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Zusammenfassung

Diese Dissertation widmet sich zweierlei Zielen, die ein statistisches Problem und seine
probabilistischen Grundlagen betreffen. Forschungsgegenstand ist die Schätzung des
Drifts und der invarianten Dichte für eine große Klasse skalarer, ergodischer Diffusions-
prozesse, basierend auf stetigen Beobachtungen, unter Berücksichtigung des Verlustes in
Supremumsnorm. Es werden Konzentrationsungleichungen und Momentabschätzungen
für Analoga von klassischen empirischen Prozessen in stetiger Zeit bereitgestellt. Diese
stellen das zentrale probabilistische Hilfsmittel für die Analyse des Schätzrisikos in sup-
Norm dar.
Es wird angenommen, der unbekannte Drift gehöre zu einer nichtparametrischen Klasse

glatter Funktionen unbekannter Ordnung. Ein adaptiver Ansatz zur Konstruktion daten-
getriebener Driftschätzer, die minimax optimale Konvergenzraten in sup-Norm erzielen,
wird vorgeschlagen. Außerdem wird ein Donsker-Theorem für den klassischen Kern-
schätzer der invarianten Dichte und dessen semiparametrische Effizienz gezeigt. Schließ-
lich werden beide Resultate zusammengeführt und ein rein datengetriebener Selektions-
mechanismus für die Bandweite entwickelt, der simultan sowohl einen ratenoptimalen
Driftschätzer als auch einen asymptotisch effizienten Schätzer für die invariante Dichte
liefert.
Essentielle Werkzeuge für die Untersuchung sind uniforme Exponentialungleichun-

gen für empirische Prozesse und verwandte stochastische Integrale skalarer, ergodischer
Diffusionsprozesse. Mit der Entwicklung dieser probabilistischen Hilfsmittel wird die
Grundlage, welche üblicherweise für die Untersuchung der sup-Norm-Eigenschaften von
Schätzverfahren für eine reiche Klasse von Diffusionsprozessen benötigt wird, geschaffen.
Die Idee hat ihren Ursprung im klassischen i.i.d. Kontext, in dem Konzentrationsun-
gleichungen vom Talagrand-Typus ein Schlüssel für die statistische Analyse in sup-Norm
sind. Mit der Zielsetzung einen entsprechenden Ersatz im Diffusionskontext zu entwick-
eln, wird ein systematischer, in sich geschlossener Ansatz für solche uniformen Konzen-
trationsungleichungen präsentiert. Dieser beruht auf einer Martingalapproximation und
Momentabschätzungen, die durch Anwendung der Generic Chaining-Methode hergeleitet
werden.



Abstract

This thesis is directed towards a twofold aim concerning a statistical problem and
its probabilistic foundations. We consider the question of estimating the drift and the
invariant density for a large class of scalar, ergodic diffusion processes based on continuous
observations in supremum-norm loss. Concentration inequalities and moment bounds
for continuous time analogues of classical empirical processes driven by diffusions are
provided. These serve as the central probabilistic device for the statistical analysis of the
sup-norm risk.
The unknown drift is supposed to belong to a nonparametric class of smooth functions

of unknown order. We suggest an adaptive approach which allows to construct data-
driven drift estimators attaining minimax optimal sup-norm rates of convergence. In
addition, we prove a Donsker theorem for the classical kernel estimator of the invariant
density and establish its semiparametric efficiency. Finally, both results are combined to
propose a fully data-driven bandwidth selection procedure which simultaneously yields
both a rate-optimal drift estimator and an asymptotically efficient estimator of the in-
variant density of the diffusion.
Crucial tool for our investigation are uniform exponential inequalities for empirical

processes and related stochastic integrals driven by scalar, ergodic diffusion processes.
Providing these probabilistic tools, we lay the foundation typically required for the study
of sup-norm properties of estimation procedures for a large class of diffusion processes.
The idea originates in the classical i.i.d. context where Talagrand-type concentration
inequalities are a key device for the statistical sup-norm analysis. Aiming for a parallel
substitute in the diffusion framework, we present a systematic, self-contained approach
to such uniform concentration inequalities via martingale approximation and moment
bounds obtained by the generic chaining method.





Contents

1 Introduction 1
1.1 Sup-norm adaptive estimation of diffusion characteristics in dimension one 1
1.2 Concentration of empirical processes driven by diffusion processes . . . . . 4
1.3 Outline of the thesis and main contributions . . . . . . . . . . . . . . . . . 6

2 An introduction to diffusion processes 8
2.1 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Invariant measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Overview of different approaches to diffusion processes . . . . . . . . . . . 10
2.3 Properties of scalar diffusion processes . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Scale function and speed measure . . . . . . . . . . . . . . . . . . . 13
2.3.2 Local time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Law of large numbers and central limit theorem for scalar ergodic

diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Uniform weak convergence . . . . . . . . . . . . . . . . . . . . . . . 19

3 Concentration of scalar ergodic diffusions and some statistical implications 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Basic framework and main results . . . . . . . . . . . . . . . . . . 23
3.1.2 Structure and techniques: an overview . . . . . . . . . . . . . . . . 24
3.1.3 Statistical applications . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Exponential tail inequality for the supremum of the local time of contin-
uous semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Uniform concentration of empirical processes of continuous semimartingales 33
3.4 Concentration of measure and exponential inequalities for scalar ergodic

diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Moment bounds and tail estimates for diffusion local time . . . . . 39
3.4.2 Martingale approximation for additive functionals of diffusion pro-

cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Uniform concentration of empirical processes and stochastic integrals 41

3.5 Statistical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Basic auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Proofs for Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Proofs for Section 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Proofs for Section 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



4 Sup-norm adaptive drift estimation for ergodic diffusions 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Donsker-type theorems and asymptotic efficiency of kernel invariant den-

sity estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Donsker-type theorems . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Semiparametric lower bounds for estimation of the invariant density 83
4.3.3 Semiparametric efficiency of the kernel density estimator . . . . . . 86

4.4 Minimax optimal adaptive drift estimation wrt sup-norm risk . . . . . . . 86
4.5 Simultaneous estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Proofs for Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7 Proofs for Section 4.4 and Section 4.5 . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.2 Proof of main results . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Concluding remarks and outlook 116

6 Bibliography 118



1 Introduction

Nonparametric statistics for continuous time processes is a recent and active field of re-
search. Diffusion processes constitute a large class of these stochastic processes exhibiting
a Markovian structure and continuity of trajectories. They have gained increasing at-
tention in mathematical statistics during the last decades. The book Kutoyants (2004)
provides an overview of inference for scalar diffusion processes based on continuous ob-
servations. Spokoiny (2000) and Dalalyan (2005) establish adaptive, i.e., data-driven
methods for pointwise and integrated risk measures. Multivariate models are investi-
gated in Dalalyan and Reiß (2007), Strauch (2015) and Strauch (2016). Nonparametric
estimation from discrete data is of interest, as well (see Hoffmann (1999), Gobet et al.
(2004), Söhl and Trabs (2016)), and the recent literature also comprises Bayesian ap-
proaches for diffusion models (e.g., van der Meulen et al. (2006), van Waaij and van
Zanten (2016), Nickl and Ray (2018)). For a more detailed literature review, we refer to
the introduction of Chapter 4.
The statistical analysis of diffusion processes differs from parallel investigations of

classical models such as independent and identically distributed (i.i.d.) observations.
This is mainly due to the very distinct underlying probabilistic structure characterised
by a certain kind of dynamics under dependency governed by a stochastic differential
equation. Beyond the theoretical interest, the need for statistical investigations based
on recent nonparametric, data-driven methods becomes apparent in view of the broad
practical relevance of diffusion process models. There are numerous applications of these
models in various areas of science among them applications in mathematical finance,
physics, and genetics, just to name very few relevant fields. Popular examples within
these fields are diffusion models for stock prices, the Ornstein-Uhlenbeck process, or the
Wright-Fisher model in population genetics.

1.1 Sup-norm adaptive estimation of diffusion
characteristics in dimension one

The diffusion processes under consideration are given as solutions X = (Xt)t≥0 of a
stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, (1.1.1)

where W = (Wt)t≥0 is a standard Brownian motion. Assuming that we can observe
the whole trajectory of the process for a finite period of time, there exists a continuous
record of observations (Xs)

t
s=0, t > 0. The maps b : R → R and σ2 : R → R denote

the drift coefficient and the diffusion coefficient, respectively. A diffusion process can be

1



1 Introduction

interpreted as a continuous process that follows some trend and at the same time is sub-
ject to a certain volatility around this trend. The latter is represented by the integrated
drift term whereas the volatility is induced by the stochastic integral which involves the
diffusion coefficient. From a continuous record of observations σ2 is identifiable as far as
possible which is due to the convergence property

n−1∑
i=0

(Xti+1 −Xti)
2 −→

∫ t

0
σ2(Xs)ds, as ∆→ 0, almost surely,

where 0 = t0 < ... < tn = t, ∆ := maxi=0,...,n−1 |ti+1 − ti|. Therefore, the focus is on
estimation of the drift coefficient b.

We assume that the diffusion process has ergodic properties. In this case, the process
admits an invariant measure µb with invariant density ρb given via the relation

ρb(x) =
1

Cb,σσ2(x)
exp

Ç∫ x

0

2b(y)

σ2(y)
dy

å
, x ∈ R,

with
Cb,σ :=

∫
R

1

σ2(u)
exp

Ç∫ u

0

2b(y)

σ2(y)
dy

å
du

denoting the normalising constant. This explicit relation between the invariant density
and the drift coefficient accounts for the strong connectivity of the problems of drift
estimation and estimation of the invariant density. Our aim is suggesting purely data-
driven estimators for these characteristics, which behave optimally in a sense that will be
explained. To this intent, we propose using kernel-type estimators. For determining the
invariant density ρb, we adopt a continuous time analogue of the classical kernel density
estimator defined as

ρt,K(h)(x) :=
1

th

∫ t

0
K

Å
x−Xu

h

ã
du, x ∈ R, (1.1.2)

for a positive bandwidth h and some smooth kernel function K : R → R with compact
support. A natural estimator of the drift coefficient b, which relies on the analogy between
the drift estimation problem and the model of regression with random design, is given
by a Nadaraya–Watson-type estimator of the form

bt,K(h)(x) :=
ρt,K(h)(x)

ρ+
t,K(h)(x) + rt

, where (1.1.3)

ρt,K(h)(x) :=
1

th

∫ t

0
K

Å
x−Xs

h

ã
dXs, ρ+

t,K(h)(x) := max{0, ρt,K(h)(x)}, (1.1.4)

and (rt)t≥0 is a suitable, strictly positive sequence such that limt→∞ rt = 0.

As a measure for the quality of the estimation procedures, we consider the expected
maximal error, i.e., for an estimator b̂ of b we analyse the risk Eb

î
‖b̂− b‖∞

ó
where

2



1 Introduction

‖f‖∞ := supx∈R |f(x)|, for any function f : R → R. This perspective is a worst-
case consideration which is highly relevant in practical applications for several reasons.
Beyond the obvious desire to analyse worst cases in the presence of uncertainty, measuring
the quality of an estimator in sup-norm risk is insightful because it takes into account
the performance for estimation of the whole function instead of assessing the risk only
pointwise. Furthermore, it has a straightforward interpretation in contrast to other global
risk measures such as the mean integrated squared risk.

Parametric statistics rely on the fundamental assumption that the target can be de-
scribed by a finite number of parameters which means that the search for a good estimator
is restricted to a finite dimensional set. In contrast, nonparametric procedures aim at
finding an estimator for a target that is contained in an infinite dimensional function
class imposing some regularity on the target.
Nonparametric estimators typically depend on a tuning parameter such as the band-

width for kernel estimators. The choice of the tuning parameter has a significant impact
on the quality of the procedure, for instance in terms of convergence rates for the risk
which tends to zero for a reasonable estimator. The convergence rate determines how
fast the risk vanishes. Another phenomenon frequently occurring is the dependence of
these rates on the assumed order of regularity. For estimation of the drift coefficient in

sup-norm loss we obtain the rate
Ä

log t
t

ä β
2β+1 where β > 0 denotes the order of regularity.

Loosely speaking, in our context, a bandwidth choice is considered to be a good one if it
yields an estimator which achieves this fast convergence rate. Such a bandwidth can be
obtained from balancing the opposite effects of the bias and the variance of the estimator

and is given as h∗ '
Ä

log t
t

ä 1
2β+1 . However, this choice again depends on the assumed

regularity β. Hence, the associated estimator is not data-driven and requires the a priori
knowledge of the regularity. Our objective are adaptive methods that can overcome this
circumstance. An adaptive estimator with the associated adaptive bandwidth choice is
supposed to be purely data-driven and its risk is supposed to vanish as fast as possible,
ideally as it would if the regularity was known in advance. This means that it achieves
or adapts to the optimal convergence rate which depends on the unknown regularity.
Beyond convergence rates for the risk of an estimator, it is a natural aspiration to

investigate the asymptotic distribution of an estimator. This is an important first step
for testing or for the construction of confidence bands. We analyse the asymptotic distri-
bution of the kernel estimator for the invariant density in a functional sense. This means
that we do not only investigate the asymptotic distribution pointwise. Instead, we show
a Donsker-type result which is a weak convergence result for the estimator as a random
map in the space of bounded functions. Such a result is charming since it immediately
yields asymptotic convergence results for continuous functionals of the invariant density.

Another goal of this thesis is to show that the performance of the suggested estima-
tion procedures for the drift coefficient and the invariant density of a scalar diffusion
process is optimal. Corresponding to the different nature of the results we look at two
different optimality concepts. The first one is minimax optimality which refers to the
optimality of the convergence rate for the sup-norm risk of the drift estimator. Secondly,

3



1 Introduction

semiparametric efficiency of the invariant density estimator is addressed. We deal with
the question what an optimal limit distribution is and show that it is achieved by our
estimator.

1.2 Concentration of empirical processes driven by diffusion
processes

Beyond the statistical question, this thesis is also concerned with more probabilistic
problems that naturally arise from the statistics. The investigation of the sup-norm risk
requires deep probabilistic results from the theory of empirical processes in the contin-
uous diffusion framework. The probabilistic toolbox that we aim for contains moment
bounds and concentration inequalities for suprema of additive functionals and stochastic
integrals over infinite dimensional function classes. These results parallel Talagrand-type
inequalities known from the classical i.i.d. context. Our statistical investigation based
on continuous observations exploits the probabilistic features of diffusion processes and
aims at results which reflect the very nature of these processes. Reducing the problem
to a discrete or even i.i.d. context in order to use available Talagrand-type inequali-
ties would lead to a loss of information on the probabilistic structure to a large extent
which contradicts our objective. Therefore, we develop the probabilistic tools within
our diffusion context proposing at the same time a general machinery for the derivation
of concentration inequalities for empirical processes driven by other processes, as well.
Our results constitute the probabilistic foundation for solving the statistical problem
treated in this thesis, and moreover they play an essential role for other recent ques-
tions in statistics for diffusion processes. Furthermore, they are clearly of independent
probabilistic interest. The analysis of parametric, high-dimensional diffusion models as
well as the nonparametric, adaptive estimation in sup-norm within discrete observation
schemes or based on diffusion models with multivariate state variables are examples for
other relevant statistical problems.
Given real-valued i.i.d. observations X1, ..., Xn ∼ P , n ∈ N, the law of large numbers

motivates the estimation of expected values P (f) :=
∫
fdP where f : R → R, f ∈

L1(P ), by sample means Pn(f) := 1
n

∑n
i=1 f(Xi), i.e., by additive functionals of the

observations. In case the interest is not only in exploring the behaviour of this estimator
with respect to one specific function f but with respect to a whole class of functions
F , the need to investigate the empirical process (Gn(f))f∈F arises. It is defined as
Gn(f) :=

√
n
Ä

1
n

∑n
i=1 f(Xi)− P (f)

ä
and F denotes a possibly infinite dimensional class

of functions. Typical questions then address consistency, i.e., supf∈F n
−1/2|Gn(f)| → 0,

in mean, as n→∞, or concentration inequalities of the form

P
Ç

sup
f∈F
|Gn(f)| ≥ φ(u)

å
≤ exp(−u), u > 0, (1.2.5)

for a function φ : R+ → R+. A famous result in that spirit which is the central ingredient
for a number of statistical sup-norm investigations is a concentration inequality by Tala-
grand (1996b). We cite a version by Bousquet (2003) as follows. It refers to a countable

4



1 Introduction

class of real-valued functions F such that F is uniformly bounded by a positive constant
U and such that supf∈F P (f2) ≤ ν2 for another positive constant ν2. Then, setting
V := nν2 + 2UE

î
supf∈F |

∑n
i=1 f(Xi)|

ó
it holds, for any x ≥ 0,

P
(

sup
f∈F

∣∣∣∣∣ n∑
i=1

f(Xi)

∣∣∣∣∣ ≥ E
[

sup
f∈F

∣∣∣∣∣ n∑
i=1

f(Xi)

∣∣∣∣∣
]

+
√

2V x+ Ux/3

)
≤ 2 exp(−x). (1.2.6)

Studying ergodic diffusion processes, there exists a law of large numbers and appar-
ently, it is natural to look at empirical processes in this context, as well. Beyond this very
straightforward motivation, our specific statistical problem of drift estimation requires
developing Talagrand-type concentration inequalities for continuous time analogues of
empirical processes driven by diffusion processes.
The additive functional analogue is given via

Gt(f) :=
√
t

Ç
1

t

∫ t

0
f(Xs)ds− µb(f)

å
(1.2.7)

where (Xs)s≥0 is a scalar, ergodic diffusion process given as a solution of (1.1.1) and
µb(g) :=

∫
gdµb, for any g : R → R, g ∈ L1(µb). Moreover, we analyse the stochastic

integrals

Ht(f) :=
√
t

Ç
1

t

∫ t

0
f(Xs)dXs − µb(b · f)

å
. (1.2.8)

Our approach targets upper bounds for all moments
î
E supf∈F |Gt(f)|p

ó 1
p andî

E supf∈F |Ht(f)|p
ó 1
p specifying very detailed the explicit dependence on p and other

constants involved which is crucial for the statistical applications. From these upper
bounds, (nonadaptive) convergence rates for the sup-norm risk of estimators for diffu-
sion characteristics can be deduced immediately. Charmingly, another direct implication
are the corresponding concentration inequalities of the form (1.2.5) which are required
for the adaptive procedure in this thesis.
These results can be shown under typical assumptions on the class of functions F

which are the same as in the i.i.d. context. Moreover, we even allow for a certain
unboundedness which is remarkable since results for additive functionals of unbounded
functions are scarce even for the nonuniform consideration.
The investigation of stochastic integrals as in (1.2.8) relies on an analysis of the local

time (Lxt (X), x ∈ R, t ≥ 0) associated to the diffusion process X. Roughly speaking, the
local time at t and x measures how often x is visited by the process X until time t. The
scaled local time serves as a natural estimator for the invariant density if a continuous
record of observations is available.
Remarkably, the local time is a phenomenon only existing in dimension one which

illustrates that the scalar case is very different from the multivariate setting and de-
serves special attention. As a consequence, the statistical procedures for scalar diffusions
exhibit an exceptional behaviour which cannot immediately be deduced from a general
multivariate analysis.
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1 Introduction

1.3 Outline of the thesis and main contributions

In this section, the structure of the thesis is outlined including a concise summary of the
main contributions. We begin with an introduction on diffusion processes in Chapter 2
and present basic facts that are used without further notice throughout the subsequent
chapters.
The main part of this thesis consists of Chapter 3 and Chapter 4 which are both

presented in a self-contained manner and can be read independently of each other. These
chapters are based on joint work with Prof. Dr. Claudia Strauch and correspond to a
large extent to the preprints Aeckerle-Willems and Strauch (2018a) and Aeckerle-Willems
and Strauch (2018b), respectively.
In Chapter 3, we examine concentration inequalities for empirical processes and related

concepts driven by diffusion processes thereby laying the probabilistic foundations for the
statistical investigation which is subject of Chapter 4.

We derive moment bounds for the sup-norm of the local time of a continuous semi-
martingale under assumptions on the moments of the martingale and the finite variation
part of the process. These upper bounds are a central ingredient for the investigation of
the stochastic integrals of the form (1.2.8). Interestingly, proving upper bounds on the
sup-norm of the local time serves as a blueprint for the further analysis of empirical pro-
cesses. In Section 3.3, we propose an approach for the derivation of moment bounds for
continuous time analogues of empirical processes driven by continuous semimartingales
via generic chaining and localisation based on a given martingale approximation. The
machinery developed for this purpose is transferable to other classes of processes. The
concentration equalities we aim for come for free, once upper bounds for all pth moments,
p ≥ 1, revealing the explicit dependence on p, are available.

We continue restricting to a broad class of diffusion processes in Section 3.4 and prove
the existence of a martingale approximation for additive functionals. The general result
for continuous semimartingales from the previous section then implies moment bounds
and concentration inequalities for empirical processes of the form (1.2.7). Exploiting the
moment bounds on the sup-norm of the local time, we can finally prove parallel results
for stochastic integrals as in (1.2.8).

In Section 3.5, we turn to some first statistical applications that follow from the ob-
tained concentration inequalities for empirical processes. Given a continuous record of
observations (Xs)

t
s=0 of a diffusion process X, we analyse the kernel density estimator

ρt,K(h) and the local time estimator for estimation of the invariant density ρb and estab-
lish upper bounds on the sup-norm risks Eb (‖ρt,K(h)− ρb‖p∞) and
Eb
(‖t−1L•t (X)− ρb‖p∞

)
, for any p ≥ 1. Additionally, we provide an exponential in-

equality for the sup-norm distance between these two estimators.

In Chapter 4, we continue the statistical analysis of the kernel density estimator.
Based on the results of the previous chapter, we prove a Donsker-type result for the
kernel density estimator establishing its asymptotic normality in a functional sense. More
precisely, the law of

√
t(ρt,K(h)− ρb) converges to a Gaussian limit for a certain range of

6



1 Introduction

bandwidths h = ht where the convergence takes places in the space of bounded functions.
Following the general conceptual framework proposed in van der Vaart and Wellner
(1996), we establish semiparametric optimality of the limit distribution.

Section 4.4 concerns the adaptive estimation of the drift coefficient of a scalar, ergodic
diffusion process. Conceptually, the results are based on the analog situation of i.i.d.
observations examined by Giné and Nickl (2009) where estimation of the distribution
function and the density with respect to the sup-norm risk is considered. We suggest an
adaptive Nadaraya-Watson-type estimator for the drift coefficient b of a scalar, ergodic
diffusion process. Providing upper and lower bounds for the sup-norm risk, we conclude
that the suggested estimator behaves optimally in a minimax sense uniformly over non-
parametric Hölder classes of unknown order. In particular, it turns out that in contrast
to other situations such as pointwise estimation for example, there is no price for adap-
tation in terms of the convergence rate. Finally, we suggest another adaptive, i.e., purely
data-driven, bandwidth which simultaneously yields an asymptotically normal estimator
for the invariant density and at the same time a minimax rate-optimal estimator for the
drift coefficient in Section 4.5.
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2 An introduction to diffusion processes

The central objects of interest in this thesis are diffusion processes. The notion of a
diffusion process is closely related to the theory of stochastic differential equations. In
fact, a diffusion process is a solution to a certain kind of stochastic differential equation
(SDE) as will be discussed shortly. These stochastic processes are widely used to model
the evolution of various systems in many areas of science, for instance as models for stock
prices in finance. Another example is the diffusion approximation of the Wright-Fisher
or the Moran model in population genetics.
From the theoretical perspective diffusion processes constitute a special class of contin-

uous Markov processes. There are different approaches, all of them leading to the same
notion of a diffusion process. Firstly, we can describe a diffusion as a Markov process
characterised by a certain type of infinitesimal generator. Such processes can secondly
be obtained from a solution to a martingale problem. These martingale problems cor-
respond to stochastic differential equations which consequently leads to another third
approach already mentioned before. In this chapter, we give a short overview of basics
on diffusion processes thereby setting the scene for the main part of the thesis.

2.1 Markov processes

Studying diffusions, we are working within the larger class of continuous Markov pro-
cesses. Therefore, we collect some very basic facts about continuous time Markov pro-
cesses in Rd and fix associated notation. For a detailed account, we refer to Kallenberg
(1997).

Let (Ω,F ,P) be a probability space equipped with a filtration (Ft)t≥0. Note that
during all subsequent chapters (Ω,F ,P) will always denote the underlying probability
space even if it is not explicitly mentioned.

Definition 1. An Rd-valued stochastic process X = (Xt)t≥0 is called Markov process if
X is (Ft)t≥0 adapted and satisfies the Markov property:

P(Xt ∈ B|Fs) = P(Xt ∈ B|Xs),

for any 0 ≤ s ≤ t, and B ∈ B(Rd) where B(Rd) denotes the Borel σ-algebra of Rd.

The Markov kernels defined via

µs,t : Rd × B(Rd)→ [0, 1], (x,B) 7→ µs,t(x,B) := P(Xt ∈ B|Xs = x)

8



2 An introduction to diffusion processes

for 0 ≤ s ≤ t are called transition kernels. Given Markov kernels µ and ν on (Rd,B(Rd)),
we define Markov kernels from Rd to Rd by

µν(x,A) :=

∫
ν(y,A)µ(x,dy) x ∈ Rd, A ∈ B(Rd).

It is straightforward to check that the transition kernels of a Markov process satisfy:

µs,t = µs,uµu,t, for any s ≤ u ≤ t. (2.1.1)

Furthermore, the finite-dimensional distributions of a Markov process X with initial
distribution PX0 =: µ0 are given via

Pµ0(Xt1 ∈ B1, ..., Xtn ∈ Bn) (2.1.2)

=

∫ ∫
B1

· · ·
∫
Bn−1

µtn−1,tn(xn−1, Bn)µtn−2,tn−1(xn−2,dxn−1) · · ·µt0,t1(x,dx1)µ0(dx)

for any 0 = t0 ≤ t1 ≤ ... ≤ tn, B1, ..., Bn ∈ B(Rd).
If X has continuous paths, these finite dimensional distributions uniquely determine

the measure Pµ0 of a continuous Markov process on the measure spaceÄ
C(R+,Rd), C

Ä
C(R+,Rd)

ää
where C

Ä
C(R+,Rd)

ä
is the natural σ−algebra generated

by the cylindrical sets.
Conversely, given a family of Markov kernels (µs,t) that satisfy (2.1.1) and a probability

measure µ0 on B(Rd), it can be shown that there exists an Rd-valued Markov process X
with initial distribution µ0 and transition kernels (µs,t) (see Theorem 7.4, Chapter 7 in
Kallenberg (1997)).

We consider time-homogeneous Markov processes with transition kernels satisfying

µs,t = µ0,t−s =: µt−s for all 0 ≤ s < t.

The Markov property and (2.1.1) then read

P(Xt ∈ B|Fs) = µt−s(Xs, B)

for any 0 ≤ s < t, B ∈ B(Rd), and

µs+t = µsµt

for all s, t ∈ R+, respectively. If the latter holds, a family of transition kernels is called
transition semigroup.

For a probability measure µ0, Pµ0 denotes the distribution of a Markov process with
transition kernels (µt) and initial distribution µ0. Assuming that these processes have
continuous versions, the measure Pµ0 is a measure on C(C(R+,Rd)). Set Px := Pδx for
the dirac measure δx at x, x ∈ Rd. Then, the measure Pµ0 is given via

Pµ0(A) =

∫
Px(A)µ0(dx), (2.1.3)

for all A in C(C(R+,Rd)) and any initial distribution µ0 (see Lemma 7.7, Chapter 7 in
Kallenberg (1997)). We also write Eµ0 for the expected value with respect to the measure
Pµ0 .

9



2 An introduction to diffusion processes

2.1.1 Invariant measures

Our statistical analysis of time-homogeneous diffusion processes, a special class of Markov
processes, will rely on the assumption of stationarity of the process. The existence of such
a stationary process is closely related to the existence of a so-called invariant measure.
One of the objects we want to estimate is the density of this stationary measure with
respect to the Lebesgue measure.
If µ0 is the stationary measure, the distribution of X0 is equal to the distribution of

Xs, for any s ≥ 0, which is given via µ0µs, so that µ0 must be invariant under the
transition kernels (µt)t≥0. It can thus be interpreted as an equilibrium with respect to
the transition of the distribution of the process over time. For a general Markov process
such a measure is called invariant measure.

Definition 2. We call a measure µ on B(Rd) an invariant measure of the family (µt)t≥0

of transition kernels on Rd if it satisfies:

µ(A) =

∫
µt(x,A)dµ(x), for any A ∈ B(Rd) and t ≥ 0.

If the family of transition kernels of a time-homogeneous Markov process admits an
invariant measure µ0, it is straightforward to deduce from (2.1.2) that the Markov process
with initial distribution µ0 is stationary. In particular, this applies to diffusion processes
with an initial value X0 distributed according to µ0.

2.2 Overview of different approaches to diffusion processes

Shortly speaking, a diffusion process is a continuous Markov process characterised by a
certain type of generator. Depending on context and intention different approaches to a
rigorous introduction of this class of processes can be found in the literature. The varying
notions entail different probabilistic techniques. Therefore, one or another approach
might be beneficial for different objectives.

In this thesis, the class of scalar diffusion processes given as solutions to time-
homogeneous stochastic differential equations (SDEs) are considered. References for
this approach are Kallenberg (1997), Durrett (1996), or Kutoyants (2004) among others.

Definition 3. Given measurable, locally bounded functions b : R → R and σ : R → R
such that the stochastic differential equation

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs, t ≥ 0, (2.2.4)

where (Ws)s≥0 denotes a Brownian motion, admits a weak solutionX = (Xt)t≥0, which is
unique in law, we call X a (homogeneous) diffusion process driven by the drift coefficient
b and the diffusion coefficient σ2 with initial distribution PX0 .

More precisely, (Ω,F , (Ft)t≥0,P, X,W ) is referred to as a weak solution of (2.2.4) if
W is an (Ft)-Brownian motion and X is a continuous, (Ft)-adapted process such that

10



2 An introduction to diffusion processes

(2.2.4) is satisfied for X and W . Existence and uniqueness of (even strong) solutions to
the stochastic differential equation will be implied by our basic assumptions

(i) b, σ ∈ Liploc(R), (local Lipschitz-continuity)

(ii) |b(x)|+ |σ(x)| ≤ C(1 + |x|), (at-most linear growth)

for some C > 0, and any x ∈ R. Note that in the literature, it is common to simply define
diffusion processes as solutions to (2.2.4). We include weak existence and uniqueness in
law in Definition 3 because these requirements are very natural and assumptions to meet
these usually have to be imposed anyway. Moreover, weak existence and uniqueness in
law ensure the (strong) Markov property to hold (see Theorem 18.11 in Kallenberg (1997)
or Theorem 8.6 and Corollary 8.8 in Le Gall (2016)) and therefore the definition is more
in line with another approach we are about to discuss.

This approach to diffusion processes can be considered as even more classical and starts
from a Markov process with a certain type of generator. The degree of generality as well
as assumptions vary across the relevant literature, so it is advisable to pay some regard
to the context. We give a short overview of the approach via the generator and via
martingale problems as treated e.g. in Revuz and Yor (1999) or Rogers and Williams
(2000) for (multivariate) diffusion processes in Rd.
We begin with a definition based on the generator of a diffusion process in Rd.

Definition 4 (Definition 2.1, Chapter VII in Revuz and Yor (1999)). Let b : Rd →
Rd, a : Rd → Rd×d be measurable, locally bounded maps and let a(x) be symmetric and
semi positive-definite, for any x ∈ Rd. Define a second order differential operator

L =
1

2

d∑
i,j=1

ai,j(·)
∂2

∂xi∂xj
+

d∑
i=1

bi(·)
∂

∂xi
. (2.2.5)

Then, a Markov process (Ω,F ,Ft, Xt,Px) with state space Rd is a diffusion process
with generator L if it has continuous paths, and for any x ∈ Rd, and any f ∈ C∞c ,

Ex (f(Xt)) = f(x) + Ex
Ç∫ t

0
Lf(Xs)ds

å
, (2.2.6)

where C∞c denotes the space of infinitely differentiable functions with compact support.
The maps a and b are called the diffusion coefficient and the drift, respectively.

The connection to the martingale problem formulation is immediate, given a diffusion
process as in Definition 4. In this case, for any f ∈ C∞c , Mf

t := f(Xt) − f(X0) −∫ t
0 Lf(Xs)ds is a martingale for Px (see Proposition 2.2, Chapter VII in Revuz and Yor
(1999)). Thus, for any x ∈ Rd, the measure Px on the measure space W = ( C(R+,Rd),
C ( C(R+,Rd) ) is a solution to the martingale problem π(x, a, b) defined in the following
way:

11



2 An introduction to diffusion processes

Definition 5 (Definition 2.3, Chapter VII in Revuz and Yor (1999)). A probability
measure Q on W is a solution to the martingale problem π(x, a, b) if Q(X0 = x) = 1

and, for any f ∈ C∞c , the process Mf
t = f(Xt)− f(X0)− ∫ t0 Lf(Xs)ds is a Q-martingale

with respect to the filtration (σ(Xs, s ≤ t)) where (Xt) denotes the process of coordinate
projections.

The converse direction starting from a solution to the martingale problem is more
involved. The central task is to establish the Markov property whereas Dynkin’s formula
(2.2.6) follows immediately. The martingale problem is said to be well-posed if there
exists a unique solution of π(x, a, b), for any x ∈ R. Under this uniqueness assumption,
solutions can be shown to be Markov processes:

Theorem 6 (Theorem 1.9, Chapter IX in Revuz and Yor (1999)). If for every x ∈ Rd,
there is one and only one solution Px to the martingale problem π(x, a, b) and if for every
A ∈ B(Rd) and t ≥ 0 the map x 7→ Px(Xt ∈ A) is measurable, then (Xt,Px, x ∈ Rd) is a
Markov process with transition function Pt(x,A) = Px(Xt ∈ A).

There is a one-to-one correspondence between solutions of martingale problems and
stochastic differential equations which accounts for the link to the SDE approach as in
Definition 3. This correspondence is treated in Revuz and Yor (1999) in a more gen-
eral, non-homogeneous setting. They introduce Itô processes as solutions of martingale
problems with arbitrary initial distribution and a non-homogeneous generator L (see
Definition 2.5, Chapter VII). This class includes the diffusion processes, i.e., the ho-
mogeneous case. Their Proposition 2.6 then shows that the solution of an SDE of the
form (2.2.4) is indeed an Itô process, and in particular, it is the solution of a martingale
problem with b and a = σσᵀ.
The converse direction is content of Theorem 2.7 of Chapter VII in Revuz and Yor

(1999)(see also Theorem 20.1, Chapter V in Rogers and Williams (2000)). It says that
given an Itô process, and in particular a diffusion process X with drift and diffusion
coefficient b and a, there is a Brownian motion W in Rn on an enlargement of the
probability space and a map σ : Rd → Rd×n such that a = σσᵀ and

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs.

2.3 Properties of scalar diffusion processes

In this section, we consider a diffusion process on R as introduced in Definition 3 which
solves the SDE

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs.

Recall that such a solution is indeed a continuous strong Markov process.
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2 An introduction to diffusion processes

2.3.1 Scale function and speed measure

We call a diffusion process regular if, for every y ∈ R, the hitting time τy := inft>0{Xt =
y} is finite with positive probability, for all initial values x ∈ R; i.e.:

Px(τy <∞) > 0.

For −∞ < a < x < b <∞ one can show that the diffusion starting in x exits the interval
(a, b) with probability one, thus

Px(τa < τb) + Px(τb < τa) = 1.

Moreover, the strong Markov property and the regularity yield the existence of a so-
called scale function s : R → R which is continuous, strictly increasing and such that,
for any −∞ < a < x < b <∞,

s(x)− s(a)

s(b)− s(a)
= Px(τb < τa) (2.3.7)

(see Proposition 3.2, Chapter VII in Revuz and Yor (1999)). The scale function of X
is unique up to an affine transformation. Considering the transformation Y = s(X), we
obtain another regular, continuous strong Markov process Y . Looking at the defining
equation (2.3.7), it is straightforward that the scale function of Y is the identity sY (x) =
x. Such a Markov process is said to be on natural scale. Let I := (a, b) be a bounded
interval in R and denote by σI the exit time of I, i.e.

σI = τa ∧ τb, Px a.s., for x ∈ I, and σI = 0, Px a.s., for x 6∈ I.

Revuz and Yor (1999) prove that the function mI(x) := Ex(σI) is bounded on I, and
consequently σI is finite with probability one. Intuitively, mI gives an idea how fast the
diffusion moves through an interval I. This explains the term speed measure that we are
about to define. The notion of the speed measure relates the function mI to the scale
function s. Set

GI(x, y) :=


(s(x)−s(a))(s(b)−s(y))

s(b)−s(a) if a ≤ x ≤ y ≤ b,
(s(y)−s(a))(s(b)−s(x))

s(b)−s(a) if a ≤ y ≤ x ≤ b,
0 otherwise.

Then, there is a unique Radon measure ‹m on R such that for any bounded, open interval
I = (a, b)

mI(x) =

∫
GI(x, y)‹m(dy), (2.3.8)

for any x ∈ I (Theorem 3.6, Chapter VII in Revuz and Yor (1999)). Note that we have‹m = ‹mY ◦ s where ‹mY denotes the speed measure of Y = s(X). Therefore, we can draw
conclusions concerning ‹m from results available for speed measures of Markov processes
which are on natural scale.
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2 An introduction to diffusion processes

We call a diffusion X on R recurrent if, for any x, y ∈ R, it holds Px(τy <∞) = 1. In
particular, a recurrent diffusion is regular. For our investigation it is central that given
a recurrent diffusion X, the finiteness of the speed measure ‹m implies that X is ergodic
with unique invariant measure µ := m̃

m̃(R)
(cf. Kallenberg (1997) or van der Vaart and

van Zanten (2005)). Ergodicity (wrt. to Pµ) means that the shift invariant sigma-field
is trivial. This property entails a kind of law of large numbers for the Markov processes
under consideration with initial distribution µ (cf. Cattiaux et al. (2012), Theorem 9.8
in Kallenberg (1997)): For any f ∈ L1(µ),

1

t

∫ t

0
f(Xs)ds

t→∞−→
∫
fdµ Pµ a.s. and in L1(µ). (2.3.9)

Connections of the scale function and speed measure to ergodic properties can be
studied in a quite general setting of regular, strong Markov processes. However, we want
to focus on diffusions given as a solution of the SDE

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs.

We present a standard set of conditions that grant existence and ergodic properties of
the diffusion process:

Assumption 1.

(i) b : R→ R and σ : R→ R are locally Lipschitz continuous and satisfy the at-most
linear growth condition

|b(x)|+ |σ(x)| ≤ C(1 + |x|), for all x ∈ R,

and some constant C > 0,

(ii) |σ(x)| > 0, for all x ∈ R,

(iii) letting

s(x) :=

∫ x

0
exp

Ç
−2

∫ y

0

b(z)

σ2(z)
dz

å
dy,

assume that limx→−∞ s(x) = −∞ and limx→∞ s(x) =∞ and

D :=

∫
R

1

σ2(x)s′(x)
dx <∞.

Assumption (i) yields the existence of a strong solution to the SDE on the whole
real line. Together with assumption (ii), it can be shown that the scale function of the
solution X is given by s and the speed measure ‹m has density 2/(s′σ2) with respect to
the Lebesgue measure on R, i.e.,‹m(dx) =

2

s′(x)σ2(x)
dx.
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A derivation of the scale function and the speed measure through the characterisation
(2.3.8) can be found in (Karatzas and Shreve, 1988, p. 343 ff.). The additional as-
sumption (iii) yields recurrence (Proposition 5.22 in Karatzas and Shreve (1988)) and
finiteness of the speed measure. This in turn implies that X is ergodic with unique
invariant measure µ = m̃

m̃(R)
.

The following assumption that we will encounter in Chapter 3 and 4 is sufficient for
(iii) to hold.

(iv) For some ν ≥ 0, C > 0, the diffusion coefficient σ2 satisfies∣∣∣σ−1(x)
∣∣∣ ≤ C(1 + |x|ν), for all x ∈ R, (2.3.10)

and there exist constants A > 0, γ > 0 such that

b(x)

σ2(x)
sgn(x) ≤ −γ, for all |x| > A. (2.3.11)

In the statistical literature addressing diffusion models, σ is very often assumed to equal
one and in this case (2.3.10) is clearly satisfied. In this thesis, central ingredients for the
statistical analysis provided in Chapter 3 are shown for bounded (from above and below),
not constant, diffusion coefficients thereby maintaining a remarkable degree of generality.
In order to ease the exposition in Chapter 4, we will restrict to σ ≡ 1 therein. Condition
(2.3.11) to ensure ergodic properties and the existence of the invariant measure can be
considered as a standard assumption in statistics for scalar, ergodic diffusion processes.

2.3.2 Local time

The local time of diffusion processes or more general continuous semimartingales is a
phenomenon which exists in dimension one only. Concerning our statistical investigation,
we will also discover a behaviour which occurs for scalar, not for multivariate, diffusion
processes. And thus, not surprisingly the peculiarities of the local time are found to be
located at the core of the analysis. In this section, we give a short overview of basic
definitions and characteristics of the local time of continuous semimartingales.

The local time is related to the occupation time of a continuous semimartingale X
which is a measure for the time spent in a Borel set. It is common to measure occupation
time of a diffusion X with respect to the quadratic variation. Formally, the occupation
time Tt(A) of a Borel set A ∈ B(R) is given by

Tt(A) :=

∫ t

0
1A(Xs)d〈X〉s, t ≥ 0.

If, for any t ≥ 0, the occupation time Tt(·) is absolutely continuous with respect to the
Lebesgue measure, Tt(dx) << λ(dx), we call the density

Lxt (X) :=
Tt(dx)

λ(dx)
, x ∈ R, t ≥ 0,
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2 An introduction to diffusion processes

the local time of X. If it is clear which process the local time belongs to, we also
write L•t for the local time of X. It can be shown that local time exists for continuous
semimartingales. A common approach to rigorously introduce the local time process is
via Tanaka’s formulas (cf. Revuz and Yor (1999) or Le Gall (2016)). We fix some notation
and set, for any x ∈ R, x+ := max{x, 0}, x− := −min{x, 0}, as well as sgn(x) := 1 if
x > 0 and sgn(x) := −1 if x ≤ 0.

Proposition 7 (Proposition 9.2 in Le Gall (2016)). Let X be a continuous semimartin-
gale and x ∈ R. There exists an increasing process (Lxt (X))t≥0 such that the following
three identities hold:

|Xt − x| = |X0 − x|+
∫ t

0
sgn(Xs − x)dXs + Lxt ,

(Xt − x)+ = (X0 − x)+ +

∫ t

0
1{Xs > x}dXs +

1

2
Lxt ,

(Xt − x)− = (X0 − x)− −
∫ t

0
1{Xs ≤ x}dXs +

1

2
Lxt .

The increasing process (Lxt (X))t≥0 is called the local time of X at level x. Furthermore,
for every stopping time τ , we have Lxt (Xτ ) = Lxt∧τ (X).

Moreover, for a fixed x ∈ R, the process (Lxt (X))t≥0 is continuous in t and the process
(Lx•)x∈R with values in C(R+,R+) has a modification which is càdlàg in x (see Theorem
9.4 in Le Gall (2016)). We will always consider this modification without further notice.
The next proposition addresses the occupation times formula which accounts for the
heuristic introduction of the local time as the density of the occupation measure at the
beginning of this section.

Proposition 8 (cf. Corollary 1.9, Chapter VI in Revuz and Yor (1999)). Let X be a con-
tinuous semimartingale with local time (L•t (X))t≥0. Then, for any bounded, measurable
function f : R→ R, it holds∫ t

0
f(Xs)d〈X〉s =

∫
f(x)Lxt (X)dx.

A straightforward consequence of the occupation times formula is the approximation
of the local time via

Lxt (X) = lim
ε↓0

1

ε

∫ t

0
1[a,a+ε)(Xs)d〈X〉s, t ≥ 0, x ∈ R

(see Proposition 9.9 in Le Gall (2016)). This representation emphasises the meaningful
interpretation of the local time Lxt (X) as a measure for how often x is visited by the
process X until time t.
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2 An introduction to diffusion processes

2.4 Limit theorems

Analysing the kernel invariant density estimator ρt,K(h) (see (1.1.2)) viewed as a random
element in the space of bounded functions `∞(R) leads to the study of additive func-
tionals 1

t

∫ t
0 f(Xs)ds for f from a class of functions which is given as translations of the

kernel function K in the specific case. In particular, we are interested in the asymptotic
distribution of

√
t (ρt,K(h)− ρb) and the optimality of the obtained limit distribution.

In this section, we recap the tools we will resort to and start with an introduction of
a pointwise law of large numbers and a central limit theorem for the process

Gt(f) =
√
t

Ç
1

t

∫ t

0
f(Xu)du−

∫
fdµb

å
for an ergodic, scalar diffusion process X with invariant measure µb. These results will be
used in the subsequent chapters without further notice. In addition, we recall some basics
on uniform weak convergence and state a known result on uniform weak convergence of
the local time process.

2.4.1 Law of large numbers and central limit theorem for scalar ergodic
diffusion processes

Let X be a scalar, ergodic diffusion process given as a solution of the following SDE

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs

for coefficients b, σ satisfying Assumption 1 with invariant density

ρb(x) = C−1
b,σσ

−2(x) exp

Ç
2

∫ x

0

b(z)

σ2(z)
dz

å
, x ∈ R,

where Cb,σ :=
∫∞
−∞ σ

−2(x) exp
(
2
∫ x

0
b(z)
σ2(z)

dz
)

dx. In the sequel, the corresponding invari-
ant measure and its distribution function are denoted by µb and Fb, respectively, and we
assume that the initial value X0 is distributed according to µb.

We repeat that the process having ergodic properties means that a law of large numbers
holds (see also (2.3.9)), and furthermore a central limit theorem for additive functionals
can be shown:

Proposition 9 (Law of large numbers (Theorem 1.16 in Kutoyants (2004))).
The diffusion process X satisfies a law of large numbers in the sense that for any mea-
surable function f : R→ R with

∫ |f(x)|ρb(x)dx <∞, almost surely

lim
t→∞

1

t

∫ t

0
f(Xs)ds =

∫
f(x)ρb(x)dx.
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Proposition 10 (Central limit theorem (Proposition 1.22 and 1.23 in Kutoyants (2004))).

For any measurable function f : R→ R with
∫
f2(x)ρb(x)dx <∞,

1√
t

∫ t

0
f(Xs)dWs

L
=⇒ N

Å
0,

∫
f2(x)ρb(x)dx

ã
.

Furthermore, for any measurable function f : R → R with
∫ |f(x)|ρb(x)dx < ∞,∫

f(x)ρb(x)dx = 0, and such that

δ2 := 4

∫ ∞
−∞

ñ∫ x

−∞

f(v)ρb(v)

σ(x)ρb(x)
dv

ô2

ρb(x)dx <∞,

it holds
1√
t

∫ t

0
f(Xs)ds

L
=⇒ N

Ä
0, δ2

ä
. (2.4.12)

Here, L
=⇒ denotes weak convergence.

An important consequence is a pointwise central limit theorem (see Proposition 1.25 in
Kutoyants (2004)) for the local time process (Lxt (X), t ≥ 0, x ∈ R) or stated differently
the asymptotic normality of the local time estimator at a point x for the invariant density
ρb(x) defined as ρ◦t (x) :=

Lxt (X)
tσ2(x)

:

For every x ∈ R, assuming that
∫
σ2(x)ρb(x)dx <∞ and

δ2(x) := 4ρ2
b(x)

∫
R

ñ
1{u > x} − Fb(u)

σ(u)ρb(u)

ô2

ρb(u)du <∞,

the central limit theorem implies
√
t (ρ◦t (x)− ρb(x))

L
=⇒ N (0, δ2(x)).

A statistical objective of this thesis is the maximal error between estimator and esti-
mation target, and therefore we are not only interested in pointwise, but also in uniform
limit theorems. This is dealt with in Negri (2001) for the local time estimator as well
as in a more general setting in van der Vaart and van Zanten (2005). They show that
under certain conditions √

t (ρ◦t − ρb)
L

=⇒ H (2.4.13)

in `∞(R) where the limit (H(x), x ∈ R) is a Gaussian random map with covariance
structure

EH(x)H(y) = 2‹m(R)ρb(x)ρb(y)

∫
I
(1{[x,∞)} − Fb)(1{[y,∞)} − Fb)ds

where s and ‹m denote the scale function and speed measure introduced in Section 2.3,
respectively. The notion of weak convergence in `∞(R) is introduced rigorously in the
subsequent section.
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2 An introduction to diffusion processes

Note that the speed measure m which appears in van der Vaart and van Zanten
(2005) is equal to 1

2
‹m for ‹m as introduced in Section 2.3. Taking into account that

ρbdx = ‹m(R)−1‹m(dx) = 2
s′σ2m̃(R)

dx, it is clear that the limit coincides with the pointwise,
one dimensional limit in (2.4.12).

2.4.2 Uniform weak convergence

We have seen a uniform weak convergence result (2.4.13) for the local time density esti-
mator of a scalar, ergodic diffusion process X in the previous section which we also refer
to as a Donsker-type theorem. We proceed with providing some background knowledge
on the subject of weak convergence of bounded processes indexed by an arbitrary set S
interpreted as random elements in `∞(S) also referred to as uniform weak convergence.
Note that `∞(S) is complete but not separable except in the case of finite S and so the
cylindrical σ−algebra on `∞(S) does not equal the Borel σ-algebra with respect to the
sup-norm. In particular, stochastic processes indexed by S do not necessarily induce a
Borel measure on `∞(S), and the law of such a process does not need to be tight. As
tightness is closely related to weak convergence, this is an issue that has to be dealt with.
A minor concern, on the other hand, is that looking at continuous functions on `∞(S)
of the process the resulting random variable does not even need to be measurable. This
circumstance can be solved via outer expectations. Details can be found in (Giné and
Nickl, 2016, Section 3.7.1). Measurability issues will be mostly omitted in the sequel.

We introduce a definition of uniform weak convergence for bounded processes indexed
by an index set S.

Definition 11 (Definition 3.7.22 in Giné and Nickl (2016)). Let H = (H(s))s∈S be
a bounded process whose finite-dimensional distributions equal the laws of the finite-
dimensional projections under a tight Borel probability measure on `∞(S). Further-
more, let ‹H denote a Borel measurable version of H with separable range. Let Ht =
(Ht(s))s∈S , t ≥ 0, be a sequence of bounded processes. Then, we say that the sequence
(Ht)t≥0 converges in law (converges weakly) to H in `∞(S), or uniformly in s ∈ S if

E∗[G(Ht)] −→
t→∞

E[G(‹H)],

for any bounded and continuous function G : `∞(S) → R, where E∗ denotes the outer
expectation. In this case, we write

Ht
L

=⇒ H in `∞(S).

An important result is the following characterisation of uniform weak convergence
which says that it is equivalent to finite-dimensional convergence and asymptotic equicon-
tinuity:

Theorem 12 (Theorem 3.7.23 in Giné and Nickl (2016)). Let Ht = (Ht(s))s∈S , t ≥ 0,
be bounded processes indexed by S. Then, the following statements are equivalent:
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2 An introduction to diffusion processes

(a) The finite-dimensional distributions of the processes Ht converge in law, and there
exists a pseudo-metric d on S such that (S, d) is totally bounded, and

lim
δ→0

lim sup
t→∞

P∗
(

sup
d(r,s)≤δ

|Ht(r)−Ht(s)| > ε

)
= 0, ∀ ε > 0. (2.4.14)

(b) There exists a process H whose law is a tight Borel probability measure on `∞(S)
and such that

Ht
L

=⇒ H in `∞(S).

Note that the results in Giné and Nickl (2016) are formulated for sequences indexed
by natural numbers but they still hold for sequences indexed by positive real numbers,
and even more generally for nets (see van der Vaart and Wellner (1996)).
Asymptotic equicontinuity is related to asymptotic tightness (see Theorem 1.5.7 in

van der Vaart and Wellner (1996)) which gives another useful characterisation of uniform
weak convergence. A bounded process Ht = (Ht(s))s∈S , t ≥ 0, is called asymptotically
tight if, for every ε > 0, there exists a compact set K ⊆ `∞(S) such that, for any δ > 0,

lim inf
t→∞

P∗
Ä
Ht ∈ Kδ

ä
≥ 1− ε,

where Kδ denotes the δ-enlargement of K, and P∗ stands for the inner probability.

Theorem 13 (cf. Theorem 1.5.4. in van der Vaart and Wellner (1996)). Let Ht =
(Ht(s))s∈S , t ≥ 0, be bounded processes. Then, the following statements are equivalent:

(a) The finite-dimensional distributions of the processes Ht converge in law and (Ht)t≥0

is asymptotically tight.

(b) There exists a process H whose law is a tight Borel probability measure on `∞(S)
and such that

Ht
L

=⇒ H in `∞(S).

Furthermore, if Ht = (Ht(s))s∈S , t ≥ 0, is asymptotically tight and the finite-dimensional
distributions converge weakly to the marginals of a process H = (H(s))s∈S , then there is
a version ‹H of H with uniformly bounded paths and Ht

L
=⇒ ‹H in `∞(S).

The theory of uniform weak convergence allows the investigation of asymptotic prop-
erties of empirical processes in continuous time. Let F be a class of uniformly bounded
functions, i.e., with supf∈F ‖f‖∞ <∞. We introduce the empirical process

Gt(f) :=
√
t

Ç
1

t

∫ t

0
f(Xs)−

∫
f(x)ρb(x)dxds

å
where X is a scalar, ergodic diffusion with invariant density ρb as in Section 2.4.1. The
process Gt indexed by F is an element of `∞(F) = {z : F → R : ‖z‖∞ <∞}. Following
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2 An introduction to diffusion processes

van der Vaart and van Zanten (2005) we call F a Donsker class if Gt converges weakly
in `∞(F) to a tight, Borel measurable random map G.

A goal of this thesis is to establish a Donsker-type result for the kernel invariant
density estimator, which means that we look at a specific class F of translations of a
kernel function. The investigation relies on a Donsker theorem for the local time of a
diffusion process. The latter turns out to be a special case of Donsker theorems for
empirical processes provided in van der Vaart and van Zanten (2005). There, a more
general framework of scalar diffusions with finite speed measure is considered.
Due to the Cramér-Wold and the central limit theorem we already know that the finite

dimensional distributions of the empirical process Gt converge weakly. More precisely,
for any finite number f1, ..., fn ∈ F , n ∈ N, we have

(Gt(f1), ...,Gt(fn))ᵀ
L

=⇒ N (0n,Γ)

with Γ ∈ Rn×n and

Γi,j = Γ(fi, fj) = 4

∫ ∞
−∞

1

σ2(x)ρb(x)
J(fi, x)J(fj , x)dx

where J(f, x) :=
∫ x
−∞ f(v)ρb(v)dv − E(f(X0))Fb(x), for any x ∈ R, f ∈ F . Therefore,

the existence of a tight Gaussian random map G ∈ `∞(F) with covariance structure Γ
is necessary for the uniform weak convergence of Gt. In contrast to the classical i.i.d.
setting where additional entropy conditions, as for example in Theorem 3.7.36 in Giné
and Nickl (2016), are needed to satisfy the asymptotic equicontinuity criterion in part
(a) of Theorem 12, van der Vaart and van Zanten (2005) prove that for a large class of
diffusion processes the existence of the tight Gaussian limit is already sufficient for F to
be Donsker. As a corollary, they obtain conditions under which the local time density
estimator converges uniformly (cf. (2.4.13)). We will come back to this result when
translating it into a Donsker theorem for the kernel density estimator of the invariant
density.
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3 Concentration of scalar ergodic
diffusions and some statistical
implications

3.1 Introduction

With regard to the very basic idea of estimating expected values via sample means as
motivated by the law of large numbers, the relevance of concentration inequalities which
quantify the deviation behaviour of more general additive functionals from their mean is
pretty obvious. It is thus natural that they can be identified as being a central device
in many statistical investigations, both from a frequentist and a Bayesian point of view.
From an applied perspective, expected maximal errors describing worst case scenarios are
of particular interest for quantifying the quality of estimators. The analysis of sup-norm
risk criteria when estimating densities, regression functions or other characteristics thus
is of immense relevance. Nevertheless, even in classical situations like density estimation
from i.i.d. observations, the sup-norm case is a delicate issue and usually not treated as
exhaustively as Lp or pointwise risk measures. Analysing the sup-norm risk often requires
to resort to empirical process theory. More precisely, it leads to the need of finding
moment bounds and concentration inequalities for the supremum of empirical processes,
i.e., the supremum of additive functionals, over possibly infinite-dimensional function
classes. This turns out to be a probabilistic challenge. In case of diffusion processes with
unbounded state space, estimation of diffusion characteristics in sup-norm risk is a mostly
open question even in the most basic setting of continuous observation of a scalar process.
The current work aims at providing the fundamental probabilistic tool box, including
uniform concentration inequalities for empirical processes and related concepts, in the
continuous scalar diffusion context as they are essential for further statistical research on
the sup-norm risk.
Since they are taken as a standard model for a number of random phenomena arising

in various applications, statistical inference for ergodic diffusion processes, based on dif-
ferent observation schemes, has been widely developed during the past decades. While
observation data as the central ingredient of any estimation procedure in practice are
always discrete, it is insightful to start the statistical analysis in the framework of con-
tinuous observations, thereby providing both benchmark results and a starting point for
estimation schemes based on discrete data. Within this framework, we demonstrate that
our approach to concentration results can be specified as needed for proving sharp upper
bounds on sup-norm risks. Moreover, we introduce a machinery for obtaining uniform
concentration inequalities for empirical processes based on martingale approximation and
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3 Concentration of scalar ergodic diffusions and some statistical implications

the generic chaining device that allows for the analogue treatment of more general classes
of Markov processes as well. In particular, with regard to the diffusion process set-up,
our approach could also be adapted for sup-norm risk investigations based on discrete
observations or multivariate state variables. While the basic idea of martingale approx-
imation is applied at several places in the statistical literature, we are not aware of any
systematic attempts to exploit the approach for deriving concentration results.

3.1.1 Basic framework and main results

Given a continuous-time Markov process X = (Xt)t≥0 with invariant measure µ, the
counterpart to the empirical process

√
n
Ä
n−1∑n−1

i=0 f(Yi)− E [f(Y0)]
ä
, f ∈ F , based on

i.i.d. observations Y0, ..., Yn−1, is given as

√
t

Ç
1

t

∫ t

0
f(Xs)ds−

∫
f(x)dµ(x)

å
, f ∈ F , (3.1.1)

F denoting a class of functions, typically satisfying suitable entropy conditions. This
continuous-time version of the classical empirical process is our first object of interest.
For the goal at hand, we will focus on diffusion processes given as a solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = ξ, t ≥ 0, (3.1.2)

where W is a standard Brownian motion and the initial value ξ is a random variable
independent of W . We restrict to the ergodic case where the Markov process X admits
an invariant measure, and we denote by ρb and µb the invariant density and the associated
invariant measure, respectively. Furthermore, we will always consider stationary solutions
of (3.1.2), i.e., we assume that ξ ∼ µb. In this framework, we will also provide precise
uniform concentration inequalities for stochastic integrals

1

t

∫ t

0
f(Xs)dXs − E [f(X0)b(X0)] , f ∈ F , (3.1.3)

which turn out to be essential for statistical investigations.

Main results For a diffusion process given as the stationary solution of (3.1.2), Theorem
23 provides an exponential tail inequality for

sup
f∈F

√
t

∣∣∣∣1t
∫ t

0
f(Xs)ds− E [f(X0)]

∣∣∣∣
as well as bounds on its p-th moments, for any p ≥ 1, under standard entropy conditions
on the function class F . Proposition 24 and Theorem 30 constitute analogue results for
the supremum of the stochastic integrals (3.1.3). We emphasise at this point that we
allow for unbounded functions f ∈ F which is even for nonuniform Bernstein-type results
absolutely nonstandard. Furthermore, we introduce a localisation procedure which allows
to look at processes on the whole real line instead of compacts.
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3 Concentration of scalar ergodic diffusions and some statistical implications

As a statistical application, we investigate nonparametric invariant density estima-
tion in supremum-norm based on a continuous record of observations (Xs)0≤s≤t of the
solution of (3.1.2) started in the equilibrium. In the continuous framework, the local
time – which can be interpreted as the derivative of an empirical distribution function –
naturally qualifies as an estimator of this density. Corresponding upper bounds for all
p-th moments of the sup-norm loss are given in Corollary 28. We advocate the investi-
gation of the continuous, scalar case because it serves as a fundament and as a relevant
benchmark for further investigations of discrete observation schemes and the multivariate
case. With this purpose in mind, the density estimator based on local time is not the
preferable choice as it does not open immediate access to discrete-time or multivariate
estimators. In contrast, the very classical kernel (invariant) density estimator meets all
these requirements, and it achieves the same (optimal) sup-norm rates of convergence
which we establish in Corollary 26.

3.1.2 Structure and techniques: an overview

Introducing methods at the concrete example of a tail estimate for the local time
We will start in Section 3.2 with an exponential uniform upper tail inequality for the
local time of a continuous semimartingale, stated in Theorem 15. The local time of
semimartingales was discussed by Meyer (1976), and we adopt his definition: Given a
continuous semimartingale X, denote by (Lat (X))t≥0, a ∈ R, the local time of X at level
a, i.e., the increasing process which satisfies the following identity,

(Xt − a)− = (X0 − a)− −
∫ t

0
1{Xs ≤ a}dXs +

1

2
Lat (X), t > 0, a ∈ R. (3.1.4)

We have chosen to begin from this special case not only because of the statistical interest
in the local time. It is instructive since, in the process of proving Theorem 15, we will
already introduce key ideas and methods, including the generic chaining and localisation
procedures that we will resort to for the further analysis of general empirical processes.
From the representation (3.1.4) it actually becomes clear that analysing supa∈R L

a
t (X)

requires looking at

sup
f∈F

∣∣∣∣ ∫ t

0
f(Xs)dXs

∣∣∣∣, for F := {1{ · ≤ a} : a ∈ R} .

This expression accounts for the connection to the investigation of uniform concentration
inequalities for empirical processes and stochastic integrals as in (3.1.3). The proof thus
serves as a blueprint and a concrete example that prevents from losing track while han-
dling the technicalities coming up in the general empirical process setting. Under suitable
moment conditions, we do not have to restrict to diffusion processes, yet. Instead, the
results presented in Section 3.2 hold in a general continuous semimartingale framework.
A central ingredient of the proof of Theorem 15 is the decomposition of the local time

into a martingale part and a remaining term induced by (3.1.4). Considering more general
additive functionals as in (3.1.1), we carry on this idea and prove a uniform concentration
inequality for empirical processes (3.1.1) of general continuous semimartingales, assuming
the existence of a martingale approximation.
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3 Concentration of scalar ergodic diffusions and some statistical implications

Martingale approximation In the discrete framework, the technique of martingale ap-
proximation was initiated by Gordin and Lifsic (1978), while Bhattacharya (1982) proved
the continuous-time analogue. Their basic idea consists in deriving the CLT for processes
Gt(f),

Gt(f) :=
√
t

Ç
1

t

∫ t

0
f(Xs)ds− E[f(X0)]

å
,

f some square-integrable function, by decomposing the above partial sums into the sum
of a martingale with stationary increments and a remainder term. Asymptotic normality
then follows from a martingale CLT. For fixing terminology, suppose that Gt(f), f : R→
R, lives on a fixed filtered probability space (Ω,F , (Ft)t≥0,P). One then says that there
exists a martingale approximation to Gt(f), f : R → R, if there exist two processes
(Mt(f))t≥0 and (Rt(f))t≥0 on (Ω,F , (Ft)t≥0,P) such that

Gt(f) =
1√
t
Mt(f) +

1√
t
Rt(f), t > 0, (3.1.5)

where (Mt(f))t≥0 is a martingale wrt (Ft)t≥0 fulfilling M0(f) = 0 and the remainder
term (Rt(f))t≥0 is negligible in some sense.

Results on uniform concentration for empirical processes of continuous semimartin-
gales Given the availability of a suitable martingale approximation of the additive func-
tional, we show in Section 3.3 how to derive uniform concentration results on
t−1

∫ t
0 f(Xs)ds, f ∈ F , in the continuous semimartingale setting. Speaking of uniform

concentration results, we refer to inequalities of the form

P
Ç

sup
f∈F
|Gt(f)| ≥ eΦ(u)

å
≤ exp(−u), for any u ≥ 1, (3.1.6)

e denoting Euler’s number, which is an immediate consequence of the moment boundÄ
E
î
supf∈F |Gt(f)|

ópä 1
p ≤ Φ(p) for some function Φ: (0,∞) → (0,∞) and any p ≥ 1.

Note that this is not a concentration inequality for the random variable
supf∈F t

−1/2
∫ t

0 f(Xs)ds as such. It is rather a uniform or worst case statement on the
concentration of t−1/2

∫ t
0 f(Xs)ds. Nonetheless, it additionally implies an upper expo-

nential deviation inequality for the random variable

sup
f∈F

1√
t

∣∣∣∣ ∫ t

0
f(Xs)ds

∣∣∣∣
from its mean. These uniform concentration inequalities given in Theorem 16 are the
main result in Section 3.3. The tail behaviour incorporated in the nature of the function
Φ in (3.1.6) is described in terms of entropy integrals. This formulation is not the
most handy but means a higher degree of generality. Of course, the entropy integrals
can further be upper bounded under mild entropy conditions on the function class as
known from the i.i.d. set-up (see Lemma 36 in Section 3.6). The proof of Theorem
16 relies on a localised generic chaining procedure that can be applied assuming the
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3 Concentration of scalar ergodic diffusions and some statistical implications

existence of a martingale approximation of the empirical process (Gt(f))f∈F . Let us
already note that our results on the concentration of empirical processes of the form
(3.1.1) in Section 3.3 do not require the existence of a local time process. Though the
framework of continuous semimartingales is suitable for our goal of considering diffusion
processes, the techniques could also be applied to other models, e.g., more general classes
of Markov processes. The only prerequisites consist in a maximal inequality of the form
(3.2.14) and a martingale approximation with suitable moment bounds as in (3.3.19).
We also advocate our approach as a starting point for the derivation of parallel results
for multivariate diffusion processes.

Results on uniform concentration for empirical processes and stochastic integrals of
scalar ergodic diffusions The findings of Section 3.2 and Section 3.3 are applied to
obtain uniform concentration results for t−1

∫ t
0 f(Xs)ds and t−1

∫ t
0 f(Xs)dXs, f ∈ F , in

the diffusion framework in Section 3.4. For the concrete case of diffusion processes, we
show in Section 3.4.2 that a suitable martingale approximation as described above exists.
This fact immediately implies the uniform concentration inequalities for empirical pro-
cesses stated in Theorem 23. The natural approach of analysing the supremum of these
objects by exploiting concentration results such as Bernstein-type deviation inequalities
for additive diffusion functionals has severe obstacles which are detailed in Remark 19.
In particular, this approach forces one to impose additional conditions on the characteris-
tics of the diffusion process in order to prove the required uniform concentration results.
Remarkably, the alternative strategy via martingale approximation allows to work under
minimal assumptions on the class of diffusion processes. As a consequence, we obtain
results on the uniform concentration both of additive functionals and of stochastic inte-
grals.
The uniform concentration inequality for the stochastic integrals of a diffusion process

is subject of Proposition 24 and makes use of Theorem 15 on the local time. In Propo-
sition 24, we consider the question of exploring the tail behaviour for quantities of the
form

Ht(f) :=
√
t

Ç
1

t

∫ t

0
f(Xs)dXs − E [f(X0)b(X0)]

å
, f ∈ F ,

X some diffusion process solving (3.1.2) and F denoting some (possibly infinite-
dimensional) class of integrable functions. For adaptive procedures for estimating the
characteristics of X, one generally requires both an upper bound on

E
ñ
sup
f∈F
|Ht(f)|

ô
, F some class of translated kernel functions,

and an upper tail bound for the deviation of the supremum. Using generic chaining
methods initiated by Talagrand (cf. Talagrand (2014)), both can be derived by obtaining
upper bounds for all p-th (p ≥ 1) moments of (Ht(f))f∈F .
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3 Concentration of scalar ergodic diffusions and some statistical implications

Uniform moment bounds and exponential inequalities for stochastic integrals via
generic chaining Starting from the basic decomposition

Ht(f) =
1√
t

∫ t

0
(f(Xs)b(Xs)− E [f(X0)b(X0)]) ds +

1√
t

∫ t

0
f(Xs)σ(Xs)dWs

=: (I) + (II), (3.1.7)

we recognise the empirical process (I) which can be treated by means of Theorem 23. The
next step then consists in finding upper bounds on the p-th moments of (II). Applying
the Burkholder–Davis–Gundy (BDG) inequality and the occupation times formula, one
obtains

E
ñ∣∣∣∣∣ 1√

t

∫ t

0
f(Xs)σ(Xs)dWs

∣∣∣∣∣
pô
≤ CpE

[Ç
1

t

∫ t

0
f2(Xs)σ

2(Xs)ds

åp/2]
= CpE

ñÅ
1

t

∫
R
f2(y)Lyt (X)dy

ãp/2ô
≤ Cpt

−p/2
Å∫

R
f2(y)dy

ãp/2
E
[Ç

sup
a∈R
|Lat (X)|

åp/2]
.

At first sight, this upper bound may seem to be very rough, but looking into the details
of the proof, it becomes clear that one needs to obtain the L2 norm of f on the right hand
side for the generic chaining procedure which accounts for this estimate. Conveniently,
we can then apply Theorem 15. It provides both an upper bound on the p-th moments
E [‖L•t (X)‖p∞] and a corresponding tail estimate. Inspection of the proof of Theorem 15
shows that it relies on three substantial ingredients:

(i) The proof exploits the decomposition of the local time process into a martingale
part and a remainder term provided by Tanaka’s formula. The analysis of the
martingale part then relies on generic chaining methods.

(ii) The latter requires the increments of the martingale to exhibit a subexponential
tail behaviour wrt to a suitable metric (cf. (3.6.45)). We discover this relation from
a sharp formulation of the bound

E
ñÇ∫ t

0
1{a ≤ Xs ≤ b}d〈M,M〉s

åpô
≤ cp(b− a)pE

ñ
〈M,M〉

p
2
t +

Ç∫ t

0
|dVs|

åpô
(see, e.g., Lemma 9.5 in Le Gall (2016)), for M = (Mt)t≥0 and V = (Vt)t≥0

denoting the martingale part and the finite variation part of the semimartingale
X, respectively. Here, ‘sharp’ refers to the dependence of the constant cp on the
order p of the moments. This can be obtained by means of Proposition 4.2 in
Barlow and Yor (1982) (see (3.2.12) below).

(iii) The supremum taken over the entire real line is dealt with by an investigation of
the random, compact support of the local time L•t (X). In particular, we rely on a
maximal inequality for the process X which allows to control the probability that
the support of the process exceeds certain levels.
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3 Concentration of scalar ergodic diffusions and some statistical implications

As already announced, the proof of Theorem 15 also serves as a blueprint for the analysis
of the supremum of additive functionals in Theorem 16.
There is some evidence of the statistical relevance of diffusion local time. As one first

concrete example, let us mention the deep Donsker-type theorems for diffusion processes
in van der Vaart and van Zanten (2005) whose proof relies on a limit theorem for the
supremum of diffusion local time. Another instance concerns the completely different
context of studying nonparametric Bayesian procedures for one-dimensional SDEs: Pok-
ern et al. (2013) investigate a Bayesian approach to nonparametric estimation of the
periodic drift of a scalar diffusion from continuous observations and derive bounds on
the rate at which the posterior contracts around the true drift in L2-norm. Their theoret-
ical results in particular rely on functional limit theorems for the local time of diffusions
on the circle.

3.1.3 Statistical applications

The concept of local time is deeply rooted in probability theory. As indicated above, it
however presents a very interesting object from a statistical point of view, too. For an-
other concrete motivation, let us specify again to the important class of ergodic diffusion
process solutions of SDEs of the form (3.1.2) with invariant density ρb. Given a set of
observations of the solution of (3.1.2) with unknown drift b : R → R, natural statistical
questions concern the estimation of b and of the invariant density ρb. In fact, in view of
the basic relation b = (σ2ρb)

′/(2ρb), both tasks are obviously related. Note that contin-
uous observations can identify the diffusion coefficient σ2. Therefore, it is considered to
be known, and the focus is on estimation of the drift coefficient b.

Invariant density estimation via local time Alternatively to (3.1.4), (Lat (X))t≥0 may
be introduced via the following approximation result, holding a.s. for every a ∈ R and
t ≥ 0,

Lat (X) = lim
ε→0

1

ε

∫ t

0
1{a ≤ Xs ≤ a+ ε}d〈X〉s.

This representation now already suggests the meaningful interpretation of the local time
as the derivative of an empirical distribution function. Assuming that a continuous record
of observations (Xs)0≤s≤t of the solution of (3.1.2) is available, it thus appears natural
to use local time for constructing an estimator ρ◦t of ρb by letting

ρ◦t (a) :=
Lat (X)

tσ2(a)
, a ∈ R. (3.1.8)

One might tackle the question of quantifying the quality of the estimator ρ◦t wrt the
sup-norm risk, e.g., by deriving upper bounds on the p-th (p ≥ 1) moments

E
ñÇ

sup
a∈R
|ρ◦t (a)− ρb(a)|

åpô
= E

[∥∥∥∥∥L•t (X)

tσ2
− ρb

∥∥∥∥∥
p

∞

]
.

Local time thus presents an object of its own statistical interest. The corresponding
investigation is subject of Section 3.5.
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3 Concentration of scalar ergodic diffusions and some statistical implications

Kernel invariant density estimation Apart from the treatment of the local time estima-
tor in sup-norm loss, the statistical relevance of Theorem 23 – which deals with general
empirical processes of a diffusion – is demonstrated by a detailed study of the question
of invariant density estimation via the kernel density estimator (again in sup-norm loss)
and its relation to the local time density estimator in Section 3.5. One clear advantage of
the local time estimator ρ◦t introduced in (3.1.8) is that it allows for direct application of
deep probabilistic results on diffusion local time. For example, weak convergence prop-
erties can be deduced in this way. At the same time, ρ◦t is merely of theoretical interest
since its implementation in practice requires another approximation procedure. One first
step towards finding practically more feasible estimators is to replace ρ◦t by the standard
kernel estimator

ρt,K(h)(x) :=
1

th

∫ t

0
K

Å
x−Xu

h

ã
du, x ∈ R, (3.1.9)

K : R → R some smooth kernel function with compact support and h > 0 some band-
width. The kernel density estimator outperforms the local time density estimator in
various important aspects. First of all, from an applied perspective, working with the
kernel density estimator serves as a universal, familiar approach to density estimation
in all common models. For our particular diffusion framework, it is straightforward to
extend the procedure to the case of discrete or multivariate observations. From a more
theoretical perspective, the additional smoothness of the kernel estimator is desirable for
investigations. The kernel density estimator can be viewed as a convolution operator
applied to the local time. Interestingly, this smoothing is exactly what is required for
proving the assertion on ‖ρ◦t − ρb‖∞ in Corollary 28. Thus, our proof – which makes use
of the kernel density estimator – is more natural than it might look at first sight. In
addition, we show that our results on the moments of the supremum of empirical pro-
cesses imply precise upper bounds on E [‖ρt,K(h)− ρb‖p∞], p ≥ 1. These upper bounds
in particular verify that, in terms of performance in sup-norm risk, the kernel density
estimator with the universal bandwidth choice t−1/2 is as good as the local time density
estimator ρ◦t . Furthermore, we provide an in-depth analysis of the stochastic behaviour of
‖ρt,K(h)− ρ◦t ‖∞ which in particular allows to transfer results for the local time estimator
to the class of kernel estimators.

Application to adaptive (drift) estimation Beyond the question of invariant density
estimation, another important statistical motivation for deriving the concentration in-
equalities in this chapter is their application to adaptive estimation of the unknown drift
coefficient b in (3.1.2). This is dealt with in Chapter 4. Using the presented results
and techniques, we suggest a fully data-driven procedure which allows for rate-optimal
estimation of the unknown drift wrt sup-norm risk and, at the same time, yields an
asymptotically efficient estimator of the invariant density of the diffusion. The proce-
dure is based on Lepski’s method for adaptive estimation. In Chapter 4, we also deepen
the analysis of the kernel density estimator started here. We derive a Donsker-type
convergence result as it is relevant for the construction of (adaptive) confidence bands.
Furthermore, we deal with the question of semi-parametric efficiency of the local time and
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3 Concentration of scalar ergodic diffusions and some statistical implications

the kernel density estimator in `∞(R). These contributions heavily rely on the exponen-
tial inequality for the sup-norm difference between the local time and the kernel density
estimator provided in Theorem 27. This result allows to transfer probabilistic knowledge
on the local time to the more accessible and smoother kernel density estimator.
Apart from the apparent extensions to discrete observations of diffusion processes and

multivariate state variables, further applications of the concentration inequalities derived
in the current work could be found in the field of Bayesian statistical approaches, e.g.,
concerning supremum norm contraction rates. Another very interesting application of
the proposed martingale approximation approach to concentration inequalities concerns
bifurcating Markov chains. Bitseki Penda et al. (2017) construct adaptive nonparamet-
ric estimators of various quantities associated to bifurcating Markov chains. Crucial
ingredient for their proofs are Bernstein-type deviation inequalities which in particular
can be applied to well localised but unbounded functions. The corresponding findings
are proven under a quite strong ergodicity assumption, and the authors suggest to use
transportation-information inequalities for Markov chains for deriving similar results un-
der more general conditions. Since the idea of martingale approximation is applicable in
the Markov chain set-up, too, there is a natural starting point for the machinery devel-
oped in this paper, providing another alternative approach to (even uniform) deviation
inequalities for bifurcating Markov chains.

3.2 Exponential tail inequality for the supremum of the local
time of continuous semimartingales

Throughout this section, we work on a complete filtered probability space
(Ω,F , (Ft)t≥0,P), and we consider a continuous semimartingale X with canonical de-
composition X = X0 + M + V . Here, X0 is an F0-measurable random variable,
M = (Mt)t≥0 denotes a continuous martingale with M0 = 0 and V = (Vt)t≥0 is a
finite variation process with V0 = 0. To shorten notation, we will often abbreviate

‖Y ‖p := (E [|Y |p])
1
p , for Y ∈ Lp(P), p ≥ 1.

For proving concentration inequalities for generalised additive functionals of the semi-
martingale X, we impose very general assumptions on the behaviour of the moments of
the total variation of V and the quadratic covariation of M .

Assumption 2. There exist deterministic functions φ1 : R+ → R+, φ2 : R+ → R+ such
that, for any p ≥ 1,

‖X0‖p+‖Xt‖p+

∥∥∥∥ ∫ t

0
|dVs|

∥∥∥∥
p
≤ pφ1(t),

(
E
[
〈M〉p/2t

]) 1
p ≤ φ2(t), t > 0. (3.2.10)

Here, (
∫ t
0 |dVs|)t≥0 denotes the total variation process of V , and we write |dVs| for in-

tegration with respect to the total variation measure of V . Furthermore, we assume
that

lim
t→∞

φ1(t) = ∞ and φ2(t) ≤
»
φ1(t).
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3 Concentration of scalar ergodic diffusions and some statistical implications

With regard to our goal of proving tail estimates of the supremum of stochastic pro-
cesses, we are interested in finding upper bounds for all p-th moments of

sup
a∈R
|Lat (X)| = ‖L•t (X)‖∞.

The derivation of such uniform bounds is rather involved and comprises several steps.
While the complete proof has been deferred to Section 3.7, it is instructive to sketch the
main ideas now. A natural starting point is given by Tanaka’s formula. Using (3.1.4)
and then (3.2.10), one obtains a decomposition of the local time process which allows to
derive the upper bound

(E [‖L•t (X)‖p∞])
1
p ≤ 2pφ1(t) + 2

Ç
E
ñÇ

sup
a∈Q

1

ß
max
0≤s≤t

|Xs| ≥ |a|
™
|Ma

t |
åpôå 1

p

, (3.2.11)

where Ma
t :=

∫ t
0 1{Xs ≤ a}dMs, a ∈ R. Dealing with the sup-norm, it is crucial for

the analysis to take into account the random, compact support of the local time in
inequality (3.2.11). The size of the support depends on the extremal behaviour of the
semimartingale, i.e., if a ∈ supp(L•t (X)), then necessarily max0≤s≤t |Xs| ≥ |a|. This will
allow to extend local arguments to the whole real line.
Coming back to (3.2.11), the main task now consists in controlling the martingale part

appearing in the last summand, and it is classical to use the BDG inequality in this
respect. The best constant in the BDG inequality is of order O(

√
p), and this fact plays

an important role in our subsequent developments. More precisely, Proposition 4.2 in
Barlow and Yor (1982) states that there exists a constant c ≥ 1 such that, for any p ≥ 2
and any continuous martingale (Nt)t≥0 with N0 = 0, one hasÇ

E
ñÇ

sup
0≤s≤t

|Ns|
åpôå 1

p

≤ c
√
p
(
E
[
〈N〉p/2t

]) 1
p
. (3.2.12)

Consequently, whenever Assumption 2 holds true, one obtains for any p ≥ 1Ç
E
ñÇ

sup
0≤s≤t

|Ms|
åpôå 1

p

≤ c
√
pφ2(t), with c := max

¶
1,
√

2c
©
, (3.2.13)

due to Hölder’s inequality and (3.2.10). The upper bound (3.2.13) in particular allows
to explore the tail behaviour of (Ma

t )a∈R. A chaining procedure then yields an upper
bound on the expectation on the rhs of (3.2.11) in terms of entropy integrals. This
chaining procedure has to be done locally first since – in terms of the finiteness of covering
numbers – the corresponding metric structure is not well behaved on the whole real line.
Therefore, compact intervals of fixed length are considered, and it is taken into account
that the probability of the support of the local time exceeding certain levels is vanishing
(see Figure 3.1). The following maximal inequality for the process (Xs)s∈[0,t] allows to
control this probability. Its short proof nicely illustrates the basic idea of how to exploit
the moment bounds given in (3.2.10).
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0 

Ap
0

Ap
1

Ap
2

Pb(A
p
k \ supp(L•

t ) 6= ;) decreasing as k ! 1

Ap
k := [�(k + 1)⇤pt,�k⇤pt) [ (k⇤pt, (k + 1)⇤pt], k = 0, 1, ...

⇤pt�⇤pt�2⇤pt 2⇤pt 3⇤pt�3⇤pt

Figure 3.1: Localisation procedure

Lemma 14 (Maximal inequality for X). Under Assumption 2, it holds, for any u ≥ 1,

P
Å

max
0≤s≤t

|Xs| ≥ e
Ä
uφ1(t) + c

√
uφ2(t)

äã
≤ e−u. (3.2.14)

Proof. Note that

max
0≤s≤t

|Xs| ≤ |X0|+
∫ t

0
|dVs|+ max

0≤s≤t
|Ms|.

Consequently, using (3.2.10) and (3.2.13), for any p ≥ 1,∥∥∥∥ max
0≤s≤t

|Xs|
∥∥∥∥
p
≤ φ1(t)p+ c

√
pφ2(t).

Lemma 33 from Section 3.6 then gives (3.2.14).

In particular, the maximal inequality (3.2.14) provides the final ingredient for verifying
the main result of this section. Its complete proof is given in Section 3.7.

Theorem 15. Consider a continuous semimartingale X with canonical decomposition
X = X0 +M +V , and grant Assumption 2. Then, there exists a positive constant κ (not
depending on p) such that, for any p ≥ 1,

(E [‖L•t (X)‖p∞])
1
p ≤ κ

(
pφ1(t) +

√
pφ2(t) +

(»
φ1(t) +

»
φ2(t)

)
log(2pΛ(t))

)
,

where Λ(t) := e (φ1(t) + cφ2(t)). Consequently, for any u ≥ 1,

P
(
‖L•t (X)‖∞ ≥ eκ

(
uφ1(t) +

√
uφ2(t) +

(»
φ1(t) +

»
φ2(t)

)
log(2uΛ(t))

))
≤ e−u.
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3 Concentration of scalar ergodic diffusions and some statistical implications

3.3 Uniform concentration of empirical processes of
continuous semimartingales

In Section 3.2, we focused on analysing the sup-norm of the local time. Rephrasing the
problem, we realise why the proof of Theorem 15 is a blueprint for investigating a much
more general setting. Letting F :=

¶
1(−∞,a](·) : a ∈ R

©
, Tanaka’s formula and equation

(3.2.11) reveal the core of the investigation: It consists in controlling

sup
a∈R

Ma
t = sup

a∈R

∫ t

0
1 {Xs ≤ a} dMs = sup

f∈F

∫ t

0
f(Xs)dMs.

Thus, the supremum of the process can be analysed within the framework of empirical
processes and related concepts. The purpose of this section is to extend the study from
the specific case of local time to additive functionals of the form supf∈F

∫ t
0 f(Xs)ds and

further to stochastic integrals supf∈F
∫ t

0 f(Xs)dXs.
We start by investigating empirical processes of some continuous semimartingale X of

the form

(Gb0
t (f))f∈F :=

Ç
1√
t

∫ t

0
(f(Xu)b0(Xu)− E[f(X0)b0(X0)]) du

å
f∈F

, t > 0, (3.3.15)

indexed by a countable family F ⊂ L2(λ), λ denoting the Lebesgue measure, and for a
function b0 : R→ R satisfying

|b0(x)| ≤ C(1 + |x|η), (3.3.16)

η ≥ 0, C ≥ 1 some fixed constants. The main idea for deriving concentration inequalities
is to use the technique of martingale approximation which was already introduced in
Section 3.1 (cf. (3.1.5)) in a more systematic manner. While Theorem 15 for the local
time concerns the supremum taken over the whole real line, we now turn to investigating
suprema over general (possibly infinite-dimensional) function classes. For any semi-metric
space (F , d), denote by N(u,F , d), u > 0, the covering number of F wrt d, i.e., the
smallest number of balls of radius u in (F , d) needed to cover F . Furthermore, we
introduce

E(F , d, α) :=

∫ ∞
0

(logN(u,F , d))
1
α du, α > 0.

With regard to the indexing classes of functions F in (3.3.15), we impose the following
basic conditions.

Assumption 3. F is a countable class of real-valued functions satisfying, for some fixed
constants U,V > 0,

sup
x∈R
|f(x)| ≤ U, sup

f∈F
‖f‖L2(λ) ≤ V.

In addition, all f ∈ F have compact support with

supp(f) ⊂ [xf , x
f ], where |xf − xf | ≤ S and V ≤

√
S, for some xf < xf , S > 0.
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Assumption 4. F is a countable class of real-valued functions such that there exist
constants e2 < A <∞ and v ≥ 2 such that, for any probability measure Q,

∀ε ∈ (0, 1), N
Ä
ε,F , ‖ · ‖L2(Q)

ä
≤ (A/ε)v. (3.3.17)

Throughout the sequel, Cmo > 0 denotes a constant satisfying ‖X0‖p = (E [|X0|p])
1
p ≤

pCmo, p ≥ 1. The existence of such a constant follows from Assumption 2. Furthermore,
we use the notation supf∈F |Gt(f)| =: ‖Gt‖F .

Theorem 16. Let X be a continuous semimartingale as in Assumption 2, and let
b0 : R → R be a function satisfying (3.3.16) for some constants η ≥ 0, C ≥ 1. Sup-
pose that the function class F satisfies Assumption 3, and define Gb0

t (·) according to
(3.3.15). Assume further that any f ∈ F admits a martingale approximation

G
b0
t (f) = t−1/2

M
f
t + t−1/2

R
f
t , t > 0, (3.3.18)

for which there exist constants Ψ1,Ψ2 and some α > 0 such that, for any f, g ∈ F ,Ä
E
î
|Mf

t |p
óä 1

p ≤ Ψ1

√
tp

1
α ‖f‖L2(λ),

Ç
E
ñ
sup
f∈F
|Rft |p

ôå 1
p

≤ Ψ2p,Ä
E
î
|Mf

t −Mg
t |p
óä 1

p ≤ Ψ1

√
tp

1
α ‖f − g‖L2(λ).

(3.3.19)

For k ∈ N0 and fixed p ≥ 1, define

Ik :=
Ä
− 2(k + 1)pΛ(t), −2kpΛ(t)

ó
∪
Ä
2kpΛ(t), 2(k + 1)pΛ(t)

ó
⊕ [−S,S],

Fk := {f ∈ F : supp(f) ⊂ Ik} ,
(3.3.20)

with
Λ(t) := max {λe (φ1(t) + cφ2(t)) , 1} (3.3.21)

and λ > 1 such that max{S, eCmo} < pΛ(t), for any p, t ≥ 1. Then, for any t, p ≥ 1,
whenever ∞∑

k=0

E(Fk, eΨ1‖ · ‖L2(λ), α) exp

Å
−k

2

ã
< ∞, (3.3.22)

it holdsÄ
E
î
‖Gb0

t ‖pF
óä 1

p

≤ Cα

∞∑
k=0

E(Fk, eΨ1‖ · ‖L2(λ), α) exp

Å
−k

2

ã
+ 6Ψ1(2p)

1
αV + 2

Ψ2p√
t

+
√
tCU(1 + 2ηCmo)η exp

Ç
− Λ(t)

2eCmo

å
.

A few comments on the above result are in order.
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Remark 17. (a) It will be shown that there exists a broad class of ergodic diffusion
processes admitting a decomposition of the form (3.3.18), with moments satisfy-
ing (3.3.19). In most cases, it is not that difficult to bound the moments of the
remainder term R

f
t , and usually the corresponding arguments already imply the

uniform moment bounds required in (3.3.19). The analysis of the martingale part
M

f
t is more challenging. Under the given assumptions, it suffices however to derive

non-uniform upper bounds on ‖Mf
t ‖p. Theorem 16 then allows to translate these

bounds into bounds on ‖supf∈F |Gb0
t (f)|‖p.

(b) Assumption (3.3.22) is a very weak one. In fact, we will show that the conditions of
Theorem 16 and Assumption 4 on the function class F imply that (3.3.22) holds true
for α ∈ {2/3, 1, 2} (cf. Lemma 36 in Section 3.6). Whenever E(Fk, eΨ1‖ · ‖L2(λ), α)
can be upper bounded independently of k, say E(Fk, eΨ1‖ · ‖L2(λ), α) ≤ E(p, α) for
all k ∈ N0 and some finite constant E(p, α) > 0, Theorem 16 yieldsÄ
E
î
‖Gb0

t ‖pF
óä 1

p

≤ 3CαE(p, α) + 6Ψ1(2p)
1
αV+ 2

Ψ2p√
t

+
√
tCU(1 + 2ηCmo)ηe−

Λ(t)
2eCmo .

Lemma 36 provides such an upper bound E(p, α) for α ∈ {2/3, 1, 2}. Furthermore,
in a lot of interesting instances (e.g., local time or the statistical application in
Section 3.5), the function class F is translation invariant, i.e., for any constant
c ∈ R, f ∈ F implies that f(·+ c) ∈ F . In that case, E(Fk, eΨ1‖ · ‖L2(λ), α) does
not depend on k, and the finiteness of this quantity entails (3.3.22).

(c) Instead of assuming X to be a continuous semimartingale fulfilling the moment
bounds (3.2.10) in Assumption 2, one could also work with other classes of processes
satisfying a maximal inequality as in Lemma 14 and allowing for a martingale
approximation with moment bounds as in (3.3.19).

Proof of Theorem 16. Fix p ≥ 1. The definition of Λ(t) (cf. (3.3.21)) implies for any
k ∈ N, setting u = kp,

e
Ä
uφ1(t) + c

√
uφ2(t)

ä
≤ kpe (φ1(t) + cφ2(t)) ≤ kpΛ(t),

and consequently, according to Lemma 14,

P
Å

max
0≤s≤t

|Xs| > kpΛ(t)

ã
≤ exp (−kp) .

Furthermore, since ‖X0‖p ≤ pCmo, Lemma 33 yields

P (|X0| ≥ eCmo u) ≤ exp(−u), u ≥ 1.

Set Af := {∃ s ∈ [0, t] such that Xs ∈ supp(f)}, and note that, for f ∈ Fk, k ∈ N,

Af ⊂
ß

max
0≤s≤t

|Xs| ≥ kpΛ(t)

™
=: Ak,
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since, for any x ∈ supp(f), |x| ≥ 2kpΛ(t) − S ≥ 2kpΛ(t) − kpΛ(t) = kpΛ(t). Let
Fc

0 := ∪∞k=1Fk. Note that, for f ∈ Fc
0 ,

|E [f(X0)b0(X0)]| ≤ C‖f‖∞E [(1 + |X0|)η1 {|X0| ≥ kpΛ(t)}]

≤ C‖f‖∞
Ä
E
î
(1 + |X0|)2η

óä1/2
(P (|X0| ≥ kpΛ(t)))1/2

≤ C‖f‖∞(1 + 2ηCmo)η exp

Ç
− Λ(t)

2eCmo

å
.

Consequently, it holds
√
t |E [f(X0)b0(X0)]| ≤

√
tCU(1+2ηCmo)η exp

(
− Λ(t)

2eCmo

)
. We thus

obtain the following decomposition:Ä
E
î
‖Gb0

t ‖pF
óä 1

p

≤
Ä
E
î
‖Gb0

t ‖pF0

óä 1
p

+
(
E
[
‖Gb0

t 1(Af )‖pFc
0

]) 1
p

+
(
E
[
‖Gb0

t 1(Ac
f )‖pFc

0

]) 1
p

=
Ä
E
î
‖Gb0

t ‖pF0

óä 1
p

+
(
E
[
‖Gb0

t 1(Af )‖pFc
0

]) 1
p

+
√
t‖E [f(X0)b0(X0)] ‖Fc

0

≤
Ä
E
î
‖Gb0

t ‖pF0

óä 1
p

+
(
E
[
‖Gb0

t 1(Af )‖pFc0
]) 1

p

+
√
tCU(1 + 2ηCmo)ηe−

Λ(t)
2eCmo .

Regarding the first two terms in the last display, note thatÄ
E
î
‖Gb0

t ‖pF0

óä 1
p

≤ 1√
t

{Ä
Eb
î
‖Mf

t ‖pF0

óä 1
p

+
Ä
E
î
‖Rft ‖pF0

óä 1
p

}
,

(
E
[
‖Gb0

t 1(Af )‖pFc
0

]) 1
p

≤ 1√
t

®(
E
[
‖Mf

t 1(Af )‖pFc
0

]) 1
p

+
(
E
[
‖Rft ‖pFc

0

]) 1
p

´
.

Thus, Ä
E
î
‖Gb0

t ‖pF
óä 1

p

≤ A + B +
√
tCU(1 + 2ηCmo)η exp

Ç
− Λ(t)

2eCmo

å
, (3.3.23)

where

A :=
1√
t

ÄE î‖Mf
t ‖pF0

óä 1
p

+
(
E
[
‖Mf

t 1(Af )‖pFc
0

]) 1
p

 , B :=
2√
t

Ä
E
î
‖Rft ‖pF

óä 1
p

.

Assumption (3.3.19) implies that, for any f, g ∈ Fk, ‖Mf
t ‖p ≤ Ψ1

√
tp1/αV, and the

following tail estimate,

P
Ä
|t−1/2(Mf

t −Mg
t )| ≥ d2(f, g)u

ä
≤ exp (−uα) , u ≥ 1,

where d2(f, g) := eΨ1‖f − g‖L2(λ). Proposition 34 then yields, for any k ∈ N0, q ≥ 1,

1√
t

Ä
E
î
‖Mf

t ‖qFk
óä 1

q ≤ Cα

∫ ∞
0

(logN(u,Fk, d2))
1
α du+

2√
t

sup
f∈Fk

‖Mf
t ‖q

≤ Cα

∫ ∞
0

(logN(u,Fk, d2))
1
α du+ 2Ψ1q

1
αV, (3.3.24)
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and, for all k ∈ N,

1√
t

(
E
[
‖Mf

t 1(Af )‖pFc
0

]) 1
p

≤
∞∑
k=1

1√
t

Ä
E
î
‖Mf

t 1(Ak)‖pFk
óä 1

p

≤
∞∑
k=1

1√
t

Ä
E
î
‖Mf

t ‖2pFk
óä 1

2p P(Ak)
1
2p

≤
∞∑
k=1

1√
t

Ä
E
î
‖Mf

t ‖2pFk
óä 1

2p exp

Å
−k

2

ã
≤

∞∑
k=1

ï
Cα

∫ ∞
0

(logN(u,Fk, d2))
1
α due−

k
2

ò
+ 4Ψ1(2p)

1
αV.

(3.3.25)

Finally, the announced moment bound follows from (3.3.23), (3.3.24), (3.3.25) and
(3.3.19).

3.4 Concentration of measure and exponential inequalities
for scalar ergodic diffusions

The original motivation for the present study was the question of deriving exponential
inequalities for diffusion processes and associated additive functionals as they are con-
stantly used for investigating (adaptive) statistical procedures. The current analysis has
a much wider scope, and the results and methods of proof actually apply in a much
more general framework. However, for clarity of presentation and in order not to lose the
main ideas, we focus in the sequel on a specific class of diffusion processes. The results
of this section take up those established in Section 3.2 (for local times) and Section 3.3
(for empirical processes) for the specific diffusion setting. In Section 3.4.3, we even go
one step further and establish a concentration result for generalised empirical processes
that involve stochastic integrals. We start with introducing our basic class of diffusion
processes.

Definition 18. Let σ ∈ Liploc(R) and assume that, for some constants ν, ν ∈ (0,∞), σ
satisfies ν ≤ |σ(x)| ≤ ν for all x ∈ R . For fixed constants A, γ > 0 and C ≥ 1, define the
set Σ = Σ(C, A, γ, σ) as

Σ :=
{
b ∈ Liploc(R) : |b(x)| ≤ C(1 + |x|), ∀|x| > A :

b(x)

σ2(x)
sgn(x) ≤ −γ

}
. (3.4.26)

Given σ as above and any b ∈ Σ, there exists a unique strong solution of the SDE
(3.1.2) with ergodic properties and invariant density

ρ(x) = ρb(x) :=
1

Cb,σσ2(x)
exp

Ç∫ x

0

2b(y)

σ2(y)
dy

å
, x ∈ R, (3.4.27)
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with Cb,σ :=
∫
R

1
σ2(u)

exp
(∫ u

0
2b(y)
σ2(y)

dy
)

du denoting the normalising constant. The in-
variant measure of the corresponding distribution and its distribution function will be
denoted by µ = µb and F = Fb, respectively, and we assume that the process is started
in the equilibrium, i.e., ξ ∼ µb.

Our assumptions on the diffusion characteristics already impose some regularity on
the invariant density ρb. More precisely, for any b ∈ Σ(C, A, γ, σ), σ2ρb is continuously
differentiable and there exists a constant L > 0 (depending only on C, A, γ, ν, ν) such
that

sup
b∈Σ(C,A,γ,σ)

max
¶
‖ρb‖∞, ‖(σ2ρb)

′‖∞
©
< L (3.4.28)

and, for any θ > 0, we have supb∈Σ(C,A,γ,σ) supx∈R
¶
|x|θρb(x)

©
<∞. The analysis of the

moments of functionals of the process X relies on upper bounds for the moments of the
invariant measure. For any diffusion process X as in Definition 18, it holds

sup
b∈Σ(C,A,γ,σ)

‖X0‖p = sup
b∈Σ(C,A,γ,σ)

(Eb [|X0|p])
1
p ≤ Cmop, p ≥ 1, (3.4.29)

(cf. Lemma 32 in Section 3.6) for some positive constant Cmo. The above estimates will
be used in the sequel without further notice.

Remark 19. A natural approach for analysing the supremum of processes of the form

1

t

∫ t

0
g(Xs)ds or

1

t

∫ t

0
g(Xs)dXs

over entire function classes consists in making use of well-known concentration results for
additive diffusion functionals. For any nice diffusion X fulfilling Poincaré’s inequality, it
is actually known that, for any bounded function g : R → R, one has a Bernstein-type
tail estimate of the form

P
Ç

1

t

∫ t

0
(g(Xs)− E[g(X0)]) ds > r

å
≤ exp

Ç
− tr2

2(Var(g) + cP ‖g‖∞r)

å
, (3.4.30)

for t, r > 0 and cP denoting the Poincaré constant. Given any class G of bounded
functions g : R → R fulfilling (3.4.30), the above inequality implies that the process
(Gt(g))g∈G exhibits a mixed tail behaviour wrt the metrics d1(g, g′) := ‖g − g′‖∞ and
d2(g, g′) := Var(g− g′). Chaining procedures as they are used, e.g., for proving Theorem
15 then can be applied to obtain upper bounds of the formÇ
E
ñÇ

sup
g∈G
|Gt(g)|

åpôå 1
p

.
1√
t

∫ ∞
0

logN(ε,G, d1)dε+

∫ ∞
0

»
logN(ε,G, d2)dε+

√
p+

p√
t
.

(3.4.31)
However, for any bounded g ∈ G, one can also derive a decomposition of the form (3.1.5)
where both the martingale part Mt(g) and the remainder term Rt(g) can be controlled
similarly to the local time case.
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We do not want to restrict to bounded drift terms b : R → R. For analysing term
(I) in (3.1.7), one thus actually requires results for unbounded functions g = fb. Us-
ing the method of transportation-information inequalities, Gao et al. (2013) establish
Bernstein-type concentration inequalities in the spirit of (3.4.30) for unbounded func-
tions g : R→ R. In principle, one might then deduce upper bounds similarly to (3.4.31).
Note however that the results of Gao et al. (2013) apply only to a restricted class of diffu-
sion processes. Furthermore, it is far from clear how the corresponding entropy integrals
can be controlled, not to say the finiteness of the rhs of (3.4.31) is not at all clear.

In view of the aforementioned obstacles, we return to the alternative approach of
proving concentration results via martingale approximation. In the sequel, we will specify
the components of the decomposition (3.1.5) and derive upper bounds on the moments
of the martingale and the remainder term for a broad class of ergodic diffusion processes.

3.4.1 Moment bounds and tail estimates for diffusion local time

We start with revisiting our result on local time and specifying it for the case of diffusion
processes as introduced in Definition 18. Thus, we consider the diffusion local time
process (Lat (X))a∈R, t ≥ 0, which is continuous in a and t.

Bounding the moments of ‖L•t ‖∞ by means of Theorem 15 In order to deduce a
result by means of Theorem 15, we first argue that Assumption 2 is satisfied for any
process X as in Definition 18. Indeed, the finite variation part in this set-up is given by
the integrated drift term, i.e., Vt =

∫ t
0 b(Xs)ds. We thus obtain for the total variation

process
∫ t

0 |dVs| ≤
∫ t
0 |b(Xs)|ds ∀ t ≥ 0. From the moment bounds of the invariant

measure (3.4.29) and the at-most-linear-growth condition on b ∈ Σ(C, A, γ, σ), one might
deduce that

‖X0‖p + ‖Xt‖p +

∥∥∥∥ ∫ t

0
|dVs|

∥∥∥∥
p
≤ 2Cmop+ tC(1 + Cmop) ≤ 4ptC(1 + Cmo).

Furthermore,
(
Eb[〈

∫ •
0 σ(Xs)dWs〉p/2t ]

)1/p
≤ ν
√
t. Thus, setting φ1(t) := max(4C(1 +

Cmo), ν2)t and φ2(t) := ν
√
t, Assumption 2 is fulfilled. The function t 7→ Λ(t) from

Theorem 15 and Theorem 16 takes the form

Λ(t) := λe
Ä
max(4C(1 + Cmo), ν2)t+ c ν

√
t
ä
,

with λ > 1 such that max{S, eCmo} < λe(max(4C(1 + Cmo), ν2) + c ν). Letting Λ :=
λe(max(4C(1 +Cmo), ν2) + c ν), it holds Λ(t) ≤ Λt, t ≥ 1, and all the previous proofs also
work for Λt instead of Λ(t) which we use in the following without further notice. Given
these estimates, Corollary 9.10 in Le Gall (2016) now gives, for any a ∈ R, p ≥ 1 and
t > 0,

(Eb [(Lat (X))p])
1
p ≤ c̃p

Ä
pt+

√
t
ä
,

c̃p some (unspecified) positive constant depending on p. Application of Theorem 15 yields
the sup-norm counterpart, namely, the following result for the supremum of diffusion local
time.
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Corollary 20. Let X be a diffusion process as in Definition 18. Then, there is a positive
constant κ (not depending on p) such that, for any p, u, t ≥ 1,

sup
b∈Σ(C,A,γ,σ)

(Eb [‖L•t (X)‖p∞])
1
p ≤ κ

Ä
pt+

√
pt+

√
t log t

ä
,

Pb
Ä
‖L•t (X)‖∞ ≥ eκ

Ä
ut+

√
ut+

√
t log t

ää
≤ exp(−u).

3.4.2 Martingale approximation for additive functionals of diffusion
processes

We now specify our analysis of empirical processes (Gb0
t (f))f∈F as introduced in (3.3.15)

to the ergodic diffusion case. Given some function class F , denote F := {g − h : g, h ∈ F}.

Proposition 21. Let X be a diffusion as in Definition 18. Then, for any continuous
function b0 fulfilling |b0(x)| ≤ C(1+ |x|η), C, η ≥ 0 some fixed constants, and any class F
of continuous functions f : R→ R fulfilling Assumption 3, there exists a representation

G
b0
t (f) = t−1/2

M
f
t + t−1/2

R
f
t , t > 0, (3.4.32)

satisfying, for any f, g ∈ F , Mf−g
t = M

f
t −Mg

t . In addition, for any p ≥ 1 and any
f ∈ F ∪ F , Ä

Eb
î
|Mf

t |p
óä 1

p ≤ (2p)η+1/2
√
tS‖f‖L2(λ) ν c (1 + (Cmoη)η) Λprox,Ç

Eb
ñÇ

sup
f∈F
|Rft |

åpôå 1
p

≤ pη+1S 4 max
¶
C
η+1
mo , 1

©
(η + 1)ηΛprox,

(I)

with

Λ
2
prox := 16C2LC2

b,σe2ν−2
C(2A+A2)(1 + sup

x∈R
|x|2ηρb(x)) (3.4.33)

+ 4C2 max{22η, 2}
Ç

2K2L(1 + sup
x∈R
|x|2ηρb(x))

+ ν−2 sup
x≥0

exp(−4γx)x2η + ν−2

å
, (3.4.34)

for some constant K = K(C, A, γ, ν, ν). For the particular case b0 = b, the representation
satisfies, for any p ≥ 1 and any f ∈ F ∪ F ,Ä

Eb
î
|Mf

t |p
óä 1

p ≤ p
√
tΓprox‖f‖L2(λ)

√
2ν c(1 + S + Cmo)1/2,Ç

Eb
ñÇ

sup
f∈F
|Rft |

åpôå 1
p

≤ pΓprox,
(II)
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with

Γ
2
prox := 8

®
1

4
K2L2 +

ν−2
C

2

Ç
1 + sup

x≥0
exp(−4γx)x

å
+ L2C2

b,σe2ν−2
C(2A+A2)

´
,

Γprox := 4UCmo

Ç
2K
Ä
2ν2L+ C(1 +A)

ä
+ 2Cb,σeν

−2
C(2A+A2)

Ç
AC(1 +A)L+

ν2L
2

å
+ 1

å
.

Remark 22. The above result should be read carefully. We consider an arbitrary con-
tinuous function b0, not necessarily of compact support, satisfying some polynomial
growth condition. Our interest is in bounding the p-th moments of the empirical process
(Gb0

t (f))f∈F , indexed by the functions F 3 f : R → R. Neglecting constants, the first
approach to analysing the moments of the martingale and of the remainder term shows
that, for any p ≥ 1,

1√
t
‖Mf

t ‖p . pη+ 1
2

√
S‖f‖L2(λ),

∥∥∥∥ sup
f∈F
|Rft |

∥∥∥∥
p

. pη+1S. (3.4.35)

Specifying to the case b0 = b, one can exploit the basic relation (σ2ρb)
′ = 2ρbb. One then

obtains bounds of the order
1√
t
‖Mf

t ‖p . p‖f‖L2(λ),

∥∥∥∥ sup
f∈F
|Rft |

∥∥∥∥
p

. p. (3.4.36)

Regarding the exponent of p, (3.4.36) is superior to the bound implied by (3.4.35) for the
specific case η = 1 (which corresponds to the standard at-most-linear-growth assumption
on the drift term). However, it will be seen below that it might be advantageous to choose
the upper bound (3.4.35) with η = 1 for the martingale part. Note that this bound
provides the factor

√
S. In a number of statistical applications (e.g., the procedure that

we have in mind), the support of the functions f from the class F vanishes. Consequently,
the contribution of the factor

√
S is more beneficial than the improvement in the tail

behaviour implied by (3.4.36).

3.4.3 Uniform concentration of empirical processes and stochastic
integrals

Consider some diffusion process X as introduced in Definition 18 with invariant measure
µb, and let us briefly recall our previous outcomes. Proposition 21 gives both a martingale
approximation of the empirical process

G
b
t(f) =

1√
t

∫ t

0
(f(Xu)b(Xu)− Eb[f(X0)b(X0)]) du

and bounds on the p-th moments of its martingale and remainder term. Theorem 16
allows to translate these bounds into bounds on ‖Gb

t‖pF , p ≥ 1, the supremum taken over
entire function classes F and we obtain the following
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Theorem 23. Let X be as in Definition 18. Suppose that F is a class of continuous
functions fulfilling Assumptions 3 and 4, and set Λ := λe(max(4C(1 + Cmo), ν2) + c ν),
where λ > 1 is chosen such that max{S, eCmo} < λe(max(4C(1 + Cmo), ν2) + c ν). Then,
for any p ≥ 1,

sup
b∈Σ(C,A,γ,σ)

Ä
Eb
î
‖G1

t ‖pF
óä 1

p

≤ Φt(p), (I)

for

Φt(u) := V
√
S
{

12C2eΠ1

 
v log

Å
A

V
√
S + uΛt

ã
+ 6Π1

√
2u

}
+2SΠ2u√

t
+
√
tCUe−

Λt
2eCmo ,

with Π1 :=
√

2ν c Λprox and Π2 := 4 max{Cmo, 1}UΛprox. Furthermore,

sup
b∈Σ(C,A,γ,σ)

Ä
Eb
î
‖Gb

t‖pF
óä 1

p

≤ Φb
t(p), (II)

where

Φb
t(u) := V

√
S
{

3C 2
3
eΠb

1

(
2

Å
v log

Å
A

V
√
S + uΛt

ãã 3
2

+ 6v
3
2

 
log

Å
A

V
√
S + uΛt

ã)
+ 6Πb

1(2u)
3
2

}
+

2Πb
2u√
t

+
√
tCU(1 + 2Cmo)e−

Λt
2eCmo

(3.4.37)

and Πb
1 := 2

3
2 ν c Λprox (1 + Cmo), Πb

2 := Γprox.

Our interest finally is in formulating exponential inequalities for the process

Ht(f) =
√
t

Ç
1

t

∫ t

0
f(Xs)dXs −

∫
(fb)dµb

å
, f ∈ F . (3.4.38)

At this point, we can apply several of our previous findings for proving one first uniform
moment bound for the general stochastic integral process (Ht(f))f∈F .

Proposition 24. Grant the assumptions of Theorem 23. Then, there exists a positive
constant L (depending only on c, C, Cmo,Λ, U,A, γ, v,A, ν, ν) such that, for any p, t ≥ 1,

sup
b∈Σ(C,A,γ,σ)

(Eb [‖Ht‖pF ])
1
p ≤ L

Ç
V
Å

1 + log

Å
1

V

ã
+ log t+ p

ã
+

p√
t

+
√
te−

Λt
2eCmo

å
.
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3.5 Statistical applications

This section considers the basic question of density estimation in supremum-norm which,
from a general statistical point of view, is of immense theoretical and practical interest.
Let us assume that a continuous record of observations Xt := (Xs)0≤s≤t of a diffusion
process as introduced in Definition 18 is available, and we aim at nonparametric estima-
tion of the associated invariant density ρb. Given some smooth kernel functionK : R→ R
with compact support, define the standard kernel estimator ρt,K(h) according to (3.1.9).
For our statistical analysis which targets results concerning the risk in sup-norm loss,
i.e., the behaviour of the maximal error ‖ρt,K(h)− ρb‖∞, we impose some regularity on
b and ρb. To be more precise, we look at Hölder classes defined as follows.

Definition 25. Given β,L > 0, denote by HR(β,L) the Hölder class (on R) as the set
of all functions f : R→ R which are l := bβc-times differentiable and for which

‖f (k)‖∞ ≤ L ∀ k = 0, 1, ..., l,

‖f (l)(·+ t)− f (l)(·)‖∞ ≤ L|t|β−l ∀ t ∈ R.

Set Σ(β,L) := {b ∈ Σ(C, A, γ, σ) : ρb ∈ HR(β,L)}. Here, bβc denotes the greatest
integer strictly smaller than β.

Considering the class of drift coefficients Σ(β,L), we use kernel functions satisfying
the following assumptions,

• K : R→ R is Lipschitz continuous and symmetric,
• supp(K) ⊂ [−1/2, 1/2],

• K is of order β, i.e.,
∫
RK(y)dy = 1,

∫
R y

jK(y)dy = 0, j = 1, . . . , bβc,∫
R |y|β|K(y)|dy <∞.

(3.5.39)

Corollary 26 (Concentration of the kernel invariant density estimator). Let X be a
diffusion as in Definition 18 with b ∈ Σ(β,L), for some β,L > 0, and let K be a kernel
function fulfilling (3.5.39). Given some positive bandwidth h, define the estimator ρt,K(h)
according to (3.1.9). Then, there exist positive constants ν1, ν2 (not depending on p) such
that, for any p ≥ 1, t > 0,

sup
b∈Σ(β,L)

(
Eb
[‖ρt,K(h)− ρb‖p∞

]) 1
p ≤ ν1√

t

{
1 +

√
log

Ç
1√
h

å
+
»

log(pt) +
√
p

}

+
ν2p

t
+

1

h
e−

Λt
2eCmo + hβ

L
bβc!

∫
|uβK(u)|du.

Proof. We want to apply Theorem 23 to the class

F :=

ß
K

Å
x− ·
h

ã
: x ∈ Q

™
.
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For doing so, note that supf∈F ‖f‖∞ ≤ ‖K‖∞, supf∈F λ(supp(f)) ≤ h and∥∥∥∥K Åx− ·h ã∥∥∥∥2

L2(λ)
=

∫
K2
Å
x− y
h

ã
dy = h

∫
K2(z)dz ≤ h‖K‖2L2(λ).

Setting S := h max{‖K‖2L2(λ), 1}, V :=
√
h‖K‖L2(λ) and taking into account Lemma 35,

F is seen to satisfy Assumptions 3 and 4. Thus, Theorem 23 with b0 = 1 is applicable.
In particular, there exist positive constants ν1 and ν2 such that, for any p ≥ 1,(

Eb

[∥∥∥∥∥ 1

th

∫ t

0
K

Å
x−Xu

h

ã
du− Eb

ï
1

h
K

Å
x−X0

h

ãò∥∥∥∥∥p
∞

]) 1
p

=
1√
th

(
Eb

[∥∥∥∥∥√t
®

1

t

∫ t

0
K

Å
x−Xu

h

ã
du− Eb

ï
K

Å
x−X0

h

ãò´∥∥∥∥∥p
∞

]) 1
p

≤ 1√
th

hν1

{
1 +

√
log

Ç
1√
h

å
+
»

log(pt) +
√
p

}
+
ν2p

t
+

1

h
exp

Å
− Λt

2eCmo

ã
.

For the bias, we obtain∣∣∣∣∣ 1

th
Eb
ñ∫ t

0
K

Å
x−Xu

h

ã
du

ô
− ρb(x)

∣∣∣∣∣ =

∣∣∣∣1h
∫
K

Å
x− y
h

ã
(ρb(y)− ρb(x)) dy

∣∣∣∣
≤ hβ

L
bβc!

∫
|uβK(u)|du.

Combining the above estimates, the assertion follows.

Recall that Lxt (X) denotes diffusion local time and that ρ◦t (x) = t−1Lxt (X)σ−2(x) is the
associated local time estimator of the value of the invariant density ρb(x) of X. We now
turn to deriving an exponential inequality for the tail probabilities of

√
t‖ρt,K(h)−ρ◦t ‖∞

which holds under rather mild assumptions on the diffusion X and the bandwidth h. It
can be interpreted as some analogue of Theorem 1 in Giné and Nickl (2009) where the
authors investigate the maximum deviation between the classical empirical distribution
function (based on i.i.d. observations) and the distribution function obtained from kernel
smoothing. The proof of Theorem 27 substantially relies on Proposition 24. Throughout
the sequel, we restrict to a constant diffusion coefficient σ2 ≡ 1 in order to ease the
exposition. Still, our methods are suitable to treat more general diffusion coefficients
under Hölder-smoothness conditions on σ2 that correspond to the conditions on the
invariant density.

Theorem 27. Let X be a diffusion as in Definition 18 with σ2 ≡ 1 and b ∈ Σ(β,L), for
some β,L > 0. Consider some kernel function K fulfilling (3.5.39) and h = ht ∈ (0, 1)
such that ht ≥ t−1. Then, there exist positive constants V, Λ, Λ0 and L such that, for all

λ ≥ 8Λ0

ñ√
hVeL

®
1 + log

Ç
1√
hV

å
+ log t

´
+ eL

√
t exp

Å
− Λt

2eCmo

ã
+
√
thβ

L
2bβc!

∫
|K(v)vβ|dv

ô
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and any t > 1,

sup
b∈Σ(β,L)

Pb
Ä√

t ‖ρt,K(h)− ρ◦t ‖∞ > λ
ä
≤ exp

Ç
−Λ1λ√

h

å
. (3.5.40)

One first application of Theorem 27 concerns the derivation of an upper bound on the
sup-norm risk of the diffusion local time estimator. In fact, it allows to prove the following
Corollary which shows that, concerning invariant density estimation, the procedures
based on the kernel density and the local time estimator, respectively, are of equal quality
in terms of sup-norm rates of convergence.

Corollary 28. Let X be a diffusion as in Definition 18 with σ2 ≡ 1. Then, there is a
positive constant ζ such that, for any p, t ≥ 1,

sup
b∈Σ(C,A,γ,1)

Ç
Eb
ñ∥∥∥∥L•t (X)

t
− ρb

∥∥∥∥p
∞

ôå 1
p

≤ ζ

Ñ
p

t
+

1 +
√
p+
»

log(pt)√
t

+ te−
Λt

2eCmo

é
.

(3.5.41)
In addition, for any u ≥ 1,

Pb
(
‖L•t (X)− tρb‖∞ ≥ eζ

(√
t
(
1 +
»

log(ut) +
√
u
)

+ u+ t2e−
Λt

2eCmo

))
≤ e−u.

(3.5.42)

Remark 29. (a) As already indicated, the results yield the same sup-norm convergence
rate for the local time and the kernel density estimator with bandwidth t−1/2, i.e.,

sup
b∈Σ(C,A,γ,1)

(Eb [‖ρ̃t − ρb‖p∞])
1
p = O

(Å
log t

t

ã1/2
)
, for ρ̃t ∈

¶
ρt,K(t−1/2), t−1L•t (X)

©
.

(b) The explicit dependence of the minimax upper bounds in Corollary 26 and Corol-
lary 28 on p is crucial for further statistical applications such as adaptive drift
estimation. As compared to Corollary 28, we do not have to impose additional
smoothness assumptions on the drift coefficient for applying Corollary 26 since
b ∈ Σ(C, A, γ, 1) implies that b ∈ Σ(1,L).

(c) Since the local time estimator is unbiased, Corollary 28 can also be interpreted as
a result on the centred local time, providing a concentration inequality of the form
(3.5.42) which is of its own probabilistic interest.

Once the result for the centred local time stated in (3.5.41) is available, one can derive
the following modified version of Proposition 24. In a number of concrete applications,
this version can be considered as an improvement, even though we lose the subexponential
behaviour. This is our price for obtaining a better upper bound in terms of the size S
of the support of the functions from the function class F . In our statistical application,
the support is of size ht with ht ↓ 0 as t → ∞. Therefore, gaining another

√
S is more

beneficial than the subexponential behaviour. Recall the definition of Ht in (3.4.38).
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Theorem 30. Let X be a diffusion as in Definition 18 with σ2 ≡ 1, and grant the
assumptions of Theorem 23. Then, for any p, t ≥ 1, there exist constants ‹L and ‹L0 such
that

sup
b∈Σ(C,A,γ,1)

(Eb [‖Ht‖pF ])
1
p ≤ ‹Ψt(p), (3.5.43)

where‹Ψt(p) := ‹L{V√S{Ålog

Å
A

V
√
S + pΛt

ãã3/2

+

Å
log

Å
A

V
√
S + pΛt

ãã1/2

+ p3/2
}

+
p√
t

+
√
t exp

Ä
−‹L0t

ä
+ V

Å
log

Å
A

V
√
S + pΛt

ãã1/2

+
V
t1/4

Å
1 + log

Å
A

V
√
S + pΛt

ãã
+ V

ß√
p+

p

t1/4

™}
.

Remark 31. As before, it is straightforward to translate the moment bound (3.5.43) into a
corresponding upper tail bound by means of Lemma 33. The effectiveness of the obtained
exponential inequalities is reinforced in Chapter 4 where we investigate the question of
adaptive drift estimation. In this respect, Theorem 30 on stochastic integrals will be a
crucial device.

3.6 Basic auxiliary results

We start with proving two auxiliary results which are frequently used in our analysis.

Lemma 32. Let X be as in Definition 18. Then, there is a positive constant Cmo,
depending only on C, A, γ, ν, ν, such that

sup
b∈Σ(C,A,γ,σ)

‖X0‖p = sup
b∈Σ(C,A,γ,σ)

(Eb [|X0|p])
1
p ≤ Cmop, p ≥ 1.

Proof. Note that

sup
b∈Σ(C,A,γ,σ)

Eb [|X0|p] = sup
b∈Σ(C,A,γ,σ)

∫
|x|pρb(x)dx

≤ 2Ap+1L+

∫ ∞
A

xp exp(−2γ(x−A))dx (ρb(A) + ρb(−A)) ν−2ν2

≤ 2Ap+1L+ ν−2ν2(ρb(A)

+ ρb(−A))

Ç
2p−1A

p

2γ
+

2p−1

(2γ)p+1

∫ ∞
0

xpe−xdx

å
= 2Ap+1L+ 2Lν−2ν2

Ç
2p−1A

p

2γ
+

2p−1

(2γ)p+1
Γ(p+ 1)

å
.
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Due to the formula of Stirling, we have

(Γ(p+ 1))
1
p ≤
√

2πe(p+ 1)1+1/p ≤
√

2πe(p+ 1)c̃ ≤
√

2π2ec̃p

for a constant c̃ such that supp≥1(p+ 1)1/p ≤ c̃. This gives the assertion.

Lemma 33. Let X be a real-valued random variable satisfying, for any p ≥ 1,
(E [|X|p])

1
p ≤ f(p), for some function f : (0,∞)→ (0,∞). Then,

P (|X| ≥ ef(u)) ≤ exp (−u) , u ≥ 1. (3.6.44)

Proof. Fix u ≥ 1. Then, for any p ≥ 1,

P (|X| ≥ ef(u)) ≤ E [|X|p]
epfp(u)

≤ fp(p)

epfp(u)
.

Setting p := u, we obtain (3.6.44).

One central ingredient for the proof of our concentration inequalities are generic chain-
ing results which go back to Talagrand (cf. Talagrand (1996) and Talagrand (2014)). We
state a version of the results in Dirksen (2015) here which is adjusted to our needs. In
particular, we bound the abstract truncated γ-functionals appearing in Dirksen (2015)
by entropy integrals.

Proposition 34 (cf. Theorem 3.2 & 3.5 in Dirksen (2015)). Consider a real-valued
process (Xf )f∈F , defined on a semi-metric space (F , d).

(a) If there exists some α ∈ (0,∞) such that

P (|Xf −Xg| ≥ ud(f, g)) ≤ 2 exp (−uα) ∀f, g ∈ F , u ≥ 1, (3.6.45)

then there exists some constant Cα > 0 (depending only on α) such that, for any
1 ≤ p <∞,Ç

E
ñ
sup
f∈F
|Xf |p

ôå 1
p

≤ Cα

∫ ∞
0

(logN(u,F , d))
1
α du+ 2 sup

f∈F
(E [|Xf |p])

1
p . (3.6.46)

(b) If there exist semi-metrics d1, d2 on F such that

P
Ä
|Xf −Xg| ≥ ud1(f, g) +

√
ud2(f, g)

ä
≤ 2e−u ∀f, g ∈ F , u ≥ 1,

then there exist positive constants ‹C1, ‹C2 such that, for any 1 ≤ p <∞,Ç
E
ñ
sup
f∈F
|Xf |p

ôå 1
p

≤ ‹C1

∫ ∞
0

logN(u,F , d1)du (3.6.47)

+‹C2

∫ ∞
0

»
logN(u,F , d2)du+ 2 sup

f∈F
(E [|Xf |p])

1
p .
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The entropy integrals appearing on the rhs of (3.6.46) and (3.6.47) will be controlled
by means of the following lemmata.

Lemma 35. Given some function of bounded variation H : R→ R and h > 0, let

F := Fh =

ß
H

Å
x− ·
h

ã
: x ∈ R

™
.

Then there exist some constants A = A(‖H‖TV) < ∞ and v ≥ 2, not depending on h,
such that, for any probability measure Q on R and any 0 < ε < 1,

N(ε,Fh, ‖ · ‖L2(Q)) ≤ (A/ε)v.

The preceding lemma is a consequence of the more general result of Proposition 3.6.12
in Giné and Nickl (2016).

Lemma 36. Grant the conditions of Theorem 16 and Assumption 4, and define the
function classes Fk according to (3.3.20). Then, for all k ∈ N0 and any constant Γ ≥ 1,∫ ∞

0
logN(u,Fk,Γ‖ · ‖L2(λ))du ≤ 2vVΓ

Å
1 + log
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ãã
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+6vVΓ
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Proof. Note that, for f ∈ Fk,

‖f‖L2(λ) ≤ ‖f‖L2(νk)

»
4S + 4pΛ(t), where dνk = 1{Ik}d

λ

λ(Ik)
.

Thus, (3.3.17) implies that

N
Ä
u,Fk,Γ‖ · ‖L2(λ)

ä
≤ N

Å
u
(
Γ
»

4S + 4pΛ(t)
)−1

,Fk, ‖ · ‖L2(νk)

ã
≤
Å
AΓ

u

√
4S + 4pΛt

ãv
,

if u < 2VΓ ≤ Γ
»

4S + 4pΛ(t). Furthermore, since supf,g∈F ‖f − g‖L2(λ) ≤ 2V, it holds
that N(u,Fk,Γ‖ · ‖L2(λ)) = 1 for u ≥ 2VΓ. Thus, for α = 1, we can upper bound the
entropy integral as follows,∫ ∞

0
logN(u,Fk,Γ‖ · ‖L2(λ))du ≤

∫ 2VΓ

0
v log

Å
AΓ

u

»
4S + 4pΛ(t)

ã
du

= v

ï
u log

Å
AΓ

u

»
4S + 4pΛ(t)

ãò2VΓ

0
+ 2vVΓ

= 2vVΓ

Å
1 + log

Å
A

V
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S + pΛ(t)

ãã
.
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For α = 2, it holds∫ ∞
0

»
logN(u,Fk,Γ‖ · ‖L2(λ))du ≤
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,

where the last estimate is due to the fact that
∫ c

0

»
log(C/x)dx ≤ 2c

»
log(C/c) for

log(C/c) ≥ 2 (see, e.g., Giné and Nickl (2009), p. 591). This last condition is fulfilled in
our situation since V ≤

√
S and A > e2. Finally, if α = 2/3,∫ ∞
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3.7 Proofs for Section 3.2

Proof of Theorem 15. Tanaka’s formula (see Proposition 9.2 in Le Gall (2016)) yields the
local time representation

Lat (X) = Lat (X) · 1
ß

max
0≤s≤t

|Xs| ≥ |a|
™

= 2

Ç
(Xt − a)− − (X0 − a)− +

∫ t

0
1{Xs ≤ a}dXs

å
,

where x− := max {−x, 0} . Since semimartingale local time is càdlàg in a, the sup-
norm actually refers to a supremum over the rationals Q. In particular, ‖L•t (X)‖∞ is
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measurable. Furthermore, for any t > 0 and p ≥ 1,Ç
E
ñÇ

sup
a∈Q
|Lat (X)|

åpôå 1
p

=

Ç
E
ñÇ

sup
a∈Q

ß
|Lat (X)| · 1

ß
max
0≤s≤t

|Xs| ≥ |a|
™™åpôå 1

p

≤ 2

Ç
E
ñÇ

sup
a∈Q

®
|Xt −X0|+

∫ t

0
|dVs|

+1

ß
max
0≤s≤t

|Xs| ≥ |a|
™ ∣∣∣∣ ∫ t

0
1{Xs ≤ a}dMs

∣∣∣∣
´åpôå 1

p

(3.7.48)

≤ 2pφ1(t) + 2

Ç
E
ñ

sup
a∈Q

1

ß
max
0≤s≤t

|Xs| ≥ |a|
™ ∣∣∣∣ ∫ t

0
1{Xs ≤ a}dMs

∣∣∣∣
´åpôå 1

p

,

where the latter inequality is due to (3.2.10). Recall that Ma
t =

∫ t
0 1{Xs ≤ a}dMs,

a ∈ R, and note again that (3.2.12) and (3.2.10) imply that

sup
a∈Q

(E [|Ma
t |p])

1
p ≤ sup

a∈Q

√
2c
√
p (E [〈Ma

t 〉p])
1
2p ≤ c

√
pφ2(t), p ≥ 1. (3.7.49)

This result provides an upper bound for the expression appearing on the rhs of (3.6.46)
in Proposition 34. In order to apply this result, we still have to verify the condition on
M, i.e., we have to find a suitable metric structure. For analysing the expression∣∣∣∣∣

∫ t

0
1{a < Xs ≤ b}dMs

∣∣∣∣∣ =
∣∣∣Ma

t −Mb
t

∣∣∣ , a ≤ b,

we require an exponential inequality for the tail probability of these increments. We will
deduce this inequality by investigating the corresponding moments. The derivation of
the upper bounds relies heavily on the following auxiliary result.

Lemma 37 (cf. Lemma 9.5 in Le Gall (2016)). Consider a continuous semimartingale
X satisfying Assumption 2, and write X = X0 +M + V for its canonical decomposition.
Let p ≥ 1. Then, for every a, b ∈ R with a ≤ b and every t ≥ 0, we have

E
ñÇ∫ t

0
1{a < Xs ≤ b}d〈M〉s

åpô
≤ 2(16(b− a))p

®
cp pp/2φp2(t) + E

ñÇ∫ t

0
|dVs|

åpô´
.
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Now, for any a ≤ b ∈ R and p ≥ 1, Lemma 37 and (3.2.12) give

E
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t −Mb
t |p
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[∣∣∣∣∣
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)
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}
such thatÄ
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t −Mb
t |p
óä1/p ≤ pmin

{
8
»
|a− b|, 1

}(
c
»
φ1(t) + c3/2

»
φ2(t)

)
.

Consequently (cf. Lemma 33), the process (Ma
t )a∈R exhibits a subexponential tail be-

haviour wrt the metric d1, defined as

d1(a, b) := min
{

8
»
|a− b|, 1

}
e
(
c
»
φ1(t) + c3/2

»
φ2(t)

)
, a, b ∈ R,

that is,
P
Ä
|Ma

t −Mb
t | ≥ d1(a, b)u

ä
≤ exp(−u), u ≥ 1. (3.7.50)

At this point, we would like to apply Proposition 34. Since the entire real line R cannot
be covered with a finite number of d1-balls, we will use the maximal inequality (3.2.14)
in order to apply the chaining procedure locally on finite intervals. For setting up the
localisation procedure, fix p0 ≥ 1, and introduce the intervals

Ap0
0 := [−p0Λ(t), p0Λ(t)] ,

Ap0

k :=
î
− (k + 1)p0Λ(t), −kp0Λ(t)

ä
∪
Ä
kp0Λ(t), (k + 1)p0Λ(t)

ó
, k ∈ N,

with Λ(t) ≡ e (φ1(t) + cφ2(t)).

Lemma 38. Define d1(t) := e
(
c
»
φ1(t) + c3/2

»
φ2(t)

)
. For the d1-entropy integrals of

Ap0

k , k ∈ N0, the following bound (not depending on k) holds true,∫ ∞
0

logN(u,Ap0

k , d1)du ≤ d1(t)
(
4 + 2 log

(
8
»

2p0Λ(t)
))
.

Proof. Fix k ∈ N0. Given any ε ∈ (0, d1(t)), a decomposition of the sets Ap0

k into intervals
of length (ε/(8d1(t)))2 gives N(ε,Ak, d1) ≤ 2p0Λ(t) (ε/(8d1(t)))−2 + 1. Moreover, it is
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clear that N(ε,Ap0

k , d1) = 1 for any ε ≥ d1(t). For the entropy integral, we thus obtain
the estimate∫ ∞

0
logN(u,Ap0

k , d1)du ≤ 2

∫ d1(t)

0
log

Ç»
2p0Λ(t)

8d1(t)

u
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å
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≤ d1(t)
(
4 + 2 log

(
8
»

2p0Λ(t)
))
.

Taking into account Proposition 34, (3.7.49), (3.7.50) and the previous lemma allow
to deduce the local result. For every k ∈ N0, p0, p ≥ 1, we obtainÇ
E
ñ

sup
a∈Ap0

k
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0
1{Xs ≤ a}dMs
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4 + 2 log

(
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+ 2 c
√
pφ2(t).

Exploiting the fact that the probability that the support of the local time intersects with
the sets Ap0

k vanishes, we can extend this result to the whole real line. Precisely, we use
that, for any k ∈ N, setting u ≡ kp0,

e
Ä
uφ1(t) + c

√
uφ2(t)

ä
≤ kp0e (φ1(t) + cφ2(t)) = kp0Λ(t),

and consequently, according to Lemma 14,

P
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|Xs| > kp0Λ(t)

ã
≤ exp (−kp0) .

Moreover, it holds

∞∑
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exp

Å
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2

ã
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exp

Ç
−(k + 1)

2

å
≤
∫ ∞

0
exp

Å
−x

2

ã
dx = 2

∫ ∞
0

e−ydy = 2.

Coming back to the decomposition (3.7.48), we finish the proof by noting that,

52



3 Concentration of scalar ergodic diffusions and some statistical implications

for any p0 ≥ 1,Ç
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Summing up, we can conclude that, for any p0 ≥ 1,Ç
E
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|Lat (X)|

åp0
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,

for a positive constant κ depending only on c, C1.

3.8 Proofs for Section 3.4

Proof of Proposition 21. Setting for any continuous function g : R→ R

hg(u) :=
2

σ2(u)ρb(u)

∫
R
g(y)ρb(y) (1{u > y} − Fb(u)) dy, u ∈ R, (3.8.51)

Gg(z) :=

∫ z

0
hg(u)du, z ≥ 0,
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we can apply Itô’s formula to Gfb0(·) and X to obtain∫ Xt

X0

hfb0(u)du =

∫ t

0
hfb0(Xs)b(Xs)ds+

∫ t

0
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1

2
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0
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=
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(
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)
ds.

This gives (3.4.32) for the specifications Mf
t := − ∫ t0 hfb0(Xs)σ(Xs)dWs and Rft :=∫Xt

X0
hfb0(u)du. The next step consists in bounding the function hfb0(·). Note first that

the conditions on the class Σ ensure that there exists a constant K = K(C, A, γ, ν, ν)
such that, for any b ∈ Σ(C, A, γ, σ),

sup
x≥0
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≤ K and sup
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For y ∈ [0, A], we have
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Since the same arguments apply to y ∈ [−A, 0], it holds

(σ2ρb)
−1(y) ≤ Cb,σeν

−2
C(2A+A2), y ∈ [−A,A].

We start with analysing the general case. Let f ∈ F ∪F , and note that λ(supp(f)) ≤ S.
For any u ∈ R and the function hfb0 defined according to (3.8.51), we have

|hfb0(u)|2 ≤ 4

∫
R
f2(y)dy

∫
supp(f)

C2(1 + |y|η)2ρ2
b(y)

(1{u > y} − Fb(u))2

σ4(u)ρ2
b(u)

dy

= 4C2‖f‖2L2(λ)

{
(1− Fb(u))2

σ4(u)ρ2
b(u)

∫ u

−∞
1{y ∈ supp(f)}(1 + |y|η)2ρ2

b(y)dy

+
F 2
b (u)

σ4(u)ρ2
b(u)
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}
.
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Now, for u > A,
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The case u < −A can be treated analogously. For −A ≤ u ≤ A, it holds

|hfb0(u)|2 ≤ 4C2‖f‖2L2(λ) sup
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.

Thus, for any u ∈ R, f ∈ F ∪ F and Λprox defined according to (3.4.33),

|hfb0(u)|2 ≤ Λ
2
proxS‖f‖2L2(λ)

Ä
1 + |u|2η

ä
. (3.8.52)

For any p ≥ 2, it now follows from (3.2.12), (3.8.52) and (3.4.29) that
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.
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For 1 ≤ p < 2, one obtains
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For bounding the remainder term, we start by noting that (3.8.52) implies the upper
bound supf∈F |hfb0(u)| ≤ ΛproxS(1 + |u|η). Consequently, for any p ≥ 1,∥∥∥∥∥sup

f∈F

∣∣∣∣∣
∫ Xt

X0

hfb0(u)du
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∥∥∥∥∥
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C
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©
(η + 1)ηpη+1.

We now turn to the particular case b0 = b. For this case, one could use the above
results with η = 1. However, one obtains better estimates by exploiting the relation
between ρb and b. We start with considering the martingale part. Let f, g ∈ F , and let
xf , xg ∈ R such that supp(f − g) ⊂ [xf , xf + S] ∪ [xg, xg + S]. Then, for any u ∈ R,

|h(f−g)b(u)|2

≤ 4

∫
R

(f − g)2(y)dy
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.

56



3 Concentration of scalar ergodic diffusions and some statistical implications

For u > A, and any x ∈ R, exploiting the relation (σ2ρb)
′ = 2bρb, it holds∫
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For u < −A,∫
R
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Finally, for u ∈ [−A,A],

|h(f−g)b(u)|2 ≤ 4‖f − g‖2L2(λ)
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Summing up, |h(f−g)b(u)|2 ≤ Γ
2
prox‖f − g‖2L2(λ)(1 + |u|+ S). The same arguments give,

for any f ∈ F ,
|hfb(u)|2 ≤ Γ

2
prox‖f‖2L2(λ)(1 + |u|+ S).

Similarly to (3.8.53), we can conclude for all f ∈ F ∪ F , p ≥ 2,
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For 1 ≤ p < 2, it holds
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Hence, we have shown for any p ≥ 1Ç
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For bounding the remainder term, let f ∈ F . We start by decomposing |hfb| ≤ 2A1+2A2,
with

A1(u) :=
1− Fb(u)

σ2(u)ρb(u)
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For u ≥ 0,

A1(u) ≤ K
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We have thus shown that
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and, finally,
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Proof of Theorem 23. Under the given assumptions, Proposition 21 implies the decom-
position

G
b0
t (f) = t−1/2

M
f
t + t−1/2

R
f
t , t > 0.

For b0 ≡ 1, we further obtain, for any p ≥ 1, f ∈ F ∪ F ,Ä
Eb
î
|Mf

t |p
óä 1

p ≤ Π1

√
ptS‖f‖L2(λ),
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î
‖Rfbt ‖pF

óä 1
p ≤ Π2pS.

This corresponds to the case α = 2 in Theorem 16 which then yields (I). For b0 = b, the
upper bounds on the p-th moments, p ≥ 1, of the martingale and remainder term are
specified asÄ
Eb
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|Mf

t |p
óä 1

p ≤ Πb
1p

3
2

√
tS‖f‖L2(λ), f ∈ F ∪ F ,

Ä
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óä 1
p ≤ Πb

2p, f ∈ F .

Here, we combined the upper bound for the moments of the martingale part for the
general case (letting η = 1) in Proposition 21 with the upper bound on the moments
of the remainder term for the specific drift part (equation (II) of the proposition). The
upper bounds correspond to the case α = 2

3 in Theorem 16. The assertion follows together
with Lemma 36.

Proof of Proposition 24. The proof substantially relies on Proposition 21 and Theorem
16.

Martingale approximation. Our first step is the martingale approximation of the
non-martingale part of
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Proposition 21 gives the representation
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Application of Theorem 16. Plugging the above estimates of the moments of Mf
t

and Rft into the moment bound of Theorem 16, one gets together with Lemma 36, for
any p ≥ 1,
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with ‹Φb
t(p) := 6C1vVeΦ1

Å
1 + log

Å
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ãã
+ 12Φ1pV + 2
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Bounding the p-th moments of the original stochastic integral term. Corollary
20 yields a constant κ̃ such that, for any p ≥ 1 and t ≥ 1,
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Consequently, as in the proof of Theorem 30, for any p ≥ 1,Ç
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In particular, this last estimate implies that the p-th moments are uniformly bounded
over F and that the process

Ä
t−1/2

∫ t
0 f(Xs)σ(Xs)dWs

ä
f∈F exhibits a subexponential tail

behaviour. Precisely, we have
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−1/4
√

log t, 1}.
Following the scheme of the proof of Theorem 16, we apply the chaining procedure from
Proposition 34 locally and obtain, for all p, q ≥ 1, k ∈ N0,
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From the local result, we deduce, for any p ≥ 1,
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The entropy integrals can be bounded independently of k ∈ N0 by means of Lemma 36,
allowing us to conclude finally that, for any p ≥ 1,
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3.9 Proofs for Section 3.5

Proof of Theorem 27. Note first that, for each x ∈ R, ρt,K(h)(x) − ρ◦t (x) is a random
variable which is right-continuous in x. Thus, ‖ρt,K(h)− ρ◦t ‖∞ = supx∈Q |ρt,K(h)(x)−
ρ◦t (x)| is also measurable as a supremum over a countable set. Introduce

Ψ1(x, y) := (x−y) ·1(−∞,x](y), Ψ2(x,Xt) :=

∫ t

0
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and abbreviate Kh(·) := h−1K(·/h). Using the occupation times formula and Tanaka’s
formula for diffusion local time, we obtain
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and, since
∫
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©
dz

−2

∫
R
K(z)zh1(−∞,x−zh](Xt)dz.

Note that |(x − Xt)
Ä
1(−∞,x−zh](Xt)− 1(−∞,x](Xt)

ä
| ≤ |z|h for h ≥ 0. Thus, for any

x ∈ Q, A1,x(t, h) ≤ 4ht−1
∫
R |K(z)z|dz. Since A2,x(t, h) can be treated analogously, it

follows
sup
x∈Q
|A1,x(t, h) +A2,x(t, h)| ≤ 8ht−1

∫
R
|K(z)z|dz. (3.9.54)

It remains to consider Bx(t, h). For any fixed x ∈ Q, we have

tBx(t, h) = 2

∫
R
Kh(x− y)

∫ t

0

¶
1(−∞,y](Xs)− 1(−∞,x](Xs)

©
dXsdy

= 2

∫
R
K(z)

∫ t

0

¶
1(−∞,x−zh](Xs)− 1(−∞,x](Xs)

©
dXsdz (3.9.55)

= 2

∫ t

0

ß∫
R
K(z)1(−∞,x−zh](Xs)dz − 1(−∞,x](Xs)

™
dXs

= 2

∫ t

0

ß∫
R
Kh(y −Xs)1(−∞,x−y+Xs](Xs)dy − 1(−∞,x](Xs)

™
dXs

= 2

∫ t

0

¶
Kh ∗ 1(−∞,x] − 1(−∞,x]

©
(Xs)dXs. (3.9.56)

Here we used a Fubini-type theorem for stochastic integrals (cf. Kailath et al. (1978)),
allowing us to change the order of integration in (3.9.55). We proceed by applying
Proposition 24 to the function class

FK,h :=
¶
Kh ∗ 1(−∞,x] − 1(−∞,x] : x ∈ Q

©
. (3.9.57)
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Following the lines of the proof of Theorem 1 in Giné and Nickl (2009), note first that,
for any x ∈ R, h > 0,

Kh ∗ 1(−∞,x](·)− 1(−∞,x](·) = H

Å
x− ·
h

ã
,

for H(u) :=
∫ u
−∞K(z)dz − 1[0,∞)(u), u ∈ R. Since H is of bounded variation, Lemma

35 ensures that the entropy condition from Assumption 4 holds true. Moreover,

sup
x∈Q

∥∥∥Kh ∗ 1(−∞,x](·)− 1(−∞,x](·)
∥∥∥
∞
≤
∫
R
|K(z)|dz + 1 ≤ 2‖K‖L1(λ) =: K,

i.e., FK,h is uniformly bounded. Let us now investigate the L2(λ)-norm of FK,h. To this
end, fix x ∈ Q and note that, for any z > 0,∫ Ä

1(−∞,x](y + z)− 1(−∞,x](y)
ä2

dy =

∫ ∣∣∣1(−∞,x](y)− 1(−∞,x](y + z)
∣∣∣ dy

=

∫
1(x−z,x](y)dy = z.

A similar argument for z ≤ 0 yields∫ Ä
1(−∞,x](y + z)− 1(−∞,x](y)

ä2
dy = |z|

for all z ∈ R. This bound implies that

sup
x∈Q
‖Kh ∗ 1(−∞,x] − 1(−∞,x]‖L2(λ) ≤

√
h

∫
|K(z)

√
z|dz

since, for any x ∈ Q, using Minkowski’s integral inequality,Å∫ Ä
Kh ∗ 1(−∞,x](y)− 1(−∞,x](y)

ä2
dy

ã 1
2

=

Ç∫ Å∫
Kh(z)1(−∞,x](y + z)− 1(−∞,x](y)dz

ã2

dy

å 1
2

≤
∫
|Kh(z)|

Å∫ Ä
1(−∞,x](y + z)− 1(−∞,x](y)

ä2
dy

ã 1
2

dz

=

∫
|Kh(z)|

»
|z|dz =

√
h

∫
|K(z)|

»
|z|dz.

Clearly, supp(Kh ∗ 1(−∞,x] − 1(−∞,x]) ⊂ [x− h/2, x+ h/2] such that

sup
x∈Q
‖Kh ∗ 1(−∞,x] − 1(−∞,x]‖L2(λ) ≤

√
S,

sup
x∈Q

λ(supp(Kh ∗ 1(−∞,x] − 1(−∞,x])) ≤ S := h max

®
1,

Å∫
|K(z)|

»
|z|dz

ã2
´
.

We have thus shown that FK,h satisfies Assumption 3.
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However, since the functions 1(−∞,x] are not continuous, Proposition 24 cannot be
applied. Inspection of the proof shows that continuity is required in order to use Propo-
sition 21. More precisely, continuity allows to apply Itô’s formula which in turn yields the
central representation Gt = t−1/2(Mt +Rt). Consequently, Proposition 24 is applicable
once we can show that the same representation is valid for the functions 1(−∞,x]b. For
deriving this representation, we need to approximate∫ t

0
1{Xs ≤ x}b(Xs)ds− Eb

ñ∫ t

0
1{Xs ≤ x}dXs

ô
=

∫ t

0
1{Xs ≤ x}b(Xs)ds−

t

2
ρb(x).

Denote fx(·) := 1{· ≤ x} b(·), x ∈ Q. We proceed similarly to the proof of Proposition
21 by setting

hfx(u) :=
2

ρb(u)

∫
fx(y)ρb(y)(1{u > y} − Fb(u))dy

= 1{u > x} 1

ρb(u)
ρb(x)(1− Fb(u)) + 1{u ≤ x}

Ç
1− Fb(u)ρb(x)

ρb(u)

å
=

1

ρb(u)
ρb(x)(1{u > x} − Fb(u)) + 1{u ≤ x},

hn(u) :=
ρb(x)

ρb(u)
(φn(u)− Fb(u)) + (1− φn(u)),

for φn(u) denoting a smooth approximation of 1{u > x}, given as

φn(u) :=
n√
2π

∫ u

−∞
exp

Ç−(v − x)2n2

2

å
dv

(cf. the proof of Proposition 1.11 in Kutoyants (2004)). Note that limn→∞ φn(u) =
1{u > x} and, for any continuous function g : R→ R, it holds

lim
n→∞

∫
φ′n(u)g(u)du = g(x). (3.9.58)

Set
Hn(y) :=

∫ y

0
hn(u)du and H(y) :=

∫ y

0
hfx(u)du.

Then H ′n(y) = hn(y), and

H ′′n(y) = −ρb(x)ρ′b(y)

ρ2
b(y)

(φn(y)− F (y)) +
ρb(x)

ρb(y)
(φ′n(y)− ρb(y))− φ′n(y)

= −2ρb(x)b(y)

ρb(y)
(φn(y)− F (y)) +

ρb(x)

ρb(y)
(φ′n(y)− ρb(y))− φ′n(y)

= −2hn(y)b(y) + 2b(y)(1− φn(y)) +
ρb(x)

ρb(y)
(φ′n(y)− ρb(y))− φ′n(y).
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Itô’s formula yields

Hn(Xt)−Hn(X0)

=

∫
H ′n(Xs)dXs +

1

2

∫
H ′′n(Xs)ds

=

∫ t

0
hn(Xs)b(Xs)ds+

∫ t

0
hn(Xs)dWs −

∫ t

0
hn(Xs)b(Xs)ds

+

∫ t

0

®
b(Xs)(1− φn(Xs)) +

ρb(x)

2ρb(Xs)
(φ′n(Xs)− ρb(Xs))−

φ′n(Xs)

2

´
ds

=

∫ t

0
hn(Xs)dWs

+

∫ t

0

®
b(Xs)(1− φn(Xs)) +

ρb(x)

2ρb(Xs)
(φ′n(Xs)− ρb(Xs))−

φ′n(Xs)

2

´
ds.

Continuity of diffusion local time (Lat )a∈R and (3.9.58) imply that∫ t

0

®
ρb(x)

2ρb(Xs)
φ′n(Xs)−

1

2
φ′n(Xs)

´
ds =

∫ Ç
ρb(x)

2ρb(y)
φ′n(y)− 1

2
φ′n(y)

å
Lyt (X)dy

n→∞−→
Ç
ρb(x)

2ρb(x)
− 1

2

å
Lxt (X) = 0.

Using the at-most-linear-growth condition on b, it can be shown that, for fixed x ∈ Q,
there exist constants θ1,θ2 > 0 such that, for all n ∈ N,

θ2Fb(u) ≥ φn(u), ∀u ≤ −θ1.

Intuitively speaking, this relation reflects the fact that ρb has tails at least as heavy as a
normal distribution. This implies, for all n ∈ N,

‖hn‖∞ ≤
2ρb(x)

inf |u|≤θ1 ρb(u)
+ sup

u≥0

1− Fb(u)

ρb(u)
ρb(x) + (θ2 + 1) sup

u≤0

Fb(u)

ρb(u)
+ 3.

Thus, taking account of limn→∞ φn(u) = 1{u > x} and limn→∞ hn(u) = hfx(u), we
obtain from the dominated convergence theorem and its version for stochastic integrals
(see, e.g., Proposition 5.8 in Le Gall (2016)) almost surely∫ Xt

X0

hfx(u)du =

∫ t

0
hfx(Xs)dWs +

∫ t

0
b(Xs)1{Xs ≤ x}ds−

t

2
ρb(x).

Thus, the martingale approximation from Proposition 21 and, consequently, Proposition
24 is valid for the class FK,h introduced in (3.9.57). In particular, there exist positive
constants L and Λ such that

sup
b∈Σ

Pb

Ñ∥∥∥∥∥√tÇ1

t

∫ t

0
f(Xs)dXs − Eb [f(X0)b(X0)]

å∥∥∥∥∥
FK,h

≥ φ(u)

é
≤ e−u ∀u ≥ 1,
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where

φ(u) =
√
hVeL

®
1 + log

Ç
1√
hV

å
+ log (t) + u

´
+ eL

u√
t

+ eL
√
t exp

Å
− Λt

2eCmo

ã
,

with V :=
∫ |K(z)|

»
|z|dz. Furthermore, for any x ∈ Q,∣∣∣Eb îÄKh ∗ 1(−∞,x] − 1(−∞,x]

ä
(X0)b(X0)

ó∣∣∣
=

1

2

∣∣∣∣∫ ∫ Kh(z)
Ä
1(−∞,x](z + y)− 1(−∞,x](y)

ä
ρ′b(y)dzdy

∣∣∣∣
=

1

2

∣∣∣∣∫ ∫ K(v)
Ä
1(−∞,x−vh](y)− 1(−∞,x](y)

ä
ρ′b(y)dvdy

∣∣∣∣
=

1

2

∣∣∣∣∣−
∫ ∞

0
K(v)

∫ x

x−vh
ρ′b(y)dydv +

∫ 0

−∞
K(v)

∫ x−vh

x
ρ′b(y)dydv

∣∣∣∣∣
=

1

2

∣∣∣∣∫ K(v)(ρb(x− vh)− ρb(x))dv

∣∣∣∣ .
In case β > 1, we proceed with

1

2

∣∣∣∣∫ K(v)(ρb(x− vh)− ρb(x))dv

∣∣∣∣
=

1

2

∣∣∣∣∣∣
∫
K(v)

bβc−1∑
i=1

ρ
(i)
b (x)

i!
(vh)i +

ρ
bβc
b (x− τvvh)

bβc! (vh)bβcdv

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
∫
K(v)

ρ
bβc
b (x− τvvh)− ρbβcb (x)

bβc! (vh)bβcdv

∣∣∣∣∣∣
≤ L

2bβc!

∫
|K(v)|

∣∣∣(τvvh)β−bβc(vh)bβc
∣∣∣ dv,

where τv ∈ [0, 1], v ∈ R. For β ≤ 1, ρb is Hölder continuous to the exponent β which
implies

1

2

∣∣∣∣∫ K(v)(ρb(x− vh)− ρb(x))dv

∣∣∣∣ ≤ L
2

∫
|K(v)| |vh|β dv.

Thus, for b ∈ Σ(β,L) with β > 0,∣∣∣Eb îÄKh ∗ 1(−∞,x] − 1(−∞,x]

ä
(X0) b(X0)

ó∣∣∣ ≤ hβ
L

2bβc!

∫
|K(v)vβ|dv.

67



3 Concentration of scalar ergodic diffusions and some statistical implications

In view of (3.9.56) and the above considerations, for any u ≥ 1,

sup
b∈Σ

Pb
Ç√

t sup
x∈Q
|Bx(t, h)| ≥ 2

Ç
φ(u) +

√
thβ

L
2bβc!

∫
|K(v)vβ|dv

åå
= sup

b∈Σ
Pb

(
sup

f∈FK,h

∣∣∣∣ 1√
t

∫ t

0
f(Xs)dXs

∣∣∣∣ ≥ φ(u) +
√
thβ

L
2bβc!

∫
|K(v)vβ|dv

)

≤ sup
b∈Σ

Pb

(
sup

f∈FK,h

∣∣∣∣ 1√
t

∫ t

0
f(Xs)dXs −

√
tEb[f(X0)b(X0)]

∣∣∣∣
+
√
thβ

L
2bβc!

∫
|K(v)vβ|dv ≥ φ(u) +

√
thβ

L
2bβc!

∫
|K(v)vβ|dv

)
≤ e−u. (3.9.59)

Set

λ0 :=
√
hVeL

®
1 + log

Ç
1√
hV

å
+ log (t)

´
+ eL

√
te−

Λt
2eCmo +

√
thβ

L
2bβc!

∫
|K(v)vβ|dv.

Define Λ1 := (8VeL+ 8eL)−1, and choose Λ0 ≥ 1 such that, for all t ≥ 1, h ∈ (0, 1),

8ht−1/2
∫
R
|K(z)z|dz < 4Λ0λ0

and VeLΛ1Λ0 > 1. Taking into account (3.9.54), this choice in particular implies that,
for any λ ≥ 8Λ0λ0,

sup
b∈Σ

Pb
Ä√

t‖ρt,K(h)− ρ◦t ‖∞ > λ
ä

≤ sup
b∈Σ

Pb
Ç√

t sup
x∈Q
|A1,x(t, h) +A2,x(t, h) +Bx(t, h)| > λ

å
≤ sup

b∈Σ
Pb
Ç√

t‖B•(t, h)‖∞ > λ− 8h√
t

∫
|K(z)z|dz

å
≤ sup

b∈Σ
Pb
Ä√

t‖B•(t, h)‖∞ > λ− 4Λ0λ0

ä
≤ sup

b∈Σ
Pb
Ä√

t‖B•(t, h)‖∞ > λ/2
ä
.

(3.9.60)

Note that, for u = Λ1λh
−1/2,

φ(u) +
√
thβ

L
2bβc!

∫
|K(v)vβ|dv ≤ λ0 +

√
hVeLu+

eLu√
t

≤ λ0Λ0 +
u

8
Λ−1

1

√
h ≤ λ0Λ0 +

λ

8
≤ λ

4
.

Summarising, (3.9.59) and (3.9.60) then give the asserted inequality (3.5.40).

We are now in a position to derive the announced upper bounds on the moments of
centered diffusion local time.
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Proof of Corollary 28. We point out that the assumption that b ∈ Σ(C, A, γ, 1) already
imposes some regularity on the invariant density in the sense of Definition 25. More
precisely, if b ∈ Σ(C, A, γ, 1), the invariant density ρb is bounded and Lipschitz continuous
due to (3.4.28) which in turn means that b ∈ Σ(1,L). Decompose(
Eb

[∥∥∥∥∥L•t (X)

t
− ρb

∥∥∥∥∥
p

∞

]) 1
p

≤
(
Eb
[∥∥∥ρ◦t − ρt,K Ät−1

ä∥∥∥p
∞

]) 1
p
+
Ä
Eb
î
‖ρt,K

Ä
t−1
ä
− ρb‖p∞

óä 1
p .

(3.9.61)
Inspection of the proof of Theorem 27 shows that, for any b ∈ Σ(1,L) and h = ht ≥ t−1,

(Eb [‖ρt,K(h)− ρ◦t ‖p∞])
1
p ≤ (Eb [‖A1,x(t, h) +A2,x(t, h) +Bx(t, h)‖p∞])

1
p

≤ 8h

t

∫
|K(z)z|dz + e−1ϕ(p) +

hL
2

∫
|K(v)v|dv,

where

ϕ(u) = VeL
 
h

t

®
1 + log

Ç
1√
hV

å
+ log (t) + u

´
+ eL

u

t
+ eL exp

Å
− Λt

2eCmo

ã
.

The second term on the rhs of (3.9.61) is bounded by means of Corollary 26. Conse-
quently, specifying h = ht ∼ t−1, we obtain a constant ζ such that(

Eb

[∥∥∥∥∥L•t (X)

t
− ρb

∥∥∥∥∥
p

∞

]) 1
p

≤ ζ

Ç
1√
t

{
1 +
»

log(pt) +
√
p
}

+
p

t
+ t exp

Å
− Λt

2eCmo

ãå
.

Proof of Theorem 30. Analogously to the proof of Proposition 24, we start with decom-
posing Ht into finite variation and martingale part,

Ht(f) =
√
t

Ç
1

t

∫ t

0
f(Xs)b(Xs)ds−

∫
(fb)dµb +

1

t

∫ t

0
f(Xs)dWs

å
= G

b
t(f) +

1√
t

∫ t

0
f(Xs)dWs.

For the finite variation part, part (II) of Theorem 23 gives, for any p ≥ 1,Ä
E
î
‖Gb

t‖pF
óä 1

p

≤ Φb
t(p),

for Φb
t defined as in (3.4.37). It remains to bound the p-th moments of the original

stochastic integral term. Given f ∈ F ∪ F and any p ≥ 2, it holdsÇ
Eb
ñ∣∣∣∣∣ 1√

t

∫ t

0
f(Xs)dWs

∣∣∣∣∣
pôå 1

p

≤ c
√
p

Ñ
Eb

Ç1

t

∫ t

0
f2(Xs)ds

å p
2

é 1
p

≤ c
√
p‖f‖L2(λ)

Ç
Eb
ñÅ

1

t
‖L•t (X)‖∞

ã p
2

ôå 1
p

.
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In the same way, we obtain for 1 ≤ p < 2,Ç
Eb
ñ∣∣∣∣∣ 1√

t

∫ t

0
f(Xs)dWs

∣∣∣∣∣
pôå 1

p

≤ 1√
t

(
Eb

[Ç∫ t

0
f(Xs)dWs

å2p
]) 1

2p

≤ c

 
2p

t

Ç
Eb
ñÇ∫ t

0
f2(Xs)ds

åpôå 1
2p

= c

…
p

t

Å
Eb
ïÅ∫

R
f2(y)Lyt (X)dy

ãpòã 1
2p

≤ c
√
p‖f‖L2(λ)

Å
Eb
ïÅ

1

t
‖L•t (X)‖∞

ãpòã 1
2p

.

It follows from Corollary 28 that there exists positive constants L̄1, ‹L1 such that, for any
p ≥ 1 and t ≥ 1,

max


Ñ
Eb

Ç1

t
sup
a∈Q
|Lat (X)|

å p
2

é 1
p

,

Ç
Eb
ñÇ

1

t
sup
a∈Q
|Lat (X)|

åpôå 1
2p


≤ L̄1

(
1 + t exp

Å
− Λt

2eCmo

ã
+

1√
t

¶
1 +

√
log t+

√
p
©

+
p

t

)1/2

≤ ‹L1

(
1 +

Å
p

t

ã1/4

+

…
p

t

)
.

Consequently, for any p ≥ 1,

2 sup
f∈F

Ç
Eb
ñ∣∣∣∣ 1√

t

∫ t

0
f(Xs)dWs

∣∣∣∣p
ôå 1

p

≤ Λ3V
Å√

p+
p

t1/4

ã
,Ç

Eb
ñ∣∣∣∣ 1√

t

∫ t

0
(f − g)(Xs)dWs

∣∣∣∣p
ôå 1

p

≤ Λ3‖f − g‖L2(λ)

Å√
p+

p

t1/4

ã
, f, g ∈ F ,

with Λ3 := max{4‹L1 c, 1}. In view of Lemma 33, this last estimate implies that, for any
u ≥ 1, f, g ∈ F ,

Pb
Ç∣∣∣∣t−1/2

∫ t

0
(f − g)(Xs)dWs

∣∣∣∣ ≥ d(f, g)
Ä√

u+ t−1/4u
äå
≤ exp(−u),

for d(f, g) := eΛ3 ‖f − g‖L2(λ). Analogously to the proof of Proposition 24, we obtain
for all p, q ≥ 1, k ∈ N0,

1√
t

∥∥∥∥∥ sup
f∈Fk

∫ t

0
f(Xs)dWs

∥∥∥∥∥
q

≤
‹C1

t1/4

∫ ∞
0

logN(u,Fk, d)du+ ‹C2

∫ ∞
0

»
logN(u,Fk, d)du

+ 2 sup
f∈F

1√
t

∥∥∥∥∥
∫ t

0
f(Xs)dWs

∥∥∥∥∥
q

,
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and from the local result, we infer, for any p ≥ 1,

1√
t

(
Eb

[∥∥∥∥∥
∫ t

0
f(Xs)dWs

∥∥∥∥∥
p

F

]) 1
p

≤
‹C1

t1/4

∞∑
k=0

E(Fk, d, 1)e−k/2 + ‹C2

∞∑
k=0

E(Fk, d, 2)e−k/2

+ 6Λ3V
Å√

p+
p

t1/4

ã
.

The upper bounds for the entropy integrals from Lemma 36 finally imply that, for any
p ≥ 1,

(Eb‖Ht‖pF )
1
p ≤ Φb

t(p) + Πb
t(p),

with

Πb
t(p) := 6VeΛ3

{ ‹C1v

t1/4

Å
1 + log

Å
A

V
√
S + pΛt

ãã
+ 2‹C2

 
v log

Å
A

V
√
S + pΛt

ã}
+ 6Λ3V

Å√
p+

p

t1/4

ã
.
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4 Sup-norm adaptive drift estimation for
ergodic diffusions

4.1 Introduction

The field of nonparametric statistics for stochastic processes has become an integral part
of statistics. Due to their practical relevance as standard models in many areas of ap-
plied science such as genetics, meteorology or financial mathematics to name very few,
the statistical analysis of diffusion processes receives special attention. The first contri-
bution of this chapter is an investigation of adaptive sup-norm convergence rates for a
nonparametric Nadaraya–Watson-type drift estimator, based on a continuous record of
observations (Xs)0≤s≤t of a diffusion process on the real line. The suggested data-driven
bandwidth choice relies on Lepski’s method for adaptive estimation. Characterising up-
per and lower bounds, we show that the proposed estimation procedure in the asymptotic
regime t→∞ is minimax rate-optimal over nonparametric Hölder classes. Remarkably,
we impose only very mild conditions on the drift coefficient, not going far beyond stan-
dard assumptions that ensure the existence of ergodic solutions of the underlying SDE
over the real line. In particular, we allow for unbounded drift coefficients. Secondly, we
prove a Donsker-type theorem for the classical kernel estimator of the invariant density
in `∞(R) and establish its semiparametric efficiency. With regard to the direct rela-
tion between drift coefficient and the invariant density, it is clear that the corresponding
estimation problems are closely connected. In a last step, we combine both tasks and
suggest an adaptive bandwidth choice that simultaneously yields both an asymptotically
efficient, asymptotically normal (in `∞(R)) estimator of the invariant density and, at the
same time, the corresponding minimax rate-optimal drift estimator.
So far, results analysing the sup-norm risk in the context of diffusion processes are

rather scarce, even though quantifying expected maximal errors is of immense relevance,
in particular for practical applications. We therefore start in the basic set-up of contin-
uous observations of a scalar ergodic diffusion process. While the idealised framework of
continuous observations of the process may be considered as being far from the reality, it
is indisputably of substantial theoretical interest because the statistical results incorpo-
rate the very nature of the diffusion process, not being influenced by any discretisation
errors. Consequently, they serve as relevant benchmarks for further investigations. More-
over, our approach is attractive in the sense that it provides a reasonable starting point
for extending the statistical analysis to discrete observation schemes and even multivari-
ate diffusion processes. A second, very concrete motivation for our framework is the idea
of bringing together methods from stochastic control and nonparametric statistics. Dif-
fusion processes serve as a prototype model in stochastic optimal control problems which
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4 Sup-norm adaptive drift estimation for ergodic diffusions

are solved under the long-standing assumption of continuous observations of a process
driven by known dynamics. Relaxing this assumption to the framework of continuous
observations of a process driven by an unknown drift coefficient, imposing merely mild
regularity assumptions, raises interesting questions on how to learn the dynamics by
means of nonparametric estimation procedures and to control in an optimal way at the
same time. With respect to the statistical methods, these applications typically require
optimal bounds on sup-norm errors. This chapter provides these tools for a large class
of scalar diffusion processes.
Taking a look at the evolution of the area of statistical estimation for diffusions up to

the mid 2000’s, we refer to Gobet et al. (2004) for a very nice summary. The monograph
Kutoyants (2004) provides a comprehensive overview on inference for one-dimensional
ergodic diffusion processes on the basis of continuous observations considering pointwise
and L2-risk measures. Banon (1978) is commonly mentioned as the first article addressing
the question of nonparametric identification of diffusion processes from continuous data.
In nonparametric models, asymptotically efficient estimators typically involve the optimal
choice of a tuning parameter that depends on the smoothness of the nonparametric
class of targets. From a practical perspective, this is not satisfying at all because the
smoothness is usually not known. One thus aims at adaptive estimation procedures which
are based on purely data-driven estimators adapting to the unknown smoothness.
Spokoiny (2000) and Dalalyan (2005) were the first to study adaptive drift estimation

in the diffusion model based on continuous observations. Spokoiny (2000) considers point-
wise estimation whereas Dalalyan (2005) investigates a weighted L2(R)-norm. Hoffmann
(1999) initiated adaptive estimation in a high-frequency setting, proposing a data driven
estimator of the diffusion coefficient based on wavelet thresholding which is rate optimal
wrt Lγ(D)-loss, for γ ∈ [1,∞) and a compact set D. With regard to low-frequency data,
we refer to the seminal paper by Gobet et al. (2004). Their objective is inference on the
drift and diffusion coefficient of diffusion processes with boundary reflections. The quality
of the proposed estimators is measured in the L2([a, b]) distance for any 0 < a < b < 1.
Like restricting to estimation on arbitrary but fixed compact sets, looking at processes
with boundary reflections constitutes a possibility to circumvent highly technical issues
that we face in our investigation of diffusions on the entire real line. Gobet et al. pos-
tulate that allowing diffusions on the real line would require to introduce a weighting in
the risk measure given by the invariant density. This phenomenon will become visible in
our results, as well. The same weighting function can be found in Dalalyan (2005). Intu-
itively, it seems natural that the estimation risk would explode without a weighting since
the observations of the continuous process during a finite period of time do not contain
information about the behaviour outside the compact set where the path lives in. For a
more detailed heuristic account on the choice of the weight function for L2(R)-risk, we
refer to Remark 4.1 in Dalalyan (2005). Sharp adaptive estimation of the drift vector for
multidimensional diffusion processes from continuous observations for the L2- and the
pointwise risk has been addressed in Strauch (2015) and Strauch (2016), respectively.
As illustrated, the pointwise and L2-risks are already well-understood in different

frameworks. This thesis complements these developments by an investigation of the
sup-norm risk in the continuous observation scheme for diffusion processes living on the
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whole real line. In the low-frequency framework, this strong norm was studied in Söhl
and Trabs (2016) who construct both an adaptive estimator of the drift and adaptive
confidence bands. They prove a functional central limit theorem for wavelet estimators in
a multi-scale space, i.e., considering a weaker norm that still allows to construct adaptive
confidence bands for the invariant density and the drift with optimal `∞([a, b])-diameter.
Still, there exist a lot of challenging open questions, and in view of the growing field
of applications, there is a clear need for developing and adding techniques and tools for
the statistical analysis of stochastic processes under sup-norm risk. Ideally, these tools
should include the probabilistic features of the processes and, at the same time, allow
for an in-depth analysis of issues such as adaptive estimation in a possibly broad class of
models.
A common device for the derivation of adaptive estimation procedures in sup-norm loss

are uniform Talagrand-type concentration inequalities and moment bounds for empirical
processes based on chaining methods. These tools are made available for a broad class
of scalar ergodic diffusion processes in Chapter 3. The concentration inequalities derived
therein will serve as the central vehicle for our analysis, and we conjecture that they allow
for generalisations on discrete observation schemes, multivariate state variables and even
more general Markov processes. Therefore, the approach presented in this thesis provides
guidance for further statistical investigations of stochastic processes in sup-norm risk.
Besides the frequentist statistical research, the Bayesian approach found a lot of in-

terest, more recently. In particular, addressing the question of estimating the drift and
invariant density of a diffusion process in sup-norm risk, this work is closely related to
Nickl and Ray (2018) who start from methodologically totally different Bayesian consid-
erations. These allow for a unified analysis of the scalar and multivariate setting up to
dimension 4. In contrast to the model considered here, they assume the drift coefficient to
be periodic such that the state space of the diffusion process is restricted to a bounded
set. A maximum a posteriori estimate for the drift coefficient based on a truncated
Gaussian series prior which can be viewed as a penalised least squares estimator is sug-
gested. The obtained convergence rate of the sup-norm risk equals the minimax-optimal
rate achieved by our kernel-based estimator up to log-factors. Furthermore, a functional
CLT for the drift estimator viewed as a random element from the dual of certain Besov
spaces is shown as well as a Donsker-type functional central limit theorem for the implied
plug-in estimator of the invariant density paralleling in dimension one our result for the
kernel invariant density estimator in Proposition 45. The CLTs are induced by Bayesian
Bernstein–von Mises theorems. In the framework of continuous observations, van der
Meulen et al. (2006) consider the asymptotic behaviour of posterior distributions in a
general Brownian semimartingale model which, as a special case, includes the ergodic
diffusion model. Pokern et al. (2013) investigate a Bayesian approach to nonparamet-
ric estimation of the periodic drift of a scalar diffusion from continuous observations
and derive bounds on the rate at which the posterior contracts around the true drift
in L2([0, 1))-norm. Improvements in terms of these convergence rates results and adap-
tivity are given in van Waaij and van Zanten (2016). Nonparametric Bayes procedures
for estimating the drift of one-dimensional ergodic diffusion models from discrete-time
low-frequency data are studied in van der Meulen and van Zanten (2013). The authors
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give conditions for posterior consistency and verify these conditions for concrete priors.
Given discrete observations of a scalar reflected diffusion, Nickl and Söhl (2017) derive
(and verify) conditions in the low-frequency sampling regime for prior distributions on
the diffusion coefficient and the drift function that ensure minimax optimal contraction
rates of the posterior distribution over Hölder–Sobolev smoothness classes in L2([a, b])-
distance, for any 0 < a < b < 1.

Basic framework and outline of the chapter

Taking into view the sup-norm risk, the aim of this chapter is to suggest a rate-optimal
nonparametric drift estimator, based on continuous observations of an ergodic diffusion
process on the real line which is given as the solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = ξ, t > 0, (4.1.1)

with unknown drift function b : R → R, dispersion σ : R → (0,∞) and some standard
Brownian motion W = (Wt)t≥0. The initial value ξ is a random variable independent
of W . We restrict to the ergodic case where the Markov process (Xt)t≥0 admits an
invariant measure, and we denote by ρb and µb the invariant density and the associated
invariant measure, respectively. Furthermore, we will always consider stationary solutions
of (4.1.1), i.e., we assume ξ ∼ µb.
In the set-up of continuous observations, there is no interest in estimating the volatility

σ2 since this quantity is identifiable using the quadratic variation of X. We thus focus
on recovering the unknown drift. We develop our results in the following classical scalar
diffusion model.

Definition 39. Let σ ∈ Liploc(R) and assume that, for some constants ν, ν ∈ (0,∞), σ
satisfies ν ≤ |σ(x)| ≤ ν, for all x ∈ R. For fixed constants A, γ > 0 and C ≥ 1, define the
set Σ = Σ(C, A, γ, σ) as

Σ :=
{
b ∈ Liploc(R) : |b(x)| ≤ C(1 + |x|),

∀|x| > A :
b(x)

σ2(x)
sgn(x) ≤ −γ

}
.

(4.1.2)

Given any b ∈ Σ, there exists a unique strong solution of the SDE (4.1.1) with ergodic
properties and invariant density

ρ(x) = ρb(x) :=
1

Cb,σσ2(x)
exp

Ç∫ x

0

2b(y)

σ2(y)
dy

å
, x ∈ R, (4.1.3)

with Cb,σ :=
∫
R

1
σ2(u)

exp
(∫ u

0
2b(y)
σ2(y)

dy
)

du denoting the normalising constant. Through-
out the sequel and for any b ∈ Σ, we will denote by Eb the expected value with respect
to the law of X associated with the drift coefficient b. The distribution function cor-
responding to ρ = ρb and the invariant measure of the distribution will be denoted by
F = Fb and µ = µb, respectively.
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Our statistical analysis relies heavily on uniform concentration inequalities for contin-
uous-time analogues of empirical processes of the form

t−1
∫ t

0
f(Xs)ds− Eb[f(X0)], f ∈ F ,

as well as stochastic integrals

t−1
∫ t

0
f(Xs)dXs − Eb[b(X0)f(X0)], f ∈ F ,

indexed by some infinite-dimensional function class F . These key devices are provided in
our work on concentration inequalities for scalar ergodic diffusions in Chapter 3. They
are tailor-made for the investigation of sup-norm risk criteria and can be considered as
continuous-time substitutes for Talagrand-type concentration inequalities and moment
bounds for empirical processes in the classical i.i.d. framework. In Chapter 3, upper
bounds on the expected sup-norm error for a kernel density estimator of the invariant
density (that we will use in the present work) are derived as a first statistical application
of the developed concentration inequalities. In Section 4.2, we will present the announced
probabilistic tools and statistical results from Chapter 3 that will be of crucial importance
in our subsequent developments. The advantage of the methods proposed in Chapter 3
is that the martingale approximation approach - which is at the heart of the derivations -
yields very elementary simple proofs, working under minimal assumptions on the diffusion
process.

The estimators Given continuous observations Xt = (Xs)0≤s≤t of a diffusion process
as described in Definition 39, first basic statistical questions concern the estimation of
the invariant density ρb and the drift coefficient b and the investigation of the respective
convergence properties. Since b = (ρbσ

2)′/(2ρb), the question of drift estimation is obvi-
ously closely related to estimation of the invariant density ρb and its derivative ρ′b. For
some smooth kernel function K : R → R with compact support, introduce the standard
kernel invariant density estimator

ρt,K(h)(x) :=
1

th

∫ t

0
K

Å
x−Xu

h

ã
du, x ∈ R. (4.1.4)

A natural estimator of the drift coefficient b ∈ Σ(C, A, γ, 1), which relies on the analogy
between the drift estimation problem and the model of regression with random design,
is given by a Nadaraya–Watson-type estimator of the form

bt,K(h)(x) :=
ρt,K(h)(x)

ρ+
t,K(t−1/2)(x) +

»
log t
t exp

(√
log t

) , (4.1.5)

where ρt,K(h)(x) :=
1

th

∫ t

0
K

Å
x−Xs

h

ã
dXs, (4.1.6)

and ρ+
t,K(h)(x) := max{0, ρt,K(h)(x)}. We recognize the kernel density estimator in

the denominator, and we will see that ρt,K with the proposed (adaptive) bandwidth
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choice serves as a rate-optimal estimator of bρb. The additive term in the denominator
prevents it from becoming small too fast in the tails.
Given a record of continuous observations of a scalar diffusion process X with b ∈

Σ(C, A, γ, 1), the local time estimator ρ◦t (•) := t−1L•t (X), for (Lat (X), t ≥ 0, a ∈ R)
denoting the local time process of X, is available. This is a natural density estimator
since diffusion local time can be interpreted as the derivative of the empirical measure.
In the past, the latter was exhaustively studied for pointwise estimation and in L2-risk
unlike the sup-norm case. In (Kutoyants, 1998, Sec. 7), weak convergence of the local
time estimator to a Gaussian process in `∞(R) is shown. The same is done for more
general diffusion processes in van der Vaart and van Zanten (2005). Having provided
the required tools from empirical process theory, upper bounds on all moments of the
sup-norm error of ρ◦t are proven in Chapter 3. Unfortunately, the local time estimator is
viewed as not being very feasible in practical applications. In addition, it does not offer
straightforward extensions to the case of discretely observed or multivariate diffusions,
in sharp contrast to the classical kernel-based density estimator. We therefore advocate
the usage of the kernel density estimator introduced in (4.1.4) which can be viewed as a
universal approach in nonparametric statistics, performing an optimal behaviour over a
wide range of models. Furthermore, the kernel density estimator naturally appears in the
denominator of our Nadaraya–Watson-type drift estimator defined according to (4.1.5).

Asymptotically efficient density estimation In this chapter, we will complement the
sup-norm analysis started in Chapter 3 with an investigation of the asymptotic distribu-
tion of the kernel density estimator in a functional sense. We will prove a Donsker-type
theorem for the kernel density estimator, thereby demonstrating that this estimator for
an appropriate choice of bandwidth behaves asymptotically like the local time estimator.
We then go one step further and establish optimality of the limiting distribution, opti-
mality seen in the sense of the general convolution theorem 3.11.2 for the estimation of
Banach space valued parameters presented in van der Vaart and Wellner (1996). Their
theorem states that, for an asymptotically normal sequence of experiments and any reg-
ular estimator, the limiting distribution is the convolution of a specific Gaussian process
and a noise factor. This Gaussian process is viewed as the optimal limit law, and we refer
to it as the semiparametric lower bound. We establish this lower bound and verify that
it is achieved by the kernel density estimator. The Donsker-type theorem and the verifi-
cation of semiparametric efficiency of the kernel-based estimator are the main results on
density estimation in the present chapter. They are presented in Section 4.3. Donsker-
type theorems can be regarded as frequentist versions of functional Bernstein–von Mises
theorems to some extent. In particular, our methods and techniques are interesting for
both the frequentist and Bayesian community. The optimal limiting distribution in the
sense of the convolution theorem is relevant in the context of Bayesian Bernstein–von
Mises theorems in the following sense: If this lower bound is attained, Bayesian credible
sets are optimal asymptotic frequentist confidence sets as argued in Castillo and Nickl
(2014); see also (Nickl and Söhl, 2017, p. 12) who address Bernstein–von Mises theorems
in the context of compound Poisson processes. Our approach concerning the question of
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efficiency is connected to the recent work Nickl and Ray (2018) where a Bernstein–von
Mises theorem for multidimensional diffusions and efficiency of the limit distribution is
established. We thank Richard Nickl for the private communication that motivated the
derivation of the semiparametric lower bound in this work.

Minimax optimal adaptive drift estimation in sup-norm Subject of Section 4.4 is an
adaptive scheme for the sup-norm rate-optimal estimation of the drift coefficient. This is
a main contribution and initial motivation of this thesis. Our approach for estimating the
drift coefficient is based on Lepski’s method for adaptive estimation and the exponential
inequalities presented in Section 4.2. For proving upper bounds on the expected sup-norm
loss, we follow closely the ideas developed in Giné and Nickl (2009) for the estimation
of the density and the distribution function in the classical i.i.d. setting. We suggest
a purely data-driven bandwidth choice Êht for the estimator bt,K defined in (4.1.5) and
derive upper bounds on the convergence rate of the expected sup-norm risk uniformly
over Hölder balls in Theorem 52, imposing very mild conditions on the drift coefficient.
To establish minimax optimality of the rate, we prove lower bounds presented in Theorem
53.

Simultaneous adaptive density and drift estimation Observing from (4.1.3) that the
invariant density is a transformation of the integrated drift coefficient, it is not sur-
prising that we can carry over the aforementioned approach in Giné and Nickl (2009)
(which aims at simultaneous estimation of the distribution function and density in the
i.i.d. framework) to the problems of invariant density and drift estimation. We suggest a
simultaneous bandwidth selection procedure that allows to derive a result in the spirit of
their Theorem 2. Adjusting the procedure from Section 4.4 for choosing the bandwidthÊht in a data-driven way, we can find a bandwidth ĥt such that ρt,K(ĥt) is an asymptoti-
cally efficient estimator in `∞(R) for the invariant density and, at the same time, bt,K(ĥt)
estimates the drift coefficient with minimax optimal rate of convergence wrt sup-norm
risk. We formulate this result in Theorem 54.

All proofs are deferred to Section 4.6 and Section 4.7.

4.2 Preliminaries

We will investigate the question of adapting to unknown Hölder smoothness. For ease
of presentation, we will suppose in the sequel that σ ≡ 1. The subsequent results
however can be extended to the case of a general diffusion coefficient fulfilling standard
regularity and boundedness assumptions. We refer to Chapter 3 where central tools for
the investigation of the present work are derived for more general σ as in Definition 39.
Recall the definition of the class Σ = Σ(C, A, γ, σ) of drift functions in (4.1.2).

Definition 40. Given β,L > 0, denote by HR(β,L) the Hölder class (on R) as the set
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of all functions f : R→ R which are l := bβc-times differentiable and for which

‖f (k)‖∞ ≤ L ∀ k = 0, 1, ..., l,

‖f (l)(·+ s)− f (l)(·)‖∞ ≤ L|s|β−l ∀ s ∈ R.

Set

Σ(β,L) = Σ(β,L, C, A, γ) :=
¶
b ∈ Σ(C, A, γ, 1) :

ρb ∈ HR(β + 1,L)
©
.

(4.2.7)

Here, bβc denotes the greatest integer strictly smaller than β.

Considering the class of drift coefficients Σ(β,L), we use kernel functions satisfying
the following assumptions,

• K : R→ R is Lipschitz continuous and symmetric;
• supp(K) ⊆ [−1/2, 1/2];

• for some α ≥ β + 1,K is of order α, i.e.,
∫
RK(y)dy = 1,

∫
R y

jK(y)dy = 0,

j = 1, . . . , bαc, ∫R |y|α|K(y)|dy <∞.
(4.2.8)

The subsequent deep results from Chapter 3 are fundamental for the investigation of
the sup-norm risk. They rely on diffusion specific properties, in particular the existence
of local time, on the one hand, and classical empirical process methods like the generic
chaining device on the other hand. In the classical setting of statistical inference based
on i.i.d. observations X1, ..., Xn, the analysis of sup-norm risks typically requires inves-
tigating empirical processes of the form

(
n−1∑n

i=1 f(Xi)
)
f∈F , indexed by a possibly

infinite-dimensional class F of functions which, in many cases, are assumed to be uni-
formly bounded. Analogously, in the current continuous, non-i.i.d. setting, our analysis
raises questions about empirical processes of the formÇ

1

t

∫ t

0
f(Xs)ds

å
f∈F

and, more generally,
Ç

1

t

∫ t

0
f(Xs)dXs

å
f∈F

.

Clearly, the finite variation part of the stochastic integral entails the need to look at
unbounded function classes since we do not want to restrict to bounded drift coefficients.
Answers are given in Chapter 3 where we provide exponential tail inequalities both for

sup
f∈F

ñ
1

t

∫ t

0
f(Xs)ds −

∫
fdµb

ô
and sup

f∈F

ñ
1

t

∫ t

0
f(Xs)dXs −

∫
bfdµb

ô
,

imposing merely standard entropy conditions on F . As can be seen from the construction
of the estimators, we have to exploit these results in order to deal with both empirical
diffusion processes induced by the kernel density estimator ρt,K(h) (see (4.1.4)) and with
stochastic integrals like the estimator ρt,K(h) of the derivative of the invariant density
(see (4.1.6)). One first crucial auxiliary result for proving the convergence properties of
the estimation schemes proposed in Sections 4.4 and 4.5 is stated in the following
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Proposition 41 (Concentration of the estimator ρt,K(h) of ρ′b/2). Given a continuous
record of observations Xt = (Xs)0≤s≤t of a diffusion X with b ∈ Σ = Σ(C,A, γ, 1) as
introduced in Definition 39 and a kernel K satisfying (4.2.8), define the estimator ρt,K
according to (4.1.6). Then, there exist constants L,‹L0 such that, for any u, p ≥ 1,
h ∈ (0, 1), t ≥ 1,

sup
b∈Σ

Ä
Eb
î
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖p∞
óä 1

p ≤ φt,h(p),

sup
b∈Σ

Pb
Ç

sup
x∈R

∣∣∣ρt,K(h)(x)− Eb
î
ρt,K(h)(x)

ó∣∣∣ > eφt,h(u)

å
≤ e−u,

(4.2.9)

for

φt,h(u) := L

{
1√
t

{Å
log

Å
ut

h

ãã3/2

+

Å
log

Å
ut

h

ãã1/2

+ u3/2
}

+
u

th
+

1

h
exp
Ä
−‹L0t

ä
+

1√
th

Å
log

Å
ut

h

ãã1/2

+
1

t3/4
√
h

log

Å
ut

h

ã
+

1√
th

ß√
u+

u

t1/4

™}
.

(4.2.10)

The proof of the preceding proposition can be found in Section 4.7.1 and relies on
uniform concentration results for stochastic integrals from Chapter 3. These results fur-
ther allow to prove the following result on the sup-norm distance ‖t−1L•t (X)−ρt,K(h)‖∞
between the local time and the kernel density estimator. The exponential inequality for
this distance will be the key to transferring the Donsker theorem for the local time to the
kernel density estimator. It can also be interpreted as a result on the uniform approxi-
mation error of the scaled local time by its smoothed version, noting that ρt,K(h) can be
seen as a convolution of a mollifier and a scaled version of diffusion local time. The next
result actually parallels Theorem 1 in Giné and Nickl (2009) which states a subgaussian
inequality for the distribution function in the classical i.i.d. set-up. It serves as an impor-
tant tool for the analysis of the proposed adaptive scheme for simultaneous estimation
of the distribution function and the associated density in Giné and Nickl (2009). The
subsequent proposition plays an analogue role for the adaptive scheme for simultaneous
estimation of the invariant density and the drift coefficient presented in Section 4.5.

Proposition 42 (Theorem 27 in Chapter 3). Given a diffusion X with b ∈ Σ(β,L), for
some β,L > 0, consider some kernel function K fulfilling (4.2.8) and h = ht ∈ (0, 1)
such that ht ≥ t−1. Then, there exist positive constants V, ξ1,Λ0,Λ1 and L such that, for
all λ ≥ λ0(h), where

λ0(h) := 8Λ0

ñ√
hVeL

®
1 + log

Ç
1√
hV

å
+ log t

´
+ eL

√
t exp(−ξ1t)

+
√
thβ+1 L

2bβ + 1c!

∫
|K(v)vβ+1|dv

ô
,
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and any t > 1,

sup
b∈Σ(β,L)

Pb
Ç√

t

∥∥∥∥ρt,K(h)− L•t (X)

t

∥∥∥∥
∞
> λ

å
≤ exp

Ç
−Λ1λ√

h

å
.

The very first step of our approach to sup-norm adaptive drift estimation consists in
estimating the invariant density in sup-norm loss. Corresponding upper bounds on the
sup-norm risk have been investigated in Chapter 3. We next cite these bounds for the
local time estimator and the kernel density estimator. Our estimation procedure does not
involve the local time density estimator. For the sake of presenting a complete statistical
sup-norm analysis of ergodic scalar diffusions based on continuous observations, we still
include it here.

Lemma 43 (Moment bound on the supremum of centred diffusion local time, Corollary
28 of Chapter 3). Let X be as in Definition 39. Then, there are positive constants ζ, ζ1

such that, for any p, t ≥ 1,

sup
b∈Σ(C,A,γ,1)

Ç
Eb
ñ∥∥∥∥L•t (X)

t
− ρb

∥∥∥∥p
∞

ôå 1
p

≤ ζ
(p
t

+
1√
t

Ä
1 +
√
p+

√
log t
ä

+ te−ζ1t
)
.

In Chapter 3, we have also shown the analogue fundamental result for the sup-norm
risk of the kernel density estimator. The following upper bounds will be essential for
deriving convergence rates of the Nadaraya–Watson-type drift estimator (see (4.1.5)).

Proposition 44 (Concentration of the kernel invariant density estimator, Corollary 26
of Chapter 3). Let X be a diffusion with b ∈ Σ(β,L), for some β,L > 0, and let K be a
kernel function fulfilling (4.2.8). Given some positive bandwidth h, define the estimator
ρt,K(h) according to (4.1.4). Then, there exist positive constants ν1, ν2, ν3 such that, for
any p, u ≥ 1, t > 0,

sup
b∈Σ(β,L)

(
Eb
[‖ρt,K(h)− ρb‖p∞

]) 1
p ≤ ψt,h(p), (4.2.11)

sup
b∈Σ(β,L)

Pb
(‖ρt,K(h)− ρb‖∞ ≥ eψt,h(u)

) ≤ e−u,

for

ψt,h(u) :=
ν1√
t

{
1 +

√
log

Ç
1√
h

å
+
»

log(ut) +
√
u

}

+
ν2u

t
+

1

h
e−ν3t +

Lhβ+1

bβ + 1c!

∫
|vβ+1K(v)|dv.

(4.2.12)

Specifying to h = ht ∼ t−1/2, an immediate consequence of (4.2.11) is the convergence
rate

»
log t/t for the risk supb∈Σ(β,L) Eb

[‖ρt,K(h)− ρb‖∞
]
of the kernel density estimator
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ρt,K(t−1/2). Note that we obtain the parametric convergence rate for the bandwidth
choice t−1/2 which in particular does not depend on the (typically unknown) order of
smoothness of the drift coefficient. Thus, there is no extra effort needed for adaptive
estimation of the invariant density. This phenomenon appears only in the scalar setting.

4.3 Donsker-type theorems and asymptotic efficiency of
kernel invariant density estimators

This section is devoted to the study of weak convergence properties of the kernel density
estimator ρt,K . Using the exponential inequality for ‖t−1L•t (X) − ρt,K(h)‖∞ (Propo-
sition 42 from Section 4.2), we derive a uniform CLT for the kernel invariant density
estimator. In particular, the result holds for the ‘universal’ bandwidth choice h ∼ t−1/2.
Furthermore, we use the general theory developed in van der Vaart and Wellner (1996)
for establishing asymptotic semiparametric efficiency of ρt,K(t−1/2) in `∞(R).

4.3.1 Donsker-type theorems

The exponential inequality for the sup-norm difference of the kernel and the local time
density estimator stated in Proposition 42 allows to transfer an existing Donsker theorem
for the local time density estimator presented in van der Vaart and van Zanten (2005).

Proposition 45. Given a diffusion X with b ∈ Σ(β,L), consider some kernel function
K fulfilling (4.2.8). Define the estimator ρt,K(h) according to (4.1.4) with bandwidth
h = ht ∈ [t−1, 1) satisfying

√
thβ+1 → 0, as t→∞. Then,

√
t (ρt,K(h)− ρb) Pb=⇒ H, as t→∞,

in `∞(R), where H is a centred, Gaussian random map with covariance structure

E[H(x)H(y)] = 4m(R)ρb(x)ρb(y)

×
∫
R

(1{[x,∞)} − Fb)(1{[y,∞)} − Fb)ds,
(4.3.13)

m and s denoting the speed measure and the scale function of X, respectively.

An analogue result is proven in Nickl and Ray (2018) for a plug-in estimator of the
invariant density that is induced by a MAP estimate for a periodic drift coefficient b
based on a Bayesian approach.

Remark 46. Donsker-type results turn out to be useful far beyond the question of the
behaviour of the density estimator wrt the sup-norm as a specific loss function. In par-
ticular, they provide immediate access to solutions of statistical problems concerned with
functionals of the invariant density ρb. Clearly, this includes the estimation of bounded,
linear functionals of ρb such as integral functionals, to name just one common class. As
an instance, Kutoyants and Yoshida (2007) study the estimation of moments µb(G) for

82



4 Sup-norm adaptive drift estimation for ergodic diffusions

known functions G. The target µb(G) is estimated by the empirical moment estima-
tor t−1

∫ t
0 G(Xs)ds, and it is shown that this estimator is asymptotically efficient in the

sense of local asymptotic minimaxity (LAM) for polynomial loss functions. Parallel re-
sults can directly be deduced from the Donsker theorem. Defining the linear functional
ΦG : `∞(R) → R, h 7→ ∫

h(x)G(x)dx, the target can be written as ΦG(ρb), and the em-
pirical moment estimator equals the linear functional applied to the local time estimator,
that is,

1

t

∫ t

0
G(Xs)ds = ΦG(t−1L•t (X)).

Thus, if ΦG is bounded, it follows from the results of van der Vaart and van Zanten
(2005) (see Lemma 56 in Section 4.6) and from Proposition 45, respectively, that

√
t
Ä
ΦG(t−1L•t (X))− ΦG(ρb)

ä
as well as

√
t
Ä
ΦG(ρt,K(t−1/2))− ΦG(ρb)

ä
are asymptotically normal with the limiting distribution ΦG(H). Optimality of ΦG(H)
in the sense of the convolution theorem 3.11.2 in van der Vaart and Wellner (1996) will
be shown in the next section.

Not only linear, but also nonlinear functions that allow for suitable linearisations can
be analysed, once the required CLTs and optimal rates of convergence are given. This
is related to the so-called plug-in property introduced in Bickel and Ritov (2003). The
suggested connection is explained a bit more detailed in Giné and Nickl (2009).

4.3.2 Semiparametric lower bounds for estimation of the invariant density

We now want to analyse semiparametric optimality aspects of the limiting distribution
in Proposition 45 as treated in Chapter 3.11 in van der Vaart and Wellner (1996) or
Chapter 25 of van der Vaart (1998). To this end, we first look at lower bounds.
Denote by Pt,h the law of a diffusion process Y t := (Ys)0≤s≤t with perturbed drift

coefficient b+ t−1/2h, given as a solution of the SDE

dYs =

Ç
b(Ys) +

h(Ys)√
t

å
ds+ dWs, Y0 = X0,

and denote by ρb+t−1/2h the associated invariant density. Set Pb := Pt,0, and define the
set of experiments

{C[0, t],B (C[0, t]) ,Pt,h : h ∈ G} , t > 0, (4.3.14)

with G = `∞(R) ∩ Liploc(R) viewed as a linear subspace of L2(µb). By construction and
Girsanov’s Theorem (cf. (Liptser and Shiryaev, 2001, Theorem 7.18)), the log-likelihood
is given as

log

Å
dPt,h
dPb

ã
(Xt) =

1√
t

∫ t

0
h(Xs)dWs −

1

2t

∫ t

0
h2(Xs)ds

= ∆t,h −
1

2
‖h‖2L2(µb)

+ oPb(1),
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where ∆t,h := t−1/2
∫ t

0 h(Xs)dWs. Here, the last line follows from the law of large numbers

for ergodic diffusions, and the CLT immediately gives ∆t,h
Pb=⇒ N (0, ‖h‖2L2(µb)

). Thus,
(4.3.14) is an asymptotically normal model. Lemma 57 from Section 4.6 now implies that
the sequence Ψ(Pt,h) := ρb+t−1/2h, t > 0, is regular (or differentiable). In fact, it holds

√
t(Ψ(Pt,h)−Ψ(Pb)) −→t→∞ A′h in `∞(R), for any h ∈ G, (4.3.15)

for the continuous, linear operator

A′ : (G,L2(µb))→ (`∞(R), ‖ · ‖∞) , h 7→ 2ρb(H − µb(H)),

with H(·) :=
∫ ·

0 h(v)dv. We want to determine the optimal limiting distribution for
estimating the invariant density ρb = Ψ(Pt,0) in `∞(R) in the sense of the convolution
theorem 3.11.2 in van der Vaart and Wellner (1996). Since the distribution of a Gaussian
process G in `∞(R) is determined by the covariance structure Cov(G(x),G(y)), x, y ∈ R,
we need to find the Riesz-representer for pointwise evaluations b∗x ◦ A′ : G → R, where
b∗x : `∞(R) → R, f 7→ f(x), for any x ∈ R. Stated differently, we need to find the
Cramér–Rao lower bound for pointwise estimation of ρb(x), x ∈ R. Speaking about these
one-dimensional targets in R such as point evaluations ρb(x) or linear functionals of the
invariant density, we refer to semiparametric Cramér–Rao lower bounds as the variance
of the optimal limiting distribution from the convolution theorem. This last quantity is
a lower bound for the variance of any limiting distribution of a regular estimator.
Our first step towards this goal is to look at integral functionals which we will use to ap-

proximate the pointwise evaluations. For any continuous, linear functional b∗ : `∞(R)→
R, we can infer from (4.3.15) that

√
t(b∗(Ψ(Pt,h))− b∗(Ψ(Pb))) −→t→∞ b∗(A′h) in R, for all h ∈ G.

Considering Φg : `∞(R) → R, f 7→ ∫
g(x)f(x)dx, for a function g ∈ C∞c (R), and letting

Φg(Pt,h) := Φg(ρb+t−1/2h), this becomes

√
t(Φg(Pt,h)− Φg(Pb)) −→t→∞

∫
g(x)(A′h)(x)dx.

The limit defines a continuous, linear map κ : (G,L2(µb))→ R with representation

κ(h) =

∫
g(x)(A′h)(x)dx =

∫
2g(x)(H(x)− µb(H))ρb(x)dx

= 2〈gc, Hc〉µb = 2〈LbL−1
b gc, Hc〉µb = −〈∂L−1

b gc, h〉µb . (4.3.16)

Here and throughout the sequel, Lb denotes the generator of the diffusion process X with
drift coefficient b, i.e., Lbf = b∂f + ∂2f/2, for any f ∈ C∞c (R), and fc := f − µb(f)
denotes the centred version of f , for any function f ∈ L1(µb). Note that gc ∈ Rg(Lb)
due to the following lemma whose proof is deferred to Section 4.6.

84



4 Sup-norm adaptive drift estimation for ergodic diffusions

Lemma 47. Let g ∈ C∞c (R), and set

h(z, x) :=
1{z ≥ x} − Fb(z)

ρb(z)
, z, x ∈ R.

Then, gc is contained in the image of the generator Lb, and

L−1
b (gc) = T (z) :=

∫ z

0

∫
2g(x)ρb(x)h(u, x)dxdu.

In particular, ∫∫
g(x)H(x, y)g(y)dydx = ‖∂L−1

b (gc)‖2L2(µb)
,

where H(x, y) := E[H(x)H(y)], x, y ∈ R, for the Gaussian process H fulfilling (4.3.13).

We conclude by means of Theorem 3.11.2 in van der Vaart and Wellner (1996) that
the Cramér–Rao lower bound for estimation of Φg(Pb) is given by ‖∂L−1

b gc‖2L2(µb)
. Using

an approximation procedure, it then can be shown that the Cramér–Rao lower bound for
pointwise estimation of ρb(y) is defined via

CR(y) := ‖2ρb(y)h(·, y)‖2L2(µb)
, for any y ∈ R. (4.3.17)

For details, see Proposition 58 in Section 4.6. The same arguments apply to estimation
of linear combinations uρb(x)+vρb(y), u, v, x, y ∈ R, and the corresponding Cramér–Rao
bound reads

‖2uρb(x)h(·, x) + 2vρb(y)h(·, y)‖2L2(µb)
.

It follows that the covariance of the optimal Gaussian process in the convolution theorem
is given as

CR(x, y) := 4ρb(x)ρb(y)

∫
h(z, x)h(z, y)ρb(z)dz, x, y ∈ R. (4.3.18)

Summing up, we can deduce from Theorem 3.11.2 in van der Vaart and Wellner (1996)
how possible limiting distributions of regular estimators of the invariant density can look
like, thereby revealing the optimal limiting distribution. Recall that an estimator ρ̂t of
the invariant density is called regular if it has a weak limit which is stable with respect
to small perturbations of the model, more precisely, if

√
t (ρ̂t −Ψ(Pt,h))

Pt,h
=⇒ L , as t→∞, for any h ∈ G,

for a fixed, tight Borel probability measure L in `∞(R).

Proposition 48. Let ρ̂t be a regular estimator of the invariant density ρb. Then, there
exist a tight centred, Borel-measurable Gaussian process G in `∞(R) with covariance
structure

Cov(G(x),G(y)) = CR(x, y), for all x, y ∈ R,

and with CR(x, y) as in (4.3.18) as well as an independent, tight, Borel-measurable map
M in `∞(R) such that the limit distribution L of

√
t(ρ̂t − ρb) satisfies

L ∼ G + M.
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4.3.3 Semiparametric efficiency of the kernel density estimator

Having characterised the optimal limit distribution in the previous section, it is natural
to ask in a next step for an efficient estimator of linear functionals of the invariant density
such as pointwise estimation, functionals of the form Φg(Pb) := µb(g) =

∫
gdµb or, even

more, for estimation of ρb in `∞(R).

Definition 49. An estimator ρ̂t of the invariant density is called asymptotically efficient
in `∞(R) if the estimator is regular, i.e.,

√
t (ρ̂t −Ψ(Pt,h))

Pt,h
=⇒ L , as t→∞, for any h ∈ G,

for a fixed, tight Borel probability measure L in `∞(R), and if L is the law of the
centred Gaussian process G specified in Proposition 48, i.e., ρ̂t achieves the optimal
limiting distribution.

Given an asymptotically efficient estimator ρ̂t in `∞(R) and any bounded, linear func-
tional b∗ : `∞(R) → R, efficiency of the estimator b∗(ρ̂t) for estimation of b∗(ρb) then
immediately follows. Our next result shows that estimation via ρt,K(h) for the universal
bandwidth choice h ∼ t−1/2 is suitable for the job.

Theorem 50. The invariant density estimator ρt,K(t−1/2) defined according to (4.1.4)
is an asymptotically efficient estimator in `∞(R).

Remark 51. (a) From the proof of Theorem 50, it can be inferred that the local time
estimator t−1L•t (X) is an asymptotically efficient estimator, as well.

(b) In terms of earlier research on efficient estimation of the density as a function
in `∞(R), we shall mention Kutoyants (1998) and Negri (2001). The works deal
with the efficiency of the local time estimator t−1L•t (X) in the LAM sense for
certain classes of loss functions. Subject of (Kutoyants, 1998, Section 8) are L2(ν)
risks for some finite measure ν on R of the form tEb

∫ |ρ̃t(x) − ρb(x)|2ν(dx), for
estimators ρ̃t of ρb, whereas Negri complements this work for risks of the form
Eb
î
g
Ä√

t‖ρ̃t − ρb‖∞
äó

for a class of bounded, positive functions g. Of course, the
distribution appearing in the lower bound corresponds to the optimal distribution in
the sense of Proposition 48. The derivation in Kutoyants (1998) of the lower bound
is based on the van Trees inequality as established in Gill and Levit (1995) as an
alternative to the classical approach relying on Hájek–Le Cam theory. On the other
hand, Negri’s method follows Millar (1983) and makes use of the idea of convergence
of experiments originally provided by Le Cam. The optimal distribution in the sense
of a convolution theorem is not shown neither is any asymptotic efficiency result in
`∞(R) for the kernel density estimator.

4.4 Minimax optimal adaptive drift estimation wrt sup-norm
risk

We now turn to the original question of estimating the drift coefficient in a completely
data-driven way. The aim of this section is to suggest a scheme for rate-optimal choice
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of the bandwidth h, based on a continuous record of observations Xt ≡ (Xs)0≤s≤t of a
diffusion as introduced in Definition 39, optimality considered in terms of the sup-norm
risk. Since we stick to the continuous framework, our previous concentration results are
directly applicable, allowing, e.g., for the straightforward derivation of upper bounds on
the variance of the estimator ρt,K(h) of the order

σ2(h, t) :=
(log(t/h))3

t
+

log(t/h)

th
. (4.4.19)

Standard arguments provide for any b ∈ Σ(β,L) bounds on the associated bias of order
B(h) . hβ . In case of known smoothness β, one can then easily derive the optimal
bandwidth choice h∗t by balancing the components of the bias-variance decomposition

sup
b∈Σ(β,L)

Eb
ñ∥∥∥∥ρt,K(h)− ρ′b

2

∥∥∥∥
∞

ô
≤ B(h) +Kσ(h, t),

resulting in h∗t ' (log t/t)
1

2β+1 . In order to remove the (typically unknown) order of
smoothness β from the bandwidth choice, we need to find a data-driven substitute for
the upper bound on the bias in the balancing process. Heuristically, this is the idea
behind the Lepski-type selection procedure suggested in (4.4.22) below.

1. Specify the discrete grid of candidate bandwidths

H ≡ Ht :=

®
hk = η−k : k ∈ N, η−k >

(log t)2

t

´
, η > 1 arbitrary, (4.4.20)

and define η1 := 24‹C2‖K‖L2(λ) c e
√
v, η2 := 12 c ‖K‖L2(λ) and

M̃ = M̃t := C‖ρt,K(t−
1
2 )‖∞, for C = C(K) := 20e2 (4η1 + 2η2)2 . (4.4.21)

2. Set Êht := max

{
h ∈ H : ‖ρt,K(h)− ρt,K(g)‖∞ ≤

»
M̃σ(g, t)

∀g < h, g ∈ H
}
.

(4.4.22)

The constants involved in the definition of η1 and η2 are explained in Remark 63 in
Section 4.7.1. For the proposed data-driven scheme for bandwidth choice, we obtain the
subsequent
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Theorem 52. For b ∈ Σ(β,L) as introduced in Definition 40, consider the SDE (4.1.1).
Given some kernel K satisfying (4.2.8), define the estimators bt,K(Êht) and ρt,K(Êht) ac-
cording to (4.1.5), (4.1.6) and (4.4.22). Then, for any 0 < β + 1 ≤ α,

sup
b∈Σ(β,L)

Eb
ñ∥∥∥∥ρt,K(Êht)− ρ′b

2

∥∥∥∥
∞

ô
.
Å

log t

t

ã β
2β+1

,

sup
b∈Σ(β,L)

Eb
[∥∥∥(bt,K(Êht)− b) · ρ2

b

∥∥∥
∞

]
.
Å

log t

t

ã β
2β+1

. (4.4.23)

The suggested estimators for ρ′b and b, respectively, are rate optimal as the following
lower bounds imply.

Theorem 53. Let β,L, C, A, γ ∈ (0,∞), and assume that
Σ(β,L/2, C/2, A, γ) 6= ∅. Then,

lim inf
t→∞

inf‹∂ρt sup
b∈Σ(β,L)

Eb

Å log t

t

ã− β
2β+1

‖∂̃ρt − ρ′b‖∞

 > 0, (4.4.24)

lim inf
t→∞

inf
b̃

sup
b∈Σ(β,L)

Eb

Å log t

t

ã− β
2β+1 ∥∥∥(b̃− b) · ρ2

b

∥∥∥
∞

 > 0, (4.4.25)

where the infimum is taken over all possible estimators ∂̃ρt of ρ′b and b̃ of the drift coef-
ficient b, respectively.

The proof of the preceding theorem is based on classical tools from minimax theory as
laid down in Tsybakov (2009). Precisely, it relies on the Kullback version of Theorem 2.7
in Tsybakov (2009), his main theorem on lower bounds. This result slightly reformulated
in terms of our problem is stated in Lemma 64 of Section 4.7.

4.5 Simultaneous estimation

The result presented in the previous section is a classical specification of Lepski’s proce-
dure which complements the study of one-dimensional drift estimation in the continuous
framework. However, as will be shown in the sequel, our techniques allow for results
which go beyond classical issues such as minimax optimality. We will adjust the band-
width selection procedure from Section 4.4 in such a way that the resulting data-driven
bandwidth choice yields an asymptotically efficient estimator of the invariant density
and, simultaneously, also gives a drift estimator which achieves the best possible conver-
gence rate in sup-norm loss. The approach is an adaptation of the method developed by
Giné and Nickl (2009) to the scalar diffusion set-up.

1. Define the set of candidate bandwidths H = Ht according to (4.4.20), and introduce
hmin := min {hk ∈ H : k ∈ N}. SetıM := ıMt := C‖ρt,K(hmin)‖∞,
for the constant C defined in (4.4.21).
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2. Set

ĥt := max

{
h ∈ H : ‖ρt,K(h)− ρt,K(g)‖∞ ≤

»ıMσ(g, t) ∀g < h,

g ∈ H, and ‖ρt,K(h)− ρt,K(hmin)‖∞ ≤
√
h(log(1/h))4

√
t log t

}
.

(4.5.26)

Our goal is to estimate the invariant density ρb and the drift coefficient b via ρt,K(ĥt)
and

b̃t,K(ĥt)(x) :=
ρt,K(ĥt)(x)

ρ+
t,K(ĥt)(x) +

»
log t
t exp

(√
log t

) , (4.5.27)

respectively, by means of the simultaneous, adaptive bandwidth choice ĥt.

Theorem 54. Grant the assumptions of Theorem 52. Given some kernel K satisfying
(4.2.8), define the estimators ρt,K(ĥt), ρt,K(ĥt) and b̃t,K(ĥt) according to (4.1.4), (4.1.6),
(4.5.27) and (4.5.26). Then,

√
t
Ä
ρt,K(ĥt)− ρb

ä Pb=⇒ H, as t→∞, (I)

in `∞(R) for H as in Proposition 45. Furthermore, for any 0 < β + 1 ≤ α,

sup
b∈Σ(β,L)

Eb
ñ∥∥∥∥ρt,K(ĥt)−

ρ′b
2

∥∥∥∥
∞

ô
.
Å

log t

t

ã β
2β+1

,

sup
b∈Σ(β,L)

Eb
[∥∥∥(b̃t,K(ĥt)− b) · ρ2

b

∥∥∥
∞

]
.
Å

log t

t

ã β
2β+1

. (II)

Remark 55. It could be argued that this simultaneous procedure is of limited relevance
because we have verified that the simple choice ht = t−1/2 is optimal for the kernel density
estimator. In particular, an adaptive bandwidth selection procedure is not required,
such that it suffices to apply the data-driven selection procedure stated in Section 4.4
to obtain an optimal bandwidth for the drift estimator. Besides being of theoretical
interest, Theorem 54 still creates added value in relevant aspects. The approach that we
demonstrate actually could be extended, e.g., to the framework of multivariate diffusion
processes. It is known that in higher dimensions, the kernel invariant density estimator
is also rate-optimal, but the optimal bandwidth depends on the unknown smoothness
such that it has to be chosen adaptively as it is certainly the case for the drift estimator.
In this situation, it is very appealing to have one bandwidth selection procedure that
works simultaneously both for invariant density and drift estimation. Our result thus is
pioneering work in this direction.
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4.6 Proofs for Section 4.3

The following result verifies the general conditions for the uniform CLT for diffusion local
time given in van der Vaart and van Zanten (2005) for the class of diffusion processes
with b ∈ Σ(C, A, γ, 1).

Lemma 56. For any b ∈ Σ(C, A, γ, 1), it holds

√
t

Ç
L•t (X)

t
− ρb

å
Pb=⇒ H, as t→∞, (4.6.28)

in `∞(R), where H is a centred Gaussian random map with covariance structure specified
in (4.3.13).

Proof. We verify the conditions of Corollary 2.7 in van der Vaart and van Zanten (2005)
by showing that, for any b ∈ Σ = Σ(C, A, γ, 1),

(a)
∫
F 2
b (x)(1− Fb(x))2ds(x) <∞ and

(b) limx→−∞ ρ
2
b(x)|s(x)| log log |s(x)| = 0.

With regard to (a), note first that, for y > A,

1− Fb(y)

ρb(y)
=

∫ ∞
y

exp

Ç
2

∫ v

y
b(z)dz

å
dv ≤

∫ ∞
y

e−2γ(v−y)dv =
1

2γ

and, for y < −A,

Fb(y)

ρb(y)
=

∫ y

−∞
exp

Å
−2

∫ y

v
b(z)dz

ã
dv ≤

∫ y

−∞
e2γ(v−y)dv =

1

2γ
.

Exploiting the relation ρb(dx) = (s′(x)m(R))−1dx between the invariant measure and the
scale function as well as the speed measure, respectively, we obtain ds(x) =
(ρb(x)m(R))−1dx. Consequently, the above bounds imply that∫

F 2
b (x)(1− Fb(x))2ds(x)

≤ 1

m(R)

∫
R

F 2
b (x)(1− Fb(x))2

ρb(x)
dx

≤ 1

m(R)

ñ ∫ −A
−∞

F 2
b (y)

ρ2
b(y)

ρb(y)dy + 2A sup
x∈[−A,A]

ρ−1
b (x) +

∫ ∞
A

(1− Fb(y))2

ρ2
b(y)

ρb(y)dy

ô
<∞.

In order to verify (b), recall first that the scale function s of X is given by

s(x) =

∫ x

0
exp

Å
−2

∫ y

0
b(z)dz

ã
dy = Cb,1

∫ x

0

1

ρb(y)
dy, x ∈ R.
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Since, for any b ∈ Σ, b(x) sgn(x) ≤ −γ whenever |x| > A, we obtain for x < −A

ρb(x)|s(x)| = Cb,1ρb(x)

∫ 0

−A

1

ρb(y)
dy + Cb,1

∫ −A
x

ρb(x)

ρb(y)
dy

. o(1) +

∫ −A
x

exp

Ç
−2

Ç∫ 0

x
b(z)dz −

∫ 0

y
b(z)dz

åå
dy

. o(1) +

∫ −A
x

exp

Å
−2

∫ y

x
b(z)dz

ã
dy

. o(1) +

∫ −A
x

exp (−2γ(y − x)) dy

' o(1) +
1

2γ
(1− exp (2γ(A+ x))) ' o(1) +

1

2γ
= O(1),

as x→ −∞. Furthermore, for x < −A,

ρb(x) = C−1
b,1 exp

Ç
−2

∫ 0

x
b(y)dy

å
. exp

Ç
−2

∫ −A
x

b(y)dy

å
. exp(2γ(A+ x)) . e2γx,

and, using the linear growth condition on b,

|s(x)| =
∫ 0

x
exp

Ç
2

∫ 0

y
b(z)dz

å
dy .

∫ 0

x
exp

Ç
2

∫ −A
y

b(z)dz

å
dy

.
∫ 0

x
exp

Ç
2C
∫ −A
y

(1− z)dz
å

dy .
∫ 0

x
exp(C(y2 − 2y))dy

such that |s(x)| = O
(
1 + |x| exp(4Cx2)

)
and log log |s(x)| = O(x2) as x→ −∞. Finally,

ρ2
b(x) |s(x)| log log |s(x)| . e2γx O(1) x2 = o(1) as x→ −∞.

Thus, condition (b) of Theorem 2.6 in van der Vaart and van Zanten (2005) is satisfied.
Consequently, there exists a tight version of the Gaussian process H, and (4.6.28) holds
true.

Having verified the conditions for the uniform CLT for diffusion local time, this result
can be transferred to the kernel density estimator:

Proof of Proposition 45. We apply Proposition 42 to show that

√
t

∥∥∥∥ρt,K(t−1/2)− L•t (X)

t

∥∥∥∥
∞

= oPb(1). (4.6.29)

There exists a constant C > 0 such that λt := C
Ä
t−1/4 (1 + log t) + t−β/2

ä
fulfills the

assumption λt ≥ λ0(h) for h = ht = t−1/2. Since λt = o(1), for any ε > 0 and t
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sufficiently large,

Pb
Ä√

t‖ρt,K(t−1/2)− t−1L•t (X)‖∞ > ε
ä

≤ Pb
Ä√

t‖ρt,K(t−1/2)− t−1L•t (X)‖∞ > λt
ä

≤ exp
Ä
−Λ1λtt

1/4
ä

= exp
(
−Λ1C

(
(1 + log t) + t

1
4
−β

2

))
−→ 0, as t→∞.

Consequently, (4.6.29) holds, and Lemma 56 gives the assertion.

The remainder of this section is devoted to complementing our study of asymptotic
efficiency by stating the remaining proofs. We start with verifying differentiability of the
operator G 3 h 7→ ρb+h.

Lemma 57. For any h ∈ G, set H(·) :=
∫ ·

0 h(v)dv. Then, the operator h 7→ ρb+h as a
function from (`∞(R) ∩ Liploc(R), ‖ · ‖∞) to (`∞(R), ‖ · ‖∞) is Fréchet-differentiable at
h = 0 in the sense that

‖ρb+h − ρb − 2ρb(H − µb(H))‖∞ = o(‖h‖∞).

Proof. Let h ∈ `∞(R)∩Liploc(R), and denote by ρb+h the invariant density corresponding
to the diffusion process with drift b+ h. Note that, for ‖h‖∞ sufficiently small, b+ h ∈
Σ(C̃, ‹A, γ̃, 1) for some positive constants C̃, ‹A, γ̃. Set

Cg :=

∫
R

exp

Å
2

∫ x

0
g(v)dv

ã
dx, g ∈ {b, b+ h}, B(·) :=

∫ ·
0
b(v)dv.

Then, for any x ∈ R,

ρb+h(x)− ρb(x) = C−1
b e2B(x)

Ç
Cb
Cb+h

e2H(x) − 1

å
= ρb(x)

®
2H(x) + log

Ç
Cb
Cb+h

å
+

1

2

Ç
2H(x) + log

Ç
Cb
Cb+h

åå2

e
θ1(x)
Ä

log
Ä

Cb
Cb+h

ä
+2H(x)

ä´
,

for some θ1(x) ∈ (0, 1). Moreover,

log

Ç
Cb
Cb+h

− 1 + 1

å
=

Cb
Cb+h

− 1 +
1/2

1 + θ2

Ä
CbC

−1
b+h − 1

ä Ç Cb
Cb+h

− 1

å2

,

for some θ2 ∈ (0, 1). Next, we will show that

Cb − Cb+h
Cb+h

= −2

∫
H(v)ρb(v)dv + o(‖h‖∞).
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Note that

Cb − Cb+h =

∫
e2B(v)

Ä
1− e2H(v)

ä
dv

= −
∫

e2B(v)
Å

2H(v) +
1

2
e2θ3(v)H(v)4H2(v)

ã
dv, θ3(v) ∈ (0, 1),

= −Cb
∫

2H(v)ρb(v)dv + o(‖h‖∞),

where we have used |H(v)| ≤ |v|‖h‖∞, v ∈ R, as well as the fact∫
e2
∫ v

0
b(x)+2|h(x)|dx|v|2dv = O(1). We conclude

Cb − Cb+h
Cb+h

=
−2Cbµb(H) + o(‖h‖∞)

(Cb+h − Cb) + Cb

= −2µb(H) +
2µb(H)(Cb+h − Cb)
(Cb+h − Cb) + Cb

+
o(‖h‖∞)

Cb+h

= −2µb(H) +
o(1)(Cb+h − Cb)

o(1) + Cb
+
o(‖h‖∞)

Cb+h

= −2µb(H) +
o(1)O(‖h‖∞) + o(‖h‖∞)

o(1) + Cb
+ o(‖h‖∞)

= −2µb(H) + o(‖h‖∞).

Consequently,
(
Cb−Cb+h
Cb+h

)2
= o(‖h‖∞), and it follows

log

Ç
Cb
Cb+h

å
= −2µb(H) + o(‖h‖∞) +

1

2
O(1)o(‖h‖∞) = −2µb(H) + o(‖h‖∞).

Taking everything into consideration,

ρb+h(x)− ρb(x) = ρb(x)

®
2(H(x)− µb(H)) + o(‖h‖∞) + (2(H(x)− µb(H)) + o(‖h‖∞))2

× 1

2
e2θ1(x)H(x)eθ1(x)(−2µb(H)+o(‖h‖∞))

´
,

and thus

‖ρb+h − ρb − 2ρb(H − µb(H))‖∞
≤ o(‖h‖∞) +

∥∥∥x 7→ ρb(x)
¶

16‖h‖2∞x2 + o(‖h‖∞)
©

e2‖h‖∞|x|O(1)
∥∥∥
∞

= o(‖h‖∞),

using that supx∈R ρb(x)e2‖h‖∞|x|(1 + x2) = O(1).

We proceed with verifying the result on the image of the generator Lb and the expres-
sion of ‖∂L−1

b (gc)‖L2(µb) in terms of H(x, y) = E[H(x)H(y)]. Recall that H denotes the
centred Gaussian process with covariance structure specified by (4.3.13).
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Proof of Lemma 47. Rewriting H(x, y) as

H(x, y) = 4ρb(x)ρb(y)

∫ [
(1{[x,∞)}(z)− Fb(z)) (1{[y,∞)}(z)− Fb(z))

]
ρ−1
b (z)dz

(4.6.30)
yields∫∫

g(x)H(x, y)g(y)dydx = 4

∫∫
g(x)g(y)ρb(x)ρb(y)

∫
h(z, x)h(z, y)ρb(z)dzdxdy

=

∫ ï∫
2g(x)h(z, x)ρb(x)dx

ò2
ρb(z)dz

=
∥∥∥ ∫ 2g(x)ρb(x)h(·, x)dx

∥∥∥2

L2(µb)
=
∥∥∥ d

dz
T (z)

∥∥∥2

L2(µb)
,

where

T (z) =

∫ z

0

∫
2g(x)ρb(x)h(u, x)dxdu

=

∫ z

0

∫ u

−∞
2g(x)ρb(x)

1− Fb(u)

ρb(u)
dxdu−

∫ z

0

∫ ∞
u

2g(x)ρb(x)dx
Fb(u)

ρb(u)
du.

Straightforward calculus gives

T ′(z) = −Fb(z)
ρb(z)

∫ ∞
z

2g(x)ρb(x)dx+
1− Fb(z)
ρb(z)

∫ z

−∞
2g(x)ρb(x)dx,

T ′′(z) = 2g(z)−
∫

2g(x)ρb(x)dx− 2b(z)T ′(z).

One can show that T and its derivatives satisfy an at most linear growth condition,
and it is possible to approximate T by a sequence of functions Tn in C∞c such that
limn→∞ ‖∂kTn − ∂kT ‖L4(µb) = 0, k = 0, 1, 2. In particular, the at most linear growth
condition on b implies that Tn converges to T in L2(µb) and limn→∞ Lb(Tn) = g − µb(g)
in L2(µb). Since Lb is a closed operator in L2(µb), we can conclude that T ∈ D(Lb) and
Lb(T ) = g − µb(g).

In Section 4.3.2, the Cramér–Rao lower bound for estimating Φg(Pb) =
∫
g(x)ρb(x)dx =∫

gdµb is identified as ‖∂L−1
b gc‖2L2(µb)

. The following result establishes the corresponding
result for pointwise estimation of the invariant density.

Proposition 58. The Cramér–Rao lower bound for pointwise estimation of ρb(y), y ∈ R
fixed, is defined via (4.3.17).

Proof. Let v : R→ R+ be a smooth, symmetric function with support supp(v) ⊆ [−1, 1]
and

∫
v(z)dz = 1, and define gyε := ε−1v

(
(· − y)ε−1

)
, for any y ∈ R. Denote by

CR(y, ε) :=

∥∥∥∥ d

dz
L−1
b (gyε − µb(gyε ))(z)

∥∥∥∥2

L2(µb)
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the Cramér–Rao lower bound for estimation of
∫
gyε dµb. Further, note that

lim
ε↓0

∫
gyε dµb = ρb(y) = b∗y(Ψ(Pb)), for any y ∈ R,

where the pointwise evaluation b∗y : `∞(R) −→ R, f 7→ f(y), is an element of the dual of
`∞(R). We are interested in the Cramér–Rao lower bound for pointwise estimation of
ρb(y) = b∗y(Ψ(Pb)), y ∈ R. This bound is given by the squared L2(µb)-norm of the Riesz
representer of b∗yA′. Since A′h is a continuous function, we have, for any y ∈ R,

b∗yA
′(h) = lim

ε↓0

∫
gyε (x)A′h(x)dx = lim

ε↓0
−〈∂L−1

b (gyε − µb(gyε )), h〉µb

due to (4.3.16). We proceed with proving that the limit limε↓0 ∂L
−1
b (gyε − µb(gyε )) exists

in L2(µb). Fix y ∈ R. For any z ∈ R, z 6= y, we have for ε > 0 small enough

∂L−1
b (gyε − µb(gyε ))(z) = 2 · 1{y ≤ z}1− Fb(z)

ρb(z)

∫ z

−∞
gyε (x)ρb(x)dx

−2 · 1{y > z}Fb(z)
ρb(z)

∫ ∞
z

gyε (x)ρb(x)dx,

due to Lemma 47 and since supp(gyε ) ⊆ [y − ε, y + ε]. Moreover, as

max

®
sup
z∈R
1{y ≤ z}1− Fb(z)

ρb(z)
, sup
z∈R
1{y > z}Fb(z)

ρb(z)

´
<∞,

one obtains

lim
ε↓0

∂L−1
b (gyε − µb(gyε ))(z) = 2 · 1{z ≥ y} − Fb(z)

ρb(z)
ρb(y) = 2ρb(y)h(z, y)

a.e. and in L2(µb). We conclude that b∗yA′(h) = −〈2ρb(y)h(·, y), h〉µb such that the
assertion follows.

We are now in a position to prove asymptotic efficiency as defined in Definition 49 for
the kernel invariant density estimator with the ‘universal’ bandwidth choice t−1/2.

Proof of Theorem 50. Rewriting the covariance E[H(x),H(y)] = H(x, y) as in (4.6.30),
one immediately sees that the law of H corresponds to the optimal distribution of the
convolution theorem due to (4.3.18). It remains to prove regularity of the estimator.

Regularity of the estimator ρt,K(t−1/2)(y) Fix y ∈ R. As we have already seen in the
proof of Proposition 45,

√
t
Ä
ρt,K(t−1/2)− t−1L•t (X)

ä
(y) = oPb(1),
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(see (4.6.29)). We proceed by exploiting the martingale structure obtained from Propo-
sition 1.11 in Kutoyants (2004),

√
t
Ä
t−1Lyt (X)− ρb(y)

ä
=

2ρb(y)√
t

∫ Xt

X0

1{v > y} − Fb(v)

ρb(v)
dv − 2ρb(y)√

t

∫ t

0

1{Xu > y} − Fb(Xu)

ρb(Xu)
dWu

=
R(Xt, y)√

t
− R(X0, y)√

t
− 2ρb(y)√

t

∫ t

0

1{Xu > y} − Fb(Xu)

ρb(Xu)
dWu,

with R(x, y) := 2ρb(y)
∫ x
0
1{v>y}−Fb(v)

ρb(v) dv. The process (Xs)s≥0 is stationary under Pb,
and therefore

R(Xt, y)−R(X0, y)√
t

= oPb(1).

Let h ∈ G, and fix a, c ∈ R. Then,

(a, c)

Å√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä
, log

Å
dPt,h
dPb

ããt
= oPb(1)− a · 2ρb(y)√

t

∫ t

0

1{Xu > y} − Fb(Xu)

ρb(Xu)
dWu

+ c ·
Ç

1√
t

∫ t

0
h(Xs)dWs −

1

2

∫
h2(y)ρb(y)dy

å
= oPb(1) +

1√
t

∫ t

0
(−2aρb(y)k(Xu, y) + ch(Xu)) dWu −

1

2
c

∫
h2(y)ρb(y)dy

Pb=⇒ N
Å
− c

2

∫
h2(y)ρb(y)dy, δ2

ã
,

with k(x, y) := (1{x > y} − Fb(x)) ρ−1
b (x) and

δ2 = Eb
î
(ch(X0)− 2aρb(y)k(X0, y))2

ó
= Eb

î
4a2ρ2

b(y)k2(X0, y) + c2h2(X0)− 4acρb(y)k(X0, y)h(X0)
ó

= (a, c)

Ç
Eb
[
4ρ2

b(y)k2(X0, y)
] −Eb [2ρb(y)k(X0, y)h(X0)]

−Eb [2ρb(y)k(X0, y)h(X0)] Eb
[
h2(X0)

] åÇ
a
c

å
.

The Cramér–Wold device then implies thatÅ√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä
, log

Å
dPt,h
dPb

ãã
Pb=⇒ N

ÇÇ
0

−1
2Eb(h

2(X0))

å
,

Ç
Eb(4ρ2

b(y)k2(X0, y)) −τ
−τ Eb(h2(X0))

åå
,

where τ := 2Eb [ρb(y)k(X0, y)h(X0)]. In turn, Le Cam’s Third Lemma yields

√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä Pt,h
=⇒ N

Ä
−τ, 4Eb

î
ρ2
b(y)k2(X0, y)

óä
.
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Furthermore,
√
t
Ä
ρt,K(t−1/2)(y)− ρb+t−1/2h(y)

ä
=
√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä
−
√
t
Ä
b∗y(Ψ(Pt,h))− b∗y(Ψ(Pb))

ä
=
√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä
+ 〈2ρb(y)h(·, y), h〉µb + o(1)

=
√
t
Ä
ρt,K(t−1/2)(y)− ρb(y)

ä
+ τ + o(1)

Pt,h
=⇒ N

Å
0, 4ρ2

b(y)

∫
(1{z ≥ y} − Fb(z))2 ρ−1

b (z)dz

ã
= N

Ä
0, E

î
H

2(y)
óä
.

We conclude that ρt,K(t−1/2)(y) is a regular and consequently efficient estimator of ρb(y)
for any y ∈ R.

Regularity in `∞(R) In an analogous way, it can be shown that all finite-dimensional
marginals of √

t
Ä
ρt,K(t−1/2)− ρb+t−1/2h

ä
(4.6.31)

weakly converge to those of H under Pt,h, for any h ∈ G. Therefore, the estimator
ρt,K(t−1/2) is also regular in `∞(R) if we can show that the process in (4.6.31) is asymp-
totically tight. As we have already seen that the limiting distribution is optimal, this
then gives efficiency of ρt,K(t−1/2) in `∞(R). We proceed as in (Kosorok, 2008, Theorem
11.14). Fix ε > 0. Since Pt,h and Pb are contiguous, dPt,h/dPb is stochastically bounded
wrt to both Pb and Pt,h. Hence, we find a constant M such that

lim sup
t→∞

Pt,h
Å

dPt,h
dPb

> M

ã
≤ ε

2
.

Furthermore, since
√
t(ρt,K(t−1/2) − ρb) is asymptotically tight wrt Pb, there exists a

compact set K ⊆ `∞(R) such that, for any δ > 0,

lim sup
t→∞

Pb
Ä√

t
Ä
ρt,K(t−1/2)− ρb

ä
∈
Ä
`∞(R) \Kδ

ä∗ä ≤ ε

2M
,

Kδ denoting the δ-enlargement of K. The superscript ∗ here stands for the minimal
measurable cover wrt to both Pb and Pt,h. From these choices, we deduce, for any δ > 0,

lim sup
t→∞

Pt,h
Ä√

t
Ä
ρt,K(t−1/2)− ρb

ä
∈
Ä
`∞(R) \Kδ

ä∗ä
= lim sup

t→∞

∫
1
¶√

t
Ä
ρt,K(t−1/2)− ρb

ä
∈
Ä
`∞(R) \Kδ

ä∗©
dPt,h

= lim sup
t→∞

∫
1
¶√

t
Ä
ρt,K(t−1/2)− ρb

ä
∈
Ä
`∞(R) \Kδ

ä∗© dPt,h
dPb

dPb

≤ lim sup
t→∞

M

∫
1
¶√

t
Ä
ρt,K(t−1/2)− ρb

ä
∈
Ä
`∞(R) \Kδ

ä∗©
dPb

+ lim sup
t→∞

Pt,h
Å

dPt,h
dPb

> M

ã
≤ ε.
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Due to the differentiability property (4.3.15), we conclude that (4.6.31) is asymptotically
tight wrt Pt,h, as well. We have thus shown that ρt,K(t−1/2) is an efficient estimator in
`∞(R).

4.7 Proofs for Section 4.4 and Section 4.5

4.7.1 Preliminaries

We start with the proof of Proposition 41 on the concentration of the estimator ρt,K(h)
of ρ′b/2.

Proof of Proposition 41. We apply Theorem 30 in Chapter 3 to the class

F :=

ß
K

Å
x− ·
h

ã
: x ∈ Q

™
. (4.7.32)

For doing so, note that supf∈F ‖f‖∞ ≤ ‖K‖∞, and, for λ denoting the Lebesgue measure,∥∥∥∥K Åx− ·h ã∥∥∥∥2

L2(λ)
=

∫
K2
Å
x− y
h

ã
dy = h

∫
K2(z)dz ≤ h‖K‖2L2(λ)

and supf∈F λ(supp(f)) ≤ h. Due to the Lipschitz continuity of K, Lemma 35 in Chapter
3 yields constants A > 0, v ≥ 2 (only depending on K) such that, for any probability
measure Q on R and any 0 < ε < 1, N(ε,F , ‖ · ‖L2(Q)) ≤ (A/ε)v. Here and throughout
the sequel, given some semi-metric d, N(u,F , d), u > 0, denotes the covering number of
F wrt d, i.e., the smallest number of balls of radius u in (F , d) needed to cover F . Since
the assumption on the covering numbers of F in Theorem 30 in Chapter 3 is fulfilled,
Theorem 30 can be applied to F with S := h max{‖K‖2L2(λ), 1} and V :=

√
h‖K‖L2(λ).

In particular, there exist positive constants ‹L, Λ, ‹L0 and L such that

sup
b∈Σ

Ä
Eb
î
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖p∞
óä 1

p

≤ ‹L{ 1√
t

{(
log

( 
h+ pΛt

h

))3/2

+

(
log

( 
h+ pΛt

h

))1/2

+ p3/2
}

+
p

th
+

1

h
exp
Ä
−‹L0t

ä
+

1√
th

(
log

( 
h+ pΛt

h

))1/2

+
1

t3/4
√
h

(
1 + log

( 
h+ pΛt

h

))
+

1√
th

ß√
p+

p

t1/4

™}
≤ φt,h(p),

and (4.2.9) immediately follows.
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We continue with stating and proving a number of auxiliary results required for the
investigation of the proposed sup-norm adaptive drift estimation procedure. Recall the
definition of Σ(β,L) in (4.2.7).

Lemma 59. For b ∈ Σ(β,L), β,L > 0, and for ρt,K defined according to (4.1.6) with
some kernel function K : R→ R satisfying (4.2.8), it holds, for any h ∈ H,

sup
b∈Σ(β,L)

Eb
î
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖2∞
ó
≤ K2σ2(h, t), (4.7.33)

sup
b∈Σ(β,L)

‖Eb
î
ρt,K(h)

ó
− ρbb‖∞ ≤ B(h), (4.7.34)

where K denotes some positive constant, σ2(·, ·) is defined according to (4.4.19) and

B(h) := hβ
L

2[β]!

∫
|K(v)||v|βdv.

Proof. Assertion (4.7.33) follows immediately from Proposition 41. For the bias of ρt,K ,
classical Taylor arguments imply that (see Giné and Nickl (2009))

sup
b∈Σ(β,L)

‖Eb
î
ρt,K(h)

ó
− ρbb‖∞ =

1

2
sup
x∈R

∣∣∣∣∫
R
Kh(x− y)(ρ′b(y)− ρ′b(x))dy

∣∣∣∣ ≤ B(h).

The next two auxiliary results give conditions which allow to translate upper and
lower bounds on the sup-norm risk of estimators of ρ′b into corresponding bounds on the
weighted risk of drift estimators.

Lemma 60 (Weighted upper bounds for drift estimation). Given b ∈ Σ(β,L), con-
sider estimators ρt and ρt of the invariant density ρb and ρ′b/2, respectively, fulfilling the
following conditions:

(E1) ∃C1 > 0 such that, for any p ≥ 1,

sup
b∈Σ(β,L)

Eb [‖ρt − ρb‖p∞] ≤ Cp1 t
− p

2

Ä
1 + (log t)

p
2 + p

p
2 + ppt−

p
2

ä
,

and ρt(x) ≥ 0, for any x ∈ R;

(E2) ∃C2 > 0 such that supb∈Σ(β,L) Eb
[‖ρt‖2∞] ≤ C2t

2;

(E3) ∃C3 > 0 such that supb∈Σ(β,L) Eb [‖ρt − ρ′b/2‖∞] ≤ C3(log t/t)β/(2β+1).

Then, the drift estimator

b̂t(x) :=
ρt(x)

ρ∗t (x)
, with ρ∗t (x) := ρt(x) +

 
log t

t
exp
Ä√

log t
ä
,

satisfies
sup

b∈Σ(β,L)
Eb
î
‖(b̂t − b) ρ2

b‖∞
ó

= O
Ä
(log t/t)β/(2β+1)

ä
.
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Proof. For ease of notation, we refrain in the sequel from carrying the supb∈Σ(β,L) along.
All arguments hold for the supremum because constants in the upper bounds do not
depend on the specific choice of b ∈ Σ(β,L). Introduce the set

Bt :=
¶√

t‖ρt − ρb‖∞ ≤
√

log t exp(
√

log t)
©
, t > e.

For any p ≥ 1, Markov’s inequality and condition (E1) imply that

Pb(Bc
t ) ≤ Eb [‖ρt − ρb‖p∞] ·

Å
t

log t

ã p
2

exp(−p
√

log t)

≤ Cp1 t
− p

2

Ä
1 + (log t)

p
2 + p

p
2 +
Ä
p/
√
t
äpä Å t

log t

ã p
2

exp
Ä
−p
√

log t
ä

≤ Cp1

Ç
(log t)−

p
2 + 1 +

Å
p

log t

ã p
2

+

Ç
p√
t log t

åpå
exp
Ä
−p
√

log t
ä
.

Specifying p = 8
√

log t, one obtains that, for some positive constant C,

Pb(Bc
t ) ≤ C8

√
log t exp(−8 log t).

Thus, on the event Bc
t ,

Eb
î
‖(b̂t − b) ρ2

b‖∞ 1Bc
t

ó
≤
Ä
Eb
î
‖b̂tρ2

b‖2∞
ó
Pb(Bc

t )
ä1/2

+ Eb
î
‖bρ2

b‖∞ · 1Bc
t

ó
≤ sup

x∈R
|ρ2
b(x)|

Å
Eb
î
‖ρt‖2∞

ó t

log t
exp(−2

√
log t) Pb(Bc

t )

ã1/2

+ Eb
î
‖bρ2

b‖∞ · 1Bc
t

ó
≤ L2

Å
Eb
î
‖ρt‖2∞

ó t

log t
exp(−2

√
log t)C8

√
log t exp(−8 log t)

ã1/2

+
1

2
L2Pb(Bc

t )

= O

Ñ√
C8
√

log t t3

log t
exp(−8 log t) + C8

√
log tt−8

é
= O(t−1).

On the other hand, Eb
î
‖(b̂t − b) ρ2

b‖∞ 1Bt

ó
≤ A1 +A2, for

A1 := Eb
ñ∥∥∥∥(b̂t − bρb

ρ∗t

)
ρ2
b

∥∥∥∥
∞
· 1Bt

ô
, A2 := Eb

ñ∥∥∥∥(bρbρ∗t − b) ρ2
b

∥∥∥∥
∞
· 1Bt

ô
.

Since ρb/ρ∗t ≤ 1 on the event Bt, (E1) and (E3) imply that

A1 ≤ sup
x∈R
|ρb(x)| Eb

[‖ρt − ρ′b/2‖∞] = O

(Å
log t

t

ãβ/(2β+1)
)
,

A2 = Eb

[∥∥∥∥∥ρ′bρb2ρ∗t
(ρb − ρ∗t ) · 1Bt

∥∥∥∥∥
∞

]
≤ L

2

{
Eb [‖ρb − ρt‖∞] +

Å
log t

t

ã1/2

exp
Ä√

log t
ä}

.
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Summing up,

Eb
î
‖(b̂t − b) ρ2

b‖∞
ó
≤ O

Å
1

t

ã
+O

ÑÅ
log t

t

ã β
2β+1

é
+O

( 
log t

t

)
+O

( 
log t

t
e
√

log t

)
,

and the assertion follows.

Lemma 61 (Weighted lower bounds for drift estimation). Assume that, for some ψt
fulfilling

»
log t/t = o(ψt), it holds

lim inf
t→∞

inf›∂ρ2
t

sup
b∈Σ(β,L)

Eb
[
ψ−1
t ‖fi∂ρ2

t − (ρ2
b)
′‖∞

]
> 0. (4.7.35)

Then,
lim inf
t→∞

inf
b̃

sup
b∈Σ(β,L)

Eb
[
ψ−1
t

∥∥∥(b̃− b)ρ2
b

∥∥∥
∞

]
> 0.

The infimum in the preceding inequalities is taken over all estimators fi∂ρ2
t and b̃ of (ρ2

b)
′

and b, respectively.

Proof. Given any estimator b̃ of the drift coefficient b, define

b̄(x) :=

{
b̃(x), if |b̃(x)| ≤ C(1 + |x|)
sgn(b(x))C(1 + |x|), otherwise

, x ∈ R.

For any b ∈ Σ(β,L), it holds |b(x)| ≤ C(1 + |x|) for all x ∈ R. Consequently,

Eb
[∥∥∥(b̄− b) ρ2

b

∥∥∥
∞

]
≤ Eb

[∥∥∥(b̃− b) ρ2
b

∥∥∥
∞

]
.

It thus suffices to consider the infimum over all estimators b̃ satisfying

|b̃(x)| ≤ C(1 + |x|), x ∈ R. (4.7.36)

In view of the decomposition

b̃ρt,K(t−
1
2 )ρb −

1

2
ρ′bρb =

1

2
ρb
Ä
2b̃ρb − ρ′b

ä
+ b̃ρb

(
ρt,K(t−

1
2 )− ρb

)
,

it holds
Eb
[∥∥∥(b̃− b) ρ2

b

∥∥∥
∞

]
= Eb

ï∥∥∥1

2
ρb
Ä
2b̃ρb − ρ′b

ä ∥∥∥
∞

ò
≥ (I)− (II),

with

(I) :=
1

4
Eb
[∥∥∥4b̃ρt,K(t−

1
2 )ρb − 2ρ′bρb

∥∥∥
∞

]
, (II) := Eb

[∥∥∥b̃ρb (ρt,K(t−
1
2 )− ρb

) ∥∥∥
∞

]
.

Due to (4.7.36), supb∈Σ(β,L) |b̃ρb| is bounded. Moreover, we can infer from Proposition
44 that there exists a positive constant C1 such that, for all t sufficiently large, (II) ≤
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C1

»
log t/t. Consequently, noting that 4b̃ρt,K(t−

1
2 )ρb can be viewed as an estimator of

2ρ′bρb = (ρ2
b)
′,

lim inf
t→∞

inf
b̃

sup
b∈Σ(β,L)

Eb
[
ψ−1
t

∥∥∥(b̃− b) ρ2
b

∥∥∥
∞

]
≥ lim inf

t→∞
inf
b̃

sup
b∈Σ(β,L)

ψ−1
t ((I)− (II))

≥ lim inf
t→∞

inf
b̃

sup
b∈Σ(β,L)

(
ψ−1
t (I)− C1ψ

−1
t

 
log t

t

)
> 0.

Proposition 41 presented in Section 4.2 gives one first result on the concentration
behaviour of the estimator ρt,K(h) of ρ′b/2. It follows from a straightforward appli-
cation of the developments in Chapter 3. Note that, for any bandwidth h = ht ∈
(t−1(log t)2, (log t)−3) and any u = ut ∈ [1, α log t], α > 0, the function φt,h(u) intro-
duced in (4.2.10) fulfills

φt,h(u) = Z1

 
log(ut/h)

th
+ Z2

…
u

th
+ o

( 
log(ut/h)

th

)
.

For the construction of an adaptive estimation procedure which yields rate-optimal drift
estimators, we need to specify the constants Z1 and Z2. The subsequent Lemma provides
the corresponding result. Its proof relies on a modification of the proof of Theorem 30
in Chapter 3.

Lemma 62 (Tail bounds with explicit constants). Grant the assumptions of Proposi-
tion 41, and define the estimator ρt,K according to (4.1.6). Then, for any h = ht ∈(
t−1(log t)2, (log t)−3

)
, 1 ≤ u = ut ≤ α log t, for some α > 0, and t sufficiently large, it

holds

Pb
Ç

sup
x∈R
|ρt,K(ht)(x)− Eb

î
ρt,K(ht)(x)

ó
| > eψt,ht(ut)

å
≤ e−ut , (4.7.37)

with

ψt,h(u) :=
»
‖ρb‖∞

{
2η1

 
log(ut/h)

th
+ η2

…
u

th

}
,

for η1 = 24‹C2‖K‖L2(λ) c e
√
v and η2 = 12 c ‖K‖L2(λ).

Proof. Let us first prove that there exist constants L1,‹L0 such that, for any u, p ≥ 1,
h ∈ (0, 1), t ≥ 1, Ä

Eb
î
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖p∞
óä 1

p ≤ φ̃t,h(p),

Pb
Ç

sup
x∈R
|ρt,K(h)(x)− Ebρt,K(h)(x)| > eφ̃t,h(u)

å
≤ e−u,

(4.7.38)

102



4 Sup-norm adaptive drift estimation for ergodic diffusions

for

φ̃h(u) := L1

{
1√
t

{Å
log

Å
ut

h

ãã3/2

+

Å
log

Å
ut

h

ãã1/2

+ u3/2
}

+
u

th
+

1

h
exp
Ä
−‹L0t

ä
+

1

t3/4
√
h

log

Å
ut

h

ã
+

1√
th

{Å
log t

t

ã1/4√
u+

u

t1/4

}}

+ η1

»
‖ρb‖∞

1√
th

Å
log

Å
ut

h

ãã1/2

+ η2

»
‖ρb‖∞

Å
u

th

ã1/2

.

This statement parallels assertion (4.2.9) from Proposition 41. It remains however
to identify the constants preceding the terms (th)−1/2 (log(ut/h))1/2 and (u/th)1/2 as»
‖ρb‖∞η1 and

»
‖ρb‖∞η2, respectively. This requires to look into the details of the proof

of Theorem 30 in Chapter 3. In our situation, F is defined as in (4.7.32). First, note that
the term 1√

th

(
log

(ut
h

))1/2 comes from the analysis of the martingale

(th)−1
∫ t

0 K
Ä
y−Xs
h

ä
dWs. We repeat the arguments from the proof of Theorem 30 in

Chapter 3, here, to discover the required constant. The Burkholder–Davis–Gundy in-
equality as stated in Proposition 4.2 in Barlow and Yor (1982) and the occupation times
formula yield, for any p ≥ 2, f ∈ F ,Ç

Eb
ñ∣∣∣∣∣ 1√

t

∫ t

0
f(Xs)dWs

∣∣∣∣∣
pôå 1

p

≤ c
√
p

Ñ
Eb

Ç1

t

∫ t

0
f2(Xs)ds

å p
2

é 1
p

≤ c
√
p‖f‖L2(λ)

Å
Eb
ïÄ
‖t−1L•t (X)‖∞

ä p
2

òã 1
p

≤ c
√
p‖f‖L2(λ)

{Å
Eb
ïÄ
‖t−1L•t (X)− ρb‖∞

ä p
2

òã 1
p

+
»
‖ρb‖∞

}
,

where c :=
√

2 max {1, c}, for c denoting a universal constant from the BDG inequality.
Exploiting the result on centred diffusion local time from Lemma 43, one can deduce
that there exists another constant L2 > 0 such that, for V =

√
h‖K‖L2(λ),

2 sup
f∈F

Ç
Eb
ñ∣∣∣∣ 1√

t

∫ t

0
f(Xs)dWs

∣∣∣∣p
ôå 1

p

≤ 2 c
√
pV
(»
‖ρb‖∞ + L2

(Å
log t

t

ã1/4

+

Å
p

t

ã1/4

+

…
p

t

))

≤ 2 cV
(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4
)
√
p+ 4t−1/4 cVL2p.
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Using similar arguments, the latter is verified for 1 ≤ p < 2. Furthermore, for any
f, g ∈ F , it can be shown analogously thatÇ
Eb
ñ∣∣∣∣ 1√

t

∫ t

0
(f − g)(Xs)dWs

∣∣∣∣p
ôå 1

p

≤ 2 c ‖f − g‖L2(λ)

×
{
√
p

(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4
)

+
2L2p

t1/4

}
.

Applying the generic chaining method and the localisation procedure as in Chapter 3,
one can then verify that

1√
t

(
Eb

[∥∥∥∥∥
∫ t

0
K

Å · −Xs

h

ã
dWs

∥∥∥∥∥
p

∞

]) 1
p

≤
‹C1

t1/4

∞∑
k=0

∫ ∞
0

logN(u,Fk, 4 cL2e‖ · ‖L2(λ))du e−
k
2

+ ‹C2

∞∑
k=0

∫ ∞
0

Ã
logN

(
u,Fk, 2 c

(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4 )
e‖ · ‖L2(λ)

)
du e−

k
2

+ 12 cV
(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4
)
√
p+

24 cVL2p

t1/4

≤ 6‹C1

t1/4
vV 4 cL2e

Å
1 + log

Å
A

V
√
S + pΛt

ãã
+ (A) + (B) +

24 cVL2p

t1/4
,

with

(A) := 12‹C2V 2 c

(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4
)

e

 
v log

Å
A

V
√
S + pΛt

ã
,

(B) := 12 cV
(»
‖ρb‖∞ + L2

Å
log t

t

ã1/4
)
√
p

for A and S defined as in the proof of Proposition 41 and some positive constant Λ. For
some further positive constants L3,L4, we can then upper bound

(A)√
th
≤ L3

Ç
1√
th

+
(log(pt/h))3/4

t3/4
√
h

å
+ η1

 
‖ρb‖∞

log(pt/h)

th
,

(B)√
th
≤ L4

1√
th

Å
log t

t

ã1/4√
p+ η2

»
‖ρb‖∞

…
p

th
.

Thus, with regard to the upper bound for
Ä
Eb
î
‖ρt,K(ht)− Eb

î
ρt,K(ht)

ó
‖p∞
óä 1

p , the con-
stants preceding the terms (th)−1/2

»
log(pt/h) and

»
p/(th) are identified as

»
‖ρb‖∞η1

and
»
‖ρb‖∞η2, respectively.
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Furthermore, we obtained the additional expression (th)−1/2(log t/t)1/4√p, and as-
sertion (4.7.38) follows. In order to show (4.7.37), note finally that in case of ht ∈(
(log t)2t−1, (log t)−3

)
and 1 ≤ ut ≤ α log t, α > 0, it holds

φ̃t,ht(ut) = o

Ç
1√
tht

 
log

Å
utt

ht

ãå
+ η1

»
‖ρb‖∞

1√
tht

 
log

Å
utt

ht

ã
+ η2

 
‖ρb‖∞ ·

ut
tht

.

Thus, φ̃t,ht(ut) ≤ ψt,ht(ut) for t sufficiently large.

Remark 63. We shortly comment on the constants appearing in the definition of η1 and η2

in Lemma 62. The constant c is defined as c =
√

2 max {1, c}, for c denoting the universal
constant from the Burkholder–Davis–Gundy inequality as stated in Proposition 4.2 in
Barlow and Yor (1982). The constant ‹C2 originates from the application of Proposition
34 in Chapter 3 and can be specified looking into the details of the proof in Dirksen
(2015). The constant v is associated with the entropy condition on F defined as in
(4.7.32) (see Lemma 35 in Chapter 3).

4.7.2 Proof of main results

This section contains the proof of the upper and lower bound results on minimax optimal
drift estimation wrt sup-norm risk presented in Section 4.4 and Section 4.5.

Proof of Theorem 52. In order to prove (4.4.23), it suffices to investigate the estimator
ρt,K(Êht) since conditions (E1) and (E2) from Lemma 60 are satisfied. Indeed, the first
condition refers to the rate of convergence of the invariant density estimator, and it is
fulfilled by the kernel density estimator ρ+

t,K with bandwidth t−1/2 due to Proposition
44. Note that b ∈ Σ(β,L) in the current chapter refers to Hölder continuity of ρb with
parameter β + 1 in contrast to the notation in Chapter 3. With regard to (E2), Lemma
59 implies that

sup
b∈Σ(β,L)

Eb
î
‖ρt,K(Êht)‖2∞ó ≤ sup

b∈Σ(β,L)

(
4Eb
î
‖ρt,K(Êht)− Eb

î
ρt,K(Êht)ó ‖2∞ó

+ 4‖Eb
î
ρt,K(Êht)ó− bρb‖2∞ + 4‖bρb‖2∞

)
. σ2(hmin, t) +B(1) + 1 = O(1) as t→∞,

since 1 > Êht ≥ hmin = min {hk ∈ H : k ∈ N} > (log t)2/t and ‖ρbb‖∞ = ‖ρ′b‖∞/2 ≤ L.
Hence, (E2) is satisfied. Consequently, (4.4.23) will follow once we have verified condition
(E3) from Lemma 60, i.e., by showing that

sup
b∈Σ(β,L)

Eb
î
‖ρt,K(Êht)− ρ′b/2‖∞ó = O

ÑÅ
log t

t

ã β
2β+1

é
.

For C = C(K) introduced in (4.4.21), let M := C‖ρb‖∞, and define hρ := h(ρ′b) as

hρ := max

®
h ∈ H : B(h) ≤

√
0.8M

4
σ(h, t)

´
.
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For the given choice of hρ, it holds B(hρ) '
√

0.8Mσ(hρ, t)/4, and, since H 3 hρ >
(log t)2/t,

h
2β+1
ρ ' (log t/t) and σ(hρ, t) ' (log t/t)

β
2β+1 . (4.7.39)

To see this, first note that, for h0 := (log t/t)
1

2β+1 , there exists some positive constant L
such that B(h0) ≤ Lσ(h0, t) and σ2(h0, t) ' (log t/t)

2β
2β+1 . In particular, we have hρ & h0

which is clear by definition of hρ in case that L ≤
√

0.8M/4. Otherwise, this follows
from the fact that, for any 0 < λ < 1,

B(λh0) = λβB(h0) ≤ λβLσ(h0, t) ≤ λβLσ(λh0, t).

For the validity of (4.7.39), it remains to show that hρ . h0. We prove that
h

2β+1
ρ h

−(2β+1)
0 = O(1). By definition, we have

h
2β+1
ρ ' hρ

t

Ç
log

Ç
t

hρ

åå3

+
1

t
log

Ç
t

hρ

å
.

hρ
t

(log t)3 +
log t

t
, (4.7.40)

since, for any h ∈ H, h ≥ (log t)2/t. This implies that h2β+1
ρ h

−(2β+1)
0 . hρ(log t)2 + 1.

Again exploiting (4.7.40), we deduce that

hρ(log t)2 . (log t)2

Ç
hρ
t

(log t)3 +
log t

t

å 1
2β+1

. (log t)2t
− 1

2β+1

Ä
hρ(log t)3 + log t

ä 1
2β+1

. (log t)2t
− 1

2β+1

Ä
(log t)3 + log t

ä 1
2β+1 = o(1).

Thus, h2β+1
ρ h

−(2β+1)
0 = O(1), and we have shown (4.7.39).

Case 1: We first consider the situation where {Êht ≥ hρ}. The definition of Êht according
to (4.4.22) and the bias and variance estimates in (4.7.34) and (4.7.33), respectively, imply
that

Eb
[
‖ρt,K(Êht)− ρ′b/2‖∞ 1{Êht≥hρ}∩{‹M≤1.2M}

]
≤ Eb

ñ(
‖ρt,K(Êht)− ρt,K(hρ)‖∞ + ‖ρt,K(hρ)− Eb

î
ρt,K(hρ)

ó
‖∞

+ ‖Eb
î
ρt,K(hρ)

ó
− ρ′b/2‖∞

)
1{Êht≥hρ}∩{‹M≤1.2M}

ô
≤
√

1.2M σ(hρ, t) +Kσ(hρ, t) +

√
0.8M

4
σ(hρ, t) = O(σ(hρ, t)).
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Similarly,

Eb
[
‖ρt,K(Êht)− ρ′b/2‖∞ 1{Êht≥hρ}∩{‹M>1.2M}

]
≤

∑
h∈H : h≥hρ

Eb
[ Ä
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖∞ +B(h)

ä
1{Êht=h}∩{‹M>1.2M}

]
. log t

Ä
Kσ(hρ, t) +B(1)

ä √
Eb
î
1{M̃ > 1.2M}

ó
.

The function ψt,t−1/2 introduced in (4.2.12) obviously fulfills ψt,t−1/2(log t) = o(1). Plug-
ging in the definition of M̃ (see (4.4.21)), one thus obtains by means of Proposition 44,
for t sufficiently large,

Pb
Ä
|M̃ − C‖ρb‖∞| > 0.2C‖ρb‖∞

ä
= Pb

(∣∣∣‖ρt,K(t−1/2)‖∞ − ‖ρb‖∞
∣∣∣ > 0.2‖ρb‖∞

)
≤ Pb

Ä
‖ρt,K(t−1/2)− ρb‖∞ > eψt,t−1/2(log t)

ä
≤ t−1.

(4.7.41)

Consequently, we have shown that

Eb
[
‖ρt,K(Êht)− ρ′b/2‖∞ 1{Êht≥hρ}] = O(σ(hρ, t)).

Case 2: It remains to consider the case {Êht < hρ}. Decomposing again as in the proof
of Theorem 2 in Giné and Nickl (2009), we have

Eb
[
‖ρt,K(Êht)− ρ′b/2‖∞ 1{Êht<hρ}∩{‹M<0.8M}

]
≤

∑
h∈H : h<hρ

Eb
[ Ä
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖∞ +B(h)

ä
1{Êht=h}∩{‹M<0.8M}

]
. log t

Ä
Kσ(hmin, t) +B(hρ)

ä √
Eb
î
1{M̃ < 0.8M}

ó
= O(σ(hρ, t)),

where we used (4.7.41) for deriving the last inequality. Furthermore,

Eb
[
‖ρt,K(Êht)− ρ′b/2‖∞ 1{Êht<hρ}∩{‹M≥0.8M}

]
≤

∑
h∈H : h<hρ

Eb
[Ä
‖ρt,K(h)− Eb

î
ρt,K(h)

ó
‖∞+‖Eb

î
ρt,K(h)

ó
− ρ′b/2‖∞

ä
1{Êht=h}∩{‹M≥0.8M}

]
≤

∑
h∈H : h<hρ

Kσ(h, t) ·
√
Pb
Ä
{Êht = h} ∩ {0.8M ≤ M̃}

ä
+B(hρ).

Since the latter summand is of order O(σ(hρ, t)), we may focus on bounding the first
term. Using again the arguments of Giné and Nickl (2009), the proof boils down to
verifying that the term

(I) :=
∑

g∈H : g≤h
Pb
Ä
‖ρt,K(h+)− ρt,K(g)‖∞ >

√
0.8Mσ(g, t)

ä
,
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with h+ := min{g ∈ H : g > h}, satisfies∑
h∈H : h<hρ

σ(h, t)
»

(I) = O(σ(hρ, t)).

Analogously to Giné and Nickl (2009), we start by noting that, for g < h+ ≤ hρ,

‖ρt,K(h+)− ρt,K(g)‖∞
≤ ‖ρt,K(h+)− Eb

î
ρt,K(h+)

ó
‖∞ + ‖ρt,K(g)− Eb

î
ρt,K(g)

ó
‖∞ +B(h+) +B(g)

≤ ‖ρt,K(h+)− Eb
î
ρt,K(h+)

ó
‖∞ + ‖ρt,K(g)− Eb

î
ρt,K(g)

ó
‖∞ +

1

2

√
0.8Mσ(g, t).

Thus,

Pb
Ä
‖ρt,K(h+)− ρt,K(g)‖∞ >

√
0.8Mσ(g, t)

ä
≤ Pb

Ç
‖ρt,K(h+)− Eb

î
ρt,K(h+)

ó
‖∞ >

√
0.8M

4
σ(h+, t)

å
+ Pb

Ç
‖ρt,K(g)− Eb

î
ρt,K(g)

ó
‖∞ >

√
0.8M

4
σ(g, t)

å
.

We want to apply Lemma 62 for bounding the last two terms, and for doing so, we verify
that

eψt,g(log(1/g)) ≤
√

0.8M

4
σ(g, t).

Indeed,

eψt,g(log(1/g)) = e
»
‖ρb‖∞

{
2η1

1√
tg

Ç
log

Ç
log(1/g)t

g

åå1/2

+ η2

Ç
log(1/g)

tg

å1/2
}

≤ e(4η1 + 2η2)
»
‖ρb‖∞

Ç
log(t/g)

tg

å1/2

≤ e(4η1 + 2η2)
»
‖ρb‖∞

(
1√
t

Å
log

Å
t

g

ãã3/2

+

Ç
log(t/g)

tg

å1/2
)

= e(4η1 + 2η2)
»
‖ρb‖∞σ(g, t) ≤

√
0.8M

4
σ(g, t),

for t sufficiently large and for M = 20e2(4η1 + 2η2)2‖ρb‖∞ since hmin ≤ g ≤ hρ. Lemma
62 then implies that, for every g ≤ hρ, g ∈ H and t large enough,

Pb
Ç
‖ρt,K(g)− Eb

î
ρt,K(g)

ó
‖∞ >

√
0.8M

4
σ(g, t)

å
≤ Pb

Å
‖ρt,K(g)− Eb

î
ρt,K(g)

ó
‖∞ > eψt,g

Å
log

Å
1

g

ããã
≤ g.
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Consequently,∑
g∈H : g≤h

Pb
Ä
‖ρt,K(h+)− ρt,K(g)‖∞ >

√
0.8Mσ(g, t)

ä
≤

∑
g∈H : g≤h

(h+ + g)

. h log t

and ∑
h∈H : h<hρ

σ(h, t)
»

(I) = O
(
t−

1
2 (log t)2

)
= o(σ(hρ, t)). (4.7.42)

We now turn to proving the result on lower bounds for drift estimation wrt sup-norm
risk.

Proof of Theorem 53. We start with stating a crucial auxiliary result.

Lemma 64 (Theorem 2.7 in Tsybakov (2009)). Fix C, A, γ, β,L ∈ (0,∞), and assume
that there exist a finite set Jt = {0, . . . ,Mt}, Mt ∈ N, and hypotheses {bj : j ∈ Jt} ⊆
Σ(β,L) satisfying

(a) ‖ρ′j − ρ′k‖∞ ≥ 2ψt > 0, for any j 6= k, j, k ∈ Jt, or

(b) ‖(ρ2
j )
′ − (ρ2

k)
′‖∞ ≥ 2ψt > 0, for any j 6= k, j, k ∈ Jt,

together with the condition that, for any j ∈ Jt, Pbj =: Pj � P0, and

1

|Jt|
∑
j∈Jt

KL(Pj ,P0) =
1

|Jt|
∑
j∈Jt

Ej
ï
log

Å
dPj
dP0

Ä
Xt
äãò

≤ α log(|Jt|),

for some 0 < α < 1/8. Here, Pbj is the measure of the ergodic diffusion process defined
via the SDE (4.1.1) with drift coefficient bj and the corresponding invariant density ρj,
j ∈ Jt. Then, in case of (a) and (b), respectively, it follows

inf‹∂ρt sup
b∈Σ(β,L)

Eb
î
ψ−1
t ‖∂̃ρt − ρ′b‖∞

ó
≥ c(α) > 0,

inf›∂ρ2
t

sup
b∈Σ(β,L)

Eb
[
ψ−1
t ‖fi∂ρ2

t − (ρ2
b)
′‖∞

]
≥ c(α) > 0,

where the constant c(α) depends only on α and the infimum is taken over all estimators
∂̃ρt of ρ′b and estimators fi∂ρ2

t of (ρ2
b)
′, respectively.

Proof of the lower bound for estimating ρ′b The lower bound (4.4.24) follows by a
straightforward application of Lemma 64.

Step 1: Construction of the hypotheses. Fix β,L, C, γ, A ∈ (0,∞), and let

b0 ∈ Σ(β,L/2, C/2, A, γ) ⊆ Σ(β,L, C, A, γ).
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In addition, set Jt := {0,±1, . . . ,±(bA(2ht)
−1c − 1)}, xj := 2htj, j ∈ Jt, and

ht := v

Å
log t

t

ã 1
2β+1

,

v < 1 some positive constant which will be specified later. Let Q : R → R be a func-
tion that satisfies Q ∈ C∞c (R), supp(Q) ⊆ [−1

2 ,
1
2 ], Q ∈ H(β + 1, 1

2), |Q′(0)| > 0 and∫
Q(x)dx = 0. The hypotheses will be constructed via additive perturbations of the

invariant density ρ0 := ρb0 ∈ H (β + 1,L/2) associated with the drift coefficient b0. For
this purpose, define

G0 :≡ 0, Gj(x) := Lhβ+1
t Q

Å
x− xj
ht

ã
, x ∈ R, j ∈ Jt \ {0},

and the hypotheses ρj := ρ0 +Gj , j ∈ Jt. Fix j ∈ Jt \ {0}, and note that

∂kGj(x) = Lhβ+1−k
t ∂kQ

Å
x− xj
ht

ã
, x ∈ R, k = 0, ..., bβ + 1c.

We immediately deduce that ‖∂kGj‖∞ ≤ L/2 since ht ≤ 1 for t sufficiently large and
Q ∈ H

Ä
β + 1, 1

2

ä
. Furthermore, for any x, y ∈ R,∣∣∣∂bβ+1cGj(x)− ∂bβ+1cGj(y)

∣∣∣ = Lhβ+1−bβ+1c
t

∣∣∣∣∂bβ+1cQ

Å
x− xj
ht

ã
− ∂bβ+1cQ

Å
y − xj
ht

ã∣∣∣∣
≤ Lhβ+1−bβ+1c

t

1

2

Ç |x− y|
ht

åβ+1−bβ+1c

=
L
2
|x− y|β+1−bβ+1c.

Thus, Gj ∈ H(β + 1,L/2), and, in particular,

ρj = ρ0 +Gj ∈ H(β + 1,L), for all j ∈ Jt. (4.7.43)

Note that, since supp(Gj) ⊂ (−A,A) for all j ∈ Jt, we have Gj(x) = 0 for all |x| ≥ A.
Thus, for verifying non-negativity, it suffices to show that ρj(x) ≥ 0 for any x ∈ (−A,A).
Furthermore, inf−A≤x≤A ρ0(x) > 0, and, since

‖Gj‖∞ ≤ Lhβ+1
t

∥∥∥∥QÅ · − xjht

ã∥∥∥∥
∞
≤ L

2
hβ+1
t = o(1),

it holds lim inft→∞minj∈Jt inf−A≤x≤A ρj(x) > 0. For t sufficiently large, we therefore
find a constant c∗ such that

min
j∈Jt

inf
−A≤x≤A

ρj(x) ≥ c∗ > 0. (4.7.44)

Since, in addition,
∫
Gj(x)dx = 0, ρj is a probability density for each j ∈ Jt. Let

bj :=
ρ′j
2ρj

, j ∈ Jt,
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and note that bj ∈ Liploc(R). Furthermore, bj can be rewritten as

bj =
1

2

ρ′0 +G′j
ρ0 +Gj

= b0 +
1

2

Ç
ρ′0 +G′j
ρ0 +Gj

− ρ′0
ρ0

å
= b0 +

1

2

Ç
G′jρ0 − ρ′0Gj
ρ0(ρ0 +Gj)

å
. (4.7.45)

From this representation, we directly see that b0 = bj on R \ (−A,A). Since ‖Gj‖∞ +
‖G′j‖∞ = o(1) and due to (4.7.44), we have that

sup
−A<x<A

1

2

∣∣∣∣∣G′jρ0 − ρ′0Gj
ρ0(ρ0 +Gj)

∣∣∣∣∣ ≤ C2 , for t sufficiently large.

In particular, this implies

|bj(x)| ≤ C
2

(1 + |x|) +
C
2
≤ C(1 + |x|), ∀x ∈ R, t sufficiently large,

and we can deduce that, for any j ∈ Jt, bj ∈ Σ(C, A, γ, 1). Therefore, each bj gives rise
to an ergodic diffusion process via the SDE dXt = bj(Xt)dt+dWt with invariant density
ρj . Taking into consideration (4.7.43), we have thus shown that

bj ∈ Σ(β,L, C, A, γ), ∀j ∈ Jt,

for t sufficiently large.

Step 2: Evaluation of the Kullback–Leibler divergence between the hy-
potheses. From Girsanov’s theorem, it can be deduced that

KL(Pj ,P0) = Ej
ñ
log

Ç
ρj(X0)

ρ0(X0)

åô
+

1

2
Ej
ñ∫ t

0
(b0(Xu)− bj(Xu))2 du

ô
=: (Ij) + (IIj).

We first prove boundedness of (Ij). Note that ρj/ρ0 ≡ 1 on R \ (−A,A) and

max
j∈Jt

sup
−A≤x≤A

ρj(x)

ρ0(x)
≤ L

inf−A≤x≤A ρ0(x)
, min

j∈Jt
inf

−A≤x≤A

ρj(x)

ρ0(x)
≥ c∗
L .

Therefore, ρj/ρ0 is bounded away from zero and infinity, uniformly for all j ∈ Jt and t
sufficiently large. In particular, maxj∈Jt |(Ij)| = O(1). We now turn to analysing (IIj).
From (4.7.45), we can deduce, for any j ∈ Jt,

b0 − bj =
b0Gj

ρ0 +Gj
− 1

2

G′j
ρ0 +Gj

. (4.7.46)

Since Gj ≡ 0 on R \ (−A,A),

max
j∈Jt

∥∥∥∥∥ b0Gj
ρ0 +Gj

∥∥∥∥∥
∞
≤ max

j∈Jt
sup

−A≤x≤A
|b0(x)|‖Gj‖∞

c∗
= O

Ä
hβ+1
t

ä
,

and, consequently,

max
j∈Jt

Ej

[∫ t

0

Ç
b0(Xu)Gj(Xu)

ρ0(Xu) +Gj(Xu)

å2

du

]
= O

(
th

2(β+1)
t

)
= O

Ä
v2β+2 log t

ä
.
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For the second term on the rhs of (4.7.46), we calculate

max
j∈Jt

Ej

[∫ t

0

(
(G′j)

2(Xu)

4(ρ0(Xu) +Gj(Xu))2

)
du

]

= max
j∈Jt

t

4

∫ A

−A

L2h2β
t (Q′)2

Ä
x−xj
ht

ä
(ρ0(x) +Gj(x))2

Å
ρ0(x) + Lhβ+1

t Q

Å
x− xj
ht

ãã
dx

. max
j∈Jt

c−2
∗

[
t

∫ A

−A
h2β
t (Q′)2

Å
x− xj
ht

ã
ρ0(x)dx

+

∫ A

−A
(Q′)2

Å
x− xj
ht

ã ∣∣∣∣QÅx− xjht

ã∣∣∣∣ dxh3β+1
t

]

. th2β+1
t L

∫
(Q′)2(x)dx+ 2tA‖Q′‖2∞‖Q‖∞h3β+1

t . th2β+1
t ' v2β+1 log t.

This implies that maxj∈Jt(IIj) = O(v2β+1 log t) such that

max
j∈Jt

KL(Pj ,P0) = O(v2β+1 log t).

Step 3: Deducing the lower bound by application of Lemma 64. For any
j 6= k, j, k ∈ Jt, we have

‖ρ′j − ρ′k‖∞ = ‖G′j −G′k‖∞ = Lhβt sup
x∈R

∣∣∣∣Q′ Åx− xjht

ã
−Q′

Å
x− xk
ht

ã∣∣∣∣
≥ Lhβt |Q′(0)| = L|Q′(0)|vβ

Å
log t

t

ã β
2β+1

.

Here we used that |xj − xk| ≥ 2ht implies that xj /∈ supp
Ä
Q′
Ä ·−xk

ht

ää
, noting that

supp

Å
Q′
Å · − xk

ht

ãã
⊆ (xk − ht, xk + ht).

Furthermore, the number of hypotheses |Jt| satisfies

|Jt| = 2

õ
A

2ht

û
− 1 ' v−1

Å
t

log t

ã 1
2β+1

.

Consequently, there is a positive constant c1 such that log(|Jt|) ≥ c1 log t, for all t
sufficiently large. From the arguments in Step 2, it is clear that v can be chosen small
enough such that, for some positive constant c2,

1

|Jt]
∑
j∈Jt

KL(Pj ,P0) ≤ c2v
2β+1 log t ≤ 1

10
c1 log t ≤ 1

10
log(|Jt|),

for all t sufficiently large. (4.4.24) now follows immediately from Lemma 64.
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Proof of the weighted lower bound for drift estimation For proving (4.4.25), we use
Lemma 61 and the following

Proposition 65. Grant the assumptions of Theorem 53. Then,

lim inf
t→∞

inf›∂ρ2
t

sup
b∈Σ(β,L)

Eb

Å log t

t

ã− β
2β+1

‖fi∂ρ2
t − (ρ2

b)
′‖∞

 > 0

where the infimum is taken over all possible estimators fi∂ρ2
t of (ρ2

b)
′.

Proof. The proof follows exactly the lines of the proof of lower bound for estimating ρ′b,
except from constructing the hypotheses in such a way that, for any j 6= k,

‖(ρ2
j )
′ − (ρ2

k)
′‖∞ ≥ C

Å
log t

t

ã β
2β+1

,

C some positive constant. This is achieved by choosing the kernel function Q involved
in the construction of the function Gj , j ∈ Jt, a little bit differently. Precisely, specify
some function Q : R → R such that Q ∈ C∞c (R), supp(Q) ⊆ [−1

2 ,
1
2 ], Q ∈ H(β + 1, 1

2),∫
Q(x)dx = 0, Q(0) = 0 and |Q′(0)| > 0. For any j 6= k, j, k ∈ Jt, one then has

‖(ρ2
j )
′ − (ρ2

k)
′‖∞ = 2‖(ρ′0 +G′j)(ρ0 +Gj)− (ρ′0 +G′k)(ρ0 +Gk)‖∞

= 2‖ρ′0Gj +G′jρ0 +G′jGj − ρ′0Gk −G′kρ0 −G′kGk‖∞
≥ 2

∣∣∣ρ′0(xj)Gj(xj) +G′j(xj)ρ0(xj) +G′j(xj)Gj(xj)
∣∣∣

≥ 2Lhβt
∣∣∣ρ′0(xj)htQ(0) +Q′(0)ρ0(xj) + Lhβ+1

t Q(0)Q′(0)
∣∣∣

= 2Lhβt
∣∣Q′(0)

∣∣ ρ0(xj) ≥ 2Lhβt
∣∣Q′(0)

∣∣ inf
−A≤x≤A

ρ0(x)

= 2L
∣∣Q′(0)

∣∣ inf
−A≤x≤A

ρ0(x)vβ
Å

log t

t

ã β
2β+1

.

Here we used the fact that |xj − xk| ≥ 2ht implies that

xj /∈ supp

Å
Q′
Å · − xk

ht

ãã
∪ supp

Å
Q

Å · − xk
ht

ãã
because supp

Ä
Q′
Ä ·−xk

ht

ää
∪ supp

Ä
Q
Ä ·−xk

ht

ää
⊆ (xk − ht, xk + ht). The assertion then

follows as in the previous proof (see Steps 1-3) from part (b) of Lemma 64.

In particular, Proposition 65 implies that condition (4.7.35) from Lemma 61 is fulfilled
for ψt = (log t/t)

β
2β+1 , and (4.4.25) follows.
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Proof of Theorem 54. The definition of ĥt according to (4.5.26) implies that

‖ρt,K(ĥt)− ρt,K(hmin)‖∞ .
1√
t log t

. (4.7.47)

Furthermore, hmin satisfies the assumption of Proposition 45 such that assertion (I) of
the theorem immediately follows. It remains to verify (II). First, we remark that it
always holds ĥt ≥ hmin such that ĥt is well-defined. For estimation of ρb via ρt,K(hmin),
Proposition 44 yields

sup
b∈Σ(β,L)

(
Eb
[‖ρt,K(hmin)− ρb‖p∞

]) 1
p = O

Ä
t−1/2(1 +

√
log t+

√
p+ pt−1/2)

ä
.

We can then deduce from (4.7.47) that

sup
b∈Σ(β,L)

[
Eb
(∥∥∥ρt,K(ĥt)− ρb

∥∥∥
∞

)p] 1
p

= O
Ä
t−1/2(1 +

√
log t+

√
p+ pt−1/2)

ä
.

Thus, ρ+
t,K(ĥt) satisfies assumption (E1) from Lemma 60, since clearly ‖ρ+

t,K(ĥt)−ρb‖∞ ≤
‖ρt,K(ĥt)− ρb‖∞ due to the positivity of ρb . We may now follow the proof of Theorem
52. In particular, it again suffices to investigate the estimator ρt,K(ĥt) in order to prove
(II) since conditions (E1) and (E2) from Lemma 60 are satisfied. Note that

Pb
Ä
|ıM − C‖ρb‖∞| > 0.2C‖ρb‖∞

ä
= Pb (|‖ρt,K(hmin)‖∞ − ‖ρb‖∞| > 0.2‖ρb‖∞) ≤ t−1.

follows exactly as in the proof of Theorem 52 since ψt,hmin
(log t) = o(1). Additional

arguments are required only for the investigation of Case 2 (ĥt < hρ). As in the proof of
Theorem 52, it is shown that

Eb
[
‖ρt,K(ĥt)− ρ′b/2‖∞ 1{ĥt<hρ}∩{ÙM≥0.8M}

]
≤

∑
h∈H : h<hρ

Kσ(h, t) ·
√
Pb
Ä
{ĥt = h} ∩ {0.8M ≤ ıM}ä+B(hρ).

We bound the first term by
∑
h∈H : h<hρ

Kσ(h, t)
(»

(I) +
»

(II)
)
, with

(I) :=
∑

g∈H : g≤h
Pb
Ä
‖ρt,K(h+)− ρt,K(g)‖∞ >

√
0.8Mσ(g, t)

ä
,

(II) := Pb

(√
t‖ρt,K(h+)− ρt,K(hmin)‖∞ >

√
h+(log(1/h+))4

log t

)
,

where h+ := min{g ∈ H : g > h}. (I) is dealt with as in Theorem 52 (see (4.7.42)).
With regard to term (II), we argue as before by means of Proposition 42: Since

hmin ≤ h+ ≤ hρ, it holds for any β > 0 and an arbitrary positive constant L, for some t
onwards,

√
h+
Ä
1 + log(1/

√
h+) + log(t)

ä
+
√
te−Lt +

√
t(h+)β+1 = o(λ′),√

hmin

Ä
1 + log(1/

√
hmin) + log(t)

ä
+
√
te−Lt +

√
t(hmin)β+1 = o(λ′),
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letting λ′ :=
√
h+(log(1/h+))4/ log t. Thus, for any t > 1 sufficiently large,

Pb
Ä√

t‖ρt,K(h+)− ρt,K(hmin)‖∞ > λ′
ä

≤ Pb
Ç√

t‖ρt,K(h+)− L•t (X)t−1‖∞ >
λ′

2

å
+ Pb

Ç√
t‖ρt,K(hmin)− L•t (X)t−1‖∞ >

λ′

2

å
≤ 2 exp

Ç
−Λ1(log(1/h+))4

log t

å
≤ 2 exp

Ä
−Λ̃1(log t)2

ä
,

for some positive constant Λ̃1. Consequently,∑
h∈H : h<hρ

σ(h, t)
»

(II) . log t · σ(hmin, t)
»

exp(−Λ̃1(log t)2) = o(σ(hρ, t)).

We can then proceed as in the proof of Theorem 52 to finish the proof.
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The present work answers very classical questions in nonparametric statistics concerning
the class of scalar, ergodic diffusions on the whole real line. A central challenge is the
investigation of sup-norm risk which requires the development of deep probabilistic tools
from empirical process theory extended to our continuous time framework. Furthermore,
considering the natural model of diffusions which live on the whole real line entails tech-
nically demanding problems. Their solution lies beyond common strategies only working
under standard boundedness conditions. In the literature, these challenges are often cir-
cumvented by restricting to compact sets or to diffusions with boundary reflections or
periodic drift which confines the states of the process to a bounded set.
The objective of this thesis relies essentially on the assumption of the availability of

a continuous record of observations. As has been demonstrated, this approach leads to
results that reflect the very nature of the process which is due to the incorporation of
their probabilistic structure. This structure has not been blurred by discretisation. On
the other hand, the availability of continuous observations is apparently not a realistic
assumption since data always comes discrete even if the underlying process is assumed to
be continuous. This is one reason why we advocate the kernel type estimators suggested
in the present work. They allow for a straightforward extension to the case of discrete ob-
servation schemes and studying sup-norm adaptive estimation of diffusion characteristics
in this context is an immediate follow-up question.
Convergence rates will depend heavily on the structure of the observation record. In

this regard, the results of this thesis can be considered as the fundamental benchmark
for what is possible at best which is insightful in terms of deciding in which frequency
data should be collected. High frequency data refers to the case of discrete observations
at equally spaced time points with the time between two observations vanishing as time
increases. High frequency observations can be expected to provide enough information
to use and recover the continuous paths properties to some extent which is different from
the case of low frequency data, i.e. equidistant, observations imposing different structural
properties. Therefore, methods and results presented in this theses can serve as a good
starting point for the investigation of high frequency data.
Another straightforward follow-up question is certainly the investigation of multivari-

ate state variables. As for discrete observations, the kernel type estimators are easily
adapted to this setting. In the diffusion context, different phenomena as compared to
the scalar case can be expected. In particular, local time which plays a central role for
the one-dimensional investigation does not exist. For the analysis of sup-norm risk in
the described situations, uniform concentration inequalities will again be the key device
and we expect our approach to concentration inequalities to be successful in this case,
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as well.
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