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Abstract. Data from relational web tables can be used to augment
cross-domain knowledge bases like DBpedia, Wikidata, or the Google
Knowledge Graph with descriptions of entities that are not yet part
of the knowledge base. Such long-tail entities can include for instance
small villages, niche songs, or athletes that play in lower-level leagues.
In previous work, we have presented an approach to successfully assem-
ble descriptions of long-tail entities from relational HTML tables using
supervised matching methods and manually labeled training data in the
form of positive and negative entity matches. Manually labeling training
data is a laborious task given knowledge bases covering many different
classes. In this work, we investigate reducing the labeling effort for the
task of long-tail entity extraction by using weak supervision. We present a
bootstrapping approach that requires domain experts to provide a small
set of simple, class-specific matching rules, instead of requiring them to
label a large set of entity matches, thereby reducing the human super-
vision effort considerably. We evaluate this weak supervision approach
and find that it performs only slightly worse compared to methods that
rely on large sets of manually labeled entity matches.

1 Introduction

Cross-domain knowledge bases like YAGO [8], DBpedia [9], Wikidata [20], or
the Google Knowledge Graph are being employed for an increasing range of
applications, including natural language processing, web search, and question
answering. The entity coverage of knowledge bases is far from complete [16,4].
YAGO and DBpedia e.g. rely on data extracted from Wikipedia and as a result
cover mostly head instances that fulfill the Wikipedia notability criteria [12]. As
the utility of a knowledge base increases for many tasks with its completeness,
adding long-tail entities to a knowledge base is an important task.

Web tables [3], which are relational HTML tables extracted from the Web,
contain large amounts of structured information, covering a wide range of topics.
In previous work [12], we proposed a method for extracting long-tail entities and
showed that web tables are a promising source for augmenting knowledge bases
with new and formerly unknown entities. For this, we trained models using large
sets of manually labeled class-specific entity matches. Given that knowledge
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bases can have many classes, manual labeling limits the usefulness of automatic
knowledge base augmentation from web tables.

Weak supervision approaches aim at reducing labeling effort by using super-
vision that is more abstract or noisier compared to traditional manually labeled
high-quality training examples (strong supervision) [14]. Data programming [15]
is a paradigm, where experts are tasked with codifying any form of weak supervi-
sion into labeling functions. These functions are then employed within a broader
system to generate training data by assigning labels and confidence scores to un-
labeled data. Recently, various different systems based on the data programming
paradigm have been suggested [1,14,19].

For many types of entities, humans generally possess knowledge about when
entities definitely match, and what are strong signals that entities do not match.
Writing down this general knowledge in the form of simple bold matching rules
requires far less effort than labeling many individual positive and negative entity
matches. Building on this observation and the data programming paradigm, this
paper investigates for the task of long-tail entity extraction whether strong su-
pervision in the form of positive and negative entity matches can be replaced by
a set of simple bold matching rules. In order to make it easy to write down such
rules, we restrict the rule format to conjuncts of equality tests. These tests are
expressed using the schema of the knowledge base without requiring experts to
assign weights or specify similarity metrics. Additionally, we introduce a boot-
strapping method that exploits the matching rule sets to generate training data
and train a supervised machine learning algorithm. Using these approaches, we
are able to significantly reduce supervision effort compared to manually labeling
positive and negative entity matches, while achieving a comparable performance.

Our contributions are (1) a weak supervision approach that substitutes man-
ually labeled training pairs by a set of bold matching rules, (2) a bootstrapping
approach which uses weak supervision to generate training data for a super-
vised matching method, and (3) an evaluation that compares strong and weak
supervision for the task of long-tail entity extraction.

The remainder of this paper is structured as follows. First, we describe our
long-tail entity extraction method, including the experimental setup and a sum-
mary of results when using strong supervision. Section 3 describes our weak
supervision methodology, while Sections 4 and 5 present and discuss our ex-
periments. Section 6 compares our approach to the related work. The results
presented in this paper are fully reproducible, as we publicly provide all code
and datasets.1

2 Long-Tail Entity Extraction

In previous work, we proposed and evaluated a method for long-tail entity ex-
traction from web tables [12]. This section summarizes the proposed approach,
describes our experimental setup, and presents results achieved using manually
labeled training data.

1 http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/

http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
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Fig. 1. Pipeline for extending a knowledge base with long-tail entities from web tables.

2.1 Methodology

Extracting long-tail entities from web tables for knowledge base augmentation
is a non-trivial task. It consists of two subtasks: (1) identifying entities that are
not yet part of the knowledge base and (2) compiling descriptions for those new
entities from web table data according to the schema of the knowledge base.

Long-Tail Entity Extraction Pipeline. Figure 1 gives an overview of our
suggested approach. It is a pipeline that starts with web tables and ends by
adding new entities to a cross-domain knowledge base. We first cluster all rows
that describe the same real-world instance together. From these clusters we then
create entities by compiling descriptions from web table data. Finally, the new
detection component determines which entities are new, given a specific target
knowledge base. As a result, we are able to perform the two subtasks of identi-
fying new entities and compiling their descriptions.

Schema Matching. The first component of the pipeline is schema matching. It
creates a mapping between web tables and the knowledge base schema. This in-
cludes matching web tables to classes and web table columns to properties. The
latter, termed attribute-to-property correspondences [17], allow us to semanti-
cally understand cell values. They are exploited by the entity creation component
to compile description according to the schema of the knowledge base and by
both, the row clustering and new detection components, as similarity features.

Performing Row Clustering and New Detection. For both, row cluster-
ing and new detection, we train random forest classifiers that perform entity
matching. For row clustering, the classifier compares a row pair to determine if
the two rows describe the same entity, while for new detection this is done for a
pair of a created entity and a candidate instance from the knowledge base.

Comparing all possible row pairs or entity-instance-pairs would not scale. We
therefore utilize a label-based blocking approach using a Lucene index to find
candidates to be compared.

Each matching decision is also given a confidence score. For row clustering,
we use the confidence scores to perform correlation clustering and generate the
row clusters. For new detection, we return an entity as new, only if all candidate
instances from the knowledge base were classified as clear non-matches.
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Table 1. Overview of the number of labels in the T4LTE gold standard.

Label type GF-Player Song Settlement Sum

Row pair 1,298 231 2,768 4,297
Entity-instance-pair 80 34 51 165
New entity classification 17 63 23 103

Sum 1,395 328 2,842 4,565

Similarity Features. To train a classifier, we exploit various features, which
are described in more details in our previous work [12]. Among the features are
first the similarities of labels (LABEL) and bag-of-words vectors (BOW). Secondly,
using the attribute-to-property correspondences we derive values according to
the knowledge base schema, which we compare using data-type-specific similarity
functions (ATTRIBUTE). Using the knowledge base we also derive for each table
implicit attributes about the entities described in the table, giving us another set
of values by knowledge base property that we compare using data-type-specific
similarity functions (IMPLICIT ATT). For row clustering, we additionally exploit
the PHI correlation of row labels (PHI) and penalize rows which occur in the
same table (SAME TABLE). For new detection, we additionally exploit type overlap
between a created entity and a candidate knowledge base instance (TYPE), and
the popularity of a candidate knowledge base instance (POPULARITY).

For each row pair or entity-instance-pair most features return a single nor-
malized similarity score. For ATTRIBUTE and IMPLICIT ATT, we return for a pair
two scores for each property from the knowledge base schema. One score mea-
sures the confidence of the pair having equal values given that property, the
other of the pair having unequal values.

2.2 Experimental Setup and Results

We employ the 2014 release of DBpedia [9] as the target knowledge base and
evaluate our methods on the task of extending the DBpedia classes Gridiron-
FootballPlayer (GF-Player), Song2, and Settlement with additional entities. To
ensure diversity among the classes, we selected each from a different first-level
class, i.e. Agent, Work, and Place.

We utilize the English-language relational tables set of the Web Data Com-
mons 2012 Web Table Corpus.3 The set consists of 91.8 million tables. For every
table we assume that there is one column that contains the labels of the instances
described by the rows. The remaining columns contain values, which potentially
can be matched to properties in the knowledge base schema.

For training and evaluation we built the Web Tables for Long-Tail Entity Ex-
traction4 (T4LTE) gold standard. Table 1 provides an overview of the number of

2 The class Song also includes all instances of the class Single.
3 http://webdatacommons.org/webtables/#toc3
4 http://webdatacommons.org/T4LTE/

http://webdatacommons.org/webtables/#toc3
http://webdatacommons.org/T4LTE/
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Fig. 2. Our overall methodology of introducing weak supervision using class-specific
rule sets and bootstrapping a supervised learning algorithm using a labeling function.

labels in T4LTE. Creating this dataset was rather laborious, as we labeled 4,297
matching row pairs, 165 entity-instance-pairs and 103 new entity classifications.

When evaluating the pipeline using the T4LTE gold standard using cross-
validation, we were able to achieve an F1 score in the task of finding new entities
of 0.80. When running the pipeline on the whole web table corpus, we were able
to add 14 thousand new gridiron football players and 187 thousand new songs
to DBpedia, an increase of 67% and 356% respectively [12].

3 Methodology

This section describes our approaches for the task of reducing labeling effort
using weak supervision. The overall methodology is illustrated in Figure 2.

We first introduce as a baseline two unsupervised class-agnostic matching
rules for row clustering and new detection. These rules exploit the similarity
features described above and aggregate them using a weighted average.

We then introduce an approach that exploits user-provided class-specific rule
sets as weak supervision. These rules have a high accuracy, but low coverage,
which is why we ensemble them with the unsupervised matching rule to derive
weakly supervised classifiers for both row clustering and new detection.

Both, the unsupervised matching rules and the weakly supervised classifiers
can be used in our pipeline directly. We additionally introduce an approach that
exploits these methods as labeling functions to bootstrap a supervised learning
algorithm. This is done by using a set of unlabeled web tables to label training
pairs for both row clustering and new detection. The labeled data is then used
to train random forest classifiers to be used in our pipeline.

3.1 Unsupervised Class-Agnostic Matching Rule

We suggest two unsupervised matching rules that aggregate using a weighted
average the individual scores generated by the features described in Section 2.1.
To be used in a rule, all features must produce scores that are normalized
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and class-agnostic. This already applies to all features except ATTRIBUTE and
IMPLICIT ATT, where, given a pair, we normalize by averaging the individual
property scores, giving us one normalized class-agnostic score per feature.

We determine the weights of the rules by assigning, based on our own experi-
ence with the metrics, importance factors from 4 to 1 to the individual features.
The weight of a feature is equal to it assigned factor normalized by the sum
of all factors. For the row clustering rule we assign a factor of 4 to LABEL, 2
to BOW and ATTRIBUTE, and 1 to PHI, IMPLICIT ATT and SAME TABLE. For new
detection we assign a factor of 4 to LABEL, 3 for BOW and ATTRIBUTE, 2 for TYPE
and IMPLICIT ATT, and 1 for POPULARITY.

The rules determine whether a pair matches or not using a fixed threshold,
simply set at 0.5 for both rules. The absolute distance of a computed average
from the threshold determines the confidence of a matching decision.

3.2 Class-Specific User-Provided Matching Rules

Humans often possess general knowledge about which conditions need to be
fulfilled for entities of a certain domain to clearly match or clearly not match.
Based on this observation, we suggest as weak supervision a set of user-provided
bold class-specific rules that classify a given candidate pair as a match or non-
match. They can codify obvious knowledge, e.g. that a settlement can not be
in two different countries, or non-obvious knowledge, e.g. that only one unique
football athlete can be drafted in the same year with the same pick number.

The rules consists of conjunctions of attribute tests, expressed using the
schema of the knowledge base. It is only required that the provided rules be
accurate, regardless of their coverage. This makes it a simple task to identify
suitable rules and is the reason why we term these rules as bold. For our exper-
iments, we created per class four rules. For GF-Player we came up with two
matching and two non-matching rules:

(draftYear = Equal) ∧ (draftPick = Equal) → Match (1)

(LABEL = Equal) ∧ (birthDate = Equal) → Match (2)

(draftYear = Unequal) → Non-Match (3)

(draftPick = Unequal) → Non-Match (4)

For Song we also came up with two matching and two non-matching rules:

(LABEL = Equal) ∧ (artist = Equal) ∧ (releaseDate = Equal) → Match (5)

(LABEL = Equal) ∧ (artist = Equal) ∧ (album = Equal) → Match (6)

(artist = Unequal) → Non-Match (7)

(releaseYear = Unequal) → Non-Match (8)

Finally, for Settlement we have three matching and one non-matching rule:

(country = Equal) ∧ (postalCode = Equal) → Match (9)
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(LABEL = Equal) ∧ (isPartOf = Equal) → Match (10)

(LABEL = Equal) ∧ (postalCode = Equal) → Match (11)

(country = Unequal) → Non-Match (12)

The effort spent creating these rules is minuscule compared to manually
labeling the correspondences in the gold standard. While for each class we created
only 4 rules, they are tested to substitute 1,395, 328, and 2,842 labels for the
classes GF-Player, Song, and Settlement respectively.

To apply a rule we exploit the equal and unequal scores generated by the
ATTRIBUTE and IMPLICIT ATT features, as described in Section 2.1, and the
LABEL feature using a data-type specific equivalence threshold [12]. A rule fires,
when all tests within the rule have scores higher than zero. From these scores
we also derive for each rule firing a confidence score, which equals the product
of all scores used within the rule.

As the rules fire only when certain conditions are met, the set of rules is not
exhaustive and only covers a subset of compared pairs. We therefore ensemble the
rules with the unsupervised matching rule through averaging. Given a compared
pair, we first check how many rules fire. If no rule fires, we simply return the
output of the unsupervised matching rule. If multiple rules fire, which is possible
as the rules are not mutually exclusive, we consider only the rule with the highest
confidence, preferring negative rules in case of a tie. If the confidence of this rule
is higher than the confidence of the output of the unsupervised matching rule,
the outputs of both are averaged and returned. Otherwise, we simply return the
output of the unsupervised matching rule.

3.3 Bootstrapping Approach

In our experiments, we, on the one hand, directly apply the unsupervised rule
and the weakly supervised ensembled classifier to our test data. On the other
hand, following the data-programming paradigm, we employ both methods as
labeling functions to label row pairs and entity-instance-pairs derived from 1000
randomly selected web tables as matches or non-matches. Additionally, the la-
beling functions assign weights to the training examples using the confidence
scores returned by the underlying method. Using these labels we train a random
forest classifier, which is then applied to our test data.

To derive pairs to be labeled, we employ label-based blocking using Lucene
for both row clustering and new detection. We additionally include random pairs
to be labeled, for row clustering as many as there are positive pairs, and for new
detection 8 random instances selected from the knowledge base from within the
same class of an entity or its parent classes. Overall, this leads to 2.8m row pairs
and 1.27m entity-instance-pairs selected to be labeled.

For row clustering, we use the confidence scores to additionally perform corre-
lation clustering. A row pair labeled as a match but not part of the same cluster,
is not included as a positive training example. Similarly, a row pair labeled as
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Table 2. Row clustering performance for runs with various types of supervision.

Average GF-Player Song Settlement

Method PCP AR F1 F1 F1 F1

Unsupervised 0.76 0.86 0.80 0.90 0.65 0.86
+ Bootstrapping 0.78 0.88 0.83 0.89 0.73 0.86

Weak supervision 0.83 0.89 0.86 0.93 0.81 0.84
+ Bootstrapping 0.83 0.90 0.86 0.89 0.83 0.86

Strong supervision 0.86 0.90 0.88 0.91 0.84 0.90
+ Bootstrapping 0.85 0.90 0.87 0.92 0.79 0.91

a non-match, but placed in the same cluster, is not considered as a negative
training example.

For new detection, when multiple entity-instance-pairs of the same entity
are labeled as matching, which can not be correct, we only include the entity-
instance-pair with the highest score as a positive training example.

When bootstrapping for new detection, we also need a set of row clusters
from which we create entities. Using these entities we can then generate training
examples using entity-instance-pairs and our labeling function. To create these
clusters, we use the supervised model trained by bootstrapping from a label-
ing function of equal supervision, i.e. when we are bootstrapping a supervised
learning algorithm for new detection using the unsupervised rule, we use the
clustering method also trained using bootstrapping and the unsupervised rule.

Given the labeled pairs, we train a random forest classifier. Per forest, we
train 2000 trees. To reduce correlation between trees, we set the features available
at each split to 2, and reduce the sample size used to train each tree to 66% of
the total number of pairs. We sample with replacement and using weights, so
that higher weighted examples are considered more often during training.

4 Evaluation & Results

In this section, we evaluate, using the T4LTE gold standard, the approaches
described above and compare them to a model trained with manually labeled
data. As for the latter, the gold standard is also used for training, we apply three-
fold cross-validation throughout all experiments. Additionally, we will evaluate
the effectiveness of the user-provided rule sets and our bootstrapping approach.

4.1 Row Clustering Evaluation

To evaluate row clustering, we employ the evaluation metric proposed by Has-
sanzadeh et al. [7,12]. It emphasizes replicating the exact number of clusters in
the evaluation set by first computing a one-to-one mapping between returned
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clusters and clusters in the evaluation set. Only rows of clusters with a mapping
contribute towards recall, while the pairwise clustering precision is penalized
by the difference between the number of clusters in the evaluation set and the
number of returned clusters, or the clusters with a mapping, whichever is higher.

Table 2 shows row clustering performance for different types of supervision.
The first two rows show performances when using the unsupervised matching
rule alone, while the following two rows show the performances when using the
weakly supervised ensembled classifier. The final two rows show the performances
when using strong supervision. For each supervision type we apply and evaluate
the underlying method directly on the test set, and then use it as a labeling
function to bootstrap a random forest, which we then also apply and evaluate
on the test set. For strong supervision, the bootstrapped method resembles a
semi-supervised learning approach.

From the table, we can see that the difference in average F1 between a model
trained using strong supervision, which has an F1 of 0.88, and the unsupervised
rule without bootstrapping is 8 percentage points. We find that using boot-
strapping with the unsupervised matching rule allows us to increase F1 by 3
percentage points on average, with an increase of 8 percentage points for the
class Song. Using user-provided class-specific rule sets, we achieve an average F1
score of 0.86, which is a large increase of overall 6 percentage points from the
unsupervised rule and very close to the performance when using strong supervi-
sion. Applying bootstrapping on the weakly supervised method does not increase
average F1 further, mainly because we lose performance for the class GF-Player,
while gaining performance in the other two classes. This is similarly the case
when bootstrapping from a model trained using strong supervision, except we
also lose one percentage point in average F1.

When bootstrapping, the labeling functions were given overall 2.8m row pairs
to label, which were selected either by the label-based blocker or chosen ran-
domly. Given as labeling function the weakly supervised ensembled classifier,
275 thousand pairs were labeled as matches, while 2.54m pairs were labeled as
non-matches. For this output, the user-provided matching rules fire in total 37
thousand times, whereas the non-matching rules fire 500 thousand times.

4.2 New Detection Evaluation

We evaluate a new detection method using both, the existing and the new entities
labeled in the gold standard. Precision equals the proportion of entities returned
as new by the method, that are actually new, while recall equals the proportion
of new entities in the testing set, that were returned as new by the method.

Table 3 shows new detection performance for runs with various types of
supervision, similar to Table 2. We first find that a model trained using the
provided strong supervision outperforms the unsupervised matching rule in F1
by 7 percentage points on average, and by 24 points for the class Song. On the
other hand, the unsupervised matching rule outperforms the model trained using
strong supervision by 8 percentage points for the class Settlement, indicating
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Table 3. New detection performance for runs with various types of supervision.

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.87 0.76 0.80 0.82 0.68 0.89
+ Bootstrapping 0.86 0.86 0.85 0.86 0.78 0.90

Weak supervision 0.87 0.81 0.83 0.82 0.78 0.89
+ Bootstrapping 0.87 0.90 0.87 0.87 0.85 0.90

Strong supervision 0.82 0.94 0.87 0.88 0.92 0.81
+ Bootstrapping 0.81 0.97 0.88 0.88 0.92 0.83

that the trained model highly overfits. By employing the user-provided rule sets
as weak supervision, we are able to increase average F1 by 3 percentage points.

Unlike for row clustering, bootstrapping is consistently effective for new de-
tection. It increases average F1 in the unsupervised case by 5, and in the weakly
supervised case by 3 percentage points. The latter allows us to achieve an equal
average F1 to that of strong supervision, albeit a large part is due to the Settle-
ment class, while for Song we are still lacking 7 points in F1. Bootstrapping is
also effective when used with a model trained using strong supervision.

When bootstrapping, a sum of 1.27m entity-instance-pairs are given to the
labeling functions to be labeled. When using the ensembled classifier, we find
that 26 thousand pairs were labeled as matches, and the remainder as non-
matches. Within the ensembled classifier, the user-provided matching rules fire
13 thousand times, whereas the non-matching rules fire 150 thousand times.

4.3 End-To-End Evaluation

We will now evaluate a full run of the pipeline using weak supervision. As this
runs row clustering and new detection sequentially, the errors of the methods
tend to accumulate and reduce overall end-to-end performance [12].

To evaluate how well new entities were found, we utilize precision and recall.
To compute precision, we determine the proportion of entities returned as new
that are correct. An entity is only correctly new, if its cluster includes the ma-
jority of the rows of a new cluster in the gold standard, and these rows at the
same time form the majority within the entity’s cluster. Recall is the fraction of
new entities in the gold standard for which a correct new entity was returned.

Table 4 shows end-to-end performance for different types of supervision simi-
lar to Table 2. From the table we can see that the highest performance is achieved
by the model trained using strong supervision. It achieves an average F1 of 0.81.
The highest performance achieved by the methods without strong supervision
is 0.78 for the weak supervision method with bootstrapping. The lowest perfor-
mance of 0.69 is achieved by the unsupervised method without bootstrapping.
Overall, we find that we are able to achieve a performance quite close to that
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Table 4. End-to-end evaluation for various types of supervision.

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.71 0.71 0.69 0.76 0.50 0.82
+ Bootstrapping 0.71 0.81 0.74 0.79 0.60 0.82

Weak supervision 0.72 0.77 0.74 0.76 0.63 0.82
+ Bootstrapping 0.72 0.86 0.78 0.81 0.72 0.80

Strong supervision 0.73 0.93 0.81 0.84 0.78 0.81
+ Bootstrapping 0.68 0.93 0.78 0.84 0.69 0.80

when using strong supervision, and much better than a simple unsupervised
matching rule. As a result, we can successfully perform long-tail entity extrac-
tion with significantly reduced labeling effort. While on average, we lose recall
with almost no loss in precision, the actual effect differs per individual class.

The user-provided rule sets have a strong positive impact on performance, in-
creasing F1 by 5 percentage points. Bootstrapping also increases average F1 by 5
and 4 percentage points for the unsupervised and weakly supervised runs respec-
tively. Overall, we achieve an increase of 9 points when comparing a weakly su-
pervised bootstrapped method with an unsupervised non-bootstrapped method.
The effect is especially large for Song, where we gain 22 percentage points in F1.

Bootstrapping from a strongly supervised method is not effective and reduces
overall performance. This is because, bootstrapping had mixed results when it
comes to row clustering for both, weak and strong supervision. This is especially
the case for the class Song, where a method bootstrapped from strong supervision
produces 29 bad clusters, leading to a significant drop in end-to-end performance.

Finally, we notice that precision is continuously lower than recall. For GF-
Player and Settlement we have e.g. precisions of 0.68 and 0.70, with recalls of 1.00
and 0.92 respectively. This problem is caused by bad clustering, primarily for ex-
isting entities, which are then classified as new by the new detection component,
thereby reducing precision, without affecting recall. When summing numbers for
all testing folds, we are missing for football players 8 existing clusters, meaning
the rows were incorrectly included in other existing clusters, causing them to be
impure. In the case of settlements we have overall generated 16 extra existing
clusters. This leads for GF-Player and Settlements to 8 and 9 clusters respec-
tively, being incorrectly determined to be new. This shows, that errors in the
pipeline accumulate and that there is a need for an additional component in
the pipeline that detects and filters out bad clusters. While this pattern does
not exist for class Song, it is because it suffers from bad clustering for new and
existing clusters, leading to lower recall and precision. As a result, even the class
Song would benefit from a bad cluster filtering component.
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5 Discussion

Ensembling the user-provided rule sets with an unsupervised matching rule,
yields a quite effective method that requires minimal supervision. The unsuper-
vised rule, while class-agnostic and simple, still provides an acceptable baseline
performance, and more importantly, full coverage to our method. This allows us
to require that the rules only be accurate, but not exhaustive, even when the
number of provided rules is small. Additionally, these rules are not only easily
created by an expert, but could also be mined from or tested on the knowledge
base, further reducing supervision effort. A big limitation of our approach is that
the rule sets require web tables to describe entities using useful knowledge base
properties. This is not the case for settlements, where we find that the number
and density of attributes in the web tables are limited [12].

While bootstrapping produces mixed results for row clustering, its impact on
new detection and end-to-end performance is positive. There are several factors
that possibly contribute to this positive effect. First, a random forest is more
expressive than either, the unsupervised matching rule or the user-provided rule
sets. It also exploits a larger feature set than both, especially making use of
the class-specific scores returned by the ATTRIBUTE and IMPLICIT ATT features.
By weighting training pairs, we ensure that pairs with a higher confidence are
given a higher importance, while less certain pairs are still considered. As boot-
strapping works within the context of a component, i.e. row clustering or new
detection, it can make use of component-specific characteristics. For example,
given one created entity, only one knowledge base instance can possibly be a cor-
rect match. This allows us to eliminate likely incorrect training examples during
bootstrapping for new detection by keeping for one entity only the matching
entity-instance-pair with the highest confidence.

6 Related Work

Various methods exist to reduce effort spent on manual labeling. Semi-supervised
methods use a small set of labeled and a larger set of unlabeled examples to train
a model. This includes for example co-training and self-training, which train
models on data that they labeled themselves, using initially a small number of
seed examples. Another approach to reducing labeling effort is active learning,
where a user is queried to label examples that are chosen to provide the most
information when labeled [6].

Weak supervision approaches exploit supervision at a higher abstraction or
that is noisier in nature to efficiently generate a large number of training exam-
ples, even if those are of a lower quality [14,15]. This includes letting non-experts
generate labels through crowdsourcing or employing rules and heuristics for la-
beling data. Multiple weak supervision approaches can be combined to overcome
the possibly lower accuracy and coverage of weak supervision [14].

One method of weak supervision is distant supervision [11], where a knowl-
edge base or any other external resource is used to train a supervised algorithm.
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While originally applied in the context of relation extraction from text, it has
been used for the task of augmenting a knowledge base from semi-structured
web data, including web tables [4,10]. Bizer et al. [2] make use of schema.org
annotations extracted from 43 thousand e-shops to distantly supervise a deep
neural network for product matching. To generate training pairs, they make use
of generic product identifies that are often provided along the annotations.

Ratner et al. [15] introduce the data programming paradigm, where any weak
supervision strategy, including domain heuristics and distant supervision, can
be codified into individual low-coverage labeling functions. The authors focus
on denoising noisy and conflicting labels, by assigning accuracies to labeling
functions using a generative algorithm. In contrast, we do not label using the
individual rules, but first ensemble a set of rules and an unsupervised weighted
average rule to create one labeling function per class. While we attempt to
overcome the low coverage of our rules using ensembling, the authors do not
suggest an approach to overcome the possible low coverage of their labeling
functions. Snorkel is a system that enables the use of weak supervision based on
the data programming paradigm [14]. Snorkel Drybell adapts Snorkel to exploits
diverse organizational knowledge resources. Its effectiveness is evaluated in a
large-scale case-study at Google [1].

Snuba [19] is a weak supervision system that uses a small set of labeled
data to derive heuristics to generate training data and train a machine learning
model. The heuristics are similar in purpose to our rule sets, and the authors
also limit themselves to what they term primitive features, which in their case
are bag-of-words representation for text or bounding box attributes for images.
In our case, we limit our self to attribute tests using the schema of a knowledge
base. As in our case, training a machine learning model yield an increase in
performance, which the authors similarly contribute to the fact that learned
models are more expressive and can exploit more features. Snuba still requires
hundreds of manually labeled training examples to derive heuristics, whereas in
our case experts only need to provide a small number of bold matching rules.

Shen et al. [18] introduce constraint-based entity matching, where they sug-
gest a probabilistic framework within which domain-specific constraints can be
exploited to perform entity matching without the need for manual labeling. The
introduced constraint are of a broad-variety, and not limited to a specific format.
Their work differs from ours, as, first of all, their constraints are generally more
complex and not based on simple attribute tests using a predefined schema. This
makes providing supervision less straight-forward and possibly more laborious
for experts. Additionally, they only provide a matching method that uses the
constraints directly, and do not consider using them to bootstrap a supervised
machine learning algorithm.

To bootstrap supervised learning, a small number of labeled seed examples
are often used [11,13], but there have also been approaches that use alternatives
to seeds, e.g. domain-independent patterns [5]. We bootstrap by using a classifier
that ensembles a heuristic domain-agnostic matching rule and a limited set of
user-provided class-specific matching rule sets.



14 Y. Oulabi and C. Bizer

7 Conclusion

This work investigates the possibility of reducing the effort spent on manually
labeling training data for the task of augmenting knowledge bases with long-tail
entities from web tables. For this, we introduce and evaluate a weak supervision
approach that exploits more efficient supervision at a higher level of abstraction.

Specifically, we suggest, as an alternative to manually labeling thousands of
entity matching pairs, the use of a small set of bold user-provided class-specific
matching rules. These rules are built upon properties from the schema of a
knowledge base class, making them universal and semantically easy to under-
stand. More importantly, these rules require considerably less effort to create.
To overcome the possibly limited coverage of these rules, we suggest a method to
ensemble these class-specific matching rules with a class-agnostic unsupervised
matching model. This yields an effective weakly supervised method for long-tail
entity extraction.

We then introduce an approach to bootstrap a supervised learning algorithm
by using the weakly supervised method as a labeling function and a set of un-
labeled web tables. We find that with bootstrapping, we are able to achieve a
performance close to that of supervision with manually labeled data. As a re-
sult, we are able to perform long-tail entity extraction with considerably reduced
effort spent on supervision.

Our weak supervision approach can be highly useful for a variety of tasks. In
case where recall is a secondary objective, our approach can be tuned towards
precision and used to add highly accurate, albeit fewer, long-tail entities to a
knowledge base. The approach can also be used to facilitate generating training
data for manual labeling, where experts must only correct generated labels in-
stead of creating them. This would considerably reduce the effort required for
manually labeling training data.

We believe that an interesting direction for future work would be combining
weakly supervised labeling functions and active learning. The labeling functions
could be used to reduce the effort spent of learning initial models. These models
can afterwards be refined by labeling individual examples chosen by the active
learning method.
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20. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)


	Using Weak Supervision to Identify Long-Tail Entities for Knowledge Base Completion

