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POLARIS: Probabilistic and Ontological
Activity Recognition in Smart-homes

Gabriele Civitarese, Timo Sztyler, Daniele Riboni, Claudio Bettini, Heiner Stuckenschmidt

Abstract—Recognition of activities of daily living (ADLs) is an enabling technology for several ubiquitous computing applications. Most activity
recognition systems rely on supervised learning to extract activity models from labeled datasets. A problem with that approach is the
acquisition of comprehensive activity datasets, which is an expensive task. The problem is particularly challenging when focusing on complex
ADLs characterized by large variability of execution. Moreover, several activity recognition systems are limited to offline recognition, while
many applications claim for online activity recognition. In this paper, we propose POLARIS, a framework for unsupervised activity recognition.
POLARIS can recognize complex ADLs exploiting the semantics of activities, context data, and sensors. Through ontological reasoning, our
algorithm derives semantic correlations among activities and sensor events. By matching observed events with semantic correlations, a
statistical reasoner formulates initial hypotheses about the occurred activities. Those hypotheses are refined through probabilistic reasoning,
exploiting semantic constraints derived from the ontology. Our system supports online recognition, thanks to a novel segmentation algorithm.
Extensive experiments with real-world datasets show that the accuracy of our unsupervised method is comparable to the one of supervised
approaches. Moreover, the online version of our system achieves essentially the same accuracy of the offline version.

Index Terms—Ontological reasoning, Probabilistic reasoning, Online/Offline Activity recognition, Unsupervised classification, Pervasive
computing
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1 Introduction

The rapid growing of the population age in industrialized
societies calls for advanced tools to continuously monitor the

activities of elderly people at home. The goals of those tools are
to support active and healthy ageing, and to early detect possible
health issues. Recent advancements in sensor miniaturization and
wireless communications have paved the way to unobtrusive
activity recognition systems. Those systems can continuously
monitor activities of daily living (ADLs) based on low-level
behaviors (e.g., moving to the kitchen or opening a drawer) and
artificial intelligence methods. Unfortunately, while those systems
are effective in controlled environments, their actual effectiveness
out of the lab is still limited [1] due to different shortcomings of
existing approaches.

Currently, most activity recognition systems rely on supervised
learning applied to datasets of activities and sensor data [2],
[3]. Supervised learning proves to be effective in recognizing
activities characterized by specific postures or motions, such as
physical activities. However, its applicability to complex ADLs
(e.g., cooking, cleaning, and dressing) is problematic. On the
one side, the way in which individuals perform ADLs strongly
depends on current context conditions. Hence, large datasets of
ADLs must be acquired to capture most execution patterns in
different situations. On the other side, activity execution patterns
are strongly coupled to the individual’s characteristics and home
environment, and the portability of activity datasets is an open
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issue [4]. Therefore, ideally one extensive ADLs dataset should be
acquired from each monitored individual. Unfortunately, acquiring
ADLs datasets is expensive in terms of annotation costs [5], [6].
Besides, activity annotation by an external observer, by means of
cameras or direct observation, violates the user’s privacy.

To avoid the burden of dataset acquisition, other works rely
on knowledge-based activity models, manually specified through
logic languages and ontologies. Those models are matched with
acquired sensor data to recognize the activities [7]. A major
shortcoming of that approach is the rigidity of specifications.
For instance, complex ADLs are often specified through temporal
sequences of simpler actions [8]. Nevertheless, it is unfeasible
to enumerate all the possible sequences of actions describing a
complex ADL.

Moreover, several ambient intelligence applications call for
online activity recognition systems; i.e., systems that can recog-
nize the current activity in nearly real-time [9]. For instance, a
system to detect dangerous behaviors of the elderly should report
the potential danger as it happens, since a delay could put the
elderly’s safety at risk. Unfortunately, several ADL recognition
systems are limited to offline recognition, and the accuracy of
real-time ADL recognition systems is generally lower than those
of offline ones [10].

In this work, we propose a novel framework for Proba-
bilistic and OntoLogical Activity RecognItion in Smart-homes
(POLARIS) to overcome the main limitations of existing ADL
recognition systems. Our method is unsupervised: by reasoning
with an OWL 2 ontology [11] that models activities and smart
home infrastructure, we mine probabilistic semantic correlations
among sensor events and activities. We translate our ontological
model into a Markov Logic Network (MLN) [12], and we per-
form probabilistic and knowledge-based reasoning for segmenting
and recognizing the activities. With respect to other reasoning
frameworks, our MLN-based solution has the following advan-
tages: (i) it supports probabilistic reasoning through soft rules,
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(ii) it supports the definition of deterministic ontological axioms
through hard rules, (iii) thanks to an extension of MLN with
numerical constraints, the MLN reasoning framework that we
adopt (MLNNC) supports temporal reasoning, and (iv) MLNNC is
supported by an optimized reasoner. The use of a probabilistic
logic is also motivated by the need to deal with noisy sensor
data. Moreover, our MLN model is carefully crafted to support
recognition of interleaved activities.

An important feature of POLARIS is the ability to support both
online and offline ADL recognition, in order to cope with different
application requirements. Indeed, thanks to the online sensor data
segmentation algorithm of POLARIS, applications having real-
time requirements can trade a small amount of accuracy for real-
time recognition capabilities. On the contrary, other applications
(e.g., systems for long-term behavior monitoring) can exploit the
offline version of our framework.

We performed extensive experiments with real-world datasets
of ADLs performed by twenty-two individuals in two differ-
ent smart-home environments. Overall, the results showed that,
even using a smaller number of sensors, the performance of
our unsupervised method is comparable to the one of state-of-
the-art supervised algorithms. Compared to other unsupervised
approaches, experiments have shown that our segmentation al-
gorithm achieves higher recognition rates than those achieved by
a recent ontology-based method. Moreover, results indicate that
our ontological reasoning technique is more effective than other
unsupervised methods in mining semantic correlations. Indeed,
our ontology encodes some important relationships between home
infrastructure and activities that are hardly captured by fully
automatic methods such as those based on Web mining. We
have also performed experiments using Hidden Markov Model
(HMM) as the probabilistic reasoning framework instead of MLN.
Our MLN reasoner outperformed the HMM one, since the MLN
model is capable of capturing complex semantic relationships and
temporal aspects, while HMM only captures simple relationships.

A preliminary version of this work was presented in [13]. In
this work, we extend our preliminary work with support for online
activity recognition, thanks to a novel unsupervised segmentation
algorithm. This extension provides support for time-critical appli-
cations, which are common in the healthcare domain [9]. We also
conduct novel experiments showing that the accuracy achieved
by the online algorithm is very close to the one of the offline
algorithm.

The paper is structured as follows. We present related work and
preliminary notions in Sections 2 and 3, respectively. In Section 4,
we illustrate our activity model and the system overview. Section 5
presents ontological reasoning in POLARIS. In Section 6, we
explain how we identify activity instance candidates, while in
Section 7 we illustrate probabilistic reasoning in our framework.
Experimental results are reported in Section 8. We discuss results
and limitations in Section 9. Conclusions are reported in Sec-
tion 10.

2 Related work
Several activity recognition systems rely on cameras and com-
puter vision software [14]. Unfortunately, camera-based systems
can raise serious privacy issues in smart-homes. Hence, in our
work, we pursue sensor-based activity recognition. Methods for
sensor-based activity recognition can be broadly classified in two
categories: learning-based and specification-based methods [10].

Learning-based methods rely on a training set of sensor data,
labeled with executed activities, and supervised learning algo-
rithms to build the activities’ model. Physical activity recognition
systems are mainly based on data acquired from body-worn ac-
celerometers [2], [15]. The same approach is extended with the use
of environmental data acquired from other sensors (e.g., micro-
phones) to recognize ADLs [16]. Observations regarding the user’s
surrounding environment (in particular, objects’ use), possibly
coupled with body-worn sensor data, are the basis of other activity
recognition systems [17]. However, since training data is hard to
acquire in realistic environments, systems relying on supervised
learning are prone to serious scalability issues the more activities
and the more context data are considered. Moreover, datasets of
complex ADLs are strongly coupled to the environment in which
they are acquired (i.e., the home environment and the sensors
setup), and to the mode of execution of the specific individual.
Hence, even if sophisticated methods for transfer learning have
been proposed [18], the portability of activity datasets in different
environments is an open issue [4]. In this work, we propose a
method to recognize complex ADLs through semantic reasoning,
even without the use of training data. However, when training
data is available, we can exploit it to mine low-level dependencies
between sensor events and performed activities. Those relation-
ships are used by our probabilistic ontological reasoner to identify
occurred activities.

Other machine learning approaches have been proposed to
reduce the burden of dataset acquisition. Reinforcement learn-
ing [19] is a goal-oriented learning framework based on the
concept of rewards assigned to an agent as a consequence of the
actions it takes in the environment. It is not directly applicable to
our case, since we aim at recognizing activities only by observing
sensor data; i.e., we do not assume any feedback from the user
or environment. To the best of our knowledge, it was never used
for activity recognition. One-shot learning [20] is mainly used
in computer vision and natural language understanding. It was
also applied to gesture and scene recognition based on images
and videos. To the best of our knowledge, it was never used
for activity recognition based on sensor data. We believe that,
due to the high variability of activity execution across different
subjects and environments, one-shot learning is not a promising
approach for activity recognition, at least when complex activities
are considered as we do in this work.

Unsupervised learning algorithms build activity models rely-
ing on a training set of unlabeled sensor data. Some methods
analyze textual descriptions of activities mined from the Web in
order to obtain correlations among used objects and activities [21].
More recently, that approach has been extended exploiting visual
cues extracted from the Web, such as images and videos [22].
In our work, we mine not only correlations, but also necessary
conditions about sensor events that must be observed during the
activity execution. Those conditions describe specific constraints
derived from common sense, and are hardly captured by data min-
ing techniques. Moreover, we derive correlations and necessary
conditions considering the actual environment where activities are
executed, while existing methods based on Web mining can only
derive generic correlations.

Specification-based methods rely on knowledge-based defini-
tions of the characteristics and semantics of complex activities.
These are matched with available sensor data to recognize the
current activity. Those definitions are usually expressed through
logical axioms, rules, or description logics [23]. Ontological rea-
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soning has also been proposed to perform dynamic segmentation
of sensor data [24], [25] or to refine the output of supervised
learning methods [26]. Further, probabilistic description logics
have been used to recognize ADLs considering the variability
of activity execution [27]. However, those works rely on rigid
assumptions about the simpler constituents of activities. Hence,
while the specification-based approach is effective for activities
characterized by a few typical execution patterns, it is hardly
scalable to the comprehensive specification of complex ADLs in
different contexts. On the contrary, in this work we rely on general
semantic relations among activities and smart-home infrastructure,
which are fine-tuned to the current context.

In the literature, many hybrid approaches which combine data-
driven and knowledge-based reasoning have been proposed to
overcome many limitations of both worlds [17], [26], [28]. While
we consider our method as hybrid (i.e., we combine semantic and
probabilistic reasoning), differently from state-of-the-art hybrid
approaches it does not have any data-driven component. Indeed,
the classification is completely independent from data and it relies
on semantic information derived from the ontology

Several works considered the challenging issue of segmenting
temporal sequences of sensor data to accurately recognize the
boundaries (i.e., start- and end-time) of activity instances in real
time. However, very few works propose online and unsupervised
segmentation methods. Most segmentation approaches do not
operate in real-time [21], or they require a training set [29], [30].
Other ones operate in real-time, but they rely on rigid ontological
and rule-based definitions of activities [31]. An unsupervised
method that is close to our approach has been proposed by Ye
et al. [28], where ontologies are used to derive semantic simi-
larity between sensor events. This similarity is used to segment
sensor data, obtaining sequential activities’ patterns used to train a
clustering model. With respect to that work, our method is totally
independent from the data, it deals with interleaved activities, and
it considers context information to segment sensor data.

3 Preliminaries
3.1 Description logics and formal ontologies

In computer science, description logics (DLs) [32] have emerged
as the state-of-the-art formalism to represent ontologies. They
enable the formal definition of concepts of a domain of interest,
their properties, and the relationships among concepts. In this
work, we use an ontology to formally define the semantics of
activities, sensor events, and context data. Moreover, DLs support
ontological reasoning, which allows to verify the consistency of
the knowledge base, and to infer additional information from
existing facts. The formalism of choice is typically OWL 2 [11]. A
knowledge engineer can model the domain of interest by means of
classes, instances, properties of instances, and relationships among
instances. Several operators can be used to declare complex defini-
tions based on simpler ones, including operators for conjunction,
disjunction, negation, and universal and existential quantification.
For instance, the activity PreparingHotMeal can be defined based
on the definitions of PreparingMeal and PreparingColdMeal:

PreparingHotMeal ≡ PreparingMealu
¬PreparingColdMeal

In this work, we use OWL 2 DL; i.e., a subset of OWL 2 having
favorable computational properties. In particular, we exploit the
following operators:

1) Qualified cardinality restriction restricts the class member-
ship to those instances that are in a given relation with
a minimum or maximum number of other instances of a
given class. For instance, the following axiom states that
PreparingHotMeal requires the use of at least one instrument
to cook food:

PreparingHotMeal v Activityu
≥ 1 requiresUsageOf.CookingInstrument

2) Composition of properties. OWL 2 supports a restricted form
of property composition ◦. For instance, the following axiom
states that if a person is in a given apartment, and she is
executing a given activity, then that activity is executed in
that apartment:

executesAct− ◦ isInLocation v actIsExecutedInLocation

Note that executesAct− denotes the inverse of executesAct.

Formally, a DL knowledge base is composed by a pair 〈T ,A〉.
The TBox T constitutes the terminological part of the knowledge
base. The TBox is composed of a set of axioms C v D or P v R
(inclusions) and C ≡ D or P ≡ R (equality), where C and D are
classes, and P and R are object properties. An axiom C v D is
satisfied by an interpretation I when CI ⊆ DI. An interpretation
I satisfies a TBox T when I satisfies all the axioms of T .

The ABox A is the assertional part of the knowledge base.
The ABox is composed of a set of axioms of the form x : C and
〈x, y〉 : R, where x and y are instances, C is a class in T , and R
is an object property in T . For instance, “mary : ElderlyPerson”
denotes that Mary is an elderly person and “〈 mary, apartment23 〉
: livesIn” represents that Mary lives in Apartment23. Axioms x : C
and 〈x, y〉 : P are satisfied by an interpretation I when xI ∈ CI

and 〈xI, yI〉 ∈ PI, respectively. An interpretation I satisfies an
ABoxA when I satisfies all the axioms ofA. An interpretation I
that satisfies both the TBox T and the ABox A is called a model
of 〈T ,A〉. DLs support several reasoning tasks. In particular, we
rely on the following ones:
• Satisfiability: a class C is satisfiable with respect to a TBox T

if there exists a model I of 〈T ,A〉 such that CI is non empty.
We execute this reasoning task to check the consistency of
our ontological model.

• Property fillers retrieval: given an object property op in T
and an instance inst in A, retrieving every instance inst j in
A that is related to inst with respect to op; i.e., such that 〈
inst, inst j 〉 : op belongs toA. We execute this reasoning task
to derive semantic correlations among activities and events.

3.2 Markov Logic with numerical constraints

The main idea of Markov Logic network is to allow rigid first-
order-logic formulae to be “softened”. The validity of a soft
formula is evaluated according to the probability of being true with
respect to a set of axioms describing reality. Each soft formula is
associated to a weight that represents the confidence on the validity
of the formula. The main task of MLN reasoning is to determine
the most probable set of axioms representing reality that can be
inferred based on the defined formulae and a set of observations
(facts). Intuitively, formulae with higher weights will have higher
influence in deriving these axioms.

More formally, a Markov Logic Network (MLN)M is a finite
set of pairs (Fi,wi), 1 ≤ i ≤ n, where each Fi is an axiom in
function-free first-order logic and wi ∈ R [12]. Together with a
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finite set of constants C = {c1, ..., cn} it defines the ground MLN
MC, i.e., the MLN in which axioms do not contain any free vari-
ables. This comprises one binary variable for each grounding of
Fi with weight wi. Hence, a MLN defines a log-linear probability
distribution over Herbrand interpretations

P(x) =
1
Z

exp

∑
i

wini(x)

 (1)

where ni(x) is the number of satisfied groundings of Fi in the
possible world x and Z is a normalization constant. Consequently,
the weight wi associated to an axiom Fi reflects the confidence
about the truth value of Fi: the larger wi, the larger the difference
in log probability between a possible world that satisfies Fi and
one that does not.

In a previous work, we extended MLN with numerical con-
straints resulting in a formalism denoted MLNNC [33]. In this
paper, we use this extension to reason on the temporal domain of
activities and sensor events. The constraints are predicates of the
form θ ./ ψ, where θ and ψ denote variables, numerical constants,
or algebraic expressions (that might contain elementary operators).
In this context, the binary operator ./ returns a truth value under a
particular grounding.
Definition 1 (MLNNC). A numerical constraint NC is composed of

numerical constants (e.g., elements of N), variables, elemen-
tary operators or functions (+,∗,−,÷,%,

√
), standard relations

(>, <,=,,,≥,≤), and Boolean operators (∧,∨). An MLNNC is a
set of pairs (FCi,wi) where FCi is a formula in first-order logic
that may contain a NC and wi is a real number representing
the weight of FCi.

Example 1. Using MLNNC enables to represent the axiom: the
events “turning on the oven” and “opening the fridge” cannot
belong to the same instance of meal preparation if their
temporal distance is more than two hours:

∀ se1, se2, ai1, ai2, t1, t2 :
event(se1,

′turnOnOven′, t1) ∧
event(se2,

′openFridge′, t2) ∧
occursIn(se1, ai1) ∧ occursIn(se2, ai2) ∧
NC(t1, t2)⇒ ai1 , ai2
where NC(t1, t2) = |t1 − t2| > 120

Maximum a posteriori (MAP) inference is the task of finding the
most probable world given some observations also referred to as
evidence. Given the observed variables E = e, the MAP problem
aims to find an assignment of all non-evidence (hidden) variables
X = x such that an interpretation I is a MAP state if and only if
I = argmax

x
P(X = x | E = e). Based on the MLN of sensor events

and semantic axioms, we apply MAP inference to derive the most
probable world; i.e., the most probable occurred activities. Note
that Equation 1 allows us to reason with both soft and hard axioms.
The former are probabilistic. The latter are deterministic: their
weight is orders of magnitude larger than the one of probabilistic
axioms; hence, they are necessarily satisfied in the most probable
world.

4 Model and system overview
We assume a smart-home instrumented with sensors to detect
interactions with items and furniture, context conditions (e.g.,
temperature), and presence in certain locations. We denote by
activity class an abstract activity (e.g., cooking and cleaning),

...
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Fig. 1. System architecture of Online POLARIS.

and by activity instance the actual occurrence of an activity of
a given class during a certain time period. For instance, during the
execution of activity instance ai1 (preparing dinner), the subject
executes the operations op1 (opening the silverware drawer) and
op2 (turning on the microwave oven). Supposing that sensors
are available to detect these operations, op1 and op2 generate
two sensor events se1 (of type et1) and se2 (of type et2), whose
timestamp corresponds to the time of the respective operation.

Based on the observation of a set of timestamped sensor
events, the goal of the activity recognition system is to reconstruct
which activity instances generated those events. We achieve this
goal by assigning each event sei to the activity instance that
most probably generated it. This approach allows us to recognize
interleaved activities, (e.g., the subject may temporarily interrupts
the meal to take medicines). Depending on the application domain,
POLARIS can perform activity recognition either in offline or
online mode. Recognizing activities in an offline fashion means to
analyze in batch mode a complete stream of sensor data acquired
during a predetermined time period. For example, consider a
system for cognitive health assessment of the elderly. That system
should monitor the individual’s behavior on the long-term. Hence,
at the end of each day, the offline activity recognition algorithm
may process all the sensor data acquired during that day. Offline
ADL recognition is often preferred as it goes along with higher
accuracy. However, other real-time monitoring applications, such
as services that require intervention (e.g., reminders, emergency
monitoring), require online recognition. That task is typically
harder, since the recognition system must segment the continuous
stream of sensor events on-the-fly in order to infer the most likely
activity in nearly real-time and detect activity changes as they
happen. In the following, we outline our overall framework and
we explain its online version. The offline version of POLARIS is
illustrated in [13].

The online mode of POLARIS relies on two specific layers,
namely online segmentation and statistical analysis of segments
(see Figure 1). The online segmentation method is in charge of
segmenting the stream of sensor events in real-time. In particular,
for each event in the stream, our segmentation method considers
probabilistic and semantic conditions to decide whether to finalize
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Fig. 2. Excerpt of our ontology. The dashed lines represent a subClassOf
relation where the upper is the parent of the lower class. In addition, the
individual classes have relations that describe dependencies.

a segment and initiate a new one. We call that operation a split
decision. Our method aims at minimizing the number of generated
segments, while ensuring that, with a high probability, the events
belonging to a specific segment are labeled with the same activity
class. More formally, given a temporal sequence of sensor events
〈ev1, ev2, . . . , evn, . . .〉, the role of the segmentation algorithm is to
derive a set of segments:

〈Segment(ev1, . . . , evl), . . . , Segment(evm, . . . , evn), . . .〉,

where each segment Segment(ev j, ev j+1, . . . , evk) represents a set
of consecutive and ordered sensor events from ev j to evk. Seg-
ments do not overlap and each sensor event is assigned to exactly
one segment. As soon as a segment is finalized, it is immediately
forwarded to the statistical analysis of segments layer, which
analyzes the last k generated segments to identify activity instance
candidates. Finally, those candidates are refined by our MLNNC

reasoner, thus inferring the most likely activities performed by the
inhabitant.

5 Ontological reasoning
We adopt ontological reasoning to mine semantic correlations
among event types and activity classes. Those correlations are
considered by the MLNNC knowledge base in order to recog-
nize activities. Further, we also mine the ontology to derive
hard axioms used to enrich our MLNNC model with background
knowledge about the activities’ semantics. In the following, we
introduce our ontological model1 and subsequently we explain
the above mentioned reasoning methods. For that purpose, we
introduce a simple running example to illustrate our approach (see
Example 2).
Example 2. Suppose to monitor three activities in a smart-home:

preparing hot meal, preparing cold meal, and preparing tea.
The home contains: one silverware drawer, one stove, and
one freezer, each equipped with a sensor to detect its usage.
No training set of activities is available. How can we exploit
semantic reasoning to recognize the activities?

5.1 Ontological model

We define the semantics of activities and operations in an OWL 2
ontology. In the following, we consider A = {ac1, ac2, . . . , acn} as
the set of activity classes. Further, an instance aii of an activity

1. Our ontology is publicly available:
https://sensor.informatik.uni-mannheim.de/#results2017polaris

class ac j ∈ A represents the occurrence of ac j during a given
timespan. An activity instance is associated to the operations that
were executed to perform it, where the start and end time of
instances of different activities can overlap.

Figure 2 illustrates an excerpt of our ontology, which describes
a complete home environment. In addition, it also covers axioms
for each activity class that describe dependencies and conditions.
In particular, we express necessary conditions for a set of oper-
ations to be generated by an instance of that class, according to
the activity semantics. For example, the operations generated by
an instance of preparing hot meal must include an operation using
a cooking instrument. In this context, the ontology also covers
sensor classes and corresponding operations that they detect; e.g.,
a power sensor attached to the electric stove detects the operation
turning on the stove. In turn, this operation is a subclass of using a
cooking instrument. The ontology carefully describes these kinds
of relations and, through ontological reasoning, we can derive
certain constraints. Referring Example 2: “Since the stove is the
only cooking instrument in the home, and a sensor is available
to detect the usage of the stove, then each instance of preparing
hot meal executed in the home must necessarily generate an event
from that sensor”.

In addition to activity and object correlations, we also take
time and location dependencies into account. This includes con-
straints on the duration of the activity instance and the relation
between an activity and a certain location. In the next section,
we explain how we use ontological reasoning to infer these
probabilistic dependencies among sensor event types and classes
of executed activities; we denote them as semantic correlations.

It is important to note that logics underlying formal ontologies
can be seen as a modeling language like ER is for relational
databases. Similarly to ER design, the engineer needs domain
knowledge. The deeper and wider the domain knowledge, the bet-
ter and more general the resulting domain formalization. There is
no fixed methodology for generating a perfect DL representation,
and the process cannot be made automatic. However, like for ER
design, there are some principles to help in the design process [1].

5.2 Semantic correlation reasoner

The specific objective of this reasoner is to compute the degree
of correlation among sensor events and the activities performed
in the home. As illustrated in the axioms below, in our ontology,
artifacts are organized in a hierarchy. The class Stove is a sub-
class of cooking instruments, used in the apartment to prepare
hot meal or tea, where Freezer is a Device used to prepare hot
or cold meal. SilverwareDrawer belongs to FoodPrepFurniture
and is used for the three activities. The instance {apt} represents
the current apartment. For clarity, we represent the name of
ontological instances within curly brackets.

Stove v CookingInstrumentu(
∃ usedFor.

(
(PrepHotMeal t PrepTea)u

(∃ occursIn.{apt})
))
.

Freezer v Device u
(
∃ usedFor.

(
(PrepHotMealt

PrepColdMeal) u (∃ occursIn.{apt})
))
.

SilverwareDrawer v FoodPrepFurniture.

https://sensor.informatik.uni-mannheim.de/#results2017polaris
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FoodPrepFurniture v Furnitureu(
∃ usedFor.

(
(PrepTea t PrepColdMealt

PrepHotMeal) u (∃ occursIn.{apt})
))
.

Based on the smart-home setup, we instantiate the ontology with
the sensors and artifacts in the apartment, and we specify which
activities we want to monitor.
Example 3. The activities that we want to monitor

are {ac_prep_cold_meal}, {ac_prep_hot_meal} and {ac_
prep_tea}. They are instances representing the occurrences
of PrepColdMeal, PrepHotMeal, and PrepTea, respectively.
Lines 6-8 state that at most one instance of each activity
type can be monitored at a time. Further, lines 9-11 represent
that the {apt} contains exactly one cooking instrument, one
silverware drawer, and a freezer:

{apt} = Apartment (2)
u

(
∃monitAct.({ac_prep_cold_meal})

)
(3)

u
(
∃monitAct.({ac_prep_hot_meal})

)
(4)

u
(
∃monitAct.({ac_prep_tea})

)
(5)

u (≤ 1monitAct.PrepColdMeal) (6)
u (≤ 1monitAct.PrepHotMeal) (7)

u (≤ 1monitAct.PrepTea) (8)
u (= 1(isIn)−.CookingInstrument) (9)
u (= 1(isIn)−.SilverwareDrawer) (10)

u (= 1(isIn)−.Freezer). (11)

Subsequently, we introduce an instance in the ontology for
each artifact in the apartment:

{stove} ≡ Stove u ∃ isIn.{apt}.
{freezer} ≡ Freezer u ∃ isIn.{apt}.

{silverware_drawer} ≡ SilverwareDrawer u ∃ isIn.{apt}.

We also instantiate each sensor that occurs in our apartment:

{s_stove} ≡ PowerSensor u (∃ sensesUsageOf.{stove})
u (∃ producesEvent.{et_stove}).

{s_silverware_drawer} ≡ ContactSensor
u (∃ sensesUsageOf.{silverware_drawer})

u (∃ producesEvent.{et_silverware_drawer}).

{s_freezer} ≡ ContactSensor
u (∃ sensesUsageOf.{freezer})

u (∃ producesEvent.{et_freezer}).

According to the introduced axioms, {s_stove} is an instance of
PowerSensor which senses the usage of {stove} and produces an
event of type {et_stove}. Similarly, the last two axioms define
sensors and events for the silverware drawer and the freezer,
respectively.

We exploit the property composition operator to infer the
semantic correlations between sensor events and activity types.
In particular, we use the following axiom, which states that: “if
an event of type et is produced by a sensor that detects the usage
of an artifact possibly used for an activity of class ac, then et is a
predictive sensor event type for ac”:

producesEvent− ◦ sensesUsageOf ◦
usedFor → predictiveSensorEventFor

Then, we perform ontological reasoning to infer the fillers of
property predictiveSensorEventFor, and use them to compute
semantic correlations.

Example 4. Considering all of the introduced axioms, the OWL 2
reasoner infers that:

• {et_stove} is a predictive sensor event type for {ac_
prep_hot_meal} and {ac_prep_tea}.

• {et_silverware_drawer} is a predictive sensor event
type for {ac_prep_hot_meal},{ac_prep_cold_meal} and
{ac_prep_tea}.

• {et_freezer} is a predictive sensor event type for
{ac_prep_hot_meal} and {ac_prep_cold_ meal}.

We denote as predAct(et) as the set of activities for which et is
a predictive event type. We represent semantic correlations using
a prior probability matrix (PPM). The rows correspond to the
activity classes, while the columns to the sensor event types.
Hence, PPM(ac, et) stores the probability of an event of type et
being generated by an activity of class ac. Hence, given et, we have
that PPM(ac, et) is a probability distribution over all ac values:

∀ et ∈ E
∑
ac∈A

PPM(ac, et) = 1. (12)

To enforce property (12), we set the values of the prior
probability matrix PPM for each combination of event type et
and activity class ac in the following way. We consider two cases.
If et is predictive of at least one activity class, we compute et’s
correlations using the following formula:

PPM(ac, et) =

 1
|predAct(et)| if ac ∈ predAct(et)

0 otherwise

Otherwise, having no information about the associations be-
tween et and activity classes, we uniformly distribute its correla-
tion values across all possible activity classes. It is easy to verify
that in both cases property (12) is enforced. The prior probability
matrix resulting from our running example is shown in Table 1.

TABLE 1
Prior probability matrix of our running example.

{et_stove} {et_silverware_ {et_freezer}
drawer}

{ac_prep_ 0.5 0.33 0.5
hot_meal}
{ac_prep_ 0.0 0.33 0.5
cold_meal}
{ac_prep_ 0.5 0.33 0.0
tea}

The output of the semantic correlation reasoner layer (i.e.,
the PPM) is directly considered in the statistical analysis of
segments layer that in turn generates the MLNNC knowledge base.

5.3 Deriving necessary sensor observations

In contrast to the semantic correlation reasoner, which is essen-
tially used to build the MLNNC knowledge base, the following
part focuses on using hard axioms extracted from the ontology
to enrich our MLNNC model. Our ontology includes a property
requiresUsageOfArtifact, which associates artifacts in the apart-
ment with activities for which they are necessary.
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Example 5. Continuing our running example, the axiom below
defines PrepHotMeal as a subclass of PrepareMeal that
requires the usage of a cooking instrument:

PrepHotMeal v PrepareMeal u ∃requiresUsageOfArtifact.(
CookingInstrument u (∃ isIn.{apt})

)
.

Subsequently, we infer which sensor events must necessarily be
observed during the execution of an activity. The following axiom
states that: “if an event of type et is produced by a sensor that
detects the usage of an artifact required for executing an activity of
class ac, then et is a necessary sensor event type for each activity
instance of class ac”.

producesEvent− ◦ sensesUsageOf ◦
requiresUsageOf− → necessaryEventFor.

Then, we infer the fillers of property necessaryEventFor through
ontological reasoning, translate them in MLNNC axioms, and add
them, finally, to the MLNNC model.
Example 6. Given the introduced axioms, in this case the OWL

2 reasoner infers that {et_stove} is a necessary sensor event
type for {ac_prep_hot_meal}. Indeed, et_stove is produced
by usage of stove, which is the only instance of CookingIn-
strument available in the home.

6 Identifying Activity Instance Candidates
Besides semantic correlations and ontological axioms, the input
of our MLNNC probabilistic reasoner is a set of activity instance
candidates: initial hypothesis about type, start- and end-time of the
activity instances actually performed by the inhabitant. POLARIS
infers those candidates from the stream of sensor events by
using an heuristic algorithm. In the following, we describe how
we derive activity instance candidates in the online version of
POLARIS. The description of the algorithm used for the offline
mode of POLARIS can be found in [13].

First, the stream of sensor events is continuously segmented
considering several probabilistic and semantic conditions that we
call aspects. Each aspect represents an indicator that the inhabitant
possibly changed his/her current activity. These aspects aim at
generating segments which cover at most one activity instance: we
prefer to span an activity instance on multiple segments instead of
trying to build a segment that perfectly fits an activity instance,
as this would also increase the risk of including unrelated sensor
events. This also allows to handle interleaved activities.

Finally, the statistical analysis of segments algorithm ana-
lyzes the last k generated segments in order to derive activity
instance candidates by considering the semantic correlations ob-
tained from the ontology.

6.1 Online segmentation

The Online Segmentation algorithm considers five aspects: Object
interaction, Change of context, Consistency likelihood, Time leap,
and Change of location. Whenever a new sensor event evnew is
detected, all those aspects are evaluated. If at least one aspect
determines sufficient conditions to perform segmentation, the
current segment is finalized and a new one (with evnew as the first
element) is initialized. In the following, we outline the mentioned
aspects.

ASP1) For each object, POLARIS keeps track of its usage
status: in use or not in use. The usage status of each object is

automatically updated according to the events in the stream. The
Object interaction aspect finalizes a segment as soon as POLARIS
detects that the user stopped interacting with all the objects in the
home. For instance, suppose that the type of the current event
evnew is “turning off the stove”. If, at the same time, the subject
is not actively using any other instrument, the current segment is
finalized; indeed, the current activity is likely terminated. On the
other hand, if the subject is using other objects at that time (e.g.,
the oven), the segment is not finalized.

ASP2) The Change of context aspect considers our ontological
model to verify whether the new event in the stream (evnew) is
correlated with the last event of the current segment (evlast). In
this context, only sensor events related to an interaction are consid-
ered; e.g., temperature or presence sensor events are disregarded.
Formally, we define

possAct(ev(se, et, t)) = {ac ∈ A : PPM(ac, et) > 0}

as the set of possible activities for an event ev given the semantic
correlations. If possAct(evlast) ∩ possAct(evnew) = ∅, the aspect
derives that evnew cannot be labeled with the same activity class of
evlast, and thus the current segment is finalized.

ASP3) The Consistency likelihood aspect keeps track of the
probability that the current segment includes events mostly labeled
with the same activity class. Differently from ASP2, in this aspect
we consider the whole set of the segment’s events. In particular, we
consider the semantic correlation among those events and possible
activities, and we finalize the segment if the introduction of the
new event evnew determines an abrupt shift in the likelihood of the
segment, computed by the following formula:

L(S ) = max
aci∈A

∑
ev j(se,et,t)∈S PPM(aci, et)

|S |
,

where PPM(aci, et) is the semantic correlation between ac-
tivity aci and event type et. If the fluctuation of L(S ) due to
the introduction of evnew in S exceeds an experimentally chosen
threshold σ, the current segment is finalized.

ASP4) The Time leap aspect considers the time distance
between consecutive events. If no new event is observed after
the most recent event evlast according to a time threshold δ, the
current segment is finalized. The value of δ is automatically
calibrated based on the stream of sensor events. In particular,
we continuously keep track of the third quartile value q of the
temporal distances between consecutive sensor events. The value
of δ is automatically updated as 2q whenever a new segment is
finalized. Therefore, the Time leap aspect is not considered for the
very first segment.

ASP5) The Change of location aspect relies on the fact that
most ADLs are performed in a specific location. For that reason,
we finalize the segment when the individual moves from a room
to a different one.

The combination of those aspects aims to group sensor events
that likely belong to the same activity instance. However, when the
duration of an activity instance is particularly long (e.g., cooking
for an hour), using only those aspects could generate segments
which span for a long period. Since our goal is real-time activity
recognition (i.e., detecting as soon as possible the current activity),
our MLNNC is triggered every n minutes even if a segment is not
finalized. The threshold n is chosen according to the specific needs
of the application.
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6.2 Statistical analysis of segments

The goal of the statistical analysis of segments module is to
generate a set of activity instance candidates by analyzing the
k most recent segments. Initially, each segment is considered as
a candidate: we analyze the PPM for each event in the segment
to infer the most likely activity of the whole segment. Then, we
merge those candidates (and the corresponding segments) which
are temporally close and that are associated with the same activity
class. This operation allows us to consider interleaved activities.
The output is a set of activity instance candidates.

7 Probabilistic reasoning
As explained before, the method presented in Section 6.2 provides
an initial hypothesis about the class and the temporal boundaries
of activity instance candidates. The goal of probabilistic reasoning
in POLARIS is to refine those initial hypothesis exploiting sev-
eral kinds of domain knowledge expressed through our MLNNC

model. In the following, we illustrate our model and probabilistic
reasoning methods.

7.1 MLN modeling

Semantic correlations are modeled through predicates PriorProb,
Event, and Instance. The PriorProb predicate represents correla-
tions among sensor events and activities:

∗PriorProb(SensorEvent,ActivInstance,ActivClass, p)

Hence, it describes the probability p that a given sensor event
corresponds to a given activity instance of an activity class.
The probability relies on the semantic correlation between the
event type and the activity class (PPM), and also depends on the
temporal distance between the sensor event and the boundaries of
the activity instance.

Formally, given an activity instance ai of class ac with start
time tst and end time ted, and a sensor event se of type et
and timestamp t, the probability p of *PriorProb(se, ai, ac, p) is
computed by the following function:

p =

{
PPM(ac, et) if tst-MaxDelayac ≤ t ≤ ted+MaxDelayac
0 otherwise

Each sensor event is represented by an instance of the predicate
Event, which represents the identifier, its type, and its timestamp:

∗Event(SensorEvent,EventType,Timestamp)

Activity instance candidates are represented by the predicate
Instance which models the relation between the activity instance,
its start time, and end time:

∗Instance(ActivInstance, STime,ETime)

The instantiated predicates, derived from the activity instances
and the recorded sensor events, are added as facts to our MLNNC

knowledge base.

7.2 Hidden predicates and domain constraints

Beside the observed predicates, the model also comprises a set of
hidden predicates, which can be considered as our target classes:
Prediction, OccursIn, and InstanceClass. The predicate Prediction
represents the predicted assignment of a sensor event to an activity
instance of a given class:

Prediction(SensorEvent,ActivInstance,ActivClass)

In addition, the other two predicates are used to express domain
constraints about the consistency of inferred activity instances:

OccursIn(SensorEvent,ActivInstance)

InstanceClass(ActivInstance,ActivClass)

In particular, the following domain constraint states that each
sensor event occurs in exactly one activity instance:

|ai|OccursIn(se, ai) = 1,

while the following one states that each activity instance belongs
to exactly one activity type:

|ac|InstanceClass(ai, ac) = 1.

7.3 Semantic correlation rules

The relations between the observed and hidden predicates are
modeled by probabilistic axioms. As illustrated in Figure 3, the
hidden predicate Prediction is derived from PriorProb:

conf : ∗PriorProb(se, ai, ac, conf ) ⇒ Prediction(se, ai, ac).

Thus, the confidence value describes the probability that a sensor
event is assigned to an activity instance of a given class. In
turn, the remaining hidden predicates are derived from the hidden
Prediction predicate. The corresponding probabilistic axioms are
the following:

Prediction(se, ai, ac) ⇒ OccursIn(se, ai),

Prediction(se, ai, ac) ⇒ InstanceClass(ai, ac).

Note that the above rules are subject to the domain constraints
introduced before.

7.4 Knowledge-based constraints

Knowledge-based constraints enable us to express conditions
about the occurrence (or non-occurrence) of sensor events of a
given type during the occurrence of an activity instance.
Example 7. The constraint “each activity instance of type prepar-

ing hot meal must be associated to an event of type UseStove”
is logically expressed by the rule:

InstanceClass(ai, “PreparingHotMeal”) ⇒ ∃ se, t :

OccursIn(se, ai) ∧ ∗Event(se, “UseStove”, t).

Knowledge-based constraints are automatically derived from the
fillers of the necessaryEventFor OWL 2 property obtained from
ontological reasoning as already mentioned.

7.5 Temporal constraints

We model MLNNC temporal constraints regarding the duration
and the distance of events or activities. Temporal thresholds,
represented below as ∆ and ∆′, are derived from the ontology
and hence they require human knowledge-engineering effort based
on common-sense. Those thresholds could also be tuned over time
through active learning and periodic ontology revisions. Moreover,
when training data is available, the value of those thresholds
can be mined from the data. We consider two kinds of temporal
constraints:

1) Temporally close events (e.g., whose temporal distance is below
∆ seconds) likely belong to the same activity instance. We express
this constraint through the following axioms:
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Fig. 3. Probabilistic activity recognition framework. The arrows indicate the
relations and dependencies between the depicted observed and hidden
predicates.

∀ t1, t2 : (|t1 − t2| < ∆) ⇒ tClose(t1, t2)

w Event(se1, et1, t1) ∧ Event(se2, et2, t2)∧

tClose(t1, t2) ∧ OccursIn(se1, ai) ⇒ OccursIn(se2, ai)

The latter is a soft axiom whose weight w is chosen experimen-
tally.

2) Constraints on typical duration of each activity (e.g., “show-
ering cannot last more than ∆′ minutes”). We express these
constraints either through probabilistic or deterministic axioms,
according to the characteristics of the considered activity. Indeed,
the variance of the duration of certain activities (e.g., showering)
is relatively small, while it is larger for other activities (e.g.,
preparing dinner). The duration of the former is modeled with
deterministic axioms where probabilistic ones are used for the
latter. The axioms below state that an instance of “showering”
cannot last more than ∆′ minutes:

∀ t1, t2 : (|t1 − t2| < ∆′) ⇒ tclose_showering(t1, t2)

InstanceClass(ai, “Showering”) ∧ OccursIn(se1, ai)∧

OccursIn(se2, ai) ∧ Event(se1, et1, t1)∧

Event(se2, et2, t2) ⇒ tclose_showering(t1, t2)

7.6 Time-aware inference rules

Finally, as explained before, the semantics of some simple activ-
ities are naturally expressed in our ontology based on the typical
actions composing them. Hence, we apply rules that express
the relation of specific operations derived from sensor events in
context of time. Consider the following example:
Example 8. A typical pattern of operations for watering plants

consists in (1) “getting water” and (2) “moving to the plants”
shortly after. We express this activity inference pattern through
the MLNNC axioms below:

Event(se1, “water_sensor”, t1)

∧Event(se2, “plant_presence_sensor”, t2) ∧ t1 < t2
∧ tclose_waterplants(t1, t2) ⇒ ∃ ai :

InstanceClass(ai, “WaterPlants”)

∧ occursIn(se1, ai) ∧ occursIn(se2, ai).

7.7 Inference of activity classes and instance boundaries

In order to reconstruct the relations of activity instances, their
class, and the corresponding sensor events, we execute map infer-
ence on the presented MLNNC model by considering the introduced
and generated MLNNC knowledge base. The result is a set of
OccursIn and InstanceClass predicates. The former maps a sensor
events onto the most probable corresponding activity instance
where the latter assigns the most likely activity class to an activity
instance. These (hidden) predicates are post-processed in order to
detect the class and temporal boundaries of each activity instance
ai:

AClass(ai) = ac : ∃InstanceClass(ai, ac),

STime(ai) = min{t : ∃Event(se, et, t) ∧ OccursIn(se, ai)},

ETime(ai) = max{t : ∃Event(se, et, t) ∧ OccursIn(se, ai)}.

In this context, AClass(ai) represents the activity class of ai,
while STime(ai) and ETime(ai) respectively the start- and end-
time. Computing the start and end time of activity instances
by the MLNNC resolver would be unnecessarily complicated,
hence, they are computed in a post-processing phase. This post-
processing step also varies slightly depending on the recognition
mode. Indeed, in online mode the recognition never stops. The
overall result is a sequence of activities that most likely caused the
recorded sensor events.

8 Experimental evaluation
In the following, we present our experimental setup and results.
We show results for both offline (Offline POLARIS) [13] and
online (Online POLARIS) versions of our system. In order to fa-
cilitate the reproduction of our results we make publicly available
a REST API for the MLNNC solver including a web interface, the
MLN model, and the ontology2.

8.1 The CASAS and SmartFABER datasets

In order to evaluate our method, we consider the well-known
dataset of Cook et al. [34], named CASAS, and the dataset
presented in [1], called SmartFABER. Both datasets include in-
terleaved activities in a smart-home environment.

The CASAS dataset covers interleaved ADLs of twenty-one
subjects acquired in a smart-home laboratory. Sensors collected
data about movement, room temperature, use of water, and in-
teraction with certain objects and doors. For that purpose, 70
sensors were used in total where eight activities were observed: fill
medication dispenser (ac1), watch DVD (ac2), water plants (ac3),
answer the phone (ac4), prepare birthday card (ac5), prepare soup
(ac6), clean (ac7), and choose outfit (ac8). The order and expendi-
ture of time were up to the subject and it was allowed to perform
the activities in parallel. During the data collection only one
single person was present in the smart-home. With our method,
only 25 out of 70 sensors are required. Indeed, the semantic
correlation reasoner excludes the remaining 45 (mostly movement
sensors), since they have no significant semantic correlation with
the considered activities.

The SmartFABER dataset has been acquired as part of the
SECURE interdisciplinary project [17]. Sensor data were acquired
from the apartment of an elderly woman diagnosed with Mild
Cognitive Impairment. Different environmental sensors (magnetic,
motion, and temperature) were used to monitor three ADLs for

2. https://sensor.informatik.uni-mannheim.de/#results2017polaris

https://sensor.informatik.uni-mannheim.de/#results2017polaris
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55 days: taking medicines (ac9), cooking (ac10), and eating.
The remaining activities were labeled as others (ac11). Totally,
11 sensors were deployed. Our semantic correlation reasoner
discards two sensors of these as they have no significant semantic
correlation with the considered activities. Unfortunately, we were
unable to recognize eating because it is only characterized by
a single presence sensor close to the table. Indeed, this sensor is
also activated in context of all other activities. Hence, our semantic
correlation reasoner did not find any sensor that is significantly
correlated with eating. Therefore, we decided to exclude that
activity from the evaluation. On the other side, we are able to
recognize others (ac11), which was not considered in [17]. Com-
pared to CASAS, this dataset was acquired in a fully naturalistic
environment. Due to the cognitive decline of the subject, activities
were performed in many different and sometimes unexpected
ways. Besides, the acquired data is also affected by noise due to
various technical issues encountered during data acquisition [1].
Hence, the recognition of ADLs in this scenario is challenging,
even if the number of considered activities is small.

8.2 Segmentation effectiveness

8.2.1 Segmentation Evaluation Metrics

Compared to our previous work [13], the additional challenge
introduced by online recognition consists in the need for seg-
menting the continuous stream of sensor events on-the-fly. In
order to obtain good recognition rates, the segmentation quality
is a crucial aspect. An optimal segmentation strategy would map
each segment to exactly one activity instance. In order to evaluate
the effectiveness of segmentation, we use two metrics, called
purity and deviation of segments (DS for brevity), respectively.
A segment S is perfectly pure (i.e., its purity value is equal to 1)
when all of its events evi ∈ S are labeled with the same activity
class. The formula to compute the purity of a segment S is given
below:

purity(S ) = max
ac∈A

∑
evi∈S

1[evi is labeled ac]
|S |

(13)

We compute the overall purity of a set of segments S as the
average of purity(S ) ∀S ∈ S, weighted according to the size of
each segment. The second metric, DS, is computed as the root
mean square of the segmentation error in terms of the number
of inferred segments. Formally, considering a sequence of sensor
events E = 〈 Event(se1, et1, t1), . . . , Event(sen, etn, tn) 〉, we denote
S E,A the set of segments for E predicted by a segmentation
algorithm A, and we denote S E the exact set of segments of E.
The segmentation error ε(S E,A, S E) is computed as the modulus
of |S E,A| − |S E |. Hence, given a set of sequences of sensor events
E = {E1, E2, . . . , E j}, we compute the DS of A by the following
formula:

DS (E, A) =

√√∑
E ∈E

ε(S E,A, S E)
|E|

8.2.2 Evaluating the impact of segmentation

We evaluate our segmentation algorithm in terms of the two met-
rics described above as well as in terms of the resulting recognition
rate (F1 score). The evaluation is performed considering two
other segmentation approaches as baselines. The first is a widely
used method in mobile sensor data processing [35] that we call
Naive Segmentation. Each segment is taken as a sliding window
covering w sensor events with overlap factor o. This method

does not exploit any information from the ontology. In order to
compare with a similar knowledge-based technique for online
activity segmentation, we chose one of the very few proposals in
this category, namely, the algorithm described in USMART [28],
that proved to be particularly effective in the literature. As we
mentioned in Section 2, to the best of our knowledge, this is
the unsupervised and real-time segmentation method closest to
our approach. USMART uses an ontology to compute semantic
similarity between each pair of consecutive sensor events. If two
consecutive events are similar, they are considered part of the
same segment. Otherwise, they are considered part of different
segments. The similarity is computed using the WordNet lexical
database. We have empirically determined that the best parameters
(in terms of resulting recognition rate) of the Naive Segmentation
are w = 6 and o = 50% for the CASAS dataset, while they are
w = 4 and o = 50% for the SmartFABER dataset. Regarding
the semantic similarity threshold for USMART’s segmentation
method, we empirically chose 0.75 for the CASAS dataset and
0.625 for the SmartFABER dataset.

Table 2 shows the effectiveness of our segmentation approach
on both datasets, compared with the considered baselines. On-
line POLARIS outperforms both the naive approach and the
segmentation method proposed in USMART. The superiority of
our approach over USMART, in terms of F1, is probably due
to the fact that we exploit rich semantic knowledge of relations
between sensor events and activities that are not captured by
the mere ontological similarity between pairs of sensor events.
Moreover, our segmentation algorithm exploits several semantic
and temporal heuristics to continuously segment the stream of
sensor data. Even if Online POLARIS performs significantly
better than the naive approach, from the results it emerges that
the naive method sometimes reaches recognition rates close to
ours. However, as observed above, it generates a much higher
number of segments; this leads to triggering the MLN reasoner
much more often with respect to our solution, thus slowing down
the classification process, which is intended to run in real-time.
Finally, the naive approach does not consider time, but separates
segments only based on event sequences. Hence, two events within
the same segment may be temporally distant. This behavior may
cause a significant delay in activity recognition, since a segment is
classified only when it is complete. Hence the naive segmentation
approach is less suitable for real-time applications.

Figure 4 shows how purity, DS, and overall F1 score change
by varying the segmentation algorithm. In addition to the above
mentioned baselines, we also evaluated different combinations of
the aspects of our segmentation technique, which we introduced in
Section 6.1; we reported the results only for those combinations
which achieved acceptable recognition rates. Even if POLARIS
(i.e., where we use all the five aspects) does not achieve the lowest
DS value, it achieves a good purity and the best recognition results
with respect to the considered segmentation techniques on both
datasets. Considering subsets of Online POLARIS segmentation
aspects leads in general to worse recognition rates. However, we
observed that ASP2 alone leads to a very high F1 score on the
SmartFABER dataset. As explained in Section 6.1, this aspect
captures the change of context: a split decision occurs when an
event is not correlated according to the ontology to its previous
event. Considering that this dataset has few activities that are very
different among them, this aspect alone already allows to reach
good results. However, as it emerges for the CASAS dataset, when
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TABLE 2
Comparison of different segmentation strategies (F1 score)

Class Naive USMART [28] POLARIS
Segmentation Segmentation Segmentation

ac1 0.70 0.83 0.74
ac2 0.84 0.87 0.86
ac3 0.57 0.51 0.62
ac4 0.56 0.44 0.74
ac5 0.92 0.87 0.93
ac6 0.83 0.62 0.88
ac7 0.51 0.54 0.56
ac8 0.69 0.86 0.77

avg. 0.70 0.69 0.76

(a) CASAS dataset

Class Naive USMART [28] POLARIS
Segmentation Segmentation Segmentation

ac9 0.73 0.83 0.81
ac10 0.65 0.58 0.76
ac11 0.63 0.70 0.71
avg. 0.67 0.70 0.76

(b) SmartFABER dataset
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Fig. 4. How purity, deviation of segments (DS) and F1 vary by changing the online segmentation technique.

the number of activities is higher, ASP2 alone is not sufficient for
an effective segmentation.

Inspecting the results of naive approach and USMART, it
emerges that they reach a good purity, but they are affected by a
high DS value. This is due to the fact that both approaches produce
a high number of segments, negatively impacting recognition
results. The very high purity of USMART is due to the fact that
this technique generates very small segments containing events
generated by the same activity instance.

Finally, purity and DS metrics are generally higher on the
SmartFABER dataset. On the one hand, the limited number of
activities that compose this dataset likely increases the probability
of having segments with events labeled with the same activity.
On the other hand, due to the high variability of execution in this
dataset, our segmentation approach generates more segments.

8.3 Classification results

In order to evaluate the Online POLARIS method, we compared
its recognition rate for both datasets with a few other methods. In
the following, we present these methods and comment the results
reported in Table 3.

Despite our contribution is an unsupervised method avoiding
the recognised problems of supervised ones, we implemented and
evaluated several supervised methods to elect one as a reference
for recognition rate values. Indeed, since supervised methods
are considered effective for this type of problems, achieving
recognition rates close to the best of these algorithm is a desirable
property. For all algorithms, we adopted the state-of-the-art feature
extraction technique presented in [36], which is particularly suit-
able for real-time activity recognition. As Figure 5 shows, Random
Forest and MLP emerge but Random Forest was preferred to MLP
for computational efficiency reasons.
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Fig. 5. CASAS dataset: How the number of persons used to train the
recognition model (x-axis) affects the overall F1 score (y-axis) of different
classifiers.

From Table 3, Online POLARIS achieves almost the same
recognition rate than Random Forest for the CASAS dataset, while
it gives an average recognition rate 4% lower on the SmartFABER
dataset. This is probably due to the fact that this dataset consists
of activities performed by a single subject in a single home.
Hence, with that dataset we could not evaluate the capability of
the classifier to generalize on different subjects or environments.
On the other hand, for the CASAS dataset we used a leave-
one-subject-out cross validation, thus evaluating the generalization
capability of the reasoner.
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TABLE 3
Recognition rate of Online POLARIS compared with the baselines

Class Random Forest
Semantic Offline Web Online

[36] HMM POLARIS POLARIS POLARIS
ac1 0.74 0.72 0.85 0.68 0.74
ac2 0.87 0.85 0.81 0.79 0.86
ac3 0.57 0.65 0.72 0.50 0.62
ac4 0.72 0.27 0.72 0.23 0.74
ac5 0.91 0.84 0.81 0.80 0.93
ac6 0.85 0.89 0.88 0.69 0.88
ac7 0.67 0.64 0.57 0.52 0.56
ac8 0.84 0.81 0.88 0.69 0.77

avg. 0.77 0.71 0.78 0.61 0.76

(a) CASAS dataset

Class Random Forest
Semantic Offline Web Online

[36] HMM POLARIS POLARIS POLARIS
ac9 0.91 0.86 0.83 0.82 0.81
ac10 0.77 0.68 0.75 0.66 0.76
ac11 0.73 0.71 0.70 0.50 0.71

avg. 0.80 0.74 0.76 0.66 0.76

(b) SmartFABER dataset

Next, we compare Online POLARIS with its offline version.
Despite we would expect a cost in terms of accuracy for the
increased utility of an online algorithm, the results show that
the accuracy of Online POLARIS is similar to the one of its
offline counterpart for the SmartFABER dataset, and only slightly
worse for CASAS. Indeed, the recognition results are similar
except for fill medication dispenser (ac1), water plants (ac3) and
choose outfit (ac8). In case of fill medication dispenser (ac1) and
water plants (ac3), these activities are essentially recognized by
specific events that have to be temporally close. For instance,
water plants is characterized by the events “opening the kitchen
cupboard” and “taking water”. Unfortunately, our segmentation
technique often separates those events in different segments as
they are not exclusively related to a single activity and subjects
usually performed other interleaved activities. Regarding choose
outfit (ac8), looking closely at the data, we noticed that usually this
activity has a long duration and most related sensor events are also
related to other activities. These facts trigger ASP3 (consistency
likelihood) to initiate unnecessary segments, negatively impacting
recognition rates. On the other side, the activities watch DVD (ac2)
and prepare birthday card (ac5) are significantly better recognized
by the online algorithm. Indeed, those activities can be better
recognized when isolated in specific segments and separated from
possibly noisy sensor events belonging to other activities. Consid-
ering the overall results on this dataset, we claim that the decrease
of accuracy (at most −2%) introduced by online segmentation for
the CASAS dataset is sufficiently small to preserve the utility of
predictions for most applications.

In order to support our choice of MLN as a classifier, we
explored alternative machine learning methods, excluding purely
data driven ones, since our goal is unsupervised activity recog-
nition. We chose Hidden Markov Models (HMM) since: (i) it
has been largely used in the literature for recognizing activities
based on sensor data, and (ii) being based on probabilities, it can
be seamlessly integrated into our reasoning architecture. Since
we target unsupervised reasoning, we extract HMM parameters
through semantic reasoning, using the same methods used for
building our MLN knowledge base. We refer to this method
as Semantic-HMM. In Semantic-HMM, the observable states are
sensor events, while the hidden states are activities. The emission
probabilities (i.e., probabilities of observing a sensor event given
the performed activity) are our semantic correlations. The transi-
tion probabilities (i.e., probability of switching from an activity
to another) are set applying the following intuition: it is more

likely to continue to perform the same activity, while changing
activity is less likely. Finally, the initial probabilities are equally
distributed. In order to have a fair comparison, we applied the
segmentation strategy that we propose in this paper, perform-
ing HMM (precisely, the Viterbi algorithm) on each segment.
Even though Semantic-HMM achieves good recognition rates,
our Online POLARIS outperforms it considering the overall F1-
score. Indeed, our MLN model is capable of capturing complex
semantic relationships and temporal aspects, while HMM only
captures simple relationships. This can be observed, for instance,
for the activities answer phone (ac4) and cooking (ac10), where
the recognition rate of Semantic-HMM is significantly lower with
respect to Online POLARIS.

Finally, in order to evaluate alternative approaches to extract
semantic information about activities with respect to ontology
reasoning, we implemented an alternative version of Online PO-
LARIS (called Web POLARIS) which extracts the activity model
from the Web according to a recently proposed method [22].
That method exploits computer vision tools to extract semantic
information from pictures taken during the execution of a set of
activities. By mining the extracted information, the technique com-
putes the probability distribution of objects (and corresponding
sensor events) over the activities. We thus replaced the semantic
correlations computed by our ontology with probabilities extracted
with this technique, in order to compare the two methods. The
comparison with Web POLARIS indicates that the probabilities
extracted from the ontology yield significantly higher recognition
rates for almost every considered activity, since the ontology en-
codes some important relationships between home infrastructure
and activities that are not captured by pictures mined from the
web.

9 Strong points and limitations of POLARIS
POLARIS requires a relevant knowledge engineering effort to
define a comprehensive ontology of activities, home environment,
and sensor events. For instance, our ontology includes 235 classes
and 59 properties. However, the knowledge engineering effort
can be reduced by reusing existing ontologies. In particular,
the ontology used in this work is an extension of the COSAR
ontology [26], which was originally intended to model context
data and human activities. The extension mainly regarded the
definition of a few classes for activities and artifacts that were
not considered before, and a few additional properties used by our
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reasoning method. Modeling the extension required one day of
work by a researcher with good skills in OWL 2. Moreover, we
were able to use the same ontology for both apartments involved
in our experimentation, which had very different characteristics.

However, it is questionable whether in larger scale imple-
mentations the same ontology can be adequate to cover every
possible home environment and individuals’ mode of activity
execution. The main precondition to reuse an ontology in different
environments is that it has to cover all the concepts useful for
activity recognition (i.e., objects, sensor events, activities, other
context data). Those concepts need to be mapped to considered
activities and environmental components by means of ontological
instances.

In terms of adaptability to changes in the environment and
considered ADLs, our approach presents several advantages with
respect to data driven ones. Indeed, differently from supervised
learning methods, POLARIS can seamlessly adapt to both changes
in the environment and introduction of new activities, with mini-
mal knowledge engineering effort. In particular, novel devices can
be seamlessly introduced in the ontology by adding new axioms
or slightly modifying existing ones. For instance, considering Ex-
ample 3, suppose that a new rice cooker is introduced in the smart
home. In this case, it is sufficient to: (i) add a new instance of the
ontological class RiceCooker (a subclass of CookingInstrument),
(ii) modify the axiom (1 to 10) to specify that one rice cooker is
in the home, and (iii) instantiate the rice cooker power sensor:

{s_riceCooker} ≡ PowerSensor u ∃ sensesUsageOf.

{RiceCooker} u (∃ producesEvent.{et_riceCooker}

Similarly, when a device is removed from the smart home, the
above mentioned axioms must be simply modified or removed
accordingly. On the contrary, most supervised learning methods
cannot deal with the introduction of new data that did not appear
in the original training set. Hence, those methods cannot take
advantage of data provided by new devices that were not used
when the training data was acquired. Besides, the introduction of
new sensors and devices may enable the recognition of additional
activities. For instance, a rice cooker sensor enables the recogni-
tion of a new activity “Preparing rice”, that may not appear in
the original ontology. In order to recognize this new activity, the
ontology must be extended by introducing a new axiom:

PrepRice v PrepHotMeal u

∃requiresUsageOfArtifact.RiceCooker

Note that the introduction of a new activity does not affect the
ontological definition of existing ones. On the contrary, it can take
advantage of existing ontological definitions. For instance, in the
above example, “Preparing rice” is defined reusing the definition
of “Preparing hot meal”. Hence, with our approach, we reduce the
burden of knowledge engineering, and we gain a clear advantage
with respect to data-driven methods. Indeed, in supervised learning
methods, the introduction of a new activity requires the acquisition
of a completely new training set for it, which is time-consuming,
costly, and unpractical.

In general, using a semantic abstraction layer by means of
ontological classes (e.g., sensors, objects, home appliances, activ-
ities) strongly reduces the burden of setting up the system in a
new environment with respect to supervised solutions. In order
to substantiate our claims, Figure 5 shows how the recognition
rate varies by increasing the number of subjects considered in

the training set. Results indicate that a considerable number of
subjects is required to reach results similar to the ones we obtain
with our knowledge-based approach. Moreover, the required time
for annotation is highly variable: it depends on the modality, on
the detail of annotation, on the complexity of the activities, and on
the environment. In the literature, reported annotation time varies
from 30 minutes to 10 hours for each hour of activity [5], [6].

Changes in the user’s health status or habits may determine a
relevant concept drift that would require human intervention on
the ontology. In this work we do not address this issue; however,
we point out that these interventions are usually localized and
limited to some abstraction levels. It is also possible to adopt a
knowledge-based active learning algorithm to continuously refine
a possibly generic and incomplete ontology, exploiting inhabitants
feedback [37].

Finally, we want to point out that our method cannot be
seamlessly re-used for any activity recognition task. For instance,
consider a setup where few (or none) environmental sensors are
deployed in the environment and the inhabitant is monitored
through wearable devices (e.g., smartphone, smartwatch). The in-
ertial sensors of those devices continuously stream raw sensor data
about the inhabitant’s movement patterns. Those data can not be
directly used by our ontological framework, since it is not feasible
to translate them into high-level concepts. Indeed, only a purely
data-driven approach can be used to transform inertial sensor
readings into higher-level information (e.g., inhabitant’s posture
or physical activity). However, high-level information generated
by those data-driven solutions, coupled with environmental sensor
data, could be possibly used by a hybrid statistical/ontological
framework to better identify the complex ADLs that the user is
carrying out like the ones considered in this work.

10 Conclusion

While most activity recognition systems adopt supervised reason-
ing, in this work we proposed an alternative approach, presenting
an unsupervised framework for online recognition of complex
ADLs. Thanks to a combination of ontological and probabilistic
reasoning, our method addresses a major problem of supervised
ones, namely the need to re-acquire a training set when moving the
system to a new sensorised environment. A thorough experimental
evalution showed that the accuracy of our unsupervised approach
is comparable to the one of state-of-the-art supervised methods.
In future work, we plan to investigate techniques to reduce the
burden of ontological activity modeling, possibly based on activity
mining from external sources, and active learning methods to fine-
tune the activity model to the user’s context. We also plan to
extend POLARIS to the multi-inhabitant setting, by exploiting an
additional module that assigns each sensor event to the subject that
triggered it.
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