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Abstract

The ease at which online paradata can be captured in web surveys seems to
increase social researchers’ desire to collect such data. Yet little attention is
paid to whether respondents actually approve of their collection. This article,
therefore, studies online survey respondents’ acceptance of automatically
collecting their geographical locations. In wave 4 of the German Internet
Panel, we asked respondents for their consent to automatically track their
location using a JavaScript. Respondents were also asked to report their
location in a set of traditional survey questions. About 62 percent of
respondents consented to the automated collection of their location
whereas 97 percent provided their location manually. With respect to
consent biases, we find evidence that the composition of the achieved sample
of geo-located respondents is biased and that the personal characteristics
associated with respondents’ willingness to be geo-located differ between
the automated tracking and manual provision of geo-information.
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Recent years have seen gradual but far-reaching changes in the survey

research landscape that were initiated by some key developments: Decreas-

ing response rates and rising survey costs (Couper 2013; Groves 2011; Hox

and De Leeuw 1994) paired with increasing access to alternative data sources

for the social sciences, such as Big Data from websites and social media,

administrative records, and geo-coded data (Callegaro 2013; Couper 2013;

Kreuter 2015; Kreuter, Müller, and Trappmann 2010). The data from these

new sources are attractive because they typically come at a lower cost per

unit than survey data (Groves 2011) and are available as large data sets,

enabling complex statistical analyses. Such data sources can be of interest

in their own right (e.g., to forecast election results; see Gayo-Avello 2013) or

as an augmentation of survey interview data (Couper 2013; Couper and

Singer 2013; Groves 2011), where the survey data are linked to the data set

from the alternative data source via a common link-ID (for studies consent to

administrative record linkage, see Korbmacher and Schröder 2013; Kreuter,

Sakshaug, and Tourangeau 2015; Sakshaug and Huber 2015; Sakshaug and

Kreuter 2014; Sakshaug, Tutz and Kreuter 2013; Sakshaug, Wolter, and

Kreuter 2015; Sala, Knies, and Burton 2014; for a discussion of the benefits

and challenges of data linkage, see Blom and Korbmacher 2018).

Paradata, which describe the survey data collection process and are col-

lected as a by-product thereof, often accompany alternative data sources.

They are particularly common in web surveys, where we can, for example,

collect time stamps, clicking patterns, information about the device used, and

Internet protocol (IP) addresses (Callegaro 2013) at little additional cost. IP

addresses are a special type of paradata because they contain information

about the survey process (e.g., variation in IP addresses across panel waves

may indicate respondent mobility) and, in addition, can function as a link-ID

through which geo-coded data can be linked to the survey data set.

Linking geo-coded data to the location of where respondents fill in the

survey is valuable for both substantive and methodological research because

such data enrich the survey data set with additional explanatory variables.

Examples of these are weather or climate data and distances from public

places like supermarkets, green spaces, or schools.
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Some studies link weather data to survey data via a self-reported or

address-based geographical link-ID and find that the weather affects survey

responses. Feddersen, Metcalfe, and Wooden (2016) merged data from the

Household, Income and Labour Dynamics in Australia survey to data from

the Australian Bureau of Meteorology via respondents’ addresses and found

that the weather and climate impacted on reported life satisfaction. In a

similar vein, Egan and Mullin (2012) and Shao (2017) find an effect of the

local weather on survey respondents’ perception of global warming.

While their research is of great value, there are two methodological chal-

lenges to these three studies: They rely on respondents’ willingness and their

ability to relate their location accurately by means of a manually reported

address or zip code. Alternatively, researchers may automatically locate

respondents during the interview. Such an automated collection of geogra-

phical locations has two advantages: First, it reduces the space needed in a

questionnaire and, in consequence, the response burden. Second, it enables

capturing locations for people filling in the questionnaire in places for which

they do not know the address.

In surveys that use GPS-enabled devices, such as smartphones, the auto-

mated location process can take place via satellites that provide exact coor-

dinates of the respondents’ whereabouts. Such technology is now used for

mobile web surveys that focus on surveying daily mobility patterns (Lin and

Hsu 2014). If researchers wish to collect location data for survey respondents

who participate via desktop or laptop computers, however, GPS tracking is

not possible. Moreover, the vast majority of panelists in many online panels

still fill in their questionnaires on desktop and laptop computers. For exam-

ple, during the German Internet Panel (GIP) survey in March 2013, when we

conducted our study, only 3 percent and 4 percent of the respondents filled in

the questionnaire using a smartphone or a tablet, respectively. Over time,

these figures have increased, however, even in January 2018 only 16 percent

and 13 percent of the GIP panelists responded via smartphone or tablet,

respectively. For a comprehensive picture of the panelists’ location, GPS

tracking, therefore, is not yet viable. Instead, collecting IP addresses remains

necessary to automatically track panelists’ location.

Enthusiasts of the automated location of respondents, nevertheless, tend to

overlook the ethical rules of conduct and data protection regulations to which

the collection, storage, and analytical use of such data are subjected. For

example, the collection of respondents’ IP addresses, which are device-type

paradata, routinely takes place at the beginning of web interviews (Callegaro

2013), and respondents are usually not able to prevent their collection (ESO-

MAR 2011). However, these data are, arguably, highly personal and, thus,
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underlie the same regulations as other personal identifiers like addresses or

social security numbers (Callegaro 2013; ESOMAR 2011). Their collection,

usage, and storage, thus, require the informed consent by the survey respon-

dents (Couper and Singer 2013; Singer and Couper 2011).

Informed consent for the collection of paradata starts a difficult debate for

survey researchers. While researchers are used to asking respondents for

consent to the collection, storage, and analysis of the answers given during

an interview, paradata are less tangible to respondents and, consequently,

more difficult to “inform” about (Couper and Singer 2013; Singer and Cou-

per 2011). Moreover, researchers’ endeavors to use new data sources typi-

cally do not stop at the collection of paradata, particularly where IP addresses

are concerned. Instead, researchers typically aspire to using the obtained IP

address as a link-ID to link additional data from other sources, for example,

the geo-coded weather information discussed above (Feddersen et al. 2016).

Again, informed consent from the survey respondent to allow this linking

process appears to be necessary.

In summary, to link geo-coded information to survey data, informed

consent is needed for both the collection of a geo-link-ID and the linking

process. While many web surveys routinely collect a geo-link-ID in the form

of the IP address of the respondents’ device, respondents are seldom

informed about this and even more seldom explicitly consent to it.

Literature

Given the scarcity in published research on consent to the collection and

linking of geographical information, two related strands of literature inform

our research: research on informed consent to paradata collection and

research on the consent to data linkage.

Even research on informed consent to paradata collection in survey inter-

views is still surprisingly scarce and limited to a single study by Couper and

Singer (2013). In vignette experiments, they study respondents’ hypothetical

willingness to participate in surveys in which paradata—characteristics of

the browser, key strokes, and time stamps—are collected. Respondents who

agree to participate are further asked whether they would permit the use of

the paradata. Varying the amount of information on paradata and their use,

Couper and Singer (2013) find that any mention of paradata reduces the

respondents’ willingness to participate in a survey. Asking respondents for

consent to use this kind of paradata in an actual survey yields consent rates

between 66 percent and 72 percent, depending on the description of the

paradata provided.
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The literature on consent to linking individual survey records to other data

sources, such as administrative or health data, is a little less scarce. In this

context, several different approaches to maximize consent to data linkage

have been experimentally tested.

A first set of research projects investigates the effect on consent of men-

tioning to respondents that allowing data linkage will reduce the number of

questions needed to be asked during the survey interview. Asking for consent

to link web survey responses to administrative records of the German Federal

Employment Agency, Sakshaug and Kreuter (2014) find that such time-

saving and interview-shortening arguments benefit consent. However, in a

telephone study, Sakshaug et al. (2013) did not find an effect on linkage

consent, when the consent request was motivated in terms of time savings for

the respondent.

Research is also mixed when it comes to the effect on consent of loss

framing, where respondents are informed that their survey responses will be

less useful if no consent to data linkage is provided, versus gain framing,

where respondents are informed that their survey responses will be more

useful if consent to data linkage is provided. Kreuter et al. (2015), for exam-

ple, find loss framing to be more effective in achieving consent than gain

framing. Yet, Sakshaug et al. (2015) conclude that the effect of gain versus

loss framing depends on whether the gains and losses are related to the

usefulness of the information that has already been provided, or is yet to

be provided, by the respondent.

Concerning the placement of the consent question, Sakshaug et al. (2013)

find the consent rate to be higher when consent is requested at the beginning

instead of the end of an interview. Finally, investigating correlates of con-

sent, Korbmacher and Schröder (2013) show that consent to the collection of

blood spots (biomarkers) depends on respondents’ sociodemographics as

well as the characteristics of the interview situation and the interviewer.

As this overview shows, surprisingly few studies have thus far investi-

gated informed consent to the collection of online paradata despite its ubi-

quity and increasing importance for survey research. In particular, we know

next to nothing about respondents’ consent to the collection of their geo-

location through automated processes.

Our article aims to fill this research gap by shedding light on respondents’

consent to the automated and manual collection of geo-link-IDs during an

online survey of the GIP. More specifically, we ask respondents for consent

to run a JavaScript program that records their IP address and to link their

geographical location to their survey data via this IP address. In addition, we

ask a series of questions about the respondents’ current location to detect
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whether respondents resist revealing geographical information altogether or

whether they only resist the automated collection thereof.

Data

As a probability-based online panel that includes previously off-line persons

in order to draw inference to the general adult population in Germany, the

GIP is well-suited to the study of the mechanisms of informed consent to the

collection and linking of geographical information in the general population.

Set up in 2012, GIP panelists were recruited in two stages. During the first

stage, a strict area probability sample with prior listing and in-office sam-

pling of household addresses was interviewed in a short face-to-face recruit-

ment interview (AAPOR (2016) response rate (RR2): 52.1 percent).

Subsequently, all household members aged 16–75 were invited to participate

in the GIP online panel (cumulative response rate at panel registration: 18.5

percent).1 To become GIP panel members, all respondents needed to give

permission to the collection and storage of their survey and paradata at the

beginning of their first online interview. (For information on the design and

fieldwork of the GIP, see Blom, Gathmann, and Krieger 2015; Blom et al.

2016. Please note that in 2014 and 2018 additional samples were recruited

into the GIP, which, however, were not included in this study.)

If, during the face-to-face recruitment interview, a household was found

to lack a computer and/or Internet access, these so-called off-liners were

equipped with a user-friendly computer and/or Internet connection to enable

their participation in the online panel and, thereby, minimize noncoverage

(for information on the representativeness of the GIP data, in particular with

respect to the offline population, see Blom and Herzing 2016; Blom et al.

2017; Herzing and Blom 2018).

GIP panelists are interviewed in bimonthly online surveys of approxi-

mately 20 minutes on a variety of social, economic, and political topics. Our

study was conducted at the end of wave 4, in March 2013.2 With a comple-

tion rate of 69.7 percent, 1,118 of the 1,603 GIP panelists participated in this

wave, which is equivalent to a cumulative response rate of 12.9 percent.

Thirty-four respondents broke off the questionnaire before our questions

were asked (break-off rate: 3.0 percent). Five respondents skipped all loca-

tion questions. These item nonrespondents were excluded leaving 1,079

respondents for the descriptive and bivariate analyses. Due to a small amount

of item nonresponse in the independent variables, the sample size for the

multivariate models was further reduced by 11 cases to 1,068.3
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Toward the end of the questionnaire, respondents were asked to manually

report the address at which they were filling in the questionnaire (city, postal

code, and German state, see Figure 1).4 Subsequently, respondents were

asked for consent for a software to automatically record their location using

a JavaScript plugin5 (see Figure 2).

Analytical Strategy

With our research, we aim to contribute to the literature by addressing three

research questions:

1. What is the acceptance among the general population in Germany of

(a) the manual and (b) the automated collection of their geographical

location?

2. Who consents to being located and who refuses, i.e. what are the

characteristics of consenters and refusers?

3. Are there differences in the characteristics of people who manually

report their location and people who consent to the automated col-

lection of their geographical location?

The first research question looks into the main effects of our study. We

answer this by analyzing the rate at which respondents manually provided a

location (a city name, a zip code, or at least one of these indicators) and the

consent rate for the automated collection of location information via the IP

address. We further check whether the rate at which the geo-location is

Figure 1. Screenshot and English translation of manual location report.
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manually provided significantly differs from the consent rate for the auto-

mated collection of this information through paired z-tests.

To answer question 2, we investigate correlations between respondent

characteristics and whether the location information is provided. For this

purpose, we build an indicator “manual” that is 1 if respondents reported

at least one of two manual location measures (city and/or zip code) and 0 if

respondents did not provide either piece of information. Furthermore, we

build an indicator “automated” that is 1 if respondents consented to the

automated tracking of their location and 0 otherwise. These indicators are

used as dependent variables in two logistic regression estimations on respon-

dent characteristics. Our models control for the complex sampling design of

the GIP by taking the clustering of individuals within households within

primary sampling units into account using Jackknife variance estimation (see

Lumley et al. 2004).

To answer question 3 of whether there are differential effects of respon-

dents’ characteristics on consent to the two different geo-location questions,

Figure 2. Screenshot and English translation of question of consent to automated
location.
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we model the willingness to provide a geo-location manually and consent to

the automated collection of this information simultaneously using multilevel

modeling. For this purpose, we reshape the data set to long format, so that

each respondent has two observation rows, one for each of our dependent

variables “manual” and “automated” (N ¼ 2,158). We call both the willing-

ness to report a geo-location and the consent to the automated measurement

“compliance” and generate an indicator “question content” that denotes

whether the row refers to the question about the automated or the manual

collection of the geo-location. We run a logistic regression of the compliance

variable on the “question content” indicator together with the same respon-

dent characteristics as in the single models. Most importantly, we also

include interaction terms of the “question type” indicator and respondent

characteristics. Because the “compliance” variable is nested within respon-

dents, we add random intercepts to our model. The significance of the inter-

action terms indicates differential effects of person characteristics on

automated versus manual geo-location collection. Standard errors are clus-

tered for Primary Sampling Units (PSUs), households, and respondents.

The respondent characteristics that we consider in the logistic regressions

are basic characteristics that were collected in the GIP core questionnaire in

wave 1. These characteristics are selected for two reasons. First, after wave

1, the participation patterns in the GIP vary greatly from wave to wave.

While 43 percent of GIP panelists participate in all waves during the first

two years, the rest of the panelists miss at least one wave at some point.

Many of these panelists miss one or two waves but are otherwise loyal long-

term GIP members. By using predictors from wave 1 only, we minimize the

scope for item nonresponse.

Second and more importantly, we deliberately choose characteristics

that are of general importance to researchers using the GIP and similar

probability-based online panels (see Blom et al. 2016). This means that

we investigate general sociodemographic backgrounds of panelists as well

as indicators that are likely to be correlated with the topic focus of the GIP

(i.e., social, political, and economic research). This way, we draw a profile

of consenters and nonconsenters that may generalize beyond the scope of

our study in the GIP and may thus inform other researchers regarding the

bias trade-offs associated with collecting location information for online

respondents.

If these characteristics affect the willingness to consent to the collection of

geo-locations, the subsample of respondents who consented is not represen-

tative of the GIP sample. As a typical use of geo-locations is to use them as a

link to outside data sources and expand the survey data set by merging
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additional information on location level, findings from the reduced data set

of consenters might be biased and not generalizable to the population of

interest. Most importantly, bias in the personal characteristics we study will

most likely lead to biases in other key survey variables that they are corre-

lated with like opinions and attitudes.

The independent variables in our models are gender, age, education (low,

medium, high), place of residence (East, West), household size (single, two

plus household members), frequency of computer use for private purposes

(never/less than monthly, every month, every week, every day), and the Big

Five personality traits: openness to experience, conscientiousness, extrover-

sion, agreeableness and neuroticism (from the 10-item short version of the

Big Five Inventory measured on five-point scales; see Rammstedt and John

2007; see Table 1 for an overview of all characteristics used in the models).

In addition, wave 4 collected information about the type of location

respondents were at, while filling in the survey. We asked whether respon-

dents were currently on the move (e.g., on a train); at work; with family,

friends, or acquaintances; at home; in a public space (e.g., in a café or

restaurant); or in another place. Responses given to “in another place” were

back-coded and the categories “with family, friends, or acquaintances,” “in a

public place,” and “on the move” collapsed into a single new category

“outside the home and work.” Thus, the type of location indicator has three

categories: at home, at work, and outside the home and work.

Results

We first analyze our first research question on the acceptance of the collec-

tion of geographical information. In total, 62.1 percent (670 respondents)

consented to being located via a JavaScript plug-in, while 37.9 percent (409

respondents) refused (see Figure 3). A meaningful city name was provided

by 95.9 percent (including foreign cities) and a valid postal code by 90.4

percent of the respondents. In total, 1,045 respondents (96.9 percent)

reported at least one manual location measure. The rate at which the geo-

location is manually provided is significantly higher than the consent rate to

the automated collection of this information (paired z-test: p < .01).

The willingness to report a location and consent to the automated tracking

is highly correlated (see Table 2). Of the 670 respondents who consented to

the automated geographical data collection, only 5 did not provide a city

name or zip code. And of the 1,045 respondents who manually provided

location information, 665 also consented to automated geographical data

collection. However, the respondents who did not provide location
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information might systematically differ from those who did, in particular for

the automated geographical data collection, where there is more variation to

explain than for the manual collection.

Therefore, to answer research question 2, we run two logistic regressions

of the indicators “manual” and “automated” on the respondents’ character-

istics, as described above. The first two columns in Table 3 show the respec-

tive results.

Although 96.9 percent of respondents report a city name or postal code,

we find selectivity in the willingness to report locations. The propensity to

provide geographical data manually is significantly affected by a respon-

dent’s level of extroversion: Higher levels of extroversion are associated

Table 1. Summary of Independent Variables Used in the Regression Models.

Variable Coding Summary Statistics

Female Dichotomous: 1 ¼ female, 0 ¼
male

49.9% female

Age Continuous: range 18–77 years Mean ¼ 46.9, SD ¼ 15.2
Single household Dichotomous: 1 ¼ single

household, 0 ¼ 2þ persons
in household

14.0% single households

East Germany Dichotomous: 1 ¼ East
Germany, 0 ¼West
Germany

19.1% East Germany

Education Three categories: 1 ¼ low
education, 2 ¼ medium
education, 3 ¼ high
education

21.5% low education, 35.3%
medium education, 43.1%
high education

Neuroticism (Big5) Continuous: range 1–5 Mean ¼ 2.8, SD ¼ 0.9
Agreeableness

(Big5)
Continuous: range 1–5 Mean ¼ 3.0, SD ¼ 0.8

Extroversion (Big5) Continuous: range 1–5 Mean ¼ 3.2, SD ¼ 0.9
Conscientiousness

(Big5)
Continuous: range 1–5 Mean ¼ 4.0, SD ¼ 0.8

Openness (Big5) Continuous: range 1–5 Mean ¼ 3.4, SD ¼ 0.9
Location Three categories: 1 ¼ at home,

2 ¼ at work, 3 ¼ outside
home and work

88.3% at home, 5.1% at work,
6.6% outside home and
work

Private computer
usage

Four categories: 1 ¼ every day,
2 ¼ every week, 3 ¼ every
month, 4 ¼ less than
monthly

62.8% every day, 24.3% every
week, 7.3% every month,
5.7% less than monthly
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with higher willingness to report a city name or zip code (p < .05). We also

find a marginally significant negative association between respondents who

were out of the home and work when they took the survey and their will-

ingness to manually provide geographical data (p < .1). This makes sense

because these respondents have a higher chance of not knowing the address

that they are at. But this is unfortunate because while respondents’ home

addresses are usually known to the survey organization, their location when

filling in the questionnaire is not known when respondents are on the go.

There is no effect of the other personality traits or sociodemographic char-

acteristics on the propensity to manually report location information.

Figure 3. Consent rates for automated and manual geo-location questions (bars)
with 95 percent confidence intervals (lines). N ¼ 1,079.

Table 2. Cross-table of Willingness to Manually Provide a Geo-location and Consent
to the Automated Collection of Geo-location.

Automated Collection of Geo-location

No Consent Consent Total

Manual collection of geo-location
Not provided 29 5 34

2.7% 0.5% 3.2%
Provided 380 665 1,045

35.2% 62.1% 96.9%
Total 409 670 1079

37.9% 62.1% 100.0%

Note: Absolute numbers and cell percentages.
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We find that consent to the automated collection of geographical data is

significantly correlated with age, education, and two of the Big Five person-

ality traits (“openness to experience” and “agreeableness”). Consent to auto-

mated collection increases with age (p < .01) but is lower the higher a

respondent’s educational level is (difference between low and high education

significant at p < .05). This is surprising and we do not have a clear

Table 3. Results of Logistic Regressions of Consent to Automated Geo-location and
Willingness to Manually Provide a Geo-location.

Automated Manual

Significant
Interactions

With Question
Type in

Compliance
ModelCoefficient

Standard
Error Coefficient

Standard
Error

Female �0.123 (.135) �0.387 (0.398)
Age 0.028*** (.005) �0.010 (0.015) **
Single household �0.276 (.215) 1.976 (13.806) **
East Germany 0.291 (.180) 0.900 (0.672)
Medium education �0.294 (.206) �0.699 (0.717) ns
High education �0.420** (.199) �0.276 (0.750) ns
Neuroticism 0.009 (.079) 0.087 (0.196)
Agreeableness 0.201** (.082) 0.296 (0.243) ns
Extroversion 0.013 (.072) 0.476** (0.194) ***
Conscientiousness �0.049 (.102) 0.299 (0.236)
Openness 0.152** (.075) �0.310 (0.227) **
Location: at work �0.380 (.266) �0.885 (0.665) ns
Location: outside

home and work
�0.365 (.296) �1 208* (0.648) ns

Private computer
use: every day

�0.341 (.346) �0.396 (12.136)

Private computer
use: every week

0.042 (.355) �1.014 (12.140)

Private computer
use: every month

0.346 (.375) 0.382 (18.376)

Constant �1.636** (.681) 2.567 (12.448)
N 1,068 1,068
McFadden’s pseudo

R2
.05 .09

Note: Models control for the complex sample design using Jackknife variance estimation.
*p < .1. **p < .05. ***p < .01.
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interpretation of this finding. One could speculate that younger and more

educated respondents might be more aware of the negative sides of new

technologies and thus refuse at a higher rate, but more support is needed for

this. Higher levels of “openness to experience” and “agreeableness” increase

the propensity to consent (both p < .05). The positive effect of openness to

experience on automated location collection makes sense because the tech-

nology that we used was rather innovative at the time and curiosity might

increase the willingness to try out new technology. Agreeableness is found to

have a positive effect on consent as well. This also makes sense because

more agreeable persons are less likely to refuse a researcher’s request. There

is no significant effect of the other Big Five personality traits, gender, house-

hold size, location details, or computer use.

Looking into research question 3 and thus testing whether the respon-

dents’ characteristics affect their willingness to report a geo-location manu-

ally and their willingness to consent to the automated geo-location collection

differentially, we run a single logistic regression of the compliance indicator

on the respondent characteristics including interactions with the automated

versus manual location request indicator. We only estimate interaction

effects with this indicator for the variables that were found to be significant

in one of the two separate models or whose coefficients show opposite signs

when comparing the two models. Consequently, the model included interac-

tions with age, education, location when filling in the questionnaire, living in

a single household, and the Big Five personality traits extroversion, open-

ness, and agreeableness.

The third column of Table 3 summarizes the results of the compliance

model. (The regression coefficients and standard errors are found in

Table A1 in Online Appendix.) Our results show that age, living in a

single household, and the Big Five personality traits extroversion and

openness significantly differently affect respondents’ willingness to

manually report a geo-location and their consent for the automated col-

lection of a geo-location, while we do not find significant interactions for

education, respondents’ locations when filling in the questionnaire, and

agreeableness.

Discussion

In web surveys, we can automatically collect paradata about the survey

process such as keystrokes, response times, or IP addresses. However, the

ease at which online paradata can be captured seems to exceed respondents’

understanding of how such data may be used by researchers (see also Couper
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and Singer 2013; Singer and Couper 2011). This poses a problem for ethical

requirements regarding informed consent by the survey respondent, espe-

cially when informing respondents is difficult because of the complexity of

the data collection processes involved and the multitude of potential future

uses of the data collected.

IP addresses, for example, are typically not of interest in their own right but

serve as a link to geo-coded data sets. The resulting combined data sets enrich

the survey data and increase its analytical potential. While linking geo-coded

data may also be achieved by asking respondents to manually report their

location, the collection of IP addresses offers a more precise location and

reduces the response burden. However, respondents may perceive the auto-

mated collection of their location as intrusive and may thus object to it.

For researchers, there are obvious benefits to automatically collecting IP

addresses and linking geographical information to a survey data set. How-

ever, whether respondents are fully informed about the processes involved

and the uses of their data, when they agree to typical data protection state-

ments upon joining an online panel, is less clear. This article aims to reduce

this gap in the current literature.

In an online panel sample that upon registration agreed to the general

collection of paradata, we analyze respondents’ consent to the automated

collection of their geographical location via a JavaScript plug-in that tracked

their IP address, when asked specifically for consent to this procedure. In

addition, respondents were asked to manually report their location in a set of

standard survey questions. We compare consent to the automated location

tracking to respondents’ willingness to manually report their location.

Our results show that 97 percent of the respondents are willing to manu-

ally report a city or a postal code, while only 62 percent consent to the

automated location tracking. Consent to the automated tracking and manual

reporting were highly correlated; only five respondents (<1 percent) who

consented to the automated procedure did not provide location information

manually in the survey questions. Respondents’ characteristics are correlated

with consent to the automated collection of their geographical information.

Consenters are older, lower educated, more open, and more agreeable.

Furthermore, despite the low variation in respondents’ willingness to manu-

ally report a city or zip code, we find personal characteristics that signifi-

cantly predict the manual reporting. Respondents who manually report their

location are more likely to be extrovert and less likely to be out of the home

and work at the time they filled in the questionnaire. Finally, we investigate

whether there are significant differences between consenters to the auto-

mated and consenters to the manual collection of location information. We
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find that the effects of age, living in a single household, and the personality

traits extroversion and openness are significantly different for respondents

who provide location information manually and those who consent to the

automated data collection.

Our research is relevant in several ways. First, it demonstrates that pane-

lists, who give permission to the automated collection of paradata in general

when they register for the online panel, may react very differently when they

are informed about the collection of a specific type of paradata and its

purpose at the time that the data are actually collected. Although all of the

respondents to our survey had earlier given permission to automatically

collect paradata, less than a third consented to the automated location track-

ing just nine months later.

Second, our study shows that respondents perceive the automated and the

manual collection of location data very differently. While almost none of the

respondents objected to providing their location manually, more than a third

refused the automated location procedure. In terms of item nonresponse, this

means that researchers will end up with considerably more complete data

sets, if they link external data via the manual geo-link. Furthermore, the

subset of respondents who provide both types of location data differs signif-

icantly from respondents who only manually report their location but refuse

the automated collection. In terms of biases, this means that researchers will

end up with rather different data sets, when they link geo-coded information

via an automated versus a manual link.

Some caution is advised regarding generalizability to the general popu-

lation regarding the size of our main effects. Although the GIP is based on a

probability sample, we cannot rule out initial nonresponse and wave-on-

wave attrition bias. However, any findings regarding the differential effects

of manual versus automated geo-location collection (the interaction effects)

are unlikely to be affected by such biases, given the quasi-experimental

design of our study, in which all respondents were asked both sets of geo-

location questions. It is likely that the GIP panelists are on average more

cooperative than nonrespondents to the panel and panel drop-outs. This

might result in an overestimation of consent in both geo-location questions,

but the interaction effect is unlikely to be affected.

While our study was able to shed light on several issues, open questions

still remain. For example, why do so many respondents report a city or zip

code but are not willing to consent to the automated location? How are our

consent questions and the technological procedures understood by respon-

dents? And, what do respondents believe that we do with the information that
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is automatically collected? Our study can only speculate about the answers to

these questions.

On a technical note, our study uncovered two important caveats regarding

the feasibility of an automated location tracking. First, as we discovered after

the survey, IP addresses were actually only collected for 58 percent of the

respondents who consented to the automated geo-location collection. For

respondents who had consented, the JavaScript application opened a pop-up

window on the computer screen that asked them to agree to run the JavaScript.

If respondents did not click on “agree” in this pop-up window, their IP address

was not collected. Unfortunately, our information on this process is very

limited. While for some respondents this pop-up window may have been

blocked, others simply may not have noticed it, and again others may have

reconsidered their consent once they were confronted with the pop-up window.

A second technological challenge to collecting geographical information

is the conversion of IP addresses into longitudes and latitudes. In our study,

only 27 percent of the IP addresses were actually converted to longitudes and

latitudes by the JavaScript program. While programming may have advanced

since we implemented our study and may thus overcome both of these

challenges to some extent, for many cases, these challenges will remain. For

example, a single IP address can still represent a group of different users via

VPNs one can appear in a different location from one’s true location, and

geo-blockers can block the transmission of the IP address altogether. The

automated collection of geographical information via GPS may seem a solu-

tion, yet this is met with new technological challenges. And, in a survey

setting like the GIP, where still more than 70 percent of panelists complete

their surveys on laptop or desktop computers, it remains unfeasible to com-

prehensively record the geo-location of respondents via GPS.

To conclude, in times where the possibilities for the automated collection

of online paradata seem limitless, our study aims to encourage survey

researchers to reflect on respondents’ acceptance of the collection of such

information. We hope to have made a valuable contribution to the surpris-

ingly sparse literature given its importance in the technological age. The

many caveats and open questions that remain are indicative of a need for

considerably more research that should continuously be updated as techno-

logical possibilities advance and new ethical challenges arise.
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Notes

1. All German Internet Panel (GIP) response rates were calculated following

AAPOR guidelines and can be retrieved from (http://reforms.uni-mannheim.de/

internet_panel/Response%20rates/).

2. This article uses data from GIP wave 1 (doi:10.4232/1.12107) and wave 4

(doi:10.4232/1.12610). The GIP data are published as Scientific Use Files in the

GESIS Data Archive for the Social Sciences (GESIS-DAS). They can be retrieved

from (https://dbk.gesis.org/dbksearch/GDesc2.asp?no¼0109&tab¼&ll¼10&

notabs¼1&db¼E). However, this article researches informed consent regarding

personal and sensitive data, in particular IP addresses and manually provided

geographical information. For anonymity and data protection reasons, the personal

and sensitive data cannot be stored at the GESIS-DAS. Instead, they can be

accessed at the secure Onsite Data Access facilities of the Collaborative Research

Center “Political Economy of Reforms” of the University of Mannheim, Germany.

3. In a sensitivity analysis, we kept the respondents with missing responses and ran

the logistic models on the full data set after multiply imputing the missing values

using chained equations (Azur et al. 2011) but did not find any substantial differ-

ences in the results.

4. Approval for the consent question was granted by the legal team at the field agency

(LINK Institute). Although the study was conducted prior to the introduction of the

EU General Data Protection Regulations (GDPR) in May 2018, the wording of the

consent question is in line with the GDPR.
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5. The JavaScript plug-in used (geoPlugin) can be found at http://www.geoplugin

.com/webservices/javascript.
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Korbmacher, Julie M. and Mathis Schröder. 2013. “Consent when Linking Survey

Data with Administrative Records: The Role of the Interviewer.” Survey Research

Methods 7:115-31. doi:10.18148/srm/2013.v7i2.5067

Kreuter, Frauke. 2015. Data Collection and Inference: Opportunities and Challenges

with Administrative Data and Non-probability Sources. Reykjavik, Iceland: Key-

note Speech, European Survey Research Association.

Kreuter, Frauke, Gerrit Müller, and Mark Trappmann. 2010. “Nonresponse and Mea-

surement Error in Employment Research: Making Use of Administrative Data.”

Public Opinion Quarterly 74:880-906. doi:10.1093/poq/nfq060

Kreuter, Frauke, Joseph W. Sakshaug, and Roger Tourangeau. 2015. “The Framing of

the Record linkage consent question.” International Journal of Public Opinion

Researc, 28:142-52. doi:10.1093/ijpor/edv006

Lin, Miao and Wen-Jing Hsu. 2014. “Mining GPS Data for Mobility Patterns: A Survey.”

Pervasive and Mobile Computing 12:1-16. doi:10.1016/j.pmcj.2013.06.005

Lumley, Thomas. 2004. “Analysis of Complex Survey Samples.” Journal of Statis-

tical Software 9:1-19. doi:10.18637/jss.v009.i08

Rammstedt, Beatrice and Oliver P. John. 2007. “Measuring Personality in one Minute

or Less: A 10-item Short Version of the Big Five Inventory in English and German.”

Journal of Research in Personality 41:203-12. doi:10.1016/j.jrp.2006.02.001

Sakshaug, Joseph W. and Martina Huber. 2015. “An Evaluation of Panel Nonre-

sponse and Linkage Consent Bias in a Survey of Employees in Germany.” Journal

of Survey Statistics and Methodology 4:71-93. doi:10.1093/jssam/smv034

885Felderer and Blom

https://www.esomar.org/uploads/public/knowledge-and-standards/codes-and-guidelines/ESOMAR_Guideline-for-online-research.pdf
https://www.esomar.org/uploads/public/knowledge-and-standards/codes-and-guidelines/ESOMAR_Guideline-for-online-research.pdf


Sakshaug, Joseph W. and Frauke Kreuter. 2014. “The Effect of Benefit Wording on

Consent to Link Survey and Administrative Records in a Web Survey.” Public

Opinion Quarterly 78:166-76. doi:10.1093/poq/nfu001

Sakshaug, Joseph W., Valerie Tutz, and Frauke Kreuter. 2013. “Placement, Wording,

and Interviewers: Identifying Correlates of Consent to Link Survey and Administra-

tive Data.” Survey Research Methods 7:133-144. doi:10.18148/srm/2013.v7i2.5395

Sakshaug, Joseph W., Stefanie Wolter, and Frauke Kreuter. 2015. “Obtaining Record

Linkage Consent: Results from a Wording Experiment in Germany.” Survey

Methods: Insights from the Field. Retrieved October 16, 2019 (http://surveyin

sights.org/?p¼7288).

Sala, Emanuela, Gundi Knies, and Jonathan Burton. 2014. “Propensity to Consent to

Data Linkage: Experimental Evidence on the Role of Three Survey Design Fea-

tures in a UK Longitudinal Panel.” International Journal of Social Research

Methodology 17:455-73. doi:10.1080/13645579.2014.899101

Shao, Wanyun. 2017. “Weather, Climate, Politics, or God? Determinants of Amer-

ican Public Opinions toward Global Warming.” Environmental Politics 26(1):

71-96. doi:10.1080/09644016.2016.1223190

Singer, Eleanor and Mick P. Couper. 2011. “Ethical Considerations in Web Surveys.”

Pp. 133-62 in Social Research and the Internet, edited by Marcel Das, Peter Ester,

and Lars Kaczmirek. Boca Raton, FL: Taylor & Francis.

The American Association for Public Opinion Research. 2016. Standard Definitions:

Final Dispositions of Case Codes and Outcome Rates for Surveys. 9th ed.

AAPOR.

Author Biographies

Barbara Felderer is a postdoctoral researcher with the SFB 884 “Political Economy

of Reforms” at the University of Mannheim. Her research interests include survey

methods, in particular measurement possibilities of online surveys, nonresponse bias,

the effect of respondent incentives, measurement errors, and mode effects. Her

research has been published in Public Opinion Quarterly, Field Methods, Journal

of Official Statistics and various edited volumes.

Annelies G. Blom is a professor at the Department of Political Science, School of

Social Sciences, University of Mannheim and the SFB 884 “Political Economy of

Reforms,” University of Mannheim. Her research interests include representative-

ness and measurement quality in online surveys, methods of longitudinal research,

nonresponse and attrition, and interviewer effects. Her research has, among other

journals, been published in Sociological Methods & Research, Public Opinion

Quarterly, Journal of the Royal Statistical Society: Series A, and Social Science

Computer Review.

886 Sociological Methods & Research 51(2)

http://surveyinsights.org/?p=7288
http://surveyinsights.org/?p=7288
http://surveyinsights.org/?p=7288


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


