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Abstract

It is conventional wisdom in machine learning and data mining that logical models such as
rule sets are more interpretable than other models, and that among such rule-based models,
simpler models are more interpretable than more complex ones. In this position paper, we
question this latter assumption by focusing on one particular aspect of interpretability, namely
the plausibility of models. Roughly speaking, we equate the plausibility of a model with the
likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that—
all other things being equal—longer explanations may be more convincing than shorter ones,
and that the predominant bias for shorter models, which is typically necessary for learning
powerful discriminative models, may not be suitable when it comes to user acceptance of
the learned models. To that end, we first recapitulate evidence for and against this postulate,
and then report the results of an evaluation in a crowdsourcing study based on about 3000
judgments. The results do not reveal a strong preference for simple rules, whereas we can
observe a weak preference for longer rules in some domains. We then relate these results to
well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or
the recognition heuristic, and investigate their relation to rule length and plausibility.
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1 Introduction

In their classical definition of the field, Fayyad et al. (1996) have defined knowledge discovery
in databases as “the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data.” Research has since progressed considerably in
all of these dimensions in a mostly data-driven fashion. The validity of models is typically
addressed with predictive evaluation techniques such as significance tests, hold-out sets, or
cross validation (Japkowicz and Shah 2011), techniques which are now also increasingly
used for pattern evaluation (Webb 2007). The novelty of patterns is typically assessed by
comparing their local distribution to expected values, in areas such as novelty detection
(Markou and Singh 2003a,b), where the goal is to detect unusual behavior in time series,
subgroup discovery (Kralj Novak et al. 2009), which aims at discovering groups of data that
have unusual class distributions, or exceptional model mining (Duivesteijn et al. 2016), which
generalizes this notion to differences with respect to data models instead of data distributions.
The search for useful patterns has mostly been addressed via optimization, where the utility
of a pattern is defined via a predefined objective function (Hu and Mojsilovic 2007) or
via cost functions that steer the discovery process into the direction of low-cost or high-
utility solutions (Elkan 2001). To that end, Kleinberg et al. (1998) formulated a data mining
framework based on utility and decision theory.

Arguably, the last dimension, understandability or interpretability, has received the least
attention in the literature. The reason why interpretability has rarely been explicitly addressed
is that it is often equated with the presence of logical or structured models such as decision
trees or rule sets, which have been extensively researched since the early days of machine
learning. In fact, much of the research on learning such models has been motivated with
their interpretability. For example, Fiirnkranz et al. (2012) argue that rules “offer the best
trade-off between human and machine understandability”. Similarly, it has been argued that
rule induction offers a good “mental fit” to decision-making problems (van den Eijkel 1999;
Weihs and Sondhauss 2003). Their main advantage is the simple logical structure of a rule,
which can be directly interpreted by experts not familiar with machine learning or data mining
concepts. Moreover, rule-based models are highly modular, in the sense that they may be
viewed as a collection of local patterns (Fiirnkranz 2005; Knobbe et al. 2008; Fiirnkranz and
Knobbe 2010), whose individual interpretations are often easier to grasp than the complete
predictive theory. For example, Lakkaraju et al. (2016) argued that rule sets (which they call
decision sets) are more interpretable than decision lists because they can be decomposed into
individual local patterns.

Only recently, with the success of highly precise but largely inscrutable deep learning
models, has the topic of interpretability received serious attention, and several workshops
in various disciplines have been devoted to the topic of learning interpretable models at
conferences like ICML (Kim et al. 2016, 2017, 2018), NIPS (Wilson et al. 2016; Tosi et al.
2017; Miiller et al. 2017) or CHI (Gillies et al. 2016). Moreover, several books on the subject
have already appeared, or are in preparation (Jair Escalante et al. 2018; Molnar 2019), funding
agencies like DARPA have recognized the need for explainable AIL! and the General Data
Protection Regulation of the EC includes a “right to explanation”, which may have a strong
impact on machine learning and data mining solutions (Piatetsky-Shapiro 2018).

The strength of many recent learning algorithms, most notably deep learning (LeCun et al.
2015; Schmidhuber 2015), feature learning (Mikolov etal. 2013), fuzzy systems (Alonso et al.
2015) or topic modeling (Blei 2012), is that latent variables are formed during the learning

1 http://www.darpa.mil/program/explainable-artificial-intelligence.
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process. Understanding the meaning of these hidden variables is crucial for transparent and
justifiable decisions. Consequently, visualization of such model components has recently
received some attention (Chaney and Blei 2012; Zeiler and Fergus 2014; Rothe and Schiitze
2016). Alternatively, some research has been devoted to trying to convert such arcane models
to more interpretable rule-based or tree-based theories (Andrews et al. 1995; Craven and
Shavlik 1997; Schmitz et al. 1999; Zilke et al. 2016) or to develop hybrid models that combine
the interpretability of logic with the predictive strength of statistical and probabilistic models
(Besold et al. 2017; Tran and d’ Avila Garcez 2018; Hu et al. 2016).

Instead of making the entire model interpretable, methods like LIME (Ribeiro et al. 2016)
are able to provide local explanations for inscrutable models, allowing to trade off fidelity to
the original model with interpretability and complexity of the local model. In fact, Martens
and Provost (2014) report on experiments that illustrate that such local, instance-level expla-
nations are preferable to global, document-level models. An interesting aspect of rule-based
theories is that they can be considered as hybrids between local and global explanations
(Fiirnkranz 2005): A rule set may be viewed as a global model, whereas the individual rule
that fires for a particular example may be viewed as a local explanation.

Nevertheless, in our view, many of these approaches fall short in that they take the inter-
pretability of rule-based models for granted. Interpretability is often considered to correlate
with complexity, with the intuition that simpler models are easier to understand. Principles
like Occam’s Razor (Blumer et al. 1987) or Minimum Description Length (MDL) (Rissanen
1978) are commonly used heuristics for model selection, and have shown to be successful
in overfitting avoidance. As a consequence, most rule learning algorithms have a strong bias
towards simple theories. Despite the necessity of bias for simplicity for overfitting avoidance,
we argue in this paper that simpler rules are not necessarily more interpretable, at least not
when other aspects of interpretability beyond the mere syntactic readability are considered.
This implicit equation of comprehensibility and simplicity was already criticized by, e.g.,
Pazzani (2000), who argued that “there has been no study that shows that people find smaller
models more comprehensible or that the size of a model is the only factor that affects its com-
prehensibility.” There are also a few systems that explicitly strive for longer rules, and recent
evidence has shed some doubt on the assumption that shorter rules are indeed preferred by
human experts. We will discuss the relation of rule complexity and interpretability at length
in Sect. 2.

Other criteria than accuracy and model complexity have rarely been considered in the
learning process. For example, Gabriel et al. (2014) proposed to consider the semantic coher-
ence of its conditions when formulating a rule. Pazzani et al. (2001) show that rules that
respect monotonicity constraints are more acceptable to experts than rules that do not. As
a consequence, they modify a rule learner to respect such constraints by ignoring attribute
values that generally correlate well with other classes than the predicted class. Freitas (2013)
reviews these and other approaches, compares several classifier types with respect to their
comprehensibility and points out several drawbacks of model size as a single measure of
interpretability.

In his pioneering framework for inductive learning, Michalski (1983) stressed its links
with cognitive science, noting that “inductive learning has a strong cognitive science fla-
vor”, and postulates that “descriptions generated by inductive inference bear similarity to
human knowledge representations” with reference to Hintzman (1978), an elementary text
from psychology on human learning. Michalski (1983) considers adherence to the compre-
hensibility postulate to be “crucial” for inductive rule learning, yet, as discussed above, it
is rarely ever explicitly addressed beyond equating it with model simplicity. Miller (2019)
makes an important first step by providing a comprehensive review of what is known in the
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social sciences about explanations and discusses these findings in the context of explainable
artificial intelligence.

In this paper, we primarily intend to highlight this gap in machine learning and data mining
research. In particular, we focus on the plausibility of rules, which, in our view, is an important
aspect that contributes to interpretability (Sect. 2). In addition to the comprehensibility of a
model, which we interpret in the sense that the user can understand the learned model well
enough to be able to manually apply it to new data, and its justifiability, which specifies
whether the model is in line with existing knowledge, we argue that a good model should
also be plausible, i.e., be convincing and acceptable to the user. For example, as an extreme
case, a default model that always predicts the majority class is very interpretable, but in most
cases not very plausible. We will argue that different models may have different degrees of
plausibility, even if they have the same discriminative power. Moreover, we believe that the
plausibility of a model is—all other things being equal—not related or in some cases even
positively correlated with the complexity of a model.

To that end, we also report the results of a crowdsourcing evaluation of learned rules in four
domains (Sect. 3). Overall, the performed experiments are based on nearly 3000 judgments
collected from 390 distinct participants. The results show that there is indeed no evidence
that shorter rules are preferred by humans. On the contrary, we could observe a preference for
longer rules in two of the studied domains (Sect. 4). In the following, we then relate this finding
to related results in the psychological literature, such as the conjunctive fallacy (Sect. 5) and
insensitivity to sample size (Sect. 6). Section 7 is devoted to a discussion of the relevance of
conditions in rules, which may not always have the expected influence on one’s preference, in
accordance with the recently described weak evidence effect. The remaining sections focus
on the interplay of cognitive factors and machine readable semantics: Sect. 8§ covers the
recognition heuristic, Sect. 9 discusses the effect of semantic coherence on interpretability,
and Sect. 10 briefly highlights the lack of methods for learning structured rule-based models.

2 Aspects of interpretability

Interpretability is a very elusive concept which we use in an intuitive sense. Kodratoff (1994)
has already observed that it is an ill-defined concept, and has called upon several communi-
ties from both academia and industry to tackle this problem, to “find objective definitions of
what comprehensibility is”, and to open “the hunt for probably approximate comprehensi-
ble learning”. Since then, not much has changed. Lipton (2016) still suggests that the term
interpretability is ill-defined. In fact, the concept can be found under different names in the
literature, including understandability, interpretability, comprehensibility, plausibility, trust-
worthiness, justifiability and others. They all have slightly different semantic connotations.

A thorough clarification of this terminology is beyond the scope of this paper, but in the
following, we briefly highlight different aspects of interpretability and then proceed to clearly
define and distinguish comprehensibility and plausibility, the two aspects that are pertinent
to this work.

2.1 Three aspects of interpretability
In this section, we attempt to bring some order into the multitude of terms that are used in the

context of interpretability. Essentially, we distinguish three aspects of interpretability (see
also Fig. 1):
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Interpretability
4
Syntactic prerequisite Epistemic | "“rerequisie > |_Pragmatic |
comprehensibility Justifiability ) plausz.bzlzty
understandability explainability Interestingness
readability trustworthiness usabthy_
mental fit credibility acceptability

Fig. 1 Three aspects of interpretability

Syntactic interpretability: This aspect is concerned with the ability of the user to comprehend
the knowledge that is encoded in the model, in very much the same way as the definition
of a term can be understood in a conversation or a textbook.

Epistemic interpretability: This aspect assesses to what extent the model is in line with
existing domain knowledge. A model can be interpretable in the sense that the user can
operationalize and apply it, but the encoded knowledge or relationships are not well
correlated with the user’s prior knowledge. For example, a model which states that the
temperature is rising on odd-numbered days and falling on even-numbered days has a
high syntactic interpretability but a low epistemic interpretability.

Pragmatic interpretability: Finally, we argue that it is important to capture whether the model
serves the intended purpose. A model can be perfectly interpretable in the syntactic and
epistemic sense but have a low pragmatic value for the user. For example, the simple
model that the temperature tomorrow will be roughly the same as today is obviously
very interpretable in the syntactic sense, it is also quite consistent with our experience
and therefore interpretable in the epistemic sense, but it may not be satisfying as an
acceptable explanation for a weather forecast.

Note that these three categories essentially correspond to the grouping of terms pertinent
to interpretability, which has previously been introduced by Bibal and Frénay (2016). They
treat terms like comprehensibility, understandability, and mental fit, as essentially synony-
mous to interpretability, and use them to denote syntactic interpretability. In a second group,
Bibal and Frénay (2016) bring notions such as interestingness, usability, and acceptability
together, which essentially corresponds to our notion of pragmatic interpretability. Finally,
they have justifiability as a separate category, which essentially corresponds to what we mean
by epistemic interpretability. We also subsume their notion of explanatory as explainability
in this group, which we view as synonymous to justifiability. A key difference to their work
lies in our view that all three of the above are different aspects of interpretability, whereas
Bibal and Frénay (2016) view the latter two groups as different but related concepts.

We also note in passing that this distinction loosely corresponds to prominent philosophical
treatments of explanations (Mayes 2001). Classical theories, such as the deductive-
nomological theory of explanation (Hempel and Oppenheim 1948), are based on the validity
of the logical connection between premises and conclusion. Instead, Van Fraassen (1977)
suggests a pragmatic theory of explanations, according to which the explanation should pro-
vide the answer to a (why-)question. Therefore, the same proposition may have different
explanations, depending on the information demand. For example, an explanation for why
a patient was infected with a certain disease may relate to her medical conditions (for the
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doctor) or to her habits (for the patient). Thus, pragmatic interpretability is a much more
subjective and user-centered notion than epistemic interpretability.

However, clearly, these aspects are not independent. As already noted by Bibal and Frénay
(2016), syntactic interpretability is a prerequisite to the other two notions. We also view
epistemic interpretability as a prerequisite to pragmatic interpretability: In case a model is
not in line with the user’s prior knowledge and therefore has a low epistemic value, it also will
have a low pragmatic value to the user. Moreover, the differences between the terms shown in
Fig. 1 are soft, and not all previous studies have used them in consistent ways. For example,
Muggleton et al. (2018) employ a primarily syntactic notion of comprehensibility (as we
will see in Sect. 2.2) and evaluate it by testing whether the participants in their study can
successfully apply the acquired knowledge to new problems. In addition, it is also measured
whether they can give meaningful names to the explanations they deal with, and whether
these names are helpful in applying the knowledge. Thus, these experiments try to capture
epistemic aspects as well.

2.2 Comprehensibility

One of the few attempts for an operational definition of interpretability is given in the works
of Schmid et al. (2017) and Muggleton et al. (2018), who related the concept to objective
measurements such as the time needed for inspecting a learned concept, for applying it in
practice, or for giving it a meaningful and correct name. This gives interpretability a clearly
syntactic interpretation in the sense defined in Sect. 2.1. Following Muggleton et al. (2018),
we refer to this type of syntactic interpretability as comprehensibility and define it as follows:

Definition 1 (Comprehensibility) A model m; is more “comprehensible” than a model m,
with respect to a given task if a human user makes fewer mistakes in the application of model
m; to new samples drawn randomly from the task domain than when applying m;.

Thus, a model is considered to be comprehensible if a user is able to understand all the mental
calculations that are prescribed by the model, and can successfully apply the model to new
tasks drawn from the same population. A model is more comprehensible than another model
if the user’s error rate in doing so is smaller.”> Muggleton et al. (2018) study various related,
measurable quantities, such as the inspection time, the rate with which the meaning of the
predicate is recognized from its definition, or the time used for coming up with a suitable
name for a definition.

Relation to alternative notions of interpretability. Piltaver et al. (2016) use a very similar
definition when they study how the response time for various data- and model-related tasks
such as “classify”, “explain”, “validate”, or “discover” varies with changes in the structure
of learned decision trees. Another variant of this definition was suggested by Dhurandhar
et al. (2017; 2018), who consider interpretability relative to a target model, typically (but
not necessarily) a human user. More precisely, they define a learned model as §-interpretable
relative to a target model if the target model can be improved by a factor of § (e.g., w.r.t.

predictive accuracy) with information obtained by the learned model. All these notions have

2 We are grateful to one of our reviewers for pointing out that this essentially is in line with the cognitive
science perspective on comprehension as proposed by Johnson-Laird (1981), where understanding a natural
language sentence or text means to be able to draw valid conclusions and inferences from it.
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in common that they relate interpretability to a performance aspect, in the sense that a task
can be performed better or performed at all with the help of the learned model.

Asillustrated in Fig. 1, we consider understandability, readability and mental fit as alterna-
tive terms for syntactic interpretability. Understandability is considered as a direct synonym
for comprehensibility (Bibal and Frénay 2016). Readability clearly corresponds to the syn-
tactic level. The term mental fit may require additional explanation. We used it in the sense
of van den Eijkel (1999) to denote the suitability of the representation (i.e. rules) for a given
purpose (to explain a classification model).

2.3 Justifiability

A key aspect on interpretability is that a concept is consistent with available domain knowl-
edge, which we call epistemic interpretability. Martens and Baesens (2010) have introduced
this concept under the name of justifiability. They consider a model to be more justifiable if
it better conforms to domain knowledge, which may be viewed as constraints to which a jus-
tifiable model has to conform (hard constraints) or should better conform (soft constraints).
Martens et al. (2011) provide a taxonomy of such constraints, which include univariate con-
straints such as monotonicity as well as multivariate constraints such as preferences for groups
of variables.
We paraphrase and slightly generalize this notion in the following definition:

Definition 2 (Justifiability) A model m; is more “justifiable” than a model m, if m; violates
fewer constraints that are imposed by the user’s prior knowledge.

Martens et al. (2011) also define an objective measure for justifiability, which essentially
corresponds to a weighted sum over the fractions of cases where each variable is needed in
order to discriminate between different class values.

Relation to comprehensibility and plausibility. Definition 1 (comprehensibility) addresses the
syntactical level of understanding, which is a prerequisite for justifiability. What this definition
does not cover are facets of interpretability that relate to one’s background knowledge. For
example, an empty model or a default model, classifying all examples as positive, is very
simple to interpret, comprehend and apply, but such model will hardly be justifiable.

Clearly, one needs to be able to comprehend the definition of a concept before it can be
checked whether it corresponds to existing knowledge. Conversely, we view justifiability
as a prerequisite to our notion of plausibility, which we will define more precisely in the
next section: a theory that does not conform to domain knowledge is not plausible, but, on
the other hand, the user may nevertheless assess different degrees of plausibility to different
explanations that are all consistent with our knowledge. In fact, many scientific and in partic-
ular philosophical debates are about different, conflicting theories, which are all justifiable
but have different degrees of plausibility for different groups of people.

Relation to alternative notions of interpretability. Referring to Fig. 1, we view plausibility as
an aspect of epistemic interpretability, similar to notions like explainability, trustworthiness
and credibility. Both trustworthiness and credibility imply an evaluation of the model against
domain knowledge. Explainability is harder to define and has received multiple definitions
in the literature. We essentially follow Gall (2019), who makes a distinction that is similar to
our notions of syntactic and epistemic interpretability: in his view, interpretability is to allow
the user to grasp the mechanics of a process (similar to the notion of mental fit that we have
used above), whereas explainability also implies a deeper understanding of why the process
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QOL = High :- Many events take place.

QOL = High :- Host City of Olympic Summer Games.
QOL = Low :- African Capital.
(a) rated highly by users
QOL = High :- # Records Made >= 1, # Companies/Organisations >= 22.
QOL = High :- # Bands >= 18, # Airlines founded in 2000 > 1.
QOL = Low :- # Records Made = 0, Average January Temp <= 16.

(b) rated lowly by users

Fig.2 Good discriminative rules for the quality of living of a city (Paulheim 2012b)

works in this way. This requires the ability to relate the notion to existing knowledge, which
is why we view it primarily as an aspect of epistemic interpretability.

2.4 Plausibility

In this paper, we focus on a pragmatic aspect of interpretability, which we refer to as plausi-
bility. We primarily view this notion in the sense of “user acceptance” or “user preference”.
However, as discussed in Sect. 2.1, this also means that it has to rely on aspects of syntac-
tic and epistemic interpretability as prerequisites. For the purposes of this paper, we define
plausibility as follows:

Definition 3 (Plausibility) A model m; is more “plausible” than a model m; if m; is more
likely to be accepted by a user than m;.

Within this definition, the word “accepted” bears the meaning specified by the Cambridge
English Dictionary? as “generally agreed to be satisfactory or right”.

Our definition of plausibility is less objective than the above definition of comprehensibil-
ity because it always relates to the subject’s perception of the utility of a given explanation,
i.e., its pragmatic aspect. Plausibility, in our view, is inherently subjective, i.e., it relates
to the question how useful a model is perceived by a user. Thus, it needs to be evaluated
in introspective user studies, where the users explicitly indicate how plausible an expla-
nation is, or which of two explanations appears to be more plausible. Two explanations
that can equally well be applied in practice (and thus have the same syntactic interpretabil-
ity) and are both consistent with existing knowledge (and thus have the same epistemic
interpretability), may nevertheless be perceived as having different degrees of plausibil-
ity.

Relation to comprehensibility and justifiability. A model may be consistent with domain
knowledge, but nevertheless appear implausible. Consider, e.g., the rules shown in Fig. 2,
which have been derived by the Explain-a-LOD system (Paulheim and Fiirnkranz 2012). The
rules provide several possible explanations for why a city has a high quality of living, using
Linked Open Data as background knowledge. Clearly, all rules are comprehensible and can
be easily applied in practice. They also appear to be justifiable in the sense that all of them
appear to be consistent with prior knowledge. For example, while the number of records
made in a city is certainly not a prima facie aspect of its quality of living, it is reasonable to
assume a correlation between these two variables. Nevertheless, the first three rules appear

3 https://dictionary.cambridge.org/dictionary/english/accepted.
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to be more plausible to a human user, which was also confirmed in an experimental study
(Paulheim 2012a,b).

Relation to alternative notions of interpretability. In Fig. 1 we consider interestingness,
usability, and acceptability as related terms. All these notions imply some degree of user
acceptance or fitness for given purpose.

In the remainder of the paper, we will typically talk about “plausibility” in the sense defined
above, but we will sometimes use terms like “interpretability” as a somewhat more general
term. We also use “comprehensibility”, mostly when we refer to syntactic interpretability, as
discussed and defined above. However, all terms are meant to be interpreted in an intuitive,
and non-formal way.*

3 Setup of crowdsourcing experiments on plausibility

In the remainder of the paper, we focus on the plausibility of rules. In particular, we report on
a series of five crowdsourcing experiments, which relate the perceived plausibility of a rule
to various factors such as rule complexity, attribute importance or centrality. As a basis, we
used pairs of rules generated by machine learning systems, typically one rule representing a
shorter, and the other a longer explanation. Participants were then asked to indicate which
one of the pair they preferred.

The selection of crowdsourcing as a means of acquiring data allows us to gather thou-
sands of responses in a manageable time frame while at the same time ensuring our
results can be easily replicated.’ In the following, we describe the basic setup that is
common to all performed experiments. Most of the setup is shared for the subsequent
experiments and will not be repeated, only specific deviations will be mentioned. Cogni-
tive science research has different norms for describing experiments than those that are
commonly employed in machine learning research.® Also, the parameters of the experi-
ments, such as the amount of payment, is described in somewhat greater detail than usual
in machine learning, because of the general sensitivity of the participants to such condi-
tions.

We tried to respect these differences by dividing experiment descriptions here and
in subsequent sections into subsections entitled “Material”, “Participants”, “Methodol-
ogy”, and “Results”, which correspond to the standard outline of an experimental account
in cognitive science. In the following, we describe the general setup that applies to all
experiments in the following sections, where then the main focus can be put on the
results.

4 In particular, we do not intend to touch upon formal notions of plausibility, such as those given in the
Dempster-Shafer theory, where plausibility of an evidence is defined as an upper bound on the belief in the
evidence, or more precisely, as the converse of one’s belief in the opposite of the evidence (Dempster 1967;
Shafer 1976).

5 To this end, source datasets, preprocessing code, the responses obtained with crowdsourcing, and the code
used to analyze them were made available at https://github.com/kliegr/rule-length-project. The published data
do not contain quiz failure rates (¢fr in Tables 4-8) since these were computed from statistics only displayed
in the dashboard of the used crowdsourcing platform upon completion of the crowdsourcing tasks.

6 In fact, with psychometrics, an entire field is devoted to proper measurement of psychological phenomena
(Furr and Bacharach 2008).
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