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The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws
including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary
values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the
properties of the results for different types of networks.

1. Introduction

During the last few years, a huge amount of literature
has emerged that deals with theoretical stability results for
boundary control of conservation laws; see, for example,
[1–15]. Further work also includes hyperbolic systems with
source terms (so-called balance laws) for special applications
such as gas dynamics [16–18] or water flow in open canals
[19–23]. To the best of our knowledge only a few results are
available, where these kinds of control problems are analyzed
from a numerical point of view; see [24, 25].

Many network applications are represented by one-
dimensional hyperbolic systems of balance laws [4, 26–
30]. For the analytical case it can be proven that feedback
boundary values, designed under certain conditions, yield
an exponential decay of a continuous Lyapunov function
[3, 9, 31] also in the context of networks.

In this paper, we aremainly concernedwith the numerical
analysis of the stability of the steady-state of such networked
systems. We explain how suitable boundary values must be
designed such that a linear system of balance laws converges
exponentially to a steady-state. Inspired by [24, 25], we
restrict ourselves to the numerical approximation of such
systems and study the asymptotic behavior of that solution or
to bemore precise the conditions underwhich an exponential
decay of the discrete solution to hyperbolic balance law can
be attained. One way to influence a system of balance laws
is through the boundary values. The interpretation of the

boundary values in the case of hyperbolic systems is that
they describe an outflow or an inflow of a quantity. One can
measure the outflow, modify it, and let it flow back again as
inflow.This kind of control is then called feedback boundary
control.

Our considerations are done first for arbitrary linear
systems of balance laws and are then extended to networks
which are in fact coupled systems of boundary problems. For
simulation purposes, we present two concrete examples. One
example is the so-called telegrapher’s equation, an equation
described by a 2 × 2 hyperbolic balance law and normally
used to model transmission lines [29]. The other example is
a model for road traffic, the so-called LWR-model [32]. It
is a scalar model describing traffic flow based on physical
conservation laws. The question we address here is how
a feedback control can be used that small errors in some
measured data are dampened.

The outline of the article is as follows: in Section 2, we
answer the question under which conditions an exponential
decay of the numerical solution to the hyperbolic equations
can be achieved. The network applications are given in
Section 3. We design feedback boundary values for different
networks and analyze the stability conditions.

2. Problem Description and Preliminary Work

Hyperbolic systems of balance laws are often used to describe
physical applications such as gas, water, traffic, or power
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flow. Boundary conditions can be designed to ensure that
the analytical solution for these systems converges towards
a desired steady-state. To prove the convergence of the
approximate solution to a desired steady-state, a technique
based on Lyapunov functions [3, 4, 8, 28] is used. The
required boundary conditions are called feedback boundary
conditions and the method is the boundary feedback stabi-
lization of hyperbolic systems. This is a common approach
for controlling systems of conservation laws.

In two recent works [24, 25], the theoretical results men-
tioned above are transferred to the numerical discretization of
systems of balance laws. It can be shown that the approximate
solution also converges exponentially to a steady-state. This
is done using a suitable discretized Lyapunov function. Fur-
thermore, this approach allows for an explicit representation
of the decay rates in contrast to many theoretical results.

2.1. Theoretical Results on Feedback Stabilization. Our goal
is the stability analysis of the numerical solution to systems
of conservation laws with linear source terms. We assume
that the hyperbolic systems under investigation are given in
the so-called characteristic form. Typically, linear systems
of balance laws can be expressed in a characteristic form
in a straightforward way while nonlinear systems can be
transformed into a characteristic form by linearization with
respect to a steady-state solution; see [3, 26] for examples and
more details.

Let us consider the system of balance laws in characteris-
tic form for 𝑥 ∈ [0, ℓ]:𝜕𝑡𝜉 + Λ𝜕𝑥𝜉 + 𝐵𝜉 = 0,𝜉 (0, 𝑥) = 𝜉0 (𝑥) , (1)

where 𝐵 is a 𝑝 × 𝑝 matrix with constant entries, that is, 𝐵 ∈
R𝑝×𝑝, and 𝜆𝑖 ̸= 0 for 𝑖 ∈ {1, . . . , 𝑝} are the eigenvalues of
the matrix Λ with Λ = diag(𝜆1, . . . , 𝜆𝑝). The eigenvalues are
either positive or negative, so we order these values such that𝜆+𝑖 fl 𝜆𝑖 > 0 for 𝑖 ∈ {1, . . . , 𝑚} and 𝜆−𝑖 fl 𝜆𝑖 < 0 for 𝑖 ∈ {𝑚 +1, . . . , 𝑝} and split the matrix Λ into Λ + = diag(𝜆+1 , . . . , 𝜆+𝑚)
and Λ − = diag(𝜆−𝑚+1, . . . , 𝜆−𝑝).

For characteristic variables 𝜉 ∈ R𝑝, we have 𝜉+ ∈ R𝑚 and𝜉− ∈ R𝑝−𝑚 such that 𝜉 = (𝜉+𝜉−) . (2)

So 𝜉± are the components of 𝜉 corresponding to the positive
and negative eigenvalues of Λ.

For the above system (1), linear feedback boundary
conditions [7, 9] can be prescribed by(𝜉+ (𝑡, 0)𝜉− (𝑡, ℓ)) = (𝐺+ 00 𝐺−)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

š𝐺

(𝜉+ (𝑡, ℓ)𝜉− (𝑡, 0)) , (3)

with 𝐺 matrix being a 𝑝 × 𝑝 matrix, that is, 𝐺 ∈ R𝑝×𝑝, with
blocks 𝐺+ ∈ R𝑚×𝑚 and 𝐺− ∈ R𝑝−𝑚×𝑝−𝑚. The name feedback
originates from the fact that outputs of a system are fed back

as inputs. Since the inputs and outputs of a system of balance
laws are the boundaries, one speaks of boundary feedback
control or boundary feedback stabilization, if the control is
used to reach a steady-state (or equilibrium).

Note that boundary control problems might depend
on additional controls 𝑢+(𝑡) and 𝑢−(𝑡); see applications in
Section 3. Then, the aim is to find suitable controls such that
for any initial data 𝜉0(𝑥) and boundary values (3) the solution
of system (1) converges to the desired steady-state.

We are now concerned to analyze the exponential stability
of system (1) under boundary conditions (3) with initial data𝜉(0, 𝑥) = 𝜉0(𝑥) for 𝑥 ∈ (0, ℓ). From theory we know that the
linear hyperbolic system (1) and (3) is exponentially stable
around the equilibrium state 𝜉 ≡ 0 if there exist ] > 0 and𝐶 > 0 such that, for every 𝜉0 ∈ 𝐿2((0, ℓ);R𝑝), the solution to
the Cauchy problem satisfies󵄩󵄩󵄩󵄩𝜉 (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶 exp (−]𝑡) 󵄩󵄩󵄩󵄩𝜉0󵄩󵄩󵄩󵄩𝐿2 , ∀𝑡 ∈ R+. (4)

In the case of linear boundary conditions (3) the expo-
nential stability of the equilibrium 𝜉 ≡ 0 can be ensured by
the following theoretical result [26, 33].

Let D𝑝 be the set of all real 𝑝 × 𝑝 diagonal matrices
with strictly positive diagonal elements. We define 𝜌(𝐺) fl
inf{‖Δ𝐺Δ−1‖2 : Δ ∈ D𝑝}. Then the following theorem holds.

Theorem 1 (Theorem 2, [26]). If 𝜌(𝐺) < 1, there exists 𝜀 > 0
such that, if ‖𝐵‖ < 𝜀, then the linear hyperbolic system (1) and
(3) is exponentially stable.

The key idea of the proof is to show that the time
derivative of the Lyapunov function𝐿 (𝑡) = ∫ℓ

0
𝜉𝑇𝑃 (𝑥) 𝜉 𝑑𝑥, (5)

with weighting matrix 𝑃(𝑥) fl diag(𝑐1𝑒−sign(𝜆1)𝜇1𝑥, . . . ,𝑐𝑝𝑒−sign(𝜆𝑝)𝜇𝑝𝑥) ∈ R𝑝×𝑝 and positive constants 𝜇𝑖 > 0, 𝑐𝑖 > 0
for all 𝑖 ∈ {1, . . . , 𝑝}, is negative definite along the solution of
(1) and (3).

In [25] it is shown how this theoretical result can be rein-
terpreted from a numerical point of view. This means there
exists a discrete version of Theorem 1 for the discretized sys-
tem (1) and (3). The question is then under which additional
conditions exponential stability of the discretized system can
be ensured. In particular, corresponding conditions for the
feedback matrix 𝐺 and the source term matrix 𝐵 need to
be established. This question will be addressed in the next
paragraph.

2.2. Numerical Feedback Stabilization. We use a splitting
method [34] to discretize system (1) and (3). This means in
a first step the advection part 𝜕𝑡𝜉 + Λ𝜕𝑥𝜉 = 0 is solved using
an upwind scheme either in positive or in negative direction.
In a second step, an explicit Euler scheme is applied to resolve
the source term equation 𝜕𝑡𝜉 = −𝐵𝜉.

Therefore, we discretize 𝜉 for any component 𝑖, with time
step size Δ𝑡 and space step size Δ𝑥, that is, 𝜉𝑘𝑖,𝑗 for every
discrete time 𝑘 ∈ N>0, component 𝑖 ∈ {1, . . . , 𝑝}, and cell
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index 𝑗 ∈ {−1, . . . , 𝑁}. We consider the cells −1 and 𝑁 as
ghost cells to describe the boundary values. So Δ𝑥 is the cell
width of an equidistant spatial grid and𝑁+ 2 the number of
cells in the domain [0, ℓ].The time step size Δ𝑡 is then chosen
according to the CFL condition; that is,𝜆 Δ𝑡Δ𝑥 ≤ 1, 𝜆 fl max

𝑖∈{1,...,𝑝}
(󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨) . (6)

Note that for stiff problems there might be an additional time
step restriction due to the explicit Euler discretization of the
source term equation.

Hence, we end upwith the following numerical scheme to
solve system (1) and (3) for every cell index 𝑗 ∈ {0, . . . , 𝑁− 1}
and time 𝑘 ∈ {1, . . . , 𝐾 − 1}:𝜉𝑘𝑖,𝑗 = 𝜉𝑘𝑖,𝑗 − Δ𝑡Δ𝑥𝜆𝑖 (𝜉𝑘𝑖,𝑗 − 𝜉𝑘𝑖,𝑗−1) , for 𝑖 ∈ {1, . . . , 𝑚} , (7)𝜉𝑘𝑖,𝑗 = 𝜉𝑘𝑖,𝑗 − Δ𝑡Δ𝑥𝜆𝑖 (𝜉𝑘𝑖,𝑗+1 − 𝜉𝑘𝑖,𝑗) ,

for 𝑖 ∈ {𝑚 + 1, . . . , 𝑝} , (8)

𝜉𝑘+1𝑖,𝑗 = 𝜉𝑘𝑖,𝑗 − Δ𝑡𝐵𝑖 (𝜉𝑘𝑗) , for 𝑖 ∈ {1, . . . , 𝑝} , (9)𝜉𝑘𝑖,−1 = 𝑚∑
𝑙=1

𝑔𝑖,𝑙𝜉𝑘𝑙,𝑁−1 + 𝑝∑
𝑙=𝑚+1

𝑔𝑖,𝑙𝜉𝑘𝑙,0, for 𝑖 ∈ {1, . . . , 𝑚} , (10)

𝜉𝑘𝑖,𝑁 = 𝑚∑
𝑙=1

𝑔𝑖,𝑙𝜉𝑘𝑙,𝑁−1 + 𝑝∑
𝑙=𝑚+1

𝑔𝑖,𝑙𝜉𝑘𝑙,0,
for 𝑖 ∈ {𝑚 + 1, . . . , 𝑝} , (11)

𝜉0𝑖,𝑗 = 1Δ𝑥 ∫𝑥𝑗+1/2𝑥𝑗−1/2 𝜉0,𝑖 (𝑥) 𝑑𝑥, for 𝑖 ∈ {1, . . . , 𝑝} (12)

with 𝜉𝑘𝑗+ = (𝜉𝑘1,𝑗, . . . , 𝜉𝑘𝑚,𝑗)𝑇 ,𝜉𝑘𝑗− = (𝜉𝑘𝑚+1,𝑗, . . . , 𝜉𝑘𝑝,𝑗)𝑇 ,𝜉𝑘𝑗 = (𝜉𝑘𝑗,+, 𝜉𝑘𝑗,−)𝑇 , (13)

where 𝑔𝑖,𝑙 is the element in the 𝑖th row and 𝑙th column
of the matrix 𝐺 and 𝐵𝑖 is the 𝑖th row of the source term
matrix. As one can recognize, (7) and (9) are the numerical
approximation to the advection and source term problem
and (10) and (11) describe the boundary conditions. The
initialization is given by (12).

Since we are interested in boundary feedback control
from a numerical point of view, we need to define a discrete
Lyapunov function of (5). This is necessary to analyze the
exponential stability of the discretized system under linear
boundary conditions.

Therefore we consider a discrete candidate Lyapunov
function of the form𝑉𝑘 = 𝑁−1∑

𝑗=0

𝑝∑
𝑖=1

(𝜉𝑘𝑖,𝑗)2 𝑐𝑖exp (−sign (𝜆𝑖) 𝜇𝑖𝑥𝑖,𝑗) Δ𝑥, (14)

with 𝜉𝑘𝑖,𝑗 evaluated at grid point 𝑗 and time step 𝑘 and positive
real numbers 𝑐𝑖 > 0 and 𝜇𝑖 > 0.

Now, we are able to present the discrete version of
Theorem 1 based on the numerical discretization (7)–(12) on
the spatial domain [0, ℓ] for a positive finite time horizon𝑇 = 𝐾Δ𝑡.Themain result taken from [25] can be summarized
as follows.

Theorem 2. The discretized system (7)–(12) is exponentially
stable; that is,

𝑁−1∑
𝑗=0

𝑝∑
𝑖=1

(𝜉𝑘𝑖,𝑗)2 Δ𝑥
≤ 𝐶 exp (−]Δ𝑡 (𝑘 + 1))𝑁−1∑

𝑗=0

𝑝∑
𝑖=1

(𝜉0𝑖,𝑗)2 Δ𝑥 (15)

for 𝑘 ∈ {1, . . . , 𝐾} and ], 𝐶 > 0, if there exist 𝜇𝑖 > 0 and 0 <𝑐𝑖 ≤ 1 such that
(C1) the matrices𝐺𝑇+𝑃+0 Λ +𝐺+ − 𝑃+𝑁Λ +,𝑃−−1Λ − − 𝐺𝑇−𝑃−𝑁−1Λ −𝐺− (16)

are negative definite, with 𝑃±𝑗 defined as𝑃+𝑗 = diag (𝑐1exp (−𝜇1𝑥𝑖,𝑗) , . . . , 𝑐𝑚exp (−𝜇𝑚𝑥𝑖,𝑗)) ,𝑃−𝑗 = diag (𝑐𝑚+1exp (𝜇𝑚+1𝑥𝑖,𝑗) , . . . , 𝑐𝑝exp (𝜇𝑝𝑥𝑖,𝑗)) ; (17)

(C2) the source term is restricted to(𝜉𝑘𝑗)𝑇 (Δ𝑡𝐵𝑇𝐵 − 2𝐵) (𝜉𝑘𝑗) ≤ 0,∀𝜉𝑘𝑗 = (𝜉𝑘1,𝑗, . . . , 𝜉𝑘𝑝,𝑗)𝑇 . (18)

Additionally, the decay rate ] > 0 can be explicitly given by

] = min
𝑖
( 1Δ𝑥 󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨 (1 − 𝑐𝑖exp (−𝜇𝑖Δ𝑥))) (19)

and converges tomin𝑖(|𝜆𝑖|𝜇𝑖) for Δ𝑥 → 0 for all 𝑖.
For the proof, the same idea is used as in Theorem 1. The

major difference is to show that the discrete time derivative of
the discrete Lyapunov function (14) is negative; that is, (𝑉𝑘+1−𝑉𝑘)/Δ𝑡 ≤ 0, for the numerical discretization (7)–(12).

In the next section we apply the results of Theorem 2 to
networks [17, 26–29] represented by directed graphs. Net-
worked problems, where the dynamics on edges is governed
by systems of balance laws, are linked at intersections and
can be therefore treated as coupled boundary value problems.
Hence, the results from above can be extended in a rigorous
way.

3. Application to Networks

A network is modeled by a directed graph and can be viewed
as a spatial one-dimensional domain. To define hyperbolic
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balance laws on a network one has to introduce coupling
conditions, which are a special form of boundary conditions
at intersections. The associated feedback control problem
is then to design control laws at the coupling interfaces to
stabilize the system.

For application purposes, we use the results presented in
Section 2 on two concrete network examples. One example
is the so-called telegrapher’s equation, an equation described
by a 2 × 2 hyperbolic balance law and normally used to
model transmission lines. The other example is a model for
road traffic, the so-called LWR traffic flow network model. In
this context, we will explain how a feedback control can be
designed that small measurement errors are dampened.

In our numerical study, we discuss several scenarios and
demonstrate the properties ofTheorem 2 for small and larger
networks.Thismeans, in particular, to check the assumptions
(C1) and (C2) for different network topologies.

Let us now start how the results from Section 2 fit into the
context of networks.

Definition 3. A network is described by a directed graphG =(V,E), where V is a set of nodes and E is a set of edges.
We represent an edge 𝑒 by an intervalI ⊂ R+ with uniform
length ℓ.

To keep the notation simple, we assume that each edge (or
intervalI) can be mapped to the domain 𝑥 ∈ [0, ℓ].

On each edge, we consider a system of balance laws (1).
These systems are coupled by so-called coupling conditions
prescribed as boundary values. For the coupling conditions
we use the conservation of flow with inputs at the nodes.
These inputs correspond to our control variables (cf. com-
ments after (3)). So for a system of balance laws such as (1)
the coupling has the following componentwise form:𝜆+𝑒 (𝜉 (𝑡, 0)) = ∑𝑑+𝑒𝑒𝜆+𝑒 (𝜉 (𝑡, ℓ)) + 𝑢+𝑠 (𝑡) ,𝜆−𝑒 (𝜉 (𝑡, ℓ)) = ∑𝑑−𝑒𝑒𝜆−𝑒 (𝜉 (𝑡, 0)) − 𝑢−𝑠 (𝑡) , (20)

and here 𝑢±𝑠 are external control inputs at fixed edges 𝑠. So
with this, the whole system in vector notation reads𝜕𝑡𝜉 + Λ𝜕𝑥𝜉 + 𝐵𝜉 = 0( 𝜉+ (𝑡, 0)𝜉− (𝑡, ℓ) ) = (Λ−1+ 𝐷+ 00 Λ−1− 𝐷−)(𝜉+ (𝑡, ℓ)𝜉− (𝑡, 0))+ (𝑢+ (𝑡)𝑢− (𝑡)) ,

(21)

with 𝐷+ = matrix with entries 𝑑+𝑒𝑒𝜆+𝑒 ,𝐷− = matrix with entries 𝑑−𝑒𝑒𝜆−𝑒 ,𝑢+ = (𝑢+1 , 𝑢+2 , . . . , 𝑢+|E|)𝑇 ,

𝑢− = (𝑢−1 , 𝑢−2 , . . . , 𝑢−|E|)𝑇 ,𝜉+ = (𝜉+1 , . . . , 𝜉+|E|)𝑇 ,𝜉− = (𝜉−1 , . . . , 𝜉−|E|)𝑇 ,𝜉 = (𝜉+, 𝜉−) .
(22)

One can describe the controls as so-called feedback
controls. A feedback law designs the controls in such a way
that they depend on the outflow at the boundaries. We
prescribe linear feedback boundary conditions for (21) as𝑢+ (𝑡) = 𝐺+𝜉 (𝑡, 𝑙) ,𝑢− (𝑡) = 𝐺−𝜉 (𝑡, 0) , (23)

with matrices 𝐺± ∈ R𝑛×𝑛, and get𝜕𝑡𝜉 + Λ𝜕𝑥𝜉 + 𝐵𝜉 = 0,(𝜉+ (𝑡, 0)𝜉− (𝑡, ℓ)) = (Λ−1+ (𝐷+ + Λ +𝐺+) 𝜉+ (𝑡, ℓ)Λ−1− (𝐷− + Λ −𝐺−) 𝜉− (𝑡, 0))= (𝐺+ 00 𝐺−)( 𝜉+ (𝑡, ℓ)𝜉− (𝑡, 0) ) .
(24)

These are the full network equations including boundary
conditions as coupling and as feedback.

In the following, we present two applications, in par-
ticular electrical transmission lines and vehicular traffic
networks. For the first example, we describe how the network
equations look like and which conditions must be ensured
to obtain exponential stability while for the second example
we explain how errors in the data can be dampened with the
presented approach.

3.1. Telegrapher’s Equation on Networks. We are interested in
a feedback control law for electrical transmission lines.Those
settings are normally represented as networks, where on
each edge the so-called telegrapher’s equation is solved. The
telegrapher’s equations are a simplification of the Maxwell
equation and include signal losses on transmission lines; see
[29] for the modeling details.

Normally, the variables current 𝐼(𝑡, 𝑥) and voltage𝑈(𝑡, 𝑥)
are the conservation quantities that are described by the
telegrapher’s equation.They are expressed in terms of charac-
teristic variables as 𝐼(𝑡, 𝑥) = 𝜉+(𝑡, 𝑥) + 𝜉−(𝑡, 𝑥) and 𝑈(𝑡, 𝑥) =√𝐿/𝐶(𝜉+(𝑡, 𝑥) − 𝜉−(𝑡, 𝑥)). Due to the losses alongside the
lines, we have an additional reaction term 𝐵 depending on
the positive constants of 𝑅, 𝐿, and 𝑍 (resistance, inductance,
and admittance) and𝐶 (capacitance).The equationwritten in
characteristic variables on edge 𝑒 is then𝜕𝑡𝜉𝑒 + Λ 𝑒𝜕𝑥𝜉𝑒 + 𝐵𝑒𝜉𝑒 = 0 (25)
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for 𝑥 ∈ [0, ℓ],𝐵𝑒 = ((𝑏𝑒)11 (𝑏𝑒)12(𝑏𝑒)21 (𝑏𝑒)22)
fl
12 (𝑅𝑒𝐿−1𝑒 + 𝑍𝑒𝐶−1𝑒 𝑅𝑒𝐿−1𝑒 − 𝑍𝑒𝐶−1𝑒𝑅𝑒𝐿−1𝑒 − 𝑍𝑒𝐶−1𝑒 𝑅𝑒𝐿−1𝑒 + 𝑍𝑒𝐶−1𝑒 ) ,Λ 𝑒 = (𝜆+𝑒 00 𝜆−𝑒) , with 𝜆±𝑒 = ±(√𝐿𝑒𝐶𝑒)−1 .

(26)

For a directed graph with |E| edges we are able to rewrite (24)
in a compact form provided that𝐷± is independent of V ∈V.
We collect 𝜉 = (𝜉+, 𝜉−)𝑇, 𝜉± = (𝜉±1 , 𝜉±2 , . . . , 𝜉±|E|) and introduce
the matrices𝐵 = (𝐵+1 , 𝐵+2 , . . . , 𝐵+|E|, 𝐵−1 , 𝐵−2 , . . . , 𝐵−|E|) ∈ R

2|E|×2|E| (27)

and Λ = diag(Λ +, Λ −) ∈ R2|E|×2|E| with𝐵+𝑒 = (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒−1

, (𝑏𝑒)11 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|E|−1

, (𝑏𝑒)12 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|E|−𝑒

)∈ R
2|E|,𝐵−𝑒 = (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒−1

, (𝑏𝑒)21 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|E|−1

, (𝑏𝑒)22 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|E|−𝑒

)∈ R
2|E|,Λ ± = diag (𝜆±1 , 𝜆±2 , . . . , 𝜆±|E|) ∈ R

|E|×|E|.
(28)

The coupling condition is rewritten in terms of 𝐷±, where(𝐷±)𝑒,𝑒 = 𝑑±𝑒𝑒𝜆±𝑒 , ∀𝑒, 𝑒 ∈ E, with 𝐷± ∈ R|E|×|E|. Then, the
network equations can be written in a compact form such as
(21) and (24).

Remark 4. Note that the time step sizeΔ𝑡 should be addition-
ally restricted in such away that the numerical scheme (1) and
(3) is still valid and assumption (C2) inTheorem 2 is satisfied;
that is, Δ𝑡𝐵𝑇𝑒 𝐵𝑒 −2𝐵𝑒 is negative definite for all edges 𝑒. This is
the case for Δ𝑡 ≤ 2min(𝐶𝑒/𝑍𝑒, 𝐿𝑒/𝑅𝑒) (cf. [29] for the details
of the proof).

3.1.1. Numerical Results. For all computations we choose the
length of all edges as one over two, that is, ℓ = 1/2, and also
discretize the edges with an equidistant grid. We use the final
time horizon 𝑇 = 12. If some parameters change throughout
the section, it will be stated. For simplicity, we skip the index𝑒 whenever the situation is clear and all parameters are fixed
to the same value for all edges.

Example 5. As a first examplewe consider the network shown
in Figure 1.

We intend to introduce the network framework intro-
duced above step by step. On each edge 𝑒, we have two
quantities 𝜉+𝑒 and 𝜉−𝑒 . We first choose 𝑍𝑒 = 𝑅𝑒 = 0 and

1 2
�0 �1 �2

Figure 1: Linear network without branches.

𝐿𝑒 = 𝐶𝑒 = 1 for all 𝑒. If 𝑍𝑒 = 𝑅𝑒 = 0, the telegrapher’s
equation reduces to the linear wave equation. Also note that𝜆+𝑒 = 1 and 𝜆−𝑒 = −1. We control the inflow of 𝜉+1 at node
V0 and the inflow of 𝜉−2 at node V2 depending on the outflow
at V2 and V0, respectively; that is, 𝜉+1 (𝑡, 0) = 𝑔1𝜉+2 (𝑡, ℓ) and𝜉−2 (𝑡, ℓ) = 𝑔2𝜉−1 (𝑡, 0). The matrices 𝐺+ and 𝐺− are composed
of 𝐺+ = (0 𝑔11 0 ) ,𝐺− = ( 0 1𝑔2 0) . (29)

The corresponding eigenvalues of 𝐺𝑇+𝑃+0 𝐺+ − 𝑃+𝑁 and𝐺𝑇−𝑃−𝑁−1𝐺− − 𝑃−−1 (cf. (C1) in Theorem 2) are𝜅1 = −exp (−𝜇 (𝑥2,0 + 𝑥1,𝑁))⋅ (exp (𝜇𝑥2,0) − exp (𝜇𝑥1,𝑁)) ,𝜅2 = −exp (−𝜇 (𝑥1,0 + 𝑥2,𝑁))⋅ (exp (𝜇𝑥1,0) − 𝑔21exp (𝜇𝑥2,𝑁)) ,
(30)

for 𝐺𝑇+𝑃+0 𝐺+ − 𝑃+𝑁, and𝜅3 = exp (𝜇𝑥1,𝑁−1) − exp (𝜇𝑥2,−1) ,𝜅4 = 𝑔22exp (𝜇𝑥2,𝑁−1) − exp (𝜇𝑥1,−1) , (31)

for 𝐺𝑇−𝑃−𝑁−1𝐺− − 𝑃−−1. If we assume that 𝜇 = 𝜇𝑒 for all 𝑒 and
insert the values for the spatial discretization 𝑥1,0 = 0, 𝑥1,𝑁 =𝑥2,0 = 1/2, 𝑥2,𝑁 = 1 on the strips [0, 1/2] and [1/2, 1], we get𝜅1 = 0,𝜅2 = −exp (−𝜇) (1 − 𝑔21exp (𝜇)) ,𝜅3 = 0,𝜅4 = 𝑔22exp (𝜇) − 1.

(32)

We remark that the determination of the eigenvalues is
dependent on the network discretization, that is, themapping
of the edges to spatial intervals. For the discretization used
here, we obtain two eigenvalues that are zero; that is, 𝜅1, 𝜅3 =0. However, these eigenvalues will not influence the stability
result since they are independent of the feedback parameters𝑔1, 𝑔2. So we have to ensure that the matrices 𝐺𝑇+𝑃+0 𝐺+ − 𝑃+𝑁
and 𝐺𝑇−𝑃−𝑁−1𝐺− − 𝑃−−1 are negative definite for the feedback
relevant eigenvalues 𝜅2, 𝜅4.We claim 𝜅2, 𝜅4 < 0 which is the
case if 𝜇 < min(ln( 1𝑔21) , ln( 1𝑔22)) . (33)
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Table 1: The number of cells on each edge is𝑁 = 1600, with Δ𝑥 =1/1600. The CFL constant is equal to one; that is, Δ𝑡/Δ𝑥 = 1.𝑔1 and 𝑔2 𝑉𝑇/𝑉0 𝜇 ]
0.1 1.00𝐸 − 24 4.61𝐸 + 00 4.60𝐸 + 00
0.25 3.55𝐸 − 15 2.77𝐸 + 00 2.77𝐸 + 00
0.5 5.96𝐸 − 08 1.39𝐸 + 00 1.39𝐸 + 00
0.75 1.00𝐸 − 03 5.75𝐸 − 01 5.75𝐸 − 01
0.9 7.98𝐸 − 02 2.10𝐸 − 01 2.10𝐸 − 01
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Figure 2: Cascade network with 𝑛 layers and six controls 𝑢±𝑠 , 𝑠 =1, 2, 3.
Since𝜇 > 0 it should also hold that 0 < 𝑔21 < 1 and 0 < 𝑔22 < 1.

For the numerical computations we set as initial values𝜉+𝑒 (0, 𝑥) = −1/2, 𝜉−𝑒 (0, 𝑥) = 1/2. We will vary the values for𝑔1 and 𝑔2 and expect a rapidly dropping discrete Lyapunov
function 𝑉𝑘 (14) for small 𝑔1 and 𝑔2 and vice versa. This
behavior can be observed in Table 1. Since the CFL constant
is equal to one and also the grid size is very small, that is,Δ𝑥 = 1/1600, the decay rate ] converges to 𝜇 for |𝜆𝑒| = 1 due
to (19).

Example 6. As a more complex network, we consider the
cascade network in Figure 2 for a different number of layers𝑛. Each layer consists of seven edges and six nodes.The nodes
are arranged such that three in a row are facing each other. A
node is then connected to its opponent in the next row and
the direct neighbor of the opponent. The number of edges is|E| = 7𝑛.The network has controls (inputs) 𝑢±𝑠 at the outward
nodes for 𝑠 ∈ {1, 2, 3}.

By numbering the edges from left to right and from top
to bottom, we have𝑢+1 = 𝑔12 (𝜉+|E|−6 + 𝜉+|E|−5 + 𝜉+|E|−4 + 𝜉+|E|−3 + 𝜉+|E|−2+ 𝜉+|E|−1 + 𝜉+|E|) ,𝑢+2 = 𝑔13 (𝜉+|E|−6 + 𝜉+|E|−5 + 𝜉+|E|−4 + 𝜉+|E|−3 + 𝜉+|E|−2+ 𝜉+|E|−1 + 𝜉+|E|) ,𝑢+3 = 𝑔12 (𝜉+|E|−6 + 𝜉+|E|−5 + 𝜉+|E|−4 + 𝜉+|E|−3 + 𝜉+|E|−2+ 𝜉+|E|−1 + 𝜉+|E|) ,

𝑢−1 = 𝑔22 (𝜉−1 + 𝜉−2 + 𝜉−3 + 𝜉−4 + 𝜉−5 + 𝜉−6 + 𝜉−7 ) ,𝑢−2 = 𝑔23 (𝜉−1 + 𝜉−2 + 𝜉−3 + 𝜉−4 + 𝜉−5 + 𝜉−6 + 𝜉−7 ) ,𝑢−3 = 𝑔22 (𝜉−1 + 𝜉−2 + 𝜉−3 + 𝜉−4 + 𝜉−5 + 𝜉−6 + 𝜉−7 ) .
(34)

The matrices describing the network with 𝑛 layers have the
following form:

𝐺+ =( 0 ⋅ ⋅ ⋅ 0 𝐺1𝑀 d 0... d d
...0 ⋅ ⋅ ⋅ 𝑀 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

,

𝐺− =((
0 𝑀𝑇 ⋅ ⋅ ⋅ 0... d d

...0 d 𝑀𝑇𝐺2 0 ⋅ ⋅ ⋅ 0 )
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

(35)

with 𝜄 = 1, 2
𝐺𝜄 =(𝑔𝜄2 𝑔𝜄2 𝑔𝜄3 𝑔𝜄3 𝑔𝜄3 𝑔𝜄2 𝑔𝜄2... ... ... ... ... ... ...𝑔𝜄2 𝑔𝜄2 𝑔𝜄3 𝑔𝜄3 𝑔𝜄3 𝑔𝜄2 𝑔𝜄2)

𝑇 ,

𝑀 =
((((((((((((((
(

12 0 12 0 0 0 012 0 12 0 0 0 00 13 0 13 0 13 00 13 0 13 0 13 00 13 0 13 0 13 00 0 0 0 12 0 120 0 0 0 12 0 12

))))))))))))))
)

.
(36)

Here, 𝐺± ∈ R|E|×|E| and 𝐺1, 𝐺2,𝑀 ∈ R7×7. We set 𝜇𝑒 = 𝜇 for
all edges 𝑒. The parameters are 𝐿𝑒 = 𝐶𝑒 = 1, 𝑍𝑒 = 𝑅𝑒 = 0 for
all edges. Then we have the following matrices:𝑃+0 = diag (�̃�+0 , . . . , �̃�+(1/2)𝑛) ,𝑃+𝑁 = diag (�̃�+1/2, . . . , �̃�+(1/2)(𝑛+1)) ,𝑃−−1 = diag (�̃�−0 , . . . , �̃�−(1/2)𝑛) ,𝑃−𝑁−1 = diag (�̃�−1/2, . . . , �̃�−(1/2)(𝑛+1)) ,

(37)



Discrete Dynamics in Nature and Society 7

Table 2: The number of cells on each edge is 𝑁 = 200, with Δ𝑥 =1/200. The CFL constant is equal to one; that is, Δ𝑡/Δ𝑥 = 1.𝑗 𝑉𝑇/𝑉0 𝜇 ]
1 9.13𝐸 − 23 5.39𝐸 − 01 5.38𝐸 − 01
2 1.13𝐸 − 16 3.59𝐸 − 01 3.59𝐸 − 01
4 1.90𝐸 − 09 2.16𝐸 − 01 2.16𝐸 − 01
8 2.31𝐸 − 05 1.12𝐸 − 01 1.12𝐸 − 01
16 3.50𝐸 − 03 6.34𝐸 − 02 6.34𝐸 − 02
with �̃�±𝑛 = diag (exp (∓𝜇𝑛) , . . . , exp (∓𝜇𝑛)) ∈ R

7×7. (38)

So the eigenvalues of 𝐺𝑇+𝑃+0 𝐺+ − 𝑃+𝑁 and of 𝐺𝑇−𝑃−𝑁−1𝐺− − 𝑃−−1
are determined by the eigenvalues of the matrices,𝑀𝑇�̃�+𝑛𝑀− �̃�+𝑛 ,𝑀�̃�−𝑛𝑀𝑇 − �̃�−𝑛 ,𝐺𝑇1 �̃�+0 𝐺1 − �̃�+(1/2)(𝑛+1),𝐺𝑇2 �̃�−(1/2)(𝑛+1)𝐺2 − �̃�−0 .

(39)

The eigenvalues of the first twomatrices are in {0, −exp(±𝜇𝑛)}
and the eigenvalues of the last two matrices are in{−1, −exp (−𝜇12 (𝑛 + 1)) , 283 𝑔21− exp (−𝜇12 (𝑛 + 1)) , 283 𝑔22exp(𝜇12 (𝑛 + 1))− 1} . (40)

With the same arguments used before, we restrict our
investigations again to the feedback relevant eigenvalues.That
means if the condition𝜇 < 2𝑛 + 1 ln( 328 (max (𝑔1, 𝑔2))−2) (41)

is satisfied, the assumption (C1) of Theorem 2 leads to
negative definite matrices. Since 𝜇 has to be greater than
zero, (3/28)(max(𝑔1, 𝑔2))−2 must be greater than one. So(max(𝑔1, 𝑔2))2 < 3/28.Therefore, wemight choose 𝑔1 = 𝑔2 =1/4. We expect that in our numerical experiments 𝜇 goes to
zero for increasing layers 𝑛 → ∞; compare (41) and results in
Table 2.This means, for a large number of layers, we can only
expect a linear decreasing Lyapunov function 𝑉𝑘 (cf. (14)).
We also observe in Table 2 that the decay rate (19) is equal
to 𝜇 for our choice of parameters. For initial values we use𝜉+𝑒 (0, 𝑥) = −2 and 𝜉−𝑒 (0, 𝑥) = 2 for all 𝑒.
3.2. Traffic Flow on Road Networks. As another application
weuse amodel originated from trafficdynamics, the so-called
LWR traffic network model [35–39]. From a mathematical

point of view, we assume that on each edge of the network
the car density is governed by the nonlinear conservation law𝜕𝑡𝜌𝑒 + 𝜕𝑥 (𝜌𝑒𝑉 (𝜌𝑒)) = 0 ∀𝑒, (42)

where 𝜌𝑒 describes the density of vehicles on each edge 𝑒.
Here, the velocity of a car depends on the local density,

that is, 𝑉(𝜌𝑒), and the flux function 𝑞𝑒 = 𝑓𝑒(𝜌𝑒) = 𝜌𝑒𝑉(𝜌𝑒) =𝜌𝑒(𝑉max(1 − 𝜌𝑒/𝜌max)) is a concave function, with 𝑓𝑒(0) = 0
and 𝑓𝑒(𝜌max) = 0, which is maximal at a value 𝜌𝑐. These
values separate a free-flow state, that is, 𝜌𝑒 ≤ 𝜌𝑐 from a traffic-
congestion state, that is, 𝜌𝑒 > 𝜌𝑐. If we only consider a free-
flow state, the flux function is monotonically increasing. So
we can rewrite (42) in the form of so-called kinetic wave
equations, 𝜕𝑡𝑞𝑒 + (𝜕𝑞𝑒𝑓−1𝑒 (𝑞𝑒))−1 𝜕𝑥𝑞𝑒 = 0, (43)

which is useful to define the coupling conditions. The cou-
pling conditions in a road network have then the following
componentwise form𝑞𝑒 (𝑡, 0) = ∑𝑑+𝑒𝑒𝑞𝑒 (𝑡, ℓ) + 𝑢+𝑠 (𝑡) ,𝑞𝑒 (𝑡, ℓ) = ∑𝑑−𝑒𝑒𝑞𝑒 (𝑡, 0) + 𝑢−𝑠 (𝑡) , (44)

with distribution rates 𝑑+𝑒𝑒 and 𝑑−𝑒𝑒 and some additional
input and output, either inflows 𝑢+𝑠 (𝑡) from outside ramps
or outflows 𝑢−𝑠 (𝑡) from exits to the outside. But since we
only consider a free-flow state, we do not need to couple
back-traveling solutions and we can simplify the coupling
conditions to 𝑞𝑒 (𝑡, 0) = ∑𝑑𝑒𝑞𝑒𝑒 (𝑡, ℓ) + 𝑢𝑠 (𝑡) , (45)

with distribution rates 𝑑𝑒𝑒 and inflows 𝑢𝑠(𝑡). Note, it has to
hold that ∑𝑒 𝑑𝑒𝑒 = 1, in the sense of flux conservation. So
considering a networkG = (V,E) and the additional vector
notation𝐷 = matrix with entries 𝑑𝑒𝑒,𝑢 = (𝑢1, 𝑢2, . . . , 𝑢|E|)𝑇 ,𝑞 = (𝑞1, . . . , 𝑞|E|)𝑇 ,𝐹 (𝑞) = diag ((𝜕𝑞1𝑓−11 (𝑞1))−1 , (𝜕𝑞2𝑓−12 (𝑞2))−1 , . . . ,(𝜕𝑞|E|𝑓−1|E| (𝑞|E|))−1) ,

(46)

we get the whole LWR-networked system𝜕𝑡𝑞 + 𝐹 (𝑞) 𝜕𝑥𝑞 = 0,𝑞 (𝑡, 0) = 𝐷𝑞 (𝑡, ℓ) + 𝑢 (𝑡) ,𝑞 (0, 𝑥) = 𝑞0 (𝑥) . (47)
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Figure 3: Road network with |E| = 5 edges and two controls 𝑢1, 𝑢2.
For a given state 𝜌𝑒 of (42), which is perturbed with a

perturbation 𝑑𝜌𝑒 at some point in time and by linearization
of the flux function 𝑓𝑒, we can rewrite the LWR-model (42)
as a conservation law of the perturbation 𝑑𝜌𝑒 as follows:𝜕𝑡 (𝜌𝑒 + 𝑑𝜌𝑒) + 𝜕𝑥 (𝑓 (𝜌𝑒 + 𝑑𝜌𝑒)) = 0. (48)

A short calculation using (42) leads to𝜕𝑡𝑑𝜌𝑒 + 𝑓󸀠 (𝜌𝑒) 𝜕𝑥𝑑𝜌𝑒 + 𝑓󸀠󸀠 (𝜌𝑒) 𝜕𝑥𝜌𝑒𝑑𝜌𝑒 = 0. (49)

Equation (49) will be now analyzed and associated with
the stabilization framework introduced before.

3.2.1. Numerical Results. We consider the LWR-model on the
network in Figure 3. Here, 𝑢1 is just the inflow and 𝑢2 is a
control input. Our goal is to analyze how we can control the
inflow, such that small perturbations will vanish after some
time.

As shown in the previous example, we can rewrite the
model (42) in the form of kinetic wave equations,𝜕𝑡𝑞𝑒 + (𝜕𝑞𝑒𝑓−1𝑒 (𝑞𝑒))−1 𝜕𝑥𝑞𝑒 = 0, (50)

and couple the resulting conservation law as follows:𝑞1 (𝑡, 0) = 𝑢1 (𝑡) ,𝑞2 (𝑡, 0) = 𝑑12𝑞1 (𝑡, ℓ) ,𝑞3 (𝑡, 0) = 𝑑23𝑞2 (𝑡, ℓ) + 𝑢2 (𝑡) ,𝑞4 (𝑡, 0) = (1 − 𝑑23) 𝑞2 (𝑡, ℓ) + 𝑢2 (𝑡) ,𝑞5 (𝑡, 0) = (1 − 𝑑12) 𝑞1 (𝑡, ℓ) .
(51)

For given inputs𝑢1 and𝑢2, there also exists a free-flow steady-
state (𝑞1, 𝑞2, . . . , 𝑞5). We can then define a feedback control
law, such as 𝑢1 (𝑡) = 𝑢1,𝑢2 (t) = 𝑢2 + 𝑔1𝜉3 (𝑡, ℓ) (52)

with 𝜉𝑒 = 𝑞𝑒 − 𝑞𝑒. The goal is to design a feedback law to
ensure that small perturbations of the initial value condition
are damped. For this purpose we analyze (49). To fulfill the
assumption (C2) of Theorem 2, we have to ensure that

(Δ𝑡 (𝑓󸀠󸀠 (𝜌𝑒) 𝜕𝑥𝜌𝑒)2 − 2𝑓󸀠󸀠 (𝜌𝑒) 𝜕𝑥𝜌𝑒) < 0. (53)

Since𝑓󸀠󸀠(𝜌𝑒) is a negative constant for concave flux functions,
it follows that 𝜕𝑥𝜌𝑒 has to be less than or equal to zero. For
our numerical simulations, we use the flux function 𝑓(𝜌𝑒) =𝜌𝑒(1 − 𝜌𝑒); that is, 𝑉max = 1 and 𝜌max = 1 for all edges. Hence,4Δ𝑡 (𝜕𝑥𝜌𝑒)2 + 4𝜕𝑥𝜌𝑒 ≤ 0, (54)

if −1/Δ𝑡 < 𝜕𝑥𝜌𝑒 < 0.
By linearizing the coupling conditions above, we get

𝑓󸀠1 (𝜌1 (𝑡, 0)) 𝑑𝜌1 (𝑡, 0) = 0,𝑓󸀠2 (𝜌2 (𝑡, 0)) 𝑑𝜌2 (𝑡, 0) = 𝑑12𝑓󸀠1 (𝜌1 (𝑡, ℓ)) 𝑑𝜌1 (𝑡, ℓ) ,𝑓󸀠3 (𝜌3 (𝑡, 0)) 𝑑𝜌3 (𝑡, 0)= 𝑑23𝑓󸀠2 (𝜌2 (𝑡, ℓ)) 𝑑𝜌2 (𝑡, ℓ)+ 𝑔1𝑓󸀠3 (𝜌3 (𝑡, ℓ)) 𝑑𝜌3 (𝑡, ℓ) ,𝑓󸀠4 (𝜌4 (𝑡, 0)) 𝑑𝜌4 (𝑡, 0)= (1 − 𝑑23) 𝑓󸀠2 (𝜌2 (𝑡, ℓ)) 𝑑𝜌2 (𝑡, ℓ)+ 𝑔1𝑓󸀠3 (𝜌3 (𝑡, ℓ)) 𝑑𝜌3 (𝑡, ℓ) ,𝑓󸀠5 (𝜌5 (𝑡, 0)) 𝑑𝜌5 (𝑡, 0)= (1 − 𝑑12) 𝑓󸀠1 (𝜌1 (𝑡, ℓ)) 𝑑𝜌1 (𝑡, ℓ) .

(55)
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Figure 4: (a)The decay of the initial perturbations over time at the end of edge 3 and edge 4 in log-scale. (b)The evolution of the perturbation
in time and space.

We set 𝑑12 = 0.8 and 𝑑23 = 0.5. For the initial values we
choose 𝑞1 (0, 𝑥) = 0.2,𝑞2 (0, 𝑥) = 0.16,𝑞3 (0, 𝑥) = 0.08 ⋅ (1 − 𝑥) ,𝑞4 (0, 𝑥) = 0.08 ⋅ (1 − 𝑥) ,𝑞5 (0, 𝑥) = 0.04 ⋅ (1 − 𝑥) .

(56)

We can now compute the matrix

𝐺 =(((((
(

0 0 0 0 00.6 0 0 0 00 0.36 0.6 ⋅ 𝑔1 0 00 0.36 0.6 ⋅ 𝑔1 0 00.1 0 0 0 0
)))))
)

. (57)

We also set 𝜇𝑒 = 𝜇 = 0.5 and ℓ = 1 for all edges 𝑒. Then, the
matrices 𝑃0 and 𝑃𝑁 are𝑃0 = diag (1, exp (−𝜇) , exp (−2𝜇) , exp (−2𝜇) ,

exp (−𝜇)) ,

𝑃𝑁 = diag (exp (−𝜇) , exp (−2𝜇) , exp (−3𝜇) , exp (−3𝜇) ,
exp (−2𝜇)) .

(58)

So with 𝑔1 = 3/4 the matrix 𝐺𝑇𝑃0𝐺 − 𝑃𝑁 is negative definite.
For the simulation we set 𝑢1 = 0.2, 𝑢2 = 0, and Δ𝑥 = 0.01.
Also the perturbation 𝑑𝜌𝑒 is set to zero for 𝑒 ∈ {1, 2, 4, 5}
and 𝑑𝜌3(0, 𝑥) = |sin(2𝜋𝑥)|/5. The results of the computation
are shown in Figures 4 and 5. One can observe that the
perturbation is damped to zero, which illustrates the proven
properties.

4. Conclusion

Wehave introduced a feedback stabilization result for general
network topologies and applied it to the telegrapher’s equa-
tion and the LWR traffic flow model. For the telegrapher’s
equation we have used the boundary value coupling to
set up the feedback stabilization in the case of interlinked
networks. As a further example we have considered a scalar
conservation law, namely, the LWR-model.We have seen that
the proposed stabilization framework can be also used to
dampen perturbations along edges to reach a desired steady-
state.
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