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4.4 General Properties of Gröbner Bases for Coloring Ideals . . . . . . . . . 45

5. Expected Hardness Results for General Graphs . . . . . . . . . . . . . . . . . 52
5.1 Buchberger’s Algorithm Captures the Hardness of NP . . . . . . . . . . 52
5.2 Hardness of Suboptimal Solutions . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Obtaining Similar Results from Different Combinatorial Problems . . . 55
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7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Perfect Elimination Orderings . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 The Augmenting Polynomial . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 The Case of Non-Colorability . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6 Example: Tree Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8. Conclusions, Open Problems and Future Directions . . . . . . . . . . . . . . . 87
8.1 Counterexamples for Natural Conjectures . . . . . . . . . . . . . . . . . 87
8.2 Open Questions for Future Research . . . . . . . . . . . . . . . . . . . . 89

LIST OF ALGORITHMS

1 Multivariate polynomial division . . . . . . . . . . . . . . . . . . . . . . 31
2 Gröbner basis reduction algorithm . . . . . . . . . . . . . . . . . . . . . 35
3 Buchberger’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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Graph G = (V,E)

Ideal IG

Gröbner basis GG

Is G k-colorable?

〈
xki − 1 ∀i ∈ V∑k−1

i=0 x
k−1−i
u xiv ∀(u, v) ∈ E

〉

{x1 + x2 + x3,
x2

2 + x2x3 + x3x4 + x2
4,

x2
3 + x3x4 + x2

4, x
3
4 + 1}

{
Yes if GG 6= {1}
No otherwise

Fig. 0.1: Overall approach for graph coloring

ABSTRACT

In this thesis, we look at a well-known connection between the graph coloring problem
and the solvability of certain systems of polynomial equations. In particular, we exam-
ine the connection between the structure of a graph and the structure of the Gröbner
bases of the graph’s coloring ideal.
From a theoretical viewpoint, we show some properties of such Gröbner bases, and we
develop a polynomial-time algorithm to compute a Gröbner basis for chordal graphs.
From the experimental side, we state results about specific Gröbner bases and about the
Gröbner fan for a variety of graph families. Moreover, some heuristics and techniques
are explored that reduce the computational complexity.
The relevance of heuristic methods is justified by a section about expected intrinsic
hardness of Gröbner basis computations.
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1. INTRODUCTION

The study of the graph coloring problem, one of the most famous and most-examined
problems in graph theory, with algebraic methods has been pursued for several decades
now. It is based on the fact that the solutions, that is, the proper colorings of a graph,
can be seen as the common roots of a set of polynomials, which was first considered in
[3]. This encoding moves the problem from graph theory to algebraic geometry, where
different solving methods can be applied.
In 1965, Bruno Buchberger proposed the method of Gröbner bases as a tool to system-
atically treat polynomial ideals. Gröbner bases are special generators of ideals, they
allow for a unique representation of an ideal, and they are convenient for algorithmical
handling. Using Gröbner bases, the theory of polynomial systems, and also other fields
of algebraic geometry, could be approached computationally. Given a Gröbner basis for
an ideal I, it can be decided efficiently whether a polynomial p lies in I or not, and two
ideals can be tested for equality by the same method. Therefore, Gröbner bases are the
foundation of the algorithmic treatment of polynomial ideals.
In the case of graph coloring, the high-level structure of the algorithm is shown in Figure
0.1. For different combinatorial problems which can be encoded algebraically, the steps
are the same, just the system of polynomials representing the problem changes. [16]
gives some examples which can be solved using this approach.
Unfortunately, there is no known efficient algorithm to compute Gröbner bases of ide-
als. Therefore, we try to find direct connections between graphs and their respective
Gröbner bases, such that statements about the corresponding Gröbner bases can be
made without computing them. We focus on certain classes of graphs, since there is
little hope that Gröbner bases can be completely read off the structure of a graph in
general.

In short, we try to find specific properties of graph coloring ideals and a way to use
the additional information that we get from the input graph for the computation of a
Gröbner basis.



2. PRELIMINARIES FROM GRAPH THEORY

2.1 Notation

When we talk about a graph without further specification, we always mean an undi-
rected simple graph G = (V,E) with vertex set V and edge set E ⊆

(V
2
)
. In most cases,

the vertex set will be V = {1, . . . , n} for notational convenience.
The set N (v) := {w ∈ V : {v, w} ∈ E} of vertices which are connected with a vertex
v is the neighborhood of v in G. Two vertices that are in each others neighborhood are
adjacent. We call deg(v) := |N (v)| the degree of v, and the minimal and maximal degree
of a vertex in G are denoted by δ(G) and ∆(G), respectively. For a subset W ⊆ V ,
the subgraph G|W :=

(
W,
(W

2
)
∩ E

)
is called induced by W . The complement of G is

G :=
(
V,
(V

2
)
\ E

)
. A graph that contains an edge between every pair of vertices is called

a clique or a complete graph, and its complement is an empty graph or an independent
set. We call the size ω(G) of the largest induced clique of G the clique number of G.
A sequence of pairwise distinct vertices v1, . . . , vk such that {vi, vi+1} ∈ E ∀ i ∈
{1, . . . , k − 1} is called a path in G. If v1 = vk, then the path is a cycle. For a cy-
cle (v1, . . . , vk), every edge {vi, vj} that connects two cycle vertices and does not lie on
its border, is called a chord of the cycle. Note that a cycle is induced if and only if it
does not contain any chord.
Figure 2.1 illustrates some of the definitions above.

v1

v2

v3

vk−1

vk

v1 = vk

v2

v3
v4

vk−2

vk−1

1

2
3

4

n− 1

n

Fig. 2.1: A path, a cycle with a chord, and a complete graph

Remark 1. In general, different labelings of the vertices (that is, permutations of V by
elements in Sn) have different properties, when it comes to Gröbner bases. As we will
see below, every such permutation can also be modeled by a suitable monomial order
on the used polynomial ring, but sometimes it is easier to keep the monomial order and
change the vertex order instead.
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2.2 The Colorability Problem

2.2.1 Problem Definition

Definition 1. Let G = (V,E) be a graph. The k-colorability problem is the problem of
finding a function c : V → {1, . . . , k} satisfying

c(u) 6= c(v) ∀ {u, v} ∈ E .

If such a function exists, we call G k-colorable and c a (proper) k-coloring of G.

Definition 2. The chromatic number χ(G) of a graph G is defined as the smallest
number k such that G is k-colorable, i.e.,

χ(G) := min{k ∈ N : G is k-colorable} .

2.2.2 NP-Completeness

From a complexity-theoretic viewpoint, it is reasonable to classify algorithms by their
worst-case running time, compared to the size of the input. Important classes of com-
putational complexity are P and NP, among many others. A thorough introduction to
complexity theory can be found in [1]. In this book, concepts such as Turing machines
are used to provide rigorous definitions of complexity classes. For example, it is nec-
essary to define what a “computational step” is, in order to count the steps needed to
execute an algorithm. We will not go down to this level of detail, but rather assume that
the underlying computational model does not matter (see [1], Chapter 1.6.1). Also, we
will not only consider decision problems (that is, outputs of the form 0 or 1), but also
outputs such as a valid coloring or the chromatic number of a graph. To understand the
concepts used in this thesis, we only need the definitions of the two above-mentioned
classes, and the 3Sat problem, which is commonly used as the “original” NP-complete
problem, which serves as a basis for showing that other problems are NP-complete as
well.

Definition 3. An algorithm F is said to be in the complexity class P if there is a
polynomial p ∈ R[x] such that the number of computational steps that F performs is
≤ p(n) for all inputs of encoding length n and for all n ∈ N. Such an algorithm is also
called a polynomial-time algorithm.
An algorithm F is said to be in the complexity class NP if, given an input x and a
certificate u, both of polynomial length in n, there exists a polynomial-time algorithm
which decides whether u is a solution for F (x).

Definition 4. A problem P is called NP-hard if, given an algorithm F ∈ NP which
solves P , any other problem P ′ ∈ NP can be solved in polynomial time. If there exists
such an F , then P is called NP-complete.

The process of finding a polynomial-time algorithm for P ′, using the one for P , is called
a polynomial-time reduction of P ′ to P . Therefore, NP-completeness of a problem P
can be shown by two steps: First, show that it lies in NP by providing an algorithm,
together with a suitable certificate, and second, reduce a known NP-complete problem
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to P . It is customary to use 3Sat as the starting problem, since it can be directly
shown to be NP-complete, and it has a structure which allows for an “easy” reduction
to many problems.

Definition 5. The 3Sat problem consists of deciding whether or not a given boolean
formula has a satisfying assignment. The formulae used for this problem are con-
junctions of clauses, which again are 3-literal disjunctions using n boolean variables
x1, . . . , xn. Therefore, a 3Sat instance has the form

S =
k∧
i=1

Ci

=
k∧
i=1

(
v

(i)
1 ∨ v

(i)
2 ∨ v

(i)
3

)
,

where each v is either a variable or its negation.

Theorem 1 (Cook-Levin theorem). 3Sat is NP-complete.

Proof. See for example [1], Theorem 2.10.

Theorem 2. 3Col, the problem of finding out if a given graph is 3-colorable, is NP-
complete.

Proof [35].
3Col lies in NP: For a given graph G and a coloring number k, an obvious certificate
is given by a coloring function c. It is easy to see that one can verify in polynomial time
that at most k colors are used, and that no pair of nodes joined by an edge receive the
same color.

3Col is NP-hard: We will reduce 3Sat to 3Col. Let an arbitrary 3Sat instance S on
variables x1, . . . , xn be given by clauses C1, . . . , Ck, in other words,

S = C1 ∧ . . . ∧ Ck .

We start building G = (V,E) by setting

V := {v1, v1, v2, v2, . . . , vn, vn, T, F,B} ,

where the vi and vi represent variables and their negations, and the vertices T , F , and B
stand for true , false , and base, respectively. The first edges that we add, are triangles
{{vi, vi}, {vi, B}, {B, vi}} for all i, and an additional triangle {{T, F}, {F,B}, {B, T}}.
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T F

v1

v1

v2

v2

vn

vn

B

Fig. 2.2: Skeleton of G for general truth assignments

At this stage, we already see that for each i, exactly one of the vertices v1 and v1 will
be assigned the same color as the T -vertex, and the other one will get the same color
as F . Thus, every coloring of the skeleton graph (Figure 2.2) corresponds to a truth
assignment on the variables, and vice versa. Now, the goal is to add more edges to G
such that the proper 3-colorings are in one-to-one correspondence with the satisfying
assignments of S.
To do so, create a graph Gi = (Vi, Ei) with

Vi =
(
w

(1)
i , . . . , w

(6)
i

)
and

Ei =
{
{w(1)

i , w
(4)
i }, {w

(2)
i , w

(5)
i }, {w

(3)
i , w

(6)
i }, {w

(4)
i , w

(5)
i }, {w

(5)
i , w

(6)
i }

}
for every i ∈ {1, . . . , k}, that is, for every clause Ci = x

(1)
i ∨ x

(2)
i ∨ x

(3)
i in S, and attach

it to G by adding the edge set{
{w(1)

i , T}, {w(2)
i , T}, {w(3)

i , T}, {v(1)
i , w

(1)
i }, {v

(2)
i , w

(2)
i }, {v

(3)
i , w

(3)
i }, {w

(4)
i , T}, {w(6)

i , F}
}

to E. If Ci contains a literal which is the negation of a variable xj , then replace the
node vj by vj . Now we can directly check that this substructure is 3-colorable if and
only if Ci is satisfied by the existing assignment, i.e., at least one of the vertices that
represent the literals of Ci, is colored true .

1 2 3

4 5 6

T

F

v1 v2 v3

Fig. 2.3: Clause graph Gi corresponding to Ci = x
(1)
i ∨ x

(2)
i ∨ x

(3)
i

⇒ Let all three literals be colored false . Then v
(1)
i and v

(2)
i have to be base , v(4)

i ,
v

(3)
i and v(6)

i receive false , base , and true , respectively, and therefore v(5)
i cannot

be colored without destroying the proper 3-coloring.
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⇐ There are seven cases in which at least one of the literals is colored true , which
can easily be checked by hand. Let for example v(1)

i be true and both v
(2)
i and

v
(3)
i be false . Then w

(1)
i ← false , w(1)

i ← false , w(1)
i ← false , w(1)

i ← false ,
w

(1)
i ← false , w(1)

i ← false results in a proper 3-coloring. All other cases are
completely analogous.

Finally, we show that G can be 3-colored if and only if there is a satisfying assignment
for S.

⇒ If we are given a proper 3-coloring, then assign to each variable xi the value true
if the corresponding vertex has the same color as T , and false if the corresponding
vertex has the same color as F . We have shown above that only these two colors
can occur, and by construction of G, this assignment guarantees that each clause
contains a true literal. Therefore, we found a satisfying assignment for S.

⇐ Suppose we have a satisfying assignment for S. Then we color the vertices T , F ,
and B arbitrarily, assign to all vertices corresponding to true literals the same
color as T , and complete the coloring by assigning false to all remaining vertices.
Note that the subgraphs Gi are separated by the vertices vi, vi, T, F,B, such that
the shown partial colorings can be assembled to a proper 3-coloring for G. Thus,
we have shown above that such a coloring is proper for G.

The proof gives a polynomial-time construction for reducing 3Sat to 3Col, which shows
the claim.

Remark 2. Although the class NP seems to be much more extensive than P, it is
still unknown if the inclusion P ⊂ NP is strict. In other words, no one knows whether
solving a problem is strictly harder than verifying a given solution. However, it is widely
conjectured that P 6= NP, which is why many theorems, for example the ones in Section
5, assume this conjecture as a condition.

2.2.3 Conventional Solving Methods

The graph coloring problem can be attacked in multiple ways, all of which have their
respective advantages and disadvantages. Since the algebraic approach is new in the
sense that it does not operate on the input graph itself, but on an algebraic construction
which is obtained from the graph in a pre-processing step, we will give in this section
a short (and not extensive) overview over known methods to solve the colorability
problem. They are taken from [36], which also gives a computational comparison and
detailed information about all approaches and the respective algorithms.

Heuristics
A heuristic builds a feasible, but not necessarily optimal solution and generally
runs very fast. For example, the Greedy algorithm is a heuristic which starts by
choosing a vertex order (either randomly or based on graph properties) and then
assigns colors to the vertices along the order, picking the first available color for
each vertex. A color is available if it is not already used for any of the current
vertex’ neighbors. Obviously, the number of colors needed is not always optimal,
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but it can be shown that there always exists a vertex order for which the greedy
algorithm produces a χ(G)-coloring. The Dsatur algorithm is a refinement of
the Greedy algorithm, where the vertex order is established dynamically.

Constructive methods
In this class of methods, a coloring is built and changed successively, until an
optimal solution is obtained. Backtracking, for instance, builds a search tree
for possible solutions (proper and improper), which is then explored. In the worst
case, the solution space has to be searched completely, such that the method is
exact and terminates in exponential time. However, its main feature is that by
using a clever search order, its running time can be decreased drastically in many
cases, while still giving an optimal solution.

Optimization-based methods
What optimization-based methods have in common, is an objective function,
which is defined on the space of candidate solutions, and which serves as an
indicator for the quality of the current solution. Therefore, such an algorithm
navigates through the space of solutions, trying to find an optimal value of the
objective function. The solution space and the moving directions vary between
different algorithms.
Belonging to the class of algorithms that operate on complete, improper colorings,
SimulatedAnnealing and TabuCol start with an initial assignment (whose
choice can be made randomly or using a heuristic) and successively change the
colors of some vertices until a proper coloring is found. The sub-optimality of the
current coloring is evaluated using a cost function, which indicates by how much
the solution can be improved. The choice of vertices, whose colors are changed,
depends on the exact algorithm and is different for SimulatedAnnealing and
TabuCol. In both cases, the goal is to decrease the cost function to 0, which
corresponds to a proper coloring.
An example for an algorithm that searches the space of partial, proper solutions,
is PartialCol. Here, the number k of available colors is fixed, and if a vertex
cannot be colored properly at one step, it is added to a set S of uncolored vertices.
Hence, the objective is to decrease the cardinality of S to 0. The moves in the
search space are picked via tabu search, similar to TabuCol.
Some algorithms exclusively examine proper solutions. They use constructive al-
gorithms as the underlying search operators which allow for navigating through
the space of candidate solutions. An example is the IteratedGreedy algorithm.
Finally, it is possible to define a coloring polytope by various types of inequalities,
which encode restrictions on the colorings as half-planes in Rn. For example, the
Branch-and-Cut algorithm in [40] iteratively partitions the coloring polytope and
strengthens the defining inequalities, until an integral solution is found, which
corresponds to a proper coloring.

Hybrids
Of course, different classes can be combined to obtain more efficient algorithms.
A common approach is to find an initial solution with a heuristic, which is chosen
with regards to the cost function used in the remainder of the algorithm. This
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decreases the number of optimization steps from the initial to the final solution.
Also, the search of different solution spaces can be combined in order to overcome
stagnation of the objective value. When the search becomes inefficient in one
space, the current solution is translated to another space, where the search can be
continued more successfully. Besides complete and partial solutions, also a space
of longest paths on a directed version of the graph can be used, as done in the
VSS algorithm (see [30]).

2.3 Interesting Classes of Graphs

2.3.1 Planar Graphs

Definition 6. A graph G = (V,E) is called planar, if it can be drawn in R2 without
crossing edges. Such a drawing is a planar embedding of G.

It is well-known that every planar graph G is 4-colorable (see [2]), and 2-colorability of
G can be verified in polynomial time, since this is equivalent to G not containing an
odd cycle ([14], Proposition 1.6.1). Therefore, the only interesting question about the
chromatic number of a planar graph is whether χ(G) = 3 or χ(G) = 4. It turns out
that even this problem is NP-hard (see [23]).

Definition 7. A graph G = (V,E) is called maximal planar, if G′ =: (V,E′) is non-
planar for every strict superset E′ ⊃ E.

While in general, the number of edges in a graph can be quadratic in the number of
vertices, there is a linear bound for planar graphs. More precisely:

Lemma 1. Let G = (V,E) be planar. Then |E| ≤ 3|V | − 6, and equality holds if and
only if G is maximal planar. Moreover, this is equivalent to the property that every
face of G is a triangle, in which case G is also called triangulated.

Proof. See [14], Proposition 4.2.8 and Corollary 4.2.10.

If all faces of G except one are triangles, then G is a near-triangulated graph.

Theorem 3 (Grötzsch). Let G be a planar graph. If G does not contain a triangle,
then χ(G) ≤ 3.

Proof. See for example [14], Theorem 5.1.3.



2. Preliminaries from Graph Theory 18

1 2

3

4

56

Fig. 2.4: The octahedral graph O6

The octahedral graph is defined as the “two-layer triangle” shown in Figure 2.4, isomor-
phic to the complete tripartite graph K2,2,2 (see Section 6.5). It is easily seen to have
chromatic number 3, and since |E| = 12 = 3|V | − 6, it is maximal planar. Coming
from the octahedral graph, we build an infinite family of iterated octahedral graphs by
successively adding 3-vertex-layers in the graph’s center (see Figure 2.5). In each step,
3 vertices and 9 edges are added, therefore keeping the two crucial properties, maximal
planarity and 3-colorability, unchanged. The graph with 3n vertices in n layers will be
denoted by O3n.
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Fig. 2.5: The iterated octahedral graphs O9 and O12

2.3.2 Perfect graphs

The notion of perfect graphs was first introduced by Berge in [4], and several graph-
theoretic problems which areNP-complete in general, have been shown to be solvable in
polynomial time for perfect graphs. Examples are graph coloring, maximum clique and
maximum independent set (see [25]). Loosely speaking, perfect graphs are the graphs
which have a large chromatic number if and only if they also contain large cliques. Thus,
the only thing that prevents a small coloring is a large complete subgraph.
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Definition 8. A graph G = (V,E) is called perfect if ω(H) = χ(H) for every induced
subgraph H of G.

Perfect graphs contain a lot of interesting classes of graphs, for example bipartite,
chordal, comparability, or perfectly orderable graphs [28].

Definition 9. A graph G = (V,E) is chordal if every induced cycle of length more than
3 has a chord. Equivalently,

G is chordal ⇐⇒ (∀ W ⊆ V : G|W ' Ck ⇒ k = 3) .

Example 1. In Figure 2.6, the first graph is non-chordal, since the induced cycle
(1, 2, 4, 5) has length 4. In contrast, the second graph, obtained by adding the chord
{1, 4}, is chordal.

1
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3

4 5

1

2

3

4 5

Fig. 2.6: Non-chordal and chordal graph

Lemma 2. Every chordal graph is perfect.

Proof. See [14], Proposition 5.5.2.

Example 2. A very simple family of non-perfect graphs is given by the odd cycles
C2n+1, n ≥ 2. Their clique number is 2, but they are easily seen to have chromatic
number 3: Trying to color them with two colors, we inevitably get to a point where a
vertex, whose neighbors already have two different colors, needs to be assigned its color.
At this point, we need a third color for a proper coloring. Figure 2.7 illustrates this
coloring stage for two odd cycles. Here, the assigned colors are black and gray, and the
white node has no color yet.
A more sophisticated imperfect graph with ω(G) = 2 and χ(G) = 4 is the so-called
Grötzsch graph, which is shown in Figure 2.8. From Theorem 3, we can conclude that
it is non-planar.
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Fig. 2.7: Partial 2-colorings of C5 and C9
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Fig. 2.8: The Grötzsch graph

2.3.3 Uniquely k-colorable Graphs

A proper k-coloring of a graph G = (V,E) induces a partition

V = V1 ∪ . . . ∪ Vk

of the vertex set, such that the Vi are independent sets, by grouping vertices according
to their color. If this partition is unique, then G is called uniquely k-colorable. An
equivalent definition is

Definition 10. A graph G = (V,E) is uniquely k-colorable if for any pair of proper
k-colorings c1 and c2

c1(v1) = c1(v2) ⇐⇒ c2(v1) = c2(v2) ∀ v1, v2 ∈ V .

Remark 3. Note that for a uniquely k-colorable graph, there are still k! proper color-
ings, which are generated by permuting the colors assigned to the subsets Vi.

Lemma 3. Let G = (V,E) be uniquely k-colorable. Then δ(G) ≥ k − 1.
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Proof. Suppose there is some v ∈ V with deg(v) < k − 1. Clearly, |c (N (v))| ≤ k − 2,
such that ∃ c1, c2 ∈ {1, . . . , k} \ c (N (v)) with c1 6= c2. Let now be c : V → {1, . . . , k}
be the unique k-coloring of G. Setting c(v) := c1 and c(v) := c2 results in two distinct
proper k-colorings, which is a contradiction.

Theorem 4. For all n ≥ 12, there exists a triangle-free uniquely 3-colorable graph
G = (V,E) with |V | = n.

Proof. See [9], Theorem 1. The authors construct the base case, a graph with 12 vertices,
explicitly, and give an inductive construction for larger graphs, which maintains the
demanded properties.

Lemma 4. Let G = (V,E) be a uniquely k-colorable graph on n vertices. Then
χ(G) = k, that is, G is not (k − 1)-colorable.

Proof. Suppose the opposite, and let c : V → {1, . . . , k − 1} be an arbitrary (k − 1)-
coloring of G. Then we immediately obtain n distinct k-colorings c1, . . . , cn : V →
{1, . . . , k} by setting

ci(j) :=
{
c(j) if i 6= j

k if i = j
.

Lemma 5. Let G = (V,E) be a maximal planar graph. If G is 3-colorable, then this
coloring is unique.

Proof [12]. Assume that |V | ≥ 4, since the statement is trivially true for K3, the only
maximal planar graph on 3 vertices. We will start by coloring an arbitrary triangle of
G and show that this partial coloring determines the colors of every vertex in G.
Consider a planar embedding of G. By Lemma 1, each e ∈ E is the boundary of
two triangles. Take a triangle tv1,v2,v3 and assign it three different colors. Now let
v ∈ V \ {v1, v2, v3} be a vertex that is not colored yet. Then there is a sequence of
triangles

tv1,v2,v3 , tv2,v3,v4 , . . . , tvp−2,vp−1,vp

which each share an edge, such that all vertices involved are distinct and vp = v. It is
evident that the unique proper coloring is realized by setting c(v4) := c(v1), c(v5) :=
c(v2) and so on until c(v) := c(vp−3). This means, v can only receive one color, and
therefore G is uniquely 3-colorable.

Remark 4. Lemma 5 is not true for k > 3. Since every planar graph G, and in
particular every maximal planar graph, has χ(G) ≤ 4, Lemma 4 states that G cannot
be uniquely k-colorable for k ≥ 5.
Let k = 4 and consider the following counterexample: Let G be defined as shown in
Figure 2.9. Then |V | = 7 and |E| = 15, whereby the equality

|E| = 15 = 3 · 7− 6 = 3|V | − 6
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assures maximal planarity of G by Lemma 1, and χ(G) = 4 follows from the subgraph
K4 in the center of the graph. However, both

c1 : V → {1, . . . , 4}, 1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 4, 5 7→ 3, 6 7→ 2, 7 7→ 1

and
c2 : V → {1, . . . , 4}, 1 7→ 3, 2 7→ 2, 3 7→ 4, 4 7→ 4, 5 7→ 3, 6 7→ 2, 7 7→ 1

are proper 4-colorings of G, and they are distinct since c1(1) = c1(7), but c2(1) 6= c2(7).

1 2

3

4

56
7

Fig. 2.9: A maximal planar, non-uniquely 4-colorable graph

2.4 The Chromatic Polynomial

The number of distinct proper k-colorings of a graph G can be seen as a function of k
and denoted by PG(k) for k ∈ N0. Obviously PG(k) = 0 ∀ k < χ(G). A more interesting
property is that PG(k) is indeed a polynomial in k.

Lemma 6. Let G = (V,E) be a graph. Then PG(k) is a polynomial of degree |V | in k.

Proof [31]. Let V =
⋃k
i=1 Vi be a k-partition of V and assume that p ≤ k subsets are

non-empty. Clearly, there are k · (k − 1) · . . . · (k − p+ 1) distinct k-colorings of G that
result in this particular partition, and this expression is a monic polynomial in k. The
total number PG(k) of k-colorings is the sum of such terms over all possible partitions
of V . Since there are only finitely many k-partitions, the sum is also a polynomial.
Note that for k > n, there is no valid partition with p > n and exactly one with
p = n. For this partition, the corresponding summand is a polynomial of degree n,
which cannot be cancelled by lower degree terms. This proves the claim.

Simple examples of chromatic polynomials are k(k − 1)(k − 2) for a triangle graph or
k(k − 1)n−1 for any tree on n vertices. Moreover, the chromatic polynomial can be
computed in polynomial time for various classes of graphs, for instance chordal graphs
[41]. A recursive algorithm for general graphs makes use of edge contractions and
deletions (see Section 8.2.7).



3. PRELIMINARIES FROM ALGEBRA

[11] is an excellent introduction to the theory of algebraic geometry and contains all
prerequisites of this thesis. Most of the contents and the notation of the current chapter
is based on this book.

3.1 Polynomial Rings and Ideals

Let K be a field. The n-variate polynomial ring over K is constructed by adjunc-
tion of n distinct (transcendent) elements x1, . . . , xn. The resulting ring is denoted by
K[x1, . . . , xn]. Note that K[x1, . . . , xn] is not a field, if n ≥ 1.
The elements of K[x1, . . . , xn] are polynomials in x1, . . . , xn with finitely many terms.
For a polynomial p =

∑
α∈Nn0

cαx
α ∈ K[x1, . . . , xn], we call deg(p) := max (‖α‖1 : cα 6= 0)

the degree and len(p) := |{α : cα 6= 0}| the length of p. The set supp(p) := {xα : cα 6= 0}
of non-zero monomials in p is the support of p.

Let (R,+, ·) be a commutative ring. A subset I ⊆ R is called an ideal if I is an
additive subgroup of R and r · x ∈ I ∀ r ∈ R, x ∈ I. For a set F ⊆ R, we call
〈F 〉 :=

{∑
f∈F cf · f : cf ∈ R

}
the ideal generated by F . If an ideal I can be generated

by a finite set, then it is called finitely generated. A ring is noetherian if every with
respect to inclusion strictly ascending chain of ideals is finite, i.e.,

∀ I1 ⊆ I2 ⊆ . . . ∃s ∈ N : Ii = Ij ∀ i, j ≥ s .

For an ideal I ⊆ R, we call
√
I := {r ∈ R : ∃k ∈ N : rk ∈ I} the radical of I. I is called

radical itself if I =
√
I.

For an arbitrary set F ⊆ K[x1, . . . , xn] of polynomials, we call the set V(F ) := {x ∈
Kn : f(x) = 0 ∀ f ∈ F} of common zeros the algebraic variety of F . Note that
V(F ) = V(〈F 〉), such that we can always assume that varieties are taken over ideals.

Remark 5. Apart from R and C, we will make use of finite fields in order to simplify
computations. Since such fields are unique if the number of elements is prime, we denote
them by Fp. The isomorphism Fp ∼= Z/pZ gives a natural embedding of Fp into Z.

Theorem 5. Let R = K[x1, . . . , xn] be the polynomial ring in finitely many variables
over a field. Then every ideal I ⊆ R is finitely generated.

Proof . See for example [11]. The idea (which uses terms defined later in this thesis) is
to consider the leading ideal L(I) of I and use Dickson’s Lemma (Lemma 7) to show that
it is finitely generated by the leading terms of elements g1, . . . , gs ∈ I. Then it is rather
straightforward to prove that this generating set itself satisfies 〈g1, . . . , gs〉 = I.
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Remark 6. Theorem 5 is called Hilbert’s basis theorem in [11]. Another, probably even
more famous formulation is that a (univariate) polynomial ring over a noetherian ring
is again noetherian. From this statement, Theorem 5 follows immediately by induction
over n, where the base case is shown as follows: For n = 0, we consider the field K. By
definition of a field, the only ideals of K are {0} and K itself, so every field is trivially
noetherian.

Remark 7. An ideal that is generated by monomials, that is, I = 〈xαi , 1 ≤ i ≤ s}〉,
is called a monomial ideal. In this case, a polynomial p belongs to I if and only if
all monomials in supp(p) belong to I, and a monomial xβ is in I if and only if xαi |xβ
for some generator of I. Therefore, a monomial ideal is defined by the monomials it
contains, and its geometry is easily described: It is generated by its ≤-minimal elements,
and it can be embedded in Zn≥0 as shown in figure 3.1.

x2

x1
x5

1

x2
1x2

x3
2

Monomials in
〈x5

1, x2
1x2, x3

2〉

Fig. 3.1: Geometric view on the monomial ideal 〈x5
1, x

2
1x2, x

3
2〉 ⊆ K[x1, x2]

Definition 11. Let I ⊆ K[x1, . . . , xn] be a monomial ideal. Then a monomial m ∈
K[x1, . . . , xn] with m /∈ I is called a standard monomial of I. We denote the set of
standard monomials of I by BI .

Remark 8. To avoid going beyond the scope of our thesis, we will not define quotient
rings, the dimension of an ideal and other deeper concepts of algebraic geometry. We
will, however, need the notion of a zero-dimensional ideal, whose defining property is
its finite algebraic variety. A detailed introduction to algebraic geometry is for example
given in [20].

3.2 Monomial Orders

When we talk about polynomials, it makes sense to have a canonical way to write them
down. In the case of the univariate polynomial ring, this is easy: We order the terms
descendingly by their degree, which gives a unique representation of a polynomial in
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one variable.
As soon as we work with more than one variable (which will be the case throughout
this thesis), the situation is more complicated, since, as we will see in this subsection,
there are infinitely many ways to order the monomials. We start by defining what each
“proper” term order has to satisfy.

Definition 12. A term order (or monomial order) on K[x1, . . . , xn] is any total order
� on Zn≥0, or equivalently, any total order on the set of monomials {xα, α ∈ Zn≥0},
satisfying:

• If α � β, then α+ γ � β + γ, and

• for the constant polynomial 1, γ � 1

for all α, β, γ ∈ Zn≥0, γ 6= 0.

There are two immediate consequences from this definition: First, if � is a term order,
then α + β � α ∀ α, β ∈ Zn≥0, where β 6= 0, and second, � is a well-ordering, that is,
every strictly decreasing sequence of monomials is finite. Equivalently, every non-empty
set of monomials has a minimal element with respect to �. The latter is not trivial to
see, so we will prove it, using Dickson’s lemma.

Lemma 7 (Dickson’s lemma). Any set C ⊆ Zn≥0 has only finitely many elements which
are minimal with respect to the partial order ≥, defined by

α ≥ β :⇔ αi ≥ βi ∀ i ∈ {1, . . . , n} .

Proof. Assume that there is an infinite subset M ⊆ C of minimal elements. We show
by induction on the dimension n, that M contains an infinite sequence m1 < m2 < . . .,
which contradicts the assumption that all elements of M are ≥-minimal.

n = 1 Let m1 := minm∈M (m), m2 := minm∈M\{m1}(m), and so on. The order
≥ is total on Z≥0, thus we are done.

n→ n+ 1 For m ∈ Zn+1
≥0 , denote by m′ := (m1, . . . ,mn) the projection of m onto

the first n variables, and by m∗ := mn+1 the remaining component. By
induction hypothesis, there is an infinite sequence m1,m2, . . . ⊆M such
that m′1 < m′2 < . . ..
Now choose i1 such that m∗i1 is minimal among the m∗j for all j ∈ Z≥0,
then choose i2 such that m∗i2 is minimal among the m∗j for all j ∈ Z≥0 \
{1, . . . , i1}, and so forth.
By construction, m∗i1 < m∗i2 < . . ., and moreover m′i1 < m′i2 < . . ., hence
mi1 < mi2 < . . . as claimed.

The partial order ≥ introduced in this lemma is easily recognized as the divisibility
ordering on the monomials in K[x1, . . . , xn]. Now we can prove the consequence from
above.

Lemma 8. Any term order on K[x1, . . . , xn] is a well-ordering.



3. Preliminaries from Algebra 26

Proof: [28]. Let M ⊂ K[x1, . . . , xn] be a non-empty set of monomials. By Lemma 7,
the set M0 of ≤-minimal elements in M is finite, and every m ∈ M is a multiple of
some m0 ∈M0 (not necessarily unique). Let m∗ denote the �-minimal element in M0.
Such an element exists, since � is a total order.
Now, if m ∈ M is an arbitrary monomial, we have that ∃ m0 ∈ M0, c ∈ K[x1, . . . , xn] :
m = c ·m0, and therefore m � m0 � m∗, which shows that m∗ is in fact �-minimal in
M .

Proposition 1. There are infinitely many distinct term orders for K[x1, . . . , xn], if and
only if n > 1.

Proof. Let n = 1. For any term order �, we have x � 1, and by successive multiplication
with x also xi+1 � xi for all i ∈ Z≥0. This fact implies that

1 ≺ x ≺ x2 ≺ . . .

is the unique term order on K[x].

Let now n = 2. For every w ∈ N, define a term order �w by

xα1
1 xα2

2 �w x
β1
1 x

β2
2 ⇐⇒ (w · α1 + α2 > w · β1 + β2) ∨

((w · α1 + α2 = w · β1 + β2) ∧ α1 > β1) .

We will show that this defines a valid term order on K[x1, x2] for all w, and these or-
derings are pairwise distinct.

• Assume α 6�w β and β 6�w α. Then w · α1 + α2 = w · β1 + β2 and also α1 = β1,
hence α = β. Consequently, �w is a total order.

• Let α, β, γ ∈ Z2
≥0, γ 6= 0. Then

α �w β =⇒ (w · α1 + α2 > w · β1 + β2) ∨
((w · α1 + α2 = w · β1 + β2) ∧ α1 > β1)

=⇒ (w · (α1 + γ1) + (α2 + γ2) > w · (β1 + γ1) + (β2 + γ2) ∨
((w · (α1 + γ1) + (α2 + γ2) = w · (β1 + γ1) + (β2 + γ2))
∧(α1 + γ1) > (β1 + γ1))

=⇒ α+ γ �w β + γ .

• w · γ1 + γ2 > 0 =⇒ γ �w 1.

• x1 �w′ xw2 ∀ w′ > w, but x1 ≺w′ xw2 ∀ w′ ≤ w.

Thus, we have infinitely many distinct monomial orders on K[x1, x2]. Since we can
always add a new variable whose power serves as a tie-breaker of the existing term
order, the claim follows for all n ≥ 2.
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Remark 9. From any term order � on K[x1, . . . , xn], we obtain in particular a total
ordering on the unit monomials x1, . . . , xn, which we call variable order. Note that if
two term orders produce different variable orders, then they cannot be equal, but two
term orders whose induced variable orders are equal, can very well be different. In fact,
for each variable order there are infinitely many distinct monomial orders, which follows
from the fact that there are only finitely many (precisely k!) variable orders.

Definition 13. Let p ∈ K[x1, . . . , xn] be a polynomial. Upon choice of a monomial
order �, we can put the terms of p in descending order, creating a canonical form of p.
Let cαxα be the highest term in this order, i.e.,

p = cαx
α +

∑
α 6=β∈Zn≥0

cβx
β and α � β ∀ β : cβ 6= 0 .

Then we call LT(p) := cαx
α the leading term, LC(p) := cα the leading coefficient, and

LM(p) := xα the leading monomial of p. Moreover, mdeg(p) := α is the multi-degree of
p, and deg(p) := |α|1 is its total degree. If there could be confusion about the used term
order, it will be indicated by a subscript.

3.2.1 Standard Term Orders

There is an elegant way to describe any term order on K[x1, . . . , xn]. However, we will
mostly use one of three standard orders which are more intuitive to understand than the
general scheme. Those standard orders are widely used in computations, for algorithmic
examples and for theoretical purposes.

Let α, β ∈ Zn≥0. The lexicographic order �Lex is defined by

α �Lex β ⇔ ∃k : αk > βk and αi = βi ∀i < k ,

that is, α �Lex β if and only if the leftmost non-zero entry in α− β is positive. Equiv-
alently, the higher power of x1 comes first, ties are broken by the power of x2, and so
on until xn.

The graded lexicographic order �GLex compares the total degree first, and uses �Lex to
break ties. Formally,

α �GLex β ⇔ |α|1 > |β|1 or
(
|α|1 = |β|1 and α �Lex β

)
.

Finally, the graded reverse lexicographic order �GRevLex works similarly to �GLex, but
the tie-breaker is reversed; if the total degrees are equal, then α �GRevLex β if and only
if the rightmost non-zero entry in α− β is negative:

α �GRevLex β ⇔ |α|1 > |β|1 or
(
|α|1 = |β|1 and α �RevLex β

)
,

where the auxiliary order �RevLex, defined as

α �RevLex β ⇔ ∃k : αk < βk and αi = βi ∀i > k ,

is not a valid term order, since for instance 1 �RevLex x1.
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All these monomial orders induce the variable order x1 � . . . � xn and can therefore
also be defined for the rest of the n! variable orders.

Example 3. Following the definition of the standard orders, we see that

x3
1x

2
2 �Lex x3

1x2x
2
3 �Lex x2

1x
3
2x3 ,

x3
1x

1
2x

2
3 �GLex x2

1x
3
2x3 �GLex x3

1x
2
2 , and

x2
1x

3
2x3 �GRevLex x3

1x2x
2
3 �GRevLex x3

1x
2
2 .

3.2.2 Matrix Orders

We have seen in Proposition 1 that there are infinitely many term orders on K[x1, . . . , xn].
Is there a construction that generates all orders, and in particular the standard orders?
Kreuzer and Robbiano [34] showed that such a construction scheme indeed exists. First,
we want to avoid a variable order according to which we compare powers of single vari-
ables only, but use weights instead. Since for every such weight, this can only give a
partial order, it makes sense to break ties using another order.

Definition 14. Let w ∈ Rn. We call a term order �w a weight order with respect to
w if

α �w β ⇔ wTα > wTβ or α �Aux β ,

where Aux is an auxiliary term order which serves as a tie-breaker. It is customary to
use GRevLex here, but any other term order can also be used.

Iterating the weight vector approach, we take vectors w1, . . . , wk and successively form
the scalar product. If we assume k = n, then it is possible to choose the weights so
that no ties can occur for all comparisons (see Lemma 9). These weight vectors can be
written in matrix form, giving name for the matrix order:

Definition 15. Let M ∈ Rm×n be a matrix, and let w1, . . . , wm denote the rows of M .
We call an order �M on Zn≥0 a matrix order with respect to M if

α �M β ⇔ ∃k : wkα > wkβ and wiα = wiβ ∀i < k .

Lemma 9. A matrix order �M is a total order if and only if rank(M) = n.

Proof.
⇒ Let rank(M) < n, and let x ∈ ker(M) \ {0}. Then wix = 0 ∀i, and therefore

neither α �M α+ x nor α �M α+ x for an arbitrary α ∈ Zn≥0.

⇐ Assume that α 6�M β and β 6�M α for some α, β ∈ Zn≥0, α 6= β. Then, for all i,

wiα = wiβ ⇒ wi(α− β) = 0 ⇒ α− β ∈ ker(M) \ {0} ⇒ rank(M) < n .
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Remark 10. Consider the matrices

M1 =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...
0 0 · · · 0 1


, M2 =



1 1 1 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

... . . . . . . ...
0 0 · · · 1 0


, M3 =



1 · · · 1 1 1
1 · · · 1 1 0
1 · · · 1 0 0
... ... ... ...

...
1 0 · · · 0 0


.

Evidently, �M1= �Lex, �M2= �GLex and �M3= �GRevLex, as can be seen by looking
at the definition of the standard orders. This representation of term orders by matrices
is not a coincidence: in fact, all possible term orders can be written as matrix orders.

Proposition 2. Let � be a term order on K[x1, . . . , xn]. Then there is an n×n-matrix
M with real entries such that �M= �, and the first non-zero entry of each row is
positive.

Proof. See [42], Theorem 4.

Remark 11. The matrix M does not necessarily have to be non-negative; there are
valid term orders that have a matrix representation with negative entries. For instance,

M ′3 =



1 · · · 1 1 1
0 · · · 0 0 −1
0 · · · 0 −1 0
... ... ... ...

...
0 −1 0 0 0


is another way to define the GRevLex order, which is closer to the definition above,
since in this order, a monomial becomes smaller with respect to the order, if one of the
components of the exponent becomes larger.
However, the uppermost non-zero entry in every column has to be positive, ensuring
that xi � 1 ∀i.

Definition 16. Let a term order � be fixed. If I ⊆ K[x1, . . . , xn] is an ideal, then

L(I) := 〈LM(p) : p ∈ I〉

is the leading ideal of I with respect to �.

It will be useful to permute the vertices of a given graph in order to change its Gröbner
basis properties in a desired way. Such a permutation can also be modeled by changing
the variable order of a term order, while maintaining the weight relations between the
variables. The following lemma shows how to obtain a permuted term order from a
given order, provided in the general matrix form.
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Lemma 10. Let σ ∈ Sn be a permutation, and � a monomial order on K[x1, . . . , xn].
Then there is a monomial order > such that

α � β ⇐⇒ σα > σβ .

In particular, every change in the vertex order of a graph can be represented by a
suitable monomial order.

Proof. By Proposition 2, there exists a matrix M =
(
m1 m2 · · · mn

)T
∈ Rn×n such

that � = �M . Let now > := �σ(M), where σ(M) =
(
mσ(1) mσ(2) · · · mσ(n)

)T
. We

will show that > has the above property. Let xα, xβ be monomials. Then

xα � xβ ⇐⇒ xα �M xβ

⇐⇒ ∃k : mT
k α > mT

k β and mT
i α = mT

i β ∀i < k

⇐⇒ ∃k : mT
σ(k)σα > mT

σ(k)σβ and mT
σ(i)σα = mT

σ(i)σβ ∀i < k

⇐⇒ xσα �σ(M) x
σβ

⇐⇒ xσα > xσβ .

3.3 Multivariate Polynomial Division

Let K[x1, . . . , xn] be equipped with a monomial order �. Given a polynomial p and a
finite set of polynomials f1, . . . , fk, we want to write p as a combination of the fi, possibly
with a remainder. This generalizes the Euclidean algorithm to both polynomial rings
and multiple divisors. The general idea is to find some fi whose leading term divides
LT(p), multiply it with a suitable coefficient polynomial and subtract the product from
p, such that LT(p) is cancelled. If this is not possible, LT(p) becomes part of the
remainder, and we continue with the next monomial in p. Note that the division process
and the result depend on the order of the divisor polynomials, because there is, in
general, more than one option in every step.

Theorem 6. Fix a monomial order � on Zn≥0 and let F = (f1, . . . , fk) be an ordered
k-tuple of polynomials in K[x1, . . . , xn]. Then every p ∈ K[x1, . . . , xn] can be written as

p = a1f1 + · · ·+ akfk + r ,

where ai, r ∈ K[x1, . . . , xn], and either the remainder r = 0 or r is a K-linear combination
of monomials, none of which is divisible by any of LT(f1), . . . ,LT(fk). Furthermore, if
aifi 6= 0, then we have mdeg(f) ≥ mdeg(aifi).

Proof. See [11], Chapter 2, §3, Theorem 3, where the statement is proven by providing
an algorithm (Algorithm 1), which gives, for a polynomial p and a divisor set F , exactly
the coefficients and the remainder from the theorem.
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Algorithm 1 Multivariate polynomial division
Input: Dividend p ∈ K[x1, . . . , xn], divisors F = {f1, . . . , fk} ⊆ K[x1, . . . , xn]
Output: Coefficients and remainder c1, . . . , ck, r ∈ K[x1, . . . , xn]

function PolynomialDivision(p, F )
ci ← 0 ∀ i
r ← 0
while p 6= 0 do

i← 1
divisionOccured← false
while (i ≤ k) ∧ (divisionOccured = false ) do

if LT(fi)|LT(p) then
ci ← ci + LT(p)

LT(fi)

p← p− LT(p)
LT(fi) · fi

divisionOccured← true
else

i← i+ 1
end if

end while
if divisionOccured = false then

r ← r + LT(p)
p← p− LT(p)

end if
end while
return c1, . . . , ck, r

end function

Remark 12. We denote the remainder r of multivariate polynomial division of p by F
by r = pF .

Example 4. Let us consider the polynomial ring in two variables. For p = x1x
2
2 + 1

and F = {x1x2 + 1, x2 + 1}, the steps are:

LM(f1)|LM(p) =⇒ a1 ←
LM(f1)
LM(p) = x2, p← p− a1f1 = −x2 + 1

LM(f2)|LM(p) =⇒ a2 ←
LM(f2)
LM(p) = −1, p← p− a2f2 = 2

LM(f1),LM(f2) - LM(p) =⇒ r ← LT(p) = 2, p← p− r = 0

and consequently

p = a1 · f1 + a2 · f2 + r

= x2 · (x1x2 + 1) + (−1) · (x2 + 1) + 2 .
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3.4 Gröbner Bases

As mentioned in the previous subsection, the remainder r = pF is not unique for a
generic set F of generators for an ideal I. In fact, the situation is even worse: If p ∈ I,
there is no guarantee that the division algorithm will write p as a combination of the
fi, that is, r = 0. Thus, membership in I cannot directly be shown via multivariate
division.

Example 5. We divide p = xy2 − x by the set F = {f1 = xy + 1, f2 = y2 − 1}:

LM(f1)|LM(p) =⇒ a1 ←
LM(f1)
LM(p) = y, p← p− a1f1 = −x− y

LM(f1),LM(f2) - LM(p) =⇒ r ← −x, p← p− r = −y
LM(f1),LM(f2) - LM(p) =⇒ r ← r − y = −x− y, p← p− r = 0

Hence, the result is

p = a1 · f1 + a2 · f2 + r

= y · (xy + 1) + 0 · (y2 − 1) + (−x− y)

with a non-zero remainder r.
However, the equality

xy2 − x = x(y2 − 1) = x · f2

shows that p ∈ 〈f1, f2〉, although we were not able to prove membership via the division
algorithm.

This motivates the need for a set F of generators of an ideal I such that remainders
with respect to F are unique. Such a generating set is called a Gröbner basis of I.

Definition 17. Fix a monomial order �, and let I ⊆ K[x1, . . . , xn] be an ideal. A finite
set G = {g1, . . . , gt} is called a Gröbner basis of I with respect to � if

L(G) = L(I) .

Theorem 7. Let I ⊆ K[x1, . . . , xn] be an ideal. Then there is a Gröbner basis G of I.
Moreover, a Gröbner basis is indeed a basis of I, i.e., 〈G〉 = I.

Proof. Theorem 5 gives that the ideal L(I) has a finite generating set of monomials,
that is, L(I) = 〈m1, . . . ,mt〉. By definition of a leading ideal, there are polynomials
p1, . . . , pt ∈ I such that LM(pi) = mi ∀i. Therefore, G = {p1, . . . , pt} is a Gröbner basis
of I.
Let now G = {g1, . . . , gt} be a Gröbner basis of I. To show the second claim, we apply
Algorithm 1 in the form PolynomialDivision(p,G) for an arbitrary polynomial p ∈ I,
and obtain a representation of the form p =

∑t
i=1 cigi+r. We claim that r = 0. Assume

0 6= r = p−
∑t
i=1 cigi ∈ I. Then LT(r) ∈ L(I) = L(g1, . . . , gt), and by Remark 7 there

is gi such that LM(gi)|LM(r), which contradicts the properties of a remainder (see
Theorem 6). Thus, r = 0 and consequently I ⊂ 〈G〉. The opposite inclusion is trivial,
since gi ∈ I ∀i.
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Gröbner bases can be characterized in several different ways, each of which reveals
important and interesting properties.

Proposition 3. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊆ K[x1, . . . , xn],
and let p ∈ K[x1, . . . , xn] be an arbitrary polynomial. Then there is a unique r ∈
K[x1, . . . , xn] with the following two properties: No term of r is divisible by any of
LT(g1), . . . ,LT(gt) and there is some g ∈ I such that p = g + r.
In particular, r is the remainder on division of p by G no matter how the elements of G
are listed when using the division algorithm.

Proof [11]. The division algorithm gives p =
∑t
i=1 cigi + r. If we now set g = p − r =∑t

i=1 cigi, then both properties are satisfied.
To prove uniqueness, assume that there are two such representations p = g1 + r1 =
g2 + r2 which satisfy the assumptions. Note that r1 − r2 = g2 − g1 ∈ I, and therefore
LT(r1 − r2) ∈ L(I) = L(g1, . . . , gt). Again, as in the proof of theorem 7, there is some
gi with LM(gi)|LM(r1 − r2), if r1 6= r2. Since the terms of r1 − r2 each appear in at
least one of the remainders, this is a contradiction. We conclude r1 = r2, and hence the
remainder is unique. The last claim follows immediately.

Lemma 11. If G is a Gröbner basis for an ideal I ⊆ K[x1, . . . , xn], then

p ∈ I ⇐⇒ pG = 0 .

Proof. By Proposition 3, r = pG is unique. Therefore, if p ∈ I, the validity of r = 0
shows the ⇒-implication. Conversely, if p /∈ I, then the remainder clearly cannot be
zero.

Proposition 3 makes clear why Gröbner bases are so useful for ideal computations, for
example ideal membership and equality tests. To find a Gröbner basis for a given ideal
I, we have to find a set whose leading terms span the leading ideal L(I). It seems
reasonable to start with a generating set G and successively add polynomials whose
leading term is not yet in the ideal generated by the leading monomials of G. Such
polynomials can be systematically found by combining two existing polynomials in a
way that cancels their leading terms. This idea is formalized by the definition of the
S-polynomial (or S-pair) of two polynomials f and g:

S(f, g) := xα

LT(f) · f −
xα

LT(g) · g ,

where xα = lcm (LM(f),LM(g)). The next characterization of Gröbner bases makes
use of this notion and shows that it is sufficient for a set G to be a Gröbner basis that
the S-polynomials of all pairs of polynomials in G vanish. It is due to Buchberger [6]
and gives a constructive way to find Gröbner bases.

Theorem 8 (Buchberger’s criterion). A finite set G = {g1, . . . , gt} is a Gröbner basis
for the ideal 〈g1, . . . , gt〉 if and only if

S(gi, gj)
G = 0

for all i, j ∈ {1, . . . , t} with i 6= j.
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Proof. See for example [11], Chapter 2, §6, Theorem 6.

Remark 13. It can be shown that all properties which we derived for Gröbner bases
so far are in fact defining properties: They are equivalent to the leading ideal condition
(Definition 17). Thus, a set G is a Gröbner basis of an ideal I if one (and therefore all)
of the following holds:

• L(G) = L(I)

• S(gi, gj)
G = 0 ∀ i 6= j

• p ∈ I ⇐⇒ pG = 0 for all p ∈ K[x1, . . . , xn]

• The remainder of polynomial division by G is unique.

From the definition of a Gröbner Basis, it is easy to see that for a given ideal I and
a Gröbner basis G of I, every superset G′ ⊃ G is a Gröbner Basis of I with respect to
the same term order. This motivates two questions: First, we can ask about a minimal
Gröbner Basis for a specific term order. Does it exist, and if so, is it unique? Second,
can we get rid of the choice of a term order? For example, if we build a Gröbner basis
for every possible term order (obviously such a basis can easily be obtained by taking
the union over Gröbner bases for all orders), will this large basis always be finite? These
two problems can in fact be answered in a very satisfying manner.
Another interesting question about Gröbner bases addresses their complexity. Since a
Gröbner basis is just a set of polynomials, it is natural to take the number of polynomials
and their respective complexity, which consists of degree, coefficient size and number
of terms, into account. Of these dimensions, we will abandon the coefficient size, since
computations can be performed over finite fields to avoid large or fractional coefficients
(see Fact 3).

Definition 18. Let G be a Gröbner basis. The length l(G) := |G| is the number of
elements in G. The degree d(G) := maxg∈G(deg g) is the maximum total degree of an
element, and the support s(G) := maxg∈G(| supp g|) is the largest number of terms in an
element of G.
We will call the triple (l(G), d(G), s(G)) the complexity pattern c(G) of G.

The product of these complexity measures gives an upper bound

O (l(G) · d(G) · s(G))

for the total (storage) size of G. However, this upper bound is not strict, since typically
a few elements of a Gröbner basis have large degree and a large number of monomials,
while most of the other polynomials are small.

Remark 14. The notion of the complexity pattern and its components for a Gröbner
basis is not standard and only used in this thesis.

Lemma 12. Let G be a Gröbner basis for an ideal I ⊆ K[x1, . . . , xn]. Let p ∈ G be a
polynomial such that LT(p) ∈ L(G \ {p}). Then G \ {p} is also a Gröbner basis for I.
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Proof [11]. By definition of a Gröbner basis, L(G) = L(I). Now the assumption is that
LT(p) ∈ L(G \ {p}), and therefore L(G \ {p}) = L(G). Thus, G \ {p} satisfies the
condition for being a Gröbner basis for I.

Definition 19. A Gröbner basis G of an ideal I ⊆ K[x1, . . . , xn] is called reduced if
for all f, g ∈ G, f 6= g, no monomial in f can be divided by LM(g), and moreover
LC(g) = 1 ∀ g ∈ G.

Proposition 4. For an ideal I ⊆ K[x1, . . . , xn] and a fixed term order �, the reduced
Gröbner basis of I with respect to � is unique. We will denote this basis by G�(I).

Proof [11]. Let G and G′ be two such bases. Clearly, L(G) = L(I) = L(G′), and the
leading monomials of a reduced Gröbner basis are exactly the �-minimal monomials of
this ideal. Therefore, LM(G) = LM(G′), and in particular |G| = |G′|.
Let now g′ ∈ G′. Then there is some g ∈ G such that LM(g) = LM(g′). Our goal is to
show that g = g′; then the claim follows. Consider the polynomial g− g′ ∈ I, for which
g − g′G = 0 holds. But by choice of g, the leading terms cancel in the difference, and
none of the remaining terms is divisible by any leading term of G or G′ by assumption
that both bases are reduced. Therefore, g − g′G = g − g′, which implies g = g′.

Remark 15. The uniqueness of the reduced Gröbner basis of an ideal I justifies the
following notion: The length of the reduced basis for a term order � is considered a
property of the ideal itself and therefore denoted by l�(I), and analogously for d and s.

To obtain a reduced Gröbner basis from a general one, we can use a reduction algorithm
(Algorithm 2), which applies multivariate polynomial division to all elements of the given
basis, until the remainders cannot be reduced further.

Algorithm 2 Gröbner basis reduction algorithm
Input: Gröbner basis G ⊆ K[x1, . . . , xn]
Output: Reduced Gröbner basis G′ of 〈G〉

function ReduceGröbnerBasis(G)
G′ ← G
for all g ∈ G′ do

if LT(g) ∈ L(G′ \ {g}) then
G′ ← (G′ \ {g})

end if
end for
for all g ∈ G′ do

g′ ← gG
′\{g′}

G′ ← G′ \ {g}
if g′ 6= 0 then

G′ ← G′ ∩ {g′}
end if

end for
return G′

end function
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Proposition 5. Algorithm 2 returns the reduced Gröbner Basis of the input ideal 〈G〉,
if G was a Gröbner Basis.

Proof. After the first for-loop, G′ is still a Gröbner basis by Lemma 12, and ∀ p ∈ G′ :
LM(p) /∈ L(G′ \ {p}). Such a Gröbner basis is called a minimal basis.
We will show that after each iteration of the second for-loop, the involved polynomial g
is reduced for G′, i.e., no monomial of g lies in L(G′ \ {g}), and that it remains reduced
during the entire process: Note that a reduced element g is also reduced for any other
minimal Gröbner basis that contains g and has the same leading ideal, because the
definition of a reduced polynomial only depends on the leading terms. We claim that
(G′ \ {g}) ∩ {g′} is again a minimal basis. LT(g′) = LT(g), since g is in the minimal
basis G′, and thus LT(g) always goes to the remainder when we divide by G′ \ {g}. In
consequence, the leading ideal does not change, which means that (G′ \ {g})∩ {g′} is a
Gröbner basis. Reducedness of g′ and minimality follow immediately.
After going through all elements in G′ and reducing them, we can be sure that every
g ∈ G′ is reduced, which is equivalent to G′ being a reduced Gröbner basis.

Corollary 1. Let G = G�(I) be the reduced Gröbner basis of an ideal I under a
fixed term order �. Then, for every Gröbner basis G′ of I under the same term order,
l(G) ≤ l(G′).

Proof. For input G′, Algorithm 2 yields G as result. During the algorithm, no new
polynomial is added, and therefore |G| ≤ |G′|.

Reduced Gröbner bases are not necessarily optimal with respect to their complexity
pattern. It is easy to find a graph family (see Example 6 below) together with suitable
monomial orders, such that the support of the reduced Gröbner bases grows linearly,
while other Gröbner bases for the same ideal and the same term order have constant
support.
Regarding the degree of a reduced Gröbner basis, it is not obvious if it is minimal
among all bases for the same ideal. Of course, if the term order � is graded, that
is, w1 = (1 1 · · · 1) in the matrix representation of �, then the reduction algorithm
will never increase the total degree of an element. However, for the Lex order, it can
happen that the leading term does not have maximal total degree among the terms of a
polynomials. Let, for instance, p = x2

1 and F = {x2
1+x3

2+x2x3}. Then pF = −x3
2−x2x3,

and thus both deg(p) = 2 < 4 = deg(pF ) and | supp(p)| = 1 < 2 = |supp(pF )|. This
means that reduction of p by F , as performed during Algorithm 2, can increase the
complexity of the set. However, the set F ∪ {p} was not a Gröbner basis; thus it is
not clear if this can happen for a Gröbner basis input, too, or if the latter prevents the
phenomenon.

Definition 20. A finite set G is called universal Gröbner basis of an ideal I if it is a
Gröbner basis of I with respect to any term order on K[x1, . . . , xn].
In Corollary 2, we will show that the union

Guni(I) :=
⋃
�
G�(I)

of the reduced Gröbner bases of I for all possible term orders is well-defined for any
ideal I and therefore gives a universal Gröbner basis.
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3.5 Buchberger’s Algorithm

Buchberger’s algorithm is a procedure which turns an ideal, given by a finite set of
generators, into a Gröbner basis for the same ideal. The simplest implementation of
the algorithm (see Algorithm 3) uses Theorem 8 in a very straightforward manner:
Start with a generating set F = {f1, . . . , fs} of the ideal I = 〈F 〉 and take F as an
initialization for the prospective Gröbner basis G. Now compute the remainder of the
S-polynomial of each pair of elements in G, and add it to G if it is non-zero. Repeat
this procedure until all possible S-pairs reduce to 0, since this is equivalent to G being
a Gröbner Basis for the ideal it generates, which is exactly I. It is not a priori clear
that this is a finite process, but we will see a short argument below.

Algorithm 3 Buchberger’s algorithm
Input: F ⊆ K[x1, . . . , xn]
Output: Gröbner basis G of 〈F 〉

function Buchberger(F )
G← F
repeat

G′ ← G
for all {p, q} ∈

(G′
2
)

do
r ← S(p, q)G

if r 6= 0 then
G← G ∪ {r}

end if
end for

until G = G′

return G
end function

Lemma 13. Buchberger’s algorithm terminates after finitely many steps.

Proof [11]. At the end of each step (except the last one), G′ ( G. Take some newly
added remainder r ∈ G \G′. r is a remainder from division by G′, so m - LT(r) ∀ m ∈
L(G′), and therefore LT(r) 6∈ L(G′). But by construction, LT(r) ∈ L(G), which shows
that L(G′) ( L(G), and thus the sequence of L(G) in every step form a strictly ascending
chain of monomial ideals in K[x1, . . . , xn].
Now, since the polynomial ring is noetherian, the ideal chain eventually stabilizes, and
as soon as this happens, G′ = G, and the exit criterion for the outer loop is true.

Remark 16. For general ideals I ⊆ K[x1, . . . , xn], it has been shown that Gröbner bases
can become very large. Precisely, [38] gives an upper bound for the degree of a reduced
Gröbner basis for an r-dimensional ideal, whose generators have degree bounded by d.
The authors show that a Gröbner basis of such an ideal can have degree≤ 2(1

2d
n−r+d)2r .

For the case of zero-dimensional ideals (which holds for coloring ideals), this bound
reduces to ≤ 2(1

2d
n + d). In [43], a lower bound of dn for zero-dimensional ideals is

given by a suitable example.
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The fact that this bound is exponential in n suggests that Gröbner basis computation
is inherently inefficient. However, the restriction to coloring ideals which have a special
structure, gives hope to a better upper bound on the degree of the resulting Gröbner
bases. On the other hand, a small Gröbner basis does not mean that it can be computed
efficiently. In Chapter 5, we show that a polynomial-time algorithm for Gröbner bases
of 3-coloring ideals would imply that P = NP. It could thus be the case that the
coloring ideal of an arbitrary graph has a small (e.g. linear-sized) Gröbner basis, but it
still takes exponential time to find such a basis in general.

Proposition 6. Let P ⊂ K[x1, . . . , xn] be a finite set, and let p1, p2 ∈ P such that

lcm (LM(p1),LM(p2)) = LM(p1) · LM(p2) .

Then
S(p1, p2)→P 0 .

Proof [11]. Assume without loss of generality that both leading terms of p1 and p2 are
1. We separate the two polynomials into p1 = LM(p1) + r1 and p2 = LM(p2) + r2. Now

S(p1, p2) = LM(p2) · p1 − LM(p1) · p2

= (p2 − r2) · p1 − (p1 − r1) · p2

= p2p1 − r2p1 − p1p2 + r1p2

= r1p2 − r2p1.

Note that LM(p2) - LM(r2) and therefore LM(r1) · LM(p2) 6= LM(r2) · LM(p1), because
gcd (LM(p1),LM(p2)) = 1. Thus, the leading terms of r1p2 and r2p1 cannot cancel,
and mdeg(S(p1, p2)) = max (mdeg(r1p2),mdeg(r2p1)). With p1, p2 ∈ P , the claim
follows.

Remark 17. Proposition 6 is useful from two points of view: First, it gives a hint
on how to speed up Buchberger’s algorithm: Before computing an S-pair S(f, g) and
reducing it with respect to G, we test f and g for being relatively prime, and if they
are, we can directly go to the next pair and skip the (sometimes very costly) polynomial
division.
Second, it allows for a direct proof that a given set G is a Gröbner basis: If we can find
a term order under which the leading terms of all elements of G are relatively prime,
then G is a Gröbner basis under this order.

3.6 The Gröbner Fan

All Gröbner basis techniques so far are based on the choice of a specific term order,
which has to be made upfront. As a consequence, it is possible that obtaining a “bad”
Gröbner basis, that is, a basis with high complexity or high computational effort, is
simply due to a bad choice of monomial order. We want to overcome this drawback by
somehow looking at all possible term orders, and therefore all possible Gröbner bases,
at the same time. Remember that there are, for n > 1, infinitely many distinct term
orders (Proposition 1). However, we will see that for a given ideal I, the set of leading
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ideals of I, taken over all term orders, is finite, and so is the set of all Gröbner bases of I.
We will introduce the Gröbner fan of an ideal and show that it is a powerful tool, both
as a theoretical concept and a computational approach, in order to examine Gröbner
bases independently of a specific term order. The Gröbner fan is a collection of cones
in the positive orthant Rn+. To understand its properties, we need some definitions that
link monomial orders to this orthant.

Definition 21. Let I ⊆ K[x1, . . . , xn] be an ideal. The set

Mon(I) := {L�(I) : � is a monomial order on K[x1, . . . , xn]}

is called the collection of leading ideals of I.

In [39], the collection of leading ideals is denoted by Mon+(I), since the authors use
Mon(I) for the more general set of leading ideals with respect to partial orders.

Theorem 9. For any ideal I ⊆ K[x1, . . . , xn], Mon(I) is finite.

Proof. See for example [10], Chapter 8, Theorem 4.1.

In Mon(I), two reduced Gröbner bases G1 and G2 are considered equal if they contain
the same polynomials, even if the order of terms within the polynomials differs depending
on the term order under which G1 and G2 are Gröbner bases. This motivates the
notation of marked Gröbner bases, which do not only contain a set of polynomials, but
an indicated leading term for each polynomial. Evidently, for G to be a marked Gröbner
basis, there must exist a term order � such that the marked leading terms are actually
leading terms of their respective polynomials under �, and at the same time, G has to
be a Gröbner basis under �.

Lemma 14. The set Mar(I) of marked reduced Gröbner bases of an ideal I is in
one-to-one correspondence with Mon(I).

Proof. See for example [10], Chapter 8, Corollary 4.3.

Now we are able prove that a universal Gröbner basis, as defined in Definition 20 exists
for an arbitrary polynomial ideal.

Corollary 2. |Guni(I)| <∞ for every ideal I ⊆ K[x1, . . . , xn].

Proof. By definition, Guni(I) is the union of finite sets. Theorem 9 and Lemma 14 assure
that this union is finite, too, which proves the claim.

Remember that every monomial order on K[x1, . . . , xn] results from an (n× n)-matrix
of weight vectors. It is clear that the first row w1 of such a matrix necessarily has
non-negative entries, in order to satisfy the requirements for a term order. On the other
hand, every non-negative vector w can be used as the first weight of a matrix order.
Let now G be a marked Gröbner basis for an ideal I. Then we can consider the cone
CG of all w ∈ Rn+ such that there is a matrix whose first row is w and which gives
exactly the marked leading terms in G. More formally, let G = {g1, . . . , gt}, and let
xαi = LM(gi) ∀i. Then

CG :=
{
w ∈ Rn+ : w · αi ≥ w · β ∀ β ∈ supp(gi) ∀ i

}
.
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For two marked Gröbner bases of an ideal, the intersection of the cones can be non-
empty, since the first row does not entirely define a term order. Moreover, the union of
the cones over all elements of Mar(I) gives the complete non-negative orthant.

Definition 22. The collection

{CG : G ∈ Mar(I)}

is called the Gröbner fan of I.

The Gröbner fan enables the construction of the sets Mon(I) and Mar(I): Once we
have the set of all cones, we can just take a term order for every cone, and compute the
corresponding leading ideal and Gröbner basis.
Fortunately, the Gröbner fan of an ideal I can be computed in a straightforward manner,
which is motivated by the property that the union of its cones is Rn+: Start with an
empty set F of cones, and check whether their union is the entire orthant. If so, we are
done. If not, choose a vector in the complement of this union, generate the corresponding
cone (which is not always unique, since we are only given one weight vector) and add it
to F . Now, repeat this procedure until every non-negative weight vector lies in at least
one of the cones. The pseudocode for this finite algorithm is given as Algorithm 4.

Algorithm 4 Computing the Gröbner fan
Input: I ⊆ K[x1, . . . , xn]
Output: F = {CG : G ∈ Mar(I)}

function GröbnerFan(I)
F ← ∅
while

⋃
C∈F C 6= Rn+ do

Choose w ∈ Rn+ \ (
⋃
C∈F C)

Choose �M with first row w
G ← G�M (I)
F ← F ∪ CG

end while
return F

end function

Once the Gröbner fan and the collection of marked Gröbner bases of an ideal are ex-
plicitly computed, the ideal can be seen as “decoded” with respect to Gröbner basis
theory.



4. GRAPH COLORABILITY AS AN ALGEBRAIC PROBLEM

It is well-known that the colorability problem can be stated in terms of polynomial
equations. The case of three colors was first given in [8], and [17] provides the following
formulation for general integers k.

4.1 An Equivalent Algebraic Problem Formulation

Proposition 7. Let G = (V,E) be a graph, and let k ∈ N. G is k-colorable if and only
if the polynomial system of equations in C[x1, . . . , xn]

xkv − 1 = 0 ∀ v ∈ V and
k−1∑
i=0

xk−1−i
u xiv = 0 ∀ {u, v} ∈ E

has a solution. We will denote this set of polynomials by FG, and the ideal spanned by
its elements by IG.

Proof.
⇒ Let c : {1, . . . , n} → {1, . . . , k} be a proper k-coloring. Set x∗i := ξc(i) ∀i, where

ξ := e
2πi
k is the k-th root of unity. Then

• vi(x∗) =
(
ξc(i)

)k
− 1 =

(
ξk
)c(i)

− 1 = 1k − 1 = 0 and

• ei,j(x∗) = (x∗i )
k−(x∗j)

k

x∗i−x
∗
j

= 0
x∗i−x

∗
j

= 0

for all i ∈ V and {i, j} ∈ E. Therefore, x∗ ∈ V(IG) 6= ∅.

⇐ Let V(IG) be non-empty, and x∗ ∈ V(IG). The equalities vi(x∗) = (x∗i )
k − 1 = 0

imply that the components of x∗ are k-th roots of unity, that is,

∀i ∃ ci ∈ {1, . . . , k} such that x∗i = ξci .

Define c : {1, . . . , n} → {1, . . . , k} by c(i) := ci. Then c is a coloring function for
G, and

ci = cj ⇒ x∗i = ξci = ξcj = x∗j

⇒ ei,j(x∗) =
k∑
l=1

(x∗i )
k = k · x∗i 6= 0

⇒ ei,j /∈ IG ⇒ {i, j} /∈ E ,

which means that c is a proper k-coloring of G.
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Note that we translate a graph with n vertices and m edges into a set of n+m polyno-
mials over a polynomial ring with n variables. The degree of these polynomials is k for
the first and k − 1 for the second type of polynomials.

Notation. To simplify notation, we call

vi := xki − 1

the vertex polynomial for the vertex i and

eu,v :=
k−1∑
i=0

xk−1−i
u xiv

the edge polynomial for the edge {u, v}.

Since computations over the field C are rather expensive, we use that fact that there
are “nicer” fields which also possess the crucial property of having k distinct k-th roots
of unity. This is, for example, satisfied by the algebraic closure of all finite fields Fp,
where p is a prime number which is also relatively prime to k.

Lemma 15. The equation xk − 1 = 0 has k distinct roots over Fp, when p ∈ P is
relatively prime to k.

Proof [37]. The discriminant of a polynomial f(x) = anx
n + an−1x

n−1 + . . . + a0 is
defined to be

disc(f) = (−1)n(n−1)/2

an
· Res(f, f ′) .

When the discriminant is non-zero, f does not have multiple roots. In our case, f(x) =
xk − 1, and f ′(x) = kxk−1. The resultant is the determinant of the Sylvester matrix,
here Res(f, f ′) = kk 6≡ 0 (mod p), and therefore, the discriminant is non-zero, and all
roots of the equation xk − 1 = 0 are distinct. The number of those distinct roots is a
consequence of the fundamental theorem of algebra, since Fp is algebraically closed.

We can now restate the algebraic formulation of graph colorability as follows:

Corollary 3. Let G be a graph, and let k ∈ N. G is k-colorable if and only if the
polynomial system of equations in Fp[x1, . . . , xn]

xkv − 1 = 0 ∀ v ∈ V and
k−1∑
i=0

xk−1−i
u xiv = 0 ∀ {u, v} ∈ E

has a solution in Fnp .

Remark 18. The proof of Proposition 7 actually reveals a stronger connection between
solvability of FG and k-colorings of G: For every coloring, we find exactly one corre-
sponding point in V(IG), and every such point yields a specific proper coloring. In other
words, elements of V(IG) and proper k-colorings of G are in bijection; in particular,
they have equal cardinality.



4. Graph Colorability as an Algebraic Problem 43

Remark 19. Assigning the polynomial ideal IG to a graph G gives meaning to the
notations VG, LG and BG, where we see the properties of a coloring ideal as properties
of the graph itself. In all cases, it is clear from the context for which k we form the
k-coloring ideal.

A useful fact about the numbers that we chose to represent the colors is the summation
formula of roots of unity.

Lemma 16. Let ξ denote the first k-th root of unity for k ≥ 2. Then {ξ, ξ2, . . . , ξk} is
the set of all k-th roots of unity, and their sum is

k∑
i=1

ξi = 0 .

Proof.
k∑
i=1

ξi = 1− ξk

1− ξ = 1− 1
1− ξ = 0 .

4.2 Hilbert’s Nullstellensatz

Theorem 10 (Weak Nullstellensatz). Let K be an algebraically closed field and let
I ⊆ K[x1, . . . , xn] be an ideal satisfying V (I) = ∅. Then

I = K[x1, . . . , xn] .

Proof. See for example [11], Chapter 4, §1, Theorem 1.

Lemma 17. Let P = {p1, . . . , pk} ⊂ K[x1, . . . , xn] be a set of polynomials. Then all
p ∈ P have a common root if and only if the constant polynomial 1 /∈ I := 〈p1, . . . , pk〉.

Proof. Assume that 1 /∈ I, and therefore I 6= K[x1, . . . , xn]. Then, by Theorem 10,
V (I) 6= ∅, and every element of V (I) is a common root of the pi.
Let on the other hand 1 ∈ I. Then ∀ i ∈ {1, . . . , k} ∃ ci ∈ K[x1, . . . , xn] such that∑k
i=1 cipi = 1. Assuming that x ∈ K is a common root of the pi leads to the contradic-

tion

1 = 1(x) =
(

k∑
i=1

cipi

)
(x) =

k∑
i=1

ci(x)pi(x) = 0 .

A consequence of this lemma is that, in order to test the polynomial system FG for a
common root, we can form the ideal of all the polynomials and see if 1 is contained in
this ideal. And this is exactly the reason why we need to compute a Gröbner basis for
IG first: Only if we have a Gröbner basis as the set of divisors, we can use multivariate
polynomial division to check if 1 ∈ IG, which would not necessarily give the correct
result for the generator set FG.
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Remark 20. For the ideal membership problem, it suffices to compute an arbitrary
Gröbner bases of the ideal, since uniqueness of the remainder holds in general. There-
fore, it is not required to have a reduced basis for solving the algebraic version of graph
coloring.
To answer the question if two given ideals I and J are equal, however, it is necessary to
compute the reduced Gröbner bases and check if they contain the exact same elements,
or to compute arbitrary bases and test if each element of I lies in J by polynomial
division and vice versa.

An interesting property of the Lex order is the shape of the resulting Gröbner bases.
As examined in detail in Chapter 3 (Elimination Theory) of [11], this monomial order
leads to a triangular Gröbner basis form, in the sense that the last polynomial of the
basis is univariate, the second last polynomial depends on two variables, and so on.
This phenomenon is very useful, since it makes it easy to find an element of the variety
by solving the last equation and successively re-substituting the solution into the next
polynomial. The monomial order for which the triangular shape of Gröbner bases holds,
are called elimination orders.

Fact 1. Let G be a Gröbner basis for an ideal I with respect to an elimination order.
Then there is an efficient way to find some x ∈ V(I), using G.

Remark 21. Hilbert’s Nullstellensatz can also be used to solve combinatorial problems
with a different approach: After constructing a set F of polynomials whose common
roots encode the solutions of the problem, we can test if 1 ∈ 〈F 〉 by trying to find a
polynomial combination of elements in F that add up to 1, as described in the proof of
Lemma 17. If this is possible, then there is no solution to the combinatorial problem.
The NulLA algorithm [37] makes use of this approach by building a linear system of
equations to determine the coefficient polynomials of the equation

∑
cipp = 1. To do

so, a tentative maximum degree d of the coefficients has to be given, and the algorithm
can only decide whether or not a non-solvability certificate of degree ≤ d exists. Hence,
only the non-existence of a solution can be shown explicitly by proving a certificate,
while solvability cannot be proven directly.
Experimental results show that in most cases, these Nullstellensatz certificates have
low degree, which renders NulLA comparable with other algorithms for problems like
graph colorability.

4.3 k-Colorings and Standard Monomials of IG

We would like to strengthen the link between k-colorings of a graph G and the set of
standard monomials in the k-coloring ideal of G. It turns out that their cardinalities are
equal, but the proof for this fact involves rather profound algebraic concepts. Therefore,
we will give some of the steps without proof, while keeping the overall chain of thought
complete.
First, we note that the fields we work with, i.e., C and the finite fields Fp, have the prop-
erty to be perfect, which we don’t have to understand in detail (see [5], V, Proposition
5). Second, an ideal I is called zero-dimensional, written as dim(I) = 0, if |V(I)| <∞.
As pointed out in Remark 18, the coloring ideal of a graph is zero-dimensional, since the



4. Graph Colorability as an Algebraic Problem 45

number of colorings is bounded above by kn. Third, the set BG of standard monomials
of the ideal IG is a (finite) vector space basis of the quotient ring K[x1, . . . , xn]/IG over
K, and therefore |BG| = dimK(K[x1, . . . , xn]/IG) ([10], Theorem 4.3).

Lemma 18 (Seidenberg’s Lemma). Let I ⊆ K[x1, . . . , xn] be a zero-dimensional ideal.
Suppose that, for every i ∈ {1, . . . , n}, there exists a non-zero polynomial gi ∈ I ∩K[xi]
such that gcd(gi, g′i) = 1. Then I is a radical ideal.

Proof. See [34], Proposition 3.7.15.

Theorem 11. Let G be a graph. Then IG is a radical ideal.

Proof. For every i ∈ {1, . . . , n},

vi(x) = xki − 1 ∈ IG ∩K[xi]

by definition. Since K is algebraically closed and therefore

v′i(x) = k · xk−1
i =⇒ gcd(vi, v′i) = 1 ,

we can apply Lemma 18, which gives the claim.

Theorem 12. Assume that dim(I) = 0. Then the number of zeros of I in Kn is less
or equal to the vector space dimension dimK(K[x1, . . . , xn]/I). If K is perfect and I is
radical, then equality holds.

Proof. See [7], Theorem 8.32.

Corollary 4. The number of proper k-colorings of a graph G equals the number of
standard monomials |BG|.

Proof. As listed above, the prerequisites for Theorem 12, and in particular for the last
part, are satisfied, such that |V(IG)| = |BG|. Together with Remark 18, the claim

|{c : V → {1, . . . , k} : c is a proper k-coloring of G}| = |BG|

follows.

Remark 22. Note that Corollary 4 implies k! | |BG|, where BG is taken with respect
to the k-coloring ideal of G.

4.4 General Properties of Gröbner Bases for Coloring Ideals

Lemma 19. Let G be a graph with connected components G1, . . . , Gc, and fix a term
order. If G1, . . . ,Gc are Gröbner bases for the components, then G :=

⋃c
i=1 Gi is a

Gröbner basis for G. If all Gi are reduced, then G is also reduced.
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Proof. The first claim is shown by the equality

L(IG) = L
(

c∑
i=1
IGi

)
=

c∑
i=1
L(IGi) =

c∑
i=1
L(Gi) = L

(
c∑
i=1
Gi

)
= L(G) .

Assume now that all Gi are reduced. Each coloring ideal IGi only contains variables
which correspond to vertices in Gi, and these are disjoint. Thus, for all i ∈ {1, . . . , c},
no term of an element of Gi is divided by a leading term of an element of Gj , where
i 6= j, and since Gi is reduced, the same holds for leading terms in Gi. This suffices to
show that G is reduced.

Theorem 13. Let G be a k-colorable graph on n vertices. Then for any Gröbner basis
G of IG,

l(G) = |G| ≥ n .

Proof. Since the number of solutions for the graph coloring problem is finite, we have

|{α ∈ Nn : xα /∈ L(G)}| <∞ .

Therefore, ∀i ∈ {1, . . . , n} ∃k ∈ N such that xk·ei ∈ L(G) (otherwise {xN·ei} would be
an infinite family of monomials which are not in L(G), a contradiction).
Note that L(G) is a monomial ideal generated by LM(F ), hence ∀ i ∈ {1, . . . , n}∃fi ∈ F
with xβi := LM(fi) | xk·ei . That means, βi ≤ k · ei. Moreover, βi 6= 0 ∀i because V(I)
is non-empty. We see that the fi are necessarily distinct, and their leading monomials
have respective support {i}. Thus,

|G| ≥ |{fi : i ∈ {1, . . . , n}}| = n .

Example 6. Even in the case of coloring ideals, a reduced Gröbner basis can have worse
complexity than a non-reduced basis for the same term order: Consider the graph G
as shown in Figure 4.1, together with the standard Lex order. The complexity pattern
of the reduced Gröbner basis G is (10, 3, 8). While its length l(G) and degree d(G) are
minimal, assured by Corollary 1 and Theorem 6, respectively, we find a non-reduced
Gröbner basis G′ with respect to the same order, whose complexity pattern is (10, 3, 3).
Such a basis is for example given by the vertex and edge polynomials

G′ = {e1,3, e2,3, e3,4, e4,5, e5,6, e6,7, e7,10, e8,10, e9,10, v10} .

Inserting vertices in between the two forks lets the support of the reduced basis grow
at the rate s(G) = n− 2, whereas G′ can be extended with unchanged support.

Theorem 14. Let G be a k-colorable graph on n vertices, and let G be a reduced
Gröbner basis of IG. If u ∈ G ∩K[xj ] is a univariate Gröbner Basis element for some j,
then u is the vertex polynomial

u(x) = u(xj) = xkj − 1 .
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Fig. 4.1: The double fork graph on 10 vertices

Proof. Let u be such a polynomial. Let c : {1, . . . , n} → {1, . . . , k} be a proper k-
coloring of G. Since for every σ ∈ Sk, σ(c) is a proper k-coloring, we get that

∀i ∈ {1, . . . , n} ∃ a proper k-coloring ci : ci(j) = i ,

in other words, vertex j takes every possible color in at least one proper k-coloring.
Every coloring c defines a point p = (ξ

2iπ
k
·c(1), . . . , ξ

2iπ
k
·c(n)) ∈ Cn in VG = V(〈G〉), that

is, u(p) = 0 ∀ g ∈ G. In particular, u(ξ
2iπ
k
·i) = 0 ∀ i ∈ {1, . . . , n}. This shows that

(xkj − 1)|u.
On the other hand, assume that deg(u) > k. Since xkj ∈ L(G), we have some element
v ∈ G : LM(v)|xkj |LM(u), a contradiction to the fact that G is reduced.
We conclude that u = xkj − 1 because K[x1, . . . , xn] is a factorial ring.

Lemma 20. Let p ∈ K[x1, . . . , xn] be a homogeneous polynomial, and let � and > be
two term orders which induce the same variable order, which is without loss of generality
xi � xj ∀ i < j. Then the terms of p are ordered the same way by � and >.

Proof. Let xα and xβ be two monomials of p. If α1 > β1, then we can easily see that
xα � xβ: Both monomials can be obtained in the same number of steps by multiplying
the initial monomial 1 with a variable. Moreover, in every step we can choose the
variable for xα with a smaller index (and hence higher priority in � and >) than the
one for xβ. By transitivity, xα � xβ follows. Conversely, α1 < β1 implies xβ � xα, and
if both first exponents are equal, we continue with the second variable. Therefore, �
induces the same order on the terms of p as the Lex order, and the same holds for >.
This finishes the proof.

Definition 23. Let p =
∑
α∈Nn0

cαx
α ∈ K[x1, . . . , xn]. If there exist some k ∈ N and

0 ≤ i < k such that deg(xα) ≡ i mod k ∀ α : cα 6= 0, then we call p homogeneous (of
degree i) modulo k, denoted by p h≡ i mod k.
A set F of polynomials is called homogeneous modulo k if every f ∈ F is homogeneous
of degree i modulo k for some (not necessarily equal) i.

Remark 23. Let f, g ∈ K[x1, . . . , xn]. If both f and g are homogeneous of degree i
modulo k and f + g 6= 0, then f + g

h≡ i mod k. Also, if f h≡ i mod k and g
h≡ j

mod k, then f · g h≡ (i+ j mod k) mod k. This can be verified by direct calculation.

Proposition 8. Let f, g ∈ K[x1, . . . , xn] be homogeneous modulo k, and let F ⊂
K[x1, . . . , xn] be a set of polynomials which are homogeneous modulo k. Then

S(f, g) and S(f, g)F
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are homogeneous modulo k.

Proof. Informally, both the S-pair and the multivariate polynomial division “lift” the
involved polynomials to the same degree before performing any other operation. This
preserves the homogeneous degree for both addition and multiplication.
More precisely: Let i and j be the degrees of homogeneity modulo k of f and g,
respectively. If we set l := lcm(LM(f),LM(g)) and d := deg(l) mod k, then l

LM(f)
h≡

(d− i) mod k and l
LM(g)

h≡ (d− j) mod k, and therefore

S(f, g) = l

LM(f) · f −
l

LM(g) · g
h≡ d mod k ,

which is the first claim.
Looking at Algorithm 1, we note that the only operation that could destroy homogeneity
modulo k is the assignment p ← p − LT(p)

LT(fi) · fi. But here the same argument holds: If

p
h≡ i mod k, then LT(p)

LT(fi) · fi
h≡ i mod k, and thus the homogeneity of p is maintained

during this assignment. Since r receives only terms from p, which always have the same
degree modulo k, the proof is complete.

Corollary 5. Gröbner bases of k-coloring ideals are homogeneous modulo k.

Proof. According to Proposition 8, Buchberger’s Algorithm (Algorithm 3) and the
Gröbner basis reduction algorithm (Algorithm 2) preserve homogeneity modulo k. Thus,
it suffices to show that the input polynomials are homogeneous modulo k. But this is
trivial, since the degrees of monomials in the vertex polynomials are 0 and k, and the
edge polynomials are homogeneous of degree k − 1.

Theorem 15. Let G be a k-colorable graph on n vertices, and let G be a Gröbner basis
of IG. Then G contains the vertex polynomial vi = xki − 1 for some i ∈ {1, . . . , n}.

Proof. As shown above, ∀ i ∈ {1, . . . , n} ∃ gi ∈ G with LM(gi) | xki . Let now � be a
term order under which G is a Gröbner basis, and choose i such that xj � xi ∀ j 6= i.
We claim that gi = xki −1. First note that if LM(gi) = xki , then the claim holds, since gi
cannot contain any other term of degree ≥ k, because this term would certainly replace
xki as the leading term. Moreover, gi is homogeneous of degree 0 modulo k by Corollary
5, and has therefore the form gi = xki + c with c ∈ K. Assuming that c 6= −1 and using
the fact the vi ∈ IG, we immediately see that 0 6= c + 1 ∈ IG ⇒ IG = K[x1, . . . , xn],
which contradicts k-colorability of G.
Assume now that LM(gi) = xli, where l < k. Then, again by Corollary 5, every monomial
in gi has degree l, but if there was another monomial of this degree, xli would not be the
leading monomial. Therefore, gi = xli ⇒ 1 = xk−li · gi− vi ∈ IG, the same contradiction
as above.
We conclude that indeed LM(gi) = xki , and gi = xki − 1.

Corollary 6. Let G be a k-colorable graph. Then for any Gröbner basis G of IG,

d(G) ≥ k .
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Proof. By Theorem 15, G contains a vertex polynomial, which has degree k.

Theorem 16. Every reduced Gröbner basis of a uniquely 3-colorable graph G has
≤ n+ 6 elements.
Proof. Lemma 4 assures that |{α ∈ Nn : xα /∈ L(G)}| = 3! = 6, and the monomials
1, xn and x2

n are standard monomials by Theorem 15. Assume that xi ∈ L(G) ∀ i ∈
{1, . . . , n − 1}. Then these three monomials would be the only standard monomials,
which is not possible. On the other hand, for every i such that xi /∈ L(G), xi is a
standard monomial. Therefore, we know that

2 ≤ |{i ∈ {1, . . . , n} : xi /∈ L(G)}| ≤ 4 .

Let G denote an arbitrary reduced Gröbner basis of G for an arbitrary term order. The
three cases which we have to consider are:
• {i ∈ {1, . . . , n} : xi /∈ L(G)} = {i, n}. The geometry of L(G) has one of the

following two forms:
xi

xn
x3
n

x2
i

xi

xn
x3
n

xix
2
n

x2
ixn

x3
i

This two-dimensional projection is the only interesting one, since all monomials
which do not lie in the xi-xn-plane, are multiples of at least one other variable
and therefore in L(G).
In the first case, l(G) = n, in the second case l(G) = n+ 2.

• {i ∈ {1, . . . , n} : xi /∈ L(G)} = {i, j, n}. Now we have to consider a 3-dimensional
projection of Zn≥0, which is non-trivial with respect to standard monomials. Up to
permutation of xi and xj , the position of the 6 standard monomials in this space
is unique and looks like this:

xj

xn

xi

x3
n

xix
2
n

x2
i

x2
j

xixj

xjxn
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with the two-dimensional projections

xi

xn
x3
n

xix
2
n

x2
i

xj

xn
x3
n

xjxn

x2
j

xj

xi
x2
i

xixj

x2
j

Counting divisibility-minimal elements, we see that l(G) = n+ 3.

• {i ∈ {1, . . . , n} : xi /∈ L(G)} = {i, j, h, n}. Although a picture of the (4-
dimensional) crucial projection would not reveal the geometry of this monomial
ideal, it is fairly easy to imagine: The standard monomials are

B(G) = {1, xi, xj , xh, xn, x2
n} ,

such that all minimal elements of L(G) are contained in a 2-dimensional coordinate
plane and thus have support ≤ 2. There are two types of coordinate planes in
this setting, the ones that involve xn (left figure) and the ones that do not (right
figure).

xi/xj/xh

xn
x3
n

x2xn

x2
2

xi/xj/xh

xi/xj/xh
x2
2

x2x2

x2
2

The minimal elements are

x2
i , x

2
j , x

2
h, x

3
n, xixj , xixh, xixn, xjxh, xjxn, xhxn ,

and therefore l(G) = n+ 6.

Remark 24. In [32], the authors give a complete description of Gröbner bases for the
k-coloring ideals of uniquely k-colorable graphs, using a different approach. They show
that, in fact, every reduced Gröbner basis of such a graph has length n. Our reasoning
here is independent of this result, and it raises the natural question why only the first
configuration in the proof of Theorem 16 can occur.

Theorem 17. Let G be a graph on n vertices, and let G be an arbitrary Gröbner basis
of the 3-coloring ideal IG. If G contains a polynomial of degree 1, then G contains a
cycle.
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Proof. Assume that G is cycle-free. We only need to consider the case that G is a tree:
If G is a forest with more than one component, then G can be partitioned into Gröbner
bases of the components (Lemma 19), and at least one of these smaller Gröbner bases
contains a polynomial of degree 1.
Using the fact that all trees on n vertices are chromatically equivalent, and their chro-
matic polynomial is k(k−1)n−1, we see thatG has exactly c := 3·2n−1 proper 3-colorings,
which is also the number of standard monomials |B(G)| by Theorem 4. Remember that
x3
i ∈ LG for all i. Now

3 · 2n−1 = c = |BG| ≤
n∏
i=1

min{p ∈ N : xpi ∈ LG} .

If ∃i : xi ∈ LG, then there has to be some j such that x3
j /∈ LG, because the n factors of

c have to be distributed among the n−1 remaining variables. This contradiction shows
the claim.



5. EXPECTED HARDNESS RESULTS FOR GENERAL GRAPHS

The method examined in this thesis is a radically different approach to a graph theoretic
problem from the “conventional” techniques shown in Section 2.2.3. Since we do not
perform any operations directly on the input graph, for example enumerating all possible
colorings, backtracking or decomposing the graph (techniques which are known to result
in exponential-time algorithms), it is not a priori clear what the asymptotic running
time of the Gröbner basis approach will be. However, Gröbner basis computations have
shown to be very costly in general and for various restrictions on the input, for example
zero-dimensional, homogeneous or toric ideals.
We will show that also coloring ideals are hard with respect to their Gröbner bases.
But this does not only hold for the Gröbner bases of an exact coloring ideal: Starting
at well-known hardness theorems for approximating the 3-coloring problem or finding
partial solutions, we will translate the statements into similar approximation results for
the computation of Gröbner bases, therefore showing some kind of “robust hardness”.

5.1 Buchberger’s Algorithm Captures the Hardness of NP

First, we note that the treatment of graph coloring as an algebraic problem, as shown in
Section 4.1, carries all the hardness of the problem (see Theorem 2) over to Buchberger’s
algorithm. In other words, the conversion of a graph G into the polynomial system FG
and the evaluation of the resulting Gröbner basis G can be done fast, such that an
efficient execution of Buchberger’s algorithm would imply that any problem in NP can
also be solved efficiently.

Theorem 18. If Buchberger’s algorithm runs in polynomial time (in the input size)
for 3-coloring ideals, then P = NP.

Proof. Let p ∈ N, such that for all graphs G = (V,E) with |V | = n, the running time
of Algorithm 3 is bounded by O(np). Note that the input size can be as large as O(n2)
for dense graphs, but this factor can be compensated by choosing 2p instead of p.
Then we can easily design a polynomial-time procedure, shown in Algorithm 5, to solve
3Col: Building IG from G takes O(n2) time, and testing the membership of 1 in G is
polynomial in the storage size of G. Note that, as pointed out in Remark 20, we do not
need to compute a reduced Gröbner basis for the membership test.

In fact, the choice of Buchberger’s algorithm in the above proof is arbitrary: Any other
algorithm that computes a Gröbner basis G(I) for a given coloring ideal I has to satisfy
the same lower complexity bounds. In particular, any Gröbner basis algorithm that
handles general ideals, is necessarily bounded below by a super-polynomial function.
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Algorithm 5 An algorithm that solves 3Col using Gröbner bases
Input: G = (V,E)

Output:
{

true if G is 3-colorable
false otherwise

function 3Col(G)
k ← 3
�← arbitrary term order on K[x1, . . . , xn]
I ← IG
G ← Buchberger(I)

return
{

true if 1G 6= 0
false otherwise

end function

Corollary 7. Let I ⊆ K[x1, . . . , xn] be an ideal. Unless P = NP, no Gröbner basis of
I can be computed in time bounded by a polynomial in n and the maximal degree of
the generating polynomials of I.

Proof. Assume the opposite, and let Gröbner(I) be a polynomially-bounded function
that computes a Gröbner basis of a given ideal I. Recall that 3-coloring ideals have poly-
nomial size in n and constant degree 3. Calling Gröbner(I) instead of Buchberger(I)
in Algorithm 5 immediately gives a polynomial-time (in the input size) algorithm for
3Col and therefore implies P = NP by Theorem 2.

5.2 Hardness of Suboptimal Solutions

There is a number of hardness results for graph 3-coloring which extend Theorem 2. We
will take two of these statements and show how they can be interpreted in the context
of Gröbner bases for polynomial ideals.

Theorem 19. It is NP-hard to color a 3-colorable graph with 4 colors. More generally,
for every k ≥ 3 it is NP-hard to color a k-chromatic graph with at most k + 2bk3c − 1
colors.

Proof. See [33], Theorem 1 and Corollary 1. Alternatively, a proof of the first statement
which does not rely on the PCP theorem can be found in [24], Theorem 1.

We now translate this approximative result into an analog statement about Gröbner
bases. What is the meaning of using additional colors? We can use them to color
vertices after the main procedure, such that we only need to find a partial coloring at
first. The theorem then states that computation will still be NP-hard. In an algebraic
context, that means that we ignore some variables, and only find a Gröbner basis for
the rest of the variables. Such a scenario can be modeled by elimination ideals:



5. Expected Hardness Results for General Graphs 54

Definition 24. Let I ⊆ K[x1, . . . , xn] be an ideal. For a set S ⊆ {1, . . . , n}, the ideal

I−S :=
〈
I ∩K[xi : i /∈ S]

〉
is called the elimination ideal of I with respect to S.
If S consists of a single element, we also write I−i for I−{i}.

Each additional color can be assigned to one vertex, or even to an arbitrary stable set
of a graph G. A stable set in G translates to a set of variables, none of which appear
pairwise in any element of FG.
Considering the 3-coloring as well as the k-coloring case, and also a single ignored vertex
as well as an ignored stable set, we obtain four theorems that deal with Gröbner bases
for special subsets of polynomial ideals. In all versions, we assume the term order on
K[x1, . . . , xn] to be an arbitrary, but fixed elimination order. Moreover, we assume that
P 6= NP (see Remark 2).

Remark 25. Note that, for a set of polynomials F ⊆ K[x1, . . . , xn],〈
f ∈ F : f ∩K[xi : i ∈ S] = ∅

〉
= 〈F 〉−S .

Thus, it does not matter whether the elimination of S is done before or after forming
the ideal.

Theorem 20 (Ideals of maximum degree 3 with one ignored variable).
Let F ⊆ K[x1, . . . , xn], and fix an elimination order. There is no polynomial-time
algorithm that chooses some i ∈ {1, . . . , n} and computes a Gröbner basis for 〈F 〉−i.
This statement holds even if deg(F ) ≤ 3.

Theorem 21 (Ideals of maximum degree 3 with a set of ignored variables).
Let F ⊆ K[x1, . . . , xn], and fix an elimination order. There is no polynomial-time
algorithm that chooses S ⊆ {1, . . . , n} with

(F−i)C ∩ (F−j)C = ∅ ∀ i 6= j ∈ S ,

and computes a Gröbner basis for F−S . This statement holds even if deg(F ) ≤ 3.

Theorem 22 (Ideals of maximum degree k with 2bk3c − 1 ignored variables).
Let F ⊆ K[x1, . . . , xn], and fix an elimination order. There is no polynomial-time
algorithm that chooses a set S ⊆ {1, . . . , n} such that |S| ≤ 2bk3c − 1, and computes a
Gröbner basis for F−S . This statement holds even if deg(F ) ≤ k.

Theorem 23 (Ideals of maximum degree k with 2bk3c − 1 sets of ignored variables).
Let F ⊆ K[x1, . . . , xn], and fix an elimination order. There is no polynomial-time
algorithm that chooses S =

⋃s
q=1 Sq ⊆ {1, . . . , n} with s ≤ 2bk3c − 1 and

(F−i)C ∩ (F−j)C = ∅ ∀ i 6= j ∈ Sq ∀ q ,

and computes a Gröbner basis for F−S . This statement holds even if deg(F ) ≤ k.
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Remark 26. In Theorems 21 and 23, we have to make sure that the choice of S can be
done in polynomial time. However, the condition (F−i)C ∩ (F−j)C = ∅ can be verified
efficiently, and only O(n2) such tests are necessary. Therefore, this is not a problem.

Since the proofs of all four theorems are almost identical, we will only present one of
them.

Proof of Theorem 20. LetG = (V,E) be a 3-colorable graph, and assume that a polynomial-
time algorithm A exists which computes a Gröbner bases of 〈F 〉−i. We will give a
method to produce a proper 4-coloring of G, contradicting the first statement of Theo-
rem 19 under the assumption that P 6= NP.
Call A(FG), and note that the input consists of |V |+ |E| polynomials with degree ≤ 3
and support ≤ 3. Thus, FG has polynomial size in the input size of G, and A terminates
in time which is polynomial in both of these quantities. Assume that the variable which
was ignored by A is i. Since 〈F 〉−i = IG|V \{i} , the Gröbner basis found by A corresponds
to all proper colorings of G|V \{i}, and according to Lemma 1, one such coloring can be
found efficiently. Use the colors {1, 2, 3} to color this subgraph, and assign color 4 to
the vertex i.
This gives, by construction, a proper 4-coloring of G in polynomial time, which finishes
the proof.

5.3 Obtaining Similar Results from Different Combinatorial Problems

Remember the 3Sat problem from Chapter 2.2.2 and assume that a satisfiable instance
is given. Since 3Sat is NP-hard, we cannot expect to obtain a satisfying assignment
in polynomial time. Therefore, we explore also suboptimal solutions:

Definition 25. The Max-3Sat problem is the problem of finding the largest number
of clauses in a 3Sat instance which are satisfied by a boolean assignment. Formally,

Max-3Sat(S) := max
x∈{true ,false }n

|{C ∈ S : C(x) = true }| .

Clearly, we have the equivalence

Max-3Sat(S) = k ⇐⇒ 3Sat(S) = true .

The hardness of approximating the optimal solution of Max-3Sat was proven by
H̊astad and is stated as follows:

Theorem 24. For general 3Sat instances S, it isNP-hard to approximate Max-3Sat(S)
within a factor of 7

8 + δ, where δ > 0.

Proof. See [27], Theorem 6.5.

We proceed analogously to Section 7: Let S =
∧k
i=1Ci be a 3Sat instance over n vari-

ables. A system of polynomials in K[x1, . . . , xn] that encodes the solutions of 3Sat(S),
is given by

FS := {(xi − 1)(xi + 1) : 1 ≤ i ≤ n} ∪ {l
v

(1)
i

· l
v

(2)
i

· l
v

(3)
i

: 1 ≤ i ≤ k} ,
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where lv :=
{

(xi − 1) if v = xi

(xi + 1) if v = xi
is the literal polynomial of a literal v.

Note that FS consists of n+k polynomials of maximum degree 3 and maximum support
8, and its encoding is therefore polynomial in the input size of S.

Example 7. Let n = 3, k = 2 and S = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Then

FS = {(x1 − 1)(x1 + 1), (x2 − 1)(x2 + 1), (x3 − 1)(x3 + 1),
(x1 − 1)(x2 + 1)(x3 + 1), (x1 − 1)(x2 + 1)(x3 − 1)}

= {x2
1 − 1, x2

2 − 1, x2
3 − 1, x1x2x3 + x1x2 + x1x3 − x2x3 + x1 − x2 − x3 − 1,

x1x2x3 − x1x2 + x1x3 − x2x3 − x1 + x2 − x3 + 1} .

Proposition 9. The satisfying assignments for S are in bijection with the common
roots of FS .

Proof. Let x ∈ {true , false }n be an assignment such that S(x) = true . Identifying
1 = true and −1 = false , we see that each variable polynomial is 0. Moreover, since
every clause is satisfied by x, the corresponding clause polynomial gives 0 as well.
Let on the other hand x ∈ V(FS) ⊆ Kn. x satisfies all variable polynomials, hence
x ∈ {−1, 1}n. Since K is an integral domain, at least one of the factors of every clause
polynomials is zero, and therefore, the above identification gives that the clause is
satisfied by x.

Thus, Theorem 24 translates into another result about Gröbner bases for a subset of
polynomials in FS .

Theorem 25. Let F ⊆ K[x1, . . . , xn]. For δ > 0, there is no polynomial-time algorithm
that chooses S ⊆ {1, . . . , n} with∣∣∣∣∣⋃

i∈S
FC−i

∣∣∣∣∣ ≤
(1

8 − δ
)
|F | ,

and computes a Gröbner basis for F−S . This statement holds even if deg(F ) ≤ 3.

Proof. Let δ > 0 be fixed, and assume that such a polynomial-time algorithm A exists.
For an arbitrary satisfiable 3Sat instance M with k clauses over n variables, we will
produce a truth assignment that satisfies at least

(
7
8 + δ

)
k clauses, which contradicts

Theorem 24, if P 6= NP.
After deleting all variables from the system that do not appear in any clause, apply A to
FM . The algorithm terminates in time which is polynomial in the input size of M , and
the output is a Gröbner basis for F−S , where S is a subset of the variables as defined
above. An element in V(F−S) (which can be efficiently found by Lemma 1) translates
into a truth assignment, satisfying all clauses that do not contain any variable in S.
By construction of FM , each variable is contained in exactly one variable polynomial
and at least one clause polynomial. Therefore, the variables in S appear in ≤

(
1
8 − δ

)
k

clause polynomials, and we obtain a
(

7
8 + δ

)
-approximation for 3Sat, no matter which

values we assign to the variables in S. The procedure is a polynomial-time algorithm,
which finishes the proof.
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This approach suggests two new directions in order to strengthen the theorems: First,
find an NP-hard problem whose algebraic description is as simple as possible. In this
context, simple means that the polynomials are few in the input size and have a simple
structure, small degree and small support. Then the conclusion is that even Gröbner
bases of these simple polynomial systems are hard to find.
Alternatively, find a problem, for which hardness results of approximations exist. This
translates into hardness of finding suboptimal Gröbner bases, for example for a partial
system of polynomials, or for polynomials which are similar to the original system.
Remark 27. All our considerations here lead to the conjecture that Gröbner bases can-
not be computed efficiently, even if we restrict ourselves to a very limited set of polyno-
mial ideals. However, it is crucial to note that this does not preclude a polynomial-sized
upper bound for the complexity of a minimum-sized such Gröbner basis. We merely
say that there is probably no efficient way to find such a basis for the coloring ideals of
general graphs.
To illustrate the difference between these two statements, consider the graph family
given in example 8. Its respective Gröbner bases with respect to the Lex order have
linear complexity bounds, but this small size is only obtained through the reduction al-
gorithm after the termination of Buchberger’s algorithm. Accordingly, the computation
time rises superlinearly with increasing vertex number n.
Example 8. Consider the polynomial system

F = {v1, . . . , vn, e1,2, e1,3, . . . , e1,n, e2,3, e3,4, . . . , en−1,n, e2,n}

for odd n ≥ 3. We will see in Chapter 6 that this system encodes the wheel graph Wn.
Applying Buchberger’s algorithm to F under the Lex order, we get Gröbner bases whose
complexity pattern is shown in the first row of Table 5.1. However, running the reduction
algorithm on these bases reduces their complexity to the patterns in the second row of
the table. Keeping this in mind, it becomes clear why the reduced Gröbner bases only
grow linearly, but the computation time seems to rise exponentially with the size of the
graph, shown in Figure 5.1.

Tab. 5.1: Complexity of unreduced and re-
duced Lex bases for F

n
Unreduced
complexity

Reduced
complexity

3 (10, 3, 3) (3, 3, 3)
5 (27, 3, 7) (5, 3, 3)
7 (42, 5, 11) (7, 3, 3)
9 (57, 5, 28) (9, 3, 3)
11 (71, 5, 58) (11, 3, 3)
13 (85, 5, 91) (13, 3, 3)
15 (99, 5, 132) (15, 3, 3)

Fig. 5.1: Computation time for Lex bases
of Wn
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6. EXPLICIT 3-COLORING GRÖBNER BASES FOR SIMPLE GRAPH
FAMILIES

The preceding chapter shows that an efficient algorithm to find Gröbner bases for the
3-coloring ideals of general graphs is very unlikely to exist, as well as a closed form
that can be efficiently recovered from the graph structure. Therefore, it makes sense
to explore special cases, such as simply structured families of graphs, and find patterns
which link properties of the graphs and properties of their Gröbner bases. The graphs
considered in this chapter are highly structured, and their Gröbner bases mostly con-
tain polynomials which we can relate to substructures in the graphs (see Section 6.1),
which allows for extrapolation of algorithmic results for small examples to infinite graph
families.
We compute reduced Gröbner bases for the 3-coloring ideal of various families of graphs
with a simple structure. Those examples illustrate a variety of interesting properties of
Gröbner basis computations for coloring ideals: For instance, the chosen term order can
have a huge impact on both computational effort and complexity of the result. However,
there are graphs for which all term orders yield the a Gröbner basis of equal complexity.
Also, in most cases it is not necessary to choose arbitrary monomial orders to achieve
particularly good or bad Gröbner bases, but it suffices to consider the standard orders
from Section 3.2.1 and permute the vertices of the graph.
Interesting examples for the connection between the structure of a graph and the cor-
responding Gröbner bases are the appearance of triangles in general graphs and the
concept of dominant paths in tree graphs. We will explain these and other findings by
means of the Gröbner bases that we computed for the different graph families. However,
as some properties are interesting for all these families, we introduce the concepts at
their first appearance and reuse them later without explanation.

6.1 Elementary Subgraph Polynomials

The empirical study of Gröbner bases for 3-coloring ideals reveals that there is a number
of polynomials that crop up quite often as Gröbner basis elements, and that can be re-
lated to certain substructures of the underlying graph. It is very useful to classify these
polynomials, since there are many cases in which the entire Gröbner basis sequence for
a family of graphs can be built from polynomials that we can explicitly describe and
understand.
For completeness, we will once again include the defining polynomials of the coloring
ideal, that is, vertex polynomials and edge polynomials, in this list:

The vertex polynomial vi := x3
i + 1 ensures the variables to assume values which are

third roots of unity.
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The edge polynomial ei,j := x2
i +xixj+x2

j enforces different colors on connected vertices.

The path polynomial pv1,...,vs := x2
v1 + xv1xv2 + xv2xv3 + . . .+ xvs−1xvs + x2

vs generalizes
the edge polynomial by taking the sum pv1,...,vs =

∑s−1
i=1 evi,vi+1 .

The cycle polynomial cv1,...,vs := xv1xv2 + xv2xv3 + . . .+ xvs−1xvs + xvsxv1 is the special
case of a closed path.

The triangle polynomial ti,j,k := xi + xj + xk is a consequence from the summation
formula for primitive roots of unity (Lemma 16).

The diamond polynomial di,j := xi + xj is the sum of two triangles that share an edge,
which forces the two non-shared vertices to take the same color.

Remark 28. Note that all polynomials are specific for 3-coloring ideals, which is par-
ticularly why they do not contain any coefficients, and their degree is less or equal to
3.

6.2 Path Graphs

The path graph Pn is defined by V = {1, . . . , n} and E = {{i, i+ 1} : 1 ≤ i < n}.

1 2 3 n− 2 n− 1 n

6.2.1 Standard Bases

Showing lower bounds for the Gröbner basis complexity of a given graph is a hard task,
since one has to consider all possible term orders, or equivalently, the Gröbner fan (see
Section 4) of the graph. The other direction, finding upper bounds, is considerably
easier, since it suffices to give an example of a small Gröbner basis. Many graphs (and
graph families) have Gröbner bases whose complexity coincides with the general lower
bounds derived in Theorems 13 and 15, and Conjecture 2, such that giving an optimal
basis basically is a complete solution for the “Gröbner basis problem” of the graph un-
der consideration. Moreover, it is often suitable to use one of the standard term orders,
so that we do not have to construct complicated matrix orders to prove the existence
of small Gröbner bases.
The standard procedure for this approach is to find Gröbner bases with respect to a cer-
tain term order for a sequence of graphs G1, G2, . . . up to a suitable size experimentally,
guess the general structure of the (assumed) Gröbner bases Gn, and then prove that
these sets are indeed Gröbner bases for the respective graphs. Such a proof typically
consists of two parts: Show that the elements in V(Gn) are in bijection with the proper
colorings of Gn (that is, 〈Gn〉 = IGn), and prove that Gn is a Gröbner basis for the ideal
it generates, by using one of the criteria in Remark 13.
Throughout this chapter, we will assume that the chosen term order induces the variable
order x1 � . . . � xn, and use vertex permutations to obtain different variable orders.
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Proposition 10. For any term order, the reduced Gröbner basis of Pn is given by

G(Pn) := {p1,...,n, p2,...,n, . . . , pn−1,n, vn} ,

which gives the complexity pattern c(Pn) = (n, 3, n).

Proof. Following the proving scheme outlined above, we note that

pi,...,n =
n−1∑
j=i

ej,j+1 ∈ IPn

and thus 〈G(Pn)〉 ⊆ IPn . On the other hand,

ei,i+1 = pi,...,n − pi+1,...,n ∈ G(Pn)

and

vi = vi+1 + (xi + xi+1)ei,i+1 = . . . = vn +
n−1∑
j=i

(xj + xj+1)ej,j+1 ∈ G(Pn) ,

which shows the equivalence IPn = 〈G(Pn)〉.
Next, G(Pn) is a Gröbner basis since the leading terms of its elements are pairwise
relatively prime (each is a power of a distinct variable) and therefore all S-pairs vanish
(Proposition 6).
The last step is to show that G(Pn) is reduced. The leading terms of G(Pn) are squares
for all variables x1, . . . , xn−1 and the cube x3

n. It is evident that no term in any element
of G(Pn) is divided by any of those monomials, which is the definition of a reduced
Gröbner basis and therefore finishes the proof.

Remark 29. The support of this basis is atypically high for such simple graphs, and
we will see in Section 6.2.2 below that it can indeed be improved.

6.2.2 Vertex Order

The following example indicates that the vertex order heavily influences the properties
of Gröbner bases, and that by cleverly choosing a “good” order, both computational
effort and resulting basis complexity can be kept relatively small. The other way round,
a “bad” order can result in undesirable results, which is why the vertex order should
always be paid attention to when computing Gröbner bases of graphs.

After observation of the Gröbner basis complexity for random vertex orders, we try to
systematically find a order of the path graph Pn which gives small or large Gröbner
bases with respect to the standard orders: For the first case, we know from Theorems
13 and 6 that the only suboptimal measure of G(Pn) is its support. The concept of
dominant paths, explained in Section 6.7.3 at the example of tree graphs, suggests that
the support can be decreased by putting high vertices in the center and forming shorter
monotone paths. The resulting graph P+

n , shown in Figure 6.1, gives a Gröbner basis
of complexity c(P+

n ) = (n, 3, bn2 + 2c).
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1 3 5 6 4 2

Fig. 6.1: The path graph P+
n

In the other direction, we find a graph P−n , which is shown in Figure 6.2 and whose
Gröbner basis complexity is c(P−n ) = (2(n− 1), n+1

2 , 3
n−1

2 ) for odd n, and (2(n− 1), n2 +
1, 2 · Fn+1) for even n. Note that the support here is exponential in the number of
vertices.

n 1
n− 2 n− 3

2
n− 1

Fig. 6.2: The path graph P−
n

The computation times for the Lex bases of Pn, P+
n and P−n are compared in Figure

6.3, and we see that the result reflects the respective Gröbner basis sizes.
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Fig. 6.3: Computation time for the Lex bases of Pn with different vertex orders

Remark 30. Note that the formulae for the Gröbner basis complexities are extrapo-
lations of the experimental results in Tables 6.1 and 6.2. We will provide such extrap-
olations throughout the chapter.

Tab. 6.1: Complexity of reduced Lex bases for P+
n

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d 3 3 3 3 3 3 3 3 3 3 3 3 3 3
s 3 3 4 4 5 5 6 6 7 7 8 8 9 9
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Tab. 6.2: Complexity of reduced Lex bases for P−
n

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l 2 4 5 6 10 12 14 16 18 20 22 24 26 28
d 3 3 3 3 4 4 5 5 6 6 7 7 8 8
s 3 4 9 10 27 26 81 68 243 178 729 466 2187 1220

6.2.3 Gröbner Fan

In general, Gröbner bases for coloring ideals depend strongly on the choice of a term
order, and their structure becomes unclear very quickly with increasing number of ver-
tices. However, we are in some cases able to understand some (or even all) Gröbner
bases in the sense that we can assign elements to substructures in the graph and thus
give a meaning to the polynomials that appear in the Gröbner basis.
Apart from the complexity pattern c(G) = (l, d, s) we also care about the exact struc-
ture of the polynomials in a Gröbner basis. Therefore, we define the characteristic
ch(G) of a given Gröbner basis G to be the 8-tuple that consists of the number of vertex
polynomials, edge polynomials, path polynomials, cycle polynomials, triangle polynomi-
als, diamond polynomials, trivial polynomials, and unknown polynomials, respectively.
Clearly, |ch(G)|1 = l(G), and if there are no unknown polynomials, then d(G) can be
read off the characteristic since all other polynomial types have a specific degree. Note
that the definition of the characteristic is based on our current understanding of the
appearing polynomials, and has to be refined as soon as we are able to classify elements
that are considered unknown until now.
The results about Gröbner fans are also purely experimental; they were found by look-
ing at computational results and have not yet been verified theoretically.

The Gröbner fan of the path graph Pn consists of (2(n−1))!
(n−1)!n! distinct Gröbner bases. This

number is also called the (n− 1)th Catalan number C(n− 1) (OEIS A000108).
Again, from Lemma 10 we know that any permutation of the vertices of a graph, as done
in Section 6.2.2, can be modelled by a monomial order. The Gröbner fan incorporates
all possible monomial orders on the underlying polynomial ring, and thus automatically
considers P+

n and P−n , when computed for Pn.
Path graphs reveal an interesting property which does only appear in one other fam-
ily that we list here: Their Gröbner bases can be of either minimal length or min-
imal support, but not both at the same time. The optimally ordered path graph
P+
n has a complexity pattern of c(P+

n ) = (n, 3, bn2 + 2c), which is the minimal sup-
port among all Gröbner bases G with l(G) = n. This basis has the characteristic
ch(P+

n ) = (1, 2, n−3, 0, 0, 0, 0, 0). However, there exists a basis with complexity pattern
(n+ 1, 3, 4).
In the opposite direction, there exist bases which assume the largest possible values for
length, degree and support simultaneously. Their complexity pattern is(

2(n− 1), n+ 1
2 ,

{
3
n
2 if n odd

4 · 3
n−3

2 if n even

)
.
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The vertex order of P−n , together with Lex order, gives both maximal length and degree,
but slightly smaller support for even n.

Remark 31. Since path graphs are trees and therefore chordal, Section 7 will give
proof that there exists a Gröbner basis for Pn with complexity (n, 3, 3), which, however,
is not reduced.

6.3 Star Graphs

The star graph Sn is defined by V = {1, . . . , n} and E = {{i, n} : 1 ≤ i < n}.

1
2

3

n

n− 3
n− 2

n− 1

Proposition 11. For all n ≥ 2, the reduced Gröbner basis G(Sn) is

G(Sn) := {e1,n, e2,n, . . . , en−1,n, vn} .

In particular, the Gröbner complexity of Sn is c(Sn) = (n, 3, 3).

Proof. Basically repeating the proof of Proposition 10, we note that

vi = vn + (xn + xi)ei,n ∈ 〈G(Sn)〉 .

The relation G(Sn) ⊆ IG is immediately clear, and thus G(Sn) = IG.
Again, the leading terms of the elements of G(Sn) are pairwise relatively prime, and
therefore G(Sn) is a Gröbner basis. Moreover, the leading terms are squares for all
variables x1, . . . , xn−1 and the cube x3

n, which concludes the proof that G(Sn) is reduced.

6.3.1 Gröbner Bases for Different Center Vertices

Unlike in the case of path graphs, this particular Gröbner basis for star graphs has
optimal complexity. Noting that all vertex permutations that leave the center unchanged
are trivial, we expect to find Gröbner bases with a different structure only by choosing
another center vertex. Table 6.3 shows how the complexity pattern changes with the
center v. While for v = 1, the length of the basis is n(n−1)

2 + 1, it drops with increasing
center vertex and reaches n for v = n.
The result suggests that vertices with high degree should have low priority in the variable
order, in order to obtain small Gröbner bases. We will test this heuristic for general
trees in Section 6.7.2.



6. Explicit 3-Coloring Gröbner Bases for Simple Graph Families 64

Tab. 6.3: Complexity of reduced standard bases for Sn for different center vertices
n\c 1 2 3 · · · n− 2 n− 1 n

3 (4, 3, 4) (3, 3, 4) (3, 3, 3) (4, 3, 4) (3, 3, 4) (3, 3, 3)
4 (7, 3, 6) (5, 3, 4) (4, 3, 4) (5, 3, 4) (4, 3, 4) (4, 3, 3)
5 (11, 3, 6) (8, 3, 6) (6, 3, 4) (6, 3, 4) (5, 3, 4) (5, 3, 3)
6 (16, 3, 6) (12, 3, 6) (9, 3, 6) (7, 3, 4) (6, 3, 4) (6, 3, 3)
7 (22, 3, 6) (17, 3, 6) (13, 3, 6) (8, 3, 4) (7, 3, 4) (7, 3, 3)
8 (29, 3, 6) (23, 3, 6) (18, 3, 6) (9, 3, 4) (8, 3, 4) (8, 3, 3)
9 (37, 3, 6) (30, 3, 6) (24, 3, 6) (10, 3, 4) (9, 3, 4) (9, 3, 3)
10 (46, 3, 6) (38, 3, 6) (31, 3, 6) (11, 3, 4) (10, 3, 4) (10, 3, 3)
11 (56, 3, 6) (47, 3, 6) (39, 3, 6) (12, 3, 4) (11, 3, 4) (11, 3, 3)
12 (67, 3, 6) (57, 3, 6) (48, 3, 6) (13, 3, 4) (12, 3, 4) (12, 3, 3)

6.3.2 Gröbner Fan

The Gröbner fan of the star graph Sn consists of
∑n−1
k=0

(n−1)!
k! distinct Gröbner bases

(OEIS A000522).
We have seen above that a minimum-complexity basis is given by any of the standard
bases of Sn, which justifies the notation Sn = S+

n . The experimental results for this
vertex order (which, of course, coincide with the theoretical findings) are shown the last
column of Table 6.3. Apart from the characteristic ch(S+

n ) = (1, n− 1, 0, 0, 0, 0, 0, 0) of
this basis, there is another minimum-length basis G with c(G) = (n, 3, 4) and ch(G) =
(1, 1, n− 2, 0, 0, 0, 0, 0), which is not generated by a standard order.
The badly ordered star with center vertex 1, also denoted as S−n , results in a Gröbner
basis with complexity pattern c(S−n ) =

(
n(n−1)

2 + 1, 3, 6
)

for n ≥ 4, as can be seen in
the first column of the same table. This complexity is the maximum length, degree and
support of all bases in the Gröbner fan.
Therefore, these two vertex orderings represent the best and worst case with respect to
Gröbner bases for the star graph.

6.3.3 Extended Stars

The family of star graphs can be generalized to extended stars, whose rays have length
k ≥ 1. The extended star graph Sn,k, shown in Figure 6.4, consists of nk+1 vertices, and
its center is the vertex n. As above, we also consider the “badly ordered” extended star
S−n,k, which we expect to have a large Gröbner basis, as opposed to the normal order,
which exhibits a complexity of (nk+1, 3, k+2). The correctness of this supposition can
be seen in Table 6.4, where an empty cell means that Macaulay2 ran out of memory
during the computation. This family shows the worst Gröbner basis behaviour of all
graphs we considered, compared to their size.
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Fig. 6.4: The extended stars Sn,k and S−
n,k

Tab. 6.4: Complexity of reduced standard bases for Sn,k and S−
n,k

n\G S3,k S−3,k S4,k S−4,k S5,k S−5,k
1 (4, 3, 3) (7, 3, 6) (5, 3, 3) (11, 3, 6) (6, 3, 3) (16, 3, 6)
2 (7, 3, 4) (15, 5, 28) (9, 3, 4) (28, 6, 72) (11, 3, 4) (28, 6, 72)
3 (10, 3, 5) (30, 7, 162) (13, 3, 5) (71, 9, 648) (16, 3, 5) (141, 10, 2592)
4 (13, 3, 6) (58, 9, 1118) (17, 3, 6) (21, 3, 6)
5 (16, 3, 7) (21, 3, 7) (26, 3, 7)
6 (19, 3, 8) (25, 3, 8) (31, 3, 8)

6.4 Wheel Graphs

The wheel graph Wn is defined by V = {1, . . . , n} and

E = {{i, n} : 1 ≤ i < n} ∪ {{i, i+ 1} : 1 ≤ i < n− 1} ∪ {{1, n− 1}}

1
2

3

n− 3
n− 2

n
n− 1

Proposition 12. For all odd n ≥ 3, the reduced Gröbner basis G(Wn) is

G(Wn) := {t1,n−1,n, t3,n−1,n, . . . , tn−2,n−1,n, d2,n−1, d4,n−1, . . . , dn−3,n−1, en−1,n, vn} .



6. Explicit 3-Coloring Gröbner Bases for Simple Graph Families 66

In particular, the Gröbner complexity of Wn is c(Wn) = (n, 3, 3).

Proof. Again, we see by direct (and lengthy) computation that every polynomial in
G(Wn) lies in IG, and every vertex and edge polynomial is in 〈G(Wn)〉. The leading
terms of the elements of G(Wn) are pairwise relatively prime, and therefore G(Wn) is a
Gröbner basis. Moreover, the leading terms are linear for all variables x1, . . . , xn−2, the
square x2

n−1 and the cube x3
n. Hence, no term of any element is divided by a leading

monomial, which concludes the proof that G(Wn) is reduced.

Lemma 21. For n ≥ 5, Wn is not chordal.

Proof. It is easy to see that the subgraph induced by V \ {1} is an (n− 1)-cycle, which
implies the claim.

6.4.1 Gröbner Fan

Since odd wheels are not 3-colorable (they contain a 4-clique), we need to distinguish
two cases: For even n, the Gröbner bases {1} is trivially unique with complexity (1, 0, 1)
and characteristic ch(Wn) = (0, 0, 0, 0, 0, 0, 1, 0).
In the more interesting case 2 - n, the number of Gröbner bases in the Gröbner fan
of Wn is (n+3)(n−1)

2 , all of which have the same complexity c(Wn) = (n, 3, 3). The
characteristic is also unique; we have

ch(Wn) =
(

1, 1, 0, 0, n− 1
2 ,

n− 3
2 , 0, 0

)
.

6.5 Complete Tripartite Graphs

The complete tripartite graph Kk,m,n = (V,E) with k,m, n ∈ N0 (see Figure 6.5) is
defined by

V = V1 ∪ V2 ∪ V3 := {1, . . . , k} ∪ {k + 1, . . . , k +m} ∪ {k +m+ 1, . . . , k +m+ n}

and

E = {{i, j} : i ∈ V1, j ∈ V2} ∪ {{i, j} : i ∈ V1, j ∈ V3} ∪ {{i, j} : i ∈ V2, j ∈ V3} .
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k

mn

Fig. 6.5: The complete tripartite graph Kk,m,n

Lemma 22. For all k,m, n ∈ N0, Kk,m,n is 3-colorable, and if at least two of the
parameters are ≥ 2, it is not chordal, but still perfect. Moreover, Kk,m,n is uniquely
3-colorable.

Proof. The first and the last property are trivial. Let without loss of generality k,m ≥ 2,
then obviously {1, 2} ⊂ V1 and {k + 1, k + 2} ⊂ V2, and therefore the 4-cycle

1→ k + 1→ 2→ k + 2→ 1

has no chord.
To prove perfectness, note that a graph is perfect if and only if its complement is perfect
(see for example [14], Theorem 5.5.4). But the complement of the Kk,m,n is the disjoint
union of the three smaller graphs Kk, Km, and Kn, which are chordal and therefore
perfect.

6.5.1 Standard Bases

Proposition 13. For all k,m, n ≥ 1, the reduced Gröbner basis G(Kk,m,n) is

G(Kk,m,n) := {t1,k+m,k+m+n, t2,k+m,k+m+n, . . . , tk,k+m,k+m+n,

dk+1,k+m, dk+2,k+m, . . . , dk+m−1,k+m,

dk+m+1,k+m+n, dk+m+2,k+m+n, . . . , dk+m+n−1,k+m+n,

ek+m,k+m+n, vk+m+n} .

In particular, the Gröbner complexity of this graph is c(Kk,m,n) = (n, 3, 3).

Proof. The proof is the same as in Proposition 12.
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In particular, the complete tripartite graph form a non-chordal family of graphs which
possess an n-sized Gröbner basis.

1 2 3 4

5

6

78

9

10

Fig. 6.6: The complete tripartite graph K4,3,3

Example 9. The Lex basis with ascending vertex order of the K4,3,3 (see figure 6.6) is

{x1 + x7 + x10, {t1,7,10,

x2 + x7 + x10, t2,7,10,

x3 + x7 + x10, t3,7,10,

x4 + x7 + x10, t4,7,10,

x5 + x7, = d5,7,

x6 + x7, d6,7,

x2
7 + x7x10 + x2

10, e7,10,

x8 + x10, d8,10,

x9 + x10, d9,10,

x3
10 + 1} v10} .

6.5.2 Gröbner Fan

The Gröbner fan of a complete tripartite graph Kk,m,n consists of 2(km + kn + mn)
distinct Gröbner bases. This family of graphs has the unique complexity pattern

c(Kk,m,n) = (k + n+m, 3, 3) ,

and moreover, all its Gröbner bases have one of three characteristics:

ch(Kk,m,n) ∈ { (1, 1, 0, 0, k,m+ n− 2, 0, 0),
(1, 1, 0, 0,m, k + n− 2, 0, 0),
(1, 1, 0, 0, n, k +m− 2, 0, 0) } .
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6.6 Random Tripartite Graphs

We generate graphs according to the model proposed by Gilbert in [22]. For a graph
G, let G(p) denote the graph obtained by taking the same vertex set, and every edge
of G appearing independently with probability p ∈ [0, 1]. Since we mostly rely on 3-
colorability of a graph (otherwise the resulting basis would be trivial), the underlying
graph is always a complete tripartite graph of random size: We build the graph by
first choosing three partition sizes, each uniformly and independently drawn between
integer bounds l and u, where l, u ∈ N and often l = 1, followed by inserting edges
independently with probability p. Choosing p = 0 results in an empty graph, while
p = 1 always gives a complete tripartite graph.

6.6.1 Triangle polynomials

For 3-coloring, triangles are shown in experiments to be very “nice” substructures in a
graph, in the sense that graphs which contain many triangles tend to have small and fast
computable Gröbner bases. This computational finding can be justified theoretically by
looking at the coloring ideal and Gröbner basis computation.
A triangle {i, j, k} in a graph G forces its three vertices to take different colors; therefore,

{xi, xj , xk} = {ξ, ξ2, ξ3}, where ξ = ξ3

for every proper coloring, and from the summation formula for roots of unity (see [?])
we get that xi + xj + xk = 0. This is exactly the triangle polynomial from Section 6.1
above, hence ti,j,k ∈ IG. If we now without loss of generality assume that xi � xj � xk
in the chosen term order, then it is clear that an arbitrary Gröbner basis of G with
respect to � contains an element g with LM(g) = xi, provided that χ(G) ≤ 3, because
in this case 1 /∈ IG.
Let G be a reduced Gröbner basis of G. According to Definition 19, no term in any
element of G divides xi; therefore, this variable does not show up in G except in the
polynomial whose leading term it is (which may or may not be ti,j,k). We see that a
triangle practically removes the variable connected to the largest of its three vertices
(with respect to �) from a Gröbner basis. This phenomenon can be loosely explained
by the fact that it suffices to know the colors of two vertices of the triangle; then the
third color is already determined.

6.6.2 Speed-Up by Adding Triangle Polynomials

To test the effect of heuristics for Gröbner basis computations, we apply the heuristic
methods to randomly generated graphs and evaluate the results, e.g. computation time
or Gröbner basis size, for the original and the modified input. A large gap between the
two inputs then suggests that the method is working well for the graphs under consid-
eration.

Let us have a look at the probability for a triangle in a random graph: Kk,m,n contains
kmn distinct triangles, and in the Gilbert model, each of them occurs with probability
p3. Thus,

P (Kk,m,n(p) contains at least one triangle) = 1− (1− p3)kmn .
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For the expected number of triangles we have

E [|{triangles in Kk,m,n(p)}|] = kmn · p3 .

These functions, together with experimental data over a sample set of 10000 K5,5,5(p)
graphs, are shown in Figure 6.7.
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Fig. 6.7: Triangles in the random graph K5,5,5(p)

Consequently, we expect a drastic effect for values of p close to 1, while for small p
(p < 0.2), the speed-up should not be noticeable.
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Fig. 6.8: Gröbner basis computation times for random graphs Kk,m,n(p) with and without tri-
angle polynomials

Figure 6.8 shows the average Gröbner basis computation time with and without tri-
angle polynomials for several values of p. The results coincide closely with our above
reasoning; for p = 1, that is, complete tripartite graphs, the speed-up factor is around
20.
Of course, the necessary preprocessing to find all triangles in G takes time, too. Algo-
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rithm 6 returns a complete list of triangles in O(n3) time, which can be neglected in
any Gröbner basis computation of practical size. With little effort, the algorithm can
be adapted to list diamonds in G as well, which admittedly has only a small effect, and
only for very dense graphs.

Algorithm 6 Detecting triangles in a graph
Input: Graph G = (V,E)
Output: List L of all triangles in G

function ListTriangles(G)
L← ∅
for all {u, v} ∈ E do

for all w ∈ (N (u) ∩N (v) ∩ {w ∈ V : u < v < w}) do
L← L ∪ {{u, v, w}}

end for
end for
return L

end function

6.7 Tree Graphs

6.7.1 Negative Examples

Randomly generated tree graphs exhibit a very high range of Gröbner basis complexities
with respect to standard orders: Some trees have almost optimally-sized bases, while
they are large and unstructured for other trees.

Example 10. Consider the two graphs T1 and T2 shown in Figure 6.9. The Lex
bases with respect to the given vertex orders have complexity c(T1) = (42, 7, 138) and
c(T2) = (24, 5, 68), which does not at all correspond to the size and structure of the
graphs.

5 2 7 9

138 6

410

6 4 2 5

1

379 8 10

Fig. 6.9: Trees T1, T2 with bad vertex orders

Experiments with random trees and their standard Gröbner bases indicate that large
and unstructured bases occur for graphs which have low vertex numbers in the center
and high numbers as leaves, while low leaf vertices and high center vertices correlate
with small and clear Gröbner bases.
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6.7.2 Vertex Reordering

Intuitively, we assume that it should be helpful to permute the vertices in a way that
places high numbers in the center of the graph. Applying our reasoning to experimental
graphs, we find that a quite efficient vertex ordering is defined by

deg u > deg v =⇒ u > v ⇐⇒ xv � xu .

By this criterion, vertices with high degree are assigned to “small” monomials with
respect to �, which only appear infrequently in the leading terms of the Gröbner basis
elements.
Algorithm 7 permutes the vertex labels of a given graph to the optimal order, which
allows us to use the “normal” monomial orders Lex, GLex and GRevLex with the vari-
able order x1 � x2 � . . . � xn. Note that the algorithm can be refined by investigating
which choice of a vertex in the set arg minv∈R(deg v) of remaining minimal-degree ver-
tices is the best. One idea here would be to create long ascending paths towards the
center of the graph instead of up-and-down paths.

Algorithm 7 Re-ordering the vertices to obtain smaller Gröbner bases
Input: Graph G = (V,E)
Output: Permutation of G with deg u > deg v =⇒ u > v for all u, v ∈ V

function ReorderVertices(G)
R← V
i← 1
while R 6= ∅ do

Choose v ∈ arg minv∈R(deg v)
σ(v) = i
i← i+ 1
R← R \ {v}

end while
return G′ := (V, σ(E))

end function

Remark 32. Algorithm 7, run on Sn with an arbitrary center vertex, yields the optimal
order S+

n .

Example 11. If we run Algorithm 7 on the two tree graphs from Example 10, we
obtain the vertex order shown in Figure 6.10, and the Gröbner basis complexity reduces
to c(T+

1 ) = (10, 3, 5) and c(T+
2 ) = (11, 3, 4).
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Fig. 6.10: Trees T+
1 , T+

2 with good vertex orders

To give an impression of the effect of vertex reordering on computational effort and
complexity of the result, we show a comparison for a set of 200 randomly generated tree
graph of size 5 ≤ n ≤ 20 in Figure 6.11.
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Fig. 6.11: Complexity of tree Gröbner bases for random and optimal vertex order

6.7.3 Dominant Paths

We try to understand the structure of Gröbner bases by looking at the Lex bases of
optimally ordered trees, as generated by Algorithm 7. The two examples in Figure 6.12
have the Gröbner bases
G3 = G(IT3) = {e1,10, e2,10, e3,10, p4,9,10, p5,9,10, e6,8, p7,9,10, p8,7,9,10, v8, e9,10, v10}

and
G4 = G(IT4) = {e1,10, e2,10, e3,8, e4,9, e5,9, e6,10, p8,6,10, e7,10, p9,7,10, v8, v9, v10} .
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Fig. 6.12: Optimally ordered trees T3, T4 with classifiable standard bases

A first observation is that all polynomials are elementary as defined in Section 6.1, which
is not always the case. However, around 70% of optimally ordered trees show this kind
of Gröbner bases, and we conjecture that there is always a vertex order which satisfies
the degree condition from the re-ordering algorithm, and under which all polynomials
in the Gröbner basis are classifiable.
Next, we notice that a vertex polynomial vi appears in the Gröbner basis if and only if
i > j ∀ j ∈ N (i), that is, if i has the highest number among its neighborhood. These
vertices are v8 and v10 for T3, and v8, v9 and v10 for T4. This can, in general, be explained
by looking at the generator system FG: If there is some j ∈ N (i) with j > i, then the
leading term of the edge polynomial ei,j is x2

i , which divides x3
i = LM(vi). Therefore,

the vertex polynomial is reduced by an edge polynomial and cannot be part of the
Gröbner basis. The other direction is not that clear, and it turns out that for graphs
containing cycles, not all maximal vertices are part of the Gröbner basis. However, this
observation is supported by Lemma 15 which states that the vertex polynomial vn is
part of every Gröbner basis of a graph on n vertices.
Finally, the paths of length ≥ 2 (here we treat edges as paths) in G lead from arbitrary
vertices to local maxima: For example, the path polynomial p8,7,9,10 in G3 encodes the
path from vertex 8, which is locally maximal, down to vertex 7, and then up to 9 and 10,
where it stops. In fact, there is such a path from every vertex of the graph. Sometimes,
it degenerates to an edge or even to a vertex, but it exists for all v ∈ V .

This leads to the notion of a dominant path (v1, . . . , vk), which is defined for every
starting vertex of a tree graph and can be constructed by the following steps:

1. Start from an arbitrary vertex i, i.e., v1 := i, and set the counter l := 1.

2. Go to the highest neighbor of the current vertex: vl+1 := maxi
(
i ∈ N (vl)

)
. If

vl+1 < vl, repeat Step 2, otherwise go to Step 3. In both cases, increase l by 1.

3. If vl is locally maximal, go to Step 4. Otherwise, go to the highest neighbor of vl
as above and repeat Step 3, again increasing l by 1.

4. Check if the path starts at a lower point than it ends. If not, discard it.
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Together with the vertex polynomials of locally maximal vertices, the dominant paths
give a set of polynomials which we find in the standard Gröbner bases of tree graphs.
They mostly appear in other graphs as well, but can sometimes be reduced by other
structures like triangles, such that the theory becomes much more subtle in general.

6.8 Cycle Graphs

The cycle graph Cn is defined by V = {1, . . . , n} and E = {{i, i + 1} : 1 ≤ i <
n} ∪ {{1, n}}.

n

1
2

3

n− 2
n− 1

Cycle graphs are the most basic examples of non-chordal graphs, and also the simplest
examples of graphs which do not possess an n-sized Gröbner basis. Their bases contain
polynomials that do not seem to have a plain structure, and there is no Gröbner basis
of a cycle graph which only consists of polynomials which we can classify, apart from
small exceptions like the triangle graph.

6.8.1 Standard Bases

An interesting observation is that the Gröbner bases with respect to the standard orders
contain something like a generalization of path polynomials, which have higher degree
and whose structure indicates that they represent chords of the cycle.

Example 12. The following are Lex bases with respect to the ascending vertex order,
as shown in the definition of cycle graphs.

G(C4) = {x2
1 + x1x4 + x2

4, x1x2 + x2x3 + x3x4 + x4x1, x
2
2 + x2x3 + x3x4 + x2

4,

x2
3 + x3x4 + x2

4, x
3
4 + 1}

G(C5) = {x2
1 + x1x5 + x2

5, x1x2 + x2x3 + x3x4 + x4x5 + x5x1, x1x3 + x1x4 +
+x1x5 + x2x3 + x2x4 + x2x5 + x3x5 + x4x5 + x2

5, x
2
2 + x2x3 + x3x4 +

+x4x5 + x2
5, x

2
3 + x3x4 + x4x5 + x2

5, x
2
4 + x4x5 + x2

5, x
3
5 + 1}

G(C6) = {x2
1 + x1x6 + x2

6, x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x1,

x1x3x4 + x1x3x6 + x1x4x5 + x1x5x6 + x2x3x4 + x2x3x6 + x2x4x5 +
+x2x5x6 + x3x4x6 + x3x

2
6 + x4x5x6 + x5x

2
6, x

2
2 + x2x3 + x3x4 +

+x4x5 + x5x6 + x2
6, x

2
3 + x3x4 + x4x5 + x5x6 + x2

6, x
2
4 + x4x5 +

+x5x6 + x2
6, x

2
5 + x5x6 + x2

6, x
3
6 + 1}
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We see that the dominant paths, starting from all vertices, appear in these bases,
and that they contain one messy polynomial. These unclassifiable polynomials become
more for larger graphs, and without them, we would just have an (n+ 1)-sized basis of
characteristic (1, 2, n− 3, 1, 0, 0, 0, 0).

Despite their unclear structure, these Gröbner bases have a complexity pattern which
allows for a simple description. Since χ(Cn) = 2 for even n and χ(Cn) = 3 for odd n,
it is not surprising that the Gröbner bases structurally differ for these two cases. We
obtain for n ≥ 6

c(Cn) =


(

3
2n− 1, n2 , 4 · 3

n
2−1

)
for n even(

3n−1
2 , n−1

2 , 3
n−1

2
)

for n odd
,

which is exponentially large in the input size of Cn for all n.

Tab. 6.5: Complexity of reduced Lex bases for Cn

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l 2 3 5 7 8 10 11 13 14 16 17 19 20 22
d 3 3 3 3 3 3 4 4 5 5 6 6 7 7
s 3 3 4 9 12 27 36 81 108 243 324 729 972 2187

6.8.2 Gröbner Fan

The number of distinct bases in the Gröbner fan of a cycle graph does not seem to be
a known sequence; the OEIS does not find any matching for the numbers in the first
row of Table 6.6. Moreover, we encounter the same phenomenon as for path graphs: A
Gröbner basis can have either minimal length or minimal support, but not both. The
standard bases from Table 6.5 have small length, but their support grows very fast.

Tab. 6.6: Complexity measures in the Gröbner fan of Cn

n 3 4 5 6 7 8
Number of bases 6 12 60 228 854 3208
Minimal length 3 5 7 8 10 11
Minimal degree 3 3 3 3 3 3
Minimal support 3 4 8 9 21 10
Minimal-length
basis

(3, 3, 3) (5, 3, 4) (7, 3, 8) (8, 3, 12) (10, 3, 22) (11, 4, 32)

Based on the results in Tables 6.5 and 6.6, from which we suppose that the monotone
vertex order and the standard bases give a minimum-length basis, we conjecture:

Conjecture 1. For the cycle graph Cn, a minimum-length Gröbner basis consists of⌊
3n−1

2

⌋
elements.
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A stronger conjecture would be that for arbitrary graph families Gn = (Vn, En) with
|Vn| = n, there is a sequence of Gröbner bases (Gn) for (IGn), such that l(Gn) = O(n).
The reasoning behind this conjecture is the following: We know that chordal graphs
have short Gröbner bases, and the only forbidden subgraph in a chordal graph is a long
induced cycle. Therefore, each graph can be seen as a combination of a chordal graph
and multiple cycles, and both families allow for linear-sized bases.

6.9 Iterated Octahedral Graphs

The family of iterated octahedral graphs, as defined in Section 2.3.1, is an example
of maximal planar, but 3-colorable graphs. As such, the proper 3-coloring is unique
(Lemma 5), and [32] showed that the Gröbner bases of uniquely colorable graphs are
equal for all term orders which induce the same variable order (see also Remark 24).
The Lex basis of O3n for the vertex order shown in Figure 2.5 consists of one vertex
polynomial, one edge polynomial, n triangle polynomials and 2(n − 1) diamond poly-
nomials.

6.9.1 Gröbner Fan

We can reproduce the result about uniqueness of the Gröbner basis by looking at the
Gröbner fan of the iterated octahedral graph O3n: It consists of 6n2 distinct Gröbner
bases. This family of graphs has the Gröbner basis characteristic

ch(O3n) = (1, 1, 0, 0, n, 2(n− 1), 0, 0) ;

in particular, its complexity pattern c(O3n) = (3n, 3, 3) is unique.



7. A POLYNOMIAL-TIME ALGORITHM FOR THE GRÖBNER BASES OF
CHORDAL GRAPHS

In this section, we will develop an algorithm that computes a Gröbner basis for the
k-coloring ideal of a given chordal graph in polynomial time. It is known that the
chromatic number of a chordal graph can be calculated in linear time O(|V |+ |E|) ([26],
Theorem 4.17), but a Gröbner basis provides more information than just a coloring, for
instance the number of distinct proper colorings, and, in case of an elimination order,
an efficient way to produce such a coloring.
We start by examining some properties and notation concerning chordal graphs, which
we will use when describing the algorithm.

7.1 Preliminaries

Recall from Section 2.3.2 that a graph is chordal if it does not contain an induced cycle
of length more than 3, i.e., every cycle which is not a triangle contains a chord. There
are some other characterizations of chordal graphs, which turn out to be useful from an
algorithmic viewpoint. The first one uses an operation called pasting: Let G be a graph,
and let G1, G2 be induced subgraphs of G, such that G = G1 ∪ G2. If S = G1 ∩ G2,
then we say that G arises from G1 and G2 by pasting them together along S.

Proposition 14. A graph is chordal if and only if it can be constructed recursively by
pasting along complete subgraphs, starting from complete graphs.

Proof. See for example [14], Proposition 5.5.1.

The second characterization is recursive and depends on the notion of a simplicial vertex,
which is defined as a vertex whose neighbors form a clique. A graph is recursively sim-
plicial if it contains a simplicial vertex v which can be removed such that the remaining
subgraph is again recursively simplicial.

Theorem 26. A graph is chordal if and only if it is recursively simplicial.

Proof. We prove that recursive simpliciality is equivalent to constructability by pasting
along complete subgraphs, starting from complete graphs. We call this latter property
being pastable.
Let G be recursively simplicial with n vertices. By definition, we can find a simplicial
vertex vn−1 whose neighborhood is a clique Cn−1. Denoting Gn−1 := G − vn−1 and
repeating this procedure, we end up with a sequence G = Gn, . . . , G1 = ({1}, ∅), a
sequence of cliques Cn−1, . . . , C1, and a sequence of vertices vn−1, . . . , v1.
Going in the other direction, we introduce the notation

G+C :=
(
V ∪ {n+ 1}, E ∪ {{j, n+ 1} : j ∈ C}

)
,
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such that our sequence satisfies Gi+1 = G+Ci
i ∀ i ∈ {1, . . . , n− 1}.

Noting that the operation G → G+C , where C is a clique, is exactly pasting along
complete subgraphs for G1 = G and G2 = C ∪ {n + 1}, we see immediately that G is
pastable, starting from the complete graph K1.

Let, on the other hand, G be pastable (and thus, G is chordal). We argue by induction on
n, the number of vertices in G. Consider the last pasting operation, i.e., G = G1 ∪G2,
and S := G1 ∩ G2. Choose an arbitrary vertex v ∈ G2. Since G2 is complete, v is
simplicial in G. Deleting v from G results in a chordal graph G′, since deleting a vertex
cannot induce a hole. Therefore, G − v has n − 1 vertices and is pastable, so we can
again find a simplicial vertex. We conclude that G is recursively simplicial.

A third characterizing property of chordal graphs is the perfect elimination ordering.

7.2 Perfect Elimination Orderings

Most efficient algorithms for graph problems on chordal graphs rely on a special ordering
of the vertices, as pointed out for example in [26], Chapter 4, which gives a thorough
introduction to the algorithmic aspects of chordal graphs (which are called triangulated
in this book).

Definition 26. Let G = (V,E) be a graph, and let V = {1, . . . , n}. The vertex order
is called a perfect elimination ordering if N (v) ∩ {1, . . . , v − 1} is a complete graph for
all v ∈ V .

It is intuitively clear that the order of removing or adding vertices in Theorem 26 is
a perfect elimination order. We will give a rigorous proof which actually shows both
directions.

Lemma 23. A vertex order on a graph G is a perfect elimination order if and only if
it can be used to show that G is recursively simplicial.

Proof.
⇒ Assume that v1, . . . , vn are ordered in a perfect elimination order, that is, vi =

i ∀ i. Then N (n) ∩ {1, . . . , n− 1} = N (n) is a clique, and after removing n from
G, the remaining order is still a perfect elimination order. Induction gives the
claim.

⇐ Let vn, . . . , v1 be the order of removal in a recursively simplicial graph. The
vertices that vi is attached to during the +C-operation form a complete graph
in Gi, which is exactly the subgraph induced by {1, . . . , i − 1}. Thus N (i) ∩
{1, . . . , i− 1} is a clique for all i ∈ V .

From this lemma, we immediately get another characterization for chordal graphs.

Corollary 8. A graph is chordal if and only if it has a perfect elimination ordering.

Keeping this in mind, it is not surprising that an algorithm that recursively builds a
chordal graph and a corresponding Gröbner basis runs in polynomial time.
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Remark 33. From what we did so far, it has become clear that the ordering of the
vertices, and therefore the ordering of the variables in the algebraic problem formulation,
is very important to guarantee the correctness of the results below. However, it turns
out that the exact term order does not matter, as long as the variable order is fixed (see
Remark 9). We can therefore just assume that the Lex order (with permuted vertices)
is used throughout this section, since it is the most intuitive order for the reader to
retrace the calculations.

7.3 The Augmenting Polynomial

The algorithm will decompose a given graph in a perfect elimination order and build it
back up, while adding a suitable polynomial for each new vertex. Such a polynomial
has to ensure that the variety, defined by the new ideal, exactly contains the proper
colorings of the augmented graph.
We start by introducing two families of symmetric polynomials.

Definition 27. The k-th elementary symmetric polynomial σk(x1, . . . , xn) over n vari-
ables is

σk(x1, . . . , xn) :=
∑

1≤j1<···<jk≤n
xj1 · · ·xjk .

The k-th complete homogeneous symmetric polynomial Sk(x1, . . . , xn) over n variables
is

Sk(x1, . . . , xn) :=
∑

1≤j1≤···≤jk≤n
xj1 · · ·xjk .

Note that both polynomials are degree-k-homogeneous, but σk is by definition square-
free, while Sk can contain higher powers of a variable.

Lemma 24. Let G be a chordal graph on n vertices. For any k, r ∈ N, where k > r,
and for any partial assignment {xc1 = ξ1, . . . , xcr = ξr} of r distinct k-th roots of
unity to variables in K[x1, . . . , xn], there is a polynomial p ∈ K[x1, . . . , xn+1] which is
homogeneous of degree k − r, such that

p(x1, . . . , xn+1) = 0 ⇐⇒ xn+1 ∈ Rk \ {ξ1, . . . , ξr} ,

i.e., the solutions of xn+1 in p are exactly the k − r other roots of unity.

Proof. Without loss of generality, assume that ci = i ∀i ∈ {1, . . . , r}, and set x := xn+1.
We show that the complete homogeneous symmetric polynomial p := Sk−r(x1, . . . , xr, x)
is the polynomial we are looking for.
First, note that it suffices to prove that

Sk−r(x1, . . . , xr, x) · (x− x1) · · · (x− xr) = xk − 1 .

Then the claim follows with the following argument: Let x ∈ Rk \ {ξ1, . . . , ξr}. The
equality therefore becomes

Sk−r(x1, . . . , xr, x) · (x− x1)︸ ︷︷ ︸
6=0

· · · (x− xr)︸ ︷︷ ︸
6=0

= xk − 1︸ ︷︷ ︸
=0

=⇒ Sk−r(x1, . . . , xr, x) = 0 .
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Hence, we have found k−r distinct roots of a (k−r)-dimensional univariate polynomial,
and this ensures that there are no other roots of p.
Now, consider the degree d-homogeneous polynomial σi(x1, . . . , xr)Sd−i(x1, . . . , xr). For
every monomial xα with |α| = d and | supp(α)| = m, its coefficient is the number of
square-free factors of degree i, that is,

(m
i

)
.

Summing up these coefficients over d with alternating signs gives that the coefficient of
xα in

d∑
i=0

(−1)d−iσi(x1, . . . , xr)Sd−i(x1, . . . , xr)

is
m∑
i=0

(−1)d−i
(
m

i

)
= 0 .

Therefore,

d∑
i=0

(−1)d−iσi(x1, . . . , xr)Sd−i(x1, . . . , xr) = 0 ∀ d ∈ {0, . . . , k − 1} .

Using the specific values of the partial assignment for x1, . . . , xr, we see moreover that

d∑
i=0

σi(x1, . . . , xr)σd−i(xr+1, . . . , xk) = 0 ∀ d ∈ {1, . . . , k − 1} .

Equating these sums for d = 1 and using the fact that σ0(xr+1, . . . , xk) = 1 = S0(x1, . . . , xr)
gives

(−1)dσd(x1, . . . , xr) = Sd(xr+1, . . . , xk)

for the case d = 1.
Now we increase d by 1 and insert the last equation to yield the same equality for d = 2,
and so on up to d = k − 1. In total, we conclude

Sk−r(x1, . . . , xr, x) ·
r∏
i=1

(x− xi) =
k−r∑
d=0

Sd(x1, . . . , xr)xk−r−d ·
r∏
i=1

(x− xi)

=
k−r∑
d=0

(−1)dσd(xr+1, . . . , xk)xk−r−d ·
r∏
i=1

(x− xi)

=
k∏

i=r+1
(x− xi) ·

r∏
i=1

(x− xi)

=
k∏
i=1

(x− xi)

= xk − 1 ,

which is what we claimed.
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7.4 The Algorithm

Our somewhat naive implementation is intuitively understandable: It successively tests
vertices for simpliciality (using Algorithm 9) and removes hits in order to obtain a
perfect elimination order. At the same time, it adds new polynomials to a set which,
at the end, is exactly the Gröbner basis we are looking for.

Algorithm 8 Gröbner basis of a chordal graph
Input: Chordal graph G = (V,E), coloring number k
Output: Gröbner basis G of size |V |

function BuildGröbnerBasis(G, k)
n← |V |
Gn ← G
G ← {vn}
for all i ∈ {n− 1, . . . , 1} do

for all v ∈ Vi+1 do
if IsSimplicial(v) then

vi ← v
Ci ← N (v)
Gi ← Gi+1 − v
G ← G ∪ {Sk−|Ci|(Ci, vi)}
exit for

end if
end for

end for
return G

end function

Algorithm 9 Testing a vertex for simpliciality
Input: Graph G = (V,E), vertex v ∈ V
Output: true if v is simplicial in G, else false

function IsSimplicial(G, v)
d← deg(v)
for all n ∈ N (v) do

if |N (v) ∩N (n)| < d− 1 then
return false

end if
end for
return true

end function

7.4.1 Correctness

Lemma 25. Let G be a graph on n vertices, and let � be a term order. Let C =
{c1, . . . , cr} be an r-clique in G, and choose a Gröbner basis G of IG. Then, with
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p = Sk−r(xc1 , . . . , xcr , xn+1),

〈G, p〉 = 〈G, vn+1, ec1,n+1, . . . , ecr,n+1〉 = IG+C .

Proof. We show that 〈G, p〉 is a radical ideal, and that both ideals generate the same
variety. Then the claim follows from the bijection between varieties and radical ideals.

• Since p =
∏k
i=r+1(x− xi) is square-free, we know that 〈p〉 is a radical ideal. The

same holds for 〈G〉 as the coloring ideal of a graph. But then

rad(〈G, p〉) = rad(〈G〉 ∩ 〈p〉) = rad(〈G〉) ∩ rad(〈p〉) = 〈G〉 ∩ 〈p〉 = 〈G, p〉

as claimed.

• Let x = (x1, . . . , xn+1) ∈ 〈G, p〉. By definition, xn+1 is a k-th root of unity, and
therefore vn+1 = 0. Moreover, xn+1 6= xci ∀ i ∈ {1, . . . , r}, which implies that
eci,n+1 = 0. In sum, x ∈ IG+C .

Let now x = (x1, . . . , xn+1) ∈ IG+C . Then the generator polynomials vn+1,
ec1,n+1, . . ., ecr,n+1 ensure that xn+1 ∈ Rk \ {xc1 , . . . , xcr}, hence p(x) = 0 and
x ∈ 〈G, p〉.

Lemma 26. For every Gröbner basis G of IG with respect to �, G ∪ {p} is a Gröbner
basis of IG+C with respect to an extended term order �′, where p is again defined as in
Lemma 24.

Proof. Lemma 25 shows that 〈G, p〉 = IG+C . Hence, it is left to show that all S-
polynomials in G ∪ {p} reduce to 0. We only have to consider S-pairs that involve
the new polynomial p.
By definition of �′, we have that LM�′(p) = xk−rn+1, which is relatively prime to all g ∈ G,
since xn+1 does not appear in this basis. Therefore,

S(g, p)→G∪{p} 0 ∀g ∈ G

by Lemma 6.
This is sufficient for G′ := G ∪ {p} to be a Gröbner Basis.

Theorem 27. Upon termination of BuildGröbnerBasis(G), the set G is a Gröbner
basis for IG under the Lex order, where the vertices are ordered in the perfect elimination
order that was established in the algorithm.

Proof. Note that {p1 := vn} is a Gröbner basis for G1. By Lemma 26, this basis can
be extended in n − 1 steps by adding pi as constructed in the algorithm. Therefore,
G = {p1, . . . , pn} is a Gröbner basis of Gn = G with respect to the extended vertex
order, which concludes the proof.
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7.4.2 Complexity of the Resulting Gröbner Basis

As we have seen above, exactly one polynomial is added to G for every vertex of G. But
what is the degree and length of these polynomials?
From the definition of p := Sk(x1, . . . , xn), we see that len(p) =

(k+n−1
n−1

)
and deg(p) = k.

Therefore, we add polynomials Si with len(Si) =
( k
|Ci|
)

and deg(Si) = k − |Ci|. Note
that, for a fixed number k of colors, both numbers are polynomials.

7.4.3 Running Time

The function IsSimplicial consists of an outer loop with exactly n iterations, in each
of which the intersection of two subsets of V is formed. Such an intersection can be
computed in linear time, therefore the function runs in time O(n2).
In the main function BuildGröbnerBasis, the two nested for-loops are traversed
O(n) times each, and every time IsSimplicial is called. The main part of the if -case
is the assignment of B. Building the polynomial Sk−|Ci|(Ci, vi) takes (k− r) ·

(k
r

)
steps,

which is clearly in O(k · k!). The remaining statements in the loop have running time
O(n2).
Putting the pieces together, we obtain a total running time of

O
(
n2(k · k! + n2)

)
,

which is polynomial in n for fixed k.

Remark 34. In particular, we get an O(n4)-algorithm for 3-coloring chordal graphs,
and it produces a Gröbner basis with polynomials of length up to (k − 1)(k − 1)! = 4.

It is evident that our implementation is not optimal with respect to running time. For
instance, finding a simplicial vertex can be done in linear time (see for example [26]), and
there is even a linear-time procedure that establishes a perfect elimination order on G.
Nevertheless, our algorithm shows that k-colorability for chordal graph is polynomial-
time solvable, and it reproduces the theoretical steps closely enough to be understood
in a straight-forward manner.

7.5 The Case of Non-Colorability

What happens in the process of the algorithm if G is not k-colorable? Intuitively, we
would expect the constant polynomial 1 to appear somewhere in the set G.
The correctness of this intuition can be shown formally: Assume that χ(G) = χ > k,
and we try to find a Gröbner basis for the k-coloring ideal of G. Since G is chordal, it is
also perfect, and thus has a χ-clique {v1, . . . , vχ}. We assume without loss of generality
that these vertices are ordered ascendingly with respect to the perfect elimination order
from the algorithm.
In the step where vk+1 is removed from the graph, we have |N (vk+1)∩{1, . . . , vk+1−1}| =
k, and therefore, we add the complete polynomial of degree 0

Sk−k(xv1 , . . . , xvk , xvk+1) = 1 .
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Hence, BuildGröbnerBasis detects non-colorability on the fly. This observation sug-
gests the following simple improvement on the algorithm: If we find a simplicial vertex of
degree ≥ k, then we can stop immediately and return the trivial Gröbner basis G = {1}.
On the other hand, we can be sure that if there is no such forbidden vertex, then G is
k-colorable.

7.6 Example: Tree Graphs

We want to illustrate our method by 2- and 3-coloring tree graphs. Note that these
graphs are trivially chordal, and their maximum cliques have size 1. When decon-
structing a tree in a perfect elimination order, we can always pick a leaf, such that the
remaining graph is still a tree.

7.6.1 2-Coloring

It is known that trees, as a subclass of bipartite graphs, are 2-colorable and have exactly
two distinct 2-colorings. We want to recover this result from the arguments above.
Remember that each vertex of a tree T is assigned a square root of unity, that is, either 1
or -1. Since k = 2 and |Ci| = 1, the polynomials Si have the form S2−1(xi, xj) = xi+xj .
Together with the vertex polynomial vn(x) = x2

n − 1, we obtain the Gröbner basis

G = {x1 + x2, x2 + x3, . . . , xn−1 + xn, x
2
n − 1} .

The 2-colorability of T follows from the fact that none of these polynomials is 1, and the
number of proper 2-colorings can be read off the initial ideal of G: The leading terms of
elements in G are xi, 1 ≤ i < n, and x2

n. Therefore, the two-element set BT = {1, xn}
is the set of standard monomials, that is, a basis of K[x1, . . . , xn]/IT , and the claim is
shown.

7.6.2 3-Coloring

For k = 3, we use powers of ξ := ξ3 = e
2π·i

3 to represent the colors. The Si now have
the pattern S3−1(xi, xj) = x2

i + xixj + x2
j , which coincides with the edge polynomials

ei,j . Therefore, the Gröbner basis has the form

G = {x2
1 + x1x2 + x2

2, x
2
2 + x2x3 + x2

3, . . . , x
2
n−1 + xn−1xn + x2

n, x
3
n − 1} .

As above, 3-colorability is an immediate consequence of the constant polynomial 1 not
being part of this set. However, the number of distinct 3-colorings is different: The
leading terms of elements in G are x2

i ∀ i ∈ {1, . . . , n− 1} and x3
n. This gives the basis

BT =
{
xα : α ∈

(
{0, 1}n−1 × {0, 1, 2}

)
∩ Zn

}
of K[x1, . . . , xn]/IT , and the number of colorings is therefore 3 · 2n−1.



8. CONCLUSIONS, OPEN PROBLEMS AND FUTURE DIRECTIONS

8.1 Counterexamples for Natural Conjectures

8.1.1 Graphs of Small Treewidth

Some combinatorial problems on graphs can be solved using tree decompositions of a
graph G. The approach is efficient if the decomposition of G has only small vertex sets,
that is, if the treewidth of G (as defined e.g. in [14], p. 321) is small. This suggests that
graph families of constant treewidth have small Gröbner bases, too.
This conjecture is disproved by the cycle graphs Cn, whose treewidth is 2 for all n. An
optimal tree decomposition of Cn is given in Figure 8.1.

1, 2 1, 2, 3 1, 3, 4 1, n− 1,
n

1, n

Fig. 8.1: Optimal tree decomposition of Cn

8.1.2 n-sized Bases for Perfect Graphs

It has been shown that many combinatorial problems, among them k-coloring, can be
solved in polynomial time not only for chordal graphs, but also for the strictly larger
class of perfect graphs (see Section 2.3.2).
Therefore, it is a natural question to ask whether the complexity result about n-sized
Gröbner bases which we derived above for chordal graphs can be extended to perfect
graphs. Unfortunately, the answer is no, since already even cycles (which are evidently
perfect, since their clique number and chromatic number are both 2) reveal rather
nasty Gröbner basis structures. Although we cannot show rigorously what the minimal
Gröbner basis for a cycle C2n is, computation of the Gröbner fan for small n gives proof
that there is no Gröbner basis of size n (see Section 6.8.2). The growth of the support
of minimal bases, shown in this section, even leads to the conjecture that there exists
no polynomial-time algorithm which computes a (polynomial-size) Gröbner basis for a
given perfect graph.

8.1.3 Triangle-Coverable Graphs

Triangles are known to be “nice” substructures in a graph: They both reduce the
complexity of Gröbner bases (Section 6.6.1) and the time for their computation (Section
6.6.2). This leads to the conjecture that the Gröbner bases of graphs, whose vertex set
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can be covered with triangles, show nice properties or have small size. Here, triangle-
coverability is defined as the property that every v ∈ V is part of a triangle, i.e.,

∀ v ∈ V ∃w1, w2 ∈ N (v), w1 6= w2 : N (w1) ∩N (w2) 6= ∅ .

n

1
2

3

n− 2
n− 1

n + 1

n + 2n + 3

2n− 1

2n

Fig. 8.2: The triangle-coverable sun graph S2n

A counterexample of this assumption is given by a straightforward construction, re-
sulting in so-called sun graphs (Figure 8.2): We take an n-cycle and add a triangle to
every edge, using the edge as the base. The graph S2n, obtained by this process, has
2n vertices and 3n edges, and it is clearly covered by the n triangles it contains.
Figure 8.3 shows that the length of the standard bases is only slightly above 2n, but
their support grows fast. We tried to compute the Gröbner fan of S2n for some n, but
Macaulay2 runs out of memory already for n = 5. Table 8.1 shows the Gröbner fan
complexity for S4, S6 and S8.
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Fig. 8.3: Length and support of the Lex bases of Sn
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Tab. 8.1: Complexity measures in the Gröbner fan of Sn

n 4 6 8
Number of bases 6 12 60
Minimal length 3 5 7
Minimal degree 3 3 3
Minimal support 3 4 8
Minimal-length basis (3, 3, 3) (5, 3, 4) (7, 3, 8)

8.2 Open Questions for Future Research

8.2.1 The Power of Standard Bases

In many cases, considering the three standard bases for different vertex orders suffices
to show upper and lower bounds on the Gröbner basis complexity of graphs. Moreover,
Lex, GLex and GRevLex order only differ in few and unstructured cases throughout
our examples.
Do these orders always give best and worst Gröbner bases? The other way round, is
there a family of graphs for which the standard orders are not optimal? If so, how can
such graphs be found? For which graphs are the standard bases with respect to the same
vertex order equal?

8.2.2 Proving All Experimental Results

A large amount of our results are observations and extrapolations of experiments, and in
particular complexity statements for infinite families of graphs are not rigorously proven
for all n ∈ N. Exceptions are graphs whose Gröbner bases can completely classified, such
that a tentative description of the n-th Gröbner basis can be found and then proved.
Is there a way to prove Gröbner basis complexities, without knowing the specific basis?
Does the same hold for Gröbner fans?

8.2.3 Polynomial-Time Algorithms for Larger Classes of Graphs

Can we find an algorithm that computes a Gröbner basis of a given graph in polynomial
time, if G comes from a larger class than chordal graphs? If so, what complexity do the
resulting bases have?

8.2.4 Minimal Elimination Orders

The key fact for the result in Chapter 7 was the existence of perfect elimination orders
for chordal graphs. [15] defines a related concept, which exists for general graphs G:
The minimal elimination order. It is basically constructed as a perfect elimination order
for a chordal graph G′ which arises from adding a minimal number of edges to G.
Does a heuristic built on this concept give particularly small Gröbner bases? Can we
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give a better bound for the complexity of Gröbner bases by using minimal elimination
orders?

8.2.5 Minimal Support of Gröbner Bases

It is known that a Gröbner basis G of an ideal I is binomial if and only if I is a binomial
ideal. Therefore, I being not binomial is a sufficient condition for s(G) ≥ 3. Since
experiments indicate that k-coloring ideals of non-empty graphs are not binomial for
all k ≥ 3, we conjecture:

Conjecture 2. Let G = (V,E) be a k-colorable graph, k ≥ 3. If E 6= ∅, then IG is not
a binomial ideal. Therefore, s(G) ≥ 3 for an arbitrary Gröbner basis G of G.

Can we prove that?

8.2.6 Fan Complexity Bounds

We have seen in Chapter 6 that the Gröbner fans of some families of graphs have
very close lower and upper complexity bounds. For example, all Gröbner bases of the
complete tripartite graph Kk,m,n have the same complexity pattern (k + m + n, 3, 3).
For complete tripartite graphs, this property can in fact be seen by a Theorem in [32]
(see Remark 24), since the graphs of this family are uniquely 3-colorable.
Can we give complexity bounds for all Gröbner bases of certain graph families?

8.2.7 Edge Contraction and Deletion

The theory of graph minors, which has been proven an extremely useful tool in graph
theory, mainly relies on two operations, performed on a given graph: Edge contraction
and edge deletion. These operations can be seen as functions that map a graph to
another graph with a slightly different vertex and edge set. Formally, the contraction
and deletion operators, Cu,v(G) and Du,v(G) for an input graph G = (V,E), are defined
as follows:

Cu,v : Gn → Gn−1, Cu,v(G) = (V \ {v}, Eu=v)

and
Du,v : Gn → Gn, Du,v(G) = (V,E \ {u, v}) ,

where Gn is the set of all graphs on n vertices.
The significance of these two operators for graph theory, and in particular for the graph
coloring problem, is illustrated by the deletion-contraction algorithm (see [31], Chapter
1.3), a recursive procedure that computes the chromatic polynomial (Section 2.4) of a
graph using the following identity:

P (G, k) = P (Du,v(G), k)− P (Cu,v(G), k) ∀ {u, v} ∈ E .

Using the fact that both terms on the right hand side use graphs with fewer vertices or
edges, it is easily seen that this recurrence terminates in a set of empty graphs, whose
chromatic polynomial can be explicitly stated as P (Kn, k) = kn.



8. Conclusions, Open Problems and Future Directions 91

It is natural to ask about the connection between Gröbner bases and deletion/contrac-
tion: It seems reasonable to assume that a Gröbner basis of a graph G can be deducted
from the bases of its transforms Du,v(G) and Cu,v(G), taken with respect to the same
term order.
Can we formalize this idea, resulting in a recursive formula for Gröbner bases? In
particular, how do we deal with the fact that deletion and contraction can change the
chromatic number of the graph?

8.2.8 Generalizing Dominant Paths

Our understanding of the phenomenon encountered in Section 6.7.3 is limited to tree
graphs and path polynomials. While dominant paths do not necessarily appear in graphs
with cycles, there are other substructures which can be found in the Gröbner bases
of such graphs, for example cycle, triangle or diamond polynomials. However, based
on observations on randomly generated graphs, the emergence of these polynomials
seems to depend on different factors and cannot be explained as clearly and simply as
the dominant paths. Also, the fact that dominant paths “dominate” other paths and
vertices, and in turn are dominated by triangles, suggests that there exists some sort of
hierarchy of polynomials which push each other put of a Gröbner basis.
Can we extend this approach to general graphs or at least to some classes of graphs with
cycles? Is there a comprehensive theory that exactly explains which polynomials appear
in a certain basis, not just based on heuristics? What is the computational effect from
adding expected polynomials to the generating system FG of a coloring ideal?



BIBLIOGRAPHY

[1] S. Arora, B. Barak. Computational Complexity: A Modern Approach, Cambridge
University Press, 2009.

[2] K. Appel, W. Haken. Every Planar Map is Four Colorable, Illinois Journal of
Mathematics 21:429–567, 1977.

[3] P. Bartlett. Undirected Graphical Models: Chordal Graphs, De-
composable Graphs, Junction Trees, and Factorizations. Lec-
ture notes (http://www.stat.berkeley.edu/ bartlett/courses/241A-
spring2007/graphnotes.pdf), 2003.

[4] C. Berge. Perfect graphs, In Six Papers on Graph Theory:1–21. Indian Statistical
Institute, Calcutta, 1963.
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