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Abstract

HTML tables on web pages (“web tables”) have been used successfully as a data
source for several applications. They can be extracted from web pages on a large-
scale, resulting in corpora of millions of web tables. But, until today only little is
known about the general distribution of topics and specific types of data that are
contained in the tables that can be found on the Web. But this knowledge is essen-
tial to understanding the potential application areas and topical coverage of web
tables as a data source. Such knowledge can be obtained through the integration
of web tables with a knowledge base, which enables the semantic interpretation of
their content and allows for their topical profiling. In turn, the knowledge base can
be augmented by adding new statements from the web tables. This is challeng-
ing, because the data volume and variety are much larger than in traditional data
integration scenarios, in which only a small number of data sources is integrated.

The contributions of this thesis are methods for the integration of web tables
with a knowledge base and the profiling of large-scale web table corpora through
the application of these methods. For this profiling, two corpora of 147 million
and 233 million web tables, respectively, are created and made publicly available.
These corpora are two of only three that are openly available for research on web
tables. Their data profile reveals that most web tables have only very few rows,
with a median of 6 rows per web table, and between 35% and 52% of all columns
contain non-textual values, such as numbers or dates. These two characteristics
have been mostly ignored in the literature about web tables and are addressed by
the methods presented in this thesis.

The first method, T2K Match, is an algorithm for semantic table interpretation
that annotates web tables with classes, properties, and entities from a knowledge
base. Other than most algorithms for these tasks, it is not limited to the annotation
of columns that contain the names of entities. Its application to a large-scale web
table corpus results in the most fine-grained topical data profile of web tables at
the time of writing, but also reveals that small web tables cannot be processed with
high quality. For such small web tables, a method that stitches them into larger
tables is presented and shown to drastically improve the quality of the results.

The data profile further shows that the majority of the columns in the web
tables, where classes and entities can be recognised, have no corresponding prop-
erties in the knowledge base. This makes them candidates for new properties that
can be added to the knowledge base. The current methods for this task, however,
suffer from the oversimplified assumption that web tables only contain binary rela-
tions. This results in the extraction of incomplete relations from the web tables as
new properties and makes their correct interpretation impossible. To increase the
completeness, a method is presented that generates additional data from the context
of the web tables and synthesizes n-ary relations from all web tables of a web site.
The application of this method to the second large-scale web table corpus shows
that web tables contain a large number of n-ary relations. This means that the data
contained in web tables is of higher complexity than previously assumed.



Zusammenfassung

HTML-Tabellen auf Webseiten (“Web Tables”) wurden erfolgreich als Datenquelle
für mehrere Anwendungen verwendet. Sie können in großem Umfang aus Web-
seiten extrahiert werden, was zu Korpora von Millionen von Web Tables führt. Bis
heute ist jedoch nur wenig über die allgemeine Verteilung von Themen und Daten-
typen bekannt, die in den Tabellen enthalten sind. Dieses Wissen ist jedoch uner-
lässlich um die potenziellen Anwendungsbereiche und die thematische Abdeckung
von Web Tables als Datenquelle zu verstehen. Dieses Wissen kann durch die Inte-
gration von Web Tables mit einer Wissensbasis gewonnen werden, was die seman-
tische Interpretation ihres Inhalts und eine thematische Profilerstellung ermöglicht.
Die Wissensbasis kann wiederum durch Hinzufügen neuer Aussagen aus den Web
Tables erweitert werden. Dies ist eine Herausforderung, da Datenvolumen und
Vielfältigkeit viel größer sind als in herkömmlichen Datenintegrationsszenarien, in
denen nur eine geringe Anzahl von Datenquellen integriert wird.

Die Beiträge dieser Arbeit sind Methoden zur Integration von Web Tables mit
einer Wissensbasis und zur Profilerstellung von großen Korpora von Web Tables.
Für diese Profilerstellung werden zwei Korpora mit 147 Mio. bzw. 233 Mio. Web
Tables erstellt und öffentlich zugänglich gemacht. Bei diesen Korpora handelt es
sich um zwei von nur drei Korpora, die frei für die Erforschung von Web Tables
zur Verfügung stehen. Aus ihnen geht hervor, dass die meisten Web Tables nur
wenige Zeilen haben, mit einem Median von 6, und zwischen 35% und 52% aller
Spalten nicht-textuelle Werte wie Zahlen oder Datumsangaben enthalten. Diese
beiden Eigenschaften wurden in der Literatur zumeist ignoriert und werden von
den vorgestellten Methoden adressiert. Die erste Methode, T2K Match, ist ein
Algorithmus zur semantischen Interpretation von Tabellen, der Web Tables mit
Klassen, Eigenschaften und Entitäten aus einer Wissensbasis annotiert. Anders als
viele vergleichbare Algorithmen ist er nicht auf die Annotation von Spalten mit
benannten Entitäten beschränkt. Seine Anwendung auf einen großen Korpus führt
zum aktuell detailliertesten Datenprofil von Web Tables, zeigt jedoch auch, dass
kleine Web Tables nicht mit hoher Qualität verarbeitet werden können. Für solche
kleinen Web Tables wird eine Methode vorgestellt, mit der sie zu größeren Tabellen
zusammengefügt werden, was die Qualität der Ergebnisse drastisch verbessert.

Das Datenprofil zeigt weiterhin, dass die Mehrheit der Spalten in Web Ta-
bles, in denen Klassen und Entitäten erkannt werden, keine entsprechenden Eigen-
schaften in der Wissensbasis hat. Dies macht sie zu Kandidaten für neue Eigen-
schaften. Die aktuellen Methoden für diese Aufgabe leiden unter der vereinfachten
Annahme, dass Web Tables nur binäre Relationen enthalten. Dies führt zur Ex-
traktion unvollständiger Relationen und macht deren korrekte Interpretation un-
möglich. Um die Vollständigkeit zu erhöhen wird eine Methode vorgestellt, die
zusätzliche Daten aus dem Kontext der Web Tables generiert und n-äre Relationen
aus allen Seiten einer Website synthetisiert. Ihre Anwendung auf den zweiten Kor-
pus zeigt, dass Web Tables viele n-äre Relationen enthalten. Dies bedeutet, dass
die in Web Tables enthaltenen Daten komplexer sind als bisher angenommen.
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Chapter 1

Introduction

1.1 Motivation

The Web is the largest source of information that is available to humankind, with
billions of interlinked web pages, which are created and maintained by millions
of people from all over the world. Everybody with access to the Internet can cre-
ate content on the Web, which drives its constant growth and unparalleled diversity.
Besides its world-wide accessibility, the success of the Web is due to the possibility
of interlinking its content with hyperlinks. Such hyperlinks allow users to navigate
to related content and transform isolated documents into a highly connected net-
work [Meusel et al., 2015]. These connections, and the fact that all content on the
Web is machine-readable, make it possible to automatically collect vast amounts
of web pages, which enables empirical research about data and their representation
as well as the creation of services such as search engines.

While the content on the Web is always machine-readable, it is in most cases
not machine-understandable. Information on the Web is designed to be consumed
by humans, and hence encoded in natural languages or audio-visual contents. This
raw data can be stored, indexed, and retrieved by machines, but does not allow
for higher-level applications, such as answering the questions “which airline uses
the code ‘NH’?” or “what was the average annual wage of a computer scientist
in California in 2016?”. To enable such applications, it is necessary to extract
statements about the world from the data and integrate them with a knowledge
base, which contains additional knowledge about the world such as “an airline is
a company” or “airlines have a property called code”.

The need for such structured knowledge has been, and still is, a driving force
for the creation and augmentation of knowledge bases: Large collections of facts
which are organised in an ontology, i.e., a machine readable definition of a model
of the real-world [Ehrlinger and Wöß, 2016], enabling machines to answer com-
plex queries and perform inference. Today, knowledge bases such as DBpedia
[Lehmann et al., 2015], Yago [Suchanek et al., 2007], Wikidata [Vrandečić and
Krötzsch, 2014] or the Google Knowledge Graph [Singhal, 2012] contain mil-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A web table listing airlines and their attributes.

lions of entities and billions of statements about these entities and their properties,
yet they are still considered vastly incomplete. Such knowledge bases are created
through the automated extraction of information from regularly structured sources
on the Web, such as Wikipedia, and are then continuously augmented by integrat-
ing additional data sources. This augmentation of knowledge bases is the focus of
this thesis, with respect to a particular form of data representation on the Web: web
tables.

Besides unstructured natural language text and structured semantic annota-
tions, which can be placed in the mark-up code by web site authors, web tables
are a form of semi-structured data on the Web [Lim and Ng, 1999]. A web table
is a table on a web page in which data are organised in rows and columns, but
no explicit statements about the meaning of the data are available. An example is
shown in Figure 1.1, which displays a web table with four columns and nine rows.
For a human, it is easy into interpret that the table is about airlines and their prop-
erties, even if only a few parts of the table are understood. The basic structuring in
rows and columns allows for an interpretation of the data, even without fully under-
standing its contents: All values in the same column and all values in the same row
share some common semantics. Once these semantics are understood, for exam-
ple by comparing the contents of a column with known values from a knowledge
base, all its data, be it known or unknown, can be interpreted and integrated into
the knowledge base.

The integration into a knowledge base enables applications to access the in-
formation contained in the web tables without requiring specific knowledge about
the structure and context of the original source. The integration hence makes the
information more accessible and usable by a broader range of consumers. Storing
this information in a knowledge base rather than in a traditional database is ben-
eficial because the data are not transformed into an application-specific schema.
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Computer and Information Research Scientists
Conduct research into fundamental computer and information science as theorists, designers, or 
inventors. Develop solutions to problems in the field of computer hardware and software.

Figure 1.2: A web table showing employment and wage statistics for different
states and a specific profession, which is stated outside of the web table.

Instead, they are stored in a more general format that expresses information as
subject-predicate-object triples, such as “Germany hasCapital Berlin”, and allows
applications to access the information that they require through querying and rea-
soning.

The challenges that are encountered in this endeavour stem from the open na-
ture of the Web: Everybody can put content on the Web, and this content stays
on the Web if not explicitly removed, it might be replicated multiple times as it
is copied, and it is not subjected to any quality control mechanism. This means
that data on the Web can be incorrect, outdated, fictitious, encoded in a variety of
different forms and languages or simply be irrelevant. Further, web pages are de-
signed for humans and contain, besides the actual content, navigational elements,
layout elements and advertisement. The challenge for knowledge base augmen-
tation based on web data is hence to identify relevant content, recognise different
possible representations of the same piece of information, understand its context,
and to decide which sources to trust.

The current state of the art for the interpretation and integration of web table
data with other data sources, such as knowledge bases, addresses these challenges
with a variety of approaches, but is limited through simplified assumptions and
generally results in data of rather low quality. The data profile of the two large-
scale web table corpora that will be presented in this thesis shows that the majority
of all web tables is very small and contains a large fraction of columns with non-
textual content, such as numbers or dates. Many methods, however, focus exclu-
sively on web table columns that contain the names of entities and hence ignore a
large amount of the data that is contained in the web tables. The evaluation datasets
that are used to evaluate these approaches are usually selected by searching for a set
of known entity names, which leads to datasets that contain larger web tables than
would be expected from a random sample. This leads to an overly optimistic evalu-
ation of the approaches, as very small web tables, which are harder to interpret, are
underrepresented. Finally, almost all approaches apply the assumption that there
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exist only binary relations between the columns in web tables, which means that
they fail for web tables that convey more complex information, such as the web
table shown in Figure 1.2. This table presents employment and wage statistics in
different states for computer and information research scientists, but this specific
profession is not contained in the web table itself. A binary relation, for example
between the first two columns, does not contain this information and is hence in-
complete. This thesis will show that these limitations have a strong impact on the
quality of the existing approaches through several data profiles of large-scale web
table corpora and will present methods that overcome these limitations.

1.2 Contributions

This section summarises the contributions of this thesis and outlines how the state
of the art is improved by these contributions. The contributions are made in three
areas: (1) the public availability and profiling of large-scale corpora of web tables,
(2) methods for semantic table interpretation and topical profiling of large scale
corpora, and (3) methods for schema extension and topical and structural profil-
ing of relations in web tables. The specific contributions in these areas are the
following:

1. Publication & Profiling of Web Table Corpora: Before the work on this
thesis, researchers repeatedly extracted privately held corpora, for which no
detailed data profile was published and which could not be re-used by others.
The contributions of this thesis are the publication of the large-scale Web
Data Commons Web Tables Corpus (“WTC”) 2012 and 2015 as well as the
creation and publication of data profiles of these corpora. At the time of
writing, these two corpora and the Dresden Web Tables Corpus [Eberius
et al., 2015] are the only publicly available large-scale web table corpora.

This contribution is joint work with Dominique Ritze and previously pub-
lished in [Lehmberg et al., 2016]. I contributed to the creation of the data
profiles and the publication of the corpora.

2. T2D Gold Standard and T2K Match: The comparability of methods for
semantic table interpretation, i.e., the annotation of web tables with elements
from a knowledge base, is limited through the inaccessibility of the methods
and datasets that are used in the literature The publication of the open-source
T2K Match algorithm and the T2D gold standard for semantic table interpre-
tation contributes to improving the comparability in this area.

This contribution is joint work with Dominique Ritze and previously pub-
lished in [Ritze et al., 2015]. I developed the annotation tool, contributed to
the annotations for the gold standard, to the design and implementation of
the matching algorithm as well as to the experimental evaluation.
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3. Topical Profiling for Web Tables: The only previous work to profile the
topical content of web tables [Hassanzadeh et al., 2015] is limited to a class-
level profile of large web tables (ě 20 rows). The contribution of this thesis
is the most fine-grained topical profile of a large-scale web table corpus at the
time of writing. The profile analyses the WTC 2012 with respect to classes,
entities, and properties from the DBpedia knowledge base as well as the
quality of statements that can be extracted for knowledge base augmentation.

This contribution is joint work with Dominique Ritze and Yaser Oulabi and
previously published in [Ritze et al., 2016]. I contributed to the implementa-
tion and execution of the large-scale matching, to the profiling of the results
as well as to the evaluation of the data fusion results.

4. Matching of Small Web Tables: Very small web tables are the majority
in the public corpora, but most approaches for semantic table interpretation
and their evaluation ignore this, which leads to worse results than assumed
from the literature. The contribution of this thesis is an experimental ver-
ification of this claim and a method to stitch (combine) small web tables,
which drastically improves the quality of existing methods.

5. Categorisation of Table Columns: Most methods assume that web tables
only contain binary relations, i.e., that all values can be understood in com-
bination with the subject column of the web table. A manual profiling shows
that this is often not the case and leads to the extraction of un-interpretable
triples. Based on this profile, a categorisation system for different types of
columns is proposed. The finding is supported by a large-scale profiling for
these categories using a supervised classification model.

6. Extraction of N-ary Relations: Current methods can only extract binary
relations or specific n-ary relations that include time information from web
tables. The contribution of this thesis is the first method for the extraction
of general n-ary relations from web tables and a data profile that shows that
such relations are frequent among web tables and contain much more com-
plex information than previously assumed.

7. Open-Source Data Integration Methods & Public Evaluation Datasets:
During the work on this thesis, multiple data integration methods as well
as a general framework for data integration [Lehmberg et al., 2017] were
developed and published as open source.1234 Further, evaluation datasets for
semantic table interpretation (Chapter 5, 7), web table matching (Chapter
7, 9), and schema extension (Chapter 9) were created and made publicly
available. This ensures the reproducibility of the experiments and enables
the comparison of new methods with the presented results.

1https://github.com/olehmberg/winter
2https://github.com/olehmberg/T2KMatch
3https://github.com/olehmberg/WebTableStitching
4https://github.com/olehmberg/snow

https://github.com/olehmberg/winter
https://github.com/olehmberg/T2KMatch
https://github.com/olehmberg/WebTableStitching
https://github.com/olehmberg/snow
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1.3 Thesis Outline

This section provides a summary of each of the following chapters and their contri-
butions. The thesis consists of three parts. The first part introduces the methodolog-
ical foundations of data profiling and data integration as well as an introduction of
knowledge bases and the data source that is used throughout the thesis: web tables.
The second part describes methods and data profiling results for semantic table in-
terpretation and knowledge base augmentation with respect to the slot-filling task.
The third and final part presents methods and data profiling results for the schema-
extension task.

PART I: Foundations

The first part of this thesis introduces the methods and the data sources which are
used in all following chapters. This comprises the foundations of data profiling and
integration, which are the basis of all methods described in the following chapters,
an introduction to knowledge bases, which are used to gain a semantic interpreta-
tion of web tables and are the target of augmentation, as well as an introduction to
web tables, which are the data source for all discussed tasks.

Chapter 2: Data Profiling and Integration. This chapter presents the data pro-
filing and integration methods, which form the foundation of all methods presented
in this thesis. In particular, the data integration process and methods for schema
and data matching as well as data fusion are introduced.

Chapter 3: Knowledge Bases. This chapter introduces common knowledge
bases used in the research literature and introduces the different knowledge base
augmentation tasks. A special focus is on the DBpedia knowledge base, which is
used in all experiments in this thesis as the target knowledge base.

Chapter 4: Web Tables. This chapter introduces web tables and their char-
acteristics, and surveys methods used to extract web tables from web pages and
understand their structure. Further, the extraction methodology and the data profile
of two large-scale corpora, the Web Data Commons Web Tables Corpus 2012 and
2015, are presented and compared to similar corpora.

PART II: Matching Web Tables to a Knowledge Base

The second part of this thesis describes methods that match web tables to a knowl-
edge base and reports the results of applying these methods to a large-scale corpus
of web tables. These results represent the most fine-grained topical profile of web
tables at the time of writing and reveal shortcomings of the semantic table interpre-
tation methods, leading to the development of a method that drastically improves
their performance.
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Chapter 5: Semantic Table Interpretation. This chapter surveys the state of
the art in semantic table interpretation and presents a new algorithm for this area,
which iteratively solves the schema and data matching tasks that are necessary to
create triples from web tables that can be used for knowledge base augmentation.
The proposed algorithm, T2K Match, annotates individual web tables with classes,
their columns with properties, and their rows with entities from a target knowledge
base. Further, the lack of comparability of existing methods is addressed by the
creation of the new T2D gold standard for semantic table interpretation, which is
made publicly available and has already been used by other authors to compare
their approaches.

Chapter 6: Corpus Profiling. This chapter presents a topical profile of the
Web Data Commons Web Tables Corpus 2012 that is created through the applica-
tion of the T2K Match algorithm. The profile details the occurrences of classes,
properties, and entities from the DBpedia knowledge base in the web tables, and
represents the most fine-grained topical profile of a large-scale web table corpus at
the time of writing. Further, the truthfulness of the extracted triples is estimated as
an additional profiling dimension and several data fusion methods for the selection
of high-quality triples for knowledge base augmentation are evaluated.

Chapter 7: Table Stitching. This chapter presents experimental evidence that
the commonly used evaluation datasets for semantic table interpretation are biased
towards large web tables and result in overly optimistic evaluations. To improve
the matching performance, a method is presented that stitches (combines) the web
tables of a web site before the application of an existing matching algorithm. The
result analysis shows that this method drastically improves the matching perfor-
mance and is especially effective for small web tables, which are the majority in
the publicly available web table corpora.

PART III: Extending the Schema of a Knowledge Base

The third part of this thesis presents methods for schema extension and revises
oversimplified assumptions that are made by most approaches for web tables. An
initial profiling of candidates for schema extension shows that many columns in
web tables, which do not have corresponding properties in the knowledge base, are
in non-binary relations, which cannot be handled by most current methods. Hence,
a new method is designed that can extract such n-ary relations from web tables.
The data profiling of the extracted relations shows that web tables contain much
more complex information that previously assumed.

Chapter 8: Schema Extension. This chapter presents a comparative evalua-
tion of several methods for schema extensions on the WTC 2012. The evaluation
indicates that not all columns in web tables can be interpreted without consider-
ing additional data. It is argued that the usually employed criterion of relevance is



8 CHAPTER 1. INTRODUCTION

insufficient to guarantee the extraction of triples that can be inserted into the knowl-
edge base, and that completeness must also be taken into account. Consequently, a
classification scheme for column in web tables is introduced that categorises them
according to their relationship to the subject column of the web table. The de-
sign and application of a supervised classifier for these categories verifies that the
majority of the columns in web tables are, in contrast to the assumptions of state-
of-the-art methods, in a non-binary relation with the subject column.

Chapter 9: Synthesizing N-ary Relations. This chapter presents a method that
identifies which columns in a web table form a relation that can be used for schema
extension, addressing the problem of un-interpretable triples which are created by
state-of-the-art methods. This is possible through the stitching of all web tables
from the same web site and the extraction of additional context data from the web
pages that contain the web tables. The chapter further presents a profile of the
WTC 2015 that shows that a large fraction of the columns in the web tables are in
non-binary relations, and that these non-binary relations often require context data
which do not exist in the original web tables to be interpretable.

Chapter 10: Conclusion. This chapter summarises the contributions of this
thesis. It further presents its research impact through the discussion of research
publications that have used the datasets and methods that are described in this
thesis, and finally discusses limitations and directions for future work.

1.4 Published Work

The work presented in this thesis has been published previously in international
journals and proceedings of international conferences and workshops:

Web Table Corpora:

• [Lehmberg et al., 2016] Lehmberg, O., Ritze, D., Meusel, R., & Bizer, C.
(2016). A Large Public Corpus of Web Tables containing Time and Context
Metadata. In Proceedings of the 25th International Conference Companion
on World Wide Web (pp. 75-76).

Semantic Table Understanding & Knowledge Base Augmentation:

• [Ritze et al., 2015] Ritze, D., Lehmberg, O., & Bizer, C. (2015). Matching
HTML tables to DBpedia. In Proceedings of the 5th International Confer-
ence on Web Intelligence, Mining and Semantics (p. 10).

• [Ritze et al., 2016] Ritze, D., Lehmberg, O., Oulabi, Y., & Bizer, C. (2016).
Profiling the Potential of Web Tables for Augmenting Cross-domain Knowl-
edge Bases. In Proceedings of the 25th international conference on world
wide web (pp. 251-261).
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• [Lehmberg and Bizer, 2016] Lehmberg, O., & Bizer, C. (2016). Web table
Column Categorisation and Profiling. In Proceedings of the 19th Interna-
tional Workshop on Web and Databases (p. 4).

• [Lehmberg and Hassanzadeh, 2018] Lehmberg, O., & Hassanzadeh, O.
(2018). Ontology Augmentation Through Matching with Web Tables. In
Ontology Matching: OM-2018: Proceedings of the ISWC Workshop (p. 37).

Relation Synthesis from Web Tables:

• [Lehmberg et al., 2015] Lehmberg, O., Ritze, D., Ristoski, P., Meusel, R.,
Paulheim, H., & Bizer, C. (2015). The Mannheim Search Join Engine. In
Web Semantics: Science, Services and Agents on the World Wide Web, 35,
159-166.

• [Lehmberg and Bizer, 2017] Lehmberg, O., & Bizer, C. (2017). Stitching
web tables for improving matching quality. In Proceedings of the VLDB
Endowment, 10(11), 1502-1513.

• [Lehmberg and Bizer, 2019b] Lehmberg, O., & Bizer, C. (2019). Synthe-
sizing N-ary Relations from Web Tables. In Proceedings of the 9th Interna-
tional Conference on Web Intelligence, Mining and Semantics (Article 17,
12 pages).

• [Lehmberg and Bizer, 2019a] Lehmberg, O., & Bizer, C. (2019). Profiling
the Semantics of N-ary Web Table Data. In Proceedings of the International
Workshop on Semantic Big Data (Article 5, 6 pages).

Open-Source Data Integration Software:

• [Lehmberg et al., 2017] Lehmberg, O., Brinkmann, A., & Bizer, C. (2017).
WInte.r - A Web Data Integration Framework. In International Semantic
Web Conference (Posters, Demos & Industry Tracks).
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Chapter 2

Data Profiling and Integration

2.1 Introduction

In today’s world, information systems and their applications are pervasive and have
a tremendous impact on businesses and individuals alike. The strength of the used
systems lies in their capability of processing large amounts of data efficiently and
they can hence assist their users to achieve their goals, be it the execution of a
business process or finding the cheapest price for a consumer product. To enable
these applications, however, the systems need access to data which is prepared
in a machine-understandable format. This preparation of data is the focus of the
research areas of data profiling and integration.

This chapter introduces the basic concepts and methods of data profiling and
data integration, which lay the foundations for all methods in this thesis. Data
profiling is the collection and calculation of statistics and metadata about one or
more data sources. It allows data analysts to gain more insights about the data
sources and supports the implementation of efficient data processing algorithms.
Data integration is the process of merging data from disparate and heterogeneous
sources into a single, consolidated dataset. This process consists of schema and
data matching methods, which generate correspondences between the elements of
the different data sources, schema integration and schema mapping methods, which
specify how to merge their schemata, and data fusion methods, which determine
how to consolidate conflicting values.

This chapter is organised as follows. Section 2.2 gives a preliminary introduc-
tion to the relational data model. Section 2.3 then introduces data profiling for a
single source and multiple sources setting. Finally, Section 2.4 describes the data
integration process and its individual steps.

2.2 Preliminaries: Relational Data Model

This section introduces the relational data model [Codd, 1970] and defines its
terminology and concepts according to Ullman [Ullman, 1989] and Date [Date,

13
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2012]. The relational model is the foundation for the interpretation of relational
web tables, which are the focus of this thesis, and defines concepts such as func-
tional dependencies and candidate keys, which will play an important role for the
method introduced in Chapter 9.

A relation, relational schema, or just schema, defines a set of attributes and
their data types. Data records that use this schema are called tuples and sets of
such tuples with the same schema are called a relation instance of the respective
relational schema. A relational schema with n attributes is said to be of degree
or arity n. Relational schemata with 1, 2, 3 or n attributes are also referred to as
unary, binary, ternary or n-ary relations.

Definition 1 (Relational Schema) A relational schema R “ tA1, A2, . . . , Anu is
a set of ordered pairs pN, domq, the attributes of R, each consisting of an attribute
nameN and domain dom, which specifies the set of possible values of the attribute.

Data that conforms to a relational schema is stored in tuples which contain one
value for each attribute in the schema. A set of such tuples is called a relation
instance. A relation instance with m tuples is said to be of cardinality m.

Definition 2 (Tuple) A tuple with relational schema R is a set of ordered pairs
pA, vq that assign a value v from the corresponding domain to each attribute A in
R.

Definition 3 (Relation Instance) A relation instance r with relational schema R
is a set of tuples with relational schema R.

Basic operators for relation instances are projection, join, and union. The pro-
jection operator creates a new relation instance with the specified subset of at-
tributes. The join operator merges two or more relation instances into a new re-
lation instance with a relational schema that contains all of their attributes. The
union operator merges two or more relation instances into a new relation instance
that contains all of their tuples.

Definition 4 (Projection) Let t be a tuple with relational schema R and X be
a subset of R. The projection trXs of t on the attributes of X is a tuple with
relational schema X containing just those pA, vq pairs such that A appears in X .
The projection of a relation instance is the set of all projections of its tuples.

Definition 5 (Natural Join) Let relation instances r1, r2 with relational schemata
R1, R2 be joinable, i.e., be such that attributes with the same name are of the same
type. Then the join r1 ’ r2 is a relation instance with relational schema S1 Y S2.

Definition 6 (Union) Let relation instances r1, r2 be unionable, i.e., have the same
relational schema. Then the union r1 Y r2 is a relation instance that contains all
tuples which are in r1 or r2 or both.
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Relational constraints can limit the set of possible instances of a relational
schema and are used to express additional information about the real-world object
that is modelled in the relational schema. Frequently used relational constraints
are keys and functional dependencies. Functional dependencies specify the func-
tional relationship between sets of columns in a relation. They specify the set of
attributes that uniquely determines the value of another attribute. Based on func-
tional dependencies, the candidate keys of a relation can be defined as the minimal
sets of attributes that uniquely identify any tuple of the relation.

Definition 7 (Functional Dependency) A functional dependency (FD) with re-
spect to a relational schema R is an expression of the form R : X Ñ Y where
X is called the determinant and Y is called the dependant and X,Y Ď R. A rela-
tion instance r with schema R satisfies this FD if all its tuples t1, t2 are such that
whenever t1rXs “ t2rXs, then t1rY s “ t2rY s, otherwise r violates the FD.

Definition 8 (Candidate Key) Given a relational schema R, any set X Ď R for
which holds X Ñ R is a superkey of R. If there exists no Y Ă X such that
Y Ñ R, then X is said to be minimal and a candidate key.

The concepts defined above are rather abstract, and it may be helpful to clarify
how they relate to concrete data representations. In general, every relation instance
can be represented as a table. Each attribute of its schema corresponds to a column
and each tuple corresponds to a row. As the ordering of attributes and tuples is not
important, multiple different tables can represent the same relation instance. It is
further possible that a table does not represent a relation instance, i.e., if it does
not have a schema or contains duplicate rows. This means that, strictly speaking,
not all web tables are relation instances. Where necessary, this can be resolved by
generating a schema and removing duplicate rows.

2.3 Data Profiling

This section introduces data profiling and its individual tasks for a single data
source and for multiple data sources. Single source profiling is concerned with the
description of data from a single data source, such as a file or a relational database.
Multiple source profiling deals with the analysis of the overlap of different, het-
erogeneous data sources. The different data profiling tasks are presented along the
taxonomy proposed by Naumann [Naumann, 2014] and for each task, the usual
applications are described and references to relevant related work are given.

The term “Data Profiling” refers to the task of collecting statistics and meta-
data about one or more data sources. It is usually the first step for query optimi-
sation, data cleansing, data integration, and data analysis [Naumann, 2014]. The
results of data profiling provide insights about datasets that can be used to find reg-
ularities and inconsistencies, such as common patterns in the values of a certain
column, or help a data expert to familiarise herself with the data in preparation of
a data integration or data mining project.
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Figure 2.1: Classification of data profiling tasks (reproduced from [Naumann,
2014]).

Figure 2.1 shows a classification of the different data profiling tasks according
to Naumann [Naumann, 2014], who primarily distinguishes between single source
and multiple source profiling. For single source profiling, tasks are further distin-
guished between single column metadata, such as cardinalities, data types or value
distributions, and multiple column metadata, such as keys and functional or inclu-
sion dependencies. These statistics allow for a basic understanding of the profiled
dataset and can further be useful for tasks such as query optimisation, data clean-
ing or specific data analysis. For multiple source profiling, the sub tasks comprise
the analysis of topical, schematic and data overlap. The resulting statistics give in-
sights about the common elements in the data sources, such as common attributes
or data records, and are a prerequisite for data integration. In the context of this
thesis, the data profiling of multiple sources is of special importance, as its methods
are used to create the topical profile of web tables.

2.3.1 Single Source

This section describes the data profiling tasks which are defined for a single source,
such as a single dataset or relational database. The tasks are further differentiated
between single column profiling and multiple column profiling. While most tasks
for single columns are computationally cheap and can be solved with a single scan
over the data, the tasks for multiple columns need to consider all possible combi-
nations of columns in a dataset and are hence computationally costly.

The basic statistics for a column can be created by scanning once over the
data and reporting different counts such as the total number of values, the number
of missing values or the set of unique values and the frequency of each of these
values. Such statistics are, for example, used for database and query optimisa-
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tion [Mannino et al., 1988, Poosala et al., 1996] or for data cleaning [Rahm and
Do, 2000]. A more involved profiling step is to find common value patterns for a
column, which can be used to create data cleaning rules and spot anomalous data
values [Raman and Hellerstein, 2001].

Statistics for multiple column profiling are computationally more expensive as
they need to analyse all possible combinations of columns. Modern algorithms,
however, achieve performance improvements by applying pruning to this large
search space. The most common analysis is that of functional dependencies [Huh-
tala et al., 1999,Yao and Hamilton, 2008] and inclusion dependencies [Bauckmann
et al., 2007, De Marchi et al., 2002].

A functional dependency specifies the set of attributes that uniquely deter-
mines the value of another attribute. For example, in a relation tname, city, phone
numberu the functional dependency tphone numberu Ñ tnameu states the value
of the phone number attribute uniquely determines the value of the name attribute.
Functional dependencies can be used to determine the candidate keys of a relation,
check the data quality, and to perform normalisation of relational schemata into the
Second, Third, and Boyce-Codd Normal Form [Codd, 1972].

Inclusion dependencies can be used to find foreign keys between two relations.
They specify that the values of a set of attributes in one relation, the foreign key,
is a subset of the values of another set of attributes, the key, in a second rela-
tion. Knowledge about inclusion dependencies can further be used to avoid update
anomalies and improve data integrity.

2.3.2 Multiple Sources

This section describes the data profiling tasks that are defined for multiple sources.
Tasks in this area enable users to learn about the common properties and integra-
bility of the data. The difference when dealing with multiple sources compared
to single source profiling is the increased degree of heterogeneity. When dealing
with data from multiple sources, profiling analyses the degree of this heterogene-
ity. Heterogeneity can be divided into the three types syntactic, structural, and
semantic [Özsu and Valduriez, 2011]:

• Syntactic Heterogeneity refers to inconsistent representations of the data,
for example through different encoding, different data formats such as CSV
and XML, or different value formatting.

• Structural Heterogeneity refers to the use of unmatched schemata in the
different sources, which means that the same information may be structured
differently.

• Semantic Heterogeneity refers to the different meaning of the elements
in the different data sources. This can show in the form of synonyms and
homonyms, differences in the used ontology or ambiguity through imprecise
wording.
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Discovering syntactic heterogeneity is the focus of traditional data profiling
methods, for example by comparing the discovered value patterns for different
columns. The discovery of structural and semantic heterogeneities is performed
using schema and data matching methods known from the field of data integration.
These methods discover correspondences among the schema elements and data
records of the different sources, and are discussed in detail in the next section.
Profiling methods for multiple sources can use schema matching techniques to
determine the schematic overlap, i.e., determine to which degree the schemata of
the different sources overlap or complement each other. The same holds for the
data overlap on record-level: profiling methods can use data matching techniques
to estimate the total number of described real-world entities in the different sources.
Finally, determining the topical overlap allows for the exploration of a large pool
of unknown sources by matching the sources to a given set of topics.

2.4 Data Integration

This section introduces the data integration process and describes the individual
steps in this process. First, the overall process is introduced and the terminology is
defined. Then, each step of the process is described and the fundamental methods
from the respective areas are introduced.

The goal of data integration is to merge data from multiple sources into a single,
complete, and concise dataset [Bleiholder and Naumann, 2009]. Completeness
means that all real-world entities that are described in the original sources are also
described in the integrated dataset. Conciseness means that no real-world entity is
described by more than one record in the integrated dataset. As data integration is
not limited to data in a specific data model, such as the relational model, this section
uses a more general terminology. The term dataset is used to refer a collection
records which have values for different attributes. This corresponds to relation
instances, tuples, and attributes in the relational model, but also applies to other
data models.

The data integration process, visualised in Figure 2.2, resolves the three types
of heterogeneity introduced earlier: syntactic, structural and semantic heterogene-
ity. The methods that identify the overlapping parts of different datasets are gener-
ally referred to as “Matching”. Specifically, the identification of schema overlap is
referred to as “Schema Matching” or “Schema Alignment”, and the identification
of record overlap is, among many other names, referred to as “Data Matching”,
“Record Linking” or “Identity Resolution”. After applying the matching methods,
the datasets are merged by transforming the records into a common schema, called
“mediated” or “global” schema and then fused into a single dataset by resolving
data conflicts. Data conflicts arise if multiple sources describe the same real-world
entity with different values for the same attribute.

The data integration process that is described in this chapter corresponds to
a materialised integration, also known as warehousing, where the data from the
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Figure 2.2: The Data Integration Process

disparate sources is loaded into a single system, or warehouse, that can be queried
using the mediated schema. The alternative is a virtual integration, where the data
resides in the original sources and queries to the mediated schema are translated
into queries to the original sources [Doan et al., 2012].

2.4.1 Matching Tasks

This section introduces and defines data and schema matching and discusses the
challenges that methods for these tasks are faced with. Matching is the process of
aligning the elements (instance or schema level) of one or multiple datasets. Such
an alignment is created by the calculation of similarity scores between the elements
and by selecting matching elements based on these similarity scores. The result of
a matching process is a set of correspondences between semantically equivalent
elements. The literature on the topic usually differentiates between data matching
on the instance level and schema matching on the schema level.

Data matching is the task of finding correspondences between the records of
one or more two datasets that represent the same real-world entity [Newcombe
et al., 1959]. It has a large range of applications, from merging duplicate entries in
a customer database to comparing the prices of offers from different online shop-
ping web sites. The need for data matching arises from the fact that there is no
mechanism to assign globally valid identifiers to entities which are consistently
used in all datasets. Rather, each data producer defines how to identify entities in-
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dividually, and data matching methods try to infer which records describe the same
real-world entities based on the data that is provided. This is a long standing prob-
lem and the different research directions are described in more detail in various
surveys on the topic [Gu et al., 2003, Winkler, 2006, Elmagarmid et al., 2006].

Definition 9 (Data Matching) Given two datasets a, b, find the correspondences
CD Ď aˆ b between all records that represent the same real-world entity, i.e., are
semantically equivalent [Fellegi and Sunter, 1969].

To decide which records represent the same real-world entity, a decision func-
tion, as stated in Equation 2.1, needs to be defined. In practice, the decision func-
tion is defined over the comparison vector of two records, which encodes the simi-
larity of the records [Fellegi and Sunter, 1969], and results in the probability of the
two records representing the same real-world entity.

m : r ˆ sÑ

"

1 semantically equivalent
0 not equivalent

(2.1)

Analogously to data matching, schema matching is the task of finding cor-
respondences among schema elements, such as attributes or relations. Schema
matching is required to discover which attributes or combinations of attributes
in different sources are semantically equivalent and can be merged. As for data
matching, the necessity for schema matching arises from the fact that different data
providers name semantically equivalent attributes differently, use the same name
for distinct attributes, or model the same information with a different structure. A
more detailed discussion of schema matching methods can be found in the various
surveys and text books on the topic [Rahm and Bernstein, 2001, Bernstein et al.,
2011, Gal, 2011].

Definition 10 (Schema Matching) Given two schemataA, B, find the correspon-
dences CS Ď A ˆ B that map each attribute in A to its semantically equivalent
attribute in B [Rahm and Bernstein, 2001].

The challenge for both matching tasks is to find a measure for semantically
equivalent, i.e., define the decision function m. Finding the decision function is
hard, because the semantics of the datasets are often not fully captured by their
schema and records, but can also be implicit [Miller et al., 2000]. The specific
challenges for matching techniques are:

• Language: The naming of attributes as well as data values of records is
often based on natural language to express their meaning. Understanding
the semantic relation between such names can be challenging due to the use
of synonyms, homonyms, or hypernyms and the ambiguity that they create.
Synonyms are different terms that refer to the same concept. A homonym is
a single term that is used for different concepts. Hypernyms are terms which
are more generic than their corresponding hyponyms [Özsu and Valduriez,
2011].
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• Impreciseness: The same expression in different sources may refer to dif-
ferent semantic concepts, but this is often not stated explicitly. For example,
one source may state the net price of a product and another one states the
gross price, but both sources refer to the respective attribute by the same
name “price” [Özsu and Valduriez, 2011].

• Modelling: The same information can be modelled in various ways in dif-
ferent sources. For example, an attribute can be multi-valued in one source,
while the same information is represented as multiple Boolean attributes in
another source [Busse et al., 1999].

• Data Quality: Different sources might contain data errors or are missing at-
tribute values, which results in a low data overlap and makes the comparison
of records challenging [Köpcke and Rahm, 2010].

To define possible decision functions, a variety of similarity measures has been
proposed, which can be used to define matchers that approximate the correct de-
cision function. An overview of possible similarity measures is given in Section
2.4.2 and Section 2.4.3 introduces the architecture of matchers which use these
similarity functions to approximate the decision function.

2.4.2 Similarity Calculation

This section defines the notion of similarity measures and introduces several sim-
ilarity measures for various data types. These measures are used to calculate the
similarity of data values or the names of schema elements and are essential for all
matching algorithms.

Semantically equivalent values in different data sources are often not syntac-
tically equivalent, which makes them hard to detect. For example, names might
be stated as “firstname lastname” or alternatively as “lastname, firstname”. These
differences can be accounted for by using a similarity measure rather than checking
values for exact literal equality. A similarity measure calculates the degree of sim-
ilarity between two values. Analogously, a distance measure calculates the degree
of dissimilarity between two values and is the inverse of a similarity measure.

Definition 11 (Similarity Measure) A similarity measure is a function that maps
pairs of values from a given domain to a real value in the range r0, 1s where larger
values indicate greater similarity [Cohen et al., 2003].

String Similarity. For string values, several measures have been proposed that
either tokenise the string first and compare the sets of tokens, or apply a character-
based comparison. Surveys of the multitude of different approaches are given by
Cohen et al. [Cohen et al., 2003] or Elmagarmid et al. [Elmagarmid et al., 2006].
The Levenshtein Distance [Levenshtein, 1966], as an example for a character-based
measure, counts the minimal number of edits needed to transform one string into
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the other. Edits can be deletion, insertion, or substitution and the minimal num-
ber of edits can be determined using a dynamic programming algorithm [Navarro,
2001]. The Levenshtein Similarity simlevpa, bq between two strings a, b can be ob-
tained by dividing the distance distlevpa, bq by the length of the longest of the two
strings:

Levenshtein : simlevpa, bq “ 1.0´
distlevpa, bq

maxp|a|, |b|q
(2.2)

Numeric Similarity. Numeric similarity can be calculated as the absolute or
percental difference between two numeric values a and b. In this case, a maximum
difference dmax must be specified by the user to normalise the similarity value to
the range r0, 1s:

Absolute Difference : simabspa, bq “

#

1.0´
´

|a´b|
dmax

¯

if |a´ b| ă dmax

0.0 otherwise
(2.3)

An alternative that does not require a user-specified parameter is to calculate
the ratio between the absolute values of both numbers [Rinser et al., 2013]:

Ratio : simratiopa, bq “
minp|a|, |b|q
maxp|a|, |b|q

(2.4)

Variations of this measure may penalise non-exact matches:

Adjusted Ratio : simadj.ratiopa, bq “

#

1 if a “ b
1
2

minp|a|,|b|q
maxp|a|,|b|q otherwise

(2.5)

Date Similarity. The comparison of dates can be performed by using a numeric
measure to compare the year-part of each date, as shown in Equation 2.6, or by
transforming both dates into the number of days between the date and specific
reference date.

Year : simyearpa, bq “ simnumericpyearpaq, yearpbqq (2.6)

Alternatively, each part of the date, i.e., day, month, and year, can be compared
separately and the final similarity value is a weighted combination of the individual
scores:

Weighted : simweightedpa, bq “ α simpdaypaq, daypbqq `
β simpmonthpaq,monthpbqq `
γ simpyearpaq, yearpbqq

(2.7)
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Set Similarity. Set similarity measures can be applied for multi-valued at-
tributes, for the comparison of all values of two attributes, or for sets of tokens
that are created from strings, such as the set of all words or n-grams [Ullmann,
1977,Ukkonen, 1992]. The similarity of two sets A,B can be measured by setting
their intersection in relation to the size of the smaller set (overlap similarity) or to
the size of their union (Jaccard similarity) [Jaccard, 1912].

Overlap : simoverlappA,Bq “
AXB

minp|A|, |B|q
(2.8)

Jaccard : simjaccardpA,Bq “
|AXB|

|AYB|
(2.9)

For comparisons of long strings based on word tokens, it can be useful to al-
low minor differences, such as edit errors, between the tokens. The generalised
Jaccard similarity hence uses an inner similarity measure sim1 when determin-
ing the intersection of the two compared sets: if the inner similarity is above a
threshold θ, then the elements are considered equal [On et al., 2007]. Note that if
matchpA,Bq “ A X B in Equation 2.10, this is equal to the Jaccard Similarity in
Equation 2.9.

Generalised Jaccard : simgen.jacpA,Bq “
|matchpA,Bq|

|A| ` |B| ´ |matchpA,Bq|
(2.10)

with

matchpA,Bq “ tpai, bjq|ai P A^ bj P B : sim1pai, bjq ě θu (2.11)

Vector Similarity. Strings can further be compared by first transforming them
into vectors. The TF-IDF method for vectorisation of text documents from the field
of information retrieval [Manning et al., 2008] transforms a string into a sparse
numeric vector that assigns a real value to every token of the string with a fixed
vocabulary. In such a vector, the values indicate the importance of each token for
the comparison. The similarity between two strings based on TF-IDF can then
be calculated as the inner product between their vector representations [Chaudhuri
et al., 2003]. As the inner product corresponds to the cosine of the angle between
the vector representations, it is also often referred to as “Cosine Similarity”.

Cosine Similarity : simcosinep ~A, ~Bq “
~A ¨ ~B

| ~A|| ~B|
“ | ~A|| ~B|cos> ~A~B (2.12)
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First Line Matcher

First Line Matcher

First Line Matcher

Second Line Matcher
(non-decisive)

Second Line Matcher
(decisive)

Matcher Constraint Enforcer,
Combiner

Match Selector

Figure 2.3: Matcher components according to the classification systems of Gal
and Sagi, and Lee et al.

2.4.3 Matcher Architecture

This section introduces the terminology and methods that are used to define match-
ers for schema matching and data matching. First, a classification of matcher com-
ponents is presented and the general architecture is introduced. Then, the com-
ponents for the different matching steps are introduced and common methods are
described.

A single similarity measure is often not enough to model a high-quality match-
ing system. For example, two cities might have the exact same name but are not
the same real-world entity, like “Paris (France)” and “Paris (USA)”. In this case,
a string matcher that compares the city name will find perfect similarity, while
another matcher that compares the country will find no similarity. Hence, multi-
ple similarity measures can be combined into complex matchers that improve the
quality. Such matchers may consist of multiple steps that are executed sequentially,
where each step re-uses the result of the previous step, or in parallel, where each
step use the same input, with a subsequent step that combines the different results.

Gal and Sagi [Gal and Sagi, 2010] distinguish between first-line and second-
line matchers, as well as between decisive and non-decisive matchers. First-line
matchers receive the original datasets as input and output a similarity matrix, while
second-line matchers receive one or more similarity matrices as input. Decisive
matchers determine matches between the elements in the input data, i.e., make
a decision, while non-decisive matchers only calculate a similarity among these
elements. Figure 2.3 shows an example matcher architecture according to this
classification as well as the classification proposed by Lee et al. [Lee et al., 2007].

First Line Matcher. A first line matcher compares pairs of records or attributes
and calculates a similarity score for each pair. Such matchers may apply a simple
similarity function or evaluate a complex matching rule. If a similarity threshold is
enforced by the matcher, it is a decisive first-line matcher.
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Second Line Matcher. A second line matcher has a decision function that con-
siders the similarity calculated by one or more first line matchers or other second
line matchers as input. Such a matcher can, for example, prune the similarity
matrix below a threshold or apply a global matching by calculating the maximum-
weight bipartite matching [Galil, 1986] based on the similarity values.

Alternative Classifications. Lee et al. [Lee et al., 2007] classify matchers into
the categories “matcher”, “combiner”, “constraint enforcer”, and “match selec-
tor”. A matcher corresponds to a first-line matcher, while the remaining categories
describe different types of second-line matchers. A combiner merges the similarity
matrices created by multiple other matchers, for example by averaging. A con-
straint enforcer might apply domain-specific constraints that remove improbable
correspondences and a match selector is a decisive second-line matcher.

Reducing the Number of Comparisons

Matchers look for semantically equivalent elements in the cross product of their in-
puts, i.e., all possible combinations of records or attributes. This input space grows
quadratically with the size of the datasets and quickly becomes computationally
infeasible, especially for the data matching task. This section introduces methods
to reduce the number of candidate pairs of records, which are executed before the
actual matcher and are computationally cheaper.

Blocking. To find approximately matching pairs, one or multiple highly dis-
criminative values of the records are used to define a blocking key attribute and
all records with the same value for this attribute form a block [Elmagarmid et al.,
2006]. The matcher is then only applied to all pairs that can be generated from
the same block, and records from different blocks are assumed to be non-matches.
For example, a blocking key attribute might contain the first three letters of a cus-
tomer’s last name and the first two digits of her zip code. A drawback of this
method is that correct matches are missed if the records are placed in different
blocks, for example if an unsuitable blocking key is chosen. To prevent this, mul-
tiple runs with different blockings keys can be executed.

Sorted-Neighbourhood Method. A method to increase the completeness of a
blocking step is the Sorted-Neighbourhood Method [Hernández and Stolfo, 1998].
Here, all blocking key values are sorted and then a sliding window is applied to
the sorted records. This allows for the comparison of records with similar, but
not exactly matching blocking key values. It has been show by Draisbach and
Naumann [Draisbach and Naumann, 2009] that it is possible to generalise both
approaches to a “Sorted Blocks” method, using a parameter that in its extreme
settings yields the two different approaches.
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Inverted Index. For fast comparisons, an efficient technique is the use of an
inverted index [Cohen, 2000]. In such an index, the record values or substrings of
these values, such as n-grams, are listed with references to all records that contain
this value. A join over these indexed terms then results in the sets of all records
that contain common values. It has further been shown how these indices can be
pruned to speed up the join computation [Carmel et al., 2001,Sarawagi and Kirpal,
2004]

Matching Approaches

This section introduces different types of matchers. Each of these types takes a
different approach to combining the similarity scores that are calculated over pairs
of records or attributes and form the comparison vector.

Matching Rules. To determine the similarity of records, matching rules de-
fine how to combine the similarities of the individual record values. Hand-written
matching rules usually take the form of a “linear combination” or “rule set”.
A linear combination weights the similarity of n different attributes Ai for two
records r1, r2 and aggregates them into a weighted sum, as shown in Equation
2.13 [Doan et al., 2012].

simrecordpr1, r2q “
n
ÿ

i“1

θi ¨ simipr1rAis, r2rAisq (2.13)

A rule set contains rules that specify conditions for a match and allow for a
non-linear combination of the attribute similarities, as shown in Equation 2.14.

sim1pr1rA1s, r2rA1sq ą θ1 ^ sim2pr1rA2s, r2rA2sq ą θ2 ñ match (2.14)

Matching rules can be designed manually by experts [Wang and Madnick,
1989], which usually results in high accuracy, but also requires a high manual
effort. If training data is available, matching rules can also be learned using ma-
chine learning methods [Bilenko et al., 2003, Cochinwala et al., 2001, Isele and
Bizer, 2012]. For example, a linear combination can be represented as a logistic
regression model and a rule set can be represented as a decision tree model. To
reduce the requirements to the training dataset, active learning methods have also
been used to generate matching rules [Isele and Bizer, 2013].

Duplicate-based Matching. In schema matching, the similarity of attributes can
also be determined by comparing the values of duplicate records, i.e., by re-using
the results of a preceding data matching step [Bilke and Naumann, 2005, Zhou
et al., 2007]. For each record correspondence, the similarity of the values for all
attribute combinations is calculated. These similarity values are then averaged over
all record correspondences CD to determine the similarity score for the respective
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attribute pair, as shown in Equation 2.15. This usually gives better results than
comparing the set of all values of an attribute, because the similarity is only calcu-
lated for attribute values that describe the same real-world entity.

simduplicatepA1, A2q “
1

|CD|

ÿ

pr1,r2qPCD

simpr1rA1s, r2rA2sq (2.15)

Global Matching

The matchers presented above compare all record pairs individually, and may
hence produce multiple correspondences for a given record. It is, however, often
desirable to limit the result to the most confident correspondences or even enforce a
1:1 mapping, where each record can only correspond to a single other record [Doan
et al., 2012]. This section introduces approaches for such a global matching, which
are decisive second-line matchers.

Top-K Matches. A computationally cheap approach is to limit the set of corre-
spondences for each record or attribute to the k correspondences with highest sim-
ilarity score. This does, however, not enforce a 1:1 mapping as multiple records
from one dataset might have their correspondence with the highest similarity score
to the same record in the second dataset.

Maximum-Weight Matching. The matching problem between two datasets
can be modelled as a bipartite graph, in which the elements, records or attributes,
of each dataset are vertices and weighted edges connect the vertices of different
datasets. The weight of each edge is the similarity as calculated by a matcher. In
such a graph, the maximum-weight matching is the subset of the edges with the
largest sum of weights, such that each vertex is only connected to a single other
vertex [Galil, 1986].

2.4.4 Data Fusion

After schema and data matching methods have established which attributes and
records in different datasets correspond to each other, data fusion methods are used
to create an integrated dataset. This section introduces the task of data fusion and
discusses how it can be implemented using relational operators. Further, different
strategies for the handling of conflicting data values are presented.

Once two or more datasets have been matched, and their schemata have been
mapped to each other, the data can be combined into an integrated dataset. Com-
bining here means to merge the attributes and records from the different sources
into a single dataset. When merging records based correspondences from a data
matching step, different sources might provide conflicting values. Such data con-
flicts can either be escalated to an end user or be resolved using various strategies.
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Relational Operators

Datasets can be merged through two different types of relational operators: by
joining them or by creating their union. In the context of data integration, these op-
erations have to deal with a higher level of heterogeneity than in a single-database
scenario, i.e., corresponding attributes can have different names and corresponding
records might not share a common key. This section introduces variants of the re-
lational join and union operators and discusses their implication for the data fusion
process. A more detailed discussion of these operators is given by Bleiholder and
Naumann [Bleiholder and Naumann, 2009].

Join. Both the equi-join on key attributes ’Key“Key and the natural join ’

combine the records of two datasets on matching values. They are uniqueness pre-
serving, meaning that if the values for the attributes in the join condition are unique
in the sources, they are also unique in the joined result. But, as they only produce
a record if values from both datasets can be matched, records without counterpart
in one of the datasets are missing and these joins are hence not object preserving
and affect the completeness of the integrated dataset. The full outer join on key
attributes |’|Key“Key is, in addition to being uniqueness preserving, also object
preserving, as records without counterpart are included in the result by padding
them with null values. However, if more than two relations are integrated, the re-
sult of multiple outer joins depends on their order, i.e., the outer join operator is
not associative. Further, matching attributes are only merged if they have the same
name, in all other cases, the join result contains redundant attributes. If the joined
sources provide exactly the same values, this can be resolved by renaming the at-
tributes before the join. If, however, the sources provide conflicting information,
additional functions must be used to handle the conflicts as described in the next
section.

Union. The union operatorY is only defined for datasets with the same schema:
all records of both datasets are added to the result and exact duplicates are removed.
For different schemata, the outer union operatorZ first adds missing attributes and
pads them with null values to align the schemata and then applies the union oper-
ation. As this can result in records which only differ with respect to null values,
another useful variation is the minimum union ‘, which extends the outer union
and also removes subsumed records, i.e., records that always have the same value
as another record or null [Galindo-Legaria, 1994]. The union operators are object
preserving, as all original objects are present in the result. They are not uniqueness
preserving, as exact duplicates, but no conflicting tuples, are removed from the re-
sult. This can be avoided and conciseness of union results can be improved with the
use of a grouping operation on the object identifier (possibly obtained through data
matching) and the conflict handling methods discussed in the following section.
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Conflict Handling

After merging the datasets with one of the operators described above, data con-
flicts can occur if different datasets provide contradicting values. This section in-
troduces strategies for handling such conflicts. The discussed strategies are classi-
fied according to Bleiholder and Naumann [Bleiholder and Naumann, 2009], who
distinguish between three different types of conflict handling strategies: “Conflict
Ignorance”, “Conflict Avoidance”, and “Conflict Resolution”.

Conflict Ignorance. Data fusion with conflict ignorance does not make any
decision in case of a data conflict and might not even be aware of such conflicts.
The conflict must then be resolved by an application or by the user. This is, for
example, the case if datasets are merged by a union operation and can result in
redundant records which describe the same entity in the integrated dataset.

Conflict Avoidance. Conflict avoidance functions decide how to handle incon-
sistencies before seeing the actual values, and hence must not necessarily be aware
of conflicts. These functions are specified for each attribute in the integrated dataset
in advance and applied to all conflicting records. Examples are the coalesce
function, which returns the first non-null value or a function that always chooses
the value from the preferred data source.

Conflict Resolution. Conflict resolution functions consider the actual values
and metadata before deciding how to resolve a data conflict. They can be further
divided into deciding and mediating functions. Deciding functions choose one
of the existing values, for example by a majority vote. Mediating functions can
choose a value that does not necessarily exist in the original sources, for example
by taking the average of all values.

The final step of the data integration process, data fusion, uses the original
datasets and the results of schema and data matching steps as its input and pro-
duces a single, integrated dataset. The schema correspondences obtained through
schema matching are used to align the attributes of the datasets, i.e., to rename
their attributes before merging them using a join or union operation. Similarly, the
record correspondences obtained through data matching are used to insert com-
mon key values which allows the corresponding records to be joined or grouped
together. After the source datasets have been merged and data conflicts have been
resolved, the data integration process is completed and the result is a single, inte-
grated dataset.
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2.5 Conclusion

This chapter introduced the topics data profiling and data integration. Data pro-
filing is concerned with the statistical analysis of data sources for the purposes
of query optimisation, data cleansing, data integration, or general data analysis.
The different statistics can be categorised based on the number of sources that are
analysed. For single source profiling, statistics of attributes and data values are
of interest and can be used to optimise data access or improve the data quality.
For multiple source profiling, the overlap with respect to topics, schemata, and
data records is of interest and can give insights about the integrability of the data
sources. Methods for multiple source profiling are hence those from the area of
data integration.

Data integration considers the problems of finding corresponding elements
among the schemata and records of disparate data sources as well as their fusion
into a single, integrated dataset. The methods used find such correspondences are
generally referred to as matching methods, which employ a variety of different
similarity measures and architectures of matching components. Using the discov-
ered correspondences, the datasets can then be merged by data fusion methods,
which combine the datasets and resolve data conflicts.

These methods are the foundation of all methods that are presented in this
thesis. Chapters 5, 7, 8, and 9 will present methods for data and schema matching
that find correspondences between web tables and a knowledge base as well as
correspondences among web tables. Chapters 4, 6, 8, and 9 will further present
data profiles that give a detailed understanding of the contents of the web table
corpora introduced in Chapter 4 and show how these web tables can be used for
knowledge base augmentation.



Chapter 3

Knowledge Bases

3.1 Introduction

Knowledge bases store structured data about real-world entities and their properties
and are nowadays employed in many use cases. The most prominent one might be
web search, where knowledge bases are used to detect the mentions of entity and
property names in the user’s keyword query to try and understand the user’s intent
rather than just matching the keywords to web pages. Today’s web search engines
can already match a large number of different queries to their knowledge bases and
even provide exact answers, for example about the birth date of popular people,
rather than showing a list of web pages that likely contain this answer. This is
only possible if the used knowledge base has a large coverage of entities and their
properties, and there is hence a significant amount of research concerned with the
construction and augmentation of such knowledge bases.

This chapter first gives an overview of the RDF data model, which is used by
many knowledge bases to store their data. Then, the most commonly used knowl-
edge bases in research, i.e., DBpedia, YAGO, Wikidata, etc., are introduced and
compared. Such knowledge bases are often based on an automatic extraction of
statements from Wikipedia, but differ in the way the knowledge is organised and
how additional knowledge can be added to the knowledge base. While DBpedia
and YAGO are constructed through automatic extraction only, Freebase and Wiki-
data rely on user contributions to accumulate additional knowledge.

For DBpedia, which is used in all following chapters, such user contribution is
used to create a high quality mapping from the Wikipedia pages to a hand-crafted
ontology, which is used during the automated extraction of the knowledge base.
The extracted knowledge base contains one entity for each page in Wikipedia and
has a strong focus on describing people of public interest. It is, however, far from
being complete and knowledge base augmentation methods are needed to gather
additional knowledge. These methods might either fill-in missing values, add ad-
ditional entities, or find new properties for the existing entities in the knowledge
base.

31
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This chapter is organised as follows. Section 3.2 provides a preliminary intro-
duction of the RDF data model. Then, Section 3.3 introduces knowledge bases,
gives an overview of the most common knowledge bases, and describes DBpedia,
the knowledge base that is used throughout this thesis, in more detail. Finally,
Section 3.4 introduces the topic of knowledge base augmentation, describes its dif-
ferent tasks, and discusses approaches from the literature which are not based on
web tables.

3.2 Preliminaries: RDF Data Model

This section introduces the RDF data model and is based on the W3C RDF 1.1
Primer and the RDF 1.1 Concepts and Abstract Syntax Recommendation [Manola
et al., 2004, (W3C), 2014]. It is the data model that is used by many knowledge
bases such as DBpedia, which is used throughout this thesis. The terminology used
to define the RDF data model differs significantly from that of the relational model
introduced in Section 2.2. Throughout the thesis, the terms of the corresponding
data model are used when referring to the relational or the RDF data model, re-
spectively.

The RDF data model is a graph-based data model and specifies how to make
statements about resources using a simple format, called a triple:

<subject> <predicate> <object>.

These triples describe directed arcs between the subject and object, labelled
with the predicate. Subject, predicate as well as object can be represented by Inter-
nationalized Resource Identifiers (IRIs), which uniquely identify a resource. For
example, the statement that the population of Germany is 82 million can be ex-
pressed by the following RDF triple:

dbr:Germany dbo:populationTotal 82175700ˆˆxsd:integer.

The preceding triple uses the namespace aliases dbr1, dbo2, and xsd3 for
brevity. Its subject and predicate are identified by IRIs, but its object is a so-
called literal, which consists of a literal value, here “82175700”, and a data type,
“xsd:integer” in the example, that specifies how to interpret the literal value.

Definition 12 (Triple) An RDF triple consists of three components: the subject,
which is an IRI or blank node; the predicate, which is an IRI; the object, which is
an IRI, a literal or a blank node.

1http://dbpedia.org/resource/
2http://dbpedia.org/ontology/
3http://www.w3.org/2001/XMLSchema

http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://www.w3.org/2001/XMLSchema
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Definition 13 (Literal) A literal consists of two or three elements: a lexical form,
being a Unicode string; a data type IRI, being an IRI identifying a data type
that determines how the lexical form maps to a literal value; if and only if the
data type IRI is http://www .w3.org/1999/02/22-rdf-syntax-ns#l
angString, a non-empty language tag.

Definition 14 (Blank Node) Blank nodes are disjoint from IRIs and literals. Oth-
erwise, the set of possible blank nodes is arbitrary.

A set of RDF triples forms an RDF graph. As the same IRI can appear in
multiple triples in any of the subject, predicate, and object position, it is possible
to create connections between triples. A simple RDF graph is shown in Figure 3.1.

dbr:Germany

dbr:Berlin

dbo:country

dbo:populationTotal

dbr:Euro

dbo:currency

82175700^^xsd:integer

Figure 3.1: An example of an RDF graph.

Definition 15 (RDF Graph) An RDF graph is a set of RDF triples. The set of
nodes of an RDF graph is the set of subjects and objects of triples in the graph. It
is possible for a predicate IRI to also occur as a node in the same graph.

The RDF data model is used for many of the knowledge bases that will be
introduced in section 3.3. These knowledge bases define their own vocabulary
to describe the stored data based on the modelling constructs that are available
through RDF and RDF Schema [Brickley et al., 2014]. Some of these constructs
are the following predefined classes and properties, where the namespace aliases
rdf4 and rdfs5 are used for brevity. A class in RDF is a group of resources and
also is a resource by itself, i.e., a class can be referred to in the subject or object
position of a triple. A property in RDF defines a relation between the subject
resources and object resources.

• rdfs:Class: A resource that identifies a class in RDF. It is the class of all
resources that are RDF classes.

• rdfs:Property: A resource that identifies a property in RDF. It is the
class of all resources that are PDF properties.

4http://www.w3.org/1999/02/22-rdf-syntax-ns#
5http://www.w3.org/2000/01/rdf-schema#

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#


34 CHAPTER 3. KNOWLEDGE BASES

• rdf:type: A property that states that the subject is an instance of the class
identified by the object.

• rdfs:subClassOf: A property that states that the subject is a subclass
of the object.

• rdfs:subPropertyOf: A property that states that the subject is a sub-
property of the object.

• rdfs:domain: A property that specifies that the domain of the property
identified by the subject is an instance of the class identified by the object.

• rdfs:range: A property that specifies that the range of the property iden-
tified by the subject is an instance of the class identified by the object.

• rdfs:label: A property that may be used to provide a human-readable
version of a resource’s name.

Classes in RDF define a set of resources with some common semantics. They
roughly correspond to relations in the relational model as the same set of properties
can be used for all resources that are an instance of the same class, just as all tuples
for the same relation use the same set of attributes. Properties in RDF, when used
in the predicate position of triples, correspond to attributes in the relational model.
It is important to note that in RDF terminology, the domain of a property is the
type of the subjects of triples using this property. In the relational model, however,
the domain of an attribute specifies the set of possible values, which corresponds
to the range of a property in RDF.

3.3 Overview of Common Knowledge Bases

This section gives an introduction to knowledge bases by describing the most com-
monly used knowledge bases and the sources from which they are created.

The improvements made in automatic fact extraction and the growths of collab-
orative information sharing resources such as Wikipedia have lead to the develop-
ment of several large-scale knowledge bases [Weikum and Theobald, 2010]. These
are large databases of structured knowledge, which are created through the extrac-
tion and integration of data from web sources. The goal of such general-purpose
knowledge bases is to collect the human knowledge and make it accessible to both
human users and machines, allowing them to formulate complex queries and per-
form reasoning over the data.

Recently, the term knowledge graph has been used more frequently instead of
the term knowledge base, but there is no clear definition or consensus among re-
searchers about the meaning of these terms. Ehrlinger and Wöß compare different
uses of the terms and define them as follows: “A knowledge graph is a knowledge-
based system that contains a knowledge base and a reasoning engine” [Ehrlinger
and Wöß, 2016]. According to their terminology, a knowledge base is an ontol-
ogy, which is a machine-readable definition of an abstract model of (a part of) the
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real world that defines the relevant concepts as well as constraints on the use of
these concepts. They further identify the “collection, extraction, and integration
of information from external sources” as an essential characteristic of a knowledge
graph.

For the purpose of this thesis, the term knowledge base will be used to refer
to a machine-readable representation of entities, their properties and a taxonomy
of classes in which they are organised. Further, only large-scale, general-purpose,
cross-domain knowledge bases are discussed in the following, as only these knowl-
edge bases are useful for a general profiling of the contents of web table corpora.
Table 3.1 compares the knowledge bases that are introduced in the following para-
graphs with respect to number of entities, triples, classes, and properties. The com-
parison shows the different characteristics of the knowledge bases. While DBpedia
uses a small type hierarchy with rather generic classes, YAGO provides about 500
times more classes for a similar amount of entities and is much more fine-grained,
but uses far less different properties. Freebase and Wikidata cover a larger set of
entities, as they rely not only on Wikipedia, but also on user contributions to create
additional data. Finally, the Google Knowledge Graph is likely the largest knowl-
edge base at the time of writing, but it is not publicly accessible and only little
information is available.

Table 3.1: Overview of common knowledge bases (reproduced from [Paulheim,
2017]).

Name Entities Triples Classes Properties

DBpedia (English) 4 806 150 176 043 129 735 2 813
YAGO 4 595 906 25 946 870 488 469 77
Freebase 49 947 845 3 041 722 635 26 507 37 781
Wikidata 15 602 060 65 993 797 23 157 1 673
Google Knowledge
Graph

570 000 000 18 000 000 000 1 500 35 000

DBpedia. The DBpedia knowledge base is extracted from Wikipedia pages
through different extractors that convert the page content into RDF [Lehmann et al.,
2015]. This enables querying and automated processing of the vast amounts of data
that are available in Wikipedia. By interlinking DBpedia with other datasets in the
semantic web, DBpedia has become the central dataset in the linked open data
(LOD) cloud [Schmachtenberg et al., 2014].

YAGO. Similar to DBpedia, the YAGO knowledge base is also extracted from
Wikipedia. However, the approach taken by YAGO differs in its type system and
focus on accuracy [Suchanek et al., 2007]. The type hierarchy used by YAGO is
based on WordNet and contains almost half a million classes, while the DBpedia
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ontology is hand-crafted and contains only 735 classes. Concerning the size of 5
million triples, YAGO is considerable smaller than DBpedia, but it is supposed to
have an accuracy above 95%.

Freebase. The Freebase knowledge base puts more emphasis on collaborative
collection of knowledge and enables users to add or modify the information in the
knowledge base via APIs and a Web interface [Bollacker et al., 2007]. It is seeded
from Wikipedia and several other datasets, but the focus is on cumulating more
information through the efforts of its users. The project has, however, been shut
down in 2014 after it was acquired by Google and used to seed the non-public
Google Knowledge Graph.

Wikidata. The Wikidata knowledge base follows the same idea as Freebase, and
allows users to collaboratively edit the data of the knowledge base [Vrandečić and
Krötzsch, 2014]. Furthermore, Wikidata is used as a data back-end for Wikipedia
and an increasing amount of content on Wikipedia pages, such as links between
different language versions of the same article, is generated from Wikidata. Be-
side simple property-value pairs, Wikidata also supports complex statements which
cannot be expressed as simple triples. An example is the statement that the popula-
tion of Rome was 2 761 477 as of 2010 based on an estimation published by Istat.
Such complex statements are achieved through the definition of an extensible set
of “quantifiers” which can be used to add more information to a base triple that
states, in this case, the population of Rome.

Google Knowledge Graph. Introduced in 2012, the Google Knowledge Graph
is used to enhance the Google search engine [Singhal, 2012]. There, it is used to
provide factual answers for certain types of queries and show summaries on the
search results page for recognised entities in the user’s query. It is supposedly the
largest knowledge base at the time of writing, but not publicly accessible.6

This overview over commonly used knowledge bases shows the different ap-
proaches that are taken towards organising the human knowledge in a machine-
understandable way. While all of the presented knowledge bases are seeded or
constructed completely from Wikipedia, they still differ great in the way the data
is modelled. This shows, for example, in the size of the used class hierarchy or
number of existing properties. The next section provides further details about the
DBpedia knowledge base, which is used in the experiments and analyses that are
presented in this thesis.

6https://search.googleblog.com/2012/12/get-smarter-answers-from-k
nowledge_4.html

https://search.googleblog.com/2012/12/get-smarter-answers-from-knowledge_4.html
https://search.googleblog.com/2012/12/get-smarter-answers-from-knowledge_4.html
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The DBpedia Knowledge Base

This section provides additional details about DBpedia, which is the knowledge
base that is used in all experiments in this thesis. For its use throughout this thesis,
the relevant parts of the extraction process are explained and the suitability of the
knowledge base for the conducted analyses is discussed. Finally, statistics about
the contents of DBpedia, i.e., its entities, classes, and properties, are presented.

DBpedia is created by several extractors that extract statements from different
parts of Wikipedia pages into RDF. The most relevant extractor for this thesis is the
“Mapping-Based Infobox Extractor”, which extracts statements from the Infobox
of a page using a manually defined mapping into the DBpedia ontology names-
pace.7 This mapping is crowd-sourced and can be edited by users using a separate
Wiki, the DBpedia Mappings Wiki.8 The manual creation of the mapping results
in a higher level of quality for the triples in the DBpedia ontology namespace than
for triples of other extractors. For this reason, this thesis exclusively considers
the properties defined in this namespace. The second relevant namespace is the
resource namespace, which contains the URIs of all entities.9 For these entities,
there is a one-to-one mapping between each Wikipedia page and an entity.

For the purpose of this thesis, which focuses on a broad profiling of web tables
across various topics, the used target knowledge base should cover many topics and
be representative for entities of public interest. These two criteria are fulfilled by
all knowledge bases that are extracted from Wikipedia, as the articles in Wikipedia
cover a very broad range of topics and its guidelines require the subjects of articles
to be notable.10 While this means that any of the knowledge bases described in the
previous section are suitable for the analyses in this thesis, DBpedia in particular
has been recognised as a common point of reference in the Web of Data with more
than 200 datasets referring to DBpedia [Schmachtenberg et al., 2014].

The version DBpedia that is used throughout this thesis, DBpedia 2014, con-
tains a total of 4.5 million entities, 730 classes, and 2795 properties. Figure 3.2
shows the frequency distribution of entities over the largest high-level classes in
the DBpedia type hierarchy. The largest class is Agent, which contains 44% of all
entities, followed by Place with 17%, TimePeriod with 16%, and Work with
9%. This distribution shows that DBpedia has a strong focus on persons of public
interest. But, this also means that large parts of the type hierarchy are rather spe-
cific and only cover a small subset of the entities in DBpedia. In total, the highest
level in the class hierarchy contains 23 classes, but the five largest classes Agent,
Place, Species, TimePeriod and Work cover 92% of all entities.

Figure 3.3 shows the density of several properties for the largest classes in DB-
pedia, i.e., the percentage of entities that have a value for these properties. The
most frequently filled values are those of the Eukaryote class, which specify

7http://dbpedia.org/ontology/
8http://mappings.dbpedia.org/
9http://dbpedia.org/resource/

10https://en.wikipedia.org/wiki/Wikipedia:Notability

http://dbpedia.org/ontology/
http://mappings.dbpedia.org/
http://dbpedia.org/resource/
https://en.wikipedia.org/wiki/Wikipedia:Notability
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Figure 3.2: Distribution of DBpedia entities by class.
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the classification of the species. Although the figure shows some of the most fre-
quently used properties of the selected classes, an overall rather low density can be
observed. For example, only 59% of the persons in DBpedia have a value for their
birth date and only 56% of all populated places have a value for population. This
shows that there is a clear need for adding missing values to the knowledge base.

3.4 Knowledge Base Augmentation

This section introduces the topic of knowledge base augmentation and discusses
approaches from the literature in the areas of Open Information Extraction and
Wrapper Induction. An extended discussion of literature for knowledge base aug-
mentation with respect to web tables is given in the related work sections of Chap-
ter 5, 6, and 8.

Knowledge Base Augmentation Tasks

This section introduces the three knowledge base augmentation tasks slot filling,
schema extension, and entity-set completion. The overarching goal of these tasks
and knowledge base augmentation in general is to extract schematic and factual
data from large-scale web sources and add it to existing knowledge bases. The
slot-filling task seeks to add values for known properties of existing entities. The
schema-extension task has the goal of finding new properties, and the entity-set-
completion task aims to find additional entities for the knowledge base.

Slot Filling. The goal of the slot filling task [Surdeanu and Ji, 2014] is to fill-in
missing values for known entities and properties. This means either finding a literal
value for a given entity and property, such the population of Germany, or finding
that a known relation, represented by a property, holds between two known entities,
such as the relation “is capital of”, which holds between Berlin and Germany.

This task is approached by many information extraction systems, which extract
values and relations either from natural language text [Ji and Grishman, 2011] or by
learning wrappers for the structure of web pages [Arasu and Garcia-Molina, 2003].
To solve this task, a system must perform linking and disambiguation for entities
as well as for properties in multiple data sources and then decide which source to
trust in order to produce a final value [Dong et al., 2014a]. An exhaustive overview
of such systems is given by Weikum and Theobald [Weikum and Theobald, 2010]
as well as Paulheim [Paulheim, 2017].

Schema Extension. The goal of the schema extension task is to find additional
properties which can be added to a knowledge base. There are different approaches
to the schema extension task, which not only differ in their methodology, but also
in their goal and in their evaluation setting.
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Open information extraction systems [Fader et al., 2011, Yates et al., 2007]
try to discover relations that hold between recognised entities in natural language
text. The focus of these methods is on correctly interpreting the natural language
sentences and extracting the tokens that represent the relation as new properties.
For evaluation, human annotators define which relations should be extracted from
a given set of sentences.

A different approach is attribute discovery, which focusses on finding names
of new attributes that are relevant for known classes and their entities, and may be
added as new properties to a knowledge base [Gupta et al., 2014, Cafarella et al.,
2008a]. These methods make no attempt to extract values for the discovered at-
tributes. Instead, attributes are ranked by their relevance for the given classes or
entities that should be extended and evaluated with respect to the amount of rele-
vant attributes at a given rank.

A third approach is to find new attributes based on user-provided keyword
queries [Yakout et al., 2012, Lehmberg et al., 2015]. Methods in this area search
a corpus of heterogenous data sources, for example consisting of web tables, for
attributes that match the query and join them to a dataset that is provided by the
user. The evaluation of these methods measures if the correct attributes values were
joined to the dataset.

Entity-Set Expansion. The goal the entity-set expansion task is to find missing
entities for known classes. Approaches in this area make use of a small set of seed
entities and try to find more entities that belong to the same semantic concept in
web sources [Ghahramani and Heller, 2006].

This is either done by training extractors for the known entities, for example
from structured web sources as in wrapper induction, or by learning textual patterns
that indicate class membership, as in “Countries such as Germany and France”
[Wang and Cohen, 2008,Carlson et al., 2010]. The challenges for these approaches
are to create a complete and coherent set of entities. Completeness is challenging
because many web sources might only state popular entities, while less popular
entities, so-called “long tail entities”, are much harder to find [Wang et al., 2015a].
Coherence of the result set means that only entities that correspond to the same
semantic concept should be included, i.e., methods have to avoid a “concept drift”,
which occurs if web sources list similar, overlapping sets of entities that, however,
correspond to a different concept.

Approaches from Open Information Extraction

The area of open information extraction from the field of natural language pro-
cessing is concerned with extracting data from unstructured text. The focus is on
detecting entity mentions and relations between entities in natural language sen-
tences. The name “Information Extraction” refers to methods that learn an ex-
tractor for each relation in a known vocabulary given training examples, while the
name “Open Information Extraction” is used for methods that identify relations
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in phrases without a predefined vocabulary [Yates et al., 2007]. In the following,
an overview of approaches from open Information extraction for knowledge base
augmentation is given.

NELL. The idea of the NELL (“Never-Ending Language Learner”) [Carlson
et al., 2010] system is to create a computer agent that runs continuously, read-
ing text from the Web, while collecting a growing knowledge base and improv-
ing its ability to understand natural language text. The system has several sub-
components that extract fact candidates for known relations from free text and
retrieve the names of additional entities from other sources such as HTML list
and tables. A “Knowledge Integrator” component then decides which of the ex-
tracted statements to trust and to integrate with the knowledge base. The system
was seeded with an initial knowledge base and collected 242 thousand new state-
ments after running for 67 days. Most of these statements (95%) were category
assertions, only 5% were assertions about relations.

PRISMATIC. One of the main limitations of natural language processing for
information extraction is the lack of a complete knowledge base that identifies pos-
sible relations. Fan et al. hence propose to generate such a resource of relations
from a large text corpus. Their PRISMATIC system [Fan et al., 2010] uses natural
language processing methods such as dependency parsing, named-entity recogni-
tion and co-reference resolution to organise the information contained in unstruc-
tured text into so-called “frames”. A frame is defined by the words in a sentence
and uses a small set of possible relations, called slots, between the words, such as
“subject”, “object”, or “modifier”. These frames annotate the components of a
sentence with their grammatical function and a set of basic type assertions. The
authors argue that, based on the frequency of sub-sets of the possible relations
defining a frame, so-called “frame cuts”, many applications such as type inference
and relation extraction are possible. For example, a subject-verb-object cut can be
used to find the possible relations, which are the verb slots, between two entities,
which are values of the subject and object slots, respectively.

ReVerb. Fader et al. argue that many open information extraction methods pro-
duce uninformative and incoherent extractions. Their ReVerb system [Fader et al.,
2011] adds two syntactic and lexical constraints to the extraction of relation phrases
in order to improve the quality of the results. To avoid incoherent and uninforma-
tive extractions, a syntactic constraint is introduced which checks if extractions
match a predefined regular expression for the part-of-speech of each word. To
further prevent overly specific extractions, a lexical constraint is added. This con-
straint checks each extraction against a dictionary which contains all relations for
which at least 20 distinct arguments were found in a large document corpus. An
evaluation of 500 test sentences shows that the ReVerb system outperforms several
methods that were proposed earlier and do not use these constraints.
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OLLIE. The OLLIE system further extends the scope of open information ex-
traction [Schmitz et al., 2012]. Other than earlier systems, not only relation sen-
tences that are mediated by verbs are considered, but also those mediated by other
syntactic entities. Further, OLLIE is able to include contextual data, such as at-
tribution or clausal modifiers into the extraction. The evaluation shows that this
results in up to 146 times more correct extractions than are produced by ReVerb.

Summing up, the area of open information extraction is mainly concerned with
the precise and scalable extraction of relations between named entities in large text
corpora. To achieve this, different syntactic and lexical properties of unstructured,
natural language text are exploited.

Approaches from Wrapper Induction

Early approaches to extracting structured data from the Web tried to build extrac-
tion programs, so-called “wrappers”, for individual web sites that would extract
the data on their web pages. These methods then evolved into “wrapper induc-
tion” [Kushmerick et al., 1997] methods, which learn to create wrappers automati-
cally from the structure of the HTML pages and human supervision. This is similar
to the extraction of web tables, as the web table extractor can be interpreted as a
very general wrapper that can be applied to every web site. The differences, how-
ever, are that wrapper induction methods are web site and topic driven, meaning
that they create extractors for specific web sites and predetermined topics, while
web table extractors are both web site and topic agnostic.

RoadRunner. Crescenzi et al. [Crescenzi et al., 2001] propose RoadRunner, a
method for completely automatic wrapper generation. The method requires two
web pages which are generated from the same web-page template as input and
generates a generalised wrapper that matches both pages. This is achieved by com-
paring the web pages and generalising an initial, very specific wrapper for each
mismatch. Specifically, the system chooses one of the web pages as initial wrap-
per, and then parses the second page using this wrapper. For every mismatch, i.e.,
difference between the two web pages, the wrapper is generalised. The authors note
that some of the extracted datasets have a schema that is strongly influenced by the
layout of the web pages, especially HTML tables, and would not be expected as a
logical schema for the data. This indicates that wrapper induction methods cannot
properly process web tables and that specialised methods, such as those presented
in this thesis, are needed.

[Hao et al., 2011]. Hao et al. aim to extract structured data corresponding to
known attributes of user-specified “verticals”, i.e., classes, from web sites. The
method that they propose learns wrappers on one labelled web site, which can then
be applied to other, unlabelled web sites. They propose three types of features to
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match the text nodes in an HTML page to the provided attributes: layout features,
content features and context features. Layout features use the visual position and
arrangement of elements of the page when rendered in a browser. Content features
describe the word tokens, character classes and content length of the text nodes.
Context features measure the visual distance to other elements in the page as well
as common prefixes and suffixes. From their experimental evaluation, the authors
conclude that layout information is necessary for good performance as it comple-
ments the semantic information obtained from the content features.

Vertex. Gulhane et al. [Gulhane et al., 2011] present Vertex, a wrapper induc-
tion system developed at Yahoo! for high-precision information extraction. Similar
to the approach proposed by Hao et al., Vertex requires a set of attributes and an-
notated web pages for each vertical that it should learn to extract. Further, the
attributes are qualified with metadata that states if the attribute values are con-
stant over time or must be part of every wrapper for this vertical. Before inducing
wrappers, all web pages from a web site are clustered using shingle-based signa-
tures [Broder et al., 1997] created from the HTML structure to identify different
templates from which the web pages are generated. From these clusters, a set of
web pages is sampled for human annotation and then used to learn the wrappers.
The authors report that this system is deployed in production and used to extract
more than 250 million records from more than 200 web sites.

DIADEM. Furche et al. [Furche et al., 2014] combine methods for web site
exploration, identification of relevant data, and wrapper induction to create a sys-
tem for “automatic full-site extraction”, called DIADEM. The system relies on a
complex, manually created ontology that describes the topical domain that should
be extracted. This ontology contains the domain schema including types and at-
tributes, entity recognisers, and metadata such as mandatory attributes, modifiers,
or specific metadata for HTML form filling. For a single domain, the creation of
such an ontology supposedly takes 2-3 weeks time, but makes manual annotations
on web pages unnecessary. The experimental evaluation of the system shows that
the additional information stored in the extraction ontology enables better perfor-
mance than achieved by earlier approaches.

The methods in the area of wrapper induction work either in an unsupervised
or supervised fashion, with recent trends to use knowledge bases or specialised
ontologies to create semi-supervised approaches. All methods rely on the common
use of server-side templates for the generation of the web pages and exploit their
regularities to extract the contained data. Other than web table extractors, wrapper
induction systems are learned per web site or per class that should be extracted and
are hence less generally applicable. However, once wrappers are learned from a
web site, large amounts of information can be extracted which can then be used for
knowledge base augmentation.
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3.5 Conclusion

This section introduced knowledge bases as machine-readable representations of
entities, their properties, and a taxonomy of classes in which these entities are or-
ganised. Further, common knowledge bases were described and compared. Then,
additional details for DBpedia, the knowledge base that is used throughout this
thesis, were given and statistics about the contents of this knowledge base were
presented. Finally, the topic of knowledge base augmentation and its three tasks
slot filling, schema extension, and entity-set completion were introduced.

The most commonly used knowledge bases in research that have been pre-
sented in this chapter differ in how they approach the organisation of their knowl-
edge and the inclusion of additional knowledge. DBpedia and YAGO are based on
completely automatic extraction from Wikipedia, and mainly differ in the size their
class hierarchy and the number of used properties. While DBpedia uses a small,
hand-crafted set of classes, YAGO bases its class hierarchy on WordNet, resulting
in almost half a million different classes. In contrast to these two knowledge bases,
Freebase and Wikidata rely on the contributions of end users to add additional
statements to the knowledge base. Another frequently mentioned knowledge base
is the Google Knowledge Graph, which supposedly is the large knowledge base at
the time of writing, but due to its proprietary nature not much is known about its
content or construction methodology.

The knowledge base that is used throughout this thesis is DBpedia. It con-
tains a broad range of different entities of public interest due to its extraction from
Wikipedia and is hence suitable for a general topical profiling of the contents of
web tables. It is further recognised as a central reference point in the Web of Data,
which supports its choice for the analyses in this thesis.

For the augmentation of knowledge bases, several tasks can be considered
which extend the knowledge base with respect to missing values, properties, or
entities. The discussed approaches from the areas of open information extraction
and wrapper induction use methods that are specific to unstructured, natural lan-
guage text or the hierarchical structure of elements in HTML documents. They are
hence complementary to the methods for web tables, which are discussed in the
remainder of this thesis.
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Chapter 4

Web Tables

4.1 Introduction

The Web has undergone a rapid development in the past decades: from being a
simple network of interlinked documents, it has grown to the largest platform for
information and service providers that shape and impact our everyday life. But de-
spite this tremendous progress, most content on the Web is still presented only in
human understandable formats, and great effort is required to make this data also
machine understandable. But this effort pays off, as it enables data-driven appli-
cations like search, question answering, or data mining to access the information
on the Web more efficiently than possible for human users. Among many possi-
ble approaches in this area, such as natural language processing or promoting the
semantic annotation of web pages, the use of HTML tables in web pages for data
extraction promises to be a versatile source of information.

This chapter introduces the research area around web tables and discusses all
necessary steps to extract a corpus, i.e., a large and structured collection, of web
tables from HTML pages. This process needs to deal with a variety of challenges,
such as distinguishing content tables from tables that are used for layout purposes
or analysing the structure of content tables to recover their metadata, which is
not available from their encoding in HTML. The focus in this and the following
chapters is on relational web tables, but other types of web tables are also discussed
in this chapter. Relational web tables contain data about a certain entity type and
list multiple entities of this type with several attributes. This makes it natural to
relate these web tables to and integrate them with other datasets, such as data in
local spreadsheets [Yakout et al., 2012, Lehmberg et al., 2015] or the entities and
properties in a knowledge base [Ritze et al., 2015].

To enable such applications, the web tables must be enriched with additional
metadata by table understanding methods. Hurst [Hurst, 2001] conceptualised the
process of table understanding as consisting of table location and recognition;
structural analysis; and interpretation. For HTML tables, table location and recog-
nition is relatively simple as the table and its rows and cells are identified by the
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HTML mark-up code. This is not the case for tables that are extracted from images
or scanned documents, which are, however, not in the scope of this thesis. For
HTML tables it is, however, important to distinguish between such that are used to
present data and such that are used to define the layout of elements on a web page.
The structural analysis of tables comprises the recovery of table metadata, such as
the location of headers or the data types of columns. Finally, semantic table inter-
pretation is the process of annotating a table with elements that carry a semantic
meaning, such as the classes, entities, and properties in a knowledge base.

This chapter focuses on the recognition and structural analysis of web tables.
The first step is to classify the raw HTML tables along a taxonomy of table types,
which includes types such as “layout table” or “relational table”. This is usually
done by exploiting several structural and content based characteristics of the web
tables in a supervised classification setting. The next step is to recover the metadata
of the web tables. This starts with the detection of one or more “header rows”,
which contain the names of the attributes that are stated in the web table. Such a
detection can be performed by analysing regularities in the content of the table and
differences in formatting. For example, the header of a column (which is usually
a string value) that otherwise only contains numeric values can be detected by
comparing the data types of the individual cells of a column. Such a data type
detection is another part of the metadata recovery process, where data types of
different granularity are assigned to every column of a web table. Methods in this
area usually rely on the analysis of content patterns or use hand-crafted regular
expressions. The last piece of metadata is the subject column, which is the column
that states the names of the entities that are the main topic, i.e., the subject, of the
web table. Knowledge about this column is the basis for many approaches that
perform a semantic interpretation of web tables. It can be detected using measures
such as the uniqueness of the columns or named-entity recognition methods.

All these individual steps accumulate to a quite involved pipeline of methods
that need to be implemented before the semantic table interpretation of the data can
even begin. This poses an entry barrier to the research on web tables. Research in
this area is further hindered by the fact that most studies do neither publish their
data, be it the original web pages or the extracted web tables, nor the implementa-
tion of the methods. To address these issues, the two large-scale web table corpora
which are created during the work on this thesis, as well as the implementations of
the used methods, are made publicly available.

The contributions of this chapter are:

• Literature Survey: This chapter introduces the web table extraction pro-
cess and surveys existing literature along the individual steps of this process.
The related work for each step is summarised and categorised according the
different heuristics and features that are used in the respective approaches.
The approaches are further compared based on the results provided in their
original publications, showing that the lack of public datasets limits their
comparability.
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• Web Table Corpus Profiling: This chapter gives an overview of the existing
web table corpora that have been used in the related work. As most of these
are non-public, only very limited information is available and the content and
structure of the contained web tables is unclear. This situation is improved
by the profiling and publication of two large-scale web table corpora. These
corpora are publicly accessible, which allows researchers to work on the im-
provement of the state of the art without having to replicate earlier studies
for the extraction of a corpus. The provided data profiles further show im-
portant characteristics of the web tables, which contain data of different data
types and are mostly very small. As the following chapters will show, these
characteristics have not been addressed sufficiently by existing work.

This chapter is organised as follows. Section 4.2 gives an overview of related
work in the research area of web tables and presents common use cases. Section
4.3 then introduces the web table extraction process and its individual steps table
classification, header row detection, data type detection, and subject column detec-
tion and discusses the relevant related work for each step. Then, Section 4.4 gives
an overview of existing web table corpora and presents the two web table corpora
that were created during the work on this thesis.

Parts of the work presented in this chapter, i.e., the data profiles of the two
large-scale web table corpora, have previously been published in [Lehmberg et al.,
2015, Lehmberg et al., 2016].

4.2 Related Work

This section gives an overview of the research on web tables and introduces the
use cases for which web tables have been employed. A more detailed discussion
of related work in the area of web tables for the individual topics of this thesis is
provided in the following chapters.

Figure 4.1 shows an overview of the published literature on web tables between
the years 2000 and 2018. Early work on web tables, such as the methods proposed
by Chen et al. [Chen et al., 2000] and Wang et al. [Wang et al., 2000], was focused
on the structural analysis of web tables. These early approaches considered the
recognition and analysis of different types of tables and different, possibly very
complex layouts of header rows and row labels. Then in 2008, Cafarella et al. [Ca-
farella et al., 2008b] presented the first approach that included applications using a
large-scale corpus of web tables. In the following years, more research related to
the semantic understanding of web tables [Limaye et al., 2010] and their applica-
tions [Yakout et al., 2012] was published and several use cases for the data from
web tables were developed. These use cases in which web tables have been suc-
cessfully employed as a data source are introduced in the following. These various
possible applications show that web tables are an interesting and versatile source
of information.
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Figure 4.1: Overview of published research about web tables.

Search. Data from web tables can be used to enhance classical document search,
or search engines can directly retrieve tables that match a user’s information need.
For example, the works of Cafarella, Venetis, or Pimplikar [Cafarella et al., 2009,
Venetis et al., 2011, Pimplikar and Sarawagi, 2012] enable users to search for data
tables on the web. A publicly deployed service of this kind is the Google Fusion
Tables service, which allows users to find and merge web tables [Balakrishnan
et al., 2015].

Table Extension. If a user has a local data table and wants to extend it with
additional rows or columns, web tables can be used to provide the additional data.
Methods in this area [Cafarella et al., 2009, Yakout et al., 2012, Lehmberg et al.,
2015] search for matching tables in a large corpus of web tables and then perform
multiple joins to extend the local query table with the additional data.

Knowledge Base Augmentation. The data contained in web tables can also
be used to construct or extend general-purpose knowledge bases such as DBpedia,
Freebase or YAGO. Many authors, such as Zhang, Sekhavat, or Wang [Zhang,
2017, Sekhavat et al., 2014, Wang et al., 2012] have proposed methods to annotate
web tables with elements of a knowledge base to perform a semantic interpretation
of the data and to fill-in missing values in a knowledge base. This use case is the
focus of this thesis, and the following chapters will discuss it in more detail.

Synonym Discovery. Cafarella et al. [Cafarella et al., 2008a] propose build a
database of attribute co-occurrences in web tables, which can be used to suggest
additional attributes to a user who is designing a relation. Others use the schemata
of a large corpus of web tables in combination with a search engine query stream
to discover attribute synonyms [Yakout et al., 2012, He et al., 2016].
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Question Answering. Instead of semantically annotating web tables and inte-
grating them with a knowledge base, it has also been proposed to used web tables
directly for query and question answering. Such systems can, for example, be used
to answer factual user questions, such as “Britney Spears birthdate” [Yin et al.,
2011, Sun et al., 2016] or questions about quantities, such as “height of Washing-
ton Monument” [Sarawagi and Chakrabarti, 2014].

4.3 The Web Table Extraction Process

This section introduces the tasks and methods of table recognition and structural
table analysis that are used in the web table extraction process. These include the
detection and classification of web tables into different table types as well as the
recovery of table metadata such as header rows and column data types. For each
task, the commonly used heuristics and features are be introduced, followed by a
discussion of approaches that have been proposed in related work.

Other than web APIs or datasets in formats such as CSV or XML, web tables
are published with the intention of a human consumer, i.e., are embedded in HTML
documents which specify how the data, among other content, should be presented
on a user’s computer screen. As a consequence, web tables cannot be accessed
directly, for example via URLs or file names, but need to be extracted from HTML
pages first. This means, the only way to get access to web tables is to load a
web page, interpret the HTML mark-up, check if a web table is present, and then
extract its data. As a consequence, web tables also cannot be interlinked on the
Web, which means that the only way to create large collections of web tables is to
crawl large numbers of web pages.

After the crawling phase, the web tables can be extracted from the HTML doc-
uments. However, not all HTML <table> tags represent tables that contain data.
In fact, most occurrences of this tag are used for layout purposes and it is necessary
to use classification methods to distinguish between the different possible types of
tables. On the structural level, the HTML mark-up code specifies how the data
in a web table is organised in a two-dimensional grid of rows and columns, but
does not contain any other metadata, such as data types of the columns. To enable
downstream applications to interpret the data, these and other types of metadata
must hence first be recovered.

The rest of this section describes these steps of the web table extraction process:

• Table Classification: Distinguishes between tables that are used as layout
elements and different types of tables that contain factual data.

• Header Row Detection: Discovers the headers of the columns in the table.

• Data Type Detection: Discovers the data types of the columns in the table.

• Subject Column Detection: Discovers the column that contains the names
of the subject entities that are described in the table.
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Figure 4.2: Table Type Taxonomy

4.3.1 Table Classification

This section introduces the table classification task. The goal of this task is to
assign a table type to a given HTML table. These table types allow to distinguish
between tables used for layout purposes and different types of tables which contain
factual data. This section first introduces a taxonomy of table types, and then
presents heuristics and supervised classification approaches for this task.

Tables can be detected in HTML documents by their corresponding HTML
tag <table>. However, not all occurrences of this tag indicate the presence of
tabular data. In fact, most of the time this tag is used for layout purposes (97.5-
98.9% of all cases [Cafarella et al., 2008a, Crestan and Pantel, 2011]). Among
the tables which actually contain data, there are different table layouts which need
to be considered when interpreting the data. For example, relational tables can
be formatted horizontally (columns correspond to attributes) or vertically (rows
correspond to attributes).

It is hence necessary to classify the detected HTML tables into a taxonomy
of table types before further processing. Such taxonomies have been proposed by
Cretan and Pantel [Crestan and Pantel, 2010, Crestan and Pantel, 2011] as well
as Lautert et al. [Lautert et al., 2013]. In most practical applications, however,
only the distinctions between layout tables and content tables in general, as well as
between relational tables and entity tables for content tables are used. Figure 4.2
shows the taxonomy of table types that will be used in this thesis and Figure 4.3
shows examples for different types of content tables in this taxonomy.

Relational tables (Figure 4.3a) contain data about several different entities and
contain multiple attributes of these entities, similar to tables in a relational database.
Entity tables (Figure 4.3b) contain data about only a single entity, which is often
not stated in the table, and usually list a larger number of attributes. Both relational
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(a) Relational Table

(b) Entity Table (c) Matrix Table

Figure 4.3: Examples of different table types.

and entity tables can have a horizontal or a vertical layout, in which the meaning of
rows and columns is interchanged. Finally, matrix tables (Figure 4.3c) have more
than one dimension of attributes and often state them both in the first row and first
column of the table.

To classify web tables into such a taxonomy, usually a two-step approach is
applied. First, heuristics filter out the large amounts of layout tables, typically re-
moving 80 - 90 % [Crestan and Pantel, 2011,Cafarella et al., 2008a] of all detected
tables. Then, a supervised classification method is used to classify the remaining
tables into some of the table types introduced earlier. An extensive discussion of
the used methods can be found in the survey by Zanibbi et al. [Zanibbi et al., 2004].

Table Classification Heuristics

This section introduces heuristics which have been proposed to distinguish between
layout tables and content tables and discusses their effectiveness as reported in the
literature. Due to the large volume of tables which need to be processed during the
extraction from a web crawl, computationally efficient heuristics are often used in
a first step to filter out obvious non-content tables before applying a more complex
classifier in a second step. In the following, the commonly used heuristics are
presented.
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Table Size. Very small tables are considered to be meaningless and hence dis-
carded. For example, a table with only a single row or a single column cannot
contain any relational data. Such tables are often used to align other elements on
the web page, i.e., they are layout tables. Usually, a minimum number of rows
and a minimum number of columns are required [Chen et al., 2000, Penn et al.,
2001, Cafarella et al., 2008a, Crestan and Pantel, 2011, Eberius et al., 2015].

Nesting. Tables which contain other tables in their cells are considered to be
layout tables. Although tables with complicated layouts, which use nested column
headers or drill-down rows, exist, they can be achieved with the use of column and
row spanning. Placing a table inside another table is rather used to achieve a grid-
like layout on the web page via the outer table. Hence, only the innermost tables
are kept [Penn et al., 2001, Wang and Hu, 2002].

Table Content. Another indicator that a table is used for layout purposes is the
content length of cells. In a data table, short strings or numbers are expected, while
layout tables contain longer texts or mostly hyperlinks. Tables with cells which
exceed a certain length [Crestan and Pantel, 2011, Penn et al., 2001] or mostly
contain certain HTML tags [Penn et al., 2001, Chen et al., 2000] can hence be
filtered out.

The heuristics introduced above have been applied in several studies to filter out
a large part of the obvious non-content tables. Wang and Hu [Wang and Hu, 2002]
report the lowest amount of removed tables with only 22% of 14 thousand tables
in their dataset using the nesting heuristic. Cafarella et al. [Cafarella et al., 2008a]
exclude all web tables with fewer than two rows or columns, web tables which
are embedded inside HTML forms, and web tables which represent a calendar.
They report to filter out 89% of 14.1 billion web tables using these heuristics.
Crestan and Pantel [Crestan and Pantel, 2011] use the nesting heuristic, a minimum
table size of two rows and two columns and require that no cell is longer than
100 characters. With these heuristics they remove 84% of their 8.2 billion web
tables and verify the quality of the heuristic through the evaluation of 200 randomly
selected tables, which shows that 93% of the removed tables are actually layout
tables. Eberius et al. [Eberius et al., 2015] only use the table size heuristic with
a minimum of two rows and two columns and filter out 92% of the 26 thousand
tables in their dataset and Wang et al. [Wang et al., 2012] use the nesting, table
size, and table content heuristics and report that 3.4% of 1.95 billion tables remain
after filtering.
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Supervised Table Classification

After the heuristic filtering, a supervised classification approach is used to classify
the remaining tables into two or more different table types. This section first in-
troduces the different types of features that have been proposed for this task, and
then discusses related work that uses these features to create a supervised classifi-
cation model. The classification models use combinations of the different types of
features which are introduced in the following.

Global Features. Global features capture characteristics of the whole table,
such as the maximum, mean, and variance of the number of rows, columns, and
cell length [Crestan and Pantel, 2011, Wang and Hu, 2002, Cafarella et al., 2008a,
Eberius et al., 2015]. Here, the same intuition as for the heuristics is applicable:
relational tables should have rather short cell values and be more consistent over
all cells, while layout tables can contain cells with large amounts of contents or
completely empty cells.

Local Features. Local features are calculated for each column and row individ-
ually. Similar to global features, they capture cell length mean and variance as well
as the ratio of spanning cells [Crestan and Pantel, 2011]. If a table is relational, all
values for the same attribute should be consistent in length and so should be the
cells of each column. Eberius et al. [Eberius et al., 2015] additionally calculate the
frequency of several HTML tags and special characters as local features.

Structural Features. A different approach to capture the structure of tables is
taken by Son and Park [Son and Park, 2013], who use parse tree kernels [Collins
and Duffy, 2002, Zhang and Lee, 2003] to transform the HTML parse tree of a
table and its context into feature vectors. This allows them to detect semantically
identical tables which are syntactically different, i.e., the tables contain same values
but their HTML representation contains, for example, additional tags.

Content Type Features. Content type features describe which types of con-
tent are encountered in the table. These features are calculated as the frequency of
cells with content types such as image, form, hyperlink, alphabetical,
digit, empty, or other [Wang and Hu, 2002, Cafarella et al., 2008a, Eberius
et al., 2015]. Additionally, an average content type consistency can be calculated
per row and column [Wang and Hu, 2002,Eberius et al., 2015]. Two subcategories
of this group of features are HTML features and lexical features [Crestan and Pan-
tel, 2011]. HTML features are the relative frequency of certain HTML tags, such
as a, img, input, etc., and lexical features show the relative frequency of special
characters or numbers in the cells of the table. Wang and Hu [Wang and Hu, 2002]
also use a Word Group feature, which uses a vector space representation of the text
in the table and word clustering to calculate similarities with the tables seen during
training based on the word tokens in the table.
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Classification Approaches

Different combinations of the features introduced in the section above were used
in several studies. However, due to the lack of a publicly available benchmark
dataset, the comparability of these studies is limited. Most of the studies consider
the binary classification task content table vs. layout table and report
the performance of their method on non-public datasets, which were manually an-
notated by the authors of the respective studies. In the following, an overview of
each study and its findings is provided.

[Wang and Hu, 2002]. Wang and Hu use global and content type features
to train a binary decision tree classifier. The evaluation is performed on a hand-
labelled dataset of 14 609 tables collected from 1 393 HTML pages using 9-fold
cross validation. The authors find that content type features perform better than
global features if used individually, but the combination of both results in the best
performance of 96% F1-measure for the content table class. They further compare
their approach to the purely heuristic method proposed by Penn et al. [Penn et al.,
2001], which only achieves an F1-measure of 62% (88% after slight modifications)
on the same dataset. The features proposed by Wang and Hu have later been used
for similar classification approaches by Jung and Kwon [Jung and Kwon, 2006]
and Cafarella et al. [Cafarella et al., 2008a], but neither of the approaches was
shown to outperform the initial study.

[Crestan and Pantel, 2011]. Crestan and Pantel present a classifier to differ-
entiate between the 10 different table types which they propose in their taxonomy
and hence solve a more fine-grained and harder classification task. The evaluation
is performed on a dataset of 5 000 randomly sampled tables, which were annotated
by 10 paid editors, using 20-fold cross validation. Using gradient-boosted decision
trees, they report F1-measures between 24% (horizontal listing) and 91% (calen-
dar) for the 10 possible classes. On the simpler binary classification task, their
method achieves an F1-measure of 68% for the content table class, which outper-
forms the approach of Penn et al. [Penn et al., 2001] (49%) and another classifier
which uses the features proposed by Wang and Hu [Wang and Hu, 2002] (55%).

[Son and Park, 2013]. Son and Park propose a parse tree kernel to transform
the HTML structure into features for a binary SVM classifier. They are the first to
propose to use the HTML document structure for feature generation. The evalu-
ation is performed on the dataset created by Wang and Hu [Wang and Hu, 2002]
using 10-fold cross validation. The combination of the parse tree kernel and the
content features proposed by Wang and Hu results in an F1-measure of 99% for the
content table class, compared to 96% achieved by the method proposed by Wang
and Hu, and 62% achieved by the heuristics proposed by Penn et al.
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[Eberius et al., 2015]. Eberius et al. combine global, local, and content
type features and evaluate several different classifiers. They consider the table
types layout, vertical listing, horizontal listing, matrix and
other as well as the binary classification problem. Using a correlation-based fea-
ture selection [Hall, 1999] they determine 31 relevant features from the initial 127
features that they proposed. For the binary classification task, the ratio of cells
containing images or forms as well as <th> and <span> tags is more impor-
tant than other features, while the average cell, column, and row sizes are more
relevant for the differentiation between different content table types. The evalua-
tion is performed on a manually annotated dataset of 2 022 tables using repeated
random sub-sampling, where the dataset is randomly split into 90% training and
10% test data over 100 iterations. Using a Random Forest classifier, they achieve
F1-measures between 60% (Other) and 95% (Layout). For the binary classifica-
tion task, they report F1-measure values between 89% (SVM) and 91% (Random
Forest).

Many different approaches for the detection of content tables as well as for the
differentiation of table types have been proposed and the consensus in the literature
is to use features that capture many different aspects of the web tables and learn
a supervised classification model for the task. The used datasets and methods are
often not publicly available, but seem to be shared in private communication so
a comparative evaluation is possible. The usual performance for the detection of
content tables is very high, with F1 scores which are often above 90%, but for a
more detailed classification the performance varies from type to type between 24%
and 95%.

4.3.2 Header Row Detection

This section introduces the header row detection task. First, the heuristics and
features as proposed in the literature are introduced. Then, approaches from the
related work and their evaluation are discussed.

A header row contains the column headers and states the names of the attributes
that are represented by the columns in a table. These names are metadata and need
to be treated differently from the content data of the table, as they often contain
clues to the semantic meaning of the column’s content. Hence, it is necessary to
determine which rows of a table are header rows and which ones are data rows.
The designated HTML tag to indicate header rows, <th>, which would make this
detection trivial, is only used in 20% of the content tables [Pimplikar and Sarawagi,
2012]). Thus, the use of header row detection methods is required to determine
which row(s), if any, contain column headers.
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Features and Heuristics

For the detection of header rows, different types of features and heuristics are ap-
plied, which range from simple positional assumptions, such as “the first row is
the header row”, to the analysis of the formatting and content of different cells in
a table. The following introduces the different types of features and heuristics that
have been proposed in the literature.

Position. The simplest heuristic is to assume that the first row is the header row,
which is the usual design of a horizontal content table [Pinto et al., 2002]. A more
advanced version of this heuristic is used by [Cafarella et al., 2008a], who learn a
classifier that detects whether or not a table contains a header. If yes, they always
choose the first row to be the header row.

Formatting. Header rows are often formatted differently from the rest of the
table to provide visual clues to the human users. Many approaches hence check
for differences in background colour or font formatting between successive rows
in the table [Jung and Kwon, 2006, Pimplikar and Sarawagi, 2012, Limaye et al.,
2010, Wang et al., 2012].

Content. If the table contains non-string values, header rows can be detected
by the change of data type. For example, all cells in a column representing the
age of people contain numbers, except for the column header which contains the
string “age” [Jung and Kwon, 2006, Wang et al., 2012]. Other approaches try to
use the values in the cells to either learn probabilities for the value being a column
header [Yoshida et al., 2001], or to look up the values in external resources such as
a database of attribute names [Cafarella et al., 2008a] or a knowledge base [Wang
et al., 2012].

Header Row Detection Approaches

After the introduction of the different types of features and heuristics, this section
now discusses the approaches that apply them for header row detection. Similar to
the table type classification task, many approaches report their performance for the
header row detection task, but the lack of a common benchmark dataset hinders an
objective comparison.

[Jung and Kwon, 2006]. Jung and Kwon use several formatting and content
features to calculate a score for each cell. They then apply a threshold to decide
which cells represent a header, i.e., their approach can annotate a mixture of rows
and columns as headers. The used features check for the presence of a <th> tag,
differences in background colours, font attributes, empty or spanning cells and
content type changes. The method is evaluated on a dataset of 2 565 web tables
and achieves an accuracy of 82%.



4.3. THE WEB TABLE EXTRACTION PROCESS 59

[Cafarella et al., 2008a]. Cafarella et al. use a rule-based binary classifier to
decide whether a table has a header in the first row or not. The used features are
similar to the global and local features used in table type classification. As a sec-
ond approach, they propose to incorporate information from a database of attribute
co-occurrence statistics, which they generated from their table corpus. Both ap-
proaches are evaluated on a dataset of 1 000 tables using 5-fold cross validation.
The approach using global and local features achieves an F1-measure of 81% and
the approach that additionally uses attribute statistics improves this result to 87%.

[Pimplikar and Sarawagi, 2012]. Pimplikar and Sarawagi use formatting and
content features to detect header rows. Their method iterates over all rows of a
table and marks them as header row if they are different from most of the remaining
rows. They do, however, not elaborate how difference is measured. An evaluation
of this method on a dataset of 2 000 web tables shows an accuracy of 99.8%. They
further report that in their corpus of 25 million web tables, 60% of the tables have
one header row, 18% have no header, 17% two header rows, 5% more than two
header rows.

Approaches for the detection of header rows often use rather simple heuristics
or the methods are only superficially described in the respective publications. This
indicates that the task is not very challenging or applications following a header
row detection are resilient to noise. The most common approaches use the position
or formatting of rows to decided if a row is a header row.

4.3.3 Data Type Detection

This section introduces the data type detection and unit detection tasks. First, the
literature on data type detection is presented, followed by related work on unit
detection.

The values in the cells of a web table are encoded as strings in the HTML
mark-up code and do not contain any indication of the data type. This is prob-
lematic for non-textual values, which can be represented in a variety of different
formats. For example, the number 1 000 can be represented as “1, 000.00” or as
“1.000, 00” and the date “1st of February 2019” can be represented as “1/2/19”
or as “2/1/19”. For a correct interpretation of these values, it is hence necessary
to detect the appropriate data type, such as numeric, date, or string and to
parse their formatting correctly.

Compared to the tasks of table type classification and header row detection,
only few approaches for data type detection exist. This is probably due to the fact
that many approaches for semantic table interpretation are limited to columns that
contain named entities, and hence have no need to determine the data type of other
columns. Such named entity columns are a subset of columns with the string
data type, and approaches for semantic table interpretation detect which type of
entities the columns correspond to (see Chapter 5).
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[Kim and Lee, 2005]. Kim and Lee propose to detect 15 different data types
with predefined textual patterns and keywords. The presented patterns capture
different data types with specific formats, such as postal codes or dates and are a
mixture of HTML types (image, form), date types (time, date, month, day),
primitive types (string, number, blank), units (temperature, voltage,
weight, currency, percentage) and semantic types (postal code). No
evaluation of the data type detection method is reported.

[Zhang, 2017]. Zhang determines the data type of columns by checking regular
expressions for each cell. Based on the matches, one of the data types empty,
named entity, number, date, long text, and other is assigned to each
cell. The final data type for a column is then determined by majority voting among
all cells of the column. Again, no evaluation of the method is reported.

The detection of data types has not received much attention in the literature,
and is often not even evaluated. This is interesting, as different data types can lead
to considerably different interpretations of data. A possible reason is the focus of
many applications on named entities, for which columns of other data types are not
useful.

Unit Detection

The task of unit detection is related to data type detection, as it is a more fine-
grained categorisation of numeric columns. Detecting units allows for the transfor-
mation of values into a common base unit to make them comparable. For example,
values stated in miles and kilometres can be converted to metres.

[Hignette et al., 2007]. Hignette et al. distinguish between numeric and sym-
bolic columns using a set of hand-crafted rules. A cell is classified as numeric if
it contains a number, a number followed by a unit, or contains more numbers and
units than words. If it contains more words than numbers and units it is classified
as symbolic. The type of a column is determined by majority voting among the
cells of that column. The method is evaluated on a dataset of 60 tables taken from
publications in food microbiology, showing an accuracy of 98%.

[Zhang and Chakrabarti, 2013]. Zhang and Chakrabarti use a user-defined
set of unit conversion rules and a lookup mechanism to assign candidate units to
numeric columns. A joint inference over a graph of semantically similar columns
using a probabilistic graphical model is then used to propagate the unit annotations
among the columns. The method is evaluated on 1000 randomly selected numeric
columns that represent company revenue. The authors find that the graphical model
creates more annotations than the lookup-based method, with a precision of 97%.
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[Sarawagi and Chakrabarti, 2014]. Sarawagi and Chakrabarti collect a unit
catalogue from Wikipedia with 44 quantity types and 750 units, each associated
with one or more full names, symbols, and lemmas. They then evaluate two differ-
ent unit parsers. The first one is a simple rule-based parser which uses the names,
symbols, and lemmas to match units in column headers. The second parser uses a
context-free grammar and several features to score each possible production of the
grammar. An evaluation on a dataset of 617 tables shows 40% accuracy for a rule-
based extractor and 82% accuracy for the parser using the context-free grammar.

Compared to the few and rather simple approaches on general data type detec-
tion, units have received much more attention. A reason can be that there are clear
use cases for answering numerical queries that cannot be solved without converting
the values from different sources into a common base unit. The most successful
approaches for the detection of units in web tables use a collective inference over
multiple web tables and their possible interpretations.

4.3.4 Subject Column Detection

This section introduces the subject column detection task. A subject column is
a pseudo-key of a web table and important for its semantic interpretation. Most
approaches for semantic table interpretation work under the assumption that each
relational web table contains one column which states the name of the entities
which are the subject of the rows. Although many methods treat it like a key of
the web table, it is not necessarily unique, i.e., the subject column generally is only
an approximate key. The following paragraphs describe the heuristics and other
approaches that have been proposed for this task.

Heuristics. Positional heuristics have been proposed by [Pinto et al., 2002, Ca-
farella et al., 2008b], who interpret the left-most column as subject column. An
extension of this heuristic was proposed by [Venetis et al., 2011], who use left-
most column which is neither of type numeric nor date.

[Venetis et al., 2011]. Venetis et al. propose a binary SVM classifier, which
decides for each column whether it is a subject column or not. If multiple subject
columns are detected, the column with the highest prediction confidence is chosen.
The used features are the fraction of cells with unique or numeric content, the
variance in the number of date tokens in each cell, the average number of words
in each cell, and the column index from the left. An evaluation on a test set of
200 tables, which all contain a subject column, shows that the classifier beats a
heuristic which always chooses the left-most string column with an accuracy of
94% vs. 83%. For another dataset which contains 160 randomly selected tables, of
which only 97 have a subject column, the authors report an F1-measure of 72%.
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[Wang et al., 2012]. Wang et al. use lookups in the Probase knowledge base to
find subject columns. The lookups are performed for all cells in the same column
to find matching entities and for the headers of all other columns to find matching
attributes.. The column with the largest intersection of the concepts of matched
entities and attributes is chosen as subject column. The approach is evaluated a set
of 189 randomly selected tables from Wikipedia, showing an accuracy of 87%.

[Zhang, 2017]. Zhang proposes an unsupervised method that scores each
column using a linear combination of several features. Only columns with the
data type named entity, which is determined using regular expressions, are
considered. The used features are calculated based on the fraction of empty or
unique cells, the distance from the left-most named-entity column, the presence of
acronyms or IDs, the frequency of the column header in the table’s context, and the
number of matches in a web search. The features are combined with hand-crafted
weights into a final score and the column with the highest score is chosen as subject
column. However, Zhang does not report an evaluation for this approach.

Although the subject column is the most important column of a web table for
many semantic table interpretation approaches, the methods to detect this column
are rather simple. Common approaches either use features which are similar to
those used in header detection, the position and uniqueness of columns, or the
presence of entity names known from a knowledge base.

4.4 Web Table Corpora

This section compares the statistics that have been published about different cor-
pora of web tables that have been used in the literature. This comparison shows
that despite many publications in this area, only little information is publicly avail-
able and that there is a need for openly available corpora. Afterwards, the two
public, large-scale web table corpora that were created during the work on thesis
are described and their data profiles are presented.

Although a large number of studies have investigated the web table extraction
problem, there are only very few that actually apply their methods on a large scale.
Until 2014, when the first Web Data Commons Web Tables Corpus (WDC WTC
2012, see Section 4.4.1) was released, no public, large-scale corpus of web tables
did exist. This clearly hinders research on the topic, as researchers need to replicate
table extraction, classification, and metadata recovery methods before they can start
working with the tables.

Table 4.1 shows an overview of the existing large-scale web table corpora that
have been mentioned in the related work. All statistics are reproduced as stated
in the original publications and a “-” indicates that the statistic was not provided.
The column “Pages” states the number of HTML pages in the used web crawl,
“Tables” refers to the number of HTML tables extracted from these pages using
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filtering heuristics, and “Content Tables” shows the number of non-layout tables
after a classification step. The “%” column indicates the percentage of HTML
tables which are content tables. Of all the corpora mentioned in the table, only the
last three are publicly available.

Figure 4.4 further shows a comparison of the distribution of web tables over
the number of rows and number of columns for the corpus created by Cafarella et
al. [Cafarella et al., 2008a] and the WTC 2012 and 2015. All three corpora agree
on the distributions, which show that the majority of all web tables is small, with
only 2-9 rows or columns.

Table 4.1: Overview of web table corpora (K=thousand, M=million, B=billion).

Corpus Pages Tables Content
Tables

% Public

[Wang and Hu, 2002] 1.4K 14.6K 1.3K 9.0% no
[Cafarella et al., 2008a] >1B 14.1B 154M 1.1% no
[Yin et al., 2011] - - 744M - no
[Venetis et al., 2011] - - 12M - no
[Crestan and Pantel, 2011] 1.2B 8.2B 1.3B 15.9% no
[Wang et al., 2012] 1.68B 1.95B 69M 3.5% no
[Pimplikar and Sarawagi, 2012] 500M - 25M 10.0% no
[Yakout et al., 2012] - - 573M - no
[Sarawagi and Chakrabarti,
2014]

500M - 25M - no

WDC WTC 2012 3.5B 11B 147M 1.3% yes
[Eberius et al., 2015] 3.6B - 125M - yes
WDC WTC 2015 1.78B 10B 233M 2.3% yes
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Figure 4.4: Comparison of the distributions of web tables by rows and columns
over different corpora.
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4.4.1 Web Data Commons Web Tables Corpus 2012

This section presents the Web Data Commons Web Tables Corpus1 (WTC) 2012,
which is the first non-commercial, large-scale corpus of relational web tables that
is publicly available. It is based on a public web crawl that is provided by the
CommonCrawl Foundation2. Specifically, the corpus is extracted from the 2012
version of the Common Crawl, which contains 3.5 billion HTML pages from 43
million different web sites. The following sections describe the table extraction
and metadata recovery steps that are applied during the creation of the corpus and
then present a data profile of the extracted web tables.

Extraction Process

This section describes the extraction process that was executed to create the Web
Data Commons Web Tables Corpus 2012. This extraction process follows the steps
described in Section 4.3 and classifies all detected HTML tables into different table
types and then recovers different types of metadata for all tables that were classified
as content table.

First, the HTML pages are parsed and all HTML table tags are considered as
potential candidates for extraction. These candidates are filtered using the nesting
heuristic, i.e., only tables which do not contain other tables are kept, and the table
size heuristic, which filters out all tables with less than 5 cells or less than 3 rows.
This filtering results in 11 billion web tables, on average 3.4 per web page.

Next, a binary classifier is used to distinguish between layout tables and content
tables. This classifier uses local features and content type features, as described
in Section 4.3.1. Specifically, the used local features are average and standard
deviation of column, row, and cell length as well as the average cumulative length
consistency. The average cumulative length consistency measures the consistency
of the cell content length within the rows and columns of the web table [Wang and
Hu, 2002]. The used content features are percentage of link, form, and image tags,
percentage of empty, numeric, and textual cells as well as the average content type
consistency. The average content type consistency measures the consistency of
data types of the cells within the rows and columns of a web table [Wang and Hu,
2002]. Based on these features, a decision tree classifier is trained, which achieves
a precision of 58% and a recall of 62% for relational tables on a test set of 77 630
web tables collected from 7 350 randomly selected web pages [Lehmberg et al.,
2015].

This classifier is applied to the 11 billion innermost tables, resulting in 147
million tables (1.3%) which are classified as content table. This is in line with the
results of Cafarella et al. [Cafarella et al., 2008b], who reported that 1.1% of all
web tables contained relational data. For these 147 million relational web tables,
the metadata recovery process, as described in the next section, is applied.

1http://webdatacommons.org/webtables/
2http://commoncrawl.org/

http://webdatacommons.org/webtables/
http://commoncrawl.org/
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On a technical level, the HTML tables which are classified as content tables
are transformed into CSV files. For this transformation, every row of an HTML
table as marked-up through the <tr> HTML tag is converted into a line and all
cell values as marked-up through the <td> HTML tag are separated by comma.
Occurrences of the cellspan or rowspan HTML attribute are handled by re-
peating the same value for all affected cells. Missing cells in the HTML code are
filled with empty values.

Metadata recovery

This section describes the different types of metadata that are provided for the web
tables in the corpus as well as the methods used to recover these metadata. All
methods are variations of the methods described in Section 4.3.

Header Row Detection. To determine the header rows of the web tables, the
position heuristic is applied. This heuristic annotates the first row as header row
if at least 80% of its cells are non-empty. An evaluation of this method on 1 000
randomly selected tables shows an accuracy of 82%.

Data Type Detection. The data type detection method first assigns one of the
data types string, numeric, date, boolean or list to each cell in the ta-
ble. Then, a majority voting of all cells in a column determines the final data type.
The assignment of data types to cells is performed by checking a set of regular ex-
pressions for each data type in a specific order. First, if a value is marked as a list
by the table extractor, which happens in cases where the cell contains an HTML
list tag (ul or ol), the type list is assigned. Otherwise, regular expressions
for numeric values with units are checked, then boolean values, followed by
date, and finally numeric values without unit. If no match was found for these
data types, the value is marked as type string. Numeric values with unit are
treated differently than numeric values without unit by using a separate set of reg-
ular expressions that can detect various units of measurement as well as their ab-
breviations and unit symbols. The cell values for columns with this data type are
converted to a pre-defined base unit, e.g. miles and kilometres are converted to
metres. An evaluation of this method on 1 000 randomly selected tables shows an
accuracy of 89%.

Subject Column Detection. For the detection of the subject column, multiple
heuristics are applied. All columns with data type string and an average cell
length between 3.5 and 200 characters and a uniqueness above 0.3 are considered
as candidates. The uniqueness is defined as the ratio of unique values u to all values
v of a column, reduced by the ratio of missing values m: uniqueness “ u´m

v . This
uniqueness score rewards columns with many unique values and penalises columns
with many missing values. After the candidate generation, two rules decide which
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column is selected as subject column: (1) if one of the candidates has the column
header “name” or “title”, it is chosen; (2) otherwise, the column with the highest
uniqueness score is chosen. In case of a tie, the left-most of the tied columns is
chosen. An evaluation of this method on 1 000 randomly selected tables shows a
precision of 76% and a recall of 84%. Note that precision and recall are used for
evaluation here instead of accuracy, as not every web table has a subject column.

Data Profiling

This section presents a data profile of the web tables contained in the extracted
corpus. This profile shows the distributions of table size, column data types, and
origin with respect to the top-level domain of the web pages from which they were
extracted.

Table Size. Figure 4.5 shows the frequency distribution of web tables with re-
spect to their size in terms of rows and columns. For rows, only data rows are
considered, i.e., the header rows are not included in the statistic. The two series
labelled “x Rows” and “x Columns” indicate the relative frequency of web tables
with exactly as many rows or columns as indicated by the horizontal axis. The two
series labelled “At least x Rows” and “At least x Columns” indicate the relative
frequency of web tables with at least as many rows or columns as indicated by the
horizontal axis (complementary cumulative frequency).

The distributions show that web tables tend to be small. Only 25% of all tables
have more than ten rows and only 2% of all tables have more than ten columns.
The mode of both distributions is 2, i.e., the largest number of web tables is found
for two rows or columns, with 15% of all tables for rows and 48% of all tables for
columns. The median is 6 for rows with an average of 12.41 and 3 for columns
with an average of 3.49.

It can be assumed that designers try to keep their tables small, such that they
fit on a user’s computer screen, and hence limit the number of columns. There is,
however, more tolerance concerning the number of rows: while only 2% of all web
tables have more than ten columns, 24% of them have between eleven and one
hundred rows. This distribution of web tables over rows could indicate frequent
use of paging, where a table is split into several parts and shown over multiple
pages.

Data Types. Figure 4.6 shows the distribution of web table columns over the
detected data types. Most columns are either of type string (65%), which in-
cludes named entity columns, or numeric (28%). The other types date (3%),
boolean (2%) and list (2%) have only been detected for very few web tables.
While this distribution shows a dominance of the string data type, 35% of all
columns are non-textual. Most of these non-textual columns are numeric, which
includes numbers with and without units.
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Figure 4.5: WTC 2012: Distribution of web tables over rows and columns.
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Figure 4.6: WTC 2012: Distribution of web table columns over data types.
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Figure 4.7: WTC 2012: Distribution of web tables over top-level domains.
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Column Headers. More insights into the topics of the web tables can be seen in
the frequency distribution of column headers. Among the 50 most frequent column
headers, the most frequent group consists of generally applicable words that don’t
reveal the topic of the table such as “name”, “date”, or “rank”, which occur
for 4% of all columns in the corpus. The next-largest group is shopping-related
with headers such as “price”, “model”, “use from”, or “new from” that make up
another 2% of all columns. Another frequent group of headers actually represents
data values (“1”, “2”, etc.) and accounts for almost 2% of all columns. The most
frequent column header is, however, an empty string for 9% of all columns.

Table Origin. The origin of the web tables in the corpus can be analysed via
the top-level domain (TLD) of the URLs of the web pages that contains the web
tables. Top-level domains are designated for specific purposes, for example .com
for commercial web sites and .org for organisations. Further, country-code top-
level domains such as .de or .co.uk indicate the country of origin of a web site.
Figure 4.7 shows the distribution of web tables over the ten most frequent TLDs.
The majority of all web tables originates from web pages with the .com TLD
(52%), followed by .de (6%) and .net (5%). This indicates that the majority of
web tables is provided by commercial web sites and might be related to products
or services that are offered. This distribution is expected and very similar to the
distribution of all web pages in the used crawl over TLDs with 49% for .com, 7%
for .de and 5% for .net.3

4.4.2 Web Data Commons Web Tables Corpus 2015

This section presents the Web Data Commons Web Tables Corpus4 (WTC) 2015,
which is the second large-scale extraction of web tables published during the work
on this thesis. It is extracted from the July 2015 version of the Common Crawl,
which contains 1.78 billion HTML pages from 15 million different web sites. This
second extraction contains additional metadata and distinguishes between differ-
ent types of content tables. The extraction framework is based on the one that
was used for the WTC 2012 extraction and contains contributions from Eberius et
al. [Eberius et al., 2015]. The additional metadata includes the table orientation, the
URL and page title of the web page, the heading closest to each web table and text
around the table as well as timestamps that are extracted from the web page. Such
metadata can be useful for the semantic table interpretation of web tables [Yakout
et al., 2012, Zhang, 2017] and the data fusion of time-dependent data [Zhang and
Chakrabarti, 2013]. The following sections first describe the changes in the extrac-
tion process and the additional metadata recovery steps. Then, a data profile of the
contained web tables is presented.

3http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html
4http://webdatacommons.org/webtables/#results-2015

http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html
http://webdatacommons.org/webtables/#results-2015
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Extraction Process

This section describes the extraction process that was executed to create the Web
Data Commons Web Tables Corpus 2015. The extraction is based on the same
framework as the WTC 2012 extraction (see Section 4.4.1) and this section only
describes changes and additions to this framework.

After the publication of the Web Data Commons Web Tables Corpus 2012 and
the release of the extraction code as open source, Eberius et al. [Eberius et al.,
2015] extended the extraction process by an advanced table classification step and
contributed their changes back as open source. This made it possible to incorporate
their changes in the extraction of the WTC 2015.

As for the WTC 2012, the HTML pages in the web crawl are parsed and all
HTML table tags are considered as potential candidates for extraction. The table
heuristic filtering step then uses the nesting heuristic and removes all tables with
less than two columns or less than 3 rows, resulting in 10 billion candidate tables,
on average 5.75 per web page.

Then, the classifier proposed by Eberius et al. is used to classify the tables as
either relational table, entity table, matrix table or layout
table. The classifier uses global features, local features and content features as
described in Section 4.3.1. Applying this classifier to the 10 billion candidate tables
results in 233 million content tables (2.28%), which are further classified as 139
million entity tables (1.36%), 90 million relational tables (0.88%) and 3 million
matrix tables (0.03%).

On a technical level, the transformation from HTML mark-up to a tabular data
structure is done in the same way as described in Section 4.4.1. However, the out-
put format is JSON instead of CSV and includes the additional context metadata.
The tabular data is stored in a two-dimensional JSON-Array in a column-oriented
layout.

Metadata Recovery

In addition to earlier versions of the extractor, methods to determine the orientation
of a table, i.e., horizontal or vertical, as well as methods to extract context data from
the page content around the web table were added in the WTC 2015 extraction.
This section describes the additional types of metadata that are provided for the
web tables in the corpus as well as the methods used to generated these metadata.
Figure 4.8 shows the different types of extracted metadata.

Header Row Detection. The header row detection uses a content-based heuris-
tic. First, the values of all cells in the first three rows are transformed into content
patterns. A content pattern generalises a value by replacing all characters with the
identifiers of certain character classes and all subsequent occurrences of the same
character class are merged. For example, the value “5.69m” is transformed to the
pattern “DPDA”. The considered character classes are alphabetical (A), digit (D),
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punctuation (P) and special (S) characters. After transforming the values, two rules
are applied: (1) if the cells of the same column in the first and second row have
the same content pattern, there is no header row; (2) else, if the cells of the same
column in the second and third row have the same content pattern, then the first
row is a header row.

Table Orientation. The two table types relational and entity can be
further differentiated by their orientation into horizontal and vertical. In a hori-
zontal table, the columns represent attributes and the rows represent tuples, while
in a vertical table, the rows represent attributes and the columns represent tuples.
The table orientation detection for relational and entity tables first checks if the
header detection found a header in the first row of the table. If so, the table is
horizontal. Otherwise, for all cells in a column or row, respectively, the standard
deviation of the content length is calculated. If the average standard deviation of
all rows is larger than the average standard deviation of all columns, then the table
is horizontal, otherwise it is vertical. This is based on the intuition that all values
for the same attribute should have similar content lengths and if the average devia-
tion of the content lengths is smaller for columns than for rows, the columns likely
represent the attributes.

Context Data. The additional context metadata is extracted from the URL and
content of the web page containing the web table. The table heading and text before
and after the table are determined from the DOM tree of the web page. The times-
tamps before and after the table are searched using a set of regular expressions and
also determined from the last modified HTTP header of the original request
made by the crawler.

Profiling

This section presents a data profile of the web tables contained in the extracted
corpus. This profile shows the different tables types as well as the distributions of
table size, column data types, and origin with respect to the top-level domain of the
web pages from which they were extracted.

Table Types. Figure 4.9 shows the distribution of tables per table type among
all content tables. The majority of all web tables is classified as entity table with
60% of all content tables, almost equally distributed between horizontal (33%) and
vertical (27%). Further 38% of the web tables are classified as relational,
with 36% being horizontal and only 2% being vertical. The type matrix is only
assigned to 1% of the web tables. The remainder of this section will focus on the
horizontal relational tables, which are the relevant web tables for the rest of this
thesis.



4.4. WEB TABLE CORPORA 71

Context Data: In order to understand the content of Web
tables as well as for determining the timeliness of the
content, it is beneficial to know the text that appears on the
HTML page around the Web table. We thus also extract
context related data from the HTML page: HTML page title,
table caption, 200 words before as well as after the table,
the last modified date in the HTTP header, and sentences in
surrounding paragraphs containing timestamps.

Example Webpage

Example Table Data

[Thursday, March 31st 2016]

Tables are classified as Relational, Entity, Matrix and Layout.
Relational tables (1.a) describe a set of similar entities with
one or more attributes. Entity tables (1.b) only describe one
entity with one or more attributes. Matrix Tables (1.c) are
most often used for results of statistical evaluations.

Timestamp

URL

Subject
Column

Table 
Orientation

Table

Page Title

Table Title

Text Before

Text After

Table 
Header

Example Webpage

Figure 4.8: WTC 2015: Table Metadata.
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Figure 4.9: WDC Web Tables Corpus 2015: Distribution of tables over table types.
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Figure 4.10: WDC Web Tables Corpus 2015: Distribution of web tables by rows
and columns.
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Figure 4.11: WDC Web Tables Corpus 2015: Distribution of web tables by top-
level domain.
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Table Size. Figure 4.10 shows the frequency distribution of web tables with
respect to their size in terms of rows and columns. Similar to the WTC 2012 corpus
(see Figure 4.5), the distributions show that the web tables are small. The small
tables in the WTC 2015 corpus tend to contain more columns, which might be an
effect of the new table type classification used for the WTC 2015 extraction. While
the WTC 2012 extraction only differentiated between content and layout tables, the
WTC 2015 extraction also considers other types. Especially tables of type entity
table, which usually have only very few columns, are no longer considered in this
statistic. As for the WTC 2012, only 25% of all tables have more than ten rows
and only 2% of all tables have more than ten columns. The mode for rows remains
at 2, with 15% of all tables, and increases for columns from 2 to 4, with 20% of all
tables. The median is 6 for rows with an average of 14.45 and 4 for columns with
an average of 5.20.

Data Types. The distribution of data types changed mostly for numeric, which
is now the most frequent data type with 52%, followed by string with 47%.
This large fraction of non-textual columns indicates that many web tables in this
corpus contain quantitative data in addition to relations between named entities,
which makes such data types increasingly relevant for semantic table interpretation
methods.

Column Headers. Concerning the 50 most frequent column headers, again
very general terms like “date”, “name”, or “comments” are found very frequently
and occur in 10% of all columns in the corpus are found. The next-largest group
changed from shopping for the WTC 2012 to sports for the WTC 2015 with head-
ers such as “team”, “opponent”, or “pts” (points) and amounts almost 8% of all
columns in the corpus. Same as for the WTC 2012, the most frequent column
header is the empty string for 7% of all columns.

Table Origin. Figure 4.7 shows the distribution of web tables over the ten most
frequent TLDs. The majority of all web tables still originates from web pages with
the .com TLD, which increased from 52% to 69% compared to the WTC 2012
extraction. The distribution over the remaining TLDs, however, changed and the
second-most frequent TLD is now .org with 13%, followed by .gov with 3%.

Context Metadata. In addition to the table data, this corpus also includes con-
textual metadata. This metadata contains the URL, the page title, the table title, 200
words from the text before and after the table as well as timestamps, if available,
for each web table. Overall, 48% of all web tables have a timestamp that occurs
after the table in the document, 15% have a timestamp occurring before the table,
and for 21% of the web tables the last modified date of the web page is available.
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4.5 Conclusion

This chapter introduced web tables and presented the various steps that are neces-
sary for the large-scale extraction of web tables from web pages. Section 4.2 gave
an overview of related work on web tables and presented common use cases. Sec-
tion 4.3 then introduced the web table extraction process and its individual steps
table classification, header row detection, data type detection, and subject column
detection and discussed the relevant related work for each step. Then, Section 4.4
gave an overview of existing web table corpora and presented the two web table
corpora that were created during the work on this thesis.

This chapter made the following contributions:

• Literature Survey: This chapter introduced the web table extraction process
and surveyed existing literature along the individual steps of this process.
The comparison of the various approaches for each step showed that the lack
of publicly available datasets hinders the comparability.

• Web Table Corpus Profiling: This chapter gave an overview of the existing
web table corpora that have been used in the related work. This showed that
only very limited information is available and the content and structure of the
contained web tables is unclear. This situation was improved by the profiling
and publication of two large-scale web table corpora, which shows that most
web tables are small, with a median of only 6 rows in both corpora, and that
35% - 52% of the columns in web tables contain non-textual data. These are
important characteristics for semantic table interpretation methods and have
not been addressed sufficiently by existing work.

The web table extraction process involves many individual steps that need to
be considered for the creation of a corpus of web tables. First, web tables have to
be classified into a taxonomy of table types, which primarily distinguishes between
layout and content tables. Content tables can be further categorised into relational
tables, entity tables or matrix tables. The classification into these types is usually
performed using a supervised machine learning model that uses various types of
features which are derived from the content and structure of the web tables. For
content tables, it is further important to recover the table schema, which includes
the detection of header rows and data types for the columns in the web tables. Fi-
nally, the detection of a subject column is important for the semantic interpretation
of web tables and often relies on heuristics based on the data type and uniqueness
of the columns.

Although methods for the recognition and structural analysis of web tables
have been published and improved for about two decades at the time of writing,
the Web Data Commons Web Tables Corpus 2012 was the first large-scale, pub-
licly available corpus of web tables that enables any interested researcher to work
with web tables. This removes a severe entry barrier for research in this area, as
web crawling and the processing of such crawls for the extraction of web tables
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requires a large computing infrastructure and the implementation of various dif-
ferent methods. The data profiling of the two extracted corpora further shows two
important properties of web tables, which are rarely addressed by related work:
web tables are very small, with a median of only six rows in both corpora and
35% - 52% of all columns have a data type other than string. These two properties
have implications for the semantic interpretation of web tables and their possible
applications. This will be discussed further in Chapters 5 through 7, where it will
be shown that non-string columns are a large fraction of the interpretable columns
with respect to the DBpedia knowledge base and that small web tables pose severe
challenges for semantic table interpretation algorithms that otherwise work well on
larger tables.
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Chapter 5

Semantic Table Interpretation

5.1 Introduction

The structural analysis of web tables, as introduced in the previous chapter, re-
covers the metadata of web tables and yields data sources that can be used by
human consumers for tasks such as data analysis or data mining. However, to fa-
cilitate the discovery of useful web tables or their automatic processing for tasks
such as knowledge base augmentation or question answering, it is also necessary
to have a semantic interpretation of the web tables. A semantic table interpretation
is achieved by aligning the schema of the web table with a predefined vocabulary
or ontology, which defines classes and properties of real-world entities, and to link
the entities described in the web table to instances of these classes. The classes,
entities, and their properties are available in knowledge bases, which are hence the
preferred type of reference knowledge for semantic table interpretation approaches.

This chapter introduces the semantic table interpretation tasks and surveys the
approaches that have been proposed in the literature. The survey gives an overview
of the used features and methods, summarises the individual approaches, and then
discusses them with respect to comparability and real-world applicability. Based
on the findings of this survey, which shows that both comparability and applicabil-
ity are limited, a new evaluation dataset for the semantic table interpretation tasks
is presented. This dataset, the T2D gold standard, contains annotations for all tasks
that are necessary to generate triples for knowledge base augmentation from a web
table and is made publicly available. Further, a new algorithm for semantic ta-
ble interpretation, T2K Match, is proposed. In addition to named-entity columns,
which are in the focus of most other approaches, this algorithm further annotates
literal columns, which make up an estimated 35-52% of all columns in the Web
Data Commons Web Tables corpora. To ensure reproducibility, the algorithm is
published as open source.

Given a target knowledge base, semantic table interpretation means to annotate
a web table with the classes, entities, and properties from this knowledge base. It
is hence the process of recognising the elements that are already known, which

79
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in turn allows the interpretation of the elements which are unknown through the
structure of the web tables. Recognising the known elements is challenging, be-
cause different sources usually do not agree on common identifiers. This shows
in differently spelled names, uses of homonyms or synonyms, or different mod-
elling of schemata. Handling these challenges requires the use of schema and data
matching methods, which map the elements of a web table to the elements of the
target knowledge base. However, other than in a traditional data integration sce-
nario, where a few large data sources need to be integrated, a corpus of web tables
constitutes a very large number of small and heterogeneous data sources.

The method that is presented in this chapter deals with these circumstances by
solving three semantic table interpretation tasks: (1) annotating a web table with a
class, (2) annotating rows in a web table with entities, and (3) annotating columns
in a web table with properties from the knowledge base. By iteratively applying
data and schema matching methods, the results of early stages are successively re-
fined and provide valuable information on how to execute later stages. Specifically,
the first iteration determines candidate entities, which are used to find class candi-
dates in the knowledge base. The second iteration refines these candidate entities
and classes based on a preliminary property annotations. Finally, all following it-
erations refine the entity and property candidates until a final solution is achieved.

The contributions of this chapter are the following:

• Literature Review: A survey of literature on semantic table interpretation
organises the commonly used features and methods according to its differ-
ent tasks. The published work on the topic is further summarised and dis-
cussed with respect to comparability and real-world applicability. Current
approaches are often limited with respect to these two criteria, showing the
need for public evaluation datasets and more agreement on the combination
of tasks which need to be solved.

• T2D Gold Standard: A publicly available gold standard containing web
tables and annotations for the tasks of annotating web tables with classes,
columns with properties, and rows with entities using DBpedia as target
knowledge base is presented. In addition to earlier gold standards, T2D also
contains negative examples and annotations for literal columns. This new
gold standard hence allows for a more comprehensive evaluation that gives
indication to the practical applicability of an algorithm.

• T2K Match Algorithm: A novel algorithm for semantic table interpreta-
tion is proposed that solves the tasks of annotating web tables with classes,
columns with properties, and rows with entities. The schema and data match-
ing steps are executed and refined iteratively and produce a high-quality re-
sult on the T2D gold standard, which is still comparable to newer methods
that have been proposed after the original publication of the algorithm. The
annotation of literal columns and increased quality are improvements over
the state of the art.
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This chapter is organised as follows. First, a definition of semantic table inter-
pretation and its tasks is given, the common methods of approaching these tasks as
proposed in the literature are introduced, and comparability, reproducibility as well
as fitness for large-scale applicability are discussed in Section 5.2. Then, Section
5.3 introduces and profiles T2D, a new gold standard for semantic table interpre-
tation. In Section 5.4 presents T2K Match, a new algorithm for semantic table
interpretation, and its experimental evaluation is presented in Section 5.5.

Parts of the work presented in this chapter, i.e., T2K Match and the T2D gold
standard, have previously been published in [Ritze et al., 2015].

5.2 Related Work

This section surveys the related work in the area of semantic table interpretation.
First, the different tasks are defined and the different types of features used by
methods for these tasks are introduced. Then, the approaches proposed in the liter-
ature are summarised, and finally, their comparability and real-world applicability
are discussed.

5.2.1 Semantic Table Interpretation Tasks

The process of semantic table interpretation consists of several tasks which focus
on understanding different parts of the schema of a web table as well as on under-
standing which entities the mentions in the table cells refer to. This section defines
the data model that is used to represent a web table and introduces the three se-
mantic table interpretation tasks “Class Annotation”, “Relation Annotation”, and
“Entity Annotation”. For each task, commonly used features are presented. Fi-
nally, approaches that collectively solve multiple of these tasks are discussed.

The goal of the class annotation task is to annotate the named entity columns
of a web table with the class from the knowledge base which contains the entities
that are referred to by the respective column. The goal of the relation annotation
task is to annotate the columns of a web table with properties from the knowledge
base, which represent the relation between the subject column and the respective
column. The goal of the entity annotation task is to annotate cells of named entity
columns in a web table with entities from a knowledge base.

Data Model

A corpus is a set T “ tt1, t2, ..., t|T |u of relational web tables. Each web ta-
ble ti is a relation instance, referred to by lower-case letters, of a relation Ti “
tA1, A2, ..., A|Ti|

u (the schema of the web table), referred to by upper-case letters.
Every row of a web table, except the header row, corresponds to one tuple rk in
ti and every column in the header row corresponds to an attribute Aj in Ti. Each
Aj may have a name, which is the column header in the web table, if present, and
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Schema 𝑇௜

Subject
Column 𝐴௘ Attribute 𝐴௝

Tuple 𝑟௞

Figure 5.1: The Web Table Data Model.

has a data type that is determined through data type detection (see Section 4.3.3).
The web table data model is visualised in Figure 5.1. The terms row and column
are used for concrete web tables, while the terms attribute and tuple are used on a
conceptual level.

It is further distinguished between named entity columns and literal columns.
A named entity column contains strings which are the names of entities, while lit-
eral columns are either strings that do not refer to an entity or are of a different data
type. Every relational web table has a subject column Ae, which is a named entity
column. The subject column contains the names of the entities that are described
in the table. All other columns are assumed to represent binary relations with the
subject column, i.e., Ti : tAeu Ñ Ti where Ae P Ti.

Class Annotation

The goal of the class annotation task is to find a class in the knowledge base that
contains the entities that are mentioned in a specific column of a web table. Finding
a class annotation for the subject column of a web table, i.e., the column that con-
tains the main entities that are described in the web table, corresponds to finding a
class annotation for the web table as a whole.

Definition 16 (Class Annotation) Given a named entity columnAj of a web table
ti, find the class c in the knowledge base that semantically describes the entities in
tirAjs.

Approaches that annotate columns with classes from a knowledge base usu-
ally exploit the string similarity of headers and values in the table, use the results
of a data matching step, or leverage external sources. Each of these features is
introduced in the following paragraphs.
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String Similarity. The simplest group of features is based on string similar-
ity. It is often employed to generate initial candidates for class annotations which
are then refined by later steps. It can be further differentiated into label-based
and instance-based methods: Label-based methods compare the column headers
in the web table to the class labels in the knowledge base using string similarity
measures [Limaye et al., 2010, Buche et al., 2013], or simply use a lookup ser-
vice that is provided by the knowledge base [Wang et al., 2012]. Instance-based
methods compare the column content and the labels of all instances of a class us-
ing set similarity measures [Buche et al., 2013, Fan et al., 2014, Chu et al., 2015].
For such instance-based methods, all values of a column or class are concatenated
and treated as documents such that standard document similarity measures such as
TF-IDF and cosine similarity can be applied.

Re-using Entity Annotations. If cells have already been annotated with enti-
ties, methods can use the classes of these entities in the knowledge base to reason
about the class for a column. To generate candidate classes, the union of all en-
tities’ classes [Zhang, 2017] can be created or the entities may vote for majority
class [Mulwad et al., 2013, Balakrishnan et al., 2015]. More involved approaches
either measure the distance between the entities’ classes and the candidate class in
the class hierarchy [Limaye et al., 2010] or calculate a domain consensus, which
measures the similarity of all entities in the web table to the entities of the candidate
class in the knowledge base [Zhang, 2017].

Class Specificity. The classes in a knowledge base are usually organised in a hi-
erarchy and it is desirable to annotate columns with the most specific class. Hence,
some approaches calculate a class specificity, independently of the web table, and
use it as a feature to selected an appropriate class from the generated candidates [Li-
maye et al., 2010, Mulwad et al., 2013]. Alternatively, such a specificity measure
can also be defined as a variation of the TF-IDF scoring, which allows to model
different weights for each entity label, depending on how frequently it occurs in
the knowledge base [Chu et al., 2015].

External Sources. For the generation of candidate classes, it is also possible
to use external sources which associate an entity mention with an entity in the
knowledge base and a score or probability. Such external sources can be created
by applying patterns to a large text corpus [Venetis et al., 2011] or by analysing
the link texts of hyperlinks in Wikipedia or general web pages [Bhagavatula et al.,
2015]. Another possibility is to use a crowd-sourcing platform to obtain annota-
tions for some of the columns and then reason about the influence of these columns
on the classes for other columns [Fan et al., 2014].
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Relation Annotation

The goal of the relation annotation task is to find a property in the knowledge base
that describes the relationship between the subject column and another column in
the same web table.

Definition 17 (Relation Annotation) Given a columnAj of web table ti with sub-
ject column Ae, find the property p in the knowledge base that semantically de-
scribes the relationship between Ae and Aj , and forms the predicate of triples
generated from the two columns: tprrAes, p, rrAjsq|@r P tiu.

Approaches that annotate columns with relations from a knowledge base ex-
ploit the string similarity of headers and values in the table, use the results of a data
matching step, or leverage external sources. Each of these features is introduced in
the following paragraphs.

String Similarity. Label-based methods compare the table title or column head-
ers to the property labels in the knowledge base using string similarity measures
[Buche et al., 2013, Zhang, 2017]. Instance-based methods compare the values in
the table or the context around the table to the triples using the property in the
knowledge base, by comparing the string values to the label or URI of the entities
at the subject and object position of the triple [Zhang, 2017].

Re-using Class Annotations. The class annotations of columns in the web table
must match the classes of the domain and range of the property in the knowledge
base [Buche et al., 2013], and can hence be used to generate candidates. This
constraint can further be used to quantify the compatibility of candidate relations
using probabilities which are estimated from the triples in the knowledge base [Chu
et al., 2015, Limaye et al., 2010].

Re-using Entity Annotations. The most common approach is to score prop-
erties by the fraction of entity pairs in two columns which appear as subject and
object in a triple in the knowledge base [Limaye et al., 2010, Mulwad et al., 2013,
Munoz et al., 2013, Chu et al., 2015, Zhang, 2017]. Here, a preceding data match-
ing step has annotated the cells in the columns with entities from the knowledge
base and methods query the knowledge base for triples containing these entities.

External Sources. The generation and scoring of candidate properties can also
be done using external sources. Such sources contain relations between entities
which have been extracted from large text corpora and can be used to estimate prob-
abilities for the candidate properties [Venetis et al., 2011,Sekhavat et al., 2014,Bal-
akrishnan et al., 2015]. These sources are created by learning extraction patterns
for the known properties in the knowledge base. By applying these patterns to a
large text corpus, many surface forms for entities which participate in the respec-
tive relation can be collected.
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Entity Annotation

The goal of the entity annotation task is to find an entity in the knowledge base that
corresponds to the entity that is mentioned in a cell of a web table. The entities
mentioned in the subject column of the web table are representative for the whole
row containing the respective cells.

Definition 18 (Entity Annotation) Given a named entity column Aj and row r of
web table ti, find the entity e in the knowledge base that semantically describes the
entity that is mentioned in rrAjs.

Approaches that annotate cells in a web table with entities from a knowledge
base exploit the string similarity of cell values in the table or external sources to
generate candidate entities. Each of these features is introduced in the following
paragraphs.

String Similarity. The most common method to generate candidate entities
is to compare the cell value to the entity labels in the knowledge base, either by
exact string matching [Sekhavat et al., 2014] or using a string similarity measure
[Limaye et al., 2010, Mulwad et al., 2013, Bhagavatula et al., 2015, Balakrishnan
et al., 2015, Zhang, 2017, Chu et al., 2015, Efthymiou et al., 2017]. Additionally,
the similarity of the values in other cells of the same row or column and the triples
using the candidate entity as subject in the knowledge base can be calculated as a
contextual similarity [Zhang, 2017].

Re-using Entity Annotations. If initial entity annotations are available, they
can be re-scored using a semantic relatedness measure, which compares the simi-
larity of all entities in the same row or column using their overlap of ingoing and
outgoing Wikipedia links [Bhagavatula et al., 2015].

Entity Embeddings. Recently, methods are being explored that embed the en-
tities of a knowledge base into a dense, continuous vector space which is supposed
to resemble their semantic similarity, i.e., similar entities are close to each other
in this vector space. Such embeddings can be used by looking up cell values in a
dictionary of surface forms for entities and then comparing the embedding vectors
of different entities with, for example, cosine similarity [Efthymiou et al., 2017].

External Sources. Candidate entities can also be generated by looking up the
cell values in external sources, which can be created from link texts of hyperlinks
to Wikipedia pages [Bhagavatula et al., 2015] or directly following a link if the cell
contains a hyperlink to a Wikipedia page [Munoz et al., 2013, Bhagavatula et al.,
2015]. Popularity measures, such as PageRank, of Wikipedia pages associated
with entities can also be used for scoring [Mulwad et al., 2013].
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Collective Inference

While each of the introduced tasks can be solved individually, it is often beneficial
to solve multiple tasks collectively, as the results of each task can be re-used to
improve the results for the remaining tasks. The following introduces the most
common approaches to such a collective inference: probabilistic graphical models
and iterative matching.

Probabilistic Graphical Models. Collective inference for multiple tasks is of-
ten modelled using a probabilistic graphical model. Such a graphical model rep-
resents the interactions between the annotations of entities, classes, and relations
as interrelated random variables. Finding the best solution then corresponds to
maximising the joint probability. The structure of the graphical model reflects the
following intuition: entity annotations influence the class annotation in the same
column and the relation annotations including this column, and vice versa [Limaye
et al., 2010, Mulwad et al., 2013]. An addition to this structure is to define that all
entity annotations in the same row influence each other [Bhagavatula et al., 2015].

Iterative Matching. An alternative to the formulation as probabilistic graphical
model is an iterative matching step [Zhang, 2017]. Here, the class annotations and
entity annotations are updated in each iteration until convergence is reached. For
such an iterative matching to have an effect, the update of annotations takes the
result of other annotation steps into account, i.e., uses features of the “Re-using X
Annotations” categories as introduced above [Limaye et al., 2010, Mulwad et al.,
2013, Buche et al., 2013, Munoz et al., 2013, Chu et al., 2015, Balakrishnan et al.,
2015, Bhagavatula et al., 2015, Zhang, 2017].

5.2.2 Approaches

This section summarises the methods that have been proposed in the literature for
the different semantic table interpretation tasks or their combinations. The first
subsection presents approaches that rely on a target knowledge base for the anno-
tation of web tables. The second subsection then discusses approaches that use
open information extraction methods to generate a larger set of possible relations
and classes and try to increase the coverage compared to approaches using an ex-
isting knowledge base.

Annotation with Existing Knowledge Base

The approaches introduced in the following solve the semantic table interpreta-
tion tasks as described above and use a variety of different features and matching
techniques.
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[Limaye et al., 2010] Limaye et al. proposed the first work to annotate web
tables with elements from a knowledge base. Their method annotates cells with
entities, columns with classes, and pairs of columns with binary relations between
named entities using YAGO as target knowledge base. They generate candidate
annotations for classes and entities using different string similarity measures, and
these annotations are then used to look up candidate relation annotations. The
scores of all candidate annotations are calculated using a probabilistic graphical
model, which takes additional factors such as class specificity and the compatibil-
ity of entity annotations and class annotations into account. The inference step,
i.e., finding an assignment for the model that maximises the joint probability, is
performed using message-passing [Koller and Friedman, 2009]. For their eval-
uation, Limaye et al. annotate several datasets: Two datasets based on tables
from Wikipedia Wiki_Manual and Wiki_Link as well as two datasets of web ta-
bles Web_Manual and Web_Relations. It is important to note that, although these
datasets are not publicly available, many authors have re-used them, often in a
modified version, to evaluate their own approaches. The Web_Manual dataset con-
tains 371 web tables which are manually annotated with entities, classes, and re-
lations. Due to the low amount of relations in this dataset, the authors created
the Web_Relations dataset, in which they only annotate relations. Although their
method has several hyper-parameters, the authors choose not to split their datasets.
They estimate the weights required by their model on the Wiki_Manual dataset and
choose the measure for class-entity compatibility based on the results for both the
Wiki_Manual and Web_Manual datasets. Evaluated on the Web_Manual dataset,
their method achieves an accuracy of 81.37% for entity annotation, 43.23% for
class annotation and 51.5% for relation annotation (63.64% on the Web_Relations
dataset).

[Mulwad et al., 2013] Mulwad et al. propose a method to annotate cells with
entities, columns with classes, and pairs of columns with binary relations between
named entities using YAGO and DBpedia as target knowledge bases. Their method
solves the same set of tasks and uses features and a probabilistic graphical model
which are very similar to the approach of Limaye et al. Notable differences are in
the generation of entity annotation candidates and the inference algorithm. Entity
annotation candidates are generated using Wikitology, a hybrid knowledge base
constructed from Wikipedia, YAGO, and DBpedia, and then ranked using a super-
vised ranking model. This gives their approach an advantage, as more alternative
names for the entities contained in the knowledge base are available. The infer-
ence over the graphical model is performed using Semantic Message Passing, a
variation of the message-passing algorithm, which does not rely on pre-computed
probability distribution tables and is supposed to scale to larger problems. How-
ever, the authors do not compare the runtime or scalability of Semantic Message
Passing to the otherwise very similar approach proposed by Limaye et al. They
evaluate their approach on Limaye’s datasets, but create a new reference alignment
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to include annotations for the DBpedia knowledge base. They do not report how
the hyper-parameters of their method were determined. For the class annotation
task, they report an F1-measure of 57% for the Web_Manual dataset and for the
relation annotation task, they report an F1-measure of 89% for the Web_Manual
dataset and 86% for the Web_Relation dataset. For the entity annotation task, they
report an accuracy of 63.07% for the Web_Manual dataset. Except for the entity
annotation task, these performance measures are higher than the accuracy values
reported by Limaye et al., but the publication contains no discussion of the compa-
rability of the F1-measure reported by Mulwad et al. and accuracy scores reported
by Limaye et al. or the changes that were introduced during the re-annotation of
the datasets.

The following methods were published at the same time as or after the original
publication of the T2K Method [Ritze et al., 2015] presented in this chapter and
have hence not been considered during its design.

[Bhagavatula et al., 2015] Bhagavatula et al. propose a method to annotate
cells with entities using Yago as target knowledge base. Other than Limaye et al.
or Mulwad et al., they generate candidate entity annotations using probabilities
derived from a database of hyperlinks on the web. Every link text of a hyperlink
pointing to a Wikipedia page is considered as evidence that the link text repre-
sents the entity corresponding to the respective Wikipedia page. Further features
for scoring the candidates are the semantic relatedness [Hecht et al., 2012, Witten
and Milne, 2008] with other candidate entities for different cells in the same row
or column and contextual similarity, which measures the overlap of tokens in the
same row and column for a cell with tokens that have been observed on a training
set. They use a probabilistic graphical model to combine these features, where
each cell is represented by a variable that is connected to all other cells in the same
row or column. As approximate inference algorithm they use link-based classifi-
cation [Lu and Getoor, 2003], which uses a pre-trained local classifier to update
the assignment of each node based on the assignment of its connected nodes in
each iteration. They evaluate their approach on Limaye’s Web_Manual dataset and
report an accuracy of 89.41% which is an improvement of 8 percentage points.

[Pham et al., 2016] Pham et al. propose a method to annotate columns with
classes. Their approach is to train a classifier on feature vectors consisting of differ-
ent similarity measures such as string, numeric and distributional similarity mea-
sures of column headers and cell values. For training, examples are generated by
creating pairwise combinations of all properties in the training dataset that indicate
if the properties have the same range or not. For the classification of a column, fea-
ture vectors comparing this column to each of the properties in the training dataset
are created and then evaluated by the classifier. All positive predictions are then
ranked by the confidence of the classifier. They evaluate their method on the T2D
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gold standard, which will be described in Section 5.3, and report a mean recip-
rocal rank [Craswell, 2009] of 0.773, but do not discuss how this performance is
related to the F1 score reported as benchmark in the original publication of the gold
standard [Ritze et al., 2015] and in Section 5.5 of this chapter.

[Ermilov and Ngomo, 2016] Ermilov and Ngomo propose a method to anno-
tate cells with entities and pairs of columns with binary relations using DBpedia as
target knowledge base. They use the AGDISTIS [Usbeck et al., 2014] system to
generate candidate entity annotations for a sample of all cells in the web table. This
system uses labels from the knowledge base and additional surface forms as well as
a graph-based disambiguation step to link strings to entities. It is, however, unclear
if and which additional surface forms are used in their experiments. Then, rela-
tion annotation candidates are generated by looking up the column headers in an
index that contains the labels and descriptions of properties in the knowledge base
and by querying the knowledge base for pairs of values from different columns.
The hyper-parameters of their method, a similarity threshold for index lookups
and a classification model to determine the subject column, are tuned based on
the results on all evaluation datasets. The evaluation of the method is performed
on a re-sampled and re-annotated subset of the T2D gold standard and an arti-
ficially generated dataset. On the variation of T2D, their method achieves 72%
recall and 39% precision, compared to 36% recall and 48% precision achieved by
T2K Match. The authors do not publish their version of the T2D gold standard, so
the experiment cannot be repeated for an error analysis. On the synthetic dataset,
their method achieves an F1-measure of 85% while T2K Match does not produce a
result. This experiment, too, is not reproducible for an error analysis, because the
used dataset is no longer available online.

[Zhang, 2017] Zhang proposes a method to annotate cells with entities, columns
with classes, and pairs of columns with binary relations. The approach distin-
guishes between a learning phase, which only considers a sample of the table, and
an update phase, which iteratively refines the annotations, similar to T2K Match as
described in Section 5.4. The learning phases creates candidate annotations for en-
tities and classes, which are then re-scored in the update phase. After the iterative
refinement ends, these annotations are used to list possible relation annotations by
querying the knowledge base. The most notable differences to T2K Match are that
the method only uses a sample of the data in each web tables, uses different features
and measures for similarity calculation, and iterates until a convergence criterion
is met. Zhang evaluates his method on a re-built version of Limaye’s dataset and
reports an F1-measure of 82.3% for the entity annotation task, 64% for the class
annotation task, and 66.2% for the relation annotation task. In these experiments,
the proposed method outperforms re-implementations of the methods proposed by
Limaye et al. and Mulwad et al.
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[Efthymiou et al., 2017] Efthymiou et al. evaluate several methods for anno-
tating cells with entities from a knowledge base. The methods differ in the way
entity candidates are generated. The lookup-based method uses an index created
from the rdfs:label and rdfs:description properties of all entities in
the knowledge base. The returned candidates are constrained in a similar way as
in T2K Match by using candidate class and candidate property mappings. The en-
tity embedding method also uses index lookups, but calculates the similarity scores
based on embedding vectors [Mikolov et al., 2013] of the returned candidate en-
tities and applies a graph-based disambiguation step [Zwicklbauer et al., 2016].
They evaluate their method on the T2D gold standard and the re-creation of the
Limaye dataset by Bhagavatula. Using a hybrid approach consisting of the lookup
and entity embeddings methods, they achieve an F1-measure of 85% on the T2D
gold standard, which is an improvement of 3 percentage points over T2K Match,
and 82% on the re-created Limaye dataset. The results on the re-created Limaye
dataset are not comparable to the results published by Bhagavatula, as the approach
of Efthymiou et al. only annotates entities in the subject column of each web table,
while Bhagavatula et al. annotate entities in all named entity columns.

[Ritze and Bizer, 2017] Ritze and Bizer present a feature utility study that anal-
yses the impact of a large number of features on all three semantic table interpre-
tation tasks. For their study, they extend the T2K Match method and the T2D gold
standard, which are presented in this chapter. For the annotation of columns with
classes, they find that a majority voting of the types assigned to entity annotations
and class specificity are the strongest signals. For the annotation of cells with enti-
ties, the strongest signals are the string similarity of the cell value and the entity’s
label as well as the similarity of the values of additional columns with the entity’s
properties. For the annotation of pairs of columns with binary relations, the best
performing features are label-based similarity and instance-based similarity using
duplicate-based schema matching.

The approaches presented above differ in the way initial candidates are gener-
ated, in the specific similarity measures that are used, and in the way how inter-
actions between entity, relation, and class annotations are modelled. While many
of the approaches use the dataset created by Limaye et al., different performance
measures and the re-annotation of the datasets raise doubts about the comparability
of the results. Another issue is that the actual impact of the different methods for
candidate generation, similarity calculation, and collective inference is not evalu-
ated individually, so approaches can only be compared as a whole. The first issue is
approached by the T2D gold standard, which will be presented in Section 5.3 and
is already being used by other researchers to compare their methods. The second
issue was addressed and Ritze and Bizer [Ritze and Bizer, 2017] who performed a
feature utility study for the different semantic table interpretation tasks.
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Annotation based on Open Information Extraction

The methods introduced in the following annotate web tables with concepts and
relations obtained through open information extraction methods rather than an ex-
isting knowledge base. This approach promises a larger coverage, as the databases
created by such methods are usually larger than knowledge bases, but also contain
more noise.

[Venetis et al., 2011] Venetis et al. propose to annotate web tables with classes
and relations from a large database that is created using open information extrac-
tion methods. Their method annotates columns with classes and pairs of columns
with binary relations between, using two databases extracted from a large text cor-
pus as target knowledge base. The authors argue that the annotation with elements
from these databases increases the coverage of their approach compared to using
one of the existing knowledge bases. They report that they can annotate 1.5 mil-
lion of their 12.3 million web tables with their approach, while only 185 thousand
and 577 thousand can be annotated with YAGO and Freebase, respectively. The
first database, called isA-database, uses patterns to extract combinations of class
names and entity names from web pages and search engine query logs, for exam-
ple the text “cities such as Berlin” leads to the extraction “Berlin isA City”. The
second database, called relations-database, uses the TextRunner extraction sys-
tem [Yates et al., 2007] to extract triples for binary relations, for example “Berlin
capital Germany”, from web pages. To annotate a table, the values of named entity
columns are looked up in both databases to generate candidate annotations. Then,
a maximum-likelihood model is used to estimate the probabilities of encountering
the values in the table given each candidate (class or relation) annotation. The
authors evaluate their method on the datasets proposed by Limaye and claim to
outperform their results, however, they compare their F1 for the top-10 annotations
to Limaye’s accuracy for the best annotation.

[Wang et al., 2012] Wang et al. propose to annotate web tables with classes
from the Probase taxonomy. Before annotating the web tables, their method col-
lects additional relations from web pages and query logs, similar to the approach
of Venetis et al. Their method queries the Probase knowledge-API to obtain can-
didate classes for the web table based on the set of column headers and the set of
entities in the subject column. For each of these sets, the knowledge-API returns
a list of candidate classes with a score, and the method chooses the candidate with
the highest product of header score and entity score. Their evaluation focuses on a
search application using the annotated web tables and does not explicitly measure
the performance of the class annotations.

[Balakrishnan et al., 2015] Balakrishnan et al. propose a method to annotate
cells with entities, columns with classes and tables with binary relations using the
Google Knowledge Graph as target knowledge base. Their approach builds on the
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ideas presented by Venetis et al. and generates an entity index and a isA database
from the knowledge base. Cells are then annotated using lookups in the entity index
and the class annotation for a column is determined by a majority voting among
the classes returned for the candidate entities from the isA database. To determine
potential relations in the table, they look up known properties from a large-scale
attribute name database (Biperpedia) [Gupta et al., 2014] in the text surrounding
the table and its captions. It is unclear whether the discovered properties are used
to annotated specific columns or the whole table. They do not present an evaluation
of their approach.

[Cannaviccio et al., 2018] Cannaviccio et al. present a method to annotate
pairs of columns with relations from a knowledge base. Instead of comparing the
column contents to the names of entities in the knowledge base, they propose to
learn language models for each relation in the knowledge base from sentences that
connect the entities in these relations using a large text corpus. To annotate web
tables, the entities in the cells are used to issue a search query to a web document
search engine, and the candidate relations in the knowledge base are ranked ac-
cording to how likely their language models would produce the sentences in the
returned documents. The evaluation shows that the proposed method is able to
assign relation annotations in 52 out of 80 cases where T2K Match fails, which
indicates a better recall of the method. However, no evaluation on the T2D gold
standard is performed which would provide a general comparison of the methods.

The literature discussed in this section indicates that only a rather small frac-
tion of web tables can be interpreted with the data in current knowledge bases and
that much more entity and relation labels need to be known. An approach for the
large-scale collection of such labels is to use open information extraction meth-
ods. However, the related work in this area often does not clearly address how the
additional classes, entities, and relations that are obtained with these methods can
be integrated with the knowledge base. Rather, the mentioned approaches have
search applications in mind, which use the annotations to match the web tables to
user queries and do not rely on a knowledge base.

5.2.3 Comparability

This section discusses the comparability of the various approaches that have been
introduced above. In general, the comparability is limited by two factors: (1)
most approaches are evaluated on a dataset that was specifically created for the
evaluation of the respective approach and cannot be re-used as they are not pub-
licly available, and (2) different studies use different quality metrics, which are not
comparable. These factors are discussed in more detail in the following and show
that there is a clear need for publicly available datasets and a common evaluation
methodology.
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Datasets. Although many approaches for web table annotation have been pro-
posed, comparability is rather limited. As there is no commonly agreed-upon
benchmark, authors often create their own datasets to evaluate their proposed meth-
ods. However, only few make the implementation of their method or the used
datasets publicly available, which hinders reproducibility or makes it impossible.
For example, the datasets used by Limaye et al. [Limaye et al., 2010] are often
used to evaluate methods, but due to different target knowledge bases, errors in
the datasets, or outdatedness, several versions of these datasets have been cre-
ated [Mulwad et al., 2013, Bhagavatula et al., 2015, Zhang, 2017]. As a result,
only few of the reported performance values are actually comparable.

Quality Metrics. A second problem is that there does not seem to be agreement
on which performance measure to use for evaluation. Some authors introduce an
annotation “no annotation”, which is assigned to every element that is not anno-
tated by a method and allows the use of accuracy as performance measure [Limaye
et al., 2010, Mulwad et al., 2013, Fan et al., 2014, Bhagavatula et al., 2015].

In some of the presented studies, authors create multiple possible annotations
in the ground truth and categorise them as either “vital”, “okay”, or “incorrect”.
An annotation produced by their method is then scored with 1.0 for vital and with
0.5 for okay [Venetis et al., 2011,Mulwad et al., 2013,Zhang, 2017]. Partial scores
may also be used for annotations that are on a different level in the class hierarchy
than the correct annotation [Chu et al., 2015].

A frequently applied alternative to the accuracy measure is the use of preci-
sion, recall, and F1-measure, where precision is defined as the fraction of cor-
rect annotations to all created annotations, recall is the fraction of correct anno-
tations to all annotations in the ground truth, and the F1-measure is the harmonic
mean of both [Venetis et al., 2011, Buche et al., 2013, Fan et al., 2014, Chu et al.,
2015, Zhang, 2017, Efthymiou et al., 2017].

Methods that produce a ranked list of annotations are either evaluated by taking
the top-k elements into account [Venetis et al., 2011], resulting in precision@k
and recall@k, using a ranked performance measure such as mean reciprocal rank
[Pham et al., 2016], or by evaluating only the highest ranked annotation [Mulwad
et al., 2013, Zhang, 2017].

This variety of evaluation methodologies makes the results incomparable and
sometimes leads to inappropriate statements in the literature: Venetis et al. com-
pare their F1-measure@10 performance to the results of Limaye et al. who were
using accuracy@1, and Pham et al. compare their mean reciprocal rank to the F1-
measure achieved by T2K Match, the method presented in this chapter. In both
cases, a measure that takes multiple candidates into account is compared to a mea-
sure that only considers the first result.
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5.2.4 Real World Applicability

The ultimate goal of semantic table interpretation approaches is to apply them to
annotate a large corpus of web tables, which can then be used in downstream ap-
plications such as dataset search or knowledge base augmentation. This section
discusses to which extent the proposed methods are applicable in such a setting
with respect to a representative evaluation, runtime efficiency, and limitations con-
cerning literal values.

Evaluation Methodology. Concerning the evaluation methodology, it is often
unclear how the methods proposed in the literature will handle an unknown dataset.
Reasons are that either evaluation data was also used for parameter tuning [Limaye
et al., 2010], it is not stated which data was used for tuning [Mulwad et al., 2013],
or no explicit evaluation of the annotation task is provided [Wang et al., 2012,
Balakrishnan et al., 2015]. Further, some approaches are not evaluated for a real-
world application. For example, evaluation data is filtered such that the respective
method is always able to make an annotation [Venetis et al., 2011], or the method
always links to an existing entity in the knowledge base [Bhagavatula et al., 2015],
i.e., cannot handle unknown entities, which leads to incorrect annotations if the
knowledge base does not contain all possible entities.

Efficiency. Efficiency is also hard to gauge, as only few studies measure the
runtime of their approaches [Chu et al., 2015,Zhang, 2017] or apply them to a large
corpus of tables. Based on the literature, only the methods proposed by Limaye et
al., Venetis et al., Wang et al., and Efthymiou et al. have been applied to large-scale
datasets [Limaye et al., 2010, Venetis et al., 2011, Wang et al., 2012, Efthymiou
et al., 2017]. Limaye et al. apply their method to a corpus of 25 million web
tables, but don’t report any statistics about the results. Venetis et al. were able
to annotate 1.5 million web tables out of a corpus of 12.3 million web tables with
concepts from their isA database. Wang et al. report that they discovered 10 million
entities, 150k attributes and 1 million relations from a corpus of 69 million tables.
Efthymiou et al. evaluate their method on a dataset of 485 thousand web tables
from Wikipedia.

Data Types. Finally, most of the proposed methods focus exclusively on the
annotation of named entity columns, although a large fraction of the columns in
large web table corpora are numeric [Limaye et al., 2010, Mulwad et al., 2013,
Venetis et al., 2011, Wang et al., 2012, Munoz et al., 2013, Sekhavat et al., 2014,
Fan et al., 2014, Chu et al., 2015, Bhagavatula et al., 2015]. Only the approaches
proposed by Buche et al., Pham et al., and Zhang are able to annotate numeric
columns [Buche et al., 2013, Pham et al., 2016, Zhang, 2017].
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Figure 5.2: T2D: Data Type Distribution.

5.3 T2D Gold Standard

This section introduces the T2D Gold Standard.1 The gold standard was developed
to enable researchers to measure the performance of semantic table interpretation
algorithms for several annotation tasks based on a publicly available dataset. The
following sections describe the sampling methodology, report the data profile for
each of the annotated semantic table interpretation tasks, and explain the annotation
procedure that was applied for the creation of the gold standard.

5.3.1 Annotated Semantic Table Interpretation Tasks

This section presents a data profile for the T2D gold standard with respect to the
annotated semantic table interpretation tasks and two different subsets that were
created based on the available annotations: the schema-level gold standard with
1 748 web tables, which contains class and relation annotations, and the instance-
level subset with 233 web tables, which also contains entity annotations.

The schema-level gold standard contains annotations that indicate the type of
table (layout, content), and, if applicable, correspondences to a class in DBpedia
for the whole table as well as correspondences to properties in DBpedia for indi-
vidual columns. In total, there are 762 content tables with correspondences to 91
different classes and a total of 2 084 schema-level correspondences to 298 different
properties in DBpedia.

Figure 5.2 shows that the distribution of data types in content tables is equal
to the distribution of data types in the whole corpus, i.e. 65% strings and 28%
numeric. The distribution of tables in the gold standard with respect to size is also
designed to be close to the distribution in the Web Data Commons Web Tables

1http://webdatacommons.org/webtables/goldstandard.html

http://webdatacommons.org/webtables/goldstandard.html
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Figure 5.3: T2D: Table Size Distributions.

Corpus 2012. Small tables with ten rows or less make up 39% of the tables in
the gold standard, medium-sized tables with up to 50 rows make up another 43%,
and large tables with more than 50 rows make up the remaining 18%. Figure 5.3
shows the cumulative frequency of content tables by table size in terms of rows and
columns.

There is, however, a bias towards larger tables, especially in the instance-level
subset, which is due to two reasons. First, the goals of having a large number of
entity annotations and reflecting the actual distribution of table sizes are contra-
dicting given a limited amount of time for annotation. There is a non-negligible
annotation overhead per table before an annotator can create entity annotations,
which includes the annotation of the table type, data types, relations, etc., while
the annotation time per entity annotation is comparably low. Hence, sampling web
tables with very few rows drastically increases the annotation time compared to
sampling fewer, but larger web tables with the same total amount of rows. Second,
the sampling approach which is used to find web tables with entities that exist in
the knowledge base ranks the web tables by their entity overlap, i.e., prefers larger
tables. Completely random sampling, however, is not feasible as the amount of
web tables that can be mapped to the knowledge base is very low, i.e., random
sampling would require much larger sample sizes and lead to a disproportionate
annotation overhead for non-matching web tables.

On the schema level, the 762 tables which can be mapped to DBpedia have a
total of 4 100 columns of which 2 084 are mapped to 283 different properties in
DBpedia. Of these mapped columns, 35% are the subject columns of their respec-
tive web tables. On average, web tables for the PopulatedPlace class have the
highest number of relation annotations, with 3.3 per web table, and web tables for
the Species class have the lowest number with only 1.7 per web table. Figure
5.4 shows the frequency distribution of the most frequent properties in the anno-
tations. The most frequent properties are those of the PopulatedPlace class
(language, currency, populationTotal) and the Organization class
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Figure 5.4: T2D: Property Frequency Distribution.

(industry, country, location). This is partly due to the fact that these two
high-level classes have the largest amounts of web tables in the sample. However,
it also indicates that these properties seem to be agreed upon as important by the
creators of the different web tables.

The instance-level gold standard further contains annotations with entities in
DBpedia for all rows in the web tables that have a corresponding entity. In to-
tal, there are 26 124 entity annotations and 2 442 web table rows are annotated as
non-matching. On average, the Species class has the largest number of entity an-
notations with 250.1 per web table and Organization has the fewest with only
64.8 per web table. Figure 5.5 summarises the presented statistics for the top-level
classes in the schema-level and instance-level gold standard. The most frequently
annotated class is PopulatedPlace, which has on average rather large tables
and many columns which can be mapped to properties in DBpedia. The second
most frequent class is Organization, which has on average the smallest web
tables and hence comparably few entity annotations.

More details about the characteristics of the web tables for the different high-
level classes are given in Figure 5.6. The left chart in Figure 5.6 shows the average
number of rows and the average number of entity annotations per table for dif-
ferent high-level classes. It can be seen that the Species class has by far the
largest tables, with an average of 273 rows, and the smallest tables are found for
the Organization class, with an average of 69 rows. The chart further shows
that, for all classes, most of the rows can be annotated with entities.
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The right chart in the same figure shows the analogous statistic for columns
and property annotations. The web tables for all classes have an average number
of columns around 5, but the amount of property annotations varies. The largest
average number of property annotations is found for the PopulatedPlace class,
with an average of 3.3 annotated columns per web table, and the lowest is found
for the Species class, with an average of 1.7 annotated columns per web table.
These numbers include the annotation with rdfs:label for the subject column
of each web table, so every web table that can be mapped to the knowledge base
has at least one annotated column.
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5.3.2 Annotation Procedure

This section describes the annotation procedure and the dedicated annotation tool
that is designed for the creation of the T2D gold standard.

Table Sampling

The initial table selection is a random sample of relational web tables from the
WTC 2012. The majority of these tables, however, cannot be mapped to the DBpe-
dia knowledge base or are non-relational (i.e., errors made by the table type classi-
fier). These web tables are included in the gold standard as negative examples, i.e.,
a semantic table interpretation method should not create any annotations for them.
However, the number of positive examples, i.e., web tables that can be mapped to
DBpedia, is too small using random sampling and would require a large sample
size and annotation overhead to include a sufficient amount of positive examples.
To increase the amount of positive examples, a focused sampling is used to select
web tables that likely match one of the classes in the DBpedia knowledge base.
This sample is generated by running the Mannheim Search Joins Engine [Lehm-
berg et al., 2015], a search engine for web tables, using the entities in DBpedia as
query, which results in a list of web tables which contain the entities in the query
and can hence be mapped to DBpedia.

Annotation Tool

The gold standard is created by two annotators with the help of a custom annotation
tool that is developed specifically for this annotation task. The tool provides the
annotator with a user interface, shown in Figure 5.7, that shows the original web
page, highlights the web table that is being annotated and shows the extracted table
data in a separate area. The annotator is then guided through an annotation process
with several steps that create different types of annotation for the table. Note that
the each annotator works on a distinct set of web tables to enable a larger size of
the gold standard and thus, no inter-annotator agreement can be calculated.

The first step in the annotation process is to select the table type. Possible
options are:

• Broken: The table was incorrectly extracted and cannot be used.

• Layout: The table is used for layout purposes and does not contain relational
data.

• Content: The table is relational and contains data.

• Complex: The table has a complex layout, i.e., multi-dimensional header
rows or headers in both rows and columns.

• Useless: The annotator cannot understand the purpose of the table.
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If the annotator chooses Content, the annotation proceeds with the next step. In
all other cases the annotation process ends and the next table is shown. For content
tables, the next step is to specify the orientation of the table. Horizontal tables
represent attributes as columns and records in rows, while vertical tables represent
attributes in rows and records in columns. If the annotator selects Vertical, the
table is transposed.

The next step is the annotation of table-level metadata. The annotator specifies
if the web table has one or more header row(s) or a subject column and specifies
their location. She can further enter a time dimension that might be stated on
the web page, such as “last updated on” and select a class from DBpedia for the
content of the web table, as shown in Figure 5.8.

Then, the next step is the annotation of column-level metadata. The annotator
specifies for each column whether it contains any data, its data type including units
of measurement for numeric data, a potential time dimension, and a property from
DBpedia, as shown in Figure 5.9.
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The final step is the annotation of row-level metadata. The annotator selects
a matching entity from DBpedia for each row in the table or none, if there is no
matching entity, as shown in Figure 5.10. This selection uses the DBpedia lookup
service to find candidate entities based on the cell value of the subject column for
each row. For each lookup result, the rdfs:label, URI, and abstract are shown
to the annotator. If none of the candidates match, the annotator performs a manual
search in DBpedia for a matching entity and can enter its URI.

5.4 Method: T2K Match

This section describes T2K Match2, a matching algorithm for iterative data and
schema matching. In the following, first the pre-processing steps are explained, and
then the individual steps of the matcher workflow are defined. The pre-processing
steps normalise the values in the web tables and enrich the knowledge base with
additional surface forms to deal with the high level of heterogeneity in web tables.
The matching steps start with a candidate selection for entity and class annotations.
Then, for each of these candidates, similarity values are calculated, which are used
in the following steps to determine relation annotations. Finally, an iterative match-
ing step refines the relation and entity annotations.

5.4.1 Pre-processing

This section describes the pre-processing steps that are applied to the web tables
and the knowledge base before the execution of the matching algorithm. These
steps perform several data cleaning and normalisation operations and add addi-
tional entity names to the knowledge base.

Data Cleaning. Several data cleaning and normalisation steps are performed on
the web tables before the execution of the matcher. The first step removes HTML
artefacts, special characters and additional whitespaces. Then, all string values are
transformed into lower-case and value lists are split into individual values based
on a regular expression. Further, a set of hand-crafted transformation rules is used
to resolve abbreviations, for example “co.” is transformed into “company”. The
second step performs a data type and unit of measurement detection for each col-
umn in the web table (see Section 4.3.3). All numeric values are parsed and if
a unit of measurement was detected, the corresponding values are converted into
a base unit. For example, 8mi2 is converted to 20.72 million m2. The last step
detects a subject column using the following heuristic: The subject column is the
most-unique, string-type column with an average length of at least four characters.
In case of a tie, the left-most candidate is chosen (see Section 4.3.4).

2https://github.com/olehmberg/T2KMatch

https://github.com/olehmberg/T2KMatch
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Figure 5.11: T2K Match Workflow.

Surface Form Handling. The values in a web table might use different sur-
face forms for the names of the entities in DBpedia than the ones that are provided
in the rdfs:label property. To be able to recognise alternative names, a sur-
face form catalogue [Bryl et al., 2015] used to add additional entity labels to the
knowledge base. The used surface form catalogue is created from anchor-texts of
intra-Wikipedia links, Wikipedia article titles and disambiguation pages. In addi-
tion to this catalogue, the labels of all pages that redirects to a page corresponding
to an entity in Wikipedia are added as possible labels for the respective entity.

Kurtosis Filter. Web tables often have attributes that contain row numbers or
represent positions in rankings. Such attributes cannot be mapped to DBpedia as
they are only meaningful in the context of the respective web tables. A character-
istic of these columns is that each distinct value in a ranking column appears only
once, resulting a uniform distribution. One feature of the uniform distribution that
distinguishes it from other distributions is its Kurtosis value of ´1.2, as defined in
Equation 5.1, which allows for the detection and exclusion of such columns from
the matching process.

KurtrXs “
ErpX ´ µq4s

pErpX ´ µq2sq2
(5.1)
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5.4.2 Matcher Workflow

This section describes the steps of the T2K Match algorithm, as depicted in Figure
5.11. First, candidate entities from DBpedia are determined for each value in the
subject column by index lookups on the rdfs:label values of all entities in the
knowledge base. These candidate entities are then used to create an initial schema
mapping using a duplicate-based schema matcher, and to find candidate classes for
the web table. Based on the candidate classes, new candidate entities are selected.
Then, an iterative phase of the algorithm alternates between re-scoring the schema
correspondences and entities correspondences. In the following, the steps of the
algorithm are described in more detail.

Running Example. To exemplify the steps of the algorithm, the web table
shown in Figure 5.12 will serve as a running example in the following sections.
The table lists five movies with their title, release year, and director as well as
two ranking attributes. The correct mapping should assign the dbo:Film class
to the whole table and the properties rdfs:label to the “Title” column, the
dbo:releaseDate property to the “Year” column, and the dbo:director
property to the “Director” column. The remaining two columns have no corre-
sponding properties in the DBpedia ontology. The first column “Fans’ Rank” is
filtered out by the kurtosis filter (it has a kurtosis of´1.2). Further, all rows except
the third row (“Manhattan”) have corresponding entities to which they should be
mapped.

Fans' 
Rank Title Year Director

Overall 
Rank

R1 1 Groundhog Day 1993 Harold Ramis 130

R2 2 Duck Soup 1933 Leo McCarey 56

R3 3 Manhattan 1979 Woody Allen 135

R4 4 Crouching Tiger, Hidden Dragon 2000 Ang Lee 165

R5 5 Requiem for a Dream 2000 D. Aronofsky 434

Figure 5.12: Running Example: Example Table.
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1. Candidate Selection

The candidate selection step creates correspondences to candidate entities for each
row and candidate classes for the whole web table. This initial selection limits the
computational cost of later steps and corresponds to a blocking step by indexing.
To obtain a set of candidate entities for the rows in a web table, an index lookup
for the value of the subject column if performed. The index is created from all
rdfs:label values of the entities in the knowledge base. All retrieved candi-
dates are ranked by a similarity function and the top-k candidates are kept. Both
the similarity function and the value of k are parameters of the algorithm. Given
the web table’s rowsRow and entity candidatesE, this step results in the similarity
matrix Scand, defined in Equation 5.2.

Scand : Row ˆ E Ñ r0, 1s (5.2)

Candidate classes are generated from the highest ranked candidate of each row
in Scand, referred to as Ŝcand, i.e., all other scores in Ŝcand are set to zero. Given the
entities E and the classes C in the knowledge base, the matrix Eclass defines the
assignment of entities to classes as shown in Equation 5.3.

Eclass : E ˆ C Ñ

"

1 entity belongs to class
0 otherwise

(5.3)

The class similarity Sclass shown in Equation 5.4, where r¨s indicates the ceiling
function, scores each class c with its relative frequency among the candidates in
Ŝcand, i.e., if 50% of the candidates belong to class Country, it is scored with 0.5.

Sclasspcq “
1

|Row|

ÿ

rPRow,ePE

rŜcandpr, eq ¨ Eclasspe, cqs (5.4)

All candidate classes above a configurable threshold are kept as candidates.
If none of the classes exceeds the threshold, the top-k ranked classes are chosen.
The selected classes are then used to refine the candidate entities through a second
index lookup. This time, however, the search is limited to entities that belong to
one of the selected classes. Again, candidates are ranked by a similarity measure
and the top-k are kept. The similarity measure and k for the refinement step can be
chosen independently of the parameters for the initial candidate search. The result
of this step updates the similarity matrix Scand.

For the running example, the candidates shown in Figure 5.13 are generated
and the similarity scores are calculated with Jaccard similarity on word tokens.
Based on the initial class similarity scores, the classes Organisation and Book
as well as the entity candidates assigned to these classes are discarded. To keep the
example simple, assume that the refinement step does not add any additional entity
candidates.
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Row Entity rdfs:label Class 𝑺𝒄𝒂𝒏𝒅

R1 E1 Groundhog Day (film) Film 0.67

R1 E2 Groundhog Day Holiday 1.0

R2 E3 Duck Soup (1933 film) Film 0.5

R2 E4 Duck Soup (1927 film) Film 0.5

R3 E5 Manhattan City 1.0

R3 E6 Manhattan Project Organisation 0.5

R4 E7 Crouching Tiger, Hidden Dragon Film 1.0

R4 E8 Crouching Tiger, Hidden Dragon (soundtrack) Album 0.8

R4 E9 Crouching Tiger, Hidden Dragon (novel) Book 0.8

R5 E10 Requiem for a Dream (film) Film 0.8

R5 E11 Requiem for a Dream Album 1.0

Class 𝑺𝒄𝒍𝒂𝒔𝒔

Film 0.4

Holiday 0.2

City 0.2

Organisation 0.0

Album 0.2

Book 0.0

Figure 5.13: Running Example: Generated Candidate Entities.
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𝑺𝒊𝒏𝒔𝒕 Candidate
Class Film Album

Column Title Director Title Director

Row Entity rdfs:label dbo:director rdfs:label dbo:artist

R1 (Groundhog Day) E1 0.67 1.00 0.00 0.00

R2 (Duck Soup)
E3 0.50 1.00 0.00 0.00

E4 0.50 0.00 0.00 0.00

R4 (Crouching Tiger, 
Hidden Dragon)

E7 1.00 1.00 0.00 0.00

E8 0.00 0.00 0.80 0.00

R5 (Requiem for a 
Dream)

E10 0.80 0.50 0.00 0.00

E11 0.00 0.00 1.00 0.00

Figure 5.14: Running Example: Calculated Similarity Values.

2. Similarity Calculation

Using the set of refined candidate entities, the instance-based similarity matrix be-
tween the values in the web table and the property values of the entities in the
knowledge base, Sinst, can be calculated. These similarity values are used to cal-
culate the schema-level and instance-level correspondences in later steps of the
algorithm. Similar to the entity-class matrix Eclass, the assignment of properties to
classes in the knowledge base is defined by Pclass, as shown in Equation 5.5.

Pclass : P ˆ C Ñ

"

1 property’s domain is C
0 otherwise

(5.5)

Instance-based similarities are only calculated if the data type (range) of the
property in the knowledge base matches the detected data type for the column in
the web table. If the property is an object property, i.e., the objects of triples of this
property are entities, the data type is defined to be string and the similarity measure
is calculated between the cell’s value and the rdfs:label of the property value.
The similarity measures used in this step are parameters of the algorithm and can
be configured individually for each data type. For multi-valued cells or properties,
the maximum of any combination of the values is chosen.

Given the web table’s rows Row, columns Col, knowledge base entities E and
knowledge base properties P , the instance-based similarity Sinst is defined as in
Equation 5.6.

Sinst : Row ˆ E ˆ Col ˆ P Ñ r0, 1s (5.6)

In the running example, the instance-based similarity scores between the web
table’s columns and the properties of the remaining candidate classes Film, Al-
bum, Holiday, and City are calculated. For brevity, Figure 5.14 only shows the
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scores for the “Director” column and the two properties director and artist
for the classes Film and Album. The values in the web table exactly match the
director names stated in DBpedia for three of the movies in the web table and the
director property is assigned a score of 1.0 in these cases and a score of 0.5
for the film “Requiem for a Dream”, as the director’s name in the web table is
abbreviated. The 1927 version of the Film “Duck Soup”, however, was directed by
“Fred Guiol” and does not match the value “Leo McCarey” in the web table.

3. Schema Matching

The third step of the algorithm aggregates the similarity values that were calculated
in the second step into schema-level correspondences between the web table and
a class as well as between the columns of the web table and the properties in the
knowledge base.

The similarity score between a column and a property is the sum of all instance-
based similarities over the values in the column, weighted by the score of the entity
candidate of the corresponding rows in the web table. This resembles a weighted
voting among the entity candidates and is also known as duplicate-based schema
matching (see Section 2.4). The number of entity candidates that are considered
for each row in this voting can be constrained by parameters of the algorithm,
either by specifying that the top-k candidates for each row or all candidates above
a similarity threshold are selected. The selected candidates per row will again be
referred to as Ŝcand.

Each combination of a table row and a selected entity candidate then votes
for the n property correspondences with the highest similarity per column. The
selected similarity scores will be referred to as Ŝinst. Each vote can further be con-
strained by a similarity threshold, i.e., if the similarity score is below the threshold
θ, shown in Equation 5.7, no vote is cast. Both the number of votes per column
and the similarity threshold are parameters of the algorithm.

tpx, θq “

"

x if x ě θ
0 else

(5.7)

The weighted voting for a column and property candidate is then the sum of all
similarity scores over all rows and entity candidates, divided by the total number
of votes n ¨ |Row|. For the calculation of the similarity between the subject column
of the web table and the rdfs:label property, however, the candidate similarity
is set to 1, as it is based on the comparison of the same values as the instance
similarity. This results in the property similarity Sprop, shown in Equation 5.8.

Sproppc, pq “
1

n ¨ |Row|

ÿ

rPRow

ÿ

ePE

tpŜinstpr, e, c, pq ¨ Ŝcandpr, eq, θq (5.8)

The property similarity scores are then further summed up to the class level to
create similarity scores for each candidate class Sclass. The class with the highest
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𝑺෡𝒊𝒏𝒔𝒕 ⋅ 𝑺෡𝒄𝒂𝒏𝒅 Candidate
Class Film Album

Column Title Director Title Director

Row Entity rdfs:label dbo:director rdfs:label dbo:artist

R1 (Groundhog Day) E1 0.670 0.670 0.000 0.000

R2 (Duck Soup) E3 0.500 0.500 0.000 0.000

R4 (Crouching Tiger, 
Hidden Dragon) E7 1.000 1.000 0.000 0.000

R5 (Requiem for a 
Dream) E11 0.000 0.000 1.000 0.000

𝑺𝒑𝒓𝒐𝒑 0.434 0.434 0.200 0.000

𝑺𝒄𝒍𝒂𝒔𝒔 0.868 0.200

Figure 5.15: Running Example: Voting for Schema Correspondences.

score is chosen is final class mapping Ĉ. If multiple classes have the same score,
the most specific class according to the type hierarchy in the knowledge base is
chosen. Based on the final class decision, all candidate entities which are not an
instance of the chosen class or one of its sub-classes are removed.

Sclasspcq “
ÿ

pPP

Sproppc, pq ¨ Pclasspp, cq (5.9)

Ĉ “ arg max
c P C

Sclasspcq (5.10)

In the running example, the voting scores are calculated as shown in Figure
5.15 under consideration of only the best entity candidate for each row. This results
in an aggregated score of 0.434 for the dbo:director property and 0.0 for the
dbo:artist property. The final class score is then obtained by summing up the
scores for all properties, resulting in a score of 0.868 for Film and 0.2 for Album,
i.e., Film is chosen as the final class.

4. Iterative Matching

The final step of the algorithm iterates between re-scoring of the entity and property
correspondences. Entity candidates are re-scored by weighting the instance-based
similarities with the property similarities. These scores are then aggregated into
the average over all candidate properties P̂ and form the new entity candidate sim-
ilarity score. Property correspondences with high similarity score hence have a
larger influence on the candidate’s similarity score. For the subject column and
the rdfs:label property, the property similarity is replaced by a constant key-
weight factor, which is a parameter of the algorithm and can be used to control the
influence of the subject column on the candidate similarity. By increasing this fac-
tor, the subject column values gain higher importance for the candidate similarity.
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Row Entity Title Score Director Score 𝑺𝒄𝒂𝒏𝒅

R1 (Groundhog Day) E1 0.670 0.434 0.552

R2 (Duck Soup)
E3 0.500 0.434 0.467

E4 0.500 0.000 0.250

R4 (Crouching Tiger, Hidden Dragon) E7 1.000 0.434 0.717

R5 (Requiem for a Dream) E10 0.800 0.217 0.509

Figure 5.16: Running Example: Iterative Update.

Scandpr, eq “
1

|P̂ |

ÿ

pPP̂

SproppĈ, pq ¨ Sinstpr, e, Ĉ, pq (5.11)

After the re-scoring of the entity candidates, the property similarity scores are
re-calculated as described in step 3. These new similarity scores Ŝprop are then
combined with the scores from the previous iteration as shown in equation 5.12,
where λ is a parameter of the algorithm that controls the magnitude of the updates
in each iteration.

Sprop “ λŜprop ` p1´ λqSprop (5.12)

After a configurable number of iterations, the similarity scores are pruned using
a top-1 global matching, i.e., for each column and each row, the property and entity
candidate with the highest score is kept, all other scores are set to 0.

For the running example, the entity candidate scores are re-calculated as shown
in Figure 5.16. The instance-based similarity scores from step 2 are multiplied with
the property scores calculated in step 3 (shown in the “"Director Score"” column,
and average over all properties (here for the “Title” and “Director” columns),
resulting in new candidate scores. The key-weight is set to 1.0, so the scores for
the “Title” column remain unchanged.

The new candidate scores can in turn be used for updates to the property scores
and additional iterations. After finishing the iterations, a top-1 global matching is
applied. For the relation annotation task, this results in a correspondences between
the “Title” column and rdfs:label property as well as the “Director” column
and the dbo:director property. For the entity annotation task, the correct an-
notations for the rows R1, R2, R4, and R5 to entities E1, E3, E7, and E10, respec-
tively, are created, while R3 is not linked to any entity, because no corresponding
entity exists in the knowledge base.
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5.5 Experiments

This section presents the experimental evaluation of T2K Match on the T2D Gold
Standard. First, the used subset of DBpedia and the parameter setting used for the
experiments are described. Afterwards, the evaluation of T2K Match is presented
and the results are compared with two baseline approaches and recently published
related work.

Target Knowledge Base. The target knowledge base is a subset of DBpedia
version 2014. It consists of all classes and properties from the ontology names-
pace3 which contain at least 1 000 entities and are located in the first four lev-
els of the class hierarchy. Further, properties are excluded if they are used for
less than 5% of the entities of their domain. This subset contains a total of 94
classes, 1 339 properties, and 3 million entities. Through the use of this subset the
evaluation of the algorithm is focussed on its discriminative performance for the
large, high-level classes in DBpedia, which is of greater importance for the large-
scale profiling of web tables that will be discussed in Chapter 6 than its ability
to make very fine-grained class decisions, for example by differentiating between
an AmericanFootballPlayer and a CanadianFootballPlayer. The
choice of DBpedia as target knowledge base is in part made for the same reason,
as its type hierarchy is already much coarser than, for example, the almost half a
million classes in the YAGO knowledge base. Otherwise, there are no indications
in the literature that the choice of knowledge base has an impact on the perfor-
mance of the algorithm. A comparative evaluation using DBpedia and YAGO was
performed by Mulwad et al. [Mulwad et al., 2013], showing that their method per-
formed slightly better with YAGO, but the authors did not further analyse the rea-
sons. It is hence assumed that the choice of knowledge base can be made based on
other criteria than its expected influence on the algorithm’s performance. As DB-
pedia is a central hub in the Web of Data (see Chapter 3), it is considered a good
choice, as any web table that is linked to DBpedia then also has many connections
into the Web of Data.

5.5.1 Parameter Optimisation

This section describes how the parameters of the T2K Match algorithm are deter-
mined. T2K Match defines 20 parameters, which include similarity functions for
different data types, the top k parameters for candidates or weights for properties.
The parameter setting used in the experiments is determined by a genetic algo-
rithm and split validation on the T2D gold standard. Two equally sized subsets
of the T2D instance-level gold standard are created by stratified sampling on the
class mapping. The first subset is used to determine the parameter setting, while
the second subset is used to evaluate the algorithm and measure its performance.

3http://dbpedia.org/ontology/

http://dbpedia.org/ontology/
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The resulting parameter set specifies Jaccard similarity for the candidate se-
lection step with a k of 50, and a k of 100 for the candidate refinement step. The
instance-based similarity functions are generalised Jaccard with Levenshtein simi-
larity for token comparisons for the data type string, the ratio between absolute
values for numeric values, and the difference in years for date values. The full
parameter set is available on the T2K Match project website.4

5.5.2 Matcher Evaluation

This section presents the evaluation of T2K Match on the T2D gold standard, an
error analysis, and a quantitative analysis for the different high-level classes in the
DBpedia type hierarchy.

The results of T2K Match on the instance-level gold standard are shown in
Table 5.1. The column “F1 (train)” indicates the F1-Score that was achieved on
the subset that was used to tune the parameters, all other results indicate the micro-
averaged performance on the evaluation subset. The three rows show the results for
the entity annotation, relation annotation, and class annotation task, respectively.

Table 5.1: T2K Match Evaluation.

Task Precision Recall F1 F1 (train)
Entity 0.90 0.76 0.82 0.86

Relation 0.77 0.65 0.70 0.73
Class 0.94 0.94 0.94 0.97

The evaluation shows a high precision 0.9 for the entity annotation task, with
an F-measure of 0.82, an F-measure of 0.7 for the relation annotation task, and an
F-measure of 0.94 for the class annotation task. There is only a small difference
between the performance on the training set to the performance of the test set,
which indicates that over-fitting is not an issue.

Errors for entity annotation are often made due to ambiguous names in web
tables where no additional properties from the knowledge base exist. For exam-
ple, for the class Company, the precision for tables where no properties beside
rdfs:label can be mapped is only 0.45, but for tables where one additional
property correspondence is found, it increases to 0.97.

For the relation annotation task, differences in the values stated in DBpedia
and the web tables are an issue. Examples include varying weights of athletes or
the birth dates of historic persons, which are often different from source to source.
Another problem are ambiguities in the values of DBpedia properties. For example,
a web table might state the language that is spoken in a country as “German”,
which is more similar to the property demonym (with value “German”) than to
the correct property language that has the value “German language”. These

4http://web.informatik.uni-mannheim.de/T2K/paramtersT2KMatch.csv

http://web.informatik.uni-mannheim.de/T2K/paramtersT2KMatch.csv
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Figure 5.17: F1-measure for different high-level classes.

issues indicate that specific similarity measures for each property in the knowledge
base or additional sources of surface forms could improve the results.

Figure 5.17 shows a break-down of the F1-measure achieved for the different
annotation tasks for the high-level classes in the DBpedia type hierarchy. The bars
indicate the achieved F1-measure for the entity, relation, and class annotation task,
respectively, and the line indicates the percentage of web tables that are assigned
the classes indicated by the groups. The chart shows that some classes are harder
to match than others, which can be for a variety of reasons such as the examples
mentioned earlier. These differences are an indication that a specialised config-
uration of the matcher per class could improve the results. However, this would
increase the requirements to the training set, meaning that larger amounts of web
tables need to be annotated. Figure 5.18 further displays the achieved performance
by table size and shows a tendency towards better performance for large tables and
that the worst performance is achieved for very small tables with up to ten rows.
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Figure 5.18: F1-measure for different table sizes.
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Closer inspection of the errors made by the algorithm reveal a variety of differ-
ent challenges that a semantic table interpretation method has to deal with. Some
properties are hard to distinguish based on the instance values. For example, air-
ports in the United States often have the same value for their IATA and FAA code,
which makes these properties indistinguishable based on instance-based similari-
ties for web tables that only contain such airports. Table 5.2 shows another exam-
ple: a table with two population columns with very similar values, which make it
hard to determine that the first of these columns refers to the total population of
the city and the second refers to the population of the metropolitan area of the city.
Another problem is the sparsity of the properties in DBpedia: As many properties
have no value for most of the entities, often no instance-based similarity value can
be calculated.

Table 5.2: Example of a web table that is hard to match due to very similar values
in two columns with different semantics.

City Country Population (1) Population (2)

Ecatepec Mexico 1 688 000 1 690 000
Haiphong Vietnam 1 885 000 1 885 000
Hubli India 801 000 801 000
Incheon South Korea 2 630 000 2 630 000
Indore India 1 912 000 1 920 000
Luoyang China 1 500 000 1 499 000

For the disambiguation of entities and the class annotation, the most challeng-
ing issue are web tables that do not contain any attributes that exist in the knowl-
edge base except the subject column. In these cases, only the entity names in the
subject column can be used by the algorithm. Table 5.3 shows such a web table
which is hard to match as the entity names in the first column are highly ambiguous
and no additional properties are contained that could be used.

Table 5.3: Example of a web table that is hard to match due to ambiguous entity
names and no additional properties that exist in the knowledge base.

Name of Attraction Category Visitor 2009 Visitor 2010

British Museum Museums 5569981 5842000
National Gallery Museums 4780030 4954914
Natural History Museum Museums 4105106 4647613
Science Museum Museums 2753493 2757917
National Railway Museum Museums 767863 619952
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5.5.3 Comparison with other Approaches

This section compares the results achieved by T2K Match to two baseline methods,
two open-source matching systems as well as two semantic table interpretation
methods that were published after the original publication of T2K Match. The
first baseline is the initial candidate selection step of T2K Match, and shows the
improvements of the additional components of the algorithm. The second baseline
is the lookup service provided by DBpedia. The two matching systems LogMap
and PARIS are available as open-source and have been evaluated by Efthymiou
et al. [Efthymiou et al., 2017] on the T2D gold standard. Further, the method
proposed by Efthymiou et al. and T2K Match++, an extension to T2K Match
proposed by Ritze [Ritze, 2017], are compared. Each of these methods is briefly
described in the following.

Candidate Selection. The candidate with the highest score for each row after the
first index lookup of the candidate selection is chosen as annotation. This baseline
serves as a reference value to gauge the improvements achieved by the following
steps of the T2K Match algorithm.

DBpedia Lookup. The DBpedia lookup service5 is queried for each value in
the subject column and the first result is chosen as annotation. In addition to re-
lying on string comparison, this service considers the hyperlink in-degrees of the
corresponding Wikipedia page of each entity and prefers more popular matches.

LogMap. The LogMap matcher is designed for ontology matching [Jiménez-
Ruiz and Grau, 2011]. It relies on lexical and structural similarities of class hier-
archies and employs an iterative discover-and-repair method to produce mappings
that are free from logical inconsistencies. It is, however, not specifically designed
for web tables and their challenges.

PARIS. The PARIS matcher uses probabilistic modelling to align the schema
and entities of two ontologies simultaneously [Suchanek et al., 2011]. While it
has been designed based on a carefully designed probabilistic model, its focus is
on matching comparably clean ontologies rather than noisy web tables. For this
method, only exact value comparisons can be used, as it does not scale to the size
of the DBpedia knowledge base for other similarity measures.

[Efthymiou et al., 2017]. Efthymiou et al. propose a hybrid method that uses
index lookups for entity labels from Wikidata as well as entity embeddings, which
are vector representations of entities which are obtained by using random walks in
the knowledge base and applying the word2vec model [Mikolov et al., 2013].

5http://wiki.dbpedia.org/lookup/

http://wiki.dbpedia.org/lookup/
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T2K Match++. Ritze extends T2K Match with additional features, a supervised
classification model, and a holistic matching step. These additions result in an
increased performance over the original algorithm and represent the current state
of the art in semantic table interpretation [Ritze, 2017].

The comparison is summarised in Table 5.4 and shows that the components of
T2K Match result in a large improvement in precision and recall over the initial
candidate selection, with an improvement of 0.37 in precision and 0.23 in recall, as
well as over the DBpedia lookup service, with an improvement of 0.11 in precision
and 0.03 in recall. The DBpedia lookup service and T2K Match use similar mech-
anism to improve recall, so their difference with regard to this measure is small,
but the exploitation of additional columns beside the entity label results in a strong
improvement in precision for T2K Match.

The two open source-matchers LogMap and PARIS cannot beat the DBpedia
lookup service baseline, as both methods result in a very low recall. This shows
that web tables require specialised methods and cannot be understood semantically
with existing ontology matching algorithms. Finally, the two methods that were
proposed after the initial publication of T2K Match outperform its results by 0.03
and 0.05 points in F1-measure, respectively. The improvements of the method
proposed by Efthymiou et al. increase recall through a combination of an index-
based lookup and embedding-based methods. Their approach first performs an
index lookup, and in case no match is found, the embedding vector closest to the
entity mention from the web table is used. The improvements of T2K Match++
stem from the large number of additional features, and, according to the result
analysis by Ritze, from the holistic matching which increases the confidence of the
matcher for web tables where no properties can be mapped to the knowledge base.

Table 5.4: Comparison of different methods for the entity annotation task.

Method Precision Recall F1-measure

Candidate Selection 0.53 0.53 0.53
DBpedia Lookup 0.79 0.73 0.76
LogMap 0.89 0.57 0.70
PARIS 0.42 0.04 0.07
T2K Match 0.90 0.76 0.82
[Efthymiou et al., 2017] 0.87 0.83 0.85

T2K Match++ 0.94 0.80 0.87
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5.6 Conclusion

This chapter presented the topic of semantic table interpretation and introduced
T2K Match, an algorithm that solves the three semantic table interpretation tasks
of annotating web tables with classes, columns with properties and rows with en-
tities from a target knowledge base. The topic of semantic table interpretation and
the scope of its tasks were defined and common approaches for each task were
introduced and reviewed in Section 5.2. This revealed that both comparability and
reproducibility are limited in this field, and the following sections introduced a new
gold standard and a new algorithm, which both are made publicly available. The
gold standard and the methodology and tools used to create it were presented in
Section 5.3 along with detailed statistics about its contents. The proposed algo-
rithm, T2K Match, was presented in Section 5.4 and experimentally evaluated in
Section 5.5. Other than most of the algorithms proposed in the literature, it can an-
notate literal columns, which are ubiquitous in web tables, in addition to columns
containing entity names. In the experimental evaluation, T2K Match was shown to
improve the state of the art in semantic table interpretation and to produce compa-
rable results to algorithms that were proposed in the following years.

This chapter made the following contributions:

• Literature Review: A comprehensive literature review that organises the
common methods and approaches according to the different semantic table
interpretation tasks as well as a summary of all relevant, published work
about the topic. Further, the important issues of comparability and real-
world applicability were discussed, showing the need for openly available
datasets and algorithms.

• T2D Gold Standard: A large, publicly available gold standard contain-
ing web tables and annotations for the tasks of annotating web tables with
classes, columns with properties, and rows with entities using DBpedia as
target knowledge base. The schema-level gold standard contains 1748 web
tables, of which 762 are content tables that are annotated with classes and
a total of 2 084 property annotations. Of these content tables, 233 are ad-
ditionally annotated with 26 124 entity annotations. In addition to earlier
gold standards, T2D also contains negative examples and annotations for lit-
eral columns, which allows for a more comprehensive evaluation that gives
indication to the practical applicability of an algorithm.

• T2K Match Algorithm A novel algorithm for semantic table interpretation
that solves the tasks of class, relation, and entity annotation. T2K Match
achieves F1-measure values of 0.94 for class annotation, 0.82 for entity an-
notation, and 0.7 for relation annotation. The contributions are the annota-
tion of literal columns as well as the improved quality. Even methods pub-
lished after T2K Match only achieve small improvements of up to 0.05 in
F1-measure for the entity annotation task, showing that it represents a strong
benchmark on the T2D gold standard.
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The literature review presented in this chapter has shown that, although many
different approaches for semantic table interpretation have been proposed, compa-
rability and real-world applicability are often limited. The different combinations
of tasks that are solved and the different datasets that are used for evaluation hinder
a comparison of the methods based on the results reported in the literature. The
close-source nature of many methods further prevents an experimental comparison
of the various approaches.

This situation has been improved by publishing the T2D gold standard and
the open-source T2K Match algorithm. The gold standard contains annotations
for all semantic table interpretation tasks that are required to generate triples for
knowledge base augmentation from web tables and allows for a comparative eval-
uation of methods in this area. The algorithm further sets a benchmark result on
this gold standard that other systems can be compared to and also serves as a ba-
sis for advanced methods that extend its open-source implementation [Ritze and
Bizer, 2017]. With respect to practical applicability, the algorithm not only focuses
on named entity columns, but also matches columns with other data types such
as numbers or dates, which make up between 35 and 52% (see Chapter 4) of the
columns in the used web table corpora and should hence not be ignored.

With the contributions in this chapter, future research in the area of seman-
tic table interpretation has been enabled to comparatively analyse algorithms by
reusing the published gold standard and algorithm [Efthymiou et al., 2017, Ritze
and Bizer, 2017, Ermilov and Ngomo, 2016, Pham et al., 2016]. The comparison
of the performance with approaches proposed after the original publication of T2K
Match shows that only small gains in performance have been achieved by the more
recent approaches, which indicates that T2K Match sets a strong benchmark on
the T2D gold standard for other researchers to compare their methods to. Further,
practical applicability is enhanced as the proposed algorithm can deal with more
types of data than earlier approaches. This in turn enables the large-scale analysis
of the contents of web table corpora, which will be presented in the next chapter.



Chapter 6

Corpus Profiling

6.1 Introduction

The availability of large-scale web table corpora promises a wealth of potentially
useful information for many tasks, such as data search [Cafarella et al., 2009, Yak-
out et al., 2012], knowledge base augmentation [Limaye et al., 2010, Dong et al.,
2014a], and question answering [Yin et al., 2011,Sarawagi and Chakrabarti, 2014].
However, existing studies focus on specific applications and do not profile the con-
tents of the used web table corpora exhaustively. Most studies either use very
small and thus not representative datasets or, if they are applied to large web ta-
ble corpora, those are privately owned and little information about their content
is published. This makes it impossible to generalise or reproduce the research re-
sults and prevents a more general judgement of the quality and topical coverage
of the corpora as a whole. Existing work on the topical contents of web table cor-
pora is limited to class-level information for large web tables [Hassanzadeh et al.,
2015]. To fill this gap, this chapter presents a topical profile of the Web Data
Commons Web Tables Corpus 2012 with respect to the DBpedia knowledge base.
Using T2K Match as semantic table interpretation algorithm, every web table in
the corpus is matched to the knowledge base and the distributions of correspon-
dences to classes, entities, and properties are presented and discussed. Following
this analysis, the quality of the extracted triples is experimentally validated using
state-of-the-art data fusion methods.

The focus of this chapter is to analyse the potential of web tables for the slot-
filling knowledge base augmentation task. Nowadays, cross-domain knowledge
bases such as DBpedia, YAGO, or the Google Knowledge Graph are already em-
ployed as background knowledge in a wide range of different applications, includ-
ing web search, question answering, data integration, and entity linking. For these
applications, the content of the knowledge bases must be as complete, correct, and
up-to-date as possible. Cross-domain knowledge bases must hence continuously
be updated and extended using high-quality data from external sources, and this
chapter analyses to which extent web table corpora can be used for this task.

119
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Specifically, the coverage of different topics and their granularity is presented
by reporting the distributions of correspondences between web tables and a target
knowledge base over different classes, entities, and properties. It is shown that with
the applied method, 949 thousand web tables can be mapped to known classes,
with a total of 13.7 million correspondences to known entities and 562 thousand
correspondences to known properties. For the slot-filling task, further experiments
are reported that investigate the frequency of statements in the corpus, i.e., how
many sources contain the same statement about the property value of an entity,
as well as their quality. This shows that, although the majority of the extractable
triples is incorrectly interpreted by current methods, a subset of high-quality triples
can be created by knowledge-based trust data fusion methods.

The contributions of this chapter are the following:

• Topical Profile: An in-depth analysis of the correspondences created be-
tween web tables and the DBpedia knowledge base provides the most fine-
grained topical profile of any web table corpus at the time of writing. The
profile exceeds the scope of earlier studies and provides detailed insights
into the contents of the corpus. The frequency distributions reveal that most
recognised entities and relations are only found in very few web tables, while
a small set of head entities and properties is discovered very frequently.

• Data Type Profile: By analysing the data type distribution for the matched
columns, it is demonstrated that the majority of extractable statements from
web tables contain numerical values. This reveals a shortcoming of many
approaches for semantic table interpretation which focus exclusively on the
annotation of named entity columns.

• Quality of Extracted Triples: Using the local-closed-world assumption for
distant supervision, the quality of all extracted triples is evaluated. The re-
sults show that although the overall quality of the raw triples after extraction
is low, a set of high quality triples can be determined. Profiling these high-
quality triples shows which classes and properties can be augmented with
high quality from the web tables corpus.

This chapter is organised as follows. First, related work in the areas of web data
profiling and web data fusion is introduced in Section 6.2. Section 6.3 then presents
the topical profile for web tables in the Web Data Commons Web Tables Corpus
2012. Afterwards, the quality of the extractable triples is analysed in Section 6.4.

The work presented in this chapter, i.e., the large-scale data profile of the WTC
2012, has previously been published in [Ritze et al., 2016].
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6.2 Related Work

Several studies have shown that knowledge extracted from web tables can be useful
for applications like table search [Venetis et al., 2011, Balakrishnan et al., 2015],
table extension [Yakout et al., 2012,Lehmberg et al., 2015,Das Sarma et al., 2012],
and knowledge base augmentation [Wang et al., 2012,Dong et al., 2014a,Sekhavat
et al., 2014]. For most of these applications, the performance of matching methods
for web tables plays an important role [Zhang et al., 2013, Limaye et al., 2010,
Yakout et al., 2012, Braunschweig et al., 2015] and is the focus of the respective
publications. However, in order to judge the potential of web tables for different
applications, it is essential to have an understanding of the data profile and topical
distribution of large Web table corpora [Hassanzadeh et al., 2015]. This section
introduces related work about methods for profiling and their results for web tables
as well as related research areas.

Web Page Profiling. The structural properties of the web graph have been pro-
filed by Broder et al. [Broder et al., 2000], who analyse the distribution of in-
and out-degree of web pages, i.e., the number of ingoing and outgoing hyperlinks.
They find that both distributions follow a power-law distribution, in which few web
pages have a very large number of in- or outgoing hyperlinks, while the majority
of web sites has only few links. Later, Broder’s analysis was updated based on a
larger crawl of the web and some of their findings about the specific degree distri-
butions were revised [Meusel et al., 2014], but the general trend of few very large
web pages could still be confirmed. Similar distributions can be found for the fre-
quency of entities in the web tables, where some very popular entities occur very
frequently, while the majority of entities only occurs a few times.

Linked Data Profiling. For the Linked Data Web, Hogan et al. [Hogan et al.,
2012] as well as Schmachtenberg et al. [Schmachtenberg et al., 2014] focus on
the adoption of the linked data best practices (linking to other datasets, re-using
vocabularies, and providing metadata), but they also provide a topical analysis.
Hogan et al. report statistics about a crawl in 2010 of ca. 1 billion statements
obtained from almost 800 data providers. They find that most statements assert
type membership or facts about people, with the most frequent predicate being
rdfs:type (18.5%) and the most frequent type being foaf:Person (79.2%).
This high frequency of data about people can also be observed for the web tables
in the WTC 2012, where the most frequently found class is dbo:Person.

Web Table Profiling. Hassanzadeh et al. [Hassanzadeh et al., 2015] analyse the
topical distribution of the 90 million tables in the WDC Web Tables Corpus 2012 by
matching columns to classes of different knowledge bases. By comparing the web
tables to DBpedia, YAGO and Schema.org data, they show that the size and topics
that are covered by the knowledge base influence the distribution of correspon-
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dences that are discovered through matching. For DBpedia, they find that the most
common classes are Agent, Person, and Place. For YAGO, the most frequent
classes are PhysicalEntity, Object, and YagoLegalActorGeo. For
schema.org, the most common classes are Person, Place, CreativeWork.
They further find that only a relatively small fraction of the web tables can be
matched to the knowledge bases. They are able to map 1.7 million columns to DB-
pedia, 500 thousand columns to schema.org, 6.3 million columns to YAGO, and
26.6 million columns to Freebase. For this analysis, they fix the minimum overlap
score between the values in a column and the labels in the knowledge base to 20,
which indicates that only large web tables, which have at least 20 rows, are con-
sidered. This means that the majority of the web tables in the corpus, which have
less than 20 rows, are not analysed. Beside the work of Hassanzadeh et al., no pro-
filing for web tables on the semantic level has been published. However, there are
structural profiles of web tables, for example for different table types, as discussed
in Chapter 4.

Web Table Data Fusion. In the context of this chapter, data fusion is used to
estimate the quality of the data that can be extracted from web tables and repre-
sents an additional dimension for data profiling. For the large-scale evaluation of
statements that are extracted from web sources, Dong et al. [Dong et al., 2014b]
propose the Local-Closed-World Assumption (LCWA). Under this assumption, a
knowledge base is considered locally complete and used to determine the accuracy
of facts. Specifically, all triples contained in the knowledge base are considered
true and all triples which are not contained in the knowledge base are considered
false, if the knowledge base contains at least one triple for the same subject and
predicate combination. Using the LCWA they evaluate the quality of extracted
triples from 12 different extractors and over 1 billion web pages before data fu-
sion in two different studies and find an overall accuracy of only 30% [Dong et al.,
2014b] and 11.5% [Dong et al., 2014a]. A detailed error analysis, however, reveals
that only 4% of the errors are due to source incorrectness, the remaining errors are
introduced by the extractors. Their approach to use the data overlap with a knowl-
edge base to estimate source reliability, termed knowledge-based trust, as well as
the evaluation using the LCWA are the foundations of the data fusion methodology
applied in this chapter.

In summary, the profiling of the contents of web tables has not received much
attention in the research community yet, although many approaches for semantic
table interpretation and data fusion of data from web tables haven been proposed.
Further, the profiling of related web data sources such as linked data or the hyper-
link graph of the Web shows certain similarities concerning the topical or structural
distributions.



6.3. A TOPICAL PROFILE FOR WEB TABLES 123

6.3 A Topical Profile for Web Tables

In this section, a topical profile for web tables based on the Web Data Commons
Web Tables Corpus 2012 is presented. This profile is created by matching all web
tables in the corpus to the DBpedia knowledge base using the T2K Match algo-
rithm and shows the distribution of topics represented by the classes, entities and
properties in DBpedia.

6.3.1 Methods

This section describes the methodology that is used to create the topical profile.
First, T2K Match, and its extension for the creation of the profile are described.
Then, the knowledge base to which the web tables are matched and the used corpus
of web tables are introduced.

Semantic Table Interpretation Algorithm. T2K Match is an algorithm that
maps web tables to a knowledge base by solving three matching tasks: (1) it maps
a web table to a class in the knowledge base that contains the entities which are
described in the web table; (2) it maps the columns of a web table to properties
in the knowledge base that have the same semantic meaning; (3) it maps the rows
of a web table to entities in the knowledge base that represent the same real-world
entity. The T2K Match algorithm is described in detail Chapter 5. In brief, the
method initially determines a set of candidate entities for the rows in the web ta-
ble. Based on these candidates, the algorithm decides for the corresponding class
and calculates instance-based similarity scores using data-type-specific similarity
metrics. Using these scores, the algorithm iteratively refines the property annota-
tions for columns and entity annotations for rows. During the whole process, the
data and schema matching steps mutually influence each other, as the result of each
matching step is used to calculate the scores of the next matching step.

In addition to the T2K Match method described in Chapter 5, the method ap-
plied here not only annotates entities for the subject column of a web table, but also
for all other columns which are mapped to an object property, i.e., a property which
has entities instead of literals as its range. The original T2K Match algorithm anno-
tates columns with such properties by comparing their values to the rdfs:label
of the corresponding entities in the knowledge base, but does not annotate the cells
with these entities. All statistics in this chapter will refer to such columns as data
type reference.

Target Knowledge Base. The target knowledge base for the topical profile is
DBpedia 2014.1 It describes 4 584 616 instances using 2 795 different properties
and 685 classes. This set of classes, properties, and instances limits the scope of
the created profile, as T2K Match cannot map web tables to topics which are not

1http://wiki.dbpedia.org/data-set-2014

http://wiki.dbpedia.org/data-set-2014
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Table 6.1: Characteristics of the analysed web table corpus.

Numeric Date String µ Σ

Columns 46M 4M 86M 4.122 137M
Rows - - - 21.499 716.6M

Values 995M 101M 1.9B 88.611 2.95B

covered by the knowledge base. As indicated by Hassanzadeh et al. [Hassanzadeh
et al., 2015], the coverage of entities for the classes in the knowledge base affects
the profiling results as frequent classes in the knowledge base are likely also fre-
quent in the profile. This frequency distribution of entities in the knowledge base is
shown as the series “DBpedia Entities” in Figure 6.1 for the four largest top-level
classes and their two largest sub-classes, respectively.

Web Table Corpus. The analysed web table corpus is the English-language
subset of the Web Data Commons Web Tables Corpus 2012 (see Section 4.4.1).
The English-language subset contains 91 million web tables from the five top-
level domains .com, .org, .net, .eu, and .uk. After recovering the table
metadata (see Section 4.3), 33.3 million web tables remain for which a subject
column could be detected. Table 6.1 shows statistics about the number of columns,
rows, values, and detected data types in the web tables. The web tables in this
subset are larger than the web tables in the full corpus, with an average of 21.5 rows
and 4.1 columns compared to 12.4 rows and 3.5 columns in the complete corpus.
The distribution of the detected data types is comparable to the distribution in the
full corpus, with an increase in numeric columns from 25% to 34%. The tables
in this corpus originate from 97 932 different websites and Table 6.2 shows the
most frequent web sites and column headers to provide an initial overview over the
covered contents. Frequent topics among these web sites include music (apple.c
om, 7digital.com), sports (baseball-reference.com, latestf1new
s.com), and shopping (amazon.com, inkjetsuperstore.com). The column
headers also indicate a high frequency of the topics shopping (“5 star”, “price”),
music (“album”, “artist”), and sports (“team”, “pos”).

6.3.2 Correspondence Statistics

This section reports the results of applying T2K Match to the Web Data Commons
Web Tables Corpus 2012. Specifically, the set of matched tables, correspondences
to classes, entities, and properties, as well as the distribution of data types for
matched properties and the frequency with which different sources provide the
same value for different entity and property combinations are discussed.

apple.com
apple.com
7digital.com
baseball-reference.com
latestf1news.com
latestf1news.com
amazon.com
inkjetsuperstore.com
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Table 6.2: Analysed Corpus: Most frequent web sites and column headers.

Web Site Tables Header Tables

apple.com 50 910 <empty> 14 495 456
patrickoborn.com 45 500 5 star: 2 402 376
baseball-reference.com 25 647 name 1 813 064
latestf1news.com 17 726 price 1 771 361
nascar.com 17 465 date 1 603 938
amazon.com 16 551 amazon price 1 178 559
baseballprospectus.com 16 244 formats 1 066 836
wikipedia.org 13 993 title 913 260
inkjetsuperstore.com 12 282 1 897 107
flightmemory.com 8 044 time 856 401
sportfanatic.net 7 596 description 773 883
tennisguru.net 7 504 size 692 251
windshieldguy.com 7 305 replies 605 075
donberg-electronique.com 6 734 used from 589 278
citytowninfo.com 6 293 new from 589 259
juggle.com 5 752 year 579 726
deadline.com 5 274 location 546 856
blogspot.com 4 762 album 526 375
7digital.com 4 462 type 501 747
electronic-spare-parts.com 4 421 # 500 198
angielskapilka.com 4 379 s 465 256
allfreemp3.net 4 250 -1 454 121
goal.com 4 008 : 451 557
hookedgamers.com 3 944 latest post 421 737
fullgasrevista.com 3 783 discussion 412 672
drugs-about.com 3 727 artist 390 805
motortrend.com 3 711 model 385 354
wn.com 3 621 rank 378 570
reddit.com 3 613 0 346 029
faz.net 3 424 <encoding error> 341 751
racingwest.com 3 383 trade name 328 856
go.com 3 236 active ingredients 328 228
5pmusic.com 3 155 pharmaceutical company 328 179
leadlinkmedia.com 3 126 city 315 139
wordpress.com 3 121 <encoding error> 306 884
lechita.net 3 118 rating 295 700
zipglassnetwork.com 3 095 team 292 352
prostarautoglassllc.com 3 083 m 282 616
carsdirect.com 3 034 pos 267 543
meilleur-artisan.com 2 969 age 257 594
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A summary of all results is given in Table 6.3, which shows aggregated statis-
tics for the high-level classes in the DBpedia type hierarchy. Column “Te” states
the size of the set of tables for which at least the subject column and thus a set
of entities could be matched to DBpedia. Column “Tp” covers all tables which
in addition have a property correspondence. Column “V ” shows the amount of
cells (values) contained in tables of Tp for which an entity annotation for the cor-
responding row and a property annotation for the corresponding column exists. In
other words, V expresses how many triples can be generated from the tables. These
numbers are further divided by data type in the last four columns of the table.

Tables. The result of matching the 33.3 million web tables in the corpus to
the DBpedia knowledge base is a mapping for 949 970 web tables (2.85%). This
means that only a small fraction of the web tables in the corpus can be understood
with the classes, entities, and properties that exist in the DBpedia knowledge base
and limits the coverage of the data profile that is presented in this chapter. This
small fraction of mapped tables indicates that (1) the topical overlap between the
web tables and the knowledge base is low and/or (2) many of the relational tables
are not entity-attribute tables and can hence not be mapped. Low topical overlap
is also indicated by the frequency of product-related column headers like “5-star”
(2.4 million tables) or “price” (1.7 million tables) in the corpus (see Table 6.2),
which cannot be mapped as DBpedia does not cover specific products. A similarly
low overlap was also reported by Venetis et al. [Venetis et al., 2011], who were able
to annotate 185 thousand web tables (1.5%) with the YAGO knowledge base and
577 thousand web tables (4.7%) with the Freebase knowledge base using a corpus
of 12.3 million web tables.

The web tables that qualify for the mapping must have a subject column in
which at least 25% of the rows can be mapped to known entities from DBpedia.
The 949 thousand web tables that satisfy this condition are potentially useful for
the set-completion and schema-extensions tasks. Set completion can make use of
the rows which have not been mapped to the knowledge base, as they potentially
contain unknown entities. Schema extension can exploit the unmapped columns to
create new properties. The web tables that additionally have at least one column
mapped to a property in the knowledge base are further useful for the slot-filling
task. This stricter condition is satisfied by 301 450 tables (Column “Tp” in Table
6.3) and contain a total of 8 million values (Column V in Table 6.3) for which a
knowledge base triple can be generated.
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Table 6.3: Aggregated correspondence statistics. Each row represents the aggregated statistics for the class mentioned in the first column
and all its subclasses.

Tables Values Data Types Groups
Class Te Tp V V {Tp Numeric Date String Reference G V {G

Agent 460 150 140 221 4 751 275 33.88 2 217 617 1 776 739 367 338 389 581 454 016 10.46
Person 265 685 103 801 4 176 370 40.23 2 117 793 1 588 475 266 628 203 474 366 048 11.41
| Athlete 243 322 95 916 3 861 641 40.26 2 084 017 1 435 775 163 771 178 078 284 213 13.59
| Artist 9 981 2 356 18 886 8.02 3 11 527 3 499 3 857 6 842 2.76
| Politician 3 701 1 388 18 505 13.33 10 7 725 3 393 7 377 6 559 2.82
| OfficeHolder 2 178 1 435 131 633 91.73 30 66 762 59 332 5 509 11 362 11.59
Organisation 194 317 36 402 573 633 15.76 99 714 187 370 100 710 185 839 87 527 6.55
| Company 97 891 6 943 203 899 29.37 58 621 83 001 34 665 27 612 25 164 8.10
| SportsTeam 50 043 2 722 31 866 11.71 2 206 22 368 43 7 249 2 453 12.99
| Edu.Inst. 25 737 14 415 238 365 16.54 38 056 64 578 13 334 122 397 35 736 6.67
| Broadcaster 14 515 11 315 93 042 8.22 564 13 095 52 186 27 197 21 687 4.29

Work 269 570 127 677 2 284 916 17.90 109 265 1 354 923 33 091 787 637 331 071 6.90
MusicalWork 138 676 80 880 1 131 167 13.99 64 545 396 940 7 610 662 072 201 186 5.62
Film 43 163 9 725 256 425 26.37 10 844 198 913 14 382 32 286 56 610 4.53
Software 39 382 23 829 486 868 20.43 418 414 092 9 194 63 164 33 552 14.51

Place 133 141 24 341 859 995 35.33 413 375 273 510 84 111 88 999 100 673 8.54
PopulatedPlace 119 361 21 486 787 854 36.67 405 406 257 780 57 064 67 604 71 981 10.95
| Country 36 009 6 556 208 886 31.86 93 107 66 492 31 793 17 494 5 709 36.59
| Settlement 17 388 2 672 17 585 6.58 4 492 6 662 2 444 3 987 1 879 9.36
| Region 12 109 427 5 625 13.17 3 097 897 292 1 339 1 193 4.72
Architect.Struct. 10 136 1 815 46 067 25.38 3 976 7 387 23 110 11 594 17 697 2.60
NaturalPlace 1 704 254 2 568 10.11 866 696 340 666 1 203 2.13

Species 14 247 4 893 83 359 17.04 - 7 902 38 682 36 775 23 809 3.50

Total 949 970 301 450 8 037 562 26.66 2 751 105 3 437 420 536 526 1 312 511 929 170 8.65
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Classes. Figure 6.1 shows the distribution of class and entity correspondences
for the four largest top-level classes in DBpedia and their two largest sub-classes,
respectively. Almost 50% of all matched web tables have been mapped to the
Agent class, which describes people and organisations and is also the largest
class in DBpedia. The second-most frequently matched class is Work, followed by
Place. Comparing the relative frequency of entities in DBpedia and web tables
for the top-level classes, it can be seen that Agent and Place are similarly dis-
tributed, but Species and Work are not. There are only few web tables which are
mapped to the Species class, which indicates that this topic is under-represented
in the analysed corpus. The high frequency of web tables that are mapped to the
Work class indicates that this is an important topic in the corpus.

Entities. In total, 13 726 582 entity correspondences for 717 174 unique entities
are created, which is 15.6% of all entities in DBpedia. Figure 6.1 shows that the
number of web tables mapped to a class and the number of rows mapped to entities
of this class are similarly distributed. An exception is the class Species, which
exhibits more entity correspondences than class correspondences. This indicates
fewer mapped tables with more mapped entities per table. Figure 6.3 shows that
for 70% of all entities, at least two web tables are found and 25% of the entities
are contained in ten or more web tables. This is an important information for the
slot-filling task: while there are many sources for some entities, which makes it
easier to find missing values, the majority of the entities is only described in very
few sources, which complicates finding a correct values which are missing in the
knowledge base.

Properties. Figure 6.1 shows the distribution of class and property correspon-
dences. More than half of all property correspondences were discovered for the
Person class (52%), followed by the MusicalWork class (19%). Aggregated
over all tables, a total of 562 445 property correspondences for 721 unique proper-
ties is found. Other than entity correspondences, property correspondences have a
different distribution than class correspondences. For the Agent class, more prop-
erty correspondences than class correspondences are found, which indicates that in
many of these web tables, multiple columns represent a property that exists in the
knowledge base. For the Place class, fewer property correspondences are found,
which indicates that in many of these web tables, only few or even no columns rep-
resent a property that exists in the knowledge base. Figure 6.3 shows that 88% of
all discovered properties occur in at least two web tables and 60% occur in at least
ten web tables. Compared to the distribution of entity correspondences, properties
occur much more frequently in different web tables than entities.

Examples. Table 6.5 lists the most frequent classes, properties, and entities in
the created correspondences. Most of these entities belong to subclasses of the
Agent class: Company and Person. The table further reveals that the five
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Figure 6.1: Distribution of DBpedia entities and correspondences for matched web
tables by class.
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Figure 6.2: Distribution of DBpedia properties and correspondences for matched
web tables by class.
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most-frequent entities occur in about half of all web tables that are mapped to the
Company class. A possible explanation is that these tables show different statis-
tics, possibly at different points in time, for the same set of entities rather than
just listing basic information for many different entities. The fact that no prop-
erty was mapped equally often indicates that the attributes provided by these web
tables do not exist in the knowledge base. The most frequently matched prop-
erty, statisticValue, is due to many baseball statistic websites in the corpus,
which provide web tables with various statistics about players’ performances dur-
ing different seasons and matches. As this property is very broadly defined in the
knowledge base, its usefulness for the slot-filling task very limited, as different
statistics are mapped to this property.

Group Size Distribution. For each combination of an entity correspondence
and a property correspondence in the same web table, a triple, consisting of the
entity, the property, and the respective value, can be extracted. By grouping these
triples by their entity and property combination, a set of all discovered values for
this combination can be obtained. Grouping the 8 million triples that can be gen-
erated from the correspondences results in 929 170 groups. Figure 6.4 shows the
distribution of groups by size. Of all groups, 58% contain triples from at least two
sources and 39% from at least three sources. Triples from ten or more sources can
be found for 13% of all groups. Very frequent groups, which are supported by at
least 100 sources, constitute 1% of all groups. This shows that although 25% of all
instances and 60% of all properties were found in more than ten web tables, their
combinations are much less frequent. For 42% of all groups, only a single triple
can be extracted. Column “G” in Table 6.3 shows the number of groups by class
and column “V {G” shows the average group size.

Data Types. The distribution of the 8 million values over the different data
types shows that the majority of the extractable values is of type date (43%),
followed by numeric (34%) and reference (16%). Half of the date values
and more than two thirds of the numeric values are found for the class Athlete.
Compared to the distribution of data types on the complete corpus, there is a shift
from string values (64% before) to date (3% before) and numerical val-
ues (33% before). This indicates, for the columns that could be matched to the
knowledge base, that web tables tend to contain more factual data in the form of
dates and numbers than textual descriptions or references to other entities. Table
6.5 supports this by showing that the most frequent properties are numerical and
date-valued properties. Table 6.4 compares the distribution of values by data type
for the web tables corpus, the triples generated from the correspondences, and the
groups generated from these triples. The largest groups are numeric values, with
an average of 13.59 values per group, and the smallest for references, with 5.02
values per group.
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Figure 6.3: Distribution of correspondences by number of web tables.
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Figure 6.4: Distribution of group sizes.

Table 6.4: Distribution of values by data type.

Data Type Corpus Triples V Groups G V {G

Numeric 995 000 000 2 751 105 202 362 13.59
String 1 900 000 000 535 526 86 330 6.20
Reference - 1 312 511 261 238 5.02
Date 101 000 000 3 437 420 379 240 9.06

Total 2 996 000 000 7 869 492 929 170 8.47
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Table 6.5: Most frequent classes, properties and entities.

Class Tables Class Property Columns Class Entity Rows

Company 88 729 BaseballPlayer statisticValue 108 089 Company Toshiba 59 112
Single 86 473 Single musicalBand 27 781 Company ShoreTel 45 600
PopulatedPlace 51 690 BaseballPlayer activeYearsStartDate 25 596 Company Nortel 45 573
BaseballPlayer 51 041 BaseballPlayer activeYearsEndDate 21 412 Company Avaya 45 562
Album 43 259 Single album 19 970 Company Mitel 45 509
Film 43 163 Album releaseDate 17 944 Film Georgia Georgia 24 337
FormulaOneRacer 36 696 VideoGame releaseDate 17 468 Website DVD Verdict 16 457
Country 36 009 Single releaseDate 9 237 NascarDriver Jeff Gordon 15 826
VideoGame 34 806 Film releaseDate 8 250 NascarDriver Kevin Harvick 15 110
NascarDriver 29 833 University city 8 228 FormulaOneRacer Fernando Alonso 14 870
SoccerClub 25 664 Single musicalArtist 7 563 NascarDriver Jimmie Johnson 14 826
SoccerPlayer 22 495 BaseballPlayer number 7 554 NascarDriver Tony Stewart 14 447
University 19 330 TelevisionStation broadcastNetwork 6 849 NascarDriver Matt Kenseth 13 815
Website 17 488 IceHockeyPlayer birthDate 4 799 NascarDriver Jeff Burton 13 744
AmericanFootb.Pl. 16 455 RugbyPlayer birthDate 4 680 NascarDriver Kyle Busch 13 539
City 16 169 MotorcycleRider team 4 656 Country China 13 515
TelevisionShow 13 891 VideoGame publisher 4 636 FormulaOneRacer Jenson Button 13 378
TelevisionStation 12 882 BaseballPlayer birthDate 4 629 Country France 13 300
IceHockeyPlayer 12 675 TelevisionShow releaseDate 4 473 Company IBM 13 271
Currency 12 251 FormulaOneRacer championships 4 407 NascarDriver Carl Edwards 13 218
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6.4 Quality of Extracted Triples

This section analyses the quality of the triples that can be generated by fusing
the values that are extracted from the matched web tables. The first subsection
introduces the used methodology and compares three different approaches for data
fusion. The second subsection then analyses the result of applying the data fusion
to all created triples.

6.4.1 Methods

This section first introduces the methodology used for the large-scale evaluation
of the extracted triples and for the evaluation of the quality of the triples that are
selected by the data fusion methods. Based on this methodology, the quality of
the extracted triples before fusion is discussed and three different data fusion ap-
proaches are introduced and evaluated.

Evaluation Methodology

To evaluate the data fusion results, the Local-Closed-World Assumption (LCWA)
is applied [Dong et al., 2014a]. Under this assumption, the target knowledge base is
considered complete for entity/property combinations for which it contains at least
one triple. In the context of knowledge bases, usually the Open-World Assumption
(OWA) is applied, which states that a statement may be true, even if it is not known.
This means, using the OWA, it cannot be reasoned whether a newly discovered
value is true or false if it is not contained in the knowledge base. In contrast, the
Closed-World Assumption (CWA) states that only those statements are true which
are also known to be true. Using the CWA, any newly discovered fact which is not
contained in the knowledge base is considered false.

Although the CWA would allow an evaluation of the discovered facts, it would
lead to an overestimation of false negatives, as every value that is missing from the
knowledge base is considered false. Here, the LCWA offers a solution: if at least
one value for a given entity/property combination is known, the knowledge base
is considered locally complete and the CWA is applied; if no value is known, the
OWA is applied. Formally, for all triples with subject s and predicate p, let Ops, pq
be the set of known objects in the knowledge base. If a newly discovered object o1

is in Ops, pq, it is said to be correct; if o1 is not in Ops, pq and Ops, pq is not the
empty set, the new object is said to be incorrect; otherwise, no statement about the
correctness is made.

As the triples that are extracted from web tables do not only contain entity ref-
erences in their object position, but also literals, it is further necessary to extend the
definition of the LCWA for literals. Other than entity references, literal values can-
not be linked to existing entities in the knowledge base and checking literal values
for equality can lead to many false negatives. For example, if one source states the
population of Germany as 83 million, while the knowledge base contains the value
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Figure 6.5: Distribution of relevant groups by size.

82.8 million, this should not be considered as incorrect. To establish whether a lit-
eral matches an existing value, a similarity measure can be used to allow for such
small variations. Formally, a literal object value o1 is considered to be in Ops, pq
if there exists an o P Ops, pq such that simpo, o1q ě θ. For numeric values, the
similarity measure is the relative deviation simnumericpa, bq “ 1 ´ |a´b|

maxpa,bq . For
date values, the day, month, and year must match exactly if stated. For example,
the date values 25-05-1978 and 1978 are considered a match. For string
values, the Generalised Jaccard similarity with Levenshtein similarity for token
comparison is used. Suitable thresholds are determined empirically from a manu-
ally annotated sample.

Relevant Groups for Data Fusion

The LCWA enables the large-scale evaluation of data fusion methods, but it also
allows for the analysis of the extracted triples before fusion and the estimation of
the amount of relevant groups for the data fusion task. Any data fusion method
can only then select the correct value if it was extracted as a triple. If no triple in
a group contains the correct value, a strategy can only choose to generate no value
at all. Of the 929 170 groups that were created from the web tables, 691 622 have
existing values in DBpedia, and 310 284 contain the correct value at least once.
This means that 45% of all groups or 24.4% of all extracted triples contain a correct
value. The fact that most of the extracted values are evaluated as false highlights
how challenging the task of extracting data from web tables on a large scale is.
This result is in agreement with state-of-the-art studies that report an accuracy of
30% [Dong et al., 2014b] and 11.5% [Dong et al., 2014a], respectively, for the
extracted triples before fusion.
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Table 6.6: Largest groups and evaluation according to the Local-Closed-World Assumption.

DataType Class Property Instance Group Size Web Sites Correct Values

Date VideoGame releaseDate Assassin’s Creed: Revelations 7 160 16 3 979
Date VideoGame releaseDate LittleBigPlanet 2 5 874 16 7
Date Album releaseDate Live 1.0 5 096 35 110
Date VideoGame releaseDate Naruto Ninja Council 2 4 217 18 -
Date VideoGame releaseDate Sonic Dash 4 053 34 -

Numeric BaseballPlayer statisticValue Jim Abbott 4 800 22 31
Numeric BaseballPlayer statisticValue Jose Barrios 4 136 16 54
Numeric BaseballPlayer statisticValue Todd Belitz 3 422 16 294
Numeric RugbyPlayer height Peter Wallace 978 2 -
Numeric RugbyPlayer height Quentin MacDonald 978 2 -

Reference TelevisionShow network The Biggest Loser (season 1) 2 695 1 2 695
Reference MotorcycleRider team Karel Abraham 993 75 907
Reference City country Frankfurt 853 3 853
Reference AmericanFootballPlayer debutTeam Janoris Jenkins 833 2 -
Reference AmericanFootballPlayer debutTeam William Green 833 2 -

String AmericanFootballPlayer draftRound Chris Rainey 836 4 833
String AmericanFootballPlayer draftRound William Green 835 3 2
String AmericanFootballPlayer draftRound Jaye Howard 833 2 832
String Politician orderInOffice Martin Caton 363 1 -
String Politician orderInOffice Alan Meale 314 1 -
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Figure 6.5 shows the cumulative frequency of all groups (series “Groups”), all
groups that contain a correct value (series “Relevant Groups”), and all groups that
do not contain a correct value (series “Irrelevant Groups”). The chart shows that
26% of all groups consist of only a single triple which does not have the correct
value. But even with increasing group size, there are more groups without correct
value than with. This shows that the data fusion task is not trivial and a fusion
strategy must be able to distinguish between plausible and implausible values. It
can hence be assumed that a majority voting strategy will not produce satisfying
results. Table 6.6 shows examples of the largest groups with and without correct
values for each data type.

With these findings, the precision and recall measures for evaluation can be
defined using the number of relevant groups groupsrelevant “ 310 284. As in
information retrieval, precision is the fraction of returned results that are relevant,
i.e., the faction of fused values fusedtotal that are correct (fusedcorrect):

Precision “
fusedcorrect

fusedtotal

Recall is defined as the fraction of relevant groups for which the correct value
is returned:

Recall “
fusedcorrect

groupsrelevant

Fusion Strategies

The goal of the data fusion step is to decide which of the extracted values in a
group with the same entity/property combination is selected as output. This step
is necessary because different web sites may provide conflicting values or errors
introduced by the matcher create additional, incorrect values. To decide for a final
value, the following three data fusion strategies are compared:

Majority/Median Fusion (MM). The first fusion strategy is a baseline method
that does not consider source trustworthiness. It applies a majority voting to select
the fused value from the group of candidate values. For the data types string and
reference, this strategy selects the mode, i.e., the most frequent value. For the
data types numeric and date, it selects the median value. This strategy decides
for the final value only based on the frequency of sources that state the same value
and makes the decision for each group of values independently of all other groups.

Knowledge-based Trust (KBT). An extension of the MM strategy by a trust
score for each triple. Using this trust score, the voting is changed to a weighted
vote for string and reference, and to a weighted median for numeric and
date. The trust score is estimated individually for each web table column. It is
the percentage of correct values in the column of all values that are known from the
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knowledge base. To estimate these trust scores, a 5-fold cross validation is used.
For comparing values from the web table with triples from the knowledge base, the
same similarity measures as described in Section 6.4.1 are used. The strategy can
further reject to produce a fused value if the trust score of the column is below a
minimum threshold of .35. Such a knowledge-based trust fusion has been shown to
be effective for knowledge fusion in the context of web data [Dong et al., 2015,Yin
and Tan, 2011].

PageRank-based Trust (PR). Similar to the KBT strategy, this approach as-
signs a trust score to each triple. The trust score is the normalized PageRank [Page
et al., 1999] of the website from which the web table was extracted. This means,
this strategy assigns trust to web sites as a whole based on the hyperlink struc-
ture in the Web graph rather than based on the correctness of the known values.
The intuition is that popular web sites, which receive many incoming links, are
more trustworthy than less popular web sites. The PageRank scores are calculated
on the host-level graph with 128 billion hyperlinks from the 2012 version of the
CommonCrawl.2

Fusion Strategy Selection

This section presents the experimental evaluation of the fusion strategies intro-
duced above, which will be used to select the fusion strategy that is applied to all
extracted triples. Each strategy is applied to all groups and evaluated on all fused
triples that have existing values in the knowledge base. The results are shown
in Table 6.7: for each strategy, the number of produced triples with existing val-
ues in the knowledge base (column “Existing”), without existing values (column
“New”), and its performance, measured by precision, recall, and F1-measure are
shown. The performance for the KBT strategy was determined by a five-fold cross
validation and is the macro average over all folds.

The baseline approach with majority/median fusion (strategy “MM”) cannot
filter out groups without any correct values and produces many incorrect triples,
which results in a low precision of 37%. The high recall of 82%, however, shows
that it is a suitable approach for the groups that contain the correct value. The
knowledge-based trust strategy (“KBT”) can filter out groups with low trust score
and increases precision by 27 percentage points to 64%. Also, only few triples are
missed compared to the baseline, as the recall of 79% is only slightly lower. The
strategy using PageRank-based trust (“PR”) does not improve the result over the
baseline strategy and the best result in terms of F1-measure is achieved without
filtering. Based on these results, the knowledge-based trust strategy is chosen for
further profiling.

2http://webdatacommons.org/hyperlinkgraph/2012-08/download.html#t
oc4

http://webdatacommons.org/hyperlinkgraph/2012-08/download.html#toc4
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html#toc4
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Table 6.7: Number of existing and new triples and evaluation results by fusion
strategy.

Strategy Existing New Precision Recall F1

MM 691 622 237 548 0.369 0.823 0.509
KBT 377 165 63 953 0.640 0.789 0.707
PR 691 622 237 548 0.365 0.814 0.504

Manual Verification. The evaluation methodology is verified manually on a
random sample of fused triples created by the KBT strategy. First, a random sample
of 1 000 fused triples with existing values in the knowledge base is selected. These
triples are then manually annotated as either matching the value in the knowledge
base or not. Three human annotators determine a precision of .716. The automated
evaluation used the proposed methodology determines a precision of .678. For
95.8% of all triples it makes the same decision as the human annotators about
whether a triple is correct or not. This result suggest that the methodology is valid
and produces a reasonable approximation of the actual quality of the fusion result.

A second experiment shows how the quality measure determined from the
triples with existing values can be interpreted for triples with no existing value
in the knowledge base. A random sample of 500 triples without existing value in
the knowledge base is selected and manually annotated. Two human annotators
determine a precision of .624 on this sample. The micro-averaged precision for
triples with existing values using the same properties as the sample is .639. This
indicates that the quality measure determined from triples with existing values is
also a reasonable approximation of the quality of triples without existing values.

6.4.2 Fusion Results

This sections presents detailed results of the data fusion process using the selected
Knowledge-Based Trust fusion strategy. The data fusion result is discussed with
respect to the same aspects as the previously presented topical profile, i.e., data
types, classes, and properties, showing the potential for slot filling.

Data Types. Table 6.8 shows the fusion results by data type. The columns “Ex-
isting” and “New” show the number fused triples that already exist in the knowl-
edge base and that are not yet covered by the knowledge base, respectively. The
last three columns show the performance, which is evaluated for the triples that
exist in the knowledge base using the LCWA. The highest precision is achieved
for string values, the highest recall for the type reference. The recall for
the numeric values of 46% is very low, which indicates that the trust scores for
this data type are mostly low and many correct triples are filtered out. Reasons for
this can be numerical properties that change over time, such as the population of
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Table 6.8: Data fusion performance by data type.

Data Types Existing New Precision Recall F1

Numeric 26 637 10 329 0.643 0.463 0.538
Date 171 653 23 301 0.627 0.806 0.705
String 34 260 14 285 0.756 0.823 0.788
Reference 144 615 16 038 0.629 0.874 0.731

Total 377 165 63 953 0.640 0.789 0.707

countries and cities or the weight of athletes. Another potential reason is the ambi-
guity of properties in the knowledge base: a frequently mapped numerical property
is statisticValue. It is not clear which statistic this property refers to from
the definitions in the knowledge base and as a consequence, various columns with
different semantics are mapped to this property, leading to low trust scores.

Classes. Table 6.9 shows detailed fusion results for the same set of classes
shown in Table 6.3 earlier. The largest amount of new triples is created for the
Work class, followed by triples for Agent. The highest precision is achieved for
the classes NaturalPlace and ArchitecturalStructure. Aggregated to
the top-level classes, Place and Species show a better performance with 80.0%
and 84.5% F1-measure, respectively, than Agent (67.7%) and Work (70.4%). A
possible explanation is that places and species have more functional or more static
properties, i.e., properties that can only have a single value and/or do not change
over time, such as family for Species, while works occur more frequently
with multi-valued properties, such as releaseDate, which can differ depending
on the region or edition.

Properties. Table 6.10 show the most frequent properties by number of new
triples. The most frequent property is releaseDate, which is listed for Film,
Single, and Album. In all three cases, the precision is rather low, which can
possibly be explained by the fact that entities of these types can have different
release dates for different regions or countries. With this argumentation, functional
properties, i.e. those which can only have a single value, should have a higher
precision. The shown properties support this assumption, as the highest precision is
achieved for the icaoLocationIdentifier property for the type Airport.



140 CHAPTER 6. CORPUS PROFILING

Table 6.9: Data fusion performance by class.

Fused Triples Evaluation
Class Existing New Precision Recall F1

Agent 137 943 23 013 0.640 0.718 0.677
Person 117 365 15 001 0.639 0.718 0.676
| Athlete 84 408 9 019 0.648 0.679 0.663
| Artist 1 556 219 0.753 0.920 0.828
| Politician 3 129 1 167 0.506 0.754 0.606
| OfficeHolder 3 465 510 0.698 0.861 0.771
Organisation 20 522 7 903 0.647 0.716 0.680
| EducationalInstitution 8 844 3 132 0.638 0.732 0.682
| Company 6 376 2 547 0.706 0.851 0.772
| Broadcaster 4 004 1 924 0.535 0.433 0.479
| SportsTeam 790 132 0.659 0.901 0.761

Work 188 676 27 831 0.612 0.827 0.704
MusicalWork 118 482 8 419 0.597 0.827 0.693
Film 29 568 12 116 0.573 0.803 0.669
Software 17 554 2 766 0.593 0.763 0.667

Place 35 044 9 787 0.758 0.847 0.800
PopulatedPlace 15 500 6 508 0.713 0.788 0.749
| Country 1 841 418 0.738 0.726 0.732
| Settlement 531 224 0.580 0.722 0.644
| Region 356 70 0.587 0.821 0.685
ArchitecturalStructure 11 934 2 352 0.806 0.940 0.868
NaturalPlace 743 64 0.874 0.970 0.919

Species 9 016 1 429 0.789 0.910 0.845

Total 377 165 63 953 0.640 0.789 0.707
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Error Analysis. Based on a qualitative analysis through manual inspection of
erroneous fusion results, the following types of errors can be identified:

• Changes Over Time. Values that are changing over time can lead to an
incorrect evaluation with the applied evaluation methodology, as the value in
the knowledge base and a value extracted from a web table might not refer
to the same point in time. In such cases, a time-aware data fusion method
could provide more accurate results [Oulabi et al., 2016].

• Different Granularity. Values can have different levels of granularity, e.g.
the city property of “Emroy University” has the value “Druid Hills, Geor-
gia” in DBpedia, which is a community in the metropolitan area of Atlanta.
In the web tables, however, we find the value “Atlanta”, which is evaluated
as false.

• Missing Objects in Lists. If a multi-valued property in DBpedia is incom-
plete, the automatic evaluation fails for cases in which a web table contains
a correct, but missing value. This is by definition of the Local-Closed-World
Assumption.

• Conversion Issues. Different formats for dates or numeric values can also
lead to a false evaluation. For example, the birthDate of “Jeff Zatkoff”
is “6/9/1987” according to DBpedia, but the data fusion returns the value
“9/6/1987”. As web tables do not provide metadata that specifies the format,
the date parser can misinterpret the data, in this case by confusing the day
and month parts of the date.

• Ambiguous Entities. There is not always an equality correspondence be-
tween the entities in a web table and in DBpedia. For example, a web table
might contain data about the release of a video game on a specific platform,
such as the release date or the publisher, and these attributes can have differ-
ent values depending on the platform or region in which the game is released.
In DBpedia, however, all editions of the game are represented by a single en-
tity and might only contain the first release date or publisher of the game.
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Table 6.10: Examples of frequent properties after data fusion.

Class Property Type Existing New Precision Recall F1

Film releaseDate Date 14 935 10 620 0.555 0.780 0.648
BaseballPlayer number Numeric 378 2 680 0.194 0.276 0.228
Single releaseDate Date 13 029 1 965 0.543 0.780 0.640
Book publicationDate Date 195 1 788 0.633 0.792 0.704
Album releaseDate Date 23 085 1 509 0.629 0.780 0.696
Company locationCountry Reference 463 1 192 0.677 0.900 0.772
Protein symbol String 58 926 0.660 0.660 0.660
RadioStation licensee String 275 910 0.788 0.983 0.875
WrittenWork publicationDate Date 48 894 0.574 0.792 0.666
Software frequentlyUpdated String 162 807 0.653 0.634 0.643
Person birthDate Date 14 216 782 0.545 0.897 0.678
PopulatedPlace area Numeric 94 705 0.639 0.660 0.650
Single aSide String 114 632 0.516 0.356 0.421
Bird synonym String 455 631 0.539 0.908 0.676
Airport icaoLocationIdentifier String 3 066 624 0.922 0.993 0.956
MusicalWork artist Reference 3 458 586 0.588 0.958 0.728
Person deathDate Date 5 204 574 0.671 0.914 0.774
Cyclist alias String 119 530 0.572 0.281 0.377
Person status String 8 515 0.200 0.355 0.256
PopulatedPlace country Reference 1 534 509 0.769 0.943 0.847
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6.5 Conclusion

This chapter presented a topical profile for the Web Data Commons Web Tables
Corpus 2012 with respect to the DBpedia knowledge base. First, related work in
the areas of Web data profiling and Web data fusion was introduced in Section
6.2. Then, Section 6.3 presented the topical profile for web tables by analysing the
created correspondences to classes, entities, and properties in the knowledge base.
The presented profile is the most fine-grained topical profile of a corpus of web
tables that is published at the time of writing. Finally, the quality of the extracted
triples was analysed as an additional profiling dimension and several data fusion
methods were compared in Section 6.4.

This chapter made the following contributions:

• Topical Profile: An in-depth analysis of the correspondences created be-
tween web tables and the DBpedia knowledge base provides a topical profile
of the web table corpus that exceeds to scope of earlier studies and provides
detailed insights into its contents. The results confirm that the distribution of
class correspondences is correlated with the frequency of entities for these
classes in the knowledge base. It further shows that most entities and prop-
erties are only found in few sources, while a small number of very popular
entities and properties occur very frequently. In total, 949 970 web tables
could be assigned a class from DBpedia. Further, 562 445 property annota-
tions that represent relations between the subject column and another column
in the web table, as well as 13 726 582 entity annotations for the values in
the subject columns were assigned. At the time of writing, this is the most
fine-grained topical profile of a corpus of web tables that is published.

• Data Type Profile: The analysis of the data type distribution for the matched
columns reveals that the majority of the 7.9 million extractable triples con-
tain numerical (2.8 million) and date (3.4 million) values. This is not con-
sidered by most state-of-the-art approaches for semantic table interpretation,
which often focus exclusively on named entity columns.

• Quality of extracted Triples A heuristic estimation of the quality of the
extracted raw triples and their inter-source distributions shows that many
statements are only found in a single source and confirms that the overall
extraction quality is low with the current state-of-the-art methods. Only 45%
of all value groups by subject entity and property combination, or 24% of
all extracted triples, have a correct value. A large number of high-quality
facts can be extracted by applying knowledge-based trust data fusion, which
results in 441 thousand fused triples with an estimated F1-measure of 0.7.

This chapter studied the contents of a large, publicly available corpus of web
tables on an unprecedented scale and level of detail. Further, this is the first fully
reproducible study in this area, as all data and implementations are openly avail-
able. The results of the profiling show that the majority of the web tables does not
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contain data that can be related to the DBpedia knowledge base. Only 1.3% of all
web tables that were extracted from the web crawl contained relational data. Of
these relational tables, 3% could be matched to DBpedia. These percentages are
comparable to the results of similar studies [Cafarella et al., 2008b, Venetis et al.,
2011, Dong et al., 2014a, Hassanzadeh et al., 2015].

For the web tables that could be matched to DBpedia, the distribution of corre-
spondences over entities and classes was found to be similar to the distribution of
entities in DBpedia. While some deviations indicate over- and under-represented
topics in the web table corpus, this result confirms the findings of Hassanzadeh
et al. [Hassanzadeh et al., 2015], which indicate that the correspondence distribu-
tion depends on the content of the knowledge base. The statistics further revealed
that properties could only be mapped for one third of the web tables, for which
matching classes and entities were found in the knowledge base. This indicates
a large potential for the schema-extension task, as the majority of the columns in
web tables cannot be understood with the existing properties in DBpedia.

The frequency distributions of individual entities and properties reveal that
70% of the matching DBpedia entities are described in at least two Web tables.
For properties this holds for 88%. However, the combination of both obtained by
grouping the extracted triples by instance and property shows less replication of
statements, as only 58% of these groups can be found in two or more sources.

By validating and applying a heuristic based on the Local-Closed-World As-
sumption, it has been shown that 45% of the created factual groups, or 24% of the
extracted triples, contain a correct value. This, again, is in line with other studies
that reported an accuracy of 30% [Dong et al., 2014b] and 11.5% [Dong et al.,
2014a] for the extracted triples before data fusion. This shows that state-of-the-art
semantic table interpretation methods still need to be improved for the application
on a large scale.

Finally, the experimental evaluation and application of data fusion methods
showed which types of facts and level of quality can be obtained with current
methods. By analysing the results, several categories of systematic errors were
identified, which provide directions for future work. With an overall F1-measure
of 0.7, the fused triples are of high quality compared to the low quality of the raw
extracted triples. For knowledge base augmentation with very high quality require-
ments, such as for productive systems, a human verification of the fused triples is,
however, necessary. In such a verification process, the calculated trust scores can
be used to suggest the values which are most likely correct to an end user, who then
makes the final decision whether to add them to the knowledge base or not.



Chapter 7

Table Stitching

7.1 Introduction

The results of the corpus profiling in Chapter 6 indicate that the quality of state-
of-the-art semantic table interpretation methods is over-estimated by the currently
used evaluation datasets, which leads to low quality of the triples which can be
extracted from web tables. This raises questions about the validity of existing
evaluations and the actual performance of the evaluated methods. The data profile
of the web table corpora presented in Chapter 4 shows that the vast majority of
web table is very small, with a median of only 6 rows. This is not reflected in the
selection of tables for evaluation datasets such as the Limaye gold standard, with
a median of 21 rows, or the instance-level subset of the T2D gold standard, with a
median of 100 rows. However, very small web tables pose significant challenges
to semantic table interpretation methods, which rely on the presence of a sufficient
amount of known entities in the web tables for their similarity calculation.

This chapter addresses the challenges that arise for very small web tables. The
proposed method exploits the fact that most web sites are generated by templates
and hence contain many web pages with the same structure. A profile of the fre-
quency of web tables which use the same schema reveals that the same holds for
the web tables on such web sites, i.e., the majority of the web tables in the cor-
pus are generated from a template and hence use the same schema. Such web
tables can be stitched (merged) to form larger tables, which can then be processed
with high quality by existing semantic table interpretation methods. The experi-
mental evaluation on a random sample of web tables shows that existing methods,
T2K Match and COMA [Aumueller et al., 2005], fail to produce an acceptable
result, especially for very small web tables. After the application of the proposed
method, their performance reaches the level of quality that is expected from the ex-
isting evaluations, showing that the stitching procedure is effective and necessary
to achieve high-quality results.

145
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Figure 7.1: Example how information about video games is broken up into multi-
ple small web tables on different pages.

Figure 7.1 shows examples of small web tables describing video games. It
shows how information about the games that likely resides in a single table in the
database behind the website is published as a set of small tables on different pages.
From the example, it is easy to see why state-of-the-art algorithms fail: (1) there is
only one main entity described in the table, but the commonly used subject column
detection methods focus on uniqueness and will choose the wrong column, and (2)
even if the correct entity label is detected, there is only one example from which the
table must be mapped correctly, i.e., if the name of this single entity is not known,
the table cannot be understood. However, the many small tables with the same
schema can be combined into a single table, which solves the mentioned problems
as the uniqueness of the correct subject column increases and more examples are
available as additional entity names are added.

The contributions of this chapter are:

• Re-Evaluation of Semantic Table Interpretation: The existing evaluation
datasets for semantic table interpretation are usually created by searching
for web tables using seed entities from the knowledge base. This results
in datasets that are biased towards larger tables and contain many of the
entities in the knowledge base, which leads to over-estimated performance
scores. A re-evaluation of the performance for semantic table interpretation
on a random sample of web tables shows that the performance for small web
tables is much worse than estimated by existing gold standards.
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• Data Profile of Schema Usage: A data profile of the WTC 2015 shows that
the majority of the schemata of web tables are re-used frequently by other
web tables on the same web site. This indicates that most web tables are
created by templates in the back-end of the web sites and can be combined
to form larger tables.

• Stitching Method: Based on the profiling and evaluation results, a method is
presented that stitches (combines) small web tables into larger tables based
on their schema and holistic schema matching techniques. An evaluation
of existing semantic table interpretation algorithms on a random sample of
web tables shows that the quality of their results can be drastically improved
by the stitching method, especially for web tables with only few rows and
columns. The source code and all datasets that are used for the experiments
in this chapter are publicly available.1

This chapter is organised as follows. First, Section 7.2 introduces related work
on merging web tables and holistic schema matching. Section 7.3 then introduces
the proposed stitching method, provides a data profile of the schema frequencies
in the web table corpus and presents the used schema matching techniques. The
experimental evaluation of the proposed method and its impact on semantic table
interpretation methods is presented in Section 7.4.

The work presented in this chapter, i.e., table stitching, has previously been
published in [Lehmberg and Bizer, 2017].

7.2 Related Work

This section introduces the related work for table stitching. First, approaches that
combine individual web tables or parts of these web tables are described and sim-
ilar ideas to the method that is introduced in this chapter are discussed. Then, ap-
proaches for holistic schema matching, which allow the combination of web tables
with different schemata are presented.

Merging Web Tables

The idea of stitching web tables from the same web site was originally proposed
by Ling et al. [Ling et al., 2013] in 2013, but has not received much attention by
the research community until four years later, when the method presented in this
chapter [Lehmberg and Bizer, 2017] and a similar method focused on mapping
relationships [Wang and He, 2017] were published. Most other studies concerned
with web tables consider each web table as an individual data source and do not
distinguish based on the web sites from which the web tables were extracted.

1https://github.com/olehmberg/WebTableStitching
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Matching web tables to each other and not to a knowledge base for the pur-
pose of merging their data is mainly considered in the context of table extension,
where the user provides a query table that is enriched with the data from matching
web tables from a large corpus [Cafarella et al., 2009,Das Sarma et al., 2012,Yak-
out et al., 2012, Lehmberg et al., 2015]. The following paragraphs discuss some
of these methods and highlight their differences to the method proposed in this
chapter.

[Tao and Embley, 2009] Tao and Embley propose to use the template-based
structure of web pages and detect so-called “sibling tables”. These tables are
supposedly created from the same database and similar to each other. They use
the simple tree matching algorithm [Yang, 1991] to match web tables from pairs of
web pages to each other, and empirically define similarity thresholds to distinguish
between identical tables, sibling tables, and unrelated tables. The detected sibling
tables are then used to infer the table structure based on three pre-defined table
layouts, which identify the positions of columns, headers, and values in the tables.
The result of their method is a web-site-specific wrapper for the web tables that
allows for their extraction and structural analysis from any web page with the same
template, but they do not consider semantic table interpretation.

[Cafarella et al., 2009]. The OCTOPUS system proposed by Cafarella et al.
provides a union operator that allows a user to merge tables. After searching re-
lated tables based on a query table provided by the user and possibly some manual
pre-processing operations on the tables, the user can choose to create the union
of selected web tables. This is a similar operations to that presented in this chap-
ter, with the difference that it is supervised by an end user rather than being fully
automated.

[Bronzi et al., 2013]. Bronzi et al. present a method that tackles both the wrap-
per induction and the schema integration problem for web pages that contain data
about a single entity, called “WEIR”. The method is based on an “abstract gen-
erative model” that assumes that the data presented on each web page is based on
a partial view over the same abstract relation. For each vertical, i.e., class, a sin-
gle, complete relation is assumed, which is the source used by all web pages. The
proposed model describes the generative process of the data providers, which se-
lect subsets of the attributes and tuples in the abstract relation and might introduce
errors, imprecise values or missing values.

This model has two properties which are exploited by the proposed algorithm:
“local consistency” and “separable semantics”. Local consistency states that at-
tributes and their values are consistent among all web pages from the same data
provider. Separable semantics states that all variations of an attribute that are pub-
lished by different data providers are more similar to each other than to any other
attribute.
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These assumptions are similar to those made by the method presented in this
chapter, i.e., that the data on different web pages from the web site are generated
from a single data source and hence have a high consistency. However, the model
by Bronzi et al. assumes a single abstract relation from which all web sites, theo-
retically, derive their data, while the method described in this chapter only assumes
that the data on the same web site is generated from the same database.

[Ling et al., 2013]. Ling et al. argue that web tables from the same web site
often use identical schemata because a large original table was split into multiple
web tables for better human readability. They define web tables to be stitchable
if their column headers are equal, regardless of their ordering, and produce union
tables by concatenating all stitchable tables from the same web site. This approach
is the foundation of the method that is presented in this chapter, which extends the
set of web tables that are considered as stitchable.

[Wang and He, 2017]. Wang and He use the idea of table stitching as proposed
by Ling et al. [Ling et al., 2013] and extend it to synthesize mapping relationships
from web tables. A mapping relationship is a binary relation that maps, for exam-
ple, country names to country codes. The proposed approach first identifies can-
didate column pairs in the web tables, then synthesizes two-column union tables,
and finally resolves conflicts. The do not consider semantic table interpretation and
evaluate the results of their method against a set of manually created mapping re-
lationships. This evaluation measures the value overlap between the manually cre-
ated relation and the best match in the generated corpus of mapping relationships,
i.e., their proposed method is only concerned with generating the relationships, not
with their semantic interpretation or possible methods for retrieving them from the
corpus.

The literature presented in this section shows that the general idea of creating the
union of web tables has been considered for a while, but only few approaches use
it to improve the quality of methods that use web tables as data source. However,
this changed in 2017 with the publication of two methods that use the idea of web
table stitching for different use cases [Wang and He, 2017, Lehmberg and Bizer,
2017].

Holistic Schema Matching

Holistic schema matching refers to approaches that collectively match elements of
a large corpus of schemata [Bernstein et al., 2011]. Methods in this area either
avoid pair-wise comparisons completely or use the graph structure resulting from
the correspondences that are created by traditional schema matching methods to
improve the matching quality. Such methods are relevant for the approach pre-
sented in this chapter, which matches all web tables from the same web site among
each other to find more stitchable tables.
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[He and Chang, 2003]. He and Chang present a method for statistical schema
matching. They propose to match input schemas holistically by finding an underly-
ing hidden model from which all schemata in a specific domain can be generated.
Such a model removes the need for pair-wise attribute correspondences, as it would
explain all possible schemata for the domain. The proposed model consists of a
vocabulary of attribute names and so-called “concept partitions”, which group se-
mantically equal attribute names. For each attribute name and concept partition, the
probabilities for being included in a schema that is generated from this model are
determined. The estimation of the model parameters is based on three assumptions:
(1) “concept mutual independence” states that different concepts are selected in-
dependently in schema generation; (2) “synonym mutual exclusion” states that no
schema contains two synonyms for the same attribute; (3) “non-overlapping con-
cepts” states that no two concept partitions share attribute names. Exploiting these
assumptions in a schema matching method for web forms results in high quality
results, and the schema matching method presented in this chapter also makes use
of assumption (2) to improve the quality of the generated correspondences. Sim-
ilar methods for complex schema mappings have been proposed later by He and
Chang [He et al., 2004] as well as Su et al. [Su et al., 2006].

[Wang et al., 2004]. Wang et al. consider the problem of matching query
interfaces on web pages to their respective result pages and to a global schema.
The proposed method first generated correspondences between the elements of the
query interface, result page, and the global schema using traditional schema match-
ing methods. Then, the obtained schema mappings are checked for consistency by
a method referred to as “cross validation”: A graph with attributes as vertices and
correspondences as edges is created and initially partitioned by the mapping to the
global schema. Inconsistent correspondences among the attributes are removed by
minimizing the edge-cut of this partitioning as attributes are moved between par-
titions. A similar, graph-based refinement step is introduced in Section 7.3 of this
chapter.

This section presented different approaches for holistic schema matching of
web sources. Such approaches make use of assumptions about the data generation
process to define constraints and use graph representations of the schema corre-
spondences that are used to enforce consistency with a global schema. The method
presented in the next section makes use of such constraints and a graph represen-
tation to improve the quality of schema matching among web tables.
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7.3 Method: Table Stitching

This section introduces the idea of table stitching and defines the used terminology.
First, the intuition behind table stitching is explained, and then the two stitching
results, union tables and stitched union tables, which are created by table stitching
are defined. The following subsections then describe the two stitching steps that
produce these results in more detail.

Many web sites use content management systems or other programs to generate
HTML pages. The web tables on these pages are often also automatically generated
and the same schema is thus used by web tables on many different pages. Common
practices are, for example, paging and master-detail views. Paging means that a
long table is split into many smaller tables that are easier to understand for a human
user, who can navigate between the pages if she is interested in seeing more data
rows. Master-detail views consist of an overview table listing the most important
attributes for all entities, and a detailed page for each entity that lists additional
data. A user can then select the entity she is interested in from the master view and
navigate to the detail view for this entity to access more information.

As a result of applying such practices, web tables tend to be small, which can
be problematic for methods that try to infer the meaning of a table based on its
content. The goal of table stitching is to merge the web tables that are created by
practices such as paging or master-detail views into larger tables.

Formally, each web table can be considered as a view vi P V on a relation
instance r that applies a selection (σ) operation vi “ σiprq. As proposed by Ling
et al. [Ling et al., 2013], such web tables can be stitched into a union table r1 by
applying the union operation:

Union Table: r1 “
ď

viPV

vi

Definition 19 (Table Stitching) Given a set of web tablesW which are the result
of queries to an unknown relation instance r, reconstruct a relation instance r1 that
is consistent with the observations inW . r1 is consistent withW if and only if there
is a query qi that produces wi from r1 for all wi PW .

Definition 20 (Union Table) The result of table stitching under consideration of
selection queries is called a union table.

The original work of Ling et al. describes how web tables from the same web
site can be stitched in order to create larger tables that are useful for visualising
and mining the data. The authors define web tables to be stitchable if all their
column headers match and create the union of all such tables from the same web
site. However, the main focus of their work is to extract additional attributes from
the web pages (i.e., from the URL, title, and text) on which the web tables were
found. The work presented in this chapter has a different focus and investigates the
effect of this procedure on semantic table interpretation.
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In addition to web tables with exactly matching schemata, web tables with
different, but overlapping sets of attributes, which are the result of different projec-
tions and possibly renamed attributes are also considered. In this case, each web
table can be interpreted as a view vi P V

1 on a relation instance r that applies se-
lection (σ), projection (π), and renaming (ρ) operations vi “ ρipπipσiprqqq. These
web tables can be stitched into a larger table by matching their attributes, i.e., in-
verting the renaming v1i “ ρ´1i pviq, extending their schema such that all web tables
use the same set of attributes (where missing attributes are filled with null values)
and then creating their union. The last two steps correspond to applying the outer
union operator (see Chapter 2), resulting in a stitched union table r2:

Stitched Union Table: r2 “
ě

viPV 1

ρ´1i pviq

Definition 21 (Stitched Union Table) The result of table stitching under consid-
eration of selection, projection, and renaming queries is called a stitched union
table.

It is reasonable to expect that the web tables provided by a single web site
are generated from the same database [Ling et al., 2013]. However, not all web
tables must be created from the same relation in such a database. In the case of
stitched union tables, it must hence be decided which tables should be merged. One
possibility is merge all web tables that have at least one common attribute. But,
in the worst case this creates a single stitched union table with very low overlap
between the original web tables. For the experiments in this chapter, stitched union
tables only merge tables that have a common candidate key. With respect to the
designated use case, improving the quality of semantic table interpretation, these
candidate keys must further contain at least one string column, which can be used
as subject column. All correspondences among web tables which do not fulfil this
condition are ignored during stitching.

7.3.1 Union Tables

This section discusses the stitching of web tables with exactly matching schemata
into union tables. The creation of union tables only requires the detection of at-
tribute names in the web tables (see Chapter 4), so its impact can be analysed
directly from the statistics of the used web tables corpus. For this analysis, the
ordered set of column headers and the host part of a web table’s URL, which is
used to identify web sites, are considered as the schema of a web table (so no
two schemata from different hosts are considered equal). Note that two schemata
which are semantically, but not literally equal, for example when using different
languages for their column headers, are considered as two distinct schemata. Such
schemata are only stitchable for the creation of stitched union tables, but not for
the creation of union tables.
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Figure 7.2: Number of schemata per web site.

Schema Profiling

This section presents a data profile for the schemata in the used web table corpus,
which shows the potential for table stitching and supports the assumption that most
web tables are generated by templates. This profile analyses the number of different
schemata used by each web site as well as the number of web tables per web site
that re-use the same schema.

Schemata per Web Site. Figure 7.2 shows the cumulated fraction of all web
sites in the corpus that provide a certain number of different schemata. The series
“Web Sites” shows the cumulated fraction of web sites which provide the number
of schemata indicated on the horizontal axis. The series “Web Tables” shows the
cumulated percentage of web tables from these web sites in the corpus. The chart
shows that 75% of all web sites only use a single schema and that they provide 20%
of all web tables. Further, 55% of all web tables are provided by web sites with up
to 10 schemata (97% of all web sites) and 84% of all web tables by web sites with
up to 100 schemata (99.7% of all web sites). This means that the majority of web
tables are provided by web sites which use a small number of different schemata.
This indicates that most web tables are created systematically and can be stitched
into larger union tables.

Web Tables per Schema. Figure 7.3 shows the cumulated fraction of schemata
which are used by a certain number of web tables. The series “schemata” shows
the cumulated fraction of schemata which are used the number of web tables in-
dicated on the horizontal axis. The series “Web Tables” shows the cumulated
percentage of web tables that use these schemata. This shows that 63.7% of all
schemata are only used once, but they only contribute 2.5% to the total amount of
tables in the corpus. Even considering all schemata which are used up to 100 times
(98.7% of all schemata) only cumulates to 17% of all tables. The remaining 83%
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Figure 7.3: Number of web tables per schema.

of all tables have a schema that is used by at least 100 other tables on the same web
site. This shows that for the majority of all web tables, there is a large number of
other web tables with the same schema provided by the same web site, which can
be stitched into union tables.

These results support the hypothesis that most web tables in the corpus are
generated by content management or related systems. The majority of web tables
is found on web sites that use a relatively small number of different schemata and
most web tables re-use the same schema.

Assumption Violations

Web sites which provide a large number of different schemata likely violate the
assumptions that are made by the stitching method. To understand the reasons for
such a large number of different schemata, a manual inspection of the 20 web sites
with the highest diversity of schemata is performed.

Together, these 20 web sites provide 60 942 schemata and 245 348 web tables.
The analysis reveals that 20% of these web sites actually provide vertical tables
(although detected as horizontal tables) and hence a data value was interpreted as
column header. Another 15% have no headers, but the first data row was mistaken
as schema by the header detection method, and 25% use data values in the attribute
names (i.e., names of sports teams or the date). This means that the high number
of different schemata is incorrect and the web sites do only use a much smaller
number of schemata. Only 40% of the inspected web sites provide web tables with
schemata that are manually created, i.e, the tables were not systematically created
from a database. An example for this is the web site en.wikipedia.org, which
clearly violates the assumption, and has 13 799 schemata in the used web table
corpus, which are on average used by 3 web tables.

en.wikipedia.org
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Figure 7.4: Example of tables that are missed by the union approach.

7.3.2 Stitched Union Tables

This section discusses the stitching of tables with not exactly matching schemata.
In this case, schema matching techniques must be use to find correspondences
between the columns of the individual tables that should be stitched.

Examples of tables that cannot be stitched using the union approach are tables
which either have the same schema but different column headers (for example,
different languages or additional values in the column headers) or which have dif-
ferent, but overlapping schemata (for example a different set of attributes for the
same entity). Figure 7.4 shows an example of two tables with stitchable schemata,
which differ in the used language and the used set of attributes. The creation of
stitched union tables requires the use of schema matching methods to determine
which columns in the web tables correspond to the same attribute. In the follow-
ing, the schema matching methods considered for this task are introduced.

Standard Matcher

The schema matching problem for union tables is different from the general web
table matching problem, because it can be assumed that all data was generated from
the same underlying table or database. This reduces heterogeneity and exact value
comparisons can be used instead of similarity measures for comparing attribute
values. To determine the performance of standard matching methods for this task,
three matching approaches will be compared experimentally: label-based, value-
based and duplicate-based schema matching.

Label-based Matcher. Label-based matching is implicitly applied when creat-
ing the union tables: all columns with the same header are matched to each other.
This approach can be expected to also work for union tables which used different,
but overlapping sets of attributes.



156 CHAPTER 7. TABLE STITCHING

Value-based Matcher. In cases where column headers are missing or unin-
formative, it is reasonable to look at the values of the attributes. If two columns
contain the same values, they might represent the same attribute. The value-based
matcher measures the value overlap between two columns using exact value com-
parison. However, the weakness of this approach is that if two tables have different,
but very similar attributes, for example “birth date” and “founded date”, it can be
difficult to distinguish correct from coincidental matches.

Duplicate-based Matcher. If value-based similarities are misleading, duplicate-
based schema matching is more promising. Given a set of duplicate records, this
approach only compares the values of these duplicates in order to find schema
correspondences [Bilke and Naumann, 2005]. For each pair of duplicate records,
all values are compared, resulting in an attribute similarity matrix for each dupli-
cate. These matrices are then aggregated by averaging, leading to a final attribute
similarity matrix. With this approach, attributes with similar domains can be dif-
ferentiated more precisely, as only attribute values from rows describing the same
real-world entity are compared. In order to come up with a suitable set of dupli-
cates, three different strategies are tested to estimate whether two rows in different
tables refer to the same real-world entity: candidate keys, determinants, or subject
columns.

Candidate keys uniquely identify a row and should hence result in an optimal
set of duplicates. However, the experiments show that relying on candidate keys
does not result in many duplicates. This can, for example, be explained by row
numbers which are included in the web tables (see the first column in the web table
in Figure 7.4) and are often included in the candidate keys that are discovered from
the tables.

Determinants of functional dependencies are smaller sets of attributes than can-
didate keys and they do not necessarily uniquely identify rows in the table, which
results in a larger number of duplicates. To determine functional dependencies and
candidate keys the HyFD [Papenbrock and Naumann, 2016] functional dependency
discovery algorithm is used.

Subject columns are commonly used in web table to knowledge base match-
ing [Limaye et al., 2010, Mulwad et al., 2013, Venetis et al., 2011, Zhang, 2017,
Ritze et al., 2015]. These columns contain the names of the entities that are de-
scribed in a table and act as pseudo keys, resulting in the largest number of dupli-
cates.

Hybrid Matcher

This section describes how the different standard matchers are combined into a
hybrid matcher that combines their signals and how ideas from holistic schema
matching are used to improve the consistency of the results.
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The value- and duplicate-based matchers use different signals for their match-
ing decisions than the label-based matcher, so they can be combined into a hybrid
matcher. For this hybrid matcher, ideas from holistic schema matching that make
use of the column headers, which are the strongest signal for this matching task, are
included. Holistic schema matching refers to methods that make decisions based
on observations from all schemata in a certain corpus [Yakout et al., 2012,He et al.,
2004, He and Chang, 2003, Su et al., 2006].

Overall Process. Traditional matching methods only consider two tables at a
time. But, if many tables have to be matched, pair-wise matching can produce
inconsistencies. For example, two columns from the same table could be matched
to each other via a path of correspondences to other tables. Such inconsistencies
can only be detected when considering the mapping of more than two tables at the
same time. The proposed hybrid matcher first uses one of the standard matchers
from the previous section to perform a pair-wise matching between all union tables.
After the pair-wise matching, two holistic refinement steps are applied to remove
inconsistent correspondences and add missing correspondences to the mapping.

Pair-wise Refinement. The first refinement operates on pairs of tables and the
schema correspondences that were created by the standard matcher. First, corre-
spondences which are inconsistent with respect to all schemata on the same web
site are removed as follows: Under the assumption that attributes are not dupli-
cated in a single schema, the co-occurrence of attribute names in the same schema
is used as negative evidence attribute equality. All column headers that appear to-
gether in at least one schema hence cannot be mapped to one another and such
correspondences are removed.2 This has been shown to be applicable for web ta-
bles [He et al., 2016] as well as the schemata of query forms on web pages [He and
Chang, 2003]. To exclude violations of this assumption, all “horizontally stacked”
tables as described in Section 8.4 are removed. Such tables are constructs where
one schema is repeated multiple times in a single table to stretch it horizontally (for
purely visual reasons). Second, correspondences for all columns with equal head-
ers are added if they do not exist already, which is done by running the label-based
matcher.

Graph-based Refinement. The second refinement operates on the graph of all
schema correspondences as edges and columns as nodes. Again, the first step is
to detect and remove inconsistencies. The same rule as during the pair-wise re-
finement is applied, but this time to the full graph. The correspondences in the
graph are inconsistent if two columns with headers that co-occurred in a schema
are connected by a path of schema correspondences. In such a case, the edge

2But if an attribute name occurs multiple times in a single schema, this does not lead to the
removal of any correspondences.
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Figure 7.5: Graph-based refinement: If “artist” and “name” appeared in the same
table, the path between these nodes (solid edges) can be detected as inconsistent.
To solve this inconsistency, the red edge is removed, which has the highest be-
tweenness centrality of all edges on this path.

with the highest betweenness centrality [Freeman, 1977] is removed from the in-
consistent path. As an example, assume a perfect mapping between columns that
represent two attributes. The resulting graph contains two connected components
of columns, one for each attribute. Now an incorrect correspondence is added to
this graph, which connects the two components, shown as the red edge in Figure
7.5. This new edge is part of all shortest paths that connect any two columns from
the different components. So, in an inconsistent matching graph, it is desirable
to remove the edge(s) that connect different components, which can be measured
using betweenness centrality. The betweenness centrality measures the fraction of
all shortest paths between any two nodes in the graph that include a certain edge.
In the example, the inserted edge has the highest betweenness centrality value be-
cause it is the only connection between the two components. This procedure is
similar to the one proposed by Wang et al. [Wang et al., 2004]. As final step of the
graph-based refinement, all edges that can be inferred by transitivity are added to
the graph, which reduces its incompleteness.

7.4 Improving Semantic Table Interpretation

This section presents the experimental evaluation of the proposed stitching method.
First, the different schema matching methods for table stitching are evaluated.
Then, the experiments evaluating the improvement for semantic table interpreta-
tion are presented.

Web Tables Corpus. The following experiments use a subset of the Web Data
Commons Web Tables Corpus 2015. This subset contains 5 176 160 de-duplicated
web tables from the corpus in which at least one entity from the DBpedia knowl-
edge base could be recognised. Tables without any recognisable entity from the
knowledge base cannot contribute to the knowledge base augmentation task and
can hence be excluded. The detection of entities was performed by comparing the
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table’s tokenised cell values to the entity labels in DBpedia with Jaccard similar-
ity and a threshold of 0.7. The tables in the subset have a median of 6 rows and
originate from a total of 86 316 different web sites.

Union Tables. Creating the union tables for all web sites in the corpus reduces
the total number of tables from 5 176 160 to 261 215. The average size of the
tables increases from 9 rows to 108 rows. During the creation of the union tables,
duplicate rows are removed, which removes on average 8% of the rows from the
original web tables.

To evaluate the hypothesis that table stitching improves the quality of semantic
table interpretation methods, the results of two matching systems, T2K Match and
COMA, are compared for web tables, union tables, and stitched union tables.

T2K Match. T2K Match (see Chapter 5) is used as an example of a specialised
web table to knowledge base matching system in the experiments. T2K Match
matches web tables to classes, table rows to entities and columns to properties in
a target knowledge base. Before matching a web table, one column is determined
to be the subject column, i.e., the column that contains the names of the entities
that are described in the table. The detection of the subject column is performed
heuristically, by choosing the most unique text column. Afterwards, candidate
correspondences to entities and properties from the knowledge base are used to
determine the majority class of the entities in the web table. Then, entity and
property correspondences are iteratively refined, until a final mapping is created.

COMA. To test the general applicability of the stitching method, the experi-
ments are repeated using COMA 3.0 [Do and Rahm, 2002,Aumueller et al., 2005].
COMA is a general-purpose schema matching tool which exploits both attribute
names and data values. As COMA is not tailored for the web table to knowledge
base matching task, the experimental set-up is changed in the following way: The
experiment is limited to the column-to-property schema matching task and COMA
is run on the combination of each web table and its corresponding class in the
knowledge base (so COMA does not have to find the correct class mapping). Due
to limitations of the COMA application, a maximum of 1 000 data values per at-
tribute limits the size of the used tables. Hence, for each matched table, 1 000
entities are sampled from the corresponding DBpedia classes. It is guaranteed that
the entities corresponding to those in the web tables are included, then random
entities are added until 1 000 rows are reached.
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7.4.1 Intra-Site Schema Matching

In the following, the performance of the schema matching methods for the creation
of stitched union tables is evaluated on several datasets. This schema matching task
has the goal of matching all union tables created from the web tables of a single
web site among each other, resulting in correspondences among their columns that
can be used to create stitched union tables. After the evaluation of the performance
of this intra-site schema matching, the improvement gained by table stitching for
semantic table interpretation is evaluated on these datasets.

Datasets

To evaluate the proposed matching methods, several web sites with different char-
acteristics are selected from the corpus. Table 7.1 gives an overview of these
datasets. Each dataset contains all web tables from the respective web site (iden-
tified by the host part of its URL) that are included in the 5 million table corpus.
The table shows how many web tables, rows and columns each dataset contains
and the column “Union” shows the number of schemata, which is also the number
of union tables that were created for the respective web site.

The goal of these experiments is to measure how correct and complete the
results of the different schema matching approaches introduced in Section 7.3 are.
For this purpose, a reference mapping is manually created for all datasets. These
reference mappings are complete, i.e., they contain all correct correspondences
between the columns of the union tables of the respective datasets.

Table 7.1: Datasets for schema matching of union tables.

Dataset Tables Rows Columns Union Topic

data.bls.gov 10 825 54 196 59 093 10 statistics
itunes.apple.com 47 729 494 302 258 275 36 music
websitelooker.com 11 351 99 865 39 535 4 statistics
www.nndb.com 23 522 231 738 116 716 9 multiple
seatgeek.com 157 581 2 644 035 630 063 64 multiple
vgchartz.com 23 258 58 637 116 285 6 video games

Total 274 266 3 582 773 1 219 967 129

Standard Matcher Experiments

This section presents the results of the schema matching experiments for all match-
ers described in Section 7.3.2 and discusses their individual performance. An
overview of these results is shown in Table 7.2.
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Table 7.2: Comparison of all schema matchers (F1-measure, best configuration for
each dataset is shown in boldface).

bls itunes ws.looker nndb seatgeek vgchartz avg.

Standard Matchers

Value 0.667 0.610 0.435 0.381 0.197 0.880 0.528
Subj. Col. 0.380 0.448 0.200 0.100 0.265 0.194 0.264
Det. 0.145 0.511 0.250 0.381 0.458 0.353 0.350
Key 0.031 0.147 0.000 0.111 0.165 0.194 0.108
Label 0.752 0.185 0.727 1.000 0.827 0.634 0.688

Hybrid Matchers

Value 0.894 0.807 0.800 0.515 0.778 0.963 0.793
Subj. Col. 0.847 0.710 0.714 0.872 0.725 0.698 0.761
Det. 0.836 0.788 0.727 1.000 0.872 0.698 0.820
Key 0.844 0.528 0.727 1.000 0.842 0.634 0.763

Label-based Matcher. The label-based method is very strong in this use case
and is overall the best standard matcher with an average F1-measure of 0.69. It
achieves a precision of 100% for all datasets, with a recall varying between 10%
and 100%. The itunes dataset contains tables in multiple languages, resulting in
the worst performance for this matcher over all datasets with 0.19 F1-measure.

Value-based Matcher. The value-based matcher results in the second highest
average F1-measure with 0.53. However, its precision is the lowest with an aver-
age of only 0.45. The problem is that seemingly similar columns are mapped to
each other, which actually represent different attributes. For example, this results
in mappings between “artist” and “album” for itunes, “text” and “primary
country” for websitelooker, “employment per thousand jobs” and “percent
of state employment” for bls, and between “founded” and “birth date” for nndb.

Duplicate-based Matcher. The three approaches for duplicate-based matching
achieve the lowest average F1-measure values with 0.26 for entity-labels, 0.35 for
determinants and 0.11 for candidate keys. These methods can only create corre-
spondences if two tables contain records that are duplicates, so all correspondences
between tables with distinct contents are missed. The precision of the duplicate-
based methods is, however, comparably high with averages of 0.65 for subject
columns, 0.89 for determinants, and 0.78 for candidate keys. When using subject
columns to find duplicates, a problem is that ambiguous names cause incorrect du-
plicates, which in turn reduces the schema matching performance. This problem is
reduced when using determinants or candidate keys.

itunes
itunes
websitelooker
bls
nndb
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Hybrid Matcher Experiments

This section presents the results of the hybrid matcher in configurations with all
standard matchers. The hybrid matcher combines instance- and label-based schema
matchers and adds a graph-based refinement step which is supposed to increase the
consistency of the matching result.

Table 7.2 shows the F1-measure for all standard and hybrid matcher configu-
rations (the best configuration for each dataset is shown in boldface) and Figure
7.6 shows the precision and recall achieved by all matchers for each dataset. In
all configurations, the hybrid matcher outperforms all of the individual standard
matchers averaged over all datasets. The best result is achieved by the determinant
matcher, with an average F1-measure of 0.82.

A large improvement over the instance-based standard matchers can be at-
tributed to the correspondences from the label-based matcher, because it can find
the matches between tables with disjoint values. This increases the recall of the
matchers by adding high-quality correspondences without introducing noise, as
the label-based standard matcher has a precision of 100% on all datasets. In com-
bination with the transitivity applied by the graph-based refinement, the value- or
duplicate-based and the label-based correspondences complement each other. For
example for the itunes dataset with the determinant-based matcher, this results
in a recall of 0.69, which exceeds the combined recall of label-based (0.1) and
determinant-based (0.39) matching.

Finally, the removal of inconsistent correspondences leads to an improvement
in precision for all configurations and datasets and does not cause a decrease in
recall. This effect is strongest for the configuration with the value-based standard
matcher, which tends to generate too many correspondences that are effectively
filtered out by the graph-based refinement step.

These results show that the combination of the different standard matchers into
a holistic hybrid matcher improves the schema matching performance. Depend-
ing on the used standard matcher, a trade-off between precision and recall can be
observed: While the value-based matcher still achieves the highest recall at com-
parably low precision, the duplicate-based methods achieve a higher precision and,
in combination with determinants for the generation of duplicates, also the highest
F1-measure.

7.4.2 Evaluation on Individual Web Sites

This section presents experiments for the evaluation of the improvement resulting
from table stitching for semantic table interpretation. In these experiments, T2K
Match is run on the stitched union tables created by the different configurations of
the hybrid matcher on the datasets used in the preceding section. The evaluation
will focus on the class and relation annotation task of semantic table interpretation
(see Chapter 5), as the entity annotation task only considers individual rows and
does not benefit from table stitching directly.
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A precondition for the relation annotation task for semantic table interpretation
is that the tables contain both entities and attributes which correspond to existing
elements in the knowledge base. As the websitelooker and bls datasets do
not contain any attributes that correspond to properties in the knowledge base, they
are excluded from this experiment. The hybrid matcher is applied to all remaining
datasets in its different configurations. Table 7.3 shows the number of tables and
columns that result from the stitching with the different matchers. These results
show that the number of tables and columns is drastically reduced for the itunes
and seatgeek datasets compared to the union tables by further stitching them.

Table 7.3: Datasets for stitched union table to knowledge base matching.

itunes nndb seatgeek vgchartz

Union
Tables 36 10 64 6
Columns 226 28 223 29

Value
Tables 1 7 2 2
Columns 10 20 7 17

Subj. Col.
Tables 1 7 2 2
Columns 12 23 7 18

Det.
Tables 1 9 4 3
Columns 10 27 15 19

Key
Tables 1 9 5 3
Columns 16 27 18 19

Table 7.4 shows the F1-measure resulting from running T2K Match on the
original, union, and the stitched union tables for all configurations of the hybrid
matcher. The reference mapping for all datasets was created by manually labelling
the union tables with their corresponding properties in DBpedia and transferring
the correspondences to all original web table columns. The performance measures
are calculated based on the correspondences that are created for the original web
tables in all configurations, i.e., for union tables and stitched union tables, all origi-
nal web table columns which are stitched into a column that was annotated by T2K
Match are annotated with the same property.

For the original tables, T2K Match manages to create rather precise results with
low recall for the itunes and nndb datasets, but fails for the seatgeek and vg
chartz datasets. The average F1-measure is 0.32. The tables in the vgchartz
dataset can be extremely small and the result completely depends on whether the
one entity in the table can be correctly recognised. For the seatgeek dataset, the
described venues are not recognised as main entity, so no schema correspondences
can be created.

With the union and stitched union tables, the average F1-measure increases
to a range from 0.8 to 0.88. Most of the attributes which exist in the knowledge

websitelooker
bls
itunes
seatgeek
itunes
nndb
seatgeek
vgchartz
vgchartz
vgchartz
seatgeek
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base have been correctly matched by all stitching approaches, with the result that
the performance of T2K Match does not differ much on these datasets. How-
ever, there are improvements for the itunes dataset, where the smaller union
tables resulted in missed and incorrect correspondences compared to the larger
stitched union tables. For these tables, the stitched union tables obtained with the
determinant-based matcher resulted in the best performance of T2K Match. For the
vgchartz dataset, the results of the value-based and subject column-based stitch-
ing approaches cause a worse performance of T2K Match compared to the union
tables and the other stitching approaches. This is because union tables which only
have a single attribute in common are matched, leading to wide tables with many
missing values. With the other approaches, more matching attributes are required
when finding duplicates and hence this error is avoided.

Table 7.4: Evaluation of T2K Match for web tables, union and stitched union
tables.

itunes nndb seatgeek vgchartz avg.

Web Tables 0.500 0.515 0.038 0.244 0.324
Union Tables 0.799 0.999 0.799 0.800 0.849
Value-Based 0.913 0.997 0.800 0.500 0.802
Subject Column 0.982 0.998 0.799 0.500 0.820
Determinant 0.944 0.999 0.800 0.800 0.886
Candidate Key 0.897 0.999 0.800 0.800 0.874
Label-based 0.930 0.999 0.800 0.800 0.882

Overall, there are improvements of 0.48 to 0.76 points in F1-measure with the
union and stitched union tables in comparison to the original web tables. In all
cases, creating the union tables causes a huge increase in F1-measure. Depend-
ing on the dataset, the additional stitching step after creating the union tables can
further improve the results. However, as not all attributes can be mapped to the
knowledge base, the differences between the stitching approaches are only slight
compared to the results in the preceding section.

7.4.3 Evaluation on a Random Sample

This section presents experiments that evaluate the improvements by table stitching
on a random sample of web tables. Existing gold standards for semantic table
interpretation contain web tables that were selected using seed entities. This results
in a selection of tables in which many entities from the knowledge base are found
and which are generally larger to cover more entities. For example, the tables in the
T2D gold standard have a median length of 100 rows and the tables in the Limaye
gold standard, as re-built by Bhagavatula et al. [Bhagavatula et al., 2015]3, have a

3http://websail-fe.cs.northwestern.edu/TabEL/

itunes
vgchartz
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median of 21 rows. The tables in the WTC 2015 (see Section 4.4.2), however, have
a median of only 6 rows. This means that the gold standards are biased towards
larger web tables.

To create an unbiased test set, a random sample of 1 000 web tables is drawn
from the corpus described earlier. The sample contains web tables from 401 dif-
ferent web sites. In total, these web sites contribute 3.5 million web tables to the
5 million tables subset discussed above. The web tables in the 1 000 table sample
have between 2 and 432 rows and a median of 4 rows. By manually annotating the
tables, a reference schema mapping consisting of 427 column-to-property corre-
spondences is obtained. Of these correspondences, 204 refer to the rdfs:label
property (containing the names of the entities) and 223 to other DBpedia prop-
erties. This means that 204 web tables in the sample have at least some overlap
with the knowledge base, while the remaining tables cannot be matched at all. The
following sections will discuss the performance of T2K Match and COMA on this
sample using the original web tables, union tables, and stitched union tables. Table
7.5 gives an overview of the results for the different experiments.

Table 7.5: Results of running T2K Match and COMA with web tables, union
tables and stitched union tables.

T2K Match Precision Recall F1

Web Tables 0.196 0.319 0.243
Union Tables 0.400 0.656 0.497
Value-based 0.578 0.590 0.584
Subject Column 0.563 0.562 0.563
Determinant 0.633 0.607 0.620
Candidate Key 0.623 0.604 0.614

COMA

Web Tables 0.543 0.281 0.370
Union Tables 0.566 0.400 0.469
Stitched Union 0.617 0.433 0.509

Web Tables

T2K Match and COMA are run on the random sample of 1 000 web tables, result-
ing in a performance for the schema matching task that is much worse than on the
T2D gold standard. On the gold standard, T2K Match achieves an F1-measure of
0.7 for the schema matching task. On the sampled tables, however, the achieved
F1-measure is only 0.24. The achieved precision is 0.20 with a recall of 0.32 and
95 of the 204 map-able web tables are correctly identified. The reason for the low
precision is that non map-able tables are mapped to the knowledge base, i.e., a
correspondence to rdfs:label is created for 444 tables. Of these tables, 90%
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have only six rows or less. For the 109 web tables that were not mapped although
it would have been correct, there is also indication that the size of the tables could
be a problem: 52% of these tables have only six rows or less. COMA achieves
an F1-measure of 0.37 with a precision of 0.54 and a recall of 0.28. Other than
T2K Match, COMA creates only 18 correct correspondences to the rdfs:label
property, but 110 correct correspondences to other properties. It is noticeable that
the correct correspondences are between columns and properties with similar or
equal labels. This indicates that COMA did not consider the similarity of the data
values to suffice in order to create correspondences in many cases and only mapped
columns with matching headers. This baseline experiment shows that both systems
do not achieve satisfying results for matching the sampled tables.

Union Tables

Next, T2K Match and COMA are run on the union tables. For the 401 web sites
in the sample, which contain a total of 3.5 million web tables, 16 367 union tables
are created. Each correspondence that is created for a column in a union table is
transferred to all original columns in the web tables that were combined into this
union table. Then, the correspondences for the same random sample of tables as in
the previous experiment are evaluated.

On the original web tables, T2K Match achieves an F1-measure of 0.24. With
the union tables, this is improved to an F1-measure of 0.5. There is an increase
in the number of correct rdfs:label correspondences from 95 to 169. For
all correspondences, a precision of 0.4 and a recall of 0.66 are achieved. The
reason for the still rather low precision is that in total 727 tables were matched
to the knowledge base, although only 204 of the sampled tables can actually be
mapped. COMA achieves an F1-measure of 0.37 on the original web tables, which
is increased to 0.47 for the union tables. The number of correct correspondences
to rdfs:label is increased from 18 to 62 and overall a precision of 0.57 and a
recall of 0.4 are achieved.

Stitched Union Tables

Finally, the stitched union tables are created and used to evaluate how this changes
the schema matching performance. The stitching is run on all web sites in the
random sample of 1 000. Again, each correspondence for a column in a stitched
union table is transferred to all original web table columns that were merged into
this column and all correspondences for the web tables in the initial sample are
evaluated. The stitching procedure results in 1 160 stitched union tables for the
value-based matcher, 1 562 for the entity-label matcher, 1 981 for the determinant
matcher and 2 388 stitched union tables for the candidate-key matcher.

For T2K Match, the initial result of 0.24 F1-measure is improved to 0.50 when
creating the union tables. With the stitched union tables, the best performance is
achieved in the configuration with the determinant matcher, with an F1-measure
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of 0.62. The additional improvements are due to an improved precision for cor-
respondences to rdfs:label and improvements in both precision and recall for
other properties.

For COMA, there is also a further improvement in both precision and recall.
In this experiment, only the determinant-based matcher is used to create stitched
union tables. The F1-measure increases from 0.37 for the original web tables and
0.47 for the union tables to 0.51 for the stitched union tables. Although the per-
formance is worse than for T2K Match, which is specialised for this task, there is
an improvement when using union tables (10%) and stitched union tables (14%)
instead of the original web tables.

These experiments show that the step from original web tables to union tables
results a strong increase in performance on the sample of 1 000 web tables. It
is thus recommended for any web table matching system to at least implement
creating union tables as a pre-processing step, which does not require any schema
matching. If the matching results should be further improved, systems can decide
to combine union tables into stitched union tables using schema matching.

7.4.4 Result Analysis

In the previous section, it has been shown that stitching web tables can improve the
results for semantic table interpretation. In this section, the impact of the stitching
procedure on the amount of correctly extracted values and the amount of tables in
the corpus is analysed. Afterwards, it is investigated which characteristics of web
tables lead to the highest performance gains when using table stitching.

Amount of Extracted Values

With respect to applications that use the data from the web tables, such as the
slot-filling knowledge base augmentation task, it is not only important to correctly
match the schema, but rather how many values are extracted correctly.

Based on the schema and entity mapping created by T2K Match, this amount of
values that can be correctly extracted is determined. Correctly extracted in this con-
text means that the entity and property correspondence is correct, which is checked
manually by verifying all correspondences that were created by T2K Match, but
not that the actual attribute value is true. Compared to the results in Chapter 6,
where 24.4% of all extracted triples contained a correct value, the evaluation on
the random sample results in a precision of 39%. Figure 7.7 shows that by using
union tables and stitched union tables, more values can be extracted at a higher
precision than for the original web tables. The precision increases from 39% for
original web tables to 55% for union tables and 59% for stitched union tables.

Note that the total amount of extracted values decreases for stitched union ta-
bles. As shown in Table 7.5, the second stitching step increases the precision of the
matcher by 23.3 percentage points, but also reduces the recall by 4.9 percentage
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Figure 7.7: Evaluation of extracted values.

points, i.e, the values from fewer web tables are extracted. Closer inspection of
the results shows that a few large web tables were correctly matched for the orig-
inal web tables and the union tables, but not for the stitched union tables. This
indicates that the schema matching among the union tables was incorrect and the
stitched union tables hence contained inconsistent data that was rejected by T2K
Match. As the majority of web tables is, very small, these few large tables have a
large influence on the amount of extracted triples on the random sample.

Table Stitching Statistics

The result of the stitching procedure is the combination of large numbers of small
web tables into larger tables. This reduces the overall amount of tables in the corpus
as well as the amount of tables for individual web sites. Besides the demonstrated
benefit for semantic table interpretation, a reduced amount of tables can also be
beneficial for other applications. For example, table search [Cafarella et al., 2009,
Yakout et al., 2012, Lehmberg et al., 2015] or interactive exploration of a table
corpus [Ellis et al., 2015] are simplified by a reduced amount of tables.

In order to see the impact of table stitching on such applications, the number of
tables per web site at each stitching step for the used web tables corpus is measured,
shown in Figure 7.8. The horizontal axis shows the number of tables per web site,
in terms of web tables, union tables, or stitched union tables depending on the
series, and the vertical axis indicates the cumulated percentage of original web
tables. For generating these statistics, the hybrid matcher in its configuration with
determinant matching is used.

In the original corpus (series “Web Tables”), many web sites provide large
amounts of web tables with a total of 5 176 160 web tables. 50% of these web
tables are found on web sites with up to 23 464 tables. After creating the union
tables, the total number of tables is drastically reduced to 261 215. Now, the data
of 50% of all original tables is provided by web sites with no more than 7 union
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Figure 7.8: Tables per web site at different stitching steps.

tables and the 75% mark is reached at 42 union tables per website (series “Union
Tables”). Creating the stitched union tables for all web sites with up to 1 000 union
tables further reduces the amount of tables to 104 221.4 More than 50% of the
original tables are now provided by web sites with a maximum of only 3 stitched
union tables and 75% of the original tables by websites with less than 7 stitched
union tables (series “Stitched Union Tables”).

Table Characteristics

Another important aspect is how effective the stitching methods are for web sites
that publish web tables with different characteristics. Hence, this section analyses
for which table characteristics the stitching methods result in the largest benefits.

Figure 7.9 shows the semantic table interpretation schema matching perfor-
mance with respect to four characteristics: average number of rows, average num-
ber of columns, total number of schemata, and total number of tables. These char-
acteristics are determined from the original web tables for each web site, so this
profile can be used to determine whether a stitching procedure should be applied
or not. The bars in Figure 7.9 show the F1-measure for the random 1 000 table
sample and the line indicates the fraction of all correspondences for each bin. Fig-
ure 7.9a shows that stitching is effective for small web tables with up to 20 rows,
which is the main argument for applying a stitching procedure. For higher num-
bers of rows, the results of using stitched union tables are worse than the results of
just using union tables. These are web tables which are already large enough for
matching them directly, so every error that is introduced by the union table stitch-
ing procedure has a negative impact on the result. Figure 7.9b shows that a similar
trend can be observed for the number of table columns. With up to 6 columns,

4A threshold of 1 000 union tables per web site is used to exclude web sites that cannot be handled
by the method, such as Wikipedia. The resulting dataset contains 94.5% of all web tables in the
original dataset.
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Figure 7.9: Influence of table characteristics on matching performance.
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the stitching approach is effective, but for tables with more columns the perfor-
mance drops. Figure 7.9c shows that stitching improves the results regardless of
the number schemata per web site. However, the advantage over only using the
union tables is highest for up to 20 schemas. Figure 7.9d shows that stitching is an
improvement regardless of the number of original web tables provided by a web
site, but there is a trend that the improvement increases with the amount of web
tables.

7.5 Conclusion

This chapter introduced a method for stitching web tables from the same web site
based on their structural similarities and schema matching methods. First, related
work on the merging of web tables and holistic schema matching methods was in-
troduced in Section 7.2. Then, the distribution of re-used schemata in the Web Data
Commons Web Tables Corpus 2015 was analysed and a holistic schema matcher
that allows the handling of overlapping, but not exactly matching web tables was
introduced and used to define two methods for web table stitching in Section 7.3.
These methods were then experimentally evaluated and analysed with respect to
their impact on improving the quality of semantic table interpretation methods in
Section 7.4.

This chapter made the following contributions:

• Re-Evaluation of Semantic Table Interpretation: A re-evaluation of the
performance of schema matching tools for semantic table interpretation on
a random sample of web tables showed that the performance for small web
tables is much worse than estimated by existing gold standards. The perfor-
mance of T2K Match of only 0.24 in F1-measure for the schema matching
task is not comparable to the score of 0.7 achieved on the T2D gold standard.
An error analysis revealed that this is mainly due to very small web tables,
which are strongly under-represented in such gold standards.

• Data Profile of Schema Re-Use: A data profile of the WTC 2015 that
showed that the majority of the schemata of web tables are re-used frequently
by other web tables on the same web site. This indicates that most web ta-
bles are created by templates in the back-end of the web servers and can be
combined to form larger tables. The data profile showed that a 83% of all
web tables have a schema that is reused by at least 100 other web tables on
the web site.

• Stitching Method: Based on the profiling and evaluation results, a method
was presented that stitches (combines) small web tables into larger tables
based on their schema and holistic schema matching techniques. The appli-
cation of this method reduced the size of the corpus from more than 5 million
web tables to as few as 104 thousand stitched tables. An evaluation of ex-
isting matching algorithms on a random sample of web tables showed that
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the quality of the results can be improved from 0.24 to 0.62 in F1-measure
by applying the stitching method before running the matching algorithm. A
detailed analysis of the improvements further showed that the improvements
are largest for web tables which have up to 20 rows and up to 6 columns, i.e.,
the stitching method is most effective if the original web tables are small.

Both the distribution of schema re-use frequencies and the reduction in the ab-
solute number of tables after applying the stitching method show that the majority
of the data in the used web table corpus resides in web tables that are structurally
similar and likely automatically generated. This finding changes the way we look
at web tables and approach tasks related to extracting and integrating the data that
they provide: Rather than treating every web table as an individual data source,
they must be considered as views over a larger database in the back-end of web
sites. Methods using web tables should hence use a model that recognises this
generative process and try to reconstruct possible representations of this back-end
database. Due to the structural similarity and template-driven generative process,
this reconstructing can be as simple as creating the union of all web tables with the
exact same schema.

The experiments with holistic schema matching further showed that the idea of
a back-end database can also be used to construct constraints on the schema corre-
spondences among web tables and hence improve the quality of schema matching
approaches. Using the stitching method as pre-processing step before applying
existing methods for semantic table interpretation resulted in significant gains in
quality.

Finally, a manual evaluation of the triples that were extracted after applying the
stitching method and T2K Match on the random sample of web tables showed an
accuracy of 59%, which improves the quality of extracted triples by more than a
factor of 2, compared to the 24% that were measured in Chapter 6. This indicates
that web tables are less noisy than previously assumed. However, this requires
holistic approaches and cannot be achieved by methods that process web tables in-
dividually without considering the source web site from which they were originally
extracted.
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Chapter 8

Schema Extension

8.1 Introduction

The topical profiling of the Web Data Commons Web Tables Corpus 2012 in Chap-
ter 6 revealed that the majority of the columns in web tables, where classes and
entities can be recognised, cannot be matched to the properties in the DBpedia
knowledge base. This indicates a large potential for extending the knowledge
base’s schema, as the properties of the recognised entities that are stated in the
columns of the web tables are not yet covered by the knowledge base. However,
not all columns in the web tables represent an attribute that can be added to the
knowledge base as a meaningful property.1 Schema-extension methods hence try
to estimate the relevance of the newly discovered attributes for existing classes us-
ing measures such as frequency, consistency, or coherency. The result is a ranked
list of attributes, from which a human end user can select suitable new attributes
that can be modelled as properties in the knowledge base. For the augmentation
of a knowledge base, however, it is further necessary that triples can be generated
to populate the new properties and that these triples can be understood without ad-
ditional information from the original data source. So far, this second criterion is
not specifically addressed by state-of-the-art methods that use web tables as data
source.

In the related work, most studies of the schema-extension task focus on using
unstructured text to discover the names of new attributes [Ravi and Paşca, 2008,Lee
et al., 2013, Gupta et al., 2014]. In this case, an extracted attribute is considered
relevant if it relates two entities or an entity and a literal value in a given sentence.
Using web tables as data source, this judgement of relevance is a more complicated
task, as there is no natural language sentence expressing the intended relationship
and because the attributes that are represented by the columns in a web table can be

1In this context, an “attribute” is an element in a relational schema and can be represented by
columns in potentially many different web tables (see Chapter 2). The element corresponding to
an attribute in a knowledge base is a “property”, which can be used in the predicate position of
triples (see Chapter 3). For better readability, this chapter will use the term “attribute” for both, the
elements of relational schemata and the properties in a knowledge base.

177
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part of a relation of arbitrary arity. Existing studies of the schema-extension task
using web tables mostly ignore this fact and focus on creating a ranking mechanism
for extracted attributes that ranks frequently occurring attributes highly [Cafarella
et al., 2009, Das Sarma et al., 2012, Gupta et al., 2014, Yakout et al., 2012]. The
focus of these methods is on creating high quality lists of semantically related at-
tributes, which can then be inspected and integrated by an end user. These methods,
however, do not guarantee that meaningful triples for knowledge base augmenta-
tion can be created from the new attributes as additional, explanatory attributes
might be missing.

This chapter analyses the potential of web tables for the schema-extension task
with respect to two aspects: finding relevant attributes for extension and under-
standing the relationship between these attributes and the subject column of the re-
spective web tables. First, several methods for finding relevant attributes are exper-
imentally compared, showing that only using relevance as criterion is insufficient
to guarantee that interpretable triples can be generated. Second, a categorisation
scheme for attributes is introduced which allows for the judgement of attributes
based on their relationship with the detected subject column of the web table. If
this relationship is binary, the values of the attribute can be understood without
additional information, and this categorisation hence enables the selection of at-
tributes for which interpretable triples can be generated with the existing methods.
The profiling of the WTC 2012 with respect to these categorisations reveals that the
majority of the attributes which could not be matched to the knowledge base do,
however, not contain columns that are in a binary relation with the subject column.

The contributions of this chapter are:

• Attribute Ranking Methods: Several state-of-the-art methods for attribute
ranking are extended to consider correspondences between the web tables
and a target knowledge base created by T2K Match and correspondences
among the web tables, which are created by additional schema matching
methods. These correspondences improve the estimation of co-occurrence
frequencies, the main feature for attribute ranking, as attribute counts are not
solely based on exact string matches of column headers. The experimental
evaluation shows that the extended methods outperform the methods based
on exact string matching.

• Evaluation Methodology: An experimental comparison of two evaluation
methodologies for schema extension shows that the commonly used evalu-
ation approaches based on relevance are problematic and can lead to incon-
clusive results. These results further indicate that the highly ranked attributes
produced by the current methods are not guaranteed to be interpretable with-
out additional information from the original web pages.

• Column Categorisation: The definition of a categorisation scheme as an
indication for the completeness of discovered attributes and the design and
evaluation of a classifier for this scheme are presented. Through the appli-
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cation of this classifier, a data profile of the WTC 2012 according to this
categorisation scheme is created, which shows that most columns are not in
a binary relation with the detected subject column.

This chapter is organised as follows. Section 8.2 introduces related work for
attribute ranking and schema extension. Then, Section 8.3 defines and experimen-
tally compares several attribute ranking methods. Finally, Section 8.4 introduces
a categorisation scheme for attributes, presents a classifier for this scheme, and
profiles the Web Data Commons Web Tables Corpus 2012 according to these cat-
egories.

The work presented in this chapter, i.e., the comparison of schema-extension
methods and the categorisation of attributes, has previously been published in
[Lehmberg and Bizer, 2016, Lehmberg and Hassanzadeh, 2018].

8.2 Related Work

This section introduces the related work for schema extension. Generally, three
different variants of the schema extension task can be identified: (1) find values for
new attributes by keyword query (“table extension”), (2) find new attribute names
(“attribute discovery”), and (3) find attribute synonyms (“snonym discovery”).

The first variant accepts a data table and a keyword query as input and tries
to populate a new attribute that matches the query with values. This variant also
solves the slot-filling task and is mostly chosen in combination with web tables
as data source, which contain attribute values along with the attribute names. The
second variant has been widely explored for unstructured text as data source and
only focuses on the discovery of new attribute names. The third variant has the
goal of finding new synonyms for known attribute names and often the second and
third variant are approached jointly.

In this section, first schema discovery from general web sources is discussed.
These are methods that use the content of web pages, search engine query logs,
and other sources of data from the Web to find new attributes. Afterwards, specific
methods for schema extension in web tables are introduced. In both cases, also the
used evaluation methodology, which can differ considerably between the different
approaches, is discussed.

Schema Extension from Web Sources

This section presents different types of approaches to extract attributes from web
sources. These sources can be web pages, search engine query logs, or existing
knowledge bases. All methods first extract candidate attributes from their sources
and then apply a ranking mechanism based on the frequency of occurrences to
determine relevant attributes. However, most of the approaches do not consider the
extraction of values for the new attributes.
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[Ravi and Paşca, 2008]. Ravi and Paşca propose to exploit the HTML structure
of web pages for attribute extraction. Given a set of seed entities and attributes for
a class, they obtain a small number of documents (50-200) by querying a search
engine. From each document, candidate attributes are generated from “emphasized
HTML tags”. The list of considered tags is not stated exhaustively, but it includes
table columns “td” and table headers “th”. Based on the generated candidates, hi-
erarchical extraction patterns (wrappers) are induced, which contain the names of
the HTML tags of the candidate and all its parents. To find relevant attributes, two
different ranking methods are proposed. The proposed ranking methods for the
extracted attributes are frequency-based and pattern-based ranking. Frequency-
based ranking scores attributes with the frequency of known entities for which the
attribute can be extracted from the document collection. For pattern-based ranking,
a pattern vector is created, which contains all extraction patterns that were induced
for the candidate attribute, and the similarity of these vectors is used to rank the
attributes. The method is evaluated using 40 classes with different numbers of in-
stances and 5 seed attributes per class, with one human annotator assigning the
labels “vital”, “okay”, or “wrong” to each extracted attribute. The results show
that the pattern-based ranking performs better than frequency-based ranking and
hand-crafted patterns. The authors further propose to extract values for the dis-
covered attributes by selecting the content of the tag that immediately follows the
attribute name as value. The value extraction is only evaluated for a small set of
high-quality attributes, which are manually selected, and results in an accuracy of
74%.

[Lee et al., 2013]. Lee et al. extract attributes from Web documents, a search
engine query log, and DBpedia and estimate their typicality for the respective
classes. The extraction process is completely label-based and does not consider
any attribute values. To merge attributes with the same semantic meaning, they use
synonyms derived from Wikipedia. The authors define an attribute as typical for a
class, if it is frequently mentioned as an attribute of the class and many of the in-
stances of the class have this attribute. The typicality is estimated using frequency
counts from the different sources from which the attributes were extracted. For the
evaluation of their method, human annotators label 4846 attributes for 12 concepts
with either “very typical”, “typical”, “related” or “unrelated”.

[Gupta et al., 2014]. The Biperpedia system extracts attributes from different
sources such as Freebase, a search engine query stream, and Web documents. The
attribute extraction is purely text based and attribute merging is done via synonyms
and a misspelling correction. The attributes are classified into three categories:
“atomic-numeric”, “atomic-textual”, and “non-atomic”. To evaluate the quality,
the extracted attributes are ranked by their frequency in the query stream and in
the text corpus and then shown to three human evaluators, who decide by majority
voting whether the attribute is “good” or “bad”. Both ranking methods achieve a
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high precision of 98% (by query) and 88% (by text) for the top 10 ranked attributes
and 52% or 54%, respectively, for the top 5 000 ranked attributes. In a later work,
Halevy et al. [Halevy et al., 2016] used the attributes extracted by the Biperpedia
system to discover patterns that allow for a grouping of these attributes. They
propose a grammar which is used to define rules with placeholders that enable an
understanding of the attribute names. For example, the attribute name “tyre price
in Singapore” can be grouped by the rule “price”, which identifies a component
(“tyre”) and a market (“Singapore”). With their method, they are able to reduce
the number of distinct attributes by a factor of 42 with a precision between 60%
and 80%.

The approaches presented in this section use the document structure of web
pages, textual patterns, and seeds given by a user or from a knowledge base to
extract unknown attributes from web sources. The evaluation of the methods is
performed by a rather subjective notion of relevance, which is especially shown
by the different rating scales used in each approach. The focus of the methods
is on finding relevant attributes and often no attribute values are extracted. This
makes the results of these methods useful to understand user queries or other data
sources on the Web, such as web tables. For direct knowledge base augmentation,
however, the extraction of values and the integration of the new attributes with the
knowledge base are necessary, but not addressed by the discussed methods.

Schema Extension from Web Tables

Approaches that use web tables instead of natural language sentences can access
instance data of the discovered attributes easily, as it is contained in the same web
table that contains the attribute names. Hence, approaches in this area often aug-
ment data source with new attributes and their values at the same time.

[Cafarella et al., 2008b]. The pioneering work using web tables to discover
new attributes was presented by Cafarella et al. in 2008. They create an “At-
tribute correlation statistics Database (AcsDb)”, which contains attribute counts
based on the column headers in a large corpus of web tables. From these counts,
they estimate attribute occurrence probabilities. Applications for this database are
a schema auto-complete function, synonym generation and a tool enabling easy
join graph traversal for end users. The attribute discovery task is called “schema
auto-complete” and ranks the attributes in the AcsDb based on point-wise mu-
tual information [Church and Hanks, 1990] with the attributes that already exist in
the schema. This is one of the approaches that are compared in the next section,
where it is further extended by an additional matching step. The authors evalu-
ate their method against ten test schemata that each contain all attributes that were
mentioned by at least two out of six annotators who were presented the same task
as the system. The system is given three tries to reproduce the test schema, and
achieves an average recall of 46% in the first try and 62% with up to three tries.
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[Cafarella et al., 2009]. The Octopus system, a system for data integration
using web tables, defines an “EXTEND” operation. This operation requires the
user to provide an input table and a keyword query. Based on this input, the system
tries to find one or multiple tables that can extend the input table with attributes
matching the keyword query. The system uses a search engine to find the tables
and different instance-based matching approaches to determine which tables can
be combined. A web table is considered “joinable” to a query table, if the Jaccard
similarity between the join column in the query table and a column in the retrieved
table exceeds a predefined threshold. In the case of multiple joined tables, tables
are first clustered and the cluster with the largest coverage of entities in the query
table is chosen. The clusters are created using the CENTER algorithm with a
predefined similarity threshold. This is methodologically similar to the clustering
step that is proposed for the matching of columns from different web tables in the
next section. The extend operation is evaluated on 7 queries consisting of a table
and an attribute keyword. On average, values for 33% of the rows in the query
table are returned by the system.

[Das Sarma et al., 2012]. Sarma et al. use label- and instance-based schema
matching methods to map web tables to a given query table. For their “Schema
Complement” operation, they consider all unmapped columns and rank them us-
ing the AcsDb [Cafarella et al., 2008b] and the entity coverage of the input ta-
ble provided by the user. Their goal is to rank web tables by their usefulness for
the attribute discovery task. To rank the web tables, they consider co-occurrence
statistics of attribute pairs from the query schema and the web tables, and measure
the consistency of the schema that is created by adding an attribute to the query
schema. This is another method that will be compared against other in the next
section. The method is evaluated by eight annotators that assign a score to each
web table that is returned for 18 different query tables. The results of the evalua-
tion show only that the aggregation of attributes scores for each returned table is
best with the “sum” function, but do not allow for a comparison to other methods
as the rating scale is not explained.

The presented methods that use web tables for the discovery of new attributes
usually take a user-provided table as input and either extend this table with new
columns and their values or suggest additional attribute names based on the schema
of the provided table. It is, however, unclear if these methods are also suitable for
knowledge base augmentation, where all known entities of a class instead of a
comparably small, user-provided query table should be augmented.

Evaluation Criteria

The related work that has been presented above is evaluated with respect to dif-
ferent tasks and criteria. Table 8.1 gives an overview over these tasks, the used
criteria and their rating scales. The column “Task” indicates the specific sub-task
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that was evaluated. Here, “Attribute Discovery” refers to the retrieval of attribute
names given a class and entities of this class as input, “Table Search” refers to the
retrieval of web tables given a keyword query or a table query, and “Slot Filling”
refers to the retrieval of values for an attribute that is specified using a keyword
query or generated through attribute discovery. The column “Criterion” indicates
the quality criterion that was used to evaluate the proposed methods. The terms in
this column are stated as in the original publication. Finally, the column “Scale”
shows the range of possible values for the quality criterion as stated in the literature.

Table 8.1: Overview of tasks and evaluation criteria used in related work for
schema extension from web tables.

Approach Task Criterion Scale

[Ravi and Paşca, 2008] Attribute
Discovery

Correctness Vital, Okay, Incorrect

[Ravi and Paşca, 2008] Slot Filling Correctness Correct, Incorrect
[Lee et al., 2013] Attribute

Discovery
Relevance Very Typical, Typical,

Related, Unrelated
[Gupta et al., 2014] Attribute

Discovery
Precision Good, Bad

[Cafarella et al., 2008b] Table Search Relevance 1 to 5
[Cafarella et al., 2009] Table Search Relevance Yes/No
[Cafarella et al., 2009] Slot Filling Recall 0.0 to 1.0
[Das Sarma et al., 2012] Table Search Related 0 to 5
[Yakout et al., 2012] Slot Filling Precision,

coverage
0.0 to 1.0

The comparison of criteria for evaluation shows that there is no common termi-
nology that is used by all authors. Often, the used criterion is not further explained
by the authors and assumed to be understood. Only Ravi and Paşca provide an
explanation how to interpret their evaluation: “An attribute is ‘vital’ if it must be
present in an ideal list of attributes for the target class; ‘okay’ if it provides useful
but non-essential information; and ‘wrong’ if it is incorrect.”. Despite the differ-
ent terminology, all approaches for attribute discovery and table search evaluate
whether the retrieved attributes are relevant with respect to the target class or pro-
vided query table. A precise definition, however, does not exist and the specific
decisions are often based on the consensus of several human annotators.

The relevance, or relevancy, of data is one possible dimension, among others
such as accuracy, timeliness, accessibility or completeness, along which Wang and
Strong propose to measure the quality of data [Wang and Strong, 1996]. In their
conceptual framework of data quality, relevance is a dimension in the group of
“contextual data quality”, which contains dimensions that are measured with re-
spect to a task. Specifically, they define relevancy as “the extent to which data are
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applicable and helpful for the task at hand”. In the context of knowledge base
augmentation, the task is to find new attributes for a target class, which is usually
defined by a short natural language description. The relevance of new attributes is
hence either determined based on human judgement, or through the evaluation of
an application that uses the augmented knowledge base to solve a different task, as
demonstrated by Gupta et al. [Gupta et al., 2014] who use the discovered attributes
to annotate web tables.

Another dimension in the group of contextual data quality is “completeness”,
which is defined as “the extent to which data are of sufficient breadth, depth, and
scope for the task at hand”. As will be discussed in Section 8.4, this dimension
is not sufficiently addressed by current methods, which can produce attributes and
values that are lacking contextual data that are necessary to interpret the values.

8.3 Attribute Ranking

The first part of this chapter is concerned with attribute ranking. The purpose of
attribute ranking methods is to order all candidate attributes for schema extension
such that relevant attributes for a specific class or query table are ranked highly.
Based on such a ranked list, users can then select appropriate attributes for their
information needs.

Common approaches for attribute ranking consider the frequency and co-oc-
currence of candidate attributes with other, possibly known attributes. In addition
to such frequency-based methods, this section also introduces methods for schema
matching among web tables, which enables the estimation of frequencies for at-
tributes which are represented by different surface forms of the same semantic
intention, such as synonyms or different spellings.

The approach presented in this section consists of two steps. First, web ta-
bles are matched among each other and to the target knowledge base to identify
columns that represent the same attribute and align them with classes and existing
properties in the knowledge base. The second step ranks the attributes which are
candidates for new properties based on a measure of relevance for augmenting the
schema of the target knowledge base. The performance of this approach is studied
empirically using web tables from Web Data Commons Web Tables Corpus 2012
for the augmentation of the DBpedia knowledge base.

8.3.1 Attribute Matching

This section introduces the schema matching approaches that are evaluated for the
task of matching the web tables in a corpus among each other. In the following,
several approaches of defining attribute similarity are defined, which will be used
in the experimental evaluation.
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Similarity of Known Attributes

For the attributes that correspond to existing properties in the knowledge base, a
mapping from the web tables to the knowledge base is created. This mapping is
created using T2K Match (see Chapter 5) as semantic table interpretation method.
It defines which columns in the web tables correspond to which property in the
knowledge base. By transitivity, all columns which correspond to the same prop-
erty are considered to represent the same attribute.

Similarity of Unknown Attributes

Based on the mapping produced by T2K Match, all web tables can be grouped by
their class annotation. Then, all un-matched columns in each group are matched
among each other. For these columns, the following schema matching approaches
are evaluated:

• Label-based Matching: The similarity of columns is determined by calcu-
lating the string similarity of their column headers. Variations of this ap-
proach are “exact”, which checks headers for equality, and “string similar-
ity”, which applies the generalised Jaccard string similarity measure with
Levenshtein similarity for token comparisons.

• Instance-based Matching: The similarity scores calculated by the instance-
based schema matcher of the Helix System [Ellis et al., 2015] are used. This
matcher compares the values of the columns of web tables using a set sim-
ilarity measure. The configuration of this matcher using cosine similarity
is referred to as “Helix Cosine”, and the configuration using containment
similarity is referred to as “Helix Containment”.

• Duplicate-based Matching: The duplicate-based matching approach com-
pares only those values of two columns, which are mapped to the same en-
tity in the knowledge base. This means, two columns are similar only if
they contain similar values for the same entities. These similarity scores are
calculated by the duplicate-based matching component of T2K Match.

Similarity Graph Partitioning

After the calculation of the similarity scores, the matched columns must be parti-
tioned into clusters that represent attributes. All columns which are mapped to an
existing property in the knowledge base with a similarity score above a threshold
are considered as the same attribute. However, for attributes which do not exist in
the knowledge base, no such central property exists. The partitioning of columns
that are not mapped by T2K Match is hence performed using different graph-based
partitioning strategies [Hassanzadeh et al., 2009]. These strategies operate on the
undirected graph that is defined by the columns as nodes and their similarity scores
as weighted edges. The following partitioning strategies are evaluated:
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• Connected Components: A connected component in a graph contains all
nodes which are reachable via an edge or a path. This means that different
components in a graph have no connections among any of their nodes. With
this strategy, every connected component forms a cluster and all columns
corresponding to the nodes in the cluster represent the same attribute.

• Center: The “Center” algorithm creates start shaped clusters by selecting
one node as the centre and assigning all nodes that are connected by an edge
to the same cluster. The clustered nodes are then removed from the graph
and the algorithm starts over until all nodes are assigned to a cluster.

• MergeCenter: The “MergeCenter” algorithm is similar to the Center algo-
rithm, but has one extension. This extension is that if a node is similar to the
centres of two different clusters, these clusters are merged.

8.3.2 Ranking Strategies

After defining attribute matching, the different attribute ranking methods are in-
troduced in the following. All compared ranking methods are based on attribute
occurrence probabilities, which are defined in the following according to Cafarella
et al. [Cafarella et al., 2008b].

Let a schema s P S be a set of attributes and S be the set of all schemata.
A table has this schema if its columns correspond to the attributes based on the
schema mapping, regardless of their order and column header. Let freqpsq be the
number of tables with schema s in the corpus and attr_freqpaq be the number of
tables that contain attribute a:

attr_freqpaq “
ÿ

sPS^aPs

freqpsq (8.1)

Then, the probability of encountering a in any table in the corpus is:

ppaq “
attr_freqpaq
ř

sPS freqpsq
(8.2)

The number of tables that contain two attributes a1, a2 is defined analogously
as attr_freqpa1, a2q. The conditional probability of seeing attribute a1 given a2 is:

ppa1|a2q “
attr_freqpa1, a2q

attr_freqpa2q
(8.3)

And the joint probability is:

ppa1, a2q “
attr_freqpa1, a2q
ř

sPS freqpsq
(8.4)

Using these attribute occurrence probabilities, the ranking methods can now
be defined. A higher score indicates a higher relevance of the attribute for the
schema-extension task.
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Conditional Probability based on Class. Measures the probability of seeing
the attribute a given that the web table is mapped to the class c in the knowledge
base [Lee et al., 2013]. If attr_freqpa, cq is the number of tables mapped to c that
contain a, the conditional probability of encountering an attribute based on the
class can be defined as in Equation 8.5, where Sc is the schema of class c.

ppa|cq “
attr_freqpa, cq

ř

a2PSc
attr_freqpa2, cq

(8.5)

Schema Consistency. This measure reflects the likelihood of seeing a new at-
tribute together with the existing attributes of a knowledge base class [Das Sarma
et al., 2012]. This measure considers all known attributes which co-occur with the
new attribute a, i.e., the more known attributes co-occur, the higher the score.

SchemaConsistencypa, sq “
1

|s|
¨
ÿ

a2Ps

ppa|a2q (8.6)

Schema Coherency. Based on Point-wise Mutual Information (PMI), schema
coherency is the average of the PMI scores of all possible attribute combinations
between a new and all existing attributes of the class that should be extended [Ca-
farella et al., 2008b]. The PMI score of two attributes is positive if the occurrences
of the attributes are positively correlated, zero if they are independent, and negative
if they are negatively correlated.

SchemaCoherencypa, sq “
1

|s|
¨
ÿ

a1Ps

pmipa1, aq (8.7)

pmipa1, a2q “ ´
1

log ppa1, a2q
¨ log

ppa1, a2q

ppa1q ¨ ppa2q
(8.8)

8.3.3 Evaluation

This section presents an evaluation of the introduced schema matching and attribute
ranking methods. First, the schema matching methods are evaluated on the T2D
gold standard (see Section 5.3). Second, the results of the introduced attribute
ranking methods are evaluated on web tables from the T2D gold standard and then
compared to the results obtained on the web tables in the Web Data Commons Web
Tables Corpus 2012.

Schema Matching

This section shows the evaluation of the different schema matching and partitioning
approaches introduced in Section 8.3.1. The goal of the evaluated approaches is to
create clusters of web table columns which are semantically equal.
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For this evaluation, the T2D gold standard is used in a modified version. The
original gold standard contains mappings from the web table columns to properties
in the knowledge base. To create column clusters, all web table columns which
are mapped to the same property are merged into one cluster. The results of the
schema matching methods for unknown attributes and the partitioning approaches
are then compared to these reference clusters.

Figure 8.1 shows the performance of all matching and partitioning approaches
for different similarity thresholds. While all matching approaches achieve com-
parable precision, only the label-based matcher achieves a high recall. The low
recall of the instance-based and duplicate-based matchers can be attributed to the
small size of the web tables. These matchers compare the overlap of values be-
tween columns of two tables, and hence cannot find a match if there is low or even
no overlap in the values. For example, two web tables that list countries and their
capital cities do not have any overlap, if one web table lists countries with names
starting from A to M and the other one from N to Z.

The high recall of the label-based similarity can indicate that the web tables
in the used gold standard are very homogeneous. The T2D gold standard was de-
signed for the evaluation of semantic table interpretation tasks, and the homogene-
ity or heterogeneity of columns in different web tables was not a design criterion.
Combining the instance-based and label-based approach into a hybrid matcher did
not significantly improve the performance compared to the label-based approach,
which indicates that the matches that are found with instance-based similarity can
also be found by label-based similarity. Concerning the partitioning approaches,
Center achieves the highest precision and has a slightly lower, but comparable re-
call to the other approaches.

Attribute Ranking on the T2D Gold Standard

The first set of experiments for attribute ranking is performed on the T2D Gold
Standard (see Section 5.3), which was originally developed to evaluate systems for
semantic table interpretation using DBpedia as target knowledge base.

Evaluation of Ranked Lists. The evaluation of the attribute ranking methods
follows the methodology used in the related work. For a subset of the T2D tables,
those mapped to the country class, all columns are manually annotated with
either “relevant” or “not relevant” with respect to the target class. A relevant
attribute is an attribute that is recognised by the annotator as an attribute of the
entities of the target class, such as “population” for countries. Attributes which
are not relevant are such which are not by themselves an attribute of these entities,
for example “date of information”. In total, the annotated subset contains 207
columns, of which 86 are annotated as “relevant”. With these annotations, the
performance of the different ranking methods is evaluated.

Figure 8.2 shows the precision@k and recall@k achieved by the different rank-
ing approaches. In addition to the ranking methods described in Section 8.3.2, a
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Figure 8.1: T2D: Evaluation of matching methods for unknown attributes.
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Figure 8.2: T2D: Precision@k and recall@k achieved by the different ranking
methods using the duplicate-based matcher.
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Figure 8.3: T2D: Rank of the first cluster matching the removed attribute.

variant of each of the ranking methods that is weighted by PageRank is evaluated.
The intuition is that web pages with a high PageRank likely contain useful content
and hence the web tables on these pages might also contain relevant attributes. The
used PageRank values are obtained from the publicly available Common Crawl
WWW Ranking.2 For each cluster of columns, the maximum PageRank of all
source web pages is multiplied with the score that was calculated by the ranking
method.

Among the different ranking methods, schema consistency performs best, fol-
lowed by schema coherency. The variations with PageRank perform worst, which
might be caused by the rather small number of web sites in the gold standard. The
results show that the ranking methods schema consistency and schema coherency
produce many useful attributes until a list size of 25, but afterwards the precision
drops and converges around 0.5. This is most likely caused by the low frequen-
cies of many attributes in the dataset, which indicates that these ranking methods
cannot be used for infrequent attributes.

Evaluation of Individual Attributes. The assessment of the relevance of an
attribute can be subjective. Hence, in a different experimental design, one existing
attribute from the knowledge base is removed for several classes. As this attribute
was already existing, it can objectively be said that it is relevant. The evaluation
then measures the position of the first cluster that represents this attribute according
to the different ranking methods. The following classes and attributes are used
in this experiment: Company (industry), Country (population), Film
(year), Mountain (height), Plant (family), VideoGame (genre).

Figure 8.3 shows the average rank of the first cluster which matches the re-
moved attribute for all ranking methods and matchers. The group “No Matching”
shows the result of neither using correspondences to the knowledge base nor any

2http://wwwranking.webdatacommons.org/

http://wwwranking.webdatacommons.org/
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Figure 8.4: WDC 2012: Number of candidate columns and clusters for schema
extension.

of the matching approaches, i.e., attributes are equal only if their column headers
match exactly. The bad results for this setting without prior mapping knowledge
show the importance of schema matching before calculating the ranking functions:
for the coherency and consistency measure, the results are much worse than in any
other configuration. Without mapping knowledge, attribute frequencies are under-
estimated, and the respective attribute is ranked too low.

The best configurations are exact string matching and string similarity match-
ing with the conditional and consistency ranking methods. The worse performance
for the instance-based matchers is likely due to their low recall, as seen in Fig-
ure 8.1. Comparing the performance of the ranking methods across the different
matching approaches shows that the schema consistency measure is often the best
choice, confirming the results of the previous experiment. This does, however, not
hold for the schema coherency measure, which often produces worse results in this
experiment. The results for schema coherency are hence inconclusive.

Attribute Ranking on the WTC 2012

The experiments described above are now repeated on all web tables in the Web
Data Commons Web Tables Corpus 2012 which were matched to DBpedia, as
described in Chapter 6. The instance-based matching approach based on the Helix
system is, however, excluded as it performed worst on the T2D gold standard. To
give an overall impression of the corpus, Figure 8.4 shows the number of candidate
columns and clusters for schema extension for selected classes. These numbers
show the large amount of potentially new attributes that can be found in the corpus.

Evaluation of Ranked Lists. As there is no gold standard for the full corpus, the
top 15 ranked clusters for each ranking method for several classes are manually an-
notated with either “relevant” or “not relevant”. Figure 8.5 shows the performance
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Figure 8.5: WDC 2012: Precision@15 for the attribute ranking experiment.

of each ranking method for all classes in terms of precision@15. The results show
again that the schema coherency and consistency measures outperform the condi-
tional measure. This indicates that attribute co-occurrence is a stronger signal than
pure frequency of attributes, even if conditioned with a class from the knowledge
base. In contrast to the results of this experiment on the T2D gold standard, schema
coherency now outperforms the schema consistency measure.

Evaluation of Individual Attributes. Again, to have a more objective view on
the results, one attribute is removed from DBpedia as before and the position of
the top-ranked attribute cluster which matches the removed attribute is compared.
Figure 8.6 shows the rank of these clusters by matcher and by ranking method.

Concerning the matching approach, it can be seen that the string similarity and
duplicate-based matchers achieve comparable results. The difference to the same
experiment on the gold standard is that here a much larger number of tables is taken
into account and hence more variety and a more realistic sample of the data quality
is used for evaluation. For the duplicate-based matcher this can mean that more ta-
bles actually contain duplicates, resulting in more discovered matches. Comparing
both of the matching approaches to a baseline approach (“No Matching”), which
does not use the prior knowledge of the mappings to the knowledge base, it can
again be seen that the ranking results are worse, except for the schema coherency
method.

Concerning the ranking methods, the conditional ranking performs best. In
contrast to the experiment on the T2D gold standard, the consistency ranking per-
forms worse and is no longer the best choice. It is, however, consistent that the
schema coherency measure performs worse in this evaluation setting than in the
setting where the all top ranked attributes are evaluated. This indicates that the
attributes which were removed from the knowledge base might introduce a bias
and have different characteristics than the attributes which are ranked highly by
the coherency approach. This is supported by the performance of the conditional
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Figure 8.6: WDC 2012: Rank of the first cluster matching the removed attribute.

ranking method, which performs best for the removed attributes, but worst for the
evaluation of the top-15 ranked attributes. A possible reason is that the removed
attributes are among the most common ones for the respective classes, and thus
occur most frequently in the web tables on the large corpus, which would explain
the good performance of the conditional ranking method.

8.3.4 Result Analysis

The experiments presented in the previous sections have shown how the different
ranking methods proposed in the literature perform on two different datasets, the
T2D gold standard and the Web Data Commons Web Tables Corpus 2012. Fur-
ther, it was demonstrated that schema matching among the attributes improves the
results in most cases.

The evaluation of the attribute ranking methods was conducted in two different
settings. First, a set of columns was manually labelled as either “relevant” or
“not relevant”. While this or a similar approach is used in most of the related
work, it is subjective and a precise definition of relevance is missing. Second, an
objective evaluation was performed by considering several existing attributes in
the knowledge base as non-existing. While this approach overcomes the problem
of a missing definition for relevance, it introduces a bias: The attributes which
already exist in the knowledge base can be considered to be the most relevant
attributes for the respective classes. Hence, it can be expected that many web tables
contain these attributes and as a result, the evaluation is limited to very frequent
attributes. This could explain the outstanding performance of the purely frequency-
based conditional ranking strategy.

For the other highly ranked attributes in this second evaluation setting, it is un-
clear whether they are suitable for schema extension or not. Hence, a qualitative
analysis is performed based on the results produced by the different methods on the
WTC 2012. Tables 8.2 and 8.3 show the highest ranked attributes for the classes
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Drug and Airline, respectively. They show examples which are obviously rel-
evant and similar to the properties which already exist in the knowledge base, such
as “common side effects” and “cas no” for Drug or “website” and “country” for
Airline.

For other attributes, a lack of context prevents the extraction of interpretable
triples for a knowledge base. For example, the “price” of a Drug is not helpful for
any task without knowing the brand or packaging size. Also, the “terminal” of an
Airline cannot be used to satisfy a user’s information need if the corresponding
airport is not known. But such missing information cannot be added through an
improved ranking method. It is rather a signal that only focusing on relevance as
quality criterion is insufficient.

For some of these attributes, the additional data that is missing is contained
in other highly ranked attributes, such as “brand name” for drugs, which means
that there exist cases in which more than one attribute needs to be added at the
same time. This shows that data from web tables that is selected only according
to relevance can be incomplete. In a knowledge base augmentation scenario, such
attributes, which are missing explanatory context, cannot be transformed into in-
terpretable triples, and are hence not suitable.

Table 8.2: Highest ranked attributes for class Drug.

Conditional Consistency Coherency Low Rank

brand name pharm. company pharm. company orders
quantity type how supplied partial
price synonyms class partner
consult chemical type description r4
ship half life half life r5
comments main brand name main brand name r6
class molecular formula off-label uses <enc. error>
common side effects off-label uses saliva <enc. error>
common brand-name saliva washout time <enc. error>
products
dose urine synonym <enc. error>
symptoms treated washout time dea number <enc. error>
cas no skeletal formula therap cat <enc. error>
trade name other name chemical type <enc. error>
brand catalog number skeletal formula <enc. error>
type size therapeutic use <enc. error>
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Table 8.3: Highest ranked attributes for class Airline.

Conditional Consistency Coherency Low Rank

# # awb prefix wwwaircorsicacom
website end end year-to-date
terminal awb prefix iata prefix yr1
telephone country start yr2
rank iata prefix telephone yr3
phone number start country yr4
% telephone base airport yr5
country fleet terminal zeit
phone base airport acmi zeme
end % flight no exceptions
address terminal status exemptions
1st bag phone no lounges free items
2nd bag air france land best low-cost airlines:

worldwide
awb prefix latin america website echanger des miles

de destination
start status fleet w

8.4 Attribute Categorisation

The result analysis in the previous section has indicated that the discovered at-
tributes might depend on additional context information. This indicates that the
quality criterion of relevance is not sufficient to find desirable attributes for schema
extension and that completeness is an additional dimension that needs to be con-
sidered. The knowledge base augmentation task of schema extension can only be
solved if the information that is contained in the new attributes is complete, i.e.,
can be interpreted without additional information from the original source. This
is a hint that the used data model in semantic table interpretation methods is over-
simplified. The frequently used model assumes that all columns in a web table
are in a binary relation with the subject column, which means that no additional
information is necessary to understand them. The fact that these assumptions lead
to attribute candidates that show a lack of completeness indicates that there might
be relations of higher arity in the web tables.

This section proposes a categorisation scheme for web table columns that al-
lows to differentiate between columns which comply with assumption made by the
current data model, i.e., represent binary relations with the subject column, and
columns which violate these assumption and require additional information. Us-
ing this categorisation scheme, a manual profile based on a random sample of web
tables is created, which indicates that n-ary relations, i.e., those that violate the
current assumptions, make up the majority of columns. This manually annotated
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sample is then used to train a classification model, which is applied to the Web
Data Commons Web Tables Corpus 2012 to create a large-scale profile of column
categories that confirms the initial results.

In a knowledge base augmentation use case, a possible application of this col-
umn categorisation classifier is to only consider columns which represent binary
relations as candidates for new attributes. This reduced set of candidate attributes
can then be ranked with the methods shown in the previous section, which results
in relevant and complete new attributes.3

8.4.1 Categorisation Scheme

This section presents a detailed analysis of different categories for columns that
occur in web tables. This categorisation focuses on the relation between a column
and the subject column of the web table.

The data model for web tables that has been considered so far (see Chapter
5) and that is used by most of the related work states that every web table has
a subject column which is a key of the web table and hence every other column
represents a binary relation with the subject column. This model, however, is a
simplification and does not acknowledge that a key in a web table might span mul-
tiple columns, which means that the table contains n-ary relations (ną 2), or that a
column might not be in a relation with the subject column. An example for an n-ary
relation is a web table with air fares: three columns “from”, “to”, and “airline”
form the key and in combination with the attribute “price” a quaternary relation
{from,to,airline,price}. An example for a column that is not in a relation with the
subject column is a column that is only used as a layout element, which can be an
empty column or one that contains the same content in every row.

The proposed categorisation distinguishes between columns which (1) are in a
binary relation with the subject column and hence correspond to the data model,
(2) are in an n-ary relation (n ą 2) with the subject column and hence violate the
assumptions of the data model, and (3) are not in relation with the subject column
and are hence irrelevant for knowledge base augmentation. Figure 8.7 shows an
overview of the proposed categories. The categories describe the columns and
their relation with the detected subject column, i.e., a column can have a different
category if a different subject column is chosen.

Binary Relation. A binary relation is a relation between two columns. The
category binary relation is assigned to all columns which are in a binary relation
with the subject column. This category is further divided into time-independent
and time-varying. A binary relation is considered time-independent if its values
do not change over time, for example a book‘s author. Time-varying relations
change their values over time, for example a country‘s population. The decision to

3Note that the categories and the classifier are defined in terms of columns, not attributes, as the
semantically same attribute can be represented by several columns which can be in different relations,
i.e., columns representing the same attribute can be classified differently.
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treat time-varying attributes as binary relations is justified by the fact that existing
approaches, which only consider binary relations, already consider timestamps as
additional column metadata [Zhang and Chakrabarti, 2013,Oulabi et al., 2016] and
the fact that a relation in a web table can be time-varying, even if the web table does
not contain a column that states a value for the time dimension.

N-Ary Relation (n > 2). An n-ary relation is a relation among n columns. The
category n-ary relation is assigned to all columns which are in an n-ary relation
with the subject column and at least one additional key attribute (ną 2). The values
of such a column can only be interpreted if all additional key attributes are known.
Additional key attributes can be other columns or even be stated outside of the
table (for example in the paragraph or heading before the table). Subcategories can
be rank, additional key attribute and dependant. A rank is a numeric column that
specifies an order of the rows in the table. It is an n-ary relation because at least one
additional key attribute is required that specifies the ranking, for example the name
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Figure 8.8: Example tables with column category annotation.
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of a sports event in which athletes are ranked. An additional key attribute is part
of an n-ary relation and specifies how to interpret the dependent column’s values.
An example can be seen in Figure 8.8c, where “From” and “By Airlines” are
additional key attributes which together with the subject column “To” determine
the value of “USD $ Fare”. The subcategory dependant describes all columns in n-
ary relations which are neither a rank nor an additional key attribute, i.e., which are
the columns that depend on the subject column and the additional key attributes.
Other than for binary relations, no dedicated distinction between time varying and
time independent is made, as a time dimension is a special case of the more general
additional key attribute category.

Independent Column. The category independent column is assigned to all
columns which are not in a direct relation with the subject column. The first sub-
category is empty, which describes columns that do not contain any data. The
subcategory indirect is assigned to all columns that are transitively dependent on
the subject column. The last three subcategories describe different types of noise
that is specific to web tables. A horizontally stacked column is a column that is
repeated in the same web table with the purpose to stretch the table horizontally
instead of adding more rows. The result is that one row represents multiple tuples,
which have no relation other than being placed together for visual reasons. An
example is shown in Figure 8.8b. The same idea applies to list columns, which
appear in tables that only contain the subject column multiple times. The sole pur-
pose of such tables is to list a set of entities, hence they do not contain any relations
(see Figure 8.8d). The last subcategory is layout, which describes columns that are
inserted into tables for formatting reasons or contain navigational content (see the
last column in Figure 8.8c, which only provides a link to another page on the same
web site but does not contain actual data).

8.4.2 Manual Category Profiling

This section describes the creation of a category profile by manual annotation of
a random sample of web tables from the Web Data Commons Web Tables Corpus
2012. This sample shows the frequency of each of the proposed categories and
is used to train a classification model for the subsequent large-scale profiling of
categories in the same corpus.

Sampling Method. The category profile is created from a random sample of
400 web tables (about 1 400 columns) from the WDC Web Tables Corpus 2012,
which have been mapped to DBpedia as described in Chapter 6. All columns
in these web tables are manually annotated with the categories described in the
previous section. From this sample, 13 tables were excluded because they were
either matched incorrectly or the annotator could not understand the content due to
foreign languages.
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The sample is constrained by the following conditions to ensure that the tables
are useful for the schema-extension task, where evidence from multiple sources
is required for reliable results (for example for the ranking methods presented in
Section 8.3). Each web table must have a schema which appears on at least two
different web sites. The schema of a web table in this context is the ordered set
of column headers and the column data types. Further, the union of all tables with
the same schema must contain at least 50 distinct entities and at least three of these
entities must appear in tables from different web sites. These criteria have been
chosen empirically to ensure a sufficient overlap in the data while not excluding
too many of the tables in the corpus.

Table 8.4: Distribution of column categories in the manually annotated sample.

Category % of all Columns

Binary 41.72%
Time-Independent 31.29%
Time-Varying 10.43%

N-ary 45.81%
Dependant 34.39%
Rank 8.74%
Additional Key Attribute 2.68%

Independent 12.47%
Horizontally Stacked 5.00%
Empty 4.23%
List 1.90%
Indirect 0.78%
Layout 0.56%

Category Profile. Table 8.4 shows the distribution of the column categories in
the sample. Binary relations account for 42% of the sample, n-ary relations for
46%, and independent columns for 12%. The majority of the columns which are
categorised as binary relation are time-independent (31% of all columns). For the
n-ary relation category, additional key attributes appear very infrequently, with less
than 3% of all columns assigned to this category. This implies that the additional
key attributes are often located outside of the web table, which complicates their
detection. For independent columns, the most frequent subcategories are horizon-
tally stacked columns (5% of all columns) and empty columns (4% of all columns).
This data profile shows that the majority of the columns in the analysed web tables
do not comply with the assumptions of the used data model, as they are either in
n-ary relations (46%) or not related to the subject column (12%).
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8.4.3 Classification Model

The statistics of the presented data profile are a first indication that n-ary relations
occur frequently in web tables and that the current data model is insufficient. This
section describes how the manually annotated sample is used to train a classifica-
tion model for the column categories which can then be used to create a large-scale
profile and verify these findings. Due to the low frequency of several of the sub-
categories in the sample, this model is restricted to the top-level categories binary,
n-ary, and independent.

The remainder of this section first introduces the methodological foundation for
the detection of the categories. Then, the specific features used in the classification
model are defined. Finally, the evaluation of this classification model is presented.

Functional Dependencies in Web Tables

This section describes the methodological foundation for the features that are used
in the proposed classification model. Specifically, different types of functional
dependencies and their detection in the mostly very small web tables are described.

In sufficiently large web tables, the categories can be distinguished by discov-
ering the functional dependencies (FDs) that hold on the web table. All columns
Ab which are determined by the subject column Ae, i.e., tAeu Ñ tAbu, are in a
binary relation with Ae. All columns An ‰ Ae which depend on or determine
additional attributes, i.e., X Ñ Y with An P X Y Y and Ae P X , are in an n-ary
relation with Ae. All columns Ai which are not dependent on the subject column,
i.e., X Ñ tAiu with Ae R X , are independent columns.

The problem with this approach is that most web tables are very small, and
the discovered functional dependencies will in most cases confirm the assumption
that all columns are in a binary relation with the subject column. The reason is
that data-driven functional dependency discovery algorithms can only find n-ary
relations if two rows with the same value for the subject column disagree on the
value of another column. For example, in a web table with the ternary relation
tcountry, date, populationu, the FD tcountry, dateu Ñ tpopulationu can only
be discovered if the same country appears in two rows with different population
numbers.

To avoid this problem, the data from multiple web tables is considered to dis-
cover the functional dependencies. To find matching web tables, the correspon-
dences created with T2K Match (see Chapter 6) are used for all columns which can
be mapped to DBpedia, and a label-based matcher is used for all other columns.
Columns which cannot be matched to DBpedia are considered a match if their web
table is mapped to the same class in the knowledge base and their column header
and data type match exactly.
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Using the set of matching columns, larger tables are constructed as follows:
For each column A, the union of the subject column and column A from all web
tables WA containing A is created, as shown in Equation 8.9.

uA “
ď

tPWA

trAe, As (8.9)

Then, it is checked if the FD tAeu Ñ tAu holds on the union. This approach
has also been applied by Wang and He for a similar use case [Wang and He, 2017].
As web tables from the same web site are expected to be less heterogeneous than
web tables from different web sites, the union of all web tables from the same
pay-level domain, called intra-PLD FDS, and the union of all web tables from
different pay-level domains, called inter-PLD FDs, are created separately. A pay-
level domain (PLD) refers to the part of a domain name that is paid for and is
intended to capture the notion of a web site, i.e., all pages under the same PLD
are assumed to belong to the same web site. The intra-PLD FDs are calculated
on the union created from all web tables from the PLD, while inter-PLD FDs are
calculated on the union of all web tables in the corpus.

To generate features for the classification model, different types of FDs are
calculated on the union, which take the heterogeneity of web tables into account.
Web tables from different sources might state the same information differently, for
example, the population for Germany can be stated as 82.2 million in one web table
and as 82 million in another. Instead of calculating hard FDs, which are violated as
soon as two rows disagree on a value, probabilistic, or soft, FDs (pFD) and fuzzy
probabilistic FDs (fpFD) are used here [Wang et al., 2009].

Probabilistic FDs state the probability of an FD being valid. The probability
that a pFD tXu Ñ tAu holds with respect to a specific entity VX of subject column
X depends on the number of rows with value VX in the subject column, expressed
as |VX |, and the frequency of the most frequent value VA of column A in these
rows, expressed as |VA, VX |, in Equation 8.10.

PrpX Ñ A, VXq “
|VA, VX |

|VX |
(8.10)

The probability that the pFD holds for the whole table t is calculated as the average
over all distinct subject column values DX as shown in Equation 8.11.

PrpX Ñ A, tq “

ř

VXPDX
|VA, VX |

|DX |
(8.11)

A pFD with a probability close to 1 is an indication for a binary relation, while a
probability close to 0 indicates an n-ary relation. Fuzzy probabilistic FDs are de-
fined in the same way, but additionally use a similarity measure instead of checking
value equality. For the feature generation, the same data-type specific similarity
measures as in T2K Match (see Chapter 5) are used.
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Features for Classification

Table 8.5 summarizes the features that are created from the FDs. Features (1)
and (3) are the intra- and inter-PLD pFDs and feature (8) is the inter-PLD fpFD
as described above. Feature (2) is the average over all intra-PLD pFDs, which
describes the average probability of the dependency on all web sites. Features (4)
and (5) set the inter-PLD pFD of the column in relation to the detected subject
column and features (6) and (7) set it in relation to all other columns in the table.
The pFD of an subject column is calculated using the correspondences to entities in
the knowledge base and is a measure of the heterogeneity of the subject column’s
values, i.e., its probability is low if different values are mapped to the same entity.
The intuition behind features (4) and (5) is that if the subject column’s values result
in a low pFD score, then the pFD score of other columns should not be expected
to be higher. Feature (6) captures the general heterogeneity of all columns in the
same web table and feature (7) measures if the column is more or less likely to be
a binary relation than the other columns in the same web table.

Additional features are added as indicators for specific subcategories of inde-
pendent columns. The detection of empty columns with feature (9) mainly involves
removing encoding artefacts from the HTML-based representation, for example
“&nbsp;”, which encodes a whitespace. Tables with columns of the list category,
i.e., those that only list entities, are often sorted alphabetically either from left to
right or top to bottom, which is captured by feature (10). Feature (11) is an indi-
cator for horizontally stacked tables, i.e., multiple tables in the same HTML table
tag, where the column headers are repeated in the exact same order and usually
only empty columns are in between. Finally, feature (12) is an indicator for ranks,
which often have the same column headers.

Evaluation

This section describes the training and evaluation of the supervised classifier for
the proposed categories. The classification model uses the one-versus-rest strategy
and linear regressions for each top-level category. For training and evaluation, the
columns from the manually annotated sample are used. The training set consists of
192 tables with 699 columns and the test set contains the remaining 195 tables with
703 columns. To classify a column, all regressions are applied and the prediction
with the highest score is used.

Table 8.6 shows the resulting confusion matrix. Overall, the model achieves an
accuracy of 74.54% and precision and recall values between 67% and 86% for all
classes. The features with the strongest impact for the binary and n-ary categories
are (3)-(7) and for the independent category (9)-(11). As a baseline, a model that
only uses feature (1) achieves precision and recall values of 49%/68% for binary
and 58%/41% for n-ary.
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Table 8.5: Features used for column classification.

# Feature Description

1 Intra-PLD pFD The pFD calculated on all values
from the same PLD

2 Avg. Intra-PLD pFD The average of (1) over all PLDs that
weighted by entity count

3 Inter-PLD pFD The pFD calculated on values from
multiple web sites

4 Subject Column The (3) of the subject column of the table
Inter-PLD pFD

5 Subject Column diff. The difference between (3) and (4)

6 Avg. Table Inter-PLD pFD The average of (3) of all columns in the
table

7 Table Inter-PLD Ratio The ratio between (3) and (6)

8 Fuzzy pFD the fpFD of all values

9 Is Empty 1 if the column contains no characters
except spaces

10 Is List 1 if all values in the table are sorted
horizontally or vertically

11 Is Horizontally Stacked 1 if all column headers in the table
are repeated in the same order

12 Is Rank 1 if the column header is “rank”,
“#”, or “pos”

Table 8.6: Confusion matrix for the column category classifier.

True Binary True N-ary True Ind. Precision

Pred. Binary 219 72 16 71.34%

Pred. N-ary 74 252 9 75.22%

Pred. Ind. 2 6 53 86.89%

Recall 74.24% 76.36% 67.95%
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Table 8.7: Distribution of column categories in the WDC Web Tables Corpus 2012.

Category Clusters % Columns %

Binary 15 477 21.70% 585 074 25.90%
N-ary 44 192 61.90% 1 629 498 72.10%
Independent 11 691 16.40% 44 666 2.00%

Total 71 360 100.00% 2 259 238 100.00%

The confusion matrix shows that there is an equal amount of columns which are
incorrectly classified between binary and n-ary. A reason for a misclassification of
an n-ary relation as binary can be that there is not enough overlap among the entities
in the merged web tables, resulting in a high probability for a binary relation. A
misclassification of a binary relation as n-ary can be caused by very heterogeneous
values, for example if different surface forms such as “German”, “GER”, and
“DE” are used in different web tables. Matching errors also lead to incorrectly
estimated dependency probabilities and can cause the same problems.

8.4.4 Corpus Profiling

This section presents the result of applying the column category classifier to the
WTC 2012. The created profile shows that the majority of columns belongs to the
n-ary category (62%) and only 22% are binary relations.

For the creation of the data profile, first all web table columns are grouped
into clusters based on their class and property combination as determined by T2K
Match. All web table columns which are not assigned to a property from the knowl-
edge base, but which are in a web table that is assigned to a class from the knowl-
edge base, are grouped by their column header to form clusters. These clusters are
then used to calculate the features that were presented in the previous section.

Then, the classifier is applied to all individual web table columns with the
feature values that are obtained from the clusters as well as the web table that
contains the column. This step is limited to all columns which are in a cluster that
contains at least two different web sites, which is required for the calculation of the
inter-PLD pFD feature. The resulting dataset contains a total of 2 259 238 columns,
which are grouped into 66 999 clusters.

Table 8.7 shows the distribution of categories for columns and clusters. Binary
relations account for one fifth of all clusters (21.7%) and a quarter of all columns
(25.9%), while the majority of both is classified as n-ary (61.9% for clusters and
72.1% for columns). The independent category is assigned to 16.4% of all clus-
ters and 2.0% of all columns. The total amount of 71 360 category labels for the
66 999 clusters shows that not all columns of a cluster are classified with the same
category. This can be the case if semantically similar attributes are dependent on
additional information in some, but not all of the web tables in a cluster.
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Table 8.8: Frequent attributes that are classified as binary relations.

Class Attributes

BaseballPlayer pos, hand, team, height, weight, no

Company symbol, market cap, revenues, profits, assets,
sales, employees

Country sales tax rate, voltage, freq.

Device resolution, colors, carrier, browsing time,
music playback

EducationalInstitution highest award, enrolled, state, top degree,
website, % minorities, acceptance rate

Film genre, year, (age) rating, studio, director, length

Fungus shape, characteristic, hosts, context,
lower surface, taste

RaceHorse age, distance, track, division, sex, weight

Mineral hardness, density, formula

Plant color, life cycle, bloom season, bloom color,
moisture, sun, vitamin a content, min temperature

Satellite position, duration, mass, mission results,
launch vehicle

Software version, license, windows, platform, mac osx,
latest stable

This result confirms the findings from the manual annotation and shows that
the majority of columns in web tables do not comply with the data model that is
assumed by current state-of-the-art approaches. This can be a reason for the low
data quality that was observed for the extracted triples in Section 6.4: if the triples
were extracted from columns that are in n-ary relations, then their values can be
evaluated as false because the context, for example the point in time, is different
from that in the knowledge base.

How n-ary relations can be used for schema extension will be further explored
in Chapter 9. For the initial goal of this chapter, Table 8.8 shows examples of at-
tributes for several DBpedia classes that were classified as binary relations. These
attributes comply with the assumed data model and can directly be used to extend
the schema of the knowledge base. All of the attribute ranking methods described
in Section 8.3.2 can be applied to these results. The table shows the top-ranked
attributes according to the conditional ranking method, i.e., the most frequent at-
tributes for the respective classes.
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8.5 Conclusion

This chapter analysed the potential of web tables for the schema-extension task.
First, related work for attribute ranking and schema extension was introduced in
Section 8.2. Then, Section 8.3 defined several measures for the ranking of at-
tributes that are discovered from web tables and experimentally compared them
in combination with schema matching techniques that map the schemata of web
tables to each other. The results of these experiments showed that relevance is not
a sufficient quality criterion for schema extension from web tables. Due to the
frequent occurrences of n-ary relations in web tables, the completeness of new at-
tributes must also be taken into account. Section 8.4 introduced a categorisation
scheme for attributes that allows the judgement of completeness, described how a
classifier for this categorisation was designed and evaluated, and profiled the Web
Data Commons Web Tables Corpus 2012 according to the categories.

This chapter made the following contributions:

• Attribute Ranking Methods: Several attribute ranking methods were ex-
tended to consider correspondences between the web tables and a target
knowledge base, created by T2K Match, and correspondences among the
web tables, created by additional schema matching methods. These corre-
spondences improved the estimation of co-occurrence frequencies, the main
feature for attribute ranking, as attribute counts are no solely based on exact
string matches of column headers.

• Evaluation Methodology: An experimental comparison of two evaluation
methodologies for schema extension showed that the commonly used evalu-
ation approaches based on relevance are problematic and can lead to incon-
clusive results. A qualitative analysis of highly ranked attributes for several
ranking methods further revealed that many attributes cannot be understood
without additional information. It is hence concluded that completeness is
a necessary dimension for the judgement of the quality of new attributes for
schema extension based on web tables.

• Column Categorisation: A categorisation scheme for the judgement of
completeness of discovered attributes was defined and a classifier for this
scheme was designed and evaluated. Through the application of this classi-
fier, a data profile of the WTC 2012 according to this categorisation scheme
was created, which shows that 62% of the discovered attributes represent a
non-binary relation and are hence incomplete without additional data.

The experimental comparison of different ranking methods did not conclu-
sively show a method that always outperforms all other methods. Depending on
the used dataset and evaluation setting, different strategies were successful. How-
ever, it can be seen across all experiments that incorporating correspondences ob-
tained from schema matching improves the results for all strategies. This finding
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improves the state of the art, as most previous studies relied on exactly matching
column headers when determining the frequencies of attributes in the web tables.

Concerning the evaluation of the ranking methods, a qualitative analysis of the
results on the WTC 2012 showed that relevance alone is not sufficient to judge the
quality of the newly discovered attributes. The attributes that are represented by
single columns in web tables can often not be interpreted without additional in-
formation from other columns or the context of the web table, and are hence not
suitable for the generation of interpretable triples for knowledge base augmenta-
tion. This leads to the conclusion that completeness needs to be considered as a
further dimension of quality for schema extension based on web tables.

Completeness can only be achieved with the current methods if the new at-
tributes are in a binary relation with the detected subject column of the web table.
If an attribute is in an n-ary relation, additional data are required which are not
available. Consequently, a categorisation scheme for columns, which distinguishes
between columns that can be used to generate understandable triples and columns
that need additional context in order to be understood, was introduced. Both, a
manual empirical analysis as well as an automated large-scale experiment using a
classification model, showed that the majority of columns in web tables belong to
the latter category, i.e., need additional context for their interpretation.

This finding does not only show how to improve the results of current attribute
ranking methods for knowledge base augmentation, but also indicates that the data
model on which most semantic table interpretation methods are based is over-
simplified. The common assumption, that the columns in web tables only represent
binary relations is not true and so far, no method considers this. The implications
of this finding will be further analysed in Chapter 9, which presents a method that
considers n-ary relations and presents a detailed data profile of their occurrences in
the WTC 2015.
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Chapter 9

Synthesizing N-ary Relations
from Web Tables

9.1 Introduction

The corpus profiling in Chapter 8 has shown that the majority of columns in the
analysed web table corpus is in non-binary relations, i.e., that more than two
columns need to be considered to understand their values. For example, a web
table that states employment statistics for different states might do so by providing
the total number of employees, or differentiate between different occupations and
different points in time. This has implications for schema matching approaches
as well as applications using the web table data. In this chapter, the focus is on
the schema-extension task for knowledge base augmentation. When extending the
schema of a knowledge base with n-ary relations, it is not possible to simply add a
new property to the knowledge base and populate it with triples, as this would lead
to the loss of explanatory values that are required for their interpretation. While
there have been approaches to extract additional values related to time and units
from web tables [Zhang and Chakrabarti, 2013,Oulabi and Bizer, 2017], until now
no general-purpose method has been proposed that is able to detect and extract
n-ary relations in from web tables.

This chapter introduces a method to synthesize n-ary relations from web ta-
bles. As web tables are mostly very small, it is necessary to synthesize larger
tables through the use of stitching (see Chapter 7) before n-ary relations can be
detected. Further, these tables need to be enriched with context information from
the web page around the web tables, as the web tables often do not contain all
explanatory attributes that are necessary to understand the values that are stated in
them. These necessary attributes are identified by functional dependency discovery
on the stitched tables and further enable the discovery of candidate keys as well as
the normalisation of the tables.

211
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After the introduction and evaluation of this method, it is applied to the WTC
2015 and the frequency, structure, and topical content of the synthesized n-ary re-
lations is profiled. This profile verifies that a large fraction of the synthesized rela-
tions is non-binary and reveals that many seemingly equal attributes have different
semantics based on the context in which they occur. This gives rise to the question
how such data can be modelled in current knowledge bases, which is discussed
with respect to three frequently discovered types of n-ary relations.

The contributions of this chapter are the following:

• Method: This chapter presents the first method to synthesize general n-ary
relations from web tables. The method is able to exploit the page context
around web tables in order to identify additional key elements. In addi-
tion to the identification of n-ary relations, the method extracts their values
from multiple web tables and integrates them with the schema of a given
knowledge base and is hence the first method that enables general schema
extension with non-binary relations from web tables.

• Data Profile: The presented data profile is the first to consider binary re-
lations and n-ary relations in a corpus of 5 million web tables with respect
to key size and topical distribution, showing that web tables contain large
amounts of n-ary relations. The data profile reveals that a large fraction of
the data in web tables is of higher complexity that previously assumed and
can only be interpreted if the context is considered. This context is often
not part of the web tables, but needs to be identified on the web pages that
contain the web tables.

• Evaluation Dataset: Evaluation datasets for the task of identifying n-ary
relations in web tables are created and published, which are the first datasets
for this task. These datasets consist of more than 300 thousand web tables
and are considerably larger than previously published datasets for other tasks
related to web tables. By publishing the datasets, the replicability of the
results is ensured and a foundation for comparing methods that synthesize
n-ary relations from web tables is provided.

The rest of this chapter is organized as follows: Section 9.2 compares the pro-
posed method to related work. Section 9.3 gives an overview of the method and de-
scribes the different steps. Then, Section 9.4 presents an evaluation of the method
and describes the datasets that are used for this evaluation. Finally, Section 9.5
presents the results of using the proposed method to profile a corpus of 5 million
web tables.

The work presented in this chapter, i.e., the method to synthesize n-ary relations
from web tables and their profiling, has previously been published in [Lehmberg
and Bizer, 2019a, Lehmberg and Bizer, 2019b].
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State Page Title URL 1 Annual 
mean wage

California Computer and Information 
Research Scientists

2016 $125,620

California Computer and Information 
Research Scientists

2017 $128,530

California Computer Programmers 2017 $96,270

Virginia Computer and Information 
Research Scientists

2016 $126,800

Virginia Computer and Information 
Research Scientists

2017 $128,950

Maryland Computer and Information 
Research Scientists

2016 $113,110

Maryland Computer and Information 
Research Scientists

2017 $109,700

…

Page Title URL 1

Computer and 
Information Research 
Scientists

2016

Original Web Tables Context Extraction Stitching & Key Detection

https://www.bls.gov/oes/2016/may/oes151111.htm

https://www.bls.gov/oes/2017/may/oes151111.htm

https://www.bls.gov/oes/2017/may/oes151131.htm

Page Title URL 1

Computer and 
Information Research 
Scientists

2017

Page Title URL 1

Computer Programmers 2017

1 2 3

Figure 9.1: Overview of the applied method. The web tables of a single web site are extended with context attributes and stitched into
larger relations, for which a key detection is performed to determine the set of attributes that can explain the values in the web table.
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9.2 Related Work

This section briefly compares the literature in different areas that is related to the
proposed method, such as table stitching, context extraction, and functional de-
pendencies. A more detailed discussion of the literature on the relevant topics of
semantic table interpretation (Chapter 5), table stitching (Chapter 7), and schema
extension (Chapter 8) can be found in the respective chapters.

Context of Web Tables

The context of a web table consists of all the additional information that is avail-
able to a human user who sees the web table and can give important clues for its
interpretation. This context comprises the textual content of the web page that con-
tains the web table, but also its URL, which gives hints to the structural location of
this page in the context of the respective web site.

The textual content surrounding web tables on a web page has been exploited
by various approaches for the purpose of table understanding or search [Yakout
et al., 2012,Zhang, 2017,Ritze and Bizer, 2017,Braunschweig et al., 2015], where
the text surrounding a web table is used to calculate a contextual similarity among
web tables or between a web table and a knowledge base class. Other approaches,
such as the one proposed by Wang et al. [Wang et al., 2015b], determine which
sentences on the same web page are related to a given web table. Only few ap-
proaches use table context to generate additional columns for the web tables [Ling
et al., 2013, Cafarella et al., 2009], but even then, these columns are not further
exploited by the methods and left to be interpreted by an end user. An exception
are methods that use timestamp-metadata from the context of web tables for data
fusion, i.e., the context data is used for the interpretation of specific columns and
values in the web tables [Oulabi et al., 2016, Zhang and Chakrabarti, 2013].

Several other approaches have used the URLs of web pages as contextual infor-
mation to find groups of web pages which are generated from the same template.
Yin et al. [Yin et al., 2010] use a URL pattern summarizer to find web pages which
are created from the same template and induce wrappers for these templates. A
similar approach is described by [Song et al., 2015], who use the sets of web pages
with common URL patterns for the extraction of entity names from their page ti-
tles. These approaches are similar to the URL-based clustering of web tables that
is described in Section 9.3.2.

Functional Dependencies & Normalisation

There is a large body of work on efficiently discovering functional dependencies
(FDs), and a recent comparison of several approaches is given by Papenbrock et
al. [Papenbrock et al., 2015]. A functional dependency specifies a set of attributes
that uniquely determines the value of another attribute (see Chapter 2). In this
chapter, the TANE algorithm [Huhtala et al., 1999] is used for the discovery of
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approximate functional dependencies and FD induction [Flach and Savnik, 1999]
is used to combine the FDs that were discovered on different tables. Both are
algorithms that discover FDs efficiently by applying pruning rules on their search
space and hence do not have to check all possible combinations of attributes for
all combinations of tuples, which has a worst-case runtime in Opn2pm2

2
q2mq in a

relation instance with n tuples and m attributes [Liu et al., 2010].
Based on such functional dependencies, relational schemata can be normalised,

which reduces redundancy and potential error sources. Algorithms for normalisa-
tion [Bernstein, 1976] assume that the functional dependencies, which they require
as input, were created by an expert and only contain semantically meaningful FDs.
When given FDs that were created by a functional dependency discovery algo-
rithm, they might choose coincidental FDs, which hold on the specific relation in-
stance that was used for discovery, but are not meaningful in general. This can lead
to normalised schemata which are also not semantically meaningful. To prevent
this, the decomposition algorithm proposed by Papenbrock and Naumann [Papen-
brock and Naumann, 2017] uses heuristics to identify semantically meaningful FDs
to perform normalisation based on FDs that are obtained through FD discovery.

Extraction of N-ary Relations

N-ary relations are essential for the representation of complex information and
have been considered especially for the case of spatial and temporal data. For
example, YAGO2 extends the frequently used model of RDF triples to 5-tuples,
which contain a time and a location in addition to the usual subject, predicate, and
object [Hoffart et al., 2013]. Wikidata further allows the annotation of triples with
arbitrary properties that provide additional information [Vrandečić and Krötzsch,
2014]. A general overview of approaches how n-ary relations can be modelled in
RDF is given by Hernandez et al. [Hernández et al., 2015].

The extraction of n-ary relations from unstructured text has been approached
by several open information extraction systems from the field of natural language
processing, such as Fact Extractor, FRED, Graphia, LODifier and Refractive [Au-
genstein et al., 2012, Exner and Nugues, 2014, Fossati et al., 2018, Freitas et al.,
2012,Gangemi et al., 2017]. These systems use methods such as dependency pars-
ing, discourse representation structures or frame semantics to extract n-ary rela-
tions from natural language sentences. As they rely on the natural language and
sentence structure, which does not exist in tables, these methods are not applicable
to web tables.

The idea of using dependency parsing for sentences is, however, similar to the
usage of functional dependencies in the method presented in this chapter. The
KrakeN system [Akbik and Löser, 2012], for example, uses the dependency parse
tree of a sentence to navigate from a detected “fact phase”, which represents a
relation, to all arguments of this phrase, which then become the arguments of the
extracted n-ary relations.
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Extracted web tableGenerated context columns

https://www.bls.gov/oes/2016/may/oes151111.htm

Page Title URI 1 URI 2 …

Computer and 
Information 
Research 
Scientists

2016 may …

Figure 9.2: Example web table. The generated context columns shown next to the
extracted web table are created from elements of the web page from which the web
table was extract, such as the page title, URL, or heading above the table.

9.3 Method: SNoW

This section introduces the SNoW method (Synthesizing N-ary Relations from
Web Tables). The goal of this method is to determine and extract the relations
in which the columns in a web table participate. This entails not only recognising
that a column is not in a binary relation, as demonstrated in Chapter 8, but also to
discover which additional attributes participate in the relation, even if they are not
explicitly stated in the web table.

To achieve this, the method first extracts additional data from the web page
that contains the web tables into new “context columns”. These context columns
are populated with the values extracted from the web page, i.e., constants, in the
individual web tables. It is thus not possible to determine which of these columns
are possible explanations for the original columns in the web table without ad-
ditional data. Such additional data are are included through table stitching (see
Chapter 7), which creates the union of all web tables that use the same schema.
As a result of the stitching operation, the context columns contain different val-
ues that were extracted from the various web pages containing the original web
tables. Now, functional dependency discovery algorithms can be used to determine
possible combinations of columns that uniquely determine the values in another
column and hence provide an explanation for its values. The discovered functional
dependencies hence identify relations that can be extracted from the web tables.

This process is based on the assumption that all web tables that originate from
the same web site were generated by queries to the same database, which allows
the reconstruction of a schema from which these web tables could have been gen-
erated. This has been shown to be reasonable for web tables from the same web
site [Lehmberg and Bizer, 2017], hence, the method processes all web tables from
a single web site at a time.

As an example, consider the web table in Figure 9.2, which contains employ-
ment statistics for a certain profession in several U.S. states at a given time. While
a human can easily understand this, it is hard for an algorithm, as the table con-
tains only very few examples (the figure shows the complete table) and important
attributes, such as the profession and the date, are missing from the table. Existing
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Figure 9.3: Overview of the SNoW method. The web tables of a single web site
are first stitched into union tables, then into a universal relation, which is finally
normalised into an integrated schema.

approaches use recognisers or matchers to find column pairs which represent an
existing [Ritze et al., 2015,Dong et al., 2014a] or an unknown [Yakout et al., 2012]
binary relation. In the example, such systems would extract a binary relation {state,
employment}, which can be found in thousands of web tables from the same web
site. As a result, the extracted binary relation contains about 2 000 different em-
ployment numbers for a single state and no possibility to choose a single, correct
value, or to understand any individual value. To extract a meaningful relation for
the employment attribute, all attributes which determine its value must be included,
i.e., the functional dependency {state, page title, URI 1, URI 2}Ñ{employment}
must be discovered. This is only possible if additional data from the context of
the web table is taken into account and if the data from multiple web tables, which
contain employment numbers for different professions and dates, are combined.

9.3.1 Method Overview

This section gives an overview of the proposed method and briefly describes the
individual steps, which will then be detailed in the following sections. The integra-
tion process that is executed by the SNoW method is visualised in Figure 9.3.

First, each web table is extended with context columns, which are generated
from the web page that contains the web table. Then, web tables with identi-
cal schema are stitched into union tables. These union tables contain more rows
than the original web tables and improve the performance of schema matchers (see
Chapter 7), which are executed in the next step. The schema matchers create a map-
ping among the columns of the union tables, to identify matching schemata which
are expressed with different column headers, and a mapping from the union tables
to the knowledge base. Based on the mapping among the union tables, the stitching
is repeated to merge all union tables with matching schemata into stitched union ta-
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https://www.bls.gov/oes/2016/may/oes151111.htm

Computer and Information Research Scientists

Page Title URI 1 URI 2 …

Computer 
and 
Information 
Research 
Scientists

2016 may …

Conduct research into fundamental computer and information science as theorists, designers, or 
inventors. Develop solutions to problems in the field of computer hardware and software.

Figure 9.4: Example for context extraction from the web page surrounding a web
table.

bles. The stitched union tables contain the rows of all web tables with semantically
matching schemata and enable the discovery of functional dependencies, which is
infeasible on the much smaller original web tables. Finally, all stitched union tables
which are mapped to the same knowledge base class are merged into a universal
relation, which is normalised to create an integrated schema. This normalisation is
guided by the mapping to the knowledge base and produces a star-shaped schema
with the existing classes from the knowledge base at the centres and the n-ary re-
lations that were discovered in the web tables referring to them. In the following
sections, each step of this process is described in more detail.

9.3.2 Context Extraction

This section introduces the context extraction step, which creates additional context
columns in the web tables based on data that are extracted from the web page that
contains the web table and its URL. These additional columns are often necessary
to explain the content of the original columns of the web tables. To ensure that the
context columns that are created from the URL are aligned correctly for web tables
from different web pages, a URL clustering step is used to find groups of URLs
which are constructed from the same pattern.

Context Columns. Web tables are designed for human consumption and are
always embedded in the context of a web page. Hence, not all data which are
required to understand the content of a web table need to be explicitly stated inside
the table, but additional values may also be stated elsewhere on the web page. To
enable the method to make use of this context information, additional columns are
created from the web page that contains a web table and certain value patterns in the
web table are extracted into separate columns, called context columns. Specifically,
all parts of the URL’s path (split by ‘/’), the page title, and the heading closest to
the web table are extracted into new columns. Further, numbers at the beginning of
a cell (numbering columns) and values in brackets (disambiguation columns) are
extracted into separate columns.
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Figure 9.4 shows an example: The web table in the figure contains employment
and wage statistics for different U.S. states. However, only when considering the
context columns created from the page title and the URL, it becomes apparent that
these statistics are for a certain profession (which can be determined from the page
title) and from a certain date (which can be determined from the URL).

URL Clustering. Web sites may use different patterns to construct the URLs of
their web pages and the same position in two URLs may have different semantics.
For the extraction of additional columns from the URL, this means that the context
columns of web tables from web pages with different URL patterns may have dif-
ferent semantics and should not be merged into the same column in a union table.
To prevent this, a URL clustering step is applied that groups all URLs based on
their most frequent element before creating context columns. The table stitching
step is then only applied to all web tables in the same cluster, which prevents the
merging of context columns with different semantics.

Consider, for example, the two URLs /album/36grad and /artist/2r
aumwohnung, where the second part (split by ‘/’) refers to an album in the first
URL and to an artist in the second URL. When creating the context columns, how-
ever, a new column “URL 1” is created for both URLs and applying the table
stitching would merge these two columns with different semantics. When apply-
ing the URL clustering, one cluster contains all URLs starting with /album/ and
another cluster contains all URLs starting with /artist/. The web tables with
these URLs are then only stitched within their respective clusters and the context
columns with different semantics remain separated.

9.3.3 Schema Matching

This section introduces the schema matching component of the SNoW method.
The first part, schema matching among union tables, re-uses the matcher intro-
duced in Chapter 7. The second part, schema matching between union tables and
the knowledge base, is similar to T2K Match as introduced in Chapter 5, but con-
tains several changes to account for the specific challenges of matching stitched
tables. As final step, the results of both matching steps are combined and inconsis-
tencies are removed by a holistic global matching.

Table-to-Table Matching. Through the use of templates for the generation of
web pages from a back-end database, many web tables on the same web site share
the same attributes or even have exactly the same schema. However, this is not
always obvious from the column headers in the tables, as they can use different
languages or are simply non-existent. In these cases, a schema mapping containing
correspondences among the columns of the union tables is needed to determine
which columns represent the same attribute.

/album/36grad
/artist/2raumwohnung
/artist/2raumwohnung
/album/
/artist/
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Such a schema mapping is created by applying the hybrid schema matcher
introduced in Chapter 7, which combines instance-based and label-based schema
matching with constraints derived from the schemata of the union tables. First, an
instance-based schema matcher creates candidate correspondences by transform-
ing the column contents into TF-IDF vectors and calculating their cosine similarity.
This creates initial correspondences between the columns, which are then extended
using a label-based matcher and refined by the constraint that no correspondence
can hold between two columns which appear in the same union table. This con-
straint is based on the assumption that the same attribute does not appear more than
once in the same web table and that the web tables from the same web site do not
contain noise in the form of typos or other unsystematic differences as they are
created from the same template. It corresponds to the graph-based refinement step
described in Chapter 7 and is similar to the model proposed by Bronzi et al. [Bronzi
et al., 2013] and has been successfully applied in several approaches [Lehmberg
and Bizer, 2017, He et al., 2016, He and Chang, 2003].

Table-to-KB Matching. The second matcher aligns the union tables with the
target knowledge base by identifying which classes and properties the input tables
and their columns correspond to. This matcher is based on T2K Match, as de-
scribed in Chapter 5, but introduces some modifications. First, candidate schema
correspondences are generated using a computationally efficient matcher (Cosine
similarity on TF-IDF vectors) as in the table-to-table matching step. These schema
correspondences are then used to limit the set of candidate entities for each row,
which are determined by a similar matcher as in T2K Match. These entity candi-
dates are then used in a duplicate-based matcher to refine the initial schema corre-
spondences.

These steps are conceptually the same as in T2K Match, with the difference
that no upfront detection of a subject column is performed. This prevents that an
incorrect decision during this detection step makes a correct schema matching of
the table impossible. This means that, for the generation of candidate entities, all
candidate schema correspondences between columns in the web table and classes
in the knowledge base are considered.

Another modification is a de-duplication step for entity candidates before us-
ing them for duplicate-based schema matching. This ensures that each entity-value
combination can only vote once during the matching, which prevents noise from
the table extraction step and unequally distributed entities in the tables from dom-
inating this matching step. While these are negligible effects when matching in-
dividual web tables, the stitching of potentially thousands of web tables can result
in a very high weight for such errors or frequent entities during the voting stage,
which is problematic if these frequent elements are not known in the knowledge
base and lead to incorrect entity candidates.
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Figure 9.5: Holistic Global Matching: Columns are clustered before calculating a
maximum weight bipartite matching.

Holistic Global Matching. After the duplicate-based schema matching, the re-
sult is a set of potential schema mappings for each union table to the knowledge
base. At this point, T2K Match uses a top-1 global matching to decide for a final
mapping. Here, however, the preceding table-to-table matching step provides addi-
tional information that can be exploited in a holistic global matching, as depicted in
Figure 9.5. This step clusters the union table columns by calculating the connected
components in the graph of table-to-table correspondences. Each cluster then de-
scribes one attribute in the web site’s schema according to the table-to-table cor-
respondences. Then, the scores of all table-to-KB correspondences are aggregated
for each cluster, resulting in a similarity score between column clusters and prop-
erties in the knowledge base. Using these aggregated scores, a maximum weight
bipartite matching decides for the mapping between the columns and properties
holistically. This prevents inconsistencies between the correspondences among the
columns in different union tables and their correspondences to properties in the
knowledge base.

After applying these three matching steps, the created correspondences identify
clusters of columns in the union tables which represent the same attribute in the
web site’s schema, and each of these attributes can have a correspondence to an
existing property in the target knowledge base. As in the preceding chapters, only
those union tables with correspondences to the knowledge base are considered, as
otherwise, the content of the tables cannot be interpreted.
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9.3.4 Schema Integration

To synthesize relations from the original web tables, the SNoW method performs
several integration steps that merge and transform the schemata obtained from the
web tables. These steps successively transform the schemata into a consolidated,
universal schema that contains all attributes that are stated in the original web tables
and their context. The following paragraphs discuss each of these integration steps.

Union Tables. The first step is to create union tables by stitching all web tables
with the same schema. As in Chapter 7, a schema here refers to the ordered set of
column headers of the web tables and includes the generated context columns. As
mentioned in Section 9.3.2, context columns are created for clusters of web pages
based on their URL pattern, and two context columns have the same column header
only if they are created for the same cluster. This means that all context columns
from different clusters are considered to represent different attributes. They can, in
the same way as the original columns from the web tables, be matched during the
schema matching phase.

Projection of existing Classes. The schema mapping between the union tables
and the knowledge base identifies all known classes and properties in the union ta-
bles. To make the integrated schema consistent with these classes in the knowledge
base, all columns in each union table that are mapped to properties which identify
entities of the recognised class in the knowledge base are projected into a separate
table and replaced with a foreign key in the union tables. This results in new tables
which conform to the schema of the classes defined in the knowledge base.

Figure 9.6 shows an example. The union table in the top of the figure has
been matched to the Song class and the columns “Name”, “Album” and “Artist”
are marked as key attributes for this class. The projection step hence creates a
new table for the Song class with these attributes, and replaces the corresponding
columns by a foreign key in the union table, as shown on the bottom of the figure.

To bridge the differences between the relational model in the tables and the
RDF data model in the knowledge base, the SNoW method uses candidate key
definitions for each class in the knowledge base, which are specified as addi-
tional input of the method. These candidate keys can be a single property, such
as rdfs:label for the class Country, or a combination of properties, such as
rdfs:label and musicalArtist or rdfs:label and album for the class
Song. The projected tables represent the schema overlap between the web tables
and the knowledge base, and the union tables with foreign keys contain all potential
candidates for schema extension.

Stitched Union Tables. A second stitching step creates the union of all union
tables which have the same schema according to the schema mapping. This is an
intermediate step to integrating all tables into a single schema, which is introduced
specifically for functional dependency discovery: Union tables are only stitched if
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URI 0 Name Album Artist Price Time

GB
Love Will Tear Us 
Apart

The Best Of Joy 
Division

Joy 
Division £ 0.99 03:26

AU
Love Will Tear Us 
Apart

The Best Of Joy 
Division

Joy 
Division $2.19 03:26

AT
Love Will Tear Us 
Apart Nouvelle Vague

Nouvelle 
Vague 0,99 € 03:18

CA
Love Will Tear Us 
Apart

Lights Down 
Low

Damhnait
Doyle $0.99 03:30

…

FK URI 0 Price Time

1 GB £ 0.99 03:26

1 AU $2.19 03:26

2 AT 0,99 € 03:18

3 CA $0.99 03:30

…

PK Title Artist Album

1
Love Will Tear 
Us Apart

Joy 
Division

The Best Of 
Joy Division

2
Love Will Tear 
Us Apart

Nouvelle 
Vague

Nouvelle 
Vague

3
Love Will Tear 
Us Apart

Damhnait
Doyle

Lights Down 
Low

…

Union Table

Projected Tables

Figure 9.6: Example of projection of known classes.

all their attributes have correspondences, so this step does not introduce any null
values. Null values require special treatment during functional dependency discov-
ery, as they state that some information is unknown. As the very efficient, state-of-
the-art FD discovery algorithms do not consider null values, this step stitches the
union tables into the largest possible tables that can be created without introducing
any null values. The details of functional dependency discovery and the effects of
null values are described in Section 9.3.5.

Universal Relation. The final integration step is to stitch all stitched union ta-
bles into a single universal relation. In contrast to the previous step, all stitched
union tables which are mapped to the same knowledge base class are merged and
attributes which have no correspondences in some or even all other tables are popu-
lated with null-values. This corresponds to the minimum union operator as defined
by Galindo-Legaria [Galindo-Legaria, 1994] (see Chapter 2), which first aligns the
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schemata of the relation instances by adding missing attributes, which are filled
with null values, creates the union, and then removes all subsumed tuples, i.e.,
those which have exactly matching values or missing values as indicated by the
inserted null values.

Such a universal relation is the most general integration approach, as all data
and their dependencies are preserved. Based on the schemata that are observed
in the web tables, usually many different relational database schemata for the hy-
pothetical database on the web server are possible. To avoid any decisions which
could lead to the loss of information during the integration phase, all attributes are
combined into a universal relation schema, which preserves all functional depen-
dencies among the attributes. Based on this universal relation schema, the follow-
ing steps, such as the normalisation step described in Section 9.3.6, applications,
or end users can create a relational database schema that best suits their specific
needs.

The stitching of web tables in several steps using the union and minimum union
operators corresponds to a data fusion step, as defined in Chapter 2. However,
the integration process used by the SNoW method does not apply any conflict
handling, as all data conflicts, i.e., different attribute values for the same foreign key
value, are used to discover functional dependencies among the attributes, which
allows for the synthesis of n-ary relations. A conflict resolution at any stage in
the process would remove the signals that enable this discovery and result in only
binary relations between the entities that are represented by the foreign keys and
the attributes in the universal relation.

9.3.5 Functional Dependency Discovery

This section describes the functional dependency discovery steps that are applied
by the SNoW method to find potential sets of attributes which form a meaningful
relation. In the following, the problematic of functional dependencies in the pres-
ence of null values is discussed and two functional dependency discovery steps that
avoid it are introduced.

After extracting context columns and integrating the original web tables into
stitched union tables as described in the previous section, all extractable attributes
are known, but not how they are related to each other. Analysing the functional
dependencies (FDs) that hold on the stitched union tables reveals which attributes
depend on each other and must hence be synthesized into the same relation. A
functional dependency R : X Ñ Y states that for relational schema R, the values
of the attribute set X uniquely (functionally) determine the values of the attribute
set Y . This means, if a data source should be extended with an attribute from Y ,
then the attributes in X must also be added such that the values of the attribute in
Y can be understood.
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Functional Dependencies in Incomplete Relations

This section discusses FD discovery in the presence of null values and how the
SNoW method handles such situations. As not all web tables contain the same set
of attributes, stitching them into a universal relation as described in the previous
section results in an incomplete relation instance. This means that attributes which
are not contained in all web tables are padded with null values as their actual value
was not observed and is unknown.

Under these conditions, Armstrong’s axioms for standard FDs, which enable
the reasoning over sets of FDs, do not apply anymore [Atzeni and Morfuni, 1986].
To still be able to reason over FDs, Levene and Loizou [Levene and Loizou, 1998]
distinguish between strong ˝pX Ñ Y q and weak ˛pX Ñ Y q functional dependen-
cies. A relation instance satisfies a strong FD if all possible interpretations, i.e., all
possible replacements for the null values, satisfy the FD. A relation instance sat-
isfies a weak FD, if there exists any interpretation that satisfies the FD. For strong
FDs, the standard Armstrong axioms apply, but for weak FDs, the transitivity rule
is changed such that it cannot hold via unknown values.

Table 9.1: An example of a table with null values.

A B C

a1 K c1
a1 K c2

An example is shown in Table 9.1, where the symbol K represents a null value.
This table represents a relation instance which satisfies the FDs AÑ B and B Ñ
C (based on a “no-information” interpretation of null values, i.e., two null values
are not considered equal), but violates the FD A Ñ C which follows from the
other two by transitivity. According to Levene and Loizou, these are weak FDs
˛pA Ñ Bq and ˛pB Ñ Cq, as there exists a possible replacement for the null
values that satisfies the FDs, but not all possible replacements do so. Examples for
strong FDs in this table are ˝pC Ñ Bq as well as ˝pC Ñ Aq. In the context of the
SNoW method, an FD X Ñ Y is strong ˝pX Ñ Y q if and only if all original web
tables which contain Y also contain X .

Most algorithms for functional dependency discovery, however, are not de-
signed to handle null values and treat them like a regular value, i.e., two null values
are considered equal. So, to prevent that the stitching procedure introduces null
values which might change the result of the functional dependency discovery algo-
rithm, the stitched union tables are created such that no null values are introduced.
This makes it possible to use any functional dependency discovery algorithm and
benefit from the many efficient implementations that have been proposed in the
literature. Missing values in the original web tables, i.e., empty cells, are treated as
regular values.
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Approximate Functional Dependency Discovery

The SNoW method applies functional dependency discovery to the stitched union
tables. These tables may contain errors introduced during the extraction of the
web tables, errors introduced by an incorrect schema mapping as well as incon-
sistencies such as misspellings that exist in the original database from which the
web tables were generated. To account for these possible errors, approximate func-
tional dependencies are used. Approximate functional dependencies (also known
as soft FDs) are FDs which can be violated by a certain amount of tuples, which
is specified by the approximation rate. Given a relation instance r, the functional
dependency r : X Ñ Y , and the set of tuples v that violate the dependency, the
approximation rate is defined as in Equation 9.1. For the discovery of such approx-
imate FDs, the TANE algorithm [Huhtala et al., 1999] with an approximation rate
of at least 0.95 is run on the stitched union tables.

ApproximationRatepr : X Ñ Y q “ 1´
|v|

|rrX Y Y s|
(9.1)

The result of applying the TANE algorithm is a set of approximate functional
dependencies for every stitched union table. The approximation rate is only con-
sidered during discovery and in the following steps all approximate FDs are treated
like regular FDs. The discovered FDs describe the functional relationship among
the columns in the stitched union tables based on the data in their rows. This
means that a discovered FD X Ñ Y can be under-estimated, i.e., the set X is
missing attributes, and that different FDs can be discovered for two stitched union
tables which share common subsets of their attributes. Under-estimation of FDs
happens if the table does not contain any data conflicts that indicate that additional
explanatory attributes must be added to the determinant and often happens if the
tables only contain few rows.

Functional Dependency Stitching

After the discovery of functional dependencies on the stitched union tables, the
SNoW method integrates these tables into a universal relation as described in Sec-
tion 9.3.4. During this process, the functional dependencies that were discovered
on the stitched union tables must be merged, too. Merging functional dependen-
cies that were discovered on different tables means to infer the FDs that hold for a
common relational schema based on the observations made from different relation
instances. This cannot be achieved by the union of the sets of FDs that were dis-
covered on the relation instances, as an FD that is satisfied by one relation instance
might be violated by another.

The functional dependencies that hold for a universal relation are obtained by
merging the functional dependencies that were discovered on the stitched union
tables in a way such that the resulting FDs are satisfied by all stitched union tables.
This is achieved by selecting the most specific FDs from all sets of discovered FDs.
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State Page Title URL 1 Annual 
mean wage

California Computer and Information 
Research Scientists

2016 $125,620

Virginia Computer and Information 
Research Scientists

2016 $126,800

Maryland Computer and Information 
Research Scientists

2016 $113,110

𝑆𝑡𝑎𝑡𝑒 → {𝐴𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑤𝑎𝑔𝑒}

(a)

State Page Title URL 1 Annual 
mean wage

California Computer and Information 
Research Scientists

2016 $125,620

California Computer and Information 
Research Scientists

2017 $128,530

California Computer Programmers 2017 $96,270

𝑆𝑡𝑎𝑡𝑒, 𝑃𝑎𝑔𝑒 𝑇𝑖𝑡𝑙𝑒, 𝑈𝑅𝐿 1 → {𝐴𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑤𝑎𝑔𝑒}

(b)

Figure 9.7: Example of two tables with the same schema that satisfy different sets
of functional dependencies.

The same approach is taken by state-of-the-art FD discovery algorithms that draw
samples from large relation instances and then combine the FDs that are discovered
on these samples [Papenbrock and Naumann, 2016].

As an example, consider the tables shown in Figure 9.7: As long as no pair of
tuples for one of the mentioned states (column “State”) with a different profession
(column “Page Title”) or year (column “URL 1”) is observed, it is discovered that
the “Annual mean wage” column only depends on the state, as shown in Figure
9.7a. However, if the combination of state, profession, and year is observed to
be necessary to uniquely determine the wage in another table, as shown in Figure
9.7b, then it can be inferred that this FD holds for every table which contain these
attributes.

The algorithm that is used to merge the FDs for the universal relation is func-
tional dependency induction [Flach and Savnik, 1999]. Instead of creating the
union of the sets of functional dependencies that are the result of the TANE al-
gorithm, the union of the complementary sets of non-FDs is created. This is also
called a negative cover of FDs, and is the input that is required for the functional
dependency induction algorithm proposed by Flach and Savnik. The algorithm
then induces the most specific functional dependencies which are not invalidated
by this negative cover.
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𝑈 Athlete match shots goals season games played

𝑅ଵ Athlete season games played

Stitching

Normalisation

𝑇ଵ Athlete match shots
Stitched
Union
Tables

Normalised
Tables

𝑇ଶ Athlete match goals

𝑇ଷ Athlete season games played

𝑅ଶ Athlete match shots goals

Figure 9.8: Example of the normalisation process.

The result of applying this procedure is a set of functional dependencies for the
universal relation that is satisfied by all stitched union tables, and hence also by all
original web tables. This means that these FDs are the most specific ones that were
observed in any of the stitched union tables and describe the functional relationship
among the attributes of the universal relation. This makes them candidates for
semantically meaningful relations, which can be used to extend other data sources
such as a knowledge base.

9.3.6 Schema Normalisation

This section describes how the universal relation that is the result of the table stitch-
ing steps is decomposed into a normalised relational schema. This reduces the
sparsity of the data and makes it easier for end users to understand the schema.
However, it is not an obligatory step and applications may choose to skip it, de-
pending on the specific use case.

A universal relation contains all attributes that are stated in the original web
tables which are mapped to the same class in the target knowledge base as well as
possibly multiple FDs for each of these attributes. While this form preserves all
possible dependencies among the attributes, it is not easily understood by human
users and can result in a relation instance with many missing values, so applications
might be interested in obtaining a normalised schema. To create normalised rela-
tions from the universal relation, it is desirable to select meaningful FDs for each
attribute and project attributes with the same determinant into the same relation.
This is achieved by applying a normalisation algorithm to the universal relation.

For example, consider the universal relation U for the class Athlete, as shown
in Figure 9.8, where Athlete indicates the foreign key for the Athlete class, and
the FDs {Athlete, match} Ñ {shots, goals} as well as {Athlete, season} Ñ {games
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played}. Based on these FDs, the universal relation can be normalised into the
relations {Athlete, match, shots, goals} and {Athlete, season, games played}. The
challenge for this normalisation is to choose meaningful FDs from the set of FDs
that was created by the functional dependency discovery step. As the discovered
FDs are only based on the data values and not on a semantic understanding, coinci-
dental FDs such as tAthlete, shotsu Ñ tgoalsumight also be discovered. These are
undesirable for normalisation, as they do not hold for all possible relation instances
and do not represent a semantic relationship between the attributes.

To create a normalised schema from a universal relation, the decomposition al-
gorithm proposed by Papenbrock and Naumann [Papenbrock and Naumann, 2017]
is applied, which acknowledges the existence of coincidental FDs obtained through
FD discovery. The algorithm requires a relation R and its extended functional de-
pendencies as input. An extended FD is an FD X Ñ Y that has its dependant
extended to its closure, i.e., the set Y contains all attributes that transitively de-
pend on X , where X` denotes the transitive closure: Y “ X`zX . The algorithm
scores all FDs which violate the desired normal form and then selects the violation
X Ñ Y with the highest score to decompose the relation into two decompositions
R1 “ X Y Y and R2 “ RzY . Then, the same is applied to each of the created
decompositions.

To preserve the direct relation with the detected class from the knowledge base,
only FDs which contain the class’ foreign key in their determinant are considered
and the algorithm is stopped as soon as all relations are in 2NF. The second normal
form (2NF) specifies that no non-key attribute in a relation may be functionally
dependent on any proper subset of any candidate key of the relation [Codd, 1972].
This normal form is suitable, as it reduces the redundancy that is present in the
universal relation, but does not decompose it to a point where attributes might no
longer be in a direct relation with the detect class from the knowledge base.

Violation Selection

This section introduces the scoring heuristics that are used to select violating FDs
during normalisation. The selected FDs should be semantically meaningful as they
define the schemata of the normalised relations. To achieve a semantically mean-
ingful normalisation, the algorithm scores each violating FDX Ñ Y using several
indicators and chooses the violation with the highest score for decomposition. For
example, the coincidental FD tAthlete, shotsu Ñ tgoalsu from the example above
should receive a low score, as the shots attribute is not a meaningful determinant
for the goals attribute and would lead to a normalised relation that does not contain
any information about the match in which these goals were scored. The scores are
designed to prefer determinants which have few attributes, contain attributes that
occur in many original web tables, and provide interpretable values such as strings
or dates rather than numbers. The violation score is the mean of the following
individual scores:
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Length Score. Assigns a higher score to FDs with few attributes in the de-
terminant and many attributes in the dependant, see Equation 9.2, as coincidental
FDs tend to contain more attributes in the determinant [Papenbrock and Naumann,
2017].

Scorelength “
1

2

ˆ

1

|X|
`

|Y |

|R| ´ 2

˙

(9.2)

Data Type Score. Meaningful determinants should contain names or temporal
references, hence a score of 1 is assigned if an attribute has either the type string
or date, as shown in Equation 9.3. Numeric attributes in web tables usually con-
tain factual data and are hence not considered semantically meaningful. This is
different from a single database setting, where unique integer values are often used
as keys.

Scoretype “
1

|X|

ÿ

aPX

"

1 if typepaq P tstring,dateu
0 otherwise

(9.3)

Provenance Score. The fraction of rows which are stitched from original web
tables that contain the determinant attributes. The intuition is that meaningful de-
terminants should be found consistently in many tables, while coincidental ones
consist of attributes that only occur in fewer tables. In Equation 9.4, T refers to the
set of all web tables that were stitched into the universal relation, and TX refers to
all of these web tables which contain the attributes in X .

Scoreprovenance “

ř

tPTX
|t|

ř

tPT
|t|

(9.4)

Entity Disambiguation Score. Set to 1 if the determinant contains a disam-
biguation attribute (see Section 9.3.2) that was generated for an attribute of the
class to which the table is mapped, otherwise 0.

Disambiguation Split Score. Set to 0 if the FD contains a disambiguation at-
tribute, but not the attribute which is disambiguated.

Filename Score. Set to 0 if the content of an attribute in the determinant is
recognised as a filename, otherwise 1 (relevant for context columns created from
the URL, which might contain the file name of the web page).

The heuristics proposed above are rather generic and serve as a basic means of
selecting meaningful FDs for knowledge base augmentation. Applications which
have a more specific task might extend or replace these heuristics to influence the
normalisation procedure with respect to their specific goals. However, this has not
yet received attention by the research community and is the scope of future work.
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9.4 Evaluation

This section presents an evaluation of the SNoW method. The method is evaluated
with datasets created from several web sites in the WTC 2015 with respect to the
quality of context extraction, schema matching, and relation synthesis. The quality
of relation synthesis is measured with respect to the completeness and conciseness
of the synthesized relations.

9.4.1 Evaluation Datasets

To evaluate the method, several datasets are annotated, each containing all web
tables from a single web site, with a total of more than 300 thousand web tables.
These datasets are created from the same subset of the WTC 2015 as in Chapter
7. The selected web sites are among the largest websites in the used web tables
corpus that are known to have overlap with the knowledge base, and were chosen
to cover a variety of different topics.

The annotations comprise the schema mapping among the columns of all union
tables from the same web site, the schema mapping from the columns of the union
tables to the properties of the target knowledge base, and functional dependen-
cies among the attributes represented in the union tables. As the schemata of web
tables are not necessarily normalised, it is not feasible to assign annotations “bi-
nary”, “ternary”, etc. to a schema as a whole. It is rather necessary to identify a
set of functional dependencies which specify the relations that are represented by
the schemata of the web tables. Functional dependencies are annotated by running
the TANE [Huhtala et al., 1999] FD discovery algorithm on all union tables, manu-
ally correcting the results based on the knowledge about the schemata and general
background knowledge by adding or removing attributes, and then selecting mean-
ingful FDs for each attribute.

Table 9.2 gives an overview of the datasets. The first two columns show the
source web site and the number of web tables. The next three columns show
statistics about the created union tables, the number of original columns (col-
umn “AO”), and the total number of columns including context columns (col-
umn “AT”). The last two columns show statistics about the created annotations.
Column “AU” shows the number of attributes in the universal relation for the re-
spective web site, and column “FDs” indicates the number of annotated FDs for
these attributes. These datasets contain data about athletes and their performance
(d3football), famous people (nndb), statistics about countries and states (bl
s, cia), flights for different airlines (flightaware), events and their locations
(seatgeek), music stores (itunes, amoeba), as well as charts and release in-
formation for video games (vgchartz).

To reduce the otherwise infeasible workload of annotating more than 300 thou-
sand web tables, the fact that web tables from the same web site often re-use the
same schema and can be merged into union tables [Ling et al., 2013] is exploited.
This reduces the workload to the manual annotation of about 500 union tables. To

d3football
nndb
bls
bls
cia
flightaware
seatgeek
itunes
amoeba
vgchartz
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Table 9.2: Annotated Dataset Statistics. AO=original attributes, AT=total at-
tributes (original & context attributes), AU=universal attributes.

Union Tables Annotation
Web site Web Tables Tables AO AT AU FDs

d3football.com 40 584 12 63 145 41 18
data.bls.gov 10 824 12 61 181 51 12
flightaware.com 2 888 6 22 72 35 13
itunes.apple.com 42 729 76 470 1 095 59 6
seatgeek.com 157 578 72 266 714 71 30
www.amoeba.com 5 529 65 227 712 42 13
www.cia.gov 30 569 213 562 2 225 323 162
www.nndb.com 23 522 29 123 299 29 10
www.vgchartz.com 23 258 8 39 87 36 13

Sum 337 481 493 1 833 5 530 687 277

verify the assumption that this results in valid annotations, 10 randomly selected
original web tables for each union table (or all if the table was stitched from fewer
web tables) are checked manually, which is the same methodology as used by Ling
et al. [Ling et al., 2013]. This shows that 4% of the created union tables violate the
assumption (they contain columns which are labelled with a symbol, such as “%”,
and the actual attribute name is stated outside of the web table). These incorrect
columns are excluded from the annotations.

Table 9.3 shows examples of functional dependencies from the annotations.
The examples in the table show that a broad range of relations with different ari-
ties is described by the annotated functional dependencies. This includes relations
which are modelled in a way that their data can be represented as triples, i.e., the
determinant specifies an single entity. These are the relations for which all existing
methods are applicable. But, it also contains examples which contain additional
information in their determinants, such as other entities or temporal references.
The data in such relations cannot be processed properly with the existing methods.
Over all datasets, 62.5% of the attributes in the annotations are dependent on at
least one context attribute. All datasets are published to ensure the repeatability
of the results as well as to enable the comparison of methods for identifying n-ary
relations.1

Target Knowledge Base

The used target knowledge base is again DBpedia. Knowledge bases such as DB-
pedia do not explicitly define keys for their classes, which specify the set of at-
tributes that uniquely identifies an entity, as required for the schema integration

1https://github.com/olehmberg/snow

https://github.com/olehmberg/snow
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Table 9.3: Examples of FDs in the annotated datasets. Attributes marked with
* are context attributes, attributes marked with ** consist of original and context
attributes.

Class Determinant Dependant

AdministrativeRegion state state code
AdministrativeRegion state, profession*, year*, employment,

month* annual mean wage
Airline airline, from/to* cargo weight
Airline airline, from/to*, routing, popularity

operated by*
Athlete name, match*, action* yds, avg, pts
Company name founded, employees
Country country, date population, gdp
Country country climate, geo. coord.
OfficeHolder name, since district
Person name, birth date occupation, death
Single song, artist**, version*, runtime

album**, album edition*
VideoGame name, region, platform* release date, publisher

part of the SNoW method (see Section 9.3.4). Hence, a manually curated version
of DBpedia is created by selecting classes for which candidate keys are explicitly
defined. While the rdfs:label property is a sufficient key for most classes, oth-
ers such as Single require additional attributes, for example musicalArtist.

Although the values of the rdfs:label property in DBpedia are unique,
these values are often not sufficiently informative to uniquely identify an entity.
For example, the labels of two entities with the same name might be disambiguated
by adding the class name or the value of another property, such as the artist’s name
for songs, in brackets. These disambiguations are, however, not created consis-
tently and the used property values might not be stated in the web tables, which
creates ambiguity during the matching steps. This ambiguity is resolved by man-
ually specifying the possible additional properties as candidate keys and removing
the disambiguation parts from the rdfs:label values.

When defining candidate keys, the semantics, uniqueness and density of each
property defined for a class are taken into account. The curated version of DBpedia
contains 20 classes from the largest high-level classes Organisation, Person,
Place, Work and their sub-classes in the DBpedia type hierarchy, which reflect
the most frequently found classes in the used web tables (see Chapter 6), with a
total of 2 369 349 entities.
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Context Extraction

To evaluate the URL clustering step as described in Section 9.3.2, all URLs in
the datasets are manually grouped based on their underlying pattern and compared
to the result of the proposed method. The evaluation shows that only 172 out of
180 095 URLs are assigned to a wrong cluster, resulting in 195 web tables being
merged into the wrong union table. Given the total of 337 481 web tables, the error
rate is only 0.05%, which shows that the URL clustering correctly identifies the
URL patterns for almost all URLs.

9.4.2 Schema Matching

This section discusses the evaluation of the schema matching steps of the SNoW
method. The schema matchers are evaluated using the annotations for the columns
in the evaluation datasets. These annotations contain an assignment of every union
table column to a class in the knowledge base and to an attribute of the universal
relation for the respective web site (column AU in Table 9.2), including attributes
which do not exist in the knowledge base. For comparability with other approaches,
correspondences are created among all original web table columns which are an-
notated with the same attribute and the performance of the schema matchers is
evaluated against these correspondences.

The column “Schema” in Table 9.4 shows the achieved F1-measure for each
dataset. In many cases, the performance of the schema matcher is close to 100%,
which is for a large part due to the very regular structure of the web tables. How-
ever, a detailed error analysis shows that the schema matchers do not handle certain
numeric attributes very well, which affects the d3football, bls, itunes and
cia datasets. Closer inspection of these attributes reveals that they have very
similar domains and are barely distinguishable for an instance-based matcher. In
addition to that, some of them also have no column headers, so there are no signals
the matchers can exploit. One example is the first column in every web table in the
itunes dataset, which has no column header and can either be the track number
of a song on a specific album or just a row number for tables which contain songs
from multiple albums.

This evaluation shows that the schema matching task within the scope of a
single web site can be solved with very high quality using the methods proposed
in this chapter. The main factors for this high quality are the stitching of individual
tables, as already shown in Chapter 7, and the holistic global matching that was
introduced in Section 9.3.3, which further improves the quality of the results.

9.4.3 Relation Synthesis

This section evaluates the SNoW method with respect to quality of the synthe-
sized relations. Specifically, the completeness and conciseness of these relations is
evaluated. This evaluation is based on the argument made in Chapter 8, where it
was found that the evaluation of existing schema-extension methods, which is only

d3football
bls
itunes
cia
itunes
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Table 9.4: Experimental results for schema matching and relation synthesis (F1-
measure).

Web site Schema Binary N-Ary N-ary +C Match Norm

d3football.com 0.779 0.495 0.480 0.851 0.765 0.765
data.bls.gov 0.895 0.415 0.485 0.984 0.900 0.900
flightaware.com 0.982 0.459 0.405 1.000 0.942 0.733
itunes.apple.com 0.827 0.680 0.674 0.953 0.809 0.763
seatgeek.com 0.999 0.988 0.992 0.984 0.962 0.962
www.amoeba.com 0.933 0.812 0.394 0.907 0.885 0.885
www.cia.gov 0.976 0.858 0.836 0.821 0.660 0.635
www.nndb.com 1.000 1.000 1.000 1.000 0.999 0.999
www.vgchartz.com 1.000 0.448 0.253 1.000 1.000 1.000

Macro Avg. 0.932 0.684 0.613 0.944 0.880 0.849

based on relevance, is insufficient as it does not consider the completeness of the
discovered attributes. The SNoW method addresses exactly this critique by syn-
thesizing n-ary relations which contain additional explanatory attributes and hence
represent complete relations for schema extension in the sense that no additional
information is required to understand the data. To ensure that this does not lead to
the inclusion of extraneous attributes, the conciseness of the synthesized relations
is evaluated, too.

To evaluate the synthesized relations, one reference relation for each FD in the
annotations is created and populated with the values from all web tables based on
the manually created schema mapping. Then, the same methodology as used by
Wang et al. [Wang and He, 2017] is applied: for each reference relation, the FD
from a synthesized relation which is the best match is chosen, but each FD can
only be evaluated for one reference relation. Then, the cell-wise overlap between
the reference relation and the synthesized relation is calculated.

Consider the example relation tmatch, player, goalsu with four tuples. If the
correct FD tmatch,playeru Ñ tgoalsu was detected, the synthesized relation con-
tains 12 correct values (3 values for each of the 4 tuples). However, if the (under-
estimated) FD tplayeru Ñ tgoalsu was detected, only 8 of these values are con-
tained, resulting in a recall of 8

12 “ 0.67. If the FD was over-estimated and con-
tains one additional, incorrect attribute in its determinant, the synthesized relation
contains 16 values (assuming no additional tuples were created), resulting in a pre-
cision of 12

16 “ 0.75.
This evaluation methodology takes the amount of values for each synthesized

relation into account and is hence more meaningful for measuring completeness
than an evaluation that only considers the schema level. Such an evaluation could
measure which of the FDs in the annotations were correctly discovered, for exam-
ple by checking if an FD from the annotations is both satisfied and minimal for a



236 CHAPTER 9. SYNTHESIZING N-ARY RELATIONS

given synthesized relation. But as the distribution of web tables over schemata is
such that most web tables share very few schemata, a few web tables with a differ-
ent schema, which can be considered outliers, would dominate a schema-level per-
formance measure. For example, the most frequent schema for the data.bls.gov
web site is used by 5 105 web tables and the least frequent schema is used by a sin-
gle web table. However, both schemata each contribute 4 FDs to the annotations.
If the evaluation was only performed on the schema level, each of these FDs would
have the same influence on the result. With the goal of synthesizing as many cor-
rect and complete tuples as possible, however, it is more meaningful to assign a
higher importance to the FDs for the frequently used schemata, which result in the
larger set of tuples.

To evaluate the influence of each of the different components that are used by
the SNoW method on the results, the following discusses the results of running the
method in several different configurations. Some of these configurations use the
schema mapping and FDs that are created by the human annotators, while others
use the schema matcher and FD discovery algorithms. The comparison of these
different configurations hence also shows the performance gains that can be ex-
pected in scenarios where user interaction with the system is possible. Figure 9.9
shows an overview of the results for these configurations.
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Figure 9.9: Results of the relation synthesis experiments. U = Union Tables,
SU = Stitched Union Tables, UR = Stitched Universal Relation, N = Normalised
Relations.

Configurations without matching

The following configurations load the schema mapping from the annotations in-
stead of using the schema matching component. This allows for the analysis the
method’s performance without the influence of errors which are introduced during
matching and represents possible configurations that can be used if the system is
applied to only a small number of web sites.

data.bls.gov
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Binary. The argument for the extraction of n-ary relations is that binary rela-
tions are incomplete. The extent of this incompleteness is shown by the result of
this configuration, which resembles a perfect extractor for binary relations. This
configuration uses the manually annotated schema mapping as input and extracts a
binary relation for each reference relation. Averaged over all datasets, this config-
uration reaches a recall of 56.7% and a precision of 100% (binary relations cannot
contain extraneous attributes). The low recall shows that most of the information
is ignored with this approach. The incompletely synthesized relations contain only
56.7% of the values of the expected result. The precision of 100% is explained
by the fact that conciseness is only of concern if additional attributes are included,
which is not the case for this configuration.

N-ary. The next configuration uses functional dependency discovery instead of
binary relations, but skips the creation of context columns, i.e., only the data that is
available in the original web tables is used. On average, this configuration achieves
48.6% recall and 83.2% precision. The low precision and recall are explained by
incorrect attributes that are included in the synthesized relations due to the lack of
a better alternative, i.e., the explanatory attributes in the reference relations do not
exist in the original web tables. The low recall is further caused by cases where no
functional dependencies could be discovered (again, due to explanatory attributes
not being in the original web tables), which means that all existing attributes are
synthesized into a single relation. As the evaluation methodology states that ev-
ery synthesized relation can only be evaluated for a single reference relation, not
all reference relations are counted as successfully extracted and the recall is even
lower than in the binary configuration. These problems lead to an overall worse
performance than in the binary configuration and show that a naïve approach to
the extraction of n-ary relations results in no improvement over a binary extractor.
This highlights the importance of context extraction, which is often essential for
the understanding of the content in the web tables.

N-ary + Context. The configuration using functional dependency discovery
with context columns shows the optimal output of the SNoW method with an av-
erage recall of 92.2% and average precision of 98.1%. These high performance
values show that (1) given enough data and a correct schema mapping, the task is
solvable with the proposed method and that (2) the extraction of context columns
plays a critical role, as the comparison with the previous configuration shows that
the original web tables do not contain enough attributes to explain their data. The
achieved recall is not perfect due to the under-estimation of some FDs, which indi-
cates that the collection of additional web tables from the respective web sites could
improve the result. The small amount of errors that influence precision is due to
inconsistencies in the data that could not be mitigated by the use of approximate
FDs.
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Pre-set FDs. In this configuration, all functional dependencies and the schema
mapping are loaded from the annotations. By measuring the performance after
the first two stitching steps, the impact of each stitching step on recall can be de-
termined. This configuration results in a recall of 86.9% for the stitched union
tables and 77.1% for the union tables. This means that after the first stitching step,
77.1% of all values are already contained in the largest union table. The second
stitching step increases this to 86.9%, and the remaining 13.1% are added when
merging all stitched union tables into the universal relation. This is not surpris-
ing, as the profiling in Chapter 7 indicated that the distribution of web tables per
schema is heavy-tailed, i.e., a small number of schemata is used for the majority
of web tables. This means, a large fraction of all web tables uses the same schema
and is merged into the same union table, which then contains the majority of the
extractable data.

The experiments presented so far show that the discovery of n-ary relations in
web tables depends on the extraction of additional data from the context of the
tables. Further, the importance of stitching is shown by the increased recall after
each stitching step.

Configurations with matching

In the preceding experiments, the performance under perfect conditions was eval-
uated, i.e., the schema mapping was known. In a large-scale use case, however,
such annotations are not available and the schema matching methods are required
to calculate this mapping. The following configurations use the schema matching
component and hence show the end-to-end performance of the method for a large-
scale scenario. The results of these configurations are expected to be worse than
the results presented above, as the result of schema matching can contain errors
and hence introduce noise into the results.

Matcher. This configuration does not load any annotations and uses the schema
matching as well as the functional dependency discovery components. In this con-
figuration, the method achieves an average recall of 87.0% and an average preci-
sion of 92.5%. Compared to the configuration “N-ary + Context”, this shows a
drop in recall of 5.2 percentage points and a drop in precision of 5.6 percentage
points. There are multiple reasons for the drop in both precision and recall: (1)
missed correspondences result in missing values and under-estimated FDs, as not
all columns that represent the same attribute in the universal relation are merged, af-
fecting recall; and (2) incorrect correspondences can result in over-estimated FDs,
as columns which represent different attributes are merged and create data con-
flicts, affecting precision. The second reason can further have the effect that two
different reference relations are synthesized as a single relation which contains all
attributes. As such a relation can only be evaluated for one of the corresponding



9.5. CORPUS PROFILING 239

reference relations, this also negatively affects recall. The results for earlier stitch-
ing stages show that there is an increase in precision to 97.0% for the stitched union
tables and to 97.8% for the union tables compared to the final result of this config-
uration. As each stitching step is based on the schema mapping, the fewer stitching
steps are executed, the fewer errors are propagated into the functional dependency
discovery and hence cannot reduce the precision of the result.

Normalisation. The final configuration uses the schema matcher, functional de-
pendency discovery, and the normalisation heuristics, i.e., the evaluated relations
are not chosen from the discovered FDs for the universal relation, but only from
the FDs that hold on the normalised relations. As the normalisation step chooses
FDs for decomposition until it can infer a primary key for the normalised rela-
tions, it is not dependency preserving and might remove FDs which are actually
desirable. During this step, the violation selection heuristics described in Section
9.3.6 are used to decide which FDs are preserved. The results show a small drop in
both precision (´2%) and recall (´4.7%) compared to the previous configuration.
Based on the evaluation results, it can be concluded that the normalisation step
with the proposed heuristics does not have a large negative influence on the results
by removing desirable FDs.

The experiments presented in this section show how each component con-
tributes to the SNoW method’s end-to-end performance. It is shown how both
context extraction and web table stitching are necessary for the synthesis of high-
quality relations, and that this is still possible if errors are introduced by the match-
ing and normalisation components. Based on these results, applications for knowl-
edge base augmentation or table extension can select attributes from the synthe-
sized relations and perform the augmentation using the additional information that
is provided by the functional dependencies.

9.5 Corpus Profiling

The SNoW method enables the general-purpose extraction of n-ary relations from
large corpora of web tables. Through the application of this method, a data profile
of such relations can be created that gives insights about the frequency of relations
of higher arity and possible application areas that can benefit from these relations.
This section presents such a data profile of n-ary relations in web tables and analy-
ses which types of non-binary relations are found in the Web Data Commons Web
Tables Corpus 2015. In order to empirically estimate the answers to these ques-
tions, the SNoW method described in Section 9.3 is executed on a corpus of 5.2
million web tables from 86 316 different web sites, the same subset of the WTC
2015 that was used in Chapter 7, using DBpedia as the target knowledge base.
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For the creation of this profile, the SNoW method is executed with the normal-
isation step, which assigns a primary key to every synthesized relation. Hence, this
section will refer to primary keys, or just keys, of the relations rather than to func-
tional dependencies as in the previous section. The presented data profile analyses
the arity, or size, of these keys and the topical distribution of their attributes. Each
of these keys is guaranteed to contain a foreign key that references entities from
one of the classes of the target knowledge base, as described in Section 9.3.4 and
9.3.6. This allows for a topical profiling of the synthesized relations similar to the
one presented in Chapter 6. The classes represented by the foreign keys will be
referred to as the subject class of the synthesized relations, as they are similar to
the subject column used to identify the main class of web tables in the previous
chapters.

The execution of the SNoW method results in 10 186 synthesized relations
with a total of 37 288 non-key attributes which potentially extend the schema of
the target knowledge base. This corresponds to 1 340 990 mapped original web
tables, which is an increase of 41% compared to the results presented in Chapter 6.
With respect to the full corpus, which contains 50.8 million English-language web
tables, this corresponds to 2.6% of the web tables that can be interpreted with the
DBpedia knowledge base. This percentage is comparable to the results reported
in earlier studies [Venetis et al., 2011, Ritze et al., 2016]. Same as in Chapter 6,
this limits the scope of the presented data profile, as only web tables which contain
data about classes and entities that exist in DBpedia can be analysed. Among the
synthesized relations, 37.50% have a key with more than one attribute, i.e., their
attributes represent non-binary relations, and 50.47% of these non-binary relations
have at least one context attribute in their key.

A manual verification of the synthesized relations with respect to the subject
class and candidate key schema mapping to the knowledge base for a random sam-
ple of 400 web sites results in a precision of 0.85, weighted by the amount of
original web tables. This indicates a high quality of the results and supports the
validity of the data profile that is presented in the following.

9.5.1 Topical Profile and Arity of Relations

This section presents statistics about the topical profile of the synthesized relations
through the frequency distribution over the high-level classes in the knowledge
base. Afterwards, the frequency distribution of synthesized relations of different
arities is analysed with respect to their cardinality, i.e., number of tuples, showing
that relations of higher arity are only detected for relations with large numbers of
tuples.
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Figure 9.10: Distribution of matched web sites, web tables, relations, tuples, and
entities by super class.

Topical Profile

Figure 9.10 shows the frequencies of web sites (hosts) and web tables that were
matched to the most frequent high-level classes in the DBpedia type hierarchy. The
majority of matches is found for the Person class, especially for its Athlete
sub-class. This is in line with earlier studies and the topical profile presented in
Chapter 6, which suggest that the distribution of matching results is related to the
distribution of entities in the target knowledge base [Ritze et al., 2016,Hassanzadeh
et al., 2015].

The figure further shows the relative frequencies of synthesized relations, tu-
ples and entities that have been extracted from these web tables. Due to the ap-
plied normalisation procedure, exactly one relation is synthesized for each class
and primary key per web site, and such a relation can contain multiple dependent
attributes. The number of synthesized relations hence indicates the diversity of the
keys that are required to understand the attributes that are found in the web tables.
The amount of extracted entities is the number of rows in the projected tables for
each class, as described in Section 9.3.4.

It can be seen that the relative frequencies of the various groups differ from
class to class. The Person class occurs very frequently among all web sites
(35%), web tables (36%), relations (42%), tuples (56%), and entities (44%). In
contrast, the Infrastructure class occurs only on very few web sites (ă1%)
and results in only small percentages of the extracted relations, tuples, and entities,
but still contributes 12% of all web tables. This indicates a high degree of repli-
cation in these web tables. For the PopulatedPlace class, a large number of
relations (26%) is synthesized for a relatively small percentage of entities (8%),
which indicates that most web sites provide information about a rather small set of
places in a large number of different contexts, i.e., the places are combined with
different other attributes as keys. This results in an average of 21.2 tuples per entity
over all synthesized relations, which is the highest for all classes. The opposite can



242 CHAPTER 9. SYNTHESIZING N-ARY RELATIONS

0

0.2

0.4

0.6

0.8

1

[1,100) [100,1000) [1e3,1e4) [1e4,1e5) [1e5,1e6)

Fr
ac

tio
n 

of
 k

ey
s 

in
 b

in

Number of tuples in relation

1 2 3 4 5 6 fraction of all keys

Figure 9.11: Distribution of key sizes by relation size.

be seen for the Work class, where rather few relations (10%) are synthesized for a
very large percentage of the extracted entities (34%). This indicates that web sites
provide information about many different works, but use a small set of different
keys, resulting in an average of 5.7 tuples per entity over all synthesized relations.

Key Size Distribution

The following discusses the frequency distribution of keys of different arities in
the synthesized relations. Each synthesized relation is assigned a primary key and
contains one or multiple dependent attributes, and the arity of the key is the number
of attributes in this key. It is further guaranteed that the foreign key that identifies
the main entity in each synthesized relation is included in the primary key, which
allows for the interpretation of the key sizes: A key of size 1 contains only a ref-
erence to an entity and can hence be modelled as binary relation in the knowledge
base, and larger keys indicate an n-ary relation.

Figure 9.11 shows the frequency distribution of key sizes by number of tuples.
The bars in each group show the fraction of all keys in the group which have the
key size indicated by the series, and the line shows the size of each group relative
to all synthesized relations. Key sizes larger than 6 are not shown due to their low
frequency (the largest discovered key contains 10 attributes). It can be observed
that the key size increases with increasing cardinality of the synthesized relations
and that large keys cannot be discovered for synthesized relations with few tuples.
This suggests that n-ary relations cannot be identified when looking at individual
web tables, which have an average size of only 15 rows, and that the stitching of
web tables is necessary. The distribution further reveals that synthesized relations
with high cardinality rarely are binary relations. This indicates that data providers
which publish many web tables with the same schema use these tables to convey
more complex information. This means that the largest amounts of data in the
analysed web tables are contained in complex, i.e., non-binary relations. This is
confirmed by the number of synthesized tuples per key size: Although 62.5% of
all synthesized relations are binary (key size 1), they contain only 13.0% of the
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Figure 9.12: Average key size and standard deviation by class.

synthesized tuples. The majority of all extracted data is contained in ternary rela-
tions (key size 2), which make up 29.4% of all relations and 56.1% of all tuples,
and in quaternary relations (key size 3), which are 6.4% of all relations and contain
19.7% of all tuples.

Figure 9.12 shows the average key size and one standard deviation around the
average for the different classes that were encountered. For all classes, keys which
contain additional attributes beside the entity identifiers are found. This indicates
that n-ary relations are not limited to certain topics in web tables, but rather are a
common way of modelling the data.

The figure further shows that the largest keys on average are found for the
Airline class. Inspection of these synthesized relations reveals that they are
actually about air-traffic routes, which are not represented by a class in DBpedia.
The same finding holds for synthesized relations assigned to the Museum class,
which detail the exhibition locations of art pieces that are not in DBpedia, and for
synthesized relations assigned to the SportsTeam class, which often are about
the performance of teams in certain sports events. Other than museums, buildings
in general are described by small keys, which can be explained by the specific kind
of buildings listed in DBpedia: these are noteworthy, i.e., rather famous buildings,
so web sites list interesting facts about them such as building year or height, and
their names are mostly unambiguous, so no additional key attributes are required.

9.5.2 Key Attribute Profiling

This section presents a data profile of the contents of the attributes in the keys of
the synthesized relations. This provides additional insights about the semantics of
these keys and hints at potential use cases for the synthesized relations.

To understand the content of the additional key attributes, a duplicate-based
schema matcher is used to create correspondences between the additional attributes
in keys of size ą 1 and the top-level classes in the DBpedia type hierarchy. This
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Figure 9.13: Distribution of classes in keys by column type.

matching results in class annotations for 40% of all additional key attributes. Fig-
ure 9.13 shows the percentage of key attributes that were matched to the differ-
ent classes and differentiates between original web table columns and the context
columns that were created by the SNoW method. Most of the discovered cor-
respondences are found for the classes Work, Organisation, and Person.
The additional key attributes are dominated by correspondences to the class Work,
while the most frequent subject class as detected during the application of the
SNoW method is the class Person (compare Figure 9.10). This shift away from
the Person class can be explained intuitively, as the majority of the synthesized
relations already refers to a person through their foreign key, and it would not
be expected to find a very large amount of web tables that contain data about the
relationship to a second person. The figure further shows that works, events and or-
ganisations are discovered more frequently in the generated context columns than
in the original web tables, while places, people and devices are more frequently
found in the original columns.

Figure 9.14 shows the frequency of class combinations. The groups indicate the
subject class assigned to the synthesized relations by the SNoW method, while the
bars show the percentage of additional key attributes that were matched to the class
indicated by the series. Frequent combinations include Person and Work, for
example musical artists and their songs or albums, writers and their publications or
actors and the movies in which they acted; combinations of multiple Work entities,
such as songs and music albums; as well as multiple Organisation entities, for
example in web tables describing the results of a match between two sports teams.

Figure 9.15 shows the distribution of correspondences discovered for context
attributes by type of context. Most correspondences are found for the attributes
created from the page title, which usually contain long strings with multiple en-
tity mentions. Matches for context attributes created from URLs are much less
frequent, which is probably due to the fact that URLs contain abbreviated entity
names or do not mention any entities at all. The disambiguation attributes that are
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Figure 9.14: Distribution of classes in keys by subject class.
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Figure 9.15: Distribution of classes in context attributes by type.

created for values in brackets also often contain values which cannot be linked to
the knowledge base, such as “live version” for songs.

In addition to linking the additional key attributes to classes in DBpedia, the
Stanford NLP SUTime temporal tagger [Chang and Manning, 2012] is used to
detect date and time mentions in the additional key attributes. Figure 9.16 shows
the distribution of detected date and time values by subject class for different types
of columns. This gives more information than an analysis of the detected data
types, as especially the page title attributes contain mostly text and are assigned the
data type string, even if they contain a date or time mention. The result shows
that the subject classes Person and Work occur most frequently together with
date and time mentions. It can further be seen that these mentions are primarily
found in the context attributes created from the page title. Examples are results of
sports events for athletes, the sales figures of works, such as films or video games,
or statistics about population or employment for places at a specific point in time.



246 CHAPTER 9. SYNTHESIZING N-ARY RELATIONS

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

Pe
rc

en
ta

ge
 o

f K
ey

 A
tt

rib
ut

es Place Organisation
Work Person
Species

Figure 9.16: Distribution of date and time values in additional key attributes.

Summing up, the presented data profile shows that the additional key attributes
follow a different class distribution than the subject classes of the synthesized re-
lations, where the focus is shifted from the Person class to the classes Work and
Organisation. The classes Work, Event, and Organisation, as well as
date and time mentions, are more often found in context attributes than in original
web table attributes. Analysing the different types of generated context attributes
reveals that the page title is most informative, as the largest number of entities and
dates can be found there. This indicates that further parsing of the page title for
attribute extraction is promising for future work. With respect to potential applica-
tions, the preceding analysis shows that data sources for web tables can and need
to be selected with respect to the specific requirements of the user. A simple ex-
ample could be to present population numbers for countries over time by selecting
web tables which contain this attribute and a date-valued attribute as additional key
attribute. However, this also means that sources need to be selected more carefully,
as for example employment statistics for different profession are not useful to a
user who wants to learn about the total employment in different areas.

9.5.3 Cross-Site Schema Matching.

The previous sections analysed the distributions of topics and the frequencies of
different key sizes for the data provided by each web site individually. While this is
essential to understand the various types of data that are published through the web
tables by different data providers, it gives only limited insights into the semantics
of the data in the web table corpus as a whole. Such an understanding can be
gained by matching the synthesized relations among each other and analysing their
differences.

In the following, the differences in the keys that are found for semantically
equivalent attributes on different web sites are analysed. For this analysis, clusters
of non-key attributes are created based on their column header and subject class
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Table 9.5: Examples of frequent attributes, their average key size and standard
deviation, and key attributes in addition to the entity reference. n: number of web
sites, µ: average key size, σ: key size standard deviation.

Class Header n µ σ Additional
Key Attributes

Keys with size

1 2 3

Athlete laps 56 2.11 1.02 event, date 17 24 8
Athlete position 241 1.17 0.40 event, team 203 37 0
Athlete team 459 1.41 0.61 event, date 299 139 16
Company ticker 17 1.18 0.39 - 17 0 0
Country gold 32 1.47 0.62 event, total 19 11 2
Country population 76 1.23 0.42 date, group 64 12 0
Country rank 157 1.34 0.62 event, score 115 32 9
Film director 13 1.00 0.00 - 13 0 0
Office-
Holder

party 92 1.12 0.33 date, term,
election

81 11 0

Single chart
position

54 1.18 0.47 date, chart 47 5 2

Sports-
Team

pts 35 1.80 0.90 league, games
played

16 12 5

Video-
Game

sale price 20 1.70 0.57 platform, reg.
price

7 12 1

assignment. Table 9.5 shows a selection of the most frequent attributes for differ-
ent subject classes and their average key size and standard deviation. The column
“Additional Key Attributes” shows key attributes that were identified in addition to
a reference to an entity of the assigned subject class. Many of these key attributes
are context attributes, which always have the same header, for example “page ti-
tle”, so the column headers cannot be used for matching. To identify semantically
equivalent key attributes, the duplicate-based schema matcher (see Section 9.3.3)
is run again on the synthesized relations, followed by a manual inspection of the
column contents of the resulting clusters. The attribute names stated in Table 9.5
are the result of this manual inspection. The last three columns in the table show
the frequency of keys with the size indicated in the column header. Keys of size 1
always contain an attribute that references the entity of the respective subject class.

The results of this matching show that additional key attributes often contain a
reference to a point in time, either explicitly (“date”) or implicitly by referring to
an event (“event”). Such events are for example sport events such as “2010 FIFA
World Cup” or “Red Bull Indianapolis Grand Prix 2010”. It can further be seen
that seemingly semantically equivalent attributes, such as “population”, are stated
with respect to different contexts by the different data providers. This means that
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Figure 9.17: Left: Distribution of different groups of keys for the laps attribute of
athletes. The series “laps” indicates relations where the attribute itself is part of
the key. Right: Distribution for the chart position attribute of singles.

the values that are stated in the respective web tables are not directly comparable
and the context, represented by the additional key attributes, must be considered by
applications that use these data. It is also important to note that this is not limited
to attributes which do not exist in knowledge base, but also for such which have
existing properties that are modelled as binary relations in DBpedia.

Key Clusters. Figure 9.17 shows a histogram of different clusters of keys that
were found for two exemplary attributes. The left histogram shows the “laps”
attribute of athletes, which states the number of laps that an athlete completed in
a racing event, and the right histogram shows the “chart position” attribute of
singles. The two most frequent additional key attributes for “laps” are “event”
and “laps”. While “event” is rather expected, “laps” must be clarified: these are
relations where the attribute itself is part of the key and determines another attribute
such as the current or finishing position. For the “chart position” of singles, “date”
is found as additional key attribute for a key size of two, and “chart name” for a
key size of three. This seems reasonable, as for web sites which only provide one
type of music chart, the position of a single changes depending on the date, while
the name of the chart is required if a web site provides data for different charts,
such as “German Top 20” and “UK Top 10”.

Types of N-ary Relations

Among the inspected examples, three different types of relations can be identified:
time-varying, composite and disambiguation. These relation types have different
characteristics with respect to the integration with the knowledge base, which are
discussed in the following.



9.5. CORPUS PROFILING 249

Time-varying. Time-varying relations describe properties of entities that can
change over time, such as the team or position of an athlete.2 Such relations often
contain a temporal reference in their key attributes. Event mentions in their key
attributes can be interpreted as a proxy for a temporal reference, i.e., an athlete was
playing for a certain team during the event. In Table 9.5, “position” and “team”
for athletes, “population” for countries and “party” for office holders fall into this
category. The data from time-varying relations can be used by time-aware data
fusion methods [Oulabi et al., 2016] or can be directly inserted into knowledge
bases which support a time dimension. If a binary relation was assumed, as in
most state-of-the-art methods, the temporal context would be lost and either a list
of values or an arbitrary single value must be chosen.

Composite. Composite relations describe an entity that is composed of mul-
tiple other entities, and the subject class that the matcher recognised represents
one of these entities. For example, the “gold” attribute for the Country class is
part of a composite relation “participation in sports event”, for which also the at-
tributes “silver”, “bronze” and “total” are found. In Table 9.5, “laps” for athletes,
“gold” and “rank” for countries, and “points” for sports teams fall into this cate-
gory. Other than in the case of time-varying attributes, the attributes in composite
relations are meaningless for only one of the participating classes, i.e., “gold” is
neither a meaningful property of a country nor a sports event. If the composite re-
lation is mapped to the class of only one of its elements, it can be assumed that the
knowledge base does not contain a corresponding class. The data from composite
relations can hence be integrated with the knowledge base by creating a new class.
In the case of assuming a binary relation, a nonsensical attribute would be created
that cannot be interpreted, as at least one of the participating entities is missing.

Disambiguation. Disambiguations occur in relations which describe entities
that are more fine-grained than the entities in the target knowledge base. For ex-
ample, each entity of the VideoGame class in DBpedia can have multiple values
for the “platform” property (such as “PC” or “XBox”), i.e., there exists only one
entity for all different platform versions of a video game. However, some web
sites provide different attribute values, for example for “sale price” or “release
date”, depending on the platform. Such data can either be integrated by adding a
new class to the knowledge base (as for composite relations) or, alternatively, the
knowledge base can be re-modelled by adding the additional key attribute(s) to the
class’ key definition and creating new entities for each of the additional attribute
values. If a binary relation was assumed, the attributes would be multi-valued and
it is impossible to reconstruct which combinations of their values are actually valid.

2Position is limited to string-valued attributes and refers to the athlete’s position in the field of
play, such as “centre forward” or “goalkeeper”.
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The preceding analysis of keys for semantically equal attributes has revealed
that information extraction that is limited to binary relations cannot capture the
complexity of the information that is conveyed in web tables. It has been shown
that the same attribute can be presented with different keys, which means that the
values provided in the respective web tables are not comparable without consid-
ering their context. This could explain the low quality of facts extracted from
web tables, which was observed in several earlier studies that assumed binary re-
lations [Ritze et al., 2016, Dong et al., 2014a]. If a method extracts values for
an attribute from different web tables without considering that their context is a
different point in time, a different event or that the entities are described on a dif-
ferent level of granularity, the quality of the data extracted from web tables can
be under-estimated. Further, different types of n-ary relations were identified and
described with respect to their integration with a knowledge base. This shows that
not only the semantic annotation of n-ary relations in web tables, but also their
possible representation in knowledge bases needs more attention by the research
community.

9.6 Conclusion

This chapter presented SNoW, the first method to synthesize n-ary relations from
web tables for the purpose of knowledge base extension. First, related work was
introduced in Section 9.2. Then, Section 9.3 described the proposed method along
the different steps of the overall workflow. Section 9.4 presented an experimental
evaluation of the method and described the datasets that are used for the evaluation.
Finally, Section 9.5 presented the results of using the proposed method to profile a
corpus of 5 million web tables.

This chapter made the following contributions:

• Method: This chapter presented the first method to synthesize general n-
ary relations from web tables. This is achieved by the extraction of addi-
tional context data from the web page containing the web tables, and stitch-
ing multiple web tables from the same web site, which enables functional
dependency discovery on the stitched tables. The experimental evaluation
showed that the proposed method achieves an average F1-measure of 0.93
for the schema matching task and 0.85 for the relation synthesis, which is an
improvement of 0.17 over a perfect extractor for binary relations.

• Data Profile: This chapter further presented the first data profile that not
only considers binary relations in web tables, but also analyses n-ary rela-
tions in a corpus of 5 million web tables. The profile shows that web tables
contain large amounts of n-ary relations which are quite diversely modelled.
The data profile reveals that a large fraction of the data in web tables is of
higher complexity that previously assumed, as it is shown that 37.5% of all
synthesized relations and 87% of all synthesized tuples have a key that con-
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tains more than one attribute. The additional key attributes are generated
from the context of the web tables in 50.47% of the cases, showing that only
focusing on the content of the web tables without considering the web page
that contains them is insufficient in many cases.

• Evaluation Dataset: Along with the evaluation of the presented method,
large evaluation datasets were created and published for the task of identi-
fying n-ary relations in web tables. These datasets consist of more than 300
thousand web tables. By publishing the datasets, the replicability of the re-
sults is ensured and a first foundation for comparing methods that synthesize
n-ary relations from web tables is provided.

The method presented in this chapter is the first that approaches the problem of
extracting general n-ary relations from web tables. Earlier methods were limited
to specific types of n-ary relations, such as ternary relations that include a time
dimension. Most of the work in the area of web tables, however, assumes that
binary relations are sufficient to understand their content. The profiling that was
presented in this chapter demonstrated that such an assumption is not justified,
as a large fraction of the web tables, which can be interpreted with the DBpedia
knowledge base, represents n-ary relations. Ignoring this fact leads to incorrectly
interpreted data and may be a reason for the low quality of previous methods that
extract statements from web tables for knowledge base augmentation.

For a correct extraction and interpretation of the data in web tables, this chapter
has shown that it is necessary to consider additional values which are stated on
the web page that contains the web table, and that multiple web tables need to
be combined such that the functional dependencies among their attributes can be
discovered. These two changes are essential for the high quality that is achieved by
the SNoW method, which is the first to apply this specific combination of methods
to solve the task of synthesizing relations from web tables.

The data profile that was generated through the application of this method re-
vealed that the data in web tables is of much higher complexity than previously
assumed, and shows a clear need of considering this complexity in applications
that use web tables. Only if the data is correctly interpreted can an application
provide useful results to a user. However, the profile also shows new possibilities
for applications, as the data from web tables is often more detailed than the knowl-
edge contained in current knowledge bases. This means, instead of just looking
up a certain value as is possible with a knowledge base, a user can be enabled to
drill-down into detailed statements based on various dimensions, for example by
exploring the average annual wage not only by state, but also by profession and
time.
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Chapter 10

Conclusion

This chapter summarises the contributions of this thesis, outlines its research im-
pact, and discusses limitations as well as directions for future work. The range
of topics covered in this thesis spans the complete process required to use web
tables for knowledge base augmentation. From extracting raw web tables from
web pages, to interpreting the semantics of the extracted web tables, profiling the
contents of the created corpora for slot filling, and finally generating relevant and
complete candidates for schema extension.

10.1 Summary

This section summarises the content of this thesis and highlights the individual
findings and contributions. It is organised in the same way as the overall thesis and
discusses its three parts in order.

Public Web Table Corpora

The data profiles for web tables that are presented throughout this thesis are based
on two large-scale web table corpora which were created during the work on this
thesis. The publication of these corpora and their data profiles changed the field of
web table research by making it more accessible, as earlier corpora were privately
owned and could not be analysed by other researchers. Through the publication of
the Web Data Commons Web Tables Corpora (WTC), which represent two of only
three publicly available, large-scale corpora of web tables, researchers can now
directly access and analyse the properties of web tables, without going through
the involved process of crawling billions of web pages and re-implementing the
necessary table detection and structural analysis methods that are required to pro-
duce such corpora. This reduces the time spent until valuable contributions can be
made and leads to more transparency, as methods and their results based on public
corpora are reproducible and verifiable.
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The process for the extraction of web tables starts with the identification of
tables in HTML pages which actually contain data, so-called content tables, op-
posed to tables which are used for layout purposes. After the content tables have
been identified, their structural analysis spans the detection of header rows, col-
umn data types, units, and the subject column of the tables. For all these steps,
several heuristics or supervised machine learning approaches have been proposed
in the literature. The implementation of such methods as open-source enabled the
creation of the Web Data Commons Web Tables Corpus 2012 and 2015, which
contain millions of content web tables and have been analysed throughout this the-
sis.

Comparing the web table corpora that are used in the literature showed that
only very limited information is available, as most of the corpora are privately
owned and not available to other researchers. This entry boundary to research on
large-scale methods for web tables was removed by publishing the two described
corpora, which contain 147 million and 233 million content tables, respectively.
Along with the corpora, data profiles that describe the contained web tables with
respect to their table type, size, origin, and data types were published. These
data profiles show that the majority of the web tables is very small, with a me-
dian of only six rows in both created corpora, and that between 35% and 52% of
all columns are non-textual columns, i.e., contain for example numbers or dates.
These are two important characteristics for the semantic interpretation of the web
tables, which have barely been addressed by the literature on the topic.

Matching Web Tables to a Knowledge Base

After the extraction and structural analysis of web tables, the next step is to create
a semantic interpretation which enables applications to effectively retrieve relevant
web tables and use their data for several applications such as query or question
answering or knowledge base augmentation. However, the field of semantic table
interpretation is lacking agreement on the set of tasks that need to be solved as well
as on the evaluation methodology and datasets that are used to measure the qual-
ity of the proposed methods. Many approaches only consider web table columns
that contain named entities and either annotate individual columns with classes,
pairs of columns with properties or link the entities mentioned in the columns to a
knowledge base. This limits the comparability of the methods and casts doubts on
their practical applicability.

The publication of the open-source T2K Match algorithm, which solves all
tasks that are necessary to extract triples for columns of all data types from a web
table, and the publication of the T2D gold standard for these tasks create the foun-
dation for more transparency and comparability of methods in this area. The T2K
Match algorithm annotates web tables with classes, pairs of columns with proper-
ties, and cells with entities from a knowledge base. It further considers columns
which do not contain named entities. The algorithm achieves an F1-measure of
0.94 for the class annotation, 0.82 for the entity annotation, and 0.7 for the rela-
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tion annotation task. A comparison with other methods for the entity annotation
task shows that T2K Match outperforms other approaches that were available at the
time of its original publication and still achieves comparable results to approaches
that have been published afterwards.

The application of the T2K Match algorithm to the WTC 2012 and the creation
of a data profile for this corpus with respect to classes, properties, and entities from
the DBpedia knowledge base resulted in the currently most-detailed profile of any
web table corpus. This data profile shows that ca. 1 million of the 33 million
English-language web tables in the WTC 2012 can be mapped to the DBpedia
knowledge base, with more than half a million pairs of columns annotated with
properties and almost 14 million cells annotated with entities. The data profile
further revealed that the majority of the 7.9 million triples that can be generated
from the web tables based on the annotations are not for named entity columns, but
rather for numerical (2.8 million) and date (3.4 million) values.

Further analysis showed that the current evaluation datasets for semantic table
interpretation are biased towards large web tables and the quality of algorithms in
this area is over-estimated. Experiments on a random sample showed that such
algorithms cannot handle very small web tables, which constitute the majority of
web tables in all corpora for which the size distribution of web tables is known.
This problem is addressed by table stitching, which was shown to drastically im-
prove the performance of existing semantic table interpretation methods, especially
for small web tables. Table stitching is the process of merging web tables based on
their schema into larger tables, which increases the amount of different values that
a semantic table interpretation method can exploit. This improves the reliability of
column statistics, such as uniqueness, which is important for the detection of the
correct subject column, and increases the amount of different values that can be
used for similarity calculation. The application of this method improves the F1-
measure of T2K Match by 0.38 points for the relation annotation task on a random
sample of web tables and improves the precision of the generated triples from the
web tables in this sample from 0.39 to 0.59.

Extending the Schema of a Knowledge Base

The fine-grained profile of the WTC 2012 showed that the majority of the columns
in the web tables that can otherwise be annotated with classes and entities have
no corresponding properties in the DBpedia knowledge base. These columns are
hence candidates for new properties and the extension of the knowledge base’s
schema. The state of the art in schema extension from web tables focusses on
methods that rank these candidates according to their relevance for the respective
class in the knowledge base, for example by considering their co-occurrence fre-
quencies with the existing properties. However, these approaches ignore that the
columns in a web table can be dependent on their context, i.e., other columns or
data on the web page outside of the web table, and may hence result in incomplete
property candidates which cannot be interpreted individually.
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To address this issue, a data profile for attributes which are candidates for
schema extension was created that shows that the majority of the candidates (62%)
does not comply with the assumption that all columns in a web table can be in-
terpreted based on their own values and the values in the subject column column
alone. This assumption is derived from the data model used in most semantic table
interpretation approaches, which states that every column in a web table is in a
binary relation with the subject column.

Based on this finding, the first method for the general extraction of n-ary re-
lations from web tables was proposed, which creates additional explanatory at-
tributes from the context of the web tables. These n-ary relations contain all ad-
ditional attributes which are required to interpret the values and are hence better
candidates for schema extension. Through the application of this method, it was
shown that web tables contain information of a much higher complexity than previ-
ously assumed. The created data profile shows that 37.5% of the created relations
require at least one additional attribute beside the subject column, and for 50.5%
of these relations at least one of the additional attributes is not a column of the
original web tables, but needs to be extracted from the web pages containing the
web tables. The proposed method is the first to consider the problem of the general
extraction of n-ary relations from web tables, and shows that this task needs more
attention from the research community to enable web table-based applications to
produce results of high quality. To support additional research in this area, the used
evaluation dataset, which contains more than 300 thousand web tables, as well as
the implementation of the method that sets a benchmark for other approaches to
compare to, are made publicly available.

10.2 Research Impact

This section discusses the research impact of the methods and results presented
in this thesis. Especially the Web Data Commons Web Tables Corpus 2015, the
T2D gold standard, and the open-source T2K Match algorithm have gained wide
attention and are frequently used for the evaluation of new approaches.

After the publication of the WTC 2012 and the source code used for its extrac-
tion, Eberius et al. [Eberius et al., 2015] extended the code and published a similar
corpus based on a more recent web crawl. In turn, the WTC 2015 incorporated the
additions made by Eberius et al. and further extended the extraction framework.
Various parts of the extraction methodology used in the WTC 2015 have further
been adopted by other authors, such as the table type taxonomy [Nishida et al.,
2017] or the subject column detection heuristic [Saleiro et al., 2017]. This shows
how the open publication of web table corpora and the code that is necessary to
create them can benefit a large community of researchers and enables independent
contributions that improve the quality of the available resources.
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In the area of dataset search, Zhu et al. use the WTC 2015 for the evaluation of
their search methods that speed up the retrieval of related tables [Zhu et al., 2016,
Rao and Zhu, 2016,Zhu et al., 2017,Zhu et al., 2019]. Kacprzak et al. also refer to
the WTC 2015 to show the relevance of dataset search methods [Kacprzak et al.,
2017] and Miller analyses the WTC 2015 as an example of a data lake [Miller,
2018]. This highlights the value of the created web table corpora for the evaluation
of methods for large-scale data processing and shows that the WTC 2015 is already
a well-known and established dataset in different research communities.

In the area of semantic table interpretation, Ritze and Bizer use the WTC 2015
to sample web tables to create an extended version of the T2D gold standard and
use it to evaluate various groups of features for its different tasks [Ritze and Bizer,
2017]. The T2D gold standard is further used for the evaluation of the methods
proposed by Pham et al., Efthymiou et al., and Ermilov and Ngomo [Pham et al.,
2016, Ermilov and Ngomo, 2016, Efthymiou et al., 2017]. Methodologically, the
T2K Match algorithm presented in Chapter 5 is the basis of T2K Match++ [Ritze,
2017] and the foundation of the data integration methods of the DS4DM Project1

and the corresponding extension for the RapidMiner2 data mining tool [Gentile
et al., 2016, Kleppmann et al., 2018]. Oulabi and Bizer further use the WTC 2015
to create a data profile of timestamp metadata [Oulabi and Bizer, 2017] and present
a method for the entity-set-completion task using this corpus [Oulabi and Bizer,
2019]. This further corroborates the impact of the work presented in this thesis for
the area of semantic table interpretation, which has become widely recognised and
is used as a reference for the evaluation of new approaches.

10.3 Limitations & Future Work

This section discusses the limitations of the work presented in this thesis and gives
directions for future work in the areas of semantic table interpretation and knowl-
edge base augmentation.

The data profile of the two large-scale web table corpora that was presented in
this thesis was created through matching the web tables to the DBpedia knowledge
base, i.e., it can only give insights into the topical overlap between the web table
corpora and this knowledge base. Although there is no related work on the same
level of detail, literature suggest that similar results could be obtained with other
knowledge bases, such as YAGO or Wikidata [Hassanzadeh et al., 2015, Dong
et al., 2014a]. Concerning the coverage of the analysed web tables, i.e., those that
could be matched to the knowledge base, it must be stated that current knowledge
bases are only useful to annotate a small percentage of the extracted web tables.

A direction for future work is to try and increase this coverage. For example,
the stitching method presented in Chapter 7 resolved a methodological problem
that could cause a low coverage and should be considered in all future profiling

1http://ds4dm.de/
2https://rapidminer.com/

http://ds4dm.de/
https://rapidminer.com/
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efforts. Also, methods from the are of Open Information Extraction have shown
promising results for the large-scale annotation of web tables. For example, Gupta
et al. [Gupta et al., 2014] found that they can increase the coverage of annotated
attributes by a factor of 5.7 compared to Freebase when using the attribute names
that they extracted from web pages and a search engine query stream. In general,
such methods collect entity and attribute names from large, unstructured text cor-
pora, which can then be used to annotate web tables. However, the larger coverage
achieved by these methods comes with the drawback of higher uncertainty due to
noisy extractions during the open information extraction part and does not imme-
diately explain the semantics of the web tables, as the annotations are text tokens
which themselves need to be interpreted. Another possibility is that the web tables
which cannot be matched to a knowledge base simply do not contain any entities
that could be linked, and can only be understood in the context of the web page
that contains them. For example for product offers on the web, it is common to
place entity tables, i.e., web tables which only describe a single entity (see Section
4.3.1), on the web pages with product offers to describe the technical details of the
respective product [Qiu et al., 2015].

With the increased quality of semantic table interpretation methods and the
high complexity of the relations that can be synthesized using the method pre-
sented in Chapter 9, there is further a need to discuss how this kind of information
should be stored. Current knowledge bases do not necessarily support the storage
of different levels of granularity or complex relations such as those found in the
web tables. While the schema of DBpedia provides limited support for few spe-
cific n-ary relations, such as the results of Olympic games of snooker competitions,
Wikidata enables the general annotation of statements with additional properties
and might be better suited for the augmentation with the complex data from web
tables.

In this context, a question that also needs to be addressed is that of the level
of detail of information that is desirable for the augmentation of general-purpose
knowledge bases, such as DBpedia or Wikidata. For example, in-depth statistics
of an athlete’s performance in a specific match might not be of general interest and
would not increase the value of these knowledge bases. A different direction for
future work could hence be the construction of additional, highly detailed knowl-
edge bases from web tables. Such an approach could extend the method presented
in Chapter 9 by integrating the synthesized relations across the different web sites
in the web table corpus and organise the discovered attributes in different hierar-
chies according to their context, similar to the approach proposed by Halevy et
al. [Halevy et al., 2016] that structures complex attributes based on their names.
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