Γ∗δ ⊂ Γ∗δ′ . Hence for all 0 < δ < δ′, due to∥∥∥∥dmf ′

dûf ′
|u0

∥∥∥∥ = sup

{∥∥∥∥dmf ′

dû
|u0(v)

∥∥∥∥ : ‖v̂‖l2(Γ∗) = 1 ∧ v̂(ν) = 0 for ν ∈ Γ∗δ′

}
≤

≤ sup

{∥∥∥∥dmf ′

dû
|u0(v)

∥∥∥∥ : ‖v̂‖l2(Γ∗) = 1 ∧ v̂(ν) = 0 for ν ∈ Γ∗δ

}
≤

≤ sup

{∥∥∥∥dmf

dû
|u0(v)

∥∥∥∥ : ‖v̂‖l2(Γ∗) = 1 ∧ v̂(ν) = 0 for ν ∈ Γ∗δ

}
=

∥∥∥∥dmf

dûf
|u0

∥∥∥∥ ,
(4.51)

there holds
∥∥∥dmfdûf

|u0

∥∥∥ ≥ c. We use again the notation mδ′ := (mν)ν∈Γ∗
δ′
and

likewise m̃δ′ and rδ′ for the model moduli and the error term
rδ′(·) = mδ′(·)− m̃δ′(·), respectively. Due to Lemma 3.2.6 and (4.39), we have∥∥∥∥dmδ′

du
|u
∥∥∥∥ =

∥∥∥∥dm̃δ′

du
|u +

drδ′

du
|u
∥∥∥∥ ≤ ∥∥∥∥dm̃δ′

du
|u
∥∥∥∥+

∥∥∥∥drδ′du
|u
∥∥∥∥ =

= 1
|ν|2O(‖(ǔν)ν‖l2(Γ∗

δ′ )
) + 1

|ν|2 o(‖(ǔν)ν‖l2(Γ∗
δ′ )

) = o(1), as |ν| → ∞,
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locally uniform, i.e. uniform for all u ∈ U ′, where U ′ ⊂ L2
R(F ) is a su�ciently

small neighbourhood of u0. Hence, we may choose δ′ > 0 small enough17 such
that for all u ∈ U ′, there holds∥∥∥∥dmδ′

dû
|u
∥∥∥∥ ≤ c

8
=

1

8

∥∥∥∥dmf ′

dûf ′
|u0

∥∥∥∥ . (4.52)

Now choose 0 < δ < δ′ su�ciently small such that for w ∈ L2
R(F ) de�ned by

ŵf = û0,f and w̌δ = 0, there holds w ∈ U ′ and∥∥∥∥dmf ′

dûf
|w −

dmf ′

dûf
|u0

∥∥∥∥ ≤ ∥∥∥∥dmf ′

dû
|w −

dmf ′

dû
|u0

∥∥∥∥ ≤ c

4

(4.51)

≤ 1

4

∥∥∥∥dmf

dûf
|u0

∥∥∥∥ , (4.53)

where the second "≤" in (4.53) holds due to continuity for δ > 0 su�ciently
small, cf. Lemma 4.1.8. We would like to have an analogous estimate with dmf

instead of dmf ′ on the left hand side of (4.53). With (4.52) and (4.53), we get∥∥∥∥dmf

dûf
|w −

dmf

dûf
|u0

∥∥∥∥ ≤ ∥∥∥∥dmf ′

dûf
|w −

dmf ′

dûf
|u0

∥∥∥∥+

∥∥∥∥∥
(
dmν

dûf
|w −

dmν

dûf
|u0

)
δ′−1<|ν|≤δ−1

∥∥∥∥∥ ≤
≤ 1

4

∥∥∥∥dmf

dûf
|u0

∥∥∥∥+

∥∥∥∥dmδ′

dû
|w
∥∥∥∥+

∥∥∥∥dmδ′

dû
|u0

∥∥∥∥ ≤ 1

4

∥∥∥∥dmf

dûf
|u0

∥∥∥∥+
c

8
+
c

8
≤

≤ 1

4

∥∥∥∥dmf

dûf
|u0

∥∥∥∥+
1

4

∥∥∥∥dmf ′

dûf ′
|u0

∥∥∥∥ (4.51)

≤ 1

2

∥∥∥∥dmf

dûf
|u0

∥∥∥∥ (4.54)

as desired. We now apply the Implicit Function Theorem (cf. [23, p. 144], for
instance) to the equation

φ(v̂, ũδ) = mf (h(v̂, ũδ)) = mf (u0). (4.55)

This equation is obviously ful�lled for the pair (v̂, ũδ) = (û0,f , ǔ0,δ). Due to
Lemma 4.2.5, φ′(û0,f , ǔ0,δ) has full rank. Moreover, by Lemma 4.2.6, φ is smooth.
Hence, due to the Implicit Function Theorem, there is a neighbourhood U of
ǔ0,δ in l2(Γ∗δ) ∩ Ĩsoδ(u0), a neighbourhood V of û0,f in BR(û0,f ), as well as a
continuous mapping U → V , ũδ 7→ v̂(ũδ) such that the tuple consisting of ũδ ∈ U
and v̂ = v̂(ũδ) satis�es (4.55). Due to (4.54)18, also ũδ := 0 ∈ U holds. Hence,

17More precisely, we choose a priori another 0 < δ′′ < δ′ such that with the above de�nition

c :=
∥∥∥dmf′dûf′

|u0

∥∥∥, we get ∥∥∥dmδ′′dû |u
∥∥∥ ≤ c

8 in (4.52). Since
∥∥∥dmf′′dûf′′

|u0

∥∥∥ ≥ c as explained before, we

get
∥∥∥dmδ′′dû |u

∥∥∥ ≤ 1
8

∥∥∥dmf′′dûf′′
|u0

∥∥∥ so that an additional choice of some 0 < δ′′ < δ′ is not necessary

if δ′ > 0 is chosen small enough.
18In the proof of the Inverse Function Theorem (which is used in the proof of the Implicit

Function Theorem), cf. [23, p. 142-145], the inequality corresponding to (4.54) shows how
large the neighbourhood where invertibility holds can be chosen. In our case, we chose δ > 0

su�ciently small such that the element ( ˆv(0), 0) we are interested in is contained in V ×U . By
the way, the same argument doesn't only hold for ũδ = 0 but also for all ũδ ∈ [0, ǔ0,δ]. We will
revisit this fact in the proof of Lemma 4.2.8.
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mf (h(v̂(0), 0)) = mf (u0) and the potential v ∈ L2
R(F ) associated to (v̂(0), 0) thus

ful�lls mν(v) = mν(u0) for ν ∈ Γ∗f and mν(v) = 0 for ν ∈ Γ∗δ . In this fashion we
can choose for each n ∈ N a δ = δn > 0 which yields neighbourhoods U ′ = U ′n
where (4.54) holds for all w ∈ U ′n. As well, we get neighbourhoods U = Un
and V = Vn as above in the application of the Implicit Function Theorem and a
sequence (un)n≥N (N ∈ N su�ciently large) satisfying the required properties of
the lemma. Since by construction, U ′n can be chosen such that its diameter tends
to zero as n→∞, we have limn→∞ un = u0. This proves the lemma.

For u0 ∈ L2
R(F ), R > 0, ũδ ∈

⋃
u∈SR(u0) Ĩsoδ(u) and φ as in (4.47), we now de�ne

the level set

LR(ũδ) := {v̂ ∈ BR(û0,f ) : φ(v̂, ũδ) = mf (u0)}. (4.56)

We are especially interested in the cases ũδ = ǔ0,δ and ũδ = 0. Whereas the
�rst case corresponds to the isospectral set Iso(u0) since LR(ǔ0,δ) encodes the
moduli equal to m(u0), the second case corresponds to the �nite type isospectral
set Iso(u1) de�ned by (4.41) since LR(0) encodes those moduli in (4.41). This
correspondence will be speci�ed more precisely in our next investigations. We
would like to show that these level sets are homeomorphic to one another by
constructing a homeomorphism LR(0) → LR(ǔ0,δ). If Iso(u0) is unbounded,
however, there occurs a problem caused by the intersection of the isospectral set
with the ball BR(u0). By constructing the map LR(0) → LR(ǔ0,δ), we will see
that there is a natural way to identify two level sets of the form (4.56) with each
other. There is, however, no evidence why elements in ∂BR(û0,f )∩LR(0) should
be mapped into ∂BR(û0,f ) since Iso(u0) has no symmetries with respect to such
balls BR(û0,f ) in general. An element in ∂BR(û0,f )∩LR(0) might also be mapped

into BR(û0,f ) or into C2g+1
R \ BR(û0,f ), where the latter case would be contrary

to the well-de�nition of LR(0)→ LR(ǔ0,δ). Furthermore, the mapping behaviour
of elements in ∂BR(û0,f ) ∩ LR(0) causes some problems concerning the question
whether this map is open. These are the reasons why the following Lemma 4.2.8
requires a slightly more elaborate formulation than just stating that there exists
a homeomorphism LR(0)→ LR(ǔ0,δ).

Lemma 4.2.8. Let u0 ∈ L2
R(F ) with smooth Fermi curve, R > 0 and ε > 0 be

given. Then there is a δ > 0 (depending on R and ε) such that the following
holds:

(i) LR+2ε(ũδ) 6= ∅ for all ũδ ∈
⋃
u∈SR+2ε(u0) Ĩsoδ(u) and

(ii) for all ũδ ∈ Ĩsoδ(u0), there exists a continuous and injective map
LR−ε(0) → LR(ũδ) whose image contains LR−2ε(ũδ) and whose natural re-
striction L̊R−ε(0)→ LR(ũδ) is an open map.
Here, L̊R−ε(0) := {v̂ ∈ BR−ε(û0,f ) : φ(v̂, 0) = mf (u0)} denotes the interior
of LR−ε(0).
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Remark. Clearly, one is interested in small ε > 0 as possible. The optimal choice
would be ε = 0 which, however, won't be feasible in general. If indeed the choice
ε = 0 is admissible, then the assertion of the lemma simply states that there
exists a homeomorphism LR(0)→ LR(ũδ), ũδ ∈ Ĩsoδ(u0).

Proof. Let u0 ∈ L2
R(F ), R > 0 and ε > 0 be given. To begin with, we want

to declare how δ > 0 has to be chosen. This is done in several steps. In the
�rst step, we choose a preliminary δ > 0 which might have to be chosen even
smaller in the subsequent steps: Firstly, we choose as before a (preliminary) δ > 0
associated19 to the radius R + 2ε 20, where we choose δ small enough such that
‖ǔ0‖l2(Γ∗δ) < ε/16. Then, we choose in Lemma 4.2.4 an η > 0 associated to ε/4,
i.e.

dist(v, Iso(u0) ∩BR+2ε(u0)) < ε/4 for all v ∈ Iso(u) ∩BR+2ε(u0), u ∈ Bη(u0).
(4.57)

Here, we may choose η > 0 small enough such that ‖ǔ‖l2(Γ∗δ) ≤ 2‖ǔ0‖l2(Γ∗δ) <
ε/8 for all u ∈ Bη(u0). This is possible since the map u 7→ ǔδ is continuous,
cf. Theorem 2.4.2. Due to this Theorem 2.4.2 together with (3.57), we even have
‖v̂‖l2(Γ∗δ) ≤ 2‖ǔ‖l2(Γ∗δ) < ε/4 for all v ∈ Iso(u) ∩ BR+2ε(u0) and all u ∈ Bη(u0),
provided that the product of the error term 1 +O(1/|ν|) in (3.57) and the error
term 1+o(1) between the l2(Γ∗δ)-norm of Fourier coe�cients and the l2(Γ∗δ)-norm
of perturbed Fourier coe�cients is smaller than 2 which can clearly be achieved
by choosing δ accordingly. Now choose δ > 0 small enough such that u ∈ Bη(u0)

for all u ∈ SR+2ε(u0) = {u ∈ BR+2ε(u0) : ǔδ ∈ [0, ǔ0,δ], ûf = û0,f}, cf. (4.42). If
we de�ne for u ∈ SR+2ε(u0) an element m∗ = (m∗ν)ν ∈ l1(Γ∗r) by m

∗
ν := mν(u0) for

ν ∈ Γ∗ \Γ∗δ and m
∗
ν := mν(u) for ν ∈ Γ∗δ , we would like to �nd a u∗ ∈ Bη(u0) such

that m(u∗) = m∗. We claim that such a potential u∗ exists for all u ∈ SR+2ε(u0)
(provided δ > 0 is su�ciently small yielding that m∗ is su�ciently close to m(u0)
in the l1-norm). Thereto, we have to take a look into the proof of Lemma 4.2.7:
If ũδ := 0 ∈ U (with U the neighbourhood in the proof of Lemma 4.2.7), then an
arbitrary ũδ ∈ [0, ǔ0,δ] is contained in U a fortiori and the existence of u∗ ∈ Bη(u0)
follows by the same arguments as in the proof of Lemma 4.2.7.
Finally, the choice of δ > 0 guarantees together with (4.57) and ‖v̂‖l2(Γ∗δ) < ε/4

for all v ∈ Iso(u) ∩ BR+2ε(u0) and all u ∈ Bη(u0) as explained above, that by
de�nition of the level sets (4.56), we have

dist(x,LR+2ε(ǔ0,δ)) <
ε

2
for all x ∈ LR+2ε(ũδ), ũδ ∈

⋃
u∈SR+2ε(u0)

Ĩsoδ(u), (4.58)

19Cf. the discussion of the choice of δ > 0 for given R > 0 on p. 131.
20The choice of δ associated to R + 2ε (and not associated to R) has technical reasons and

will become clear later in the proof when we will prove the openness property.
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where dist(x,LR+2ε(ǔ0,δ)) := infy∈LR+2ε(ǔ0,δ) ‖x− y‖ with ‖ · ‖ the euclidean norm

on C2g+1
R . In short, all level sets relevant for our considerations have a distance

less than ε to one another and a distance less than ε/2 to the level set LR+2ε(ǔ0,δ).
Moreover, the existence of the above u∗ ∈ Bη(u0) (associated to u ∈ SR+2ε(u0))

ful�lling m(u∗) = m∗ showed that LR+2ε(ũδ) 6= ∅ for all ũδ ∈
⋃
u∈SR+2ε(u0) Ĩsoδ(u).

Now that we have chosen δ > 0, let ũ1,δ ∈
⋃
u∈SR+2ε(u0) Ĩsoδ(u) and v̂ ∈ LR+ε(ũ1,δ)

be given. It is C2g+1
R = (kerφ′(v̂, ũ1,δ)) ⊕ (kerφ′(v̂, ũ1,δ))

⊥, where the orthogonal
complement is taken with respect to the euclidean standard scalar product on
C2g+1

R . Since by Lemma 4.2.5, the rank of φ′(v̂, ũ1,δ) equals g, we have

dimR(kerφ′(v̂, ũ1,δ))
⊥ = 2g + 1− dimR(kerφ′(v̂, ũ1,δ)) =

= 2g + 1− (2g + 1− g) = g.

Let N1(v̂), . . . , Ng(v̂) ∈ C2g+1
R be a basis of (kerφ′(v̂, ũ1,δ))

⊥. Without restriction,
we may assume that the Ni(v̂) are all normalized by ‖Ni(v̂)‖ = 1 (i = 1, . . . , g).
Each n̂ ∈ (kerφ′(v̂, ũ1,δ))

⊥ can thus be represented as n̂ =
∑g

i=1 λiNi(v̂) with
respective coe�cient vector λ := (λ1, . . . , λg) ∈ Rg. Now, together with the
smoothness of the map φ proved in Lemma 4.2.6, the level set LR+ε(ũ1,δ) is
a real smooth submanifold (in general with boundary) of C2g+1

R of dimension
dim kerφ′(v̂, ũ1,δ)) = g + 1 by the Regular Value Theorem (cf. [23, p. 154], for
instance) because for all v̂ ∈ LR+ε(ũ1,δ), φ

′(v̂, ũ1,δ) has full rank g due to Lemma
4.2.5 (i.e. mf (u0) is a so-called regular value). Therefore, the normal spaces
spanned by the vectors N1(v̂), . . . , Ng(v̂) continuously depend on v̂ ∈ LR+ε(ũ1,δ).
We now de�ne the map

Φ : LR+ε(ũ1,δ)× U → R̃g, (v̂, λ) 7→ φ

(
v̂ +

g∑
i=1

λiNi(v̂), ũ1,δ

)
, (4.59)

where 0 ∈ U ⊆ Rg is an open set such that v̂ +
∑g

i=1 λiNi(v̂) ∈ BR+2ε(û0,f ) for
all v̂ ∈ LR+ε(ũ1,δ) and all λ ∈ U , i.e. such that Φ is well-de�ned. Note that
v̂ ∈ LR+ε(ũ1,δ), i.e. Φ is also well-de�ned if v̂ ∈ ∂BR+ε(û0,f ). In particular, the
neighbourhood U does not depend on v̂. We now consider the partial derivative
∂
∂λ

Φ evaluated at λ = 0. The linear map ∂
∂λ

Φ|λ=0 can be identi�ed with a g × g-
matrix. By de�nition of φ and respecting the de�nition of h as well as (4.48), we
have

∂
∂λ

Φ|λ=0 =
dmf (h (v̂ +

∑g
i=1 λiNi(v̂), ũ1,δ))

dλ
|λ=0 =

=
dmf (u)

dû
|û=(v̂,û′1,δ)

·
d(v̂ +

∑g
i=1 λiNi(v̂), û′1,δ)

dλ
|λ=0 =:

(
A B

)
·
(
N

∗

)
,

where A,B are essentially the same blocks as in the proof of Lemma 4.2.5 and
N is the (2g + 1) × g-matrix with columns N1(v̂), . . . , Ng(v̂). Now we proceed
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exactly as in the proof of Lemma 4.2.5. By a suitable choice of a Schauder ba-
sis of l2R(Γ∗), the block B can be assumed to be equal to zero so that ∂

∂λ
Φ|λ=0

has the same rank as (A 0)
(
N
∗

)
= (AN1(v̂), . . . , ANg(v̂)). With respect to this

basis, we have φ′(v̂, ũ1,δ) = A (cf. the proof of Lemma 4.2.5). By de�nition of
N1(v̂), . . . , Ng(v̂), the vectors AN1(v̂), . . . , ANg(v̂) are linearly independent be-
cause 0 =

∑g
i=1 λiANi(v̂) = A(

∑g
i=1 λiNi(v̂)) implies∑g

i=1 λiNi(v̂) ∈ (kerA) ∩ (kerA)⊥ = {0} such that λ = 0 due to the linear inde-
pendence of N1(v̂), . . . , Ng(v̂).
Hence, the rank of ∂

∂λ
Φ|λ=0 is equal to g. This is an important result which will

be used in the next step when we apply the Implicit Function Theorem. For
v̂ ∈ LR+ε(ũ1,δ), we want to �nd local solutions (ŵ, λ, ũδ) of the equation

φ

(
ŵ +

g∑
i=1

λiNi(ŵ), ũδ

)
= mf (u0), (4.60)

where ŵ ∈ W (v̂) (with W (v̂) ⊂ LR+ε(ũ1,δ) a su�ciently small neighbourhood of

v̂), λ ∈ U and ũδ ∈
⋃
u∈SR+2ε(u0) Ĩsoδ(u) (in particular, local means that λ shall

be in a neighbourhood of 0 ∈ U and ũδ shall be in a neighbourhood of ũ1,δ).
Since φ (v̂, ũ1,δ) = mf (u0) (cf. the de�nition of the level sets (4.56)), the triple
consisting of ŵ = v̂, λ = 0, ũδ = ũ1,δ solves (4.60). Because

∂
∂λ

Φ|λ=0 is invertible,
we may apply the Implicit Function Theorem (cf. [23, p. 144], for instance).

This yields that there exists a neighbourhood V (v̂, ũ1,δ) ⊂
⋃
u∈SR+2ε(u0) Ĩsoδ(u) of

ũ1,δ and a neighbourhood W (v̂) ⊂ LR+ε(ũ1,δ) of v̂ as well as a unique continuous
map

W (v̂)× V (v̂, ũ1,δ)→ U, (ŵ, ũδ) 7→ λ(ŵ, ũδ) (4.61)

such that

φ

(
ŵ +

g∑
i=1

λi(ŵ, ũδ)Ni(ŵ), ũδ

)
= mf (u0) for all (ŵ, ũδ) ∈ W (v̂)× V (v̂, ũ1,δ).

This de�nes for each v̂ ∈ LR+ε(ũ1,δ) and ũδ ∈ V (v̂, ũ1,δ) a local map

W (v̂) ⊂ LR+ε(ũ1,δ)→ LR+2ε(ũδ), ŵ 7→ ŵ +

g∑
i=1

λi(ŵ, ũδ)Ni(ŵ). (4.62)

Due to the continuity of (ŵ, ũδ) 7→ λ(ŵ, ũδ) and since we can choose continuous
normal vectors ŵ 7→ N1(ŵ), . . . , Ng(ŵ) (due to the continuous dependence of the
normal spaces (kerφ′(v̂, ũ1,δ))

⊥ on v̂ ∈ LR+ε(ũ1,δ) as explained before), these local
maps (4.62) are in particular continuous in their respective domain of de�nition.
We would like to extend these local maps to a global map de�ned on the whole
of LR+ε(ũ1,δ).
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At �rst, we argue why the neighbourhoods V (v̂, ũ1,δ) can even be chosen in-
dependently of v̂ by using the compactness of LR+ε(ũ1,δ): Thereto, recall that
LR+ε(ũ1,δ) is compact since due to the continuity of φ, LR+ε(ũ1,δ) is a closed

subset of the compact set BR+ε(û0,f ) ⊂ C2g+1
R and thus also compact. Now,⋃

v̂∈LR+ε(ũ1,δ)
W (v̂) is an open covering of LR+ε(ũ1,δ). Since LR+ε(ũ1,δ) is com-

pact, LR+ε(ũ1,δ) can be covered by �nitely many of these neighbourhoods, say
by W (v̂i), i = 1, . . . ,m. To these, there correspond �nitely many neighbour-
hoods V (v̂i, ũ1,δ), i = 1, . . . ,m. Let d1, . . . , dm be the diameters of the V (v̂i, ũ1,δ),
i = 1, . . . ,m. Choose min{d1, . . . , dm} as diameter of a neighbourhood of ũ1,δ in⋃
u∈SR+2ε(u0) Ĩsoδ(u). This de�nes V (ũ1,δ) which is independent of v̂ ∈ LR+ε(ũ1,δ).

In order to extend the local maps (4.62) to a global map LR+ε(ũ1,δ)→ LR+2ε(ũδ),
we have to show that for v̂, v̂′ ∈ LR+ε(ũ1,δ) withW (v̂)∩W (v̂′) 6= ∅, the respective
maps (4.62) are identical on W (v̂) ∩W (v̂′). This, however, follows immediately
from the uniqueness of the map ŵ 7→ n̂(ŵ) :=

∑g
i=1 λi(ŵ, ũδ)Ni(ŵ) obtained

by the above application of the Implicit Function Theorem. In other words,∑g
i=1 λi(ŵ, ũδ)Ni(ŵ) =

∑g
i=1 λ

′
i(ŵ, ũδ)N

′
i(ŵ) for all ŵ ∈ W (v̂)∩W (v̂′), where the

λ′i(ŵ, ũδ) are the coe�cients corresponding to the (maybe di�erent) basis vectors
N ′1(ŵ), . . . , N ′g(ŵ) of (kerφ′(ŵ, ũ1,δ))

⊥ in the local map (4.62) de�ned on W (v̂′).
Hence, for all ũδ ∈ V (ũ1,δ), the global map

LR+ε(ũ1,δ)→ LR+2ε(ũδ), v̂ 7→ v̂ +

g∑
i=1

λi(v̂, ũδ)Ni(v̂) (4.63)

is well-de�ned. Note that the image of (4.63) is contained in BR+2ε(û0,f ) due to
(4.58) which explains the index R + 2ε in LR+2ε(ũδ). Moreover, the map (4.63)
is continuous since continuity is a local property which has already been justi�ed
for the local map (4.62).
Next, we prove that (4.63) is one-to-one. In order to establish this, the diameter
of V (ũ1,δ) has possibly to be chosen even smaller than we already did. We prove
at �rst that for a sequence (ũnδ )n∈N ⊂ V (ũ1,δ) with limn→∞ ũ

n
δ = ũ1,δ (in the

l2(Γ∗δ)-norm), there holds

∀ε′>0 ∃k∈N ∀n≥k ∀v̂∈LR+ε(ũ1,δ) : ‖n̂(v̂, ũnδ )‖ < ε′, (4.64)

with ‖ · ‖ the euclidean norm on C2g+1
R and n̂(v̂, ũδ) :=

∑g
i=1 λi(v̂, ũδ)Ni(v̂) as

already introduced. As before, we sometimes simply write n̂(v̂) if the dependence
on ũδ is immaterial for the respective consideration. Let ε′ > 0. We recall that we
may assume that all appearing basis vectors Ni(v̂) are normalized by ‖Ni(v̂)‖ = 1.
Choose the neighbourhood U ⊂ Rg of 0 ∈ Rg (cf. (4.61), for instance) small
enough such that

∑g
i=1 |λi| < ε′ for all λ = (λ1, . . . , λg) ∈ U . Since λ(v̂, ũ1,δ) = 0

for all v̂ ∈ LR+ε(ũ1,δ) and due to the continuity of (v̂, ũδ) 7→ λ(v̂, ũδ), cf. (4.61),
which is even uniform with respect to v̂ because LR+ε(ũ1,δ) is compact, it follows
‖n̂(v̂, ũnδ )‖ ≤

∑g
i=1 |λi(v̂, ũnδ )| < ε′ for all v̂ ∈ LR+ε(ũ1,δ) and for all n ∈ N
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su�ciently large. This proves (4.64).
For v̂ ∈ LR+ε(ũ1,δ) and ε

′ > 0, we introduce the notation

B̃ε′(v̂) := Bε′(v̂) ∩ LR+ε(ũ1,δ), (4.65)

where Bε′(v̂) is the ε′-ball in C2g+1
R as usual. By de�nition, any n̂(v̂, ũδ) is perpen-

dicular to any tangent vector of the tangent space kerφ′(v̂, ũδ) on v̂. For ε
′ > 0

su�ciently small and ŵ ∈ B̃ε′(v̂), v̂− ŵ is su�ciently close to such a tangent vec-
tor such that the a�ne subspaces v̂ + (kerφ′(v̂, ũ1,δ))

⊥ and ŵ + (kerφ′(ŵ, ũ1,δ))
⊥

are "nearly parallel" to each other. More precisely, we claim that there holds

∀v̂∈LR+ε(ũ1,δ) ∃ε′>0 ∃k∈N ∀n≥k : ŵ1 + n̂(ŵ1, ũ
n
δ ) 6= ŵ2 + n̂(ŵ2, ũ

n
δ ) (4.66)

for all ŵ1, ŵ2 ∈ B̃ε′(v̂) with ŵ1 6= ŵ2. In order to prove (4.66), we need to assure
that the curvature of LR+ε(ũ1,δ) remains locally bounded. What we mean by this
becomes clear in the following. Let v̂ ∈ LR+ε(ũ1,δ) be given. For ŵ ∈ LR+ε(ũ1,δ)
(in a neighbourhood of v̂), 0 6= t̂ ∈ kerφ′(ŵ, ũ1,δ), 0 6= n̂ ∈ (kerφ′(ŵ, ũ1,δ))

⊥,
we introduce the following notations: Let Eŵ,t̂,n̂ := ŵ + span{t̂, n̂} ⊂ C2g+1

R be

the two-dimensional (real) a�ne subspace of C2g+1
R spanned by t̂ and n̂ in the

point ŵ. The intersection LR+ε(ũ1,δ) ∩ Eŵ,t̂,n̂ can thus be locally parameterized
by a curve γ = γŵ,t̂,n̂ parameterized by (−ε, ε) → Eŵ,t̂,n̂, s 7→ γ(s) (with some

ε > 0 depending on ŵ, t̂, n̂) with γ(0) = ŵ, i.e. locally, LR+ε(ũ1,δ) ∩Eŵ,t̂,n̂ equals
supp(γ). Without restriction, we may consider γ in arc-length parameterization.
The curvature κ(s) = κŵ,t̂,n̂(s) (cf. [17, 2.8], for instance) of γ(s) is then given by
κ(s) := ‖γ̈(s)‖, where we denote derivatives with respect to s with dots. Due to
the smoothness of φ and LR+ε(ũ1,δ), cf. Lemma 4.2.6 (implying in particular the
continuity of the second partial derivatives of φ), we get

∃κ0>0 ∃ε′>0 ∀ŵ∈B̃ε′ (v̂) ∀06=t̂∈kerφ′(ŵ,ũ1,δ)
∀0 6=n̂∈(kerφ′(ŵ,ũ1,δ))⊥ : κŵ,t̂,n̂(s) < κ0

for all s in the respective domain of de�nition of γŵ,t̂,n̂. Therefore, there is a radius

r0 := 1/κ0 such that for each ŵ ∈ B̃ε′(v̂) and each 0 6= t̂ ∈ kerφ′(ŵ, ũ1,δ), 0 6= n̂ ∈
(kerφ′(ŵ, ũ1,δ))

⊥, the radius r of the osculating circle Br ⊂ Eŵ,t̂,n̂ (cf. [17, 2.7], for

instance) at ŵ ∈ LR+ε(ũ1,δ) ∩Eŵ,t̂,n̂ satis�es r ≥ r0 and Br ∩ supp(γŵ,t̂,n̂) = {ŵ}.
Hence, for all ŵ1, ŵ2 ∈ B̃ε′(v̂) and n̂1 ∈ kerφ′(ŵ1, ũ1,δ)

⊥, n̂2 ∈ kerφ′(ŵ2, ũ1,δ)
⊥,

there holds: If ŵ1 + n̂1 = ŵ2 + n̂2, then necessarily ‖n̂i‖ ≥ r0 for i = 1, 2. This
situation is depicted in Figure 4.1, where the point A corresponds to ŵ1 and
the point B corresponds to ŵ2. If we choose k ∈ N in (4.64) large enough such
that ‖n̂(v̂, ũnδ )‖ < r0/2 for all n ≥ k and all v̂ ∈ LR+ε(ũ1,δ), the assertion (4.66)
follows.
On the other hand, we get as well by (4.64) with the compactness of LR+ε(ũ1,δ)

∀v̂∈LR+ε(ũ1,δ) ∃ε′>0 ∃k∈N ∀n≥k : ŵ1 + n̂(ŵ1, ũ
n
δ ) 6= ŵ2 + n̂(ŵ2, ũ

n
δ ) (4.67)
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Figure 4.1: Concerning the curvature of LR+ε(ũ1,δ)

for all ŵ1 ∈ B̃ε′/2(v̂), ŵ2 ∈ LR+ε(ũ1,δ) \ B̃ε′(v̂). Summing up (4.66) and (4.67)
yields

∀v̂∈LR+ε(ũ1,δ) ∃ε′>0 ∃k∈N ∀n≥k : ŵ1 + n̂(ŵ1, ũ
n
δ ) 6= ŵ2 + n̂(ŵ2, ũ

n
δ ) (4.68)

for all ŵ1, ŵ2 ∈ LR+ε(ũ1,δ) satisfying either ŵ1, ŵ2 ∈ B̃ε′(v̂) with ŵ1 6= ŵ2 or

ŵ1 ∈ B̃ε′/2(v̂), ŵ2 ∈ LR+ε(ũ1,δ) \ B̃ε′(v̂).
In order to point out that the respective ε′ depends on v̂, we write ε′ = ε′(v̂). Now,⋃
v̂∈LR+ε(ũ1,δ)

B̃ε′(v̂)/2(v̂) is an open covering of the compact set LR+ε(ũ1,δ). Hence,

there exists a �nite subcover denoted by
⋃m
i=1 B̃ε′i/2

(v̂i) and integers k1, . . . , km
corresponding to v̂1, . . . , v̂m according to (4.68). Now let ŵ1, ŵ2 ∈ LR+ε(ũ1,δ) with

ŵ1 6= ŵ2 be given. Then there is an i ∈ {1, . . . ,m} such that ŵ1 ∈ B̃ε′i/2
(v̂i). Now

ŵ2 ∈ LR+ε(ũ1,δ) \ B̃ε′i
(v̂) or ŵ2 ∈ B̃ε′i

(v̂). For both possibilities, ŵ1 + n̂(ŵ1, ũ
k
δ ) 6=

ŵ2 + n̂(ŵ2, ũ
k
δ ) holds due to (4.68) with k := max{k1, . . . , km}. This proves

that (4.63) with ũδ := ũkδ is one-to-one. Clearly, this also holds if we restrict

(4.63) to BR−ε(û0,f ), i.e. if we replace in (4.63) R + ε by R − ε and R + 2ε by
R 21. Moreover, due to (4.64), we may assume without restriction that for all
v̂ ∈ LR+ε(ũ1,δ), the coe�cient vector λ(v̂, ũkδ ) = (λ1(v̂, ũkδ ), . . . , λg(v̂, ũ

k
δ )) ∈ Rg

appearing in n̂(v̂, ũkδ ) =
∑g

i=1 λi(v̂, ũ
k
δ )Ni(v̂) satis�es λ(v̂, ũkδ ) ∈ U with U as in

(4.61) (otherwise, choose k larger once again).
With the above choice ũδ = ũkδ , we now prove that the restriction of (4.63) to the
(open) ball BR−ε(û0,f ), i.e.

L̊R−ε(ũ1,δ)→ L̊R(ũδ), v̂ 7→ v̂ +

g∑
i=1

λi(v̂, ũδ)Ni(v̂),

21The reason why we need injectivity on the slightly larger set LR+ε(ũ1,δ) will become clear
in the now following proof of openness.
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is an open map22. Let's temporarily denote the map (4.63) by ϕ. Let O ⊆
L̊R−ε(ũ1,δ) be open. We have to prove that ϕ(O) is open in L̊R(ũδ). Let ŵ ∈ ϕ(O)
and the corresponding23 v̂ ∈ O with ϕ(v̂) = ŵ be given. In order to prove
the mentioned openness, we show that there is an η > 0 such that the ball
B̃η(ŵ) ⊂ L̊R(ũδ) (cf. the notation (4.65)) is contained in ϕ(O).

At �rst, choose η′ > 0 such that Bη′(ŵ) ⊂ BR(û0,f ). Let ŵ′ ∈ B̃η′(ŵ) be given.
We consider the map

LR+ε(ũ1,δ)→ R+
0 , x̂ 7→ ‖x̂− ŵ′‖.

Due to the continuity of the euclidean norm on C2g+1
R and the compactness of

LR+ε(ũ1,δ), this map has a global minimum v̂′ ∈ LR+ε(ũ1,δ). Due to (4.58), we

even have v̂′ ∈ L̊R+ε(ũ1,δ). Let n̂ := ŵ′ − v̂′. Due to the minimum property

of v̂′ ∈ L̊R+ε(ũ1,δ), we have n̂ ∈ (kerφ′(v̂′, ũ1,δ))
⊥ (since otherwise, there would

be an x̂ ∈ kerφ′(v̂′, ũ1,δ) such that the line through v̂′ with direction x̂ would

transversely intersect the ball B|n̂|(ŵ
′) and we would thus �nd a ŷ ∈ L̊R+ε(ũ1,δ)

with ‖ŷ − ŵ′‖ < ‖v̂′ − ŵ′‖, a contradiction to the minimum property of v̂′).
This yields the representation ŵ′ = v̂′ +

∑g
i=1 λiNi(v̂

′) with suitable coe�cients
λ1, . . . , λg ∈ R and the normal vectors N1(v̂′), . . . , Ng(v̂

′) as before. Because

ŵ′ ∈ L̊R(ũδ), we thus have the equation

φ

(
v̂′ +

g∑
i=1

λiNi(v̂
′), ũδ

)
= mf (u0).

By the choice of k ∈ N in the above de�nition ũδ = ũkδ , we have λ ∈ U (with U as
in (4.61)). Hence, due to the uniqueness of the map (v̂, ũδ) 7→ λ(v̂, ũδ) obtained
by the above application of the Implicit Function Theorem, we get λi = λi(v̂

′, ũδ)
for all i = 1, . . . , g. This shows ŵ′ = v̂′ +

∑g
i=1 λi(v̂

′, ũδ)Ni(v̂
′) = ϕ(v̂′). Hence,

the image ϕ(LR+ε(ũ1,δ)) contains the ball B̃η′(ŵ). In order to prove that also the

image ϕ(O) of O contains B̃η(ŵ) with some 0 < η ≤ η′, we show that

∃0<η≤η′ ∀v̂′∈LR+ε(ũ1,δ) ∀ŵ′∈B̃η(ŵ) : ϕ(v̂′) = ŵ′ =⇒ v̂′ ∈ O. (4.69)

The statement (4.69) and B̃η(ŵ) ⊆ ϕ(LR+ε(ũ1,δ)) imply the desired assertion

B̃η(ŵ) ⊆ ϕ(O). So it remains to prove (4.69). Assume that (4.69) doesn't hold,
i.e.

∀0<η≤η′ ∃v̂′∈LR+ε(ũ1,δ) ∃ŵ′∈B̃η(ŵ) : ϕ(v̂′) = ŵ′ ∧ v̂′ /∈ O.

Hence,

∀n∈N,n≥1/η′ ∃v̂n∈LR+ε(ũ1,δ) ∃ŵn∈B̃1/n(ŵ) : ϕ(v̂n) = ŵn ∧ v̂n /∈ O.

22Note that due to (4.58), ϕ maps L̊R−ε(ũ1,δ) into L̊R(ũδ).
23Note that this v̂ is unique due to the just proven injectivity.
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This yields sequences (ŵn)n ⊂ L̊R(ũδ) and (v̂n)n ⊂ LR+ε(ũ1,δ) with limn→∞ ŵn =
ŵ. Due to the compactness of LR+ε(ũ1,δ), we may assume that (v̂n)n converges
to some v̂′ ∈ LR+ε(ũ1,δ) (otherwise, consider a convergent subsequence). Due to
the continuity of ϕ proven above, we get

ϕ(v̂′) = lim
n→∞

ϕ(v̂n) = lim
n→∞

ŵn = ŵ = ϕ(v̂).

Due to the injectivity of ϕ on LR+ε(ũ1,δ), we get v̂
′ = v̂. In particular, due to the

openness of O, we get v̂n ∈ O for all but �nitely many n ∈ N, a contradiction to
v̂n /∈ O for all n ≥ 1/η′. This shows (4.69) and the desired openness property is
proven. By the way, after we've just made use of the injectivity of ϕ on LR+ε(ũ1,δ),
the reader now sees why we considered LR+ε(ũ1,δ) in the previous investigations
(instead of LR−ε(ũ1,δ) as formulated in the theorem).
In the next step, we show with the help of the previous investigations that for
ũδ ∈ Ĩsoδ(u0), there exists a continuous and injective map LR−ε(0) → LR(ũδ)

whose natural restriction L̊R−ε(0)→ LR(ũδ) is an open map. So let ũδ ∈ Ĩsoδ(u0)

be given. We de�ne a path γ in the connected set [0, ǔ0,δ]∪ Ĩsoδ(u0) from 0 to ũδ
by γ := γ1 + γ2, where γ1 is the line from 0 to ǔ0,δ, i.e. supp(γ1) = [0, ǔ0,δ] and γ2

is a path in Ĩsoδ(u0) from ǔ0,δ to ũδ (note that Ĩsoδ(u0) is connected, cf. Theorem
3.1.1). In particular, supp(γ) ⊂ l2R(Γ∗δ) is compact. We have proved that to any
ṽδ ∈ supp(γ), there is a neighbourhood V (ṽδ) such that for all w̃δ ∈ V (ṽδ), the
map LR−ε(ṽδ) → LR(w̃δ) is continuous and injective. Now,

⋃
ṽδ∈supp(γ) V (ṽδ) is

an open covering of supp(γ). Due to the compactness of supp(γ), there exists
a �nite subcover, i.e. �nitely many ṽ1,δ, . . . , ṽm,δ ∈ supp(γ) with ṽ1,δ := 0 and
ṽm,δ := ũδ and �nitely many continuous and injective maps

ϕi : LR−ε(ṽi,δ)→ LR(ṽi+1,δ), i = 1, . . . ,m− 1.

The composition ϕ := ϕm−1◦· · ·◦ϕ1 : LR−ε(0)→ LR(ũδ) is continuous and injec-
tive, too. Note that this map is well-de�ned although at �rst sight, it might seem
unclear whether for i = 1, . . . ,m−1, the image ϕi(LR−ε(ṽi,δ)) ⊆ LR(ṽi+1,δ) is con-
tained in the domain of de�nition LR−ε(ṽi+1,δ) of ϕi+1. Even if ϕi(LR−ε(ṽi,δ)) *
LR−ε(ṽi+1,δ), the composition ϕi+1 ◦ ϕi is yet well-de�ned since in the foregoing
proof, we even proved continuity and injectivity of maps like ϕi+1 on larger sets
LR+ε(ṽi,δ). With this convention, one might ask if it is possible that the image of

ϕ exceeds the ball BR(û0,f ). This, however is not possible due to (4.58) stating
that the level sets in consideration have a distance less than ε to one another.
As to the openness property, denote by ϕ̊i the restriction of ϕi to L̊R−ε(ṽi,δ) and
set ϕ̊ := ϕ̊m−1 ◦ · · · ◦ ϕ̊1 : L̊R−ε(0) → L̊R(ũδ). Since the composition of �nitely
many open maps is open, ϕ̊ is open which had to be proved.
In a last step, we show that the image of ϕ contains LR−2ε(ũδ). The proof is
essentially equal to the previous openness proof. For sake of completeness, we
give it here anyway: Let ŵ ∈ LR−2ε(ũδ) be given. Hence, φ(ŵ, ũδ) = mf (u0) by
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de�nition of LR−2ε(ũδ). Consider the map

LR−ε(ṽm−1,δ)→ R+
0 , x̂ 7→ ‖x̂− ŵ‖.

Due to the continuity of the euclidean norm on C2g+1
R and the compactness of

LR−ε(ṽm−1,δ), this map has a global minimum v̂ ∈ LR−ε(ṽm−1,δ). Due to (4.58),

we even have v̂ ∈ L̊R−ε(ṽm−1,δ). Let n̂ := ŵ − v̂. Due to the minimum property
of v̂, we have n̂ ∈ (kerφ′(v̂, ṽm−1,δ))

⊥ (since otherwise, there would be an x̂ ∈
kerφ′(v̂, ṽm−1,δ) such that the line through v̂ with direction x̂ would transversely

intersect the ball B|n̂|(ŵ) and we would thus �nd a ŷ ∈ L̊R−ε(ṽm−1,δ) with ‖ŷ −
ŵ‖ < ‖v̂ − ŵ‖, a contradiction to the minimum property of v̂). This yields the
representation ŵ = v̂+

∑g
i=1 λiNi(v̂) with suitable coe�cients λ1, . . . , λg ∈ R and

the normal vectors N1(v̂), . . . , Ng(v̂) as before. We thus have the equation

φ

(
v̂ +

g∑
i=1

λiNi(v̂), ũδ

)
= mf (u0).

Due to the uniqueness of the map V (ṽm−1,δ)→ U , ṽδ 7→ λ(v̂, ṽδ) obtained by the
previous application of the Implicit Function Theorem, we get λi = λi(v̂, ũδ) for
all i = 1, . . . , g. This shows ŵ = v̂ +

∑g
i=1 λi(v̂, ũδ)Ni(v̂) and thus ϕm−1(v̂) = ŵ.

We carry out this procedure m − 2 further times, that is, the next step is to
�nd to the just found v̂ a v̂′ ∈ L̊R−ε(ṽm−2,δ) such that ϕm−2(v̂′) = v̂, hence

ϕm−1(ϕm−2(v̂′)) = ŵ. Finally, we arrive at some x̂ ∈ L̊R−ε(0) with ϕ(x̂) =
(ϕm−1 ◦ · · · ◦ ϕ1)(x̂) = ŵ. Recall once again that x̂ ∈ BR−ε(û0,f ) holds due to
(4.58), i.e. the radius R+ε is not exceeded in each of them−1 steps (for instance,
the above v̂′ is indeed contained in BR−ε(û0,f ), thanks to (4.58)). Ultimately, the
lemma is proved.

Large parts of the proof of the foregoing lemma were quite technical. We already
discussed before that the unnatural intersection of the isospectral set with the
ball BR(u0) and possible isospectral potentials in ∂BR(u0) are the reason for these
quite extensive technical e�orts we've just done. In the following corollary, we
want to mention a special case where things turn out to be easier, namely the
case where the isospectral set satis�es a certain boundedness condition. More
precisely:

Corollary 4.2.9. Let u0 ∈ L2
R(F ) with smooth Fermi curve be given. Assume

furthermore that the following boundedness condition holds:

∃r>0 ∃R>0 ∀u∈Br(u0) : Iso(u) ⊂ BR(u0). (4.70)

Then for all ũδ ∈ Ĩsoδ(u0) (with δ > 0 associated to R, cf. p. 131), there exists a
homeomorphism LR(0)→ LR(ũδ).
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Remark. The reader might ask whether the assertion of the corollary still holds if
we replace the condition (4.70) by the weaker assumption that Iso(u0) is bounded.
The answer can't easily be given, at least not without delving into �nite type
theory. Let's explain what might happen in a worst case scenario if we only require
the boundedness of Iso(u0): Let (un)n∈N ⊂ L2

R(F ) be a sequence converging to
u0. It might happen that for all n ∈ N, there is a connected component Un of
Iso(un) such that limn→∞ infv∈Un ‖v‖L2(F ) = ∞. In other words, Iso(un) might
have unbounded connected components the norm of whose elements uniformly
tends to∞ as n→∞ such that these components "vanish in L2

R(F )" as n→∞,
at least if we consider the isospectral set as a subset of L2

R(F ). If instead, we
assume (4.70), such pathological e�ects cannot occur.

Proof. Due to (4.70), we may set ε = 0 in the proof of Lemma 4.2.8. Now, Lemma

4.2.8 implies that for all ũδ ∈ Ĩsoδ(u0), there exists a bijective continuous map
LR(0)→ LR(ũδ) which is also open due to the fact that the inverse of a bijective
continuous map from a compact metric space onto some other metric space is
continuous (cf. [10, p. 233, p. 713 (Aufgabe 158.6)], for instance).

We now prove the main theorem of this section.

Theorem 4.2.10. Let u0 ∈ L2
R(F ) with smooth Fermi curve, R > 0 and ε > 0

be given. Then there is a δ > 0 and a u1 ∈ L2
R(F ) satisfying (4.41) as well as a

continuous and injective map

IR−ε : (Iso(u1) ∩BR−ε(u0))× Ĩsoδ(u0)→ Iso(u0) ∩BR(u0).

whose image contains Iso(u0) ∩ BR−3ε(u0) and whose natural restriction to the

set (Iso(u1) ∩BR−ε(u0))× Ĩsoδ(u0) is an open map.

Proof. Let u0 ∈ L2
R(F ), R > 0, ε > 0 be given. We choose δ > 0 as in the

beginning of the proof of Lemma 4.2.8 with the additional requirement that

δ > 0 is su�ciently small such that the image h
(
BR−2ε(û0,f )× {0}

)
of the

homeomorphic map h (4.43) with respect to the radius R − ε (instead of with
respect to R as in Lemma 4.2.1) is contained in BR−ε(u0). With respect to this
δ, we choose a u1 ∈ L2

R(F ) satisfying (4.41) which is possible by Lemma 4.2.7.

Recall that Ĩsoδ(0) contains only the element 0 ∈ l2(Γ∗δ). We denote by

i : BR(û0,f )× {0} → BR(û0,f ), (v̂, 0) 7→ v̂

the natural isomorphism between BR(û0,f ) × Ĩsoδ(0) and BR(û0,f ). We show at
�rst that the map

α : Iso(u1) ∩BR−ε(u0)→ LR−ε(0), u 7→ i(h−1(u)) (4.71)
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is continuous, injective, that its image contains LR−2ε(0) and that its natural
restriction to Iso(u1) ∩ BR−ε(u0) is an open map whose image is contained in
L̊R−ε(0).
Due to Iso(u1) ∩ BR−ε(u0) ⊆

⋃
ŵ∈BR−ε(û0,f ) Isoδ,w(v), i(h−1(u)) is well-de�ned

for u ∈ Iso(u1) ∩ BR−ε(u0). Moreover, we have α(u) ∈ LR−ε(0) by de�ni-
tion of LR−ε(0), cf. (4.56), and h, cf. in particular (4.44). Hence, the map
(4.71) is well-de�ned. Continuity and injectivity of the map (4.71) immediately
follow from the continuity and injectivity of the homeomorphism h−1. Since

h
(
BR−2ε(û0,f )× {0}

)
⊆ BR−ε(u0) as justi�ed above, the image of α contains

LR−2ε(0). Concerning the openness property, we see that α(u) ∈ ∂BR−ε(û0,f )

implies ‖u‖L2 = ‖h(α(u), 0)‖L2 = ‖ĥ(α(u), 0)‖l2 ≥ ‖α(u)‖C2g+1
R

= R − ε by def-

inition of α together with the property ĥf (v̂, 0) = v̂ (cf. Lemma 4.2.1). Hence,

α(u) ∈ L̊R−ε(0) for u ∈ Iso(u1)∩BR−ε(u0). The openness of α now follows since
h is homeomorphic. Altogether, the above claims concerning α are proved.
Now, we construct the map IR−ε. Due to Lemma 4.2.8, for each ũδ ∈ Ĩsoδ(u0),
there is a continuous and injective map between LR−ε(0) and LR(ũδ) which shall
be denoted by ϕũδ : LR−ε(0)→ LR(ũδ). We now de�ne the map IR−ε as follows:

IR−ε : (Iso(u1) ∩BR−ε(u0))× Ĩsoδ(u0) −→ Iso(u0) ∩BR(u0)

(u, ũδ) 7−→ h(ϕũδ(α(u)), ũδ).
(4.72)

By de�nition of h, α, ϕũδ , the map IR−ε maps into Iso(u0) ∩ BR(u0) such that
IR−ε is well-de�ned. We now prove that IR−ε is injective and continuous.
The injectivity of IR−ε immediately follows from the injectivity of h, α, ϕũδ .
We prove the continuity of IR−ε: We note that h, α, ϕũδ are continuous. In a
�rst step, we want to prove the continuity of (v̂, ũδ) 7→ ϕũδ(v̂). Thereto, we
show at �rst the continuity of ũδ 7→ ϕũδ with respect to the supremum norm
‖ϕũδ‖∞ := supv̂∈LR−ε(0) ‖ϕũδ(v̂)‖ (which is well-de�ned due to the compactness

of LR−ε(0)). Let ũδ ∈ Ĩsoδ(u0) and ε′ > 0 be given. Without loss of generality,
we may assume that ũδ ∈ V (0) (with V (0) the corresponding neighbourhood of
0 ∈ l2(Γ∗δ), compare V (ũ1,δ) in (4.63), here with ũ1,δ := 0). Otherwise, consider
the composition ϕũδ := ϕũδ,m−1

◦ · · · ◦ϕũδ,1 of �nitely many maps ϕũδ,i of the form
(4.63) as in the end of the proof of Lemma 4.2.8, consider each individual ϕũδ,i
and then transfer the continuity result for (v̂, ũδ,i) 7→ ϕũδ,i(v̂) to (v̂, ũδ) 7→ ϕũδ(v̂).
Furthermore, we may again assume as before that the basis vectors Ni are nor-
malized by ‖Ni(ŵ)‖ = 1 for all i = 1, . . . , g. Due to the continuity of the map
(ŵ, ũ′δ) 7→ λ(ŵ, ũ′δ) (cf. (4.61)) proved in Lemma 4.2.8, for each v̂ ∈ LR−ε(0),
there exists a neighbourhood U(v̂) ⊂ LR−ε(0) of v̂ and an ηv̂ > 0 such that for

all ŵ ∈ U(v̂) and all ũ′δ ∈ Ĩsoδ(u0) with ‖ũδ − ũ′δ‖l2(Γ∗δ) < ηv̂, there holds (with
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‖ · ‖ denoting the euclidean norm in C2g+1
R ), cf. (4.63),

‖ϕũδ(ŵ)− ϕũ′δ(ŵ)‖ ≤
g∑
i=1

|λi(ŵ, ũδ)− λi(ŵ, ũ′δ)| · ‖Ni(ŵ)‖ < ε′.

Since
⋃
v̂∈LR−ε(0) U(v̂) is an open covering of LR−ε(0), there exists a �nite sub-

cover due to the compactness of LR−ε(0) denoted by U1, . . . , Um as well as corre-
sponding positive numbers η1, . . . , ηm. Set η := min{η1, . . . , ηm}. Again due
to the compactness of LR−ε(0), the supremum supv̂∈LR−ε(0) ‖ϕũδ(v̂) − ϕũ′δ(v̂)‖
is attained as a maximum at some ŵ = ŵ(ũ′δ) ∈ LR−ε(0) (depending on ũ′δ),

i.e. ‖ϕũδ − ϕũ′δ‖∞ = ‖ϕũδ(ŵ) − ϕũ′δ(ŵ)‖. Hence, for all ũ′δ ∈ Ĩsoδ(u0) with
‖ũδ − ũ′δ‖l2(Γ∗δ) < η, there holds

‖ϕũδ − ϕũ′δ‖∞ ≤
g∑
i=1

|λi(ŵ(ũ′δ), ũδ)− λi(ŵ(ũ′δ), ũ
′
δ)| · ‖Ni(ŵ(ũ′δ))‖ < ε′.

This proves the claimed continuity of ũδ 7→ ϕũδ . Therefore, together with the

continuity of ϕũδ proven in Lemma 4.2.8, for each (v̂, ũδ) ∈ LR−ε(0) × Ĩsoδ(u0)

and each ε′ > 0, there is an η > 0 such that for all (v̂′, ũ′δ) ∈ LR−ε(0)× Ĩsoδ(u0)
with v̂′ ∈ Bη(v̂) and ũ′δ ∈ Bη(ũδ) (these balls have to be considered in their
respective norms, of course), there holds

‖ϕũδ(v̂)− ϕũ′δ(v̂
′)‖ ≤ ‖ϕũδ(v̂)− ϕũδ(v̂′)‖+ ‖ϕũδ(v̂′)− ϕũ′δ(v̂

′)‖ ≤
≤ ‖ϕũδ(v̂)− ϕũδ(v̂′)‖+ ‖ϕũδ − ϕũ′δ‖∞ < ε′

(where ‖ · ‖ denotes the euclidean norm on C2g+1
R as before). Therefore, (v̂, ũδ) 7→

ϕũδ(v̂) is continuous. Together with the continuity of h and α, the continuity of
IR−ε follows.
Concerning the proof of openness, we have already shown that
α(Iso(u1) ∩ BR−ε(u0)) ⊆ L̊R−ε(0). Since the maps α and h are open, this im-

plies together with the openness of L̊R−ε(0) → LR(ũδ) for all ũδ ∈ Ĩsoδ(u0) (cf.
Lemma 4.2.8) and the well-known fact that the union of open sets is open (in our

case:
⋃
ũδ∈O1

ϕũδ(O2) is open for open sets O1 ⊆ Ĩsoδ(u0), O2 ⊆ L̊R−ε(0)) that

the restriction of IR−ε to (Iso(u1) ∩BR−ε(u0))× Ĩsoδ(u0) is an open map.
At last, we prove that the image of IR−ε contains Iso(u0) ∩ BR−3ε(u0). So let

u ∈ Iso(u0) ∩ BR−3ε(u0) be given. Since the map h : BR−ε(û0,f ) × Ĩsoδ(u0) →⋃
v̂∈BR−ε(û0,f ) Isoδ,v(u0) is homeomorphic by Lemma 4.2.1 and Iso(u0)∩BR−ε(u0) ⊆⋃
v̂∈BR−ε(û0,f ) Isoδ,v(u0), there is a (v̂, ṽδ) ∈ BR−ε(û0,f )×Ĩsoδ(u0) with h(v̂, ṽδ) = u.

Due to u ∈ Iso(u0)∩BR−3ε(u0), it follows v̂ ∈ LR−3ε(ṽδ). By Lemma 4.2.8, there
is a v̂′ ∈ LR−2ε(0) with ϕṽδ(v̂

′) = v̂. By the analogous property of α shown at

the beginning of this proof, there is a w ∈ Iso(u1) ∩ BR−ε(u0) with α(w) = v̂′.
Hence, ϕṽδ(α(w)) = v̂ and h(ϕṽδ(α(w)), ṽδ) = u. Therefore, u is in the image of
IR−ε.
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Again, we consider the special case with boundedness condition as in Corollary
4.2.9 yielding a more handsome formulation of Theorem 4.2.10.

Corollary 4.2.11. Let u0 ∈ L2
R(F ) with smooth Fermi curve be given and assume

that the boundedness condition (4.70) holds, i.e.

∃r>0 ∃R>0 ∀u∈Br(u0) : Iso(u) ⊂ BR(u0).

Then there is a δ > 0 and a u1 ∈ L2
R(F ) satisfying (4.41) as well as a homeo-

morphism

I : Iso(u1)× Ĩsoδ(u0)→ Iso(u0).

Proof. At �rst, due to (4.70), we may again set ε = 0 in Lemma 4.2.8 and we may
assume that both Iso(u0) and Iso(u1) are contained in BR(u0). Hence, (4.72)
reduces to

I : Iso(u1)× Ĩsoδ(u0) −→ Iso(u0)

(u, ũδ) 7−→ h(ϕũδ(α(u)), ũδ),

where h, α, ϕũδ are as in the proof of Theorem 4.2.10 (with ε = 0), i.e. we have

α : Iso(u1) ∩ BR(u0) → LR(0) and ϕũδ : LR(0) → LR(ũδ), ũδ ∈ Ĩsoδ(u0). This
time, also ϕũδ and α are homeomorphic, cf. also Corollary 4.2.9. Continuity and
injectivity of I are proven as in Theorem 4.2.10. The additional assertion in
Theorem 4.2.10 (applied to ε = 0) that the image of I contains Iso(u0) implies
surjectivity of I. The continuity of the inverse I−1 follows once again from the
compactness of Iso(u1)× Ĩsoδ(u0) (recall Corollary 4.2.2 and the end of the proof

of Lemma 4.2.1 where the compactness of Ĩsoδ(u0) has been proved) and the
bijectivity and continuity of I (cf. [10, p. 233, p. 713 (Aufgabe 158.6)]).

4.3 The isospectral set

In this section, we �nally want to determine the isospectral set

IsoF (u0) = {u ∈ L2
R(F ) : F (u) = F (u0)}

we have already introduced at the beginning of Chapter 3. It remains to prove the
equivalence m(u) = m(u0)⇐⇒ F (u) = F (u0) between moduli and Fermi curves.
Before we prove this equivalence, we consider at �rst the special case that u0

is a �nite type potential as de�ned in De�nition 2.5.8. On the other hand, we
also go back to the more general setting that the appearing potentials may be
arbitrary complex-valued potentials which don't need necessarily to be real. By
De�nition 2.6.1, we see that the moduli only depend on the corresponding Fermi



156 CHAPTER 4. THE ISOSPECTRAL PROBLEM II: THE SOLUTION

curve X := F (u) (still considered as smooth) of some given potential u ∈ L2(F )
and not explicitly on u itself. Thus, we can consider the map

X 7→
(
−16π3

∫
Aν

k1dk2

)
ν∈Γ∗\{0}

(4.73)

which assigns to each Fermi curve X its moduli, namely the contour integrals
−16π3

∫
Aν
k1dk2 over the A-cycles of X. The arising question is: Which topolog-

ical properties does the space the curves X reside in, i.e. the domain of de�nition
of the map (4.73), have? Let's denote this space byM. We can endowM with
a topology such that M is a complex manifold. In section 3.2 (Deformations
of complex Fermi curves) of the work [27], this procedure has been carried out.
There, the elements of M had to ful�ll certain conditions, in [27] denoted by
"Quasi-momenta (i),(ii),(v)" together with the condition that all elements ofM
have the same �xed arithmetic genus24. In [27, Proposition 3.7] or as well in [19,
Lemma C.19], it has been shown thatM is a complex manifold with the property
that the tangent space TXM for X ∈ M is isomorphic to the space of so-called
regular 1-forms25 on X. The latter assertion, namely that we can identify TXM
with the space of regular 1-forms on X is in fact the crucial statement we will
use in the following. For deeper background information, we refer the reader to
the mentioned works [19] and [27].
In Theorem 4.1.3, we showed that there exists a set of holomorphic 1-forms
dual to the cycles Aν for ν ∈ Γ∗N/σ. Since we temporarily consider the case of
(complex-valued) �nite type potentials, i.e. all elements ofM have �nite genus26,
say g, Theorem 4.1.3 even yields a dual basis of the complete space of holomor-
phic 1-forms on the curve X (which shall be denoted by Ω(X)) since Ω(X) is a
�nite-dimensional vector space. Let A1, . . . , Ag be a suitable numeration of the
corresponding A-cycles. The derivative of the map

M :M→ Cg, X 7→
(
−16π3

∫
An

k1dk2

)
n=1,...,g

24We use the common convention that the in�nitely many double points far outside of some
compact set that any �nite type curve naturally has by de�nition, don't contribute to the
arithmetic genus since otherwise, any �nite type Fermi curve would have arithmetic genus
equal to ∞.

25For the proper de�nition of a regular 1-form, see for instance [27, p. 34] or [19, De�nition
3.4]. We won't deal with this de�nitions. We only mention that in the case of smooth complex
curves, the space of regular 1-forms equals the space of the well-known holomorphic 1-forms. In
other words, the concept of regular 1-forms is a generalization to complex curves which might
have singularities. Since we consider smooth Fermi curves, the concept of holomorphic 1-forms
su�ces for us.

26Since we consider su�ciently small deformations of a given smooth Fermi curve, we may
assume that the elements ofM are smooth as well. Hence, we don't need to distinguish between
geometric and arithmetic genus (for the de�nitions, cf. [19, p. 62], for instance) and thus simply
speak of the genus of the respective curve.



4.3. THE ISOSPECTRAL SET 157

at some (smooth) X ∈M can be represented as

dM |X : Ω(X)→ Cg

due to TXM∼= Ω(X). We want to show that dM |X is a vector space isomorphism.
In (4.33), we deduced that for u ∈ L2(F ) (here �nite type), (V,W ) := (1,−u

4
)

and all w ∈ L2(F ), there holds

d

du

(∫
Aν

p1dp2

)
|u(w) =

1

4

∫
Aν

ω(V,W, 0, w)

for all of those �nitely many ν ∈ Γ∗ for which the corresponding handle is
not closed. Up to the factor 1

4
and up to the isomorphism between k- and p-

coordinates (compare the end of the proof of Corollary 4.1.7), dM |X is virtually
equal to the map

ω 7−→
(∫

An

ω

)
n=1,...,g

(4.74)

since due to Theorem 4.1.3, the space Ω(X) is generated by elements of the form
ω(V,W, 0, w), w ∈ L2(F ) (here with X := F (V,W )/Γ∗) because �rstly, the dual-
ity relation

∫
Ai
ωk = δi,k in Theorem 4.1.3 obviously implies linear independence

of the ωk, k = 1, . . . , g, and secondly, the dimension of Ω(X) (as a vector space
over C) on a complex curve X is equal to the genus g of the curve (cf. [6, Remark
17.10]). Now, we show that (4.74) is a vector space isomorphism. We choose a
basis of holomorphic 1-forms (ω1, . . . , ωg) with the duality relation

∫
Ai
ωj = δij

whose existence has been shown in Theorem 4.1.3. Let (a1, . . . , ag) ∈ Cg be given.

Choose ω :=
∑g

i=1 aiωi, we get
(∫

An
ω
)
n=1,...,g

= (a1, . . . , ag) by the duality re-

lation. This shows that (4.74) is onto. Consider two forms ω :=
∑g

i=1 aiωi and
ω̃ :=

∑g
i=1 ãiωi (with coe�cients ai, ãi ∈ C) such that∫

An

ω =

∫
An

ω̃ for alln = 1, . . . , g.

Then again due to the duality relation, we get

∀gn=1

g∑
i=1

∫
An

(ai − ãi)ωi = 0⇐⇒ ∀gn=1 an − ãn = 0. =⇒ ω = ω̃.

This shows that (4.74) is one-to-one. The linearity of (4.74) is clear. Thus,
(4.74) is a vector space isomorphism. Due to the Inverse Function Theorem (cf.
[23, p. 142], for example), the map M is locally invertible, in particular locally
one-to-one. Hence, we have proved the following lemma.
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Lemma 4.3.1. Let u0 ∈ L2(F ) be a �nite type potential. Then there exists a
tubular neighbourhood T of F (u0) in C2 such that for all u ∈ L2(F ) with the
property that F (u) has the same genus as F (u0) and F (u) ⊂ T , there holds:
m(u) = m(u0) implies F (u) = F (u0).

Now, we prove the main theorem for generic real-valued potentials (not necessarily
�nite type).

Theorem 4.3.2. Let u ∈ L2
R(F ) be a given potential with Fermi curve F (u).

Then there is a tubular neighbourhood T of F (u) in C2 such that for all v ∈ L2
R(F )

with F (v) ⊂ T , there holds the equivalence

m(u) = m(v)⇐⇒ F (u) = F (v).

Proof. The implication "⇐" is obvious since the moduli depend, by de�nition,
only on the Fermi curve, not on the potential itself. It remains to show the other
direction "⇒", that is, if the moduli of two admissible potentials (in the sense
mentioned in the theorem) are equal, then the corresponding Fermi curves are
equal. Let u ∈ L2

R(F ) and consider a suitable tubular neighbourhood T ⊂ C2 of
F (u) and the corresponding neighbourhood in the space of potentials U := {v ∈
L2
R(F ) : F (v) ⊂ T }. This neighbourhood U can be chosen as open: This is clear

if we intersect T with some compact set K ⊂ C2. Due to asymptotic freeness (cf.
[19, Theorem 2.35]), however, this also holds for the entire Fermi curve. More
precisely, by choosing K su�ciently large and for r > 0 su�ciently small, there
holds F (v) ⊂ T for all v ∈ Br(u).
Now let v ∈ U satisfym(u) = m(v). We construct canonical �nite-type sequences
(un)n∈N and (vn)n∈N converging to u and v, respectively, as n→∞, as it has been
done in Lemma 4.2.7. These sequences ful�ll due to m(u) = m(v)

mν(un) =

{
mν(u), ν ∈ Γ∗, |ν| ≤ n

0, ν ∈ Γ∗, |ν| > n.
, mν(vn) =

{
mν(u), ν ∈ Γ∗, |ν| ≤ n

0, ν ∈ Γ∗, |ν| > n

for all su�ciently large n ∈ N. There is an N ∈ N such that un, vn ∈ U for
all n ≥ N . Since m(un) = m(vn) for all n ≥ N and L2

R(F ) ⊂ L2(F ), there
holds F (un) = F (vn) for all n ≥ N by Lemma 4.3.1. Due to continuity, we get
F (u) = F (v) by performing n → ∞. More precisely, in [13, Theorem 4.1.3],
it has been proved that Fermi curves are locally described by the zero set of
a function holomorphic in k and continuous in u. Continuity of roots (cf. [3,
Lemma 3.4.11(1)]) yields continuity of u 7→ F (u) ∩ K, where K ⊂ C2 is some
compact subset. Due to asymptotic freeness (cf. [19, Theorem 2.35]), F (un)
converges to F (u) (as n → ∞) also in C2 \K proving continuity of u 7→ F (u).
The theorem is proved.

This theorem shows IsoF (u0) = Iso(u0) for u0 ∈ L2
R(F ). Hence, we may replace

Iso(u0) by IsoF (u0) in Corollary 4.2.11 yielding the desired parameterization of
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the isopsectral set in the case with boundedness condition. In the general case of
unbounded isospectral sets (Theorem 4.2.10), we may replace Iso(u0) by IsoF (u0)
as well but we only get a weaker result, namely that of Theorem 4.2.10.



Chapter 5

Outlook

In this chapter, we want to illustrate some perspectives for further research based
on the results of this work. These perspectives also include attempts we already
tried but unfortunately remained open since we could not �nd satisfying answers
after having spent quite a long time of research on them.
In our work, we �nally considered the isospectral problem for real-valued poten-
tials with smooth Fermi curve. A natural generalization would be to consider
arbitrary complex-valued potentials u0 ∈ L2(F ) whose Fermi curve F (u0) might
have singularities. A crucial step in which we made use of the smoothness of the
Fermi curve was the proof that the map u 7→ mf (u) into the �rst �nitely many
moduli is a submersion, cf. Theorem 4.1.11. In the proof of Lemma 4.2.8, we
used this to apply the Implicit Function Theorem to the equation (4.60),

φ

(
ŵ +

g∑
i=1

λiNi(ŵ), ũδ

)
= mf (u0),

eventually yielding the map LR+ε(ũ1,δ) → LR+2ε(ũδ) (4.63). Thanks to the sub-
mersion property of the moduli proved in Theorem 4.1.11, the rank of ∂

∂λ
Φ|λ=0

(with the map Φ (4.59) as in the proof of Lemma 4.2.8) was equal to g which made
the application of the Implicit Function Theorem possible. In the case of singu-
larities, we have dimR(kerφ′(v̂, ũ1,δ))

⊥ < g instead of dimR(kerφ′(v̂, ũ1,δ))
⊥ =

g in the proof of Lemma 4.2.8. So in general, there is a k > 0 such that
dimR(kerφ′(v̂, ũ1,δ))

⊥ = g − k, where k can be considered as the number of sin-
gularities. We have proved in this work that mν(u) = 0⇐⇒ cν = 0 for all ν ∈ Γ∗δ
(cf. (2.85) and Lemma 3.2.2), where the latter condition means that the cycle
Aν is degenerated into one point. If one was able to show the same result for
ν ∈ Γ∗f = Γ∗ \ Γ∗δ , also the singularities in the compact part could be character-
ized by mν = 0 for the respective ν ∈ Γ∗f . By neglecting the k moduli satisfying
mν = 0, one can de�ne -similarly to the map Φ (4.59)- a map

Φ : LR+ε(ũ1,δ)× U → R̃g−k, (v̂, λ) 7→ φ

(
v̂ +

g−k∑
i=1

λiNi(v̂), ũ1,δ

)
,

160
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where this time U ⊆ Rg−k (instead of U ⊆ Rg as in the proof of Lemma 4.2.8).
The Implicit Function Theorem can be applied again since ∂

∂λ
Φ|λ=0 has full rank

g−k. But there is one shortcoming: By neglecting the moduli satisfying mν = 0,
we have lost the control over them. Whereas in the later part of the proof of
Lemma 4.2.8, all other moduli mν , ν ∈ Γ∗f can be forced to be equal to mf (u0),
we can't say anything about the just neglected moduli. Will they remain equal
to zero (as desired) or not? One needs a condition which enforces those moduli
to remain zero. A �rst step could be to show that mν(u) = 0 implies that
the derivative dmν |u vanishes, too. The conjecture that this could be true is
motivated by the asymptotic model moduli m̃ν which ful�ll this condition. But
here, we are in the compact part of the Fermi curve so that the model moduli are
not de�ned. So one needs to �nd another way out which might require methods
of �nite type theory.
Let's discuss the generalization to complex-valued potentials, i.e. we have to drop
the conditions û(ν) = û(−ν) for all ν ∈ Γ∗ as well as ǔν = ǔ−ν for all ν ∈ Γ∗δ
for Fourier coe�cients and perturbed Fourier coe�cients. Already in Theorem
2.5.9, the �rst problems occur for complex-valued potentials: The estimate for
the critical point ζν analogous to (2.82) would be

|ζν | ≤ (|ǔν |+ |ǔ−ν |) · o
(

1

|ν|

)
, as |ν| → ∞. (5.1)

In the further course of the proof of Theorem 2.5.9, there appears an estimate for
the term ζν,1·ζν,2

hν(0)
. In the complex case, due to (5.1), this term would be equal to

ζν,1 · ζν,2
hν(0)

= o

(
1

|ν|2

)
· (|ǔν |+ |ǔ−ν |)2

|ǔν ǔ−ν |
= o

(
1

|ν|2

)(√
|ǔν |
|ǔ−ν |

+

√
|ǔ−ν |
|ǔν |

)2

,

as |ν| → ∞, which cannot be reasonably estimated. So it's quite doubtful whether
the assertion of Theorem 2.5.9 still holds for complex-valued potentials. During
our investigations of complex-valued potentials, i.e. before we restricted ourselves
to real-valued potentials, quotients as |ǔν |/|ǔ−ν | appeared several times. Since
in the complex case, ǔν and ǔ−ν have to be considered as independent, there is
no evidence why quotients like |ǔν |/|ǔ−ν | should remain bounded or even become
su�ciently small as |ν| → ∞.
Another problem induced by complex-valued potentials has already been dis-
cussed at the end of Section 3.1. For complex-valued u0 ∈ L2(F ), the corre-
sponding asymptotic model isospectral set is given by

Ĩsoδ(u0) = ×ν∈Γ∗δ/σ
{(eit

√
ǔ0,ν · ǔ0,−ν , e

−it√ǔ0,ν · ǔ0,−ν) : t ∈ C}.

Due to t ∈ C, the elements of Ĩsoδ(u0) will eventually leave the domain in which
the perturbed Fourier coe�cients are well-de�ned. In fact, this is the same prob-
lem we had to deal with in Section 4.2, namely in Theorem 4.2.10, where we
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intersected Iso(u0) with balls BR(u0) and had to choose to each R > 0 a di�er-

ent δ > 0. An analogous procedure could also be carried out for Ĩsoδ(u0) if u0 is
complex-valued. The corresponding results are then weaker in the same sense as
the assertion of Theorem 4.2.10 is weaker than the homeomorphism assertion of
Corollary 4.2.11.
This immediately leads to a next open question: Is it possible to choose a uniform
δ > 0 for the entire isospectral set? If this question can be answered with "yes",
there is hope that a homeomorphism as in Corollary 4.2.11 also exists if Iso(u0) is
unbounded. A �rst step to solve this problem would be to extend the perturbed
Fourier coe�cients along Iso(u0), i.e. one has to show that there exists a δ > 0
such that the Fourier coe�cients (ǔν)ν∈Γ∗δ

exist for all u ∈ Iso(u0). If Lemma 3.2.2
could be globalized in this sense, we would have |ǔν | = ξ|ν|2mν(u0)(1+O(1/|ν|)),
as |ν| → ∞ for all u ∈ Iso(u0), where the estimate by the error term 1+O(1/|ν|)
holds uniformly in u ∈ Iso(u0). This boundedness property of the perturbed
Fourier coe�cients along Iso(u0) would be an important step to extend them
beyond their actual domain of de�nition. The arising question is now: Does the
above error term 1 + O(1/|ν|) hold indeed uniformly on Iso(u0)? If we take a
look into the proof of Lemma 3.2.2, this question can be largely reduced to the
question whether the convergence

lim
|ν|→∞

∥∥∥∥ ∂∂kA±,ν(k + k±ν (û0), u)

∥∥∥∥ = 0

in Lemma 2.2.7 holds uniformly in u ∈ Iso(u0). If one could answer this question,
one would have achieved an essential step towards a possible choice of a uniform
δ > 0 in Iso(u0).
Besides the ansatz of determining Iso(u0) by a Cartesian product Iso(u1) ×
Ĩsoδ(u0) as in Corollary 4.2.11, there would also be the possibility of imitating
the procedure of determining Iso(u0) if u0 is a �nite type potential. In �nite
type theory, one assigns a divisor (cf. [6, 16.1]) D(u0) to the given potential
u0, where D(u0) is the pole divisor of the eigenfunction x 7→ ψ(k, x) of the
Schrödinger operator at k ∈ X normalized by ψ(k, 0) = 1, k ∈ X, where X is
the compacti�ed normalization of F (u0), cf. [19, Section 3.2], i.e. the support of
the divisor D(u0) is given by

suppD(u0) = {k ∈ X : there is an eigenfunction 0 6≡ ψ(k, ·) of−∆k + u0

with eigenvalueλ = 0 andψ(k, 0) = 0}.

In [19, Lemma 4.13], it has been shown that a Divisor D on X which is the pole
divisor of the normalized eigenfunction associated to some (�nite type) potential
u ∈ Iso(u0) necessarily satis�es the linear equivalence relation

D + σ(D) ∼= K +Q+ +Q−, (5.2)
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where K is the canonical divisor on X, σ the holomorphic involution well-known
from Section 2.3 and Q+ and Q− are some marked points at in�nity which yield
the two-point-compacti�cation of X. In �nite type theory, one solves the isospec-
tral problem by parameterizing all divisors on X ful�lling this linear equivalence.
Since in the �nite type case, there exists a 1-1-correspondence between divisors
on X and potentials u ∈ Iso(u0), the isospectral problem can be solved by pa-
rameterizing those set of divisors. So far the �nite type case. If we want to
transfer this to in�nite type potentials, one has to �nd a relation analogous to
(5.2). We expect a relation similar to that of [28, Theorem 3.6], namely

D + σ(D) = b+

(
1

〈φ, ψ〉L2

)
,

where b is the divisor of branch points of the covering X → C, k = (k1, k2) 7→ k1

and 〈φ, ψ〉L2 is the L2-scalar product of the eigenfunction ψ with the correspond-
ing dual eigenfunction φ (i.e. the eigenfunction corresponding to the transposed
Schrödinger operator). Analogously to Chapter 3, one would have to do an
asymptotic analysis for the divisor points in the asymptotic part of the Fermi
curve. These points are expected to reside within the excluded domains. Again,
the model Fermi curve introduced in Section 2.5 should serve as a good approxi-
mation where the divisor points of the asymptotic part can be computed easily.
The computation of the divisor points of the actual Fermi curve will require per-
turbation theory once again as it has been done in Chapter 3.
An important step would then be to show that there exists an isomorphism be-
tween potentials and divisors. This leads to another interesting question we met
during our research: Does there exist a local isomorphism between potentials and
divisors? Here, "local" means a local neighbourhood in the L2-space of potentials
(and not restricted to some isospectral set as we've just explained in the �nite type
case). We tried to answer this question in the following Dirac setting, i.e. instead

of the Schrödinger operator, we consider the Dirac operator D̃(V,W, p1) (4.3):
Let (V,W ) ∈ L2(F ) × L2(F ) be given and (p1,n(V,W ), p2,n(V,W ))n∈Γ∗ be the
corresponding sequence of the divisor points, i.e. (p1,n(V,W ), p2,n(V,W )) ∈ C2 is
the nth pole of the normalized eigenfunction ψ of (4.3) to the eigenvalue −p2π.
Let Ω : (L2(F )× L2(F ))2 → C be the symplectic form already well-known from

(4.19). Consider for n ∈ Γ∗ the gradients δp1,n := ∂p1,n

∂(V,W )
∈ L2(F ) × L2(F ),

δp2,n := ∂p2,n

∂(V,W )
∈ L2(F )×L2(F ) as elements in L2(F )×L2(F ) as in [23, p. 127].

The arising question is whether the δp1,i, δp2,i, i ∈ Γ∗ can serve as so-called Dar-
boux coordinates of L2(F )× L2(F ), cf. [14, Theorem 5.1], [28, chapter 6]. More
precisely, we are interested in the question whether the following holds:

Ω(δp1,i, δp1,j) = 0, Ω(δp1,i, δp2,j) = κiδij, Ω(δp2,i, δp2,j) = 0, i, j ∈ Γ∗,
(5.3)

where κi 6= 0 are some constants. The veri�cation of these relations would be an
important step in order to prove that (V,W ) 7→ (p1,n(V,W ), p2,n(V,W ))n∈Γ∗ is a
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local isomorphism. In [14, Theorem 5.5], this problem has been solved for the
sinh-Gordon equation. In order to gain a �rst insight into whether such Darboux
coordinates also exist in the Dirac case, it makes sense to �rstly consider special
cases where everything can be computed explicitly. The easiest case is clearly
the free case V = W = 0. Here, all singularities of the corresponding Fermi
curve are ordinary double points and these are exactly the divisor points. The
eigenfunctions can be written down by explicit formulas. In this case, we veri�ed
(5.3). In a next step, we considered the more general case for (V,W ) 6= (0, 0) that
all divisor points are contained in the set of points p = (p1, p2) ∈ C2 where the

kernel of D̃(V,W, p1) + πp2 is two-dimensional (which, of course, is still not the
generic case since divisor points may also be smooth points of the Fermi curve).
In particular, this case includes the free case V = W = 0. By choosing bases
{ψ′, ψ′′} of the respective two-dimensional eigenspaces as well as corresponding
bases {φ′, φ′′} of the dual eigenspaces (here, the dependence on the index i ∈ Γ∗

is suppressed), we could -with a suitable normalization (namely ψ = (ψ1, ψ2) 7→
ψ1(0)+ψ2(0)) and by making use of the fact that (p1,n(V,W ), p2,n(V,W ))n∈Γ∗ are
divisor points- compute δp1,n, δp2,n in terms of components of the eigenfunction
and the dual eigenfunction. For instance, we computed for n ∈ Γ∗

δp1,n =

−
(

1
c+
φ2ψ1

1
c−
φ1ψ2

)
〈
φ, ∂D̃

∂p1
ψ
〉
L2×L2

|p=(p1,n(V,W ),p2,n(V,W )),

where c± := κ̌2 ± κ̌1 (with κ̌ as in (4.3)) and ψ := ψ′′ − ψ′, φ := φ′ + φ′′.
In order to verify the �rst identity Ω(δp1,m, δp1,n) = 0 in (5.3), one has to show
that for all m,n ∈ Γ∗∫

F

(φ2,mψ1,mφ1,nψ2,n − φ2,nψ1,nφ1,mψ2,m)d2x = 0. (5.4)

Following the idea of the proof of [14, Theorem 5.5], we tried analogously to [14,
Lemma 5.2, Lemma 5.3] to deduce di�erential equations for the components ψ
and φ in order to express the integrand of the integral in (5.4) as a total variation
of some periodic function which would then imply (5.4). In contrast to the sinh-
Gordon case, in our setting, not all derivatives of ψ1, ψ2, φ1, φ2 can be expressed
in terms of these components due to the look of D̃(V,W, p1): One sees directly by
(4.3) that ∂̄ψ1 and ∂ψ2 can be expressed by the components of ψ by computing

(D̃(V,W, p1) +πp2)ψ = 0. For ∂̄ψ2 and ∂ψ1, however, this di�erential equation is
not able to provide analogous expressions. Although we made di�erent kinds of
ansatzes, we could not succeed in expressing the mentioned integrand as a total
variation. In our eyes, this lack of derivative identities in the Dirac setting (a
problem which doesn't occur in the sinh-Gordon setting) is the crucial point why
we didn't succeed. On the other hand, we couldn't disprove (5.3) either so that
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the question whether there exist Darboux coordinates in the Dirac case is still
open. Maybe one needs other tools we didn't see so far.
These were the open questions (we have already been thinking about ourselves)
that could be interesting to investigate in the future.
Two other perspectives to continue the isospectral problem (which we, however,
haven't thought about ourselves, yet) would be �rstly, to generalize this work to
higher dimensions (the obvious next generalization would be to consider three-
dimensional Schrödinger operators which might also be the most important case
considered from a physicist's point of view) and secondly, to consider the isospec-
tral problem for Bloch varieties, cf. (1.4), i.e. to determine the set

IsoB(u0) := {u ∈ L2(F ) : B(u) = B(u0)}

for a given u0 ∈ L2(F ). With these suggestions, we want to conclude this work.



Appendix A

Two lemmata about Dirac operators

In this appendix, we give the proof of [27, Lemma 3.2] (denoted in the following
as Lemma A.1) since this lemma turned out to be a very important tool for our
considerations in Section 4.1. Its proof is essentially taken from the respective
proof in [27]. However, we supplemented the proof by additional computations
in order to make it more comprehensible to the reader. Thereafter in the subse-
quent Lemma A.2, we will show an analogon to Lemma A.1(ii) for Schrödinger
potentials.

Lemma A.1. Let (V,W ) ∈ L2(F )×L2(F ) and let g be a meromorphic function
with �nitely many poles on some open neighbourhood U of F (V,W )/Γ∗. Then
there exists a meromorphic function Asingg (p1) from the complex plane p1 ∈ C into

the bounded operators from the Banach spaces Lp(F )×Lp(F ) into Lp
′
(F )×Lp′(F )

for all 1 < p′ < p <∞ with the following properties:

(i) For all (n1, n2) ∈ Z2 and all p1 ∈ C, the following identity is valid:

Asingg (p1)ψn1κ̂+n2κ̌ = ψn1κ̂+n2κ̌A
sing
g (p1 + n1).

(ii) The commutator [Asingg (p1), D̃(V,W, p1)] (with D̃(V,W, p1) de�ned in (4.3))
does not depend on p1 and there holds

[Asingg (p1), D̃(V,W, p1)] =

(
0 wg

κ̌2−iκ̌1
vg

κ̌2+iκ̌1
0

)
with some functions vg, wg ∈ L2(F ). In particular, the commutator is equal

to ∂D̃(V,W,p1)
∂(V,W )

(vg, wg).

(iii) For all δv, δw ∈ L2(F ), there holds (4.20), i.e.

Ω((δv, δw), (vg, wg)) =
∑
ζ∈U

resζ(g · ω(V,W, δv, δw)),

166
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where Ω denotes the symplectic form de�ned in (4.19) and ω(V,W, δv, δw)
the holomorphic 1-form de�ned in (4.18).

Proof. If g is a linear combination of two functions g1, g2 with associated functions
Asingg1

and Asingg2
ful�lling conditions (i)-(iii), then the linear combination Asingg of

the two associated functions has the required properties. Hence, we may assume
that g has a pole at one point [k′] ∈ F (V,W )/Γ∗, where [k] := {k + ν : ν ∈ Γ∗}
for k ∈ C2. As in the proof of Lemma 4.1.2, let F(·) denote the local sum of
g · P (with P as in (4.10)) over all sheets of F (V,W )/Γ∗ considered as a covering
space over p1 ∈ C which contains the element [k′] 1, cf. the proof of Lemma
4.1.2 for a more precise explanation of the construction of F. By de�nition, this
is a meromorphic function from some neighbourhood of p′1 into the �nite rank
operators on L2(F ) × L2(F ) (recall the relation k = p1κ̂ + p2κ̌ between k- and
p-coordinates as in Section 4.1). Therefore, the singular part p1 7→ Fsing(p1) is
a meromorphic function on the whole plane p1 ∈ C. We claim that the in�nite
sum

Asingg (p1) :=
∑
n∈Z2

ψn1κ̂+n2κ̌F
sing(p1 + n1)ψ−n1κ̂−n2κ̌

converges in the strong operator topology. By construction and due to [27, The-
orem 2.3], the operator-valued function Fsing(p1) is a �nite sum of operators of

the form χ̃ 7→
〈〈
φ̃, χ̃

〉〉
(p1−p′1)−lψ̃ with elements φ̃ and ψ̃ of the Banach spaces⋂

q<∞ L
q(F )× Lq(F ) ⊂ L2(F )× L2(F ) and with the bilinear form 〈〈·, ·〉〉 as de-

�ned in (4.11).
For l ∈ N, q1 ∈ (0, 1) and p1 − p′1 ∈ C \ Z, we now consider the series

dl(p1, q1) :=
∑
n∈Z

(p1 − p′1 + n)−l exp(2πinq1).

For l > 1, the series obviously converges due to the convergence of
∑

n∈N n
−l for

l > 1. So let's consider the case l = 1. We claim that

d1(p1, q1) =
2πi exp(2πi(p′1 − p1)q1)

1− exp(2πi(p′1 − p1))
for all q1 ∈ (0, 1), p1 − p′1 ∈ C \ Z. (A.1)

Thereto, we have to show that the nth Fourier coe�cient of the Fourier decom-
position of the right hand side of (A.1) (considered as a periodic function in q1)

1Compare [27, Remark 2.19]: "In the sequel we shall meet quite often complex spaces, which

are locally biholomorphic to �nite sheeted coverings over open subsets of Cn. If we restrict these

coverings to the preimage of small open balls, then di�erent sheets without branch points are not

connected with each other. However, in arbitrary small neighbourhoods of branch points several

sheets are connected. In the sequel we shall call those sheets, whose restriction to arbitrary

small neighbourhoods of a given element contain this element, the local sheets which contain

this element."
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equals 1/(p1 − p′1 + n). We compute with ψn(q1) := exp(2πinq1)∫ 1

0

exp(2πi(p′1 − p1)q1)ψ−n(q1)dq1 =

∫ 1

0

exp(2πi(p′1 − p1 − n)q1)dq1 =

=
1

2πi(p′1 − p1 − n)
(exp(2πi(p′1 − p1)) exp(−2πin)︸ ︷︷ ︸

=1

−1).

This implies

F
(

2πi exp(2πi(p′1 − p1) ·)
1− exp 2πi(p′1 − p1)

)
(n) =

exp(2πi(p′1 − p1))− 1

(1− exp(2πi(p′1 − p1)))(p′1 − p1 − n)
=

=
1

p1 − p′1 + n
,

which proves the claim. Moreover, we have

2πi(p1 − p′1)
∑
n∈Z

exp(2πinq1)

(p1 − p′1 + n)l+1
+ 2πi

∑
n∈Z

n exp(2πinq1)

(p1 − p′1 + n)l+1
=

= 2πi
∑
n∈Z

exp(2πinq1)

(p1 − p′1 + n)l
= 2πidl(p1, q1),

which implies the following recursion equation

2πi(p1 − p′1)dl+1(p1, q1) +
∂dl+1(p1, q1)

∂q1

= 2πidl(p1, q1). (A.2)

We now de�ne d̃l(p1, q1) := exp(2πi(p1 − p′1)q1)dl(p1, q1). We have the following
identitiy of derivatives:

∂d̃l+1(p1, q1)

∂q1

= exp(2πi(p1 − p′1)q1)

(
∂dl+1(p1, q1)

∂q1

+ 2πi(p1 − p′1)dl+1(p1, q1)

)
=

(A.2)
= 2πi exp(2πi(p1 − p′1)q1)dl(p1, q1) = 2πid̃l(p1, q1) = 2πi

∂

∂q1

∫ q1

0

d̃l(p1, r)dr.

Hence, d̃l+1(p1, q1)− 2πi
∫ q1

0
d̃l(p1, r)dr is constant with respect to q1. Therefore,

d̃l+1(p1, q1)− 2πi

∫ q1

0

d̃l(p1, r)dr
set q1=0

= dl(p1, 0) =

set q1=1
= exp(2πi(p1 − p′1))dl(p1, 1)− 2πi

∫ 1

0

d̃l(p1, r)dr.

(A.3)

Due to the Riemann-Lebesgue Lemma [26, Theorem IX.7] for l > 1, the functions
dl(p1, q1) are continuous and periodic with period 1 with respect to q1. Therefore,
dl(p1, 0) = dl(p1, 1). This yields together with (A.3)

dl(p1, 0) = exp(2πi(p1 − p′1))dl(p1, 0)− 2πi

∫ 1

0

d̃l(p1, r)dr
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which implies dl(p1, 0) = 2πi
exp(2πi(p1−p′1))−1

∫ 1

0
d̃l(p1, r)dr. Finally, again due to

(A.3),

d̃l+1(p1, q1) = 2πi

(∫ q1

0

d̃l(p1, r)dr +
1

exp(2πi(p1 − p′1))− 1

∫ 1

0

d̃l(p1, r)dr

)
.

(A.4)

Since d̃1(p1, q1) = 2πi(1− exp(2πi(p′1 − p1)))−1, cf. (A.1), the functions d̃l(p1, q1)

are thus polynomials with respect to q1 and (exp(2πi(p′1 − p1))− 1)−1d̃1(p1, q1).
In a next step, we show that the unique solution of (A.4) is given by the generating
function∑

l∈N

tl−1d̃l(p1, q1) =
2πi(1− exp(2πi(p′1 − p1)))−1 exp(2πiq1t)

1− (exp(2πi(p1 − p′1))− 1)−1(exp(2πit)− 1)
. (A.5)

The recursion formula (A.4) is an equation of the following form with correspond-
ing parameters a, b, c ∈ C

fl+1(x) = a

(∫ x

0

fl(r)dr + b

∫ 1

0

fl(r)dr

)
with f1(x) ≡ c. (A.6)

This yields with the ansatz of a generating function F (t, x) :=
∑∞

l=0 t
lfl+1(x)

∞∑
l=1

tlfl+1(x) = a

(
∞∑
l=1

∫ x

0

fl(r)t
ldr + b

∞∑
l=1

∫ 1

0

fl(r)t
ldr

)
⇐⇒

⇐⇒ F (t, x)− f1(x)︸ ︷︷ ︸
=c

= a

(
t

∫ x

0

F (t, r)dr + bt

∫ 1

0

F (t, r)dr

)
.

A solution of this integral equation is given by F (t, x) := c exp(atx)
1−b(exp(at)−1)

since

a

(
t · c(exp(atx)− 1)

at(1− b(exp(at)− 1))
+ bt · c(exp(at)− 1)

at(1− b(exp(at)− 1))

)
=

=
c exp(atx)− c+ cb(exp(at)− 1)

1− b(exp(at)− 1)
=

c exp(atx)

1− b(exp(at)− 1)
− c.

Under the restriction that F ful�lls the ansatz F (t, x) =
∑∞

l=0 t
lfl+1(x), this solu-

tion is unique since fl(x) is for all l ∈ N uniquely de�ned by (A.6) provided that
a, b and c ≡ f1(x) are given. By using the respective parameters a, b, c in (A.6) in
our case, cf. (A.4), the representation (A.5) is thus proven. This representation
shows that the functions dl(p1, q1) may be considered as meromorphic functions
with respect to p1 ∈ C whose values are bounded functions of q1 ∈ [0, 1]. We will
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prove the convergence of the in�nite sum in Asingg (in the strong operator topol-
ogy) by using Fourier decomposition. To this, we recall that due to the de�nition
of Fourier transformation and the inverse Fourier transformation, namely

f̂(n) =

∫ 1

0

e−2πinxf(x)dx, f(x) =
∑
n∈Z

e2πinxf̂(n), with f ∈ L2(R/Z),

there holds for f, g ∈ L2(R/Z)

∑
n∈Z

e2πinxf̂(n)ĝ(n) =
∑
n∈Z

∫ 1

0

e2πinxf̂(n)e−2πintg(t)dt =

∫ 1

0

f(x− t)g(t)dt. (A.7)

Hence, for q1 ∈ (0, 1) and q2 ∈ R/Z, there holds with q := (q1, q2) and the identity∑
n∈Z exp(2πin(q2 − q′2)) = δ(q2 − q′2) (∗)

 ∑
(n1,n2)∈Z2

ψn1κ̂+n2κ̌ψ̃

〈〈
φ̃, ψ−n1κ̂−n2κ̌χ̃

〉〉
(p1 − p′1 + n1)l

 (q1, q2) =

= ψ̃(q)
∑

(n1,n2)∈Z2

ψn1κ̂+n2κ̌(q)
1

(p1 − p′1 + n1)l

2∑
i=1

∫
F

φ̃3−i(q
′)ψ−n1κ̂−n2κ̌(q

′)χ̃i(q
′)dq′ =

(∗)
= C(Γ∗)ψ̃(q)

∑
n∈Z

e2πinq1
1

(p1 − p′1 + n)l

2∑
i=1

∫ 1

0

φ̃3−i(q
′
1, q2)e−2πinq′1χ̃i(q

′
1, q2)dq′1 =

= C(Γ∗)ψ̃(q)
∑
n∈Z

e2πinq1F(dl(p1, q1))(n)
2∑
i=1

F(φ̃3−i(·, q2)χ̃i(·, q2))(n) =

(A.7)
= C(Γ∗)

∫ 1

0

dl(p1, q1 − q′1)

(
ψ̃1(q)φ̃2(q′1, q2)χ̃1(q′1, q2) + ψ̃1(q)φ̃1(q′1, q2)χ̃2(q′1, q2)

ψ̃2(q)φ̃2(q′1, q2)χ̃1(q′1, q2) + ψ̃2(q)φ̃1(q′1, q2)χ̃2(q′1, q2)

)
dq′1,

where the constant C(Γ∗) only depends on the lattice Γ∗ and appears due to a
coordinate transformation κ̂ 7→

(
1
0

)
, κ̌ 7→

(
0
1

)
which we used in the above com-

putation in order to apply the one-dimensional Fourier transform used in (A.7).
Due to the properties of dl(p1, q1) discussed before, in particular the bounded-
ness with respect to q1, the above integral is �nite. This proves the convergence
of the in�nite sum Asingg . Furthermore, due to Hölder's inequality [25, Theoem
III.1(c)], the function Asingg is a meromorphic function from the complex plane

p1 ∈ C into the bounded operators from Lp(F ) × Lp(F ) to Lp
′
(F ) × Lp′(F ) for

all 1 < p′ < p <∞.
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The transformation property (i) follows for all m = (m1,m2) ∈ Z2 from

ψm1κ̂+m2κ̌A
sing
g (p1 +m1) =

∑
n∈Z2

ψ(m1+n1)κ̂+(m2+n2)κ̌F
sing(p1 +m1 + n1)ψ−n1κ̂−n2κ̌ =

=
∑
n∈Z2

ψn1κ̂+n2κ̌F
sing(p1 + n1)ψ(m1−n1)κ̂+(m2−n2)κ̌ =

= Asingg (p1)ψm1κ̂+m2κ̌,

where in the second step, we used an index transformation n = (n1, n2) 7→ n−m.
In order to prove the commutator identity in (ii), we show in a �rst step the
following transformation property of the Dirac operator, namely

D̃(V,W, p1)ψn1κ̂+n2κ̌ = ψn1κ̂+n2κ̌(D̃(V,W, p1 + n1) + n2π1l). (A.8)

Since the o�-diagonal entries of D̃(V,W, p1) are multiplication operators and are
independent of p1, cf. (4.3), the transformation (A.8) obviously holds for the o�-

diagonal entries of D̃(V,W, p1). So let's consider the diagonal entries. For some
test function χ, we have

−∂̄(ψn1κ̂+n2κ̌χ) = −1

2
(∂x1 + i∂x2)(e2πi〈n1κ̂+n2κ̌,x〉χ) =

= e2πi〈n1κ̂+n2κ̌,x〉(−πi(n1κ̂1 + n2κ̌1 + i(n1κ̂2 + n2κ̌2))χ− ∂̄χ) =

= e2πi〈n1κ̂+n2κ̌,x〉(π(n1(κ̂2 − iκ̂1) + n2(κ̌2 − iκ̌1))χ− ∂̄χ).

Hence,

p1π(κ̂2 − iκ̂1)− ∂̄
κ̌2 − iκ̌1

(ψn1κ̂+n2κ̌χ) = ψn1κ̂+n2κ̌

(
(p1 + n1)π(κ̂2 − iκ̂1)− ∂̄

κ̌2 − iκ̌1

+ n2π

)
χ.

Analogously, we compute for the second diagonal term

∂(ψn1κ̂+n2κ̌χ) =
1

2
(∂x1 − i∂x2)(e2πi〈n1κ̂+n2κ̌,x〉χ) =

= e2πi〈n1κ̂+n2κ̌,x〉(πi(n1κ̂1 + n2κ̌1 − i(n1κ̂2 + n2κ̌2))χ+ ∂χ) =

= e2πi〈n1κ̂+n2κ̌,x〉(π(n1(κ̂2 + iκ̂1) + n2(κ̌2 + iκ̌1))χ+ ∂χ)

and hence,

p1π(κ̂2 + iκ̂1) + ∂

κ̌2 + iκ̌1

(ψn1κ̂+n2κ̌χ) = ψn1κ̂+n2κ̌

(
(p1 + n1)π(κ̂2 + iκ̂1) + ∂

κ̌2 + iκ̌1

+ n2π

)
χ.

This proves (A.8). Therefore, by writing for simplicity D̃(p1) = D̃(V,W, p1), the
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commutator is equal to

[Asingg (p1), D̃(p1)] =
∑
n∈Z2

[
ψn1κ̂+n2κ̌F

sing(p1 + n1)ψ−n1κ̂−n2κ̌, D̃(p1)
]

=

(A.8)
=

∑
n∈Z2

[
ψn1κ̂+n2κ̌F

sing(p1 + n1)ψ−n1κ̂−n2κ̌, ψn1κ̂+n2κ̌D̃(p1 + n1)ψ−n1κ̂−n2κ̌

]
=

=
∑
n∈Z2

ψn1κ̂+n2κ̌

[
Fsing(p1 + n1), D̃(p1 + n1)

]
ψ−n1κ̂−n2κ̌.

The operator valued functions F(·) and D̃(·) commute pointwise because the

projection P is the spectral projection of D̃(·) 2. Hence,

[Fsing(p1), D̃(p1)] = −[Fhol(p1), D̃(p1)], (A.9)

where Fhol(·) denotes the holomorphic part in the Laurent expansion of F(·). The
Dirac operator

D̃(p1) =

(
(p1−p′1)π(κ̂2−iκ̂1)−∂̄

κ̌2−iκ̌1

W
κ̌2−iκ̌1

V
κ̌2+iκ̌1

(p1−p′1)π(κ̂2+iκ̂1)+∂

κ̌2+iκ̌1

)
+

(
p′1π(κ̂2−iκ̂1)

κ̌2−iκ̌1
0

0
p′1π(κ̂2+iκ̂1)

κ̌2+iκ̌1

)

has only linear and constant terms with respect to p1−p′1. Therefore, the powers
of p1−p′1 in the left hand side of (A.9) are terms (p1−p′1)j for integers j ≤ 0 and
the powers of p1−p′1 in the right hand side of (A.9) are terms (p1−p′1)j for integers
j ≥ 0. In order that (A.9) can be satis�ed, the commutators corresponding to
all integers j 6= 0 must necessarily vanish such that j = 0 is the only remaining
integer corresponding to non-trivial commutators. More precisely, denoting by
F−1 the residue of the operator-valued form F(p1)dp1 at the pole p1 = p′1, we get

[Asingg (p1), D̃(p1)] = π
∑
κ∈Γ∗

ψκ

[
F−1,

( κ̂2−iκ̂1

κ̌2−iκ̌1
0

0 κ̂2+iκ̂1

κ̌2+iκ̌1

)]
ψ−κ. (A.10)

This shows that the commutator [Asingg (p1), D̃(p1)] does not depend on p1. Set

d1 := κ̂2−iκ̂1

κ̌2−iκ̌1
, d2 := κ̂2+iκ̂1

κ̌2+iκ̌1
and D :=

(
d1 0
0 d2

)
. We decompose F−1 =:

(
f11 f12

f21 f22

)
into its diagonal and o�-diagonal part F−1 = Fdiag−1 + Foff−1 =:

(
f11 0
0 f22

)
+
(

0 f12

f21 0

)
.

Clearly,
[
Fdiag−1 , D

]
= 0 since D is diagonal and d1, d2 are constant multiplication

operators. Hence, we may replace in (A.10) F−1 by F
off
−1 . Due to

(
0 f12

f21 0

) (
d1 0
0 d2

)
=(

0 f12d2

f21d1 0

)
and

(
d1 0
0 d2

) (
0 f12

f21 0

)
=
(

0 f12d1

f21d2 0

)
, the diagonal elements in (A.10)

vanish. Moreover,
[
Foff−1 , D

]
=
(

0 f12(d2−d1)
f21(d1−d2) 0

)
. We now compute the

2See also the proof of Lemma 4.1.2 where we explicitly showed that D̃(·) and F(·) share the
same eigenfunction ψ̃.
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o�-diagonal elements of (A.10) explicitly. Thereto, we use ψκ[F−1, D]ψ−κ =
[ψκF−1ψ−κ, D] for all κ ∈ Γ∗ which follows again from the fact that the en-
tries of D are constant multiplication operators. Now recall that, by de�nition,
for χ ∈ L2(F )× L2(F ) and κ ∈ Γ∗, ψκF−1ψ−κ(χ) is of the form

ψκψ̃
〈〈
φ̃, ψ−κχ

〉〉
= ψκψ̃

∫
F

(φ̃2(x′)ψ−κ(x
′)χ1(x′) + φ̃1(x′)ψ−κ(x

′)χ2(x′))dx′

evaluated at p1 = p′1 if we assume that the pole p′1 of g is of order one and that
P is holomorphic at p′1

3. Since
∑

κ∈Γ∗ ψκ(x) is equal to µ(F )δ(x) with Dirac's
δ-function δ(x), we have∑
κ∈Γ∗

ψκψ̃
〈〈
φ̃, ψ−κχ

〉〉
= µ(F )ψ̃(x)

∫
F

δ(x− x′)(φ̃2(x′)χ1(x′) + φ̃1(x′)χ2(x′))dx′ =

= µ(F )ψ̃(x)(φ̃2(x)χ1(x) + φ̃1(x)χ2(x)) = µ(F )

(
ψ̃1φ̃2 ψ̃1φ̃1

ψ̃2φ̃2 ψ̃2φ̃1

)
χ.

Hence, for the eigenfunctions φ̃, ψ̃, the in�nite sum χ 7→
∑

κ∈Γ∗ ψκψ̃
〈〈
φ̃, ψ−κχ

〉〉
converges in the strong operator norm topology to the operator µ(F )

(
ψ̃1φ̃2 ψ̃1φ̃1

ψ̃2φ̃2 ψ̃2φ̃1

)
,

where the functions in the entries of this matrix are considered as operators of
multiplication with these functions. Therefore, there is an α ∈ C \ {0} such that

[Asingg (p1), D̃(p1)] = αµ(F )π

(
0 (d2 − d1)ψ̃1φ̃1

(d1 − d2)ψ̃2φ̃2 0

)
with d1, d2 the en-

tries of the diagonal matrix in (A.10) as de�ned before. Since the variation

of the Dirac operator D̃(V,W, p1) with respect to (V,W ) equals the linear op-

erator ∂D̃(V,W,p1)
∂(V,W )

: (δv, δw) 7→
(

0 δw
κ̌2−iκ̌1

δv
κ̌2+iκ̌1

0

)
, there are unique functions

vg, wg ∈ L2(F ) such that

[Asingg (p1), D̃(V,W, p1)] =
∂D̃(V,W, p1)

∂(V,W )
(vg, wg) =

(
0 wg

κ̌2−iκ̌1
vg

κ̌2+iκ̌1
0

)
.

More precisely,

vg := −αµ(F )π(d2 − d1)(κ̌2 + iκ̌1)ψ̃2φ̃2, wg := αµ(F )π(d2 − d1)(κ̌2 − iκ̌1)ψ̃1φ̃1

(A.11)

3This is clearly a special case. For our purposes in Section 4.1, however, the reduction
to these assumptions is justi�ed since the meromorphic function g considered there has only
poles of �rst order. Moreover, since possible zeroes of the denominator of P are discrete points
on the Fermi curve, we may choose the A-cycles in (4.8) such that possible poles of P are
circumnavigated.
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with the respective choice of eigenfunction ψ̃ and dual eigenfunction φ̃ as before
according to the term F−1. This proves assertion (ii).
In [27, Lemma 3.1], it has been shown that the holomorphic 1-forms (4.18) ful�ll
the trace formula

ω(V,W, δv, δw) = tr

(
P

(
0 δw

κ̌2−iκ̌1
δv

κ̌2+iκ̌1
0

))
dp1

π
.

Here, the trace of an operator T : L2(F ) × L2(F ) → L2(F ) × L2(F ), χ 7→(
T11 T12
T21 T22

)
χ is de�ned by (compare [30, De�nition VI.5.7] for the de�nition of the

trace operator in functional analysis)

tr(T ) :=
1

µ(F )

∑
κ∈Γ∗

〈(T11 + T22)ψκ, ψκ〉L2(F ) =
1

µ(F )

∑
κ∈Γ∗

∫
F

ψκ(T11 + T22)ψ−κ,

where the property that 1√
µ(F )

ψκ, κ ∈ Γ∗, de�nes an orthonormal (Schauder)

basis of L2(F ) is essential.
Now, the total residue of the form g · ω(V,W, δv, δw) on U is equal to∑
ζ∈U

resζ(g · ω(V,W, δv, δw)) =
∑
ζ∈U

resζ

(
tr

(
g · P

(
0 δw

κ̌2−iκ̌1
δv

κ̌2+iκ̌1
0

))
dp1

π

)
=

= tr

(
resp1=p′1

(
F(p1)

(
0 δw

κ̌2−iκ̌1
δv

κ̌2+iκ̌1
0

)
dp1

π

))
=

1

π
tr

(
F−1

(
0 δw

κ̌2−iκ̌1
δv

κ̌2+iκ̌1
0

))
=

=
1

πµ(F )

∑
κ∈Γ∗

∫
F

ψκ

(
f12

δv

κ̌2 + iκ̌1

+ f21
δw

κ̌2 − iκ̌1

)
ψ−κ.

We already showed in the proof of (ii) that for χ ∈ L2(F ) × L2(F ), there holds
for some α ∈ C \ {0}

(F−1χ)(x) = αψ̃(x)

∫
F

(φ̃2(x′)χ1(x′) + φ̃1(x′)χ2(x′))dx′ =

= α

∫
F

(
ψ̃1(x)φ̃2(x′) ψ̃1(x)φ̃1(x′)

ψ̃2(x)φ̃2(x′) ψ̃2(x)φ̃1(x′)

)(
χ1(x′)

χ2(x′)

)
dx′.

Therefore, again due to
∑

κ∈Γ∗ ψκ(x) = µ(F )δ(x),

1

πµ(F )

∑
κ∈Γ∗

∫
F

ψκ(x)

(
f12(x)

δv(x)

κ̌2 + iκ̌1

+ f21(x)
δw(x)

κ̌2 − iκ̌1

)
ψ−κ(x)dx =

=
α

πµ(F )

∑
κ∈Γ∗

∫
F

∫
F

ψκ(x)

(
ψ̃1(x)φ̃1(x′)δv(x′)

κ̌2 + iκ̌1

+
ψ̃2(x)φ̃2(x′)δw(x′)

κ̌2 − iκ̌1

)
ψ−κ(x

′)dx′dx =

=
α

π

∫
F

∫
F

δ(x− x′)

(
ψ̃1(x)φ̃1(x′)δv(x′)

κ̌2 + iκ̌1

+
ψ̃2(x)φ̃2(x′)δw(x′)

κ̌2 − iκ̌1

)
dx′dx =
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=
α

π

∫
F

(
ψ̃1(x)φ̃1(x)δv(x)

κ̌2 + iκ̌1

+
ψ̃2(x)φ̃2(x)δw(x)

κ̌2 − iκ̌1

)
dx =

(A.11)
=

1

π2µ(F )(d2 − d1)|κ̌|2

∫
F

(wg(x)δv(x)− vg(x)δw(x)) dx.

In order to �nally show assertion (iii), it remains to be proved that d2 − d1 =
2i

µ(F )|κ̌|2 . We compute

d2 − d1 =
κ̂2 + iκ̂1

κ̌2 + iκ̌1

− κ̂2 − iκ̂1

κ̌2 − iκ̌1

=
1

|κ̌|2
((κ̂2 + iκ̂1)(κ̌2 − iκ̌1)− (κ̂2 − iκ̂1)(κ̌2 + iκ̌1)) =

=
2i

|κ̌|2
(κ̂1κ̌2 − κ̂2κ̌1) =

2i

|κ̌|2
det(κ̂, κ̌) =

2i

|κ̌|2µ(F )
,

where in the last step, we made use of the fact that the generators γ̂, γ̌ ∈ C2

of the lattice Γ can be chosen such that (written as columns of a 2 × 2-matrix)
(γ̂, γ̌)T (κ̂, κ̌) = 1l, cf. [27, p. 41] 4. Hence, µ(F ) = det(γ̂, γ̌) = det((κ̂, κ̌)−1) =

1
det(κ̂,κ̌)

. Finally, assertion (iii) is proved.

In the case that (V,W ) is a Schrödinger potential, the Fermi curve is symmetric
with respect to the holomorphic involution σ : C2 → C2, k 7→ −k, cf. Section
2.3. If we choose the meromorphic function g in Lemma A.1 anti-symmetric
with respect to σ as well, we can achieve vg = 0 as the following lemma shows.
Moreover, we show another result for symmetric g. These are new results.

Lemma A.2. Let u ∈ L2(F ), (V,W ) :=
(
1, −u

4

)
and let g be a meromorphic

function with �nitely many poles on some open neighbourhood U of F (u)/Γ∗ =
F (V,W )/Γ∗. If g satis�es g = −g ◦ σ, i.e. g is anti-symmetric with respect to
the holomorphic involution σ, then there is a function wg ∈ L2(F ) such that the
operator Asingg (p1) obtained in Lemma A.1 satis�es the commutator relation

[Asingg (p1), D̃(V,W, p1)] =

(
0 wg

κ̌2−iκ̌1

0 0

)
,

that is, vg obtained in Lemma A.1(ii) vanishes. If, on the other hand, g is
symmetric (i.e. g = g ◦ σ) and vg = 0, then also wg = 0.

Proof. We have to show that under the conditions (V,W ) :=
(
1, −u

4

)
and g =

−g ◦ σ, the function vg obtained in Lemma A.1(ii) vanishes identically. Due
to (A.11) and g = −g ◦ σ, we know that vg is a linear combination of func-

tions
〈〈
φ̃(k), ψ̃(k)

〉〉−1

(φ̃2ψ̃2)(k) +
〈〈
φ̃(−k), ψ̃(−k)

〉〉−1

(φ̃2ψ̃2)(−k) for suit-

able values k ∈ F (u)/Γ∗. Whereas in (A.11), we absorbed the denominator

4Actually, it is the other way round: We �rstly choose generators γ̂, γ̌ of Γ (where we can
choose without restriction γ̂ =

(
1
0

)
as already explained in a footnote after the de�nition of

(4.10)) and afterwards generators κ̂, κ̌ of Γ∗ satisfying (γ̂, γ̌)T (κ̂, κ̌) = 1l.
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〈〈φ(k), ψ(k)〉〉 =
〈〈
ψkφ̃(k), ψ−kψ̃(k)

〉〉
=
〈〈
φ̃(k), ψ̃(k)

〉〉
of (4.10) into the fac-

tor α which is independent on x ∈ R2 but dependent on k ∈ F (u)/Γ∗, we
now have to see how this denominator behaves under the involution k 7→ −k.
To this, we need the relation between the components ψ̃1, ψ̃2 and φ̃1, φ̃2 of the
eigenfunction ψ̃ and the dual eigenfunction φ̃. We �rstly recall that ψ̃ and φ̃
are eigenfunction and dual eigenfunction of the operator Dk(V,W ) (4.4). Due to

(V,W ) = (1, −u
4

), we have the relation ψ̃1 = −∂kψ̃2 and −∂kψ̃1− u
4
ψ̃2 = 0 between

the components of the eigenfunction of Dk(1,−u
4
) which yields the Schrödinger

equation −∆kψ̃2 + uψ̃2 = 0, cf. the proof of Lemma 4.1.1. Since ∂Tk = −∂−k and
∂̄Tk = −∂̄−k, the transposed Dirac operator is given by

DT
k (1,−u

4
) :=

(
1 ∂̄−k
−∂−k −u

4

)
.

Hence, the Dirac equation for the dual eigenfunction DT
k (1,−u

4
)φ̃ = 0 is given by

the equations

φ̃1 + ∂̄−kφ̃2 = 0, −∂−kφ̃1 − u
4
φ̃2 = 0

yielding the Schrödinger equation −∆−kφ̃2 + uφ̃2 = 0 for the dual eigenfunction
φ̃2. Here, we rediscover (−∆k + u)T = −∆−k + u already well-known from the

beginning of Section 2.3. Thus, we have the relation φ̃2(k, x) = ψ̃2(−k, x) between

eigenfunction ψ̃2 and dual eigenfunction φ̃2 of the Schrödinger equation. Hence,

φ̃1(k, x) = −∂̄−kφ̃2(k, x) = −∂̄−kψ̃2(−k, x). (A.12)

Now, we can compute the transformation behaviour of the denominator of (4.10)
with respect to the involution σ : k 7→ −k. We have〈〈

φ̃(k, x), ψ̃(k, x)
〉〉

=
〈
φ̃2(k, x), ψ̃1(k, x)

〉
+
〈
φ̃1(k, x), ψ̃2(k, x)

〉
=

= −
〈
ψ̃2(−k, x), ∂kψ̃2(k, x)

〉
−
〈
∂̄−kψ̃2(−k, x), ψ̃2(k, x)

〉
and〈〈
φ̃(−k, x), ψ̃(−k, x)

〉〉
= −

〈
ψ̃2(k, x), ∂−kψ̃2(−k, x)

〉
−
〈
∂̄kψ̃2(k, x), ψ̃2(−k, x)

〉
=

=
〈
∂kψ̃2(k, x), ψ̃2(−k, x)

〉
+
〈
ψ̃2(k, x), ∂̄−kψ̃2(−k, x)

〉
,

where in the last step, we applied integration by parts and used the periodic-

ity of the function ψ̃. Hence, the denominator of (4.10)
〈〈
φ̃(k, x), ψ̃(k, x)

〉〉
is

anti-symmetric with respect to the involution σ. Moreover, due to g = −g ◦ σ,
the residue of F−1 remains invariant under the involution σ. Therefore, vg is
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a linear combination of functions of the form (φ̃2ψ̃2)(k, x) − (φ̃2ψ̃2)(−k, x) for
suitable values k ∈ F (u)/Γ∗. In order to show vg = 0, we have to prove that

(φ̃2ψ̃2)(k, x) is symmetric with respect to σ. This, however, immediately follows

from (φ̃2ψ̃2)(k, x) = ψ̃2(−k, x)ψ̃2(k, x) due to φ̃2(k, x) = ψ̃2(−k, x) shown above.
This proves the �rst claim of the lemma.
Now, let g be symmetric and vg = 0. We have to show that this implies wg = 0.

Due to (A.11) and the symmetry properties of the denominator
〈〈
φ̃(k, x), ψ̃(k, x)

〉〉
shown above, wg is a linear combination of functions of the form φ̃1(k)ψ̃1(k) +

φ̃1(−k)ψ̃1(−k). Due to (A.12), we have

φ̃1(k)ψ̃1(k) = ∂̄−kψ̃2(−k)∂kψ̃2(k).

The function vg is a linear combination (over the same k as in the linear com-

bination of wg) of functions ψ̃2(k)ψ̃2(−k) + ψ̃2(−k)ψ̃2(k) = 2ψ̃2(k)ψ̃2(−k). If we
speak in the following of the linear combination, we always mean this same linear
combination. We now compute with the notation k± := πi(k1 ± ik2) (i.e. the
Wirtinger operators read as ∂k = ∂ + k−, ∂̄k = ∂̄ + k+)

∂kψ̃2(k)∂̄−kψ̃2(−k) + ∂−kψ̃2(−k)∂̄kψ̃2(k) =

= ∂ψ̃2(k)∂̄ψ̃2(−k) + k−ψ̃2(k)∂̄ψ̃2(−k)− k+∂ψ̃2(k)ψ̃2(−k)− k−k+ψ̃2(k)ψ̃2(−k)+

+ ∂ψ̃2(−k)∂̄ψ̃2(k)− k−ψ̃2(−k)∂̄ψ̃2(k) + k+∂ψ̃2(−k)ψ̃2(k)− k−k+ψ̃2(k)ψ̃2(−k).
(A.13)

Furthermore, we have the equations

ψ̃2(−k)∂k∂̄kψ̃2(k) = ψ̃2(−k)
(
∂∂̄ψ̃2(k) + k−∂̄ψ̃2(k) + k+∂ψ̃2(k) + k−k+ψ̃2(k)

)
,

(A.14)

ψ̃2(k)∂−k∂̄−kψ̃2(−k) =

ψ̃2(k)
(
∂∂̄ψ̃2(−k)− k−∂̄ψ̃2(−k)− k+∂ψ̃2(−k) + k−k+ψ̃2(−k)

)
(A.15)

and

∂∂̄(ψ̃2(k)ψ̃2(−k)) =

= (∂∂̄ψ̃2(k))ψ̃2(−k) + ∂̄ψ̃2(k)∂ψ̃2(−k) + ∂ψ̃2(k)∂̄ψ̃2(−k) + ψ̃2(k)∂∂̄ψ̃2(−k)
(A.16)

Now, the right hand side of (A.13) equals the right hand side of equation (A.16)
minus the sum of the right hand sides of equations (A.14) and (A.15). The above
mentioned linear combination of the left hand sides of (A.14) and (A.15) equals
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zero because of ψ̃2(−k)∂k∂̄kψ̃2(k) = u
4
ψ̃2(−k)ψ̃2(k) and ψ̃2(k)∂−k∂̄−kψ̃2(−k) =

u
4
ψ̃2(k)ψ̃2(−k) and the condition that the linear combination of ψ̃2(k)ψ̃2(−k)

equals zero due to vg = 0. By the same argument together with the fact that the
derivative of a constant function equals zero, the linear combination over the left
hand side of (A.16) vanishes, too. Therefore, the linear combination over the left
hand side of (A.13) vanishes which had to be proved.



Appendix B

An alternative proof of Theorem

4.1.5

In this appendix, we give an alternative proof of Theorem 4.1.5. Before, we
need a lemma which provides us an equivalence between the choice δv = const.
and a relation between pole divisors of the eigenfunctions of the Dirac operator.
Let us recap more precisely how such a divisor is de�ned: To a given potential
u ∈ L2(F ), one can assign a divisor (cf. [6, 16.1]) D(u), where D(u) is the
pole divisor of the eigenfunction x 7→ ψ(k, x) of the Schrödinger operator at
k ∈ F (u)/Γ∗ normalized by ψ(k, 0) = 1, k ∈ F (u)/Γ∗, i.e. the support of the
divisor D(u) is given by

suppD(u) = {k ∈ F (u)/Γ∗ : there is an eigenfunction 0 6≡ ψ(k, ·) of−∆k + u

with eigenvalueλ = 0 andψ(k, 0) = 0}.

We consider in the following Schrödinger potentials (V,W ) := (1, −u
4

). We denote
by D1 the divisor corresponding to (V,W ) in the Dirac operator Dk(V,W ) (4.4)
and by D2 the divisor corresponding to the transposed Dirac operator. To a vari-
ation (δv, δw) ∈ L2(F )× L2(F ), we assign variations δD1 and δD2, respectively.
With this notation, we can prove the following lemma.

Lemma B.1. Let (V,W ) := (1, −u
4

) with variations (δv, δw) ∈ L2(F )×L2(F ) at
(V,W ) and corresponding divisor variations δD1 and δD2 be given. Then there
holds the equivalence

δv = const.⇐⇒ σ(δD1) = δD2.

Proof. Let (V,W ) := (1, −u
4

). We consider the Dirac operator (4.4) and its trans-
posed operator

Dk(V,W ) =

(
V ∂k
−∂̄k W

)
, DT

k (V,W ) =

(
V ∂̄−k
−∂−k W

)
.

179
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Denote by ψ(k, x) = (ψ1(k, x), ψ2(k, x)) the eigenfunction of Dk(V,W ) with
eigenvalue zero normalized by ψ2(k, 0) = 1 and by φ(k, x) = (φ1(k, x), φ2(k, x))
the corresponding eigenfunction of the transposed operator with normalization
φ2(k, 0) = 1. As in the proof of Lemma 4.1.1, ψ2 ful�lls the Schrödinger equation
−∆kψ2 +uψ2 = 0 and φ2 ful�lls −∆−kφ2 +uφ2 = 0 (recall (∆k +u)T = ∆−k +u,
cf. Section 2.3). We therefore get the relation φ2(k, x) = ψ2(−k, x) between
eigenfunction and dual eigenfunction of the Schrödinger equation. The relation
σ(δD1) = δD2 is obviously equivalent to δψ2(−k, x) = δφ2(k, x). It thus su�ces
to prove the equivalence δv = const. ⇐⇒ δψ2(−k, x) = δφ2(k, x). So let us
compute the variations δψ2 and δφ2. The Dirac equation for (V,W ) = (1, −u

4
) is

given by

ψ1 + ∂kψ2 = 0, −∂kψ1 +Wψ2 = 0

This yields the variational equations (note V = 1)

(δv)ψ1 + δψ1 + (δ∂k)ψ2 + ∂k(δψ2) = 0, (−δ∂̄k)ψ1 − ∂̄kδψ1 + (δw)ψ2 +Wδψ2 = 0.

Hence,

δψ2 = −∂−1
k ((δv)ψ1 + δψ1 + (δ∂k)ψ2) , δψ1 = ∂̄−1

k

(
(−δ∂̄k)ψ1 + (δw)ψ2 +Wδψ2

)
.

=⇒δψ2 = −∂−1
k

(
(δv)ψ1 + ∂̄−1

k

(
(−δ∂̄k)ψ1 + (δw)ψ2 +Wδψ2

)
+ (δ∂k)ψ2

)
=⇒ (1l + ∂−1

k ∂̄−1
k W )︸ ︷︷ ︸

=∂−1
k ∂̄−1

k (∂̄k∂k+W )

δψ2 = −∂−1
k

(
(δv)ψ1 + ∂̄−1

k

(
(−δ∂̄k)ψ1 + (δw)ψ2

)
+ (δ∂k)ψ2

)
=⇒(∂̄k∂k +W )δψ2 = −∂̄k((δv)ψ1) + (δ∂̄k)ψ1 − (δw)ψ2 − ∂̄k(δ∂k)ψ2.

Together with ψ1 = −∂kψ2, we get

(∂̄k∂k +W )δψ2 = ∂̄k((δv)∂kψ2)− (δ∂̄k)∂kψ2 − (δw)ψ2 − ∂̄k(δ∂k)ψ2 =

= ∂̄k((δv)∂kψ2)− δ(∂̄k∂k)ψ2 − (δw)ψ2.

For δφ2, we get completely analogously (by interchanging the operators ∂̄k and
∂k by ∂−k and ∂̄−k, respectively) due to ∂̄k∂k = ∂k∂̄k

(∂̄−k∂−k +W )δφ2(k, x) =
[
∂−k((δv)∂̄−kφ2)− δ(∂̄−k∂−k)φ2 − (δw)φ2

]
(k, x) =

=
[
∂−k((δv)∂̄−kψ2)− δ(∂̄−k∂−k)ψ2 − (δw)ψ2

]
(−k, x).

If δv = const., then δψ2(−k, x) = δφ2(k, x) follows. Conversely, if δψ2(−k, x) =
δφ2(k, x), we have the identity ∂̄k((δv)∂kψ2) = ∂k((δv)∂̄kψ2) which can only be
ful�lled if δv = const. The lemma is proved.
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Theorem B.2 (= Theorem 4.1.5). Let u ∈ L2(F ) and (V,W ) := (1, −u
4

) with
smooth Fermi curve F (V,W )/Γ∗. Then for all N ∈ N, there exist holomorphic
1-forms ωκ, κ ∈ Γ∗N/σ, on F (V,W )/Γ∗ such that for all ν ∈ Γ∗ with ν ∈ Γ∗N/σ,
there holds ∫

Aν

ωκ = δκ,ν .

Furthermore, these ωκ can be chosen to be of the form (4.18) with suitable respec-
tive directions (0, δw) ∈ L2(F )× L2(F ). In particular, the direction δv in (4.18)
can be chosen to be zero.

Proof. The �rst part of the proof is exactly the same as that of Theorem 4.1.5.
Only for the proof of (4.31), namely

({0} × L2(F )) ∩ U = U−,

we use an alternative procedure. The inclusion "⊇" is again trivial and follows
from (4.29). We consider at �rst the special case that u is a �nite type potential.
In �nite type theory, there is a 1-1-correspondence between isospectral potentials
u of F (u)/Γ∗ and divisorsD(u), cf. [19, Section II.5]. If we denote again byD1 the
divisor corresponding to the Dirac operator with potential (V,W ) and by D2 the
divisor corresponding to the transposed Dirac operator, Schrödinger potentials
(V,W ) = (1, −u

4
) can be characterized by D2 = σ(D1) due to the relation uT = u

already known from the beginning of Section 2.3. As before, let δD1 be the
corresponding variation of D1 and δD2 be the variation of D2 = σ(D1). In [19,
Lemma 4.13], the following divisor relation has been shown:

D1 +D2 ' K +Q+ +Q−.

Here, K denotes the canonical divisor on the Fermi curve and Q+ and Q− are
some marked points at in�nity which yield the two-point-compacti�cation of the
(normalized) Fermi curve. In particular, K, Q+ and Q− are invariants of the
Fermi curve. Therefore, by considering isospectral variations (δv, δw) ∈ L2(F )×
L2(F ) with corresponding (isospectral) variations of the divisors δD1 and δD2,
we get

δD1 + δD2 = 0 modulo linear equivalence. (B.1)

The variation δD1 can be considered as a set of tangent vectors on the Fermi
curve at the points of supp(D1). Hence, to each p ∈ supp(D1), we can assign
such a tangent vector ṗ. We would like to represent the relation (B.1) in Jacobi
coordinates. More precisely, with supp(D1) =: (pi)i=1,...,g, with g the genus of the
�nite type Fermi curve, we consider the Abel map (cf. [6, 21.8])

(pi)i=1,...,g 7→

(
g∑
i=1

∫ pi

ai

ωk

)
k=1,...,g

mod H1(X,Z),
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where the ωk are basis vectors of the space of holomorphic di�erential forms Ω(X)
on the (compacti�ed) Fermi curve X := F (u)/Γ∗ and the ai are given points on
X. The corresponding tangent map is then given by

δD1 = (ṗi)i=1,...,g 7→

(
g∑
i=1

ciωk(pi)

)
k=1,...,g

,

where ωk(pi) means here that the 1-form ωk is evaluated at the point pi and ci are
the corresponding coe�cients of ṗi with respect to a given basis. For ω ∈ Ω(X),
we set ω(V,W, δD1) :=

∑g
i=1 ciω(pi). With this notation, (B.1) is equivalent to

ω(V,W, δD1) + ω(V,W, δD2) = 0 for all ω ∈ Ω(X). (B.2)

Moreover, due to (B.1), the variation δD2 is uniquely de�ned by D1, D2 and δD1

(modulo linear equivalence).
We now prove (4.31). Let (0, wg) ∈ ({0}×L2(F ))∩U be given and let δD1 be the
corresponding variation in terms of divisors and δD2 the variation corresponding
to the transposed Dirac operator as considered before. Since (0, wg) is an isospec-
tral variation, cf. [27, Lemma 3.2.(ii)], there holds (B.2). Due to Lemma B.1, we
have σ(δD1) = δD2. Hence, (B.2) reads as

ω(V,W, δD1) + ω(V,W, σ(δD1)) = 0 for all ω ∈ Ω(X). (B.3)

In order to prove that (0, δw) ∈ U−, we show that g + g ◦ σ = 0. We may
write g = 1

2
(g + g ◦ σ) + 1

2
(g − g ◦ σ). We denote the symmetric part of g by

gs := 1
2
(g+g◦σ). By the linearity of the mapping g 7→ (vg, wg) 7→ ω(V,W, vg, wg),

this yields a corresponding decomposition of ω = ω(V,W, 0, wg) into symmetric
and anti-symmetric part, namely ω = 1

2
(ω+ω◦σ)+ 1

2
(ω−ω◦σ). We show that the

symmetric part vanishes identically. To this, let (δv, δw) ∈ L2(F ) × L2(F ) and
ω = ω(V,W, δv, δw) with ω = ω ◦ σ. The relation (B.3) yields ω(V,W, δD1) = 0.
By de�nition, ω(V,W, δD1) is just the right hand side of (4.20) with gs. Since
both ω and gs are symmetric and ω was chosen arbitrary (of course, with the
restriction that it is symmetric), the residue can only be equal to zero if gs = 0.
This proves (0, wg) ∈ U−. Hence, (4.31) is proven in the �nite type case.
For the general in�nite type case, it remains to prove the inclusion "⊆" in (4.31).
We use an approximation of �nite type potentials. By Theorem 2.4.2, in every
neighbourhood in L2(F ) of some potential u ∈ L2(F ), there are potentials v with
the property that all but �nitely many of their perturbed Fourier coe�cients
are equal to zero. In other words, the �nite type potentials are dense in L2(F )
and there exists a sequence of �nite type potentials (un)n∈N converging to u.
Let (1,W ) with W := −u

4
be given as before. To this, we consider a sequence

(1,Wn)n∈N of �nite type potentials converging to (1,W ).
Let (0, wg) ∈ ({0} × L2(F )) ∩ U be given. Since the Fermi curves F (1,Wn)
are all Fermi curves of Schrödinger potentials, they are invariant with respect to
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the involution σ. We may associate a sequence gn of meromorphic functions on
suitable open subsets of F (1,Wn) which converge to g as n → ∞. Now, by the
foregoing �nite type proof, gn is anti-symmetric with respect to σ for each gn in
(0, wgn). This property carries over to g if we carry out the limit n→∞. Hence,
(0, wg) ∈ U− which had to be proven. This �nally proves that the map α (4.28) is
surjective and thus an isomorphism. Hence, the identity (4.25) Ω+ = Ω0 follows.
The rest of the proof is again exactly the rest of the proof of Theorem 4.1.5.
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