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Abstract

The aim of this thesis is to parameterize the isospectral set Iso(ug) for smooth Fermi
curves of two-dimensional Schrédinger operators with doubly periodic real-valued L2-
potential ug : R? — R. This isospectral set is the set of all real-valued doubly periodic
L?-potentials u whose Fermi curve F(u) equals the given Fermi curve F(up). Our
thesis essentially consists of two parts. The first part solves the isospectral problem
asymptotically by investigating those part of the Fermi curve outside a sufficiently
large compact set in C?. In this asymptotic setting, the so-called perturbed Fourier
coefficients will serve as suitable coordinates for the potentials. We parameterize the
asymptotic isospectral set by constructing a homeomorphism mapping it onto a topo-
logical space Isos(ug), where Isos(ug) can be explicitly determined. The second part
of the thesis connects the asymptotic part with the so far neglected compact part of
the Fermi curve. Under an additional boundedness assumption on Iso(ug), we show
that I'so(ug) is homeomorphic to a Cartesian product Iso(up) X fsag(uo), where wu; is
a potential of finite type. For unbounded isospectral sets, we will show an analogous
but weaker result. In the entire thesis, we use the so-called moduli m(u) in order to
describe the isospectral sets. These moduli are I'-sequences. We finally show that each
Fermi curve F'(u) is uniquely determined by its moduli m(u). In particular, the moduli
are invariants of the isospectral set.

Zusammenfassung

Das Ziel dieser Arbeit ist die Parametrisierung der Isospektralmenge I'so(ug) fiir glatte
Fermikurven zweidimensionaler Schrodinger-Operatoren mit doppeltperiodischem reell-
wertigem L2-Potential ug : R? — R. Diese Isospektralmenge ist die Menge aller reell-
wertigen doppeltperiodischen L?-Potentiale u, deren Fermikurve F(u) gleich der gegebe-
nen Kurve F(ug) ist. Unsere Arbeit besteht im Wesentlichen aus zwei Teilen. Der
erste Teil 16st das isospektrale Problem asymptotisch, indem man jenen Teil der Fer-
mikurve auferhalb eines hinreichend grofien Kompaktums in C? untersucht. In diesem
asymptotischen Szenario werden die so genannten gestorten Fourierkoeffizienten als
geeignete Koordinaten fiir die Potentiale dienen. Wir parametrisieren die asympto-
tische Isospektralmenge, indem wir einen Homéomorphismus von ihr auf einen topo-
logischen Raum fszg(uo) konstruieren, wobei 1505 (up) explizit bestimmt werden kann.
Der zweite Teil der Arbeit verkniipft den asymptotischen Teil mit dem bisher vernach-
lassigten kompakten Teil der Fermikurve. Unter einer zusitzlichen Beschranktheitsvo-
raussetzung an Iso(ug) zeigen wir, dass Iso(up) homdomorph zu einem kartesischen
Produkt I'so(uy) stgg(uo) ist, wobei uq ein finite type Potential ist. Fiir unbeschrinkte
Isospektralmengen werden wir ein analoges, jedoch schwicheres Resultat zeigen. In der
gesamten Arbeit benutzen wir die so genannten Moduli m(u), um die Isospektralmen-
gen zu beschreiben. Diese Moduli sind [!-Folgen. Wir zeigen schlieklich, dass jede
Fermikurve F'(u) eindeutig durch ihre Moduli m(u) bestimmt ist. Insbesondere sind
die Moduli Invarianten der Isospektralmenge.
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Chapter 1

Introduction

1.1 The inverse problem

We consider the time-independent two-dimensional Schrédinger equation
—AY+u-p =M (1.1)

with doubly periodic potential u : R? — C, eigenfunction ¢ and eigenvalue \ € C.

Hereby,
0? 0?
A=—4+—
dz? = Ox3
denotes the Laplace operator in two dimensions with respect to the variable z =
(71, 22) € R%. Let I' C R? be the two-dimensional lattice of periods of v, i.e.

u(r+v) =u(z) forallyeT. (1.2)

Since w is periodic, any solution ¢ of (1.1) must be quasi-periodic (cf. [13], p. 2),
that is, there is a k € C? such that

Uz +7) = ETEY(x) for alle € R% y €T (1.3)

Here, (-,-) denotes the complex extension of the canonical euclidean bilinear
form on R?, that is: (v,w) := viw; + vows for v,w € C2. Besides, we write
lv] := /< v,0 > for the Euclidean norm of a vector v € C2.

The so-called boundary conditions k € C? together with the eigenvalues A € C

constitute the Bloch variety B(u), defined by

B(u) :={(k,\) € C* x C : there is a non-trivial solution v
of the Schrédinger equation (—A + u)) = A\ with (1.4)
Y(x + ) = 2 FN(z)  for allz € R?, v € T},
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In this work, we are only interested in the so-called Ferm: curves which are
obtained from B(u) by setting A = 0, that is,

F(u) :={k € C?: (k,0) € B(u)}.

There appear two problems: The direct problem and the inverse problem. In
the direct problem, one wants to parameterize for a given potential u the corre-
sponding Fermi curve F(u). It turns out that Fermi curves are subvarieties of
C? in the sense that at least locally, Fermi curves can be described as the zero
sets of holomorphic functions f : U € C?> — C (see for example Theorem m
in Section [2.2] or [I3, Theorem 4.1.3]).

In the inverse problem, one considers the following two subproblems:

e The moduli problem: Parameterize the set of all possible Fermi curves.

e The isospectral problem: Given a fixed potential ug, parameterize the
set of all potentials u such that F(u) = F(up).

The complete solution of the inverse problem, which has firstly been posed by
Novikov and VESELOV, cf. [22], turns out to be very extensive. As the title
of this thesis already suggests, we will deal with the isospectral problem in this
work. We will anticipate more precisely in Section what will be done.

1.2 The doubly periodic Schrodinger equation

As already mentioned, we deal with doubly periodic potentials. We want to
recap some properties induced by this periodicity. First of all, we may restrict,
due to the periodicity with respect to the lattice I', the domain of definition of
the potential v, namely R?, to the torus

F:=R*T

which can be identified with a fundamental domain in R?. Sometimes, we speak,
by abuse of notation, of the fundamental domain F' (although F' is defined as a
torus). If we consider functions defined on F (for instance u € L?*(F)), this shall
mean (even though we won’t always mention it explicitly) that these functions
are periodic with respect to I' (otherwise, a definition on the torus F wouldn’t
make any sense). The periodicity of u in the z-coordinates will have effects on
the Fermi curve F'(u): Fermi curves turn out to be periodic (in k-coordinates,
k € C?) with respect to a (real) lattice T* C R? (c¢f. |13, Lemma 4.3.1]). The
connection between I' and ['* is that they are dual to each other. More precisely,
['* is defined as

I*:={r €R*: (r,7) € Zforally € T'}.
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The Schrodinger equation ([1.1]) is an eigenvalue equation of the form
A = Ay,

with differential operator A := —A + u. If one wants to find eigenvalues A € C
for which there exists a nontrivial eigenfunction v, one typically examines the
singularities of the resolvent

A (N-did — A)7H (1.5)

that is, one seeks those A € C for which the resolvent is not invertible, in other
words ker(A-id — A) # {0}. If there exists a (local) representation of \-id — A as
endomorphism between finite-dimensional vector spaces, the latter criterion can
also be expressed as

det(\ - id — A) =0, (1.6)

as is well-known from linear algebra. All A € C for which A-id— A is not invertible
(i.e in the case above, for which is satisfied) constitute the point spectrum
of A. Tf we consider Fermi curves, we are only interested in the eigenvalue A = 0.
Now, we want to declare the function spaces the potential u and the solution v
shall reside in. To this, we have to make clear at first what kind of solutions
we are looking for. An obvious possibility would be to consider Sobolev spaces
H'Y2(F) and H*?(F), respectively, if we searched for solutions in the weak or
strong sense, respectively. The most general kind of solutions are those in the
sense of distributions. Since we are interested in as large spaces as possible, we
consider, until further notice, solutions in the sense of distributions. To this,
let S(F) := C°(F) be the Schwartz function space of infinitely differentiable
functions on F (these serve as test functions) and let S*(F) be the dual space to
S(F), i.e. the space of continuous linear functionals on S(F) - the distributions.
As moreover, we consider doubly periodic potentials, we will often use a Fourier
representation of the potential. An apt possibilty is therefore to consider so-called
Fourier spaces, which are defined by (cf. [I3] Def. 2.5.1])

FE:={feS*(F): Ff e E},

where E is some Banach space (in our context, E will be some space of sequences,
such as [*(T'*)) and F f denotes the Fourier transform of the distribution f. Here,
one should keep in mind the definition of the Fourier transform of a distribution
(cf. |13, Def. 2.1.12|), namely

(FAK) = f(¥-s), reL, (1.7)
where 1),. denotes the k-th Fourier mode, i.e

Po(z) = 2T for € T (1.8)
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In this context, let’s recap the "ordinary" Fourier transform of some integrable
function f (compare [13, p. 13]):

(FF)(r) = / bon(@)f(z)dz, ®ET™, (1.9)

where we also write ffor F f. Due to [13, Proposition 2.1.14], it is in some cases of
regular distributions, i.e. distributions f € S*(F") for which there exists a smooth
function g such that f(¢) = [ g(x)@(x)dx for all test functions ¢ € S(F), allowed
to use the "ordinary" Fourier transform instead of the just defined "abstract"
Fourier transform in because there holds ¢ = Ff due to this proposition.
As we will see in a moment, we can make the quasi-periodic solution v periodic
by some transformation. Thus, it makes sense to define for example FI'(T'*)
as the space for the eigenfunctions. In [I3, Proposition 3.3.15|, it was proved
that the resolvent maps FI[°!(I'*) (which is quite a large space, for the precise
definition see Definition boundedly into FI!'(T'*) (with suitably chosen A
in such that the resolvent is a well-defined operator). This motivates why
we can choose FI'(I'*) as the space for the eigenfunctions. For the space of
potentials u : ' — C, we choose the Hilbert space L2(F). Note that f e I2(I'*)
for f € L?(F). Thus, from now on, we require for the spaces of eigenfunctions 1)
and potentials u, respectively,

Y e FINTY), wuel*(F) (=a€cl*I).

The equations (L.1), (1.2) and (1.3) make up the doubly periodic Schrédinger
equation with quasi-periodic boundary condition. In the following, we will often

use an equivalent representation of these equations by using a common formula-
tion (which has also been used in |13 p. 58], for instance), where the boundary
condition k£ € C? is already included in the Laplace operator A. More precisely,
we define for k € C?

Ap = (V +2mik)? = A + 4mi (k, V) — 47°k>. (1.10)

Due to (1.3), a solution ¢ of (l.1) is only quasi-periodic, but, in general, not
periodic. By setting with suitable boundary condition fulfilling (1.3)

wp@j) — 672wi(k,x>w<x)’

a simple calculation (see [13] Lemma 3.1.9]) shows that ¢, is periodic with respect

to I'. The reformulation of (L.1), (1.2) and (1.3) is now as follows (cf. [I3]
Theorem 3.1.10]): For v € L*(F), i.e. u fulfills (1.2)), the quantities &k, and A

fulfill the equations (1.1)) and (1.3)) if and only if

(= Ak + u)thp = My, (1.11)
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Thus, (1.1)) and (1.3)) can be expressed in one single equation (1.11)). Let’s em-

phasize one more time that another advantage of this formulation is that the
eigenfunctions are periodic. In the sequel, we will, for simplicity, write ¢ = 1,
since from now on, we will continue our considerations in the setting of SO
that there shouldn’t be any confusion.

1.3 What is done in this work

The main goal of this work is to solve the isospectral problem as introduced in
Section [L.1] for real-valued potentials with smooth Fermi curve, i.e. to determine
for given real-valued ug € L*(F) the isospectral set

Isop(ug) := {u € L*(F), u real-valued : F(u) = F(ug)}

(the subscript F' in Isop(ug) stands for Fermi curve), where F(ug) is assumed
to have no singularities, which is expressed by the term smooth Fermi curve. To
begin with, we want to specify more precisely what we mean by "determine"
the isospectral set. The most ambitious way to do this would be to determine
Isor(ug) as a set of real-valued L?-potentials given by explicit formulas. Indeed,
there are cases where this is possible. As a very important example in this
context, we want to mention the work [23] by POSCHEL and TRUBOWITZ which
deals with quite a similar problem, namely with the one-dimensional Schrodinger
equation

=y () + q(x)y(r) = My(=),

with eigenvalue A € C and real-valued potential ¢ € L?([0,1]). Instead of a Fermi
curve, in [23], the sequence of Dirichlet eigenvalues for some given potential is
considered and the isospectral problem asks to find all real-valued potentials in
L*(]0,1]) which share the same sequence of Dirichlet eigenvalues as the given po-
tential. In [23, Theorem 5.2|, an explicit solution of the isospectral set in terms
of explicit formulas for the isospectral potentials is given.

For our case of Fermi curves of two-dimensional doubly periodic Schrodinger op-
erators, however, things turn out to be more difficult so that we cannot expect
such explicit formulas. The goal we are interested in is not to explicitly write
down the elements of Isop(ug) but to determine its topological structure. More
precisely, we want to find a topological space which can be explicitly parameter-
ized and which is homeomorphic to Isop(uy), i.e. which shares the same topology
as Isop(ug).

In general, Fermi curves are complex curves (i.e. Riemann surfaces which in gen-
eral may have singularities) of infinite genus. A first step to solve the isospectral
problem would be to consider the special case of finite genus, i.e. Fermi curves
of so-called finite type potentials. These are Fermi curves that can be considered
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as compact complex curves in some sense (one crucial property is that their nor-
malization can be compactified). The theory of those finite type Fermi curves of
two-dimensional doubly periodic Schrédinger operators has been investigated in
the extensive work [I9]. For finite type Fermi curves, one can use the theory of
compact complex curves which allows to use particular methods that can’t be ap-
plied in the infinite type case in general. We don’t want to go deeper into details
of finite type theory of Fermi curves. For readers interested in this topic, we thus
recommend the mentioned work [19]. In our work, however, we want to consider
the general case of Fermi curves of infinite genus. The general precondition in
our work is that we consider the isospectral problem for finite type Fermi curves
as solved] In this sense, we aim to solve the isospectral problem by determining
a homeomorphism

T : Iso(uy) x fwg(uo) — Isop(ug),

where u; € L?(F) is a real-valued finite type potential with corresponding isospec-
tral set Iso(uy) and the topological space I/vso(;(uo) is the "asymptotic remainder"
which will be explicitly parameterized in this work. Hence, provided that 7 is a
homeomorphism, Iso(uy) X Isos(ug) is the topological space we can identify the
isospectral set I'sop(ug) with. For unbounded isospectral sets (i.e. unbounded
with respect to the L%norm), we will get a weaker result than the homeomor-
phism property which will be discussed in Section For isospectral sets with
an additional boundedness condition, however, we will get the homeomorphism
7 just mentioned. Now, we want to give a short overview of what is done in the
individual chapters and sections of this work.

Before attending to the isospectral problem, we have to do some preparatory work
concerning properties and important assertions about Fermi curves. This will be
done in Chapter 2l In Section 2.1 we give some basic facts about Fermi curves
which are already well-known. As examples, we mention the free Fermi curve
(associated to the potential u = 0) and the Fermi curve for constant potentials,
cf. |5, II1.16] or |13, 4.2,4.4], where the citation of the work [5] by FELDMAN,
KNORRER, TRUBOWITZ deserves a special emphasis since it turnt out to be quite
helpful for our work. We also recap that every Fermi curve F'(u) consists of three
parts (cf. |19, Theorem 2.35]) which, at first, has been proved by KRICHEVER
(cf. [16]): Firstly, a compact part of finite arithmetic genus, then the remain-
der called the asymptotic part consisting of, secondly, two so-called open ends
or reqular pieces, which are isomorphic to the complex plane, where countably
many open bounded sets (the so-called excluded domains e,, indexed by v € T'*
with sufficiently large norm) are cut out, and thirdly, the so-called handles which
connect the two regular pieces by some excluded domain in each regular piece,

!Unfortunately, the isospectral problem for finite type Fermi curves has not been completely
solved in [19], but there have been done great steps towards a solution in [I9] so that researchers
interested in this topic may feel encouraged to complete it.
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respectively, compare [B] I1.5, IT1.17, TI1.18]. In the case that F'(u) is not smooth,
handles may "close" to a singularity. Whereas in the compact part, all kinds of
singularites may appear, in the asymptotic part, ordinary double points are the
only possible kind of singularities. In order to index the excluded domains by
v € I' with sufficiently large norm, we introduce for § > 0 sufficiently small the
asymptotic part of the dual lattice

I ={kel™: |kl > (571}.

In Section [2.2] we provide important results needed for the asymptotic analysis
of Fermi curves F(u) which concern that part of the Fermi curve outside an
arbitrarily large compact set in C? of the just mentioned trisection. Whereas finite
type theory considers the part of F'(u) within the compact set, an investigation
of the infinite genus case, as it will be done in this work, crucially includes the
asymptotic part of F'(u). In this context, we want to mention the work [I3] which
also dealt with Fermi curves of infinite genus and can be considered as a prequel
to our work. In [I3], important results for the asymptotic analysis have already
been shown. Some of them can just be taken over to our work (for example
the representation of F(u) in the v excluded domain e,, v € T'}, as the zero
set of det M, where the 2 x 2-matrix M, = D, + A, is the sum of a diagonal
matrix D, incoding the informations of a constant potential Fermi curve and a
perturbation matriz A, representing the deviation of the given Fermi curve from
the respective constant potential Fermi curve, ¢f. Theorem , whereas some
others require a modification. One reason for this is that [I3] considered another
space of potentials than we do. Another important result of this section is the
existence of unique k, € e, such that the diagonal entries of M, vanish at k = k,.
The corresponding off-diagonal elements of M, the so-called perturbed Fourier
coefficients, will play an important role in the sequel.

Fermi curves associated to potentials u of the Schrodinger equation are point-
symmetric to 0 € C2, i.e. invariant with respect to the holomorphic C2-involution
k — —k. If u is real-valued, F'(u) is even invariant with respect to complex
conjugation, i.e. with respect to the antiholomorphic C*involution k — k. In
Section [2.3] we will see how the perturbation matrix A4,, the zeroes k, of the
diagonal elements of M, and the perturbed Fourier coefficients transform by
these involutions. It turns out that the symmetries of the Fermi curve induce
certain symmetries of these objects. For instance, the second off-diagonal entry
of M, at k = k, is already determined by the first off-diagonal entry of M,.
Hence, it suffices to consider only this first off-diagonal entry denoted by 4,, the
v perturbed Fourier coefficient.

In Section [2.4] it will be shown in Theorem that the map

P(Ty) — BT, (a(v))vers — (@)vers.

between Fourier coefficients and perturbed Fourier coefficients is locally invert-
ible. This assertion has already been proven in [I3] for another space of potentials.
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An important corollary of this theorem is the relation @, = _,, v € T'%, for real-
valued potentials v € L*(F). By the way, until Section , we consider both
cases of complex and real-valued potentials u € L*(F). In other words, Fermi
curves F'(u) both with and without antiholomorphic involution are considered.
Moreover, F'(u) doesn’t necessarily need to be smooth. Hence so far, we are still
in quite a general setting. The reduction to exclusively real-valued potentials
with smooth Fermi curve appears later.

In Section we will determine suitable coordinates to parameterize the ex-
cluded domains. Since we will later restrict ourselves to smooth Fermi curves, we
are especially interested in the parameterization of the handles. However, also in
Section Fermi curves don’t necessarily need to be smooth, yet. By the new
z-coordinates introduced in this section, such a handle H can be parameterized
by

H:={(21,2) €C*: 2y 20 =¢, |z, |2| <1},

where ¢ € C is the so-called handle quantity. To show that such coordinates exist
and the determination of the corresponding handle quantities c,, v € I';, are the
content of this section. Thereto, we introduce the so-called model Fermi curve as
in [I3] Lemma 4.5.53] which turns out to be a good approximation for the given
Fermi curve, at least for real-valued potentials (for complex-valued potentials,
we will face some difficulties). This model curve is the curve that we get by
a linear approximation of the matrix M,. The advantage of the model curve
is that the z-coordinates and the corresponding model handle quantities ¢, can
be immediately computed. The main effort of Section is to yield analogous
results for the actual Fermi curve by analyzing the appearing perturbation terms
which have to be subjected to an asymptotic analysis. A very important tool
is the so-called Quantitative Morse Lemma proved in [5, Lemma B.1, p. 245]|.
In order to apply this lemma, we verify its conditions in our case. Thereto, we
have to make some estimates which are necessary to keep certain perturbation
terms sufficiently small. In order to finally determine the handle quantities, we
have to delve into the proof of the Quantity Morse Lemma since the authors in [5]
justify in their proof that one can assume without restriction the case ¢, = 0. For
the proof in [5], this is an admissible assumption. For our aim to determine the
handle quantities, however, we need to reconsider the general case without any
simplifying assumptions. After having determined the handle quantities c,, we
finally show that for real-valued potentials, they satisfy together with the model
handle quantities ¢, the relation

Cy 1
::1—1—0(—), as |v| — oo,

G v?

on the subsequence indexed by v € I'; obeying ¢, # 0, cf. Theorem [2.5.9] Here,
the condition that the potential is assumed to be real-valued is crucial. For
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generic complex-valued potentials, the proof doesn’t hold (and the assertion is
even expected not to be true).

The asymptotic solution of the moduli problem has already begun in [I3], but
it hasn’t been finished yet. In [I3], the moduli space has been parameterized
by introducing certain parameters, the so-called moduli m(u) (depending on the
potential u), but it hasn’t been shown that these moduli indeed parameterize
Fermi curves, yet, which shall be shown in this work (later in Section . In
Section , we introduce these moduli m(u) = (m, (u)),ers, indexed by v € I,
which are defined by

ml,(u) = —167'('3/ k’ldkg,

Ay

as contour integral along the v** A-cycle of the homology basis of F'(u). We also
introduce the respective moduli m,, for the model curve of Section 2.5 Later, the
moduli m, will turn out to be invariants of the isospectral set. Hence, they are
an appropriate tool in order to determine the isospectral set.

Chapters [3] and [4] are the heart of this work. All potentials in Chapter [3] are
assumed to be real-valued. In Chapter [3} we consider the so-called asymptotic
isospectral set 1sos(ug) defined by the set of potentials u satisfying the property
my(u) = my(up), v € I's, where the first finitely many Fourier coefficients of
u indexed by v € I' \ I'; are kept fixed. Actually, we'll introduce Isos(ug) as
a subset of [?(T'}) (and not of L?(F)) in terms of perturbed Fourier coefficients
(which serve as asymptotic coordinates due to Section . The precise relation
between L2-potentials u and perturbed Fourier coefficients will be given in that
chapter. .

In Section , we determine the asymptotic isospectral set Isos(ug) for the model
curve. As for the handle quantities for the model curve in Section [2.5 also the
asymptotic model isospectral set can be computed explicitly. In Theorem [3.1.1]
we’ll parameterize the elements of Isos(ug) by flows indexed by a flow multi-
parameter ¢ = (t,),er: € [0,27) (one independent parameter for each excluded
domain).

In Section we make a perturbation ansatz. More precisely, denoting by
r(-) := m(-) — m(-) the deviation between moduli and model moduli, we make
the ansatz

my(ug) = my, (ug + ;) + ry(uy +v) for all v € T,

where the real-valued potential u; € L*(F') is an element of the isospectral flow
of the model Fermi curve with flow parameter ¢, a real-valued v; € L?(F) is given
and v; shall be determined. In order that v; can be uniquely determined, we make
an additional linear ansatz for v, and v, yielding a map v, — v, ﬂ We'll show

2For technical reasons, the map will look slightly different in Section than mentioned
here.
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firstly that this map is well-defined, i.e. we have to show that it maps into the
desired space and that some reality condition is fulfilled. Secondly, we’ll show
that this map fulfills the condition of Banach’s Fixed Point Theorem. In order
to achieve these two propositions, many asymptotic estimates have to be done.
Eventually, the application of Banach’s Fixed Point Theorem yields the existence
of a unique fixed point v; satisfying the initial ansatz

my (o) = my (ug + vy) + ru(ug + v) = my(uy +v,)  for all v € T.

Hence, we will have constructed isospectral flows u; +v; of the actual Fermi curve.
In Section [3.3] we’ll show with the results of the foregoing Section [3.2] that there
exists a homeomorphism I'sos(ug) — 1sos(ug).

After having solved the isospectral problem asymptotically for real-valued poten-
tials, we want to determine Iso(ug) in Chapter 4] in the sense described at the
beginning of this Section Here, Iso(uy) is defined as the set of all real-valued
potentials u € L*(F) satisfying m(u) = m(uy).

In Section we’ll show that there exists a finite set of linear independent holo-
morphic 1-forms w; on a given Fermi curve F'(u) which is dual to the first finitely
many A-cycles A; of the homology basis of F'(u) provided that F'(u) is smooth,
i.e. for N € N| there holds

A;

In particular, from now on, we require the smoothness of Fermi curves. A
similar statement with further requirements on the respective Riemann sur-
face has already been shown in [5, Theorem 1.17, Theorem 3.8]. The main
goal of this section is to derive some submersion properties of the moduli map
u > my(u) = (m,(u))er-rs. We'll prove these properties both for complex-
valued and for real-valued potentials. At first, we consider complex-valued poten-
tials (V,W) € L3(F) x L?(F) of the Dirac operator which can be seen as a gener-
alization of the Schrédinger operator. Any Schrédinger potential v € L?(F) can
be considered as a Dirac potential (V, W) € L*(F) x L*(F) by (V,W) := (1, 5%)
or (V,W) := (5*,1). The existence of holomorphic 1-forms dual to the first
finitely many A-cycles together with a relation between a symplectic form on
L*(F) x L*(F) and Serre duality proved in [27, Lemma 3.2| by M. SCHMIDT will
yield that u +— my(u) is a submersion. The next step is to transfer this result to
real-valued potentials. The smoothness of F'(u) is a crucial ingredient in order to
prove the submersion properties of the moduli map.

Section [4.2]is the most important section of Chapter 4l An essential result will
be the construction of a canonical sequence of finite type potentials (u,),en con-

verging to some given real-valued potential ug € L*(F), where

(w,) my(ug), vel* |v|<n
my () =
" 0, vel* |v|>n
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holds. In Chapter 3} we kept the first finitely many Fourier coefficients fixed and
determined the remaining coefficients in terms of perturbed Fourier coefficients
such that the respective moduli (m, (u)),er; were equal to the given (m, (uo))vers.
In that procedure, we didn’t consider the first finitely many moduli. In fact, by
varying the Fourier coefficients for v € I}, the first finitely many moduli m,, (u),
v € T\ I';, won’t remain equal to m,(ug) in general. Now in Section [£.2] we
have to ensure that the moduli m,, (u) are equal to m, (uo) for all v € I'* (and not
only for the asymptotic remainder). This will be done in two steps. In the first
step, we determine a set (containing the isospectral set) of potentials u whose
moduli (m,(u))yers are equal to (m,(ug))ver:. In the second step, we pick out
of this set those potentials u whose moduli m¢(u) are also equal to m(ug). This
finally yields a homeomorphism

T : Iso(uy) % INSO(;(uo) — Iso(uyp).

as already explained at the beginning of Section provided that Iso(uo) satisfies
some boundedness condition. If, however, Iso(ug) is unbounded, we intersect
Iso(ug) with balls Br(ug) C L?(F) with arbitrarily large R > 0 to gain an
analogous result. This result, however, will be weaker because firstly, the choice
of 6 > 0in Isos(ug) depends on R and secondly, we’ll have to take into account
some more technical details induced by the intersection of Iso(ug) with Bg(up).
Finally in Section [4.3] we show the equivalence F'(u) = F(ug) <= m(u) = m(uo)
yielding Isop(ug) = Iso(ug), that is, the moduli constitute indeed an invariant
of the isospectral set which justifies the investigations in the foregoing chapters.



Chapter 2

Fermi curves

2.1 Examples and basic properties

In this section, we summarize some basic properties of Fermi curves. As examples,
we recap the Fermi curve of the zero potential u = 0 (the so-called free Fermi
curve) and the Fermi curve for constant potentials u = const. Furthermore, we
recap the asymptotic freeness and the trisection into a compact part, regular
pieces and handles.

Let’s begin with the easiest and at the same time most important example: The
free Fermi curve. Due to [I3, Theorem 4.2.5], the free Fermi curve F(0) is given
by

F(0)=R+T",

with R := {k = (k?l,kg) S C2 : k2 = /{?% + l{?% = (]{71 — Zk?g)(k?l + Zk?g) = 0} Since
Fermi curves F'(u) (for arbitrary potential) are periodic with respect to I'*, one
usually considers the quotient F'(u)/I™*. This quotient is well-defined if the pairs
of distinct points (k_, k), defined by

KR

1 ) 1/ — '
k., =~ L ke : kt=— oL , K= (K1,kg) €I,
2\ —iK1 + Ko 2\ —IR1 — Rg

are identified to double points for all k € T'* (cf. [13| Theorem 4.2.5]). For an
arbitrary doubly periodic potential u , we consider its Fourier series expansion,
cf. [13], p. 89:

1
- (2)a(k) = Ar%i — L(o)alk), (21
u(z) K;w (z)a(k) Cons;:tsart+ ) HEFZ\:{O}@b (@)a(k),  (2.1)

~
=:%(xz)=non-constant part

where g := #0()“ and p(F) denotes the Lebesgue measure of the fundamental
domain F. As to Fermi curves with constant potential, we consider only the

17
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constant part 4724 and get the following parameterization of the corresponding
Fermi curve (cf. |13, Theorem 4.4.1]):

F<47T2’&0) = R(’ao) + F*,

where R(io) := {k € C* : k* + 4y = 0}. Again, R(ig) serves as a system of
representatives of the quotient F(4n%dg)/T* provided that the pairs of distinct
points (k. (to), k. (tg)), defined by

| e
ISR Gl BIFCITOEE ) (siiall IR Y UL
(2.2)

with & 1= &(ug, k) := /1 + 4%, are identified to double points for all k € '\ {0}.
Fermi curves of constant potentials (including the free Fermi curve as a special
case) therefore have a quite clear structure: They are complex curves with or-
dinary double points as singularities exactly at the points k= (i), 0 # x € T'*.
Fermi curves (of arbitrary potential u € L?(F)) are subvarieties of C? (¢f. for
example [13, Theorem 4.1.3|), that is, locally, they are described as the zero locus
of a holomorphic function f : U C C?> — C. Singularities of the Fermi curve are
thus described by the zeroes of the gradient, Vf = 0, on the curve {f = 0}.

For arbitrary potentials, the corresponding Fermi curves turn out to be much
more complicated than in the case of constant potentials. There can occur singu-
larities of higher order (not only double points), for example. Fortunately, outside
a sufficiently large compact set K C C? (depending on the potential), any Fermi
curve approximates the free Fermi curve. The crucial result in this context is
the so-called asymptotic freeness of Fermi curves of arbitrary L?(F)-potentials,
which has been shown in [I9, Theorem 2.35]. This means that for every potential
u € L*(F), the singularities of the corresponding Fermi curve F(u)/T* in C*\ K
remain well-behaved. More precisely: There is a § > 0 (depending on u) which
defines the asymptotic part I'j of the lattice I'*,

= {kel*:|xl >5"}, (2.3)

as well as an open set V C C? (with 0 € V) that only depends on I'* such that
all possible singularities outside the just mentioned compact set are contained in
the so-called excluded domains F(u) N (kX (o) + V), k € T;. Moreover, every
excluded domain contains at most one singularity and double points are the only
kind of singularities that can occur. If there’s no singularity in kX () + V, we
say that the double point at kX (o) splits up to a handle. Such a handle can
be (up to a diffecomorphism) considered as a cylinder connecting the excluded
domain around k_ (o) with the excluded domain around kf (4g) (for the definition
of handles, compare [0, I1.5, (GH2)| and in particular Section for a more
detailed treatment of the handles). If, on the other hand, there is a singularity
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in kX(do) + V, i.e. a double point (as in the free case), we say that the double
point doesn’t split up (or equivalently: remains unsplit). Outside the compact set
K, the singularities of F'(u)/I'* are thus enumerated by x € I';. We now arrive
at the trisection of the Fermi curve F'(u)/I'* stated in [13, Corollary 4.3.9] and
proven in [I9, Theorem 2.35]:

e The compact part of F(u)/T'* which is contained in a compact subset K C
(CZ

e The asymptotic free part of F'(u)/T* which is contained in C?\ K and where
the excluded domains are cut off (this part of F(u)/T* corresponds to the
regular pieces introduced in |5, 1.5, (GH1)|, at least to those part of the
regular pieces lying in C?\ K). Moreover, Fermi curves have two regular
pieces. They can be considered as two complex planes (with corresponding
domains cut off).

e The handles which connect the two regular pieces of the asymptotic free
part to each other, i.e. which connect the excluded domain around k& (7o)
with the excluded domain around k[ (), x € T'}.

2.2 Important results for the asymptotic analysis

In many points of view, this work is a sequel of [13]. In this section, we recap
some important results, often taken from [I3] and partially reformulated, which
are needed for our further considerations. In [I3|, the theorems were more gener-
ally stated for FI°>!(T'*)-potentials. However, many (but not all) of the results
carry over to u € FI2(T*), since [2(T'*) C [°Y(T™*) (cf. |13, Proposition 2.4.3|).
Although we won’t use so-called Lorentz spaces like [°}(T'*) in this work, some
tools for their definition (the so-called decreasing rearrangement, for instance)
will appear in some proofs of this work anyway, namely in those proofs taken
from [I3] which had to be modified to fit into the setting of [2-sequences. That is
why we give the definition of [°!(T*) (cf. [13, p. 26] and [13, Definition 2.4.1]).
We also give the definition of the Lorentz space [1>°(T'*) since it will appear in
Lemma .

Definition 2.2.1. Let a := (a,),er+ € (*°(I'*) be a bounded sequence of complex
numbers. Then we define the distribution function d, of a by

do 1 (0,00) = NgU {oo}, A= #{rvel™:|a,|> A}
The decreasing rearrangement a* := (a’),en of a is defined as

a*:N—[0,00), n+a; :=inf{\>0:d,(\) <n-—1}.
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The Lorentz space [°1(I'*) is defined as the set of all sequences a € [°°(I'*) such
that

o0 *

a
lafloes = 2 < oo
n

n=1

The Lorentz space [V°°(I'*) is defined as the set of all sequences a € [°°(I'*) such
that

lall1.co :=sup(n-a) < co.
neN

Remark. We can depict the decreasing rearrangement as follows (as has already
been mentioned in [13, p. 27]): If lim,,_,o, a = 0, then a* enumerates all values
of (lay|)ver~ counting multiplicity (except possibly zero) in decreasing order.

We want to give a local description of a given Fermi curve F(u), restricted to
the excluded domains, in terms of the zero set of a holomorphic function f :=
det M : U € C* — C (with some matrix-valued function M : U C C? — C**?)
as already seen in . We start with a definition, cf. [I3 Definitions 4.5.1 and
4.5.18].

Definition 2.2.2. For all k € C?, all u € L*(F) and all v € T’} such that the
operator

1-(1- WKiu)(AHkﬁE(ao) — dr*io) '@ (2.4)

exists and is boundedly invertible on FI'(T'*), let Ay, (k+kZ(dig), u), the so-called
perturbation matriz, be the restriction of the operator

u(1—(1— WKiu)(AkJrk}(ﬁo) - 472@0)715)71 (2.5)

to K4,. Here,  denotes the non-constant part of u (compare the representation
(2.1)), K+, := span{tpg, v+, } denotes the generally (for v # 0) two-dimensional
complex vector space generated by the Fourier modes ¢y = 1 and ¢, (compare

(1.8)) and
Tr, B = K, e (000 + f(0),

denotes the projection onto K,,, where E denotes an arbitrary complex Banach
space which contains K, as a closed subspace.

Remark. In the proof of [I3, Proposition 4.5.15|, it has been shown that the
operator is indeed boundedly invertible on FI'(T'*) as required, provided
that 6 > 0 is sufficiently small (as to the dependence on §, note that v € I’}
appears in the operator (2.4))).
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We briefly want to comment on this definition. The perturbation matrix Ay (k+
k*(1ig),u) is an operator mapping a subspace of FI'(I'*) into a subspace of
FI2(T*). This is due to the fact that is boundedly invertible and @ €
FI*(T*). More precisely, the inverse of exists and maps a subspace of
FIHT*) into FI'(T*). Multiplying with —u € FI?(T'*) (this yields the operator
(2.5))), we get as result a function in FI*(T'*) because

U-f=txfe 2T «1{T7) C AT

for f € FI'(T*) due to Young’s inequality for convolutions (cf. [2, p. 199,
Theorem 4.2.4], for instance).

However, since the perturbation operator Ay (k + kZ(dg),u) is, by definition,
restricted to K, it can be considered as a 2 x 2- matrix (with entries depending
on u and k) because K., is two-dimensional (we don’t consider the case v = 0
unless explicitly stated). Let’s explain some indices and arguments in the term

Ay (K + k5 (o), u) = e, [0(1 = (1= 7y, ) (A gt

) — dmtio) ") |k, -

(2.6)

U

The subscript + in Ay, refers to +v in 7w, the argument k + kX (do) in As,
refers to the corresponding subscript in the Laplacian A, ki (o) Strictly speak-
ing, the subscript v in A, , is redundant since the dependence on v is already
indicated in the argument k + kX(7g). In other words, both the subscripts v in
Ay, and in kX (dg) always denote the same v. Yet, we write A, instead of A
because there are, besides kX (7g), also other terms in the perturbation matrix
depending on v. The rest of the notation should be clear. We emphasize this be-
cause these indices have an effect on signs of certain v appearing in . When
we will later consider transformation properties of the perturbation matrix, the
knowledge of how to read this notation will get important. We introduce the
following abbreviations (as in [13], equation (4.5.22)) that will turn out to be
handy in the subsequent considerations:

A:=u
B:=(1- ﬂ-K:i:u)<Ak’+k‘f,t(ﬂo) — 4m’iig) Tt = (Ak—f—k,it(ﬂ()) — 4m?ig) M1 - Tky,)
As (b + k) (f10), u) = mrep, A(L = BA) ey,
(2.7)
The so-called reduced resolvent B defined above will be an important object in

our considerations. The following lemma (cf. [I3, Lemma 4.5.9]) deals with its
Fourier transform.

Lemma 2.2.3. There is an open neighbourhood V of 0 € C? which depends only
on I'* such that

lim  inf  [(p+ k+ Kk (Gg))? + G| = o0
[v|—o0 keV
pel*\{0,+v}
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and there is a 6 > 0 such that for k € V

1
g(k,-,-) : (v,p) — {(p+k+k}(ﬁ0))2+ﬂoa p#0,£v 28)

0 otherwise

is in (TF) @ 15°(T), that is, g(k, -, p) € °(T}) with respect to v and g(k,v,-) €
[5°°(T*) with respect to p. Here, c®(I'*) denotes the subspace of 1*°(I'*) of all
sequences converging to zero.

We briefly comment on the just defined map (2.8). As mentioned above, the
sequence ([2.8)) with respect to p (for fixed v) is virtually the Fourier transform of
the reduced resolvent

Bi= (1= mrs, ) (A () — 477100) 7,
introduced in (2.7), more precisely, for f € FI*(T*),

1 f(p)
17 (p+ k1 k(o)) + g

Bf(p) = p e\ {0,£v}. (2.9)

In particular, B maps FI*(T'*) into FI*(T'*) due to Holder’s inequality (note that
[boo(T*) C 12(T*), of. [13] Proposition 2.4.3]). The following lemma provides an
important estimate of ||g(k, v, ) ||i2(r+)-

Lemma 2.2.4. The function g (2.8)) satisfies

gk, v, Yieey = O (1/v/ W) as v] — oo

uniformly for all k € V' (with V' as in Lemma . Moreover, there holds

1
sup |g(k,v,p)| = O (—) . as|y] = oo,
pel*\{0,£v} ’y’

uniformly in k € V.

Remark. A reader of the work [13] may possibly ask why we don’t use the es-
timate ¢*(k,v,n) < e (with some ¢ > 0) which is stated in [I3, Defini-
tion 4.5.37] because with this estimate, one could conclude the desired estimate
lg(k, v, )|l2@e = O (1/\/ ]1/]), as |v| — oo, considerably faster than we’ll do in
the following proof. The answer is that firstly, this estimate in [I3] is claimed
without any proof and that secondly, there is evidence that this estimate is even
wrong. One could at most expect an estimate like g*(k,v,n) < ﬁ But of
course, also this weaker estimate would need to be proved. The failure of the es-
timate in [13] is, by the way, the crucial point why essential subsequent proofs in
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[13] won’t hold for FI>!-potentials anymore and we thus decided to consider L*-
potentials instead of (the larger space of) FI°!-potentials. Although the proof
of [13, Lemma 4.5.9] (stated in this work as Lemma above) already uses
this wrong estimatd!| in order to prove the °(I';)-assertion in Lemma [2.2.3] the
proof of |13, Lemma 4.5.9] still holds since the estimate of Lemma implies
the c°(T'})-claim. Of course, this is not a circular argument since in the following
proof of Lemma [2.2.4] we will only use the definition of ¢ (2.8)), not the statement
of Lemma 2.2.3

Proof. Let i and i be two generators of I'*. We set |k| := min{|#|, |#|} which
can be considered as a lattice constant.

Since the domain V' only dependent on I'* is bounded, we may without loss of
generality set £ = 0 in this proof. In other words, the parameter £ € V doesn’t
affect the decreasing behaviour of ||g(k, v, -)||;2r+) with respect to [v|. Moreover,
for simplicity, we only consider the signature &} (uo) (the other signature k; (o)
is treated completely analogously). With the notation v+ := (_”51) forv e I'*, we
compute with kX(4g)% + dy = 0

1 1 1

pr k(@) +a0  pP+2(p k(i) PP+ (p—v+icvt)
1
- vy _ 1 (2.10)
(p—5)* =5 +i&(p,vt)

9(0,v,p) = (

for all v,p € T* with p # 0,v. Without loss of generality?] we may assume
Uy € R. Hence, there is an N € N such that £ € R for all |v| > N. Therefore,

1
g0, v, Meewey = Y (2.11)

vy2 _ v 2 2 1\2
per\fou} ((p—5)* =55 ) +&(p,vh)

for all |v| > N. For the rest of the proof, all appearing v shall fulfill |v| > N
(although it won’t always be explicitly mentioned). We will estimate the series
in two steps. In the first step, we use an estimate by setting the second
summand in the denominator in equal to zero. In the second step, we use
an estimate by setting the first summand in the denominator in equal to
zero. In both steps, we estimate the appearing series by corresponding integrals.
This is admissible due to monotonicity properties of the functions f;, fo defined
in the following in their respective domains of consideration.

!This estimate actually appears in the proof of [13| Lemma 4.3.3] which the proof of [13]
Lemma 4.5.9] refers to.

2Since ¢ — 1 as |v| — oo, cf. the definition of £ after , a possible imaginary part of &
can be neglected since it doesn’t disturb our estimates provided |v| > N for N € N sufficiently
large.
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Figure 2.1: Concerning the estimate of ||g(0, v, )|/«

Let’s begin with the first step. We consider the function

fURNASR, (ay) o ((<x,y>—g)2—ﬁ)‘2,

where A C R? is the annulus centered at v/2 with inner radius |v|/2—|x| and outer
radius |v|/2 + |k|. This annulus is depicted in Figure Obviously, the level
sets of fi are concentric circles with center v/2. The circle with center v/2 and
radius |v|/2 is the set of singularities of f;. Hence, f; is well-defined in its domain
of definition where A is cut out. We compute the integral fRQ\A fi(z,y)d(z,y) by

using polar coordinates and a coordinate shift (z,y) — (z,y) + v/2:

el r o r
fedy) =2r [T b [
0

2 _ WP L - I L
(e it (2

R2\A

By the decomposition

we get
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This yields

and hence,

fu y)d(z,y) = O (%) as|y] = oo (2.12)

For the second step, we consider the function

f2iR\ S SR, @MH<@)<ﬁ)>ZﬂmHMW?

where the strip S C R? is defined as S := {tﬁj' —l—sl it ER, s €[k, |/<;H}

Since the set of all (x,y) € R? fulfilling vox — v1y = 0 is the line {tv : t € R}
through 0 and v, the map f, is well-defined on R?\ S. The strip S is also depicted

inFigure Let Q := { m +3|V| te [ LR |/<c|} s € R\ [~ |m|]}
Consider the linear map ¢ : R* — R? unlquely deﬁned by ¢(1,0) := v/|v| and
#(0,1) := v+ /|v|. Its functional determinant is equal to det ¢/ = (—vZ—1v3)/|v|* =
—1. We thus get

/hmwmwzfmﬁw@mwwwwwz

|
ER 1
= / / n —————dydr =
1 Sy (o2, y), L)
|+|H| 2 M+|n\ 00 1
= / / id 2dydx=2/ / T pdydr =
W s (v + yvt, vt) g S PPy

2

ltlsl 2
- Todr = 2 =0
|2 /_;_,i || r |V|2|K’(|V|+ |k]) (

We now go back to (2.11)). We estimate
2 :
2
v|2
perviont (o= 52 = L) + ¢ (p,01)?

1 1 I enen 1
SZ 2+§Z 2:Om’

1
pe(R2\A)NC* ((p — %)2 — %) pEQNT* <p7 v >

vl

> , as|v| » oo, (2.13)

x|~

IN
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as |v| — oo. This shows Hg(O,l/,-)H?Q(F*) = O(1/]v|), as |v| — oo and the first
claim of the lemma is proved.

As to the second claim concerning the estimate of sup ,cp-\ (0,1, [9(k, v, p)|, we
may again consider without loss of generality the case k = 0 with the same reason
as before. The idea of estimating this term is essentially the same as before with
the only difference that we don’t estimate integrals of squares of fi, fo but this

time the supremum of fi, fo. More precisely, we get with s := ]/@|ﬁ
1 1 1
sup — =0 —1=0 (—) ;
pEENANT™ [(p — ¥)2 — % (% + k)2 — w2 4

as |v| — oo, since

2 2 2
‘(% tr) - ‘%‘ = |lllv] + |8[?] > [v] (|ﬁ| - %) .
Likewise (compare Figure ,
1 1 ’KJ’}
sup ——— < su Sz, y) €R |yl > 1 b =
20 Ty < o gty (o) SR 2
1 1 1
= sup 5 = =0 (—> ,
izl 1Yl sl v
as |v| — oo. Altogether with (2.10)), we get
1
Sup }Ig(O, v,p)l = S - <
pel'*\{0,£v pel'*\{0,£v v v|2
=92 == e

1 1 1 1
< sup S+t 2 sup ————=0(=],
peEAA |(p— )2 — 2] & peanr- | (p, 1) | v

as |v| — oo. This proves the second claim of the lemma. O

As already mentioned, [I3] deals with FI°>!-potentials. In this context, one uses
so-called localised quasi-norms. Since we are interested in L?(F)-potentials, we
can use the ordinary L?-norm (or the [>-norm in the Fourier space, respectively).
In the following, we will recap some assertions of [I3] (namely the subsequent
Theorem Lemma[2.2.7/and Theorem [2.2.8]) that can be translated into the
L2-potential case without any difficulties by adapting the formulations correspon-
dently. For this purpose, we have to prove the following lemma (the analogon
of [13, Lemma 4.5.13|) which is the crucial statement for the L*-reformulation of
the subsequent assertions.
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Lemma 2.2.5. There is an open neighbourhood V of 0 € C? which depends only
on T* such that for all € > 0 and all ug € L*(F), there is a § > 0 and an R > 0
such that for allk € V, all v € T} and all u € Br(ug) C L*(F), there holds

11 = T, ) (At o) — 477 00) " all ey s ey = |1 BAlzn oz < e

Proof. Let ¢ > 0 and f € FI*(I'*). Then due to Young’s inequality for convo-
lutions and the convolution theorem || f|| 2y = || * fllize (cf. [2, p. 199,
Theorem 4.2.4] or [13, Theorem 2.1.10], for example), we obtain

IBAf || 7y < || Bllzeeeysroee) - ey - | Flaee

We have (by using the suggestive notation 19(p) which shall signify [¢(T*) with
respect to p)

| Bllresy—rir@sy = sup ||Bfllzn = sup  |[(g(k,v,p) - f(p))olling <
”f”_‘/:zZ:1 ”fH]:zQ:l

S ||g(k7 v, p)||l2(p)

due to Holder’s inequality. Lemma yields ||g(k, v, p)|l2) = 0, as || = oo.
For u € Bg(ug) C L*(F), there are suitable 0 < r < R, h € By(0) C I*(I'*) with
u = g + rh and

[ tl| 20y = lti0 + 7Rl 2y < Niollze) + R,

where we made use of Parceval’s identity ||u||z2(p) = ||@]|;2r+). Choose for exam-
ple R =1 and ¢ > 0 such that with ||tol[2q-) +1=:C

€
||g(k7 v, p)HIQ(p) < 5

for v € T%5. Thus, || BA||znry—rnme < (¢/C) - C = €. This shows the assertion.
[

The reason why we call the object (2.6) perturbation matrix will get clear in the
following Theorem, cf. |13 Theorem 4.5.19].

Theorem 2.2.6. There is an open neighbourhood V of 0 € C? which depends
only on T* such that for all uy € L*(F), there is a § > 0 and an R > 0 such that
forallk € V, allv € T and all u € Br(ug) C L*(F), the local part of the Fermi
curve F'(u) N (V + kE(do)) is described by the zero locus of

ko det(Me, (k + kX (1), u)),
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where M = My, (k + ki (do), u) is defined by [

A ((k + K (10))? 4 o) 0
M "( 0 4w2((k+kj<ao>)2+ao>>
+ AL (k + k(o) u). (2.14)

For a constant potential u = const, we have AL, (k + kX (tg),u) = 0 since 4 =0
in this case and the matrix M is equal to the diagonal matrix in formula (2.14).
If we perturb the constant part of the potential by a non-constant term u # 0,
we get a perturbation term in (2.14)), namely the perturbation matrix (2.6]). This
explains the name perturbation matriz.

An important lemma is the following (cf. [I3, Lemma 4.5.21])

Lemma 2.2.7. There is an open neighbourhood V of 0 € C? which depends only
on T'* such that for all uy € L*(F), there is a § > 0 and an R > 0 such that for
allk €V, allv € T} and all u € Br(ug) C L*(F), the matriz Ay ,(k+ k= (1), u)
1s continuously differentiable in k, and we have

lim H—Aﬂ (k4 kX (), u)|| =0
|v|—o0
uniformly in k € V and v € Bg(ug). Here, ||-|| denotes the matriz norm induced

by the standard hermitian vector norm in C2.

Next, we want to introduce the so-called perturbed Fourier coefficients which will
serve as some kind of asymptotic coordinates for a potential u. First, we need the
following result which states that in every excluded domain, there exists a unique
point in which the matrix (2.14)) is off-diagonal (cf. [I3, Proposition 4.5.29]).

Theorem 2.2.8. There is an open neighbourhood V of 0 € C? which depends
only on T* such that for all ug € L*(F), there is a 6 > 0 and an R > 0 such that
for all v € T and all u € Br(ug) C L*(F), there is a unique ki, € V such that
the diagonal entries of the matrix get zero at k = ki, more precisely:

Ay (kg + K (G0), )11 + 472 (kg + k5 (G0))? + tio) = 0,
A+u(7€+u+k (iig), u)2z + 47 <<k+V+ku< 0))> + 1) = 0,
,u(’f ky, (o), )iy + 4 ((k—, + k;, ())* +ﬁ)=0,
(o ke (), w)an + 4 (k- +kz+(ﬂ ))? + i) = 0.

3In [13], there occurred a small sign mistake (as the proof of [I3, Theorem 4.5.19] shows):
The minus sign in [I3, Theorem 4.5.19] in front of the diagonal terms —472((k+ kX ())? + 7o)
must be a plus sign. Equivalently, one could also use the sign as in [I3] if instead, one defines
the perturbation matrix with a minus sign in front of the right hand side of (2.6). We decided
to define the perturbation matrix as in [I3] and set plus signs in front of the diagonal terms of
the diagonal matrix in M as just explained.
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Now, we can define the (preliminary) perturbed Fourier coefficients (%, v)F,
tio(+,v)* for v € T* by (compare |13 Definition 4.5.31])

Uy (2, 0)F = Ax (ke + KX (), )12,
ﬂg(i, V)i = Ai,y(/{?j;y + k'l:jt(ﬂo), U)Ql. (215)

Here, the first argument =& of @y o(+, v)* refers to the subscript + in kg, (which
also corresponds to the subscript £ in Ay ,), the superscript & of (%, v)*
refers to the superscript 4 in k().

This is only a preliminary definition (cf. Definition because in Section
we will use some transformation properties to get rid of some sub- and
superscripts (cf. equation (2.20])) which complicate the notation at the moment.

2.3 Involutions and their transformation proper-
ties

In this section, we want to consider involutions of C? and the transformation
behaviour of Fermi curves and their inherent objects (such as the perturbation
matrix) by action of these involutions. The most important involution is the
holomorphic involution

oc:C*=C?% k— —k.

Due to |13l Proposition 4.5.8], o leaves a Fermi curve F(u) invariant. More-
over, this proposition shows the statement F(u) = —F(u), which implies that
Fermi curves for arbitrary potential v € L?*(F) are point-symmetric with re-
spect to the origin 0 € C?. Since it has been shown in [13, Proposition 4.5.8|
that (—=Ag + u)T = —A_; + u (which can be easily verified by direct cal-
culation: (Axf,g) = (f,A_xg) for all f,g € L*(F), thus AT = A_;, with
(f,9) == [ f(x)g(x)dz), the involution ¢ acts by mapping a Schrodinger op-
erator to its transposed one. Note that, speaking of transposed operators, we
use the euclidean scalar product (extended to complex-valued functions), i.e.
(f.9) = [z f(@)g(x)dx as defined above, not the hermitian form. Therefore,
transposition leaves the potential u invariant (although w doesn’t need to be
real-valued in our present consideration). So, in any case, the potential u, con-
sidered as a multiplication operator, is symmetric (v = u) but in general not
self-adjoint (since u needn’t be real-valued).

Now, we want to examine how the perturbation matrix, the diagonal-zeroes k4 ,
(see Theorem and the perturbed Fourier coefficients transform by action
of 0. As to the perturbation matrix, we have the following theorem (cf. [13]
Proposition 4.5.24]).
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Theorem 2.3.1. Let u € L*(F),v € T} and let 0 € V C C? with V = —V such
that Ax,(k + kx(do),u) is well-defined for all k € V in the sense of Definition
2.2.2. Then

A:t,y(k + kf(ﬂo), U)T = A:F,V(_k - kz:/‘:(@O)v u)7 (216)

( (1) (1) )Aﬁ:,u(k—l- ky (1), u) ( (1) (1) ) = Az, (k + k] (o), w). (2.17)

The first equation indicates the transformation of the perturbation matrix
by action of o, the second equation indicates the transformation behaviour
by changing the ordered base (¢, ¥1,) to (¥1,,1%0). Asis well known from linear
algebra, such a base change has the effect on the matrix that not only the two
off-diagonal entries permute (as it is the case in the transposition) but also the
two diagonal entries permute.

The following theorem shows how the transformations in Theorem [2.3.1]affect the
diagonal-zeroes k. , from Theorem and the perturbed Fourier coefficients.

Theorem 2.3.2. For the diagonal-zeroes k., of Theorem [2.2.8 and the perturbed
Fourier coefficients, defined in (2.15)), there holds

kyi=ky, =k_,, (2.18)
ky = —k_,, (2.19)
U1 (+, )" = do(+, =)t = Uy (—, —v)” = ta(—,v)” (2.20)

for v € I's with suitable 6 > 0 depending on the potential as in the conditions of

Theorem [2.2.8 If we define @, = i (+,v)", the matrizc M from [2.14) is at k,

equal to
My (ky + k(i) ) = 0 %)
v v v ’ 12$l, O
Proof. By definition of k, ,, we have by Theorem and Theorem [2.3.1]

0= Apu(kpy + K} (t), uhry + 47 ((kyp + K} (Gi0))? + to) =

Ak + K5 (110), )z + 472 (e + K7 (09))? + ) =
(=0) = A (k_, + k(@) u)as + 47 ((k— + k] (100))* + o), (2.21)
where in the last step, we applied once again Theorem this time considering

the lower signature for the second diagonal entry[] We get equality between the
second and the third line because both terms are equal to zero. Similarly, we get,

“Remember the different signature k(i) instead of kF(7g) in the corresponding second

diagonal entry of ([2.14)
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by using exactly the same arguments (i.e. at first upper signature with equation
(2.17) and then lower signature), this time applied to the other diagonal entry:

0=Ay,(ky,+ kS (i), u)es + 472((/€+,u +k, (ﬂo))z + 1) =

AL (g + K5 (i10), w1y + 472 (ke + ki (110))? + l9) =
(=0)=A_,(k_, +k, (), u)11 + 47 ((k_, + K, (2))* + o). (2.22)

Due to the equality of the second and the third line of (2.21)) and (2.22)), respec-
tively, we obtain, by the uniqueness of k4, due to Theorem [2.2.§8 the claimed
identity (2.18).
Now, set k, := k;,. Again, by definition of k,, we have by Theorem and
Theorem

0= Ay (K + & (@0), whn + 47 ((k, + kil (tho))* + o) =
AL (—ky = (o), s + 472 ((ky + K (i20))? + ).

Since (k,+k;} (10))? = (—(k,+k](10)))? = (—k,+k*,(1g))? (note that kT, (tg) =
—k} () by definition), the above is equal to

0= A—,I/<_kl/ + /{Zty<a0), u)u + 477'2((—]{?,, + k?ty(a0>)2 + 120)

If we apply Theorem again, this time considering —v instead of v (but using
the upper signature as before), we get

0= Ay —p(koy + kE, (o), w)ir + 47 (k- + k2, (10))* + 1)
Thus, we have obtained

0=A_,(=ky + k", (), )1 + 47 (=K, + k¥, (110))? + G0) =
= Ay -y (koy + kE, (o), w)in + 47 ((k-y + K2, (10))* + 1) (2.23)

as a result for the first diagonal entry. Similarly, we get for the second diagonal
entry

0 == A—,V(_ku + k?ty(fbo), u)22 + 471'2((—]{1, + k:y(ﬁo))2 + ﬂo) =
= Ay (ko) + KT (), w)an + 4 ((k_y 4+ k=, (110))* + o). (2.24)

Again by the uniqueness of the &, due to Theorem [2.2.8] we get by (2.23) and
(2.24) the claimed assertion ([2.19) provided that A_, = A, _, which remains to
be proved. But this follows immediately if we write these terms down explicitly:
A (=ky + k2, (o), w) = 7, [u(1 = (1= mr (A g
A+,_,,(/{:_l, + ki_y(fto), u) = mx_,[u(l—(1— 7K7V)<Ak,u+kfu(

Uo)

a0y — 4 00) ) |k,

—Am*to) " a) |k,
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Up to the difference that in the first term, k = —k,, whereas in the second term
k = k_,, the two terms A_, and A, _, are equal as claimed.

Now, we’ll show (2.20) (which has already been stated in [13, Def. 4.5.31] with
slightly different notation; here, we want to give a full proof). We have

?11(“‘, I/)Jr = AJr,y(ky -+ k’j(ﬁo), U)12 .Aij(_kly + k'iry(ﬂo), U)Ql =
A_Vy(k‘_y + k?jl/(ﬁo), U/)Ql = A_l'_’_y(k—y + kty(ﬂo)a u)21 = Z12(_*_7 —l/)+,

as well as
Uo(+, —v)" = Ay o (k_y + k5 (Gg), u)a ey Ay (k_y + k2 (), u)12 =
= lvbl(—, —V)i
and

(= =) = A (ke + k= (i), w)1s P22 Ay (—ky + ko (dl0), w)or =
A (ky + K (i), w)ar = tia(—, 1),

where we made use of A_, = A, _, as before. This proves (2.20).
Finally, by setting u, := @ (4, )", we get by (2.20) do(+,v)" = w1 (+, —v)" =
t_,. Thus,

for the upper signature. Because of 41(—,v)” = @ (+, —v)" = @_, and Gs(—,v)” =
a1 (+,v)t = a,, we obtain

M, (ky + K (i), u) = ( 0 = )

for the lower signature. This proves the theorem. O]

Now, we define (again with suitable 6 > 0) the sequence of perturbed Fourier
coefficients as it has already been done in (2.15). But this time, due to (2.20)),
we can restrict ourselves to the term @, (+,v)".

Definition 2.3.3. Let § > 0 as in Theorem [2.2.8| (depending on the given po-
tential v € L*(F)). Then we call the sequence (i, ),er: defined by

leV = ’lvtl(—f—, V)+ = ./44_7”(]{7” + kj(ag),u)lg, Ve F;;,

the sequence of perturbed Fourier coefficients of the potential w.
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Remark. The name perturbed Fourier coefficients will become clear by Theorem
and its proof. There, we will see that the perturbed Fourier coeficients
can indeed be considered as a perturbation of the (ordinary) Fourier coefficients
(@(v)),. In order to avoid confusions between Fourier coefficients and perturbed
Fourier coefficients, we will reserve the notation u for the sequence of perturbed
Fourier coefficients and (as usual) @ for the sequence of ordinary Fourier coeffi-
cients.

Next, we introduce two further anti-holomorphic involutions n and 7 (where the
latter is just the composition of the two others, 7 :=no o) by

n:C*—=C% ke—k
T C* = C? k— —k

Here, k denotes the complex conjugation of k. These anti-holomorphic involu-
tions will be important if we consider real-valued potentials v : ' — R. At
first, we want to see how the perturbation matrix transforms by action of n and
7. In analogy to (2.16), we now have to consider the hermitian adjunction (i.e
transposition and conjugation, which shall be denoted by a *, i.e. A* := AT for
a matrix A) instead of transposition.

Theorem 2.3.4. Let u € L*(F),v € T's and let 0 € V C C? such that Ay, (k+
k£ (1), u) (as well as its transformations appearing in the following equations

(2:25),(2-26) ) is well-defined for all k € V in the sense of Definition[2.2.2 Then

Ap (b + Ko(io), u)" = Ao (F + FE(G0), @), (action byn)  (2.25)
As(k+kE (o), u) = Az, (—k — kX(tp),u)  (action by T) (2.26)

Remark. Here, u on the right hand side of and , respectively, denotes
the complex conjugation of the potential u, not to be confused with the non-
constant part of u which we denoted until now with u as well. Below, we will
therefore use the definition A := @ (cf. (2.7)) for the non-constant part of u in
order to avoid such confusions.

Proof. We have to see how the individual terms of the perturbation matrix (2.6
behave by action of the involutions. Let’s begin with the projector 7, . In a first
step, we claim that 7, is a self-adjoint operator, i.e.

* pR—
T‘-KV — 7TKV.

Let
(f,g) = / f(2)g(x)da
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denote the hermitian L*- scalar product. We compute for (periodic) f, g € L*(F)
by respecting f(v) = [, f(2)¢-(x)dx = (f,4,) and (f, g) = (g, f):

(mic, . 9) = (O + )0 9) = FO)50) + f0)50) =

= 9(0) {f,tho) + g(w) {f, ¥w) = {f, 5(0)0 + §()ib) = (f, Tk, 9) -

This shows that mx, is self-adjoint. Consider now the Laplacian with boundary
condition A = A +4ri(k - V) — 47%k%. The Laplacian A is self-adjoint,
A* = A, which follows immediately by double integration by parts. Likewise by
integration by parts, one gets (47i(k - V))* = 4mi(k - V) since

L47ri(k:-Vf)gz—A47rif(k:-Vg):/Ff-m.

Note that the boundary terms in the formula of partial integration vanish due to
the periodicity of the appearing functions since we integrate over the fundamental
domain F. As to the multiplication operator —47%k?, one immediately gets
(—47m2k?)* = —47?k2. To sum up,

Ar = A +dri(k - V) — 47%k* = Ag.
We use the abbreviations A, B introduced in (2.7). Considering B*, we get by

what we have just shown,

B = (1= 7o, ) (A o) — 4m%09)

Together with
(A1 - BA) ™Y = ((1-AB)'A)* = A*(1- B*A*) ' = A1- B*A)™,

where we used [13, Lemma 4.5.23] in the first equality, we obtain the first trans-
formation property (2.25). The second identity (2.26) now follows immediately
from the first together with (2.16) via A = (A*)7. O

Analogously to Theorem we can now prove how the transformations of
Theorem affect the diagonal-zeroes (k, ), and the perturbed Fourier coeffi-
cients:

Theorem 2.3.5. Let u € L*(F) and denote by v := @ the complex conjugation
of u. Let the constant part 4y of u (cf. (2.1)) be real. Then for the diagonal-

zeroes (ky,(u))ver; and (k,(v))ver; of Theo and the perturbed Fourier

coefficients (1, ),er; and (0,)vers (cf. Def. |2.3.5), respectively, there holds
—k(u) =k (v), @ =10,

for v € I's with suitable 6 > 0 depending on the potential as in the conditions of
Theorem [2.2.8.
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Remark. We require the condition iy € R since then kF(ig) = kF(0) is satisfied.
The requirement iy € R is no severe restriction since we will later consider real-
valued potentials where iy € R is always fulfilled.

Proof. As in the proof of Theorem [2.3.2] we use Theorem [2.2.8 and the transfor-
mation properties of the perturbation matrix induced by the corresponding in-
volutions, this time those of the anti-holomorphic involutions shown in Theorem
Since the constant part g is real, we have iy = 99 and kF(ig) = kF (7).
We thus obtain by definition of k,(u) and k,(v), respectively

0 = Ay, (ko () + kit (o), )it + 47 (o (u) + K (20))? + @) =
B2 4 (<o) + k5 (80), 0)ur + A72((— o (u) + k (20))2 + ) =
(= 0) "= AL (K (0) + Ky (80), )11 + 4%((k (0) + K, (20))? + B0),

for the first diagonal entry of (2.14), where we used —kj (o) = kj (0p) which
holds by definition of k() for potentials with real constant part 4o (note
that for potentials with non-real g, this is generally not true). As to the second
diagonal entry of , we get as well

0=As (ko (u) + k(i) w)an + 47 (K, (u) + K, (0))* + o) =
BB 4 (To(u) + ko (6), v)on + 472((—Fo (u) + K (50))7 + i) —
(= 0) "= A (K, (v) + Ky (80), )20 + 47 (K (0) + K (30))? + o).

Again, by the uniqueness of the k,, we obtain the first claim —k,(u) = k,(v).
This, together with (2.26]) implies

Ty = () = A O(w) + I (o) )12 2 A (=) = B (), )12 =
= A_u(ky(v) + K, (Do), v)12 = 01(—, V)"
With (2.20)), we obtain the second claim

U, = 01(—,v)” =0 (+,—v)" =0_,.
This proves the theorem. O

The preceding theorem immediately leads to an important assertion concerning
the perturbed Fourier coefficients of real-valued potentials u : F' — R:

Corollary 2.3.6. Let u € L*(F) be real-valued. For the diagonal-zeroes (k,),crs

of Theorem and the perturbed Fourier coefficients (i, ),er; (cf. Def. ,
there holds

_ku = k’,/, Uy = Uy

for v € I's with suitable 6 > 0 depending on the potential as in the conditions of
Theorem [2.2.8.
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Proof. Due to reality, we have v := u = u. The assertion then follows from
Theorem 2.3.5 O

2.4 The perturbed Fourier coefficients as coordi-
nates

In this section, we want to prove that the map between (ordinary) Fourier coef-
ficients u(v) and perturbed Fourier coefficients @, v € I'}, defined by

1*(T5) — 1*(T), (@(v))vers = (t)vers,

is for sufficiently small 6 > 0 locally boundedly invertible, provided that the
first finitely many Fourier coefficients indexed by v € I'* \ I'} are kept constant
(otherwise the above map wouldn’t be well-defined). The purpose of this is that
we will later use the perturbed Fourier coefficients to parameterize the potentials
(at least asymptotically). The first step in proving that the map between Fourier
coefficients and perturbed Fourier coefficients is locally invertible in 1?(T'}) will be
to show that the sequence of perturbed Fourier coefficients (i, )yer; is in 1*(I;),
provided that v € L*(F) (that is, @ € [*(I'*)). By definition, the perturbed
Fourier coefficients are certain entries of the perturbation matrix evaluated
at k = k,. Therefore, we show in the following theorem that the entries of the
perturbation matrix are in [*(T'}) (with respect to v) if u € L*(F).

Theorem 2.4.1. There is an open neighbourhood V of 0 € C? which only depends
on T'* such that for all uy € L*(F), there is a § > 0 and an R > 0 such that for
all k € V and all w € Br(uy) C L*(F), the entries of the matriz are in
1*(T'5) with respect to v. Furthermore, (i, )yer: € 1*(Iy).

Remark. This theorem is the analogon to [I3, Theorem 4.5.42|, where the as-
sertion was claimed for FI°>!(I'*)-potentials. As already mentioned before, the
proof in [13] unfortunately uses a wrong estimate for g*(k,v,n) so that Theo-
rem 4.5.42 in [13] is not proved (it might even be wrong). However, not all is
lost. We will adopt the main ideas of the proof, transfer them to our proof for
L*(F)-potentials and use then different arguments where it is necessary.

Proof. Let ug € L*(F) and 6 > 0, R > 0 chosen as in Lemma [2.2.5] Let
u € Bgr(up) C L*(F). Due to Neumann’s Theorem (cf. [30, Satz I1.1.11]) and
|13, Lemma 4.5.14|, the operator

1— (1= 7k, ) (Apirit ag) — Ariig) "

is invertible in FI'(T'*) (compare the beginning of the proof of Prop. 4.5.15 in
[13], p. 98). Using the abbreviations of (2.7 again, this means that the operator
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1— BA is invertible in FI'(T'*). Thus, (1— BA)~! maps FI'(I'*) boundedly into
itself. For f € FI'(I'*), we obtain

F(A(1—-BA)'f) = \u/ « F((1- BA)™'f) € *(T™)

€12(T') ell("p*)

since [? * [* C [? due to Young’s inequality. This shows
A(1— BA)™: FINTY) — FIA(T). (2.27)

Now, we enter the proof of |13, Theorem 4.5.42|. Therefrom, we have the expan-
sion

A(1— BA)'= A+ ABA(1—- BA)™". (2.28)

Now, we have to consider the restriction to Ky,, more precisely, we need to
examine the Fourier transform of the term above at k = 0 and k = +v with
respect to v. The entries of the first summand A (restricted to K4, ) are obviously
in [*(T*) with respect to v with the same justification as in the proof of [13]
Theorem 4.5.42]. Remember: In order to compute the entry (x,u) of ABA(1 —
BA)™!, we have to compute F(ABA(1— BA)e)(k), where e € FI'(I'*) denotes
the p-th Fourier mode in the Fourier space, i.e. é(u) = 1 and é(\) = 0 for
A # p. We are interested in tuples (k,p) with suitable x,u € {0,+v}. The
Fourier transform of ABA(1— BA)™! yields the entry at (s, ) (cf. [13, equation
(4.5.44)])

Z u(k — p)g(k,v, p)f(k,v,p), (2.29)

pel*

where f denotes the Fourier transform of A(1— BA)™'e with e as above. In the
following, the index u turns out to be immaterial, so we suppress it. In [13], p.
111, the Fourier transform (£2.29) could be estimated via

> ik — p)g(k, v, p)f(k, v, p) Z g (k,v,n)f*(k,v,n),
pel* n=1

where f*, 4* and ¢g* are the decreasing rearrangements of f, & and g, respectively,
with respect to p (recall Definition [2.2.1)). Now, we leave the proof of [13, Theorem
4.5.42] again. We have to show that?|

Z *(k,v,n)f*(k,v,n) € *(v).

5 As before, the suggestive notation /2(v) shall signify [2(I'*) with respect to v.



38 CHAPTER 2. FERMI CURVES

Due to Holder’s inequality, we obtain by recalling that f* € i*(n) (cf. (2.27))
together with sup,,cy g*(k,v,n) = O(1/|v|), as |v| = oo (cf. Lemma 2 2.4))

* A K * * 1
E “ “(k,v,n) [k v,n) < ([0 |z - (1 2o $Sup g (k,v,n) =0 (M) )
612 elloe oo €l?

as [v| — oo. This is an estimate for the second summand in (2.28). Here, we
used that [|4*(n)];2¢, is independent of v and that || f*||;2¢, is in {*°(v) which
is a consequence of the representation A(1— BA)™! and Lemma where we
showed that [|g(k, v, p)|liz,) = O(1/|\/V]) (this corresponds to the term B), as
lv| = 0.

Together with the first summand A which we have examined above, we obtain

ﬂh%memm+o(ﬁ>,n¢%m (2.30)

for fixed p € I'*. Unfortunately, O (ﬁ) isn’t an [?(v)-sequence, yet (note that

I™* is two-dimensional). The estimate thus has to be improved. Inserting f one
more time into the estimate for the second summand in (2.28), we obtain again
by Holder’s inequality (but this time with another decomposition) with (2.30))

E ) g kv n) 7k, vn) < (1@ e - (177l - [lg™(k v )l =
~~ - N— ~-
el2() l2(n) €l (n) _O(\vl) :O( L )
v

=0 () <20

where for the estimate of [|g*(k,v,n)[2(n), we used Lemma [2.2.4 Thus, by
one-time iteration, we have improved the preliminary result (2.30) to [*(v) +

O <M%/2> C I?(v). Hence, we have proved that the entries of the perturbation
matrix (2.6) are in [*(v).

It remains to be proved that the associated sequence of perturbed Fourier co-
efficients (@, ),ers is in 1*(v), too. Here, we can copy the end of the proof of
[13, Theorem 4.5.42|: We have to show that the sequence of the diagonal-zeroes
(|kv]), (see Theorem is in [?(T'}). But this is done literally as in the men-
tioned proof in [I3] if we replace the condition used in [13] that the entries of the
perturbation matrix are in [°!(v) by the just proved result that the entries of
the perturbation matrix are in [?(v). O

Before we formulate the main result of this section, we want to state more pre-
cisely how the map (introduced at the beginning of this section) between Fourier
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coefficients and perturbed Fourier coefficients is defined. We consider the map
(compare [13] (4.5.50)])

() — FI2(I*) — 13(T}), i — u—> (Ty)yery (2.31)

The first map @ — wu is the inverse of the Fourier transform w +— @ which is
as a linear isomorphism of vector spaces globally defined on [?(T'*). The second
map u — (i, )yer; is also well-defined by Theorem @l and Definition [2.3.3 If
we restrict I'* to ['j and require furthermore that the first finitely many Fourier
coefficients indexed by v € I'* \ T’y are kept constant, we thus get a well-defined
map

B(r5) — P(T5),  (@(v))ver; — (i )ver;. (2.32)

Keeping the first finitely many Fourier coefficients constant is necessary for the
well-definition of since by this requirement, it suffices to know the sequence
(@(v))ver; to determine the potential u.

Since we will prove in the following theorem in particular the holomorphy of the
map , let’s briefly recall in this context that the well-known statement from
the finite-dimensional case that functions which are complex differentiable in an
open set are already holomorphic (i.e. expandable into a convergent power series)
also holds in the general case of mappings between complex Banach spaces (maybe
with infinite dimension). More precisely: A differentiable function f : U — F
(with £, F' complex Banach spaces and U C E an open subset) is already holo-
morphic (in the usual definition such as |21, p. 33, Def. 5.1]). This can be seen
as follows: If f: U — F is differentiable, it is in particular continuous and par-
tially differentiable in the sense that the restriction of f to UNM is differentiable
for all finite-dimensional subspaces M of E. Then, for an arbitrary functional
Y € F* (with F'* denoting the dual space to F), ¥ o f|ynas is holomorphic due
to [3, Theorem 3.1.7] (Osgood’s Lemma). This in turn implies that f|yna is
holomorphic due to [21I, Theorem 8.12(b)|. Finally, due to [2I, Theorem 8.7], f
is holomorphic on U.

To sum up, in order to show holomorphy, it suffices to verify complex differentia-
bility in an open subset. Now, we can state the main result.

Theorem 2.4.2. For all u € L*(F), there is a § > 0 and an R > 0 such
that the map is boundedly invertible on Br(w) C (*(T';) provided that the
first finitely many Fourier coefficients indexed by v € I'*\ I'} are kept constant.
Moreover, the maps and are holomorphic (locally in their respective

domain of definition).

Remark. The constraint of keeping the first finitely many Fourier coefficients
(indexed by v € T* \ T'}) constant is not a severe restriction if we are interested
in solving the asymptotic isospectral problem. Indeed, we will do so in Chapter
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anyway (compare also the remark to Corollary . We usually choose this
constant to be equal to (@(v)),er-rz, the first finitely many Fourier coefficients
of the initial potential @ (expressed in its sequence of Fourier coefficients), i.e.
the center of the ball Br(u) mentioned in the theorem.

Proof. We prove the theorem with the help of the Inverse Function Theorem.
Thereto, we have to show that the map is differentiable and that its deriva-
tive is invertible in u € L?(F'). Since the perturbed Fourier coefficients are certain
entries of the perturbation matrix (2.6)), we have to consider the derivative of the
perturbation matrix Ay, (k + kX (4g), ) with respect to the potential u. In [I3|
Theorem 4.5.25], this derivative has been calculated (this theorem also yields the
holomorphy of the perturbation matrix with respect to w). In [13] Lemma 4.5.45],
the derivative (evaluated at some fixed potential which is suppressed)

%(A(]l — BA)™Y) € L(FP(T™); FINT*) — FI2(T'™))

is splitted into two summands (with the usual A, B notation, cf. (2.7)):
hl—)WKiu(l—AB)_IB(ﬂ—BA)_1|KiV, (2 33)
h 7, (1— AB)'ABC(h)BA(1— BA) k.., '

where h € FI*(T'*) and C'(h) is the (diagonal) operator defined by

2 -

C(h) := diag <—% <p +k + kX (qp), (_”;) > - h(0) — 4#&(0)) o
pel*\{0,+v
(2.34)

compare [13, p. 104]. In fact, in terms of Fourier coefficients, C'is the derivative
with respect to u of the operator

E = diag(—47r2(p +k+ k‘f(do)f — 472710)p61“*\{07iu}7 (2.35)

which is the operator E := (1 — mr, ) (A 4t (ag) — 47%lg) in the Fourier space,
compare (2.9). More precisely, (2.34) can be derived as follows: Deriving the
diagonal entries of E yields for p € I'* \ {0, £v}

Oy 5 _ Oy ; 42 ooy IR\ Y
54 (h) = Dt h(0) = —4n* | 2( p+ k + k; (o), o 1] h(0),

+ n i Vo “ . .
where akgﬁ(o 0 — 57(7111) by definition (2.2)). This shows ({2.34)).
We now follow the proof of [13, Lemma 4.5.45]. The first summand in (2.33) can
be expanded into the four summands

(1— AB)"'h(1— BA)™' =

=h+A(l— BA)"'Bh +hBA(1— BA)™ + A(1- BA)"'BhBA(1—- BA)™.
(2.36)
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The first three summands are handled like (2.28]), in particular the second and
the third summand like (2.29)), the fourth summand similarly (for details, see
[13| p. 113], which can be translated into the FI? case without any problems
by replacing FI[*!-functions by FI*-functions at the correspondent positions).
Altogether, the first summand in (2.33) maps into [*(T";) with respect to v. As
to the second summand in , there appears the operator . Here, we
deviate from the proof in [I3], since that proof uses that C' boundedly maps
[°>1(T*)-left multiplications to [°>!(I'*)-left multiplications. In our case, it’s not
clear yet whether C'(h) maps FI*(I'*) into FI*(T'*).

We compute for f,h € FI*(I'*), p € I*\ {0, v}

FBC()BS) () —
;
= athr) (0 (o ks ), (72 ) 00) = 4500) ) g0 n)- f5)
& 2 . TS e
~~ €2 (p €li?(p
€l (p)

Hence, due to Holder’s inequality,
F(BC(h)Bf) € 1'(p)

and clearly F(BC(h)Bf) € I*(v) (recall Lemma [2.2.4). Therefore and since for
fe FIiI),
FAQL- BAY'f) € P(p) @ P(v)

(cf. (2.27) and Theorem [2.4.1)), we get for f € FI'(T'*), h € FI*(T'*)
F(BC(h)BA(1— BA)'f) € l'(p) ® I*(v),
—_—
€(p)

where for the [?(v)-term, we used Theorem since BC'(h)B is bounded with
respect to v. Finally, together with (2.27), we obtain for f € FI*(T'*), h € FI*(T'*)

F(A( - BA)*@C(h)BA(]l — BA) ) € P(p) @ P(v), (2.37)

Glﬁp)

where the [?(v)-assertion follows again from Theorem [2.4.1]

By using (1— AB)™'A = A(1— BA)™! (cf. [13, Lemma 4.5.23]), this yields that
the second summand in (2.33) maps into I*(v).

As to the derivative of the perturbed Fourier coefficients ({LV)VEFE with respect to
u, we obtain by setting Aja(k,u) :== Ay, (k4 &} (Go), u)12

d?l,, . d . 8A12(ky(u),u) dk',,(U) 8A12(]€,,,U)
du duAlz(ky(u)’u) N ok du + ou

. (2:38)

Here, the last summand -2 A5 (k,, u) maps into [?(v) by what we have just proved.
We have to show that the first summand maps into [*(v), too.
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The derivative 5 A(1 — BA)™" evaluated at some fixed k is (compare the proof
of [13, Lemma 4.5.21]) equal to

k— —A(1— BA)'BC(k)BA(1— BA)™, (2.39)
with

C (k) = —8n2diag <<p iy kf(ao),E>) (2.40)

pel\ {0,201}

The derivation of (2.40) is virtually the same as the derivation of (2.34) except
that this time, we derived (2.35)) with respect to k instead of with respect to u.

Comparing a(k) with C'(h) (2.34) above, we get in the same fashion as in the
computations before (cf. (2.37)) that, for f € FI'(T'™),

F(A(1— BA)'BC(k)BA(1— BA)™'f) € P(v).

Note that we have virtually the same term as in (2.37) except that here, 6’(7{?)
appears instead of C'(h). But both C'(k) and C(h) have the same behaviour in

the sense that the operators BC (k) and BC(h) are both bounded with respect
to v (that’s the crucial property needed in the computations). In order to show
our current aim that the linear operator (2.38) maps into (*(v) (more precisely:

(% (h))yers is in 1>(v) for h € FI*(I'*)), we have to show that %ﬁu) is bounded

du
(with respect to v) which shall be sourced out into Lemma [2.4.3]

Now, the remainder of the proof has actually been done in |13, Lemma 4.5.49].
We briefly recap it. We show that the derivative of (2.32) is invertible in order
to apply the Inverse Function Theorem. Due to £ Aia(ky(u),u) € *(v) and

(M> =0 (ﬁ), as |v| — oo, cf. the following Lemma [2.4.3] the norm of
vel'y

du

the first summand (8‘412(22(“)’“) : dk;iu))uer in (2.38)) tends to zero as 6 — 0. So
let’s consider the second summand in (2.38). Recall that the derivative of the
perturbation matrix with respect to v has been decomposed into two summands
(2.33)), where the norm of the second summand vanishes as 0 — 0 due to Lemma

3
The first summand has been decomposed once again into four summands

)

5

(2.36) where the last three summands vanish as § — 0, again due to Lemma

Only the first summand of the decomposition (2.36)), namelyf]

~

- B 0  h(xv)
hHT{-Kiuh’Kiu = ( /A”L(ZFV) 0 ) (241)

6The matrix in (2.41)) is computed with respect to the ordered basis (1,,1). Taking the
(maybe more self-evident) ordered basis (g, ,) for example, the matrix in (2.41) would be
0 h(Fv)
(ﬁ(iu) 0
[13].

). Yet, we chose the basis (¢,,10) in order to be consistent with the notations in
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does not vanish as & — 0. In fact, the map (h(v)), — (h(2v)), is boundedly
invertible. Hence, we may apply the Inverse Function Theorem (cf. [23, p. 142],
for example) and the assertion follows. O

Remark. Now, we have seen the motivation for the name perturbed Fourier coef-

ficients: The variation of the term (ﬁiy f%” ) can be approximated by the term in

(2.41), that is, it equals (11(]0”) a(ﬁy)) plus the remaining "perturbation terms"
which, however, vanish as § — 0.

We owe the proof that the u-derivative of k, is bounded with respect to v:

Lemma 2.4.3. Let (kl,>,j€rg be the sequence of the diagonal zeros of the matric
[2.14). Then the derivative (evaluated at some u € L*(F))

dk, (u)

 LA(F 2
T (F)—C
satisfies
dk, 1
(_(u)) =0 (—) , || = oo,
du vers V|
locally uniform in u. In particular, the deriwative dkgé 1s bounded with respect
to v.
Proof. Set
Dy (k) := 4m*((k + k} (110))? + 1) + Ay (k, u),
Dy (k) := 4 ((k + k;, (0))* + o) + Ao (K, ),
where A;;(k,u) := Ay, (k+ k) (4o),u);; fori,j e {1,2}.
Define

D:VCC2—C2 ks Diku) = (D“:’“;).
u

By definition of the k,, we have D(k,(u),u) = 0 for all u € L*(F). Differentiating
this equation with respect to u yields

ODy(ky (), w)  dk,(u)  ODi(ky,u) _

Ok du ou 0
ODs(ky(u),u) dky(u) N 0Dy (ky,u) 0
ok du ou -

which is equivalent to

< OD1 (kv (u),u)  OD1(ky(u),u) ) d/{il, (U) 8D(k,, U)

oDs (k) ODa(du)
2(Fv(U),u 2(kv(u),u
s s du ou

-

=:C
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The matrix 87%20 is invertible because its determinant is equal to
1 [0Di(ky(u),u) ODy(ky(u),u)  ODa(ky(u),u) ODi(ky(u),u)]
6471'4 814;1 8]{32 8k1 8/{:2 N
= (kw1 + k)1 (00)) (ko2 + K, 5 (1)) — (Rua + Ky (o)) (Ruz + Ko (d0)) + o(|v]) =
= (ku1 + k1 (G0)) (Bua + K)o (o) + v2) — (Kot + k) (o) + v1) (kua + k)5 (o)) + of|v]) =

= (o + K5 00D = (b + (i) -+ o) = (B + ). () ol =

= <ky, (_Vi )> + %i§|u|2 +o(|lv]) = %if|y|2(1 +0(1)), as|v| — oo, (2.42)

where the o(|v|)-term in the above computation is a consequence of the multi-
plication of terms of the form k; + kii(ﬁo) with terms %ﬁ”’m (1,7,1 = 1,2), cf.
Lemma Since C~! is thus well-defined, we get

-1
dk,,(u) B ( OD; (kv (u),u)  OD1(ky(u)u) ) 8D(k,,,u) B

ok Ok
ODa(ko(w)u) 9Dy (ky tu) ) ou
8k‘1 8192

. . 1
+ o/a 1 0A11(ku,u) + 1 90A11(kv,u)
_ g2 ki + k(o) + 5o =557 vz +k)5(to) + g2 =57 _
- 1 0Asa(ky,u N 1 0Aas(ky,u
+ L 22( )7 ko + ku,z(uo) 4+ L 22 (kv ,u)

Okt 812 Ok

as |v| — oo,

0A11(ky,u
(—é L o)

0A22(ky,u )
g+ 0)

where the O(1)-terms reflect that the derivative of 47%((k + kZ(io))? + o) with
respect to u is bounded with respect to |v|. More precisely, deriving this term
with respect to g yields 7 8“ > <k: + k£ (t), (7 )>+47r cf. (2.34), which is clearly
Since the entries of the matrix C' are O(|v|), the

bounded with respect to |1/

’
entries of its inverse are O ( ), as |v| — oo. Due to the boundedness of ag;l
and 85‘52 with respect to v (see the proof of Theorem [2.4.2)), the assertion now
follows. O]

In Corollary we have derived a property of real-valued potentials in terms
of their perturbed Fourier coefficients: , = @_, for all v € T';. With the help of
Theorem [2.4.2] we are able to prove that this property is also sufficient for the
realness of a given potential, at least in some asymptotic sense. More precisely,
we have the following corollary of Theorem [2.4.2]

Corollary 2.4.4. Let u € L*(F) and let & = (a(v)),er~ denote its sequence
of Fourier coefficients and let (?11,),/61"3 denote its sequence of perturbed Fourier
coefficients (for suitably small 6 > 0). Let further

w(v) = a(—v) for allv € T* \ T} (2.43)
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Then there holds the equivalence
w(v) =a(—v) for allv € T <= 4, =u_, for allv € T}. (2.44)

Remark. Before proving the corollary, let’s briefly discuss why this is a sufficient
criterion for realness of u in some asymptotic sense. Let u € L?(F) and set v := 4
as the complex conjugation of u. By definition of the Fourier transform ((1.9)), we
obtain

o(v) =u(—v) forallveTl™. (2.45)
Hence, there holds:
u € L*(F) is real-valued <= a(v) = a(—v) forallv €T,

since u is uniquely determined by its Fourier coefficients u and vice versa. Now,
the right hand side of is not sufficient for reality of u since we only consider
indices v € I'j such that the left hand side of will not hold for all v € I'*, at
least not without the additional assumption (2.43). In this sense, Corollary
provides a criterion for "asymptotic reality". Moreover, we have to require the
condition for the first finitely many Fourier coefficients since in the map
@+ u > (U, )yers, the potential u (and consequently the sequence of perturbed
Fourier coefficients) is determined by the entire sequence (@(v)),er+ (not only by
the asymptotic remainder indexed by v € I'j). However, the condition (2.43)) is
not really a severe restriction of generality since in Chapter 3] we will fix the first
finitely many Fourier coefficients anyway in such a way that in particular,
is fulfilled when we will solve the asymptotic isospectral problem (compare for

example (3.2)) in Chapter (3).
Proof. Consider the map

P(I*) — FEIY) — A(T5),  dr— ur— (@)very.

Set v := 4. Then ¥, = &, v € ['; (due to Theorem [2.3.5) and ©(v) = a(—v) for
all v € I'* (due to (2.45). For v, we thus have the mapping

P(L%) — FPT7) — P, (@(—0))ver — @ —> (@) ers.

Due to Theorem the map (4(v))ver; — (U )vers is locally boundedly
invertible. The assertion of the corollary follows if the sequence (i(—v))er;
is inside the ball Br() where invertibility holds due to Theorem [2.4.2] But by
choosing ¢ > 0 sufficiently small, this can be established} Choose in a first step a
radius R > 0 and §; > 0 such that invertibility of the map holds in Bg(1) C
ZQ(Fgl). All we have to show is, by choosing 0 < d; < d; sufficiently small, that

"Compare also the choice of § > 0 on p.
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invertibility also holds in the ball Br(@) C I?(I;,) with still the same radius R.
But this follows immediately from the proof of Theorem [2.4.2] There, we showed
that the derivative of the map is equal to the identity map plus some
perturbation terms whose norms, however, tend to zero (locally uniformly in w)
as |v| — oo. If we want to answer the question how large the ball inside of which
invertibility of the map holds can be chosen, we have to recall the proof
of the Inverse Function Theorem which is usually proved by applying Banach’s
Fixed Point Theorem: If f denotes the continuously differentiable map (between
some Banach spaces) in the Inverse function Theorem whose local invertibility
shall be proved, the ball B around some given point zy where invertibility shall
hold has to satisfy for example || f'(x) — f'(z0)|| < 1/2 for all x € B (cf. the proof
of the Inverse Function Theorem in [23] p. 142|, for example). In our case, the
corresponding term || f'(z) — f'(z0)|| gets smaller the larger |v| gets due to the
limit behaviour of the perturbation terms which has just been mentioned. In this
way, one sees that the radius R can be chosen fixed whereas § > 0 can be chosen
more and more smaller.

Let u € L*(F) be arbitrary. Choose § = d > 0 small enough such that ||al|;2(rs)
is sufficiently small, i.e. (4(v))yer; is in particular sufficiently close to 0 € I*(I';).
However, the radius R (belonging to the initial 6; > 0) has not decreased such
that we can achieve that (@(—v)),ers is in the ball Bg(i). In other words, we
chose a d > 0 and a radius R > 0 such that the ball in [*(T'}) with center 0 € [*(T%)
and radius ||@|2(r;) is contained in the ball Br(i) C I?(T';) where invertibility of

the map (2.32)) holds. O

2.5 Parameterization of the handles

In Section we roughly introduced the handles in the context of the trisection
of a given Fermi curve. There, we defined what we mean by saying that a double
point splits up or remains unsplit. By Theorem the handles which are
contained in the asymptotic part of a Fermi curve are described by the zero locus
of holomorphic functions, the determinant of the corresponding matrices (2.14),
defined in the corresponding excluded domains. Unfortunately, we are in general
not able to see by looking at whether the corresponding double point splits
up or not. Therefore, we are interested in a parameterization of the Fermi curve in
the excluded domains which reflects the handle properties in a more obvious way.
This will require new coordinates z = (21, z2) € C? instead of k = (ky, ko) € C2.
In |5, IL.5, (GH2)|, a model handle is defined by

H = {(Zl,ZQ) € (CZ 1 Z1 Rk =C¢C, ‘21’, ‘Zzl S 1} (246)

with some 0 < ¢ < % We allow that this ¢ may also be complex-valued with

0<]|cl < % We call ¢ the handle quantity. Here, the upper bound % is arbitrary.
Since it will turn out that the handle quantities decrease with increasing index
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v € I'* of the corresponding excluded domain (cf. and Theorem[2.5.9), the
absolute value |c| of any handle in the asymptotic part of F'(u) will be less than
+ for sufficiently small 6 > 0 (cf. (2.3)). The aim of this section is to find such
coordinates (z1, z2) which parameterize the Fermi curve in the excluded domains
in the form of (2.46). Such a parameterization will turn out to be very helpful
when later, we’ll have to estimate certain contour integrals which occur in terms
of the so-called moduli. Let’s begin with an approximation, the so-called model
Fermi curve, of the given curve F'(u) which is easier to handle than the actual
Fermi curve. In |13 Lemma 4.5.53|, it has been proved that the matrix M
may be represented as

e G PTRPS B U B R (Rt
(2.47)

as k — k,. If we omit the error term o(|k — k,|), we get a modified matrix
M (the quantities of the model Fermi curve shall be indicated with a tilde). If
we compute, like in Theorem m the zero locus of det M. , we obtain locally a
variety close to the Fermi curve in the corresponding excluded domain indexed
by v € I';. We call this approximation the model Fermi curve (note that all
varieties we consider are, of course, described only locally in the corresponding
excluded domains).

For the model curve, the Z-coordinates are quite easy to calculate. A computaion
of det M = 0 yields (as has already been done in [13| equation (4.5.57)]

[(kl - ku,l)(—Vl + inf) + (k2 - ku,z)(—wlf - V2)]'
(k1 = k1) (v1 +ia8) + (ke — ku2)(—iné + o)) =

Uy * Uy,
1674

(recall the definition (2.2])). This representation already has the desired form
since the left hand side is a product. Thus, the factors can be defined as z; and
Z9, Tespectively:

Zy = (k= kp) (=11 4+ i98) + (kg — ko) (i1 — 1)

B » , 2.48
Zy i= (k1 — k1) (v1 +i08) + (kg — ku2) (—iné + 1) ( )
Set

~ 7:61/ : 12_,/ *

G 1= e vely, (2.49)

we obtain the desired representation (2.46|) z; - 2o = ¢, for the v-th excluded
domain. Note that the handle quantity ¢, doesn’t have the right scaling, yet,

8The reader may have remarked the different sign compared to [13, (4.5.57)]. This is a
consequence of the (harmless) wrong sign already discussed in a footnote to (2.14).
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since |z1], |22| < 1 is required in (2.46). Such a scaling is necessary if we want to
compare different handles of different excluded domains with one another. For
example, for the assertion that the handle quantities decrease with increasing v,
a consistent scaling is necessary (otherwise, that assertion wouldn’t make any
sense). However, if we consider a fixed excluded domain and only need the z-
coordinates because of the desired representation z; - 23 = ¢, we can use an
arbitrary scaling (provided that we use the corresponding correct maps z +— k
and k +— z between the coordinates z and k, respectively). If we wanted to
determine the quantities ¢, with the correct scaling as in (2.46)), we would have
to multiply with a term of dimension O (1/|v|?) since is of dimension
O (Jv|) as |v| — oo (note that the domain V' the k-coordinates reside in is bounded
and independent of v).

The map (k — k,) — z = (z1, 22) between k- and z-coordinates is a linear vector
space isomorphism of C? with inverse z — (k — k,) defined by

1 ) ~ . -
ki — k1 = W[(_“/l'f + 19)Z1 + (in€ + 1) 2]
1 ) ~ . -
ky — Ky = WK_W —i96) 21 + (=11 + i128) 2]

(since (—vy + 1wr€) (=i € + vy) — (11 + i) (=i € — 1) = 2i€|V|?).

Let’s go back to the actual Fermi curve again. Here, things turn out to be much
more difficult than in the model case (the map (k — k,) — z is far away from
being a linear isomorphism, for instance). The most important tool to obtain z-
coordinates will be the so-called Quantitative Morse Lemma (cf. |5 III. Appendix
B, Lemma B.1]) which we denote, however, as a theorem due to its importance
for our purposes:

Theorem 2.5.1 (Quantitative Morse Lemma). Let
f(z1,22) = x129 + h(21, 22) (2.50)
be a holomorphic function on
D, = {(z1,22) €C*: || <7, |mo| <7}, 7 >0,
where h is a holomorphic function that fulfils the estimates

0*h
(%iﬁxj

Oh
<
M| <a |

for x € D, with constants a,b > 0 such that a < r, b < 1/30. Then f has a
unique critical point ¢ = (¢1,¢(2) in D,., and

(m)H <b (2.51)

Gl <a, |G <a.
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Put s = max{|(i, |C2|}. Then there is a biholomorphic map ® from D(,_s1—-10p)
to a neighbourhood of ¢ in D, that contains {(z1,20) € C?: |2z, — (| < (r—s)(1—
300),1 = 1,2} such that

fo®(z1,20) = 2120 — ¢ (2.52)
with a constant ¢ € C fulﬁllinﬂ lc — h(¢)| < a®. The derivative D® fulfils
|D® — 1] < 12b.

Remark. In |5, Lemma B.1 (p. 245)|, there is the additional normalization re-
quirement that » < 1 (in [5], the 7 is denoted with ¢§). Since the z-coordinates in
our case turn out to be O(|v|) with respect to v, the possibility that » > 1 in D,
may occur shouldn’t be omitted. If one wants to avoid this and use r < 1, one
can consider a correspondent scaling (by multiplying with an appropriate
factor which then affects the z-coordinates but has no effect on the Fermi curve
locally described by the equation f = 0). But this is not absolutely necessary.

In our case, the holomorphic function f is the function f := det M with matrix
M (2.14)), holomorphic in k. In order to get the desired representation (2.52), we
must at first find suitable intermediate coordinates x = (xq,x5) € C? such that f
has the form . To this, we have to compute the zero locus of det M. From
now on, we restrict ourselves to the upper signatures in (2.14)) in order to simplify
the notation (the lower signatures are treated completely analogously, of course).
Since k; (tg) — kf (Gg) = v for all v € T*, we don’t lose any information. Set (by
suppressing the index v in d; and ds)

di (k) = (k + K (@0))* + do,  da(k) == (k + k; (tio))* + o

AYi(k,u) == %Aﬂ,(ls + Kk (ao),u);; fori,j e {1,2}. (2.53)
Thus,
det M =0 & gdl(k) —I—Alfl(k:,u)Z(dQ(k) +A52(k,u))42 A% () - A% (B ).
b - (2.54)

We want to get z1, x5 into a handier form such that these coordinates can be
compared with the model coordinates. We have, due to di(k,) = —AY,(k,,u)
and dy(k,) = — A%, (k,,u) (cf. Theorem [2.2.8)),

vy = dy (k) + ATy (K, u) = di (k) — di(ky) + AT, (K, u) — AT (Ky, )

vy 1= da(k) + ALy (k,u) = do(k) — dalky) + Aty(k,u) — Alp(hyw). 00

In [5], the authors write |c — h(0)| < a? instead of |c — h(¢)| < a®. The proof of Theroem
2.5.4] shows, however, that the term that we use here (i.e. with ¢ instead of with 0 in the
argument of h) is more reasonable. Probably, this is a typing error in [5] particularly since in
the proof of [5, Lemma B.1], the authors consider the case ¢ = 0.
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We compute

dij2(k) — dyo(ky) = (k + Ky (10))* = (ky + k(1)) = (k1 + 1(qﬁvl +i198)) "+

2
¥ (ks b 5 (& F ) = (b + 5 (Fon + 6)? — (R + 5~ F 0)? =

= (kl — ky,l)(:Fyl + 1'7/25 + ]’Cl + k?,,ﬁl) -+ (]{72 — ]{jV72)(—iV1§ F o+ ]{72 + kmg).

Here, we rediscover the map (k — k,) — z = (21, 22) from (2.48). Together with

(2.55]), we obtain
1 (k)
SL’Q(/C)

These are the intermediate coordinates x = (21, z2). We sometimes express (2.56)
in the following matrix-vector representation

Zi(k — k) + K — kL + A (R w) — AT (K, w),
Zo(k — k) + k* — k2 4+ A% (k,u) — AYy(ky, u).

(2.56)

xz(k) =: By - (k — k,) + B1(k), (2.57)
g (Tt —in—wn | o (k) = k* — k2 + AV (k,u) — AY (K, u)
0 v+ Z'l/gg —iylf + 9 ot T ]{32 - /{33 + A52(/{3, U) - A%(k )

Moreover, due to (2.54)), we can define the holomorphic function h = h, in ([2.50))
by

hll(xbe) = _Alll2<k<x)7u) Agl<k<x>7u)v (258)

where we used that the map k — (k) defined by (2.56) is invertible in a neigh-
bourhood of k,. Then, the term k(x) is well-defined. This has to be proved:

Theorem 2.5.2. The map k — x(k), locally defined by (2.56)), is biholomorphic
in a neighbourhood V' of 0 € C* which only depends on T%.

Remark. Remember that the map k — x(k) depends on v € I'} (even though the
index v has been suppressed in the notation).

Proof. Let V be the neighbourhood from Lemma . The entries of %Ai,,,(k—l—

k£(1g),u) tend, due to Lemma [2.2.7 to zero as |v| — oo. Therefore and because
of the boundedness of V, we have with By' = O <‘—1|>, |v| — oo, that

0
Byt on (% = k) Aty (k,u) = AYy (K, w) = 0 (2:59)

uniformly in £ € V as |v| — oo. The same holds for the other component o
in (2.56). Hence, due to the Inverse Function Theorem (cf. [23, p. 142], for
example), the map k + k — k, + By ' B (k) and consequently also the map

ks z(k) = By (k — k, + By ' By (k))
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is locally invertible since Bj is invertible. It remains to be proved that the neigh-
bourhood where the map k — z(k) is invertible is independent of the index v.
This, however, follows from the Inverse Function Theorem, too, more precisely
from its proof: One usually shows the theorem by using Banach’s Fixed Point
Theorem. Let’s briefly recap the essential step where the domain V' in which the
considered function, in our case z : U C C? — C?, shall be invertible, is defined™}
Without restriction, one assumes 2’(0) = 1 (otherwise, consider a suitable linear
change of coordinates x +— 2/(0)~'z which, however, doesn’t affect the choice of
V since 2/(0) is independent of k). For given x( in a neighbourhood of an element
lying in the image of x, the map V' — V, defined by k — k + (2o — z(k)) shall
be a contractive map. For this purpose, one chooses V in such a way that for
instance, ||2/(k) — 1|] < § for all k € V. This is the crucial condition that the
domain V has to satisfy. Let’s go back to our proof of the theorem. Choose one
neighbourhood V for fixed x € I'j such that the map k — x(k) is invertible in V.
Then for all v € T'§ with |v| > |k|, the corresponding map k — x(k) is invertible
in the same V, a fortiori, due to and the method of finding V which has
just been explained. Therefore, V only depends on ;. O]

In order to apply Theorem [2.5.1] we have to see that its conditions are satisfied.
These conditions concern estimates of certain partial derivatives of the function
h:

Lemma 2.5.3. Let h, be the function defined in (2.58)). It fulfills fori,5 € {1,2}

Oh, 1
(x) =0 , as|v| = oo,

0%h, ( 1

)7 as |v| — oo.

These estimates are locally uniform in x.

Remark. Actually, one could get even better estimates. For example, one could
use Theorem where we showed that the entries of the perturbation matrix
are [>-sequences with respect to v. This would lead to better estimates for the
derivatives of h, to be considered. But this is not necessary here.

Proof. Using definition (2.58)), we compute
oh, 0 ok

_(%Ui = % (A12<k7u> ’ AQl(kau)) ) o,
14 a 14 14 8 14 ak
= <A12<k>u)%1421<k>u) +A21(kau)%1412(k’u)) : oz, (2.60)

10Compare the proof of Corollary where we already used the proof of the Inverse Func-
tion Theorem, too.
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By (2.57), we get (with a prime denoting the derivative with respect to k)

ok _ _ N
5, (@) = (@(k)7 = (1+ By ' By(k) ™ - By
(with k = k(x)) since 2'(k) = By+ B} (k) = By- (14 By ' B} (k)). Recall that By is
invertible. Since By' = O <i> and By !B, (k) — 0 as |v| — oo (as has already

lv]
been justified in the proof of Theorem [2.5.2), we obtain

ok 1
— = — : 2.61
=0 (1) oo (2:61)

V|

Since A} (k,u) and aakAz”J (k,u) tend to zero as |v| — oo, respectively (Theorem

2.41] and Lemma [2.2.7), the first assertion of the lemma follows from (2.60).
As to the second claim, we compute
0°h 9%k 0A, (k, u)
. v n AY (kK 21\
d,0x; = 0,0, ( LTS

Ok, () 0A(k,u) Ok \ 0A3 (k) | /0AY (k,u) Ok &452
8@ ok ’ 8xj a/{?n ok ’ 8xj

8A11’2 (k,u)

+ Ag (K, +

>+
n=1

(k,u
ok, 0 0AY,(k,u) Ok 0 0AYy(k,u)
AV e 21\ Au L 12
+Z ( 12 )<8k’ akn 7axj>+ 21( 7u)<ak >)

2.62)

The second summand in the middle is most easily to handle since all terms

occuring there have already been estimated. Due to (2.61]) and aakAsz<k u) =

o(1) as |v| — oo, the second summand is in 0(#) as |v] — oco. We don’t

92k, d 8 8A” (kyu)
8$78$1 8kn

appearing in the first and third summand, respectively, yet. These terms shall
DAY (k )
be considered now. We start with the term gk# Thereto, we examine the

second k-derivative of the operator A(1— BA)™! (cf. ([2.7)). We compute (cf.

£39) and @10)

know anything about the asymptotic behaviour of the terms

0 -1 _ 0 —1 -17 _
S A= BA)™ = —— [A(1 - BA) BCBA(1 - BA) ™| =

0 ~ -1 —1 0 -1
= —5 A= BA) YBCBA(1— BA)™" — A(1— BA) BCB [A(1 - BA)™]-
— A(1— BA)~ aak: [BCBJA(1— BA)™.. (2.63)

The first two summands are o(1) as |v| — oo due to Lemma and the
boundedness of BC' with respect to v (as already seen in the proof of Theorem
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2.4.2)). As to the third summand, we compute

C2x C? >3 (z,y) — %[353]@;,@ =

= —BC(z)BC(y)B — BC(y)BC(2)B + B {%5] (z,y)B,

where

0 ~ :
550 1 C X €3 (2,y) = =8 diag((z, y))per-\ (041}

So, this derivative is both constant with respect to the point & € V where C
has been evaluated and constant with respect to p € I'* \ {0,4+v}. Thus, the
asymptotic behaviour of B [%5] is even better than that of BC. Four our

purposes, however, it suffices that these operators have bounded operator norm
with respect to v. In every summand, the operator B whose norm tends to zero
as [v| — oo (cf. the norm of its Fourier transform estimated in Lemma
occurs. The remaining operators are uniformly bounded as is already well-known
from the preceding investigations. This shows that

92

wA(]l — BA)' — 0 as|v] —»

and in particular, for i,j,n € {1,2}

3814%(1{7, u)

T — 0 as |v| = oc. (2.64)

It remains to estimate the term %ggj: Due to % = (1,0), % = (0,1), we get

00y D (Y 0[Ok Or\ (0 0k 0 ok o (o0
T 9x; \ Ok ) Ox; \ Ox 0k )  \Ox; Ox ok  Ox Ox; \Ok )~

L Pk Or_ Ok, O (Ox
ak)

(2.65)

Oz Ox; ok Ox ox;
Further (compare also [5], p. 236]),

0 (k) _ (00k) 0r Ok gm Ok (0 0r\ ok _
Oz; \ Oz, -\ oz ox;) Ok Oz, n ox Ox; 0k ) Oux; N

- 22: Okn (0 Oxa\ Oks 3 Ok, . Ok, Okg
B et Or, \Ox;0ks ) Oxi WS Oxo Ok, 0ks Ox; Ox;
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We show that the term =222 is bounded with respect to v. Due to (2.61)), the

Ok, Ok
above computation then yields
0%k, 1
— =0 |— — 00. 2.66
By (2.56) and ({2.64), we have
0z, 0?AY (k,u) .
gz T o 2ol blimee, 5=

P, 0*AY (k)
Ok, 0ks Ok, Okg

=o(1), lv| =00, iB#7,

0%z,
' Ok Ok
‘ 0AY, (k) . .
% in (2.66) and & 515:2 “ in (2.64) together with (2.61) and the well-known

results about the behaviour of A};(k, u) and %A;’j(k, u) with respect to |v| — oo,
also the first and the third summand of (2.62)) are in o Q#) as |v| — oco. Hence,

92h,
Ba 0 follows. L]

such that in any case

is bounded as |v| — oo. Now, by the estimates of

the claimed error term for

With the lemma just proved, the conditions for the Quantitative Morse Lemma

(Theorem [2.5.1) are now fulfilled. Due to that Theorem [2.5.1] there exists a
biholomorphic map ® from D(,_s 100 (With b,7, s as in Theorem 2.5.1) to a
neighbourhood of ¢ in D, such that

fo q)(zla 22) = Z129 — C

with a constant ¢ € C fulfilling |c — h(¢)] < a®. With this transformation of
coordinates, the (asymptotic) handles of the Fermi curve are isomorphic to the
correspondent zero sets of f o ®, i.e.

{z=(21,2) € D—ga-10p) 1 21 22 = c}.

In the proof of |5, Lemma B.1, p. 246-248|, it has been shown that it suffices
to consider the special case h(0,0) = 5—;1(0,0) = 8‘9—;2(0,0) = 0 without loss of
generality, which leads to ¢ = 0 in this special case. If we want to determine the
handle quantity ¢ = ¢, in our case, that special case is not very helpful. So let’s
retrace the part of the proof of |5 Lemma B.1| where the map ¢ is constructed,
but this time without making any simplifying assumptions:

Theorem 2.5.4. Let

f(z1,22) = 129 + h(21, 22)
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be the function (2.50) with x-coordinates (2.56|) and the function h = h, defined
in (2.58). Then the handle quantity ¢ = ¢, obtained in (2.52)) is equal to

¢ = —(h(G) + Gt - Gu2) = AL(K(G), u) - A5 (R(G), w) — Gt - Gog,
where ¢, = (1, Cu2) is the unique zero of Vf in D,, due to Theorem m
Remark. Tt ¢, =0, We obtain the handle quantities from the model curve (2.49),

i.e. ¢, = ¢, by k(0 (cf. (2:53), (2.56) and Defintion

Proof. To simplify notations, we suppress the index v. Set for ¢ € [0, 1]
fe(x1, 22) = (21 — (1) (22 — C2) + - [xﬂz + h(z) = (11 — (1) (22 — C2) — G1¢2 — R(Q)].
Ty — G4t (2 4+¢
N Vft(l') _ 2 2 8 1 2
— G+t 8902 +G

Set further
h(z) = 129 + h(x) — (21 — Q) (22 — C2) — (1Ca — h(C).

Similarly to [5, (B.1), p. 246], we search for a ¢-dependent holomorphic vector
field X : D,(1_4) — C? that solves

h+Vf-X'=0. (2.67)

This equation is equivalent to

~ Ty — G+t (22 +¢
(26
-G+t 8QE2-|—C1

i) + <( " gjjz ) ,Xt<x>> o) ={ (") v'0)).

(2.68)

,Xt(x)> =0&

where

oh oh
y = Pi(x) := <£B2—§2+t<a 1‘|“C?) Cl+t(a 2+C1>) (2.69)

g(y) == —ho P (y), Y'(y):=X"'o P '(y).

Note that the map P, : D, — C? is biholomorphic into its image due to Lemma
2.5.3| which becomes obvious by considering its Jacobian

S I B P
e <1 ). (.10
Ox1 Oxo 8x2
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P, doesn’t map D, onto D,, but the image P;(D,) contains D, _a) (see [3, (B.6)])
Now, the last equivalence of (2.68)) is obviously solved by Y* = (Y}, YY) defined
by

1

V)= gm0 Vi = —lan.0) = g(0n.0).

These functions are holomorphic in D, as it has been shown in [5, p. 247] (or
equivalently will follow from (2.78))). Thus, by setting X' := Y" o P;, we obtain,
according to (2.68), the desired vector field X* defined on P " (D,(;_a) solving
(2.67). Since P, ' (D,(1-21)) contains D,i_s)''} this yields the claimed domain in
which X should be defined. Now that we have constructed X, let’s consider the

initial value problem["?]
d
E(I)t(:v) = X (®y(x)), Po(z)==z. (2.71)

Since x — X'(z) is holomorphic (and continuous with respect to (¢,z)), the
problem (2.71) has a unique solution ®; by the Theorem of Picard-Lindelof (cf.
[24, Satz 2.2.2|, for instance). We obtain

(@) = F(@(2) + V(@i(0) - X! (@1(x)) ED 0

Hence, f;(®;(x)) is constant with respect to t. Due to the initial value ®y(z) = z,
we therefore obtain fi(®(x)) = fo(x) which is equivalent to

f(@1(2)) = h(C) = GG = (21 — () (72 — (2).
Setting z — ®(2) := ®1(z + (), we finally get
fo®(z1,20) =21- 22+ h(C)+ G- G
\_:\:C_./

This proves the assertion.

Let’s recap how the map ® looks like. Due to (2.71)), we obtain ®,(2) = ®¢(2) +
fol X(®4(z))dt and thus, by definition of ® and with ®¢(z) = 2,

r=0(2)=z+C+ / XU Dy(z+C))dt =: 2 — €(2),
0 (2.72)

with €(z) := —( —/0 XU ®y(2 + ¢))dt,

HSee [5l, p. 248], where we must use in our case the estimate ‘g—i‘ <b(|lzr — G| + Jz2 — C2|)

instead of [5], (B.5)]. This estimate will be proved in in Lemma[2.5.5] However, the exact
definition of the domain, say D,(1_4) or D,(1_10p), for instance, is finally immaterial for our
purposes.

12Here, our proof differs from [5] since the map ®; in [5] obtained by just integrating X is
not suitable.
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again with suppressed index v.

We want to investigate the map k£ — x +— z more precisely. We already know
that, by k — =z, k, is mapped to 0. An interesting question would be: By z > z,
0 is mapped to what? It would be nice if 0 was mapped to 0, but there is no
evidence. Yet, we can show that, by z — z, 0 is mapped to the critical point (.
In order to prove this, we need to show at first X*(¢) = 0. This follows from the
next lemma which provides even more, namely an estimate of X*:

Lemma 2.5.5. Using the notations of Theorem there holds

| X*(x)| <o (| 1|2) (|le1 — G| + |22 — Gf), asv — oo, (2.73)

for allx € D,.

Remark. The proof is based on the proof of [5, Lemma B.1] and uses its main
ideas. Since the proof in [5] only treats the special case ¢ = 0, its difference to
our proof is that we consider the general case including ¢ # 0 as we already did
before.

Proof. We consider the map & defined in the proof of Theorem m

h(z) =m0 + h(z) — (21 — G1) (T2 — C2) — C1C2 — R(C).

By definition of the critical point { = ({1, (2), we have 8}‘(0 + (o = 0 as well as

dh(<)+§1 = 0. Hence, Vh(C) ( ggﬁ—@, dgg +G) = (0,0). By the Fundamental

Theorem of Calculus, we have for ¢ € {1,2}

8%(:16) B 3%({) _ /1 (8%@ +t(x —()) Az —G) + aQE(C—Hf(:U —()) (xo — Q)) dt

ox; ox; 0x10x; 0x20x;
——
=0
and hence by Lemma [2.5.3| (note that g;%i) = 8x 8:v ) for i, j € {1,2}),
Oh(x
M) < by — ol [~ o) .1

as |v| — oo, where we use (according to the notation of Theorem [2.5.1)) the
abbreviation b for the term o(1/|v|?), as |v| — oo. Therefore, for i = 1,2 and
t €10,1],

OR(C + t(x — ()
al’i

< bt(|wy — G| + |2 — Gf).
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Again by the Fundamental Theorem of Calculus,

) — R(C) = / (ah(”t(m_” (= ) + DA Uz = Q) -<x2—<2>> i,

0xq 0wy

=0

this implies
_ 1 1
(@)] < bllas — G| + s — G) / tdtler — Gl 4+ bllar — Gl + |72 — o) / bty — G| =
0 0
b
= 5(\% — G|+ |22 — Go])

With y = Pi(z) as in (2.69)), we get by (12.74)

oh(z)| |Oh(x)
+lyal < Jzy — G|+ |ze — G| + ¢ S
1] + ly2| <y = Gl + 2 = G ( 92, oy |) = (2.75)
< (14 2b)(|zy — G| + |22 — Ga)
as well as
oh(z)| |0h(x)
+ Y| > |1 — G| + |22 — G — =
[91] + [yal > |21 = G| + [22 = G ( 0x, Ory || — (2.76)
> (1= 20)(|zy — G| + |22 — &)
Since gzﬁa(g = g;h(,gg for 4,5 € {1,2}, we can use equations [5, (B.6),(B.7), p.

247|, namely

0 1 0?h . 0 1 tb
- = |t— < — < —
o-r=(0 o) -[zas ] = [or -0 o) <5

which also follow from (2.70). With ¢ as in (2.69)), we thus have together with
BT for i € {1,2)

dg(y)| _ |Oh(x) ) b

' dyi | | ox |9«“=Pfl(y)'a—yi SOz =Gl e =Gl - (1+ 7= ) <
b 1+2b
< < .
- (1—2b)(1—b)(‘y1’+|92’>—bl_%(\yllﬂyz!), (2.77)

where in the last step, we used ﬁ <2forb< % (this can surely be achieved for

|v| sufficiently large) which implies 4 = 1 + 1%,) < 1+ 2b. This yields, again
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together with the Fundamental Theorem of Calculus (by using F;(¢) = 0 which
implies P,*(0) = ¢ and g(0) = —h(¢) = 0)

9(y) —g\@l < /01 | Dg(ty)yldt < /1 (‘ag(ty)yl' + ‘Myz‘) dt <

0 o Yo

1+42b Yy
<p 2 (<|y1|+|yz|>‘ (] + s

o vl + ly2])?. (2.78)

2

)

Now, we have all estimates we need and can proceed more or less exactly as in the
rest of the proof of [5, Lemma B.1]. For the sake of completeness, we don’t refer to
[5] but give the rest of the proof here anyway. We estimate Y(y) = (Y{(v), Y4 (y))
defined in ([2.69). We get

lg(y1,0)] <0 b1+2b

Yi(y)| =

|y1|
For Yi(y), we discuss the cases |ya| > |y1] and |y2| < |y1| seperately. In the first
case, it is

1 L4 2b (|y1] + y2])?
Yt < 9 + 70 S b -
Y5 (y)] < Tl ,(\g(yl )l +19(y, 0)) < b7—; ]
1425 2 lyil<ly2l 14 2b
o1 (M ol el ) "2 2 S

Now consider the case |ys| < |y1]|. For fixed y;, we apply the maximum principle
(recall that y — Y*(y) is holomorphic) to yo — Y (y1,y2) vielding for |ys| < |y

1420 1420
Y3 (y)| < 20— (Il + In) = 4b5

’yl‘

Putting the estimates for Y} and th together yields
V)| < V2T (] + [yl
By (2.75), we finally get
X)) = V)] < V22 oG ey - o).

Since b = o(1/|v|?) as |v| — oo, the lemma is proved. O

Now let’s go back to our initial question: We wanted to show that, by the map
z +— x, 0 is mapped to the critical point . The statement (2.73)) implies X*({) =0
for all ¢t € [0,1]. Considering the corresponding initial value problem

d

S0(0) = X'(B(Q), Bo() = ¢,
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the constant function ®,(¢) = ¢ for all ¢ € [0, 1] is obviously the (unique) solution
of the problem. In particular, we have ®(¢) = ¢ and thus ®(0) = ®1(¢) = ¢. To
sum up, we have the following mapping

Z2— x — k
x— 0 — Kk, (2.79)
O— ¢ +—— x

where the star * shall denote corresponding values which haven’t been deter-
mined, yet.

By the parameterization z; - zo = ¢, of the v-th excluded domain (up to isomor-
phy, of course), we can now give a characterization of an unsplit double point
since that parameterization allows us to see immediately (by examining whether
¢, =0 or ¢, # 0) if a double point splits or does not.

Corollary 2.5.6. A double point in the v-th excluded domain (k= (io)+V)NF (u)
for v € I's remains unsplit if and only if the corresponding handle quantity c,
vanishes, i.e.

Cy = _hu<Cy) - Cl/,l : CV,Q = 0.
The double point splits up to a handle if and only if ¢, # 0.

The handle quantities ¢, of the model curve are easily described by the
product of perturbed Fourier coefficients 4, - %_,. One might ask the following
question: Does ¢, = 0 already imply ¢, = 0?7 In other words: Can the question
whether a double point remains unsplit or not already be answered by looking
at the handle quantities of the model curve? Indeed, for real-valued potentials,
this is the case (see Theorem [2.5.9). If we require a little bit more than only
the condition that the product 4, - @_, vanishes, we can even deduce ¢, = 0 for
complex-valued potentials. More precisely, we have the following theorem.

Theorem 2.5.7. Let u € L*(F) and let (i,),ers be its associated sequence of

perturbed Fourier coefficients. Moreover, let u, = u_, = 0 for some v € T7.
Then ¢, = 0.

Proof. By expanding the matrix M (2.14)) into its Taylor series (see the proof of
[13, Lemma 4.5.53]), we get with the usual notations (2.53)

872 (k= i b (o) + 3240} iy -4 (k — b, 22t )

y +
oy + A (= oy, 28y 872 ( — oy, k(i) + 24

k* — k2
+47r2( 0 v k28k2)+0(|k—ky\2), as k — k,.
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Since k* — k2 =2(k — k,,k,) + (k — k,)?, M is equal to

872 (k — ky, i (@) + oy + § 2405F) ) ty -+ 4m? (I =k, 2l
iy 4 (k= ky, 2250 8x2 (o kb (o) + b + 24 )
+O (|k = k),

as k — k,. Weset f:V C C? — C defined by f(k) := det M. Now let
@, = u_, = 0, in particular ¢, = 0 by (2.49). We get by the above expansion
f(k,) =0 (that is, k, is a point on the Fermi curve) as well as

. aAgl(kV’ u) _ 2 . aAZIIQ(kV’ u)

A2
Vf(k,)=—4r"u, ok TU_y, %

= 07

that is, the Fermi curve has a singularity in the v-th excluded domain at k = k.
In other words, the corresponding double point remains unsplit and is, by the
above calculation, equal to k,. Since

dk
Vo f (k(2))|emk-1(k) = Vi f(k )!k=ku'£’x:k—1(ku) =0,

the critical point (, is mapped to k, by the map x — k. Consequently, in the
diagram (2.79), the second and the third row are identical. This implies ¢, = 0.
Hence, by the remark to Theorem [2.5.4) we get ¢, = ¢, = 0, which had to be
proved. O

This leads to the definition of so-called finite type potentials:

Definition 2.5.8. A potential u € L*(F) is called finite type potential if

Uy, =U_, =0

for all but finitely many v € I'j (with § > 0 sufficiently small such that the
perturbed Fourier coefficients are well-defined, cf. Definition [2.3.3). The corre-
sponding Fermi curve F'(u) is then called Fermi curve of finite type or simply
finite type Fermi curve.

Due to Theorem a Fermi curve F(u) of a finite type potential u € L*(F)
has the property that at most a finite number of singularities splits up to a handle
whereas infinitely many double points remain unsplit.

Now, we prove the converse of Theorem 2.5.7]for the case of real-valued potentials:

Theorem 2.5.9. Let u € L*(F) be real-valued, let 6 > 0 sufficiently small and
vels. Then

¢, =0 < ¢,=0.
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Furthermore,

Cy 1
=140 , as|v] — oo
Cy ‘ 2

on the subsequence indexed by all v € T'5 satisfying ¢, # 0. This estimate is
locally uniform in u.

Proof. Let v € T';. Assume at first that ¢, = 0. By @, = @, (cf. Corollary
2.3.6), this implies @_, = @, = 0, c¢f. (2.49). Due to Theorem c, =0
follows.

Conversely, let ¢, # 0 (and consequently |u,| = |u_,| # 0, again by Corollary
. We have to prove ¢, # 0. Thereto, we estimate the quotient

Cy o hl/(Cl/) + Cu,l . gl/,2
¢ h,(0) ’

with respect to the limit behaviour |v| — oo, i.e. we consider at first arbitrary
(non-fixed) v € I'} fulfilling ¢, # 0. Thus, in the following (even though it is not
always explicitly mentioned), all sequences are indexed by v € I'; with ¢, # 0.
These are subsequenced™} Firstly, we estimate the critical point ¢,. By definition

of {,, we have (cf. (2.60))

L Omle) _
v,2 61‘1
= (A'fz(/f(@), )aakAZl( k(Go), u) + Ay (k(G), )aﬁkAlfz( (gy),u)) : a’;;iv)’
_ Oh(G) _
Cu,l - —8—1.2 =
= (A (MG 0 A (G 10) + AR (G) ) S AL (G ) ) - 21
(2.80)

By the Mean Value Theorem (cf. [30, Satz I11.5.4(b)|), we have

AL (G, 1) — A(R(0), )] < sup [VaA(k(a), u) - |<,,|—o(| |) G,

k(z)eV

as |v| — oo, since

VLAY (k(2), u) = Vi AL, (k(z), ) - d’;(;) —0 (ﬁ) . as |y = oo

131f there are only finitely many v € I'} with ¢, # 0, there is, of course, nothing to prove
since then, the implication ¢, = 0 = ¢, = 0 is trivially fulfilled for v € I'; by choosing § > 0
suitably smaller.
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due to Lemma and (2.61). We thus obtain

||

At ch 0l <o (1) lol+ 1wl o0

since A%y (k(0),u) = AYy(k,,u) = u,/47* per definitionem (cf. (2.53) and Defini-
tion [2.3.3). In the same fashion, we obtain

||

5,06 0] <0 () el + ot as o

and moreover for all ¢ € [0, 1] (note that |a,| = |t_,| due to the reality of u)

, as|v| = o (2.81)

|Aﬂmx»mﬂsO(ﬁ)|g

ori,7 € 11,2;,1# 5. Together wit . an .61]), this yields by using once
for i, j 1,2},2# 5. T h ith (2.80 d (2.61)), this yields b i
again 2 AY(k,u) = o(1) as |v] — oo

|<y|sO<1>-( (| |> \<V|+|uy|+o(, |>'|<y|+|a_yw).o<‘%|) _

(| |) (G| + Jiw]),  as |v] = oo.

Solving for |(,| yields

|, | Ly . 1
1G] < m Y (m) = |t,| -0 (m) , as [y — oo, (2.82)

in particular ‘ 1|1m ¢, = 0.
— 00

By the Fundamental Theorem of Calculus, we have

h(G,) = hu(0) + /0 Vh,(1G)dt - G,

Due to (2.60), (2.61), (2.81), (2.82) and Lemma we get

IVh,(t¢,)] < |u,l - (| |) as |[v| = oo
uniformly in ¢ € [0,1]. Hence, due to (2.82) and h,(0) = ¢, (2.49),

hu(Cu) Vh’l/(tCV) : CV o 1
o (0) —h,,([)) =140 (W) , as |y = 0.

<1+ su
tel0,1]
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This shows

hu(gu)
|vl|linoo h,(0)

=1,

still considered on the subsequence indexed by v € I'j with ¢, # 0. Further, we

have, again by ([2.82)),

Cl/l'CVQ 1 ’ﬁ,,|2 1
2 e . = _— N
o) \WE) Tl = 0\pp) s e

which shows

. CV 1° CI/Q
lim —=>——= =0.
[v|—o00 hV(O)

Hence,

a  h(&)  GaGa e
= + o) l1+o <|V|2> ., as |v] = oo.

Now, choose d > 0 so small such that

B 1 o Gal 1
O] 2 " o) T2

forallv €T, ¢, #0 (2.83)

which is possible due to the limits computed above. Now, let ¢, # 0 for some fixed

v € I';. Suppose ¢, = 0. Then, h,((,) + (1 - (2 = 0. Hence, ]Z”V(fg)) = _C};’;l('(%”"",

which is a contradiction to ([2.83)). Therefore, ¢, # 0, which had to be proved. [

2.6 Definition of the moduli

In this section, we introduce a data set which shall characterize a given Fermi
curve and distinguish two different Fermi curves from each other: the so-called
moduli. The crucial statement in this context will be Theorem Until we
can prove it, there is yet a long way to go.

At first, we need to recap the first homology group H,(X,Z) of a given com-
pact Riemann surface X of genus g (see [5 Introduction to chapter 1]) with its
canonical homology basis of A-cycles A;,..., A, and B-cycles By,...B,. In [B
Def. 1.10], the concept of a canonical homology basis Ay, By, As, B, Az, Bs, . ..
is generalized to Riemann surfase of infinite genus: More precisely, the cycles
satisfym A x Bj = 4;5, A; x A; = B; x B; = 0 and for every submanifold
Y C X with boundary there is an n € N such that the range of the canoni-
cal map Hy(Y,Z) — Hf(X, Z) is contained in the span of A;, B;, i = 1,...,n,

1 As in [5], we denote by 1 x 72 the intersection number of two cycles v1,v2 € Hy(X,Z).
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where HY(X,Z) := H,(X,Z)/(subgroup of dividing cycles). Here, o0 € H,(X,Z)
is called a dividing cycle if o x T = 0 for all 7 € H,(X,Z). The authors of [5] refer
to [T, Chapter 1], where it has been shown that there is a canonical homology
basis for every Riemann surface. In the definition of our moduli, we only need the
A-cycles so that we don’t need to care about the B-cycles in this context. The
A-cycles are just the countour cycles around the waists of the handles (compare
[0, p. 43|, in particular the representation of the handle in [5, Lemma 4.3]). If
the Fermi curve is smooth, i.e. it has no singularities, we can obviously choose
the A-cycles such that they are pairwise disjoint. Now, it may happen that our
Fermi curves have singularities. In these cases, the waist of the corresponding
handle (and thus the corresponding A-cycle) is contracted into one pointE]. In
the definition of the moduli, this will be reflected in the fact that the correspond-
ing contour integral (as integral of the locally bounded 1-form kjdks over one
point) will be equal to zero. Due to [27, p. 152, 4.], where the moduli have been
defined in a more general setting (namely for Fermi curves of Dirac opemtorsm
instead of Schrodinger operators), the A-cycles A, can be indexed by the dual
lattice vectors v € I'*. However, we have to make a small exception concerning
the cycle A, corresponding to v = 0. If F'(u) is a Fermi curve of finite type, its
normalization can be compactified by adding two points "at infinity", cf. [19].
It turns out that in this two-point-compactification, the cycle Ay is homologous
to zero and hence not an element of the homology basis. If the Fermi curve,
however, is of infinite type, such a compactification is not possible. In this case,
Ap is in general not homologous to zero. As a motivation why we neglect A
also in this case, we only mention that Ay is a dividing cycle, i.e. Ag = 0 as an
element of HE (X,Z). This fact won’t, however, be needed in the following so that
we don’t prove it here. Indeed, the only parts of this work where the question
whether we consider the A-cycles for all v € T or only for v € I'* \ {0} plays
an essential role are those parts where we make use of the linear independence
of the cycles A,. For example, in Section [4.1] it will be necessary to exclude the
cycle Ay in the corresponding considerations since in Lemma [4.1.2] for instance,
it is essential that the appearing A-cycles are linearly independent.
Nevertheless, we formally define the moduli m,, for all v € I'* despite the use-
lessness of the modulus my. We do this in order to avoid that the notations
appearing in the following are too cumbersome. For instance, we will show in the
sequel that the moduli are [*-sequences. We then prefer writing [*(I'*) instead of
[T\ {0}) for sake of legibility.

But now, let’s finally define the moduli (cf. [27, p. 152, 4.] and [I3| Def. 4.5.62]).

Definition 2.6.1. Let F'(u) be a Fermi curve (which may have singularities) of
a given potential u € L*(F), let (A,),er~ be the sequence of A-cycles (whose

15In the asymptotic part of the Fermi curve where double points are the only singularities
which can occur, this point is just a double point.
16In Section we will deal with this more general Dirac Fermi curves as well.
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elements may also be contracted into one single point in the case a singularity
occurs). Then the sequence of moduli (m,(u)),, indexed by v € T'*, is defined by

ml,(u) = —167'('3/ k’ldkg.
Ay
As to the model Fermi curve (cf. p.[17), we indicate the moduli with a tilde as
we did before with the quantities related to the model curve,

my(u) = —167?3/~ kidks in the model case,

v

with a corresponding sequence of cycles (A, ),er: (Which can be considered as the
waists of the handles of the model Fermi curve provided that the corresponding
double points split up to handles).

We have already seen that the model Fermi curve is a lot easier to handle than
the actual Fermi curve. The computation of the handle quantities ¢, and the
corresponding coordinates z1, zp satisfying z; - o = ¢, didn’t cause any problems.
The same holds for the moduli, at least for those in the asymptotic part of the
Fermi curve, i.e. those with index v € I'j (for 6 > 0 sufficiently small). One
obtaind”| (cf. [I3, proof of Theorem 4.5.56])

~ {LV ) 'le_,/ 4 EV *
J(u) = 2—2"="16 , rs, 2.84
() = mpe Vel (2.80)

which shows a connection to the handle quantities ¢, (2.49). Besides, we have
the obvious implications for v € I}

¢, =0 <= m,(u)
¢, =0 = my(u)=

0 (2.85)
where in the last implication, remember that due to an unsplit double point
(¢, = 0), the corresponding cycle A, degenerates to a point such that the countour
integral in the definition of the modulus m, (u) consequently vanishes (m, (u) =
0). In fact, for real-valued potentials, all of the four identities in are
equivalent to one another: Due to Theorem [2.5.9) we have ¢, = 0 < ¢, = 0.
Moreover, we will see in Lemma that m,(u) = 0 < m,(u) = 0 holds

17"The representation m,, (u) = % will be used very often in the following. This is, by the
k

way, the reason why in Definition [2.6.1] there appears a factor —1672 in front of the respective
contour integrals. Clearly, one could also define the moduli without this normalizing factor.
But then it would permanently appear in the term for m, (u) instead. By the way, in [13]
Definitions 4.5.55, 4.5.62|, there appears the factor 1673 (without the minus sign). The reason
why [13] (4.5.59)] still yields the same result as is that in [13], there occurred a wrong
sign in the computations (namely —167* instead of 1674 in [I3] (4.5.54)]).
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because of the estimate m, (u) = m,(1+0(1)) as |v| — oo which will be shown in
that lemma. Thus, for real-valued potentials u € L*(F'), we anticipate for v € T}
the equivalences

¢, =0 <= ¢,(u)=0 <= m, =0 <= m,(u) =0,

provided that 6 > 0 is sufficiently small. So far, this is all we have to know
about the moduli in order to investigate the asymptotic isospectral set in the
next chapter. When we determine the entire isospectral set later in Chapter
we will get to know some more properties of the moduli.



Chapter 3

The 1sospectral problem 1I:
Asymptotics

As already mentioned in Section [I.3] the main goal of this work is to determine
the isospectral set

Isop(ug) := {u € L*(F), u real-valued : F(u) = F(ug)}

(the subscript F in Isop(ug) stands for Fermi curve) for a given real-valued
potential ug € L*(F). It will turn out to be convenient to use the moduli m(u) :=
(my,(u)),er+ as a data set locally characterizing the Fermi curve in the sense that
m(u) = m(uy) <= F(u) = F(up). This important relation between moduli
and Fermi curves will be shown in Theorem [4.3.2l We are not able to show this
equivalence at this point, yet, since its proof will require further properties of the
moduli we will only get to know in subsequent sections.

In this chapter, we want to determine the asymptotical isospectral set Isos(ug).
Before we define it, we want to introduce some notation. Recall the map
between potentials u, associated Fourier coefficients o and associated perturbed
Fourier coefficients . Let

P:UCIAF) = 23, e (iy)er: (3.1)

be the map which assigns to every potential its associated sequence of perturbed
Fourier coefficients in some neighbourhood U of the given uy € L*(F). Provided
that the first finitely many Fourier coefficients are kept constant, Theorem
implies that the map 4 — @ is locally boundedly invertible on [*(T%) for
0 > 0 sufficiently small depending on ug. That is, there exist neighbourhoods
U of P(ug) and U of 4, (the Fourier transform of ug) such that every @ € U is
mapped to a u € U. How do the corresponding potentials u look like? Since we
have the embedding [?(T}) C [*(T'*) by setting for (a,), € [>(TI'}) the first finitely
many elements equal to zero, more precisely a, := 0 for [v| < §~!, the map P
(3.1) is locally invertible if we restrict P to

Lio(F) :={ue L*(F):a(v) =0 forallv el \TI}}.

68
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However, the first finitely many Fourier coefficients needn’t necessarily be equal
to zero for P to be locally invertible. It also suffices that the first finitely many
Fourier coefficients are chosen to be constant (this constant needn’t be equal
to zero). Since we are interested in the isospectral set Iso(ug) for some given
ug € L*(F), it will turn out to be suitable to choose this constant to be equal to
the first finitely many Fourier coefficients tg(v), v € I'*\ I'j of the given potential
ug. More precisely, we define

L3 (F)={ue L*(F):a(v) =i(v) forallv el \TI}}. (3.2)

If in the following, we write P~'(a) for a € [*(T}), we always mean P~'(a) €
L3, (F) such that the inverse P~" is well-defined. Since we are interested in real
isospectral sets, we introduce

(%) = {(u,), € *(T}) :w, =u_, forallvel}}

(compare the reality condition in Corollary [2.4.4]). The asymptotic isospectral set
Isos(ug) for given real ug € L*(F) is now defined as follows:

Isos(ug) = {(u,), € I5(T%) : my,(u) = m,(up) for all v € T, w:= P '((w,),)},
(3.3)

where we implicitly use the convention that (u,), & Isos(ug) if (u,), ¢ U (since
then P~'((u,),) doesn’t exist in general). Let’s briefly comment on this definition
(3-3): By identifying potentials with perturbed Fourier coefficients (in the usual
asymptotic sense), we clearly haven’t determined the potential completely, yet.
In other words, finitely many degrees of freedom (namely the Fourier coefficients
for v € T\ I'j) remain. On the other hand, a Fermi curve isn’t described
by (m,(u))ver:, yet. Finitely many restrictions remain to be fulfilled (namely
my(u) = my(ug) for all v € T* \ T'§). Thus, we have as many open degrees
of freedom as open restrictions. Note, however, that the isospectral sequences
(i,), € I3(T%) determined in this chapter may vary when we take in a later step
the remaining degrees of freedom and restrictions into consideration, too.

3.1 Isospectral flows of the model Fermi curve

In this section, we want to determine asymptotically the isospectral set of a given
model Fermi curve by periodic isospectral flows. We start our considerations with
the model Fermi curve since things turn out to be easier in the model case. In a
later step in the next section, we will use a perturbation of the model isospectral
set in order to gain the isospectral set for the actual curve. Let ug € L*(F) be a
given potential. Analogously to , we define the asymptotic model isospectral

set Isos(ug) by

Is05(ug) = {(w), € (T2 : iy (u) = iy (ug) for all v € T, wi= P~ ((w,)y)}
={(w), €T : u,-u_, = Uo, - Up—, forallv eI} (3.4)
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Note that the quantity £ appearing in the denominater of (2.84)) remains invariant
within the asymptotic model isospectral set since it only depends on the constant
part (cf. (2.1)) of the given potential uy (compare the definition of L}, (F)).

d,u,
Thus, we can restrict ourselves to the numerator of (2.84). However, we must
keep in mind that the homeomorphism between potentials (or their corresponding
sequence of Fourier coefficients) and perturbed Fourier coefficients is defined only
locally in Bg(i) [[]in the sense of Theorem Hence, we must ensure that the
isospectral flows don’t leave this domain Bg(ug). The following theorem gives a

parameterization of fw§(u0) for real-valued potentials:

Theorem 3.1.1. Let ug € L*(F) be a given real-valued potential. Then
I505(ug) = Xyers o {(€Mti0,, € it ) : t € [0,2m)}.

That is, 1’?05(140) 18 1N geneml isomorphic to an infinite-dimensional torus since
it can be described as an infinite Cartesian product where every factor consists of
a pair of circles (each one isomorphic to the circle S*) that are run through in
opposite directions.

Remark. Here, the quotient of the lattice with respect to the involution o, namely
I';/o, has the following meaning: v,x € I'j are equivalent in I'j /o if and only if
v=rorv=o(k) =—k We divide by the involution ¢ in order not to count
the pairs (v, —v) doubly.

Proof. At first, let’s recall the model moduli (2.84)

~ Uy - U
my(U) = W, S F;

Since the sequence of perturbed Fourier coefficients (4, ), is in [*(T'}) because of
Theorem [2.4.1] it follows (m,(u)), € I'(T'}) due to Holder’s inequality. Now, let
the potential u € L%(F) be real-valued. Due to Corollary [2.3.6, we have u, = @_,

for all v € T'5. Therefore, 4, - 4_, = |4,|* > 0. Furthermore, £ = /1 + 473—8 >0
for 0 > 0 sufficiently small since g is real for real-valued potential u and the
radicand of ¢ is positive for § > 0 sufficiently small. This shows that the model
moduli (m,(u)), are a sequence of non-negative real numbers. Moreover, they
are even, that is, m,(u) = m_,(u) for all v € T'} (the evenness obviously also
holds for non-real potentials). To sum up,

(i (1)), € ﬁ LT C (), (3.5)

'Here, iy denotes the Fourier transform of the given potential ug € L?(F), not to be confused
with the constant part of a potential defined in .

20f course, if all but a finite number of 4g,, v € I'} are equal to zero, the torus is only
finite-dimensional. Likewise, if all g, are equal to zero, we wouldn’t speak of a torus, at all.
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where the subscripts e and + denote evenness and non-negativity} respectively,

and (m,), € \V\%E - 1}(T%) shall signify (m,, - [v[*¢), € I*(T'}). The map

lQ(FE) — li,e(Fz)a (u)y = (U, uy)y

is onto. Indeed, for (b,), € I} .(I';), define the sequence (a,), € [*(I';) by

= /b, for all v € T';. Since the b, are non-negative, the sequence of the
a, is well-defined. We obtain a, - a_, = \/|b,|?> = b, for all v € I';, which shows
that the considered map is onto. Now, we want to determine the complete fibre,
that is, for given (b,), € [} (T';) and given v € I}, find all a, € C fulfilling
a, = a_, ﬂ such that a, - a_, = b,, or equivalently ]al,]2 = b,. Hence, we search
for all a, € C fulfilling |a,| = v/b,. That is the definition of a circle around the
origin 0 € C with (non-negative) radius 1/b,. Thus, the set of a, we are looking
for is described by e'+\/b,, where t € [0,27). Due to the relation @, = a_,, the
fibre corresponding to b_, is parameterized by e_“\/b_ with the same t € [0, 27).
Therefore, we can combine them as a pair of circles (e?\/b,, e~ \/_ t €0,2m).
If now, we choose for b, := 4y, - U, the product of the corresponding product
of pairs of perturbed Fourier coefficients for given v € I'j and given potential
ug € L*(F), we get due to g, - Uy, = |tig,|?

(e |tg, |, e "o, |), te€]0,2n) (3.6)

for the fibre corresponding to the pair (—v,v). In this fashion, we can proceed
for all v € I'j/o. With this parameterization of the model flows, we obtain
for t = 0 the sequence (]io,/, ]1207,,|)l,€p§/g. However, we would like to choose a
parameterization such that the potential corresponding to ¢ = 0 is equal to the
initial potential uy. By reparametrization, we can easily obtain that the sequence
corresponding to t = 0 equals (4o, ,—»)vers/o, namely by setting

(e"tig,, e "ig_,), t€][0,2m) (3.7)

for all v € T /0. Obviously, this is just a reparametrization which parameterizes
the same set as the preliminary flows in - This proves the theorem. O

We want to remark why we considered real-valued potentials instead of arbitrary
complex-valued potentials in the foregoing theorem. Formally, the asymptotic
model isospectral set for complex-valued potentials ug € L?(F) can be computed
similarly. However, in the complex case, the condition @, = u_, for all v € T’}
is not satisfied anymore which has the consequence that the flow parameters are
t € C instead of ¢t € [0,2m). The analog result for complex-valued potentials
ug € L?(F) would then be given by

f;?a(uo) = XVGF:;/U{(eit\/ o,y * U —vs € "\l - To,—) : t € C}.

3Clearly, I} (') isn’t a vector space. It is merely a subset of the vector space I}(I'}).
4Compare Corollary n 2.4.4) where @, = a_, for all v € I'} is justified as some kind of reality
condition for the asymptotic analysis.
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There occurs an essential problem. For ¢ € C, the term e\/tg, - U, is not
bounded anymore. If we want to describe potentials by their associated sequence
of perturbed Fourier coefficients, the corresponding flow (in terms of perturbed
Fourier coefficients) may not leave the domain where the map is invertibe
due to Theorem[2.4.2] Hence, for unbounded flows, it’s not clear anymore whether
we may describe our potentials by perturbed Fourier coefficients. The main
problem which occurs with complex-valued potentials is that %, and #_, needn’t
have the same absolute value anymore. In other words, the ratio of u, and
_, may get arbitrarily large. For real-valued potentials, however, the situation
remains clearer. Indeed, the model isospectral flows don’t leave the domain Br()
(defined in Theorem provided ¢ > 0 is chosen sufficiently small: We can
argue as in the proof of Corollary There, we chose a ¢ > 0 and a radius
R > 0 such that the ball in [*(I';) with center 0 € I*(T';) and radius ||a[];2(rs)
is contained in the ball Br(d) C [*(T';) where invertibility of the map (2.32)
holds. Although in general, doesn’t map 0 € I*(T'}) to 0 € I>(T’%), we can
nevertheless achieve (by choosing § suitably small) that there exists an Ry > 0
with ||a[[;2(rz) < Ry such that the image of Bgr(i) unde1 contains the ball
Bg,(0) C lQ(F*) This is due to the holomorphy of ( and the fact that the
derivative of (2.32)) is equal to the identity plus some perturbatlon terms whose
norms tend to zero (locally uniformly in u) as [v| — oo, ¢f. also the remark after
the proof of Theorem Hence, I 505(u0) is contained in the respective image
of (2.32] - ) where 1nvert1b111ty holds.

In the sequel, we will often make use of this choice of § > 0.

3.2 An ansatz via perturbation of the model flows

After having examined the asymptotic isospectral set 1?5/05(uo) of the model Fermi
curve in Section we now want to consider the asymptotic isospectral set of
the actual Fermi curve. This shall be done by perturbing the isospectral flows of
the model curve:

ay = ey, te(0,2r), veT;. (3.8)

We write u; := (@),er; for the flow in terms of perturbed Fourier coefficients
and u; for the flow in terms of L%vUO(F)—potentials, respectively. Note that the
parameter ¢ in 7, is strictly speaking a "multi-parameter" since every flow indexed
by v € I'; has its own parameter ¢ = ¢, depending on v (with t_, = —t,,, cf. (3.7)).
Writing 1,, one should keep in mind that ¢ contains the information of the entire
sequence (t,),ers of parameters. We indicate this by writing ¢ € [0,27)> in the
sequel. If we consider fixed elements of sequences, such as @} for fixed v € I},
we nevertheless write ¢ instead of ¢, in order to keep the notation as simple as
possible. There shouldn’t occur any confusions since it will be clear from the
context when t is a parameter in [0,27) and when it is a multi-parameter in
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[0,2m)>. For example, for sequences a; := (ay)vers, b == (bf)vers depending
on the multi-parameter ¢, we will often use the notation a; - b; := (ay - b )vers.
Clearly, on the left hand side, ¢ € [0,27)> is a multi-parameter, whereas on the
right hand side, t € [0,27) is a scalar parameter.

Again, we consider real-valued potentials. Let ug € L*(F) be a given real-valued
potential and consider its sequence of moduli m(ug) := (m, (uo)),er; represented
as

m(ug) = m(ug) + r(up),

where m(ug) := (M, (uo))ver; are the model moduli and r(-) := m(-) — m(-)
denotes the deviation of the moduli from the model moduli. The asymptotic
isospectral set I1sos(ug) is defined by (recall (3.3))

Isos(ug) == {(u,), € (3(T%) : my(u) = m,(ug) for all v € T%,  w:= P *((u,),)}.

In contrast to the model isospectral set , we don’t have a handy characteri-
zation of the moduli by perturbed Fourier coefficients.

The perturbation ansatz is now as follows. For every t € [0,2m)*, we look for
real-valued v, v, € L*(F) with assosiated 0, := (7}),er: € I3(I';) and U =
(0} )ver; € 13(I;) such that

my(ug) = my, (ug +vy) + r(ug +v;)  for all v € T} (3.9)

The motivation for this ansatz is that we would like to have v; = v; so that we
could then define (@ + ¥}),er; as isospectral flow. Thereto, we will consider a
mapE] vy +— vy (defined on a suitable domain) and show by Banach’s Fixed Point
Theorem that this map has a fixed point. In a first step, we will construct this
map and show in a second step the desired properties. Let’s begin with the first
step.

There are many possibilities to construct the perturbation flows v, and v,. We
make a linear ansatz:

Uy = ay - Uy = (a - a;’)yepg

. (3.10)

Vg = Qg ’LVLt = (E;’ . ’lltu)l,epg

Withﬂ a; := (af)vers, ¢ := (af)vers € 1°(T), that is, we assume in particular
that a; and a; are even (we will see later that this assumption is admissible). We
get due to Holder’s inequality

Uy + 0 = (1 + ap) i, € P(T}).

5The map we will actually consider will be in terms of perturbed Fourier coefficients, not in
terms of potentials.

6 Although a; is a sequence and not a potential in some LP-space, we deliberately write a;
(instead of a;). The notation a; would suggest that a; is the sequence of perturbed Fourier
coefficients of some L2-potential. This, however, needn’t be true since a; is in [° and (generally)
not in [2.
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The moduli m(-) are functions of L?*(F)-potentials (and not of I?(I'})-sequences).
So, we have to consider corresponding preimages under the map P (3.1)). We set

U + v = Pil((l +a)iy) € L?,u(J(F)

_ N ’ 3.11
Ut + Vs = P_l((]_ + at)at) € L?VUO(F) ( )

with the meaning of P~' and L, (F) explained at the beginning of this chapter.

Let v € I'; be fixed for the moment. Then, with TV =7, (P71 + a;) - W))

(respect the notation (1+ ay) - @ := ((1+ a})@)yers), B.9) yields

(1 +a)(1+a, "), "
|v[2€

Setting a := ay = a; ” for the moment, we obtain

my(ug) = + 7,

(2a+ )i, |* = (my (uo) — 1) |V*€ = |ito, |

—R,
and thus the equation
R
a’ +2a — — ”2 =0,
|io,o |

which has the two solutions ap = -1+ /1 + Iﬁlo%—UP' Choosing the positive sign,

this motivates the following map with parameter ¢t € [0, 27)>

\Il U — l()O (Fé) at —> Eit — (Ei:;)yer‘g =

ﬁiy(uO)

(3.12)

where U C [20(T'5) is a neighbourhood of 0 € I (I';). Here, the subscript e
denotes (as before) evenness and the subscript r shall denote that we consider
sequences of real numbers, i.e.

(ay), € I25(T5) = [(ay), € 17(T), a_, =a, € Rfor all v € [';].

In particular, I7%(I'5) is considered as a real vector spac
We will have to prove that the map W, is well-defined. For this, there is a lot
to do so that we will split the proof of well-definition into several lemmata. The
main effort will be to prove that the deviation term (r,), is small with respect to

the model moduli (m,,), (see Lemma [3.2.2).

"Note that [2°,(I'}) is indeed a vecor space, in contrast to I}  (I';) considered before which
is only a subset of the vector space I} . (I';).

vel'y
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In the above definition, we made use of m,(ug) = m,(u;) = |TS|’§£2 for all t €
[0,27)°° (note that the flow w; is isospectral with respect to the model curve,
by definition). The above definition only makes sense if m,(ug) # 0, i.e.
Uo, # 0 for all v € I';. Assume g, = 0 for some fixed v € I';. Consequently
g, = 0 and m,(u;) = 0 for all ¢ € [0,27)>. It follows by Theorem and
that m,(u;) = 0 for all ¢ € [0,27)> as well. Hence, m, (u;) = m,(u;) =0
for all t € [0,27)° and ¢ — 4 thus leaves the v modulus m,, invariant (note that
m(ug) = m(up) for all t € [0, 27) is just the criterion for being an isospectral flow
with respect to the actual curve). Recall that the aim of the following procedure
is constructing isospectral flows by applying Banach’s Fixed Point Theorem to
a; — az. In the singular case (i.e. g, = 0 holds), we trivially have af =a; =0
for all ¢t € [0,27)> for the considered v and we’re done. The deviation term 7,
thus vanishes in this case. More precisely: Exclude the subsequence of (m,, (uo)),
indexed by all v fulfilling m, (uy) = 0 and apply the following procedure to the
remainder. Let, for the moment, «; denote the fixed point of a; — a; (which
will lead to the desired isospectral flow) restricted to the subsequence defined by
my(ug) # 0. The desired perturbation flow 0, will then be defined by oy := 0 if
ve{vels:m,(u) =0} and vy := af - @ otherwise.

In order to prove that WU, is well-defined, we have to show that the radicand of
the square root in (3.12)) is real and non-negative. Furthermore, evenness and
boundedness of (a}),er: have to be verified,

We start with the estimate of the deviation term (r,),. Thereto, we have to
recall the z-coordinates introduced in Section Recall the diagram and
in particular the map ® : z +— x between z- and z-coordinates. Due to (2.56)
and , we have the following representation of z-coordinates

z2i(k) =21k — k) + K — k2 + Ay (k,u) — A% (K, u) + 6,1 (k),
2o(k) = Zo(k — k) + k% — k2 + Aby(k,u) — Aby(ky, u) + €,0(K).

Here, € = €, = (€,1,€,2) is the "deviation term" between z- and z-coordinates
introduced in (2.72). Originally, € is a function of z, but due to the biholomor-
phic map z *> z — k, we can consider € as a function of k by e(k) = e(z(z(k)))-
Analogously to (2.57), we can write the z-coordinates in a matrix-vector repre-
sentationft

2(k) =: By - (k — k) + Ba(k) =: B(k),

0 «— . . )
v+l —iné + 1y

(3.13)
k? — kﬁ + AV (k,u) — AT (ky, u) + Eml(k) )

Bz(/{?) = ( k2 — kﬁ + Agz(k,U) — A;Q(ku,u) + 6,,72(16)

8In order to keep the notation simple, we mostly suppress the dependence on u (as we
already did in (2.57)) if the dependence on w is not explicitly needed. Note, however, that the
deviation term ¢, for instance also depends on the potential w.
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where By is the same as in (2.57) and By(k) differs from B (k) by the
additional e-term. We compute 2'(k) = By + By(k) = By - (1+ By 'Bjy(k)) as
we already did in the proof of Lemma for 2/(k). However, we don’t know
yet whether By 'Bj(k) = o(1) as |v| — oo. Note that, in the proof of Lemma

2.5.3, we could use Lemma [2.2.7, i.e. lim %A;’j(ky, u) = 0. Yet, in the quantity

v|—
Bi(k), there occur the terms %6]:'_1' for i, 7 € {1,2}. These have to be estimated at
J

first:
Lemma 3.2.1. For the error term € = €, introduced in (2.72)), there holds

de, (k) 1
i (i

>, as |v| — oc.

Proof. We suppress the index v and write € = ¢,. By setting e(k) := e(z(x(k))),
we compute

de _ de dz dv (3.14)

We must estimate the three factors of this product.
As to the first factor %: By the initial value problem (2.71]), we get for ¢ € [0, 1]

Dy(2) = z—l—/o X¥(Ps(2))ds.

By (2.73), we have | X' (z)] < o(1/|v|*)(|z1 — Ci| + |z2 — G]) for all z € D, and
all t € [0,1], as |v| — oo. The radius r of D, is of dimension O(|v|) (this is due
to the fact that the bounded domain V' the k-coordinates reside in is mapped by
k — z onto a domain of dimension O(|v|), ¢f. (2.56)). Hence,

1

|P4(2) — 2| < sup | X¥(Ps(2))] =0 (—) , as |v| = oo.
5€[0,1] v

Since the bound on the right hand side is independent of z and ¢, ®,(z) converges

to z as |v| — oo, uniformly with respect to z and t. Since ®4(z) is holomor-

phic with respect to z, we may, due to the Weierstrass convergence theorem,

interchange derivatives and limits, that is,

d Di(2) > 1 lv| —

—dy(z , as|v| — oo,

dz '

uniformly with respect to z and ¢. Hence, £®,;(z) is uniformly bounded with

respect to z and ¢ as |v| — oo. This fact gets important now. By (2.72), we have

D(z)=z—¢€(z) =2+ +/0 XY ®y(z +Q))dt.

LIXt (@2 + Ot

o) =1 °
= (2) + | @z
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Here,

DX @z 4 O)] = LX) oiore) - (= 4 0).

dz dx dz
The second factor has just been estimated as uniformly bounded. As to the first
factor, we have ‘%Xt(:c)‘ <8 =o(1/|v|?), as |v| = oo H for i = 1,2 due to [l
p. 246, (B.3)] (where we used Lemma [2.5.3] i.e. b = o(1/|v|?), for the estimate
of the term b appearing in Theorem [2.5.1)). We therefore obtain

d

T )—]14—0(‘1'2), as |v| — oco. (3.15)

On the other hand, we have by definition £®(z) = 1 — “¢(z), which yields
de 1
=0 W) as |v| — oo.

For the second factor £ in (3.14), we obtain by (3.15)

i)

e = (D®) Hx) =1+0(1), as|v| — oo. (3.16)

Finally, the last factor % in (3.14) has already been estimated in the proof of
Lemma 2.5.3

dx
dk
with a prime denoting the derivative with respect to k. Hence, all factors of

(3.14) are estimated, so that we get

% —o (#) 1+ o(1))-O(p]) = 0 (ﬁ) . as |v] = oo,

This proves the lemma. O

— 4/(k) = Bo+ Bi(k) = By- (1+ By 'By(k) = O (Iv]), as || — o

The following lemma states that the deviation term (r,), is small with respect
to the model moduli (m,),:

9This estimate can also be concluded from the estimates shown in the proof of Lemma [2.5.5
Some parts of the proof of Lemma differed from the proof of [5, Lemma B.1] (since the
proof in [5] only deals with the special case ( = 0 - a fact already discussed before) which made
us give a full proof of the estimate in this work. The proof of the estimate of ‘3 -2 X (x),
however, can be copied one to—one from the proof of [3, Lemma B.1] because all tools ‘needed
for this estimate, namely (2.77)) and ( -, are already provided in the proof of Lemma [2.5.5] -
and are equal to the corresponding estimates in [5]. In other words, at this point, there is no
difference between the cases ( = 0 and { # 0 anymore such that there is no need to literally
copy a proof already given in another work.
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Lemma 3.2.2. Let u € L*(F) be real-valued and r,(u) := m,(u)—m,(u), v € T},
denote the deviation term. Then

ro(u) = O (i) (), as |v] = oo. (3.17)

vl

This estimate holds locally uniformly in v € L*(F), u real-valued. Moreover,
(ry)y € 11, (T3) is even and real with

Veso J5s0 [|(m)ullin, aon) < € 100)ullin, rs)- (3.18)

Proof. In Definition we introduced the (model) moduli m, and m,, respec-
tively, as contour integrals around the A-cycle A, (and ;L,, respectively) over
the form kidks. In z-coordinates, a parameterization of the cycle is, due to the
representations z7 - zo = ¢, and 27 - 23 = ¢, simply given by

_ = el el
zZ= Cy.(e_i“’)’ z:\/c_y.(e_w)7 v €[0,2m), (3.19)

respectively. The branch of the square root |/c, may be chosen arbitrarily as long
as the choice is consistent. Consider at first the subsequence of (C,/)l,ef‘g indexed
by all v € T’ such that ¢, = 0. Due to Theorem [2.5.9] there also holds ¢, = 0
for the corresponding indices v. We thus have m,(u) = m,(u) = r,(u) = 0 on
this subsequence and the assertion of the lemma is fulfilled. So let’s exclude this
subsequence from now on, i.e. we may assume ¢, # 0 and consequently ¢, # 0
for all v € T, again by Theorem In particular, the quotioent c,/c, is
well-defined. With the notation , we compute with the parameterization
(3.19) (a prime denoting the derivative with respect to k)

(B0 - 7= (|20 - Byt ) 2 -

(14 By'By(k)) ™ Byt — Bo_1> Z=

(1 B By 0) = (1 B B0 - (1 By B0 | By =

DS o8

- (( v 1) 11— BO—lB;(k)) (1+ 15?0—119;@:))*1 By 'z, (3.20)

Cy
Note that the appearing inverse operators are all well-defined (for sufficiently
small 6 > 0 as always) since By 'Bh(k) — 0 as |v| — 0: this is due to the well-
known limit behaviour By 'Bj(k) — 0 as |v| — 0 (cf. the proof of Lemma
for example). In Lemma we also estimated the additional term de/dk,

which yields the claimed limit behaviour By 'Bj(k) — 0 as |v| — 0. We now
compute the difference of the terms k(z) — k(0) (defined on the actual curve) and
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k(%) — k(0) (defined on the model curve, compare (2.48)). By the Fundamental
——

=k,

Theorem of Calculus, we obtain due to dk(z)/dz = [B'(k(z))]™ "

(k(z) — k(0)) — (k) — k) =
_ / B k(1)) 2 dt — /0 BZdt — /0 ([B'(k(t2))] = — By'Z) di =

-/ ((\/7 ) ]1—BolB;(k(tz))) (1+ By ' By(k(tz))) " dt - By'Z.

(3.21)
Differentiating the parameterization (3.19) with respect to ¢, i.e.
dz . = el dz . el
%_Z Cu'(_e—igp)7 %_Z\/a'(_e—i4p>7 SOG[0727T)7
we obtain, again by using dk(z)/dz = (B'(k(2)))™' = (1+ Bo_lBé(k(z)))_l Byt
dk(z) dz,  [e, dk(z) dz ,
W= Ve 157 =
(& _ -1 _ dg
= c (]H’BolBé(MZ))) Byt %d%
~ dk(z) dz dk(z) dz ¢, dk(z) dk(z)\ dz
_dk = Zdo — o = v ) 2 gy =
dk —dk == ""14 iz dpr z, T d: iz | "
B20) Cy _ 1., dz
B (2 1) 1B ) (14 B B0 By s
(3.22)

Further, we have

(k1(2) — k1(0))dka(z2) i(%l (2) = ko )dks(2) - R
= [(k1(2) = k1(0)) = (k1(2) — ku1)|dk2(2) + (k1 (2) — ku1)d(ka(z) — k2(52§~23)

After these preparations, we can estimate the deviation term r,(u). Firstly, note
that for any contant ¢ € C, we have fA (k1 — ¢)dky = fA ki1dky due to Cauchy’s
Integral Theorem. Keeping this in mind, we obtain due to (3.21)), (3.22), (3.23):

/ keydly — [ kydksy
AV AV

I, (w)] = |y (u) —my, (u)| = 1673 < 1673(S) + S),
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where
Sy :=sup <(, & 1) 11— Bo—lB;(k:)) (]l+Bo‘lB;(k))‘1 B3| - 7]
keVv Cy
.SupH ]l+B lB/ 1 ‘ CV T
kev \/ C,
Sy =By - [Z]-
keV Cy dg&

Now, we estimate the individual terms appearing in S and S,. Firstly, Theorem
2.5.9) yields \/¢, /¢, = 1+ o(1/|v|?) as |[v| — co. Further, By' = O(1/|v|) as
well as By ' By(k) = O(1/|v]) which implies (1+ By 'Bj(k))™ - By' = O(1/|v])
as |v| = co. Together with (cf. (3.19))

= V3 VRIVE- VT = 20 B L ),

2] -

we obtain for i = 1,2

S; =0 (!1/1|3) e G =0 <|i) (), as |v] — oo

8t V|

This proves the claim (3.17). The assertion concerning local uniformity with
respect to u follows immediately since all estimates above are locally uniform in
u (provided u is real-valued).

Since (M, (u)), € I} (I;) (cf. (B.5)) and due to Hélder’s inequality, we also
have (r,(u)), € [*(I';) which, at the same time, shows the !'-estimate ([3.18). It
remains to prove that (r,(u)), is even and real. We show these assertions at first
for the moduli (m,(u)),. Due to r, = m, —m,, evenness and reality immediately
follow for the deviation term r,, too.

Evenness of the moduli follows from the point-symmetry of Fermi curves with
respect to 0 € C?, i.e. F(u) = —F(u) (this property is due the holomorphic
involution o). More precisely, we obtain for v € I'}

ml,(u)/(—167r3) = /A ]ﬁdk’g Z / (—kl)d(—k2> == / l{fldl{?g == m_y(u)/(—167r3)
(3.24)

by using the involution o : k — —Fk in the second equality (recall that —k= (i) =
k*,(19)). This shows the evenness claim. Since our potential is assumed to be
real-valued, we also have the antiholomorphic involution 1 : k + k. Using this,
together with k*(iy) = kT, (do) and the fact that kX(ig) = kT (iig) modulo T'*,
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we obtain

)/ (—167%) = / Fudhy 2 / kndky = / vk — my (1) /(—167%).
! B ) (3.25)

Thus, m, (u) = m,(u) for all v € I';. This shows that the moduli (m, (u)),er; are
real provided u is real-valued. Hence, we showed that (m,(u)), and consequently
(r,(u)), is even and real. Thus, the lemma is proved. O

As a by-product of the above proof, we see that the properties of the model
moduli such as evenness, reality, non-negativity (for v € T'}, respectively) and
being an [*(I'*)-sequence are inherited by the actual moduli. We state this in the
following corollary.

Corollary 3.2.3. Let u € L*(F) be real-valued. Then (m,(u)), € I} (T}) for
sufficiently small 6 > 0.

Proof. The assertion (m,(u)), € [*(T'*) follows from (m, (u)),, (r,(u)), € I*(T'})
proved in Lemma Evenness and reality (for v € T'}) have already been
proved in Lemma too. Non-negativity of m,(u) for v € T} follows from
and the non-negativity of the model moduli, that is,

my(u) =m,(u) +r,(u) =m,(1+o0(1)), as|v|] — oo

(considered on the subsequence indexed by v with ¢, # 0) is non-negative, at
least for 6 > 0 sufficiently small. The case ¢, = 0 has already been discussed in
the proof of Lemma yielding m,,(u) = 0, too. O

Now, we are able to proof that the map U, (3.12) is well-defined:

Theorem 3.2.4. Let ug € L*(F) be real-valued. Then the map W, : U — 17%(I';)
is well-defined for all t € [0,2m) for a sufficiently small neighbourhood
U CIx(T5) of 0 € I23(;). That is, its image consists of real and even sequences:
af =a;” € R for all v € T';. Moreover, the perturbation flows v, and v, defined

in (B11) satisfy (39).

Proof. Let t € [0,2m)> and U C [23(T';) be a neighbourhood of 0 € 2% (I'5).
Recall the map W, : U — [2%(I';), defined by

ap — ap = (aty)uel“g = 5

—1+ \/m,,(uo) — (P + @) - @)

fﬁy<U0)

vel'y

where without restriction m, (ug) # 0 for all v € T’} as has already been discussed
after the definition of (3.12). We show at first af € R for all v € ;. As to the
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radicand [m,, (ug) — 7, (P ((1 + ar) - @))] /M (uo) of (3.12)), we obtain by Lemma
B.2.2
7, (uo)

— =14+ = — 1, as|v]| — o 3.26
7o (t0) o (t0) | (3.26)

as well as

r(PTH(A A a) @) e TP a) ) (TN
mo(u) T A T agw) O (M) - as vl = o,

where we used the evenness and boundedness of (a}), € U (with respect to v).
This shows

my,(up) — r, (P7H(1+ ap) - )
771,,(160)

1
=140 (—) , as |v| = oo. (3.27)

v

Now, m, (ug) and m,,(ug) are real due to the reality of ug (cf. and Corollary
. Moreover, (1 + a;)i; corresponds to a real-valued potential, too. This
follows from the reality and evenness of a; and Corollary since (1 + a)u} =
(1 + a; "), . By Lemma [3.2.2 7,(P7Y((1 + a;) - %)) is thus real. This shows
that the radicand of (3.12) is real and, due to (3.27), non-negative for 6 > 0
sufficiently small. This in turn shows @} € R for all v € T'}.

The evenness of (a}), follows immediately from the evenness of (m,),, (m,), and
(r,),. Boundedness with respect to v follows from (3.27). Thus, we have proved
that W; maps U into [75(I';).

Finally, if we define the perturbation flows o, and O by and v, vy by ,
the computations leading to the definition show that is fulfilled if we
retrace those computations. This is admissible since all steps leading to (3.12)
were equivalence transformations as long as the denominator m,, (ug) doesn’t van-
ish. But this special case has already been discussed and was excluded before.
Thus, the theorem is proved. O]

In the following lemma, we prove that for given v € I'§, the map

as — r,(P7Y((1+ a;)1;)) appearing in the map ¥, is smooth. This together with
an estimate of the respective derivative will be needed in Theorem to prove
that W, is contractive. Besides, we prove that m, and r, are holomorphic with
respect to u.

Lemma 3.2.5. Let v € '} be fized. Let m, denote the v modulus with corre-
sponding deviation term r,. Then, for every uy € L*(F), there exists a neigh-

bourhood B(ug) C L*(F) of ug such that the maps

B(up) — C,  u+— my(u),
B(ug) — C, uvr—r,(u)



3.2. AN ANSATZ VIA PERTURBATION OF THE MODEL FLOWS 83

are holomorphic. Here, the neighbourhood B(ug) can be chosen independent of v.
In particular, for real-valued uy € L*(F), u € Isos(ug) and U C I2%(T;) the ball
defined wn Theorem the map

U—R, ar——r,(PY(1+a)i))
18 smooth.

Remark. Speaking of holomorphic maps, the potentials v appearing in the first
part of the lemma concerning the holomorphy assertion are of course arbitrary
complez-valued potentials.

Proof. Let ug € L*(F) and v € T be fixed. The corresponding modulus m,, is
defined by

m,,(u) = —167T3/ k’ldkg.

We need to understand the dependence of this quantity on the potential u €
L*(F). Thereto, we consider at first the following parameterization of the v
A-cycle (differing from (3.19))):

. e
2= ( Cvejo ) . pelo,2m). (3.28)

We firstly note that we may choose A-cycles arbitrarily up to homology since
the contour integral m, only depends on the respective homology class of A,.
Obviously, describes a cycle homologous to the cycle parameterized in
(3.19). Secondly, the parameterization is contained in the image of V' C C?
(the domain the k-coordinates reside in) under the map k — z which can be seen
by (3.13)), for instance. The parameterization is thus admissible. Let’s
briefly motivate why we consider instead of in this proof. The
advantage of was that the parameterization of A4, in model coordinates
Z is proportional to the parameterization in non-model coordinates z. In fact
they only differ by a factor \/% . This was an esssential ingredient in estimating
the deviation term 7, in Lemma In this proof, however, we are interested
in proving the holomorphy of u — m,(u). Since the square root /¢, in
is in general not holomorphic (for instance, u € B(ug) with ¢,(u) = 0 would
cause problems in this context), the parameterization turns out to be
more appropriate. Now, we define with the matrix-vector representation (3.13)
and the parameterization for v € [0, 2m)

Fy(k,u) := By - (k — k,) + Ba(k,u) — z =

B k* — k2 + AY (k,u) — A% (ky,u) + 6,1 (K, u) c, - €Y%

_Bo(k—ky)+ ( k2—k12,+A52(k,u)—AZQ(k’V,u)—i—EV?g(k,u) - efigo )
(3.29)
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where we write By(k,u) (instead of By(k) as before) because now, the depen-
dence on the potential u is essential. The same holds for the error terms €, 1, €, 2.
Let’s briefly outline the procedure of the proof: We’ll apply the Implicit Function
Theorem to the equation F,(k,u) = 0 by showing that 0F,(k, u)/0k is invertible.
Hence, we can deduce that the locally defined map u + k(u), which maps the po-
tential u to the parameterization of the cycle A, in k-coordinates, is holomorphic
provided that F,(k,w) is holomorphic with respect to k and u. From this, we will
be able to deduce the holomorphy of kjdky (more precisely, its parameterization
along the cycle A,) with respect to u.

Let’s continue with the proof. At first, we show that the map (k,u) — Fi,(k,u) is
holomorphic, with & € V' (with V' the usual domain of definition for & which only
depends on T'*) and w in a neighbourhood in L?(F) of the given potential ug. The
holomorphy in k£ € V' is obvious since the only non-trivial terms depending on &
are the entries of the perturbation matrix A%(k,u), i = 1,2, and the error term ¢,
whose derivative with respect to k has even been estimated in Lemma and
Lemma [3.2.1] respectively. As to the holomorphy with respect to u, there occur
besides the entries of the perturbation matrix and the term €, some other terms
depending on u, namely k, = k,(u) and ¢, = —(h,((,) + (o1 - (2), where the
critical point ¢, = ¢, (u) depends on u, too. The holomorphy of A% (k,u), i =1,2
with respect to u was shown in [I3| Theorem 4.5.25]. In Lemma we esti-
mated the derivative of k, with respect to u. In particular, k,(u) is holomorphic
in u as the proof of Lemma m ShowsEU]. As to the holomorphy of {, = (,(u),
consider for x € D, (where D, denotes the polydisc defined in Theorem

and v again in a neighbourhood of g

Oh(z,u)
G(.CE,”LL) =X+ < af?(mac?u) ) ’

or1

where v is suppressed and h = h, is the map (2.58)) (obviously depending on u).
By definition, the critical point ¢ = (, is determined by the equation G(((u),u) =
0. We obtain by Lemma [2.5.3

@G(ZL“,U) — 140 (ﬁ) ’ ‘I/‘ 5 00,
14

ox

Due to the Implicit Function Theorem (cf. |23 p. 144], for example), the locally
defined map u +— (,(u) is holomorphic because G(z,u) is obviously holomorphic
with respect to w and x (recall the definition of h, and the holomorphy of the
entries of the perturbation matrix which has already been shown). Hence, also
the handle quantity ¢, = —(h,(¢,) + (1 - (u2) is holomorphic with respect to u.
It remains to show the holomorphy with respect to u of the term e = ¢, defined

101n fact, the proof of Lemma already uses an "Implicit Function Theorem" argument
analogous to what we show next.



3.2. AN ANSATZ VIA PERTURBATION OF THE MODEL FLOWS 85

in (2.72) by
1
=== [ K@i+ O

where v is again suppressed. Since the holomorphy of u +— ((u) has already been
shown above, it remains to show that the vector field X' is holomorphic with
respect to u. Then, ®, as the solution of the initial value problem also
depends holomorphically on the "parameter" u, as is well-known from the theory
of ordinary differential equations. We now have to understand the holomorphy
of X' with respect to u. Let’s recap how X' was defined: By definition, X*(z) :=
Y'o P,(x), x € D,, where (cf. the proof of Theorem

1 1
Ylt(y) = 59(3/170)7 th = i(g(yhyﬂ —9(y1,0)),

g(y) = —ho P \(y),
y:Pt(x) = (‘/L‘Q_CQ—’_t (aa_xhl—i_CQ) y L1 _gl_’_t <88_':2+C1)) P

W) = @129 + W) — (21 = Q)(22 = G2) — G2 — h(Q).

The holomorpy of h and P, with respect to u is obvious (mainly due to the well-
known holomorphy with respect to u of the entries of the perturbation matrix and
their k-derivatives). As to the holomorphy of the inverse P;! with respect to u, we
can use the Implicit Function Theorem, this time applied to H(x,u) := Py(z)—y,
where y € P,(D,) is a given point. Deriving H(x,u) with respect to x yields the

Jacobian o o
aH ) — ( ta_x% 1+t8x2(9x1 )

= 22h 22h
al‘ 1 =+ t@;m Oza ta_xg

which is invertible due to Lemma [2.5.3] for 6 > 0 sufficiently small. Hence,
the holomorphy of u + z(u) = x = P *(y) follows from the Implicit Function
Theorem since H(z,u) is holomorphic in both variables. This shows that the
above terms g(y) and Y*(y) are holomorphic with respect to u and finally also
X' is holomorphic with respect to u. Together with the above arguments, this
sows that the term e is holomorphic with respect to u. Hence, we have proved
that F,(k,u) (3.29) is holomorphic in both variables & and . We thus can apply
the Implicit Function Theorem to the equation F,(k,u) = 0. Deriving F,, with
respect to k yields

OF (k,u) 1
T_BO<1+O(W>>7 as]u]—>oo,

since k lives in the bounded domain V' and the derivatives of AY;(k,u) and €, (k, u)
with respect to k both tend to zero as |v| — oo (see Lemma and Lemma
3.2.1). Hence, due to the Implicit Function Theorem, there exists a neighourhood
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B(ug) of uy such that the map u +— k(u) defined on B(ug) is holomorphic.
Recall that the notation k(u) signifies the parameterization of the cycle A, in k-
coordinates. Moreover, the neighbourhood B(uy) is independent of v. In fact, for
all terms in the preceding considerations, there were no restrictions concerning
B(ug) with respect to v € I'; (such as having to choose B(ug) smaller the larger
|v| gets, for instance) so that B(ug) is indeed independent of v € I'} (provided
-as always- that § > 0 has been chosen sufficiently small

Further, we have in analogy to (3.22)) (this time with ( instead of (3.19))

dk(z) d _ et
) d—zdgp (1+ By'By(k(2))) " Byt -i ( v )dgp.

Along the parameterization (3.28)), the form dk is thus holomorphic with respect
to u since for all appearing terms in dk, we have proved above holomorphy with
respect to u. This shows that the contour integral [ 4, k1dks is holomorphic with
respect to u. Thus, the v** modulus m, (u) as well as 7, (u) = m, (u) — m,(u) are
holomorphic in u (note that the holomorphy of u +— m,(u) is obvious due to the
representation (2.84)). The smoothness of a — 7,(P~*((1 + a)u)) now follows
immediately since P~! is biholomorphic in the respective domain of definition.
The lemma is proved. O

In the next lemma, we estimate the derivative of a — r,(P7!((1 + a)w)), as a
preperation for the proof that W, (3.12)) is contractive.

Lemma 3.2.6. Let uy € L*(F) be real-valued, 1 € INsc)g(uo) and U C 22 (T5) be
the ball defined in Theorem (3.2.4. Then for v € I'y with 1, # 0, the derivative of
the map

U—R, ar— (P ((1+a)))
satisfies

d 1 .
(P14 a) @)

where the estimate by the error term o(1) is uniform in a € U. Here, || - || :=
|+ llie,(rz)r denotes the corresponding operator norm. Moreover, there holds

\

for all real w € L*(F) in a (sufficiently small) neighbourhood of ugy, again for
v e 'y with u, # 0.

‘ =o(1) - |m,(uo)|, as|v| — oo,

d
@Tu (U)

as |v| — oo
L2—>R
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Remark. The additional requirement in the conditions of the lemma that the
perturbed Fourier coefficients have to satisfy %, # 0 is needed in the proof in
order that quotients like ¢, /¢, are well-defined. In Lemma[3.2.2] we didn’t have to
make this additional assumption since @, = 0 implies m, (u) = m,(u) = r,(u) =0
due to Theorem and (2.85). We don’t know, however, whether -7, (u) =0
if 4, = 0. Therefore, we require the condition @, # 0. In fact, this is no
severe restriction since later in Theorem [3.2.8] we will apply this lemma to such
subsequences of (1, ), fulfilling this condition (compare the exclusion of the case
my(up) = 0 in the discussion after the definition of the map ¥, in (3.12))). In
later chapters, we will restrict ourselves to smooth Fermi curves anyway where the
condition that the perturbed Fourier coefficients don’t vanish is always fulfilled.

Proof. For u € f;)(g(u(]), we consider potentials of the form
w= P (1 +a)-0)

with @ € U. Some terms in 7, can be derived easily with respect to a (since they
already appear in terms of perturbed Fourier coefficients), whereas for others, we

use the chain rule % = % . Zl—z, where (with a prime denoting the derivative of P)
du d
% = %P_l((l + CL) . 12) = [b — (P,|p—1((1+a)ﬂ))_1 (ﬂ . b)}

as a linear operator mapping from % (T';) into L3, (F). In Theorem we
have proved that the derivative P’ approximates the identity for sufficiently small
d > 0 by identifying L?-potentials with their associated sequence of [2-Fourier
coefficients. More precisely, we have shown in that theorem that for v € I},
there holds

du,
du

where the error term o(1) encodes an operator whose norm tends to zero as 6 — 0.
We thus have

L*(F) = C, v~ o(v)+o(l), asly|— oo, (3.30)

@
da

< |[[(@)ullz@s - (L+0(1)), asd — 0.
122 (T7) —L2(F)

In the following, we sometimes only need rough estimates where ||du/dal| = O(1)
(as 6 — 0) already suffices. In these cases, we will just derive the respective terms
with respect to u (instead of deriving with respect to a) without mentioning it
always explicitly. For the proof of the second claim of the lemma concerning the
estimate for d%fr’,,(u), we will only need the derivative with respect to u, anyway.
We use the parameterization for both model curve and actual curve:

~ ¢, - e c, - €%
z = < e_i@ ) s z = ( e_iw ) , o) € {O, 27'(') (331)
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Let v € I';. In a first step, we consider the derivative dz/da. Thereto, we
have to estimate the derivative dc,/du. Due to Theorem , we have —c, =
h,(C) + o - G2 The function h,(¢,) depends twice on the potential: firstly,
because of the explicit u-dependence in the off-diagonal entries of the perturbation
matrix A}, secondly, because of the implicit u-dependence in the critical point

¢, = ¢, (u). Since ¢, satisfies V(h,(z) + z122)|,=¢, = 0 by definition, we obtain
_de,  dh(G) dCVQ dCul

d == Cl/l CVQ
U du
o 8hu(§y> dCl/ ah (CV) dgV? dClal . ahV(CV) 332
N or  du + ou Cyl du P S ou ( )
—

déy 1 d¢y.a
=2 b1 gy

that is, the u-derivatives of (, have been cancelled out and we have to compute
Oh, /Ou evaluated at (,. This makes some of the following computations a lot
easier since (, doesn’t have to be derived and can virtually be considered as
constant with respect to u in this sense. As in the proof of Theorem we
get by the Fundamental Theorem of Calculus

6 =0+ [ Thufic . (33

We would like to estimate the difference ‘%gf”) ah”(o) Due to (2.60)), we have
for all t € [0, 1]

- Vh,,(tg,,) =
v a v a v dk(tcl/)
= (A1), ) AR H(1G) )+ A5 (KOG ), 0 S ARG ) - e,
(3.34)
Let’s consider at first the term dd 4k VWe claim that we have for n = 1,2
d dk A2k, dx 1
— == "2 =0 — ) 3.35
du dr  dz? du (]V|3> syl =0 (3:35)

Due to (2.66), we only have to show dx/du = O(1) as |v| — oo. By definition of
the a-coordinates (2.56)), we have

dxl o dkl/,l . dku,2 o B _ dku
% = — du ( v+ ZVQf) du ( Zl/lf VQ) 2ku du
OAL(K)  (0An(k)  0An(k) dk\
+ Y 5 o a0 ) = O(1), as|v| — o0

due to Lk, = O(1/|v|) (cf. Lemma 2.4.3), £4;; = O(1) (cf. the proof of
Theorem in particular (2.33)) and the fact that the operator BC' is bounded
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and AB, BA both tend to zero as |v| — oo, c¢f. Lemma [2.2.5] in the respective
operator norms) and & A;; = o(1) (cf. Lemma M, as |v| — oo, respectively.
The estimate for dz, / du is completely analogous. This proves (3.35).

Again by the Fundamental Theorem of Calculus, we have with k(0) = k, (with
respect to the map = +— k(z), recall (2.79)) for all ¢ € [0, 1]

A (K(G,), ) = Atk / VAL ((stC,), u)ds - 1, =

dk
=u,(1+a,)+ /0 Vi Ay (k(std,), u)%]xzst@ds tC,,

as |v| — oo. Virtually the same holds for the other entry A%, (k (tg) u) which

is shown completely analogously. This together with (3.35] and agakAy (k,u) =

o(1) as |v| — oo (we postpone the proof of this assertion into the next Lemma
3.2.7]in order not to make the structure of this proof too confusing) implies by

deriving (3.34) and using (2.61)), (2.82) (recall that ¢, doesn’t have to be derived
as explained before: we firstly derive h, and then evaluate at ()

%vm(/@(tg)) — |- 0 (ﬁ) | as|y| = oo, (3.36)

Further, h,(0) = ¢, = (1 + a,)?|w,|?/(167*). Hence,
dz H

Z| ||de e\ || 9 h(0)] = 211 +ay| - |w|* 2 2 < Ale,|
da| || da 0 ~||0a” 1674 1+a, v > 3le)|
(3.37)

if we choose without restriction the ball U such that l|al[;= < 1/2 for all a € U.
Summing up, we obtain by the above estimates (3.36)), (3.37) together with (2.82)
and - ) the estimates

Ohy(&) ah as |v| —
da BB |2 ’ o

Oa _1—|—

and consequently with (3.32)

d dz de, » v - 1
fio il =1G @) () =r-o () i

This implies with ¢, = h,(0), the parameterization (3.31)) and (3.32)

Hah Cu

lc,|(1+0(1)), as|v| = o0

da da

dz||  ||de, evr 2 B39 || 0 =
== ( 0 ) =Tra e [(T+0(1)) = %hu(O)H (140(1)) =
=[G o, as o (3.39)
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In a second step, we consider a decomposition analogous to (3.23) and derive the
individual terms with respect to a, more precisely, we consider

k1(2)dka(2) — ki (2)dka () = [k1(2) — k1 (D)]dka(2) + Fa (3)d[ka(2) — Ez@(g )

As already mentioned in the proof of Lemma [3.2.2] it makes no difference to
add terms which are constant in k since due to Cauchy’s Integral Theorem, they
vanish anyway by computing the contour integral m,. We can thus consider as

well (3.23)) itself, namely

(k1(2) — k1(0))dka(z2) 1(751 (2) = ko )dks(2) - ~
= [(k1(2) = k1(0)) — (k1(2) — ku1)|dk2(2) + (k1 (2) — ku1)d(ka(z) — k2(2)).

Which decomposition we will actually use depends on the respective computa-
tions. We start with the term ky(z) — k1(2). Deriving with respect to a yields
with the usual representation ({3.13)) analogously to ((3.20])

dk  dk  dk(z) dz dk(z) dZ , L dz . dF
o 2 S 2 (B(k Rl > St S
da da dz da dz da (B'(k(2))) da O da

—1 dZ 1 dZ

= By (1+ By(k(2))By ') - — - By' -+ =

- -1 -1 -

= By | (1+ By(k(2))By') - — — (14 By(k(2))By ) (14 By(k(2))By ') —
_ -1 (dz dz ., dz 1 ~

=55t (e BB (G- 5 - Bt ) =0 (o) Bl

as [v| — oo, due to (3.37),(3-38) and the well-known estimates for By, By (k)

(see the proof of Lemma [3.2.2] for instance).
We continue with the term dko(z). We have dky = 222) . j—;dw. The derivative

dz
of the term A
dz ([ ¢,-€e¥
do Y\ —eiv

with respect to a is virtually estimated as dz/da. More precisely,

d dz -
—Z_0 — 00 .42
dadgp (|CV|)7 as |I/| (3 )

due to (3.37) and (3.39). As to the term %dkzy), we have

d dky(z)  dhy dz
da dz — dz?2 da’




3.2. AN ANSATZ VIA PERTURBATION OF THE MODEL FLOWS 91

Pk, d (dk2 dx)_(d:z:)T Phy dr | dky  da

= —_— — — — 4 —- . 3.43
dzidz;  dz; \ dx  dz; dz; da? dzj * dr dzdz; (38.43)

Due to (2.66)), the entries of the Hessian Z% are O(l/|y| ) as |v| = oco. Fur-
thermore, dx/dz = 1+ o(1) (cf. - ) and dk/da: = O(1/v|) cf ([2-61)) as
lv] = o0, respectlvely As dzz_d
of Lemma where we deduced the estimate for dw/dz by showing that the
solution <I>t(z) of the initial value problem converges to z as |v| — oo, uni-

formly with respect to z and t. Hence, the second partial derivatives #;@t(z)
i0Zj

converge to zero as |v| — oo, also uniformly with respect to z and ¢. This shows

Pr dPP(z+Q)

= 1 _
dz;dz; dz;dz; = o(l), asly| = oo
This together with the estimates before yields
d dkg( ) dz\ ([ d dky(2)\ dz N dko(2) d dz _1a]0
da \ dz dcp - \da dz dy dz  dadyp \

(3.44)

as |v| — oc.

Next, we want to derive d(ks(z) — ko(Z)) with respect to a. We would like to use
a representation analogous to (3.22). In the former parameterization (3.19)), we
had z = \/g_—i - Z. With the new ("square-avoiding") parameterization (3.31]), we
have

2=0C,-%Z, where C, := (% ?)6@2“.

The matrix C, will now take the place of the matrix ,/ g—z -1 we considered before.
Note that due to Theorem [2.5.9]

1
C,—1=o0 (W) , as |v| = oo. (3.45)

We obtain completely analogously to (3.20) and (3.21)) (simply by replacing /-1
by C, in the respective computations)

(B'(k))™'z — By'2 = (C, — 1—- By 'By(k)) (14 By ' By(k)) ™' By'Z,
and
(k(z) = k(0)) — (k(Z) — k) =

_ /1 (C, — 1— By'B)(k(tz))) (1+ By ' By(k(tz))) " dt- By, (3.46)
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respectively. The analogon to (3.22) is then

_ dz
dk = C, - (1+ By'By(k(2))) ™ By - d—zdgo,
4 _ (3.47)
™ —1 o/ 1/ -1 51 dz
dk — dk = (C, — 1— By'By(k)) (1+ By'By(k)) ™ By - %d@
We have
dk — dk = 22 do — _

dh(z) dz d?%(z).d_%'d :(dk:(z) . d%(z))d_zd

Az dp'C T Tz dp't Az vT @z ) dyp

(3.48)

Again, we derive the appearing terms with respect to a. We start with the first
factor. We have

d (dk(z) o dﬂz)) _ <idk(Z)) oy B A d gy g g

da dz v dz da dz dz da d

Here, (%‘%}?) -C, = e, -o(1/|v]), as |1/| — 00, due to the above estimates (cf.

the estimates of the first summand in , in particular (3.43)[T) and (3.45).
As to the second summand in (3.49)), we have to estimate dC), /da. Since dd C, =

Lo (10, we estimate - We have (by denotong the derivative with respect

to a with a prime) due to Theorem 2.5.9

o\ 1 c 1 1
~Z) == -7 -Z)==((,-2)-¢ ol — ), as|y|— .
c, Cy C, Cy K

(3.50)

By (3-38)), we have ¢, — EZ, |e,| - o(1/|v]?), as |v| — oo. Together with (3.37)),
we obtain by (3.50) (£)" = o(1/|v|?), as |v| — oo. Hence, we have (together with

dk/dz = O(1/|v])) /
0 (2] () e

and consequently, due to dc” = (g’;)’ (59

(dk(z) | dC’,,) @z [ (=) o dz

dz da dgoz dks (cry)/ 0 @

dz1

e = dk e\ 1
=ie” G o | = =1l 0 W) as |v| — oo.
1 v

Hn , we only considered ks. Clearly, the same estimate holds for kq, too.

2Note that in the parameterization (3.31)), z as well as dz/dy are not O(|¢,|) as |v| — oo
because -in contrast to (| - the second entry e~ is independent of ¢,. In this context, it is
essential that the second column of C

(&7
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Together with the estimate of the first summand in (3.49) and with (3.42) and
(3.47), we finally obtain

d | [ dk(z) dk(2)\ dz
- [(W'C”_W> dsé?] e, - 0<‘ |) as |v| — oo. (3.51)

Now, we have estimated everything we need. In a last step, we now sum up all
these estimates to gain the desired estimate for dr,/da. For v € C?, we use the
usual notation v; and vy for the first and the second component, respectively.
This explains the terms [-]; and [-]2 in the following.

We have with w = P~'((1 + a) - @), the decompositions ([3.23) and (3.40), re-
spectively, as well as by (3.37)), (3.41)), (3.44), (3.45), (3.46), ([3 47]) (3.48), (3.51))
and the well-known estimates for By, By(k) (see the proof of Lemma [3.2.2 for
instance):

1 d d -~
o (u) = — kydky — =
1673 dar (u) da </AV 192 /gu kldk2)

2 Ak, dky \ dk, d
_ / dhy _ dky ) dky dz o

0 da da | dz dyp

+/02ﬂ(k1(z)—k1(0) (k1(2) = k) di(

)

dz
2 dk, d ~  dz T d (d ~  dz
ko — ks) - —d ki— [ —=(ky — ko) - — =
C da R S“L/O Ya (d (ke = k) dgo) de
2 ~
(BRI dky  dky 1o 1., dz
= —_=1\lc,-(1+B'B Byl ==
(13.46)

d (dko(z) dz
— | ——= dy
( dz dgo) *

BEa) 27 dz _ dz
P[] |1 mr e (s Bt ] e
0 1 2

de
L d [ dk(z dk(z)\ dz
+/0 [B(; z]l. [%<< di)-C’V— d;)> dgp)] dp =

1 . : -
:O(F) o) B 0(1) - |, as |v] = oo (3.52)

This proves the first claim of the lemma.
As to the second claim, we can essentially use the results just proven with some
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exceptions. At first, we get by the chain rule

d
da

d d

(P ((1+a)-u)) = @m(u)\uzp_l((m)_a) : %Pfl(u +a)-1).

In most of the terms above, we have virtually already estimated d%rl,(u) and
used for the second factor the rough estimate LP~'((1+ a)-a) = O(1), as
0 — 0 such that the above estimates carry over. In other words, we already
derived these terms with respect to u (instead of with respect to a). Things
are different for terms which are already explicitly given in terms of perturbed
Fourier coefficients. For the term (1 + a,)?|u,|?, for instance, we didn’t use the
above chain rule but derived explicitly with respect to a, yielding 2(1 + a,)|u, |*.
Deriving the corresponding term with respect to u, however yields

d d du, @.
el = i) - G B (14 0(1) = O(fa ), as v] = oc.

In other words, we can carry out virtually the same estimates as above with
the restriction that by deriving |i,|?, we only get a term O(|u,|) instead of the
stronger estimate O(|u,|?) as before when we derived (1 + a,,)?|1,|* with respect

to a,, i.e we get a reduction of 1 in the power of |4,|. If we retrace the above
proof, we see that the equations affected by this are (3.36)), (3.37), (3.38)), (3.41),
(3-42), and (3.51). More precisely, the right hand sides of all of these
equations contain either a term of order 167%|c,| = |u,|? or |i,|. These terms
then reduce to terms of order |u,| or |1,|® = 1, respectively, in the sense just
explained. If we plug the corresponding estimates into the big computation ,
the corresponding estimate in then yields that -7, (u) equals only %] 6(1)

v[?
(instead of |m,(u)|o(1) = ‘f;'l;o(l)) as |v| — oo . This shows the desired
estimate and the lemma is proved. O

We owe the proof of the following assertion used in the foregoing lemma.

Lemma 3.2.7.
82
8u8kAiyj(k’u) =o(1l), as|v|] — 0.
Proof. In order to determine ag_ZkA(]l — BA)™!, we use virtually the same ex-
pression as in (2.63) where we computed aa—]:QA(]l — BA)~!. This time, of course,

13The reason for this is that each summand of %ru(u) in the corresponding computation
analogous to is due to the product rule a product of a term which is derived with respect
to u (where the mentioned reduction of the power appears) and another term which is not
derived and stays the same as before.
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the second derivative is with respect to u (instead of with respect to k). More
precisely, with the operator C' defined in (2.40)),

0 -1 _ 9 -1y -17 _
5= A= BA)™! = ——-[A(1— BA)"' BCBA(1 - BA) ™| =
= —(%[A(]l — BA)"BCBA(1— BA)™ — A(1— BA)‘lBéB%[A(I — BA)™Y—
— A(1- BA)1%[353]A(]1 — BA)™. (3.53)

Let’s consider the three summands of this expression seperately. By the proof of
Theorem [2.4.2] (and the respective comment in the proof of the foregoing Lemma
I@’ we know that the operators 2 [A(1— BA)™'] and BC are bounded with
respect to |v|. Moreover, by Lemma [2.2.5] || BA|| = o(1) as |v| — oo. Hence, the
first summand of is o(1) as |v| = oo. Due to [13, Lemma 4.5.23|, we have
A(1— BA)™' = (1— AB) 'A. Hence, the second summand of is o(1) as
|v| — oo, as well. As to the third summand, we compute using the operator C'
defined in ([2.34))

C? x L*(F) > (z,h) — %[353](:):, h) =

— —BC(h)BC(x)B — BC(x)BC(h)B + B {%5] (x,h)B,

where for z € C*, h € L*(F),

0 ~ 8m2i Uy A
—C(z,h) = ———diag (<( ),x> : h(O))
ou Ev? — pEl\{0,41}

due to ?% = ¢5("2) by definition (2]
(recall C(x) = —8n*diag ((p + k + K, (10), 2)) jep\ (0,40> (2:40)). By definition of
B, C, C, we immediately see (which we have already seen in the proof of Theorem
that the operators BC' and BC are bounded with respect to |v|. Moreover,
by the above calculation, the operator B [;—ué’} is bounded with respect to |v|,

too. By Lemma [2.2.4] ||B]| = o(1) as |v| — oo. Hence, the third summand of
(3.53) is o(1) as |v| — oo, too. This proves the lemma. O

In the following theorem, we state the existence of perturbation flows by applying
Banach’s Fixed Point Theorem.

Theorem 3.2.8. Let uyg € L*(F) be real-valued. Then for all t € [0,27)>, the
map (3.12) W, : U — U with a sufficiently small closed ball U C I3 (T'5) centered
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at 0 € [25(I'5) is contractive. Hence, there exists a unique a; = (a),er; € U such
that for all v € T and for all t € [0,27)>°

my, (ug) = my (g + vg) + 71 (u + vy),

with definition (B.11)) wy + vy := P7H((1 + ay) - ).
Proof. Let t € [0,27)> and let U C 22 (I'5) be a ball centered at 0 € [2°(I'}) (how

,€ ,€

small U has finally to be chosen will become clear in the following). We show at
first that ¥, maps U into U. Because of (3.27), we have

%m020<ﬁ),aMW%a%
1%

uniformly in a; € U. Thus, by choosing ¢ > 0 sufficiently small, one can achieve
that ¥, maps U into U, even into a subset whose closure is still contained in U,
so that we may choose U to be closed. Note that, in fact, the choice of 9 > 0 only
depends on ug since the model flows @, and even the perturbed flows (1 + a;)u,
(by choosing U correspondently small) are contained in a ball in {*(T'}) around
0 € [*(T';) where the map is invertible (compare the choice of § discussed
on p. . Next, we show that W, is contractive. To this, we have to show that
there is a constant 0 < L < 1 such that for all a;, b; € U, there holds

[ (be) — We(ar)|lieors) < L+ [|be — agllio ().
Let a;,b; € U. We begin with the estimate of the radicand of (3.12]). We have
my (uo) =y (P~ (1 +b) - )  my(ug) — (P~ (1 + ay) - ) ‘ —

ﬁll, (Uo) 777/,/ (UO)

1
—_ Vp_ll b'v —VP_ll - U .

o [P (b)) = (P (1 ) )

Now, a — r,(P7'((1+ a)a)) is smooth due to Lemma We thus obtain by

the Mean Value Theorem (cf. [30, Satz I11.5.4(b)])

o (PTH(L+be) - @) = o (PTH((1+ ar) - )| < sup

acU a

gwxp4«1+@-m»”

- |[be — at||l°°(F§)~

By choosing § > 0 sufficiently small, we can achieve by Lemma [3.2.6

sup
acU

d 1 .
%TV(PA(O +a) 7:Lt))H < 3 |my ()|, v eTs;.

Now, for x,y in a sufficiently small neighbourhood of 0 € R, we have

WVIty—Vi+tz)(VI+y+vita)| ly — 7|
VIity+V/1+zx VI+y+ V14|

|\/1+y—\/1+x|:‘
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Setting

o molie) =P ) | () = (P (b))
' iy (o) CT My (o)

we obtain by (3.27) z,y = O(1/|v|) as |v| — co. Now, the above estimates imply

with the abbreviations x and y for all v € I'§

_17

ly — x| 116 — aelliso s 1
Uy (b)) — U (ar)| = < - 2 < by — aglieo(reys
where we chose 0 > 0 (respecting the above choices) sufficiently small such that
both v/1+x > 1/2 and /1 + y > 1/2 (still uniformly in a;, b; € U). We obtain

1
[We(be) — We(ar)[lieors) < §||bt — aglliee(ry), (3.54)

which shows that W, is contractive since all estimates were uniform in a;,b; € U.
Therefore, by Banach’s Fixed Point Theorem, W, has for each t € [0,27)® a
unique fixed point a; in U. Together with Theorem [3.2.4] this yields

ml,(uo) = ﬁl,j<ut -+ Ut) + ry(ut + Ut>,

for all v € I'} and for all ¢ € [0,27)> where v, is defined analogously to (3.11)),
i.e. vy = P7Y((1+4 ay)i;) — us (here, a; denotes the fixed point, whereas in (3.11]),
a; € U was still arbitrary).

3.3 The asymptotic isospectral set

In this section, we want to state a homeomorphism [ between the asymptotic
model isospectral set Isos(ug) (3.4) and the asymptotic isospectral set Isos(ug)
(3.3)), where ug € L*(F) is a given real-valued potential. We define the map I as
follows:

I : Isos(ug) — Isos(uo),  (iiy)vers — (@ - (14 a,))pers = - (1 + a).
(3.55)

Let’s explain this definition more precisely: Let (i, ),er: € fwg(uo) be given.
Then, for each pair of indices {v, —v} with v € I}, there is a flow parameter

t =t, € [0,2m) such that for all v € T'; (cf. (3.7), (3.8)

(U, 1) = ("tg,, e " ig_,) = (0, i1;").
In this sense, we may write (u,),ers = (Uf)yers =: Uy with some ¢ € [0,27)>,
Inserting this model flow @, into (3.12)), we get a map W, which has a unique
fixed point a; = (aty)uerg =: (az,),,epg due to Theorem [3.2.8, This yields the
image (a, - (1+ a,,))l,epg of (a,,),,epg by the map [ E In the following lemma, we

14To be more precise, one could decorate (3.55)) with the parameter ¢ in order that it becomes
clearer where the fixed point (Cl,/),/er‘g comes from.
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prove that the map [ is bijective.
Lemma 3.3.1. The map I : Is05(ug) —> Isos(uo) is bijective.

Proof. We prove at first that I is one-to-one. To this, let @,0 € l'Na)g(ug) with
@ # 0. Then there are multi-parameters ¢,¢ € [0,27)>™ with @ = (tf )yers and
0 = (Uf)yer;. Since 4 # v, there is a v € 'y with @} # 7 (with corresponding
parameters in [0,27)). This implies arg(uy) # arg(uy) E due to [ay| = [@Z| by
definition of the model flows. Since the corresponding fixed points a; and a; (cf.
Theorem are real due to Theorem we thus obtain

arg(uy - (1+a)) = arg(uy) # arg(uf) = arg(uf - (1 + a¥)),

in particular a; - (1+ay) # ¢ - (1 +af). Thus I(a) # 1(9). This shows that I is
one-to-one.

We now prove that I is onto. To this, let w € Isos(ug). As usual, we write
W = (W,)yer;. Consider an arbitrary v € I';. Set t := arg(w,) € [0,27). In
Theorem we have proved that the map ¥, has a unique fixed point a; in
the ball U. Again by Theorem this assertion is equivalent to saying that
there exists a unique a;, € U such that with ¥, := @, - a; and

my(ug) = my,(us +v;) forallv € Iy

holds, in particular for our v fixed above. In other words, the perturbation flow v,
is locally unique, i.e. unique for a; € U provided that the ansatz (3.10) is fulfilled.
More precisely, to the closed ball U (in Theorem , there corresponds a ball
U, C C centered at 0 € C with radius not larger than the radius of U (in the [°°-
norm). Denote this radius of U by R > 0. Consider the segment S, in C defined
by the intersection of U, with the half-line starting at 0 and going through .
The uniqueness of the fixed point of ¥, in U now states that there exists a unique
a; € U fulfilling the fixed point condition such that a - % €S, forall v e T3,
We now have to see that, by choosing 6 > 0 sufficiently small, we can ensure that
for every @ € Isos(up), there holds

i, € Ann, == {e"” -y, - (1+a,) : a, ER,|a,| <R, s€[0,2r)}  (3.56)

for all v € I'} (with R > 0 the radius of U as mentioned above). That is, every
component w, of our given w € Isos(ug) shall lie in the annulus Ann,. If we
have proved this, we are done since elements of sos(ug) whose components are
contained in the annuli Ann,, v € I}, lie in the image of I by the preceding
argument of the uniqueness of the considered fixed point.

5For the argument function which is generally multi-valued (i.e. only unique mod 27), we
choose that branch such that arg takes values in [0, 27). This makes arg unique.
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To prove ([3.56)), recall at first that due to (3.17)), we have for real-valued u €

L2(F)
i (1+0(8)- (0 (2)

as |v| — oo. Solving this equation for |a,|, and replacing m,(u) by m,(ug),

my (ug

we get by m, (uo)é|v]? = mu(uO§|a07V|2 the following estimate for the elements

(U )vers € Iso5(u):

o = vt (140 (1)) = /2o, (10 (1)) -

|v my, (ug)

1
= |t - (1 +0 (—)) , as |v| = oo, (3.57)

||

where in the last step, we used (compare also (3.26)). In other words:
Choosing § sufficiently small ensures that the v'* component of any element in
Isos(up) lies in a sufficiently small annulus neighbourhood of the circle centered
at 0 € C with radius |tg,|. This annulus neighbourhood is just determined by
the error term 1+ O(1/|v]) in (3.57). Hence, by choosing 6 > 0 sufficiently small,
we obtain w, € Ann,. This holds for all v € I';. Due to the uniqueness of the
fixed point explained above, we now obtain w, = @}(1 + af). This holds for
arbitrary v € I';. This proves that [ is onto. ]

We now prove that .f;05(u0) is homeomorphic to Isos(ug).

Theorem 3.3.2. The map I : IAS/O(;(UO) — Isos(ug) is a homeomorphism.

Proof. We have to show that both I and its inverse I~! (which exists due to

Lemma [3.3.1)) are continuous. Since .go(;(uo) and Isos(ug) are by definition sub-
sets of I3(I'}), we endow them with the relative topology induced by the topology
of 13(T'%). As to the continuity of I, we have to show

Vﬁemé(%) V€>0 37]>0 vf)emg(uo) . ||I(12) - I(f))”ﬂ < €. (358)

llo—all2<n

To this, we show that the fixed point a appearing in the map I (3.55) depends
continuously on %. We write a = a(@) in I(@) = @ - (1 + a(u)) to emphasize this
dependence. Therefore, we rewrite the map ¥ = ¥, (3.12)) as

U : Isos(ug) x U = U,  W(it,a) :=

1 \/mxuo) —r(P(L+ i)

fﬁy(UQ)

vel's



100 CHAPTER 3. THE ISOSPECTRAL PROBLEM I: ASYMPTOTICS

where this time, ¢ is suppressed. In Lemma we proved that u — r,(u) is
holomorphic. In particular, this map is continuous. Together with the decreasing
behaviour of r, (cf. (3.17)) and the continuity of the maps P~! and

Isos(ug) x U — 2(T%), (i, a) — @ - (1 +a)

(continuity immediately follows from .
[a(1+a) =o(1+0) Iz < [[a—=5[|z+||alle [l =0l + 2]l la=blli, @, 0 € Is05(uo),
a,b € U), this implies that ¥ is continuous. In particular, for @ € Isos(ug) fixed,
the map W(a, ) is Lipschitz continuous (cf. Theorem [3.2.8)). We now show that
the fixed point a(@) continuously depends on @. To this, let @ € Isos(uo) and
let € > 0. Since V(-,a(w)) is continuous, there exists an 7 > 0 such that for all
w e INSO(;(uO) with ||@ — w||;2 < 7, there holds
€

1 (@, a(@)) = (@, a(@))[li= < 5.

We therefore obtain together with the property that for all w € .god(uo), the
map U (w,) is contractive with Lipschitz constant 1 (cf. (B.54)), that for all

w e INSO(;(uO) with ||@ — ||,z <, there holds

la(@) = a(w)[lie = [[¥(@, a(@)) = U(@, ()]l <
< [ ¥(@, a(@)) — W(w, a(@))|lie + [[¥ (@, a(@) — U(w, a())l|i <
1

2

< ‘ +
2
Hence, ||a(@t) — a(w)||;~ < €. This proves that

a(@) = a(@)]li-

a: IA;‘O(;(uo) — U, w+— a(w).

is continuous. .

Now, let again @ € Isos(ug) and € > 0. Choose n < ¢/3 small enough such that
]|z - [|a(it) — a(®)|;e < €/2 for all & € Isos(ug) with || — @2 < 5. This is
possible due to the just proved continuity of a — a(a). Now, let 0 € I/Vso(;(uo)
with ||0 — 4|2 < n. We may assume that ||a(?)]/;= < 1/2 (otherwise choose the
ball U in Theorem [3.2.8 smaller which maybe requires choosing ¢ > 0 suitably
smallet@. Then we obtain

V(@) = 1)l = Il (1 + (@) — 5+ (1 + a(@) e <
< @ = ofle + o - a(@) =@ - a(@)le + @ - a(@) =0 - a(0)[|e <
< Jla = 0llz + |Jallz - f|a(@) = a(@)llix + [|a(@)]ix - [[@ = 0]z < e
——r S——

-

<n <e/2 <1/2 <n

6Note that, as also mentioned a few times before in a similar context (for example in the
proof of Theorem where we assured that ¥, maps U into U), that this choice of ¢ is
admissible and only depends on the initial potential wu.
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This proves (3.58). The inverse map I~! is given by

||

I': Isos(ug) — fvwg(uo), w —> (£|ﬂ0,u|)
vel's

since for @ = (1, ),ers € I505(ug), we have due to |t | = |U| , v €T3 (cf. (3.8)),

_ . u, - (1+a,) . Uy, . 5
(1(a) = ((—)||u ) _ (W'“ ) _u
veT; v ver;

|, - (1 + a,)

Clearly, this map [~! is only well-defined for g, # 0 (which implies w, =
Uy, - (1 4+ a,) # 0 by definition of I), v € I';. If we want to prove continuity, we
may assume without loss of generality that 4, # 0 and thus w, # 0 holds for
all v € I'}, (w,), € Isos(ug) (otherwise consider the corresponding subsequence
indexed by all v € I'} fulfilling o, # 0) by the same reasons as we excluded the
case m,(ug) = 0 by considering the map (3.12)) (see the discussion after (3.12)))
since I maps components of @ which are equal to zero trivially to components
equal to zero.

To begin with, we note that for all v,w € C\ {0}, there holds

w v lw — |

'___

jwl ]

= <2

(3.59)

_ ‘w!v! —vlwl| _ 'w(!v| — |w]) + |wl|(w = v)

[o]fw [ol|w] [l

Now let 0 € Isos(ug) and € > 0 be given. Since 37, ,-, [lo.[* — 0 as n — oo,
there is a 0 < 0; < 0 such that HfLoH?Q(Fg y < €/8. Because I'; \ I';, has only
1

finitely many elements, the number m := min{|v,| : v € I'; \ I'; } > 0 is well-

defined. Now choose 7 := W > (), where we use the natural conven-
o2y )
1

2 (which is a finite sum) for the respective

tion [[dolErprs ) = Luerprs, [ty

term in the denominator. Then for all @ € I'so5(ug) with || — [[;2(rz) <, there
holds

174 @) = T @) gy = 177 ) = T @) g,y + 17 00) = T @)y, <

2

2
83 @, — | 2 wy (0 2
< 2 sup ————— - ||t apey + osup |— — —| || L <
( VGFE\Fgl |UV| || |h2(F5\F51) ver;, |1Uy| |UV| || |h2(F51)
<(1+1)2=4
4ﬁ2 -2 € €2 62 9
< W”uO”l?(rg\rgl) + 4§ =3 + 5 =

hence [|[I7'(w) — I71(9)|li2rxy < €. This proves the continuity of /=" and the
theorem is proved. O



Chapter 4

The 1sospectral problem 11: The
solution

In this chapter, we want to determine the isospectral set /so(ug) for a given real-
valued potential ug € L?(F') with the help of the moduli in an analogous way as
we already did in Chapter [3| when we determined the asymptotical isospectral set
Isos(up). An a priori manifest way to define Iso(ug) would be

{u € L*(F), ureal-valued : m(u) = m(ug)}.

This definition, however, has some shortcoming: Whereas in the asymptotic part
of the Fermi curve F'(ug), there exists a well-defined enumeration of the moduli
(my(u))ver; (with 0 > 0 as in Chapter |3) by the enumeration of the A-cycles in
the excluded domains indexed by v € I'§, in the compact part, however, there
doesn’t exist such a natural enumeration of the moduli m,(u) for v € I'" \ I'}.
Hence, it is not clear which one of the m,(u) we mean when we speak of the
v*" modulus. The reason for this problem is that we don’t have those excluded
domains suggesting a natural enumeration of the A-cycles in the compact part
of the Fermi curve as we have in the asymptotic part. The question is how to
find a suitable enumeration of the first finitely many moduli. We proceed as
follows: For ug, we can just choose an arbitrary but fixed enumeration of the first
finitely many moduli. As long as we consider potentials u € L*(F) such that
the associated Fermi curve F'(u) is only a slight deformation of the initial curve
F(up), the A-cycles of F'(u) are only slight deformations of the A-cycles of F'(ug)
as well such that we can assign the v A-cycle of F'(u) to the v*" A-cycle of F(uy)
for v € I'™*\ I'j. In other words, the chosen enumeration of the first finitely many
moduli of F(ug) carries over to the enumeration of the first finitely many moduli
of F(u) provided that F(u) C T, where T C C? is a sufficiently small tubular
neighbourhood of F'(ug) only depending on wy. The following definition of the
isospectral set is thus appropriate and well-defined:

Iso(ug) == {u € L*(F), u real-valued : m(u) = m(ug) and F(u) C T}. (4.1)

102
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Later, when we show the equivalence m(u) = m(uy) <= F(u) = F(uy) and
thus determine the isospectral set Isop(ug) = {u € L*(F), u real-valued
F(u) = F(up)} we are actually interested in, the additional requirement F'(u) C
T will turn out to be redundant anyway and can be dropped since F(ug) C T
is always fulfilled by definition. As long as we haven’t proved this, however, the
definition is the appropriate one in order to guarantee the well-definition of
the appearing moduli. Whenever, in the sequel, we will use the moduli m(u), we
tacitly remember that m(u) is only well-defined for potentials u with F'(u) C T
without always explicitly mentioning it.

4.1 Submersion properties of the moduli

The first aim of this section is to show that for given ug € L*(F) and associated
Fermi curve X := F(u), there exist for every N € N holomorphic 1-forms w; on
X, 7€TI™,0<|j| <N such that

/ w; = 6i; fori,j € T*,0 < |il,|j] < V. (4.2)
A;
In other words, we want to construct a "partial basis" of 1-forms which is dual to
the A-cycles as it has also been done by FELDMANN, KNORRER, TRUBOWITZ
in the first chapter of [5], for instance. In contrast to [5], we don’t require further
properties of X as it has been done in [5, Theorem 1.17, Theorem 3.8]. On the
other hand, we don’t construct a complete basis since shall only hold for
finitely many 7,5 € T'*. As in [5], we assume from now on that X is smooth,
i.e. X has no singularities. In the following propositions, this will be explicitly
mentioned by formulations like "let u € L?(F) with smooth Fermi curve".

The second and main goal of this section is to derive with the help of cer-
tain submersion properties of the moduli both in the case of complex-valued
Schrodinger potentials and in the case of real-valued Schrédinger potentials,
i.e. we will prove that the derivative of the moduli is onto in the respective
cases.

To begin with, we make an excursion to Fermi curves of periodic Dirac opera-
tors. The reason for considering this more general setting will become clear in
the subsequent investigations. One important tool will be the equation (4.20)
where the total residue of some differential form is related to some symplectic
form Q that will be defined in (4.19). Restricting  to Schrddinger potentials,
Q) turns out to be useless since {2 = 0 in that case. This is one aspect which
justifies the following investigations of the more general Dirac equation. We shall
see that the Schrédinger equation is just a special case of the Dirac equation
and that the results obtained in the Dirac case imply the desired results in the
Schrodinger case. We start with some notations and facts based on the work [27]
by M. SCHMIDT.
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Let V,W € L*(F) and let &, & € I'* be two generators of the dual lattice I'*. For
p1,p2 € C, we define the Dirac operator by (cf. [27) p. 42])

_ pam(ka—ik1)=0 W
D(V7 W pl) = KZ;/“ﬂ p171'(7%2211i‘7%11)+8 (43)
Ro+ik1 Ro+1R1

with the Wirtinger operators 8 := 1 (0,, — i0,,) and 0 = 1 (0y, +i0,,). The
Fermi curve F(V, W) can then be defined as

F(V,W) :={k = p1i + poi € C*| — porr is an eigenvalue of ZND(V,VV,pl)}.

In the following, there might appear both coordinates k = (ki,ks) € C? and
(p1,p2) € C? in one equation. Even if it’s not always explicitly mentioned, the
crucial relation they satisfy is always k = p1k + pok.

In the Dirac case, the moduli can be defined in the same way as in Definition

2.6.1] by

my(V, W) = —167T3/ k’ldk'g,
Au

where the contour integral is taken again over the " cycle A, of the Fermi curve
F(V,W).

The above Dirac operator (4.3)) is actually some modified Dirac operator. For the
original Dirac operator, we have in fact completely analogously to the Schrodinger
case discussed in Section two possibilities of definition depending on the point
of view: We can either consider the boundary condition k& € C? already included
in the operator with corresponding periodic eigenfunctions (compare Ay and
(1.11))) or we can consider the operator without boundary condition where the
parameter k& € C? then appears in the quasi-periodicity of the eigenfunctions
(compare ([1.1)) and in the Schrodinger case). We now define (cf. [27, p. 15,
p. 17]) analogously to the Laplace operators A and Ay

DV, W) = ( vl ) DW= ( o ) (1.4)

with 0 := 0 + mik, + 7ky and Oy := 0 + miky — 7ky as in [13, p. 79]. Let

Up(z) = exp(2mi (k,2)), ke C*xcR (4.5)

As in the Schrodinger case, one _can easily check that zz is an eigenfunction of
Dy (V, W) if and only if ¢ = ¢4 is a (quasi-periodic) eigenfunction of D(V, W)
fulfilling ¢ (z + ) = e>™* My (z) (for v € I',x € R?), each with eigenvalue zero.
Furthermore, {ﬂv is an eigenfunction of E(V,W',pl) with eigenvalue —mp, if and
only if ¢ is an eigenfunction of Dy (V,W) with eigenvalue zero, where k and



4.1. SUBMERSION PROPERTIES OF THE MODULI 105

p = (p1,p2) are related by k = pii + pok. The latter statement immediately
follows from the equivalences

(plﬂ'(fig — Zl%l) + ng(/%g — Zl%1> — 5) 121 + W@ZQ =0 «— —5,@1;1 + WIZQ =0
and
(pr7(fa + ifey) + Tpa(Fz + i) + 0) b + Vihy = 0 <= Gty + Vihy = 0,

where we used mwi(ky £ iky) = wipi (k1 £ iRko) + mipa(R1 £ iRs).

This motivates the above definition F(V, W) if we compare it to the definition
of F(u) for Schrodinger potentials in Section In the following lemma, we
see in which sense Schrodinger potentials are a special case of Dirac potentials
where we use the operator Dy(V, W) in . For all subsequent considerations,
however, we will mostly use the (modified) operator D(V, W, p;) since it will turn
out to be the appropriate operator for our purposes.

Lemma 4.1.1. For u € L*(F), there hold{]

Fluy=F(1,7*) = F (34,1).

4 4
In particular, m,(u) = m, (1, _T“) =m, (_T“, 1) for all v € T*.
Proof. Setting (V,W) := (1, ), we have with (L.11)) and (4.4) the equivalences

Loa ) () _ Y1+ Ou =0 ) _
(-4 ‘—“)(w2)_0<:>{—5kwl—gw2=o A

4

This shows F(u) = F (1,5%). The case (V,W) := (5%,1) is considered com-

1
pletely analogously. Finally, m,(u) = m, (1, ’T“) = m, (’T“,l) follows for all
v € ' since by definition of the moduli, equal Fermi curves have equal mod-
uli. O

In [27, Lemma 3.2, p. 60|, the following assertion has been shown (its proof can
be found in Lemma in the Appendix [A] of this work): Given a meromorphic
function g with finitely many poles on some open subset of F'(V,W)/T™*, there
exist a meromorphic function A;mg (the meaning of the superscript sing which
stands for singular will soon get clear) mapping from the complex plane p; € C
into the bounded operators from the Banach spaces LP(F) x LP(F) into L? (F) x
LY (F) (for all 1 < p' < p < 00) as well as unique functions v,, w, € L?(F) such

'We implicitly use the self-explanatory convention that F(u) with one argument u signifies
the Fermi curve of the Schrodinger potential u, whereas F(V, W) with two arguments V' and
W signifies the Fermi curve of the Dirac potential (V, W).
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that the commutator [A;i”g (p1), D(V, W, p1)] does not depend on p; and is equal
to

4500, BV = (o 77 ). (4.6)

Ro+iRk1

Now let an A-cycle A,, v € I'*\ {0}, be given. In local coordinates, the inter-
section of some small neighbourhood of A, in C? with the Fermi curve can be
represented as an annular domain in C. We denote the image of A, in this local
coordinates by flu, i.e. A, can be considered as a circle in this annular domain
(by choosing the local coordinate appropriately). If in the following, we consider
objects (sets, functions,...) both on the Fermi curve and in local coordinates, we
will sometimes (whenever it helps to avoid confusions) use the hat symbol ~ in
order to point out that the respective object is considered in local coordinates.
For 2y € fl,,, we define a meromorphic function gz, on this annular domain by
gz (2) == 2_120. Let g., be the respective function on the Fermi curve. In order
that g,, is not only meromorphic in a neighbourhood in F(V, W) but also in
F(V,W)/T*, we simply define g, := g., on the corresponding neighbourhood
shifted by x € I'*. Since these shifted neighbourhoods by dual lattice vectors are
pairwise disjoint, we don’t have any problems concerning well-definition.

So far, for each v € I'*\ {0} and for 29 € A, | the function g,, is only de-
fined in a neighbourhood U, of A,. Taking the union of these neighbourhoods
UVEF*\{O} U,, we would like to extend g, onto this union. Since we can choose the

neighbourhoods U, pairwise disjoint, we can define for zy € A, and x € I'* \ {0}

gzo(z) = (Sm,ugzoa YA Um (47)

again without having any problems of well-definition. In the sequel, we write g,,
instead of g,, since we will use this extension of g,, from now on. We now define
the L?(F)-potentials

v(A) = /A,, vg.dz, w(A,) = /AV wg, dz (4.8)

(with v,, w, for a meromorphic function g as defined in (4.6))). In a first step, we
want to prove that for |[v| < N, N € N, these functions are linearly independent.

Lemma 4.1.2. Let u € L*(F) and (V,W) := (1, 5%) with smooth Fermi curve
F(V,W)/T*. Then for all N € N, the potentials (v(A,),w(A,)), 0 < |v]| <
N, defined in (associated to F(V,W)/T*), are in L*(F) x L*(F) linearly
independent over C.

2By slight abuse of notation, we write for simplicity zo € A, instead of the correct notation
20 € supp(4,).
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Remark. As we will see, the major part of the proof also holds for arbitrary
potentials (V, W) € L*(F) x L*(F). There is only one part in the proof, where
we use the asymptotics for Fermi curves, more precisely the trisection of Fermi
curves and the asymptotic freeness, cf. the end of Section which have been
shown only for Fermi curves F'(u) associated to Schrodinger potentials u € L*(F)
and not in the general Dirac case. This is the only reason why we consider
(VW) = (1,7*) or (V,W) := (7,1). Since later, we will go back to Schrédinger
potentials anyway, this is not a grave restriction.

Proof. Let X := F(V,W)/T"* be smooth. Let N € N, ¢, € C, 0 < |v| < N and

set
Z CV(U(AV)7w(AV)) = O
0<|v|<N
We have to show that ¢, = 0 for all 0 < || < N. By and the bilinearity of
the commutator, we get for any p; € C

> [ Az, DV-W| = (39). (4.9)

O<|v|<N

Note that g, clearly depends on v. In order not to make the notation too com-
plicated, the index v is suppressed here. Before we can continue, we have to take
a look into the proof of |27, Lemma 3.2., p. 60] (or equivalently, cf. the proof of
Lemma in the Appendix in order to see how Azmg (with meromorphic
g as mentioned above) is defined: To this, we introduce the projector P which
maps functions in L?(F) x L?(F) to eigenfunctions of the Dirac operator as
follows: For k € X, we have (up to multiplication with a scalar) unique eigen-
functions (k) of D(V, W) and ¢(k) of the transposed operator DT (V, W),
respectively (cf. [27, p. 32]). The operator P(k) : L?(F)x L*(F) — L*(F)x L*(F)
is then defined by (cf. [27, p. 41])
{@([K]), ¥rx))

with ¢, again as in (4.5)). The bracket [k] is defined as the equivalence class
k] :== {k + v|v € I'"}. Furthermore, the bilinear form ((-,-)) is not the usual
euclidean bilinear form on L*(F) x L*(F) (as in [27, p. 29]), but some modified
bilinear form defined by

(6, 0)) = (Ba, 0r) + (1, o) = / (62(2)n(2) + 61 (2)oa(2)) P, (411)

cf. [27, p. 36] F] All we need to know is that with this modified bilinear form,

3Actually, in [27, p. 36], one defines for v = (3;) € C? the bilinear form ((¢,v)), :=

(71 + i72) (b2, 1) + (71 — iv2) (é1,12). Since in the proof of |27, Lemma 3.2|, this v serves
as one of the two generators of I', we can choose without restriction v = ((1)) for one of the
generators by a suitable choice of the coordinate system.
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P(k) is the suitable spectral projector for the modified Dirac operator (4.3))
(for deeper background information, we refer the reader to [27]). More precisely,
the essential property we need is the following: If we consider X locally as a
(say m-sheeted) covering space over p; € C, i.e. n points pa1,...,pa, lie over
p1 with respect to this covering, we have with k; := p1Rk + pok, 1 = 1,...,n,
the projector property P(kl){/;(k‘]) = 5i7sz(kj), where the function J(k‘]) is the
eigenfunction of lN)(V, W, p1) with eigenvalue —7p, ;. This implies that for k € X,
we have F(py)i(k) = g(k) - ¥(k), where p; — F(p;) denotes (as in the beginning
of the proof of [27, Lemma 3.2]) the local sum of g-P over all sheets of X. Hence,
F(p1) and D(V, W, p;) have the same eigenfunction (k).

Now, we want to see how eigenfunctions transform if % is shifted by some v € I'™*
to k + v. At first recall that, as already mentioned, ¥ (k) = ¥_xu(k) is an
eigenfunction of with eigenvalue —7py if and only if ¢ (k) is an eigenfunction
of D(V,W) (4.4) with eigenvalue zero with the relation k = p;i+poi. As already
discussed in Section , not both ¢ and 1; can be periodic in € R? with respect
to I'. As the definition of P already suggests, we are in the following setting: ¢, ¢
are quasiperiodic in x € R? with respect to I and periodic in & with respect to I
(this explains why ¢, are functions of equivalence classes [k]), whereas v, ¢ are
periodic in z € R? with respect to I, cf. Section or as well |27, Fundamental
domain 2.1, Trivialization 2.2, p. 15 f.]. For n = (ny,ny) € Z?, we thus have with
k(n) ==k + mk + nok

(((1k]), xR ))
oD, (D))

Therefore, 1y, i n,rt (k) is thl eigenfunction of P(k(n)) with eigenvalue 1. This
implies the quasiperiodic condition in k£ with respect to I'*:

¢(k(n)) = w—nu%—nzk@z(k)'

Together with F(py)i(k) = g(k) - ¥(k), we get

F(p: + nl)Yﬂ—nm—nszZ(k) = g(k(n))w,m,%,nmi(k)

P(k(n))(V—nanaith () = Doy ¥(k) = Y nimnpi (k).

and hence

<¢H1R+H2RF<p1 + nl)w*m%*mk)(lb(k’)) = g(k(n»d}(k)
Thus, the operator defined by

1) = Z ¢n1%+n2kF(p1 + n1)¢—n1k—n2k

nez?

4If we sometimes speak of the eigenfunction (which suggests uniqueness), we always mean
uniqueness up to multiplication with a scalar.
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has the eigenvalue ) _,»g(k(n)) with eigenfunction (k). Note that so far,
the appearing series over n € Z? are only formal series; we haven’t made any
considerations about their convergence, yet. Now, choose for A, and z € A, the
function g, (the dependence on v is suppressed as before) as in the definition of
([4.8), defined in aneighbourhood of A,. We then define analogously to ([4.8)

A (p1) = / A,.(pr)d=.

Thus, > 5. 1<n ¢vAa, (p1) has the eigenvalue 371y ¢ D2z [y 9:(k(n))dz

with eigenfunction ¢(k). Now, we can define the operator A3™9(p;) we are actu-
ally interested in: To this, let F*" be the singular part of the (in p;) meromorphic
operator F in its Laurent expansion. Then, F*™9 is meromorphic in the entire

plane C. We now define (cf. [27, p. 60] or Lemma [A.1])

A;ing (pl) = Z wn1l%+n2szmg (pl + nl)l/}_nl'%_ny%

nez?

which is meromorphic in the entire plane p; € C as well (in contrast to A, which
is not necessarily globally defined). The convergence of this series (in the strong
operator topology) has been proved in [27, Lemma 3.2(i)] and can also be retraced
in Lemma in the Appendix [A] of this work. Analogously to Ay, , we define

A58 () = / AT () dz. (4.12)

v

With this notation, (4.9) reads as

0<|v|<N

This yields

D(V,W,p1) Z CUAZ:g(Pl) 2Z(k): Z CuAixifg(Pl) 5(‘/7“/,201)7;(]{):

0<|v|[<N 0<|v|<N

=—mpa | D AN (py) | (k).
0<|v|<N
Consequently, >, < cVAfjfg(pl)@Z(k) is an eigenfunction of D(V, W, p;) with

eigenvalue —mp,. Since the eigenfunctions of ﬁ(V, W, p1) are (except for isolated
points) unique up to multiplication with a scalar, ZO<\V\§N ey A% (p1)Y(k) is in
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the span of ¥)(k). In other words, 1(k) is an eigenfunction of D 0<ly|<N cl,Afjfg (p1)-
We denote the corresponding eigenvalue by fying(k), i.e.

ST AT ) | D) = Fung(WOR).

0<|v|<N

To sum up, Zo<\u|§N cl,Aiffg(pl) and 15(1/, W, p1) share the same eigenfunction
U (k). Since > o<lyj<n cvAa, (p1) also has the eigenfunction ¥(k) as shown above,
the operator 35,1y A% (p1) with A% (p1) = A, (p1) — A% (py) has the

eigenfunction ¥ (k), too. Summing up, with

fky:== > e ). / g-(k(n))dz, (4.13)

0<|v|<N  nezZ2

we get

ST oA ) | bk = D alAa(pr) — AL (p))(k) =

O<|v|<N 0<|v|<N

| X X [ atktnaz— X adflon | 506 = (70) — fuaR)D0),

0<|v|<N  neZz? 0<|v|<N

where fho(k) == f(k)— fsng(k) denotes the corresponding eigenvalue of the oper-
ator 3 o 1< e, AR (p1). We owe the proof of the convergence of the appearing

series over n € Z*. The crucial terms we have to consider are Ay, (p1), Afﬁg(plL
Al (py), f(k). Tt suffices to prove convergence of Ay, (p1) and f(k) since the
convergence of A (p;) follows from the convergence of A4, (p1) (to be proved)
and A%"(p1) (follows from the convergence of A9 (py) proved in [27, Lemma
6.2(1)] or Lemma [A.1] respectively).

As to the convergence of Ay, (p1), we see that this term is defined by integration
over a fixed cycle A,. This cycle is one element of the homology basis of the Fermi
curve X. The summands in the infinite sum over n € Z? are exactly the shifts of
the respective argument k by dual lattice vectors to k(n) = k+nik + nqi, where
n = (n1,n9) runs through Z?. Since we integrate over exactly one cycle A, (and
not over infinitely many cycles {A, + k| x € ['*} which we would have to do if we
considered F'(V, W) instead of F(V,W)/T*), all but one of the arguments k(n)
are outside of the cycle A,, i.e. A, has winding number zero with respect to k(n)
for all but one n € Z? (recall the definition of g., namely g:() := =L in local
coordinates). Therefore, all summands but one vanish so that the infinite sum
over n € Z?* has in fact only one summand.

As to the convergence of f(k), we can argue completely analogously with the only
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difference that we don’t integrate over only one fixed cycle A, but over finitely
many cycles A,, 0 < |v| < N. This proves the convergence of the considered
terms. The terms fyng(k) and fro(k) are, by the way, well-defined due to the
well-definition of A% (p;) and A% (p;), respectively.

After having justified the convergence of the sums, we go back to the actual proof.
If we cut X along the cycles A,, 0 < |v| < N, we get a complex curve with bound-
ary denoted by X , where each cycle A, decomposes into two boundary curves de-
noted by A} and A7 . Since v is a global meromorphic eigenfunction of D(-, V, W)
on X and 31, 1<n ¢, A% (p1) is defined on almost the entire plane p; € C (ex-
cept for those p; € {p1 € C: Ik € (A))o<pj<n Ip2 € C such that k = p1A+pai}),
the corresponding eigenvalue function fg;,, is a global meromorphlc function on
X. Note that neither f nor fr, need to be global functions on X. Furthermore,
fsing 1s in general not continuously extendable onto X as we shall see now. Let
0 < |v| < N. In local coordinates k — z(k) in a neighbourhood of A,, we can as-
sume without restriction that A, is parameterized by the unit circle {z : |z] = 1}
with sufficiently smooth parameterization z : [0,1] — C, ¢ — z(t). This yields
with the definition of g,

- 1 . B 1 0, if |z(k)[ > 1,
/ng(k)dz /0 9=t (2(k))2(t)dt = /z|1 2(k) — S = {_2m', if [2(k)| < 1.
(4.14)

In particular, fA g.(k)dz = 0 for k € U, with k # v, again by the definition of
Gz, cf. ([47). Let the circle {z : |z| = 1} considered as the (inner) boundary
of {z :]z| > 1} be A} in local coordinates and let {z : |z| = 1} considered
as the (outer) boundary of {2 : |2| < 1} be A; in local coordinates’] With this
convention, for given kT € A} and k= € A, there holds f(k) = 0 for all k in some
neighbourhood of ¥ in X and f(k) = —2mic, for all k in some neighbourhood
of k= in X (cf. and the fact discussed above that only one element in
{k(n)|n € Z*} lies within the circle of A,). Since A, and A} are compact, we
get f = 0 in a neighbourhood of A in X and f = —2mic, in a neighbourhood
of A, in X. Consequently, df = 0 in both of these neighbourhoods.

As to the function f,,;, we don’t have a discontinuity as in since there aren’t
any singularities on the path of integration if we integrate Ay (p1)—A5"(p;) along
z € A,. Hence, the integral remains well-defined even if k& (corresponding to p;
in the usual relation) lies in A,. Consequently, [y, a4 =

The next step is to prove that fgn, = 0 on X (and consequently extendable to
zero onto X). To this, we will show at first that dfs;,,, = 0 on X by showing that
the norm ||dfn,|| 5 is equal to zero, where we define for a meromorphic 1-form A

50f course, one could also interchange A and A, . Which one of these two circles is denoted
by AT and which one by A} is eventually immaterial for the following arguments.
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on X the norm A% = [ A A X with %X = —i) H (for details, see [5 T.1], in
particular |5, Remark 1.14]).

We calculate at first the following integral (which will appear later again when
computing the norm ||dfsgl 5): For 0 < |v| < N, we have

/+ fsing : *dfsing - fsing : *dfsing =
AY

Ay

df'A:VZO N \/A+(f - fhol) ' %—{— /A— (f B thl) ' *dthl -

= —/ o *dfpo +/ [ kdfpo +/ Thot - *¥dfnol —/ Jhot * ¥dfnor =
AF = a7 =~ Jai 47 )

=—2micy

=0

df | 4y=0

= —27m'cy/ *dfpor = 27rc,,/ dfsing = 0. (4.15)
Ay Ay

Next, we want to show that for every e¢ > 0, there is an r > 0 such that
\dfsing (k)| < € for all k € X N (C*\ B.(0)) where B,(0) denotes the ball in
C? with center 0 and radius 7. In other words, dfs;,, shall asymptotically tend to
zero. F5"9 obviously fulfills this property since it is defined as the singular part of
the Laurent expansion of some meromorphic function. The same holds for A;mg
and > o <y ¢, A%" (the appearing sum over n € Z? in these terms doesn’t dis-
turb the asymptotic behaviour because of the same reasons as discussed before
when we justified that at most one element in {k(n)|n € Z?} lies within the
circle of a given A,). Since singular parts of Laurent expansions of meromorphic
functions (here in the variable p; € C) are finite linear combinations of terms like
p;j , with finitely many natural numbers j, such a singular part always fulfills the
estimate O(1/|p1|) as |p1| = oo. Now,

[ foing ()] - 1D = [l fsimg BRJDEN = 1| D AR (p1)d ()| <

0<|v|<N

< Y A )l - Il k)],

0<|v|<N

where the appearing norms are the L?(F) x L?(F)-norm and the corresponding
operator norm on L*(F) x L*(F) — L*(F) x L*(F), respectively. Thus, fsing
has the desired asymptotic behaviour. Since fs, is meromorphic on X , this
asymptotic behaviour carries over to dfsn, as claimed above: For every ¢ > 0
there is an r > 0 such that |dfsme(k)| < € for all k € X N (C2\ B,(0)). By the
asymptotic behaviour of the singular part of the Laurent expansion explained

SA priori, it is not clear whether [|A[| ¢ < oo for the considered 1-forms A. In the following,
we will, however, apply the just defined norm of the respective A under consideration to a
compact surface with boundary where ||\|| < oo will be satisfied.
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above, we even get fgn, = O(1/r) and dfsn, = O(1/r*) as r — oo. We now

define a compact curve with boundary denoted by X (r) by intersecting X with
a ball B,.(0) C C?* with sufficiently large » > 0 such that 9B,(0) lies in the
asymptotic part of the Fermi curve. We know due to the asymptotic freeness
that X looks there like two complex planes = C that are connected to each
other by handles (cf. the end of Section [2.1)). The intersection of such a complex
plane with T(O) is bounded by a circle with radius . Without restriction, we
may assume that this circle intersects no excluded domain. Otherwise, consider
B, (0) \ {excluded domains having non-trivial intersection with 0B,.(0)} instead
of B,(0). In any case, the boundary X (r) =: 0X(r)™ U 0X (r)°* consists of

two parts, namely the "inner" cycles A%, 0 < |[v| < N we also considered before
(0X (r)™) and the "outer" boundary X (r)°"* whose length is O(r), as r — oo,
since this boundary consists of two circles with radius r (or a small deviation

from a circle by possibly circumnavigating the mentioned excluded domains) in

the two complex planes. The essential property is that X (r) is compact. We now
get by applying Stokes’ Theorem (cf. [I8, Theorem 9.6], for instance) that for all
€ > 0 there is an ry > 0 such that for all r > rg

desmgHi}(T) = /55( )dfsmg A *dfsing = /y d(fsmg : *dfsing) = /~ fsing : *dfsz’ng =

X(r) X (r)

= Z (/ fsz’ng ' *dfsz'ng - / fsing : *dfsing) + /~ fsing : *dfsing S
) Ay g X (r)out

0<|v|]<N N A

ZO,CE,
_ 1
S M(aX(T>Om) ) ~Sup (|fsing| ’ ’deng - O(T> ' O (_3) = ©
X (r)out "

where (90X (r)°) denotes the measure of 9X (). Hence, ||dfsing| g = 0. Thus
dfsing = 0 and fgny is constant on X. Due to the asymptotic behavior of fgng,
we get fsing = 0 on X. Therefore, f = fry. Due to fhol]A; = fhol’A;L and
flaz = —2mic,, fls =0forall 0 < [v| < N, wegetc, =0forall0 <[y <N
which had to be proved. O

As a side note, we remark that in the above proof, we made use of the assumed
smoothness of the corresponding Fermi curve X in essentially two aspects: Firstly,
we made use of the existence of a local coordinate in a neighbourhood of each
cycle A,, 0 < |v| < N, and secondly, we applied Stokes’ Theorem for compact
smooth manifolds with boundary.

For our next investigations, we have to recap some facts of Fermi curves and their
holomorphic 1-forms in the Dirac setting proved in [27].

The Fermi curve F(V,W)/T'* can locally be described by an equation of the
form R(p,V,W) = 0 with some holomorphic function R (cf. [27, p. 58] and [27,
Theorem 2.3|), where p := (p1, p2). Since this equation holds in a neighbourhood
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of the given (V, W), we obtain by computing the directional derivative of R =
R(p,V,W) in (V,W) in direction of some (dv,dw) € L*(F) x L*(F) (with a dot
denoting the directional derivative with respect to (dv, dw)), cf. [27, p. 58]:

OR OR OR
Rp,V,W)=0= —5 (50,6 L
(p7 ) ) = a(‘/’ W)( v, w) a 1p1 + a 2]92
OB (§v, dw) oRr
= %dpz = —pidps — %mdpz. (4.16)
op1 op1

Here, we briefly have to comment on the well-definition of the appearing direc-
tional derivatives p; and po (an issue which has already been discussed in [27,
p. 58]). A priori, it is not clear in which sense they are well-defined since there is
no unique function (V, W) — (p1(V, W), pa(V,W)). In other words, by varying
for example p; in direction (v, dw), there is no unique py(V + dv, W + dw). We
can circumnavigate this problem if we require either p, = 0 or p; = 0. In the first
case, py = p1(pa, V, W) is well-defined. The same holds for py = pa(p1, V, W) in
the second case. These are only two examples of choices in order to define unique
directional derivatives p; and p,. Which choice we take is eventually immaterial
as long as it is consistent. As we will see in a moment, we won’t deal any longer
with the directional derivatives p; and p, anyway. They appear only here in the
intermediate computations in order to derive the equation (4.18)) we are actually
interested in. In equation (4.18), the terms p; and p, finally won’t appear any-
more.

Let’s continue our computations. For fixed (V, W) € L*(F) x L*(F), we have

oR OR
8_pldp1 + a—2dp2 0,

which implies

o8 dp dp
_ Op2
dp1 = p2 dp2 <<:> <9_R1 = _8_R2> .

(9101 p2 Op1

Plugging this into the equation (4.16)), yields

((52} ow)
d(VWpoQ = —pidps + padp;. (4.17)
op1

From now on, a holomorphic 1-form in the expression of the left hand side of
(4.17) shall be denoted by w(V, W, dv, dw), more precisely

ag(pﬂ(év w)
w(V, W, év, dw) = SRGT) dps. (4.18)

Op1
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With the symplectic form Q : (L*(F) x L*(F))? — C defined by

1
Q((v,w), (v, w')) := 5% F(vw’ —wv')d*z, (4.19)
and with (4.17), we obtain with a meromorphic function g defined in an open
neighbourhood U in F(V,W)/T** by |27, Lemma 3.2(iv)| the relation

Q((dv, 0w), (vg,wy)) = > _resc(g - w(V, W, dv,6w)) (4.20)
ceu

with v,, w, from (4.6). Here, res; denotes the residue at the point ¢. The proof

of the relation (4.20) can also be retraced in Lemma [A.1f(iii) in the Appendix
of this work. With this preliminaries, we can now prove the following theorem.

Theorem 4.1.3. Let u € L*(F) and (V,W) := (1, 5%) with smooth Fermi curve
F(V,W)/T*. Then for all N € N, there exist holomorphic 1-forms w,, |k| < N,
on F(V,W)/T'* such that for all v € T'* with 0 < |v| < N, there holds

/ e = B (4.21)
A,

Furthermore, these w, can be chosen to be of the form (4.18)) with suitable re-
spective directions (dv,0w) € L*(F) x L*(F).

Proof. Let uw € L*(F), (V,W) := (1,5*) with smooth Fermi curve F'(V,W)/T*,
N € N and set

29 =#{rel™:0< |v] < N}.

This notation is motivated by the fact that we have an even number of lattice
vectors v € I'*\ {0}, |v| < N since there corresponds to each v € I'*\ {0},
lv| < N the lattice vector —v satisfying | — v| < N as well. Due to Lemma
the potentials (v(A4,),w(A4,)), 0 < |v| < N generate a complex vector
space of dimension 2g. Let V be the complex vector space generated by the
4g potentials (v(A,), w(A4,)), (w(A4,), —v(A4,)), 0 < |v| < N whose dimension
m := dim¢(V) fulfils 29 < m < 4g. Let b, i = 1...,m, be a basis of V
whose first ¢ elements shall be (v(A,),w(A,)), 0 < |v| < N. We restrict the
symplectic form € onto V and claim that this form Q:V x V — C is still
symplectic. The properties of being bilinear and alternating obviously carry over
to the restriction to V. We have to show that the form is still nondegenerate.
To this, let 0 # (v,w) € V. Then (v, w') := (—w, ) is also a vector in V by
definition of V. We get Q((v/,w’), (v,w)) = 5= [(Jv]* + [w[*)d?z # 0. Hence, Q
is nondegenerate on V and thus symplectic on V. Now define the linear map

F:V—=C" (v,w)— (Qv,w),b))iz1,. m- (4.22)
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We show that ker(F) = {0}. To this, let (v,w) € V with F(v,w) = 0, i.e.
Q((v,w),b;) = 0 for all i = 1,...,m. We assume that (v,w) # 0. Since Q is
nondegenerate, there is a (v/,w') =: >.7" \ib; € V (\; € C) such that

0 # Q((v,w), ( ZAQ v,w),b;) =0,

a contradiction. This proves ker(F') = {0}. Together with dim(V) = m, this
implies that F' is an isomorphism. Consequently, for every 7 = 1,...,m, there
exists a unique (v;,w;) € V such that F(v;,w;) = e;, i.e. Q((v;,w;),b;) = &;;
for all 4,5 = 1,...,m (here, ¢; := (0,...,0,1,0,...,0) € C™ denotes the ;"
canonical unity vector). In particular by the definition of the first 2g vectors
b, ..., ba,, there exist potentials (v, w,) € V such that

Q((ve, wi), (V(A),w(A,))) = 0., forall0 < |kl |v| < N.
Together with (4.20) and the definition of v(A,), w(A,) (4.8), this implies for
0 <[xl, W] <N

B = (010, (A 0(A)) = 2 (00, [ () =
/ Q (Vs W), (v, wy,)) dZ—/ > rese(gs - w(V, W, v, wy))dz =

Ay ceu

= / res, (5 — w(V,VV,v,i,w,.i)k) dz = / w(V, W, v, wy). (4.23)
Ay -z Ay

The theorem is proved. O

Since in the following, we will consider pairs (v, —v), we recall the notation I'* /o
already well-known from Theorem more precisely: v,k € I'* are equivalent
in I'*/o if and only if v = k or v = o(k) = —k. Moreover, we set

I'y/o={vel*/o:0<]|v| <N}
In the foregoing theorem we didn’t make use of the property that (V,W) =

(1,—%) was assumed to be a Schrédinger potential in its full entirety, yet. In-
deed, by using the symmetry of the Fermi curve with respect to the holomorphic
involution o : k — —k, we get a sharper version stating that the first component
dv of the variation (dv, Jw) can be chosen to be equal to zero. This will be proved
in Theorem Before, we prove a lemma that will be needed in the proof of

Theorem A.1.5

Lemma 4.1.4. Let A, B be two closed subsets of L>(F) x L*(F) and denote by
A+ and Bt the orthogonal complements with respect to the symplectic form

(4.19). Then

At + Bt =(AnB)".
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Proof. Let A be an arbitrary closed subset of L?(F) x L*(F). We show at first
that (A1)t = A, where At := {x € L?(F) x L*(F) : Vaea Q(z,a) = 0} denotes
the orthogonal complement with respect to the symplectic form Q (£.19). Let
a € A. Then, by definition of the orthogonal complement, Q(z,a) = 0 for all
r € At. Again, by definition of the orthogonal complement, we get a € (A+)*.
This proves A C (A+)L. Conversely, assume that there is an a € (A1) \ A. Let
U := span{A,a}. Define a bounded linear functional f by

1, ifz=a

fU=R, f(x)::{o ifr e A

This functional f is well-defined since linear maps are already uniquely defined if
they are defined on a basis. Since A is closed, a cannot be in the closure of A due
to a € (A1)t \ A. By Hahn-Banach’s Theorem, cf. [30, Theorem III.1.5], there
exists a bounded linear functional F' : L*(F) x L*(F) — R such that F|y = f.
We remark the relation

(z,y) = 27%1Q (Y2, —11), (21, 72)) for all x = (21, 22),y = (y1,y2) € L*(F) x L*(F)

between the symplectic form and the canonical hermitian scalar product
() == () p2(pyxr2(ry- By Riesz’s Representation Theorem, cf. [4, Satz 2.25],
there is a 2 € L*(F) x L*(F) such that F'(z) = Q(z, 2) for all x € L*(F) x L*(F).
Since by definition, F(z) = f(z) = 0 for all x € A, we have z € AL, Again by
definition of f, we have Q(a,2) = f(a) = 1. Hence, a ¢ (A+)%, a contradiction
to our assumption a € (A+)+. This proves (A1)t = A.

In a next step, we show that for closed A, B C L*(F) x L*(F), there holds

(A+ B)t = Atn Bt (4.24)

Since A C A+ B, we have (A + B)* C A+. Likewise, since B C A + B, we
have (A + B)* C B*. This proves the inclusion "C" in (4.24). Conversely, let
r € At N Bt be given. Hence, Q(z,b) = Q(x,a) =0 for all a € A and all b € B.
By the linearity of €, this implies Q(z,a +b) = 0 for all @« € A and all b € B.
Therefore, z € (A + B)*. This proves (4.24)). This together with (A+)* = A for
all closed subsets A C L?(F) x L*(F) implies for all closed A, B C L*(F) x L*(F)

AL+BL:(AL+BL)LL(AJ_J_HBJ_J_)J_:(AHB)J_.

This proves the lemma. O]

Theorem 4.1.5. Let u € L*(F) and (V,W) := (1, 5%) with smooth Fermi curve

F(V,W)/T*. Then for all N € N, there exist holomorphic 1-forms w,, k € I'y /0o,
on F(V,W)/T'* such that for all v € T with v € I'y /o, there holds

/ W = O 1.
Ay
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Furthermore, these w, can be chosen to be of the form (4.18) with suitable respec-
tive directions (0,0w) € L*(F) x L*(F). In particular, the direction dv in (4.18)

can be chosen to be zero.

Remark. In the Appendix [B] we give an alternative proof of this theorem which
we have found earlier. Since the proof given in the following is, however, much
more elegant, we transferred the former proof into the appendix.

Proof. Let u € L*(F) with (V,W) := (1,5*) be given. The main effort of the
proof will be to show the identity

2, = {w=w(V,W,dv,éw) : (bv,éw) € L*(F) x L*(F) Nwoo =w} =

{w=w(V,W,0,6w) : bw € L*(F)} =: (. (4.25)

Since holomorphic differential forms of the form (4.18)) with v = 0 of Fermi curves
of Schrédinger potentials (1, *) are invariant with respect to the involution o,
it remains to prove the inclusion "C" in (4.25]).

We introduce the following subspaces of L?(F') x L*(F). Let

U := span { (Ug> : ¢ is a meromorphic function on an open subset of F(u)/F*},
Wy

U = span{(:;g) :goa:j:g} cU
g

with v,, w, as defined in (4.6). We call functions g with g = g o o symmetric and
functions g with ¢ = —go o anti-symmetric. For given (v, dw) € L*(F) x L*(F),
due to (4.20), we have the following equivalences for w = w(V, W, dv, ow):

Woo =w <= Z resc(g - w(V, W, v, éw)) = 0 for g anti-symmetric
ceu
<= Q((0v, dw), (vy, wy)) = 0 for g anti-symmetric. (4.26)

Denoting by 2(X) the space of holomorphic 1-forms on X := F(u)/T™*, we con-
sider the map

w: L*(F) x L*(F) = 2(X), (6v,6w) — w(V, W, v, dw). (4.27)

Due to (4.26), the image of (U~)" under w equals (2., where the orthogonal
complement (U~)+ is taken with respect to the symplectic form Q. Hence,
by the isomorphism theorem, we have 2, = (U~)%/kerw. We claim that
Ut = kerw: If (6v,6w) € kerw, then w(V,W,év,éw) = 0. Due to (4.20), this
implies Q((0v, 0w), (vy,wy)) = 0 for all meromorphic functions g in open neigh-
bourhoods of X. Hence, (6v,dw) € UL. Conversely, let (dv,dw) € U+ be given,
ie. Q((0v,6w), (vy, wy)) = 0 for all meromorphic functions g in open neighbour-
hoods of X. Choose g such that it has one pole at some point of X. Due to ,
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w(V, W, év, dw) vanishes at this point. Now consider an open neighbourhood of
this point. By the same argument, for all points p in this neighbourhood with g
chosen such that it has exactly one pole at p, we conclude that w(V, W, dv, dw)
vanishes on this neighbourhood. Since w is holomorphic, it thus vanishes on
the whole of X. Therefore, (dv,dw) € kerw which proves the claim. Hence,
2, = (U7)1/U* and we have thus described the space £2,.

Now, we want to describe the space Q. The image of {0} x L*(F') under the map
equals 25. Again, by the isomorphism theorem and due to U+ = kerw,
we get 2 = ({0} x L2(F)) /(U N ({0} x L*(F))). In order to prove the identity
(4.25), namely (2, = (2, we have to show that the linear map

a: ({0} x L2(F)) /(U= N ({0} x LA(F))) — (UT)/U*,  (0,0w) — (07%:)28)

(modulo the respective subspaces) is an isomorphism. At first, we show that « is
well-defined. By the property of the symplectic form that Q((0, dw), (0,0w")) =0
for all dw,dw’ € L*(F) and due to Lemma proven in the appendix, we get
the inclusions

U™ C {0} x L*(F) C (U")*. (4.29)

This proves that « is well-defined. Next, we show that « is one-to-one. Thereto,
let (0,0w) € kera be given. That is, (0,0w) € UL. In particular, (0,w) €
UL+ N ({0} x L*(F)). Hence, ker « is trivial and thus, « is one-to-one.

Now, we prove that « is surjective. By definition of a;, we have to show

(U = ({0} x LA(F)) +U* (4.30)

Due to U+ C (U7)* and (§.29), the inclusion "2" is fulfilled so that we have
to show (U~)+ C ({0} x L*(F)) + U*. Due to ({0} x L2(F))* = {0} x L*(F),
Lemma and the closedness of U, U™, the identity (4.30) is equivalent to

({0} x LA (F)NU=U". (4.31)

The inclusion "D" is again trivial and follows from (4.29). So let (0,w,) €
({0} x L*(F)) N U be given. We decompose g = 3(g9+goo) + (g —goo)
into its symmetric and anti-symmetric part. We denote the symmetric part of g
by gs :== (g + go o). Due to proven in the Appendix , vy is a linear
combination of functions of the form vy (k, z)1e(—k, ) over certain points k on
the Fermi curve (with ¢ (k,-) eigenfunction of the Schrédinger equation at k).
Hence, if v, = 0, then also vy, = 0 since vy, is then a linear combination of
functions of the form (—Fk, z)ys(k, ). Therefore v,, = 0. Due to the second
part of Lemma proven in the Appendix [A] it follows for the symmetric g,
that if v,, = 0, then also w,, = 0. Therefore, the commutator (4.6) vanishes for
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the symmetric g;. By the proof of Lemma [4.1.2] this can only hold if g; = 0.
Therefore, g is anti-symmetric which implies (0, w,) € U~.

In a final step, we choose in Theorem [4.1.3]a dual basis of holomorphic 1-forms w;
satisfying for 0 < |k, [v| < N. We define &, := w,, + w, oo for k € T} /0.
These forms fulfill @, = w, oo for all kK € I'y/o. Furthermore, by the duality
relation (4.21), the matrix with entries

/ EJ/{ :/ W +/ W :/ Wgk
A, A, o(Ay) Ap+A_,

at (k,v) with k,v € I'/o has full rank. Here, we defined A_, := o(A,) for all
v € I'"/o which is possible if A, is not homologous to o(A,). The proof of the
latter non-homology statement is postponed into the next Lemma [4.1.6]

Due to (4.25), these @, can be chosen to be of the form with suitable re-
spective directions (0, dw) € L*(F) x L*(F). By a possible linear transformation,
they finally satisfy the duality relation for all k,v € 'y /o. This proves
the theorem. O

Next, we want to prove that for N € N, the locally defined map u +— (m,, (u)),ery, /0 =
—1673 (fAV kldkg) , cf. Definition [2.6.1, mapping Schrédinger potentials to

vel'y /o
the first finitely many moduli is a submersion. To simplify the notation, we set

in the following

my(u) == (my,(w))vers /o (4.32)

Furthermore, we use again 2g := #{v € I'" : 0 < |v| < N} and thus g = #I'}y /o
as in the beginning of the proof of Theorem [£.1.3] This notation will be used
several times in this work again (without always explicitly recalling its definition).
In ([4.32)), we consider only the half of the a priori 29 moduli m, (u) indexed by
0 < |v| < N. We want to explain why the remaining neglected g moduli are
redundant. In the asymptotic analysis of Chapter [3| we’ve already seen this.
More precisely, in (3.24)), we saw that m, = m_, for all v € I';. By defining
A_, to be the image of A, under ¢ for all v € I'*/o, we get by virtually the
same computation as in m, =m_, for all v € '\ {0}. In order to define
A_, = 0(A,) for all v € I'*/o, we have to show that o(A,) and A, are not
homologous to each other. This is justified in the following lemma.

Lemma 4.1.6. For all v € T'* \ {0}, the cycles A, — o(A,) are not homologous
to zero.

Proof. We consider at first the special case for finite type Fermi curves. In [19]
Theorem 4.23] combined with [19, Lemma 4.13|, it has been shown that the
two points "at infinity" Q1 and @~ of the two-point compactification of the
(normalized) finite type Fermi curve are the only fixed points of the involution
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o. Let the normalized Fermi curve be denoted by X. In particular, X is a
compact Riemann surface. As in [19, Proposition A.1], we define the quotient
space X, := X/ ~,, where k ~, k' if and only if &k = k" or k = o(k') = —k' for
all k, k' € X. Denote by m, : X — X, the natural projection. In the proof of
[19, Proposition A.1], it is shown that 7, is a two-sheeted covering whose branch
points are exactly the fixed points of o. By the above, 7, has exactly the two
branch points Q1 and Q™. In [19, Proposition A.9], it has been shown that in this
case, the A-cycles A, —c(A,) together with the corresponding B-cycles B,—o(B,)
constitute a homology basis of Hy(X,Z)_ := {v € H\(X,Z) : o(vy) = —7} with
dim H,(X,Z)_ = 2g,, where g, denotes the genus of X,,. In particular, the cycles
A, —o(A,), v € I'y/o are not homologous to zero.

Now, consider the case of infinite type Fermi curves. By Theorem [2.4.2] in every
neighbourhood in L?(F') of some potential u € L?(F), there are potentials v with
the property that all but finitely many of their perturbed Fourier coefficients are
equal to zero. In other words, the finite type potentials are dense in L*(F) and
there exists a sequence of finite type potentials (u,)n,en converging to u ﬂ Hence,
by finite type approximation, the assertion of the lemma follows for all cycles A,
whose support is contained in a sufficiently large compact subset of C? by the
corresponding assertion for finite type Fermi curves proved before. Together with
the already well-known fact from the asymptotic analysis that the corresponding
cycles outside this compact set, namely A, — A_, indexed by v € T’} (with
corresponding 6 > 0 sufficiently small), are not homologous to zero, the assertion
finally holds for all cycles. [

Due to the choice A_, := o(A,) implying m,(u) = m_,(u) for v € '}, /o, the
moduli my lie in the space

C9:={(v_g,...,vy) €C¥ :v_; =v,forallje{l,...,9}}

which is obviously isomorphic to CY (this explains the notation Co ). Now, we can
prove the announced submersion property of my which is a corollary of Theorem
4. 1.5

Corollary 4.1.7. Let u € L*(F) with smooth Fermi curve. Then for all N € N,
the derivative of my at u, i.e. the linear map

dmy), : L*(F) — C9
15 onto.

Proof. As before, we use the coordinates p = (p1,p2) € C?. Recall that they are
related to the coordinates k = (ky, ko) € C? by k = p1k+poi, that is k = (&, &) p

"In Lemma, [4.2.7) the construction of some canonical sequence of finite type potentials
(un)nen converging to u will be carried out more explicitly.



122 CHAPTER 4. THE ISOSPECTRAL PROBLEM II: THE SOLUTION

with the invertible matrix (&, &) whose columns are the two generators £ and &
of the lattice I'* (cf. the beginning of this section).

For (6v,6w) € L*(F) x L*(F), we denote with a dot the directional derivative of
p with respect to (0v, dw) as we already did in (4.16), for instance. Let v be an
arbitrary A-cycle on F(V,W)/T*. Due to 0 = fv d(pip2) = f7 prdpy + f7 Podpy,

we get — f7 prdps = fv padp; Pl Together with (4.17)), this yields

2B~ (§v, dw)
/%d}h = —/Pldpz +/}52dpl = _/pldPQ - /p1dp2 =
¥ v K K !

op1
e e ——— /P dp ’ VW (5’0 511})
l(‘ r’ IIY) 1 2 ( 5 ) Y °

Now, Theorem [{.1.5] (or more precisely equation (4.23) with v, = 0) implies
together with ({.18) that there is a w, € L*(F), x € I'y /o, such thatf]

d d
4@ (/AV pldp2> ’u(wn) = _—d(‘/, W) (/AV pldp2) |(V7W):(1,—%)(07w;4) —
- / w( ’_Tu’ 07wl€) = 5/@,1/ (433)
Ay

for all k,v € T'y/o. Consequently, the linear map d% (fA pldp2> ) |, has
v vel'y /o

full rank g. Since the coordinates p and k are mapped to each other by a linear
invertible map as mentioned in the beginning of the proof, the same holds for

£ (1, ),

In the sequel, we will often make use of the continuity of u — m(u) which
immediately follows from the Definition of the moduli and the fact that
Fermi curves F'(u) continuously depend on the potential u. What is not clear a
priori is that the derivative of the map u +— m(u) is continuous, too. We prove
in the following lemma that this map is even smooth. We will need this assertion
later. We already prove it here because it fits well in the context of the assertions
we have just proved.

Lemma 4.1.8. Let ug € L*(F) with smooth Fermi curve and O C L*(F) a

neighbourhood of ug such that m(u) is well-defined for all uw € O. Then for all

N €N, the map O — C9, u — my(u) is smoooth. In particular, the derivative
function

) |- Therefore, dmy/|, is onto which had to be proved. [
elry/o

O — L(L*(F);C%), urs dmyl,

8 As to the well-definition of the directional derivatives po and dps, compare the explanation
on p. As before, these directional derivatives of the p-coordinates are only used temporarily.
In the next equation, we already get rid of them again.

By slight abuse of notation, we denote the v*" A-cycle by the same symbol A, in both p-
and k-coordinates.
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1S continuous.

Proof. Let N € N, ug € L*(F) and (Vp, W) := (1, —*2) be given. In the proof of
Corollary [4.1.7, we showed for all v € Ty /o and for all (dv,dw) € L*(F) x L*(F)

SR (§v, Sw)
8(V,W)( J d /
/AV R dp> VAL ( N p1dp2) | (v (60, dw) (4.34)

Op1

for all (V,W) € U with U a suitable neighbourhood of (Vo, Wy) in L*(F) X
L*(F). Since R = R(p,V,W) is as a holomorphic function smooth in (V, W),
OR

the operator 2597 : [2(F) x L2(F) — C is smooth in (V, W), too. Note that
Op
although at ﬁrstlsight, the denominator of the latter term might have zeroes,

this term is still bounded which can be seen by (4.17)), for instance. Because the
OR
(VW)
OR
Op1
thus smooth in (V, W) as well. By (4.34), (V,W) — dmy|q,w) is then smooth,
in particular continuous. Clearly, this continuity is preserved when we restrict
ourselves to Schrédinger potentials, i.e. all considered potentials are of the form

(V,W) = (1,—%) with u € L*(F). This proves the lemma. O

cycles A, = A,(V, W) smoothly depend on (V, W), the operator fAy dps is

In the following, we will identify potentials u € L?(F) with their associated
sequence of Fourier coefficients 4 € [?(I'*). Our next step is to prove that the
surjectivity statement of Corollary remains true if we reduce the domain of
definition L2(F) of dmy|, td]

L3(F):={ve L*(F):9(v) =0forall |v| > N} = C*¥*
In order to prove this, we have to show the following lemma.

Lemma 4.1.9. Let u € L*(F) with smooth Fermi curve and consider for each
v € I*\ {0} the derivative of m,, at u, i.e. the linear map dm,|, : L*(F) — C.
Then the operators dm,|,, v € (I'*\ {0})/0 are linearly independent over C.

Remark. Linear independence means here that > ¢ o))/, Cvdmy |y = 0 (with
a sequence ¢ = (¢,), C C such that the series converges in the corresponding
operator norm) implies ¢ = 0.

Proof. At first, with the notation T := (2) for z = (J!) € L*(F) x L*(F), we
remark the relation

(z,y) = 27%Q (y,2) for all 2,y € L*(F) x L*(F) (4.35)

ONote that #{v € I'* : |v|] < N} = 2g + 1 since the Fourier coefficient corresponding to
v =0 is included.
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between the symplectic form Q (4.19)) and the canonical hermitian scalar product

<'7 > = <'? '>L2(F)><L2(F)‘
Let u € L*(F) and set (V,W) := (1,5*). With the potentials v(4,), w(A,)
associated to the Fermi curve F(u), cf. (4.8), we introduce the notations a, :=

(Z((I:,V,))) for v € (" \ {0})/0 and A := {a, : v € (I \ {0})/c}. We consider the

closed subspace spanA C L?(F) x L*(F). Since any arbitrarily large finite subset
M of A is linearly independent by Lemma and any other a € A\ M fulfills
a ¢ span(M), we may successively apply the Gram-Schmidt orthogonalization.
This yields linearly independent potentials b, € L*(F) x L*(F), v € (IT*\{0})/o,
inductively defined by b, := a, for some arbitrary fixed v/ € I'* \ {0} and

<bj’ au)

b, :=a, —
(bj, ;)

bj, ve ((I*\{0,v})/0, (4.36)

(where the sum runs over those j € (I'*\ {0})/c for which the orthogonal vectors
b; have already been constructed) which fulfill with B := {b, : v € (I'"\ {0})/c}
the relations spanB = spanA and Q(b,,b,) = 0, Q(b,, b,) # 0 for all k,v € (I* \
{0})/o with k # v, cf. (4.35). By a suitable normalization, the b, can be chosen
such that Q(b,,b,) = s, for all k,v € (I \ {0})/0. Due to (4.36) (whose right
hand side has to be multiplied with respective complex numbers # 0 according to
the just mentioned normalization), the transformation map 7" which transforms
a vector in A-coordinates into the respective vector represented in B-coordinates
can be considered as an (infinite-dimensional) quadratic upper triangular matrix
whose diagonal entries are unequal to zero. By construction, the map G :=
(Q(bk, *))rer=\{0})/o is the identity in B-coordinates. Hence, by composing G
(in B-coordinates) with 7' (yielding G in A-coordinates), the entries of T' are

equal to Q(by,a,), k,v € (I'*\ {0})/0 where x indexes the rows and v indexes

the columns of 7. The matrix whose £ column is defined by Q(by, a,)pers is
therefore the transpose of T i.e. a lower triangular matrix with diagonal entries
unequal to zero. Hence, {Q(b.,a,)er-\(0})/e : & € (I'™\ {0})/c} is a set of
linearly independent vectors. Together with and which relate 2 and
dm|wv,wy to each other, this yields that dm|w,wy(bs), & € (I'"\ {0}) /0 are linearly
independent vectors. Since moreover, the L2(F) x L2(F)-potentials b, are of the
form b, = (0,¢,) for some ¢, € L*(F), the two equations and even
show that dm|,(cy), k € (I'"\ {0})/o are linearly independent. Since the infinite
matrix with entries dm,|,(c,) for k,v € (I'*\ {0})/0 is triangular with diagonal
entries unequal to zero, the assertion of the lemma follows. O

In the following theorem, we show the announced submersion property of the
moduli restricted to L% (F). Since in the proof of that theorem, we use results
from the asymptotic analysis of Chapter [3| proven for real-valued potentials, we
assume the given potential u in the theorem to be real-valued.



4.1. SUBMERSION PROPERTIES OF THE MODULI 125

Theorem 4.1.10. Let u € L*(F) be real-valued with smooth Fermi curve. Then
there ezists an N € N sufficiently large (dependent on u) such that the linear map

dmy)|, : L3(F) — C?
1s onto.

Proof. We choose N € N sufficiently large such that we are for |v| > N in the
asymptotic setting of the Chapters 2] and [3] In the course of the proof, N might
be chosen even larger in order to guarantee certain asymptotic estimates. For
lv| > N, the moduli can thus be approximated by the model moduli {ém, (u) =
ﬂ‘”f‘g” (2.84) via m,(u) = (1 4+ O(1/|v]))ém,(u), as |v| — oo, ¢f. Lemma |3.2.2

and the definition of £ in (2.2)). If, for |v| > N, we derive {m, (u) with respect to
i_, and 1,, respectively, we get

dein(w) _m _ o dE) i T
G, WP T,

We consider the matrix representation

M::(é g), (4.38)

where the respective blocks A, B, C, D are defined as follows:

A= (Aun) c (CQX(29+1)’ Au/-e = dTTALl,(u)’ ’V’, ‘/i‘ S N,
’ ’ du(k)
X 00 di(u)
B=(B,,) €eC” B,,:= T lv| < N, || > N,
U
C = (CVH) c (-~:c>o><(29+1)7 CVK = M’ |l/| > N’ |K,| < N’
’ ’ du(k)
d(Em,
D= (D,,) €C¥® D, = W, vl k| > N,

where for all blocks v € (I'* \ {0})/0 [} and x € I'*. Our aim is to prove with
the help of Lemma [4.1.9] (stating that dm/|, has full rank) that the block A has
full rank g possibly by choosing N even larger than we already did. We now
use the following conventions: The first column of M contains the derivative
with respect to the zeroth Fourier coefficient @(0). All other columns contain
derivatives with respect to higher Fourier coefficients. Of course, there is no
unique canonical numeration of these columns. We only demand that the norm

"Note that, considering for example the block A, not all 2g lattice vectors fulfilling 0 < |v| <
N have to be considered due to m, = m_, which explains that A has g rows instead of 2g
rows. Analogous statements hold for the other blocks constituting M.
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|| shall be monotonous in the column number, i.e. for two columns ¢; and ¢; of
M (i,j € I'*) corresponding to some x; and some «; there shall hold: If i < j,
then |k;| < |k;|. In particular, all entries of the block C' are equal to zero, i.e.

C =0,

since {m,,(u) is independent of 4(k), |k| < N. Furthermore, derivatives with
respect to 4(k) and 4(—k) shall be neighbouring columns. For example, if the
second column of M contains the derivative with respect to u(r) (for some |k| <
N), then the third column of M contains the derivative with respect to 4(—k)
and so on. In particular, the rows of the block D have the following form: All
entries except the neighbouring entries a,, and @, (cf.(4.37)) corresponding to
some |k| > N are equal to zero, i.e. D has the form

a, @ 0 0 0 0 0
0 0 a, @, 0 0 0
0

D=1o 0 0 0 a, a (4.39)

In a first step, we show that Lemma implies that the matrix M has
full rank. The matrix M differs from dm|, in essentially two aspects: dm|, is
defined for potentials u € L?*(F) which can be identified with their respective
sequence of Fourier coefficients 4 € [*(T'*), whereas M is defined for potentials
in the representation (an, ) := ((4(¥))pj<n, (@ )p>n). Due to Theorem
however, which provides a local isomorphism @ +— (ay, @), the rank of dm],
remains invariant if we derive with respect to (uy, ) instead of with respect to

u. In other words, multiplying dm/, with the inverse of the invertible operator
= (1 3
|k|, |v| > N, doesn’t change the rank of dm)|,,.

The second aspect in which dm/|, differs from M is that in M, the moduli m,
indexed by |v| > N are replaced by the model moduli m,. In order to deduce
from the full rank of dm|, provided by Lemma that also M has full rank,
we have to show that (dmy,dms) = ((dmy|w)pi<n, (@M |u)p>n) has full rank
if dm|, has full rank. Since dm,|, is only defined for |v| > N, we consider
ms = (my) >~ and likewise ms. Because dm|, has full rank due to Lemma
we may reduce the domain of definition of dm|, to a subspace V C L?(F') such
that the restriction of dm|, to V is invertible. We consider again the difference
rs(-) = ms(-) — ms(-) between moduli and model moduli. We can thus write
dms = dms + drs. Hence, dm|, is a bounded (i.e. continuous) operator due to
Lemma and since dms is obviously bounded, compare the representation
D ([£39). We set T := ((dm|,)|v)"*. Then T is a bounded operator, i.e. with
bounded operator norm ||T'|| < oo, since T is the inverse of a linear bijective
bounded operator, cf. [30, Korollar IV.3.4]. Lemma, now implies

[T(dmy, dms) — 1| = [T (dmuy, dms) — Tdml|| < T} - [|drs]] = [T - o(1),

), where I, is the invertible matrix with entries indexed by
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as |v| — oo, where the respective operators are considered as restrictions onto
V. Therefore, for 6 > 0 sufficiently small (or equivalently N sufficiently large),
we have || T(dmy, dms) — 1| < 3 proving that T'(dmy, dms) and also (dmy, dims)
is invertible on V' due to Neumann’s Theorem (cf. [30, Satz I1.1.11]). Hence,
we have shown that the full rank (provided by Lemma of dml|, as a linear
operator defined on L?(F) implies that M has full rank if N is chosen
sufficiently large.

In the next step, we use the full rank of M to deduce that the block A has
full rank g. Due to the form of D (£39), it is clear that the matrix (J) has
at least those linearly independent columns which correspond to a,, |v| > N in
the representation (4.39) (note that a, # 0, |v| > N, due to the smoothness of
the Fermi curve). We ask if it is possible that (g) has more than those linearly
independent columns. These additional linearly independent columns (if they
exist) must then necessarily be columns corresponding to some @,, |v| > N in
the representation (4.39).

At first, we consider the case 1 that this is never possible. More precisely, we
consider the case that the following holds: Any set of columns of M with the
property that this set contains at least one pair of neighbouring columns of (IB))
corresponding to a, and @, (for some |k| > N) is linearly dependent. Therefore,
we can cancel the columns of (g) corresponding to @, |v| > N without changing

the rank of M. The thus modified matrix shall be denoted by M. Tt has the form

M= (4B,
0 D

where D is a quadratic invertible block. Since the rows of M are linearly indepen-
dent as shown above, this implies that the g rows of A are linearly independent,
too. This proves the theorem in the considered case.

Now, we consider the case 2 that there exists a linearly independent set C of

columns of M with (?) C C |'?| containing linearly independent neighbouring
columns of () corresponding to a, and @, (for some |v| > N). Hence, we may

write (g) UFE CC, where E # () is a set of columns of (g) corresponding to
some @, |v| > N. If E is finite, where the last one of the finitely many columns
constituting E corresponds to some K, choose N > |k| and go back to case 1.

It remains to consider the case that E contains infinitely many columns. We
show by contradiction that this case cannot occur. So assume that F contains
infinitely many columns. We proceed as follows. Choose N’ > N large enough
such that with associated 2¢' + 1 := #{v € I : [v| < N}, the block () within

12In the notation (2) C C, we consider the matrix (Z) as the set of its columns.



128 CHAPTER 4. THE ISOSPECTRAL PROBLEM II: THE SOLUTION

the ¢’ x (2¢' + 1)-matrix

, (A DB
M_<0 D/)>

contains g+ 1 columns in F. Here, the blocks B’, D" are the blocks B, D in (4.38)
whose rows and columns are cut off for ||, |[v| > N’, more precisely:

B'=(B,,)eC?9 B =B, V<N, N<|s<N,
D' =(D,,)eCY— 929 p =D, N<lv|s<N.

Due to the representation of D in (4.39)), the ¢’ X 2(¢' — g)-matrix (gi) has ¢ — g
linearly independent columns that are not contained in E. Together with the
additional g + 1 linearly independent columns in F, we have in total (¢' — g) +

(9+ 1) = ¢ + 1 columns. These are linearly independent since (g) Uk CC.
This, however, is a contradiction since M’ has only ¢’ rows and thus cannot have
¢+ 1 linearly independent columns. Hence, the theorem is proved. O]

From now on, the subspace of L?(F) of real-valued potentials shall be denoted
by L(F). Analogously to L (F), we set for N € N

L?V,R(F) ={ve L%(F) - 0(v) = 0 for all [v| > N} = R29+1

At first, we recall that the Fermi curve F'(u) with u € LZ(F) has the two further
anti-holomorphic involutions n and 7 introduced in Section We've seen in
that the reality condition implies m, € R for all v € T';. It’s not clear if
this also holds for v € T'*\ '}, i.e for |v| < N (for some N € N sufficiently large)
because we don’t know whether A, is mapped to A_, by n for |v| < N. If this
is the case, we can argue as in and conclude that m, € R for this v. In
general, however, we merely know that A, is mapped to some linear combination
of A-cycles A, by n with |k] < N. We want to justify that we can choose the
homology basis such that n maps A, to one A, with || < N, i.e. that the just
mentioned linear combination can be chosen to be equal to one cycle A, of the
homology basis. In the case of finite type Fermi curves, this has been shown in
[19, Lemma 6.43| together with [19, Definition 6.42]. In order to show the same
result for Fermi curves of infinite type, we proceed exactly as in the end of the
proof of Lemma [4.1.6] i.e. we combine the finite type result with the result for
the asymptotic A-cycles (indexed by I'}) by using an approximation of finite type
potentials. To sum up, this choice of the homology basis yields that for each
v € I'*, there is a k € I'* such that 1(A,) = A,. The analogous computation of
then yields m, = m,, for this pair v, .

In any case, the dimension 2g of Co (considered as a real vector space) the moduli
my reside in is halved such that real-valued potentials are mapped by u +— my(u)
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into a vector space of real dimension g which shall be denoted by RY. We will
see that the real dimension g is the crucial property. Whether this space is even
equal to RY or not, won’t be needed. We now prove the real analogon to Theorem

4110l

Theorem 4.1.11. Let u € LA(F) with smooth Fermi curve. Then there erists
an N € N sufficiently large (dependent on w) such that the linear map

dmyl, : Ly z(F) — RY,
15 onto.

Proof. Let u € L3(F) and N € N. We use the notation o := dmy/,. Due to
Theorem [4.1.10} there are g potentials v; € L3(F), j € {1,..., g}, such that the

vectors a(v;) € C9,j €{1,...,g} are linearly independent and constitute a basis

of C9 which shall be denoted by B.
Let n € {1,...,g}. Then there are unique coefficients \; € C such that

g9
a(®,) =Y Na(v).
j=1
If A\, # —1, we replace a(v,) by a(v, + v,) in B. Because of

a(v, +7,) = (1 4+ \p)a(v,) + Z Aja(v;)
Jn

the thus modified B is still a basis of C9.
If A\, =—1, ie.

g
a(T,) = —a(vn) + Y Ajelvy),
=1
jn

we replace a(v,) by o ) in B. Because of

g
a(t) = —2ia(v,) +1 > Na(v;),

=1

jn
the thus modified B is still a basis of CY. We carry out this procedure for all
n € {1,...,g}, that is, we replace v; by w; € {v;+7;, =2}, j € {1,...,g} such
that the thus modified B is still a basis of CY. By construction, w; € Ly 5 (F') for
all j € {1,..., g} and o(wn), ..., a(w,) are linearly independent over R and thus

a basis of RY. This proves the theorem. O
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4.2 Construction of the map Iso(up) x ]?q;(uo) —
Iso(uyg)

In this section, we would like to construct a map from the Cartesian product of
some finite type isospectral set Iso(u;) and some asymptotic model isospectral
set f;o(;(uo) into the isospectral set Iso(ug) of some given real-valued potential
ug. More precisely, for given ug € L%(F), we want to construct a map

T : Iso(uy) x Isos(uo) — Isol(uo). (4.40)

The desired aim would be to show that the map can be constructed in
such a way that it is a homeomorphism. We will see in this section that in the
case of arbitrary generally unbounded isospectral sets, there occur some problems
concerning the choice of some uniform § > 0 on the whole of Iso(ug) such that we
can merely give a weaker result than the desired homeomorphism property just
mentioned. If, however, we assume some additional boundedness condition on
Iso(ug), we will finally be able to prove that there exists a homeomorphism (4.40)).
In this section, both the case of unbounded isospectral sets (Theorem
and the special case of isospectral sets with additional boundedness condition

(Corollary [4.2.11)) shall be treated.

To begin with, let’s recap and state more precisely how the appearing objects
in are defined: Iso(up) has been defined in and Isos(up) has been
defined in (3.4). The associated § > 0 if not stated otherwise is chosen sufficiently
small due to the asymptotic analysis in Chapter |3 We note already here that in
the case of unbounded isospectral sets, we will later have to deal with different
values of ¢ since ¢ sensibly depends on the norm of the respective potential. The
moduli of the finite type potential u; € L4(F) shall satisfy

my(ug), vel*\ I3,
m, (uy) = {0 e 0 (4.41)
) J°

So far, it’s not clear whether such a potential u; € L2(F) exists at all. This
will be proved later in Lemma Clearly in general, doesn’t uniquely
determine the potential uq, yet.

We now introduce some notations. Whereas in Chapter [3, we dealt with the
asymptotic part I'; of the dual lattice, we now have to consider its complement
in I'* as well. We denote the finite part of the dual lattice by

po=1r \ I['%,
that is I = T} U I H For u € L(F), we decompose the sequence of the
associated Fourier coefficients into finite and asymptotic part by @ = (uy,ds)

13(Clearly, I} depends on 4. However, the suppression of ¢ in this notation should not lead
to confusions since we consider only one fixed §. If we should consider different values 4,6’ > 0
at the same time, the notation will be suitably adapted to I'} and I'},, respectively.
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with

iy = (64())vers, U5 = (@(¥))ver;-
Likewise, for the perturbed Fourier coefficients (which are only defined for v €
'), we set U5 := (i) ,er;. We would like to have the decomposition @ = (g, is)
for all u € I'so(ug) with the same § > 0. If I'so(ug) is unbounded in LZ(F), there
is no evidence that such a uniform 6 > 0 exists since we would have to ensure that
we can choose in Theorem for all u € I'so(ug) the same §. Since the choice
of & > 0 essentially depended on the norm of u as the proof of Theorem [2.4.2]
showed (the larger the norm of u gets, the smaller § has to be chosen), cf. also
the end of the proof of Corollary or the discussion on p. [72] concerning the
choice of ¢, such a uniform choice of § > 0 doesn’t seem to be possible (for a more
detailed discussion of this problem, see Chapter . If, for some given R > 0,
however, we restrict ourselves to Iso(uy) N Br(ug) (as before, Br(ug) denotes the
open ball in L2 (F) centerd at uo with radius R), there exists a uniform ¢ > 0 for
all u € I'so(ug) N Br(ug). Clearly, this 6 depends on R. If not stated otherwise,
each 0 > 0 in the following shall be associated to the respective given R > 0 in
the sense just explained.
In the discussion on p. [T2] we also justified that 0 € [?(T';) is contained in the
image of the map 4 — « provided § > 0 is chosen sufficiently small. We will
implicitly make use of this property in the following definition of the set Sg(ug).
For the given vy € LZ(F) and for R > 0, we define with the line segment
[0, 5] := {t-tos |t €[0,1]} C I3(T%) this set by

Sr(ug) == {u € Br(ug) : s € [0,10,], Uf = to,}, (4.42)
which can be seen as an "asymptotic line segment" in some sense. This line
connects a finite type potential (sufficiently close to ug) with the given potential
ug. Later, we will not only consider the isospectral set Iso(ug) N Br(ug) but also
isospectral sets for potentials u € Sg(ug) along this line. This will be needed when
we will identify some projection of I'so(ug) N Br(ug) onto the finite-dimensional
space spanned by the first finitely many Fourier coefficients with some finite type
isospectral set. One important property we will make use of later is that Sg(ug)
is compact.

In (3.3)), we defined the asymptotic isospectral set Isos(ug) as a subset of I (I';).
Since it turned out that Isos(ug) could be parameterized by I3 (T%)-sequences,

namely via the homeomorphism between [sos(ug) and Isos(ug) (cf. Theorem
B.3.2), the definition (B.3) was appropriate to that former situation. In this
chapter, however, we are not interested in the asymptotics alone anymore but in
the parameterization of the entire isospectral set Iso(ug) as a subset of LZ(F).
At first, we transfer the definition of L?;’UO(F ) to real-valued potentials: For
v e LA(F), we set

L]%{?M(F) ={u e L(F):a(v) =0(v) forallve'*\T%}.
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With this notation, we define for u € L§ 5, (F) the following asymptotic isospec-
tral sets

Isos(u) :={w € L ;,(F) : my(w) = my(u) for all v € T}},

I505,(u) == {w € L2 ; (F) : i, (w)

my(u) for all v € T'j}.

In order not to use same symbols for different objects, however, the former
isospectral sets Isos(u) and Isos(u) (without additional subscript v) shall still be
defined as in (3.3) and (3.4), i.e. as subsets of [3(I';).

Furthermore, using the notation 2g + 1 := #I"; already well-known from Section
[4.1] we introduce the vector space

Coi={(x_y,...,2,) €CW .z =2 ;foralljc{—g,...,g}},

i.e. the vector space C?9*1 with "reality condition" (which is isomorphic to R
as a real vector space).

In Chapter |3) we kept the first finitely many Fourier coefficients fixed (namely
equal to 7g ¢) and determined the remaining coefficients in terms of perturbed
Fourier coefficients such that the respective moduli (m, (u)),er; were equal to the
given (m,(uo))ver;. In that procedure, we didn’t consider the first finitely many
moduli. In fact, by varying the Fourier coefficients for v € I'j, the first finitely
many moduli m, (u), v € I'}, won’t remain equal to m, (ug) in general.

In this chapter, we have to ensure that the moduli m,(u) are equal to m, (ug)
for all v € T'* (and not only for the asymptotic remainder). This will be done
in two steps. In the first step, we determine a set (containing /so(ug) N Br(uy))
of potentials u whose moduli (m,(u)),ers are equal to (m,(uo))sers. In the
second step, we pick out of this set those potentials u whose moduli (my(u))yep;
are also equal to (m,,(uo)),,ep}. The following Lemma realizes the first
step. Before we formulate it, we make a remark on the correspondence between
elements in C2*" and elements in L2(F): Given u € L3(F), we've already
defined the associated 4y € C2*" in the decomposition & = (i, @) introduced
above. Conversely, given an element u € C]%g“ which can be considered as
an element @ € [3(T'*) by defining the elements of the sequence @ indexed by
v € T} to be equal to zero, we associate the potential u € L4 (F') by the inverse
Fourier transform of 4. In the following, we will often implicitly make use of
this correspondence. Moreover, for ug € L% (F), we denote by Bgr(ug) C L(F)
and Bg(tig ;) € C" the balls with radius R > 0 in the respective spaces, as
usual. In order not to make the notation too confusing by using too many indices
(especially in cases where it is not really necessary), we will often suppress some
indices when we simply write 0 € Bg(4o ¢) instead of 0y € Br(to,f) whenever it
is clear from the context that ¢ denotes an element in C%gﬂ (and not an element
in [2(I')). In cases where we consider both elements in [*(I'*) and in C¥*" at
the same time, we clearly distinguish between ¢ and ¥; in our notation.
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Lemma 4.2.1. Let ug € L:(F) with smooth Fermi curve, R > 0 and u € Sr(uy)
(4.42). Then there exists a homeomorphism

h: Brliog) x Isos(u) = ) Isos.(u), (4.43)

v€BR(to, )

with the following property: For © € Bg(uof) and us € f;)g(u) there holds
h¢(D,us) = 0 as well as an immediate consequence of (4.43)

my, (h(0,1s)) = my,(u) for allv € T}, (4.44)

Moreover, there exists a natural continuous extension of h (denoted by h as well)

h:Brlios) x | J Isos(u)— | J  Isosu(u). (4.45)
UGSR(UO) ’lA)EBR(’llO’f)
u€SR(uo)
Proof. Let ug € L(F) and R > 0. Firstly, we may assume that 7r2|3((2‘))|1/2 <1

for all v € T'; and all u € Bgr(ug) by choosing § > 0 (associated to R) small

enough. This yields 3 < &(u,v) < 2 for all v € T and all u € Bg(up) with

E(u,v) :=4/1+ #?,))VQ defined in (2.2).

Now, let u € Sg(ug), v € Br(ug) and w € L ;,(F) N Br(ug). We have the
equivalences

. L R
Voers - M) =) S et 0y = e T =N ey

Hence, the map

Is05(u) — Is0s,(u), W — w,

where w' € L3(F) is uniquely defined by @ := 0; and @}, := w, EEZZ;, v ey,

is a homeomorphism since fwg(u) is obviously homeomorphic to the image of
the injective map I/;o(;(u) — [2(T%) defined by w, — wy,/%, v € I'5 (recall

2 < &(u,v),&(v,v) < 2 for all v € T;). But this image is homeomorphi to

14Gince the elements of Isos(u) are perturbed Fourier coefficients (i.e. 12(I'})-sequences) and
not L2-functions, we should actually write s instead of Us. In order not to make the notation
too confusing, we yet write ug.

5Recall that we defined Isos,(u) as a subspace of LZ(F). If we defined Iso5,(u) as a
subspace of [3(T'}) in the same way as Is0s (u), the mentioned image would be equal (not only
homeomorphic) to E(;,U (u).
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[/svo(;yv(u) by definition of I/vso(;,v(u) and the form of asymptotic model isospectral
sets shown in Theorem [3.1.1] (whether the first finitely many Fourier coefficients
are fixed equal to g or Uf is immaterial in this context).

In Theorem [3.3.2) we showed (by denoting homeomorphy with the symbol =)
that [/VSO(;(U) = [sos(u). The proof is the same if the first finitely many con-
stant Fourier coefficients are equal to 0y instead of equal to 4o ;. Therefore,
Iﬂjso(;ﬂ,(u) = Jsos,(u) as well. Together with Iso5(u) = If;)(g,v(u) shown above,
we thus get Isos(u) = Isos,(u) for all v € Bg(ug) or as well (using the corre-
spondence between C2¥™" and L2 (F) declared above) I505(u) = I's0s,(u) for all
0 € Bg(tg,). Since by definition Isos,(u) N Isos.(u) = O for v,0" € Bg(to,f)
with © £ ¢, this yields a bijective mapping

h : Bg(to,f) % Is05(u) — U I's0s,(u).

’LA)EBR(’&,O’JI)

We have to prove that both h and its inverse h~! are continuous (with respect to
the usual relative topologies of C**! x [2(T'5) and L% (F)). As to the continuity
of h, we need to adapt the proof of Theorem [3.3.2] There, we showed that the
map (in order to recall the notations, see the proof of Theorem if needed)

my(uo) =, (PH((1 + a)u))

U : Tsos(ug) x U = U, U(i,a) = [—1 + \/

ml,<U0) vel's
is continuous. Now, we have to show the continuity of the map
U : Br(ios) x Isos(u) x U — U,
v R PA_l 1 I
oy |14 \/m (w —r (P +aD) |
my (u)
vel';
(4.46)

with the restriction P; := P|L§ (7 With P as defined in (3.1). As well as the map
P~! that we used in Chapter [3| was well-defined as the inverse of P|Lr§ (F), the
%)

map P; ! is well-defined as the inverse of P| L2 (F)-

In order to prove continuity of the modified map ¥, we don’t have to prove any-
thing new since as in the proof of Theorem [3.3.2] it is ultimately the continuity
of the map u — r,(u) (cf. Lemma and the decreasing behaviour of r, (cf.
(3.17))) which yield the desired continuity of W. Now, we can copy the rest of the
proof of the continuity of I in the proof of Theorem [3.3.2] and the continuity of
h follows. .

As to the continuity of h™', we show that Bg(tg ) x Isos(u) is compact. Due
to an elementary result of calculus (cf. [10, p. 233, p. 713 (Aufgabe 158.6)|, for
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instance) stating that the inverse of a bijective continuous map from a compact
metric space onto some other metric space is continuous, the continuity of h~!
then follows.

Since Bg(tg, ) C Cg77 is compact, it remains to show that I505(u) is compact.
We use the representation of fvwg(u) from Theoremin the following. First of
all, we remark that INSO(;( ) is a bounded subset of 3(T';) (which immediately fol-
lows from Theorem . Let ¢ > 0 and a sequence (a,)nen C 1505( ) be given.
We show that there ex1sts a convergent subsequence of (a,),. Due to the represen-
tation in Theorem [3.1.1, there is a 0 < §; < J such that H(an<l/))yepg p < L

2v2
for all n € N. We decompose a, =: (b,,c,) with b, := (an(y))yepg\pgl and

2g+1

Cp = (an(y))yepgl, n € N. Since (b,), is a bounded sequence in a finite-
dimensional vector space (with finite dimension #(I'; \ I';,)), there exists a con-
vergent subsequence (b, )r. Hence, there exists a K € Nsuch that forall j, k > K

||a’nk - 6Lnj”lQ? = ||bnk - an||122 + ||an - an”l22 <
\/— 2
=€
2f>

Thus, (an, ) is a Cauchy sequence and converges in [3(T';) because I%(T}) is

< 1ba, = bn, 2 + (llen,lliz + llen, D* < 5 + (

a Banach space. Since Isos(u) is a closed subset of [2(T';) by definition (as
a preimage of a closed set under a continuous map), the limit of (a,, ) lies
in Isos(u). This shows that Isos(u) is compact and thus proves that h is a
homeomorphism. .

The continuity of the extension of h to Br(do,r) X U,espuo) L505(w) follows in
the same manner as we proved the continuity of h above, where in addition, we
also have to use the continuity of u +— m, (u). O

The proof of Lemma already implies the compactness of Iso(ug) N Br(uo).
We state this important result in the following corollary.

Corollary 4.2.2. Let ug € Li(F) with smooth Fermi curve and R > 0. Then
Iso(ug) N Br(uo) is compact. In particular, if Iso(ug) is bounded in L%(F), then
Iso(ug) is compact.

Proof. Let R > 0. Then Iso(ug) N Br(up) is contained in the image of the map
h for u = uo. But this image is compact since h is a homeomorphism due
to Lemma [£.2.1] Due to the closedness of Iso(ug) and since closed subsets of
compact sets are compact, the compactness of Iso(ug) N Br(uog) follows.

In particular, if Iso(ug) is bounded in L% (F), choose R > 0 such that I'so(ug) C
Br(ug) and the compactness of Iso(ug) follows also in this case. O

In the next step, we want to show that for a convergent sequence (uy, )neny C LE(F)
with lim,,_,.. u, = ug, there is an N € N such that also the set
(Is0(uo) U,y I50(un)) N Br(ug) is compact.
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Lemma 4.2.3. Let uyg € LA(F) with smooth Fermi curve, R > 0 and (u,)nen C
Br(ug) be a convergent sequence with lim, .. u, = ug. Then there exists an
N € N such that (Iso(ug) U Unsn I'so(u,)) N Br(ug) is compact.

Proof. Let (up)nen C Br(ug) with lim, o u, = ug. In the same fashion as
the map h (4.43) could be extended to (4.45)), we can naturally extend h to a

continuous map

h: BR(IALO’f) X (I/—VSO(;(UO) U U &)5(1%)) — U ISO&,v(“n)a

n>N 9€BRr(o, 1)

n=0Vn>N
with N € N sufficiently large. By construction of the map h, the image of this map
contains (Iso(ug) U Unsn Iso(u,)) N Br(uo). In order to show the compactness
of the latter set, we proceed as in the proof of Lemma [4.2.1] At first, we show the
)

compactness of Br(tg ) X (.go(;(uo) UUsn Is05(uy) ), where it suffices again

to show that I/VSO(;(UO) UUnsn f;)g(un) is compact. As in the proof of Lemma

4.2.1} let € > 0 and a sequence (ay)ren C I/VSO(;(UO) UlU,sn IAS/O(;(un) be given. If

there is an n > N or n = 0 such that Isos(u,) contains infinitely many elements
of (ay)ken, the sequence has a convergent subsequence due to the compactness of
I505(uy). So consider the other case that for n = 0 and for all n > N, Isos(u,,)
contains at most finitely many elements of the sequence (ay)ren. Then there exist
sequences (k;)jen € N and (n;)jen € N such that ai, € 1'?05(%].) for all 7 € N.
Due to the representation of Isos(u,) in Theorem there is a sequence (t,),
with ¢, € [0,2m) such that ax,, = €™, ,. Furthermore, there is a 0 < 01 < 0

such that Hﬂo”p(rgl) < %. Due to lim, ;o un = g, We have ||, — tiol;2(rz) — 0

as n — oo and hence, [|ti,; — toll;zrs ) < % for j > J with J € N sufficiently
1
large. Therefore,

||akj||z2(rgl) < |ttp, — ﬂo||l2(r§1) + ||ﬁo||z2(rgl) < % for j > J.

From this on, we can virtually copy the end of the proof of Lemma [4.2.1] yielding
that the sequence (ay,);>; has a convergent subsequence. For sake of complete-
ness, we mention the essential steps one more time: We decompose ay; =: (b, cx,)
with by, = (akj,,,),,epg\pgl and ¢y, 1= <akj,y)1/€r§17 j > J. Since (by,); is a bounded
sequence in a finite-dimensional vector space, there exists a convergent subse-
quence, without restriction (by,); itself. Hence, there exists a K > .J such that
for all j,1 > K

Hakj - akz”l22 = ku] - blel22 + Hckj - CszlQQ <

2@)226

€
< |1bk, = b [l + (llew, e + llen ) < 5+ (2
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yielding that (ax), has a convergent subsequence (compare the end of the proof
of Lemma {4.2.1). Hence, both Bg(tg ) X <1305(u0) UUpsn [sq;(un)) and con-

sequently also its image |J

s€Brliog) Is05,(uy,) under the continuous map h are

n=0Vn>
compact. Since closed subsetso(v)f Egmpact sets are compact and
(Is0(uo) UU,sn I50(un)) N Br(ug) C Uﬁem I's0s,(uy), the compactness of
n=0Vn

the set (Iso(ug) U,y Iso(un)) N Br(ug) follows by proving that it is closed.
To show the closedness, let a convergent sequence

(vi)wen C (Iso(uo) UU,sn I50(us)) N Br(ug) with limit v € Bg(ug) be given,
If there is an n > N or n = 0 such that infinitely many elements of (v ) lie in
Iso(u,) N Br(ug), this defines a subsequence (vy;); C Iso(u,) N Br(ug) which
converges to v (due to limg_,oo vpy = v). Since Iso(u,) N Bgr(ug) is closed (re-
call that Iso(u,) is defined as the preimage of the closed set {m(u,)} under
the continuous moduli map), v € Iso(u,) N Br(ug) follows. If otherwise, each
I'so(u,)NBgr(up) contains at most finitely elements of the sequence (vy), there ex-
ist subsequences (uy,)jen and (vi;)jen With vy, € I'so(u,,) N Br(ug) for all j € N.
Due to continuity, it follows m(v) = limj_m‘m(vkj) = lim; 00 m(up,) = m(uo),

hence v € Iso(ug) N Br(up). This shows the desired closedness and the lemma is
thus proved. O]

The next lemma shows that so(ug) N Br(ug) can be uniformly approximated by
isopectral sets Iso(u) N Br(ug) provided that u € L2(F) is in a sufficiently small
neighbourhood of wy.

Lemma 4.2.4. Let ug € L4(F) with smooth Fermi curve and R > 0. Then

Ves0 >0 Yue B, (wo) Voe 150(u)Brlag) - dist(v, I'so(ug) N Br(ug)) < €,

where dist(v, Iso(ug) N Br(uo)) = min, o) vBrmey 12 — vllez(r), v € LA(F).

Proof. Let € > 0 and assume that the assertion to be proved doesn’t hold, i.e.

vn>0 EIUEBW(UO) EIvEIso(u)ﬁm : diSt(U7 ISO(UO) n BR(“O)) =

Hence, for all n € N, there is a u,, € By, (uo) (which yields a convergent sequence

(un)nen C Br(ug) converging to ug) and a v, € Iso(u,) N Bgr(up) such that
dist(vn, Iso(ug) N Br(ug)) > €. Due to Lemma |4.2.3] there is an N € N such
that (Iso(uo) U,y Is0(un)) N Br(ug) is compact. Hence, we may assume

without loss of generality that the sequence (v,,),,>n converges to some v € Bg(uo)
(otherwise, consider a convergent subsequence). Due to continuity of the moduli,
we have m(v) = lim, o m(v,) = lim, o m(u,) = m(up). This yields m(v) =
m(up), and hence v € Iso(ug) N Br(up). This, however, is a contradiction to
dist(v, I'so(ug) N Br(ug)) > € and the assertion follows. O
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With the notation my(u) := (my(u))ver;, the space RY as in Theorem [4.1.11} the
map h ({£.45) and Br(ig ) € CX* as in Lemma [4.2.1] we define the map

¢ Brlios) x| Isos(u) = R?,  (0,7s) = my(h(D,Ts)). (4.47)

u€SR(uo)

Recall that m, (h(0,u5)) = m,(u) for all v € I';, u € Sg(ug) by ([#.44), i.e. the
moduli indexed by v € I'j are already correctE;]. In a next step, we would like to
achieve the same for the moduli my, i.e. the moduli indexed by v € I'}.

We use the notation ¢’ := % for the partial derivative with respect to the first
argument of ¢. The aim is to apply the Implicit Function Theorem to ¢. At first,
we show that ¢’ has full rank:

Lemma 4.2.5. Lel ug € Li(F) with smooth Fermi curve and R > 0. Let further
Us € Uyespug) 1506(u), © € Br(to,f) be given and denote ¢' := ¢/(0,us). Then
the linear map

¢ - C%}H N @97 W <dmf(};(}’vué))) @
0

has full rank g.

Proof. As several times before, we use again the local isomorphism L2(F) —
B(T*), u + (g, us) (cf. Theorem which locally allows us to identify
L2 (F)-potentials with a decomposition into finitely many Fourier coefficients and
infinitely many perturbed Fourier coefficients in the asymptotic remainder. If for

u € Sgr(up), we compose h with this map, we get a map denoted by h:
h: BR(QALOJ) X [SO(;(U) — lé(F*), (1},’175) — (hf(@,’lj(;), 55(@,175)) = (@,fb(ﬁ;), )
4.48

where we recall that by definition of h, we have h(0,%s) = 0 and @} € (2(T%) is
defined (as well by definition of h) as

s, = (1+ay) - sy - v er;, (4.49)

see (3.55) to recall the definition of a, and the mapping between fwg(u) and
Isos(u) as well as the construction of & in the proof of Lemma to recall the
terms under the square root. We recall that with the notation

L]%{,f(F) = {v e L3(F): (v) = 0 for all v € [}} = R¥+!,

160f course, we are especially interested in the case u = uq.
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the map
dmgl, : Lg ((F) = RY

(with slightly different notations compared to Theorem [4.1.11)) is onto due to
Theorem [4.1.11] By using an analogous matrix representation of dmy|, as in the

proof of Theorem [4.1.10} we thus get

dmy(h(0,1s)) _ dmy(u) d(o, a5) 1
do da =i g = (A B) ), (4.50)

where due to Theorem Ais a g x (29 + 1)-matrix with full rank g, B is a
g x oo-matrix and 11is the (2g + 1) x (2¢g + 1) unity matrix. By definition, the
columns of (A B) are the images of the Schauder basis B := {{y }.er+ defined by
Ug(v) = 6, for k,v € I'" under the map dmy|,. Denote By := {aﬁ},{er}. The
matrix (A B) can be transformed into the matrix (A 0) by elementary column
transformations, more precisely by adding to each column of B a suitable linear
combination of the 2g + 1 columns of A such that all entries of the considered
column of B are then equal to zero. This is possible due to the full rank of A. The
matrix (A 0) obtained this way is thus the representation matrix of dmy|, with
respect to the Schauder basis B’ := B U B§, where the elements of Bj are exactly
the basis vectors u,, x € I'j plus a suitable linear combination of elements in By
(namely that linear combination we had to add in order to make the columns of B
equal to zero). Note that the first 2g 4 1 elements of both B and B’ are identical,

dmy (h(d

namely equal to the elements of B;. We thus get that e ) has the same

rank as (A 0) - (3}) = A. Since A has full rank g, the lemma is proved. O

Concerning the smoothness properties of ¢, we also prove the following statement
which we will need later.

Lemma 4.2.6. The map ¢ (4.47) is smooth. In particular, for given us €
Unespuo) 1505(w), the derivative function © — ¢'(9,s) is continuous.

Proof. By the chain rule (compare also (4.50)), we have to show that both

dmdgt)|u_ (o, and the term ZEZ Zz; are smooth in (0,us). The smoothness of
dmdz la= (0,a5), however, follows from Lemma (4.1.8, It remains to prove the

d(v, ué)

G- Dueto ([£.49), it sufﬁ(:'ves to prove the sm(?vothness
of the fixed point a of the ﬁxed point equation U(v,us, a(v,us)) = a(v,us) with
U as in (4.46). Deriving this equation yields
da(d, @ o v da(d, @
<A ~5) = (0, us, a(,us)) + =~ (—~5)
d(v,us)  O(v,us) d(0,us)

da(0,s) (1 o M)))l 8(@@ NS

— m = — %(v,u(g,a(v,ug ———— (0, ug, a(v, ug)).

smoothness of (0, us) —
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All operators in this equation are Well—deﬁned due to the smoothness property
of ¥ (which is an implication of Lemma and the contraction property of
U (see Theorem [3.2.8)) yielding that 1 — —a is sufﬁciently close to 1 and hence

invertible. The smoothness of (0, us) — ﬁg’%‘s)) now follows from the mentioned

smoothness of ¥. The lemma is proved. O

The property proven in Lemma that ¢ has full rank allows us now to prove
the existence of potentials u; € L% (F) satisfying (4.41]). We prove a slightly more
general result in the following lemma.

Lemma 4.2.7. Let ug € LA(F) with smooth Fermi curve. Then there exists an
N € N and an associated sequence of finite type potentials (uy)n>n C L3 (F) with
lim,, oo u,, = ug satisfying the following condition: For alln > N,

() my(ug), veT* |v|<n
my (u,) =
o 0, vel* |v]>n.

Proof. Let ug € Lz (F) with associated ¢’ > 0 and I, = T \ T', as defined at
the beginning of this section. We decorate ¢’ with a prime since this ¢’ is only
preliminary because the actual 0 < § < § will be chosen possibly smaller (for

6 > 0, we will then consider I'; = I' \ I';). Due to Theorem {4.1.11} CZZ & |uy has
full rank. Therefore, H%IUOH =:c¢> 0. Forall 0 < 4§ < ', we have I'}, C I'}
and I'; C I'j,. Hence for all 0 < § < ¢, due to
dm g dm g
‘ d:?; luo || = sup{ Z;f o (V) ' ol = 1A0(v) =0forv e F}} <
dm g
< sup{ %]uo(v) ‘ ol = 1A0(v) =0forv e F;} <
dm dm
<sup {|[ Bl (0)| Nl = 1 00) = 0or v e 15 = | G221,
(4 51)
there holds H%ho > c¢. We use again the notation mg = (ml,>l,€1"§/ and

likewise mg and rs for the model moduli and the error term

re(-) = mg () — mg(+), respectively. Due to Lemma [3.2.6|and (4.39), we have
dm ’ drs drs
H 5 - 5 5

e * ‘ e
|,,|2 O(|(y,), ||l2 r; )"’ \,,|20(||(u1/) ”12 rs, ) =o(1), as|v|— oo,

H dm5/

|

)
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locally uniform, i.e. uniform for all u € U’, where U’ C LZ(F) is a sufficiently
small neighbourhood of uy. Hence, we may choose §' > 0 small enough’| such
that for all u € U’, there holds

H dm5/

| c
da ™

_ 1 dmf/
-8 8

(4.52)

o

dfbf/

Now choose 0 < § < § sufficiently small such that for w € L%(F) defined by
Wy = g,y and ws = 0, there holds w € U’ and

dmf/
|’w - dﬁ/ |U0

. (4.53)

m g

Hdmf/ dmf/
- 4

Hdmf/

c - 1 Hdmf

where the second "<" in (4.53) holds due to continuity for 6 > 0 sufficiently
small, cf. Lemma We would like to have an analogous estimate with dm
instead of dmy on the left hand side of (4.53)). With (4.52)) and (4.53)), we get

dTTLf dmf dmf/ dmf/ dml, dm,,
— | — |uo ——uo | + (|| = |w — = |uo <
de de de de §=1<|p|<s—1
dm dm(;/ dmsg 1||dm c
< - H f‘uo H di |uo < Z‘ f|u0 +§+§
dm dm g - 1||dm
o E R i e B (454

as desired. We now apply the Implicit Function Theorem (cf. [23] p. 144], for
instance) to the equation

0(0,715) = m; (h(0,755)) = m(uo). (4.55)

This equation is obviously fulfilled for the pair (0,us) = (tof,%os). Due to
Lemma[4.2.5, ¢/ (to s, %) has full rank. Moreover, by Lemma[4.2.6] ¢ is smooth.
Hence, due to the Implicit Function Theorem, there is a neighbourhood U of
tips in 1*(T%) N Isos(ug), a neighbourhood V' of g in Bg(ug ), as well as a
continuous mapping U — V', us — 0(us) such that the tuple consisting of us € U

and 0 = 9(us) satisfies ([£.55). Due to (.54 also us := 0 € U holds. Hence,

1"More precisely, we choose a priori another 0 < §” < ¢’ such that with the above definition

dm d . . dm .
. ’ D)ol we get ’ mar | I < € in (#52). Since ’ Tt |ue|| = ¢ as explained before, we
; s
d dm .. . .
get H Tl < & ‘ i 2], || so that an additional choice of some 0 < §” < ¢’ is not necessary

if ¢ > O is chosen small enough.

18Tn the proof of the Inverse Function Theorem (which is used in the proof of the Implicit
Function Theorem), cf. [23] p. 142-145], the inequality corresponding to (4.54) shows how
large the neighbourhood where invertibility holds can be chosen. In our case, we chose § > 0
sufficiently small such that the element (U(AO), 0) we are interested in is contained in V x U. By
the way, the same argument doesn’t only hold for #s; = 0 but also for all s € [0, 4g,5]. We will
revisit this fact in the proof of Lemma
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my(h(9(0),0)) = my(ug) and the potential v € L2 (F) associated to (9(0),0) thus
fulfills m, (v) = m,(ug) for v € '} and m, (v) = 0 for v € [';. In this fashion we
can choose for each n € N a § = §,, > 0 which yields neighbourhoods U’ = U]
where holds for all w € U/. As well, we get neighbourhoods U = U,
and V =V, as above in the application of the Implicit Function Theorem and a
sequence (u,),>n (IV € N sufficiently large) satisfying the required properties of
the lemma. Since by construction, U], can be chosen such that its diameter tends
to zero as n — 0o, we have lim,,_, u,, = ug. This proves the lemma. O

For ug € LA(F), R > 0, us € | Iso5(u) and ¢ as in (£.47), we now define
the level set

u€Sr(uo)

L(Tls) = {0 € Brlioy) : (0,75) = m(uo)}. (4.56)

We are especially interested in the cases us = 1Ups and u; = 0. Whereas the
first case corresponds to the isospectral set Iso(ug) since Lg(tgs) encodes the
moduli equal to m(ug), the second case corresponds to the finite type isospectral
set Iso(u;) defined by since L(0) encodes those moduli in (4.41). This
correspondence will be specified more precisely in our next investigations. We
would like to show that these level sets are homeomorphic to one another by
constructing a homeomorphism Lr(0) — Lr(tos). If Iso(ug) is unbounded,
however, there occurs a problem caused by the intersection of the isospectral set
with the ball Bgr(ug). By constructing the map Lz(0) — Lg(tgs), we will see
that there is a natural way to identify two level sets of the form (4.56]) with each
other. There is, however, no evidence why elements in 0Bg(to,r) N Lr(0) should
be mapped into OBg(1y, f) since Iso(up) has no symmetries with respect to such
balls Bg(1y,r) in general. An element in 0Bg(to,r) NLr(0) might also be mapped
into Bg(ig,s) or into C3¥™" \ Bg(io ), where the latter case would be contrary
to the well-definition of Lz(0) — Lg(tgs). Furthermore, the mapping behaviour
of elements in dBg(ug r) N Lr(0) causes some problems concerning the question
whether this map is open. These are the reasons why the following Lemma [4.2.8
requires a slightly more elaborate formulation than just stating that there exists
a homeomorphism Lz (0) — L (o).

Lemma 4.2.8. Let uy € L4(F) with smooth Fermi curve, R > 0 and € > 0 be

given. Then there is a 6 > 0 (depending on R and €) such that the following
holds:

(i) Lrrac(iis) # 0 for all s € Uyes,, . () [505(u) and

(i1) for all us € fs/o(;(uo), there exists a continuous and injective map
Lr-(0) = Lr(us) whose image contains Lr—s(us) and whose natural re-
striction Lr_c(0) = L(Ts) is an open map.
Here, Lx_.(0) := {0 € Br_c(iigs) : (,0) = ms(ug)} denotes the interior
Of ‘CR—e(O)'
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Remark. Clearly, one is interested in small € > 0 as possible. The optimal choice
would be € = 0 which, however, won’t be feasible in general. If indeed the choice
€ = 0 is admissible, then the assertion of the lemma simply states that there
exists a homeomorphism Lr(0) — Lr(us), us € Isos(uo).

Proof. Let ug € L4(F), R > 0 and € > 0 be given. To begin with, we want
to declare how 0 > 0 has to be chosen. This is done in several steps. In the
first step, we choose a preliminary ¢ > 0 which might have to be chosen even
smaller in the subsequent steps: Firstly, we choose as before a (preliminary) 6 > 0
associated™| to the radius R + 2¢ %] where we choose ¢ small enough such that
[o|[i2(rs) < €/16. Then, we choose in Lemma an 1 > 0 associated to €/4,
i.e.

dist(v, Iso(ug) N Bryac(ug)) < €/4 for all v € Iso(u) N Bryac(ug), v € By(ug).
(4.57)

Here, we may choose > 0 small enough such that [|@fzrs < 2|ollirsy <
/8 for all u € B,(up). This is possible since the map u +— 4, is continuous,
cf. Theorem Due to this Theorem [2.4.2] together with ([3.57)), we even have
[0][zrsy < 2[[aflizrs) < €/4 for all v € Iso(u) N Bryae(uo) and all u € By (uo),
provided that the product of the error term 1+ O(1/|v|) in and the error
term 1+ o0(1) between the {?(T'})-norm of Fourier coefficients and the [*(T';)-norm
of perturbed Fourier coefficients is smaller than 2 which can clearly be achieved
by choosing § accordingly. Now choose ¢ > 0 small enough such that u € B, (uo)
for all u € SR+2€(UO) = {u c BR+2€(Uo) D Ug € [0,12075], ﬂf = ﬂojf}, cf. . If
we define for u € Spia.(up) an element m* = (m?), € (1(T'*) by m* := m, (uo) for
v € I"\I'; and m}, := m, (u) for v € I';, we would like to find a u* € B, (ug) such
that m(u*) = m*. We claim that such a potential u* exists for all u € Sgyac(up)
(provided 6 > 0 is sufficiently small yielding that m* is sufficiently close to m(u)
in the ['-norm). Thereto, we have to take a look into the proof of Lemma
If U5 := 0 € U (with U the neighbourhood in the proof of Lemma [4.2.7)), then an
arbitrary us € [0, % 5] is contained in U a fortiori and the existence of u* € B, (uo)
follows by the same arguments as in the proof of Lemma [4.2.7

Finally, the choice of § > 0 guarantees together with and [|0[|;2(rsy < €/4

for all v € Iso(u) N Bryoe(up) and all u € B,(up) as explained above, that by
definition of the level sets (4.56]), we have

forall v € Lpiac(Us), s € ) Isos(u), (4.58)

UESR42¢(u0)

dist(z, Lrsac(tins)) <

NN e

19Cf. the discussion of the choice of § > 0 for given R > 0 on p. 131
20The choice of § associated to R + 2¢ (and not associated to R) has technical reasons and
will become clear later in the proof when we will prove the openness property.
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where dist(x, Lriac(tos)) = infyerp,s. a5) [|2 — yl| with || - || the euclidean norm
on C¥". In short, all level sets relevant for our considerations have a distance
less than e to one another and a distance less than €/2 to the level set Lrioc(tg ).
Moreover, the existence of the above u* € B, (ug) (associated to u € Spiae(uo))
fulfilling m(u*) = m* showed that Lz o (us) # 0 for allE(; € UueSRHf(w) Isos(u).
Now that we have chosen § > 0, let t1,s € U,esp, . (uo) 1506(1) and 0 € Ly (t15)
be given. It is C2/" = (ker ¢/(0,14)) @ (ker ¢/(0,715))*, where the orthogonal

complement is taken with respect to the euclidean standard scalar product on
Céﬁl. Since by Lemma m the rank of ¢/(0, 4, 5) equals g, we have

dimg (ker ¢/ (9, U1 5)) " = 29 + 1 — dimg (ker ¢/'(9, U1,5)) =
=29+1—-(29+1—-9g) =g

Let Ny(9),...,N,(0) € CI¥™" be a basis of (ker ¢/ (0, 5))*. Without restriction,
we may assume that the N;(9) are all normalized by ||N;(0)|| =1 (i =1,...,9).
Each n € (ker ¢/(0,u;5))* can thus be represented as 1 = > .7, A\;N;(0) with
respective coefficient vector A := (A,...,\;) € R9. Now, together with the
smoothness of the map ¢ proved in Lemma the level set Lry (Us) is
a real smooth submanifold (in general with boundary) of C¥*' of dimension
dimker ¢/ (0,1 5)) = g + 1 by the Regular Value Theorem (cf. [23] p. 154], for
instance) because for all 0 € Lpi(Uys), ¢'(0,U 5) has full rank g due to Lemma
4.2.5| (i.e. my(up) is a so-called regular value). Therefore, the normal spaces
spanned by the vectors Ny(9), ..., Ny(v) continuously depend on v € L (u1).
We now define the map

g
P . £R+6(ﬂl75) x U — Rg, ({), )\) — Qb (fl + Z )\ZNl(lA)), ﬂ175> , (459)

=1

where 0 € U C RY is an open set such that o + > A\;N;(0) € Bryae(to,r) for
all v € Lrye(u1s) and all A € U, i.e. such that ® is well-defined. Note that
0 € Lprye(Urs), i.e. @ is also well-defined if 0 € 0Bgyc(to, ). In particular, the
neighbourhood U does not depend on v. We now consider the partial derivative
a%@ evaluated at A\ = 0. The linear map %Q)\,\:o can be identified with a g x g-
matrix. By definition of ¢ and respecting the definition of h as well as (4.48), we
have

dmy(h (0 4+ 3271 AiNi(9),U15))
"0
dA
dmy(u) d(0 4> NN (0), i 5) N
= di |a=(@,a’1_yé) : X |>\:O = (A B) : )

ZP|\_g =

*x

where A, B are essentially the same blocks as in the proof of Lemma and
N is the (2¢g + 1) x g-matrix with columns Ny(90),..., N,(0). Now we proceed
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exactly as in the proof of Lemma [4.2.5] By a suitable choice of a Schauder ba-
sis of [2(I'*), the block B can be assumed to be equal to zero so that Z®|y_o
has the same rank as (A 0)(") = (ANy(d),..., AN, (9)). With respect to this
basis, we have ¢/(0,u,5) = A (cf. the proof of Lemma [£.2.5). By definition of
Ni(0),...,Ny4(v), the vectors AN;(0),..., AN, (v) are linearly independent be-
cause 0 =Y 7 N AN;(0) = A", AMiN;(0)) implies

9 AN;i(0) € (ker A) N (ker A)*+ = {0} such that A\ = 0 due to the linear inde-
pendence of Ny(0), ..., Ny(9).
Hence, the rank of 2 55 P[r=0 is equal to g. This is an important result which will
be used in the next step when we apply the Implicit Function Theorem. For
0 € Lrye(t15), we want to find local solutions (w, A, us) of the equation

¢ <w + Z i N; (), a5> = my(ug), (4.60)

where w € W(0) (with W(?) C Lpyc(t1,) a sufficiently small neighbourhood of
0), A € U and s € Uesy, . (uo) [SOg( ) (in particular, local means that A\ shall

be in a neighbourhood of 0 € U and us shall be in a neighbourhood of % s).
Since ¢ (0,u1,5) = mys(ug) (cf. the definition of the level sets (4.56)), the triple

consisting of @ = 0, A = 0, Us = 15 solves (4.60). Because %CI)])\ZO is invertible,
we may apply the Implicit Function Theorem (cf. [23, p. 144], for instance).
This yields that there exists a neighbourhood V (9, u1,5) C U5, .. (uo) l’?%(u) of
uy,5 and a neighbourhood W(0) C Lrye(u14) of 0 as well as a unique continuous
map

W(0) x V(0,0s) = U, (i, 75) — Aib, Us) (4.61)

such that
g
QZS (’(Z) + Z )\Z(’(Z)7 a5>NZ(w),ﬂ5> = mf(uo) for all (’(2)7275) S W(f}) X V(f),’lﬂh,(s).
i=1
This defines for each 0 € Lpic(t15) and us € V (0, Uy 5) a local map

W (0) C Lrre(trs) — Lrioe(ls), W+ Z O, U )N; (). (4.62)

Due to the continuity of (w,us) — A(w,us) and since we can choose continuous
normal vectors w +— Ni(0), ..., Ny(w) (due to the continuous dependence of the
normal spaces (ker ¢/(0,1,5))" on © € L, (t1,5) as explained before), these local
maps are in particular continuous in their respective domain of definition.
We would like to extend these local maps to a global map defined on the whole

of £R+e(ﬂ1,5)-
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At first, we argue why the neighbourhoods V(0,1 5) can even be chosen in-
dependently of v by using the compactness of Lpi (u;5): Thereto, recall that
Lpic(tys) is compact since due to the continuity of ¢, Lri(u1s) is a closed
subset of the compact set Bpi (U ) C C%ﬁl and thus also compact. Now,
Uﬁeﬁme(ﬂl,g) W () is an open covering of Lri(u15). Since Lpic(urs) is com-
pact, Lric(u1,5) can be covered by finitely many of these neighbourhoods, say
by W(v;), i = 1,...,m. To these, there correspond finitely many neighbour-
hoods V (0;,u16), i =1,...,m. Let dy, ..., d,, be the diameters of the V (v;, Uy ),
i=1,...,m. Choose min{dy,...,d,} as diameter of a neighbourhood of %, s in
Usesna (uo) fs/o(;(u). This defines V(4 5) which is independent of 0 € Lgi(uys)-
In order to extend the local maps to a global map Lr.(u15) = Lrroc(tUs),
we have to show that for 0,0" € Lry(Uys) with W(0)NW (¢') # (0, the respective
maps are identical on W (9) N W (9'). This, however, follows immediately
from the uniqueness of the map w — a(w) = > 7 X\i(w, us)N; () obtained

=1
by the above application of the Implicit Function Theorem. In other words,

S (b, ) Ni() = SO0, Ni(ab, @) NI () for all & € W (0) N W (4'), where the
N (w, ug) are the coeflicients corresponding to the (maybe different) basis vectors
N{(w), ..., Nj() of (ker¢'(w,y,))" in the local map defined on W (?').
Hence, for all us € V(u; 5), the global map

g
Lpic(trs) = Lrioe(us), 0— Z 0, us) N; (0) (4.63)

is well-defined. Note that the image of is contained in Bpr.o (o ;) due to
(4.58)) which explains the index R + 2¢ in Lgyo.(Us). Moreover, the map
is continuous since continuity is a local property which has already been justified
for the local map (4.62).

Next, we prove that is one-to-one. In order to establish this, the diameter
of V(4 5) has possibly to be chosen even smaller than we already did. We prove
at first that for a sequence (u})nen C V(u1s) with lim, 0§ = Uys (in the
[2(T%)-norm), there holds

ve’>0 HkEN Vnzk V@E£R+e(ﬂl,6) : ||7A7'(r&7 a?)” < 6/7 (464)

with || - || the euclidean norm on C:*' and 7 (0,%s) == 3270, Mi(9, Us)N;(0) as
already introduced. As before, we sometimes simply write n(?0) if the dependence
on u; is immaterial for the respective consideration. Let ¢ > 0. We recall that we
may assume that all appearing basis vectors N;(0) are normalized by ||N;(0)]| = 1.
Choose the neighbourhood U C RY of 0 € R (cf. (4.61)), for instance) small
enough such that 7 |\ < ¢ forall A= (A\y,..., ;) € U. Since \(0,U15) =0
for all v € Lg4(u1s) and due to the continuity of (0,us) — A(0,us), cf. (4.61)),
which is even uniform with respect to ¢ because Lri(u1 ) is compact, it follows

|n(o,a2)]] < Y7 |N(0,uf)| < € for all 0 € Lgry(tns) and for all n € N
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sufficiently large. This proves (4.64]).
For v € Lpic(u1s) and € > 0, we introduce the notation

Be(0) := Be(0) N Lge(tin ), (4.65)

where B, (0) is the ¢-ball in C2?™" as usual. By definition, any 72(0, Us) is perpen-
dicular to any tangent vector of the tangent space ker ¢'(0,us) on 0. For ¢ > 0
sufficiently small and w € ég(ﬁ), v —w is sufficiently close to such a tangent vec-
tor such that the affine subspaces o + (ker ¢/(9,u; 5))* and W + (ker ¢/ (w, Uy 5))*
are "nearly parallel" to each other. More precisely, we claim that there holds

VoL (@ 5) 3e>0 TheN Yz © W1 + 0(W, Uy ) 7 Wy + 1y, uy) (4.66)

for all 4y, Wy € Bu (0) with w; # w,. In order to prove (£.66]), we need to assure
that the curvature of Lryc(u15) remains locally bounded. What we mean by this
becomes clear in the following. Let 0 € Lpi.(u1s) be given. For w € Ly (U15)
(in a neighbourhood of ©), 0 # ¢ € ker ¢'(w,u15), 0 # 7 € (ker ¢/ (W, Uy 5))*,
we introduce the following notations: Let Ej ;. := @ + span{t,n} C C¥ ™ be
the two-dimensional (real) affine subspace of C3¥*" spanned by 7 and 7 in the
point w. The intersection Lri (U1 s) N Ewtn can thus be locally parameterized
by a curve v = 7, ;, parameterized by (—¢,&) — Ej;,, s = 7(s) (with some
£ > 0 depending on 1, £, ) with v(0) = 1, i.e. locally, Ly (t1s) N Ey ;5 equals
supp(7y). Without restriction, we may consider « in arc-length parameterization.
The curvature k(s) = ry;4(s) (cf. [I7, 2.8], for instance) of v(s) is then given by
k(s) = [|7(s)|l, where we denote derivatives with respect to s with dots. Due to
the smoothness of ¢ and Lg(t1,5), cf. Lemma [4.2.6] (implying in particular the

continuity of the second partial derivatives of ¢), we get

3K0>0 EI6’>O vweﬁé,({)) vO#fekerqb’(wﬂL(;) vO;«fﬁfLE(kerd)’(u?,ﬂl,(s))L : Hu},fﬁ(‘g) < Ko

for all s in the respective domain of definition of 7, ; 5. Therefore, there is a radius
ro := 1/ko such that for each @ € By (9) and each 0 # { € ker ¢/ (1, U15),0#n €
(ker ¢/ (w, Uy 5))*, the radius r of the osculating circle B, C Ey ;; (cf. [IT, 2.7], for
instance) at @ € Lrye(U15) N By, satisfies r > rg and B, Nsupp(vy.5.5) = {9}
Hence, for all w,w, € Eg("&) and n; € ker ¢ (w1, Uy 5)t, N € ker ¢/ (o, Uy 5) 7T,
there holds: If @y 4+ 1y = Wy + Ny, then necessarily ||7;|| > ro for ¢ = 1,2. This
situation is depicted in Figure 4.1} where the point A corresponds to w; and
the point B corresponds to w,. If we choose k € N in large enough such
that ||n(v,u})|| < ro/2 for all n > k and all o € Lr,(uys), the assertion (4.66)
follows.

On the other hand, we get as well by (4.64) with the compactness of Lp(U14)

VoL e(@rs) 3e>0 TheN Vo © W1 + 0y, Uy ) # Wy + Ny, uy) (4.67)
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B
A
Figure 4.1: Concerning the curvature of Lr (11 5)

for all w; € EE//Q(ﬁ), Uy € Lpic(ting)\ Bo(d). Summing up ([@.66) and (&.67)
yields

VocLny. (ns) >0 TheN Vnzp : W1 + (W, Uy) 7 Wo + 1wy, Uy) (4.68)

for all wy,we € Lpic(urs) satlsfylng either wy,wy € B. (0) with w; # wy or
wy € B//Q( ) We € £R+€(U15)\B ( )

In order to pomt out that the respective ¢ depends on v, we write ¢ = € (0). Now,
Usesn.. @) Bo /(#)/2(0) is an open covering of the compact set Lr(u1,5). Hence,

there exists a finite subcover denoted by (", Eeg/g(@i) and integers kq,..., k&,
corresponding to o1, . . ., Uy, according to (4.68]). Now let Wy, we € Lii(Uy,s) with
Wy # Wy be given. Then there is an ¢ € {1,...,m} such that @, € §€;/2<ﬁi). Now
Uy € Lic(tiys)\ Be (D) or g € By /(0). For both possibilities, iy + 1y, uj) #
Wy + N(ws, UY) holds due to (4.68) with k& := max{ky,...,k,}. This proves
that (4.63) with us := uj is one-to-one. Clearly, this also holds if we restrict
- ) to Br_ uof) i.e. ifwe replace in R+ ¢ by R—eand R+ 2¢ by
Rl Moreover, due to (4.64), we may assume without restriction that for all
0 € Lryc(Us), the Coefﬁment vector A(0,uf) = (M (0,uh),..., A\, (0,a%)) € RY
appearing in n(0,uf) = Y9 Ni(0,uf)N;(0) satisfies )\(v,ué) € U with U as in
(4.61) (otherwise, choose k larger once again).
With the above choice 15 = ¥, we now prove that the restriction of to the
(open) ball Br_.(to,f), i.e

g
ER (1) — ﬁR(m 0 Z 0, us)N;(0),

21The reason why we need injectivity on the slightly larger set Lr(u1 s) will become clear
in the now following proof of openness.
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is an open map@. Let’s temporarily denote the map by ¢. Let O C
Lr_(uy,s) be open. We have to prove that ¢(O) is open in Lg(us). Let w € ¢(O)
and the corresponding™] & € O with ¢(d) = w0 be given. In order to prove
the mentioned openness, we show that there is an n > 0 such that the ball
B, () C Lg(Us) (cf. the notation ([{.65)) is contained in ¢(O).

At first, choose 7' > 0 such that B, (w) C Bg(iigs). Let @' € By () be given.
We consider the map

Lrseliing) » RE, & [|i— ]

Due to the continuity of the euclidean norm on Cf{gﬂ and the compactness of

Lp+c(tys), this map has a global minimum ¢ € Lgi(u1s). Due to , we
even have 0/ € £OR+6(HL§). Let 7 := @' — ¢'. Due to the minimum property
of ¥ € Lpye(Urs), we have i € (ker ¢/ (0, T14))* (since otherwise, there would
be an & € ker ¢/(0',u;5) such that the line through ¢’ with direction Z would
transversely intersect the ball B, (@') and we would thus find a § € EOR+€@175)
with ||§ — @'|| < ||¢" — @'||, a contradiction to the minimum property of ?').
This yields the representation @' = o' + > 7_, A\;N;(0’) with suitable coefficients
A, ..., Ay € R and the normal vectors Ny(?'),..., Ny(?') as before. Because
W' € Lg(Ty), we thus have the equation

gb <@, + Z /\,NZ(@,), ﬂg) = mf(uo).
=1

By the choice of & € N in the above definition u; = @%, we have A € U (with U as
in (4.61)). Hence, due to the uniqueness of the map (v, us) — A(0, us) obtained
by the above application of the Implicit Function Theorem, we get \; = \;(V/, ug)
for all ¢ = 1,...,¢. This shows @' = 0" + > 7, \;(V',us)N;(0') = ¢(?"). Hence,
the image ¢(Lr+e(u15)) contains the ball én’ (w). In order to prove that also the
image ¢(O) of O contains En(w) with some 0 <7 <17/, we show that

30<77§77/ vﬁ/€£R+e(al,6) Vw,egn(w) : QO(@/) = UAJ, — QA), - O (469)

The statement (4.69) and én(w) C @(Lp+e(urs)) imply the desired assertion

En(u?) C ¢(0). So it remains to prove (4.69). Assume that (4.69) doesn’t hold,
le.
Vocnsn et s) Fureby @ PO) =10 A 0" ¢0.

Hence,

VnEN,nZl/n’ EIf)HECR_,_e(ﬂL(;) aﬁ,neél/n(u}) : So(ﬁn) = uA]n A @n ?é 0.

22Note that due to (£.58), ¢ maps Lr_(Ty,5) into £g(Ts).
Z3Note that this o is unique due to the just proven injectivity.
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This yields sequences (wy,), C EOR(%) and (0p)n C Lrye(trs) with lim, o 0, =
w. Due to the compactness of Lri(U15), we may assume that (v,), converges
to some 0’ € Lpi(U1s) (otherwise, consider a convergent subsequence). Due to
the continuity of ¢ proven above, we get

o(0") = lim p(0,) = lim w, = w = ().

n—oo n—oo

Due to the injectivity of ¢ on Lgri(415), we get 0" = 0. In particular, due to the
openness of O, we get 0, € O for all but finitely many n € N, a contradiction to
0, ¢ O for all n > 1/n'. This shows and the desired openness property is
proven. By the way, after we’ve just made use of the injectivity of ¢ on Lg (1),
the reader now sees why we considered Lpi (U ) in the previous investigations
(instead of Lr_.(u14) as formulated in the theorem).
In the next step, we show with the help of the previous investigations that for
us € Isos(ug), there exists a continuous and injective map Lg_(0) — Lg(us)
whose natural restriction EDR_e(O) — Lr(us) is an open map. So let us € fvwg(uo)
be given. We define a path v in the connected set [0, g 5] U I505(ug) from 0 to g
by v := 71 + 72, where v is the line from 0 to g, i.e. supp(y1) = [0, %o 5] and o
is a path in .fgoé(uo) from 1 5 to us (note that fs/o,g(uo) is connected, ¢f. Theorem
. In particular, supp(y) C [Z(T%) is compact. We have proved that to any
Us € supp(7y), there is a neighbourhood V(v5) such that for all ws € V(v5), the
map Lp—(vs) = Lr(ws) is continuous and injective. Now, Uz coupp(y) V (0s) is
an open covering of supp(7y). Due to the compactness of supp(y), there exists
a finite subcover, i.e. finitely many vy4,...,0,,5 € supp(y) with 035 := 0 and
Um,s 1= Us and finitely many continuous and injective maps

@it Lr—c(Vis) = Lr(Vig1,5), i=1,...,m—1

The composition ¢ := @, 10---0¢1 : Lr_(0) = Lg(us) is continuous and injec-
tive, too. Note that this map is well-defined although at first sight, it might seem
unclear whether for i = 1,...,m—1, the image ¢;(Lr—c(vVis)) C Lr(Vit1,5) is con-
tained in the domain of definition Lr_(Vi+1,5) of pir1. Even if o;(Lr_c(V;s)) €
Lp—c(Vit1,), the composition ¢; 11 o ¢; is yet well-defined since in the foregoing
proof, we even proved continuity and injectivity of maps like ¢;,1 on larger sets
Lp+c(v;5). With this convention, one might ask if it is possible that the image of
¢ exceeds the ball Bg(g ). This, however is not possible due to stating
that the level sets in consideration have a distance less than € to one another.
As to the openness property, denote by ¢; the restriction of ¢; to EOR_G(@,(;) and
set Y 1= Q1020 P : EOR,G(O) — ER(%). Since the composition of finitely
many open maps is open, ¢ is open which had to be proved.

In a last step, we show that the image of ¢ contains Lz o (us). The proof is
essentially equal to the previous openness proof. For sake of completeness, we
give it here anyway: Let w € Lr_o(us) be given. Hence, ¢(w, us) = mys(ug) by
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definition of Lr_s.(us). Consider the map

A

Lp-cUn-1s) = Ry, & |2 —wl.

Due to the continuity of the euclidean norm on C%‘JH and the compactness of
Lp—(Um-1s), this map has a global minimum ¢ € Lg_(0;,-15). Due to (4.58),
we even have 0 € EOR_E('ﬁm_L(;). Let n := w — 0. Due to the minimum property
of 0, we have n € (ker ¢/(0,0,_15))" (since otherwise, there would be an & €
ker ¢/ (0, Uy,—1,5) such that the line through ¢ with direction & would transversely
intersect the ball B, /(@) and we would thus find a g € Lro(Dp_1s) with ||§ —
wl|| < ||o — wl|, a contradiction to the minimum property of ). This yields the
representation @ = v+ 7, \;N;(0) with suitable coefficients Ay, ..., A\; € R and
the normal vectors Ny(0), ..., Ny(0) as before. We thus have the equation

¢ <v + Z X V; (9), m) = m(ug).

Due to the uniqueness of the map V(v0,,-15) — U, Us — A(0,v5) obtained by the
previous application of the Implicit Function Theorem, we get \; = \;(v, us) for
alli=1,...,¢. This shows @ =0+ ) 7, \;(0,us)N;(0) and thus ¢, (0) = 0.
We carry out this procedure m — 2 further times, that is, the next step is to
find to the just found o a o' € EOR,E(’ﬁm,Q,(;) such that ¢, 2(0") = 0, hence
Om-1(pm_2(?")) = w. Finally, we arrive at some # € Lg_(0) with () =
(Pm—10---0¢1)(T) = w. Recall once again that & € Bp_(4g ) holds due to
([4.58), i.e. the radius R+e€ is not exceeded in each of the m—1 steps (for instance,
the above ¢’ is indeed contained in Br_.(ig ¢), thanks to (4.58)). Ultimately, the
lemma is proved. [

Large parts of the proof of the foregoing lemma were quite technical. We already
discussed before that the unnatural intersection of the isospectral set with the
ball Br(ug) and possible isospectral potentials in 0 Bg(ug) are the reason for these
quite extensive technical efforts we've just done. In the following corollary, we
want to mention a special case where things turn out to be easier, namely the
case where the isospectral set satisfies a certain boundedness condition. More
precisely:

Corollary 4.2.9. Let ug € L4(F) with smooth Fermi curve be given. Assume
furthermore that the following boundedness condition holds:

E'T>0 ER>0 VueBr(uo) : ]SO(U) C BR(UO). (470)

Then for all Tis € Isos(ug) (with & > 0 associated to R, cf. p. , there exists a
homeomorphism Lr(0) — Lr(ts).
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Remark. The reader might ask whether the assertion of the corollary still holds if
we replace the condition by the weaker assumption that Iso(ug) is bounded.
The answer can’t easily be given, at least not without delving into finite type
theory. Let’s explain what might happen in a worst case scenario if we only require
the boundedness of Iso(ug): Let (up)nen C La(F) be a sequence converging to
up. It might happen that for all n € N, there is a connected component U, of
Iso(uy) such that lim,_, inf,cp, ||v]|12(p) = co. In other words, Iso(u,) might
have unbounded connected components the norm of whose elements uniformly
tends to oo as n — oo such that these components "vanish in L% (F)" as n — oo,
at least if we consider the isospectral set as a subset of L(F). If instead, we
assume , such pathological effects cannot occur.

Proof. Due to (4.70), we may set e = 0 in the proof of Lemma Now, Lemma
4.2.8| implies that for all us € Isos(ug), there exists a bijective continuous map
Lr(0) — Lg(us) which is also open due to the fact that the inverse of a bijective

continuous map from a compact metric space onto some other metric space is
continuous (cf. [I0, p. 233, p. 713 (Aufgabe 158.6)], for instance). ]

We now prove the main theorem of this section.

Theorem 4.2.10. Let ug € LE(F) with smooth Fermi curve, R > 0 and € > 0

be given. Then there is a 6 > 0 and a u; € L&(F) satisfying (4.41) as well as a
continuous and injective map

Trc: (Iso(uy) N Br_c(to)) x Is05(uo) = Iso(ug) N Br(uo).

whose image contains Iso(ug) N Br_sc(ug) and whose natural restriction to the
set (Iso(uy) N Br_c(ug)) X Isos(ug) is an open map.

Proof. Let ug € LA(F), R > 0, ¢ > 0 be given. We choose § > 0 as in the
beginning of the proof of Lemma with the additional requirement that

d > 0 is sufficiently small such that the image h (BR_QE(%J) X {O}) of the

homeomorphic map h (4.43) with respect to the radius R — € (instead of with
4.2.1)

respect to R as in Lemma is contained in Br_.(up). With respect to this
8, we choose a u; € L(F) satisfying (4.41) which is possible by Lemma [.2.7]
Recall that 7so05(0) contains only the element 0 € [*(T'f). We denote by

1 BR(/&O’f) X {0} — BR(’&()J), (’&,O) — 0

the natural isomorphism between Bg(tg, f) X I505(0) and Br(tg,f). We show at
first that the map

a: Iso(uy) N Br_c(ug) = Lr_(0), uwi(h™(u)) (4.71)
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is continuous, injective, that its image contains Lg 5.(0) and that its natural
restriction to Iso(ui) N Br-(ug) is an open map whose image is contained in
Lr_(0).

Due to Iso(u1) N Br_e(uy) € U 7 1505,(v), i(h™"(u)) is well-defined

= WweBR_(lo, ¢
for u € Iso(u;) N Br—c(ug). Moreover, we have a(u) € Lr_(0) by defini-
tion of Lp_.(0), cf. [({56), and h, cf. in particular (4.44). Hence, the map
([4.71)) is well-defined. Continuity and injectivity of the map immediately
follow from the continuity and injectivity of the homeomorphism h~!. Since

h (BR_QE(QOJ) X {0}> C Bpg-c(up) as justified above, the image of a contains
Lr_2:(0). Concerning the openness property, we see that o(u) € 0Bgr_c(to,f)
implies [[ull 2 = [[A(a(u),0)]|z2 = [lh(a(u),0)]e = [la(u)]zo = R — ¢ by def-
inition of v together with the property hs(9,0) = 0 (cf. Lemma . Hence,
a(u) € Lr—c(0) for u € Iso(uy) N Br—e(up). The openness of o now follows since
h is homeomorphic. Altogether, the above claims concerning « are proved.

Now, we construct the map Zr_.. Due to Lemma , for each us € ]A;o(;(uo),

there is a continuous and injective map between Lr_.(0) and Lr(us) which shall
be denoted by ¢z, : Lr—(0) = Lr(us). We now define the map Ty, as follows:

T : (Iso(ur) N Br—(ug)) X Is05(ug) — Iso(ug) N Br(ug)

“ N (4.72)
(uv U5) L h(ﬁp% (a(u)), u5)'

By definition of h, «, ¢gz,, the map Zr_. maps into Iso(ug) N Br(ug) such that
Zr_. is well-defined. We now prove that Zr_, is injective and continuous.

The injectivity of Zr_. immediately follows from the injectivity of h,a, pz;.
We prove the continuity of Zp_.: We note that h, o, ¢z, are continuous. In a
first step, we want to prove the continuity of (0,us) — ¢z, (0). Thereto, we
show at first the continuity of us — @z, with respect to the supremum norm
103, lloo 1= SUDPser, (o) l¢a; (D) (Which is well-defined due to the compactness

of Lr_(0)). Let us € .f;o(;(uo) and ¢ > 0 be given. Without loss of generality,
we may assume that us € V(0) (with V(0) the corresponding neighbourhood of
0 € 1*(T}), compare V(U 4) in (4.63), here with @5 := 0). Otherwise, consider
the composition g, 1= g, _, 00wz, of finitely many maps g, , of the form
as in the end of the proof of Lemma consider each individual ¢y,
and then transfer the continuity result for (9, us;) = wz;, (0) to (0, us) — pz;(0).
Furthermore, we may again assume as before that the basis vectors N; are nor-
malized by ||N;(w)| =1 for all i = 1,...,g. Due to the continuity of the map
(w,uf) +— A, uf) (cf. (4.61)) proved in Lemma for each o € Lr_.(0),
there exists a neighbourhood U(0) C Lr_(0) of v and an n; > 0 such that for
all w € U(v) and all uf € Is0s(uo) with [us — wsllizrs) < 7m0, there holds (with
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| - || denoting the euclidean norm in C24*"), cf. (£.63),
g
o, (@) = ay (@) < > (ol Ts) = Ao, )| - | Ni(@)]| < €.
i=1

Since Uper, .0y U(0) is an open covering of Lr_(0), there exists a finite sub-
cover due to the compactness of Lg_.(0) denoted by Uy, ..., U, as well as corre-
sponding positive numbers ny,...,n,. Set n := min{ny,...,n,}. Again due
to the compactness of Lr_(0), the supremum supgez, (o) [l0a;(9) — @ (0)]]
is attained as a maximum at some W = w(us) € Lr_(0) (depending on uj),
e |lpz, — vl = llwa, (@) — @ (w)||. Hence, for all ug € Isos(ug) with
|5 — wgllizrsy < m, there holds

s — @ lloo < Z i (ts), tus) = Ni(d (), tg)] - || Vi () || < €.

This proves the claimed continuity of us — ¢g,. Therefore, together with the
continuity of ¢z, proven in Lemma m for each (9,75) € La_o(0) X Is0s(up)
and each ¢ > 0, there is an > 0 such that for all (¢/,u}) € Lr_.(0) x I505(uo)
with o' € B,(v) and 4§ € B,(us) (these balls have to be considered in their

respective norms, of course), there holds

s (9) — g (V)| < llepws (0) — oy ()] + llopa,; (8) — o ()] <
< llspa; (0) — @i ()| + [l — e lloo < €

(where || -|| denotes the euclidean norm on C¥™" as before). Therefore, (0, Us) —
©u, (V) is continuous. Together with the continuity of h and «, the continuity of
Ir_. follows.

Concerning the proof of openness, we have already shown that

a(Iso(uy) N Br_c(ug)) € Lz_.(0). Since the maps o and h are open, this im-
plies together with the openness of Lx_.(0) — Lg(is) for all s € 1505(u0) (cf.
Lemma and the well-known fact that the union of open sets is open (in our
case: Uz co, ¥u;(O2) is open for open sets O; C I505(g), O3 C Lp_(0)) that
the restriction of Zg_. to (Iso(uy) N Br—(ug)) % I/VSO(s(UQ) is an open map.

At last, we prove that the image of Zr_. contains Iso(ug) N Br_3c(ug). So let
u € Iso(ug) N Br_se(up) be given. Since the map h : Bp_(Ug ) X IA_/SO(;(U()) —
Uﬁem I'sos,,(up) is homeomorphic by Lemma4.2.1|and so(ug)NBr—c(ug) C

Uity [9050(uo), there s a (8,75) € Br_(ito,5) x Is0s(ug) with h(s, T) = u.
Due to u € Iso(ug) N Br_3(up), it follows © € Lr_3.(Vs). By Lemma | there
is a 0" € Lr_2(0) with ¢z, (?') = 0. By the analogous property of « shown at
the beginning of this proof, there is a w € Iso(u1) N Br_c(ug) with a(w) = v’
Hence, ¢z, (a(w)) = 0 and h(pg (a(w)),vs) = u. Therefore, u is in the image of
IR—e- ]
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Again, we consider the special case with boundedness condition as in Corollary
yielding a more handsome formulation of Theorem [4.2.10]

Corollary 4.2.11. Let ug € LE(F) with smooth Fermi curve be given and assume
that the boundedness condition (4.70) holds, i.e.

350 Fr>0 VueB, (uo) Iso(u) C Bg(u).

Then there is a § > 0 and a uy € L(F) satisfying (£.41)) as well as a homeo-
morphism

T : Iso(uy) x Isos(uo) — Iso(uo).

Proof. At first, due to (4.70)), we may again set ¢ = 0 in Lemma and we may
assume that both Iso(ug) and Iso(u;) are contained in Bpr(ug). Hence, (4.72)
reduces to

T : Iso(uy) x Isos(ug) — Iso(ug)
(u7 ﬁé) — h(gp% (a(u)), at;)?

where h, a, g, are as in the proof of Theorem [4.2.10| (with ¢ = 0), i.e. we have

a : Iso(uy) N Br(ug) = Lg(0) and ¢z, : Lr(0) = Lr(us), us € Isos(ug). This
time, also ¢y, and a are homeomorphic, cf. also Corollary 4.2.9 Continuity and
injectivity of Z are proven as in Theorem [£.2.10] The additional assertion in
Theorem (applied to € = 0) that the image of Z contains [so(ug) implies
surjectivity of Z. The continuity of the inverse Z~! follows once again from the
compactness of Iso(uy) X Isos(ug) (recall Corollary and the end of the proof
of Lemma where the compactness of [/;05<u0) has been proved) and the
bijectivity and continuity of Z (cf. [10, p. 233, p. 713 (Aufgabe 158.6)]). O

4.3 The isospectral set
In this section, we finally want to determine the isospectral set
Isop(ug) = {u € L3(F) : F(u) = F(ug)}

we have already introduced at the beginning of Chapter[3] It remains to prove the
equivalence m(u) = m(ug) <= F(u) = F(up) between moduli and Fermi curves.
Before we prove this equivalence, we consider at first the special case that ug
is a finite type potential as defined in Definition On the other hand, we
also go back to the more general setting that the appearing potentials may be
arbitrary complex-valued potentials which don’t need necessarily to be real. By
Definition [2.6.1] we see that the moduli only depend on the corresponding Fermi
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curve X := F(u) (still considered as smooth) of some given potential u € L?(F)
and not explicitly on w itself. Thus, we can consider the map

Ay velr*\{0}

which assigns to each Fermi curve X its moduli, namely the contour integrals
—167° [, kidky over the A-cycles of X. The arising question is: Which topolog-
ical properties does the space the curves X reside in, i.e. the domain of definition
of the map , have? Let’s denote this space by M. We can endow M with
a topology such that M is a complex manifold. In section 3.2 (Deformations
of complex Fermi curves) of the work [27], this procedure has been carried out.
There, the elements of M had to fulfill certain conditions, in [27] denoted by
"Quasi-momenta (i),(ii),(v)" together with the condition that all elements of M
have the same fixed arithmetic genuﬁ In [27, Proposition 3.7| or as well in [19,
Lemma C.19], it has been shown that M is a complex manifold with the property
that the tangent space Tx M for X € M is isomorphic to the space of so-called
regular 1-form§?”| on X. The latter assertion, namely that we can identify Tx M
with the space of regular 1-forms on X is in fact the crucial statement we will
use in the following. For deeper background information, we refer the reader to
the mentioned works [19] and [27].

In Theorem we showed that there exists a set of holomorphic 1-forms
dual to the cycles A, for v € I'y/o. Since we temporarily consider the case of
(complex-valued) finite type potentials, i.e. all elements of M have finite genuﬂ
say g, Theorem [£.1.3] even yields a dual basis of the complete space of holomor-
phic 1-forms on the curve X (which shall be denoted by (X)) since Q(X) is a
finite-dimensional vector space. Let A;,..., A; be a suitable numeration of the
corresponding A-cycles. The derivative of the map

M:M-—=C% X+ (—16#”/ /ﬁdkg)

:17“'79

24We use the common convention that the infinitely many double points far outside of some
compact set that any finite type curve naturally has by definition, don’t contribute to the
arithmetic genus since otherwise, any finite type Fermi curve would have arithmetic genus
equal to oo.

ZFor the proper definition of a regular 1-form, see for instance [27, p. 34| or [19, Definition
3.4]. We won’t deal with this definitions. We only mention that in the case of smooth complex
curves, the space of regular 1-forms equals the space of the well-known holomorphic 1-forms. In
other words, the concept of regular 1-forms is a generalization to complex curves which might
have singularities. Since we consider smooth Fermi curves, the concept of holomorphic 1-forms
suffices for us.

26Since we consider sufficiently small deformations of a given smooth Fermi curve, we may
assume that the elements of M are smooth as well. Hence, we don’t need to distinguish between
geometric and arithmetic genus (for the definitions, cf. [19, p. 62], for instance) and thus simply
speak of the genus of the respective curve.
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at some (smooth) X € M can be represented as
dM|x : Q(X) — CY

due to Tx M = Q(X). We want to show that dM |y is a vector space isomorphism.
In ([4.33), we deduced that for u € L*(F) (here finite type), (V,W) := (1, —%)
and all w € L?(F), there holds

d 1
% (/Ay pldp2) ’u(w) - Z/AV W(‘/, W,O,'LU)

for all of those finitely many v € I'* for which the corresponding handle is

not closed. Up to the factor }1 and up to the isomorphism between k- and p-

coordinates (compare the end of the proof of Corollary 4.1.7), dM|x is virtually

equal to the map
W (/ w) (4.74)
n n=1,...,g

-----

since due to Theorem the space (X)) is generated by elements of the form
w(V,W,0,w), w € L*(F) (here with X := F(V,W)/T'*) because firstly, the dual-
ity relation [ 4, Wk = dix in Theorem obviously implies linear independence
of the wy, k =1,...,¢, and secondly, the dimension of Q(X) (as a vector space
over C) on a complex curve X is equal to the genus g of the curve (cf. [0, Remark
17.10]). Now, we show that is a vector space isomorphism. We choose a
basis of holomorphic 1-forms (wi,...,w,) with the duality relation | 4, Wi = 0ij
whose existence has been shown in Theorem[£.1.3] Let (a1, ..., ay) € CY be given.
Choose w := >"7_, a;w;, we get <fAn w) = (ay,...,ay) by the duality re-

77777

lation. This shows that (4.74) is onto. Consider two forms w := >"7_; a;w; and
w =y aw; (with coefficients a;, a; € C) such that

/w:/ w foralln=1,...,g9.
Ap An

Then again due to the duality relation, we get
g
Viﬂ Z/ (ai—ﬁi)wi :0<:>VZ:1 an—'dnzo. — w=w.
=1 An

This shows that is one-to-one. The linearity of is clear. Thus,
(4.74]) is a vector space isomorphism. Due to the Inverse Function Theorem (cf.
[23, p. 142], for example), the map M is locally invertible, in particular locally
one-to-one. Hence, we have proved the following lemma.
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Lemma 4.3.1. Let uqg € L*(F) be a finite type potential. Then there erists a
tubular neighbourhood T of F(ug) in C* such that for all w € L*(F) with the
property that F(u) has the same genus as F(ug) and F(u) C T, there holds:
m(u) = m(ug) implies F(u) = F(up).

Now, we prove the main theorem for generic real-valued potentials (not necessarily
finite type).

Theorem 4.3.2. Let u € Li(F) be a given potential with Fermi curve F(u).
Then there is a tubular neighbourhood T of F(u) in C* such that for allv € L(F)
with F(v) C T, there holds the equivalence

m(u) = m(v) <= F(u) = F(v).

Proof. The implication "<=" is obvious since the moduli depend, by definition,
only on the Fermi curve, not on the potential itself. It remains to show the other
direction "=", that is, if the moduli of two admissible potentials (in the sense
mentioned in the theorem) are equal, then the corresponding Fermi curves are
equal. Let u € LA(F) and consider a suitable tubular neighbourhood 7" C C? of
F(u) and the corresponding neighbourhood in the space of potentials U := {v €
L2(F): F(v) C T}. This neighbourhood U can be chosen as open: This is clear
if we intersect 7 with some compact set K C C2 Due to asymptotic freeness (cf.
[19, Theorem 2.35]), however, this also holds for the entire Fermi curve. More
precisely, by choosing K sufficiently large and for r > 0 sufficiently small, there
holds F(v) C T for all v € B,(u).

Now let v € U satisfy m(u) = m(v). We construct canonical finite-type sequences
(tn)nen and (v, )nen converging to u and v, respectively, as n — oo, as it has been
done in Lemma [4.2.7l These sequences fulfill due to m(u) = m(v)

R my(u), vel* |v|<n () = my(u), vel* |v|<n
o 0, vel* |v|>n’ e 0, vel* |v|>n

for all sufficiently large n € N. There is an N € N such that u,,v, € U for
all n > N. Since m(u,) = m(v,) for all n > N and LZ(F) C L*(F), there
holds F(u,) = F(v,) for all n > N by Lemma Due to continuity, we get
F(u) = F(v) by performing n — oo. More precisely, in [I3, Theorem 4.1.3],
it has been proved that Fermi curves are locally described by the zero set of
a function holomorphic in k£ and continuous in u. Continuity of roots (cf. [3]
Lemma 3.4.11(1)]) yields continuity of u — F(u) N K, where K C C? is some
compact subset. Due to asymptotic freeness (cf. [19, Theorem 2.35|), F(u,)
converges to F(u) (as n — oo) also in C*\ K proving continuity of u — F(u).
The theorem is proved. O

This theorem shows Isop(ug) = Iso(ug) for ug € LE(F). Hence, we may replace
Iso(ug) by Isop(ug) in Corollary |4.2.11| yielding the desired parameterization of
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the isopsectral set in the case with boundedness condition. In the general case of
unbounded isospectral sets (Theorem 4.2.10)), we may replace Iso(ug) by Isor(ug)
as well but we only get a weaker result, namely that of Theorem [4.2.10



Chapter 5

Outlook

In this chapter, we want to illustrate some perspectives for further research based
on the results of this work. These perspectives also include attempts we already
tried but unfortunately remained open since we could not find satisfying answers
after having spent quite a long time of research on them.

In our work, we finally considered the isospectral problem for real-valued poten-
tials with smooth Fermi curve. A natural generalization would be to consider
arbitrary complex-valued potentials ug € L*(F) whose Fermi curve F'(ug) might
have singularities. A crucial step in which we made use of the smoothness of the
Fermi curve was the proof that the map u — my(u) into the first finitely many
moduli is a submersion, cf. Theorem In the proof of Lemma [1.2.8 we
used this to apply the Implicit Function Theorem to the equation (4.60)),

¢ <w + ) ANi(), azg) = my(u),

eventually yielding the map Lri(t15) = Lrio(Us) (4.63). Thanks to the sub-
mersion property of the moduli proved in Theorem , the rank of %CI)\ A=0
(with the map ® as in the proof of Lemma was equal to g which made
the application of the Implicit Function Theorem possible. In the case of singu-
larities, we have dimg(ker ¢ (9,u;5))t < g instead of dimg(ker ¢/(9,u;5))t =
g in the proof of Lemma So in general, there is a k > 0 such that
dimg (ker ¢/ (0, U1 5))* = g — k, where k can be considered as the number of sin-
gularities. We have proved in this work that m,(u) =0 <= ¢, =0 for all v € I’}
(cf. and Lemma [3.2.2), where the latter condition means that the cycle
A, is degenerated into one point. If one was able to show the same result for
vel;=1I" \ I'}, also the singularities in the compact part could be character-
ized by m, = 0 for the respective v € I';. By neglecting the k£ moduli satisfying
m,, = 0, one can define -similarly to the map ® (4.59)- a map

g—k
D ‘CRJre(ﬂl,é) xU — Rgikv ({]7 )\) = ¢ (ﬁ + Z )\’LNZ(@)v ZL/1,5> )

i=1
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where this time U C RI~F (instead of U C RY as in the proof of Lemma .
The Implicit Function Theorem can be applied again since %‘I)‘Azo has full rank
g — k. But there is one shortcoming: By neglecting the moduli satisfying m, = 0,
we have lost the control over them. Whereas in the later part of the proof of
Lemma all other moduli m,, v € T} can be forced to be equal to m(uo),
we can’t say anything about the just neglected moduli. Will they remain equal
to zero (as desired) or not? One needs a condition which enforces those moduli
to remain zero. A first step could be to show that m,(u) = 0 implies that
the derivative dm,|, vanishes, too. The conjecture that this could be true is
motivated by the asymptotic model moduli m, which fulfill this condition. But
here, we are in the compact part of the Fermi curve so that the model moduli are
not defined. So one needs to find another way out which might require methods
of finite type theory.

Let’s discuss the generalization to complez-valued potentials, i.e. we have to drop
the conditions 4(v) = @(—v) for all v € T* as well as @, = @_, for all v € I}
for Fourier coefficients and perturbed Fourier coefficients. Already in Theorem
the first problems occur for complex-valued potentials: The estimate for
the critical point ¢, analogous to (2.82) would be

1
G| < (|| + Ja—y]) -0 (|_V’) , as|v| = 0. (5.1)

In the further course of the proof of Theorem there appears an estimate for

the term %;1'(%”)72. In the complex case, due to (5.1)), this term would be equal to

2
gzz,l : CI/,Z o 1 (|ﬁu‘ + |7171/D2 o 1 ’uy| ‘ﬂ71/|
) ¢ (W) s (W) (\/ i\ Tl ) |

as |v| — oo, which cannot be reasonably estimated. So it’s quite doubtful whether
the assertion of Theorem [2.5.9| still holds for complex-valued potentials. During
our investigations of complex-valued potentials, i.e. before we restricted ourselves
to real-valued potentials, quotients as |4, |/|t_,| appeared several times. Since
in the complex case, %, and %_, have to be considered as independent, there is
no evidence why quotients like |1,|/|%_,| should remain bounded or even become
sufficiently small as |v| — oco.

Another problem induced by complex-valued potentials has already been dis-
cussed at the end of Section For complex-valued uy € L*(F), the corre-
sponding asymptotic model isospectral set is given by

[505(’&0) = XVGFE/U{(eit V 710,1/ : 710,71/7 eiit \V 710,1/ : [LO,*V) ‘te C}

Due to t € C, the elements of fvwg(uo) will eventually leave the domain in which
the perturbed Fourier coefficients are well-defined. In fact, this is the same prob-
lem we had to deal with in Section [4.2] namely in Theorem [4.2.10] where we
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intersected Iso(ug) with balls Br(ug) and had to choose to each R > 0 a differ-
ent 6 > 0. An analogous procedure could also be carried out for ];/C)(;(UO) if g is
complex-valued. The corresponding results are then weaker in the same sense as
the assertion of Theorem is weaker than the homeomorphism assertion of
Corollary

This immediately leads to a next open question: Is it possible to choose a uniform
0 > 0 for the entire isospectral set? If this question can be answered with "yes",
there is hope that a homeomorphism as in Corollary also exists if I'so(ug) is
unbounded. A first step to solve this problem would be to extend the perturbed
Fourier coefficients along Iso(ug), i.e. one has to show that there exists a 6 > 0
such that the Fourier coefficients (ay),,epg exist for all u € Iso(ug). If Lemma
could be globalized in this sense, we would have |, | = &|v[*m,, (uo)(1+O(1/[v

as |v| — oo for all u € Iso(ug), where the estimate by the error term 14+ O(1/|v]|)
holds uniformly in u € Iso(ug). This boundedness property of the perturbed
Fourier coefficients along Iso(uy) would be an important step to extend them
beyond their actual domain of definition. The arising question is now: Does the
above error term 1+ O(1/|v|) hold indeed uniformly on Iso(uy)? If we take a
look into the proof of Lemma this question can be largely reduced to the
question whether the convergence

lim H—Ai,,kJrk:i( 0),u)|[=0

[v|—o00

in Lemma [2.2.7 holds uniformly in u € I'so(ug). If one could answer this question,
one would have achieved an essential step towards a possible choice of a uniform
d > 0 in Iso(uy).

Besides the ansatz of determining Iso(ug) by a Cartesian product Iso(u;) X
I/Vso(;(uo) as in Corollary there would also be the possibility of imitating
the procedure of determining Iso(ug) if ug is a finite type potential. In finite
type theory, one assigns a divisor (cf. [0, 16.1]) D(ug) to the given potential
ug, where D(ug) is the pole divisor of the eigenfunction z — (k,z) of the
Schrodinger operator at k£ € X normalized by ¢(k,0) = 1, k € X, where X is
the compactified normalization of F'(ug), cf. [19, Section 3.2], i.e. the support of
the divisor D(ug) is given by

suppD(ug) = {k € X : there is an eigenfunction 0 £ ¢(k,-) of — Ay + g
with eigenvalue A = 0and ¢ (k, 0) = 0}.

In [19, Lemma 4.13], it has been shown that a Divisor D on X which is the pole
divisor of the normalized eigenfunction associated to some (finite type) potential
u € Iso(ug) necessarily satisfies the linear equivalence relation

D+oD)2K+QT+Q, (5.2)
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where K is the canonical divisor on X, ¢ the holomorphic involution well-known
from Section and QT and )~ are some marked points at infinity which yield
the two-point-compactification of X. In finite type theory, one solves the isospec-
tral problem by parameterizing all divisors on X fulfilling this linear equivalence.
Since in the finite type case, there exists a 1-1-correspondence between divisors
on X and potentials u € Iso(ug), the isospectral problem can be solved by pa-
rameterizing those set of divisors. So far the finite type case. If we want to
transfer this to infinite type potentials, one has to find a relation analogous to
(5-2). We expect a relation similar to that of [28, Theorem 3.6, namely
1

D+a(D) =+ (7).

where b is the divisor of branch points of the covering X — C, k = (ky, k2) — Ky
and (¢, 1), is the L?-scalar product of the eigenfunction ¢ with the correspond-
ing dual eigenfunction ¢ (i.e. the eigenfunction corresponding to the transposed
Schrodinger operator). Analogously to Chapter one would have to do an
asymptotic analysis for the divisor points in the asymptotic part of the Fermi
curve. These points are expected to reside within the excluded domains. Again,
the model Fermi curve introduced in Section should serve as a good approxi-
mation where the divisor points of the asymptotic part can be computed easily.
The computation of the divisor points of the actual Fermi curve will require per-
turbation theory once again as it has been done in Chapter

An important step would then be to show that there exists an isomorphism be-
tween potentials and divisors. This leads to another interesting question we met
during our research: Does there exist a local isomorphism between potentials and
divisors? Here, "local" means a local neighbourhood in the L2-space of potentials
(and not restricted to some isospectral set as we’ve just explained in the finite type
case). We tried to answer this question in the following Dirac setting, i.e. instead
of the Schrédinger operator, we consider the Dirac operator l~)(V, W,p1) (4.3)):
Let (V,W) € L*(F) x L*(F) be given and (py,(V, W), pan(V,W))ner= be the
corresponding sequence of the divisor points, i.e. (py,(V, W), pan(V,W)) € C? is
the n'" pole of the normalized eigenfunction 1 of to the eigenvalue —por.
Let Q: (L*(F) x L*(F))* — C be the symplectic form already well-known from

(4.19). Consider for n € T'* the gradients 0p;, = 8?";1{4”/) € L*(F) x L*(F),

dpan = Z;?";—%) € L*(F) x L*(F) as elements in L?(F) x L*(F) as in [23, p. 127].
The arising question is whether the dp; ;, 0p2;, ¢ € I'* can serve as so-called Dar-
bouzx coordinates of L*(F) x L*(F), cf. [14, Theorem 5.1], [28, chapter 6]. More

precisely, we are interested in the question whether the following holds:
Q(p1,i,0p15) =0, Q0p1,i,0p2j) = Kibij,  Q0pas,0pe;) =0, i,j €I,
(5.3)

where r; # 0 are some constants. The verification of these relations would be an
important step in order to prove that (V, W) — (p1,(V, W), p2n(V,W))per- is a
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local isomorphism. In |14l Theorem 5.5], this problem has been solved for the
sinh-Gordon equation. In order to gain a first insight into whether such Darboux
coordinates also exist in the Dirac case, it makes sense to firstly consider special
cases where everything can be computed explicitly. The easiest case is clearly
the free case V.= W = 0. Here, all singularities of the corresponding Fermi
curve are ordinary double points and these are exactly the divisor points. The
eigenfunctions can be written down by explicit formulas. In this case, we verified
(5-3). In a next step, we considered the more general case for (V, W) # (0, 0) that
all divisor points are contained in the set of points p = (p1,p2) € C? where the
kernel of lN)(V, W, p1) + mpy is two-dimensional (which, of course, is still not the
generic case since divisor points may also be smooth points of the Fermi curve).
In particular, this case includes the free case V = W = 0. By choosing bases
{¢/; 9"} of the respective two-dimensional eigenspaces as well as corresponding
bases {¢, ¢"} of the dual eigenspaces (here, the dependence on the index i € '
is suppressed), we could -with a suitable normalization (namely 1) = (11, 13) —
11(0) +12(0)) and by making use of the fact that (py ,,(V, W), pon(V, W))per~ are
divisor points- compute dp; , 0p2, in terms of components of the eigenfunction
and the dual eigenfunction. For instance, we computed for n € I'*

_ (C%cbgwl)
%(bl%

6, 820

|p= (01, (VW) 920 (VIIV))

where ¢ := iy + & (with & as in (4.3) and ¢ =" — ¢/, ¢ := ¢/ + ¢".
In order to verify the first identity Q(dp1m,dp1,) = 0 in (5.3, one has to show
that for all m,n € I'*

/(¢2,m¢1,m¢1,n@/}2,n - ¢2,n1/)1,n¢1,m¢2,m)d2$ = 0. (5~4)
F

Following the idea of the proof of [I4, Theorem 5.5|, we tried analogously to [14]
Lemma 5.2, Lemma 5.3] to deduce differential equations for the components 1)
and ¢ in order to express the integrand of the integral in as a total variation
of some periodic function which would then imply (5.4). In contrast to the sinh-
Gordon case, in our setting, not all derivatives of 1y, s, @1, @2 can be expressed
in terms of these components due to the look of D(V, W, p;): One sees directly by
that 0v; and O1), can be expressed by the components of ¥ by computing
(15(V, W, p1) +7p2) = 0. For 0i, and vy, however, this differential equation is
not able to provide analogous expressions. Although we made different kinds of
ansatzes, we could not succeed in expressing the mentioned integrand as a total
variation. In our eyes, this lack of derivative identities in the Dirac setting (a
problem which doesn’t occur in the sinh-Gordon setting) is the crucial point why
we didn’t succeed. On the other hand, we couldn’t disprove either so that
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the question whether there exist Darboux coordinates in the Dirac case is still
open. Maybe one needs other tools we didn’t see so far.

These were the open questions (we have already been thinking about ourselves)
that could be interesting to investigate in the future.

Two other perspectives to continue the isospectral problem (which we, however,
haven’t thought about ourselves, yet) would be firstly, to generalize this work to
higher dimensions (the obvious next generalization would be to consider three-
dimensional Schrodinger operators which might also be the most important case
considered from a physicist’s point of view) and secondly, to consider the isospec-
tral problem for Bloch varieties, cf. (L.4), i.e. to determine the set

Isog(ug) :== {u € L*(F) : B(u) = B(ug)}

for a given ug € L*(F). With these suggestions, we want to conclude this work.



Appendix A

Two lemmata about Dirac operators

In this appendix, we give the proof of [27, Lemma 3.2] (denoted in the following
as Lemma since this lemma turned out to be a very important tool for our
considerations in Section Its proof is essentially taken from the respective
proof in [27]. However, we supplemented the proof by additional computations
in order to make it more comprehensible to the reader. Thereafter in the subse-
quent Lemma, we will show an analogon to Lemma [A.1f(ii) for Schridinger
potentials.

Lemma A.1. Let (V,W) € L*(F) x L*(F) and let g be a meromorphic function
with finitely many poles on some open neighbourhood U of F(V,W)/T'*. Then
there exists a meromorphic function Agmg (p1) from the complex plane p; € C into

the bounded operators from the Banach spaces LP(F)x LP(F) into L? (F)x L¥ (F)
for all 1 < p/ < p < oo with the following properties:

(i) For all (ny,n2) € Z* and all py € C, the following identity is valid:

Azmg(pl)wny%Jrnzk = wnlf%JrnzfiA;mg(pl + nl)'

(ii) The commutator [A5™(py), D(V, W, p1)] (with D(V, W, p,) defined in [#.3))
does not depend on p1 and there holds

, ~ 0 —
[A;mg(pl), D(‘/, W,p1)] — ( vy 526251 )
Fo+if1
with some functions vy, w, € L*(F). In particular, the commutator is equal
to 2DVWp1) () )
av,w) Vg, Wq)-
(iii) For all v, dw € L*(F), there holds (4.20), i.e.

Q((6v, dw), (vg, wy)) = Z resc(g - w(V, W, dv, dw)),
ceu

166
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where Q0 denotes the symplectic form defined in (4.19) and w(V, W, dv, ow)
the holomorphic 1-form defined in (4.18)).

Proof. 1f g is a linear combination of two functions g, go with associated functions
A9 and A9 fulfilling conditions (i)-(iii), then the linear combination A3 of
the two associated functions has the required properties. Hence, we may assume
that g has a pole at one point [k'] € F(V,W)/T*, where [k] :={k+v : v € I}
for k € C% As in the proof of Lemma let F(-) denote the local sum of
g - P (with P as in (4.10)) over all sheets of F/(V,W)/I'* considered as a covering
space over p; € C which contains the element [k'] [} ¢f. the proof of Lemma
for a more precise explanation of the construction of F. By definition, this
is a meromorphic function from some neighbourhood of p| into the finite rank
operators on L*(F) x L*(F) (recall the relation k = p;& + paf between k- and
p-coordinates as in Section . Therefore, the singular part p; — F"9(p;) is
a meromorphic function on the whole plane p; € C. We claim that the infinite
sum

Azing (p1> = Z zﬂm/%+n2f€|:smg (pl + nl)w*mg*nzk

nez?

converges in the strong operator topology. By construction and due to |27, The-
orem 2.3|, the operator-valued function F*"(p;) is a finite sum of operators of

the form y +— <<$, >2>> (;m —p’l)*l@g with elements $ and QZ of the Banach spaces
Ngcoo LU(F) x LU(F) C L*(F) x L*(F) and with the bilinear form ((-,-)) as de-
fined in (4.11)).

Forl €N, ¢, € (0,1) and p; — p} € C\ Z, we now consider the series

di(p1, 1) =Y _(p1 = p +n) " exp(2ming).
neL

For [ > 1, the series obviously converges due to the convergence of > n~! for
[ > 1. So let’s consider the case [ = 1. We claim that

2mi exp(2mi(p] — p1)q1)
1 —exp(27mi(py — 1))

di(p1,q1) = for all ¢, € (0,1), py —p, € C\Z. (A.1)

Thereto, we have to show that the n** Fourier coefficient of the Fourier decom-
position of the right hand side of (A.1)) (considered as a periodic function in ¢;)

LCompare [27, Remark 2.19]: "In the sequel we shall meet quite often complex spaces, which
are locally biholomorphic to finite sheeted coverings over open subsets of C™. If we restrict these
coverings to the preimage of small open balls, then different sheets without branch points are not
connected with each other. However, in arbitrary small neighbourhoods of branch points several
sheets are connected. In the sequel we shall call those sheets, whose restriction to arbitrary
small neighbourhoods of a given element contain this element, the local sheets which contain
this element.”
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equals 1/(py — p} +n). We compute with ¢, (q1) := exp(2ming)

1 1
/ exp(27mi(p] — p1)q1)V—n(qr)dq = / exp(2mi(p; — p1 — n)qr)dq =
0 0

1
= exp(2m exp(—2min) —1).
~ S (2RI — ) exp(—2in) 1)
=1
This implies
- (Qm' exp(2mi(p, — p1) -)) n) = exp(2mi(py —p1)) — 1 _
1 — exp 2mi(p) — p1) (1 —exp(2mi(py —p1)))(Py —p1 — 1)
1
Cop—pi

which proves the claim. Moreover, we have

) exp(2min n ex 27rm
27”(]?1—]?'1)2 p( Q) Lon Z p( Q) _

)i )i
nez (b1 —p1+n) nEZ —ntn)
exp(2ming )
=27 = 2mid
Z ) 1(p1, 1),
nGZ
which implies the following recursion equation
. ad ) .
2mi(p1 — py)diea(pr, 1) + Ol ) _ 2midy(p1, 1)- (A.2)

oq

We now define d;(p1,q1) := exp(2mi(py — p})q1)di(p1,q1). We have the following
identitiy of derivatives:

8cAl;+1 (p1,q1) Ody11(p1, q1)
oq oq

A2, . . o~ 0 [T~
271 exp(27m(p1 —pi)%)dl@h%) = 2W@dl(ﬁhQ1) = 27”%/ dl(pl,r)dr~
1Jo

= exp(27i(p1 — pl)qr) ( + 2mi(p1 — ph)dis1 (p1, éh)) =

Hence, (Zﬂ(pl, q) — 2mi f0q1 c?l(pl, r)dr is constant with respect to ¢;. Therefore,

5 o set g1 =
di1(p1, q1) — 27Ti/ di(py, r)dr = di(p1,0) =
0 (A.3)

1 ~
st =1 exp(2mi(p1 — py))di(p1,1) — 27”'/ di(py,7)dr.
0

Due to the Riemann-Lebesgue Lemma [26, Theorem IX.7] for [ > 1, the functions
d;(p1, q1) are continuous and periodic with period 1 with respect to ¢;. Therefore,

di(p1,0) = di(p1,1). This yields together with (A.3))

1
di(p1,0) = exp(2mi(p; — p}))di(p1,0) — 27rz'/ dy(py,7)dr
0
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27i
exp(2mi(p1—p]

which implies d;(p1,0) = ! folgl(pl,r)dr. Finally, again due to

A3).

~ Qo 1 L
di41(p1, 1) m (/0 dy(p1,r)dr + exp(2mi(pr — p)) — 1 /0 dl(plﬂ”)d?")
(A.4)

Since cjl(pl, q1) = 2mi(1 — exp(2mi(p] — p1))) 7}, of. (A1), the functions c?l(pl, q)
are thus polynomials with respect to ¢; and (exp(2wi(p} — p1)) — 1) "2y (p1, @1)-
In a next step, we show that the unique solution of (A.4)) is given by the generating
function

-175 B 2mi(1 — exp(27i(p} — p1))) "' exp(2migyt)
ZN:t di(p1, q1) = 1 — (exp(2mi(py — p})) — 1)~ L(exp(2mit) — 1) (A.5)

The recursion formula (A.4) is an equation of the following form with correspond-
ing parameters a,b,c € C

fr(@) =a ( /0 "Ry + b /0 1 fl(r)dr) with fi(z) = ¢, (A6)

This yields with the ansatz of a generating function F(t,x) := Y 2t fii1(2)

itlflﬂ(x) =a <§ /Ox filr)ttdr + bi/{)l fl(r)tldr> =
= F(t,7) = filz) = a <t /0 F(t,r)dr + bt/ol F(t, r)dr) .

——

=cC

cexp(atz)

A solution of this integral equation is given by F(t,z) := T b(exp(at Ty SiDCE
—1 -1
uls. c(exp(atx) — 1) bt c(exp(at) — 1) _
at(1 — b(exp(at) — 1)) at(1 — b(exp(at) — 1))
_ cexp(atr) — c+ cb(exp(at) —1) cexp(atx) .
B 1 — b(exp(at) — 1) ~ 1—b(exp(at) —1)

Under the restriction that F' fulfills the ansatz F(t,xz) = >_,° t' fi11(x), this solu-
tion is unique since fi(z) is for all [ € N uniquely defined by provided that
a,band ¢ = fi(z) are given. By using the respective parameters a, b, ¢ in in
our case, cf. (A.4]), the representation (A.5) is thus proven. This representation
shows that the functions d;(p1, ¢1) may be considered as meromorphic functions
with respect to p; € C whose values are bounded functions of ¢; € [0,1]. We will
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prove the convergence of the infinite sum in A;ing (in the strong operator topol-
ogy) by using Fourier decomposition. To this, we recall that due to the definition
of Fourier transformation and the inverse Fourier transformation, namely

f(n) = / e f(@)dr,  f(x) = 3 e f(n),  with f € I3(R/Z),

nez

there holds for f,g € L*(R/Z)

S e fn)g(n) = / €27 f (n)e2int g ) dt = / flz —t)g(t)dt. (A.T)

nez nez

Hence, for ¢; € (0,1) and ¢, € R/Z, there holds with ¢ := (¢1, ¢2) and the identity
> onez €xXP(2min(gz — ¢3)) = (@2 — @3) (%)

S i <<¢ Yomnsi ) )

q1,492) =
(pl _p1+n1) ( ! 2)

(TL1 ng)EZQ

Z @Dm f%-i-nz/%(

(n1,n2)€Zz

2O )he) Yy e

nez

ZZ/ ¢3 l w nik— nzfﬁ( )Xz(q )dq

(7 —p1+n1

—

2 1
—2mingy < (A d U
ZZ 3-i(d}, qo)e Xi(q1, g2)dqy
(p1 — p1+n i1

:C(F*)¢(Q)Z ™M F(dy(p1, q1)) ZJT ¢3-i(, @2)Xi(+, g2)) (n) =

ne”l

O(F*) /1 dl(pla q — ) %@?2(% Q2)>Zl(qaa q2) + QZI(Q)§1(Q§7 Q2>%2<Qéa Q2) dqll,
0 ¢ X + ¢

Ua(q)ba () 42)X1 (4}, ¢2) + P2 (q) 1

where the constant C'(I'*) only depends on the lattice I'* and appears due to a
coordinate transformation s +— (é), K ((1)) which we used in the above com-
putation in order to apply the one-dimensional Fourier transform used in (A.7).
Due to the properties of d;(p1,q1) discussed before, in particular the bounded-
ness with respect to ¢;, the above integral is finite. This proves the convergence
of the infinite sum Azmg . Furthermore, due to Holder’s inequality |25, Theoem
I1.1(c)], the function A" is a meromorphic function from the complex plane
p1 € C into the bounded operators from LP(F) x LP(F) to L (F) x LV (F) for
all 1 < p <p< .
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The transformation property (i) follows for all m = (my, my) € Z?* from

¢m1%+m2k"4§mg<p1 + ml) = Z w(m1+n1)ﬁ+(m2+n2)kFSin9(pl +m; + nl)w—ny%—nzk -

nez?

- Z wn1%+n2RFSing(p1 + nl)w(mrm)f@r(mzfnz)ﬁ =

nez?

- A;ing (pl )w’mq R+moks

where in the second step, we used an index transformation n = (ny,ns) — n—m.
In order to prove the commutator identity in (i), we show in a first step the
following transformation property of the Dirac operator, namely

DV, W, p1)Vnystnok = Ynyiinai (D(V, W p1 + nq) + nprl). (A.8)

Since the off-diagonal entries of E(V, W, p1) are multiplication operators and are
independent of py, cf. (4.3)), the transformation (A.8) obviously holds for the off-

diagonal entries of D(V,W,p1). So let’s consider the diagonal entries. For some
test function y, we have

2 1 . Ti(n1R+n2k,x
_a(qu)nl/%-i-nsz) = _5(8.1’1 + Za:m)(eg (naftnak, >X) -

_ 2mi(n1Rk+n2k,x)

—e (—mi(nyky + ngky + i(nike + noka))x — OX) =

_ 2mi{n1 R+nak,z)

(& (W(nl(lf‘ig — Zl%l) + TLQ(/VQQ — Zlvﬁl))x — 5)()
Hence,

(pl + 711)71'(/%2 - Zl%l) - 5
Ko — 1R

plﬂ'(l%g — Zl%l) — 5

(Vg itnaiX) = Uniatnoi ( + n27T> X-

Ko — 1K1
Analogously, we compute for the second diagonal term

1 . wi{niR+nsk,x
a(wnu%JrnQRX) = 5(811 - Zaxz)(e2 < * ’ >X) =

2mi{n1 R+nak,z) (

=e m’(m/%l + nglzél - i(nll%g + nglzdg))x + 8)() =

— eIrilmAtnak,c) (m(ny (ke + ik1) + na(fe + ik1))x + Ox)
and hence,

pim(Re +iky) + 0
Ko + 1R

(p1 + nl)ﬂ'(l%g + Zl%l) + 0
Ro + 1K1

(Vg ztnsiX) = Uniatnai ( + 77,271') X-

This proves (A.8). Therefore, by writing for simplicity D(p) = D(V, W, p1), the
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commutator is equal to

[Afymg(P1)7 IN)(pl)] - Z [@/}m%makping(m + 1)V i—mais 5(]71)} -

nez?

A.8 sin jag
Z |:wn1f€+TLQRF g(pl + nl)wfnll%f’nzﬁ7 wn1l%+n2RD(p1 + nl)wfnll%f’ngk] =

nez?

= Z "pmf%-l—mff [Fsmg(pl + n1>7 ﬁ(pl + nl)i| ¢—n1&—n2rs-

nez?

The operator valued functions F(-) and D(-) commute pointwise because the
projection P is the spectral projection of D(-) . Hence,

[F"9(p1), D(p1)] = —[F"!(p1), D(p1)], (A.9)

where F"°!(.) denotes the holomorphic part in the Laurent expansion of F(-). The
Dirac operator

_ (pl_pll)vﬂ'(f%%—if%ﬂ—é W IM 0
D(p1) = s (m—pm(ratic)+o | T o pimlatia)

Ro+ik1 Ro+ik1 Ro+ik1

has only linear and constant terms with respect to p; — p}. Therefore, the powers
of p; — p/ in the left hand side of are terms (p; — p})? for integers 7 < 0 and
the powers of p; —p] in the right hand side of are terms (p; —p} )’ for integers
7 > 0. In order that can be satisfied, the commutators corresponding to
all integers j # 0 must necessarily vanish such that j = 0 is the only remaining
integer corresponding to non-trivial commutators. More precisely, denoting by
F_; the residue of the operator-valued form F(p;)dp; at the pole p; = p), we get

, - Baim
45900, D) =7 3 v [P (0% s )] oo a0

HGF* RQ +Zk1

This shows that the commutator [A3"9(p,), D(p1)] does not depend on p;. Set
dy = B2=ib g, .= RetiRi g D o= (Cf)l dOQ). We decompose F_; =: (f“ f12)

ko—ik1’ Ko+ik1 ) fo1 fo2
into its diagonal and off-diagonal part F_; = F%%9 4 poi/ —. (f(l)l f22) + <f(2)1 fiz ).

Clearly, [Fii‘fg , D] = 0 since D is diagonal and d;, dy are constant multiplication

operators. Hence, we may replace in (A.10) F_; by Fo//. Due to (f(2]1 f(1)2) (%1 C?Q) -

(foois fa®2) and (4 2) ( o ) = ( oo f2d) the diagonal elements in (A-10)

vanish. Moreover, [F‘iflf,D = 0 fr2(dz—dx)

f21(d1—dz2) 0 > We now compute the

2See also the proof of Lemma where we explicitly showed that D(-) and F(-) share the
same eigenfunction .
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off-diagonal elements of explicitly. Thereto, we use ¥[F_1, D]ji_, =
[YF_19_x, D] for all k € T'* which follows again from the fact that the en-
tries of D are constant multiplication operators. Now recall that, by definition,
for x € L*(F) x L*(F) and x € T, ¥,F_1¢_,(x) is of the form

Uuth ((B,0-0x) ) = 0 /F (Go(a ) (@)1 (') + a2 ) (a'))

evaluated at p; = p} if we assume that the pole p) of g is of order one and that
P is holomorphic at p) ﬂ Since ), .. ¥x(x) is equal to p(F)o(x) with Dirac’s
d-function d(x), we have

> vt ((6:0-x) ) = #(F)(@) | e = )@@ + ' peale )’ =

= W) (@) (@) (@) + d1(2)xa(@)) = () (% %) v

Hence, for the eigenfunctions qz~5, @Z, the infinite sum x — > . ¢H@Z<<5, ¢—5X>>
5d B
Yoy ha )

where the functions in the entries of this matrix are considered as operators of
multiplication with these functions. Therefore, there is an o € C\ {0} such that

sing ~ —a - U (d2—d1)?Z1$1
45750 Dlp)] = anlPyr (0o B

tries of the diagonal matrix in (A.10) as defined before. Since the variation
of the Dirac operator D(V, W, p;) with respect to (V,W) equals the linear op-

converges in the strong operator norm topology to the operator pu(F)

with dy, dy the en-

~ 0 _ 5u{' . .
erator % : (0v, dw) ( 5o mbml , there are unique functions
’ Ro+1R1

vy, wy € L*(F) such that

. ~ 8ﬁ(v7 ”7p1) 0 R wgw
sing _ 7 -7 = Ra—h1
(A5 (1), DOVWop)] = =5 = (v, wy) u_ )
More precisely,

?)g = —Oé[I,(F)’iT(dQ — dl)(/v{g + Z'Ivil)QZQ;Z;Q, U)g = (I,M(F)ﬂ'(dg — dl)(l%g — ilvil)lzlal
(A.11)

3This is clearly a special case. For our purposes in Section [4.1] however, the reduction
to these assumptions is justified since the meromorphic function g considered there has only
poles of first order. Moreover, since possible zeroes of the denominator of P are discrete points
on the Fermi curve, we may choose the A-cycles in such that possible poles of P are
circumnavigated.
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with the respective choice of eigenfunction J and dual eigenfunction 5 as before
according to the term F_;. This proves assertion (ii).

In |27, Lemma 3.1|, it has been shown that the holomorphic 1-forms (4.18)) fulfill
the trace formula

0 2 d
w(V, W, év, dw) = tr (P ( so “26““ )) .

FotiR1 T

Here, the trace of an operator T : L*(F) x L*(F) — L*(F) x L*(F), x

(%i %z) X is defined by (compare [30, Definition VI.5.7| for the definition of the

trace operator in functional analysis)

tr(7) = W(F) Z (Th1 + T22)Y ¥u) 2y = ﬁ HEZF /F%(Tn + To2)Y)— s,

rel'™*

here th ty that —~——1),., K € ', defi th I (Schaud
where the property tha mzﬂ K efines an orthonormal (Schauder)

basis of L?(F) is essential.
Now, the total residue of the form g - w(V, W, dv,dw) on U is equal to

(| J— dp;
Z T@Sg(g . UJ(‘/, VV, (S’U7 51[})) = Z 7"68( tr qg- P s Ko Oz;-;l L _

ceu geu Ratif T

0 dp 1 (| J—
= tr (T’Gspl:pll (F(pl) ( v R2 Om1 ) 7_[_1>) = ;tl‘ (F—l ( ) N26m1 )) =
”2+“”1 Ra+ik1

ow
,WM jzzm/PU%:<Jﬁ2 2 +_151R2——ikl> ke

KED*

We already showed in the proof of (ii) that for x € L*(F) x L*(F), there holds
for some a € C\ {0}

Therefore, again due to ), . ¥u(z) = u(F)é(z),

(flz ) 2D (@) ) )wfc(x)dx—

o + 1R Ko — 1R

//1#,{ ( H2+Zl€1 = %( )/%qf(_x;)ﬁiw(x/)) Yp(2')dr'dr =
il

/ / o (wl i )oul) | Bala L&;Qix;iw(x/))dx,dx:
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_ g/ ({pvl(x)gl(:p)(h(x) n @ZQ(@%(I)&U(@) de —

s :‘%2 + Z'lvﬁl I%Q - Z'Izdl

! W \T)OV(T) — VT )OW\T T
D T /. (W ()00(e) = oy (@) d

In order to finally show assertion (iii), it remains to be proved that dy — dy =
We compute

21

R
/%2+il%1 /%Q—il%l 1 R . . . ) N 3 .
dy —dy = _ _ o _
2 = R Re iRy JRE (e TR (R —iR) = (R — i) (Re o 6Ra))
20 i 2i
= —(R1Re — Rof1) = —5 det(R, k) = —5——,
I&? 72 [F2u(F)

where in the last step, we made use of the fact that the generators 4,5 € C?
of the lattice I" can be chosen such that (written as columns of a 2 x 2-matrix)
(3,5)7 (&, 7) = 1, cf. [27, p. 41][] Hence, u(F) = det(3,) = det((i, 7)) =
m. Finally, assertion (iii) is proved. O
In the case that (V,W) is a Schrédinger potential, the Fermi curve is symmetric
with respect to the holomorphic involution o : C*> — C2, k — —Fk, cf. Section
If we choose the meromorphic function g in Lemma anti-symmetric
with respect to o as well, we can achieve v, = 0 as the following lemma shows.
Moreover, we show another result for symmetric g. These are new results.

Lemma A.2. Let u € L*(F), (V,W) := (1,%‘) and let g be a meromorphic
function with finitely many poles on some open neighbourhood U of F(u)/T* =
F(V,W)/T*. If g satisfies g = —g o 0, i.e. g is anti-symmetric with respect to
the holomorphic involution o, then there is a function w, € L*(F) such that the
operator Agmg(pl) obtained in Lemma satisfies the commutator relation

4 ~ 0 —2
5. BV = (g ).

that is, v, obtained in Lemma [A.1|(ii) vanishes. If, on the other hand, g is
symmetric (i.e. g = goo) and vy, =0, then also w, = 0.

Proof. We have to show that under the conditions (V,W) := (1, ) and g =
—g o o, the function v, obtained in Lemma [A.1fii) vanishes identically. Due

to (A.11) and ¢ = —g o 0, we know that v, is a linear combination of func-
-1 -1

tions {(G(k), 0(K)))  (atho)(k) + ((S(—k), H(=h)))  (ata)(—k) for suit-
able values k € F(u)/T'*. Whereas in (A.11), we absorbed the denominator

4 Actually, it is the other way round: We firstly choose generators 4,% of I' (where we can

choose without restriction 4 = ((1)) as already explained in a footnote after the definition of

(#.10)) and afterwards generators &, & of I'* satisfying (%,%)7 (&, &) = 1.
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(k) w(k))) = ((vndk), w4 (k)) ) = ({S(k), B(k) ) ) of [ETT) into the fac-
tor @ which is independent on z € R? but dependent on k € F(u)/T*, we
now have to see how this denominator behaves under the involution k — —Fk.
To this, we need the relation between the components zbl,z/)g and ¢1,¢2 of the
eigenfunction w and the dual eigenfunction ¢. We firstly recall that ¢ and qb
are eigenfunction and dual elgenfunctlon of the operator Dy (V, W) - Due to

(V,W) = (1, 7*), we have the relation ¢1 —0kthy and —0j1n — 4102 = 0 between
the components of the eigenfunction of Dy (1, —%) which yields the Schrodinger

equation —Ak¢2 + uwg = 0, cf. the proof of Lemma | Since 9F = —9_; and
OF = —0_4, the transposed Dirac operator is given by

" 1 o
D5(17—1> ::(—3/& —_uk)
- 4

Hence, the Dirac equation for the dual eigenfunction DI (1, —%)5 = 0 is given by
the equations

G1+0_do =0, —0_01 — %52 =0

yielding the Schrodinger equation —A_ k(ZQ + ugg = 0 for the dual eigenfunction
¢o. Here, we rediscover (—A;, +u)l = —A_x +u already well-known from the
beginning of Sectlon | Thus, we have the relation ¢, (k, 2) = 1s(—Fk, x) between

eigenfunction @bg and dual eigenfunction gbz of the Schrédinger equation. Hence,
o1 (k,2) = —0_pdo(k, ) = —0_iha(—k, ). (A.12)

Now, we can compute the transformation behaviour of the denominator of (4.10)
with respect to the involution o : k — —k. We have

((Bk,), Dk 2)) ) = (Balh, ), B (k, ) ) + (Dl @), vl 7)) =
— (Dal—k, ), Ak, ) ) — (Db, ), (k) )
and
((B=k,2) (k) ) ) = = (Valk,2), 0gaba(—k2) ) = (Dthal, 2), o~k )
= (O (b, @), da(—k2) ) + (Db, 2), Dpa(—k, 7))

where in the last step, we applied integration by parts and used the periodic-
ity of the function 1. Hence, the denominator of (4.10) <<gb(/{,x),¢(k,x)>> is

anti-symmetric with respect to the involution o. Moreover, due to ¢ = —g o 0,
the residue of F_; remains invariant under the involution o. Therefore, v, is



177

a linear combination of functions of the form (¢at)(k, ) — (doth2)(—k, ) for
suitable values k € F'(u)/I'*. In order to show v, = 0, we have to prove that

(qﬁgwg)(/ﬁ x) is symmetric with respect to o. This, however, 1mmed1ately follows

from (d)ng)(k x) = Uo(—k x)wg(k z) due to ¢o(k, x) = wg( , ) shown above.
This proves the first claim of the lemma.
Now, let g be symmetric and v, = 0. We have to show that this implies w, = 0.

Due to (A.11)) and the symmetry properties of the denominator <<$(k‘ x), @Z(k, x)>>
shown above, w, is a hnear Combmatlon of functions of the form ¢, (k)i (k) +

¢1( )@Dl( k). Due to , we have
&1 (k) (k) = O_pibo(—k)Dtha (k).

The function v, is a linear combination (over the same £ as in the linear com-

bination of w,) of functions Uy (k)s(—k) 4 tho(—k)tha (k) = 20 (k) o (—k). If we
speak in the following of the linear combination, we always mean this same linear
combination. We now compute with the notation ki := mwi(k; £ ik2) (i.e. the
Wirtinger operators read as 9, = 0+ k_, Op = 0 + k)

31#;2(]“) ( )+8,kJ2(—k)5k1Z2(k)=
=8J2<k>8¢< k) + k_ (k) Dha(—k) — Ky O (k)ha(—k) — k_ky b (K)o (—k)+

+ 0o (— k) Do (k) — k_tho(—k)pa (k) + ks Do (—k)(K) — k_ktha(k)iha(—k).
(A.13)

Furthermore, we have the equations

Da(= k) OhByla (k) = Da(—k) (00Ua(k) + k_003(K) + k0 (k) + k_ky (k) )
(A.14)

%(k:)é_ké_k%(—k) =
D (k) (9005(—k) — k_0Us(—k) — k4 0Un(—k) + k_kyda(~k)) (A.15)

and

DO (o (k)b (—k)) =
= (OBl —E) + BBV =k) + BBl =H) + 1000l )
.16

Now, the right hand side of (A.13) equals the right hand side of equation (A.16])
minus the sum of the right hand sides of equations (A.14)) and (A.15). The above
mentioned linear combination of the left hand sides of (A.14)) and (A.15) equals
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zero because of 1o(—k)OkOk2(k) = J1ba(—k)bo(k) and ¢2(k)a—k5:k¢2(:k’) =
Uiy (k)iby(—k) and the condition that the linear combination of vy (k)is(—k)
equals zero due to vy = 0. By the same argument together with the fact that the
derivative of a constant function equals zero, the linear combination over the left
hand side of vanishes, too. Therefore, the linear combination over the left
hand side of vanishes which had to be proved. O



Appendix B

An alternative proof of Theorem
4.1.5

In this appendix, we give an alternative proof of Theorem [{.1.5] Before, we
need a lemma which provides us an equivalence between the choice dv = const.
and a relation between pole divisors of the eigenfunctions of the Dirac operator.
Let us recap more precisely how such a divisor is defined: To a given potential
u € L?*(F), one can assign a divisor (cf. [6, 16.1]) D(u), where D(u) is the
pole divisor of the eigenfunction x — (k,z) of the Schrédinger operator at
k € F(u)/T"* normalized by ¥ (k,0) = 1, k € F(u)/I'", i.e. the support of the
divisor D(u) is given by

suppD(u) = {k € F(u)/T"" : there is an eigenfunction 0 #Z ¥(k, ) of — Ay + u
with eigenvalue A = 0 and ¢(k,0) = 0}.

We consider in the following Schrédinger potentials (V, W) := (1, 5*). We denote
by D; the divisor corresponding to (V, W) in the Dirac operator Dy (V, W) (4.4)
and by Ds the divisor corresponding to the transposed Dirac operator. To a vari-
ation (6v,dw) € L*(F) x L*(F), we assign variations d D; and ¢ Dy, respectively.
With this notation, we can prove the following lemma.

Lemma B.1. Let (V, W) := (1, 5%) with variations (v, dw) € L*(F) x L*(F) at
(V,W) and corresponding divisor variations 0Dy and 0Dy be given. Then there
holds the equivalence

v = const. <= o(6D1) = I D».

Proof. Let (V,W) := (1, 7). We consider the Dirac operator (4.4) and its trans-
posed operator

Vo9 |7
vy = (). prw = ()G ).

179
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Denote by (k,x) = (¢Y1(k,x),¥s(k,z)) the eigenfunction of Dy(V, W) with
eigenvalue zero normalized by ¢9(k,0) = 1 and by ¢(k,z) = (¢1(k, z), p2(k, x))
the corresponding eigenfunction of the transposed operator with normalization
¢2(k,0) = 1. As in the proof of Lemma [4.1.1] ¢, fulfills the Schrédinger equation
—Apthy +urhy = 0 and ¢y fulfills —A_pdy +ugy = 0 (recall (A +u)’ = A +u,
cf. Section 2.3). We therefore get the relation ¢o(k,z) = 12(—k,z) between
eigenfunction and dual eigenfunction of the Schrodinger equation. The relation
0(dD;1) = 0Dy is obviously equivalent to dio(—k,x) = d¢o(k, x). It thus suffices
to prove the equivalence dv = const. <= 0s(—k,x) = dpa(k,x). So let us
compute the variations d1), and d¢. The Dirac equation for (V, W) = (1, 7*) is
given by

Y1+ Oty =0,  —0ythy + Wapy = 0
This yields the variational equations (note V = 1)
(0v)e1 + 01 + (80 )1s + Op(dhs) = 0, (=00 )1h1 — Opdrhy + (Sw)ehs + Wthy = 0.
Hence,

0y = =0 ((60)y + 001 + (80k)h2), 6 = O " ((—00k)thr + (Sw)ths + Withs) .

=0y = =0, ((6v)1 + 9t ((—00k)t1 + (Sw)thy + Wtha) + (30k)1bs)
= (14 0,0, W) 8ths = =0, ((6v)r + 0" ((—60k)th1 + (0w)ths) + (00y)12)

N J/

:8I: 151: 1 (5k O+W)

== (040), + W)dthy = —0k((00)th1) + (60k)1h1 — (dw)thy — Oy (30 )1)a.
Together with ¢, = —0k1)s, we get

(OkOk + W)0thy = O ((60)Opih2) — (00k) kb2 — (Sw) by — Ok (00)) 12 =
= Ok ((60)Ob2) — 8(FpOr )2 — (Gw)ehs.

For d¢q, we get completely analogously gby interchanging the operators O, and
Ok by 0_ and 0_y, respectively) due to 00y = OOk

(O_kO_i + W)dg(k, z) = [0_((00)D_ra) — 6(D_rD_) s — (Sw)a] (k, ) =

= [0_1k((00)0_kth2) — 6(0_kO_i) b2 — (dw)hs] (—Fk, ).

If 0v = const., then 0¢)y(—k,x) = d¢(k, ) follows. Conversely, if §pp(—k, ) =
dpo(k,x), we have the identity Ok ((0v)0kts) = Ok((dv)0k1p2) which can only be
fulfilled if v = const. The lemma is proved. O
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Theorem B.2 (= Theorem [4.1.5). Let u € L*(F) and (V,W) := (1, 5%) with
smooth Fermi curve F(V,W)/T'*. Then for all N € N, there exist holomorphic
1-forms w., k € I'y /o, on F(V,W)/T** such that for all v € I'* with v € 'y /o,

there holds
/ Wy = 6n,y-
Ay

Furthermore, these w, can be chosen to be of the form (4.18|) with suitable respec-
tive directions (0,0w) € L*(F) x L*(F). In particular, the direction dv in (4.18)
can be chosen to be zero.

Proof. The first part of the proof is exactly the same as that of Theorem [4.1.5
Only for the proof of (4.31]), namely

({0} x ZAF)NU =T,

we use an alternative procedure. The inclusion "D" is again trivial and follows
from . We consider at first the special case that wu is a finite type potential.
In finite type theory, there is a 1-1-correspondence between isospectral potentials
wof F(u)/T* and divisors D(u), cf. [19, Section I1.5|. If we denote again by D; the
divisor corresponding to the Dirac operator with potential (V, W) and by D, the
divisor corresponding to the transposed Dirac operator, Schrodinger potentials
(V,W) = (1,5*) can be characterized by Dy = o(D;) due to the relation u” = u
already known from the beginning of Section 2.3 As before, let dD; be the
corresponding variation of Dy and 0Dy be the variation of Dy = o(D;). In [19,
Lemma 4.13], the following divisor relation has been shown:

Di+Dy~K+Qt+Q .

Here, K denotes the canonical divisor on the Fermi curve and QT and Q~ are
some marked points at infinity which yield the two-point-compactification of the
(normalized) Fermi curve. In particular, K, Q% and @~ are invariants of the
Fermi curve. Therefore, by considering isospectral variations (v, dw) € L*(F) x
L*(F) with corresponding (isospectral) variations of the divisors §D; and §Ds,
we get

0Dy + 6Dy =0 modulo linear equivalence. (B.1)

The variation dD; can be considered as a set of tangent vectors on the Fermi
curve at the points of supp(D;). Hence, to each p € supp(D;), we can assign
such a tangent vector p. We would like to represent the relation in Jacobi
coordinates. More precisely, with supp(D) =: (pi)i=1,...4, With g the genus of the
finite type Fermi curve, we consider the Abel map (cf. [0, 21.8])

9 Di
(Pi)izt,..g — <Z/ wk> mod H(X,Z),
i=1 v i k

=1,...,9
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where the wy, are basis vectors of the space of holomorphic differential forms 2(.X)
on the (compactified) Fermi curve X := F(u)/T™* and the a; are given points on
X. The corresponding tangent map is then given by

g
0D, = (Pi)i:1 ..... g = <Z Ciwk’(pi)> )
k=1,....9

i=1

.....

where wy(p;) means here that the 1-form wy, is evaluated at the point p; and ¢; are
the corresponding coefficients of p; with respect to a given basis. For w € Q(X),
we set w(V,W,0Dy) := Y7 | ciw(p;). With this notation, (B.I) is equivalent to

w(V,W,86D1) + w(V,W,6D5) =0 for all w € Q(X). (B.2)

Moreover, due to (B.1), the variation 6D, is uniquely defined by Dy, Dy and 6D,
(modulo linear equivalence).

We now prove ([4.31). Let (0,w,) € ({0} x L*(F))NU be given and let D, be the
corresponding variation in terms of divisors and 0 D, the variation corresponding
to the transposed Dirac operator as considered before. Since (0, w,) is an isospec-
tral variation, cf. |27, Lemma 3.2.(ii)], there holds (B.2). Due to Lemma we
have o(6D;) = 6D,. Hence, reads as

w(V,W,0D;) +w(V,W,o(6D,)) =0 for allw € Q(X). (B.3)

In order to prove that (0,0w) € U~, we show that ¢ + go o = 0. We may
write g = 3(9+go o)+ 3(9 — go o). We denote the symmetric part of g by
gs == 3(g+goo). By the linearity of the mapping g — (vy, wy) — w(V, W, v,, wy),
this yields a corresponding decomposition of w = w(V, W,0,w,) into symmetric
and anti-symmetric part, namely w = 3 (w+woo)+1(w—woc). We show that the
symmetric part vanishes identically. To this, let (dv,dw) € L*(F) x L*(F) and
w=w(V,W, v, dw) with w = w o g. The relation yields w(V,W,dD;) = 0.
By definition, w(V,W,dD;) is just the right hand side of with g,. Since
both w and g, are symmetric and w was chosen arbitrary (of course, with the
restriction that it is symmetric), the residue can only be equal to zero if g5 = 0.
This proves (0,w,) € U~. Hence, is proven in the finite type case.

For the general infinite type case, it remains to prove the inclusion "C" in (4.31]).
We use an approximation of finite type potentials. By Theorem [2.4.2] in every
neighbourhood in L?(F) of some potential u € L*(F), there are potentials v with
the property that all but finitely many of their perturbed Fourier coefficients
are equal to zero. In other words, the finite type potentials are dense in L?(F)
and there exists a sequence of finite type potentials (u,)neny converging to w.
Let (1,W) with W := —% be given as before. To this, we consider a sequence
(1, Wy)nen of finite type potentials converging to (1, W).

Let (0,w,) € ({0} x L*(F)) N U be given. Since the Fermi curves F(1,1,,)
are all Fermi curves of Schrodinger potentials, they are invariant with respect to
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the involution o. We may associate a sequence g, of meromorphic functions on
suitable open subsets of F'(1,W,,) which converge to g as n — co. Now, by the
foregoing finite type proof, g, is anti-symmetric with respect to o for each g, in
(0,wy,). This property carries over to g if we carry out the limit n — oo. Hence,
(0,wy) € U~ which had to be proven. This finally proves that the map o (4.28) is
surjective and thus an isomorphism. Hence, the identity 2, = () follows.
The rest of the proof is again exactly the rest of the proof of Theorem [£.1.5] [
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