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Leider konnte der Anschlusszug nicht warten.”

Hätte er warten sollen?





Summary

Railways are confronted with several problems in their daily business. One

of these operational problems is delay management. Therein the question

of whether a train should wait for a delayed feeder train or depart on time

is addressed. Answering this question is not trivial since the determined

wait-depart decision may cause serious consequences. While the majority of

models in the literature usually take the decision by aiming for minimizing

disturbances in the operating procedure, delay management focuses on the

impact for passengers. By minimizing passenger delay, delay management

differs from the other problems on the operational level and leads to different

recommendations for dispatchers.

This thesis puts the scope on railway delay management and its impacts

for passengers. It consists of three essays: a literature review on delay man-

agement and two models that advance the research in this field. In the

literature review, a new classification scheme for operational problems in

railways is developed. Literature in delay management and influence from

delay management on neighboring areas are discussed. The second essay

proposes a stochastic dynamic programming approach taking the dynamic

nature of delays and uncertainty into account. Evaluating potential recourse

actions derives policies for taking dispatching decisions. The third essay

considers the capacity of trains in the decision making process. Rerouting

of passengers for broken connections is further assumed and spill effects for

passenger streams are measured. A nonlinear model is developed and solved

by linearizing it exactly and heuristically.

Both approaches, from the second and third essay, are evaluated in a nu-

merical study on real-world data from the German railway provider Deutsche

Bahn. Germany possesses a rather complex and massive railway network

that will require further decision support and future research.
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Chapter I

Introduction

This thesis focuses on railway delay management by addressing the question

of whether a train should wait for a delayed feeder train or depart on time.

The decision is taken from a passenger perspective by evaluating how the

least total passenger-weighted delay can be achieved.

Punctuality is a topic all rail companies have to deal with. Especially the

German network with its massive infrastructure, consisting of over 33,000

km of tracks and more than 5,000 train stations (Deutsche Bahn 2018a), al-

ways suffered several delay related problems. Currently, the German railway

company Deutsche Bahn (DB) faces serious difficulties and is looking for new

solutions. While the punctuality level for the long distance trains in Ger-

many usually remains at 80% it has declined below 70% in 2018 (Deutsche

Bahn 2018b).

This punctuality level represents train delays only, i.e., a train is considered

for this statistic if it arrives later than six minutes (otherwise the train is

“on time”). Canceled trains are not taken into account at all (if it is not

running it cannot suffer a delay). However, the situation appears different

for passengers. Arriving five minutes later at a changing station may cause

the problem of whether a connection will be maintained or not, even though

the train is not counted as delayed. If a train is canceled, passengers have to

look for alternatives and it seems quite unrealistic that passengers will arrive

at their destination on time in such a case (Die Welt 2017). Especially for a

service provider, a passenger perspective should be included in the decision

making process to avoid frustrated passengers and to prevent a reputational

1



I. Introduction

damage.

Operating trains is a complex system ranging from long-term planning

problems such as the construction of infrastructure to maintaining day-to-

day operations. This thesis relates on short-term planning problems that are

caused by small disturbances and require a revision of the original timetable.

Manifold conflicts are possible demanding for different decision support mod-

els. For large disruptions, new schedules for crew and, in case of complete

blockages, for rolling stock may be required. Smaller disturbances instead

lead to connection problems for which a dispatching decision is necessary.

As larger disruptions, e.g., a total blockage of the tracks, are rather seldom

(about 0.7% in 2017 (Die Welt 2018)) support for smaller disturbances is

more frequently necessary. During the last two decades, several works re-

garding delay management have been published and the area enjoys a grow-

ing interest.

Three essays are included that give deeper insights into delay management

and provide new approaches to deal with the problem. In the first essay1,

see Chapter II, a literature review on delay management is provided. Since

delay management was introduced by Schöbel (2001), literature has grown

in this field but a comprehensive review of delay management is lacking.

Therefore, we illustrate similarities and differences between delay manage-

ment and other operational problems. Further, a new taxonomy scheme is

introduced identifying attributes to allow a classification of existing works in

delay management and related literature on the operational level. The liter-

ature in delay management is studied intensively by applying the proposed

scheme. As a result, areas with scarce or no literature at all become visible

and point out possibilities for future research.

The second essay, a joined work with Cornelia Schön2, is displayed in

1König, E. (2019): A review on railway delay management, working paper revised and
resubmitted to Public Transport, 1-30.

2Schön, C., König, E. (2018): A stochastic dynamic programming approach for delay

2



Chapter III and proposes a stochastic dynamic programming approach (SDP)

for delay management. This is a first step towards incorporating delay distri-

butions from statistical literature to describe the uncertainty of delays, which

has been neglected so far in this area. A closely related field of research, that

determines timetables for railways, is more developed in terms of stochastic-

ity. For instance, Goerigk et al. (2014) model a dynamic program for iden-

tifying robust paths in the case of delays and in Sels et al. (2016) a robust

timetable, that minimizes passenger travel time by assuming exponential

delay distributions, is presented. The SDP derives policies for wait-depart

decisions in a look-ahead manner by evaluating potential recourse actions.

By formulating the objective as a Bellman equation, passengers’ delays at

their destination stations are minimized. As well, we consider delays for

feeder and connecting trains leading to a four dimensional state-space. By

applying a state-space reduction the computation time can be reduced. The

performance of the SDP approach is evaluated in a comprehensive simulation

experiment, comparing the SDP to an ex-post optimal solution and several

rule-based strategies. It turns out, that the SDP reduces the overall pas-

senger delay and outperforms the rule-based strategies in nearly all tested

scenarios.

In the third essay, a joined work with Cornelia Schön3, presented in Chap-

ter IV, we consider the capacity of trains for dispatching decisions. Previous

related works, such as Schachtebeck and Schöbel (2010) or Dollevoet et al.

(2015) have taken the capacity of tracks or stations, respectively, into ac-

count. In literature, it is common to assume an infinite capacity for trains,

i.e., if a connection is maintained all transferring passenger will be able to

embark the train. This assumption holds not for all cases in the real-world.

management of a single train line, European Journal of Operational Research 271(2),
501-518.

3König, E., Schön, C. (2019): Railway delay management with passenger rerouting con-
sidering train capacity constraints, working paper revised and resubmitted to European
Journal of Operational Research, 1-40.

3



I. Introduction

When a certain capacity limit is reached, the train is not allowed to con-

tinue its journey. Passengers are spilled and have to look for alternative

routes. We further assume the possibility to reroute passengers, as it is

done in Dollevoet et al. (2012) in case of a delay or overcrowded trains.

Our model aims for minimizing passenger delay and the number of spilled

passengers. By breaking down passenger streams into fractions the result-

ing model becomes nonlinear. Exact and heuristic linearization techniques,

based on McCormick envelopes are applied. The performance of these differ-

ent approaches is evaluated in a numerical study against an approach from

literature that neglects train capacities. Our model outperforms the model

from literature in every tested scenario. In networks with high utilization

there are significant differences in the results. Furthermore, the heuristic

approach solves all test instances in reliable computation time and good

quality.

Finally, the knowledge gained is pointed out in Chapter V together with

an outlook on future research.

4



Chapter II

A review on railway delay

management

Abstract

Passengers traveling by train may need to change trains on their route. If the

focal train of a passenger is late, the passenger might miss his connection

and has to decide how to continue his trip. Delay management addresses

the question whether the connecting train should wait (or not) for the de-

layed passengers. If the connecting train waits, delays would get transferred

through the network. In literature several works consider delays and their

impact on railways and how to reschedule disturbed plans. We focus on

works, aiming to minimize passenger inconvenience as it is done in delay

management. In the last two decades dozens of works considering the de-

lay management problem have emerged, tackling the problem in different

ways. In this paper, an overview on the existing literature is given, and a

new classification is introduced. We provide a taxonomy scheme for railway

problems at an operational level and show how the field of delay management

fits to other parts of the planning process. Moreover, limitations of the delay

management approaches are discussed and future research opportunities are

suggested. 1

1The research presented in this chapter is based on a paper entitled “A review on railway
delay management”.
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II. A review on railway delay management

2.1. Introduction

The focus of this review is on delay management (DM) for railways. DM,

which was introduced by Schöbel (2001) and Suhl et al. (2001), searches for

the answer of the so-called wait-depart decision. Should a connecting train

wait for a delayed feeder and propagate the delay in the network or depart

on time and transferring passengers will miss their connection? In the last

two decades dozens of works considering this problem have been published.

Figure 2.1 illustrates the growth of new publications since 2001 (the numbers

arise from the reviewed literature in this paper). The proposed models for

DM range from simple rules of thumb to complete network optimizations.

To the best of our knowledge, a survey on these models has been neglected

so far. Furthermore, a distinction between DM and other related areas is

missing. The operational problems are often summarized under the term

real-time management (Lusby et al. 2011).

Figure 2.1.: Number of new publications per five year interval (with a
shortened last interval)

DM can be seen as a strong tool to reduce delays for passengers. In several

studies, the results under dispatching are compared with results where no

6



2.1. Introduction

dispatching at all was done. In literature usually mentioned as “never wait”

strategy, trains do not wait at all for each other according to this strat-

egy. The never wait strategy performs weaker than applied dispatching, as

can be seen in, e.g., Kliewer and Suhl (2011), Dollevoet et al. (2012) and

Dollevoet et al. (2015); showing that there exists a considerable impact on

delay reduction.

In practice, such as e.g., in Germany statistics on the punctuality refer only

to trains. While the punctuality level for long-distance trains amounts to

around 80%, this indicator only accounts for non-canceled trains that suffer

a delay smaller than six minutes (Die Welt 2018). The delay of passengers

is not reported but passengers on a canceled train might be facing transfer

problems and probably also delays. The same holds for the tolerance of

small delays. They are not part of the statistic but in reality they may

cause connection conflicts for passengers (Die Welt 2017). For railways, as

service provider, a passenger friendly dispatching might be worth further

investigation.

In 2017 a simulation tool, called PANDA (Rückert et al. 2017, see Sec-

tion 2.3.2), was applied in a real-world project with Deutsche Bahn (DB),

the German railway provider. The tool detects connection conflicts and

simulates the consequences on the arrival delays of passengers to support

dispatchers in their decision making process (Deutsche Bahn 2017d).

Planning problems for railways are manifold, beginning with long-term

problems, such as building new infrastructure, to very short term problems,

e.g., taking dispatching decisions (Lusby et al. 2011). We concentrate on

the operational level where railway providers have to cope with daily dis-

turbances. Thereby in the literature one often distinguishes between small

disturbances leading to delays of several minutes (maybe even hours) and

large disruptions that will cause a temporary break-down of the system (see

e.g., Ghaemi et al. (2017)). When coping with small delays, dispatchers can

set different goals. One goal is to return as fast as possible to the original

7



II. A review on railway delay management

schedule and avoid further delay propagation in the network. We call it the

train perspective with the objective to minimize train delays. Another goal

is to minimize delays for passengers, i.e., the passenger perspective, on which

we concentrate.

In this review we give a comprehensive overview on DM literature but we

do not claim completeness. Therefore, we explain the characteristics of DM

and distinguish it from other research areas on the short-term level and show

how the planning process of Lusby et al. (2011) can be adjusted to the new

categories that have arisen. Then we review the literature in the field of DM

by developing a taxonomy scheme for operational problems containing five

different attributes.

The train perspective is usually the goal in real-time rescheduling (RTR)

where train delays are minimized. As we will see in Section 2.2.1, DM and

RTR differ in several aspects. There exist numerous reviews on RTR but

most of them contain only a part of the DM literature or neglect it at all.

In the following we will give a short overview on existing literature reviews

in related areas.

• The above mentioned review of Lusby et al. (2011) tackles all planning

problems over all levels in general and gives an overall view on the

railway industry. DM or RTR are not mentioned as own classes.

• Cacchiani et al. (2014) give a comprehensive overview on railway RTR.

Some works in DM are named but they are described shortly and not

the complete existing literature is considered.

• The same holds for Fang et al. (2015) where all problems in reschedul-

ing are addressed and compared with each other; its focus lies on so-

lution methods.

• Ghaemi et al. (2017) report about large disruptions and how to recover

from them with rescheduling models. DM models are not considered.

8



2.2. Preliminaries

• In Lusby et al. (2018) a review on robustness in railway planning is pre-

sented but DM is addressed only briefly. The major part is dedicated

to robust timetabling.

The paper is structured as follows: In Section 2.2 we first define the term

DM by introducing the main characteristics and then distinguish DM from

other problems on the operational level. In Section 2.3, a taxonomy scheme

for classifying the literature is proposed and applied to the related literature.

Finally in Section 2.4 some concluding remarks and ideas for further research

are given.

2.2. Preliminaries

In this section we first (Section 2.2.1) highlight the key criteria to classify a

model as DM model by exploiting a state-of-the-art model. In Section 2.2.2

we place the DM problem among other operational problems and illustrate

the influence of DM on other related fields.

2.2.1. Key criteria in DM

The level of detail of a railway network can be described from a macro-

scopic or microscopic point of view. In a macroscopic view, the network is

sketched in a “rough” way, consisting of stations and tracks connecting sta-

tions. But details such as the number of platforms or division of tracks into

block sections are neglected. In microscopic models these details are modeled

additionally, leading to blown up models with several more constraints.

The majority of the models in DM are macroscopic models while RTR

models are often modeled in a microscopic manner as the feasibility from an

infrastructure point of view is more important for the infrastructure man-

ager. We will see some exceptions in Section 2.2.2 and 2.3.2. In Kecman

et al. (2013) macroscopic and microscopic models for railways are compared

9



II. A review on railway delay management

in terms of performance and run time. They find out that macroscopic mod-

els perform quite well and find also feasible solutions for the network schedule

without taking a detailed view into account.

The macroscopic perspective can be modeled with event-activity networks

(EAN). We first introduce a model from Dollevoet et al. (2012) which is

built upon an EAN, to explain key criteria with this model at hand. The

model from Dollevoet et al. (2012) is an advanced model of the earlier model

from Schöbel (2001) by incorporating the opportunity to reroute passengers

in case of broken connections. The explanation for EAN and the model from

Dollevoet et al. (2012) are concise as we will only give an idea of them. For

a more detailed explanation we refer for EAN to Müller-Hannemann and

Rückert (2017) and for the model to the original source.

An EAN N = (E ,A) consists of events (nodes) e ∈ E and activities

(arcs) a ∈ A. Events can be categorized as arrival, departure, origin and

destination events, with

E = Earr ∪ Edep ∪ Eorg ∪ Edest.

Arrival and departure events represent the arrival and departure of a train

at a station with arrival and departure times. Origin and destination events

are related to passenger types p ∈ P, which are characterized by a unique

combination of the OD pair that passengers want to travel and their desired

departure time timep. Then, for each type p ∈ P, an origin event Org (p) ∈
Eorg and a destination event Dest (p) ∈ Edest is introduced as the start and

end point of its path through the network together with timep. Furthermore,

we assume to know the size wp of each passenger type p ∈ P.

Arcs result from activities in the directed graph. We distinguish between

driving, waiting and changing activities meaning that a train drives between

consecutive stations, waits at a station and passengers can change between

trains, respectively. Additionally, starting and finishing activities for pas-

10



2.2. Preliminaries

sengers (a ∈ Astart (p) and a ∈ Afin (p)∀ p ∈ P) are necessary in order to

start or finish a trip. The set of activities is then as follows:

A = Adrive ∪ Await ∪ Achange ∪ Astart (p) ∪ Afin (p) .

The minimum time required to perform an activity a ∈ Adrive ∪ Await ∪
Achange is declared as δa. Parameters for delays are denoted by ∆e as the

delay at an event e ∈ Earr ∪ Edep and ∆a the delay during an activity a ∈
Adrive∪Await. As the EAN N is a directed graph, we can identify all ingoing

arcs, denoted by I (e), and all outgoing arcs, denoted by O (e), of an event

e ∈ E .

To compute delays, first the starting point of a train schedule has to be

included by the parameter τe for the planned arrival or departure times of an

event e ∈ Earr∪Edep. The earliest possible arrival time for a passenger of type

p ∈ P without delays, denoted by tp, can be computed in a preprocessing

step with a shortest path algorithm (see König and Schön 2019 for an explicit

formulation). The preprocessing model corresponds to the DM problem

where all delays are set to zero, i.e., the preprocessing model only consists

of a modified objective function (Eq. (2.1)) and the shortest path problem

(Eqs. (2.6) - (2.8) and (2.11)) and possesses no delay constraints.

Actual arrival and departure times are determined by scheduling decision

variables, i.e., xe for the (potentially rescheduled) time of an event e ∈
Earr ∪Edep. The rescheduled times represent a timetable that is temporarily

feasible for delayed trains (a disposition timetable). Passenger delays are

measured when they exit a train at their final station. For this purpose,

another decision variable tp ∈ N is introduced that denotes the arrival time

of passenger type p ∈ P at the final destination.

In DM, wait-depart decisions have to be made; therefore, a binary decision

11



II. A review on railway delay management

variable za for the changing activities a ∈ Achange is introduced:

za =

1 if connection a is maintained,

0 otherwise.

The routing part of the model needs an additional binary decision variable

yap representing whether activity a ∈ A is included in a path of passenger

type p ∈ P . It is defined as follows:

yap =

1 if activity a is assigned to passengers of type p,

0 otherwise.

The complete model looks as follows (see e.g., Dollevoet et al. 2012, König

and Schön 2019):

min
∑
p∈P

wp
(
tp − tp

)
(2.1)

s.t.

xe ≥ τe + ∆e ∀e ∈ Earr ∪ Edep (2.2)

xe ≥ xe′ + δa + ∆a ∀ a = (e′, e) ∈ Adrive ∪ Await (2.3)

xe ≥ xe′ + δa −M1 (1− za) ∀ a = (e′, e) ∈ Achange (2.4)

yap ≤ za ∀ p ∈ P, a ∈ Achange (2.5)∑
a∈O(e)

yap = 1 ∀ p ∈ P, e = Org(p) ∈ Eorg (2.6)

∑
a∈O(e)

yap =
∑
a∈I(e)

yap ∀ p ∈ P, e ∈ Earr ∪ Edep (2.7)

∑
a∈I(e)

yap = 1 ∀ p ∈ P, e = Dest (p) ∈ Edest (2.8)

tp ≥ xe−M2 (1− yap) ∀ p ∈ P, e = Dest (p) ∈ Edest, a ∈ I (e) (2.9)

12



2.2. Preliminaries

za ∈ {0, 1} ∀ a ∈ Achange (2.10)

yap ∈ {0, 1} ∀ p ∈ P, a ∈ A (2.11)

xe ∈ N ∀ e ∈ Earr ∪ Edep (2.12)

tp ∈ N ∀ p ∈ P. (2.13)

In DM the focus is on the passenger, i.e., in “classical” DM models, the

objective function (Eq. (2.1)) minimizes the passenger weighted delay. Sim-

ilar formulations are “minimizing passenger inconvenience” or “minimize the

time spent by a passenger in the railway system”. For further objectives in

DM we refer to Dollevoet et al. (2018). Another objective in the railway

industry, taking the train perspective into account, is to minimize train de-

lays, i.e., minimizing deviations from a given train schedule. This is usually

the goal in railway RTR. Both objectives differ as decisions underlying a

passenger perspective are not necessarily easy to operate and might cause

further delays for trains. Decisions related to train delays can cause inconve-

nience for passengers. In Section 2.3.2, we present some hybrid models that

concentrate on passenger and train delay simultaneously.

The central question in DM for railways is if a connecting train should

wait for a delayed feeder train or depart on time. In Eq. (2.4), the decision,

if a transfer is possible, is determined with the binary variable za (i.e., za =

1, a ∈ Achange). Passengers are only allowed to change trains if sufficient

time for transferring between the arrival and departure of consecutive trains

is available, with M1 chosen large enough. While the question seems easy,

the answer is not trivial. If the connecting train departs without waiting,

transferring passengers miss their connection. Depending on the schedule,

they might face severe delays and might have to wait a long time before

they can continue their journey. When railway providers operate a cyclic

timetable, a train might drive with a periodicity of one or two hours. It is

even worse if this is the last train of the evening and passengers risk stranding
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somewhere. If the connecting train waits, it is also delayed and on the next

station other passengers are concerned with maintaining their connection.

The delay can spread through the network and repercussions will get visible

in other parts of the network. In König and Schön (2019), the emergence of

new connections due to delays is also possible, i.e., passengers can jump on

late trains for which in an undelayed case no connection was planned.

Time constraints determining new arrival and departure times including

possible source delays to yield the disposition timetable are modeled in con-

straints (2.2) - (2.3). An event cannot be scheduled earlier than it was

planned in the original timetable (Eq. (2.2)). The same holds for activities

in train schedules (Eq. (2.3)). Please note, to link the objective in Eq. (2.1)

with the rescheduled arrival time at a passenger’s destination, either auxil-

iary constraints that transfer the arrival time of passenger streams to the tp

variables are necessary (Eq. (2.9)). Or the objective has to be modified by

including the connection decision via the za variables directly therein, see

e.g., Schöbel (2007), Schachtebeck and Schöbel (2010).

A specialty of this model is to assume passenger rerouting, i.e., in case of

a missed or broken connection passengers can change their route and will

reach their destination via a different route. In earlier models (and some

younger models as, e.g., Dollevoet et al. 2015) this option for the passengers

is not incorporated. If passengers miss a connection, they have to wait a

full cycle time for the next train on the line. The rerouting is included via

a shortest path problem in Eqs. (2.6) - (2.8). An expanded set of decision

variables is therefore necessary: the yap variables representing the passenger

streams. To ensure that passenger changing activities are feasible only if the

corresponding train connection is maintained, constraints (2.5) are further

necessary. Finally, in Eqs. (2.10) - (2.13) the requirements for the variable

sets are defined.

Other DM models incorporate different kinds of capacities, leading to ad-

ditional constraints. So far, capacities of tracks have been taken into account
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in Schöbel (2009) and Schachtebeck and Schöbel (2010). In Dollevoet et al.

(2015) the capacity of stations is additionally included to the capacity of

tracks and in König and Schön (2019) train capacity constraints are consid-

ered. Some of them model these constraints with “Big M” constraints, so

the model remains a mixed integer program (MIP) (e.g., Schachtebeck and

Schöbel 2010). In König and Schön (2019) the resulting model is a mixed-

integer nonlinear program (MINLP) due to modeling passenger streams with

continuous variables. For a further description on these models, we refer to

Section 2.3.2.

2.2.2. Placement on the operational level in the railway

planning process

For the different levels in the railway planning process a scheme is provided

by Lusby et al. (2011) (see Figure 2.2). They divided the problems into three

different levels, strategic for long-term planning (several years), tactical for

mid-term (one year) and operational for short-term (one day) planning. The

different problems are interrelated and plans have to be coordinated.

For an explanation of the strategic problems we refer to Lusby et al.

(2011) since these are out of our scope. The main problem on the tacti-

cal level is the timetable generation (also mentioned as timetabling). To

compute a timetable, arrival and departure times of trains for all stations

on their respective line are determined. Track allocation is often part of the

timetabling as the timetable has to fulfill operational requirements such as

capacity restrictions on tracks to be feasible. For a comprehensive overview

on timetabling we refer to Cacchiani and Toth (2012). The allocation of

rolling stock such as trains (Cacchiani et al. 2012) and schedules for oper-

ating staff on trains, i.e., the crew (Caprara et al. 1998), depend also on

the timetable. For the operational level they call these problems real-time

management but this is only a rough classification. In the following we
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demonstrate how the operational level can be structured in different prob-

lems.

Figure 2.2.: Planning process in railways (Lusby et al. 2011)

In the last years several new problems, as e.g., disruption management and

DM, have arisen; some of them combining different levels and problems.

These emerging problems need to be placed in the planning process (such

as DM). In the following we will revise the part of the operational level and

provide a finer granularity of detail. Figure 2.3 presents an overview on

different problems (written in the bubbles) on the operational planning level

and related problems on the tactical level.

Arrows depict influences between different problems. Please note, in Fig-

ure 2.3 only arrows concerning operational problems are included. Between

the problems on the tactical level (and strategic level which is not shown

here) exist also arrows but they are beyond the scope of this paper. The size
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of the bubbles is representative for the amount of literature, e.g., as for RTR

exists more literature than for all other operational problems the bubble for

RTR is the biggest on that level. In the following we will briefly explain

neighboring problems of DM on the operational level and interrelations. We

further give examples for related literature on the neighboring problems and

the arrows. DM itself has been explained in Section 2.2.1. Everything lying

inside DM and DM + RTR will be discussed extensively in Section 2.3.2.

Figure 2.3.: Problems on the operational planning level

DM and timetabling

DM models are highly affected by timetabling as the majority of the mod-

els aims at developing disposition timetables. We will see several models

computing disposition timetables in the literature in Section 2.3.2.

The other direction, the influence of DM on timetabling leads to so-called

17



II. A review on railway delay management

robust timetables which try to cover some delay cases to make the timetable

robust against disturbances. DM is integrated in the computation of delay

resistant timetables in Liebchen et al. (2010). First a timetable is computed

and then evaluated in delay scenarios by solving it with DM models. The

resulting disposition timetables are used to revise the original timetables. In

Goerigk et al. (2014) the timetable is based on an EAN and takes a DM

model into account. Cicerone et al. (2012) develop a multi-stage recovery

model to integrate robustness into timetables with the aid of disposition

timetables.

DM, disruption management and rolling stock rescheduling

As mentioned above (see Section 2.2.1), operational problems can be dif-

ferentiated between minor disturbances and major disruptions. The goal

of disruption management is to develop strategies for handling large scale

disruptions with a long (possibly unknown) recovery time. The remaining

operational problems primarily account for minor disturbances. For further

information on disruption management we refer to Ghaemi et al. (2017).

In some approaches for disruption management, several characteristics

from the DM literature are used. Louwerse and Huisman (2014) aim to

maximize the service level offered to passengers. In case of a disruption a

disposition timetable is computed based on an EAN, similar to common prac-

tices in DM. Further enhancements for this model are proposed in Veelenturf,

Kidd, Cacchiani, Kroon and Toth (2016) by modeling the complete disrup-

tion management process. Binder et al. (2017) develop a multi-objective

integer program (IP) whereas one of the objectives is passenger satisfac-

tion. Therefore, disposition timetables considering a macroscopic view are

constructed.

A different approach is developed in Schmidt et al. (2017). Alternative

route choices of passengers in case of complete blockages are compared.

Thereby a decision has to be made if the passenger waits for the recovery of
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the system or takes another train (possibly leading to a detour). Decisions

are made under uncertainty, including probability distributions for some sce-

narios, and dominance relations between the strategies are revealed.

The problem of rolling stock rescheduling aims for an adjusted allocation

of the rolling stock after a delay has occurred. For rolling stock rescheduling

there exist influences from DM such as, e.g., the passenger perspective.

Kroon et al. (2014) include the passenger perspective by minimizing pas-

senger delays when rolling stock has to be rescheduled after large disruptions.

Therefore, passenger flows are simulated. In a follow-up paper of Veelenturf

et al. (2017) passenger behavior and improvements for passenger service are

evaluated. The model is formulated with a macroscopic view and adapts

stopping patterns of trains.

DM and RTR

RTR determines a feasible timetable after a disturbance occurred and the

actual timetable is no longer possible to operate. For related literature, see

the reviews presented in Section 2.1. In recent years the conjunction of DM

and RTR has become stronger. There exist even combined works where

both areas are merged that closely that we included an own bubble for these

models, called DM + RTR.

One example for DM models influenced by RTR is Schöbel (2009). In

Schöbel (2009) the capacity of tracks is added to the classical DM model.

It was the first try to include a microscopic view, too. We will explain this

model further in Section 2.3.2, see the classes of [pmadh].

For the other influence direction, the influence of DM on RTR, exist also

some approaches in the literature. The model from Caimi et al. (2012) for

example belongs to the RTR area and proposes a predictive traffic manage-

ment support system. The problem formulation is proposed as a reschedul-

ing model with a detailed network description. But in the objective function

customer satisfaction is maximized by weighting the delay and maintained
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connections, which is usually done in DM literature.

Examples for mixed approaches of DM + RTR are Corman et al. (2012a)

and Dollevoet et al. (2014). Corman et al. (2012a) integrate both the passen-

ger and the train perspective simultaneously in a bi-objective problem with

the aim of finding Pareto optimal solutions. The constraints are modeled

in a microscopic perspective; we therefore explain the model in the class of

[pmidh]. Dollevoet et al. (2014) instead solve a macroscopic model from DM

and a microscopic model from RTR iteratively. As the main objective is to

minimize passenger delay, we explain this work in the class of [pmade] (see

for both works Section 2.3.2).

Crew rescheduling determines feasible crew schedules after a disturbance

has occurred. It is similar to RTR but for staff instead of trains (see Vee-

lenturf, Potthoff, Huisman, Kroon, Maróti and Wagelmans 2016, Verhaegh

et al. 2017). There exist also works in crew rescheduling influenced by disrup-

tion management and influences from timetabling on RTR. In Figure 2.3 we

see further arrows between RTR, disruption management and rolling stock

rescheduling. These arrows will not be described further as they are not

influenced by DM but for related literature we refer to the above mentioned

reviews (see Section 2.1).

In Goerigk et al. (2013), the concepts of DM, timetabling and line plan-

ning are combined. DM is included by generating some delay instances and

evaluating robustness for the timetable and the planned lines. On the other

hand it is analyzed if the line concept and the timetable facilitate the emer-

gence of delays. This arrow is not included in Figure 2.3 since the area from

the strategical level is not part of the figure.

2.3. DM literature

In Section 2.3 the literature in DM is reviewed and classified. In Section

2.3.1 we will explain a taxonomy scheme for different attributes of models
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and methods on the operational level. Section 2.3.2 contains the literature

review structured with the proposed taxonomy scheme. We further give an

overview of applications in the real world.

2.3.1. Taxonomy

The existing literature segments often between a macroscopic and a micro-

scopic view to differentiate between DM and rescheduling. Sometimes it is

mentioned that DM models get their information for the decision making

process in an “online” or “offline” manner, see e.g., Schmidt (2013), Rückert

et al. (2017). However not all information statuses are covered with that,

i.e., stochastic models are not considered. Some attributes were already

mentioned above, in Section 2.2.1, when describing key criteria for DM.

The focus of the objective can either be on the passenger, we mark these

works with attribute level [p], or on the train, marked with [t]. In DM the

focus is usually on the passenger; therefore, the majority of the works will

be classified as [p]. Nevertheless there exist some mixed or hybrid models

where passenger and train focus are combined (as mentioned above in Section

2.2.2).

Delays can arise due to different causes and lead to disturbances of dif-

ferent length. As explained above (Section 2.2.1), different approaches are

necessary for either coping with minor disturbances [m] or large disruptions

[l]. DM usually considers delays in a smaller time window; the discussed

works will all assume minor disturbances [m].

The perspective on the railway network can be macroscopic [a] or micro-

scopic [i] depending on the level of detail. For DM it is common to model

the network in a macroscopic view, as shown in Section 2.2.1. Nevertheless,

we will see some exceptions, taking a microscopic perspective into account

in the following Section 2.3.2.

Another category of attributes is the available input to solve the problem.

We will differentiate in three attribute levels for the information at hand,
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according to Jaillet and Wagner (2010). If all delays are assumed to be

known so that the decision can be made under full information, we call the

model deterministic [d]; in literature often described as “offline models”.

For less available input, where not the exact delay is given but it is known

that delays follow a known distribution function, we will describe the model

as stochastic [s]. Moreover, the input data may be incomplete [n], i.e., no

information on the future is available at the point in time the decision has

to be made. Future information is obtained dynamically as time goes by;

therefore, this type is in literature often called “online models”.

Finally, we differentiate between exact solution methods [e] and heuristics

[h]. With the macroscopic view on a railway network the modeling is in

simplified terms with fewer constraints and binaries than RTR. The older,

more basic models, can often be solved exactly in a deterministic setting, as

we will see in Section 2.3.2. For more developed models, heuristic methods

are often applied additionally to shorten computation times.

A certain type of heuristics are so-called dispatching rules, where wait-

depart decisions are made through rule-based strategies. With these dis-

patching rules the decision can be made quickly and easily as only partial

information is necessary. A rule called regular waiting time (RWT) deter-

mines the amount of time a train is allowed to wait for a delayed feeder

train depending on the train type. Other dispatching rules are trains do not

wait at all (NW) and all trains wait for all (delayed) feeder trains (AW).

In the past some of them were used for practice in Germany, e.g., RWT: a

long-distance train is allowed to wait for a delayed long-distance train up

to 3 minutes (Stelzer 2016). Dispatching rules, especially NW, RWT and

AW, are therefore often used in numerical studies for comparison with opti-

mization models that are harder to solve, taking advantage of the fast and

easy computation; see, e.g., Dollevoet et al. (2012), Dollevoet and Huismann

(2014), Dollevoet et al. (2014), Bauer and Schöbel (2014), Schön and König

(2018).
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To go back to models under incomplete information, algorithms that solve

these models are called online algorithms. These algorithms have to take the

dispatching decision only with past and current information. They are often

further evaluated with different performance measures as, e.g. competitive

analysis (see e.g., Lan et al. 2008, Agrawal et al. 2014). Determining the

quality of an online algorithm is done by computing the ratio of an optimal

offline algorithm (the omniscient adversary) and the analyzed online algo-

rithm, the competitive ratio. The ratio indicates the quality of an online

algorithm, e.g., an algorithm is 2-competitive if the online algorithm finds a

solution that is never twice as bad as the optimal solution. Some dispatching

rules need no input data at all to determine a solution, e.g., an AW implies

that all trains always wait, independently of considering any information.

Some works in the literature run simulations of the network, trying to in-

clude as much real-world data as possible to simulate different processes.

Solutions are usually derived by applying some of the above mentioned dis-

patching rules as the goal is rather on the comprehension of the processes

than yielding an exact solution.

Attribute Attribute level
Focus passenger [p], train [t]
Delay cause minor disturbance [m], large disruption [l]
Perspective macro [a], micro [i]
Input deterministic [d], stochastic [s], incomplete [n]
Solution exact [e], heuristic [h]

Table 2.1.: Attributes and their corresponding attribute levels

Some works pursue the determination of the computational complexity of

different DM problems. The computational complexity gives a hint for the

computational effort to derive a solution for the considered problem by ana-

lyzing its worst-case time requirements as a function of the size of its input.

In the works reviewed, polynomial (P), nondeterministic polynomial (NP)
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and PSPACE problems, i.e., the set of all problems that can be solved on a

deterministic Turing machine using space restricted by a polynomial in the

input size, are evaluated. For a deeper explanation we refer to Papadimitriou

(2003). All categories and attributes are summarized in Table 2.1.

2.3.2. Literature classification

In the following we will go through the different classes in DM literature.

These classes are created with the attribute levels from Table 2.1 and we

group works according to their attribute level combination together. Some

works contain more than one attribute level in the respective attribute, these

works can be considered as hybrid models. Other authors have developed

more than one model in their works differing in their attribute level. In this

case we classify the work, to the best of our knowledge, according to the

attribute level that dominates. As all the reviewed works have minor distur-

bances and a passenger focus (a few works focus additionally on trains) in

common, we differentiate the classes according to the attribute’s perspective

and input. Different solution methods will be explained therein.

Macroscopic deterministic models [pmade] + [pmadh]

The first class, representing the largest class, considers works with a macro-

scopic perspective and deterministic input. Solution methods vary, we will

see standard optimization models in DM, as introduced in Section 2.2.1 that

can be solved exactly as well as different heuristic methods.

The model of Schöbel (2001) is formulated as a MIP based on an EAN with

the objective of minimizing passenger delay. Solutions can be obtained by

using standard MIP solvers. All consecutive standard optimization models

are built upon an EAN. This model is further enhanced in several works

considering different aspects DM is confronted with.

In Schöbel (2007) the DM model, which is based on an EAN (Schöbel
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2001), is compared to a path-based formulation and shown to be equivalent.

A generalized IP formulation is given by computing exact passenger weights

for the objective function. In a numerical study the generalized formulation

is analyzed and the size of the EAN is reduced by deleting redundant events.

The proposed DM problem can be solved with standard MIP solvers. Ad-

ditionally, an exact solution algorithm is proposed that splits the problem

into independent subproblems and solves them individually.

Heilporn et al. (2008) derive a variable reduction for the DM problem in

Schöbel (2001). They model the DM problem in two versions by neglecting

departure events and therefore reducing the number of decision variables.

The equivalence of the new modeling variants and the model from Schöbel

(2001) is shown. The first model can be solved with standard solvers while

for the second one a constraint generation approach is proposed. The two

modeling variants differ in their performance depending on the size of the

network.

In Gatto et al. (2004) the complexity of the DM problem with a single

delayed train is evaluated. The authors analyze the number of passenger

transfers and derive a minimum cut reduction. They further examine the

structure of the network by applying a dynamic program. Additionally, the

NP-completeness of a problem with a single delayed train and allowance for

passengers to change their route is shown.

The work of Gatto et al. (2004) is complemented in Gatto et al. (2005)

where the difference for DM problems that are polynomially solvable and the

ones that are NP-complete are exposed. They find out that the complexity

depends on factors such as the network topology and slack times in the

schedule.

Ginkel and Schöbel (2007) formulate a bicriteria DM problem, that mini-

mizes the missed connections for passengers and train delays simultaneously.

In the objective function the focus is on passengers [p] and trains [t] as well.

Therefore, we can classify the model as
[
p
tmade

]
. The aim is to find Pareto
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solutions for the multicriteria model. The model has similarities to project

planning and can be solved exactly by adapting a project planning method.

Efficient solutions can be found quickly (< 1 min), so the authors suggest

that the model could also be used in settings under incomplete information.

Further, a proof for the NP-completeness of the bicriteria DM problem is

given.

The following works further enhance the DM problem by adding differ-

ent restrictions making the optimization models more realistic. First steps

towards considering the capacities of tracks in a DM model have been pro-

posed in Schöbel (2009). The infrastructure constraints are modeled in a

microscopic view and the model can therefore be seen as a special case.

The model is a hybrid, consisting of the attribute levels [a] and [i] as well.

Therefore, the model in Schöbel (2009) can be described as
[
pma

i dh
]
. Two

heuristics are proposed; one that fixes the order of trains and then solves DM

with additional precedence constraints. Secondly, a heuristic that solves the

DM problem without track capacities and then resolves the problem with

headway constraints is developed.

In Schachtebeck and Schöbel (2010), taking the capacity of tracks into

account and considering the order of trains and their headways are further

developed. Priority constraints are added to the IP of the DM problem.

The problem can be solved optimally. But the additional constraints lead to

longer computation times. Therefore, a preprocessing step was included to

reduce the problem size similar to Schöbel (2007). After the preprocessing,

the model performs significantly faster. Additional heuristics are also pro-

posed. These heuristics decompose the problem by solving a DM problem

with fixed priorities of trains in one step and the order of trains on a line in

another step. The first two heuristics solve the subproblems in varying se-

quences. For the last two heuristics, in a first step the wait-depart decisions

are fixed, too. The heuristics show a significantly shorter computation time

but the relative error of the solution grows with the size of the network.
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The capacity of stations is taken into account in Dollevoet et al. (2015).

The DM model with capacity of tracks (Schachtebeck and Schöbel 2010)

is supplemented with constraints that schedule the platform track assign-

ment in stations. The model can be solved exactly but for larger instances

an iterative heuristic is developed. Firstly, the platform track assignment

is fixed and based upon this wait-depart decisions and priorities of trains

are determined. Afterwards the platform track assignment is rescheduled

for each station individually. This procedure can be repeated until no fur-

ther improvement is possible. The platform track assignment alone can be

solved in polynomial time. The passenger delays could be reduced but the

program reschedules a lot of trains which might lead to further passenger

inconvenience.

Dollevoet et al. (2012) consider the aspect of passenger rerouting, for the

model formulation see Section 2.2.1. In other DM models, it is assumed that

passengers, who miss a connection, have to wait a complete cycle time for the

next train. In Dollevoet et al. (2012) a shortest path problem is included to

look for alternative routes for passengers. The model can be solved exactly

but again the additional constraints extend solution times. The DM problem

with rerouting is compared to the “classical” DM problem and a never-wait

policy; the problem with rerouting outperforms the others.

In a follow-up paper from Dollevoet and Huismann (2014) heuristics for

larger instances of DM with passenger rerouting (as described in Dollevoet

et al. (2012)) are evaluated. The penalty for a missed train connection

is accommodated by a model that is used in Schöbel (2007) to reveal the

assumption that passengers wait a complete cycle time. Additionally an

iterative heuristic is proposed that solves the model from Schöbel (2007) first

and then computes new passenger routes. The proposed heuristics are tested

against dispatching rules and the exact solution. Among the heuristics, the

iterative heuristic performed best with a quite small gap to the optimal

solution and in shorter computation time.
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First attempts to determine the complexity of DM with passenger rerout-

ing have been proposed in Dollevoet et al. (2012). Schmidt (2013) proves

DM with passenger rerouting to be NP-hard. For one OD-pair the problem

is strongly NP-hard. A polynomial-time-algorithm is developed that is able

to find an optimal solution in certain cases. For general DM problems with

passenger rerouting, in the sense that there is more than one OD-pair, the

calculation of lower bounds is proposed.

In König and Schön (2019) the capacity of trains is taken into account and

spill effects are evaluated. The model further considers passenger rerouting

as it is done in Dollevoet et al. (2012). Passenger streams are broken down

into fractions leading to a MINLP. Three different linearizations (exact and

approximate) are proposed. The approximation is based on McCormick en-

velopes that relax the problem. While the exact linearizations are formulated

once with SOS1 constraints (special ordered sets of type 1) and the second

with a logarithmic representation of integer variables. In a numerical study

the three new proposed approaches are compared to the DM model from the

literature. A considerable spill effect is measured as the DM model with train

capacities outperforms the reference model neglecting train capacities in ev-

ery scenario. For larger test instances, the exact formulations had problems

to deliver results in a reasonable time while the McCormick approximation

was able to.

A special case is the model of Dollevoet et al. (2014), as it is a combination

of a macroscopic DM model ([pmade]) and a microscopic rescheduling model

([tmide]). Both models are solved iteratively by first determining which

connections to drop and which to maintain. For the achieved disposition

timetable the microscopic model determines the feasibility for operating. The

DM model is based on the model from Dollevoet et al. (2012) by only taking

the scheduling constraints into account to derive the disposition timetable.

Since the main objective of the approach is to minimize passenger delay, we

assign this model to DM.
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A different approach for modeling DM models is presented in Suhl et al.

(2001) and Kliewer and Suhl (2011) (for the description of Kliewer and Suhl

(2011) see the class of [pmanh]). These models stem not from EAN. In

Suhl et al. (2001) a model for scheduling arrival and departure times with a

nonlinear objective function is developed. In the objective function different

weights are assigned for the waiting place of the passengers (in the train or

on the platform) and the additional waiting time to describe passenger in-

convenience. The model is solved using SOS2 variables (special ordered sets

of type 2) and the resulting MIP can be solved also for large instances. The

model is evaluated for a few scenarios by deriving a solution solely on basis of

the optimization compared to an optimization considering waiting time rules

for trains (see [pmanh]). It turns out that the optimization without waiting

restrictions for trains performs better. In Suhl et al. (2001), two further ap-

proaches are evaluated independently which belong to different classes. As

the macroscopic and deterministic attribute levels outweigh, we assigned the

overall work to this class. Suhl et al. (2001) introduce also several dispatch-

ing rules, e.g., AW, NW, RWT (see Section 2.3.1), as they have been used for

the German railways. These heuristics belong to the class of [pmanh]. These

dispatching rules are evaluated with different waiting times for RWT and it

turns out that AW performs badly, especially for larger delays. RWT and

NW perform quite similar whereas NW is slightly better. RWT shows the

best performance for waiting times of 2 or 3 minutes. Moreover, Suhl et al.

(2001) propose a multi-agent system that is able to behave autonomously,

classified as [pmidh]. The microscopic view is appropriate as agents rep-

resent microscopic items. The system consists of a passenger generator, a

topology manager for the infrastructure of the network and an assistant for

dispatchers. Everything is controlled by a simulation server. The German

network served as test basis by applying NW and AW in the simulation.

With the aid of the simulation passenger information for dispatchers can be

gained.
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These software agents are further developed in Biederbick and Suhl (2007).

The complete German network is implemented in the simulator. Passengers

can be directed individually with a “passenger router”. In a numerical study

several dispatching strategies are tested with and without passenger rerout-

ing. Passenger related dispatching strategies show thereby a good perfor-

mance.

Berger, Blaar, Gebhardt, Müller-Hannemann and Schnee (2011) introduce

a dynamic decision support system that includes updating delay information

and respective new arrival and departure times as well as a simulation of

passenger flows. The objective of minimizing passenger delay is reformulated

in three different ways. The underlying EAN takes the passengers as multi-

commodity flow into account. Solutions are obtained by an algorithm that

uses the RWT of the German railways and updates information on passengers

and timetables repeatedly. The disposition tool is able to demonstrate the

effects of the dispatching decisions in the network in reasonable time.

A combination of optimization and simulation is proposed in Kanai et al.

(2011) that minimizes passenger disutility. Several congestion formulas lead-

ing to different disutility functions in the objective are evaluated. Train traf-

fic and passenger flows are simulated simultaneously. The optimization part

determines if connections should be maintained by applying a tabu search

heuristic. In a numerical study the different objectives and dispatching de-

cisions are varied and it turns out that the interaction of simulation and

optimization leads to decreased passenger disutility.

Rückert et al. (2017) introduce PANDA, a web-based decision support

tool for dispatchers. PANDA reflects real-time information on passenger

flows and evaluates the effects of wait-depart decisions in the network. The

model formulation is proposed on basis of an EAN that determines how stable

a connection is and decides on the amount of affected passengers. A case

study with the data of the German network shows that passengers benefit

from PANDA’s recommendation. In a second case study the authors analyze
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the impact of an early rerouting which decreases the delay of passengers as

well. Currently, PANDA is used in a study from DB on the German network

as mentioned in Section 2.1.

Enhancements for PANDA are studied in Lemnian et al. (2016) by con-

ducting a sensitivity analysis and expanding the scope of wait-depart deci-

sions. In the sensitivity analysis the amount of passengers that is needed to

change a dispatching decision of PANDA is analyzed. An IP formulation is

given and experiments are performed revealing that decisions are either very

stable or very unstable. The impact of joint subsequent waiting decisions

is further evaluated in a conflict tree to take the propagation of decisions

through the network into account. Experiments therefore show no signifi-

cant impact.

Macroscopic incomplete information models [pmanh]

The following class considers also a macroscopic view but possesses incom-

plete information. In theses works different heuristic methods are developed.

Kliewer and Suhl (2011) use also a deterministic model, a simplified model

from Suhl et al. (2001), in order to obtain a benchmark by computing ex-post

optimal solutions and to derive a re-optimization policy for a large numerical

study on dispatching rules. As the main investigation is on the rule-based

methods we classify the work of Kliewer and Suhl (2011) as [pmanh]. Kliewer

and Suhl (2011) propose further dispatching rules on basis of transferring

passengers in the different trains. In the numerical study these passenger

dependent strategies and dispatching strategies without considering informa-

tion of passengers, (as mentioned above, e.g., RWT, AW, NW) are compared

to the optimization with full information and a dynamic re-optimization pol-

icy. The passenger related strategies outperform the other dispatching rules

and even the re-optimization policy. The advantage of these rules is that

they can be applied easily and much faster with less information (some need

none at all).
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Bauer and Schöbel (2014) developed dynamic heuristics by computing a

solution for deterministic models repeatedly when new information is avail-

able. The model from Schachtebeck and Schöbel (2010) is modified and

solved with and without track capacities. To yield a robust algorithm, a

learning strategy that is able to cope with incomplete information is pro-

posed. The solution is obtained by iteratively performing a re-optimization.

In a numerical study the heuristics outperform simple dispatching rules and

are able to compete with the solutions derived in deterministic settings.

Some of the works within this class propose online algorithms for different

scenarios and determine the competitive ratio of the algorithms, a perfor-

mance measure as introduced in Section 2.3.1. Anderegg et al. (2002) are

the first who propose a bound for the competitive ratio for the solution of a

simplified DM problem with unknown delay. The central decision that has

to be made is how long a vehicle should wait at a station for another de-

layed vehicle with focus on minimizing passenger waiting time. An extended

version of the paper can be found in Anderegg et al. (2009).

In Gatto et al. (2007) the DM problem on a single train line under in-

complete information is compared to the Ski-Rental problem, a well-known

problem from the literature. The authors prove that this DM problem can

be solved with algorithms, belonging to the class of 2-competitive online al-

gorithms. The exact value of the competitive ratio is determined to be the

golden ratio (a value of ≈ 1.618).

In a follow-up paper, Gatto et al. (2008) consider the DM problem from

Gatto et al. (2007) for a weakened adversary (usually the opponent is as-

sumed to be omniscient). Further special cases are evaluated to close some

gaps on the bounds for the competitive ratio.

Krumke et al. (2011) model the DM problem from Gatto et al. (2007)

as a two-person zero sum game and achieve an improved lower bound for

the competitive ratio. The problem is further extended for the case of two

possible delays for passengers and therefore a 3-competitive online algorithm
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is presented. Additionally, they propose a new objective that models the

operator’s total profit and find out that no deterministic algorithm can have

a bounded competitiveness for this problem.

In Bender et al. (2013) the DM problem of a single train line from Gatto

et al. (2007) is evaluated with other measures than the competitive analysis.

The adversary is weakened, i.e., assuming that for the DM problem the delay

at the following station is known (the algorithm can use “lookahead”). They

measure the performance of the proposed online algorithm with weaker ver-

sions of the competitive ratio, namely comparative and average-case analysis

where the expected cost of the online algorithm is determined with a proba-

bility function. Furthermore, a stylized stochastic program is developed that

includes the number of delayed passengers as a discrete random variable. The

decision to wait for a delayed feeder train is allowed to be taken only once.

For a small example of three stations, the stochastic program outperforms

the algorithm from average analysis and a balancing algorithm from litera-

ture. Due to the complex and time consuming computation, the stochastic

program was not part of the numerical study. But with the stochastic pro-

gram, ideas for the class of [pmash] are proposed.

Macroscopic stochastic models [pmash]

The class of macroscopic stochastic models is rather scarce. All works in this

class derive their solution heuristically.

Berger, Hoffmann, Lorenz and Stiller (2011) develop TOPSU-RDM, a

simulation platform that evaluates different heuristics for the DM problem,

drawing delays from underlying distribution functions. The platform com-

bines the tasks of building a model, finding an appropriate solution algo-

rithm and experimentally evaluating it. The implemented solution algo-

rithms, called engines, contain several dispatching rules and a Monte Carlo

tree search. The performance of the engines is evaluated and the Monte

Carlo shows a rather poor performance as the solution time is restricted.
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Furthermore, a proof that making wait-depart decisions under incomplete

information is PSPACE-hard is also given. The decisions depend on the

global structure of the network, the schedule, the passenger routes and the

imposed delays.

A stochastic dynamic program (SDP) incorporating delay distributions

from statistical literature is developed in Schön and König (2018). Potential

recourse actions for the decision process are determined on single train lines,

considering effects on feeder and connecting trains. The objective function is

modeled with a Bellman equation that minimizes passenger delays. A state

space reduction speeding up solution times is applied for the solution. The

SDP outperforms simple dispatching rules and a re-optimization strategy in

a numerical study and yields results close to a full-information model.

Microscopic deterministic models [pmidh]

Finally we review DM models with a microscopic perspective on the network,

consisting only of a small number of works. All models are deterministic and

derive their solutions with heuristics [pmidh].

Corman et al. (2012a) propose a hybrid approach that combines goals of

DM and RTR. The bi-objective function minimizes train delays and missed

passenger connections. Moreover, the model is built on the basis of an al-

ternative graph with detailed infrastructure components as it is common for

RTR. We therefore classify this work as
[
p
tmidh

]
. To determine the Pareto

front of non-dominated schedules, two heuristics are proposed and tested on

data of the Dutch railways. The “compromise” solutions obtained by both

heuristics seem promising for taking good dispatching decisions.

In Corman et al. (2017) DM and RTR are merged together yielding a “mi-

croscopic DM model”. The microscopic perspective models the infrastruc-

ture while the passenger-centric objective aims to minimize the time spent in

the system by passengers. Lower and upper bounds for the passenger flows

of the resulting MIP are proposed. Several heuristics are designed
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Attribute
Publication

Focus Perspective Input Solution
Schöbel (2001) p a d e
Gatto et al. (2004) p a d e
Gatto et al. (2005) p a d e
Schöbel (2007) p a d e
Heilporn et al. (2008) p a d e
Ginkel and Schöbel (2007) p, t a d e
Schöbel (2009) p a, i d h
Schachtebeck and Schöbel (2010) p a d e, h
Dollevoet et al. (2012) p a d e
Schmidt (2013) p a d e
Dollevoet and Huismann (2014) p a d h
Dollevoet et al. (2014) p, t a d e
Dollevoet et al. (2015) p a d e, h
König and Schön (2019) p a d e, h
Suhl et al. (2001) p a, i d, n e, h
Biederbick and Suhl (2007) p a, i d h
Berger, Blaar et al. (2011) p a d h
Kanai et al. (2011) p a d h
Rückert et al. (2017) p a d h
Lemnian et al. (2016) p a d h
Kliewer and Suhl (2011) p a d, n e, h
Bauer and Schöbel (2014) p a n h
Anderegg et al. (2002) p a n h
Anderegg et al. (2009) p a n h
Gatto et al. (2007) p a n h
Gatto et al. (2008) p a n h
Krumke et al. (2011) p a n h
Bender et al. (2013) p a n, s h
Berger, Hoffmann et al. (2011) p a s h
Schön and König (2018) p a s h
Corman et al. (2012a) p, t i d h
Corman et al. (2017) p i d h
Xu et al. (2018) p i d h

Table 2.2.: Summary of discussed literature on DM neglecting the attribute
level [m]
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that fix the train order or solve parts of the model iteratively. In a large

numerical study with data from the Dutch railways the heuristics were able

to solve also larger problem instances and reduce passenger waiting times.

In Xu et al. (2018) wait-depart decisions for last connections on a day’s

end are made. The model incorporates the passenger’s choice behavior for

transferring with the goal of maximizing the number of maintained connec-

tions and minimizing average waiting times. The constraints are formulated

in a microscopic view to ensure feasibility of the disposition timetable. A

genetic algorithm is developed and tested in a case study of Beijing’s subway.

With the aid of the algorithm maintained connections of last trains could be

increased.

Country Publication
Belgium Heilporn et al. (2008)
China Xu et al. (2018)
Germany Bauer and Schöbel (2014), Berger, Blaar et al. (2011), Berger,

Hoffmann et al. (2011), Biederbick and Suhl (2007), Ginkel
and Schöbel (2007), Kliewer and Suhl (2011), König and
Schön (2019), Lemnian et al. (2016), Rückert et al. (2017),
Schachtebeck and Schöbel (2010), Schöbel (2001), Schöbel
(2007), Schöbel (2009), Schön and König (2018), Suhl et al.
(2001)

Greece Bender et al. (2013)
Japan Kanai et al. (2011)
Netherlands Corman et al. (2012a), Corman et al. (2017), Dollevoet and

Huismann (2014), Dollevoet et al. (2012), Dollevoet et al.
(2014), Dollevoet et al. (2015)

Table 2.3.: Applications on real-world data

Finally all discussed works are summarized for each attribute class in Table

2.2, sorted in the sequence as discussed above. As all of the mentioned works

relate to small disturbances [m], a column for the attribute of delay cause

was omitted.
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Applications on real-world data in the reviewed literature of Section 2.3.2

are presented in Table 2.3 for every country in alphabetical order. The

applications are distinguished between countries the data set is taken from.

The majority of the works are applied to the German network, which is a

massive network requiring a lot of operational services every day, followed

by the Dutch network. Some works from the class of [pmade] and [pmanh]

are missing as these works contain theoretical considerations only. Other

networks in the world that are not mentioned here might be also worth

investigation providing further opportunities for research.

2.4. Conclusion and future research

We have reviewed the literature for railway DM problems. The area of DM

models is embedded on the operational level of planning problems among

related short-term problems. Influences between DM and the other prob-

lems such as, e.g., disruption management, RTR etc. are depicted. For the

short-term problems, a new taxonomy scheme is developed that classifies the

literature on the basis of five different attributes and their attribute levels.

The taxonomy is applied to classify literature assigned to DM. With this

classification scheme areas with scarce or even no works can be detected

easily.

As seen in Section 2.3.2 all models have minor disturbances in common

and nearly all of them focus on passengers only. There exist only three

exceptions taking a train perspective additionally into account (Ginkel and

Schöbel (2007), Corman et al. (2012a), Dollevoet et al. (2014)). Further-

more, a macroscopic view is included in most of the works considered. Only

six works build the model on a microscopic view, three of them together

with a macroscopic view. This reflects the key criteria as explained in Sec-

tion 2.2.1. Moreover, models with deterministic input represent the largest

part of the existing literature (about two-thirds of all papers). Exact and
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heuristic solution methods therein are represented half-and-half. The other

third consists of models with incomplete information, usually solved with

heuristics. Stochastic models are rather rare, in Berger, Hoffmann, Lorenz

and Stiller (2011) a simulation platform using stochastic distribution func-

tions is presented, Bender et al. (2013) briefly sketch a stochastic program

and Schön and König (2018) model an SDP for a single train line. When

considering the stochastic nature of delays, the question arises why not more

stochastic approaches exist. One may argue that taking stochasticity into

account may lead to problems that are harder to solve or cannot be solved

fast enough for real-world applications. On the other hand, including de-

lays after a known distribution results in models that are closer to the real

world. As a deterministic setting seems to be too optimistic while a setting

where nothing about the future is known might be too pessimistic, stochastic

models could be a compromise that are worth future investigation.

The passenger perspective could be improved by learning more about pas-

senger patterns, as e.g., in Ortega et al. (2018). Currently, DB also uses

passenger patterns to represent different passenger groups. They developed

in their research department the “persona concept” to better understand

individual needs of their customers (Deutsche Bahn 2015). At the moment

it is used for product development but it might also be helpful for a passen-

ger oriented dispatching. A further possibility is to integrate the passenger

directly into dispatching decisions with an automated feedback system as it

is proposed in Stelzer et al. (2016).

A different strategy to model short-term problems with an even stronger

focus on the passenger is done in Lijesen (2014). They anticipate the deci-

sions of passengers how to reach the destination. In Keyhani et al. (2017) the

latest point in time, when the journey of a passenger should start to reach

his destination in time with a probability of nearly 100% is determined. The

included delay distributions originating from historical delay data of DB.

The decision making process from a passenger’s point of view is also used
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in Schmidt et al. (2017) (see Section 2.2.2). They show how a passenger

should decide for the continuation of his trip when a disruption of unknown

dimension has occurred. This might be worth further investigation as all of

these works take stochasticity for the delay into account and are “close to

the customer”.

Nearly all models in the literature on DM assume that passengers will

always reach (even if delayed) their destination. In reality, passengers might

abort their journey (be it on their own decision or due to external circum-

stances). In König and Schön (2019) a first model that focuses on spilling

passengers due to overloaded trains is presented. But further reasons for

aborted trips should be analyzed, e.g., if no alternative connection is possi-

ble anymore. In last train scheduling, a special emphasize is put on how to

dispatch the last train of the day. So far, only literature on metro systems

exists, such as, e.g., Kang et al. (2015) with focus on timetable rescheduling

and Xu et al. (2018) (see the class of [pmidh] in Section 2.3.2). Last train

scheduling might be also interesting for railway providers of long-distance or

regional trains, especially when railway companies have to pay for a hotel

if a passenger misses the last connection of the day (a common practice in

Germany, see Deutsche Bahn (2019)).

An overview of applications on real-world data in the reviewed literature

is provided in Table 2.3. Numerical studies are done for some countries

more often (e.g., Germany and the Netherlands) than for others. For a lot

of countries, no studies on DM exist at all and a first step towards a pas-

senger oriented delay research might be worth looking at. Furthermore, the

infrastructure of the investigated railway networks differs in size and shape.

While, e.g., the network in Germany is massive and rather unstructured,

the network in France has the shape of a star, concentrated on Paris (SNCF

2019) and Japan’s Shinkansen runs on lines from north to south (Japan Rail

Pass 2019). The evaluated literature always focuses on one country but it

might be also interesting to compare the performance of the same DM model
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or dispatching rule on networks of different countries.

In Figure 2.3 railway problems on the operational level and their intercon-

nections are shown. Several links between these problems already exist, but

literature for combined approaches is rare, e.g., Veelenturf, Kidd, Cacchi-

ani, Kroon and Toth (2016) consider aspects from DM and rolling stock in

case of disruptions. Focusing on the delay for passengers or restoring a valid

timetable solely might be falling short of an “optimal” solution for handling

disturbances in the railway system. For railway providers it seems desirable

to run holistic models that are able to serve passengers’ and operators’ needs.

The interconnection between the different problems on the operational

level offers additional potential for further research. This seems to be not

only possible for railways but also for other industries. A first work, mo-

tivated by railway DM is proposed in Santos et al. (2017). The authors

introduce the Airline DM problem considering priority decisions and capac-

ity restrictions for an airport; it is based (among others) on the model from

Schachtebeck and Schöbel (2010).
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Chapter III

A stochastic dynamic

programming approach for

delay management of a single

train line

with Cornelia Schön1

Abstract

Railway delay management considers the question of whether a train should

wait for a delayed feeder train. Several works in the literature analyze these

so-called wait-depart decisions. The underlying models range from rules of

thumb to complete network optimizations. Almost none of them account

for uncertainties regarding future delays. In this paper, we present a multi-

stage stochastic dynamic programming (SDP) model to make wait-depart

decisions in the presence of uncertain future delays. The SDP approach

explicitly accounts for potential recourse actions at later stations in a look-

ahead manner when making the decision in the current stage. The objective

1The research presented in this chapter is based on a paper entitled “A stochastic dy-
namic programming approach for delay management of a single train line”, coauthored
with Cornelia Schön.
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is to minimize the total delay experienced by passengers at their final station

by recursively solving Bellman equations. We focus on a single train line but

consider the effects on direct feeder and connecting trains. In an extensive

numerical study, we compare the solution quality and computational effort

of the SDP to other optimization approaches and simple heuristic decision

rules that are frequently used in delay management. The SDP approach

outperforms the other approaches in almost every scenario with regard to

solution quality in reasonable time and seems to be a promising starting point

for stochastic dynamic delay management with interesting future research

opportunities.

3.1. Introduction

The dispunctuality of trains is a major concern of passengers and railway

service providers alike. By analyzing a sample of approximately 500,000 ar-

rival times of long-distance trains of the German railway company Deutsche

Bahn (DB) at 20 train stations in Germany between July 2010 and February

2011, Stiftung Warentest (2011) found that only 67% of trains arrived within

5 minutes of their scheduled arrival time (see Fig. 3.1). While DB reported a

slightly better value for “5-minute punctuality”2 in 2010 based on a sample

of approximately 20,000 monthly long-distance train runs (considering the

arrival times at all intermediate and final stations of these runs), the com-

pany, being the largest railway operator and infrastructure owner in Europe,

has not reached its strategic target of 80% 5-minute punctuality since 2011,

as indicated in Table 3.1 (Deutsche Bahn 2016b).

From the passenger’s perspective, travel time and punctuality typically

rank among the most important factors (along with price, comfort, and

ticket-related conditions such as flexibility) that determine customer satis-

faction and a passenger’s decision to choose the train as a mode of transport,

2i.e., all trains with delays of less than 6 min
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Figure 3.1.: Distribution of delays based on a sample of 496,119 arrivals of
long-distance trains (Intercity-Express (ICE), Intercity (IC),
Eurocity (EC), night train) at 20 German train stations
(Stiftung Warentest 2011)

as empirical studies show (Hunkel 2001, Perrey 2000). Therefore, the cre-

ation of robust timetables at the mid-term planning level and the employ-

ment of short-term delay management techniques are important instruments

for a railway service provider to maintain sufficient service quality levels in

the face of unforeseen disruptions.

The central decision in railway delay management concerns a question that

might arise at every station of a train line: should the focal train wait for

a delayed feeder train that carries passengers who have planned to transfer

to the focal train? If the focal train does not wait, those passengers on the

delayed feeder train will miss their connections and have to wait for the next

train; if the focal train waits, it will incur a delay. This delay might negatively
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affect through passengers (i.e., those who had boarded the focal train at an

earlier station and are merely passing through the current station, seeking

to disembark later), as well as on-time passengers boarding at later stations.

In the delay management literature (reviewed in detail in Section 3.2), ap-

proaches range from rules of thumb to complete network optimizations. In

optimization approaches, the delay management decision is typically made

with the objective of minimizing the total passenger-weighted delay. The

delay of a passenger may either refer to the sum of delays at all intermediate

stops or to the delay at the final destination of the passenger’s itinerary. We

adopt the latter perspective, which captures passenger flows from origins to

final destinations, and assume that a passenger is more concerned about the

ultimate delay at his or her final destination rather than those occurring at

intermediate stops of the journey.

2009 2010 2011 2012 2013 2014 2015 2016
81.2% 72.4 % 80.0% 79.1% 73.9% 76.5% 74.4% 78.9%

Table 3.1.: Share of arrivals (at intermediate and final stations) of long-
distance trains with 5-minute punctuality (annual avg. for
the periods 2009-2015 see Deutsche Bahn 2016b; for 2016 see
Deutsche Bahn 2016c)

Deterministic problem formulations for delay management, typically mixed-

integer linear or nonlinear mathematical problems (MIPs or MINLPs), are

based on expected future delays, i.e., forecasts. These models can only cope

with uncertainties in a very limited way, e.g., by performing a re-optimization

at each time when reality differs from expectations. Since the re-optimization

needs to be performed instantly in real time, efficient, usually heuristic,

solution procedures are required to solve the MIP.

Still, the assumption of known future delays in delay management is a very

strong one, and in reality, deviations from the mean might render decisions

from deterministic delay management approaches to be suboptimal. To see
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this, consider the following academic example where we assume a system

with three trains, f , k, and c. Train k is the “focal” train for which a

wait-depart decision has to be made, currently approaching its second-to-

last station, N − 1, where f is a delayed feeder train to k. In general, we

consider a train to be a feeder (connecting) train for the focal train if there

are passenger itineraries that include scheduled transfers from the feeder to

the focal train (from the focal train to the connecting train). More precisely,

train f will be arriving with a known delay of 5 minutes at station N − 1

and is carrying 30 passengers desiring to change from f to k. Train c is a

seamlessly connecting train at k’s final station N , which is expected to be 5

minutes late as well. While approaching station N -1, train k is carrying 100

through passengers desiring to travel on to station N in order to change to

train c. Given these data, should train k wait for the delayed feeder f at

station N−1? In a deterministic setting where k and c both have an effective

delay of 5 minutes, waiting would help the 30 passengers from f to make

their connection to k without compromising the 100 through passengers in

train k. Thus, it would be better to wait. In a stochastic setting, this is not

necessarily the best choice. To see this, assume that train c has either a delay

of 0 or 10 minutes, both with a probability of 50%, yielding the expected

delay of 5 minutes. If train k waits for train f for 5 minutes, the connection

from f to k is maintained for 30 passengers at station N − 1. However,

with a chance of 50%, a total of 130 passengers will not reach connection

c at station N . Depending on the cycle times of train k and c (i.e., the

time difference between two trips of the same line in periodic timetables)

the expected passenger weighted-delay might be far smaller if train k does

not wait for f in the stochastic setting. Accordingly, it would be desirable

to take uncertainties of future delays into account when making the current

decision.

While uncertainties over future delays have largely been neglected so far

in the normative literature on delay management, recent empirical contri-
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butions have provided insights by selecting and fitting theoretical statistical

distributions to historical data of primary and secondary delays. Primary

delays denote initial source delays, exogenously caused by some disrupting

event such as a damaged rail track or unusually high passenger volume, while

secondary delays are propagated delays that are directly or indirectly caused

by source delays, e.g., due to resource conflicts or wait-depart decisions.

However, to the best of the authors’ knowledge, such distribution estimates

have rarely been incorporated into optimization models for (then stochastic)

delay management.

In this paper, we present a multi-stage stochastic dynamic programming

(SDP) model to make wait-depart decisions in the presence of uncertain fu-

ture delays. We focus on a single train line but consider the effects on feeder

and connecting trains. Uncertainty over the delays of feeder and connecting

trains at future stations is taken into account by incorporating empirically

validated delay distributions from the literature. To cope with this uncer-

tainty, the SDP approach explicitly accounts for potential recourse actions

at later stations in a look-ahead manner when making the decision in the

current stage. The objective is to minimize the total weighted delay of pas-

sengers at their final station by recursively solving Bellman equations. In

an extensive numerical study, we compare the solution quality and compu-

tational effort of our approach to those of simple heuristic decision rules and

to other optimization approaches frequently used in delay management.

Our contributions are manifold:

• To the best of the authors’ knowledge, this is the first contribution

that models and solves the delay management problem as a multi-

stage stochastic dynamic program. We account for uncertainty in delay

management through a stochastic dynamic approach capable of consid-

ering recourse actions; very few works have pursued this yet. The SDP

modeling approach is in line with the dynamic nature of the real-world

problem.
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• Furthermore, we establish a link to the statistical literature and sys-

tematically incorporate empirical estimates of delay distributions into

the optimization.

• We demonstrate the applicability of the SDP methodology despite that

the Bellman equation has a 4-dimensional state space; to cope with the

curse of dimensionality in this environment, we demonstrate how to

reduce the size of the state space and thereby the number of necessary

function evaluations.

• We demonstrate the performance of the SDP approach in a large sim-

ulation experiment, testing the solution quality and solution time, in

particular by comparing the SDP policy to frequently used policies

and to the optimal policy obtained under full information. In nearly

all tested scenarios, the SDP policy outperforms all other strategies

typically used in delay management with regard to solution quality.

Furthermore, the SDP solution achieves, on average over all scenarios,

a total delay that is only 2.63% worse than the objective function of the

optimal policy under full information, while the second best strategy

(the rule where a connecting train never waits) is 7.18% worse. Even

if the SDP is fed incorrect forecasts regarding the delay distribution

parameters, it still performs well in our experiments. Furthermore,

solution speed for computing the decision matrix ex ante is reasonable

even if it tends to be somewhat slower than other offline optimization

approaches for delay management, typically based on MINLP problem

formulations. However, at the execution stage, consulting the decision

matrix in the event of a delay can be done instantly. That is, looking

up the proper SDP decision for a current state in real time is as fast

as calculating a decision derived from common rules of thumb.

• We focus on the groundwork of developing an SDP for stochastic dy-

namic delay management – with different simplifications necessary to
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make it tractable. In particular, the basic model is limited to wait-

depart and scheduling decisions for a single train, considering the ef-

fects of one feeder train and one connecting train at each station of

the line. The extension to the network setting is beyond the scope of

this paper; however, we outline the main challenges and first thoughts

on how to address them. The SDP approach presented here thereby

creates interesting opportunities for future research.

The paper is structured as follows. The following section reviews the studies

that are the most relevant to our work. In Section 3.3, the stochastic dy-

namic program is formulated and structurally analyzed. Section 3.4 presents

a comprehensive numerical performance analysis that demonstrates the per-

formance of the SDP approach in terms of solution quality and speed. Sec-

tion 3.5 closes with a summary and identifies several opportunities for future

research.

3.2. Literature

3.2.1. Literature on delay management

The question motivating this paper, whether a connecting train should wait

for a delayed feeder train or depart on time, belongs to the classical de-

lay management. In her seminal work on the delay management problem,

Schöbel (2001) develops a deterministic MINLP formulation with the ob-

jective of minimizing passenger delay. The modeling approach is based on

an event-activity network, and nonlinearities stem from bilinear terms in the

objective function which can be linearized using “Big M” constraints. As the

resulting MIP reformulation is significantly weaker than the quadratic for-

mulation, Schöbel (2007) presents alternative nonlinear formulations and so-

lution techniques for the delay management problem. Heilporn et al. (2008)

successfully perform a variable reduction and are able to solve the MIP prob-
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lem from Schöbel (2001) with a branch-and-cut procedure and by using a

constraint generation approach.

Kliewer and Suhl (2011) present an alternative formulation of the delay

management problem by distinguishing where passengers have to wait (on

board or outside the train). Dollevoet et al. (2012) incorporate passengers’

rerouting decisions by assuming that they will not wait a whole period but

will instead seek out alternative trains to reach their destination. Schmidt

(2013) proves that a specific version of delay management with passenger

rerouting is NP-hard. Schöbel (2009) includes the limited capacity of tracks

between stations in her model. Schachtebeck and Schöbel (2010) develop

heuristic solution approaches for the capacitated problem in Schöbel (2009)

and evaluate them in a computational study. Dollevoet et al. (2015) ex-

tend the delay management problem by accounting for limited capacity of

stations. An approach from Dollevoet et al. (2014) combine the delay man-

agement model and a train scheduling model and iteratively optimize them.

Corman et al. (2017) develop a model and fast heuristic solution methods

for integrated delay management and train scheduling to minimize the time

a passenger spends in the railway system.

Rückert et al. (2017) introduce a web-based simulation tool for dispatchers,

called PANDA, that uses real-time delay information and passenger flow

estimates to evaluate the impact of waiting decisions on passenger arrival

delays at their final destination. The decision to wait or not to wait at a

critical transfer station is based on a majority rule taking into account eight

different criteria describing the passengers’ delay distribution at the final

destination. Lemnian et al. (2016) extend PANDA’s simulation capability

and study the sensitivity of wait-depart decisions in PANDA with regard to

passenger flow composition. Based on passenger flow and delay data from

2015, the authors find that there is a high sensitivity.

In reality, common operational control practice of railway service providers

is to subdivide their complex network geographically into various dispatching
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areas, and each dispatcher is responsible for the delay management decisions

in his or her local area only (Pachl 2016, Ch. 8.4). However, the decisions for

one area may obviously influence the connectivity of train schedules of other

areas. Therefore, regional control centers typically coordinate the dispatch-

ers’ decisions to ensure global feasibility of the local plans. For example,

as of 2017, DB’s long distance railway service is controlled by a national

center in Frankfurt, and six regional centers, each in turn decomposed into

several dispatching areas. Similar decentralized structures can be found for

other railway service providers in Europe (e.g., Corman et al. 2012b for the

Netherlands) and worldwide (e.g., Sinha et al. 2016 for India).

To embrace the common control practice of hierarchical decision-making in

railway delay management and to decompose large real-time train dispatch-

ing problems, different bi-level optimization approaches have been proposed

in the literature more recently. These include Strotmann 2007, Corman et al.

2012b, Corman, D’Ariano, Pacciarelli and Pranzo 2014, Sinha et al. 2016,

Lamorgese and Mannino 2015. At the lower level, the railway network is

decomposed into local networks, and decentralized decision makers optimize

the schedule in their respective sub-network. At the higher level, a central

coordinator aims to improve the overall quality of the local solutions, and

ensures global consistency of the local plans by imposing restrictions that

all local decision makers have to consider. For example, to avoid conflicts

for resources like track segments that can be occupied by only one train at

a time but are requested by different dispatchers, the coordinator may de-

fine time windows with priority rules for trains. Iterations between the two

planning levels are performed until a global feasible schedule is achieved.

The different approaches proposed in the literature mainly differ in terms of

how the network is geographically decomposed (e.g., at block sections, as in

Strotmann 2007 and Corman et al. 2012b, or at stations, as in Sinha et al.

2016) and what solution methods are employed at which levels (heuristic or

exact).
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Other decomposition approaches for delay management are motivated

methodologically rather than organizationally. For example, Zhou and Teng

(2016) decompose the time-space network into individual trains by using

Lagrangian relaxation of complicating constraints related to resources po-

tentially shared among multiple trains. Pellegrini et al. (2014) propose a

MIP formulation for real-time railway traffic management at the micro-level

in a selected control area. Through incorporation of additional constraints,

the model can be decomposed by time and used within a rolling horizon

framework.

Models for real-time conflict resolution aim to support local dispatchers in

restoring schedule feasibility after disturbances, when the current position of

one or more trains deviates from the original plan. In order to quickly find

physically feasible solutions, these models are usually close representations

of the real system with many safety-relevant details but focused on a limited

time horizon and a limited spatial area. D’Ariano et al. (2007) explicitly in-

clude constraints that prevent resource conflicts of trains on subsequent track

segments. A branch and bound method is developed that can find (nearly)

optimal solutions within short computation times. Samà et al. (2017) de-

velop fast metaheuristics for solving the conflict detection and resolution

problem. The problem is a MIP formulation with the objective to minimize

the largest positive deviation from the original schedule, and it is applied to

the real-time scheduling and rerouting of trains in complex and busy rail-

way networks. Corman et al. (2012a) formulate the minimization of delay

and missed connections as a bi-objective conflict detection and resolution

problem.

In the literature, several works distinguish between so-called offline and

online optimization. The above-mentioned approaches can all be classified

as offline optimization because required input data, e.g., on future delays, is

assumed to be available (e.g., as forecasts over a certain planning horizon)

before solution algorithms are applied and decisions are made. On the other
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hand, in online optimization, the input data is not fully available a priori

but rather dynamically revealed and processed step by step during algorithm

execution. The online algorithm makes decisions in real time based only on

the currently given information. Gatto et al. (2007) present a competitive

analysis to measure the quality of their online algorithm on a single train

line. Kliewer and Suhl (2011) compare their offline model with some rules

of thumb (dispatching rules) that belong to online optimization. We also

use some of the dispatching rules in our tests as comparisons with the SDP

approach (see Section 3.4.2). Other works on the online delay management

problem include Krumke et al. (2011), who verify some deterministic on-

line algorithms with the objective of minimizing total delay. Bender et al.

(2013) test several different performance measures for these online algorithms

with relaxed assumptions regarding the information at hand. Berger, Blaar,

Gebhardt, Müller-Hannemann and Schnee (2011) present an optimization

approach that models passengers as a multi-commodity flow and is able

to update passenger flows and delay propagation in real time. Bauer and

Schöbel (2014) compare several online strategies for delay management that

they derive from some of their offline models.

There are few references in delay management that address stochastic

future delays. Meng and Zhou (2011) present a stochastic program with one

look-ahead period to avoid further delays that could arise in the near future.

Quaglietta et al. (2013) compute rescheduling plans for railways using a

rolling horizon approach by assuming stochastic disturbances via a Monte

Carlo simulation and test the stability of these plans. Corman, D’Ariano

and Hansen (2014) propose and apply a methodology to assess the quality

of retiming and rescheduling strategies in face of light and heavy stochastic

disturbances in a large railway network composed of multiple dispatching

areas.

In addition to their above-mentioned online approach for delay manage-

ment of a single line, Bender et al. (2013) also suggest a stylized stochas-
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tic dynamic programming formulation to account for uncertainty of future

delays of feeder trains. More precise, not the delay distribution itself is in-

corporated but the number of passengers being late is included as a discrete

random variable, and all delayed passengers experience the same fixed delay.

The number of passengers desiring to embark and disembark the train at

the different stations of the line is deterministically known a priori. Waiting

for a delayed feeder train is allowed only once on the line. Any interaction

of the focal train and connecting train is not considered. For a small line of

three stations, the authors compare the SDP, an average-case analysis, and

the online balancing algorithm of Gatto et al. (2007) in a simulation study.

In this experiment, the SDP outperforms the balancing strategy by far and

is slightly superior to the average-case analysis. For a larger numerical ex-

periment with 13 stations, the performance of the SDP approach could not

be assessed since the computation turned out to be too complex and time

consuming.

In terms of the ability to capture stochasticity, the field of timetabling

is more advanced and is closely related to delay management, as in some

models it is necessary to compute disposition timetables (temporarily valid

timetables) in the delay case. Kroon et al. (2008) illustrate a stochastic

optimization model for the cyclic train timetabling problem with the objec-

tive of minimizing average weighted delays of trains. The model includes a

simulation component in which solutions are generated by a sample aver-

age approximation. Fischetti et al. (2009) develop several versions of robust

timetables from mixed-integer programs by using two-stage stochastic pro-

gramming, which also includes a sample average approximation method. A

further extension by Liebchen et al. (2010) combines traditional timetabling

with delay management to yield delay-resistant timetables. In Shafia et al.

(2012) a model for robust timetables is created and compared under a known

and unknown distribution function for delays. Goerigk and Schöbel (2014)

propose another two-stage approach that is able to choose among several
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robustness strategies depending on the scenario. Goerigk et al. (2014) for-

mulate a dynamic program that is capable of identifying robust paths in

delay situations. Dewilde et al. (2014) improve the robustness of the railway

system by combining robust timetabling with a route choice module and aim

to keep the quality of service for passengers high. Sels et al. (2016) minimize

the total passenger travel time for robust timetables that assume a negative

exponential delay distribution. For further literature on train timetabling

problems, we refer the reader to a survey by Cacchiani and Toth (2012) on

nominal and robust timetabling models.

In summary, sophisticated deterministic network- and decomposition-based

optimization models and methods as well as several online algorithms are

available for delay management. However, although future delays can hardly

be predicted with certainty in reality, stochasticity of future delays has

largely been neglected in prescriptive approaches so far. This is different

in the empirical literature as will be discussed next.

3.2.2. Empirical work on delay distributions

Recent contributions to the empirical literature select and fit theoretical

statistical distributions to historical data of primary and secondary delays.

Different continuous and discrete probability distributions have been adopted

in the literature to model uncertainty in train activity or event times.

Schwanhäußer (1974) proposes the modified exponential distribution as

a reasonable distribution family for delays. The cumulative distribution

function of delay t ∈ R is then given by

F (t) =

{
(1− pve−λt) t ≥ 0

0 t < 0
, (3.1)

where the value of pv can be interpreted as the share of delayed trains, while

1/λ corresponds to the average delay of the delayed trains.
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In a large-scale project, Wendler and Naehrig (2004) empirically analyze

delay data from 3482 trains within the DB network in the Nürnberg region.

They conclude that for 76% of the trains, the modified exponential dis-

tribution fits well. For example, for the Ansbach train line, the parameter

estimates of Wendler and Naehrig (2004) yield pv = 0.53 and λ = 0.21. Here,

earliness was not explicitly considered; rather, early trains were counted in

the same way as punctual trains.

Yuan (2006) evaluates the statistical fit of seven different probability dis-

tributions to empirical delay data collected for 14 trains at the Hague HS sta-

tion (Netherlands), in particular the normal, uniform, exponential, gamma,

beta, Weibull, and log-normal distribution. For the arrival delays of these

trains at the station platform, the log-normal distribution shows the best fit

for most of the studied trains, while for the departure delays, the Weibull

distribution fits best.

A few other papers propose stochastic models of delay propagation in a

network; see, e.g., Kirchhoff (2015) and the literature cited therein. Here, the

distinction is made between primary delays of trains and secondary delays of

trains, which can be caused by primary delays in a cascading manner over the

entire network. Particularly interesting are families of distributions that are

closed against delay operations, i.e., the resulting distribution of propagated

delays (after applying certain operations) can still be represented by the

same family of distribution functions.

While these empirical results generate useful insights per se, their full value

probably cannot be completely realized unless these distribution estimates

are systematically incorporated into optimization models for making delay

management decisions. Again, to the best of the authors’ knowledge, no

work to date has attempted to do so. We will use a discretized version of

the modified exponential distribution to account for uncertainty of future

delays in our numerical experiments reported in Section 3.4. The reasons

for this choice are manifold: the distribution is simple; it has been shown
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in several empirical studies to be a well-fitting representation of empirical

delay data, and its application is recommended in a corporate directive by

Deutsche Bahn (Büker 2010, p. 27). Note however, that the SDP model

we present in the next section is not restricted to this type of distribution

function but can incorporate any (discretized) probability distribution.

3.3. Stochastic dynamic programming approach

In this section, we develop a finite-horizon discrete-time stochastic dynamic

programming formulation for making sequential delay management decisions

along the line of a single train under uncertainty.

Stochastic dynamic programming is a natural way and a powerful tech-

nique to determine state-dependent optimal decisions over time when fu-

ture outcomes and states of the system are uncertain, but can be described

by some probability distribution. With flexible, state-dependent decision-

making and a look-ahead capability to take future recourse actions into ac-

count, SDP balances current rewards with future option values. The princi-

ple of SDP is based on a recursive decomposition of a multi-stage problem

into simpler sub-problems that, once solved, are assembled to an overall

solution.

In the following, we define the elements of the stochastic dynamic pro-

gram, in particular decision periods, system states, the set of actions that

are feasible in a given decision period and a given system state, the immedi-

ate costs of a specific action chosen in a specific decision period and system

state, and action-dependent transition probabilities from a current state to

the next state. For further details on stochastic dynamic programming, we

refer the reader to Puterman (1994).

An optimal policy, i.e., prescriptions of which action to select in future

stages given any possible state in the present, is chosen such that overall

expected cost to go, assessed recursively through the Bellman optimality
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equation, is minimized (Bellman 1957, p. 83). The Bellman function is re-

cursively evaluated in a backward manner to determine the optimal policy

at the planning stage (see Section 3.3.1). In Section 3.3.2, a structural anal-

ysis is performed that allows us to reduce the number of elements in the

4-dimensional state space and thereby the number of required Bellman func-

tion evaluations. In Section 3.3.3, we show how to estimate passenger-related

parameters of the Bellman function from common origin-destination (OD)

passenger flow data. Once the optimal policy has been determined, we can

subsequently apply it in real time by simple look-up operations in a forward

calculation for given realizations of the random delays. Since this concerns

the execution rather than the planning stage, we defer the discussion of the

forward calculation to Section 3.4.

3.3.1. Mathematical formulation

Basic assumptions

The SDP formulation we present in this section seeks to determine stochas-

tic dynamic dispatching decisions for a single train such that the passenger-

weighted average delay at the system exit of passengers is minimized. We

assume that the focal train does not incur any primary delay, but at each

future station there is one feeder and one connecting train arriving with un-

certain (primary or secondary) delays with known probability distribution.

These delays are beyond our control, i.e., we do not make any dispatching

decisions for connecting trains. Once the focal train is delayed, there is no

opportunity to catch up on any of this (for a similar assumption see, e.g.,

Gatto et al. 2007). As in many other works (e.g., Schöbel 2001, Schachte-

beck and Schöbel 2010, Dollevoet et al. 2015) we assume that passenger

routes between different origins and destination pairs are predetermined; in

particular, if a passenger misses a connection, he has to wait for the next

scheduled train of the same line. Furthermore, passenger numbers are known
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with certainty. However, in the SDP approach presented here, the dispatcher

makes her decision based on aggregated passenger state information which

is then decomposed into approximate estimates of the passenger mix, as we

elaborate shortly.

In the following, we introduce the notation step by step. Denote the focal

train by k. The train is scheduled to serve stations s = 1, . . . , N along its

route at planned arrival and departure times τAks and τDks, respectively. The

stations represent the different stages of the stochastic dynamic program,

and starting with the final station, we will work backward from station N

to 1 to recursively solve the optimality equations and determine an optimal

policy.

For the delay management decision at station s, we introduce decision

variables denoting the actual arrival and departure time of train k, tAks ≥ τAks
(s = 2, . . . , N) and tDks ≥ τDks (s = 1, . . . , N − 1), respectively. Let dks =

tAks − τAks denote the total delay of train k on arrival at station s. Its value

obviously depends on the departure decisions at earlier stations 1, . . . , s− 1,

and can be recursively formulated as dks = tDk,s−1+δdrivek,s−1,s−τAks, with δdrivek,s−1,s

being the regular travel time of train k from station s−1 to s, and assuming

no disturbances or speed deviations affecting train k while traveling from

station s− 1 to s. Under this assumption, we can eliminate the variables tAks
and restrict attention to tDk,s−1 (s = 2, . . . , N) in the following.

At each station, we consider one main feeder train f and one main con-

necting train c of the focal train k, where k, f and c are unique identifiers

of the respective trains. We assume that when the focal train k is arriving

at station s, the feeder’s actual arrival time and the connection’s actual de-

parture time are known. However, the arrival and departure times of the

feeder and connecting trains at future stations s + 1, . . . , N are uncertain

from the perspective of station s. We assume that arrival (departure) de-

lays Dfs (Dcs) of the feeder (connecting) train at stations s = 1, . . . , N − 1

(s = 2, . . . , N) are independent random variables with known probability
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distributions, where dfs (dcs) denotes a realization of the random variable

Dfs (Dcs). Denote by τAfs the scheduled arrival time of the feeder f and

by δchangefks the time that a passenger needs to change platforms from feeder

train f to focal train k at station s = 1, . . . , N − 1. Similarly, let τDcs be the

scheduled departure time and δchangekcs the time for changing from focal train

k to connecting train c at station s = 2, . . . , N .

Action space

At each station s = 1, . . . , N − 1, we decide the departure time tDks of train k

and, thereby, whether passengers from feeder train f will reach their connec-

tion k or not. Let zfks be a binary variable with zfks = 1 if the connection

between the feeder and focal train is maintained, and zfks = 0 otherwise.

Furthermore, for stations s = 2, . . . , N , we introduce binary variables zkcs

to determine whether passengers changing from train k to connecting train

c will make their connection (i.e., zkcs = 1) or not (i.e., zkcs = 0). The

variables zkcs are the immediate result of the scheduling decisions at earlier

stations, and their value is based on the current delay of trains k and c. For

passengers not making their connection from train k to c (f to k), we assume

that they have to wait for the cycle time of train c, denoted by TDcs (for the

cycle time TDks of train k, respectively). We note that cycle times may be

flexibly differentiated by train and station according to the planned sched-

ule; however, with its focus on a single line with limited connections, our

basic SDP model cannot account for full dynamic passenger rerouting in the

network beyond the model’s system boundaries.

Further note that at the time when the wait-depart decision at station s

is made, precise information about the current arrival delay dks of train k,

about the feeder’s arrival delay dfs, and about the departure delay dcs of

the connecting train is available. Therefore, at station s, the value of these

delays is assumed to be given (as part of the state information that will be

introduced shortly). Then, for any given dks, dfs, dcs, the decision variables
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tDks ≥ 0, zfks ∈ {0, 1} and zkcs ∈ {0, 1} have to satisfy the following well-

known precedence constraints (see, e.g., Schöbel 2001, Dollevoet et al. 2012,

for similar formulations):

tDk1 ≥ τDk1, (3.2)

tDks ≥ dks + τAks + δdwellks ∀s = 2, . . . , N − 1, (3.3)

tDks − τDks ≤ TDks ∀s = 1, . . . , N − 1, (3.4)

tDks ≥ τAfs + dfs + δchangefks −M1s (1− zfks)
tDks + 1 ≤ τAfs + dfs + δchangefks +M1szfks

∀s = 1, . . . , N − 1, (3.5)

τDcs + dcs ≥ τAks + dks + δchangekcs −M2s (1− zkcs)
τDcs + dcs + 1 ≤ τAks + dks + δchangekcs +M2szkcs

∀s = 2, . . . , N. (3.6)

Constraint (3.2) ensures that the earliest departure time from the first sta-

tion of train k is its planned departure time from this station. Constraints

(3.3) require that at any intermediate station s = 2, . . . , N − 1, the earliest

departure time of train k is its arrival time plus the dwell time δdwellks at

station s (where tAks = dks + τAks). Here, the dwell time refers to the planned

time that the train has to spend at minimum at a scheduled station without

moving (e.g., for embarking and disembarking passengers), and therefore,

δdwellks is assumed to be a predetermined parameter. Constraints (3.4) limit

the total delay of train k at station s = 1, . . . , N − 1 to not exceed the cycle

time. The inequalities in (3.5) ensure that, at any station s = 1, . . . , N − 1,

the connection from feeder f to train k is made (zfks = 1) if and only if the
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actual departure time of train k, tDks, is greater than or equal to the actual

arrival time of train f plus the minimum time required for changing plat-

forms from train f to train k (τAfs+dfs+ δchangefks ); M1s is a sufficiently large

integer number with M1s > tDks− (τAfs+dfs+δchangefks ) for all potential values

of dfs. Finally, constraints (3.6) enforce that at any station s = 2, . . . , N ,

the connection from k to c is reached (zkcs = 1) if and only if the actual

departure time of train c (τDcs + dcs) is greater than or equal to the actual

arrival time of k plus the minimum time required for changing platforms

from k to c (τAks + dks + δchangekcs ). Here, M2s is a sufficiently large integer

number with M2s > τDcs + dcs − (τAks + dks + δchangekcs ) for all potential values

of dcs and dks.

Based on these common precedence constraints, we can now define the

action set for any given delay vector (dks, dfs, dcs) at a station:

As(dks, dfs, dcs) :=


{tDks ≥ 0; zfks ∈ {0, 1} s.t. (3.2), (3.4), (3.5)}, if s = 1

{tDks ≥ 0; zkcs, zfks ∈ {0, 1} s.t. (3.3)-(3.6)},

if s = 2, . . . , N − 1.

(3.7)

For station s = 1, dcs is not relevant and we may simply set, e.g., dc1 := 0

for initialization. For station s = N , zkcs is the only decision variable, and

we determine it directly based on the final state information and include it

in the terminal cost function for the Bellman equation, as will be discussed

shortly.

The delay management decision at a station s may not be affected solely by

the current delay-related information available (dks, dfs, dcs) but also by the

number of passengers who will be affected by the delay decision. However,

to exactly assess, for a particular station, who would be affected by a current

delay decision and to what extent, the dispatcher would need to know the

precise composition of customers on board with respect to their final des-

tinations and connection plans. In practice, it would be rather challenging
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to make this information instantly available in open systems (e.g., that at

DB) in which a reservation for a particular train is not necessarily required.

Therefore, it appears more reasonable to assume that the dispatcher, who is

about to make the delay decision at station s, only has current information

on the aggregate number of passengers on focal train k traveling from station

s− 1 to station s, denoted by ps−1,s.

Figure 3.2.: Passenger flows

We consider this number to be the only observable passenger-related state in-

formation available to the dispatcher at station s, either estimated from fore-

casts or received as actual updates from the crew on board the train. Note

that with the advancement in digitization, more detailed information on the

passenger mix might be available in the future for making the dispatcher’s

decision (estimated e.g., from electronic sales data of tickets without flexi-

bility or from mobile check-in application data). However, the aggregation
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will probably still be a reasonable approximation in order to balance ac-

curacy/solution quality with optimization speed of the SDP approach (see

Section 3.4.4 for an experimental analysis of its performance).

Based on ps−1,s, the dispatcher then needs to estimate how many of

these passengers arriving at station s will exit at s as their final destina-

tion (pouts,dest), how many of them desire to change to connecting train c at

station s (poutsc ), and how many of them will remain on board train k to

continue to station s+ 1 (pthrus ). These numbers will be required for evalu-

ating the Bellman function and, thus to estimate, who will be affected (now

and at the subsequent stations down the line) by the current decision in the

current state to what extent. In estimating these passenger numbers, we

assume that the dispatcher splits ps−1,s into the three streams according to

given fractions αouts,dest, α
out
sc , αthrus (known percentages) that are independent

of the mix of incoming customers (in the following referred to as the IMIC

assumption), i.e., independent of wait-depart decisions at earlier stations.

Then, pouts,dest, p
out
sc and pthrus are estimated from ps−1,s as follows.

Let αoutsc , αouts,dest, and αthrus be the fraction of passengers ps−1,s traveling

from station s − 1 to s who exit at s to connect to train c, who exit at s

as their final destination, and who remain on train k to continue to station

s+ 1, respectively (where αoutsc + αouts,dest + αthrus = 1).

Then, poutsc = αoutsc · ps−1,s, p
out
s,dest = αouts,dest · ps−1,s, and pthrus = αthrus ·

ps−1,s = ps−1,s−poutsc −pouts,dest. After determining how many of the incoming

passengers disembark at station s and how many remain on the train, the

number of passengers traveling from station s to s + 1, ps,s+1, can be cal-

culated through the following passenger balance equation by adding those

passengers embarking at station s (s = 1, . . . , N − 1):

ps,s+1 = ps−1,s−poutsc −pouts,dest+p
in
sfzfks+p

in
s,org = αthrus ps−1,s+p

in
sfzfks+p

in
s,org

(3.8)

with initial value p0,1 := 0 and
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pinsf : the number of passengers effectively embarking train k at

station s from the feeder if the connection is maintained (i.e.,

if zfks = 1),

pins,org: the number of passengers effectively embarking train k at

station s as their origin.

We reasonably include a capacity restriction on the number of passengers

that the focal train can effectively carry, i.e., train k is constrained to carry

at most C passengers. Even in open systems where no seat reservation is

required and passengers in excess of the number of seats may be allowed to

stand during the journey, physical space is naturally limited and the number

of standing seats typically constrained for passenger safety and comfort rea-

sons. For the purpose of delay management, passengers missing their train

from a late feeder should only be considered in the calculation of passenger-

weighted delay to the extent that train capacity is still available. Any pas-

senger spilled due to the train’s capacity limit is not attributable to the

delay management decision but to scheduling and rolling stock assignment

problems at a more tactical planning level.

Therefore, we distinguish between the effective (i.e., constrained) demand

above and the unconstrained number of passengers desiring to embark train

k as follows:

pins,org = min
(
p̌ins,org, C − αthrus ps−1,s

)
,

pinsf = min
(
p̌insf , C − αthrus ps−1,s − pins,org

)
,

(3.9)

with

p̌insf : unconstrained number of passengers desiring to change from

feeder f to train k at station s,

p̌ins,org: unconstrained number of passengers desiring to embark train

k at station s as their origin.

Note that in (3.9), we give priority to passengers desiring to embark train k
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at station s as their origin when allocating the capacity C of train k, as the

feeder may arrive late. The relationships of the different passenger streams

flowing in and out at station s are illustrated in Figure 3.2.

State space and state transition

In summary, we include a 4-dimensional state space (ps−1,s, dks, dfs, dcs)

containing current passenger and delay information at station s. For each

possible state at station s, the best delay management decision will be deter-

mined by evaluating the Bellman function. Before we turn to the details of

the mathematical formulation of the recursion, we need to develop the state

transition law.

First, the evolution of the number of passengers traveling on train k from

s to s + 1 (s = 1, . . . , N − 1) is given by (3.8) and (3.9). Second, the total

delay of train k propagates from station s to s+ 1 as follows:

dk,s+1 = tAk,s+1 − τAk,s+1 = tDks + δdrivek,s,s+1 − τAk,s+1. (3.10)

Note that we do not consider any randomness in the delays of the focal train

k. Rather, the decision maker is assumed to have full control over train k’s

delays through the rescheduling decisions. Further, we assume that once the

focal train is delayed, it can not catch up.

Finally, the state transition to df,s+1 is assumed to be independent of dfs.

Similarly, we treat dc,s+1 to be independent of dcs. In summary, for any

tDks, zfks and zkcs ∈ As (dks, dfs, dcs), we have a state transition
ps−1,s

dks

dfs

dcs

→


ps,s+1 acc. to (3.8) with (3.9)

dk,s+1 acc. to (3.10)

df,s+1

dc,s+1


with probability Pr (df,s+1) ·Pr(dc,s+1).
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Passenger flow Formula Delay
Through-passengers re-
maining on train k at
station s

pthrus =
αthrus · ps−1,s

Will be considered when
exiting train k

Passengers reaching
their final destination
at station s

pouts,dest =

αouts,dest · ps−1,s

tAks − τ
A

ks = dks

Outbound passengers
connecting from train k
to train c at station s

poutsc = αoutsc · ps−1,s If connection reached: 0
(any delay attributed to c,
not k)
Passengers missing their
connection: cycle time TDcs

Inbound passengers en-
tering train k at station
s as their origin

pins,org = min(p̌ins,org,

C − αthrus ps−1,s)

Will be considered when
exiting train k

Inbound passengers
connecting from feeder
f to train k at station s

pinsf = min(p̌insf , C−
αthrus ps−1,s−pins,org)

If the connection is made,
any delay will be consid-
ered when exiting train k
If the connection is not
made: cycle time TDks

Table 3.2.: Overview of passenger flows

Single-stage cost function

We now turn to the mathematical formulation of the single-stage cost func-

tion. The delay of each passenger on train k is not assessed incrementally

but measured once when exiting train k. Table 3.2 provides an overview of

when and how different passenger flows are evaluated.

As a result, for any state (ps−1,s, dks, dfs, dcs) and any action tDks, zkcs, zfks ∈
As (dks, dfs, dcs) at station s, the immediate penalty is captured by the fol-

lowing single-stage cost function:

cs
(
tDks, zkcs, zfks; ps−1,s, dks, dfs, dcs

)
:=

pouts,destdks + poutsc T
D
cs (1− zkcs) + pinsfT

D
ks (1− zfks)

(3.11)
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with pouts,dest, p
out
sc and pinsf as given in Table 3.2.

Bellman equation

Given the single-stage cost functions, we can now formulate the Bellman

equation for s = 1, . . . , N − 1 as follows:

Vs (ps−1,s, dks, dfs, dcs) =

min
tDks,zkcs,zfks∈As

{
pouts,destdks + poutsc T

D
cs (1− zkcs) + pinsfT

D
ks (1− zfks) +

∑
df,s+1

∑
dc,s+1

Pr (df,s+1) Pr (dc,s+1) Vs+1(ps,s+1, dk,s+1, df,s+1, dc,s+1)

}
(3.12)

with pouts,dest = αouts,dest · ps−1,s, p
out
sc = αoutsc · ps−1,s, and pinsf , pins,org given by

(3.9), ps,s+1 by (3.8), and dk,s+1 by (3.10). Furthermore, for s = 1, we set

zkcs := 1 in (3.12).

The terminal cost function is

VN
(
pN−1,N , dkN , dfN , dcN

)
={

poutN,destdkN , if τDcN + dcN ≥ τAkN + dkN + δchangekcN

poutN,destdkN + poutNcT
D
cN , otherwise

(3.13)

with poutN,dest = αoutN,destpN−1,N and poutNc = αoutNc pN−1,N .

The Bellman function is evaluated in a backward recursion for all pos-

sible states to compute the optimal policy a priori at the planning stage.

The output of this step is typically a large decision matrix that provides,

for every possible state of passengers and delays, the best action to choose.

Subsequently, the optimal policy can be applied in real time for a particular

realization of random delays (of feeder and connecting trains) in a forward

computation through simple look-up operations. For this purpose, the dis-
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patcher simply needs to consult the decision matrix to determine what state

(ps−1,s, dks, dfs, dcs) the train is currently in at a particular station s and

follow the recommended action (see Section 3.4.1).

3.3.2. Structural properties

In this section we show structural properties that help to reduce the solution

space and the state space in order to speed up the computation of an optimal

policy in the SDP backward algorithm. The solution space is addressed in

the following theorem:

Theorem 3.1. Given dks, dfs, and dcs at station s (s = 1, ..., N − 1), there

exists an optimal decision t̄Dks, z̄fks, z̄kcs, solving the Bellman equation (3.12)

with

(i) z̄kcs = 1 if τDcs + dcs ≥ τAks + dks + δchangekcs (outbound connection main-

tained), z̄cks = 0 otherwise (outbound connection not maintained),

and

(ii) either

(a) z̄fks = 0 and t̄Dks = dks + τDks with dks + τDks < τAfs + dfs + δchangefks

(inbound connection not maintained), or

(b) z̄fks = 1 and t̄Dks = max(dks + τDks, τ
A
fs + dfs + δchangefks ) (inbound

connection maintained).

Thus, according to part (ii) of Theorem 3.1 , the search for the optimal

departure time can be reduced to only two values. The proof can be found

in Appendix 1.1.

We now turn to the reduction of the state space. Note that the state

space with 4 dimensions (ps−1,s, dks, dfs, dcs) may grow prohibitively large.

For example, for a maximum delay of 60 minutes and a maximum train

capacity of 500 passengers, theoretically, there may be up to 613 · 501, i.e.,
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more than 113.7 million possible states. However, for a given station, not all

of these states have a positive probability.

First, the transition from ps−1,s to ps,s+1 described in Eq. (3.8) determin-

istically depends on the wait-depart decision at station s. With an initial

value of p0,1 = 0 in the recursive formulation of Eq. (3.8), there are at most

min{C + 1, 2s} possible values that ps,s+1 can take for s = 1, . . . , N − 1, de-

pending on the decisions zfkr ∈ {0, 1} at prior stations r = 1, . . . , s. Accord-

ingly, we consider only those values of ps−1,s in the SDP backward recursion

that can be taken.

Second, for dcs, it is obviously sufficient to only consider two states, reflect-

ing the cases when the outbound connection is maintained (dcs ≥ ∆cs with

threshold value ∆cs := τAks + dks + δchangekcs − τDcs), and when it is not main-

tained (dcs < ∆cs). The two cases correspond one-to-one with the binary

values of zcks in an optimal solution, as stated in the first part of Theorem

3.1.

Finally, based on some structural properties of the Bellman function proven

in Appendix 1.1, we can further reduce the state space with regard to the

dimension dfs. In particular, the following intuitive theorem states that if

the delay of the feeder exceeds a certain threshold at which waiting is not

recommended, waiting is also not recommended for delay values of the feeder

above the threshold, and no explicit evaluation of the Bellman function is

necessary.

Theorem 3.2. Assume that for any value of the state vector (ps−1,s, dks, dfs,

dcs) at station s, we have zfks = 0 in an optimal solution. Then, zfks = 0 is

optimal for all states (ps−1,s, dks, dfs, dcs) with dfs > dfs, and Vs(ps−1,s, dks,

dfs, dcs) = Vs(ps−1,s, dks, dfs, dcs).

For a proof, please refer to Appendix 1.1. For each station s and each state

(ps−1,s, dks, dfs, dcs) of the (reduced) state space, we store the optimal de-

parture time decision t̄Dks(ps−1,s, dks, dfs, dcs) as well as the corresponding

value of the Bellman function Vs (ps−1,s, dks, dfs, dcs) in multidimensional
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arrays. The function values will be used recursively during the backward

iteration while the optimal decisions will be looked up and applied during

the subsequent forward calculation.

3.3.3. Estimation of α-parameters for the SDP backward

recursion from passenger flow data

As mentioned earlier, the IMIC assumption underlying the stochastic dy-

namic programming formulation may not hold in reality. In reality, the mix

of onboard passengers (in terms of how many passengers desire to travel to

what destination or change station) may depend, e.g., on wait-depart deci-

sions made at earlier stations or even on train capacity constraints (see also

Lemnian et al. 2016). Therefore, we will use more realistic assumptions in

the forward computation that simulate reality (Section 3.4.1) and regard the

alpha values αoutsc , α
out
s,dest and αthrus used in the SDP backward recursion

as approximate estimates. Accordingly, the policy derived through the SDP

backward recursion must be regarded as a heuristic solution, the quality of

which will be evaluated in Section 3.4.4 by comparing the objective function

value of the heuristic SDP to a lower bound.

In this section, we derive estimates of the required parameter values αoutsc ,

αouts,dest and αthrus used in the SDP backward recursion from an OD passen-

ger flow perspective. We assume that common OD-matrices forecasting the

passenger flows from a particular origin to a destination are given. In par-

ticular, we consider the following four types of itineraries that use the focal

train, based on OD passenger demand data.

• Direct itineraries without changing trains: station s of the focal train

line is the ultimate origin and station t>s is the final destination of the

passenger. Accordingly, we consider s and t to be the start and end

of the itinerary and denote the unconstrained number of passengers

demanding the itinerary by ˇpaxt,dests,org (s = 1, . . . , N − 1, t > s).
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• Itineraries including one change of trains from the feeder train at sta-

tion s (s = 1, . . . , N − 1): the ultimate origin of the passenger is a

station on a train feeding some station s on the focal train line. The

origin is thus beyond our system’s boundaries, and we consider the

feeder at station s to be the start of the itinerary. The final destina-

tion, and end of the itinerary, is a station t > s on the focal train

line. The unconstrained number of passengers desiring to travel such

an itinerary is denoted by ˇpaxt,destsf .

• Itineraries including one change of trains to the connecting train at sta-

tion s (s = 2, . . . , N): the ultimate origin, and start of the passenger’s

itinerary, is a station r < s on the focal train line. The final desti-

nation of the passenger is a station on a connecting train line that is

beyond the system’s boundaries; accordingly, we consider the connect-

ing train at station s to be the end of the itinerary. The unconstrained

number of passengers desiring to travel such an itinerary is denoted by

ˇpaxscr,org (r < s).

• Itineraries including more than one change of trains: the ultimate ori-

gin and the ultimate destination of the passenger are stations on feeder

and connecting trains of the focal train and beyond the system’s bound-

aries. We consider the feeder at station s and the connecting train at

station t to be the start and end of the itinerary. The unconstrained

number of passengers demanding such an itinerary is denoted by ˇpaxtcsf
(s = 1, . . . , N − 1, t > s).

Given ˇpaxt,dests,org , ˇpaxtcs,org, ˇpaxt,destsf , ˇpaxtcsf (t > s) and the wait-depart de-

cisions zfkr (r < s) made thus far prior to station s, we can calculate the

following passenger numbers related to unconstrained demand:

• Unconstrained number of passengers desiring to board train k at sta-
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tion s as their origin:

p̌ins,org =
∑
t>s

ˇpaxt,dests,org + ˇpaxtcs,org (s = 1, . . . , N − 1), p̌inN,org = 0

(3.14)

• Unconstrained number of passengers desiring to change from feeder

train f to focal train k at station s (assuming connection at s is main-

tained):

p̌insf =
∑
t>s

ˇpaxt,destsf + ˇpaxtcsf (s = 1, . . . , N − 1), p̌inNf = 0 (3.15)

• Unconstrained number of passengers demanding to exit train k at sta-

tion s as their final destination:

p̌out1,dest = 0, p̌outs,dest =
∑
r<s

(zfkr ˇpaxs,destrf + ˇpaxs,destr,org ) (s = 2, . . ., N)

(3.16)

• Unconstrained number of passengers demanding to change from focal

train k to connecting train c at station s:

p̌out1c = 0, p̌outsc =
∑
r<s

(zfkr ˇpaxscrf + ˇpaxscr,org) (s = 2, . . ., N) (3.17)

• Unconstrained number of through passengers at station s = 2, . . ., N −
1, i.e., those arriving from station s − 1 at s and remaining on focal

train k to continue to station s+ 1 (and possibly further):

p̌thrus =
∑

r<s, t>s

[zfkr

(
ˇpaxt,destrf + ˇpaxtcrf

)
+ ˇpaxt,destr,org + ˇpaxtcr,org]

(3.18)

• Unconstrained number of passengers on focal train k demanding to
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travel from station s− 1 to station s = 2, . . . , N :

p̌s−1,s =
∑

r<s, t≥s

[zfkr( ˇpaxt,destrf + ˇpaxtcrf ) + ˇpaxtdestr,org + ˇpaxtcr,org]

(3.19)

In the SDP backward recursion, the history of wait-depart decisions zfkr

(r < s) is not included in the state information and thus not known when

determining the best policy at station s. Therefore, we approximate the

required parameter values αoutsc , α
out
s,dest and αthrus by assuming that all feeder

trains reached the focal train in the past, i.e., we assume that zfkr = 1

∀r < s in (3.16)-(3.19), and set αouts,dest ≈ p̌outs,dest/p̌s−1,s, α
out
sc ≈ p̌outsc /p̌s−1,s,

and αthrus ≈ p̌thrus /p̌s−1,s. Different choices for zfkr (r < s) would, of course,

be possible.

Note again that an exact procedure would require storing the relevant past

history of decisions as state variables to compute the passenger numbers

above. This would however be computationally intractable for longer his-

tories and, to our experience, not correspond to common practice, whereby

dispatchers decide based on the observable number of passengers on the

train.

3.4. Experimental performance analysis

We systematically tested the performance of our approach in terms of so-

lution quality in an extensive simulation study. In particular, we compared

the optimal SDP policy, different heuristic rules of thumb commonly used

in delay management (e.g., Kliewer and Suhl 2011, Dollevoet and Huismann

2014), the strategy that would be optimal in a deterministic world (assuming

expected values of future delays), a re-optimization strategy, and the optimal

delay decision under full information. In Section 3.4.1, the general forward

calculation used to simulate reality is described. In 3.4.2, we briefly depict
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the alternative policies that we have tested. Section 3.4.3 describes the dif-

ferent scenarios that were assumed during the simulation, while Section 3.4.4

reports the results.

3.4.1. Forward calculation

In this section, we describe the general forward calculation used to simu-

late the dispatcher’s decision in real-time as the train moves from station to

station. When the delay management decision at station s is to be made

under any policy, the realizations of the delays of the feeder and connecting

train at station s are assumed to be known with certainty, as is the current

arrival delay of focal train k. Furthermore, the effective number of incoming

passengers from station s − 1 (ps−1,s) and the effective number of passen-

gers disembarking at station s as either their final destination (pouts,dest) or

to change trains (poutsc ) is assumed to be known by the dispatcher, or more

precisely, it can be calculated based on prior decisions (Step 1). Based on

the remaining train capacity, a) the number of originating passengers effec-

tively embarking the focal train at the current station as their origin (pins,org)

as well as b) the number of passengers embarking the focal train from the

feeder (if the connection is maintained, (pinsf )) is computed (Step 2). With

this information on passenger numbers and delays, the appropriate wait-

depart decision tDks, zfks, zkcs under a given policy can be straightforwardly

determined (Step 3), and status information on passenger numbers and de-

lays can be updated accordingly (Step 4). Finally, the train moves to station

s+ 1 where the next dispatching decision has to be made.

Working from the initial station in a forward manner, the computation is

iteratively performed as follows:

Step 0: Initialize s := 1.

Step 1: Calculate disembarking and through passengers at station s:
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Given the decisions at previous stations, zfkr, r < s, the number of passen-

gers effectively disembarking train k at station s as their final destination or

transferring to their connection, denoted by pouts,dest and poutsc , respectively, is

given by

pouts,dest = 0 (s = 1) , pouts,dest =
∑
r<s

[
zfkrpax

s,dest
rf + paxs,destr,org

]
(s = 2, . . . , N),

(3.20)

poutsc = 0 (s = 1) , poutsc =
∑
r<s

[
zfkrpax

sc
rf + paxscr,org

]
(s = 2, . . . , N),

(3.21)

with

paxs,destr,org : effective number of passengers embarking train k at station

r = 1, . . . , N − 1 as their origin and disembarking at station

s = r + 1, . . . , N as their final destination;

paxs,destrf : effective number of passengers embarking train k at station

r = 1, . . . , N − 1 from a feeder train and disembarking at

station s = r + 1, . . . , N as their final destination;

paxscr,org: effective number of passengers embarking train k at station

r = 1, . . . , N − 1 as their origin and disembarking at station

s = r + 1, . . . , N to change to a connecting train;

paxscrf : effective number of passengers embarking train k at station

r = 1, . . . , N − 1 from a feeder train and disembarking at

station s = r + 1, . . . , N to change to a connecting train.

The remaining passengers, pthrus , travel through station s and are computed

as follows:

pthrus = 0 (s ∈ {1, N}) , pthrus = ps−1,s−pouts,dest−poutsc (s = 2, . . . , N−1),

(3.22)

with ps−1,s := 0 for the initial station s = 1, and pouts,dest, p
out
sc given by (3.20)

and (3.21), respectively.
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Step 2: Calculate embarking passengers at station s (skip for s = N):

In general, since the feeder may arrive late, we prioritize passengers desiring

to embark train k at station s as their origin when allocating the capacity

of train k. Given pthrus from Step 1, the number of passengers effectively

embarking train k at station s as their origin and from the feeder, denoted

by pins,org and pinsf , respectively, is then given by Eq. (3.9).

Step 3: Look up decisions at station s according to focal policy:

For the current information at station s, determine zkcs (according to The-

orem 3.1 (i)). If s < N , determine the departure decisions tDks and zfks

according to the focal policy and Theorem 3.1 (ii). Note that in case of the

SDP policy, the effective number of incoming passengers, ps−1,s, may not

be included in the state space covered in the SDP backward iteration. This

is because the heuristic calculation of passenger numbers in the backward

iteration is different from the exact forward calculation (see Section 3.3.3),

and we consider only those values of ps−1,s in the SDP backward recursion

that can be taken according to the heuristic state space transition (see Sec-

tion 3.3.2). More specifically, recall from Eq. (3.8) and Section 3.3.3 that

we calculate potential values of the state variable ps−1,s in the backward

recursion based on approximate estimates of αthrus−1 and thus pthrus−1 . Accord-

ingly, the approximation of pthrus−1 in the backward iteration may differ from

the “true” value in the forward calculation (computed recursively based on

the complete history of past wait-depart decisions according to (3.22) with

(3.20) and (3.21)). As a result, there may be values of ps−1,s in the forward

calculation that are not exactly matched by the values in the SDP decision

matrix. In such a case, we look up the value available in the decision matrix

that is closest to ps−1,s and apply the corresponding decision in the forward

calculation.
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Step 4: Update measures of interest:

Given the numbers above and the decisions tDks, zkcs, and zfks at current

station s, we can update the following measures of interest:

• Total passenger-weighted delay that has accumulated up to station s

(with obj0 = 0):

objs = objs−1 + pouts,destdk,s−1 + poutsc T
D
cs (1− zkcs) + pinsfT

D
ks (1− zfks) ;

• Number of passengers effectively traveling to station s + 1 (skip for

s = N):

ps,s+1 = pthrus + pinsfzfks + pins,org;

• Departure delay of train k at station s (= arrival delay at station s+1,

skip for s = N):

dks = tDks − τDks;

• Rescale original OD data from station s to station t > s (skip for

s = N):

Since we consider a constrained capacity of C passengers that the focal

train can carry, passenger demand may not be satisfied if the capacity

limit is reached. Accordingly, there might be passengers in Step 2 who

desire to embark the focal train at the current station but who are

spilled. In this case, the original unconstrained passenger flows from

the current station s to all stations t > s are proportionally truncated.

More precisely, based on the effective number of embarking passengers,

we proportionally rescale the original unconstrained passenger flows

ˇpaxt,dests,org , ˇpaxtcs,org, ˇpaxt,destsf , ˇpaxtcsf from station s < N to all stations

t>s as follows:

paxt,dests,org :=
pins,org
p̌ins,org

ˇpaxt,dests,org ,
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paxtcs,org :=
pins,org
p̌ins,org

ˇpaxtcs,org,

paxt,destsf :=
pinsf
p̌insf

ˇpaxt,destsf ,

paxtcsf :=
pinsf
p̌insf

ˇpaxtcsf

with p̌ins,org and p̌insf given by Eqs. (3.14) and (3.15), respectively.

These rescaled values are then used in Step 1 of the next iteration to

calculate disembarking passengers at subsequent stations.

Finally, if s < N , we move forward to the next station (set s := s + 1) and

go back to Step 1, or stop if s = N .

3.4.2. Alternative policies

The alternative policies we tested are summarized in Table 3.3. The first

four policies, abbreviated by RWT, NW, AW, PR, are rather simple, intuitive

rules of thumb from literature and practice, also called dispatching rules, that

are fast to calculate in real time. The last four policies (abbreviated DET,

RO, SDP and FI) are more sophisticated approaches based on optimization.

A broad overview and comparison of different rules of thumb can be found

in Kliewer and Suhl (2011). While there exist further rules in a network

setting, we have tested four of them because they are able to run under the

same conditions as our SDP approach. We explain the different policies in

greater detail in the following.

The first dispatching rule is called the Regular Waiting Time (RWT) rule.

In Germany, the RWT is the maximum time that the railway service provider

may delay the departure of a train to ensure connectivity of trains without

further approval of the infrastructure provider (only a short-term notification

is necessary). RWT levels are stipulated in a corporate directive and depend
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on the category of feeder and connecting train. For example, the RWT

between pairs of long-distance high-speed trains, connecting all major cities

in Germany, is 3 minutes (Stelzer 2016).

Policy Description
RWT If necessary to maintain a connection, a connecting train will

wait for a delayed feeder train up to the regular waiting time.
NW Never wait : a connecting train will never incur an additional

delay in order to wait for a delayed feeder train.
AW Always wait : a connecting train will always incur any additional

delay necessary to ensure that passengers from a delayed feeder
will maintain their connection.

PR A connecting train will wait for a delayed feeder if the passenger
ratio of those who benefit (changing passengers) and those who
suffer (through and embarking passengers) from an additional
delay is sufficiently large.

FI Best solution is computed under full information on all delay
realizations through ex post optimization (solving the MINLP
problem in Appendix 1.2).

DET Solution is computed before the train starts through determin-
istic ex ante optimization using expected delay values.

RO Re-optimize DET in real time after each disruption; earlier de-
lay realizations are known, while for future delays, expected
values are assumed.

SDP Stochastic dynamic programming approach including recursive
evaluation of Bellman equations, generating ex ante a decision
for each possible system state.

Table 3.3.: Overview of alternative delay management policies tested

Accordingly, the RWT naturally lends itself to be used as a rule of thumb in

delay management, specifying a maximum time qRWT that a focal train may

wait for a delayed feeder train at a particular station. If the relative delay is

longer than qRWT , the focal train will leave without waiting. According to

this rule, the departure time is tDks := max{τAfs + dfs + δchangefks , τDks + dks}, if
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tDks − τDks ≤ min{qRWT , T
D
ks}, and tDks := τDks + dks otherwise. Based on this

departure time, the connection from feeder train f (with actual delay dfs)

to focal train k (with actual delay dks) will be maintained, i.e., zfks = 1,

if and only if tDks ≥ τAfs + dfs + δchangefks . We performed some pretests with

values of qRWT ∈ {2, 3, 4, 5} minutes and found that the results become

worse for waiting times larger than 2 minutes. This is in line with the tests

and conclusion reported in Dollevoet and Huismann (2014) for long-distance

trains in the mid-Western part of the Dutch railway network. Nevertheless,

following the current RWT regulation for long-distance trains in Germany,

and making a compromise between the Never Wait (NW) and the Always

Wait (AW) rule explained in the following, we set qRWT := 3 minutes.

The NW and the AW rules are two simple policies at the extreme ends.

As their names suggest, the focal train will never or always wait for a de-

layed feeder train. In the case of the NW rule, passengers will make their

connections only if the delay of the feeder train is sufficiently brief such

that transferring passengers catch the focal train at its planned time, i.e.,

zfks = 1, if and only if τAfs + dfs + δchangefks ≤ τDks, and tDks = τDks. Under

the AW rule, the focal train can be delayed up to a maximum delay corre-

sponding to the cycle time TDks if necessary to maintain the connection, i.e.,

zfks = 1 with departure time tDks = max{τAfs + dfs + δchangefks , τDks + dks}, if

tDks − τDks ≤ TDks. Otherwise, zfks = 0 with departure time tDks = τDks + dks.

The fourth dispatching rule, called the Passenger Ratio (PR) rule, com-

pares the number of passengers who benefit if the connection between a

feeder and focal train is maintained, to those who would suffer from a delay

of the focal train. In particular, the first group includes passengers desiring

to transfer from the feeder to the focal train, pinsf , while the second group

contains through passengers, pthrus , plus those embarking at station s as their

origin (supposedly being on time), pins,org. If the ratio pinsf/(p
thru
s +pins,org) ex-

ceeds a certain threshold qPR, the focal train will wait for the feeder (again,

up to a maximum total delay of TDks) if necessary to maintain the connec-
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tion. While the PR rule converges to the NW rule with increasing threshold

values, it emulates the AW rule for threshold values closer to 0. A value

of qPR = 0.2 is selected in Kliewer and Suhl (2011) based on some pretests

with alternative values. Dollevoet and Huismann (2014) consider the ratio

of transferring passengers (RTP), defined as the number of passengers who

plan to transfer divided by the number of passengers who plan to use the

connecting train, i.e., pinsf/(p
thru
s + pins,org + pinsf ). The authors find that, for

long-distance trains in the mid-Western part of the Dutch railway network,

an RTP threshold of 0.2 works best in their simulation experiment – corre-

sponding to a value of qPR = 0.25 according to our definition. We ran some

pretests with threshold values qPR ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and found that

in our setting, the performance of the PR rule was better the higher the

value of qPR. For threshold values ≥ 0.4 there was little difference between

the PR and the NW rule. The PR rule with values of 0.2 and 0.3 showed a

performance similar to each other, but different from the AW and NW rule.

Therefore, for the PR rule, we present the results for qPR := 0.2 in Section

3.4.4.

For the full information (FI) problem, complete knowledge about future

delays is given. The complete mathematical (mixed-integer nonlinear) prob-

lem formulation is presented in Appendix 1.2. As before, the objective is

to minimize the total passenger-weighted delay, where the true delays of

the feeder and connecting trains are now fully known, corresponding to an

ex post analysis. As restrictions, we include the typical time-related prece-

dence constraints, an allowable maximum bound on the total delay, train

passenger capacity and rescaling constraints capturing that all OD demand

streams are truncated proportionally in the event of spilled demand, simi-

lar to the forward calculation (Section 3.4.1). In fact, the FI optimization

problem follows the same logic and includes the same parameter values as

the forward calculation, i.e., it is formulated in a way such that its solution

yields the best results in the forward computation. Accordingly, the optimal
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objective function value of the FI problem is obviously a lower bound on the

objective function values achieved by all other policies that use less informa-

tion. Therefore, the ex post optimization serves as benchmark for all other

policies.

The deterministic problem (DET) determines the wait-depart decisions

for all stations ex ante by minimizing the total passenger-weighted delay in

a presumably deterministic setting, i.e., where the random delays of feeder

and connecting trains are replaced by their expected values. Similar to the

FI problem in Appendix 1.2, we include the typical time-related precedence

constraints and train passenger capacity and rescaling constraints capturing

that all OD demand streams are truncated proportionally in the event of

excess demand. The problem formulation is again mixed-integer nonlinear.

Comparing the passenger-weighted delays yielded under the deterministic

and the stochastic dynamic programming policy will provide insights into the

gains from incorporating uncertainty and state-dependent decision-making

into the model.

In the re-optimizing (RO) approach, the wait-depart decisions ahead are

dynamically re-optimized by considering actual delays and passenger num-

bers for the current station, as well as expected information for future sta-

tions. The information on delays at the current station is updated with true

realizations as the train moves from station to station. Similar approaches

are used in Kliewer and Suhl (2011) and Bauer and Schöbel (2014). However,

in face of capacity constraints, the RO problem to be solved at each station

would be structurally similar to the DET MINLP problem formulation. Be-

cause the re-optimization needs to be performed in real time rather than ex

ante, instant solution times are required. To speed up the solution procedure

relative to that of the DET problem, we relaxed the capacity constraint in

the original RO problem formulation and thereby dropped decision variables

related to the effective number of passengers carried. With this simplifica-

tion, the unconstrained problem formulation could be linearized, resulting
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in a MIP.

All policies were evaluated and compared through the same forward cal-

culation in a systematic simulation experiment.

3.4.3. Scenario generation

To assess the performance of the SDP approach relative to other policies

in terms of computation time and solution quality, we systematically ran

instances of various sizes. We generated a series of 52 scenarios differentiated

by the assumptions on the length of the focal train line, the demand intensity,

the underlying delay distributions, and the forecasting accuracy as follows:

Length of the focal train line and system boundaries

For the focal train, we consider two different cases, namely small and large

number of visited stations on the line. In particular, for reference, we used

station and schedule data from the ICE 71 from Hamburg Hbf to Sargans

(with 13 stations) and from ICE 278 from Interlaken Ost to Berlin Hbf (with

21 stations).

As already mentioned, the basic SDP model considers only one (e.g., the

most recent) feeder and one (e.g., the next available) connecting train for the

focal train. An extension to multiple feeders and connections is discussed

in Section 3.5. For simplicity, we assume homogeneous cycle times of TDks =

TDcs = 60 minutes at all stations in our experiments. More differentiated

choices of these parameters would be possible of course.

In both cases of the line length, the focal train is assumed to have a

maximum capacity of C = 500 passengers (corresponding approximately to

the seating capacity of ICE 2/ICE 3 trains) and a total maximum delay of

60 minutes (corresponding to the assumed cycle time). Given the assumed

delay distributions we introduce shortly for small, medium, and large delay

scenarios, the probability of observing a train delay of more than 60 minutes
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is less than 0.15%. The probability that a passenger desiring to connect

to the delayed train will also be delayed for more than 60 minutes is even

smaller if there is a chance to jump on another earlier train (e.g., the next

cycled train on time). Therefore, we consider the assumption of a maximum

delay of 60 minutes to be justifiable for our experiments.

Demand intensity

Regarding the number of passengers, we consider low-, medium- and high-

traffic scenarios. Demand in terms of the number of passengers for all

itineraries using the ICE 71 is generated as follows: For all s < t, the num-

ber of passengers paxt,dests,org demanding to travel on direct itineraries without

changing trains is drawn from a discrete uniform distribution over {1, . . . ,

4}, {1, . . . , 6}, and {1, . . . , 8} in the low-, medium-, and high-traffic sce-

nario, respectively. The numbers of passengers desiring to travel itineraries

that include switching trains once, i.e., paxtcs,org and paxt,destsf , are drawn

from discrete uniform distributions over {0, . . . , 4}, {0,. . . , 5} and {1, . . . ,

7} in the low-, medium- and high-traffic scenario, respectively. These dis-

tributional assumptions are associated with different train utilizations, as

displayed in Table 3.4.

Low traffic Medium traffic High traffic
paxt,dests,org {1,4} ICE 71

{1,2} ICE 278
{1,6} ICE 71
{1,2} ICE 278

{1,8} ICE 71
{1,4} ICE 278

paxtcs,org {0,4} ICE 71
{0,1} ICE 278

{0,5} ICE 71
{0,2} ICE 278

{1,7} ICE 71
{1,2} ICE 278

paxt,destsf {0,4} ICE 71
{0,1} ICE 278

{0,5} ICE 71
{0,2} ICE 278

{1,7} ICE 71
{1,2} ICE 278

paxtcsf 0 0 0

Avg. train util. ∼40% ∼50% ∼70%

Table 3.4.: Passenger demand parameters and train utilizations for ICE 71
and ICE 278
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The data underlying the medium-traffic scenario are chosen such that they

result in an average utilization of approximately 50%, which is close to

the current utilization of DB’s long-distance trains of 52% (Deutsche Bahn

2016a). In the low- and high-traffic scenarios, we set the average utilization

to 40% and 70%, respectively. For the ICE 278, the demand is randomly

generated in a similar way but with smaller numbers to maintain targeted

utilization levels in the presence of a larger number of stations on the line

(see Table 3.4).

Delay distribution

Based on the empirical analysis by Wendler and Naehrig (2004) discussed in

Section 3.2.2, arrival delays for the connecting trains and arrival delays of

the feeder train are assumed to be distributed according to a (discretized)

modified exponential distribution. The delay scenarios are divided into large,

medium, small and mixed delays and are assumed to be as follows.

• Large delays: the parameters of the modified exponential distribution

are set to pdelays = 0.65 and λs = 1/10 for all stations and trains, i.e.,

65% of trains are expected to be late, by 10 minutes on average. These

parameter values approximately minimize the mean squared deviation

between the modified exponential distribution function values and the

empirical delay distribution values given in Figure 3.1 based on Stiftung

Warentest (2011). Considering both delayed and non-delayed trains,

the average delay of a train is 6.5 minutes.

• Medium delays: here, we set pdelays = 0.4 and λs = 1/10 for all stations

s = 1, . . . , N and trains, resulting in an average delay of 4 minutes

across all trains. For this choice of parameter values, the probabilities

that the delay is not larger than 5 and 15 minutes, are 78% and 92%,

respectively. These values correspond to the average punctuality values

of Deutsche Bahn for the first 6 months of 2016 (Deutsche Bahn 2016c).
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• Small delays: we set pdelays = 0.5 and λs = 1/6 for all connecting and

feeder trains at stations s = 1, . . . , N , yielding an average delay of

3 minutes across all trains. For this choice of parameter values, the

probability that the delay is not larger than 5 minutes is 81.6%, thus

exceeding DB’s strategic target of achieving 5-minute punctuality of

80% in the future.

• Mixed delays: for each connecting and feeder train at stations s =

1, . . . , N , we estimate individual parameters based on the delay data

from the database Zugfinder (2016). For each train, the database pro-

vides information on the average delay of the train and the probability

that the train has a delay of less than 6 minutes. Every feeder and

connecting train is characterized by a unique parameter combination

of pdelays and λs at each station.

Forecasting accuracy

We consider two cases with regard to forecasting accuracy:

• In the first case, we assume that the probability distribution of arrival

and departure delays used in the SDP optimization is the “true” one,

i.e., in the simulation section with forward calculation, the random

samples are drawn from the same distribution as in the optimization

section with backward recursion.

• In the second case, we assume systematic forecast errors. In particular,

the parameter forecasts of the delay distributions used in the SDP

backward recursion are the same as before, but during the forward

simulation, nature behaves differently, and we draw from perturbed

distributions where the parameters are either 20% above or below the

forecasted values.

86



3.4. Experimental performance analysis

Extreme cases

Finally, two extreme cases are designed for each line. On the one hand, small

delays and large buffer times of 20 to 30 minutes (random numbers) between

connections are assumed (based on a robust timetable). In the second case,

large delays and small buffers of 3 to 7 minutes (random numbers) between

connections are set (based on a tight timetable). In both cases, high traffic

and correct forecasts for (small and large) delays are assumed.

3.4.4. Simulation results

In the following, we present our results from the numerical study. From

each scenario described in Section 3.4.3, a draw of 100 runs is taken, and

the average of the objective values is calculated. As mentioned previously,

the FI problem serves as benchmark for all other policies. We therefore

compare all solutions from the other policies with the solution obtained by

the FI problem. In the last column the solutions of the FI problem are

given in absolute values. The results of all other policies are presented as

deviations from the optimal solution of the FI in relative terms. A result

of e.g., 4.36% for the SDP policy in the low-traffic/small delays scenario in

Table 3.5 can be converted in an absolute value by multiplying the FI value

with factor 1.0436. The best result in each scenario is marked in bold. The

last row of Tables 3.5 - 3.9 shows the average performance of each policy

over the scenarios presented in the table. All optimization problems and the

simulation were coded in AMPL using KNITRO as a solver on a personal

computer with an Intel (R) Xeon (R) CPU (6 cores, @3.33 GHz) and a 64-bit

Windows operating system.

Results under correct forecast

Table 3.5 reports the results for train ICE 71. The SDP approach performs

always best and yields on average a solution that is 4.41% worse than FI.
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The NW rule performs quite well in all delay scenarios, while the PR, RWT,

and RO policies are moderate. Poor results are obtained by the DET and

AW rules (at least twice as poor as FI).

Traffic Low
Delay RWT NW AW PR RO DET SDP FI
Small 22.33 12.92 173.85 19.12 28.09 173.85 4.36 1365.54
Med. 19.02 3.40 170.87 4.69 30.12 170.87 3.34 1799.46
Large 5.95 8.71 204.73 10.70 20.32 204.73 4.50 2493.65
Mixed 20.85 1.98 689.09 62.32 44.24 124.28 1.94 1919.83
Traffic Medium
Delay RWT NW AW PR RO DET SDP FI
Small 39.10 7.94 196.64 7.94 31.34 196.64 7.23 1622.01
Med. 17.17 6.15 309.62 13.51 19.01 305.31 2.58 1695.74
Large 17.88 7.70 219.49 48.72 37.40 126.00 6.11 3335.33
Mixed 20.66 4.00 525.35 38.12 34.58 94.97 2.14 2839.07
Traffic High
Delay RWT NW AW PR RO DET SDP FI
Small 26.73 10.94 156.92 10.94 27.53 156.92 9.20 2659.85
Med. 34.50 9.30 260.12 18.04 50.41 260.12 5.13 2778.45
Large 15.85 10.49 185.14 36.98 26.53 185.14 5.14 4925.24
Mixed 22.38 2.63 481.44 34.26 57.51 95.26 1.31 4690.92
Avg. 21.87 7.18 297.77 25.44 33.92 174.51 4.41 2677.09

Table 3.5.: Results under correct forecast for ICE 71 (objective function
values in absolute terms for FI in the last column, in percentage
deviations from FI for all other policies)

Similar results are obtained for ICE 278; see Table 3.6 below. The SDP

approach performs best in all scenarios, being only 0.95% worse than the FI

on average, and never worse than 2.35% of the FI. In the high-traffic/mixed

delays scenario and in the low-traffic/small delays scenario, SDP performs

similarly to FI. RO yields better results than on line 71, especially in the

small and medium delay cases. The other policies perform analogously as

on line 71.
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Traffic Low
Delay RWT NW AW PR RO DET SDP FI
Small 15.92 2.66 414.83 2.66 3.86 393.04 0.00 864.99
Med. 14.95 6.85 544.40 83.39 6.79 538.47 0.80 1082.09
Large 8.84 4.33 466.56 111.85 10.69 466.56 0.62 1648.77
Mixed 11.41 2.01 855.02 116.35 9.24 566.90 0.43 1060.46
Traffic Medium
Delay RWT NW AW PR RO DET SDP FI
Small 10.06 10.45 230.37 44.54 5.20 230.37 1.97 1656.89
Med. 3.99 5.41 404.70 75.50 3.13 373.02 0.87 1868.05
Large 3.81 7.44 406.80 93.31 9.74 406.80 1.58 3070.94
Mixed 7.74 2.65 602.14 83.76 14.88 460.23 0.05 2079.68
Traffic High
Delay RWT NW AW PR RO DET SDP FI
Small 11.50 8.90 251.47 84.95 8.10 177.76 2.35 1798.96
Med. 5.39 4.22 404.85 136.40 8.40 379.27 1.06 2382.02
Large 5.73 7.71 344.18 86.54 16.04 324.80 1.68 3707.01
Mixed 11.36 3.67 747.05 85.16 44.77 516.02 0.00 2197.72
Avg. 9.23 5.53 472.70 83.70 11.74 402.77 0.95 1951.47

Table 3.6.: Results under correct forecast for ICE 278 (objective function
values in absolute terms for FI in the last column, in percentage
deviations from FI for all other policies)

Results under incorrect forecast

We also tested all policies under incorrect forecasts, i.e., the “true” delay

parameters are either 20% above or below any forecasted values. For ICE

71, SDP performed best in 10 of the 12 cases and was never worse than

8.07% of the FI (average gap 4.55%). In the case low traffic/medium delay

and medium traffic/mixed delay NW achieved slightly better results than

SDP, SDP is the second best algorithm in these cases. The other policies

yield similar results as under correct forecast.

SDP on line 278 was always the best and yields analogous results as under

correct forecast, with an average gap of 1.12% to FI. On a longer line, in-
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correct forecasts seem not to disturb the quality of the solution obtained by

SDP. RO achieved good results in small and medium delay scenarios while

NW performs well in large and mixed delay scenarios.

Traffic Low
Delay RWT NW AW PR RO DET SDP FI
Small 21.71 7.97 148.61 22.06 20.93 147.42 7.64 1436.46
Med. 19.91 4.31 349.76 15.08 41.21 349.76 4.61 1498.49
Large 16.85 9.97 185.05 12.51 34.80 102.26 8.07 2800.60
Mixed 23.60 1.93 588.79 15.01 35.25 100.60 1.21 1983.22
Traffic Medium
Delay RWT NW AW PR RO DET SDP FI
Small 32.18 5.44 172.06 6.16 32.11 172.06 4.07 1842.52
Med. 21.78 7.62 239.78 17.67 29.80 239.78 3.71 1903.85
Large 12.26 6.97 212.28 31.93 32.07 123.09 4.36 3010.49
Mixed 13.14 0.44 554.34 37.87 23.77 110.51 0.84 3061.49
Traffic High
Delay RWT NW AW PR RO DET SDP FI
Small 25.53 7.12 191.53 9.80 23.78 191.53 5.15 2200.76
Med. 21.85 8.74 248.68 11.75 37.22 248.68 5.91 3132.62
Large 14.56 10.96 162.95 17.45 24.21 162.95 6.23 5075.33
Mixed 17.84 3.14 613.60 36.16 51.77 107.60 2.80 3763.69
Avg. 20.10 6.22 305.62 19.45 32.24 171.35 4.55 2642.46

Table 3.7.: Results under incorrect forecast for ICE 71 (objective function
values in absolute terms for FI in the last column, in percentage
deviations from FI for all other policies)

Results in extreme cases

The two extreme cases are small delays combined with large buffers in

the timetable (“robust” case) and large delays together with small buffers

(“tight” case). SDP outperforms the other policies in all cases. For ICE 71

and ICE 278 SDP is similar to FI in the robust case (see Table 3.9). On

line 71 RWT was the second best algorithm and achieved an average gap of
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2.58% to FI while the NW rule achieved a medium quality.

Traffic Low
Delay RWT NW AW PR RO DET SDP FI
Small 11.70 5.08 462.29 87.71 2.33 460.93 1.29 889.64
Med. 14.77 4.99 696.03 149.41 8.58 691.12 0.70 953.76
Large 11.97 3.52 505.39 3.52 4.17 266.02 0.44 1422.92
Mixed 14.24 2.34 947.95 137.94 14.19 671.06 0.01 1057.08
Traffic Medium
Delay RWT NW AW PR RO DET SDP FI
Small 6.94 9.23 257.98 103.24 5.04 257.98 1.58 1690.12
Med. 6.03 6.84 413.56 73.64 6.11 412.81 1.06 1872.91
Large 4.13 8.87 330.92 85.30 7.67 330.92 1.52 3092.75
Mixed 6.38 3.81 759.23 99.39 14.17 535.30 0.96 1714.31
Traffic High
Delay RWT NW AW PR RO DET SDP FI
Small 8.36 17.64 257.11 41.50 7.35 227.34 2.41 2017.70
Med. 6.89 3.39 439.88 70.89 9.89 423.72 0.26 2189.37
Large 6.07 8.04 304.71 96.24 16.07 263.25 1.83 3847.29
Mixed 11.25 5.07 749.03 99.12 27.39 655.56 1.43 2326.82
Avg. 9.06 6.57 510.34 87.33 10.25 433.00 1.12 1922.89

Table 3.8.: Results under incorrect forecast for ICE 278 (objective function
values in absolute terms for FI in the last column, in percentage
deviations from FI for all other policies)

Overall assessment of solution quality

The SDP solution achieves, on average over all scenarios, a total delay that

is only 2.63% worse than the objective function of the optimal policy under

full information. It performs best among all policies, followed by the never

wait rule as second best policy, being 7.18% worse on average. The SDP

is also superior in most single scenarios. Though the NW rule is a serious

competitor in many scenarios, the reliability of the NW rule suffers somewhat

arbitrarily from some occasional outliers. On the other hand, the variability
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of the SDP performance over different scenarios is lower compared to the

NW rule, making it more robust. For example, there is a comparably large

gap of 42.52% to FI in the extreme case of ICE 71 with high traffic and

small delays, while the SDP achieves a gap of 0%. In case of ICE 287

with high traffic and small delays under incorrect forecasts, the NW rule

has a gap of 17.64% to FI, while the SDP approach yields a small gap of

2.41%. Applying the NW rule rather than the SDP approach in this scenario

translates into an additional delay of expectedly 307 passenger minutes for

this train. Applying the deterministic optimization approach DET without

re-optimization results in an expected additional delay of more than 4500

passenger minutes.

Traffic High

Line Case RWT NW AW PR RO DET SDP FI

ICE Rob. 0.40 42.52 148.14 42.52 2.06 148.14 0.00 101.88
71 Tight 4.76 14.02 270.13 120.96 87.81 270.13 2.61 6946.02

Avg. 2.58 28.27 209.14 81.74 44.93 209.14 1.31 2469.82

ICE Rob. 74.92 4.81 1333.73 10.97 10.53 830.95 0.00 72.72
278 Tight 36.84 6.23 338.54 72.09 107.15 312.69 1.86 7450.56

Avg. 55.88 5.52 836.13 41.53 58.84 571.82 0.93 2076.25

Table 3.9.: Results in extreme cases for ICE 71 and ICE 278 (objective
function values in absolute terms for FI in the last column, in
percentage deviations from FI for all other policies)

Comparing the solution quality of SDP to RO and DET, it seems worth

taking uncertainty of future delays into account in order to decrease overall

passenger delays. Although the RO approach employs only a relaxed ver-

sion of the DET problem where passenger capacity constraints are neglected

(see Section 3.4.2), the re-optimization significantly reduces passenger delays

in face of uncertainty, compared to DET. However, compared to the SDP

approach, the solution quality of RO is rather moderate.

The simulation results confirm that the SDP approach is a powerful tech-
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nique for making sequential delay management decisions under uncertainty,

here along the line of a single train with stochastic future delays. With its

state-dependent decision-making and a look-ahead capability to take future

recourse actions into account, the SDP approach appears to reliably balance

current rewards with future option values - even under incorrect forecasts

of the delay distribution parameters and with approximate estimates of the

passenger mix. Recall from Section 3.3.3 that as a result of the passenger

mix approximation, the policy derived through the SDP backward recursion

must be regarded as a heuristic solution. Other choices for the approxi-

mation might be tested in order to further decrease the gap between the

passenger delay values under the SDP policy and the FI solution. We leave

this investigation for future research.

Run time

The better solution quality of the SDP comes at the expense of computa-

tional time to determine a policy for a train, and a trade-off has to be made.

The main driver for the run time of the SDP backward recursion is the size

of the state space (ps−1,s, dks, dfs, dcs). In our implementation of the exper-

imental study, we used Theorem 1 to reduce the number of potential values

of dcs in the state space to two. Regarding ps−1,s, we considered only those

values that can be taken according to Eq. (3.8). With these reductions,

the state space for, e.g., the ICE 278 scenario with correct forecast, medium

delays and high traffic, contained 491, 172 elements for station s = 16 (max-

imum state space size over all stations for this scenario).

Another factor naturally impacting the run time of the SDP backward

iteration is the length of the train line; while the solution time for ICE 71

was on average 38 minutes over all scenarios (ranging between 25 and 62

minutes), the time for ICE 278 was on average 62 minutes (ranging between

40 and 92 minutes). However, we note that since the SDP was solved once for

each scenario (before being applied in 100 forward runs), we cannot make
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any general statement about the solution times of the SDP problem with

statistical confidence from our experiments (the same holds for DET).

Nevertheless, since the SDP backward iteration is typically performed of-

fline to compute the decision matrix once before delays occur, an additional

time effort in the range of our scenarios or even beyond seems manageable

and justifiable. In the event of a delay, it is only necessary to consult the ma-

trix, which is done instantly in the execution stage. That is, looking up the

proper SDP decision for a current state in real time is as fast as calculating

a decision derived from common rules of thumb.

The FI, solved for each run, required on average over all ICE 278 scenarios

and runs around 4 minutes to be solved, ranging from a few seconds to a max-

imum of 136 minutes for one instance of the tight schedule scenario. DET,

the traditional offline optimization approach, has a similar MINLP structure

as the FI problem and can be difficult to solve. For example, solution times

for the non-extreme ICE 278 scenarios with correct forecasts ranged between

197 seconds (for the medium traffic, mean delay scenario) and 33 minutes

(for the high traffic, mixed delay scenario). Since the dispatching decision

must be made instantly in practice, solution times of several minutes may

already be prohibitive for using the exact DET approach in a real-time re-

optimization policy. Recall that we therefore used a relaxation of DET in

the re-optimization approach RO where passenger capacity restrictions were

neglected and spill variables eliminated. As a result, an RO policy could

typically be determined in less than two seconds even for the long line.

3.5. Conclusion and future research

We have presented a stochastic dynamic programming approach for railway

delay management of a single line while accounting for uncertainty over fu-

ture delays. We thereby complement previous related works, which have

predominantly focused on deterministic settings. Considering the uncer-
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tainty of future delays in the optimization is not only highly relevant from a

practical perspective but also establishes a link to empirical studies by incor-

porating their findings on delay distributions. Our numerical experiments

demonstrate that the proposed SDP approach indeed results in decisions

that are expected to achieve lower overall delays than established optimiza-

tion or rule-based approaches. The SDP copes well with the uncertainty

by explicitly accounting for future recourse options in the current decision

stage such that the average gap relative to the full-information case was less

than 2.7% percent in our experiments. Further, the experiments show that

the SDP problem for a single line with two connections at each station can

be solved with computation times that are reasonable for a planning stage.

At the execution stage, the dispatcher simply needs to look up the proper

SDP decision for a current state in real time, which is as fast as calculating

a decision derived from common rules of thumb.

The proposed model is a first step toward addressing uncertainty in future

delays through stochastic dynamic programming. The model has some lim-

itations that create interesting future research opportunities. First, faster

heuristics based on the SDP would be useful, e.g., in situations in which

information on future delays is updated and an instant re-optimization is

required in real time. In this paper, we assumed that future delays at a

station are not known before leaving the preceding station, which might not

be the case in reality; this possibility should be addressed in future work.

Second, various details might be added to make the SDP model more

realistic. For example, we assumed so far to have full control over the focal

train; a model extension closer to reality would be to include random source

delays for the focal train, too. Another model limitation is that a delayed

train does not have the option to increase its speed and catch-up some of its

delay. It would be interesting for future research to investigate the benefits

and challenges of a more complex SDP model that takes this option into

account.

95



III. A stochastic dynamic programming approach for DM

Third, the current approach focuses on a single line with only one feeder

and connecting train at each station. Accordingly, one of the most interest-

ing and challenging future research opportunities appears to be the extension

to a network setting. The first step towards this would be to allow for more

than one feeder and connecting train at each station of the focal train. For

example, DB’s on-board travel guide for ICE 278 valid from October 2017

shows 1, 1, 3, and 6 recommended connections of long-distance trains depart-

ing within 60 minutes after the scheduled arrival of ICE 278 at main stations

in Freiburg, Karlsruhe, Mannheim, and Frankfurt, respectively. While the

extension to multiple connections will be straightforward from a modeling

perspective, the main challenge here will be to cope with the increased di-

mension of the state space computationally. Accordingly, the development

of heuristics or approximate dynamic programming techniques will be most

important for this extension but is beyond the scope of the current paper.

Then, it would be worthwhile to explore how the single-line model can

serve as a building block in a decomposition of the network. Most promising

to us would be to embed the single-line SDP as the lower level into a bi-level

optimization framework including a central coordinator and local dispatch-

ing areas with decentralized decision-makers, each controlling exactly one

line. Similar to those bi-level optimization approaches discussed in Section

3.2.1, the central coordinator would be in charge to ensure global feasibil-

ity of local plans with regard to joint network resources. Moreover, in our

case, the coordinator would also be responsible for synchronizing assumed

input delay distributions with effective output distributions. More precisely,

for any two trains k1, k2 a coupling constraint or priority rule should en-

sure that the output delay distribution of train k1 at station s corresponds

to the (assumed) input delay distribution for train k2 if k1 is a feeder or

connecting train to k2 at station s. In case of closed families of delay dis-

tributions (where the resulting distribution of propagated delays can still be

represented by the same family of distribution functions) this task reduces
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to synchronizing the parameters of the respective distributions. In turn, the

local dispatcher has to consider selected conditions imposed by the coordi-

nator that are necessary or sufficient for the synchronization, yielding lower

or upper bounds of the optimal objective function value. Analytical prob-

ability models for estimating the propagation of uncertain primary delays

under given wait-depart decisions might be employed to calculate the exact

output distribution at any station (see, e.g., Kirchhoff 2015).

Ultimately, the decomposition into sub-problems and the concentration

on a single line is similar to common practice, whereby delay management

decisions are distributed across many dispatchers, each focusing on one or a

few trains in the network. As such, the proposed SDP approach seems to be

a natural way to solve the dispatchers’ problem of making state-dependent

decisions as an erratic stream of new information about delayed trains ar-

rives dynamically over time. A network approach that combines the local

decisions to a comprehensive guidance in the case of delays will unfold the

full potential of stochastic dynamic programming to reduce passenger delays

and to improve punctuality performance of a railway service provider.
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Chapter IV

Railway delay management with

passenger rerouting considering

train capacity constraints

with Cornelia Schön1

Abstract

Delay management for railways is concerned with the question of whether a

train should wait for a delayed feeder train or depart on time. The answer

should not only depend on the length of the delay but also consider other

factors, such as capacity restrictions. We present an optimization model for

delay management in railway networks that accounts for capacity constraints

on the number of passengers that a train can effectively carry. While limited

capacities of tracks and stations have been considered in delay management

models, passenger train capacity has been neglected in the literature so far,

implicitly assuming an infinite train capacity. However, even in open sys-

tems where no seat reservation is required and passengers may stand during

the journey if all seats are occupied, physical space is naturally limited, and

1The research presented in this chapter is based on a paper entitled “Railway delay man-
agement with passenger rerouting considering train capacity constraints”, coauthored
with Cornelia Schön.
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the number of standing seats is constrained for passenger safety reasons.

We present a mixed-integer nonlinear programming formulation for the de-

lay management problem with passenger rerouting and capacities of trains.

Our model allows the rerouting of passengers missing their connection due

to delays or capacity constraints. We linearize the model in exact and ap-

proximate ways and experimentally compare the different approaches with

the solution of a reference model from the literature that neglects capacity

constraints. The results demonstrate that there is a significant impact of

considering train capacity restrictions in decisions to manage delays.

4.1. Introduction

The physical space of trains is limited, and for security reasons, trains are

forbidden to be operated above a certain utilization level. For example,

the maximum allowed utilization level of long-distance trains in Germany is

200%, although advance purchases of train tickets are not limited. Usually,

a train has to stop its service earlier than expected when emergency exits

are blocked or passengers and baggage could harm other passengers in case

of unexpected braking (Süddeutsche Zeitung 2011). This situation occurred,

e.g., on Easter in 2011, when trains of the German railway company Deutsche

Bahn (DB) had to stop and passengers had to disembark due to overload

(Die Welt 2011).

For Japan’s long-distance Shinkansen trains, all but three cars can be

accessed with reserved seating only. Many European countries have at least

one category of high-speed train where a reservation is compulsory, such as

France, Italy, Spain and Sweden. For example, France’s high-speed TGV

trains always require seat reservations, i.e., passenger’s capacity is as strictly

limited to the number of seats as it is on an airplane. In airline operations

management, rejecting passengers due to limited seat capacity is much more

common, as the number of passengers cannot be greater than the number
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of seats, and therefore, the industry is more directly concerned with the

topic of spilling passengers (Belobaba and Farkas 1999, Li and Oum 2000,

Lohatepanont and Barnhart 2004).

Moreover, for railway services, empirical research suggests that passengers

often perceive a train with high utilization level as being crowded, which

may decrease passenger comfort and thereby the attractiveness of choosing

railway as a means of transport (Tirachini et al. 2013). In this case, demand

would be endogenously affected by itself, and railway service providers have

a market incentive to avoid overcrowding and to maintain load factors at

reasonable levels.

Limited passenger capacity has also been a concern in other parts of the

railway planning process, in particular in the face of increasing passenger vol-

umes (Handelsblatt 2018). A higher demand for train services requires, e.g.,

more sophisticated planning approaches for timetabling in order to match

demand and supply. Some approaches in this literature already consider

train capacity constraints, such as e.g., Cordone and Redaelli 2011, Niu and

Zhou 2013, Canca et al. 2014.

For short-term planning problems such as railway delay management, train

capacity has been neglected in the literature so far. The common assumption

is that passengers will always reach their destination on the shortest path

by trains with unlimited capacity, though some passengers may be delayed.

Railway delay management focuses on dispatching decisions, such as whether

a connecting train should wait for a delayed feeder train. On the one hand,

waiting incurs the risk of transferring delays through the network; on the

other hand, not waiting implies that connecting passengers will miss their

connection and may either be stranded somewhere or reach their destination

with a large delay if it takes a long time for them to catch an alternative

train. Finding an appropriate answer is not trivial, as several works in the

literature address this problem. For delay management models, the capac-

ity of tracks (Schöbel 2009, Schachtebeck and Schöbel 2010) and stations
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(Dollevoet et al. 2015) has been taken into account. Additionally, the limit

of rolling stock capacity was considered for rescheduling decisions (Veelen-

turf, Kidd, Cacchiani, Kroon and Toth 2016). However, there appears to be

potential for a deeper evaluation of capacity constraints (see Chapter 4.2).

In this paper, we address a problem from railway delay management and

analyze the impact of spill effects on decisions to delay trains by including a

capacity restriction on the number of passengers that a train can effectively

carry. We expect that a higher utilization level will influence the wait-depart

decision. In the most extreme case, when capacity utilization of the train

is at its limit, it is trivial to say that the full train should not wait for a

delayed feeder train. Consider the following example: train k is a connecting

train for train l at station s. Train k has a capacity of 100 passengers and

at station s, 99 passengers are already on train k and desire to remain on

board and continue to station s + 1, i.e., no passenger will exit train k at

station s. Train l will expectedly arrive with a delay of 20 minutes and 30

passengers who desire to change to k at station s. In this situation, it would

not be reasonable for train k to wait for train l, as k has nearly reached the

capacity limit, and a wait-depart decision is unnecessary. However, without

considering passenger capacities, some models might suggest to wait for train

l and cause even more delays and congestion in the network. Our model

is able to consider this aspect for the decision. In other situations, only

a fraction of the changing passengers can transfer to their connecting train;

others are rerouted to alternative paths in the capacitated network and some

may even be spilled to other trains. We therefore assume the knowledge of

the passengers’ origins and destinations (based on, e.g., data from ticket

purchases).

The aspect of passenger rerouting has become common in the more recent

delay management literature. It is assumed that when passengers miss their

connections due to delays, they will not wait for the next cycle in the train

line but rather look for alternative routes to reach their destination as fast as
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possible. These alternative routes may be determined by solving a shortest

path problem embedded into the delay management problem (Dollevoet et al.

2012). So far, this approach is done under the assumption that all arcs in

the network are uncapacitated and that passengers travel to their destination

on the shortest path independent of the utilization of the path’s legs. We

will evaluate how far different passenger streams between the same origin-

destination (OD) pair need to be split onto different paths in the network

in face of capacity constraints. Consequently, we also include the possibility

that passengers who would have reached their final destination in the case of

no delays may become stranded in the case of delays and must be transported

by other means of transport to their final destination.

Technically, we do not impose the binary restriction that exactly one and

the same path must be assigned to all passengers of the same OD stream.

Rather, we break OD passenger streams down into fractions to be able to

assign subgroups of these passenger streams to different routes based on re-

source availability. As a result, our model formulation is a mixed-integer

nonlinear program (MINLP) where the nonlinearities stem from bilinear

mixed-integer terms for calculating passenger weighted delays. We linearize

the MINLP in one approximate and two exact ways. In a numerical study,

we test all three variants of our model and compare the performance with

the solution of the model from Dollevoet et al. (2012) that takes wait-depart

decisions with passenger rerouting but neglects capacity constraints. We

evaluate the solution quality as well as the run times of these approaches.

We make several contributions:

• To the best of our knowledge, this is the first optimization model in

railway delay management that includes train capacity constraints on

the number of passengers and accommodates the resulting passenger

spill.

• The model concerns railway networks where passengers have the choice

103



IV. Railway DM considering train capacity constraints

to use various routes to reach their destination (passenger rerouting).

The capacity restriction and the resulting passenger spill have an ac-

tive impact on the process of making the wait depart-decision and the

(re)routing of the passenger.

• We show how to linearize the initial MINLP formulation exactly and

approximately and propose three model variants that are mixed-integer

linear problems (MILPs).

• We demonstrate the performance of the different approaches in a large

numerical study. We compare the different variants in terms of solution

quality and run time to a model from the literature. In all scenarios,

a spill effect is visible, and the benchmark model from the literature is

outperformed in every scenario by at least one of our approaches.

The paper is structured as follows: Section 4.2 reviews the related literature.

In Section 4.3 the model formulation for delay management with rerouting

(DM) and for delay management with rerouting under train capacity con-

straints (DM-TC) is presented. We show exact and heuristic linearization

approaches for the DM-TC model in Section 4.4. Section 4.5 contains a nu-

merical study and discusses the results. Finally, Section 4.6 summarizes the

findings of the paper in a conclusion and identifies further research opportu-

nities.

4.2. Literature

In recent years, a broad range of articles addressing railway delay manage-

ment has emerged. In her seminal paper, Schöbel (2001) develops a first

integer programming (IP) formulation based on an event-activity network

with the objective of minimizing passenger delay. The approach has been

further advanced in several works. In Schöbel (2007) alternative methods

for solving the basic delay management problem are presented. Heilporn
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et al. (2008) present a variable reduction technique with a branch-and-cut

procedure for the model from Schöbel (2001) and solve it via a constraint

generation approach. Ginkel and Schöbel (2007) also formulate the delay

management problem as an event-activity network, but with a bi-criteria ob-

jective to minimize delays and missed connections, and use solution methods

from project planning. A recent analysis of dynamic event-activity networks

is provided by Müller-Hannemann and Rückert (2017). The authors also

introduce a web-based simulation tool, called PANDA. PANDA supports

dispatchers in their decision-making process by using real-time information

on delays and estimating passenger flows. For a more detailed description,

we refer to Rückert et al. (2017). The simulation capability of PANDA is

extended in Lemnian et al. (2016).

A few papers in the field of railway delay management consider some type

of capacity constraint, in particular for tracks and stations. Capacity re-

strictions for tracks, also known as headway constraints, are considered in

Schöbel (2009). Difficulties arise from the different perspectives, as in delay

management models, stations are typically considered as nodes and tracks

as arcs, but under track capacity constraints, the tracks have to be split

up in several block sections to regulate the distance between two trains on

the same track. The model is tested on real-world data with a branch and

bound (B&B) approach and a first-scheduled-first-served heuristic. As ex-

pected, the B&B approach shows a better performance than the heuristic

but provides the solutions more slowly. The integer programming formu-

lation for the capacitated model from Schöbel (2009) is further refined in

Schachtebeck and Schöbel (2010). The authors derive exact and heuristic

solution approaches and evaluate their performance in a case study using

real-world data from Germany. The authors demonstrate that solving the

problem exactly can be challenging since the headway constraints increase

the difficulty of the problem. Furthermore, delays can be easily transferred

through the headways to other trains. Therefore, a never-meet property is
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introduced, and it is proven that the punctuality of trains is not compromised

by a forward displacement of delays on earlier stations.

The capacity of stations is taken into account in Dollevoet et al. (2015).

This model allows the rescheduling of platform assignments, which can re-

duce passenger delays. To find solutions in a reasonable time, an iterative

solution heuristic is proposed that solves the delay management problem in

one step and optimizes the platform assignment in another step. In the op-

timal solution, rescheduling is proposed for many trains in order to reduce

the overall delay; however, this leads to large inconveniences for passengers.

Therefore, the authors propose to restrict the number of platform changes

and to consider the model as a bi-objective optimization problem. In Vee-

lenturf, Kidd, Cacchiani, Kroon and Toth (2016), a macroscopic timetable

rescheduling problem is developed. The model has the objective to minimize

delays while considering infrastructure capacity such as rolling stock capac-

ity, but constraints for crew rescheduling are neglected. One of the findings

of the model is the potential to reduce the number of canceled trains if larger

delays for the trains are accepted. To the best of our knowledge, capacity

constraints of trains and the evaluation of spill effects have been neglected

in the literature so far.

The classical literature assumes that passengers who miss a connection

have to wait a complete cycle time for the next train. In dense networks,

passengers have several possibilities to continue their journey. In this paper,

we assume that passengers have the possibility to take alternative routes in

case of delays (or full trains). Some approaches in the literature consider the

aspect of rerouting as well. Berger, Blaar, Gebhardt, Müller-Hannemann

and Schnee (2011) formulate a multi-commodity flow problem of passenger

streams that updates information on passengers and delays in real time.

Dollevoet et al. (2012) add a rerouting of passengers via a shortest path

problem to the classical delay management problem. We will use this later

as a basis for our approach. Schmidt (2013) proves rerouting to be NP-
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hard. Several solution heuristics for large-scale real-world instances of the

rerouting problem are presented in Dollevoet and Huismann (2014). Schmidt

et al. (2017) evaluate passenger route choices under uncertainty and examine

choice strategies from a game theoretic perspective. Niu et al. (2018) develop

a Lagrangian decomposition approach to make a consistent and optimal

assignment of routing decisions. For an overview of the integration of routing

decisions in public transport see Schmidt (2014).

A crucial aspect in route choice models is the anticipated passenger be-

havior during disruptions. In the literature on general public transport net-

works there are sophisticated approaches for modeling the travel behavior of

rational passengers (see Desaulniers and Hickman 2007 for an overview), for

example in face of uncertain carrier arrivals when several routes are available

to reach the destination from a transit stop (see e.g., Trozzi et al. 2010 and

the literature cited therein). Binder et al. (2017) evaluate different priority

rules for boarding crowded trains and the impacts on travel time, passenger

delay and unsatisfied demand. In van der Hurk et al. (2018) not only dis-

patchers are supported with advice but also passengers who are free to follow

the provided advice or not. Further literature on route choice modeling can

be found in Liu et al. (2010).

Another way to make wait-depart decisions is by heuristic dispatching

rules, which are practical rules-of-thumb to quickly (and easily) generate

a decision based on local information. In Kliewer and Suhl (2011), a re-

optimization approach is compared to several dispatching rules, e.g., to give

trains of a higher class priority or to always (never) wait in general. These

rules of thumb belong to the so-called online algorithms that are able to

process input piece-by-piece as the data stream is revealed over time and to

make decisions only on the currently available information without assump-

tions about the future (Agrawal et al. 2014). These algorithms can func-

tion well in dynamic environments where decisions need to be made quickly.

Krumke et al. (2011) present some online algorithms aiming to minimize
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delay, and Bender et al. (2013) test these algorithms with regard to different

performance measures. Bauer and Schöbel (2014) create some heuristic de-

cision rules from their optimization models and compare their performance.

In Corman, D’Ariano, Pacciarelli and Pranzo (2014), dispatching rules in a

microscopic alternative graph formulation for large networks are evaluated.

The field of stochastic models for delay management is rather scarce. In

addition to performing the above mentioned tests of online algorithms, Ben-

der et al. (2013) also propose a stylized stochastic dynamic programming

approach for delay management. Meng and Zhou (2011) develop a stochas-

tic program for future delays with one look-ahead period. Stochastic dis-

turbances are included in rescheduling plans via a rolling horizon approach

in Quaglietta et al. (2013). Corman, D’Ariano and Hansen (2014) con-

sider varying stochastic disturbances in their retiming and rescheduling ap-

proaches to evaluate their performance. In Keyhani et al. (2017), a dynamic-

programming approach is developed to find the latest connection passengers

can take to reach their destination at a certain time with high probabil-

ity. Schön and König (2018) present a stochastic dynamic programming

approach for a single train line and evaluate its performance compared to

deterministic approaches from the literature and a re-optimization strategy.

In this model, passenger streams are considered, and when passengers em-

bark a train, it is assumed that only the number of passengers that the train

can effectively carry enter and that the rest is spilled.

Real-time support for dispatchers can be also yielded by returning to the

original schedule as fast as possible after a disruption. The rescheduling of

trains is evaluated in several works, e.g., D’Ariano et al. 2007, 2008. Since

we focus on the passenger-centric models, we will not go more into detail

about these works and refer the reader to Lamorgese and Mannino (2015)

and the literature therein. There also exist approaches that combine the

passenger and company perspectives and try to integrate both views (delay

management and rescheduling) into their models, e.g., Dollevoet et al. 2014,
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Lamorgese et al. 2016, Corman et al. 2017.

In summary, the literature on delay management achieved a strong growth

in the last decade. There are some works that consider capacities, but none

of them has examined the passenger capacity of trains so far. The aspect

of passenger rerouting was considered in separate models. A combination of

both is missing in the literature so far.

4.3. Delay management with rerouting and

capacities of trains

In this section, we develop a model for railway delay management that con-

siders the capacity of trains in the decision-making process. Furthermore, we

also include passenger rerouting, assuming that in case of a missed or broken

connection passengers can change their route to reach their destination. We

therefore first present in Section 4.3.1 a reference model from the literature

from Dollevoet et al. (2012), which includes the classical delay management

problem (as can be also found in Schöbel (2001)) and a shortest path prob-

lem. For more about shortest path problems and route planning, we refer

to Bast et al. (2016). Afterwards, we will describe in Section 4.3.2 how to

extend the basic model by including passenger capacity constraints and ac-

commodating for passenger spill. There are some structural difficulties to

cope with in face of capacity constraints. In particular, if capacity is short

it might be desirable to propose individual routing options for subgroups

of passengers. Technically, the commonly used binary variables for routing

whole passenger streams will be broken down into fractional (continuous)

variables, and the resulting model formulation is a MINLP where the non-

linearities stem from mixed-integer bilinear terms. Exact and approximate

linearization approaches of the model will be proposed in Chapter 4.4.
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4.3.1. Basic DM model

Assumptions

The DM model of Dollevoet et al. (2012) is represented as a directed graph,

also called event-activity network N = (E ,A), consisting of events (nodes)

e ∈ E and activities (arcs) a ∈ A. Event-activity networks have been used

several times in the literature to model railway delay management problems

(see, e.g., Schöbel (2001), Schöbel (2009), Schachtebeck and Schöbel (2010),

Dollevoet et al. (2015) to name just a few). Events can be categorized as

arrival, departure, origin and destination events, with

E = Earr ∪ Edep ∪ Eorg ∪ Edest.

Let K be a set of trains and S be a set of stations. Arrival and departure

events represent the arrival and departure of a train k ∈ K at station s ∈ S
with arrival and departure times tAks and tDks, respectively; accordingly, these

events are modeled as triples
(
k, s, tAks

)
and

(
k, s, tDks

)
.

Origin and destination events are related to passenger types, which are

characterized by a unique combination of the OD pair that passengers want

to travel and their desired departure time. Formally, if P denotes the set

of different passenger types, then type p ∈ P is represented by a triple

(op, dp, timep), where op, dp ∈ S are the origin and destination stations,

respectively, and timep is the desired departure time at the origin op. Fur-

thermore, we assume to know the size of each passenger type p ∈ P, denoted

by the parameter wp (typically estimated from traffic flow data).

Then, for each type p ∈ P, an origin event Org (p) ∈ Eorg and a destina-

tion event Dest (p) ∈ Edest are introduced as the start and end points of its

path through the network. The origin event of passenger type p is connected

to all potential departure events that include station op within a given tol-

erance time limit around timep. Similarly, all potential arrival events that
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4.3. Delay management with rerouting and capacities of trains

include arrival station dp are connected to the destination event of p. Which

departure and arrival event is finally chosen by passenger type p at her origin

and destination, respectively, is determined through the optimization.

Arcs result from activities in the directed graph which link two events

A : (e′, e) ∈ E × E . We distinguish between the following different activities:

• A waiting activity a = (e′, e) ∈ Await connects an arrival event e′ =(
k, s, tAks

)
∈ Earr of a train k ∈ K at station s ∈ S with the train’s

departure event e =
(
k, s, tDks

)
∈ Edep at this station.

• A changing activity a = (e′, e) ∈ Achange connects an arrival event

e′ =
(
k, s, tAks

)
∈ Earr of a train k ∈ K at station s ∈ S with the

departure event e =
(
l, s, tDls

)
∈ Edep of a train l ∈ K at this station.

• A driving activity a = (e′, e) ∈ Adrive connects a departure event

e′ =
(
k, s, tDks

)
∈ Edep of a train k ∈ K at station s ∈ S with the train’s

arrival event e =
(
k, s+ 1, tAks+1

)
∈ Earr at the next station s+ 1 ∈ S.

• A starting activity a = (e′, e) ∈ Astart (p)∀ p ∈ P connects an origin

event e′ = Org (p) ∈ Eorg at a passenger’s origin op ∈ S with a depar-

ture event e =
(
k, op, t

D
kop

)
∈ Edep of a train k ∈ K at this station.

• A finishing activity a = (e, e′) ∈ Afin (p)∀ p ∈ P connects an arrival

event e =
(
k, dp, t

A
kdp

)
∈ Earr of a train k ∈ K at a passenger’s des-

tination dp ∈ S with a destination event e′ = Dest (p) ∈ Edest at this

station.

The set of activities is then as follows:

A = Adrive ∪ Await ∪ Achange ∪ Astart (p) ∪ Afin (p) .

The minimum time required to perform an activity a ∈ Adrive ∪ Await ∪
Achange is declared as δa. Furthermore, let ∆e be the delay at an event

e ∈ Earr ∪ Edep and ∆a the delay during an activity a ∈ Adrive ∪ Await. As
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IV. Railway DM considering train capacity constraints

the event-activity network N is a directed graph, we can identify all ingoing

arcs, denoted by I (e), and all outgoing arcs, denoted by O (e), of an event

e ∈ E .

Further, denote by τe the planned arrival or departure times of an event

e ∈ Earr ∪ Edep as given in the train schedule. The earliest possible arrival

time for a passenger of type p without delays, denoted by tp, can be computed

in a preprocessing step with a shortest-path algorithm.

For the disposition timetable (the potentially modified schedule after a

delay has occurred), we introduce scheduling decision variables. Denote by

xe the (potentially rescheduled) time of an event e ∈ Earr ∪ Edep. Passenger

delays will be measured when they exit a train at their final station. For

this purpose, another decision variable tp ∈ N is introduced that denotes the

arrival time of passenger type p ∈ P at the final destination.

As delay management includes the decision to maintain or break a connec-

tion, we introduce for the changing activities a ∈ Achange a binary decision

variable za:

za =

1 if connection a is maintained,

0 otherwise.

The routing part of the model needs an additional binary decision variable

yap, which indicates whether activity a ∈ A is included in a path of passenger

type p ∈ P. It is defined as follows:

yap =

1 if activity a is assigned to passengers of type p,

0 otherwise.

Note that DM models with rerouting realistically capture that if a passenger

is experiencing a disruption during his train journey, he will look for alter-

native connections that will bring him to his final destination as soon as

possible. Passenger rerouting enlarges the action space by creating alterna-
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4.3. Delay management with rerouting and capacities of trains

tive choice options that the passenger might prefer over waiting a complete

cycle for the subsequent train of the same line as his original itinerary. The

passenger can be rerouted via a new path through a network or take the

following train of the same line – whatever is more effective with regard to

the objective function of minimizing the delay.

DM problem formulation

Based on the notation and the assumptions above, we provide the mathe-

matical problem formulation of Dollevoet et al. (2012) in the following for

reference:

min
∑
p∈P

wp
(
tp − tp

)
(4.1)

s.t.

xe ≥ τe + ∆e ∀e ∈ Earr ∪ Edep (4.2)

xe ≥ xe′ + δa + ∆a ∀ a = (e′, e) ∈ Adrive ∪ Await (4.3)

xe ≥ xe′ + δa −M1 (1− za) ∀ a = (e′, e) ∈ Achange (4.4)

yap ≤ za ∀ p ∈ P, a ∈ Achange (4.5)∑
a∈O(e)

yap = 1 ∀ p ∈ P, e = Org(p) ∈ Eorg (4.6)

∑
a∈O(e)

yap =
∑
a∈I(e)

yap ∀ p ∈ P, e ∈ Earr ∪ Edep (4.7)

∑
a∈I(e)

yap = 1 ∀ p ∈ P, e = Dest (p) ∈ Edest (4.8)

tp ≥ xe−M2 (1− yap) ∀ p ∈ P, e = Dest (p) ∈ Edest, a ∈ I (e) (4.9)

za ∈ {0, 1} ∀ a ∈ Achange (4.10)

yap ∈ {0, 1} ∀ p ∈ P, a ∈ A (4.11)
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IV. Railway DM considering train capacity constraints

xe ∈ N ∀ e ∈ Earr ∪ Edep (4.12)

tp ∈ N ∀ p ∈ P. (4.13)

In the objective function (4.1) the total passenger-weighted delay is mini-

mized. Constraints (4.2) restrict the events to not occur earlier than in the

original timetable including possible source delays. Constraints (4.3) are the

usual precedence constraints that apply to the (re)scheduling of train-related

activities, again considering potential delays. Inequalities (4.4) ensure for a

sufficiently large number M1 that if a connection between two trains at a

given station is maintained (i.e., za = 1, a ∈ Achange), then the departure

event of the connecting train must not take place before the arrival event of

the feeder train plus a changing time. In summary, constraints (4.2) - (4.4)

represent the time-related decisions in the scheduling part.

Constraints (4.5) ensure that passenger changing activities are feasible

only if the corresponding train connection is maintained. The incorporated

shortest path problem is depicted in constraints (4.6) to (4.8) with (4.6) for

the origin, (4.7) for all in between stations and (4.8) for the destination of a

passenger stream. These constraints (Eq. (4.5) - (4.8)) represent the routing

part. The arrival time for passengers of type p is determined in (4.9), where

M2 is chosen to be sufficiently large. Constraints (4.10) to (4.13) define

the requirements for the variable sets. Following Dollevoet et al. (2012),

departure times are restricted to be integer numbers. Please note that this

restriction will be crucial later for the linearizations in Section 4.4. For

the determination of the smallest possible values of M1 and M2 we refer to

Dollevoet et al. (2012).

The computation of the earliest possible arrival time tp for passengers of type

p ∈ P is done in a preprocessing step as it is also done in, e.g., Dollevoet

et al. (2012). In particular, the preprocessing model corresponds to the DM

problem where all delays are set to zero. Accordingly, no rescheduling is

necessary and the ultimate preprocessing model only consists of the shortest
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4.3. Delay management with rerouting and capacities of trains

path problem (Equations (4.1) and (4.6) - (4.8)) and possesses no delay

constraints (see Appendix 2.1.1).

4.3.2. DM-TC model

In the following we will present the necessary adjustments and extensions of

the basic DM model (4.1) - (4.13) in order to include capacity constraints

and consider spill effects.

Train capacity constraints

First of all, to limit the number of passengers that a train can carry, we

impose a capacity constraint on the driving activities as follows:∑
p∈P

wpyap ≤ Ca ∀ a ∈ Adrive (4.14)

where the capacity Ca of activity a ∈ Adrive is determined by the size of the

train (or a certain train type).

Passenger fractions

In the face of capacity constraints, different passengers of the same type p

might take different paths to reach their destination. We therefore relax yap

to represent any fraction of passenger type p that is routed through a path

containing activity a ∈ A, and model the allocation of passenger streams to

activities with continuous variables. Constraints (4.11) become

yap ∈ [0; 1] ∀ p ∈ P, a ∈ A. (4.15)

However, when the binary requirements for variables yap are relaxed, the Big

M constraints (4.9) do not work anymore, and we remove them together with

the variables tp in (4.13) from our problem formulation. Instead, we model
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IV. Railway DM considering train capacity constraints

the passenger-weighted delay in the objective function directly by including

bilinear terms xeyap as:

∑
p∈P

wp

 ∑
a=(e,e′)∈Afin(p)

xeyap − t̄p

. (4.16)

The parameter t̄p consists of yap and xe and refers to the solution of the ca-

pacitated delay management problem with no delays. yap and xe are deter-

mined in a preprocessing step, which is explained in more detail in Appendix

2.1.2. In particular, yap represents the fraction of passengers of type p who

arrive at their final destination via some activity a = (e, e′) ∈ Afin (p) at

time xe, i.e., the original (undelayed) passenger-weighted arrival time, xeyap,

is compared to the actual arrival time of passengers xeyap to determine the

passenger-weighted delay. Note that this term may sometimes attain nega-

tive values if delays create new connections and thereby paths through the

network that would not exist otherwise (more details are provided in the

paragraph on ”Late Train Options” in Section 4.3.2). In this case, passen-

gers can catch trains that will possibly bring them to their destination earlier

than planned.

Structurally, the objective function becomes nonlinear (nonconvex) in face

of the bilinear terms in the objective function, and the problem becomes a

MINLP. In Section 4.4, we will discuss different linearization techniques.

Rerouting and spilling

Our model DM-TC accommodates rerouting of passengers not only in case

of delays but also in the case of capacity shortages for driving activities. In

the most extreme case of a shortage, train capacity might be fully exhausted

along all potential paths to a passenger’s destination such that even with

rerouting, he cannot reach his destination by train any more and is spilled.

Spilled passengers are carried to a station as close as possible to their desired
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4.3. Delay management with rerouting and capacities of trains

Figure 4.1.: Different events in the event-activity network

destination by train and presumably finish the rest of their journey with,

e.g., local public transport or a taxi. Such transport activities outside the

regular system are represented by so-called “spill” arcs that passengers can

be assigned to. For the purpose of spilling, we introduce a new activity set

Aspill (p) := {(e′, e) ∈ A : e′ ∈ Eorg (p) ∪ Earr, e ∈ Edest (p)} that allows

passengers of type p ∈ P to be transferred directly from an origin or arrival

event to a destination event if all remaining regular paths (i.e., by train) from

the origin or intermediate arrival station to the destination are congested.

Fig. 4.1 shows the in- and outgoing arcs (including spill activities in red)

for all kinds of events in the event-activity network. Accordingly, we need to

redefine the sets of ingoing and outgoing arcs for each event. Table 4.1 shows

the modified sets of activities dependent on the type of event. With these

definitions, the linking constraints (4.5) and the balance equations (4.6) -

(4.8) remain the same, as only the sets for I (e) and O (e) have changed.

Spill arcs a ∈ Aspill (p) have an infinite capacity such that the balance con-

straints (4.6) - (4.8) can always be satisfied in face of capacity-constrained

driving activities. However, traveling on spill arcs is usually inconvenient for
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Events E Ingoing arcs I (e) Outgoing arcs O (e)
Eorg Astart (p), Aspill (p)
Edep Astart (p), Await, Achange Adrive
Earr Adrive Await, Achange, Aspill (p), Afin (p)
Edest Afin (p), Aspill (p)

Table 4.1.: New set of activities for ingoing and outgoing arcs

passengers (in particular in case of local transport substitutes) and costly

for the railway provider (in particular in case of taxi drives). Therefore, spill

levels should be kept within limits, at or close to the minimum that is neces-

sary to guarantee that all passengers with a transportation claim can finally

reach their destination. To keep spill levels at a reasonable level, we will

introduce a new spill constraint shortly, but before we extend the objective

function to explicitly include the delay of passengers who reach their final

destination via spill arcs:

Min
∑
p∈P

wp


 ∑

a=(e,Dest(p))

∈Afin(p)

xeyap +
∑

a=(e,Dest(p))

∈Aspill(p)

(xe + δa)yap

− t̄p
 . (4.17)

The objective function takes into account that passengers of type p can

reach their final destination either on a regular path via a finish activity

a ∈ Afin(p) or by external transport modes via a spill arc a ∈ Aspill(p).
As before, the actual destination arrival time of passengers with regular

train connections a ∈ Afin(p) is xeyap. On the other hand, passengers

who reach their destination via a spill arc a = (e,Dest(p)) ∈ Aspill(p) exit

the train system at the time xe of the arrival event e where the spill activity

starts. Thus, given an expected duration of the spill activity of δa time units,

the arrival time of spilled passengers at their final destination is (xe + δa).

Whichever path a passenger type takes through the network, the average
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4.3. Delay management with rerouting and capacities of trains

destination arrival time of type p is obtained by weighting the completion

times of all potential paths to Dest(p) via a ∈ Afin(p) ∪ Aspill(p) with the

corresponding passenger fractions yap (i.e., the term in round parentheses

in (4.17)). This average arrival time can then be compared to the original

(undelayed) arrival time t̄p for computing the expected delay.

Note that while durations of driving and changing activities are taken

from the schedule, the duration δa of spill activities a = (e,Dest(p)) ∈
Aspill(p) must be estimated. To obtain reasonable estimates, we will assume

in our experimental study described in Section 4.5.2 that the duration is

proportional to the distance between the station underlying the event e where

the passenger exits the train system and the final destination.

In order to reasonably limit spill, we introduce an acceptable spill level

B to bound the total time that passengers spend in spilling activities with

external transport modes by the following spill constraint:∑
p∈P

wp
∑

a∈Aspill(p)

rayap ≤ B. (4.18)

Whereby ra is the distance between the station where the passenger exit the

train system and its destination. The minimum possible spill level Bmin to

keep a model including constraint (4.18) feasible can be determined a priori

by minimizing
∑
p∈P wp

∑
a∈Aspill(p)

rayap subject to the relevant constraints

of the main model (here, as will be elaborated in the following, ((4.2) - (4.8),

(4.10), (4.12), (4.14)-(4.15), (4.20)-(4.24)). In the following, we refer to this

optimization problem that has to be solved in a preprocessing step as the B-

Model. Then, Bmin is equal to the minimum objective function value of the

B-Model. Since traveling on spill arcs is usually inconvenient for passengers

and costly for the company, a reasonable policy for the service provider could

be to set B = Bmin in constraint (4.18) and incorporate it into the main

model with objective function (4.17). In this way, the service provider would

prioritize the objective to minimize spill to external transport modes first and
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passenger-weighted delay second. Of course, larger values for B might be

chosen that include some additional budget for spilling (for more details on

the choice of B in our numerical study, see Section 4.5.1).

Figure 4.2.: Example of spilling and rerouting passengers

For a better understanding, consider the following example in Fig. 4.2:

assume high traffic on a train k from Munich to Cologne and low traffic on

a train l from Freiburg to Hamburg. Passengers who want to travel from

Mannheim (a station on line k and l) to Frankfurt Airport (a station on line

k) plan to take train k. Due to the high traffic of train k, they cannot enter

train k, but the dispatcher can recommend (e.g., by an announcement on

the station) to take train l to Frankfurt Hbf (a station on line l that is close

to Frankfurt Airport), from where passengers can use external transport

modes (spill arcs), e.g., a bus or a subway, for the remaining journey to their

destination. By setting the spill acceptance level B sufficiently small, we can

ensure that spill arcs are used only if no alternative path with regular arcs

is available in the network.
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4.3. Delay management with rerouting and capacities of trains

Directed choice

Note that in our model, the service provider makes the (re)scheduling deci-

sions xe under the assumption of having full discretion about the assignment

yap of passengers to activities, in particular to alternative routes and to spill

arcs in case of overflows/bottlenecks. In fact, we assume that passengers

fully comply with routing advices, similar to a so-called “directed choice”

behavior of the customer (see, e.g., Aboolian et al. 2012, Berman and Krass

2015). Thus similar to Dollevoet et al. (2012), passengers presumably behave

in a way that is most desirable from a system-wide perspective to minimize

the overall negative impact of delays on passengers as measured by the ob-

jective function. In reality, the service provider has of course only limited

control on who is rerouted to which path and spilled to alternative transport

means. However, we consider the directed choice assumption justifiable for

a number of reasons:

• Passenger rerouting is an assumed consumer response to de-

lays in order to make the primary (rescheduling) decision: The

primary decision that is actually implemented by the dispatcher in case

of delays concerns the rescheduling of trains (i.e., the x variables of ar-

rival and departure event times). On the other hand, the passenger

allocation (represented by the y variables) is only a means for making

the primary (re-)scheduling decision under some reasonable assump-

tion of passenger behavior. In fact, which alternative paths passengers

take if they encounter delays is within their own discretion. However,

while the dispatcher cannot enforce how passenger flows are rerouted

though the network, their behavior can be influenced to the extent

that delayed passengers gratefully follow the service provider’s advice,

e.g., through announcements at the station or recommendations in the

train. Thus, the allocation y is determined optimally based on the

assumption that passengers behave ideally in line with the system’s
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objective. Accordingly, a posteriori, the x decision was only optimal if

passengers actually respond in a way that was assumed as a choice y a

priori. If y is allowed to be fractional and split streams of passengers

are considered, one has to think about how to effectively communi-

cate to passengers in case of disruptions. In particular, to implement

splitting in practice, the service provider should be able to communi-

cate different rerouting recommendations to different passengers of the

same type. Technically, this could be easily realized through individual

recommendations in a navigator mobile phone app.

• The rerouting decisions are in passengers’ favor: Since the ob-

jective is to minimize the total passenger-weighted delay, the objective

function is in line with the passengers’ interests. Accordingly, the op-

timal allocation should be in the passengers’ favor, at least from an

overall perspective (though not necessarily from an individual perspec-

tive).

• Common assumption in the literature: Many works in the related

literature model customer behavior based on axiomatic assumptions

rather than more realistic empirical evidence, and do not take dynamic

state-dependence of the system into account. For example, as already

discussed in Section 4.2, the classical delay management literature as-

sumes that passengers who miss a connection will wait for a complete

cycle time for the next train. More realistically, Dollevoet et al. (2012)

assume that each passenger type p chooses its shortest path (with the

earliest arrival time at the final destination). The minimization of the

individual delay is simultaneously achieved by minimizing the overall

passenger weighted delay from a system’s perspective, and it is feasible

since there are no bottlenecks in the network that enforce competition

among passengers for limited train capacity. This is different in our

setting: if train capacity constraints become tight due to delays, it
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will usually be unavoidable that some passengers must be rerouted to

less attractive paths (i.e., longer paths or paths including spill arcs)

in favor of other passengers. The key question is who will be pre-

sumably rerouted to which paths and who will be spilled in case of

overcrowded trains. In our model, we assume directed choice behav-

ior, where passengers are rerouted in a way that is most effective from

an overall system’s perspective, minimizing the model objective (e.g.,

total passenger weighted disutility, but not necessarily the individual

disutility). The assumption that the service provider can direct the

customers’ choice in a network to some extent is also common in other

application areas of Operations Research, such as service network de-

sign under congestion, or itinerary-based airline schedule design and

fleet assignment. For example, in the literature on service network

design under congestion, many optimization models are based on the

assumption that customers behave according to the directed choice of

a service provider who can act as a central authority (see Berman and

Krass 2015 for a rich literature review and classification of models).

The service provider is assumed to have full discretion to assign cus-

tomers to the facilities in a way that will optimize the model objective.

Directed choice of passenger flows is also commonly assumed in the

airline industry, e.g., in the so-called passenger mix model (Glover et al.

1982) which is a sub-problem of many itinerary-based airline schedule

design (Lohatepanont and Barnhart 2004) and fleet assignment models

(Barnhart et al. 2002, Kniker 1998). In particular, passenger flows are

determined through a linear program with the objective to find the

most profitable mix of passengers, assuming that the airline has some

control on the passengers’ response behavior, in particular where spilled

passengers can be redirected. Passengers on less profitable itineraries

may be spilled in order to protect the seats for the passengers on more

profitable itineraries.
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Regarding the question who is spilled to external transport means in case

that the total system capacity is not sufficient to satisfy passenger demand,

our basic model does not impose any restrictions such as first-come-first-

serve. However, we can formulate additional constraints to ensure certain

rules. For example, the following requirement excludes the spilling of pas-

sengers of type p on arrival at a station s of train k if they have boarded the

train at an earlier station and their destination dp is an upcoming station

on the train’s route, i.e., dp > s:

yap = 0 ∀a = (e,Dest(p)) ∈ Aspill(p);

e = (k, s, tAks) ∈ Earr : ∃e′ = (k, dp, t
A
kdp) ∈ Earr, dp > s.

(4.19)

Late train options

Finally, we assume that passengers of type p can jump on late trains at their

origin if the delayed train departs no earlier than the desired departure time

time(p). For this purpose, we introduce a new family of binary variables

ỹap ∈ {0, 1} ∀ p ∈ P, a = (e′, e) ∈ Astart (p) (4.20)

that is set to 0 if the departure event e takes place earlier than time(p).

Therefore, we add the new constraints

M3 (ỹap − 1) ≤ xe− timep ∀ p ∈ P, a = (e′, e) ∈ Astart (p) (4.21)

with a sufficiently large number M3 > 0 and

yap ≤ ỹap ∀ p ∈ P, a ∈ Astart (p) . (4.22)

Constraints (4.21) indicate whether a late train is an option for passengers

of type p or not. Constraints (4.22) turn off all passenger traffic yap on a

starting activity if ỹap is 0.
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Maximum delay

For convenience, we restrict a train to not exceed a maximum total delay of

∆max, where ∆max can assume the value of a train’s cycle time:

xe − τe ≤ ∆max ∀ e ∈ Edep. (4.23)

Furthermore, for changing activities, we do not only require a minimum time

lag according to (4.4), but also impose a maximum time lag of ∆max between

the arrival of the feeder and the departure of the connecting train:

xe − xe′ −∆max ≤M4 (1− za) ∀ a = (e′, e) ∈ Achange (4.24)

with a sufficiently large number M4 > 0. These constraints appear to be

reasonable since under rerouting, passengers will usually not need to wait a

whole cycle time in case of a broken connection and can look for alternative

trains instead. In the case where no other alternative exists, we assume that

passengers will take the next train on this line after one cycle time.

Alternative objective functions

We note that the total delay calculations in the objective functions (4.1)

and in (4.17) are compensatory in the sense that negative delays offset pos-

itive delays symmetrically. This means that arriving n minutes earlier than

planned is as good as avoiding a delay of n minutes. While a compensatory

objective function is common in the literature (see, e.g. Dollevoet et al.

(2012)) the symmetry assumption might be unrealistic in reality. Empirical

research and prospect theory (Vansteenwegen and Van Oudheusden 2007)

suggest that delays will cause greater disutility for passengers than early

arrivals can cause utility. For example, to account for asymmetric effects

where late arrivals contribute negatively and earlier arrivals are treated as
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neutral, the objective function can be alternatively modeled as follows:

Min
∑
p∈P

wp

 ∑
a=(e,Dest(p))

∈Afin(p)

∑
a′=(e′,Dest(p))

∈Afin(p)

yapȳa′pmax{xe − x̄e′ , 0}

+
∑

a=(e,Dest(p))

∈Aspill(p)

∑
a′=(e′,Dest(p))

∈Afin(p)

yapȳa′pmax{xe + δa − x̄e′ , 0}

 .
(4.25)

Note that for a = (e,Dest(p)), a′ = (e′, Dest(p)) ∈ Afin(p), yapȳa′p is the

percentage of wp passengers who originally planned to arrive at time x̄e′

but actually arrive at xe in the delay case. The objective function includes

the maximum of affine functions which is convex. Therefore, the objective

function can be easily linearized by introducing new decision variables dee′p ≥
0 for representing any nonnegative delay that passenger type p experiences

if she planned to arrive at x̄e′ but actually arrives at time xe in the non-spill

case, and at time (xe + δa) in the spill case. The objective function then

becomes

Min
∑
p∈P

wp

 ∑
a=(e,Dest(p))

∈Afin(p)

∑
a′=(e′,Dest(p))

∈Afin(p)

yapȳa′pdee′p

+
∑

a=(e,Dest(p))
∈Aspill(p)

∑
a′=(e′,Dest(p))

∈Afin(p)

yapȳa′pdee′p


(4.26)

subject to the additional constraints:

de′ep ≥ 0 ∀(e,Dest(p)) ∈ Afin(p)∪Aspill(p); (e′, Dest(p)) ∈ Afin(p) (4.27)

126



4.4. Linearization approaches for the bilinear problem

de′ep ≥ xe − x̄e′ ∀(e,Dest(p)); (e′, Dest(p)) ∈ Afin(p) (4.28)

de′ep ≥ xe + δa − x̄e′ ∀(e,Dest(p)) ∈ Aspill(p); (e′, Dest(p)) ∈ Afin(p).

(4.29)

Model summary

In the following, we summarize the DM-TC problem formulation with a

compensatory objective function:

Minimize (4.17)

s.t. (4.2) - (4.8), (4.10), (4.12), (4.14)-(4.15), (4.18)-(4.24).

Note that the time precedence constraints (4.2) - (4.4) of the basic model

remain the same. Additionally, the requirements for the variables za in Eq.

(4.10) and for xe in Eq. (4.12) remain unchanged. The variables yap are now

relaxed continuously, and the Big M constraints to calculate the arrival time

at the final destination (Eq. (4.9)), as well as the variables tp (Eq. (4.13)),

are dropped. We have added a spill restriction to keep spilling passengers at

a reasonable level (Eq. (4.18)). When removing the brackets in the second

part of the objective function (Eq. (4.17)) we yield the actual arrival time

at the exit station xeyap plus the duration to reach the final destination

δayap. The last term is linear but both terms for the actual passenger-

weighted arrival time xeyap are bilinear terms and introduce nonlinearities

into the objective function. The problem becomes a MINLP, and we have

some structural difficulties to cope with. In the following section, we will

propose three different linearization approaches for the DM-TC.

4.4. Linearization approaches for the bilinear

problem formulation

We will linearize the MINLP from Section 4.3.2 in three different ways. First,

in Section 4.4.1, we explain how to use McCormick envelopes to relax the
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DM-TC. Next, in Section 4.4.2, we exactly linearize the program in two

ways, namely with SOS1 constraints and with a logarithmic representation

of integer variables. These techniques are known from the literature where

they have been used for other problems.

4.4.1. McCormick approximation (MCA)

The first linearization for the DM-TC model we present is an approxima-

tion based on McCormick envelopes. They were introduced in 1976 by Mc-

Cormick and can help to find an approximate solution for problems with bi-

linear terms by relaxing these terms and thereby the MINLP. With the help

of the variable bounds, linear overestimating and underestimating functions

(concave and convex envelopes) can be computed. More precisely, for any

bilinear term x · y with xL ≤ x ≤ xU and yL ≤ y ≤ yU , a new variable u is

introduced that replaces x · y, and that is bounded by the envelopes of x · y
through the following four constraints:

u ≥ xLy + xyL − xLyL (4.30)

u ≥ xUy + xyU − xUyU (4.31)

u ≤ xUy + xyL − xUyL (4.32)

u ≤ xyU + xLy − xLyU . (4.33)

The MINLP can be relaxed by replacing the bilinear term x · y by u and

adding constraints (4.30) - (4.33) to the problem. The objective of the re-

laxed problem provides a lower bound for the MINLP. The performance of

the relaxed problem mainly depends of the bounds for the x and y vari-

ables. A tighter relaxation will yield a better result in terms of being closer

to the original optimum. For a detailed description, we refer the reader to

McCormick (1976).

128



4.4. Linearization approaches for the bilinear problem

For the DM-TC problem, we want to relax the bilinear terms xeyap (the

passenger-weighted actual arrival times) in the objective function (Eq. (4.17))

for finishing as well as for spilling activities (the linear term δayap remains

unchanged). We substitute both bilinear terms xeyap with the new variables

ufap with p ∈ P, a ∈ Afin (p) and usap with p ∈ P, a ∈ Aspill (p).
The bounds for the passenger streams yap are 0 and 1 (Eq. (4.15)) and for

the actual arrival time of a train xe we assume that it will be not scheduled

before its planned arrival time τe (Eq. (4.2)) and not later than the planned

arrival time plus the assumed maximum total delay, τe+ ∆max (Eq. (4.23)).

The objective function in Eq. (4.17) can be changed to:

min
∑
p∈P

wp

 ∑
a∈Afin(p)

ufap +
∑

a∈Aspill(p)

usap + δayap

− t̄p
. (4.34)

We further have to add four new constraints for the relaxation of ufap. These

are the envelopes:

ufap ≥ τeyap ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.35)

ufap ≥ (τe+∆max)yap+xe−(τe+∆max) ∀ p ∈ P, a = (e, e′) ∈ Afin (p)

(4.36)

ufap ≤ (τe + ∆max)yap ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.37)

ufap ≤ xe + τeyap − τe ∀ p ∈ P, a = (e, e′) ∈ Afin (p) . (4.38)

For usap again four new constraints (envelopes) have to be added likewise (for

spilling activities instead of finishing activities):

usap ≥ τeyap ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) (4.39)

usap ≥ (τe+∆max)yap+xe−(τe+∆max) ∀ p ∈ P, a = (e, e′) ∈ Aspill (p)
(4.40)
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usap ≤ (τe + ∆max)yap ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) (4.41)

usap ≤ xe + τeyap − τe ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) . (4.42)

The objective function in Eq. (4.34) together with the DM-TC constraints

((4.2) - (4.8), (4.10), (4.12), (4.14)-(4.15), (4.18)-(4.24)) and constraints

(4.35) - (4.42) yield a linearized problem formulation. The partial solu-

tion (except ufap and usap) of the linearized problem, e.g., scheduled times

and distribution of the passenger streams, is also feasible for the original

DM-TC. We insert the solution into the objective function of the DM-TC

model in Section 4.3.2 and obtain an upper bound (see Section 4.5.1).

4.4.2. Exact linearizations

We now demonstrate two exact linearizations of the DM-TC model. The

idea is to first transform the bilinear terms xeyap to mixed binary terms

by using the integrality condition of the integer variable xe. The mixed

binary terms can then be linearized by the McCormick envelopes introduced

in Section 4.4.1. Again, the linear term in the spilling activity δayap remains

unchanged.

Linearization via SOS1 constraints (DSOS)

One way to exactly linearize the DM-TC problem is with the help of SOS1

constraints. For this purpose, we first represent the nonnegative integer

variables xe in (4.12) equivalently with a linear number of binary variables.

Using the lower and upper bounds of xe (see (4.2) and (4.23)), we can express

xe as τe plus a certain (nonnegative integer) delay for finishing and spilling

activities. We introduce a discrete set Θ = (0, . . . , ∆max) for possible delay

values and new binary variables ṽfeθ and ṽseθ, with e ∈ Earr, θ ∈ Θ which are
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defined as follows:

ṽfeθ =

1 if an arrival event e is delayed by θ minutes,

0 otherwise.

ṽseθ =

1 if an arrival event e is delayed by θ minutes,

0 otherwise.

Then, the arrival time xe for finishing activities can be formulated as

xe = τe +
∑
θ∈Θ

θṽfeθ ∀ e ∈ Earr (4.43)

with ∑
θ∈Θ

ṽfeθ = 1 ∀ e ∈ Earr (4.44)

and for spilling activities as

xe = τe +
∑
θ∈Θ

θṽseθ ∀ e ∈ Earr (4.45)

with ∑
θ∈Θ

ṽseθ = 1 ∀ e ∈ Earr. (4.46)

Note that Eq. (4.44) and (4.46) can be specified and implemented as SOS1

constraints (Beale and Forrest 1976) in a branch-and-bound procedure (e.g.,

CPLEX). In this case, branching is performed on sets of variables rather

than individual variables, which often speeds up the search.

Now, replacing xe in the mixed-integer bilinear terms xeyap in the objec-

tive function with Eq. (4.43) and (4.45), yields

xeyap =

(
τe +

∑
θ∈Θ

θṽfeθ

)
yap ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.47)
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and

xeyap =

(
τe +

∑
θ∈Θ

θṽseθ

)
yap ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) (4.48)

with mixed-binary bilinear terms ṽfeθyap and ṽseθyap. We substitute ṽfeθyap

with a new variable ũfapθ and ṽseθyap with a new variable ũsapθ, and use the

McCormick envelopes to linearize the bilinear terms in a similar way as in

Section 4.4.1. However, since the bilinear terms are mixed-binary rather

than mixed-integer, the linearization remains exact (see, e.g., Wu (1997)).

The constraints for ṽfeθyap are formulated as follows:

ũfapθ ≥ 0 ∀ p ∈ P, a ∈ Afin (p) , θ ∈ Θ (4.49)

ũfapθ ≥ yap+ ṽfeθ−1 ∀ p ∈ P, a = (e, e′) ∈ Afin (p) , θ ∈ Θ (4.50)

ũfapθ ≤ yap ∀ p ∈ P, a ∈ Afin (p) , θ ∈ Θ (4.51)

ũfapθ ≤ ṽ
f
eθ ∀ p ∈ P, a = (e, e′) ∈ Afin (p) , θ ∈ Θ (4.52)

and for ṽseθyap as:

ũsapθ ≥ 0 ∀ p ∈ P, a ∈ Aspill (p) , θ ∈ Θ (4.53)

ũsapθ ≥ yap+ ṽseθ−1 ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) , θ ∈ Θ (4.54)

ũsapθ ≤ yap ∀ p ∈ P, a ∈ Aspill (p) , θ ∈ Θ (4.55)

ũsapθ ≤ ṽseθ ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) , θ ∈ Θ. (4.56)

Finally, for notational convenience we introduce two variables uvfap (p ∈
P, a ∈ Afin (p)) and uvsap (p ∈ P, a ∈ Aspill (p)) with

uvfap = τeyap +
∑
θ∈Θ

θũfapθ ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.57)
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and

uvsap = τeyap +
∑
θ∈Θ

θũsapθ ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) . (4.58)

Then, the objective function becomes

min
∑
p∈P

wp

 ∑
a∈Afin(p)

uvfap +
∑

a∈Aspill(p)

uvsap + δayap

− t̄p
. (4.59)

Combining Eq. (4.59) with the DM-TC constraints ((4.2) - (4.8), (4.10),

(4.12), (4.14)-(4.15), (4.18)-(4.24)) and the new constraints (4.43) - (4.46)

and (4.49) - (4.58), we yield an exact linearization.

Linearization with a logarithmic number of binary variables (DLog)

Our second exact linearization approach is similar to DSOS, but now, we

represent the integer variable xe in binary (rather than decimal) format,

which requires only a logarithmic number of binary variables, as described

in Watters (1967) or Vielma and Nemhauser (2011).

Again, for finishing and spilling activities we express xe as τe plus a certain

(nonnegative integer) delay.

For this purpose, we introduce a set Q = (0, . . . , blog2 (∆max)c) for pos-

sible exponents and two new binary variables v̌feq and v̌seq (e ∈ Earr, q ∈ Q)

to encode the arrival time xe in binary format for finishing activities as

xe = τe +
∑
q∈Q

2q v̌feq ∀ e ∈ Earr (4.60)

and for spilling activities as

xe = τe +
∑
q∈Q

2q v̌seq ∀ e ∈ Earr. (4.61)
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Replacing xe in both bilinear terms xeyap by Eq. (4.60) and (4.61) yields

xeyap =

τe +
∑
q∈Q

2q v̌feq

 yap ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.62)

and

xeyap =

τe +
∑
q∈Q

2q v̌seq

 yap ∀ p ∈ P, a = (e, e′) ∈ Aspill (p)

(4.63)

with mixed-binary bilinear terms v̌feqyap and v̌seqyap. Substituting these terms

with new variables ǔfapq (p ∈ P, a ∈ Afin (p)) and ǔsapq (p ∈ P, a ∈
Aspill (p)) and constraining them with the McCormick envelopes allows us

to exactly linearize the objective function in a similar way as for DSOS. The

constraints for v̌feqyap are formulated as follows:

ǔfapq ≥ 0 ∀ p ∈ P, a ∈ Afin (p) , q ∈ Q (4.64)

ǔfapq ≥ yap+ v̌feq−1 ∀ p ∈ P, a = (e, e′) ∈ Afin (p) , q ∈ Q (4.65)

ǔfapq ≤ yap ∀ p ∈ P, a ∈ Afin (p) , q ∈ Q (4.66)

ǔfapq ≤ v̌feq ∀ p ∈ P, a = (e, e′) ∈ Afin (p) , q ∈ Q. (4.67)

For v̌seqyap the constraints are formulated as:

ǔsapq ≥ 0 ∀ p ∈ P, a ∈ Aspill (p) , q ∈ Q (4.68)

ǔsapq ≥ yap+ v̌seq−1 ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) , q ∈ Q (4.69)

ǔsapq ≤ yap ∀ p ∈ P, a ∈ Aspill (p) , q ∈ Q (4.70)

ǔsapq ≤ v̌seq ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) , q ∈ Q. (4.71)
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Again, we use the variables uvfap with p ∈ P, a ∈ Afin (p) and uvsap with

p ∈ P, a ∈ Aspill (p) to describe the bilinear terms in the objective function,

this time as

uvfap = τeyap +
∑
q ∈Q

2qǔfapq ∀ p ∈ P, a = (e, e′) ∈ Afin (p) (4.72)

and

uvsap = τeyap+
∑
q ∈Q

2qǔsapq ∀ p ∈ P, a = (e, e′) ∈ Aspill (p) . (4.73)

The objective remains the same as in Eq. (4.59). The third variant for the

linearized problem consists of the DM-TC constraints ((4.2) - (4.8), (4.10),

(4.12), (4.14)-(4.15), (4.18)-(4.24)) and constraints (4.60) - (4.61) and (4.64)

- (4.73).

In the following (Section 4.5), we will study the performance of the pro-

posed linearization approaches and evaluate them in terms of solution quality

and run time. For reference, we will also compare our approaches to the so-

lution of the DM model from Section 4.3.1. For the logarithmic formulation,

the number of binaries is reduced, and we therefore expect DLog to be faster

in computation than DSOS. MCA has the least number of constraints and

binary variables of all three linearizations; we therefore expect the approach

to be superior with regard to computation time, but the question remains of

how good the quality of the McCormick approximation will be (see Section

4.5.3).

4.5. Numerical study

In this study, we experimentally analyze the impact of limited train capacity

on delay management decisions. In particular, we assume for our (simulated)

“reality” that all trains (driving arcs) in the network have a limited passenger
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capacity. Given this assumption, we systematically test and compare the

solution quality of 1) the classical delay management approach (DM) that

neglects such capacity restrictions during the planning stage, and 2) the

proposed delay management approach with train capacity constraints (DM-

TC) in its three modeling variants, MCA, DSOS and DLog presented in

Section 4.4. Furthermore, since the modeling approaches differ in terms of

number of variables (in particular binaries) and constraints, we also compare

the run times for solving the different problems. In Section 4.5.1, we explain

how DM and the three modeling variants for DM-TC can be compared.

Section 4.5.2 describes the different scenarios and assumptions we used for

the numerical study. Lastly, Section 4.5.3 contains the resulting objective

values and the run times and discusses the impact of the capacity restriction.

4.5.1. Benchmark solution

In the following we describe our procedure to generate and evaluate a solution

of the uncapacitated DM approach as a benchmark for our approach. In

particular, how to account for capacity constraints that are neglected in

the DM model but actually exist in the assumed reality of our experiment

requires some elaboration. Furthermore, a rather technical issue is that

there might be also some unavoidable spill in the DM model that must be

accounted for in the experiment. We start with the second issue first:

• Considering unavoidable spill: Though there are no capacity restric-

tions in the DM model, there might be some unavoidable spill, namely

in the rare case when a passenger misses her connection due to delays

and there is no alternative connection to the destination that departs

within a reasonable time window (e.g., within the next hour, or, in

the extreme case, until the end of the same day). To ensure that such

passengers cannot get stuck halfway to their destination we technically

need to introduce spill arcs in the DM model as well. Alternatively,
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one might exclude such demands from the experiment (as in Dollevoet

et al. 2012) but since the possibility of delay-induced spill is realistic,

we prefer the former approach. However, since spill is undesirable, we

keep it at a minimum level BDMmin whose value is obtained by minimizing

the number of spilled passengers subject to the constraints (4.2)-(4.13)

of the DM model for a given problem instance (similar to the B-Model

introduced in the paragraph on ”Rerouting and Spilling” in Section

4.3.2). Then, we compute an optimal solution ŷDMap (a ∈ A, p ∈ P),

ẑDMa (a ∈ Achange), x̂DMe (e ∈ Earr ∪ Edep), and t̂DMp (p ∈ P) of the

DM problem with unlimited passenger capacity but subject to the spill

level constraint.

• Considering actual capacity constraints: Since the values ŷDMap and thus

t̂DMp may not be feasible under train capacity constraints (4.14), we

only use the optimal arrival and departure times x̂DMe (e ∈ Earr∪Edep)
of the disposition timetable and insert them as fixed values into the

DM-TC model from Section 4.3.2 to compute the best feasible pas-

senger flow yap under capacity constraints for the given disposition

timetable. Denote the objective function value of this solution by Zseq

since it is determined by solving the DM and the DM-TC model se-

quentially. Please note that once the variables for arrival and departure

times are fixed in the DM-TC model, the formulation of the problem

reduces to a linear program, and no further linearization techniques

are needed.

The objective function value ZDM−TCDM is then compared to the optimal ob-

jective function value of the DM-TC model, denoted by ZDM−TC , where dis-

position timetable and passenger flows are determined simultaneously under

limited train capacity constraints. The use of the same objective function

makes the yielded objective values of DM and DM-TC comparable. Further-

more, to make the comparison of ZDM−TCDM and ZDM−TC fair, both values
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are computed under the same spill allowance level B in constraint (4.18).

In particular, we set B to the maximum of the minimal spill levels that

are required to guarantee feasibility of the DM-TC problems with fixed and

variable disposition timetable.

4.5.2. Scenarios

In order to analyze the performance of our approaches we tested several

scenarios differing in the size of the network, demand intensity (capacity

utilization, respectively) and the emerging delays. In total, there are 24

scenarios for the numerical study.

Network characteristics

With regard to the network, we consider three different sizes, small, medium

and dense. The schedule data are taken from DB timetables of 2017, con-

sidering only long-distance trains in Germany (Deutsche Bahn 2017b) and a

time horizon of 6 hours (11 am to 5 pm) on a normal weekday. The trains run

from Munich to Cologne, Freiburg or Stuttgart to Hamburg and Freiburg to

Berlin (all directions there and back). The length of the train lines ranges

from 8 to 13 stations as we only used the track sections in Germany of the

chosen train lines for our numerical study. The amount of stations is rep-

resented in the number of arrival events. The set P consists of the desired

departure time time(p), lying within our time horizon, and an OD pair (rep-

resenting the start and end of a passengers journey). The small network

consists of 5 train lines with 240 OD pairs, 42 arrival events and on average

13 potential changing activities. In the medium-sized network, there are 10

train lines with 650 OD pairs. This corresponds to 101 arrival events and on

average 46 changing activities. For the dense network, we selected 15 train

lines including 150 arrival events and on average 88 changing activities (see

Table 4.2). The number of OD pairs remains the same as for the medium-
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sized network to study the effect of capacity constraints in dense networks

with more connections between the cities.

Network specifications Small Medium Dense
Train lines 5 10 15
OD pairs 240 650 650
Arrival events 42 101 150
Changing activities 13 46 88

Table 4.2.: Network specifications

For simplicity, as we only use long-distance trains, we assume all trains

have the same maximum capacity of Ca = 500 passengers ∀ a ∈ Adrive
(corresponding approximately to the seating capacity of ICE 2/ICE 3 trains).

Capacity variations for individual driving arcs would be possible, of course.

The capacity could be also set to a level that includes the seating capacity

plus an allowable number of standing passengers. If the limit is exceeded,

the train is not allowed to depart.

We estimate the duration δa of a spill activity a ∈ Aspill (p) in the objec-

tive function (4.17) based on the distance ra between the final destination

station dp and the exit station, where the spilled passenger of type p leaves

the train system. In particular, we use Euclidean distance measures between

all relevant OD pairs in the German long-distance railway network. The

coordinates of the train stations can be found on the webpage of Deutsche

Bahn (2017b). The duration for δa consists of a fixed setup time of 20 min

(e.g. to get out of the train station and organize a taxi) and a variable

part where the remaining Euclidean distance to the destination (ra) is mul-

tiplied with an assumed average velocity of 60 km/h. The speed value is

intentionally chosen somewhat low since we expect the Euclidean distance

to underestimate the actual one. Other distance norms might be used, of

course.
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Passenger demand and capacity utilization

Regarding passenger demand, we differentiate between medium- and high-

traffic scenarios. Since we are particularly interested in spill effects, low-

traffic scenarios are omitted, assuming that no spill effect might exist. In

medium traffic scenarios the impact of spill effects due to capacity limits

might be low and delay-induced spill effects should become visible.

Network/Traffic Medium High
5 lines {0, . . . , 16} ≈ 2900 pas. {1, . . . , 23} ≈ 4400 pas.
10 lines {0, . . . , 11} ≈ 5000 pas. {1, . . . , 16} ≈ 7600 pas.
15 lines {0, . . . , 13} ≈ 7400 pas. {1, . . . , 17} ≈ 10300 pas.
Avg. utilization ∼ 55% ∼ 80%

Table 4.3.: Passenger demand and train utilizations

For the medium traffic–small network scenario, the number of passengers

wp for a type p is drawn from a discrete uniform distribution over {0, . . . ,

16}. This corresponds on average to approximately 2900 passengers (pas.) in

absolute values. The values for the medium traffic–medium network scenario

are drawn from a discrete uniform distribution over {0, . . . , 11} (about

5000 pas. on average) and for the medium traffic–dense network scenario

over {0, . . . , 13} (about 7400 pas. on average). Using these distributional

assumptions on wp to generate instances, the solution of the base model

(4.1)-(4.13) results in passenger flows yap on driving arcs of the network

such that the average implied train utilization is 55% in all medium-traffic

scenarios. This result reflects the current utilization of DB’s long-distance

trains (Deutsche Bahn 2017a).

For the high-traffic scenarios, the values for wp are drawn from a discrete

uniform distribution over {1, . . . , 23} yielding about 4400 passengers on

average for the small network, over {1, . . . , 16} (7600 pas.) for the medium

network and over {1, . . . , 17} (10300 pas.) for the dense network. We

thereby reach an average network utilization level of 80% (see Table 4.3).
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Delay distribution

To analyze our approaches regarding different delay scenarios, we have cre-

ated four delay cases, small, medium, large and mixed delays. Based on

similar settings from the literature (see, e.g., Dollevoet et al. 2012, Dollevoet

and Huismann 2014, Dollevoet et al. 2015), each arrival event has a proba-

bility of 10% of being delayed. We then draw for the delay ∆e with e ∈ Earr
a discrete uniform number from a discrete set (depending of the delay case).

For small delays, we draw a discrete uniform number over {1, . . . , 5}, for

medium delays over {5, . . . , 15}, for large delays over {15, . . . , 25} and for

mixed delays over {1, . . . , 25}. However, the delay of a train is never more

than ∆max in total due to our assumption of a maximum total delay (Equa-

tion (4.23)). In case the cumulative delay would be more than ∆max when

a train arrives at a station s, we set ∆e with e ∈ Earr to the difference of

∆max and the cumulative delay in s− 1. In our study, ∆max has a value of

60 minutes for all trains to keep it simple.

4.5.3. Numerical results

In the following, we present our results from the numerical study. From each

scenario described in Section 4.5.2, a draw of 30 runs is taken and the average

of the objective values is calculated. As mentioned previously, the scheduling

solution of the DM problem serves as a benchmark for our solutions. The

results of DM are given in absolute values. The results of all DM-TC variants

are presented as deviations from the solution of the DM in relative terms.

A result of, e.g., 14.19% for the MCA in the medium traffic/large delays

scenario in Table 4.4 can be converted in an absolute value by multiplying

the DM value with factor 1.1419. The last column of Tables 4.4 - 4.6 shows

the average performance of each approach over the scenarios whereas in the

last row the corresponding B-level for each scenario is reported in passenger

km (pkm). All optimization problems and the simulation were coded in
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IV. Railway DM considering train capacity constraints

AMPL using CPLEX as a solver on a computer with a 4 x Intel Xeon E5-

4620v2 (Ivy Bridge) CPU (32 cores, @2.6 GHz) and a Red Hat Enterprise

Linux (RHEL) 7 operating system (compute node of the high-performance

computing (bwHPC) cluster, funded by the German Research Foundation

(DFG) and the Ministry of Science, Research and the Arts (MWK) Baden-

Württemberg).

Results on a small network

Table 4.4 reports the results for a small network. All modeling variants for

DM-TC show a similar performance with regard to solution quality (dif-

ferences are solely in the decimals). In all three formulations, the DM-TC

achieves a performance in terms of delay reductions that is on average 56%

better than the DM. For medium traffic and small respective medium delays

the performance difference between DM and DM-TC approaches is negligi-

ble (MCA is even 0.16 % worse than DM in medium traffic/medium delay).

In the scenarios with medium traffic/large (mixed) delays a performance

improvement of approximately 14% (12%) indicates first differences between

DM and DM-TC. Larger differences become visible in the high traffic scenar-

ios, ranging from 76.53% (high traffic/large delay) up to 157.40% improve-

ment (i.e., delay reduction) in the high traffic/small delay scenario. While

for medium traffic the greatest improvement for DM-TC was in the large

delay scenario, for high traffic it is for small delays (and in large delays the

worst). The reasoning might be, that in a small network with medium traffic

for small and medium delays no severe spill effects are caused.

This is also represented in the B-level for DM-TC, i.e. the total time that

passengers can spend in spill activities at a maximum. For medium traffic/

small delays, BDMTC amounts only 6 pkm. In comparison, for high traffic

the B-level ranges between 21422 pkm (high traffic/small delay) and 29889

pkm (high traffic/large delay).
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IV. Railway DM considering train capacity constraints

Considering the number of spilled passengers for medium traffic it is in most

of the runs 0. In the scenario with large delays the average of spilled passen-

gers (for DM and DM-TC) is 20 passengers. For the high traffic scenarios,

the average of spilled passengers is slightly above 600 passengers for DM and

DM-TC, the difference between DM and DM-TC is less then 20 passengers

in all scenarios. Overall, the results show that total passenger delay can

be significantly reduced in the small network case by directly incorporating

capacity constraints in delay management, and the reduction effect is larger

the higher the network traffic.

Results on a medium network

For a medium-sized network, the performance of DLog and MCA is again

similar (see Table 4.5), whereas DSOS was not able to solve the problem

instances anymore (we canceled the computation after 2 days). The average

delay reductions achieved by DM-TC over DM range from 135% for the

medium traffic/large delay scenario to 515% for the high traffic/small delay

scenario, and result in an overall average of 320%. In absolute terms, DM-

TC saves about 665000 passenger minutes compared to DM in the high

traffic/small delay scenario.

Please note for the high traffic scenario that the DM approach yields nega-

tive objective function values (so does the DM-TC approach). As mentioned

earlier, this might occur in delay management if the disposition timetable

contains new connections, such that passengers can actually reach their des-

tination earlier than planned. In this case, the value of the planned arrival

time, t̄p, is larger than the actual arrival time after rescheduling, leading in

sum to negative objective function values.

The B-level amounts for medium traffic 42700 pkm (resulting in approx-

imately 1000 spilled passengers) and for high traffic 198000 pkm (∼ 3000

spilled passengers) on average. DM-TC spills more passengers on shorter

distances than DM. While the amount of spilled passengers for DM and DM-
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4.5. Numerical study

TC differs in the medium traffic scenarios only slightly, the gap increases for

the high traffic scenarios up to 500 passengers.

Results on a dense network

In dense networks, MCA was the only one of all three approaches for DM-TC

that was able to solve all instances (see Table 4.6). DLog solved medium

traffic scenarios with mean, large and mixed delays but for all other scenarios

(especially for all high traffic scenarios), DLog was not able to find a solution

after 2 days of computation time. Even in a dense network, with more

connections between the stations (recall that the number of OD pairs is

the same for the 15-lines problem as for the medium network, while the

number of train lines is larger), there is a spill effect. Of course, due to the

better interconnection, spill effects are smaller than in the 10-lines problem,

as there exist more opportunities to reroute passengers. Nevertheless, even

for medium traffic there is an improvement by using MCA compared to

DM of 16% (large delays) to 28% (small delays). DLog performed slightly

better than MCA with an average performance of 20% (in the three scenarios

where it was able to achieve a result). In the high traffic scenarios the results

achieve always more than 122% for MCA. This points out that for a high

utilization level, even in dense networks spill effects are severe and capacities

of trains should be considered. As neither DSOS nor DLog were able to solve

the DM-TC problem, we do not know the proven optimum but MCA has

shown before that it provides a good approximation to the exact results of

DSOS and DLOG. The B-level is lower (∼ 22000 pkm for medium traffic and

85000 pkm for high traffic) as in the medium network which also reflects that

less passengers have to be spilled. The number of spilled passengers is 600

for medium traffic and 1700 for high traffic on average and for DM slightly

higher than for MCA (respective DLog). MCA (DLog) achieved higher delay

reductions than DM.
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4.5. Numerical study

In summary, we can conclude that a spill effect could be measured for all

tested network types, delay intensities, and utilization levels. The impact

of delay intensity on spill effects and on the performance of different ap-

proaches we considered is difficult to predict. The performance of DM-TC

weakens with increasing delays except for the small network with a medium

utilization. In our experiments, monotonic relationship between the relative

performance and the delay intensity could only be observed in parts, presum-

ably due to the fact that new connections can be created through delays. As

expected, spill effects are often more severe in scenarios with higher utiliza-

tion levels. DM-TC achieved the highest results in the scenarios with high

traffic, small delays. Our experimental results clearly demonstrate the need

for taking effective capacity restrictions into account when making delay

management decisions.

Run time

Table 4.7 contains the average values for the run times (in seconds) of all

approaches classified by network size and traffic intensity. The run times

are quite similar for different delay intensities and thus clustered. There

is one exception, as DLOG delivered only results in the mean, large and

mixed delay scenarios for dense networks with medium traffic. Therefore,

we computed the average in this case across the three reported scenarios

(marked with an asterisk *). DM and MCA find their solutions within

the shortest computation time over all networks whereby DM is always the

fastest. Furthermore, we also report the run times for solving the B-Model

which always remain within a few seconds, as the model is linear.

In the 5-lines network, DM, MCA and DLog needed only a few seconds for

the solution while DSOS needed 10 minutes in the medium traffic scenarios

and 80 minutes in the high traffic scenarios. For the 10-lines network, the

solution time of DM was below 20 seconds and for MCA ∼ 2 - 3 minutes for

both utilization levels. The DLog approach required 43 minutes for medium
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traffic and 53 minutes for high traffic on average. DSOS was not able to solve

the DM-TC problem in 2 days and we canceled the computation without

results.

For the 15 lines, the run times increased drastically. The times to solve DM

are about 5 to 9 times higher than in the 10-line network (∼ 140 s and ∼ 95

s). Due to the differences in the problem structure, MCA has fewer binaries

than DM but more constraints (for capacity and McCormick envelopes).

While MCA is able to keep up with DM for the small and medium sized

network, the difference in computation time increases for the dense network.

MCA needs 18 minutes for instances with a medium utilization and ∼ 44

minutes for instances with a high utilization (16 times larger than for the

medium network).

The run times correspond to our remarks made in Section 4.4.2 considering

the relative size of the problem formulation. The DM model has the least

number of variables and constraints (e.g., ∼ 53000 variables and ∼ 55000

constraints in the small network). MCA is in the same range for the number

of variables (∼ 66000 variables) but has twice as many constraints (∼ 100000

constraints) for the small network, whereas DLog needs ∼ 160000 variables

and ∼ 420000 constraints (4 times as many as MCA). DSOS is out of range

for the small network with 1 Mio. variables and 4 Mio. constraints. In the

dense network, the number of variables and constraints for the different ap-

proaches remains proportional compared to the small and medium networks.

While DM has again a similar number of variables and constraints (∼ 620000

variables and ∼ 630000 constraints), MCA has ∼ 780000 variables and twice

as many constraints (∼ 1.2 Mio) as DM. DLog has ∼ 1.8 Mio variables and a

4 times larger number of constraints (∼ 4.7 Mio) as MCA and 8 times larger

as DM in the dense network.

The exact linearizations face severe problems considering the large number

of binary variables to solve the instances in the dense network in reasonable

time. DSOS was not able to find a solution in the medium network and
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even less in the dense network and DLog was in most of the scenarios not

able to find a solution as well. In the scenarios where DLog was able to

find the optimal solution the average run time is ∼ 15 hours and therefore

showed a poor run time for the 15-lines network. These results show the

limits of a logarithmic linearization and especially of the linearization with

SOS1 constraints, while MCA can still handle this size without difficulties.

Network 5 lines 10 lines 15 lines
Method/Traffic Med. High Med. High Med. High
DM 1.95 2.02 15.38 17.82 137.81 94.67
MCA 3.68 5.76 119.25 165.61 1091.26 2673.39
DSOS 654.33 4849.84 – – – –
DLog 7.03 22.57 2599.20 3211.13 53917.47* –

BDMTC
0.73 0.84 5.17 6.93 10.56 19.88

Table 4.7.: Average run times of the applied approaches in seconds (- no
result; * the average is computed over 3 scenarios)

4.6. Conclusion and future research

We have presented a MINLP model for delay management with rerouting

of passengers and limited passenger-carrying capacity of trains. For its so-

lution, we have developed and tested three different possibilities to linearize

the problem, in particular an approximation based on McCormick envelops

and two exact linearizations (one in decimal and one in binary format).

The performance of all three approaches was evaluated in a numerical study

comparing the solutions of our model with the solutions of a model from the

literature without capacity restrictions. The DM-TC clearly outperformed

DM in every scenario except in the small network for medium traffic/small

and medium delay where both approaches have similar performance. We

found out the McCormick approximation performs equally as well as the

exact approaches in all scenarios where an exact solution could be found.
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For larger networks, the exact linearizations could not solve the instances in

a reasonable time, while MCA delivered the solutions quickly for small and

medium scenarios. For the dense network MCA was in most of the scenarios

the only DM-TC approach that was able to deliver a result at all. Compar-

ing the exact linearizations, DLog could solve the instances much faster than

DSOS.

The proposed model is the first that considers spill effects for delay man-

agement and uses information on capacities of trains for the decision-making

process. There are still some limitations and future research opportunities

that might be worth further investigation. For example, tests for larger

networks could be a point of interest for countries with a massive railway

network, such as Germany, where nearly 1400 long-distance trains are driving

each day (Deutsche Bahn 2017c).

As the McCormick approximation was able to solve all network sizes in

the test settings in reasonable time and good quality, it might be feasible to

use it as a decision support tool for dispatchers in the real world. Further

techniques would be necessary, but this model could serve as a part in a

decomposition approach where local dispatchers decide for a certain area of

a network (how it is the common practice at DB).

We are aware that the performance of MCA and of McCormick lineariza-

tions in general depends on the tightness of the bounds xL, xU and yL, yU in

Eqs. (4.30)-(4.33). Therefore, the performance of our MCA approach is ex-

pected to depend on the choice of the parameter value for the maximum total

delay ∆max, the extent of which should be examined in a sensitivity analysis.

Since the total delay of a train is rooted in both uncontrollable factors (ran-

dom disturbances) as well as controllable dispatching decisions, a reasonable

choice of the parameter should consider empirical evidence on distribution

of delays and maximum waiting time policies of the service provider. Our

choice of ∆max = 60 minutes appears to be reasonable from an empirical

perspective in that the probability of observing larger train delays in DB’s
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long-distance network is rather small (see Schön and König (2018) for some

empirical data).

The performance of a solution in terms of spill and delay levels is of course

also sensitive to the given B-level. While we chose the minimum value that

is necessary to maintain feasibility, further investigation on the B-level, e.g.,

in terms of a sensitivity analysis, might be interesting in order to better

understand the trade-off between spill and delay.

There are several future research opportunities to extend the DM-TC

model. The hard constraints for the trains’ passenger-carrying capacity that

we incorporated are suitable for reflecting physical limits and legal safety

regulations. In addition to this, one might consider the (usually negative)

effects that high loads have on demand when they are technically still fea-

sible with respect to (4.14) but perceived as crowded and inconvenient by

passengers. In this case, demand would be endogenously affected by itself,

which should be captured in an appropriate demand response model (see,

e.g., De Cea and Fernández (1993) for an equilibrium model for transit as-

signment in congested public transport systems with limited capacity). This

is not only an interesting aspect to consider in delay management but even

more important in superordinate, more strategic planning problems of ser-

vice design, capacity planning and pricing.

In general, modeling passenger behavior as an empirically supported re-

sponse function of relevant factors would be a major advancement over

the “directed choice” assumption in our and other delay management ap-

proaches. We are well aware that the directed choice assumption (though

in line with passengers’ usual desire to minimize delay) is quite strong and

passengers might ignore rerouting recommendations of the service provider.

However, customer behavior in situations of irregular operations is rather

difficult to model for predictive purposes. Furthermore, short-term pas-

senger behavior can be uncertain, but accounting for stochastic aspects in

delay management of large time-space networks will be challenging if not
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intractable from a computational perspective.

Finally, we have seen several works in the literature on delay management

focusing on capacities of tracks, stations, etc. Another future research di-

rection would be to create a holistic delay management model, taking all

kinds of capacity restrictions into consideration and thereby increasing the

operational precision and applicability of delay management models.
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Chapter V

Conclusion

The scope of this thesis is on delay management for passenger rail services.

Three essays are proposed that provide an overview on delay management

and develop approaches for special issues within this area.

In Chapter II, a detailed overview on literature in delay management is

given. Therefore a new taxonomy for operational planning problems is de-

veloped. The existing literature can be classified with this scheme and it has

been applied for the delay management literature. The review shows how

this planning stage has grown in the last years; several new subgroups have

emerged and intertwined. Open research areas have become visible in the

literature review and its results may stand on its own.

Furthermore, two new approaches for delay management have been pro-

posed. Chapter III contains a multi-stage stochastic dynamic program. It is

a first step towards integrating stochasticity in delay management models.

As seen in Chapter II, only very few works in the literature have done this so

far. Underlying delay distributions are taken from empirically supported dis-

tributions in statistical literature complementing the optimization part. In

a simulation study, the SDP shows an overall performance that is quite close

to an ex-post optimization and outperforms common rule based strategies.

Furthermore, the proposed SDP is focused on a single train line; the expan-

sion towards an SDP for railway networks might be quite challenging but the

line based problem could serve as part of a decomposition approach. There

is a huge potential for new research opportunities by including empirical dis-

tributions or transferring other stochastic approaches, such as simulations
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including a sample average approximation, to delay management.

The last essay in Chapter IV considers train capacities to measure spill

effects on passenger streams. The capacity restriction has an impact on the

wait-depart decisions as these decisions become redundant if resources are

fully utilized. In case of delays or overcrowded trains, the model is able to

reroute passengers so they will not have to wait a full cycle time if alternative

paths are available. Breaking down passenger streams to fractions allows de-

riving individual routing recommendations that try to maximize the overall

welfare. Through these structural changes the model becomes nonlinear and

we applied exact and heuristic linearization techniques. Results for our lin-

earized approaches, that are obtained in a numerical study, show a significant

impact, especially for high utilized trains. Comparing the performance of the

heuristic and exact approaches, an equal performance could be achieved on

small networks. On larger networks the exact approaches showed a poor

computation time. Therefore finding faster heuristics would be a field for

future research. Both assumptions make the model more realistic and may

offer support to dispatchers. Further aspects could be included to derive

applicable tools.

In practice, Deutsche Bahn (DB) is currently working on a
”
Center for Punc-

tuality” where all delay data referring to a bad weather cause is bundled.

Dispatchers will then be provided with all necessary information for the

decision making process to improve punctuality (Spiegel Online 2018). A

stronger link between practice and research would be valuable for both and

offers potential research opportunities. For research it would be beneficial

to receive well prepared real-time data as well as to see how it can be in-

tegrated into models (Oneto et al. 2017). On the other hand preparing

historical data and feeding it to learning machines could support dispatchers

in their decision-making process.

The best way to deal with delays is to prevent them. This can be done,
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e.g., by developing robust timetables, as it is briefly mentioned in Chapter

III. Ideas from related areas could be a source of inspiration. E.g., Amberg

et al. (2018) present how delay propagations can be reduced for buses by

creating robust schedules. For sure, it might not be possible to inhibit all

delays, such as large disruptions resulting from bad weather, but smaller

delays could be absorbed. DB is developing new timetables for a so-called

“Deutschlandtakt” (Zeit Online 2018). Trains shall meet at main meeting

stations to facilitate transfers between trains. But the realization will need

several years and shall be a subject for future research.
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1.1. Proofs of structural properties

Proof of Theorem 1. Part (i) is an immediate result of constraint (3.6). Part

(ii) can be derived from constraint (3.5) as follows: obviously, for a feasible

solution, we can only have the following two cases at station s (s = 1, ..., N−
1): either the inbound connection is maintained (zfks = 1) or not (zfks = 0).

By the first part of constraint (3.5), we must have tDks ≥ τAfs+dfs+δchangefks if

zfks = 1. Together with constraint (3.3), we have tDks ≥ max(dks+ τDks, τ
A
fs+

dfs + δchangefks ) for zfks = 1. The earliest departure time of the focal train

maintaining the inbound connection at station s is thus t̄Dks := max(dks +

τDks, τ
A
fs + dfs + δchangefks ), and obviously, there is no better choice for tDks in

order to minimize the total delay, given zfks = 1. Thus, t̄Dks is optimal if

it is optimal to maintain the connection (z̄fks = 1). On the other hand, if

the connection is not maintained in an optimal solution (z̄fks = 0), the first

part of constraint (3.5) is redundant, and the earliest departure time, now

reducing to t̄Dks := dks + τDks, is again optimal. Simultaneously, the second

part of constraint (3.5) results in t̄Dks < τAfs + dfs + δchangefks for z̄fks = 0.

Proof of Theorem 2. Let zkcs, zfks, t
D
ks be the optimal solution to the Bell-

man equation in state
(
ps−1,s, dks, dfs, dcs

)
. By assumption, zfks = 0, and

thus, by Theorem 1, t
D
ks = dks + τDks and
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Vs(ps−1,s, dks, dfs, dcs) =

αouts,destps−1,sdks + αoutsc ps−1,sT
D
cs (1− zkcs) + pinsfT

D
ks(1− zfks)+∑

df,s+1

∑
dc,s+1

Pr(df,s+1) Pr(dc,s+1) Vs+1(ps,s+1, dk,s+1, df,s+1, dc,s+1),

(A.1)

with ps,s+1 := αthrus ps−1,s+pinsfzfks+pins,org, dk,s+1 := t
D
ks+δdrivek,s,s+1−τAk,s+1,

and pinsf , pins,org given by constraint (3.9) as before.

Furthermore, let zkcs, zfks, t
D

ks be the optimal solution to the Bellman

equation in state (ps−1,s, dks, dfs, dcs). First, recall from constraint (3.6)

that zkcs = 1, if τDcs + dcs ≥ τAks + dks + δchangekcs and zkcs = 0 otherwise; i.e.,

the optimal value of zkcs depends on dks and dcs, but is independent of dfs.

Accordingly, we can conclude that zkcs = zkcs.

We prove by contradiction and assume that contrary to Theorem 2, al-

though zfks = 0, we have zfks 6= 0, i.e., zfks = 1 and t
D

ks = max(dks +

τDks, τ
A
fs+dfs+δ

change
fks ) is the (only) optimal solution for state (ps−1,s, dks, dfs,

dcs).

Part 1. First, note that since the values zkcs, zfks and t
D

ks are opti-

mal decisions for state (ps−1,s, dks, dfs, dcs) and thus satisfy all constraints

defining the action set given by constraint (3.7), these values must also be

feasible for state (ps−1,s, dks, dfs, dcs). To see this, we focus on constraint

(3.5) since this is the only constraint that is affected by a change from dfs

to dfs. In particular, we have that for zfks = 1, constraint (3.5) reduces

to t
D

ks ≥ τAfs + dfs + δchangefks . Thus, for dfs < dfs, we can conclude that

t
D

ks ≥ τAfs + dfs + δchangefks , i.e., zkcs, zfks and t
D

ks are feasible for state

(ps−1,s, dks, dfs, dcs).

Then, from the optimality of zfks = 0 for state (ps−1,s, dks, dfs, dcs), it

follows that replacing zfks = 0 and t
D
ks = dks + τDks with zfks = 1 and

t
D

ks= max(dks + τDks, τ
A
fs + dfs + δchangefks ) on the RHS of (A.1), respectively,
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yields

A.1 ≤ αouts,destps−1,sdks + αoutsc ps−1,sT
D
cs (1− zkcs) + pinsfT

D
ks(1− zfks)

+
∑
df,s+1

∑
dc,s+1

Pr(df,s+1) Pr(dc,s+1) Vs+1(ps,s+1, dk,s+1, df,s+1, dc,s+1)

= Vs(ps−1,s, dks, dfs, dcs),

(A.2)

with ps,s+1 := αthrus ps−1,s+pinsfzfks+pins,org, dk,s+1 := t
D

ks+δdrivek,s,s+1−τAk,s+1,

and pinsf , pins,org given by constraint (3.9) as before. Summarizing Part 1, we

have Vs(ps−1,s, dks, dfs, dcs) ≤ Vs(ps−1,s, dks, dfs, dcs).

Part 2: First, note that since the values zkcs, zfks and t
D
ks are optimal de-

cisions for state (ps−1,s, dks, dfs, dcs) and thus satisfy all constraints defining

the action set given by constraint (3.7), these values must also be feasible for

state (ps−1,s, dks, dfs, dcs). To see this, we focus again on constraint (3.5)

since this is the only constraint that is affected by a change from dfs to

dfs. In particular, we have for zfks = 0 that constraint (3.5) reduces to

t
D
ks + 1 ≤ τAfs + dfs + δchangefks . Thus, for dfs > dfs, we can conclude that

t
D
ks + 1 ≤ τAfs + dfs + δchangefks , i.e., zkcs, zfks and t

D
ks are feasible for state

(ps−1,s, dks, dfs, dcs).

Now, since we assumed that zfks = 1 and t
D

ks= max(dks+ τDks, τ
A
fs+dfs+

δchangefks ) is the only optimal solution for state (ps−1,s, dks, dfs, dcs), replacing

zfks and t
D

ks with the feasible solution values zfks = 0 and t
D
ks = dks + τDks

in Vs(ps−1,s, dks, dfs, dcs) (given in (A.2)) yields Vs(ps−1,s, dks, dfs, dcs) <

Vs(ps−1,s, dks, dfs, dcs) (given in (A.1)).

Obviously, the result of Part 2 contradicts the result from Part 1. Thus, we

must have that zfks = 0, t
D

ks = dks+τ
D
ks is optimal for state (ps−1,s, dks, dfs,

dcs), yielding Vs(ps−1,s, dks, dfs, dcs) = Vs(ps−1,s, dks, dfs, dcs).
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1.2. Full information problem

For clarity, we denote all decision variables of the FI problem with a tilde.

Standard decision variables:

t̃Dks: Departure time of train k at station s = 1, . . . , N − 1

z̃fks: Binary variable with z̃fks = 1 if the connection between the

feeder and focal train is maintained at station

s = 1, . . . , N − 1, and z̃fks = 0 otherwise

z̃kcs: Binary variable with z̃kcs = 1 if the connection between focal

train k and connecting train c is maintained at station

s = 2, . . . , N , and z̃kcs = 0 otherwise.

Decision variables introduced to model effective passenger flows, considering

potential truncation due to capacity restrictions:

p̃insf Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 from the feeder train, considering potential

truncation due to capacity restrictions;

p̃ins,org: Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 as their origin;

p̃ax
t,dest
s,org : Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 as their origin and disembarking at station

t = s+ 1, . . . , N as their final destination;

p̃ax
tc
s,org: Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 as their origin and disembarking at station

t = s+ 1, . . . , N to change to a connecting train;

p̃ax
t,dest
sf : Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 from a feeder train and disembarking at

station t = s+ 1, . . . , N as their final destination;
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p̃ax
tc
sf : Effective number of passengers embarking train k at station

s = 1, . . . , N − 1 from a feeder train and disembarking at

station t = s+ 1, . . . , N to change to a connecting train;

p̃outsc : Effective number of passengers disembarking train k at station

s = 1, . . . , N to change to a connecting train;

p̃outs,dest: Effective number of passengers disembarking train k at station

s = 1, . . . , N as their final destination;

p̃thrus : Effective number of passengers on train k carried through

station s = 1, . . . , N − 1.

The remaining parameters are defined as before. The optimization can be

formulated as follows:

Minimize
∑

s=1,...,N−1

(p̃insfT
D
ks (1− z̃fks) +

p̃outs+1,dest(t̃
D
k, s − τDk, s) + p̃outs+1,cT

D
c,s+1 (1− z̃kc,s+1))

(A.3)

s.t.

t̃Dk,1 ≥ τDk,1 (A.4)

t̃Dks − t̃Dk,s−1 ≥ τDks − τDk,s−1 (s = 2, . . . , N − 1) (A.5)

t̃Dks − τDks ≤ TDks (s = 1, . . . , N − 1) (A.6)

t̃Dks ≥ τAfs + dfs + δchangefks −M1s (1− z̃fks)
t̃Dks + 1 ≤ τAfs + dfs + δchangefks +M1sz̃fks

(s = 1, . . . , N − 1) (A.7)
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τDcs + dcs ≥ τAks + t̃Dk,s−1 − τDk,s−1 + δchangekcs −M2s (1− z̃kcs)
τDcs + dcs + 1 ≤ τAks + t̃Dk,s−1 − τDk,s−1 + δchangekcs +M2sz̃kcs

(s = 2, . . . , N)

(A.8)

p̃ins,org = min
(
p̌ins,org, C − p̃thrus

)
(s = 1, . . . , N − 1) (A.9)

p̃insf = min
(
p̌insf , C − p̃thrus − p̃ins,org

)
(s = 1, . . . , N − 1) (A.10)

p̃ax
t,dest
s,org =

p̃ins,org
p̌ins,org

ˇpaxt,dests,org (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌ins,org 6= 0)

(A.11)

p̃ax
t,dest
s,org = ˇpaxt,dests,org (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌ins,org = 0)

(A.12)

p̃ax
tc
s,org =

p̃ins,org
p̌ins,org

ˇpaxtcs,org (s = 1, . . . , N −1, t = s+ 1, . . . , N : p̌ins,org 6= 0)

(A.13)

p̃ax
tc
s,org = ˇpaxtcs,org (s = 1, . . . , N−1, t = s+1, . . . , N : p̌ins,org = 0) (A.14)

p̃ax
t,dest
sf =

p̃insf
p̌insf

ˇpaxt,destsf (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌insf 6= 0)

(A.15)
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p̃ax
t,dest
sf = ˇpaxt,destsf (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌insf = 0) (A.16)

p̃ax
tc
sf =

p̃insf
p̌insf

ˇpaxtcsf (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌insf 6= 0) (A.17)

p̃ax
tc
sf = ˇpaxtcsf (s = 1, . . . , N − 1, t = s+ 1, . . . , N : p̌insf = 0) (A.18)

p̃outsc =
∑
r≤s−1

[
z̃fkrp̃ax

sc
rf + p̃ax

sc
r,org

]
(s = 2, . . . , N) (A.19)

p̃outs,dest =
∑
r≤s−1

[
z̃fkrp̃ax

s,dest
rf + p̃ax

s,dest
r,org

]
(s = 2, . . . , N) (A.20)

p̃thrus =
∑

r<s, t>s

[z̃fkr

(
p̃ax

t,dest
rf + p̃ax

tc
rf

)
+ p̃ax

t,dest
r,org + p̃ax

tc
r,org]

(s = 2, . . . , N − 1)

(A.21)

p̃thru1 = 0, p̃out1c = 0, p̃out1,dest = 0 (A.22)

0 ≤ t̃Dks ≤ τDks + TDks, t̃
D
ks integer (s = 1, . . . , N − 1) (A.23)

z̃fks ∈ {0, 1} (s = 1, . . . , N − 1), z̃kcs ∈ {0, 1} (s = 2, . . . , N) (A.24)
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p̃insf ≥ 0, p̃ins,org ≥ 0 (s = 1, . . . , N − 1) (A.25)

p̃ax
t,dest
s,org ≥ 0, p̃ax

tc
s,org ≥ 0, p̃ax

t,dest
s,org ≥ 0, p̃ax

tc
sf ≥ 0

(s = 1, . . . , N − 1, t = s+ 1, . . . , N)
(A.26)

p̃outsc ≥ 0, p̃outs,dest ≥ 0 (s = 1, . . . , N) (A.27)

p̃thrus ≥ 0 (s = 1, . . . , N − 1) (A.28)

As before, the objective (A.3) is to minimize the total passenger-weighted

delay at system exit, i.e., a) when a passenger misses the focal train from

a feeder, b) when a passenger disembarks the focal train at his or her final

destination or c) when a passenger disembarks the focal train at a transfer

station to connect to another train. Note again that the objective function

does not include any delays of the connecting train c, as this delay cannot

be controlled and would therefore be attributed to train c, not to train k.

Constraints (A.4) to (A.8) are the basic time-related precedence relation-

ships for railway networks introduced above. In particular, constraints (A.4)

and (A.5) ensure that the focal train k does not leave earlier than scheduled

and that delays are propagated from station to station. Constraints (A.6)

limit the maximum total delay of the focal train to the cycle time. Con-

straints (A.7) require that at station s, the connection from the feeder f to

the focal train k is reached if and only if the actual departure time of train

k is greater than or equal to the actual arrival time of train f (including

its known true delay value dfs) plus the minimum time required for chang-

ing platforms from train f to train k. Constraints (A.8) say that at any

station s, the connection from k to c is reached if and only if the actual

departure time of train c (including its known true delay dcs) is greater than
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or equal to the actual arrival time of k plus the minimum time required for

changing platforms from k to c. Constraints (A.9) and (A.10) calculate the

number of embarking passengers. Constraints (A.11) to (A.18) determine

the effective number of passengers carried by proportionally rescaling the

original passenger flows from station s to all stations t > s. In particu-

lar, the ratio p̃ins,org/p
in
s,org (p̃insf/p

in
sf ) indicates what fraction of unconstrained

demand from station s as the origin (from the feeder train at station s)

can be carried under the capacity constraint, assuming proportional trunca-

tion. Constraints (A.19) to (A.22) are the balance equations between OD

passenger flows and accumulated numbers of disembarking and through pas-

sengers. The standard decision variables for delay management are defined

in constraints (A.23) and (A.24). Variables for computing effective passenger

numbers truncated due to spill are introduced in constraints (A.25) - (A.28).

In the FI problem formulation, the effective number of passengers carried

is itself a decision variable due to the capacity constraints. As a result, the

optimization problem includes nonlinear terms, in particular bilinear terms

(p̃outs,destt̃
D
k, s−1) of integer and continuous variables in the objective function,

as well as several bilinear terms of binary and continuous variables in both

the objective function and in the constraints. Due to the nonlinearities, gen-

erally, one should not expect to find the globally optimal solution for the

original FI problem formulation in reasonable time. The possibility of being

stuck in a local optimal solution that is not global is a serious difficulty since

the FI problem is supposed to serve as a benchmark in terms of a lower

bound on the objective function value of all policies tested. Therefore, fol-

lowing the linearization approach of Wu (1997) for bilinear terms of binary

and continuous variables, we reformulated the mixed-binary terms in the

constraints. Note that the minimum operator on the right-hand side of con-

straints (A.9) and (A.10) can be replaced by introducing additional binary

variables, resulting again in mixed 0-1 terms that can be linearized.

Through the partial linearization, we could achieve a significant increase
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in solution quality using solution methods of the KNITRO 10.1 solver en-

gine. In fact, the objective function value of the FI problem was a lower

bound for all policies tested in all instances of all scenarios after the par-

tial linearization. However, due to the mixed-integer terms remaining in the

objective function, the local solution procedure implemented in KNITRO

can only prove convergence to a local minimum, not a global minimum. To

prove convergence to a global optimum, we further linearized the problem

such that also the nonlinear terms in the objective function were removed

by replacing integers through binary variables and, again, applying standard

linearization methods for mixed binary terms (Wu 1997). However, solving

the completely linearized problem was prohibitively slow due to the large

number of binary variables. Therefore, all lower bounds in our experimental

performance analysis were calculated using the partially linearized FI prob-

lem formulation, being aware that we have no proof that these are the best

lower bounds.
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2.1. Preprocessing models

2.1.1. Preprocessing for the DM model

In the following we present the model formulation for the preprocessing step

to determine the earliest possible arrival time tp for the DM model (Dollevoet

et al. 2012) in Section 4.3.1:

min
∑
p∈P

∑
a=(e′,e)∈Afin(p)

wpyapτe (B.1)

s.t.

τe ≥ τe′ + δa −M1 (1− za) ∀ a = (e′, e) ∈ Achange (B.2)

yap ≤ za ∀ p ∈ P, a ∈ Achange (B.3)∑
a∈O(e)

yap = 1 ∀ e = Org(p) ∈ Eorg (B.4)

∑
a∈O(e)

yap =
∑
a∈I(e)

yap ∀ p ∈ P, e ∈ Earr ∪ Edep (B.5)

∑
a∈I(e)

yap = 1 ∀ e = Dest (p) ∈ Edest (B.6)

za ∈ {0, 1} ∀ a ∈ Achange (B.7)
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yap ∈ {0, 1} ∀ p ∈ P, a ∈ A. (B.8)

The goal of the objective function (Eq. (B.1)) is to minimize the passen-

ger weighted arrival time. Possible connections from a given schedule are

determined in constraints (B.2) - (B.3), (B.7). Constraints (B.4) - (B.6),

(B.8) refer to a shortest path problem. The ingoing I (e) and outgoing arcs

O (e) for the preprocessing step of the DM contains the set of activities as

described in Table B.1. After solving the preprocessing model we set

tp = τeyap ∀ p ∈ P, a = (e′, e) ∈ Afin (p) . (B.9)

Events E Ingoing arcs I (e) Outgoing arcs O (e)
Eorg Astart (p)
Edep Astart (p), Await, Achange Adrive
Earr Adrive Await, Achange, Afin (p)
Edest Afin (p)

Table B.1.: Ingoing and outgoing arcs for DM

2.1.2. Preprocessing for the DM-TC model

Before we solve the DM-TC model (Section 4.3.2) we determine the earliest

possible arrival time tp for passengers of type p ∈ P considering capacity

restrictions as follows:

Min
∑
p∈P

wp

 ∑
a=(e,Dest(p))∈Afin(p)

τeyap +
∑

a=(e,Dest(p))∈Aspill(p)

(τe + δa)yap


(B.10)

s.t.

(B.2)− (B.7)∑
p∈P

wpyap ≤ Ca ∀ p ∈ P, a ∈ Adrive (B.11)
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∑
p∈P

wp
∑

a∈Aspill(p)

rayap ≤ B (B.12)

yap ∈ [0; 1] ∀ p ∈ P, a ∈ A. (B.13)

The objective function (Eq. (B.10)) minimizes the passenger weighted arrival

time as well as the spilled passengers. Finding appropriate connections ((B.2)

- (B.3), (B.7)) and solving the shortest path problem (Eq. (B.4) - (B.6),

(B.8)) remain the same but the sets of activities for I (e) and O (e) contain

now additional spill arcs as described in Table 4.1 (see Section 4.3.2). An ad-

ditional capacity constraint (Eq. (B.11)) is added and the amount of spilled

passengers is restricted to not exceed a certain spill level B (Eq. (B.12)).

The passenger stream variables yap are now continuous (Eq. (B.13)). After

solving the problem we set

tp = τeyap ∀ a = (e′, e) ∈ Afin (p) (B.14)

and

tp = (τe + δa)yap ∀ a = (e′, e) ∈ Aspill (p) . (B.15)

2.2. DM-TC model

For convenience, we present a summary of the DM-TC model:

Min
∑
p∈P

wp

 ∑
a=(e,Dest(p))∈Afin(p)

xeyap

+
∑

a=(e,Dest(p))∈Aspill(p)

(xe + δa)yap

− t̄p
 (B.16)

s.t.

xe ≥ τe + ∆e ∀e ∈ Earr ∪ Edep (B.17)
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xe ≥ xe′ + δa + ∆a ∀ a = (e′, e) ∈ Adrive ∪ Await (B.18)

xe ≥ xe′ + δa −M1 (1− za) ∀ a = (e′, e) ∈ Achange (B.19)

yap ≤ za ∀ p ∈ P, a ∈ Achange (B.20)∑
a∈O(e)

yap = 1 ∀ p ∈ P, e = Org(p) ∈ Eorg (B.21)

∑
a∈O(e)

yap =
∑
a∈I(e)

yap ∀ p ∈ P, e ∈ Earr ∪ Edep (B.22)

∑
a∈I(e)

yap = 1 ∀ p ∈ P, e = Dest (p) ∈ Edest (B.23)

∑
p∈P

wpyap ≤ Ca ∀ p ∈ P, a ∈ Adrive (B.24)

∑
p∈P

wp
∑

a∈Aspill(p)

rayap ≤ B (B.25)

M3 (ỹap − 1) ≤ xe− timep ∀ p ∈ P, a = (e′, e) ∈ Astart (p) (B.26)

yap ≤ ỹap ∀ p ∈ P, a ∈ Astart (p) (B.27)

xe − xe′ ≤ ∆max ∀ a = (e′, e) ∈ Await (B.28)

xe − xe′ −∆max ≤M4 (1− za) ∀ a = (e′, e) ∈ Achange (B.29)

xe ∈ N ∀ e ∈ Earr ∪ Edep (B.30)

yap ∈ [0; 1] ∀ p ∈ P, a ∈ A (B.31)

za ∈ {0, 1} ∀ a ∈ Achange (B.32)

ỹap ∈ {0, 1} ∀ p ∈ P, a = (e′, e) ∈ Astart (p) . (B.33)
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