
Runtime Reconfiguration of
physical and virtual Pervasive

Systems

Inauguraldissertation

zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaften

der Universität Mannheim

vorgelegt von

Jens Naber

aus Heidelberg

ii

Dekan: Prof. Dr. Christian Becker
Erstreferent: Prof. Dr. Christian Becker
Zweitreferent: Prof. Dr. Dirk Ifenthaler
Tag der Disputation: 17. Dezember 2019
Prüfungsausschuss: Prof. Dr. Christian Becker (Vorsitzender)

Prof. Dr. Dirk Ifenthaler

ii

Abstract

Today, almost everyone comes in contact with smart environments during their
everyday’s life. Environments such as smart homes, smart offices, or pervasive
classrooms contain a plethora of heterogeneous connected devices and provide
diverse services to users. The main goal of such smart environments is to support
users during their daily chores and simplify the interaction with the technology.
Pervasive Middlewares can be used for a seamless communication between all
available devices and by integrating them directly into the environment. Only a
few years ago, a user entering a meeting room had to set up, for example, the
projector and connect a computer manually or teachers had to distribute files
via mail. With the rise of smart environments these tasks can be automated by
the system, e.g., upon entering a room, the smartphone automatically connects
to a display and the presentation starts. Besides all the advantages of smart
environments, they also bring up two major problems. First, while the built-in
automatic adaptation of many smart environments is often able to adjust the
system in a helpful way, there are situations where the user has something different
in mind. In such cases, it can be challenging for unexperienced users to configure
the system to their needs. Second, while users are getting increasingly mobile,
they still want to use the systems they are accustomed to. As an example, an
employee on a business trip wants to join a meeting taking place in a smart
meeting room. Thus, smart environments need to be accessible remotely and
should provide all users with the same functionalities and user experience.

For these reasons, this thesis presents the PerFlow system consisting of three
parts. First, the PerFlow Middleware which allows the reconfiguration of a
pervasive system during runtime. Second, with the PerFlow Tool unexperi-
enced end users are able to create new configurations without having previous
knowledge in programming distributed systems. Therefore, a specialized visual
scripting language is designed, which allows the creation of rules for the commu-
nication between different devices. Third, to offer remote participants the same
user experience, the PerFlow Virtual Extension allows the implementation
of pervasive applications for virtual environments. After introducing the design
for the PerFlow system, the implementation details and an evaluation of the
developed prototype is outlined. The evaluation discusses the usability of the
system in a real world scenario and the performance implications of the middle-
ware evaluated in our own pervasive learning environment, the PerLE testbed.
Further, a two stage user study is introduced to analyze the ease of use and the
usefulness of the visual scripting tool.

iii

Acknowledgments

This thesis would not have been possible without the support and help of several
people, many of whom may not even be aware of their contribution.

First of all, I would like to thank my supervisor Prof. Dr. Christian Becker for
all his support and mentoring. Christian, thank you for giving me the chance to
join your research group, after I one day suddenly appeared at the doorstep of
your office. I am also very grateful that you always have an open door and ear for
us, independent of the topics we are approaching you with. Furthermore, it was
always a pleasure traveling with you, experiencing interesting conferences and
nice food and wine. No matter if the destination was Hong Kong or Cottbus.

I would like to thank Prof. Dr. Dirk Ifenthaler for his willingness to act as
the second supervisor and join the board of examiners. Especially, considering
approaching him quite last-minute with a tighter schedule than initially planned.

I would like to thank all the people I worked with at the chair, namely Dr. Patricia
Arias-Cabarcos, Martin Breitbach, Melanie Brinkschulte, Dr. Janick Edinger,
Kerstin Goldner, Melanie Heck, Benedikt Kirpes, Sonja Klingert, Dr. Christian
Krupitzer, Markus Latz, Yugo Nakamura, Martin Pfannemüller, Dr. Vaskar
Raychoudhury, Dr. Felix Maximilian Roth, Dr. Dominik Schäfer, Dr. Sebastian
VanSyckel, and Anton Wachner. Because of you all it was always a pleasure
to come to the office and it felt more like meeting friends than going to work.
The support and team spirit in this group, especially during stressful and long
days before deadlines, can not be described. In particular I would like to thank
Christian, who introduced me to a new and exciting research project and at the
same time to a professional soccer club. Thank you Dominik for always having
great advice, when I showed up in your door. Janick, thank you for always having
an open ear and helping out wherever you can, no matter how stressful your own
workload is. Thanks to Max for being an outstandig office neighbour over the last
six years and on several floors. Further, thanks to Martin and Martin for your
support and helping hand during the final phase of writing the thesis.

Also, I would like to thank all the people I had the pleasure of working with
at the Mannheim Business School. Thanks to Prof. Dr. Jens Wüstemann, Dr.
Ingo Bayer, and Dr. Florian Heger for giving me the chance to work at the MBS.
Further, thank you Florian for providing me with interesting projects and for your
understanding regarding the coordination of work and thesis. Thank you Nina
for always asking about the status of my thesis and the mental support during

v

vi

these conversations. Also, thanks to Bärbel, Björn, Malte, and Lisa for your help
when needed and the talks we had every time I visited you at your office.

I would also like to thank each student and research assistant involved in the project
in some way for their contributions, especially, Lena Burger, Xaver Fleischer, Halil
Gayretli, Alexander Glatt, Christina Kannegießer, Dennis Knödler, Christiane
Lupui, Maria del Carmen Ocón Palma, Steffen Schmitz, Roman Scholz, Nadja
Seemann, Kai-Arne Theis, Irina Toncheva, Alexander Tsarov, and Anne Wesch.

Last but not least, I would like to thank my family and friends for always being
there for me. To my parents, Martina and Jürgen, thank for supporting me on
my way and enabling me to reach this achievement. To my sisters, Lisa and Lena,
for being such outstanding sisters. To my grandparents, Alfred, Ilse, Theo, and
Edith, for encouraging me and always crossing their fingers. To my girlfriend,
Sonja, thank you for supporting and motivating me. You had my back and a lot
of patience during the stressful phases, especially the last few months.

vi

Contents

Abstract iii

Acknowledgments v

1. Introduction 1
1.1. Motivation and Problem Definition 1
1.2. Research Questions . 3
1.3. Contributions . 4
1.4. Structure . 5

2. Theoretical Foundations 7
2.1. Pervasive Systems . 7

2.1.1. Pervasive Computing . 8
2.1.2. Service-Oriented Architectures 9
2.1.3. Adaptation . 11

2.2. Visual Scripting . 12
2.2.1. Visual Alphabet . 14
2.2.2. Visual Grammar . 15

2.3. Virtual Environments . 17
2.3.1. Augmented and Virtual Reality 17
2.3.2. Distributed Virtual Environments 18
2.3.3. Game Engines . 20

3. Related Work 23
3.1. Classifications . 23
3.2. Configurable Pervasive Middlewares 26
3.3. Remote Participation Systems . 32
3.4. Summary . 36

4. Requirement Analysis 39
4.1. Scenario . 39
4.2. Functional Requirements . 41
4.3. Nonfunctional Requirements . 43

5. System Model 47

6. Middleware Design 51
6.1. PerFlow Architecture . 52

vii

viii Contents

6.2. Structuring the Information Flow 54
6.2.1. Structure . 54
6.2.2. Local Connector Registry 57
6.2.3. Information Exchange . 59

6.3. Configuration of the Information Flow 60
6.3.1. Rule Definition . 60
6.3.2. Route Definition . 63
6.3.3. Rule Interpretation . 64

6.4. Configuration Distribution . 68
6.4.1. Naive Configuration Distribution 68
6.4.2. Leader and Consensus based Configuration Distribution . . 69

6.5. Configuration Enforcement . 74
6.5.1. Sending and Receiving Information 75
6.5.2. Information Handling . 77

6.6. PerFlow Tool . 79
6.6.1. Visual Scripting Language 80
6.6.2. Visual Scripting Tool . 86
6.6.3. Connection to PerFlow Middleware 87

6.7. PerFlow Virtual Extension 90
6.7.1. The Virtual Environment 91
6.7.2. Connection to PerFlow Middleware 92

6.8. Summary . 96

7. Prototype Implementation 97
7.1. Implementation of the PerFlow Middleware 97
7.2. Implementation of the PerFlow Tool 99

7.2.1. The Visual Scripting Tool 99
7.2.2. Communication with PerFlow Middleware 102

7.3. Implementation of the PerFlow Virtual Extension 103
7.3.1. Virtual Classroom Environment 103
7.3.2. Communication with PerFlow Middleware 105

7.4. Summary . 106

8. Evaluation 107
8.1. Proof of Concept . 107

8.1.1. The PerLE Testbed for Pervasive Classrooms 107
8.1.2. Requirements Evaluation 111

8.2. Implementation Effort . 112
8.3. Performance Measurements . 114

8.3.1. Reconfiguration Overhead 115
8.3.2. Consensus Algorithm Overhead 117
8.3.3. PerFlow Middleware Communication Overhead . . . 120
8.3.4. PerFlow Virtual Extension Communication Overhead121

viii

Contents ix

8.4. User Study . 124
8.4.1. Methodology . 124
8.4.2. Scenario and Questionnaire 125
8.4.3. Participants . 127
8.4.4. Results . 127

8.5. Summary . 130

9. Conclusion and Outlook 133
9.1. Conclusion . 133
9.2. Outlook . 135

Bibliography xix

Appendix xli
A. Example applications for BASE and PerFlow xliii

A.1. BASE Application . xliii
A.2. BASE Service . xliv
A.3. PerFlow Sender Application xlvi
A.4. PerFlow Receiver Application xlvii

B. Reconfiguration times for different configuration sizes xlix
C. User Study . li

C.1. PerFlow Tool: First User Study Handout li
C.2. PerFlow Tool: Second User Study Handout liv
C.3. Questionnaire . lviii
C.4. Survey Results . lxiii

Publications Contained in this Thesis lxv

Curriculum Vitae lxvii

ix

List of Figures

2.1. Service-Oriented Architecture . 10
2.2. Visual Programming Aids . 13
2.3. Visual Language Classes . 15
2.4. Visual Alphabet Examples . 16
2.5. Mixed Reality Dimensions . 18
2.6. Game Engine Architecture . 21

3.1. Classification for configurable pervasive middlewares 24
3.2. Classification for remote participation systems 25

4.1. Pervasive learning environment 40

5.1. PerFlow system model . 47

6.1. PerFlow life cycle . 51
6.2. PerFlow System Architecture 53
6.3. Information handled by Connector Registry 55
6.4. Attributes of one route . 63
6.5. Interpretation Process . 65
6.6. States for the Consensus Module 71
6.7. Process to start and use PerFlow 76
6.8. Information transmission strategies 78
6.9. Visual scripting elements . 81
6.10. Example for visual language . 83
6.11. Example rule: Receiver Filter . 83
6.12. Example rule: Sender and Receiver Filter 84
6.13. Example rule: Chaining Filters 84
6.14. Example rule: Parallel Rules . 85
6.15. Mockup for PerFlow Tool . 86
6.16. PerFlow Tool connection to PerFlow Middleware 88
6.17. PerFlow Virtual Extension system model 91
6.18. PerFlow Virtual Extension protocol 93
6.19. PerFlow Virtual Extension architecture 94

7.1. Interaction between PerFlow Middleware and BASE 98
7.2. PerFlow Tool user interface 100
7.3. PerFlow example setup . 101
7.4. Virtual classroom using PerFlow Virtual Extension 105

xi

xii List of Figures

8.1. PerLE deployed in a lecture room 109
8.2. Reconfiguration time . 116
8.3. Average time for leader election 117
8.4. Overhead for permission evaluation 119
8.5. Overhead of the PerFlow Middleware 120
8.6. Overhead of the PerFlow Virtual Extension 122
8.7. Scalability of the PerFlow Virtual Extension 123
8.8. Comparison of ratings for both user studies 129

B.1. Reconfiguration time for 5 rules xlix
B.2. Reconfiguration time for 20 rules l

xii

List of Tables

3.1. Configurable Pervasive Middlewares 31
3.2. Remote Participation Systems . 36

8.1. Participant information . 127
8.2. Discussion of requirements for PerFlow 130

C.1. Average user study results per question lxiii

xiii

List of Listings

6.1. Connector Registry interface . 58
6.2. Rules defined in JSON . 62
6.3. Example rights for access control 73
6.4. Visual scripting elements as XML 89

A.1. BASE example application . xliii
A.2. BASE example service: Main class xliv
A.3. BASE example service: Interface xlv
A.4. BASE example service: Service xlv
A.5. BASE example service: Proxy . xlv
A.6. BASE example service: Skeleton xlv
A.7. PerFlow example sender . xlvi
A.8. PerFlow example receiver: Main class xlvii
A.9. PerFlow example receiver: Receiver xlviii

xv

List of Abbreviations

3D three dimensional
API Application Programming Interface
CRUD Create, Read, Update, and Delete
DVE Distributed Virtual Environments
GPS Global Positioning System
HTML Hypertext Markup Language
ID Identifier
IDE Integrated Development Environment
IoT Internet of Things
IT Information Technology
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
MQTT Message Queuing Telemetry Transport
OS operating system
PDA Personal Digital Assistant
PDF Portable Document Format
PNG Portable Network Graphics
REST Representational State Transfer
RPC Remote Procedure Call
SAX Simple API for XML
SDK Software Development Kit
SLoC source Lines of Code
SOA Service-Oriented Architecture
SOC Service-Oriented Computing
TAM Technology Acceptance Model
TCP Transmission Control Protocol
UI user interface
UTAUT Unified Theory of Acceptance and Use of Technology
UWP Universal Windows Platform
VoIP Voice over IP
VR Virtual Reality
XML Extensible Markup Language

xvii

1. Introduction

In the recent years, pervasive computing outgrew the pure research and found

its way into everyday’s life of users in the form of smart environment such as

smart homes, offices, or classrooms. With this step forward the target audience

significantly increased and developers can no longer expect all users to have

detailed knowledge about the technicalities of pervasive middlewares. Thus, it is

getting increasingly important also for users without a background in information

technology to being able to influence the behavior of such smart environments

and customize them for their use case. So that for instance also a history teacher

without motivation to familiarize with the system is able to give students access

to the projector or distribute additional learning materials. A further challenge is

the increased mobility of users, leading to the urge to access these smart systems

remotely.

The goal of this thesis is to tackle those challenges in two different ways. First, we

design a configurable pervasive middleware enabling developers to connect their

applications and users to configure how these applications should communicate

with each other. To also enable end users without further knowledge to configure

the pervasive system, the middleware includes a visual scripting tool. Second, a

virtual extension of the pervasive middleware allows developers to migrate their

applications to a virtual environment and thus providing remote users with a

similar experience to those in the physical pervasive environment.

This chapter illustrates the motivation for the thesis and defines the problems at

hand. Afterwards, the research questions are discussed before giving an overview

of the scientific contributions and the structure of the thesis.

1.1. Motivation and Problem Definition

Pervasive computing allows the integration of smart and connected devices into

everyday objects and environments with the goal of supporting users in their

1

2 1.1. Motivation and Problem Definition

daily routines. In recent years, we observed a steady increase of smart objects in

different forms. This includes wearables (e.g., smart watches or fitness trackers),

personal devices (e.g., smartphones, tablets, or computers), and stationary devices

(e.g., smart TVs or speaker systems). Not all devices are that obvious to the

user. Instead, many are completely integrated in the environment and therefore

almost invisible such as light or proximity sensors, smartdoor bells, and heating

or air conditioning controls. Seen on their own, all these devices already provide

benefits to their users. By combining their capabilities it is possible to increase

the usefulness significantly. This enables scenarios where on the way home a user’s

smartphone tells the heater at home to turn on or the smartdoor bell shows who is

ringing on the TV nearest to the user. With the help of pervasive middlewares it is

possible to enable communication between the smart devices and give developers

the possibility to utilize them for their applications.

By combining all devices in a smart environment to one pervasive system, it is

possible to increase the performance and experience of users significantly. This is

especially true in multiuser working environments such as offices, meeting rooms,

or classrooms. Lectures in a smart classroom can be enriched with multimedia

content and the lecturing style is getting more dynamic including e.g., classic

head-on lectures, group work, or student presentations. To achieve this, teachers

need the possibility to show content on projectors or screens, exchange files with

students, or enable collaborative work on assignments. Only a few years ago,

this required a lot of manual effort, as many devices were controlled separately.

This included inserting DVDs into DVD players, connecting laptops to portable

projectors, or giving students access to workstations. In addition, users needed to

make sure that these devices were compatible. Today, smart environments allow

for an easy integration of these features and offer automatisms designed to support

the user during everyday tasks. Thus, systems can be configured to automatically

recognize the laptop of the teacher and start a presentation on the large screen or

to prepare the room by closing the shutters and turning on the heater based on a

scheduled meeting in the calender. These possibilities led to a fast pace adoption

and today many users are able to benefit from smart environments.

However, the advantages offered by these smart environments and the widespread

availability come with two major caveats. First, not all users encountering such a

pervasive system are experienced with smart devices and tech-savvy enough to

2

3

immediately understand how to use them and get used to them. While it would

be possible to acquire the needed knowledge, many people might not willing to

invest time and effort into studying new technologies if they are not interested

in the technology from the beginning. Automatic configuration of context aware

pervasive systems and predefined setups by administrators can help to take the

responsibility off the end user. Nonetheless, there are, circumstances in highly

dynamic scenarios such as a lecture, where the user needs to be able to adapt

the system without reaching out for help. As also discussed by Holloway and

Julien [82], there is a need for end user empowerment in pervasive environments.

Thus, one major challenge is to enable end users without deeper knowledge of

pervasive systems to being able to influence the configuration of the system.

The second challenge we see in the realization of smart multiuser environments

is the increased mobility of users. While the inclusion of pervasive systems in

environments such as classrooms or meeting rooms positively effects the user

experience and offers many possibilities for collaborative work, it only benefits

users that are on location. However, in such use cases we often encounter many

mobile users such as students abroad who want to attend a lecture at their home

university or employees on a business trip required to join a meeting. These

users still need access to the functionalities offered by the system remotely and

preferably want the same experience as the users physically on location.

1.2. Research Questions

Based on the motivation and the discussed challenges, the objective of this thesis is

to enable end users without further knowledge of pervasive computing to configure

pervasive systems for their current use case. Further, users should be able to

access the system remotely without lacking behind in user experience. Therefore,

a pervasive middleware is needed that gives developers the possibility to define

what information their applications are able to send or receive and that allows

for reconfiguration during runtime. Additionally, this should be possible without

interfering with the user experience and the current task that the pervasive system

is used for. This leads to the first research question:

How to configure and control the pervasive system during runtime

without compromising the user experience?

3

4 1.3. Contributions

Even if the pervasive middleware can be reconfigured during runtime, this recon-

figuration should also be possible for users without training or prior knowledge.

Thus, the system has to offer a simple to use and fast to learn interface to enable

end users to create configurations on their own, leading to the second research

question:

How can visual scripting be used to enable unexperienced and

untrained users to change the configuration of a pervasive system?

In addition to the reconfigurability of the pervasive system, the objective is also to

integrate remote users. Therefore, the pervasive middleware has to offer developers

the possibility to make their applications and services accessible from outside

the smart environment. Further, the system should allow remote users to have

the same user experience as their local peers. This leads to the third and final

research question:

How can remote users access and use pervasive systems with a

comparable experience to users physically on location?

1.3. Contributions

In the course of this thesis, we will present PerFlow, a configurable pervasive

middleware with a virtual extension for remote users. The thesis comprises the

design, implementation of a prototype, and an extensive evaluation. The five

main contributions are as follows:

First, the state of the art is analyzed by conducting a literature review. Therefore,

we developed two classifications for configurable pervasive middlewares and remote

participation systems. These classifications are in the next step used to categorize

existing approaches and identify the research gap. Further, the requirements for

such a middleware are derived with the help of a pervasive classroom scenario.

Second, the design for a configurable pervasive middleware, called PerFlow

Middleware, is introduced, allowing developers to define what information their

applications are able to send. The middleware then allows the reconfiguration of

the system during runtime. It is further responsible for access control, distributing

the configuration, and controlling the communication between applications.

4

5

Third, we extended the middleware with the PerFlow Tool, a visual scripting

tool for creating the configurations. Therefore, we introduce an easy to use visual

scripting language, allowing end users to reconfigure the system for their needs.

With the help of tool users are able to create rules for the information flow in the

system via drag and drop. Afterwards, the new configurations are handed over to

the middleware.

Fourth, we present the PerFlow Virtual Extension, a virtual extension allow-

ing remote users to access smart environments. This extension utilizes an existing

game engine to enable the creation of three dimensional virtual environments.

Developers are enabled to access all functionalities of the PerFlow Middle-

ware from within the game engine to migrate their services and applications to

the virtual environment.

Finally, we implemented the complete PerFlow system with all extensions as

a prototype and extensively evaluated. The evaluation is split into four parts,

starting with a proof of concept with PerLE, a testbed for a pervasive learning

environment. Further, we analyze the implementation effort for developers and

perform several performance measurements for the middleware. Lastly, a two

stage user study is conducted for the PerFlow Tool.

1.4. Structure

The remainder of this thesis is structured as follows. After the introduction, Chap-

ter 2 covers fundamental knowledge about pervasive computing, visual scripting,

and virtual environments. Following, Chapter 3 presents and discusses different

approaches for configurable pervasive middlewares and remote participation sys-

tems. In Chapter 4, we first give a concrete scenario for our system and afterwards

use this scenario to derive our requirements. Chapter 5 describes the system

model and the terminology used for our design. In Chapter 6, we introduce the

design of our pervasive middleware. Therefore, we first take a look on how the

middleware allows the reconfiguration of the system before discussing the visual

scripting approach for end users and the virtual extension for remote participants.

Afterwards, Chapter 7 presents the implementation of the prototype that we

evaluate in Chapter 8 for an extensive evaluation. Finally, Chapter 9 concludes

the thesis and gives an outlook to future research objectives.

5

2. Theoretical Foundations

The following chapter provides background information required in the remainder

of this thesis. Therefore, we will discuss fundamental technologies used for the

development of the PerFlow system. First, pervasive systems are discussed

in Section 2.1 together with pervasive computing, service oriented architecture,

and adaptation of pervasive systems. These technologies are the foundation of

the later introduced PerFlow Middleware. Second, Section 2.2 introduces

visual scripting, which can be used to empower end-users without Information

Technology (IT) background. Visual scripting is therefore the ideal basis for the

PerFlow Tool, to enable users to influence the behavior of a pervasive system.

Lastly, in Section 2.3 we take a look on virtual environments and how they are

developed. The high immersion of a virtual environment can be used to transfer

the physical experience to remote users.

2.1. Pervasive Systems

With the increasing number of devices present in today’s environment, the need

to enable communication between them is getting higher. Developers face the

challenge of connecting the heterogeneous devices and simultaneously providing a

seamless experience for the user. This is the driving force behind the emergence

of pervasive computing. The following section will first discuss the concept of

pervasive computing before explaining service oriented architectures as one of the

most popular ways of realizing pervasive systems. Lastly, different concepts of

adapting the system to the needs of the user and the surrounding environment

are discussed.

7

8 2.1. Pervasive Systems

2.1.1. Pervasive Computing

Distributed and mobile computing are the foundation of pervasive computing [169].

While distributed computing allows connected devices to share their functionalities

and thus increase the potential, mobile computing integrates mobile devices

and enables the communication between them [167]. Pervasive computing is

the combination of both approaches and allows the access to information and

functionalities “all the time everywhere” [167]. The mobility of users, and thus

devices, is one of the biggest challenges of pervasive computing [167,169]. Therefore,

the systems need to be able to cope with devices moving within the environment,

but more importantly also joining and leaving the environment at any time.

Mark Weiser envisioned already in 1991 [197, 198] the transition from desktop

computing to physical environments equipped with connected computationally

enabled devices dedicated to specific tasks. Further, these devices should be

integrated seamlessly into the environment and aid the user in fulfilling their

everyday tasks, and thus eventually reaching an ubiquitous state. Satyanarayanan

is therefore also talking about “technology that disappears” [169]. According to

Norman [140], the related concept of information appliances was already described

in 1978 by Jef Raskin in internal documents at Apple. These anticipated the shift

from all-purpose computers to devices developed to fulfill specific tasks as good

as possible, e.g., digital cameras, smartphones, or e-book readers.

The realization of the pervasive computing principles for a given scenario is

typically called a pervasive system [115]. These systems combine the users and

devices present in a physical environment, where the users interact with the

devices either deliberately or not. The devices can occur in the form of mobile

devices, computers, or smart devices [169]. To allow developers to implement

applications and services for such a pervasive system, they are typically assisted by

a pervasive middleware (also called pervasive platform) [49]. Such a middleware

handles the connection and communication between devices and offers developers

services for the discovery of devices and functionalities in the system. Today,

many different middlewares exist for the development of pervasive systems, fitting

to different needs and possible use cases, e.g., Gaia [35, 162], Aura [57, 180], or

CORTEX [192]. A more detailed survey describing and comparing the different

pervasive middlewares was conducted by Raychoudhury et al. [159].

8

9

Following on pervasive computing, the next large advancement was the Internet of

Things (IoT), where not only computational devices but also physical “things” are

able to communicate and share information. IoT has the possibility to “connect

the world’s objects in both a sensory and intelligent manner through combining

technological developments in item identification (“tagging things”), sensors and

wireless sensor networks (“feeling things”), embedded systems (“thinking things”)

and nanotechnology (“shrinking things”)” [183]. Kevin Ashton, who coined

the phrase “Internet of Things (IoT)” in 1999, said that “we need to empower

computers with their own means of gathering information, so they can see, hear

and smell the world for themselves, in all its random glory” [11]. The concept

brings pervasive computing to an even larger scale by globally connecting the

different devices surrounding users everyday [125]. Predictions talk about 24

billion interconnected devices until the year 2020 [69]. Users are potentially

surrounded by devices located directly in their environments. This does not only

include obvious examples like smartphones or computers, but also more subtle

devices, e.g., room lighting, cars, or refrigerators [12].

With the emergence of more and more computationally enabled devices, pervasive

computing and IoT have a growing importance. Today, not only academia is

showing interest, but also industry and private users are recognizing the possibil-

ities. The use cases and application areas of pervasive computing and IoT are

manifold and include smart home [77], logistics [117], agriculture [195], smart

office spaces [4], and healthcare [154,188].

2.1.2. Service-Oriented Architectures

Service-Oriented Architecture (SOA) [152] is widely used in pervasive computing

[158] and IoT [12]. Many existing pervasive middlewares are based on the principle

of SOA, e.g., BASE [16], iPOJO [50], and DigiHome [163]. In a SOA, services

are used as the modular and reusable basic elements, which encapsulate specific

functionalities offered to applications [152]. This could for instance be a thermostat,

which offers the functionality to control the heating, or a thermometer, which

gives access to the ambient temperature. Service-Oriented Computing (SOC)

offers a dynamic and flexible way of developing applications [88] to combine the

functionalities of different services in the system. In the example, an application

9

10 2.1. Pervasive Systems

could access the service of the thermometer to receive the current temperature,

and dependent on that, trigger the thermostat. Additionally, applications are able

to look for and access services during runtime [153], allowing to react dynamically

to their surrounding. In our example, the application could for instance read the

temperature and if it is too low, search for a heater and vice versa search for an

air conditioning unit if it is too high. As the service encapsulates the functionality

from the application [152], it is also easily possible to adjust the service without

the need to alter the application.

Service
Provider

Service
Registry

Service
Client

Publish Bind

Find

Figure 2.1.: Logical view on the Service-Oriented Architecture by Papazoglou [152]
describing the interaction between Service Registry, Provider, and
Client.

The SOA defines three different elements and the relationship between them [152],

which can be seen in Figure 2.1. The service provider [152] offers either access to

information or functionalities. The service client [152] (often also called service

consumer [22]) on the other hand wants to utilize the access. The last element is the

service registry [152] (also called service broker [50]) which stores the description

of all available services and offers them to possible clients. If a service provider

joins the system, it publishes a description of the offered service at the service

registry. This description includes information about the offered functionalities of

the service, but it may also contain additional information, e.g., regarding the

location or availability of the service. In the next step, an application acting

as a service client may ask the service registry for possible services fitting the

needed functionality. This request may also contain additional requirements, e.g.,

asking for a service at a specific location. The service registry then returns the

10

11

descriptions fitting to the request from the client. After the service client has

received the descriptions, it can directly access the service of the corresponding

provider.

The process starting with the advertisement of the service by a provider until

the client is able to access it, is called service discovery. Many different protocols

supporting this service discovery process exist, e.g., INS [2], DEAPspace [139], or

UPnP [95]. Zhu et al. [201] compare a multitude of protocols regarding different

offered functionalities and interaction strategies. In total, they are comparing

18 different dimensions including communication method (unicast, multicast,

or broadcast), service selection (automatic or manual), service status inquiry

(notification or polling), and discovery scope (network topology, user role, or

context). This survey shows, that while many different approaches for service

discovery exist, a deliberate choice considering the planned use case is required.

2.1.3. Adaptation

Pervasive Systems are often very dynamic regarding their use case and the

participating devices. The tasks users want the system to solve may vary vastly

during the runtime of a system for instance, a lecture in a pervasive classroom

may start with a presentation by the lecturer and turn into group work, where the

students need controlled access to the system. Additionally, while some devices

may be stationary, e.g., the projector in the classroom, many devices are able to

join and leave the system at any time, e.g., the smartphones of students or the

notebook of a presenter. Thus, it is important that the pervasive system is able to

adapt to its environment and “to the dynamics entailed in human behavior” [78].

Adaptation can happen at three different levels of the pervasive system. Herrmann

et al. [78] and Satyanarayanan [170] differentiate between adapting the user’s

behavior, the pervasive application, and the environment. The highest impact

on the user would be asking to change his behavior. This could be for instance

asking to move more slowly in order to stay within network range [78]. Adapting

the pervasive application or environment is in the best case unnoticed by the

user, even though it may influence the service offered to him. This could be for

instance either asking the application to reduce the resolution for an easier image

11

12 2.2. Visual Scripting

transcoding or to increase the available resources in the environment to lower the

bottleneck [170].

Further, it is of interest who is responsible to make the decision for an adaptation.

This ranges from manual adaptation controlled by the user to completely automatic

adaptation by the pervasive system [168]. For the manual adaption two different

approaches exist. First, providing information about the system and possible

adaptations, but leaving the actual decision to the user [43]. Second, giving the

user the possibility to give preferences or select predefined adaptation routines, but

the actual adaptation is decided by the system [15]. For a completely automatic

adaptation, it is distinguished between reacting to a change in the context of the

system [172], and proactively anticipating the change and with this adapting the

system beforehand [186]. Proactive computing is also seen as the next step away

from interactive computing, as the system is able to achieve its tasks unsupervised

and without human interaction [194].

To enable any kind of adaptation, the pervasive system has to provide some degree

of context-awareness [171]. Detecting changes in the context of the system is

the basis for all decisions, no matter if the adaptation is manual, reactive, or

proactive. According to Dey and Abowd, “context is any information that can

be used to characterize the situation of an entity” [1]. The context of a system

can be divided into further information about the user or the environment the

system is placed in. The user related context includes the location of the user [23],

the identity [166], or even the social environment [173] or emotional state and

attention [43]. Regarding the environment of the system, the context may include

conditions like time (time of day, season), temperature [23], lighting [173], and

information about the infrastructure [173], e.g., available networks or devices.

2.2. Visual Scripting

Visual programming or scripting enables an increasing number of people solve

complex tasks they would normally not be able to achieve without learning

a programming language. Today, many different approaches exist for cases

like education [116, 160], IoT [98], game development [70], or video processing

[185]. One main goal of visual scripting is to provide users with “languages and

12

13

environments that are more natural, or closer to the way people think about their

tasks” [130]. This idea corresponds with traditional scripting as a higher level of

programming, which enables a more rapid development and the combination of

different applications [149]. Visual scripting is able to provide these benefits by

introducing visual languages as high level programming with graphical elements.

Myers et al. define visual scripting in its broadest sense as “any system that allows

the user to specify a program in a two (or more) dimensional fashion” [128]. This

does not include textual languages, as they are viewed as a one-dimensional stream,

but this definition provides the basis for a multitude of different visual alphabets

and languages. A more visual approach is also helpful for the users in other

computer science areas, as the taxonomy introduced by Singh and Chignell [176]

shows in Figure 2.2. Apart from visual language systems, this taxonomy also

includes visualization for programs, data, and algorithms and graphical interaction

systems. Thus, even programmers working with textual programming languages

are able to simplify their workflow by for instance using data visualization to

grasp the content of a database.

Visual Aids for
Programming

Visual
Programming

Graphical
Interaction
Systems

Visual
Language
Systems

Flow
Diagrams

Control Flow Data Flow

Icons Tables/Forms Others

Visualization

Program
Visualization

Static Dynamic

Algorithm
Visualization

Data
Visualization

Static Dynamic

Figure 2.2.: Taxonomy of visual aids for programming by Singh and Chignell [176]
differentiating between different approaches for visual programming
and the visualization of programs, algorithms, and data.

According to Chang [31], a visual language is defined by “a set of visual sentences

constructed with a given syntax and semantics”. Thus, for such a language an

alphabet and the possibility to compose valid rules is needed. Following, we will

take a more thorough look on both of these components.

13

14 2.2. Visual Scripting

2.2.1. Visual Alphabet

While a traditional programming language is composed of a set of strings, a

visual language can be seen as a set of pictures [59]. Golin and Reiss also defined

that “a picture element is a primitive graphical object such as a line, shape or

text string” [59]. The vocabulary of the visual language (the visual alphabet),

according to Bardohl [14], needs to introduce a type set for the symbols and links

of the language. These definitions allow for a multitude of different styles and

depictions for visual alphabets and developers are free to choose or invent one

fitting best to their desired use case.

Myers provided a taxonomy of 14 different styles of visual languages and cat-

egorized over 40 languages [129]. The different styles include flowcharts (e.g.,

OPAL [127]), petri nets (e.g., VERDI [63]), data flow graphs (e.g., HI-VISUAL

[81]), iconic sentences (e.g., SIL-ICON [32]), and jigsaw puzzle pieces (e.g. Proc-

BLOX [58]). Singh and Chignell [176] narrowed it down and included in their

taxonomy seen in Figure 2.2 flow diagrams, icons, and tables/forms as the most

common representations of visual alphabets.

According to Böhm and Jacopini [19], flow diagrams were developed without a

systematic theory behind them and introduced in several papers with different

purposes. Nonetheless, flow diagrams are seen as “suitable for representing

programs, computers, Turing machines, etc.” [19]. In their basic form flow

diagrams consist of boxes and lines. Boxes are either functional, representing

actual operations, or predictive, representing a decision on which the next operation

should be. The lines are used to connect the boxes and to describe the transition

between them. As the name already suggests, flow diagrams are a natural way to

describe control or data flows.

In icon based alphabets the design of graphical symbols and interconnections

can be more complex and it is possible to tailor the visual representation to the

use case, e.g., the icon for ‘input’ could be a camera in a video editing program

and a microphone in an audio recording program. Iconic languages are therefore

context specific and “an icon image is chosen to relate to the idea or action either

by resemblance (picture), or by analogy (symbol), or by being selected from a

previously defined and learned group of arbitrarily designed images (sign)” [31].

If the user is familiar with the context of the visual language (e.g., video editing),

14

15

the iconic alphabet may provide a quick recognition of the elements and a dense

representation of complex content [42]. Untrained users on the other hand may

have a hard time familiarizing with the icons and need training to use the visual

language efficiently.

The last category requires the user to fill in tables or forms to define the behavior

of the program. These are often used in database applications to enable the user

to create queries or in spreadsheets. While forms and tables may be an easy and

efficient way to communicate with users [176], they are comparably inflexible

and often require deeper knowledge of the application (e.g., the structure of the

database) from the user.

2.2.2. Visual Grammar

While the visual alphabets provide the basic building blocks of a visual language,

they also have to be combined to form sentences. Therefore, it is important to

define a visual grammar to enable the creation of syntactically correct sentences

from the visual alphabet. A grammar consists of a finite set of rules [14] defining

how the visual language has to be interpreted.

Visual Language
Classes

Connection

Graph

Plex

Geometric

Box

Iconic

String

Figure 2.3.: Taxonomy of Costagliola et al. [38] for different classes of visual
languages. The taxonomy differentiates between connection and
geometric based as the two main classes of visual grammars.

15

16 2.2. Visual Scripting

In 2002, Costagliola et al. [38] developed a framework for the design of visual

languages. In the process they introduced two main classes of visual languages.

These classes are connection and geometric based visual languages, as can be

seen in Figure 2.3, based on their visual grammar and how they compose their

sentences. Connection based visual languages on the one hand are defined as a

set of interconnected visual elements. The syntax of the language is given by

the connection of the elements, while the relative position to each other is not

influencing the outcome. Costagliola et al. define the two subclasses of graph and

plex, while a plex is similar to a graph with the limitation, that it only can have a

fixed number of connections [38]. On the other hand, in geometric visual languages

the syntax is defined by the relative position of the elements to each other. In this

case Costagliola et al. differ between the subclasses string, iconic, and box. For

string based visual languages, the syntax is given by one integer describing the

position of the element within a string of visual elements. The second subclass,

the iconic languages, define their syntax as the relative position described by

a pair of integers as their coordinate in the cartesian plane. Lastly, box based

languages are defined by two coordinates for the upper-left and lower-right corner

of the box. Therefore, it is possible to not only use the relative position of the

boxes to each other, but also to use the size of the boxes to determine if one

box overlaps an other one or is contained in it. In Figure 2.4, examples for a

connection based graph and for a geometric based iconic sentence are given.

N1 N4

N5

N2
N3

N6

(a) Example graph (b) Example iconic sentence

Figure 2.4.: Two examples for visual grammars based on graphs and iconic sen-
tences by Costagliola et al. [38]. While in the case of a graph based
language the connection between the elements is important for the
syntax an iconic sentence uses the relative position of the icons to
each other.

16

17

2.3. Virtual Environments

An environment is defined by three parts: content, geometry, and dynamics [48].

In the case of virtual environments, computer graphics are used to generate

these features. The term computer graphics was first coined in the 1960s at

Boeing, according to William Fetter by Verne Hudson, even though the basic

principle of generating shapes or images through computers has already been used

beforehand [54]. They were the first to generate human figures with computer

graphics to determine the efficient layout of airplanes [55, p. 103]. These early

attempts were realized by using wire-frame graphics. With the emergence of

new rendering techniques like texture mapping [28], shadow mapping [200], tone

mapping [187], subsurface scattering [73], and ambient occlusion [124], computer

graphics made large steps towards photo realism in the following decades.

In the following, we will first look at augmented and virtual reality as a way to

increase the immersion of virtual environments. Secondly, we discuss Distributed

Virtual Environments (DVE), which allow to connect users within their virtual

environments. Lastly, we talk about game engines as common middlewares to

ease the development of virtual environments.

2.3.1. Augmented and Virtual Reality

How engaging and close to the reality a virtual environment comes is often

described in the terms of immersion and presence. According to Slater et al. [178],

immersion is an objective description of what a system provides to engage the user,

e.g., surrounding displays, motion sensors, or convincing visuals. Presence on the

other hand describes “a state of consciousness, the (psychological) sense of being

in the virtual environment, and corresponding modes of behavior” [178]. Thus, in

combination with other factors, like coherent world or believable narrative, the

immersion of the system influences the perceived presence of the user strongly.

Augmented and virtual reality are the next logical step to increase the immersion

of virtual environments. Benford et al. [18] provided the classification shown

in Figure 2.5, illustrating that both augmented and virtual reality are highly

artificial. The main difference is, that augmented reality still takes place in

the physical world, while virtual reality transports the user completely into the

17

18 2.3. Virtual Environments

Augmented
Reality

Physical
Reality

Virtual
Reality

Telepresence

P
h
y
si

ca
l

(g
en

er
a
te

d
fr

om
th

e
re

a
l
w

or
ld

)

S
y
n
th

et
ic

(g
en

er
a
te

d
fr

om
co

m
p
u
te

r
d
a
ta

)

Local
(remain in the physical world)

Remote
(leave your body behind)

D
im

en
si

on
 o

f
A

rt
if
ic

ia
li
ty

Dimension of Transportation

Figure 2.5.: A classification of mixed reality systems by Benford et al. [18]
differentiating between the physical location of the user in relation to
the content and artificiality of the viewed content.

virtual environment. Augmented reality overlays the physical environment of the

user with computer generated graphical elements, while virtual reality leaves the

real world completely out [18]. The idea and basic technology behind virtual

reality is already several decades old and one of the first realizations was the head

mounted display of Ivan Sutherland in 1968 [184]. Because of the high costs for

specialized devices the computational power needed to simulate a virtual reality

in real time, it took decades to establish the technology outside of academia

or financially powerful sectors like the military or aviation companies. Only in

recent years, computing devices got powerful enough to drive newly developed

and cheaper virtual reality devices such as the Oculus Rift [51] or HTC Vive [85].

Augmented reality even arrived on devices with lower computational capabilities

like smartphones [103].

2.3.2. Distributed Virtual Environments

As the scope of virtual environments increased steadily and the created world got

larger and more complex, developers started looking into distributing the effort over

networks. In the beginning, the idea of distributed virtual environments included

18

19

the offloading of computational or storage heavy tasks such as computer-generated

actors (artificial intelligence), world simulation, or storing the world state [182].

While these tasks may still be offloaded to increase the performance, the focus of

the research shifted towards multi-user virtual environments [56]. The main goal

is to allow a possible large group of participants to meet in a virtual environment

and interact with each other. Therefore, the system has to be interactive and

provide a persistent and consistent world to all users. Additionally, it needs to

be able to scale with the amount of people using it. While in the beginning

many distributed approaches relied on a traditional client-server architecture,

many of them are based on a cloud architecture nowadays and research is looking

into peer-to-peer architectures in order to use the devices of the participants for

sharing the computational load [161].

Today, many distributed virtual environments, especially in the gaming sector,

have several million active users, e.g., World of Warcraft1. While those virtual

environments may distribute the users on several instances and different servers

upon login to share the load, each instance nonetheless has to handle several

thousand users simultaneously. This poses a great challenge for the developers,

as the users are able to interact with the environment and the generated update

events have to be sent to all other users in order to ensure a persistent and

consistent world. To reduce the computational and network load of such events,

two main questions need to be asked: Who needs to know about the event? And

how often does he need an update about it? To answer these questions, the

concept of interest management is introduced [126]. Here, the system tries to

determine, which users are interested in the occurrence of an event, often based

on the relative location of the user to the event. Different approaches are based on

auras around users [17] (in the case of HyperVerse users and events [21]), spatial

publish subscribe [87], or Voronoi-based Overlay Networks [86]. To increase the

interval for sending events, the changes between two events can be interpolated

with approaches like Dead Reckoning [151] or Continuous Events [76].

1https://worldofwarcraft.com

19

https://worldofwarcraft.com

20 2.3. Virtual Environments

2.3.3. Game Engines

The video game industry is one of the major innovators behind the development

of virtual environments. Statista2, a market research company analyzing about

170 industry sectors, reported a 123.54 billion dollar revenue for the global video

game market in 20183. Further, they tracked a total of 90504 newly released

games on Steam5, the largest online distribution platform for computer games.

These numbers show the high effort companies are investing in the development

of video games and the gain they are able to generate out of it. During the last

decades, game development studios not only invested heavily in the innovation of

new techniques in areas like rendering, artificial intelligence, or online services,

but also streamlined the development processes. This led to the emergence of

game engines, middlewares specialized for the development of video games. Game

engines contain different modules handling the input, output, and simulation of

physics and game worlds [111]. According to Lewis and Jacobson, “the cost of

developing ever more realistic simulations has grown so huge that even game

developers can no longer rely on recouping their entire investment from a single

game” [111]. Therefore, the development of game engines can help to spread

the investment over several games. Many game engines are first developed for

a specific game and then are used further by the same developer or licensed to

others, e.g., Unreal Engine6 or CryEngine7. Today, we also see game engines such

as Unity3D8, which are purely developed for licensing.

In the book ‘Game Engine Architecture’, Jason Gregory [65] gives a detailed

description of the different modules included in many game engines and explains

how they interact with each other and the system the game is developed for. Figure

2.6 shows a simplified version of the architecture described by Gregory [65, p. 39]

where related modules are color coded. From the bottom up, we have the target

system (grey) describing the actual hardware (e.g., PC, game consoles, or mobile

devices), the operating system, and drivers. On top, we have core modules (green)

2https://www.statista.com
3https://www.statista.com/statistics/246888/value-of-the-global-video-game-market/
4https://www.statista.com/statistics/552623/number-games-released-steam/
5https://store.steampowered.com
6https://www.unrealengine.com/en-US/
7https://www.cryengine.com/
8https://unity.com/

20

https://www.statista.com
https://www.statista.com/statistics/246888/value-of-the-global-video-game-market/
https://www.statista.com/statistics/552623/number-games-released-steam/
https://store.steampowered.com
https://www.unrealengine.com/en-US/
https://www.cryengine.com/
https://unity.com/

21

Game-Specific Subsystems

Game-Specific
Rendering

Player
Mechanics

AIGame Cameras

Front End

Visual Effects

Scene Graph /
Culling

Optimizations

Low-Level Renderer

Gameplay Foundations

Skeletal Animation
Online

Multiplayer
Audio

Profiling &
Debugging

Collision &
Physics

Human
Interface
Device

Resources (Game Assets)

Core Systems

Platform Independence Layer

3rd Party SDKs

OS

Drivers

Hardware

Figure 2.6.: Simplified depiction of a game engine architecture as described by
Gregory [65]. Related elements of the architecture are grouped by
colors in target system (grey), core modules (green), resource handling
(orange), rendering (red), animation (blue), and developing tools and
libraries (yellow).

21

22 2.3. Virtual Environments

including third party Software Development Kits (SDKs) (e.g., DirectX or PhysX),

the platform independence layer (handling e.g., different file systems), and core

libraries (e.g., for math functions, localization, or different parsers). Further, the

game engine contains modules handling resources (orange) including game assets,

input devices, audio, and network capabilities. The most computational heavy

part of the game engine is the rendering (red). Gregory [65] divided this into the

low-level render, visual effects, the scenes, and front end. Additionally, the game

engine is responsible for animating objects (blue) as well as avatars and simulating

the virtual environment and physics. Lastly, the engine offers debugging tools

and gives developers a way to introduce own scripts and simulations (yellow) for

e.g., artificial intelligence or game mechanics.

This breakdown of a game engine architecture shows the complexity, but also

the opportunities provided to game developers. A game engine gives developers

the possibility to increase their efficiency and reuse large parts of their code.

In the same time they remain flexible, as they are not obligated to use all

offered functionalities. In addition, many providers offer special licenses, which

give developers access to the source code and allow them to modify it for their

needs9.

9https://github.com/Unity-Technologies/UnityCsReference

22

https://github.com/Unity-Technologies/UnityCsReference

3. Related Work

The following chapter presents related work of this thesis. For the conducted litera-

ture review we discuss configurable pervasive middlewares and remote participation

environments separately. In Section 3.1, we will first present the classification

used throughout the review process. Afterwards, Section 3.2 discusses different

middleware and consumer approaches allowing for a varying degree of human

interference in the pervasive system. Following, in Section 3.3, different ways of

remote participation are compared. Lastly, in Section 3.4, we will discuss the

results of the literature review and where we identified the research gap.

3.1. Classifications

As the properties for pervasive middlewares as well as for the remote access and

participation in smart environments differ greatly, we decided to introduce two

independent classifications. Following, we will first take a closer look at our classi-

fication for configurable pervasive middlewares, before discussing the classification

for remote participation environments. The focus is on the comparison of different

configurable pervasive middlewares, as the remote participation is introduced as

an extension to such systems and still relies on the functionalities offered by the

middleware.

Figure 3.1 shows an overview of the classification used for the literature review on

configurable pervasive middlewares. In total, five different classes are introduced:

user,scope, time, technique, and system properties. The focus is on who is able to

configure which part of the system at what point during runtime and how this

configuration is carried out. Therefore, we first take a look at the user who is

allowed to influence the behavior of the system. This can vary from the developer,

who has to predefine configurations, to the user. In the latter case, we differentiate

between domain experts who have a high domain knowledge or are specially

trained, and end users without deeper knowledge. Regarding the scope of the

23

24 3.1. Classifications

Configurable
Pervasive

Middlewares

User

Developer

Domain Expert

End User

Scope

Application

Device

System

Time

Setup

Runtime
manual

Runtime
automatic

Technique

Preference/
Options

Code

Visual

System
Properties

Ad-hoc

Generalizable

Extensible

Figure 3.1.: Overview of the classification for configurable pervasive middlewares.

configuration, the complexity ranges from enabling the user to only influence the

application he is using, the complete device, or several devices in the pervasive

system. The third class describes the point in time when the configuration of

the system can appear. Many systems need to be configured during the setup

and are afterwards either fixed or changes in the system are handled completely

automatically without any influence. We also classify systems as only configurable

during setup even if it is technically not necessary to halt the system completely,

in the case that the reconfiguration cannot be done without a large effort and

thus is influencing the working experience or performance severely. This could

be the case if the user needs to temporarily pause the system or if the manual

process of configuring the system is very complex and requires a considerable

amount of time. If the system allows for a configuration during runtime, we

additionally differ between reconfiguration done completely manually by the user

or automatically by the system. In the latter case, it is still important for us that

the user is able to influence the behavior, e.g., by providing presets or preferences,

which the system then uses for its automatism. Further, the technique used for

configuring the system is considered. In the simplest case, the user has to provide

preferences, access a simple options menu, or is prompted by the system with a

simple choice if a context change is detected. In more complex systems, the user

24

25

is required to write the configuration either as code during the development or

in the form of scripts (e.g., in JavaScript Object Notation (JSON) or Extensible

Markup Language (XML)). In the last case some systems support visual scripting

for the configuration.

Lastly, the classification also takes some properties of the system into account. This

includes whether it is possible to run the system ad-hoc without any infrastructure

like permanent network or internet connectivity, specialized devices, or middleware

services deployed on infrastructure devices. Further, the classification takes into

account whether a system is generalizable and thus usable in different use cases

and whether it is extensible with additional services and capabilities.

Remote
Participation

Systems

Generalizable Extensible
Virtual

Experience
Physical
Relation

Interactive

Figure 3.2.: Overview of the classification for remote participation systems.

Regarding remote participation systems, we focused on the functionalities they

are able to offer to the user and on the overall experience. Figure 3.2 shows

the classification used for those systems including the five used classes. Similar

to the configurable pervasive middlewares, we discuss the generalizablility and

extensibility of the systems. They should be able to adapt to a high amount

of different use cases, e.g., remote meetings or participating in a lecture while

abroad. Further, the classification takes into account whether the systems offer

a similar experience to being physically present. Therefore, we first consider

whether the system offers a virtual and immersive experience and second if it

relates to a physical environment and connects devices in the physical and virtual

world. Lastly, we discuss whether the system offers a degree of interaction to the

user exceeding simple communication with other participants, e.g., by working on

documents together or sharing files.

25

26 3.2. Configurable Pervasive Middlewares

3.2. Configurable Pervasive Middlewares

Having introduced our classifications for the literature review, we now present

the relevant approaches for configurable pervasive middlewares. While there is

a plethora of context sensitive middlewares which automatically react, either

reactively or proactively, to changes in the system itself or in its environment, we

did not include them in the literature review. In general, the focus of the review

was on middlewares that allow some degree of configuration and interference by

the user. For further information on pervasive and context aware systems, we

would like to refer to broader surveys [13,84,159]. While the conducted review

spans almost two decades, it only discusses a subset of available approaches and

does not aim to be exhaustive. The scope of introduced middleware was chosen to

be as heterogeneous as possible, ranging from research based prototype systems

to current smart home platforms advertised for end users. The following section

is structured according to the classification shown in Figure 3.1 and each class is

discussed in detail.

The degree of knowledge needed by the user to being able to configure the

pervasive system varies widely between the different middlewares. In some cases,

only the developers of applications and services are able to introduce configurations.

Some middlewares (e.g., MobiPADS [29]) allow developers to write configurations

as XML scripts, which are then automatically applied by the middleware in

runtime. Other approaches like GREEN [177], MUSIC [165], Dynamix [27], or

EasyMeeting [34] enable developers to program plugins or different components.

These can then either be selected during setup (Dynamix), applied automatically

during runtime (GREEN or MUSIC), or users are able to chose a predefined

configuration manually (EasyMeeting). More modern commercial solutions like

Azure IoT Hub [120] or AWS IoT [7] are more designed as interoperability

systems. In these cases, developers are able to use middlewares like Node.js or

Message Queuing Telemetry Transport (MQTT) for their applications and services.

Despite using different middleware solutions the developers are able to connect the

applications and services up to Azure IoT Hub or AWS IoT and configure their

interaction with each other. Looking at middlewares which can be configured after

the development phase, we have to differentiate between approaches which need a

high amount of domain or IT knowledge and systems targeting actual end users.

26

27

In the first case, some middlewares like dynamicTAO [102] or iROS [97] require

detailed understanding of the functioning of the middleware itself, which is hard

to achieve for unfamiliar users without an IT background. PCOM [15, 71, 196]

offers a visual way of configuring the applications. But as the structure and the

terminology is very close to programming, it is difficult to grasp for untrained users.

Node-RED [98] and openHAB [146] are two open source solutions published in

recent years, which may allow for an easy configuration, but are complex to initially

setup and thus also not usable for everyone. Further, systems like Labscape [66,67]

and the healthcare system ERMHAN [150] offer an easy user interface but are

targeted to physicians and laboratory employees. Systems designed for end users

without further knowledge or experience with pervasive systems need to make

some compromises regarding the configurability. Middlewares like GUIDE [36,40]

and the Speakeasy Browser [47,136] are limited regarding the complexity of the

configuration a user is able to create. With GUIDE, a tour planner, users are only

able to provide the application with some preferences regarding tourist locations

The tour planner then creates a tour accordingly. In the case of the Speakeasy

Browser users can choose between predefined templates on how the system can

be configured. Current end user systems like IFTTT [90] and Apple HomeKit [8],

in contrast, limit the devices and services a user is able to utilize.

While most approaches allow the user to configure the complete pervasive system,

some middlewares target only the application currently in use. ProMWS [30]

and the system presented by Hong et al. [83] for instance allow the user to

define preferences for services the application should utilize and then, during

runtime, the middleware automatically predicts the preferred combination of

services for the current context. MundoCore [5] enables applications to exchange

middleware components by either loading them at startup or exchanging them

during runtime to react to context changes, e.g., exchange the network component

when switching from an ethernet to a bluetooth connection. Developers or

administrators are able to influence which components should be used in which

context via XML configuration files. Only two of the reviewd approaches focus

on the configuration of devices instead of configuring applications only or whole

systems. ERMHAN [150] for instance introduces a system to enable configurable

services for health monitoring devices. Dynamix [27] is a framework for Android

devices to enable the utilization of the different sensors in a smartphone to recognize

27

28 3.2. Configurable Pervasive Middlewares

the context of the user. Applications are able to request context information from

the framework and users can influence which sensors should be enabled and with

whom the information should be shared.

Regarding the point of time, many approaches require at least some configuration

upon setup and before the system is actually in use. These are split into three

different categories. First, some approaches like the Gaia middleware [162]

based GPM [79] allow the configuration of the system only on setup. In this

case, an administrator can create configuration files for the system either via

scripting them by hand or with the help of a graphical tool and deploy them

with the system. This is similar for interoperability focused systems like Azure

IoT Hub [120] or AWS IoT [7], which require the developer to configure the

interactions in the system during development or setup. Second, middlewares like

GREEN [177] or MundoCore [5] enable developers or administrators to provide

possible configurations during or before setup and then decide automatically

on which of the configurations to apply based on context changes. Third, with

EasyMeeting [34] and Apple HomeKit [8] we looked at two solutions which combine

a configuration during setup with smaller manual reconfigurations during runtime.

In both cases the majority of the setup is done beforehand, e.g., connecting different

smart home devices to enable information exchange or assigning specific rights to

devices and users. During runtime, the user then typically only applies smaller

changes to the system such as turning on the lights in a room or changing what

to show on a displaying device. Systems that allow for a reconfiguration during

runtime are split into manual and automatic configuration in our classification.

In the case of an automatic reconfiguration many systems, as with GREEN [177]

and MundoCore [5] discussed, rely on several configuration created during setup

which are then chosen automatically by the system. Further, ProMWS [30] and

the approach of Hong et al. [83] reconfigure the system automatically based

on the history of preferences the user provided in the past. Approaches relying

completely on a manual reconfiguration during runtime often allow for only little

influence by the user and are almost autonomous. CARISMA [26] offers users

simple options menus where they are able to choose their preferences and change

the thresholds for context changes in the system.

The next category of the classification shown in Figure 3.1 differentiates between

the different possibilities and user interfaces provided by the systems for con-

28

29

figuration. Most of the reviewed approaches utilize some kind of preference or

options menu, which may enable an easy configuration but often does not provide

a high complexity. The Speakeasy Browser [47, 136] for instance offers a web

based menu system where users can choose predefined templates. The approach

of Byun et al. [25] is even more simplistic. Here the system senses changes

in the context and prompts the user with popup windows providing a simple

explanation and a suggestion on how to react to the context change. The user

in this case only has the option to answer with yes or no, but has no further

influence on how exactly the system should adapt. Many other devices use code

based configuration, either by programming and providing specialized plugins

and components or by using script based configuration files with e.g., XML or

JSON. As end users cannot be asked to learn programming, just to being able to

configure the system, none of the reviewed code based approaches target end users.

Each of the systems is either supposed to be configured by the developer or an

administrator. SOCAM [68] for instance, is a service oriented middleware for the

development of context aware services. In this case the developer of the service is

able to define sets of rules with actions that are triggered by some context change

in a configuration file using a proprietary language. The RUNES programming

platform developed by Costa et al. [37] follows a similar approach. RUNES is

a component based middleware where the developer is able to define rules on

how the components should be exchanged automatically during runtime and how

they are able to interact. With PCOM [15, 71, 196] and Node-RED [98] only

two approaches are utilizing visual scripting for the configuration. Nonetheless,

both are quite complex in their terminology and in their structure very similar to

traditional programming. Node-RED is additionally hard to setup and integrate

into a system without an IT background. Thus, even though they offer a very

flexible and powerful way of configuring the system, they are not usable for end

users without special knowledge.

Lastly, we reviewed some key properties of the middlewares which, depending

on the use case, can influence the performance and usability of the system.

Nearly all systems can be extended with further services and applications with

only three notable exceptions. GUIDE [36, 40] is only designed as a tourist

guide deployed on a Personal Digital Assistant (PDA) and thus is limited to

the included services. The two modern consumer approaches IFTTT [90] and

29

30 3.2. Configurable Pervasive Middlewares

Apple HomeKit [8] may offer a high number of functionalities and supported

services and devices, but the user is limited to what the vendor is offering and

is not able to extend the system on his own. All three approaches are also

limited to their specialized use case as a tourist guide (GUIDE), for automation

of web services (IFTTT), or for smart home systems (Apple HomeKit) and are

not generalizable to other scenarios. Additionally, EasyMeeting [34] is limited

to pervasive meeting rooms, Labscape [66, 67] is designed for laboratories, and

ERMHAN [150] targets the healthcare sector. Lastly, with PCOM [15,71,196],

GREEN [177], and MundoCore [5] only three of the systems can be seen as fully

ad-hoc. All other approaches either rely on infrastructure devices or access to web

based services. In this literature review we are only considering middlewares as

ad-hoc, if they are able to form a spontaneous system between any peers without

further input. This excludes approaches which offer for instance ad-hoc connection

of user devices to the system, but are still relying on some infrastructure. An

example for this is Labscape [66, 67], which allows the device of a researcher in

a biology laboratory to connect automatically and transparently to the system.

Nonetheless, the system requires some additional infrastructure for the device to

connect to and needs connected laboratory equipment in order to support the use

case. Further, systems like IFTTT [90], Azure IoT Hub [120], and AWS IoT [7]

are cloud based and even if they offer some offline functionalities, they need a

connection to the cloud in a regular interval, especially for reconfiguration. Other

approaches like Speakeasy Browser [47, 136], Dynamix [27], or openHAB [146]

deploy some of their middleware services on infrastructure devices. Other systems

rely on the environment they are designed for, like the GUIDE [36, 40] system is

deployed on PDAs and EasyMeeting [34] utilizes the devices present in a pervasive

meeting room.

Table 3.1 summarizes our literature review on configurable pervasive middlewares.

Only systems which allow at least some kind of interference by the user are

included in this overview. Systems which are reconfiguring themselves purely

automatic are not taken into account. Overall, the literature review shows a very

heterogeneous group of approaches out of the last two decades.

30

31

User Scope Time Technique Properties

Project D
e
v
e
lo
p
e
r

D
o
m

a
in

E
x
p
e
r
t

E
n
d

U
se

r

A
p
p
li
c
a
ti
o
n

D
e
v
ic
e

S
y
st
e
m

S
e
tu

p

R
u
n
ti
m

e
m

a
n
u
a
l

R
u
n
ti
m

e
a
u
to

m
a
ti
c

P
r
e
fe
r
e
n
c
e
/
O
p
ti
o
n
s

C
o
d
e

V
is
u
a
l
S
c
r
ip

ti
n
g

A
d
-h

o
c

G
e
n
e
r
a
li
z
a
b
le

E
x
te

n
si
b
le

GUIDE [36,40] • • • •

dynamicTAO (CORBA) [102] • • • • • • •

Speakeasy Browser [47,136] • • • • • •

GPM (Gaia) [79] • • • • • •

iROS [97] • • • • • •

MobiPADS [29] • • • • • • • •

Byun et al. [25] • • • • • • •

CARISMA [26] • • • • • •

EasyMeeting [34] • • • • • • •

PCOM [15,71,196] • • • • • • • • •

Labscape [66,67] • • • • •

SOCAM [68] • • • • • •

RUNES [37] • • • • • •

GREEN [177] • • • • • • • • •

MundoCore [5] • • • • • • • • •

Hong et al. [83] • • • • • •

MUSIC [165] • • • • • • •

ProMWS [30] • • • • • •

ERMHAN [150] • • • • •

Dynamix [27] • • • • • • •

Node-RED [98] • • • • • •

Apple HomeKit [8] • • • • •

IFTTT [90] • • • •

Azure IoT Hub [120] • • • • • •

AWS IoT [7] • • • • • •

openHAB [146] • • • • • • •

Table 3.1.: Overview of existing approaches which allow the interference of users
in the behavior of pervasive systems. None of the reviewed systems
allow end users to reconfigure the complete pervasive system manually
by offering visual scripting.

31

32 3.3. Remote Participation Systems

3.3. Remote Participation Systems

The discussed pervasive middlewares enable the construction of a physical smart

environment and offer the users a varying degree of configurability depending on

the used middleware. While this allows the users in e.g., a smart classroom or

meeting room to utilize the system to increase usability and productivity, it is

only an advantage for users who are physically present. Following, we will take

a closer look at different approaches that allow users to participate remotely in

all kinds of different events. While there is a multitude of different systems that

allow people to communicate and share content remotely, we focused on a possible

heterogeneous selection of approaches. The selected systems are analyzed using the

classification introduced in Figure 3.2 and are sorted into the three categories of

experience, communication, and collaboration systems. While experience systems

allow users to only consume the provided content, communication systems go one

step further. Here it is also possible to interact with other users and communicate

with them either with pure speech, video calls, or gestures. Collaboration systems

additionally allow the users to interact with different content in the system and

to see the interaction of other users with the same content, e.g., editing a text file

together.

The basic principle of experience systems, which is to enable people to consume

content remotely is very old and has in principle already been introduced with

television and radio many decades ago. But we argue, that the objective of these

old systems is rather reporting remote physical events than recreating the actual

experience of being there. This recreation has only emerged in the last years with

the introduction of Virtual Reality (VR) devices like Oculus Rift [51] or HTC

Vive [85] to the mass market. With NextVR [137] and Oculus Venues [52] we

included two current approaches in the literature review. Both are very similar and

only differentiate themselves in minor details. The main difference is that NextVR

supports multiple platforms, while Oculus Venues is only usable on Oculus devices.

Additionally, NextVR is even acts as a content provider for Oculus Venues. The

goal of both approaches is to bring the experience of large public events to remote

users by utilizing VR. Therefore, they deploy 360 degree cameras at concerts,

sport events, or entertainment shows. Users at home are then able to view these

events with their VR devices, either live or in some cases also at a later point in

32

33

time as a recording. While, the immersion is much higher than classical television

and it is possible to view the events from unusual angles, e.g., directly on the

stage or behind the goal, it comes with the disadvantage that users are not able

to move or interact within the virtual environment. Thus, it is only possible to

jump between predefined camera positions and only rotational movement of the

head is supported.

The next category contains systems that allow multiple users to communicate with

each other. While traditional communication systems like telephone or the more

modern Voice over IP (VoIP) systems like Skype1 have been around for a long time,

we are focusing on approaches that introduce further functionalities. All systems in

this category provide some kind of virtual experience to the user. I3DVC [101] is a

video conferencing system where all participating users sit in front of a desk with a

life size screen at the other end of the table and participate in a virtual meeting. It

is the only approach in this category that does not rely on three dimensional (3D)

rendered virtual environments. Instead, it captures the user and the surrounding

environment with 3D cameras and augments the captured video stream with

virtual objects, e.g., a clock or a virtual desk. On top of communicating with the

other participants, the system does not offer any additional interactivity and is

also limited to the use case of video conferencing. MASSIVE [64] and Virtual

Society [109] are two early attempts on virtual environments for collaborative

working. Both render a 3D environment where the user is able to join with

an avatar. The systems allow for interaction with other users either through

communication via voice or text chat, or by interacting with virtual objects like

white boards or projectors. While MASSIVE is limited to virtual meetings, it

is possible to extend the Virtual Society system for different use cases. In their

paper Lea et al. [109] describe how their system could be used e.g., for virtual

meetings, games, or even shops. Both approaches are purely virtual and do not

allow for the integration of additional devices or physical spaces. Meetyoo [119]

and Easy Virtual Fair [46] are commercial platforms targeted at companies or

public facilities. They offer the possibility to host large scale conferences, fairs,

or exhibitions in a virtual environment. The organizer of the event can set up

virtual booths showing different multimedia content and staff them with employees.

Visitors of the virtual events are then able to walk through these booths with

1https://www.skype.com/en/

33

https://www.skype.com/en/

34 3.3. Remote Participation Systems

their avatars in the 3D environment and consume the content or chat with the

staff. The interaction in this case is limited to communication with others and

consuming the multimedia content. While it is possible for organizers to host a

virtual event parallel to a real world event, it does not provide the same experience

by directly mirroring it to the virtual environment. Both approaches are limited

to this use case and only Easy Virtual Fair [46] is extensible with plugins in

Hypertext Markup Language (HTML) 5.

The last category included in the literature review discusses systems that en-

able users to work cooperatively. While focusing on different use cases, all of

the included approaches provide some kind of user interaction which exceeds

pure communication. ILIAS [91] is an example for one of many (e.g., Moodle2,

Blackboard3, or Canvas4) available systems offering educational institutions the

possibility to communicate and share content with their students. ILIAS addition-

ally offers modules like forums, quizzes, surveys, and wikis for students to enable

collaboration and enhance the learning process. Nonetheless, the file sharing,

communication, and collaboration functionalities are typically decoupled from

the lecture and thus do not provide the same experience as attending the lecture

in person. While ILIAS is limited in its use cases, it has been developed open

source and therefore enables extensibility and allows for instance universities to

develop their own modules to accommodate their teaching style and workflow.

Microsoft Teams [121] and Adobe Connect [3] are collaborative working tools for

the corporate environment. Both solutions rely on traditional communication

(e.g., via webcams) and do not offer a virtual environment in which users are able

to move. Adobe Connect targets online meetings and seminars. It therefore offers

text, voice, and video chat and allows participants to collaboratively work on

documents and share them. Additionally, Adobe Connect offers an Application

Programming Interface (API) for developers and even ready to use applications

to extend the offered software. While the focus of Adobe Connect is more on

the communication between participants, Microsoft Teams focuses more on the

collaborative working. Therefore, it offers direct integration of Microsoft’s own

Office Suite5 where users are able to work on text, presentations, or spreadsheets.

2https://moodle.com
3https://www.blackboard.com/index.html?nog=1&cc=US
4https://www.instructure.com/canvas/
5https://products.office.com/en-us/home?omkt=en-US&rtc=1

34

https://moodle.com
https://www.blackboard.com/index.html?nog=1&cc=US
https://www.instructure.com/canvas/
https://products.office.com/en-us/home?omkt=en-US&rtc=1

35

Additionally, it incorporates a text chat for communication and Microsoft Skype6

for voice and video chat. While it is possible to integrate Microsoft’s own devices

such as the Surface Hub7, users are limited to devices officially supported by

Microsoft. Further, the review includes DOLPHIN [181], ActiveTheatre [74], and

C-Slate [94] as research based collaborative working systems. DOLPHIN was

developed in 1994 to assist during meetings, It offers voice and video transmission

as well as digital white boards. The main focus is to connect two groups in

different meeting rooms and allow them to collaboratively work on the same

white board. While similar systems are fairly common today, DOLPHIN offers

an extensible architecture which allows developers to add further applications,

something that even many modern systems like Microsoft Teams [121] do not offer.

C-Slate [94] aims at cooperation between two distant users via a multi-touch and

object recognition system. It therefore scans the working surface and tracks how

the user is interacting with it. The interaction could be the movement on a board

game or drawings on a paper. On the screen of the other user an augmented reality

approach is used to overlay these interactions. ActiveTheatre [74] is designed to

support surgeons in the operating room. A camera creates images and videos

during the surgery and the surgeon is able to annotate them with text or speech

and share them with others. Additionally, it is possible to review content while

performing the surgery and thus get consultation from remote physicians. The

system is extensible with further modules and the authors claim, that it is not

limited to the use case of surgeries, but the introduced interaction techniques

could also be useful in other collaborative working environments. Lastly, the

only reviewed approach supporting a virtual experience is the virtual campus

by De Lucia et al. [114] based on Second Life [112]. Second Life is a publicly

available online virtual world developed by Linden Lab which allows people around

the world to meet, socialize, build, and even trade in a 3D virtual environment.

Further, it allows people to design and add virtual objects and buildings. De Lucia

et al. used Second Life as a platform for their virtual campus with classrooms, a

theater, and recreational areas with games like chess. The environments allow

for presentations and meetings with the goal of collaborative learning. But this

environment is not related to any physical classrooms or presentations.

6https://www.skype.com/en/
7https://www.microsoft.com/en-us/surface/business/surface-hub-2

35

https://www.skype.com/en/
https://www.microsoft.com/en-us/surface/business/surface-hub-2

36 3.4. Summary

Table 3.2 shows a summary of all reviewed remote participation systems. In

total we included 14 different approaches sorted by the categories of experience,

communication, and collaboration systems. These approaches are very different

regarding their intended use cases and the solutions they offer. Still, none of them

is able to connect a physical and virtual environment for multiple users to work

collaboratively.

Project Category G
e
n
e
r
a
li
z
a
b
le

E
x
te

n
si
b
le

V
ir
tu

a
l
E
x
p
e
r
ie
n
c
e

D
e
v
ic
e
In

te
g
r
a
ti
o
n

In
te

r
a
c
ti
v
e

NextVR [137] Experience • •

Oculus Venues [52] Experience • •

MASSIVE [64] Communication • •

Virtual Society [109] Communication • • • •

I3DVC [101] Communication • •

Easy Virtual Fair [46] Communication • •

meetyoo [119] Communication •

DOLPHIN [181] Collaboration • • •

ActiveTheatre [74] Collaboration • • • •

C-Slate [94] Collaboration • • •

Second Life [112,114] Collaboration • • • •

Adobe Connect [3] Collaboration • •

Microsoft Teams [121] Collaboration • •

ILIAS [91] Collaboration • •

Table 3.2.: Remote participation systems sorted by the categories of experience,
communication, and collaboration systems. None of the discussed
approaches achieve to provide an interactive virtual experience while
simultaneously mirroring a physical environment.

3.4. Summary

During the analysis of configurable pervasive middlewares, we could observe that

many of the approaches are either focused on the end user or offer a high amount

of configurability. Middlewares allowing for a reconfiguration of the complete

pervasive systems, e.g., GPM [79] or MobiPADS [29], are usually targeted at

users with a high domain or IT knowledge. Systems allowing end users without

36

37

prior knowledge to perform configurations with visual tools are on the other hand

limiting what the user can influence and often only allow to configure small parts

or to choose predefined settings, e.g., with the Speakeasy Browser [47, 136] or

GUIDE [36, 40]. We argue that, with the rising popularity of smart environments

in homes and working places, it is getting increasingly important to enable all users

to set up the systems and reconfigure them during runtime if needed. Therefore,

even end users without a background in IT or specific knowledge about the

middleware should be able to configure the system for their current situation in

an easy and efficient manner.

In the case of remote participation systems, with NextVR [137], Oculus Venues [52],

and I3DVC [101], only three approaches offer a combination of a virtual experience

and a physical environment. While I3DVC at least allows for communication

between users, none of the three approaches offer any kind of further interaction.

Thus, it is not possible for users to work collaboratively. All other approaches

lack the connection of a physical and virtual environment and are therefore not

able to give remote users the same experience, e.g., joining a live lecture at the

home university while abroad.

In conclusion, none of the reviewed pervasive middlewares offer end users the

possibility to use visual scripting for configuring the complete pervasive system

to their needs manually during runtime. Further, none of the remote partici-

pation systems were able to offer an interactive virtual environment to enable

collaboration between users, no matter if physically on location or not. The

proposed PerFlow system is designed to tackle both issues. The PerFlow

Middleware and PerFlow Tool offer visual scripting to allow end users to

reconfigure the pervasive system and in combination with the PerFlow Virtual

Extension remote participants can experience the same applications in a virtual

environment.

37

4. Requirement Analysis

The following chapter derives the requirements for a configurable pervasive middle-

ware considering the research questions introduced in Section 1.2. Therefore,

we first describe a scenario for such a middleware and identify the stakeholders

for this system. We will take a closer look on the expectations for each of the

possible user groups. Based on these insights we will derive the functional and

non-functional requirements for our system. In the remainder of the thesis these

requirements serve as a basis for the design and implementation of the PerFlow

system with all of its extensions.

4.1. Scenario

Following, we will introduce a scenario to identify the stakeholders and their

requirements for the PerFlow system. While the pervasive middleware can be

applied in all kinds of different use cases, we will take a deeper look at a pervasive

learning environment. This example scenario can be transferred to other typical

use cases, like smart meeting rooms or smart homes. The lecture or classroom

scenario presents challenges which are typical for pervasive systems, namely highly

heterogeneous devices, volatile connectivity, and the seamless integration of devices

into the learning experience [169].

Figure 4.1 shows all relevant stakeholders and the interaction between them and

the pervasive system. The scenario is divided into two different phases. First,

the development of the services for the pervasive learning environment and the

deployment of the system in lecture halls or classrooms. Second, the actual lesson

hold in the learning environment. During the first phase two different stakeholders

are involved: application/service developers and system administrators. Both pose

different challenges to the pervasive middleware. The middleware is used by the

developer to create applications and services for a high variety of heterogeneous

devices and to enable the communication between them. These services are needed

39

40 4.1. Scenario

Remote Participation

Virtual Environment

Physical Participation

Infrastructure

GroupworkLecture

…

Application

Application

P
er

F
lo

w

Developer

Administrator

Deployment

Figure 4.1.: Example scenario for a pervasive learning environment. Divided into
the development and deployment, and the actual use during lectures.

to support the actual lecture and enhance the experience of the end users. The

administrators in the next step are responsible for deploying the pervasive system

in the actual learning environment by setting up the services and applications on

the stationary devices and distributing them to the end users. Additionally, they

define the behavior of the system during the actual lesson by providing initial

configurations and defining the roles and the corresponding rights for the users.

During an actual lesson in such a pervasive lecture hall or classroom, we encounter

two different user types. The lecturer gives the lesson and the students attending

the lecture. The basic needs of both user groups are nearly identical. All users need

the possibility to, for instance, share content like presentations or assignments,

give or receive feedback regarding the lecture, or control infrastructure devices.

The main difference between the two user groups is, that the lecturer should

additionally have the possibility to influence the behavior of the system and

control the students’ access to different services. Further, the students can be

physically on site or accessing the lesson remotely.

In total we are looking at five stakeholders: developers, administrators, lecturers,

local students, and remote students. Further, we are dividing the pervasive learning

40

41

environment into three device classes for lecturer devices, student devices, and

infrastructure devices. While the device classes for the lecturer and students

consist of nearly identical devices (mostly brought by the user) like notebooks,

smartphones, and tablets, their purpose and the assigned tasks during a lecture

may differ greatly. The infrastructure devices are highly heterogeneous and include

displaying devices like TVs or projectors, servers, or lighting and shutters.

4.2. Functional Requirements

Based on the introduced scenario and the identified stakeholders, we are now

deriving the requirements. These are split into functional (RF) and nonfunctional

requirements (RNF). We start by introducing the functional requirements which,

according to Laplante [108], describe the abilities of the system and which task it

should be able to perform. In total we identified seven functional requirements

that need to be supported for the aforementioned scenario.

RF1 - Information Exchange: One of the most important tasks of any per-

vasive middleware is to connect the different devices in the system and allow

the communication between them. The PerFlow Middleware should enable

developers to let their applications exchange information with each other. In the

scenario the presentation application on the lecturers device should for instance

be able to transmit presentations to the displays in the classroom.

RF2 - Runtime Reconfiguration: The main goal of the PerFlow Middle-

ware is to configure the information flow between different devices and applica-

tions in a pervasive system. In contrast to many other solutions, the reconfiguration

should affect not only single devices/applications but the complete system. There-

fore, we require a syntax that allows to define rules for the information flow and

determine who is able to send what kind of data to whom. These requirements

should also not only be defined during the deployment phase, but the users should

be able to influence them and reconfigure the pervasive system at runtime.

RF3 - Bundling Information Flow: To simplify the definition of rules for

the end users it should be possible to bundle and organize the information flow

41

42 4.2. Functional Requirements

between different devices and applications. Developers should get the possibility

to define which API calls of their applications and services belong together and

the users later only have to define the rules for these bundles and not for every

single call. If a service for instance offers a control and a data connection the

developer should define that these are both needed and the end user does not

have to define rules for both.

RF4 - Heterogeneity Support: In our scenario, as in most pervasive systems,

we are encountering very heterogeneous devices. This includes different device

types e.g., smartphones, computers, or even smart lighting, as well as operating

systems like Microsoft Windows, or Android. The middleware should be able to

cope with this environment and connect all these devices. An additional challenge,

and most important for our system, is the combination of static devices that

offer their services continuously, as well as devices that might join and leave

the system at any time. The PerFlow Middleware should not only enable

the communication between all these systems. Users should also be able to use

the PerFlow Tool for reconfiguring the system via visual scripting and the

PerFlow Virtual Extension on a high variety of devices. The reconfiguration

of the system should be possible on large touch devices like smart boards in lecture

rooms, personal computers in meeting rooms, or tablets in an industry scenario.

Further, the system is not only heterogeneous regarding the devices, but also with

regard to the data communicated between the peers.

RF5 - Device Management: To allow runtime reconfiguration of the informa-

tion flow we need an up-to-date list of the available devices and applications in the

pervasive system. The middleware therefore has to handle device discovery and

recognize changes in the system. It also needs to be able to address all devices

and offer information about the system to the end user creating the rules for the

pervasive system. This includes properties of the devices and applications (e.g.,

user groups of device types) and information about the data each application is

able to receive or send.

RF6 - Access Control: While the main focus of the middleware is the re-

configuration of the pervasive system, not every end user should be allowed to

42

43

influence the complete system. In our classroom scenario, the lecturer may want

to reorganize the information flow in the system for group work between the

students, but the students should not be able to hijack the projector during a

lesson. Therefore, the administrators should be able to define during deployment

who is allowed to reconfigure the system at runtime. Additionally, the access

control should allow for the prioritization of users, so that, for instance, the

lecturer is the only person allowed to reconfigure the system if present, but when

he leaves the room the students are free to use the pervasive system as they want.

Further, the middleware should ensure that the newest configuration is used in

the complete system and no device is following an outdated set of rules. It is in

the responsibility of the middleware to enforce the access control and keep track

of the versioning for the configurations.

RF7 - Remote Access: Another goal of the system is to enable remote users

a similar experience compared to the physically on site students. Therefore, the

system should offer an virtual extension. Developers should be able to use the

middleware to develop services and applications for a virtual lecture room. The

middleware functionalities should be accessible from the virtual environment and

allow the developers to mirror the functionalities of the services in the real lecture

room. Further, the virtual middleware API should not be use case specific and as

general as possible to enable the development of other virtual environments, like

meeting rooms or museums.

4.3. Nonfunctional Requirements

In addition to the functional requirements, the system must also fulfill five non-

functional requirements. While they do not specify functionalities offered by the

system, they define properties and constraints of the implementation that effect

the performance and usability [108].

RNF1 - Responsiveness: The middleware in our scenario is responsible to

guarantee a seamless communication between devices. As the system is used

during a live lecture, the information has to be shared nearly instantaneous in

order to minimize the distraction of the lesson. Thus, it needs to control the

43

44 4.3. Nonfunctional Requirements

information flow with a minimal overhead to avoid introducing a delay in the

communication. Furthermore, the situations in pervasive systems such as smart

lecture rooms might change any time and require spontaneous reconfiguration of

the information flow. In our example scenario the access to a projector might

initially only be granted to the lecturer device and during the lesson it might be

reconfigured to be accessed by groups of students. The reconfiguration in this

case must not introduce a noticeable delay and further may not affect the current

exchange of data.

RNF2 - Fault Tolerance: The system should be fault tolerant in two different

ways. First, devices may leave the pervasive system implicitly at any time without

prior information. Therefore, the middleware should not depend on a central

device that constitutes a single point of failure. Thus, the rules which define the

information flow must be maintained even though the administrating lecturer

has temporarily left the system. Additionally, the middleware should not lose

any data. Second, while reconfiguring the middleware, the user should not be

able to introduce faulty configurations. As the communication in the system is

reliant on a correctly configured information flow, the middleware should hinder

reconfigurations which cannot be interpreted due to syntactical errors or executed

due to semantical errors.

RNF3 - Generalizability: While we are using the scenario of a pervasive lecture

room as an example during this thesis, the middleware needs to allow the user

to configure the information flow in all different kinds of scenarios. As pervasive

systems are spreading more users are getting in touch with them in e.g., smart

homes, airports, or offices. Unexperienced users still need the ability to influence

the system and thus profit from PerFlow. Therefore, the basic functions of the

middleware should not be use case specific and the developer should be able to

customize the middleware to his needs.

RNF4 - Usability: We argue that the success of pervasive systems also depends

on their usability. Even unskilled end users need to be able to configure the

information flow in order to use the full potential of smart environments. If only

trained system administrators can setup the information flow, the environment

44

45

will become static and eventually less attractive. Thus, the ease of use is among

the most critical requirements and calls for special attention in the design of a

pervasive middleware. This also includes the introduced visual scripting tool and

virtual environment.

RNF5 - Extensibility: While for many applications the communication of basic

data types like integers or strings may be sufficient, especially today we are facing

many different multimedia types. For instance, in our scenario the lecturer may

want to show a video or distribute a presentation. Therefore, the middleware

should allow the developer an easy extension with new data types to enable for

instance the distribution of image, video, or audio data. The middleware should

offer the developers the possibility to define their own serialization routines for

their custom objects and therefore unlimited possibilities regarding the handled

data types.

45

5. System Model

The following chapter will describe the system model of PerFlow.Thus, we

will introduce the terminology used throughout this thesis and describe all parts

constituting the pervasive system. While we are using a pervasive lecture room

as the main example the system discussed in the following chapter is described in

a broader term and without a specific scenario as a foundation.

In traditional pervasive systems or smart environments like Gaia [162] or Aura [180]

the services are provided by the infrastructure. Additionally, servers or devices

located in the infrastructure are also responsible for controlling the system. Thus,

to be able to utilize the pervasive system, some kind of dedicated device has to

be deployed beforehand to offer basic system services. In contrast, the proposed

PerFlow system follows the concept of smart peer groups discussed in [72]. The

middleware functionalities in PerFlow are completely decentralized and allow

for the building of ad-hoc systems between the mobile peers provided by users.

Nonetheless, it is also possible to incorporate nearby infrastructure devices and

their offered services, but they are not crucial for a functioning system.

Physical/Virtual System

Device A

Application 1

Registry

…

Device B

Application 1

Registry

...

Route 1

Route 2

…

Figure 5.1.: The system model for PerFlow depicting two devices with multiple
applications and one registry. Each application may have several
connectors linked with routes for information exchange.

47

48 5. System Model

As depicted in Figure 5.1, our system consists of a physical and virtual environment.

Both may contain multiple devices with each containing several applications

with connectors for in- and outgoing communication. Additionally, each device

administers a registry providing information about the system for developers

and administrators. The connectors of two applications may be connected via a

route which allows communication between them. While these routes describe

the communication between single applications, information flow describes the

exchange of data in a broader term e.g., the application of one user is able to

send images to applications of all users regardless of the specific devices involved.

The user is able to formulate this behavior in so called rules, which are then

interpreted by the middleware to create the routes. To enable the communication

between devices we rely on a communication middleware. The virtual environment

is connected to this middleware via the virtual proxy. Following, we will take a

closer look on each of these elements.

Device: The system may include many heterogeneous devices e.g., personal

computational devices like smartphones or laptops, and infrastructure devices,

such as projectors, servers, or smart lighting. These devices may also be brought

by the user and thus their availability is not always given. Each device may join

or leave the system at any moment.

Application: Any device may run several applications using the PerFlow

Middleware to communicate with others. An application may send and/or

receive data from or to an other application. The scope of functions may range

from simple services, such as presentation services showing content on a screen or

providing a temperature reading, to more complex applications combining different

functionalities and communicating with multiple other devices simultaneously.

Connector: Each of the applications may have several connectors describing the

data it is capable of sending or receiving. A connector always handles one single

data type. It can be ingoing for receiving or outgoing for sending data in the

system. Additionally, the connector may be pushing the data automatically into

the system or wait until the data gets pulled from others. In a similar fashion an

ingoing connector can automatically pull the needed data from others or wait for

it.

48

5. System Model 49

Rule: Rules can be defined by the user and describe the information flow in the

pervasive system in terms of specific properties of devices and applications. The

rules are formulated on the system level and may influence complete groups of

devices at once. The middleware is then responsible for the interpretation of these

rules as specific routes between two devices.

Route: A route describes the connection between two applications. It allows

the data exchange between an outgoing and ingoing connector. To achieve this,

it is not relevant if the connectors are actively or passively sending/receiving

data, the PerFlow Middleware is responsible for handling the data exchange

accordingly. For a valid route it is only important that both connectors are

specified for the same data type.

Information Flow: While routes describe the communication between two appli-

cations, the information flow describes the communication on a system level. The

information flow describes the exchange of data between multiple devices and

it is also possible to bundle several routes. As an example the information flow

between a file server and notebooks belonging to end users may contain routes

for control messages so that end users can request files and routes for the data

transmission.

Registry: Each device in the system is managing a local registry. It stores and

provides information about the capabilities of the device and the local applications,

including all available connectors. These information can be accessed and extended

by application developers and they can be used by administrators and users to

reconfigure the information flow.

Physical Environment: This environment represents an actual physical room

equipped with a possible large amount of heterogeneous devices. These devices

may be user devices like notebooks or tablets, or infrastructure devices, such as

smart lighting or TVs. The devices form a typical pervasive system with the goal

to support the users in their daily tasks by offering services depending on the

smart environment. This could be for instance in a pervasive meeting room or in

a smart home.

Virtual Environment: The goal of the virtual environment is to provide the same

experience to remote users as if they were physically available in the actual

pervasive environment. Therefore, developers need access to the functionalities

49

50 5. System Model

of the PerFlow Middleware within the virtual environment to be able to

develop similar applications to the ones used in the physical environment. Further,

for the development of the virtual environment we rely on existing frameworks

for the development of 3D environments (so called game engines).

Virtual Proxy: To enable the access to the middleware functions from within

the virtual environment we need a proxy. It mediates between the PerFlow

Middleware and the applications developed in the game engine. The main

goal of the proxy is to marshal and demarshal the data for the use in the virtual

environment and to handover the function calls to the middleware. The proxy itself

should not introduce any further logic or registries for information management.

Communication Middleware: As pervasive systems are already in development for

many years, there are multitude of middlewares available.Within this thesis we are

focusing on the development and implementation of a middleware for the realtime

reconfiguration for such a system. Therefore, we are using an existing middleware

for the device discovery and communication within the pervasive system. The

PerFlow Middleware is developed independently and should allow for an

exchange of the underlying communication middleware.

50

6. Middleware Design

Using the system model, we discussed the terminology and environment which we

encounter with the PerFlow system in Chapter 5. Further, we introduced the

scenario we are facing with our middleware in Section 4.1, before we derived the

requirements for PerFlow in 4.2 and 4.3. In the following chapter, we now want

to discuss how we are tackling these requirements and explain our approach for a

runtime configurable pervasive middleware in detail. Additionally, the PerFlow

Tool for user created configurations and the PerFlow Virtual Extension

for remote users will be presented.

Design Time

Runtime
Reconfiguration

Validation

InterpretationDistribtution

Enforcement

Development Deployment

Figure 6.1.: The complete life cylce of the PerFlow system starting with the
design time, including the development of applications and the de-
ployment by an administrator. During runtime the system can be
reconfigured by users.

51

52 6.1. PerFlow Architecture

In Figure 6.1 the complete process of the reconfiguration can be seen. At the

beginning, the application developers have to specify their API and register it at

startup with the middleware. If further functionalities get available or existing get

obsolete during runtime, the registry entries can be altered. During deployment,

the administrator should provide an initial configuration for the system to ensure,

so that it is usable from the start on without requiring a beforehand setup by the

users. Additionally, the administrator may also specify who is able to reconfigure

the system during runtime. Further, if a new configuration is provided, the

middleware is responsible for checking the validity and distributing it to all devices

in the system. At runtime, the middleware has then to enforce the currently

available configuration. To enable the end user to create new configurations

on their own and without any advanced knowledge in the field of information

technology or even pervasive systems, a visual scripting language was developed.

This language can then be used to create rules in a visual scripting tool connected

to the middleware. One additional requirement was the integration of remote users.

Therefore, we expended the system with a virtual environment. The remainder of

the chapter is dedicated in explaining the design of each of the aforementioned

steps. Further, it is also structured according to the process explained above. The

following chapter is based on and extends [132]1 and [131]2.

6.1. PerFlow Architecture

The following section will provide a complete overview of the architecture used

for the PerFlow system before going into the details on the separate parts in

the remainder of this chapter.

Figure 6.2 shows the overall system architecture for the PerFlow system. It

is split into three major parts: PerFlow Middleware, PerFlow Tool,

and PerFlow Virtual Extension. The system utilizes a communication

middleware for the transmission of messages and device handling. Each physical

device in the system has to run at least the PerFlow Middleware combined

with the communication middleware. This module handles the information about

the pervasive system and contains the main functionality needed to reconfigure

1 [132] is joint work with M. Pfannemüller, J. Edinger, and C. Becker
2 [131] is joint work with C. Krupitzer and C. Becker

52

53

PerFlow
Virtual Extension

Communication
Middleware

PerFlow Middleware

Sender Receiver

Route
Controller

Rule Interpreter
Configuration

Manager

PerFlow
Tool

PerFlow
Tool
Proxy

Local Route
Handler

Connector
Registry

…

Consensus
Module

…

Proxy 2

Proxy 1
Virtual

Controller
Virtual
Broker

Virtual
Device

Virtual
Device

Figure 6.2.: The overall system architecture for PerFlow consisting of the three
major modules for the PerFlow Middleware, PerFlow Tool,
and PerFlow Virtual Extension. To enable the message ex-
change between all parts of the system a communication middleware
is used.

the information flow in the middleware during runtime. The Connector Registry

handles the current status of the pervasive device. Further, the Configuration

Manager is used to store the current valid configuration and distribute new

configurations either in a naive approach with low overhead or, by using the

Consensus Module, in a more complex way supporting access control. The

information stored in the Connector Registry and Configuration Manager is then

used by the Rule Interpreter, which uses the combined information to generate

communication routes for each device. These are then stored in the Local Route

Handler of the related device and are used by the Route Controller to determine

the target for each message and transmit the outgoing information accordingly

via the communication middleware. Developers directly access the Connector

Registry to publish which information their applications are able to receive or

send. Additionally, they need to implement the corresponding interfaces offered

by the Route Controller to distribute or listen for the data.

53

54 6.2. Structuring the Information Flow

The PerFlow Tool and PerFlow Virtual Extension are optional and

the users may start them if they need them. The proxy for the visual scripting

tool connects to the Connector Registry and Configuration Manager. It forwards

the information stored in the registry to the actual PerFlow Tool and receives

and forwards the new configurations created by the user. With the PerFlow

Virtual Extension it is possible for developers to implement applications inside

a virtual environment. They are able to access the PerFlow Middleware in

the same fashion as developers implementing for the physical pervasive system

via the Virtual Broker. The Virtual Broker hands the API calls over to the

Virtual Controller, which starts one proxy for every virtual device in the virtual

environment. These proxies access the Connector Registry and Route Controller

as any other application in the virtual environment.

6.2. Structuring the Information Flow

To enable the reconfiguration of the system the user creating the configuration

and the middleware enforcing it need information about the available devices

and applications. Responsible for collecting and managing this information is

the Connector Registry. The goal is to enable users to influence the information

flow between different applications by offering them the possibility to define witch

applications can share witch information according to their needs. While there

is some information which is always needed by the system to function properly,

developers should also have the possibility to introduce their own properties.

Thus, the system is not tailored to a specific use case, but developers can choose

the needed information to support their scenario. Additionally, the registry is

responsible for providing the collected information to other peers in the system.

In the following sections we are discussing what information is needed about the

system, how the registry handles the information locally, and how it is distributed

to the rest of the system.

6.2.1. Structure

The Connector Registry is designed to support developers as well as administrators

and users. These stakeholders have vastly different demands to the registry which

54

55

are taken into account during the design. Regarding the handled information, the

developers need to know which data they can expect and how it is serialized to be

able to use it in their applications. Administrators and users on the other hand,

require additional information about how the system is structured and what the

function and role of each application in the system is. This enables them to make

decisions on how the data in the system should be distributed and what devices

or applications should be able to communicate with each other. Therefore, they

for example want to know, which user group a device belongs to, which device

type it is, or where it is located. As this information is strongly dependent on the

use case, the design should be flexible regarding additional properties.

Application 1

Map<String, String>

List<Connector>ID

Properties

1234

„Group“: „Student“

„DeviceType“:
„Tablet"

…

Connector 1

MessageType „ChatMessage“

Grouping „chat“

Data Type „\T“

Active true

…

Connectors

…

==

=

In/Out „Out“

Figure 6.3.: The information saved by the local Connector Registry about one
specific application containing its ID, properties and a list with all
available connectors.

Figure 6.3 depicts the information stored in the Connector Registry. Here the

local registry for one device is shown containing information about one application.

For each device it is possible to store several applications. The local Connector

Registry provides access to this information to the user of the device and developers

are able to add new or change the stored information about their application. If

a complete view on the whole pervasive system is needed, the information stored

55

56 6.2. Structuring the Information Flow

in the registries of each device can be combined. For each application the registry

stores an Identifier (ID), Properties, and Connectors. Following, we will discuss

each of these values in more detail.

ID: As the used communication middleware is responsible for the device discovery

and handling we are utilizing it also to address specific devices. To be able to work

with multiple applications on each device in the system, we further introduce an ID

for each application. These IDs are unique within the context of one device. With

the combination of the device address provided by the communication middleware

and the application ID introduced by PerFlow it is possible to address each

individual application in the system.

Properties: The properties are used to describe the context of the application in

detail. As the context may vary vastly with regard to the use case the system

faces, these properties should not be predefined during the development of the

middleware. Therefore, the PerFlow Middleware offers the possibility to

specify custom key/value pairs. Thus, developers are able to add for instance

“location” as a key and “meeting room” or “classroom” as the value. Properties

can be used to identify groups of devices or applications e.g., with the key “role”

and the value “student”. The properties can be added to the Connector Registry

by the developer of the applications or by the administrator during deployment.

Further, they can also be altered during runtime, for instance to change the

location as soon as the device moves. Additionally, the developer can give the end

user access to specific properties, so that he is able to alter them during runtime,

e.g., for setting their own user name. It is also possible to introduce a system for

context awareness [171], which automatically sets specific properties based on a

detected context change. A Global Positioning System (GPS) sensor could for

instance be used to detect a change in location and update the according property

of the application.

Connectors: The connectors for an application describe the possible incoming

and outgoing information. Each application may have multiple connectors. The

Connector Registry is used by the middleware to determine which connectors can

be used to communicate via a route. Additionally, users and administrators need

this information to be able to create a valid configuration for the system. The

information about the connectors needs to be supplied by the developer and is

registered at the registry during the start of the application or when additional

56

57

functionalities with new connectors get available. Each connector is described

with six attributes, as shown in Figure 6.3. Data type, active, and in/out are used

by the middleware to determine how to create a route between two connectors and

to serialize the data correctly. The data type therefore specifies, which primitive

value or serializable object has to be expected for the transmission. Further, it is

described, if the connector is sending or receiving data and if it actively does so or

if the opposing connector is responsible to retrieve or push the data. Message type

and grouping are mainly used to provide users and administrators information

about the system and to support them during the configuration. The message type

therefore describes what kind of information is communicated via the connector

e.g., ”chat message” or ”presentation”. The grouping attribute is optional and

gives the developers the possibility to group several connectors with one common

keyword. Thus, administrators and users can connect multiple connectors at once,

if the developers decides that it would not make sense to use them separately.

This could for instance be the case for presentations. Here one connector is used

for controlling the slides and another one for transmitting the actual content of

the presentation, but for both the grouping attribute is “presentation”.

6.2.2. Local Connector Registry

After discussing the information needed by the PerFlow Middleware to offer

runtime reconfiguration, we now want to concentrate on how these information

are handled. In this section, we will first take a look on the Connector Registry

itself, which is executed locally on each device in the system. Afterwards, we

discuss how the registries exchange their information in order to offer a complete

overview of the system to the administrator or user.

The Connector Registry has three main tasks in the proposed system: collect-

ing, providing, and distributing information about a device and its applications.

Therefore, it offers the four basic functions of the Create, Read, Update, and

Delete (CRUD) principle for storing and handling data [118]. But as the context

of the system may change with every startup, the information is not stored by

the registry in a persistent manner and the application has to provide its current

information while registering with the PerFlow Middleware. In Listing 6.1

the API of the Connector Registry is shown, divided into the CRUD functionalities.

57

58 6.2. Structuring the Information Flow

1 // create/update

2 public void registerApplication(ID id, Map<String, String>

properties);

3 public void registerConnector(ID id, boolean outgoing, boolean

active, boolean allowsArray, String messageType, String

description, String dataType);

4

5 // delete

6 public void removeApplication(ID id);

7 public void removeConnector(ID id, String messageType, String

dataType);

8

9 // read

10 public Application[] localApplications();

11 public Application localApplication(ID id);

12 public Application[] remoteApplication();

13

14 // locking

15 public void lockRegistry();

16 public void unlockRegistry();

Listing 6.1: The interface of the Connector Registry showing the CRUD
functionalities for handling the connectors of the different applications
running on a device. The interface is defined in Java.

First, the API allows an application to create a new entry by registering itself

and providing its ID and properties. After at least one application is registered, it

is possible to also register connectors for it by providing the attributes discussed

before. An application is always identified by its ID and a connector of a specific

application can be identified by the combination of message and data type. If

an already existing application or connector is registered, it is not stored as a

duplicate but instead, the existing entry is updated. Further, the registry allows

for deleting applications or connectors. If an application is deleted, the Connector

Registry automatically deletes all connectors which may exist and are assigned to

this application. Next, the registry offers the possibility to obtain the data of all

registered applications and connectors. It is possible to retrieve the complete list

of all registered objects or only the data for one specific application. Further, we

distinguish between reading the data locally or polling the data from the complete

pervasive system. Lastly, the registry can be locked for registering, updating, or

58

59

deleting applications and connectors. This is necessary during the reconfiguration

of the system. For example, in case of a application first reading all available

connectors from a registry and another application then deleting a connector, a

new route would could be created for a no longer existing connector. To prevent

interferences during the reconfiguration, all registries in the system are locked at

the beginning of the process. As long as the lock is active, all requested changes

are buffered. After the lock is lifted, all of the stored requests are executed in

bulk.

6.2.3. Information Exchange

Until now we are able to store and retrieve the information about the applications

and connectors on the local device. In order to being able to reconfigure the

complete pervasive system, the administrator or user needs a complete view on

the system with information about all devices. Therefore, we need the possibility

to read the data from all registries in the system.

To achieve this, the Connector Registry is designed as a service for the underlying

communication middleware. The registries have a fixed application ID identical on

all devices and are started automatically together with the PerFlow Middle-

ware. Additionally, the communication middleware can be used to retrieve a

list of all available devices in the pervasive system. Thus, with the device ID

and application ID we are able to address each Connector Registry in the system

directly. If a complete image of the system is requested at once of the registries, it

first adds its own stored information to the result and then requests the data from

all other registries via the communication middleware. These requests are not

depending on each other and are therefore handled in parallel. After receiving a

result or timeout from each registry, the complete data is aggregated and returned.

As we always need a complete view on the system to reconfigure it, the registry

does not offer the possibility to only request selected information from other

devices.

59

60 6.3. Configuration of the Information Flow

6.3. Configuration of the Information Flow

After defining which information about the system is stored by the Connector

Registry and provided by the PerFlow Middleware, we take a deeper look

on how this enables us to configure the information flow in the system. In

the following Section we explain how the information about the devices and

applications is used to create configurations. Therefore, we first take a look on

how a configuration is defined as a set of rules. Then, the structure of the routes

used by each device to determine where to send its information during runtime is

discussed. Afterwards, the interpretation of the rules to create the routes for each

device is explained in detail. And lastly, we talk about the process of delivering

the newly defined routes to each device in the pervasive system.

6.3.1. Rule Definition

To determine who can send information to whom, the middleware needs to

configure the information flow in the pervasive system. Therefore, the PerFlow

Middleware introduces one central configuration containing the rules for the

complete system. Administrators should be able to create a standard configuration

during the deployment phase, which is then loaded and applied during the start

of the pervasive system. With the goal of supporting users without IT knowledge

in creating new rules, we will introduce our visual scripting tool in Section 6.6.

Further, the configuration should be as lightweight as possible due to the fact that

it may change multiple times during the runtime of the system and the rules have

to be distributed to all devices. Therefore, we chose JSON [99] over XML [193] as

the data format for the rule definition, as it is easily human readable and more

lightweight [142].

At any given time there is only one active configuration in the pervasive system

which is stored on each device. A configuration may consist of multiple rules

defining the information flow in the system. One rule has attributes defining

the sender and receiver, the transmitted information, and three different filters.

Following, we will take a closer look on these attributes.

60

61

Sender and Receiver: To define the start and end of the information flow we

need to supply the middleware with the related devices as the sender and receiver.

If only specific devices should be able to use this route, we can define them with

a list of the combined device and application IDs. As the administrators or users

may want to define multiple devices as sender or receiver based on their properties

it is possible to specify “ALL” as the sender or receiver. In this case every device

in the system is able to use the route, if no further limitations in the form of

filters are provided.

Transmitted Information: Every rule also needs to specify which information

should be handled. Therefore, three different attributes have to be provided. First,

the message type describes which kind of information is influenced by this rule

e.g., “chat message” or “presentation”. Second, the attributes for data type and

array tell which exact data is transmitted between sender and receiver. The main

purpose of these attributes is for the PerFlow Middleware to know how to

serialize and deserialize the data. Further, this information may be useful for

the administrator or user, if several connectors are bundled under one message

type. For instance in the case of presentations, we may have a connector for

images and one for controlling the slides. In such a case it is possible to choose a

specific connector via its data type or leave the value empty to include all bundled

connectors.

Filter: In total, each rule may have up to three different filters. The first

two influence the possible senders and receivers. These filters contain a list of

properties a device needs to possess in order to act as a sender or receiver. If

multiple properties are provided in a filter, these are evaluated with a logical “and”.

In the smart classroom scenario this would, for instance, allow all devices with the

properties “group” equal to “lecturer” and “device type” equal to “PC” to send

handouts. If the properties should be connected with a logical “or”, two separate

rules have to be defined. Further, the PerFlow Middleware supports context

filters. These are not used during the interpretation of the rules to generate the

routes but instead, they are evaluated during runtime. Each context filter is

applied to the transmitted data and allows to react to the context of the system

in real time. For instance, could a context filter of “>20” be defined for the route

61

62 6.3. Configuration of the Information Flow

between a sensor and a smart light bulb to only forward the information when

the light level exceeds 20.

1 {"Rules":
2 [

3 {
4 "messageType": "chat message",

5 "dataType": "\T",

6 "array": false,

7 "sender": ["ALL"],

8 "senderFilters": {
9 "group": "student"

10 },
11 "receiver": ["ALL"],

12 "receiverFilters": {
13 "group": "lecturer",

14 "deviceType": "pc"

15 },
16 "contextFilters": []

17 },
18 ...

19]

20 }

Listing 6.2: One example rule in the JSON format defining the content of the
message, sender, and receiver with their filters. A configuration can
contain several rules.

Listing 6.2 shows a single example rule in the JSON format. Line 3-5 show that

the rule handles chat messages with strings as a data type (“\T”) and does not

allow the transmission of arrays. The sender is defined in the lines 6-9 and allows

all devices of the group “student” to send the messages. Further, the rule defines

in the lines 10-14, that the information will be send to all devices of the type

“PC” in the group “lecturer”. Lastly, context filters are not applied, as shown in

line 15. Each configuration may contain a multitude of such rules. While these

rules are describing the information in the complete pervasive system, they need

to be interpreted for each device.

62

63

6.3.2. Route Definition

After the interpretation of the rule each device is updated with its specific routes.

These routes describe, which information this device should send to which other

device. A device may store a list with a multitude of routes. The Local Route

Handler is responsible for managing and storing the routes. Further, the routes

are neither relevant to the developer nor to the administrator or user. Their are

only used internally by the PerFlow Middleware. The developers only call

the middleware and handover their information. The middleware then decides how

it should deliver the information based on the routes. This process is described in

more detail in Section 6.5.

Source ID

Message Type

Data Type

Context
Filter

1234

„chat“

„\T“

Context Filter Object

≥

10

Route 1

=

=

=

=

Targets
List<ID>

12

34

=

…

…

Figure 6.4.: Each route consists of five attributes defining which applications send
the specific information to how many target applications and their
IDs.

A route is defined by six attributes as shown in Figure 6.4. As a device may run

several applications, the route first has to specify which of these is the source.

Afterwards, the message type defines, which information is handled by this route

and the data type is used by the middleware to choose the correct serialization

method. If a rule uses the bundling mechanic to combine several connectors with

different data types in one rule, this results in multiple separate routes after the

63

64 6.3. Configuration of the Information Flow

interpretation. Next, the route may contain an optional list of context filters,

each containing an operator and value. These are evaluated by the middleware as

soon as information is transmitted via this route. The data is therefore compared

with the value based on the operator deciding whether the middleware should

forward the information to the targets. Lastly, the route contains a list with

one or multiple targets. If this specific route is applicable to the transmitted

information, it gets delivered to all the targets in the list.

6.3.3. Rule Interpretation

Now that PerFlow is aware of all the devices in the system and their capabilities

and is provided with a set of rules on how the system should be configured, it

is possible to update each device with its routes. Therefore, the rules need to

be interpreted based on the current status of the system by the Rule Interpreter.

Further, this interpretation needs to be executed whenever the configuration or

the composition of the pervasive system changes. The device detecting the change

is responsible to run the interpretation in such a case and distributes the new

routes to the corresponding devices. Thus, only one device has the computational

load. PerFlow also distinguishes between a reconfiguration with new rules and a

change in the pervasive system e.g., a new device joining or an application closing

and deregistering its connectors. In the first case, the PerFlow Middleware

always carries out the interpretation for the complete system and updates all

devices with their new set of routes. For the second case, the middleware only

updates the devices affected by the small change. This is due to the fact, that

for an incremental change in the case of a new rule set the interpreter would first

need to check all devices and applications, if they are affected, which would be a

similar effort to calculating all routes, even if some of the existing routes could be

reused.

In Figure 6.5 the complete process for the interpretation of the rules is shown. To

be able to interpret the rules for the configuration, the interpreter always needs

a complete overview of the pervasive system. The Rule Interpreter retrieves the

current system status from its local Connector Registry, which therefore polls the

registries on all remote devices and generates a complete list of all applications

with their connectors. We differ between two sets of device information, the input

64

65

Route InterpreterRoute Interpreter Connector RegistryConnector Registry Remote DeviceRemote Device

Start
Collect System

Overview
Add own
connectors

Retrieve
remote

connectors

Return current
state

Overview
complete?

No

Iterate through
rules

Iterate through
devices

Iterate through
applications

Check if valid
sender

Check if valid
connector

Check if valid
target

All checks
true?

Last
application?

Last
device?

Last
rule?

Yes

Add new route Yes No

No
NoNo

YesYes

Distribute
routes

Implement
new routes

End

Yes

Figure 6.5.: The route interpreter first needs to obtain a complete overview of the
pervasive system and afterwards evaluates each rule for all applications
on each device. Lastly the resulting routes are distributed throughout
the system.

65

66 6.3. Configuration of the Information Flow

set which contains the devices for which the routes are generated, and the system

image with all devices which are needed to determine the targets of the routes.

If only a partial reconfiguration is needed in the case of a small change in the

system, the first set is substantially smaller. For a complete reconfiguration both

sets of information will be equal.

The actual interpretation of the rules is executed per rule in the configuration.

For each rule, the interpreter iterates through all devices and tries to apply each

rule to each application of the specific device. During each iteration it first checks,

if the application is a valid sender for the rule and if it has a connector which fits

the rule. Afterwards, it determines all valid targets for the current route. If any of

these three checks fail, this iteration is aborted directly to save on the computation

and the interpreter continues with the next pair of application and rule. To check

if the current application is valid as a sender, the interpreter compares the sender

attribute of the rule with the ID of the application. If the tag is “ALL” or the ID

is contained in the rule, the stored application properties are compared to the

sender filters of the current rule. Multiple filters are interconnected by a logical

“and”. Therefore, for each filter, the interpreter looks for a valid property. If

the application is valid as a sender for this rule, the interpreter iterates over all

of its connectors. For each connector the interpreter checks, if it fits the data

and message type of the rule and if it is an outgoing connector. In this case the

application is able to send information via this connector according to the current

rule. Thus, we are able to create the beginning of a new route. In the next step,

the Rule Interpreter iterates again over all applications in the system to find valid

targets. To qualify as a valid target the ID of the application has to match the

receiver tag and the properties the receiver filters of the rule. This is similar to

the validation of the sender. Additionally, it is checked, if the application has an

ingoing connector with a matching data and message type for the current rule. If

all these conditions are met, the application is added to the list of valid targets

for the new route. After iterating over all applications the route is finalized by

adding the context filter of the rule, if one was set by the administrator or user.

The now finished route is added to a temporary list and the interpreter continues

with the next application.

Formally, to define the needed information about the structure of the pervasive

system let A = {a1, ..., an} be the set of all applications in the system and n is the

66

67

total number of applications. A specific application aj is defined by its ID. Further,

for each application aj exists a set Paj =
{
p1,aj , ..., pm,aj

}
with all properties and

the sets Caj =
{
c1,aj , ..., cl,aj

}
with the connectors of the application. Also, m is

the amount of properties and i is the amount of connectors for this application.

Each property pj is a vector (k, v) with k as the key and v as the value of the

property, e.g., p1 = (group, student). The connectors cj are defined as a vector

(mt , dt , dir) where mt is the message type, dt the data type, and dir the ingoing

or outgoing direction for this connector, e.g., (chat , \T, ingoing).

Additionally, each rule in the currently active configuration is defined by the sets

S = {a ∈ A | Sender in rule} and R = {a ∈ A | Receiver in rule} which contain

all senders and receivers defined in the current rule. Each sender/receiver is

defined again by the application ID. For each rule we also define a set of filters

F = {f1, ..., fp} with p as the total amount of filters. The two subsets FS ⊆ F

and FR ⊆ F contain the filters regarding the sender S and receiver R. A filter

f ∈ F is similar to the previously defined properties, a vector (k, v) containing a

key and value. Further, each rule contains a vector msg , which is defined with

(mt , dt , dir) exactly as the connectors c of the applications. If the rule is applied

to possible source applications, the dir value of the msg is set to “outgoing” and

for possible receivers to “ingoing”.

RT S = {a ∈ S | FS = Pa} ∩ {a ∈ S | msg ∈ Ca} (6.1)

RTR = {a ∈ R | FR = Pa} ∩ {a ∈ R | msg ∈ Ca} (6.2)

The expressions 6.1 and 6.2 show the evaluation of one rule in the configuration

to generate the corresponding routes. The resulting set RT S of the expression

6.1 contains all applications which are a valid sender for the current rule. This

includes all applications where the set of properties Paj is equal to the sender

filters FS and where at least one connector in the set Caj exists that is equal to

msg . Analogously, expression 6.2 returns the set RTR with all possible targets.

The evaluation is similar to the sender, but uses the corresponding set of receivers

R and receiver filters FR. If both resulting sets contain at least one application

the algorithm is in the next step able to create the routes. All sender applications

67

68 6.4. Configuration Distribution

are updated with the future targets for their connector fitting the msg vector of

the rule.

After iterating over all applications and rules, the calculated and temporarily

saved routes need to be distributed to their according devices. Therefore, each

device runs its own Local Route Handler, which receives routes from other devices

and provides them to the Route Controller when sending information as discussed

in Section 6.5. After the interpretation, each device is updated with its new routes.

In the case of a complete reconfiguration it is told to drop all existing routes,

while during an incremental change the new routes are appended. The process of

distributing the routes to all devices is parallelized.

6.4. Configuration Distribution

The previous sections discussed how the information transmitted via the PerFlow

Middleware is structured and how it is possible to create rules and interpret

them as routes for each device. Until now, the interpretation is executed directly

on the device, where the configuration change happens and all the other devices

are updated with their future routes. To allow all peers to create new rules and

reconfigure the system, the configuration containing the rules has to be distributed

to all devices after each change. Therefore a Configuration Manager is introduced

to the PerFlow Middleware. The PerFlow system offers two different

strategies for the distribution, which will be discussed in the remainder of the

section. First, a naive and simple approach for sending the configurations to all

devices. Second, a complex approach with more fine grained control including

the election of a leader and a consensus strategy. Therefore, the Configuration

Manager is extended with a Consensus Module.

6.4.1. Naive Configuration Distribution

For handling and distribution of new and existing configurations a Configuration

Manager is introduced in the PerFlow system. The main task of the manger is to

store the configuration, offer it to the interpreter, and distribute it to all other peers

in the system. While the first two tasks are similar in both the naive and consensus

based approach, the distribution differs. Only the last valid configuration for

68

69

the system is stored on each device to be accessed by the interpreter. Further,

the manager takes care to only overwrite an outdated configuration if a new one

is available to ensure that the system is consistently operational. To allow the

Configuration Managers on different devices to communicate for coordination

and exchange of configurations, they are designed as services of the underlying

communication middleware with a fixed service ID.

For the distribution of the configurations the naive approach relies on the Transmis-

sion Control Protocol (TCP) based reliable data transfer offered by the underlying

communication middleware. If the manager receives a new configuration, it asks

for all available devices in the pervasive system and sends the configuration to

them individually. There are no further evaluations involved checking for instance

if the executing device is allowed to introduce a new configuration or if it is valid

and leads to a correctly functioning system. Further, the configuration manager

is also responsible for newly connected devices to being able to catch up with the

already running system and retrieve the currently valid configuration. Therefore,

in the naive approach, at the start of the system, the manager picks out one

other peer in the system randomly and asks it for its current configuration. After

receiving it, the manager stores it and the startup process of the PerFlow

Middleware continues.

6.4.2. Leader and Consensus based Configuration Distribution

While the fast but very basic naive approach may be sufficient for many scenarios,

there are use cases where a more fine grained control and more guarantees are

welcome. In the case of the PerFlow system these are access control, fault

tolerance, and consistency. To achieve the desired access control, it should be

possible for administrators to define rights to steer who is able to reconfigure the

pervasive system. When a new configuration is introduced during runtime, these

rights need to be evaluated and a decision to reject or implement the configuration

has to be made. The additional guarantees for fault tolerance and consistency

can only be given if all peers in the pervasive system come to a uniform decision

regarding the new configuration. Therefore, the Consensus Module is added to

the Configuration Manager and a consensus protocol is introduced to coordinate

the decision process between the different devices [155]. Such a protocol satisfies

69

70 6.4. Configuration Distribution

three properties, which help to ensure the aforementioned guarantees: termination,

integrity, and agreement [39].

To design a consensus protocol for a distributed computing system, it is important

to be able to replicate the data needed for the decision making across all devices.

The underlying concept enabling a fault tolerant distribution of data is called

state machine replication [174]. This concept is also the basis for many different

consensus protocols like Paxos [106], Raft [145], or Viewstamp Replication Revis-

ited [113]. For the PerFlow system the Raft protocol was chosen, which allows

the replication of a state machine across different devices to ensure agreement

between them. In comparison to other consensus protocols, especially Paxos,

Raft offers a well-documented and accessible algorithm, which allows for an easy

and lightweight integration to the middleware. Raft achieves a consensus in the

distributed system via a leader-based approach. All peers in the system elect one

leader, which is then solely responsible for making the decision and replicating

the state to all others. While such a leader-based protocol is able to cope with

f < n/2 faulty processes with n as the total number of processes, it is not possible

to detect byzantine failures [107]. As the configurations in the PerFlow system

are created by the user and not calculated, this poses no large disadvantage.

There are already several implementations of consensus protocols like the Akamai

Configuration Management System [175], Apache ZooKeeper [89], or Consul by

HashiCorp [75]. As they all come with some drawbacks, especially regarding the

size and flexibility of the system, they are not directly usable for the PerFlow

Middleware. Therefore, the decision was made to base the configuration distri-

bution directly on the Raft consensus protocol. While pervasive systems often

consist of mobile devices that leave and join the system, we still encounter many

stable devices e.g., the laptop of the lecturer or infrastructure devices like servers.

Therefore, it is possible for a leader based consensus approach to elect a leader

that has a possible high uptime and thus reduce the need for reelections. In

such cases the overhead introduced by the elections is minimal while the actual

distribution of the configurations does not differ from the naive approach.

The remainder of the section will first take a look on how the leader in the

pervasive system is elected before talking about the design of the access control

system and the actual configuration distribution. Afterwards, it is discussed how

newly started instances in the system are able to catch up with the rest.

70

71

Leader election: To detect the absence of a leader, a heartbeat mechanism is

introduced, the heartbeat is sent in regular intervals to all peers in the system.

If one peer does not receive a message within a certain timeout, it triggers the

process to elect a new leader. In the Raft protocol, the heartbeat and timeout

interval are randomly chosen [145]. Thus, it can occur that the timeout is smaller

and a new election is forced even though the current leader is still available. This

is introduced intentionally to switch the leader regularly and to not only have one

device with the overhead. For the PerFlow system, this behavior is not desired,

as the constant new elections would introduce a larger overhead on the system

compared to the load on the leader. Therefore, the heartbeat interval is fixed and

the timeout is always set to twice that value. To further reduce the amount of

new elections, the standard heartbeat is set to a high value of 400ms compared

to the standard Raft algorithm, but it is adjustable by the administrator to the

current use case.

Discovers peer
with higher term

Pre-Candidate

LeaderFollower

Receives votes from
majority of peers

Times out, new election

Receives
votes from
majority
of peers

Discovers current
leader or new term

Starts up

Times out,
starts pre-election

Candidate

Figure 6.6.: The different possible states a device can have in the pervasive sys-
tem and how it is possible for the devices to transition between
states. The model is an extension of the states introduced in the Raft
protocol [145].

Figure 6.6 shows the different states a peer can have and the transitions between

them. While the states of follower, candidate, and leader are directly adopted from

the Raft algorithm, an additional pre-candidate state was introduced with the goal

to minimize the amount of elections. This is based on the idea of a pre-election,

which was amongst others mentioned by Ongaro for the Raft algorithm [144]

71

72 6.4. Configuration Distribution

or introduced by Junqueira et al. for ZooKeeper [100]. A comparable type of

pre-elections was implemented and tested for the Raft algorithm by Ingo [93].

During normal operation, all devices except one leader are in the follower state.

If one of these devices detects a timeout of the leader, it transitions into the

pre-candidate state and issues a request for a pre-vote to all others. In the case

that the other devices acknowledge the need for a new election (e.g., because

they also detected a timeout), they answer positive to the request. If not enough

devices respond positive or the pre-candidate receives a message from the current

leader it thought was missing, the pre-election times out and the device transitions

back into the follower state. As soon as a majority of the devices gave positive

feedback, the pre-candidate advances to the candidate state. In the next step, the

new candidate device announces the election together with information regarding

itself containing its ID and the version of the last configuration it holds. All other

devices decide the validity of the candidate based on this information and if a

majority responds positive to the election, the device transitions to the leader

state.

To specify the current state of the system, the additional concept of terms as

logical clocks is introduced [105]. Each device in the system saves the current

term. This value is increased each time the election of a new leader is started.

If a device receives a request from another peer e.g., a new candidate starting

a vote with a lower term than its own, it knows that this peer is outdated and

rejects the request. Additionally, if a device currently in the leader state receives

a request with a higher term value, a new leader must be present and it reverts

back to the follower state.

Configuration distribution and access control: The main tasks of the

leader are to check if a new configuration is valid and to distribute it to all

available devices in the system. If any device in the system, no matter if it is in

the follower or leader state, wants to introduce a new configuration to the system,

it hands the configuration over to the current leader. Similar to the term concept,

the configurations are assigned a version number which is increased by the leader

upon distribution. If the leader receives a configuration with a lower version than

the one stored locally, it is seen as outdated and the leader refuses the request

to reconfigure the system. Second, the leader checks if the requesting device is

72

73

actually allowed to introduce new configurations to the system. After making

sure that both conditions are met, the leader distributes the new configuration

by utilizing the reliable TCP communication of the underlying middleware. The

process of actually distributing the configuration is similar to the naive approach

mentioned before.

1 <configurationsettings>

2 <right>

3 <property>group</property>

4 <value>teachers</value>

5 <priority>2</priority>

6 </right>

7 <right>

8 <property>group</property>

9 <value>assistant</value>

10 <priority>2</priority>

11 </right>

12 <right>

13 <property>group</property>

14 <value>students</value>

15 <priority>1</priority>

16 </right>

17 </configurationsettings>

Listing 6.3: Example XML representation of the rights used for the access control
in the Consensus Module. Showing three different rights for lecturers,
assistants, and students with different priorities.

To introduce access control to the system, administrators can provide an XML

file with defining rights when deploying the system. During runtime, the current

leader uses these rights to evaluate if the requesting device is allowed to reconfigure

the system. Listing 6.3 shows an example with three different rights. Each right

contains a property, value, and priority. The property and value match the

properties saved in the Connector Registry and the priority tells the leader in

which order to evaluate the rights. If a lower priority is set for one right, it is

only evaluated if no match can be found for the rights with a higher priority.

Additionally, if two rights with the same priority are present, they are both

evaluated equally. The three rights provided by the administrator in the example

first require the device to be in the group “teacher” or “assistant”. If none of

73

74 6.5. Configuration Enforcement

the currently present devices matches these requirements, the right with the

higher priority is evaluated and also devices in the group “student” are allowed

to reconfigure the system. Thus, the system remains operational if no teacher or

assistant is present at the moment.

Catch-up mechanism: To accommodate devices joining to the pervasive sys-

tem or to allow leaving or failing devices to return at a later point in time, the

configuration manager offers a mechanism to catch-up with the rest of the system.

In the heartbeat messages, the leader includes the current term and the version

number of the currently active configuration. Therefore, if a joining device re-

ceives a heartbeat, it does not only know who the leader is but also the status

of the system. If the new device has the same version of the configuration as

the leader, it updates the locally saved term and is finished. However, if the

configuration version of the device is lower than the received number, it knows

that it is outdated and contacts the leader to receive the updated configuration.

Lastly, if the joining device was in the state of a leader before leaving or failing, it

knows after comparing the term number that a new leader exists and falls back

into the state of a follower.

6.5. Configuration Enforcement

The PerFlow Middleware allows developers to provide information about

their applications and administrators or users have the ability to create rules to

configure the information flow. These rules are then interpreted and specific routes

for the information of each device are created. The rules and routes are then

distributed throughout the system. Until now, the information flow in the system

is not affected in any way and the applications are not able to communicate with

each other so far. Thus, the following section we will discuss how the middleware

steers the information flow. We first take a look on what developers need to

do to enable their applications to send and receive information in the pervasive

system. Afterwards, the information handling of the PerFlow Middleware is

described and how it enforces the rules defined in the configuration.

74

75

6.5.1. Sending and Receiving Information

While PerFlow eases the process of sharing information in a pervasive system

substantially, the developer still has to prepare the application for using the

middleware. The preparation includes starting the middleware, registering the

application and connectors, and setting up the application for sending and receiving

information. Here, the overall goal of the middleware during this process is to

aid the developer as much as possible and introduce simple to use interfaces.

Therefore, we aim at hiding the complexity from the developer and position the

PerFlow system between the application and communication middleware. Thus,

the developer does not need knowledge about other devices and applications in

the system. Developers also do not have to worry about who is interested in what

information and how it can be distributed accordingly.

Figure 6.7 depicts the actions a developer needs to perform in order to being

able to receive and send information via the PerFlow Middleware. In both

cases, the application first needs to start up the middleware and register the

application itself. The setup automatically starts the communication middleware,

the PerFlow Middleware, and then initializes the Connector Registry and

Local Route Handler. After everything is up and running, the developer registers

his application with the Connector Registry. The properties of the application

need to be provided here and the registry automatically assigns a unique ID.

Afterwards, the developer is free to register any connector with the registry by

providing the needed information as discussed in Section 6.2.1. This step is

not necessary directly at the startup of the application. The developer is free

to register new connectors during the applications runtime or remove already

existing connectors if the functionalities behind them are no longer offered by the

application.

While the process of starting the middleware and register the application and

connectors is identical for all developers, we afterwards have to differentiate

between providing and receiving information. In both cases we differ between

active and passive connectors. To be able to send information, the developer first

has to ask the middleware for an instance of the Message Proxy. This proxy is

responsible for serializing the data and handing it over to the Route Controller

of the middleware. Therefore, it offers a method for each currently supported

75

76 6.5. Configuration Enforcement

Runtime

Initial Setup

Start Middleware

Start
Start

Communication
Middleware

Start PerFlow
Register

application

Register
connectors

Add
connectors

Remove
connectors

Get message
proxy

Implement
message
receiver

Receive
information

Send
information

Initialize
Registries

Shutdown
Middleware

End

Figure 6.7.: The actions the developer has to take to initialize the middleware
during the initial setup and the offered functionalities during runtime
to change connectors and send or receive information.

76

77

data type. If the developer registered an active connector and the application

wants to transmit data, the developer calls the regarding method and provide the

message type of the information as a string. In the case of a passive connector,

the developer implements an interface of the Message Proxy and returns the data

when the PerFlow Middleware calls the corresponding method with the

message type.

For receiving information via PerFlow, the developer uses the Message Receiver

offered by the middleware. If a passive connector is used, the application again

implements an interface offered by the receiver. This includes a method for

every supported data type and developers need to override the methods they

are interested in. The corresponding methods are then called upon receiving

new information via the PerFlow Middleware. For an active connector, the

developer needs to call the Message Receiver and ask for the data by providing

the message type. The middleware then returns the last received information

fitting the call. In both cases, the middleware is responsible for the deserialization

of the data. Additionally, the application is provided with the message type and

the ID of the sender.

The Message Proxy and Receiver are able to serialize all primitive data types and

images. In addition to single values, it is also possible to transmit arrays. If the

developer needs other objects to be handled by the middleware, it is possible to

extend the proxy and receiver. First, the new custom object has to implement an

interface offered by the middleware for serializable objects. In the implementation,

the developer specifies how the object can be serialized and deserialized into

primitive data types e.g., integers or byte arrays. Second, one method has to be

added to each the proxy and receiver class handling the new object.

6.5.2. Information Handling

After looking at how applications can hand over information to and receive it

from the middleware, the next step is to look at how the information is handled

by the PerFlow Middleware. Therefore, we are discussing the complete way

of the information from calling the message proxy at one application to getting

the data at the message receiver at another application.

77

78 6.5. Configuration Enforcement
S
en

d
er

Active

Active

Passive

Passive

R
ec

ei
v
er

Passive

Passive

Active

Active

Pervasive Middleware

Initiating

Forwarding

Temporary
storage

Figure 6.8.: The four different possible strategies for the transmission of informa-
tion in the PerFlow Middleware depend on if the connector of
the sender and receiver are defined as active.

For the transmission of information via the PerFlow Middleware we encounter

four different strategies depicted in Figure 6.8. These strategies depend on the

different possible combinations of active and passive senders or receivers and are

based on the approach of Roth et al. [164]. In the case of an active sender it

calls the Message Proxy as soon as it wants to transmit information. If the sender

is passive, the middleware has to request the information from the sender. This

happens either when it receives a request from an active receiver or after a regular

interval, which can be defined by the administrator. For a passive receiver the

middleware forwards the information to the application as soon as it receives

it from the sender. In the case of an active receiver it pulls information from

the middleware. The middleware then either sends a request to the sender if it

is passive or forwards the temporarily stored last value received from an active

sender.

After the Message Proxy received new information from the application, the

PerFlow Middleware performs two tasks in parallel. On the one hand, it

serializes the data as specified by the developer and prepares a message object.

78

79

This includes the actual data, the ID of the sender application, and the message

and data type. On the other hand, the middleware determines the targets for this

message. As the interpretation of the rules is already done by the interpreter, it is

possible for the Route Controller to determine the targets for a message without

a large computational effort or knowing the structure of the complete pervasive

system. Therefore, the Route Controller iterates over all routes stored in the

Local Route Handler of the device for this specific application. To determine if a

route is applicable for this message, it compares the message and data type. It

then composes a list of the application IDs for every valid target. In the next step,

the proxy uses the underlying communication middleware to send out the message

object to all targets. The transmission of the data is parallelized to increase

the performance in large systems with many targets for every message. After

receiving a new message via the communication middleware, the Message Receiver

deserializes the transmitted information according to the data type which was

communicated together with the message. The information is then handed over

to the according methods of the Message Receiver interface implemented by the

developer. When receiving new information, the application is given the actual

data transmitted together with the ID of the sender and the message type.

6.6. PerFlow Tool

In the previous sections we discussed the PerFlow Middleware in detail and

showed how it enables developers to implement information exchange for their

applications. Additionally, PerFlow allows administrators and users to configure

the flow of information in the complete pervasive system during runtime. Until

now, they have to create their new configuration by defining rules in the JSON

format. This may be suitable for administrators with a background in information

technology. If we consider users like an art teacher or philosophy professor, we

cannot expect them to learn JSON and the required configuration file format. To

fulfill the requirement RNF4 for the usability of the system, we need to cater to all

possible users in the pervasive system. To enable also users without IT experience

to use all functionalities of the system, we are offering a visual scripting language

combined with PerFlow Tool to create the rules graphically. The tool enables

users to change the configuration of the system during runtime to fit the use

79

80 6.6. PerFlow Tool

case. Additionally, it is possible to create configuration beforehand, so that during

runtime the user only needs to load the predefined configuration.

In the following section we will take a deeper look into the PerFlow Tool.

Therefore, we first discuss the visual scripting language itself by defining all

language elements and explaining how this enables the user to create the same

rules as the JSON configuration. Afterwards, the tool itself is discussed by looking

at the functionalities it offers to the user. Lastly, we will take a deeper look on

how the PerFlow Tool is connected to the PerFlow Middleware. This

includes receiving information about the structure of the pervasive system from

the middleware and providing the newly created rules to it.

6.6.1. Visual Scripting Language

There are a multitude of different ways to design a visual alphabet discussed in

recent years [38] and it is important to consider the use case [59]. The different

approaches are often based on flowcharts [33], data flow [80], or events [24]. For

the visual scripting language, which is the basis of the PerFlow Tool, we

decided to use a data flow approach. It resembles best the flow of information in

the pervasive system and gives a natural way to interact with the communication

starting with the sender until the data reaches the receiver. Following, we will first

take a look at the language itself and afterwards we will show how the different

elements can be combined to create rules for PerFlow. In the following section

we will demonstrate the design of the visual scripting language and the tool with

mockups. Figure 7.2 in the implementation chapter shows a screenshot of the

prototype of the PerFlow Tool with an example rule.

In Figure 6.9 the complete visual alphabet for the tool is shown. It contains six

different elements in total, which will be discussed in more detail. The different

elements have a common design language. They are all box shaped with the title

of the element at the top and, if necessary, one or multiple parameters below.

The parameters are mostly defined by drop-down and check boxes to minimize

the possible errors a user could make by entering invalid information. Further,

each element has one or two ports, which are used to connect several elements

together. Input ports are always on the left and output ports on the right side

80

81

Application:

Sender

All:

Message Type:

App

Handout

Type:

Sender Filter

Criterium: Students

Group

Receiver

Application:

All:

+

Type:

Receiver Filter

Criterium: Projectors

Device Type

NotType:

Context Filter

Value: 20

>

+

Figure 6.9.: The six different visual scripting elements available to the user for
creating new rules to influence the information flow in the system.

of the element. Therefore, a route is always designed from left to right, starting

with a sender and ending with a receiver.

Sender and Receiver Nodes: In both cases it is important to define which

applications should be affected by the rule. Therefore, the nodes offer a parameter

to choose a specific application or a check box to specify all applications as

possible senders or receivers. Additionally, the nodes offer a button with a “+”-

sign allowing to add further drop-down boxes to select more applications. This

allows the users to create groups of applications with just one node. If the check

box for all applications is chosen, the drop-down selection for single applications

is disabled. Following, the user has the possibility to narrow down the selection of

applications with filter nodes. Additionally, the sender node also has a parameter

for the message type for this rule. The user is required to choose the type and it

then applies for the complete rule started by the node.

81

82 6.6. PerFlow Tool

Filter Nodes: The visual alphabet contains a node for each of the three different

filters supported by the PerFlow Middleware. For the Sender and Receiver

Filter the visual scripting element offers drop-down boxes for the type and criterium

of the filter. These correspond with the properties of the applications, with the

type as the key, and the criterium as the value of a property. The last filter is for

the context. Here we offer a drop-down box for the type and a text-field for the

actual value. The value is then applied to the data of a message with the type as

an operator.

Not Node: Finally, the visual scripting alphabet also offers a Not element.

This can be chained in front of Sender and Receiver Nodes and negate their filter.

Thus, instead of, for instance, sending the information to everyone in the group

“student”, the user can define to send it to everyone but applications in this group.

Therefore, it is not necessary to add a high number of properties the user wants to

use as a filter, if he only wants to exclude some of them. Additionally, it allows to

check if an applications satisfies one filter but not another, which would otherwise

not be possible.

To create a rule, the user has to always start with one or multiple Sender Nodes

and finish with at least one Receiver Node. In between it is possible to refine

the route with filters as fine grained as needed. The nodes are interconnected

by their input and output ports, always connecting the output of one node to

the input of another. Further, each port can have several connections. This

allows, for instance, to add multiple receivers to the end of a rule or apply several

filters. When a rule contains multiple filters of the same type, they can be added

in sequence or parallel. If they are in a sequence, they are later evaluated as

connected by a logical “and”, while parallel filters are interpreted using a logical

“or”. Due to the different possibilities to connect the nodes, users are able to create

complex rules with only a low number of different elements. Thus, it is easy to

learn the visual scripting language and minimizes possible errors by limiting the

users’ possibilities to only valid parameters and combinations of nodes for their

rules.

Figure 6.10 shows an example rule demonstrating how the elements introduced

beforehand can be combined to configure a pervasive system. The configuration

consists of one rule with only three visual scripting elements showing how it is

82

83

Type:

Sender Filter

Criterium: Teacher

Group

Receiver

Application:

All:

+Display
Application:

Sender

All:

Message Type: Images

+

Figure 6.10.: A simple example rule with a specific application as sender and a
filter for the senders.

possible to give one group access to a specific service. In this case all applications

belonging to the group teacher are enabled to send images to a display service.

Following, we will introduce four different examples of rules created with the

discussed visual alphabet and how they are evaluated by the system. Similar to

the rule interpretation discussed in Section 6.3.3 we define the set A = {a1, ..., an}
as the set of all applications in the system. Also, Paj =

{
p1,aj , ..., pm,aj

}
is the

set of all properties and Caj =
{
c1,aj , ..., cl,aj

}
is the set of all connectors for the

application aj. By means of the examples we will show how the different visual

scripting elements and their attributes relate to the information saved in the

Connector Registry. For all examples we use the same message msg defined as a

vector (mt , dt , dir), where the message type mt and data type dt is selected by

the user as an attribute in the Sender Node. The direction dir is set to “outgoing”,

when the senders are evaluated and “ingoing” for the receivers.

Type:

Receiver Filter

Criterium: c1

t1

Receiver

Application:

All:

+
Application:

Sender

All:

Message Type:

a1

msg

+

Figure 6.11.: A simple example rule with a specific application as sender and a
filter for the receivers.

Figure 6.11 shows a very simple rule defining that one specific application is

allowed to share information with a group of applications. Therefore, the possible

senders are defined by the ID of the application with a1 ∈ A, which also needs

to satisfy msg ∈ Ca1 . The filter applied to the receiver is defined as a vector

containing the type and criterium (f1 = (t1, c1)). The set of possible receivers

contains Rec = {a ∈ A | f1 ∈ Pa ∧msg ∈ Ca}.

83

84 6.6. PerFlow Tool

Type:

Sender Filter

Criterium: c1

t1 Type:

Receiver Filter

Criterium: c2

t2

Receiver

Application:

All:

+
Application:

Sender

All:

Message Type: msg

+

Figure 6.12.: An example rule with filters for sender and receiver.

In Figure 6.12 a more complex example with a filter each for the sender and

receiver is shown. In this case the user did not choose a specific application with

its ID for the sender or receiver. Instead, all applications that are able to satisfy

the corresponding filters are included. The Sender Filter is defined as the vector

f1 = (t1, c1) and the Receiver Filter as f2 = (t2, c2). Thus, the set of possible

senders is defined as Sen = {a ∈ A | f1 ∈ Pa ∧msg ∈ Ca} and the set of receivers

as Rec = {a ∈ A | f2 ∈ Pa ∧msg ∈ Ca}.

NotType:

Receiver Filter

Criterium: c1

t1 Type:

Receiver Filter

Criterium: c2

t2

Receiver

Application:

All:

+
a3
a2

Application:

Sender

All:

Message Type:

a1

msg

+

Figure 6.13.: Rule showing how several filters can be chained.

The next example in Figure 6.13 shows the possibility to chain several visual

scripting elements to create more complex constraints for the sender or re-

ceiver influenced by the rule. In this case two Receiver Filters are chained

and therefore combined with a logical “and” for the evaluation. Addition-

ally, one of the two filters is negated with a Not Node. The two filters are

again defined as the vectors f1 = (t1, c1) and f2 = (t2, c2). In this example

the sender is directly specified with its ID a1 ∈ A and needs also to satisfy

the condition msg ∈ Ca1 . The receivers need matching properties for the fil-

ter f1 but not for f2. Thus, the resulting set of valid receivers is defined as

Rec = {a ∈ A | (a = a2 ∨ a = a3) ∧ f1 ∈ Pa ∧ f2 /∈ Pa ∧msg ∈ Ca} as the set of

receivers for this rule.

The last Figure 6.14 contains a total of three rules serving as an example for

parallel rules as well as parallel nodes in one single rule. In this instance, we

showcase the flexibility of the visual scripting language, where the two rules above

lead to the same result as the third rule. Users are able to create rules in different

84

85

Type:

Sender Filter

Criterium: c1

t1 Type:

Receiver Filter

Criterium: c2

t2

Receiver

Application:

All:

+
Application:

Sender

All:

Message Type:

+
msg

Type:

Sender Filter

Criterium: c1

t1

Type:

Receiver Filter

Criterium: c3

t3

Receiver

Application:

All:

+

Type:

Receiver Filter

Criterium: c2

t2

Application:

Sender

All:

Message Type:

+
msg

Type:

Sender Filter

Criterium: c1

t1 Type:

Receiver Filter

Criterium: c3

t3

Receiver

Application:

All:

+
Application:

Sender

All:

Message Type:

+
msg

Figure 6.14.: A rule with a filter in parallel. The two rules above lead to the same
result as the one rule with two parallel filters below.

ways according to their experience and understanding of the system. While some

users may find the top example easier to understand, as it is more descriptive, the

rule below uses less nodes and an experienced user may be able to create the rules

faster. Again the filters are defined as vectors with f1 = (t1, c1) being the Sender

Filter and f2 = (t2, c2) and f3 = (t3, c3) as the Receiver Filters. In both cases the

senders have to satisfy the filter f1 and the receivers either f2 or f3. Formally,

this leads to a set of senders with Sen = {a ∈ A | f1 ∈ Pa ∧msg ∈ Ca}. Further,

the receivers contain Rec = {a ∈ A | (f2 ∈ Pa ∨ f3 ∈ Pa) ∧msg ∈ Ca}.

The examples given above showcase just some of the different possibilities to

combine the visual scripting elements to create rules for the information flow in

the PerFlow system. Additionally, it is possible to create an unlimited number

of different rules, which allows users to reconfigure the complete system as needed

to fit their current use case. Further, users are able to achieve the same result in

different ways fitting their current experience level with the offered system. The

visual scripting language is also designed to prevent users from making syntactical

mistakes by offering only attributes in drop-down boxes that will lead to a valid

combination of nodes.

85

86 6.6. PerFlow Tool

6.6.2. Visual Scripting Tool

For an easy to use system it is not only important to provide an understandable

and clear visual scripting language. To create the rules, the users also need a tool

which provides them access to the language in a simple way. Therefore, we created

the PerFlow Tool, a simple-to-use application connected to the PerFlow

Middleware for the easy creation of rules. With consideration of different user

interface (UI) guidelines [9, 60,123], the goal is to create an application which is

focused and intuitive to use, but still very capable regarding the task of creating

new rules. Moreover, it is also important to give the user feedback on his actions

and the feeling that the application is not interfering during the reconfiguration

process.

Load SendClearSave

Figure 6.15.: The mockup for the PerFlow Tool with the list of visual scripting
elements on the right, the menu on the bottom, and the canvas to
create the rules in the middle.

In Figure 6.15 a mockup of the PerFlow Tool is shown. The user interface is

divided into three main parts. The left side of the tool presents the user a list of

all element contained in the the visual scripting language. The bottom shows the

main menu for the user and in the middle we have the canvas for the creation

of new rules. In the menu we have four functionalities for the user: loading a

predefined configuration, saving the current configuration for later use, clearing

86

87

the canvas, and sending the created rules to the PerFlow Middleware. With

the loading and saving functionalities the user is able to predefine rules and load

them during runtime if needed. Thus, a lecturer for instance can take his time

to create the configuration when he prepares the lecture and can change quickly

between different configurations while the lecture is going on. To create rules, the

user can add new elements from the list on the left side via drag-and-drop to the

canvas and position them freely. The relative positioning of the elements is not

relevant for the syntax and does not influence the created routes. After adding

an element, the user has to define the parameters via the drop-down, check, and

text boxes contained in the element. Further, each of the parameters has to be

filled out by the user and in the case of a missing parameter, an error message

is presented to the user. If a parameter is not needed, the corresponding box is

inactive and grayed out. Therefore, the user is prevented from creating invalid

routes.

To create a rule out of these single elements, they have to be combined starting

with a sender and ending with a receiver. A connection can be created between

the output port of one element and the input port of another. To create this

connection, the user simply needs to click on the two ports. In the same way it is

possible to create a multitude of rules on the same canvas. As soon as the user is

finished with the creation of all wanted rules for the complete system, he can send

the new configuration to the PerFlow Middleware via the function offered in

the menu.

6.6.3. Connection to PerFlow Middleware

The PerFlow Tool is not needed by every user in the pervasive system, as

many of them are only using the services and may not even have the permission

to reconfigure the pervasive system. In the case of our smart classroom example

only the lecturer would have the right to create new rules for the system. To

minimize disturbances during the lecture, students are only allowed to use the

pervasive system as intended by the lecturer. Therefore, the PerFlow Tool

is implemented as a standalone application and is not integrated directly into

the middleware. Thus, we need to provide the tool with information about the

devices in the pervasive system, their running applications and connectors, and

87

88 6.6. PerFlow Tool

the currently active configuration for the information flow. Also, in the case of a

reconfiguration the new set of rules has to be handed over to the middleware.

PerFlow Middleware

P
er

F
lo

w
T

oo
l P

R

O

X

Y

…

Remote
CR

…

Route
Registry

Local
Connector
Registry

Interpreter

Configuration
Manager

1

2

3

4

5

Figure 6.16.: Showing the communication between the PerFlow Middleware
and PerFlow Tool utilizing a proxy for the visual scripting tool
to retrieve information about the pervasive system (1)(2), forward it
to the tool (3), receive the new configuration (4), and hand it over
to the configuration manager (5).

To connect the PerFlow Tool and PerFlow Middleware, a small proxy

application running as part of the middleware is developed. It is automatically

started together with the visual scripting tool. Figure 6.16 shows the communica-

tion between the middleware proxy and the PerFlow Tool. On startup of the

tool it requests the complete list of devices with their applications and connectors.

To provide this information, the proxy calls the connector registries on all devices

and collects the information (1). Additionally, the visual scripting tool asks for

the current configuration, which the proxy automatically receives at the startup

of the middleware (2). In the next step the combined information is handed over

to the tool (3). Both of these steps are also executed if the PerFlow Tool is

already up and running and the user requests the updated information by clicking

on the load button.

After the user has finished with the creation of the new rules and chooses to

send them to the middleware, they are handed over to the proxy (4). In this

case PerFlow Tool creates a save file in an XML format. This includes the

88

89

1 <Canvas>

2 <Elements>

3 <Sender GUID="node-01" Top="271.0" Left="106.9" MessageType="msg"

All="true"/>

4 <Receiver GUID="node-04" Top="307.0" Left="1039.0" All="true"/>

5 <SenderFilter GUID="node-02" Top="306.2" Left="377.0">

6 <Property>

7 <Type>t1</Type>

8 <Criterium>c1</Criterium>

9 </Property>

10 </SenderFilter>

11 <ReceiverFilter GUID="node-03" Top="306.0" Left="705.9">

12 <Property>

13 <Type>t2</Type>

14 <Criterium>c2</Criterium>

15 </Property>

16 </ReceiverFilter>

17 </Elements>

18 <Connectors>

19 <Connector StartElement="node-01" EndElement="node-02"/>

20 <Connector StartElement="node-02" EndElement="node-03"/>

21 <Connector StartElement="node-03" EndElement="node-04"/>

22 </Connectors>

23 </Canvas>

Listing 6.4: XML representation of visual scripting elements for the second
example route shown in Figure 6.12. It contains the properties for
each visual scripting element, the connection between elements, and
the coordinates on the canvas.

information about all elements placed on the canvas, their properties, and how

the elements are connected. Additionally, the tool also saves the coordinates

of all elements on the canvas. While this is not relevant for the middleware, it

is needed if the configuration is later loaded again by any PerFlow Tool to

being able to recreate the visual scripting elements for the user. Listing 6.4 shows

the representation of the second example route seen in Figure 6.12. First, it

contains all elements placed on the canvas together with the defined attributes.

Each element has a unique GUID assigned by the PerFlow Tool and is saved

together with the coordinate for its top left corner to be able to recreate the layout

if it is loaded again. For the filters the XML also saves the selected properties.

89

90 6.7. PerFlow Virtual Extension

Second, the file contains all connectors created between two elements. Each

connector is defined by its start and end element. In the next step the PerFlow

Tool transmits the XML file to the proxy. The proxy application then has the

responsibility to translate the XML representation of the visual scripting elements

into actual rules. Therefore, it creates a directed graph [20] with the information

given in the XML file. The visual scripting elements are used as the vertices of the

graph and the connectors as the edges directed from the start to the end element.

In the next step this graph is used to generate the rules by using the Dijkstra

shortest path algorithm [44] to find all paths starting with a sender and ending

with a receiver. It then creates the configuration in the JSON format discussed

in 6.3.1 and hands it over to the middleware to distribute the new rules in the

system (5).

6.7. PerFlow Virtual Extension

To additionally enable remote users to participate in the pervasive system, we are

enhancing the middleware with a virtual environment. In our scenario use case of

a smart classroom this would for instance allow students abroad to take part in

the lecture by joining it in a virtual classroom. The goal here is to not only give

the users the same content, e.g., in the form of the lecturer slides, but to provide

an experience as close as possible to participating in the real world. This could

go as far as using virtual reality devices [184], like the Oculus Rift [51] or HTC

Vive [85], to fully immerse in the virtual experience. Therefore, developers should

have the possibility to translate the services and applications they developed for

the physical smart environment directly to the virtual one. Thus, they need access

to the same middleware functionalities in both cases and the pervasive system

should handle all devices and applications in the same way no matter if they are

physical or virtual.

The following section will first discuss how the virtual environment itself is designed

and what possibilities it offers to developers and users. Afterwards, we will take a

closer look on the connection of this environment to the PerFlow Middleware

and how it communicates with devices and applications in the physical smart

environment.

90

91

6.7.1. The Virtual Environment

The virtual environment is designed using a game engine as a middleware for the

creation of three dimensional virtual environments [65]. The game engine does

not only support the developers with the rendering of the environment, but also

offers support for user input, networking, audio output and input, animation, or

artificial intelligence. Due to this wide range of possibilities, game engines got the

quasi standard in recent, not only for the development of video games, but also for

other virtual environments used in areas like architecture [92], museums [110], or

training and education [179] [199]. Therefore, many developers are already familiar

with them or even completely rely on game engines for the development of their

virtual environments. Additionally, many game engines are already providing

support for virtual reality devices like the Oculus Rift directly out of the box.

Thus, the decision was made to use an available game engine as the basis for the

PerFlow Virtual Extension.

PerFlow Middleware

Physical System Virtual Environment

Services

Physical
Devices

Display
Service

File
Viewer

Voice
Chat

Gesture

Figure 6.17.: The system model with the physical pervasive system and virtual
environment connected by the PerFlow Middleware. In the
virtual environment applications may run on virtual devices, avatars,
or even directly in the virtual environment without a viewable
representation.

91

92 6.7. PerFlow Virtual Extension

The architecture of the virtual environment, as seen in Figure 6.17, allows for

multiple virtual devices running in the same instance of the virtual environment.

A device in this case could be the virtual representation of a physical device, e.g.,

a display at the front of the classroom or the computers used by the students.

Further, it is also possible to develop applications or services which have no

visual representation like a voice chat or gestures performed by students. Each

of these devices and applications uses the Virtual Broker located in the virtual

environment for the communication with the middleware. The broker offers the

functionalities of the PerFlow Middleware to these peers. Therefore, the

virtual devices can register their applications and connectors in the same way

as physical devices. To send information, the developer calls the Virtual Broker

which forwards it to the middelware. Further, for receiving information the virtual

devices need to implement an interface offered by the broker. This procedure is

similar to the Message Proxy and Receiver discussed in Section 6.5. The main goal

of the Virtual Broker is to relay the method calls to the Virtual Controller located

outside of the virtual environment. Incoming information has to be assigned to

the correct virtual device and then distributed by the broker. All further logic

and the communication with the actual PerFlow Middleware is left for the

Virtual Controller.

6.7.2. Connection to PerFlow Middleware

The Virtual Broker offers the middleware functionalities to all applications inside

a virtual environment and communicates via the Virtual Controller with the

PerFlow Middleware. Following, we will first discuss the communication

between broker and controller, which is realized via a local TCP connection.

Afterwards, the connection of the controller to the PerFlow Middleware is

described including how the information flow is relayed from virtual devices to

the PerFlow system.

92

93

C
o
n
tr

ol
le

r

B
ro

k
er

RAP ID # Properties length key length value

RCO ID out active array dType length mType

SND ID length mTypedType data

SND ID length mTypedType length data

REC ID SenderID mType data

REC ID SenderID mType length data

Figure 6.18.: The complete protocol for the communication between the Virtual
Controller and Broker showing all messages with their transmitted
information. The header for each message is highlighted in dark
gray.

In Figure 6.18 the protocol used between broker and controller is shown in more

detail. Upon the registration of a new virtual application, the broker assigns it a

unique ID, which allows the controller and broker to address the correct virtual

application in all further communication. Together with the request type the

ID forms the following header for each message between the Virtual Broker and

Controller:

struct MessageHeader {

enum requestType;

long id;

};

The protocol defines four different requests: Registering an application (RAP),

registering a connection (RCO), sending (SND), and receiving information (REC).

The payload differs widely for each of the four messages. While registering an

application the properties have to be provided to the middleware. Therefore, the

93

94 6.7. PerFlow Virtual Extension

protocol first expects the number of properties and then each property with its key

and value. As both values are strings with an dynamic size, the broker first has

to communicate the length before sending the data. For the registration of a new

connector the broker sends the information for active and in/out as a single bit,

where the 1 represents active and out. Afterwards, a byte representing the data

type of this connector is transmitted, which is needed for the correct serialization.

Lastly, the length for the following message type, which is represented as a string

of dynamic length, is transmitted.

For sending information the protocol first expects the data type and message

type fitting the registered connector. The transmission of the actual data differs

between primitive data types with a fixed size and strings, arrays, or custom

objects of variable size, which additionally need a length. When receiving data

the protocol is similar and also transmits the data type, message type, and actual

data in the same way as when sending information. Additionally, while receiving

information the protocol also expects the sender ID, which is handed over to the

virtual application.

PerFlow Middleware PerFlow Virtual Extension

Connector
Registry Virtual Device 1

Virtual Controller

Virtual Proxy 1

Virtual Proxy 2

...Message
Proxy/Receiver

Virtual Broker

Virtual Device 2

Virtual Device 3

...

Figure 6.19.: Architecture describing the communication between the Virtual
Controller located at the PerFlow Middleware and the Virtual
Broker as a part of the PerFlow Virtual Extension. The com-
munication with the middleware is handled by the Virtual Proxies.

94

95

The main task of the Virtual Controller is to orchestrate the different virtual

devices and assign the correct information flow to each. The architecture in Figure

6.19 shows the information flow between applications in the virtual environment

and in the physical pervasive system and how they utilize the Virtual Broker

and Controller. After the broker asks for the registration of a new application,

the controller starts a new instance of the Virtual Proxy and registers it at the

PerFlow Middleware. Thus, there may run multiple proxy simultaneously

on only one device for the same virtual environment. This allows the controller to

map the incoming and outgoing information flow to the correct virtual application

and communicate it accordingly to the Virtual Broker. These proxy act like

an application running on a physical device in the pervasive system and are

treated in the same way by the middleware. They register connectors on behalf

of the corresponding virtual device and send the information handed over by the

controller to the Message Proxy of the PerFlow Middleware. If a proxy

receives information, it forwards it to the Virtual Controller, which then maps it

to the correct virtual device and sends it to the broker. Further, if a device in the

virtual environment is shut down, the controller is notified by the broker and also

terminates the corresponding Virtual Proxy.

In the case of the virtual environment extension of the PerFlow Middleware,

the serialization and deserialization of the transmitted data is split into two parts.

First, the Virtual Proxy is responsible for the serialization of information sent to

the middleware and the deserialization of data received from it. This is achieved

by using the Message Proxy and Receiver as described in Section 6.5.1. Second,

the messages also have to be serialized for the transmission between the Virtual

Controller outside and the Broker inside the virtual environment. As we rely on

a game engine for the virtual environment, we are also depending on the tools,

libraries, and programming languages offered by it. Therefore, we are not able

to directly use the data types supported by the PerFlow Middleware. If a

virtual device is sending information, the Virtual Broker has to serialize the data

and the Controller is responsible for the deserialization and vice versa for receiving

information from the middleware. The PerFlow Virtual Extension supports,

like the PerFlow Middleware itself, all basic primitive data types, as well

as strings and images. Developers are able to introduce new custom objects to

be sent and received by their applications. To achieve this, they have to extend

95

96 6.8. Summary

the PerFlow Middleware as described in Section 6.5.1. If the developer

also intends to use the newly added objects with virtual applications inside the

PerFlow Virtual Extension, they additionally have to add the serialization

methods to the Virtual Controller and Broker.

6.8. Summary

This chapter presented the design for PerFlow, a runtime configurable pervasive

middleware combined with an virtual extension. The PerFlow Middleware

supports the communication between applications by enabling developers to

define what information their applications are able to send and receive. The

actual transmission of the data is then handled by the middleware. For defining

the connection between applications the configurations can be either created in

JSON or by using visual scripting the PerFlow Tool. Therefore, we designed

a flowchart based visual language and extended the middleware with a visual

scripting tool. Newly introduced configurations are in the next step interpreted by

the PerFlow Middleware and the resulting routes are distributed throughout

the systems. For the distribution of these configurations we introduced two

different approaches. First, a naive approach without any control of who is allowed

to change the configuration. Second, a consensus algorithm based on Raft [145].

Lastly, PerFlow Virtual Extension was introduced allowing developers

to implement pervasive applications and services in a virtual environment. To

achieve this a proxy was designed to give developers using a game engine for their

3D environment access to middleware functionalities. In the next chapter the

implementation of the PerFlow prototype is introduced.

96

7. Prototype Implementation

In the previous chapter the design for the PerFlow system was discussed in

detail. The following chapter presents the prototypical implementation of the

design. This prototype will later serve as the foundation for the evaluation. The

three main artifacts of the prototype are the pervasive middleware, the visual

scripting tool, and the virtual environment. These are implemented as close to the

design introduced in Chapter 6 as possible and together they form the complete

PerFlow system. Due to the similarity with the design, we will not discuss the

complete architecture again in the following chapter and only focus on specific

implementation details relevant to the prototype.

The remainder of the chapter is structured as follows: First, the implementation

of the PerFlow Middleware is discussed. Hence, the first section looks at

the underlying communication middleware and how it enables the different parts

of the PerFlow Middleware to communicate with each other. Second, the

PerFlow Tool is presented by giving details about the possible platforms for the

tool, the implementation of the graphical user interface, and how the connection

to the middleware is achieved. Third, the implications of the chosen game engine

on the implementation of the PerFlow Virtual Extension is discussed. This

includes a description of the connection from the virtual environment to the

PerFlow Middleware.

7.1. Implementation of the PerFlow Middleware

The prototype of the PerFlow Middleware is implemented using the Java

Platform, Standard Edition 9 [147]. For handling the rules in the JSON format the

library Google Gson [61] is used. If a new set of rules is received, it is forwarded

to the Gson handler, which deserializes the JSON file and creates Java Objects.

The result is one main object containing a list with all rules. Each of the rules

has the necessary information, as described in Section 6.3.1, saved as attributes.

97

98 7.1. Implementation of the PerFlow Middleware

Additionally, a route also contains a list of context filter objects, each containing

the operator and value. Similarly, the Simple API for XML (SAX) parser [148]

is used for parsing the XML configuration for the rights management of the

Consensus Module described in Section 6.4.

Invokation Broker

Connector
Registry

Configuration
Manager

Route HandlerRoute Controller

Stub Skeleton

Stub Skeleton

M Proxy M Review Stub Skeleton

Device Registry

Skeleton

Figure 7.1.: The Connector Registry, Route Controller, Configuration Manager,
and Route Handler utilize the BASE [16] skeleton and stub system
for communication. Additionally, the BASE Device Registry is used
to retrieve all available devices in the pervasive system.

BASE [16] is used as the underlying communication middleware for the prototype

of the PerFlow Middleware. It offers the necessary functionalities for device

handling and communication. The BASE middleware offers device and service

discovery and allows to lookup all available devices in the pervasive system via

its registries. Therefore, it is possible for PerFlow to obtain a global view

of the system and to address each device with a unique ID assigned by BASE.

Additionally, the middleware has a service based architecture, which allows for

several services to run on each device. It is possible to let BASE automatically

assign a random ID to each service or to define a fixed ID. If the ID is not known, it

can be looked up in the service registry. The combination of device and service ID

can be used to directly address each service in the pervasive system. Further, the

BASE middleware offers Remote Procedure Call (RPC) [135] based invocations to

communicate with offered services. The transmission of data in BASE is achieved

98

99

by using a reliable TCP connection. The Connector Registry, Route Interpreter,

and Configuration Manager are implemented as BASE services with a fixed ID. As

they are executed on every device on startup, the PerFlow Middleware can

communicate with them by only knowing the device ID due to the fixed service

IDs. Additionally, the Message Proxy and Receiver discussed in Section 6.5.1 are

utilizing the proxy and skeleton system of the BASE middleware. The PerFlow

Middleware itself is responsible for serializing the information and figuring

out the targets for a message using the Message Proxy as explained in Section

6.5.2. For sending the information, a BASE invocation is created for each target

containing the sender ID, message type, data type, and the serialized data. In the

next step, the invocation is handed over to the BASE middleware to deliver the

message. To efficiently distribute information with a high number of targets, the

serialization of data, creation, and sending of the invocation is parallelized. The

abstract message receiver implemented by the application developers to receive

information is created as a BASE service. Upon receiving an invocation, the

message receiver is called by BASE and the PerFlow Middleware is again

responsible for the deserialization of the incoming data. Figure 7.1 shows all

the PerFlow classes directly connected to the BASE middleware and how the

communication is achieved.

7.2. Implementation of the PerFlow Tool

In the following section, the implementation of the prototype for the PerFlow

Tool is described in detail. First, the tool itself, the implementation of the UI, and

the platforms used for the prototype is discussed. Second, the connection to the

PerFlow Middleware is outlined. This section concentrates on the prototype

of the tool itself, the visual scripting language is implemented as described in

Section 6.6.1.

7.2.1. The Visual Scripting Tool

The PerFlow Tool prototype is implemented as an application for the Microsoft

Universal Windows Platform (UWP) [122]. Therefore, it was implemented using

C#. With the use of UWP the requirement RF4 for heterogeneity is supported.

99

100 7.2. Implementation of the PerFlow Tool

While limiting the possible operating systems to Microsoft Windows, it allows

for the execution of the tool on smartphones, tablets, and personal computers.

Additionally, UWP also supports specialized devices like the Microsoft Surface

Hub1 without having to port the application to the new hardware. This is

especially helpful in scenarios like smart classrooms or meeting rooms, which the

PerFlow system should support as a possible use case. In these environments

Surface Hubs are already starting to show up in a larger number and are used

as smart whiteboards, which are also able to run UWP applications natively.

Thus, the PerFlow Tool can be installed directly in the smart environments

and, e.g., lecturers are able to reconfigure the middleware without the need of an

additional device. The finished application can even be uploaded to the Microsoft

App Store2 for easy deployment on supported devices.

Figure 7.2.: The user interface for the PerFlow Tool showing the list of visual
scripting elements on the left, the menu on the bottom, and in the
middle the canvas containing a rule.

In Figure 7.2 a screenshot of the PerFlow Tool prototype is shown. The

actual implementation is as close as possible to the design described in Section

6.6.2. One of the main goals was to provide a clean and understandable user

interface to achieve the requirement RNF4. Therefore, we considered different UI

guidelines for the implementation of the PerFlow Tool prototype, e.g., from

Apple [9], Microsoft [123], or Google [60]. The main considerations were to offer an

1https://www.microsoft.com/en-us/surface/business/surface-hub-2
2https://www.microsoft.com/en-us/store/apps/windows?source=lp

100

https://www.microsoft.com/en-us/surface/business/surface-hub-2
https://www.microsoft.com/en-us/store/apps/windows?source=lp

101

intuitive to use application which is focused to the key tasks it has to fulfill. Users

should be able to learn the usage of the application fast and grasp the offered

functionalities at the first glance. Nonetheless, the visual scripting tool should

be functional and support a fast and effective work flow. The visual scripting

elements are color-coded to assist the users at reading the rules and allow them to

distinguish the elements fast. Sender nodes are colored in a light blue, receiver in

a light green, and all filters in an orange tone. Additionally, correctly connected

ports are colored in a bright green, while unconnected ports are gray. Further, the

users interact with the tool via drag and drop for the creation of rule. Elements

can be dragged from the list on the left side and dropped on the main canvas.

Repositioning them is done in the same way. This type of interaction is especially

useful on touch enabled devices like smartphones, tablets, or the Surface Hub.

Figure 7.3 shows the example of a lecture with several students and a lecturer.

Here, the lecturer is able to configure the information flow on a Surface Hub and

distribute the presentation to the projector at the front and the laptops of the

students.

Figure 7.3.: An example setup of the PerFlow system in a smart classroom
setup with one user creating new rules with the PerFlow Tool
while the others see the current presentation on their device and the
projector.

101

102 7.2. Implementation of the PerFlow Tool

7.2.2. Communication with PerFlow Middleware

The PerFlow Tool and PerFlow Middleware are developed as separate

entities, which in the future allows for an easy exchange with new visual scripting

tools or other pervasive middlewares. As it is necessary for the tool to receive

information about the current status of the pervasive system and for the middle-

ware to get updated with the configuration created by the user, both need to be

connected and communicate with each other.

To share the needed information, the PerFlow Tool connects to a Java proxy

communicating with the PerFlow Middleware. As soon as the tool starts

up it automatically searches on the local device for the proxy and connects to it.

The proxy directly retrieves the current configuration and the information about

all available devices from the middleware and forwards it to the visual scripting

tool. Additionally, it is responsible for receiving the newly created configuration

as XML, interpreting it, and handing over the rules as JSON to the middleware,

as described in Section 6.6.3. For parsing the XML configuration of the visual

scripting tool the Dom4j library [45] is used. The visual scripting elements and

connectors contained in the configuration are then handed over to the JGraphT

library [96], which generates a directed graph. In the next step, the Dijkstra based

shortest path algorithm offered by JGraphT is used to generate the rules.

For the actual transfer of information between the tool and middleware the MQTT

protocol [143] is used. MQTT is available both for Java and C# and thus can

be used with the PerFlow Middleware and UWP. The proxy runs a MQTT

publish subscribe broker, which the visual scripting tool connects to. Therefore,

the PerFlow Tool is decoupled from the middleware and allows in the future

for an easy exchange of the tool. While it is currently only available as an UWP

application for devices running Microsoft Windows 10, it is possible to develop and

use applications for other platforms, like Apple iOS or Google Android, without

changing the PerFlow Middleware. As kibg as they are MQTT-enabled,

it would even be possible to combine completely different approaches with the

PerFlow Middleware, like a database of configurations where the user can

pick a wanted set of rules.

102

103

7.3. Implementation of the PerFlow Virtual Extension

Similar to the PerFlow Tool, the PerFlow Virtual Extension is designed

in two major parts. First, the actual virtual environment utilizing an existing

game engine. Second, the Virtual Controller located at the pervasive middleware

and providing the connection between the virtual environment and the PerFlow

Middleware.

Therefore, the following section will first take a deeper look on the virtual en-

vironment and discuss the used game engine and libraries, and the developed

prototype of a virtual classroom. Afterwards, the connection to the pervasive

middleware and the communication between the physical and virtual environment

is discussed.

7.3.1. Virtual Classroom Environment

The design of the PerFlow Virtual Extension is independent of any specific

Game Engine but for the implementation of the prototype one has to be chosen.

While the developers of early 3D games and environments relied on their own

rendering methods developed in-house an increasing interest in third party game

engines can be observed in recent years. Especially small to medium sized

developers, as they are common in the field of educational/serious games and

virtual environments, sacrifice the flexibility of implementing their own engine for

the easier and time saving development with an out of the shelf game engine.

There are many commonly used engines with the most used ones being the

Unreal Engine 43, CryEngine4, Blender Game Engine5, and Unity3D6. Out of the

game engines presented in [156], we chose Unity3D. The CryEngine and Blender

Game Engine are lacking behind in their development compared to their large

competitors and the Unreal Engine is more focused on the highly professional

market and large development projects. In comparison, the Unity3D engine also

offers a high flexibility regarding devices, operating system (OS), and programming

languages. It is possible to run virtual environments developed with Unity3D on

3https://www.unrealengine.com/en-US/
4https://www.cryengine.com/
5https://www.blender.org/
6https://unity.com/

103

https://www.unrealengine.com/en-US/
https://www.cryengine.com/
https://www.blender.org/
https://unity.com/

104 7.3. Implementation of the PerFlow Virtual Extension

all major OS including Microsoft Windows, Linux and Apple MacOS. Further,

the engine also provides support for gaming consoles, like the Sony Playstation 4,

Microsoft Xbox One, or Nintendo Switch, and mobile devices including Android

and iOS. Additionally, Unity3D supports VR devices, like the Oculus Rift and

HTC Vive, directly without the need to port the developed virtual environment.

Such VR devices help to increase the immersion of environments developed with

PerFlow Virtual Extension e.g., virtual smart classrooms. To aid the

developer, Unity3D also provides them with further tools and libraries aside the

3D rendering engine. This includes a graphical world builder, animation tools, or

libraries for artificial intelligence, sound, and networking.

Unity3D offers several programming languages to the developers including Java-

Script, Boo, and C#. For the development of the PerFlow Virtual Extension

C# was chosen, as it appears to have the highest support in the Unity3D developer

community with a large amount of available documentation and tutorials. This

increases the potential target audience for the PerFlow Virtual Extension.

When developing with the Unity3D engine, everything included in the virtual

environment is represented as a game object. Each of these objects can be pro-

vided with several properties defining the behavior or visual appearance of it e.g.,

textures, collision meshes, or scripts programmed by the developer containing the

game logic. These game objects could be virtual objects (e.g, chairs or tables),

terrain and buildings, or avatars. Additionally, it is possible to create empty

game objects, which are present in the environment during runtime, but have no

visual representation. This is useful for adding logic and services to the virtual

environment which are universal and not affiliated with any visual objects like

the player avatar. The complete implementation of the Virtual Broker for the

PerFlow Virtual Extension was developed as C# scripts and added to

such an empty game object. Developers are provided with a preset of this object,

which they can just drag and drop into their virtual environment to add support

for PerFlow.

For the prototype of the PerFlow Virtual Extension an example virtual

environment was developed, which allows for testing, debugging, and evaluating

the system. Fitting to the scenario discussed in Section 4.1 a virtual classroom

was created, which can be seen in Figure 7.4. It is the representation of a physical

classroom and contains a main projector for presentations, a public display at the

104

105

Figure 7.4.: A virtual classroom with several screens using the PerFlow Vir-
tual Extension to receive content like pictures or presentations.
Additionally, the user has the ability to communicate via the middle-
ware with text or speech chat.

side, and several PCs with screens at each seat for the students. All these screens

are connected to the Virtual Broker and are able to receive and show images.

Additionally, the virtual environment contains avatars representing the user and

other students or lecturers in the system. These avatars are also communicating

via the Virtual Broker and are able to send and receive text based chat messages

and also voice chat.

7.3.2. Communication with PerFlow Middleware

The PerFlow Virtual Extension is communicating with the middleware

via proxies similarly to the PerFlow Tool. As described in Section 6.7, a

proxy is started for each virtual application running in the PerFlow Virtual

Extension and connects it to the PerFlow Middleware. For the commu-

nication between the Virtual Controller and Broker they are connected via a

reliable TCP connection and the previously defined protocol is implemented.

They are also responsible for the serialization of the data transmitted between

them. As the controller is implemented in Java and the broker in C#, Protocol

Buffers [62] is used as an external serialization library. It offers a fast, convenient,

and platform-independent serialization [53]. As ProtocolBuffer does not offer a

105

106 7.4. Summary

stable C# library, we also use the protobuf-net library [157] for serialization within

Unity3D. For the actual transmission the standard implementation of the TCP

sockets is used on the Java side and the UNET package provided by Unity3D is

used by the Broker.

Regarding the data handling, Unity3D offers direct support for the image formats

Joint Photographic Experts Group (JPEG) and Portable Network Graphics (PNG)

and the video format Ogg. The engine is able to render the content of these

files directly in the virtual environment without the need for further libraries.

Presentations in the Portable Document Format (PDF) file format are split up by

the Virtual Controller into single PNG images containing each slide before sending

them to the virtual environment. Therefore, no PDF support is needed in the

Unity3D engine. For splitting up the presentations the GhostScript library [10] is

used. While these formats cover the implemented display service, the chat service

needs additional data types. For the text based chat simple strings are used and

transmitted via the PerFlow Middleware to other participants. To enable

the voice chat, the additional library Nspeex [141] for recording the sound and

serializing it into byte arrays is used. It gives access to the microphone connected

to the user device and is able to capture the audio signal. The recording frequency

is set to 16,000 Hertz. In the next step the signal is split into chunks and decoded.

These individual chunks are then transmitted as a byte array and on the receiver

side deserialized using the same library.

7.4. Summary

During this chapter we presented the prototype implementation of the design for

the PerFlow system. Therefore, we discussed the PerFlow Middleware,

PerFlow Tool, and PerFlow Virtual Extension separately. In the

prototype we used BASE [16] as a communication middleware, UWP [122] as the

platform for the visual scripting tool, and Unity 3D [156] as the game engine for the

virtual environment. The prototype covers the complete design discussed in the

previous chapter and is the foundation for all following conducted evaluations.

106

8. Evaluation

After discussing the complete design of the PerFlow system the previous chapter

introduced the prototypes for the PerFlow Middleware, PerFlow Tool,

and PerFlow Virtual Extension. Thus, the next chapter concentrates on

the evaluation of these prototypes. First, a proof of concept shows the feasibility

of the system by introducing an example smart classroom. Second, the effort

a developer has, to use PerFlow with his application is showcased in Section

8.2. Third, the performance of the implemented prototypes is measured. Finally,

Section 8.4 introduces a user study to evaluate the perceived ease of use and

usefulness of the PerFlow Tool.

8.1. Proof of Concept

To show the feasibility of the proposed middleware and how it can be used

in a real environment, a smart classroom was implemented as the chosen use

case. The proof of concept for the PerFlow system is based on the testbed for

pervasive middlewares in learning environments (PerLE) introduced in [134]1.

Following, the concept and services of PerLE are introduced before evaluating

the requirements with the help of the testbed. While the in [134] introduced

PerLE testbed offers a total of five different services for the use in a smart

classroom, it was later extended with a sixth live feedback service. The proof of

concept will concentrate on three of them and how they utilize the PerFlow

Middleware.

8.1.1. The PerLE Testbed for Pervasive Classrooms

PerLE offers lecturers and students an application to use during lectures com-

bining six different services. The main goal is to increase the efficiency of the

1 [134] is joint work with S. Schmitz and C. Becker

107

108 8.1. Proof of Concept

lessons by incorporating all available devices and enable them to share information

for a better transfer of knowledge. Following, the overall concept of PerLE is

discussed together with the use case and the applications handed out to the

users. Afterwards, at the example of three of the services, the migration to the

PerFlow Middleware is discussed and how its functionality is utilized for the

testbed.

Concept

In today’s learning environments, e.g., classrooms or lecture halls, an increasing

amount of devices brought by students, lecturers or belonging to the infrastructure

are available. The goal of PerLE is to offer the users in such environments

different services to increase the learning experience. Additionally, an application

is provided for students and lecturers to install on their devices. The prototype of

PerLE is implemented in Java and uses the BASE middleware [16], however the

design allows for the middleware to be exchanged with little effort. Thus, for the

proof of concept it was switched to the PerFlow Middleware. The testbed

allows for performance measurements and shows how the evaluated middleware

works in a real world scenario.

The application for students and lecturers bundles the services included in PerLE.

Thus, it offers functionalities like access to projectors or displays, file transfer,

surveys, or live feedback during the lecture. The application can cope with a high

variety of different use cases which may occur in ha pervasive classroom. These

scenarios could be a standard head on lesson, group work, or presentations by

different students. Especially together with the PerFlow Tool, the lecturer is

able to react to these changing use cases and reconfigure the pervasive system

on the fly. Figure 8.1 shows an example lecture, where one person is holding

a presentation while the listeners are able to follow the slides on their personal

devices, download them, and give feedback.

Services

The PerLE testbed offers a total of six different services for the use in pervasive

classrooms. A display service can be used to share projectors and screens in the

108

109

Figure 8.1.: The PerLE system deployed in a real lecture room. While only
the presentation is shown on the screen, all other devices show the
complete application with access to all services contained in the
testbed.

lecture room and show content such as presentations. The file service allows for

the peer-to-peer distribution of files between applications. With the survey service,

the lecturer can distribute predefined surveys and tests to students and collect

the results. A user service offers the lecturer the possibility to collect the contact

data of the students present in the lecture. Lastly, the room control service gives

access to smart devices in the system like shutters or the lighting. In addition

to these five services introduced in [134], a live feedback service was developed,

which, in contrast to the survey service, allows for continuous feedback from the

student to the lecturer e.g., regarding the speed, volume, or questions on the

content. Following, the display, room control, and survey service are discussed in

more detail and the integration of the PerFlow Middleware is explained. The

applications for the lecturer and students register with the Connector Registry

of the PerFlow Middleware. They provide properties for the device type

(e.g., PC, tablet, or projector), the role (lecturer, student, or infrastructure), and

location (remote or local).

109

110 8.1. Proof of Concept

Display Service: This service is designed to be used in two different ways.

First, it can be executed as a standalone service directly on devices like projectors

or public displays in the infrastructure of the pervasive classroom. This is similar

to the initial service introduced in [133]2. Second, it is also integrated into the

application used by the lecturer and students. Thus, the content can not only

be displayed at the front of the classroom but also directly on the users’ devices.

The display service supports images and PDF files for which the PerFlow

Middleware is extended with a new custom object for transferring them. If a

presentation in the PDF format is received, the GhostScript library [10] is used

to decompose it into single images for each slide to be able to display them. The

display service registers connectors at the PerFlow Middleware for receiving

images and PDF files, and a connector to send commands (as strings), to forward

or reverse the presentation. These connectors are bundled, as while displaying

a presentation it should always be possible to control it. The application for

the lecturer and students has registered the corresponding outgoing connectors.

Additionally, the display service is available remotely through the PerFlow

Virtual Extension, where the handling of the incoming images and PDF is

done similar to the approach described in [131]3.

Room Control Service: The room control service acts as an intermediate

between the PerFlow Middleware and typical smart devices from the home

automation market, like smart light bulbs or automatic window shutters. It

therefore makes use of the Representational State Transfer (REST) API provided

by many of these smart devices, e.g., as by Nest4. It would be possible to

extend the service in the future if additional APIs need to be supported. For the

prototype, the iCasa simulator developed by Lalanda et al. [104] is integrated.

The service offers a list of available smart devices and their capabilities as a

custom transfer object. Additionally, it can receive strings with commands which

are then forwarded to the smart device. For the device list and the commands it

registers the corresponding connectors, which are also bundled. The application

provided to the users is able to receive the list and display the content, so that

2 [133] is joint work with D. Schäfer, S. VanSyckel, and C. Becker
3 [131] is joint work with C. Krupitzer and C. Becker
4https://developers.nest.com/guides/api/rest-guide

110

https://developers.nest.com/guides/api/rest-guide

111

the user can interact with the smart devices and e.g., send the command to turn

on the lights.

Survey Service: The third service discussed in this section allows the lecturer

to send out surveys to students. For instance, lecturers are able to collect feedback

after the lesson. These surveys are predefined in the JSON format. The lecturer

only needs to choose a survey, which is afterwards distributed to all student

devices. The receiving applications then interpret this survey and present the

students the corresponding UI elements (e.g., radio buttons or text boxes). After

filling out the survey, the responses are then sent back to the lecturer, where they

are collected. For the transfer, the application of the lecturer is registering an

outgoing connector for the surveys and an ingoing for the results. The student

applications are registering their connectors vice versa with the Connector Registry

of the PerFlow Middleware.

8.1.2. Requirements Evaluation

The previous section introduced the PerLE testbed with its functionalities, the

following section performs a qualitative evaluation. Therefore, the application

and services included in the testbed are used to demonstrate the fulfillment of

the requirements introduced in Chapter 4.

The PerFlow Middleware allows for the information exchange between the

applications of lecturers and students. Also, it is possible to communicate with

infrastructure devices like projectors via the display service or light bulbs and

shutters via the room control service. This supports requirement RF1. To achieve

this, PerFlow uses BASE as a communication middleware. As shown at the

three presented services for the testbed, developers have the possibility to bundle

the information flow for their applications and services (RF3). Additionally,

they are able to introduce new content types for the transfer via the PerFlow

Middleware e.g., the PDF files for the display service, which supports the

requirement for extensibility (RNF5). With the help of the PerFlow Virtual

Extension, it is also possible to migrate the services from the physical into

the virtual environment. Thus, the display service is able to present the same

content to both the local and remote students. This enables a remote access to

111

112 8.2. Implementation Effort

the system, which is as close as possible to the experience in the smart classroom

itself (RF7). The lecturer in the introduced PerLE testbed is able to reconfigure

the information flow in the pervasive system with the help of the PerFlow Tool

supporting requirement RF2. This could include giving specific students access

to the projector or specify which device should collect the responses for a survey.

As in a classroom not everyone should be able to influence the complete system

to prevent chaos, the possibility to reconfigure the PerFlow Middleware

should be left only to the lecturer. Therefore, the Consensus Module introduced

in Section 6.4 allows for an access control and for limiting the right to send new

configurations to the PerFlow Middleware to specific users or groups (RF6).

The requirement RF4 for the support of a heterogeneous system is fulfilled in

two different ways by PerFlow. For the possibility to include a high range of

different devices and offer information about the devices available in the system

(RF5), a communication middleware is used. In the prototype, BASE [16] provides

the needed functionalities to fulfill this requirement. Additionally, the PerFlow

Middleware should not only connect a large amount of devices but the tools

and systems introduced with PerFlow also need to provide a possible large

interoperability. By using UWP for the PerFlow Tool and the Unity3D game

engine for the PerFlow Virtual Extension it is possible to execute them

on many different devices. This includes smart boards like Microsoft Surface

Hub for reconfiguring the pervasive system or VR devices like the Oculus Rift for

participating remotely. While the PerLE testbed is targeted to smart classrooms,

the same services and mechanisms could be used in several other use cases e.g.,

smart meeting rooms or conference centers. Further, in the user study in Section

8.4, an additional use case for a smart airport lounge is introduced. Thus, it

is shown that the PerFlow system is flexible and can be tailored towards a

high number of different scenarios supporting the requirement for generalizability

(RNF3).

8.2. Implementation Effort

To ensure a widespread adoption, using the PerFlow Middleware should

lead to minimal effort for the developer. Thus, it is essential that the overhead

for the developer is as low as possible to encourage a widespread adoption.

112

113

The implementation effort is compared to using the BASE middleware for the

communication between applications and services without PerFlow. To quantify

the implementation effort with and without PerFlow Middleware, the concept

of source Lines of Code (SLoC) is used [6]. The SLoC metric is further differentiated

into physical and logic SLoC. While counting the lines of code physical SLoC

excludes comments and empty lines from the measurement and logical SLoC

additionally takes different ways of writing the same code into account e.g., curled

brackets at the end of the line or in a new one [138]. For the measurement the

Statistic5 plugin for the IntelliJ6 Integrated Development Environment (IDE) is

used.

The examples offer a simple way for users to share the content of their screen

with others. Therefore, an application sending screenshots and a service receiving

the screenshots was implemented for each BASE and PerFlow Middleware.

The applications capture the screen of the source device in regular intervals (every

two seconds) and send the resulting image with either BASE or the PerFlow

Middleware to the target device. The services wait for incoming images and

show the to the user with an image viewer. An excerpt of the source code for the

most relevant part of the applications and services, with BASE and PerFlow, is

shown in Appendix A. These excerpts larger helper functions for e.g., setting up

and starting the middlewares (setup(...)), capturing the current content of the

screen as an image (ScreenCapture.capture()), and displaying the incoming image

(viewer.showImage(...)). The application using the PerFlow Middleware

starts by registering an outgoing connector for the captured image and creates the

message proxy. Afterwards, it hands over a new image every two seconds to the

proxy and the middleware is responsible for distributing the image according to the

current routes. In the case of the application developed with the BASE middleware,

the setup and sending of information is more complex. While developing the

application, the service and its interface used during runtime has to be known

by the developer. During runtime the application needs to search for available

services on its own, decide which services to use, and send out the image to them.

The logical SLoC is 18% lower for the application using the PerFlow Middle-

ware (49 to 58 lines), while at the same time offering more features to developers

5https://plugins.jetbrains.com/plugin/4509-statistic
6https://www.jetbrains.com/idea/

113

https://plugins.jetbrains.com/plugin/4509-statistic
https://www.jetbrains.com/idea/

114 8.3. Performance Measurements

and users. The BASE application is using a naive approach sending out the

image to every display service no matter if it should receive the screen capture or

not. This could lead to security problems (sending your screen to strangers) or

performance problems (sending to too many devices at once). If the developers

would like to control the communication more fine grained, the possible receiving

services have to be checked manually and the developer is responsible for storing

and distributing information needed for the decision. Therefore, the advantage of

the PerFlow Middleware regarding the implementation complexity would

further increase. This section looked at the implementation of applications with

both middlewares. When looking at services receiving the information, the advan-

tage of the PerFlow Middleware even increases, as the effort to implement a

receiving application is not higher as the already discussed sending application.

At the same time the complexity for a BASE services rises, as the developer would

also need to implement a skeleton and proxy for the service. Thus, the logical

SLoC for the services is 110% higher for the BASE service over the receiver service

implemented with PerFlow Middleware (37 to 78 lines). In conclusion, the

requirement RNF4 for the usability of the middleware is fulfilled for the developers,

as PerFlow is able to ease their effort for implementing new applications.

8.3. Performance Measurements

Responsiveness is a major non-functional requirement of the system (RNF1). As

PerFlow is tailored towards everyday environments e.g., smart classrooms

or meeting rooms, the users should not experience any hindrance due to the

middleware. There are three possible functionalities which introduce an additional

overhead compared to a traditional pervasive middleware. First, the reconfigu-

ration of the system where the current status has to be collected and the new

configuration needs to be distributed. Second, while sending information over the

middleware, the receiver is not directly specified but has to be determined by the

PerFlow Middleware. Third, if users take part in the system remotely, the

information not only needs to be transmitted by the middleware but also has to

be handed over to the PerFlow Virtual Extension.

In the following sections performance measurements are conducted for these three

processes to evaluate the overhead introduced by PerFlow. The computers used

114

115

for these evaluations are two PCs with an Intel Core i7 8700k hexacore CPU with

3,70GHz, 32 gigabytes of memory, and a Nvidia Geforce GTX 1080Ti graphics

card running Windows 10 64bit and Java version 10.01.

8.3.1. Reconfiguration Overhead

Reconfiguring the information flow in the PerFlow system triggers several events

and the process has to be coordinated between all available peers in the system.

The reconfiguration can be started in two different ways: By a change in the

pervasive system or by a user introducing a new configuration. Following, the

performance of the second case is evaluated in more detail, as it is the more

complex process.

The reconfiguration starts, when the user, e.g. the lecturer, sends a new configura-

tion to the middleware. During this step, the available connectors are polled from

all devices, the rules are interpreted, and the new configuration, as well as the

new routes are delivered to all devices in the system. As there is network traffic

involved in this process, the evaluation was conducted on two PCs connected in

a private network via a Gigabit Switch. The first computer ran the application,

which introduced the new configuration, while the second computer simulated up

to 100 devices with one application having ten connectors each. Thus, the first

computer received the available connectors and had to send out the configuration

and routes via the network. Two different JSON configurations were used for

the performance measurements, a small one containing 5 and a large one with

20 rules. As the user would have to create these configurations during runtime

using the PerFlow Tool a total of 20 rules is already a large but still feasible

size for the configuration. For the increasing number of devices and the two

configurations each single measurement was performed 100 times to create an

average and mitigate the influence of outliers.

Figure 8.2 shows the results of the evaluation with the average time needed to

reconfigure the system with an increasing amount of devices. It includes also

both configurations, with 5 and 20 rules. The results separated by the size of the

JSON configuration can be seen in Appendix B. On average, the reconfiguration

of the middleware needed 57.08ms, where the majority of the time was needed

to distribute the configuration to all devices (32.01ms) via the network. This

115

116 8.3. Performance Measurements

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Devices

T
im

e
[m

s]

get connectors
interpretation

send configuration
send routes

Figure 8.2.: Time needed to reconfigure the information flow for up to 100 devices.
The values are measured with two configurations containing 5 and 20
rules and the average times are used for this chart.

distributed configuration includes the JSON rules for the PerFlow Middleware

and the XML representation of the visual scripting elements for the PerFlow

Tool. The average for the 5 rule configuration was 45.59ms and for 20 rules

68.58ms. For the maximum of 100 active devices we see an average time of 87.78ms

for 5 rules and 132.47ms for 20 rules. Thus, even with 20 rules, which would

already be complex to specify using visual scripting, the reconfiguration time

would not lead to noticeable delay in the workflow of the users. An uninterrupted

workflow is also ensured as the previous configuration is still active and usable

until the reconfiguration is finished. The effort of reconfiguration rises linearly

with the number of devices present in the system. While the longest part of the

process is the delivery of the configuration to all devices, the actual interpretation

takes only 2.59ms on average.

In the case of a change in the pervasive system without the introduction of new

rules, many of the steps described above still apply. The connectors of the available

devices need to be collected, the existing rules are interpreted, and the new routes

116

117

are distributed. As the configuration itself did not change, the main advantage is

that it does not need to be distributed. Thus, the process is sped up drastically,

as the most time consuming part can be ignored.

8.3.2. Consensus Algorithm Overhead

In the previous section, the time needed to perform the reconfiguration for

the information flow was discussed. This applies in the naive approach, where

everyone is allowed to introduce new configurations to the system without any

access control. If the administrator wants to only give some specific users or user

groups the right to reconfigure the system, it is possible to set the PerFlow

Middleware up accordingly as discussed in Section 6.4. While the process and

effort of reconfiguring the system stays the same, additional steps are introduced

to coordinate the access control, which may have an influence on the performance.

According to the consensus algorithm explained in the design, the system needs

to elect a leader which is then responsible for deciding if the requesting peer is

allowed to apply a new configuration. In a first step, the effort for the election

of a new leader is measured before discussing the overhead for evaluating the

permissions.

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

Devices

T
im

e
[m

s]

Figure 8.3.: The average time (in ms) needed to elect a new leader for the consensus
module measured for growing pervasive systems of up to 50 devices.

117

118 8.3. Performance Measurements

While the election process is quite complex and requires a lot of coordination

between the different peers in the pervasive system, it also should not be needed

often. In the best case scenario the system is very stable by e.g., electing the

device of a lecturer as the leader which possibly will not leave the system during

the complete lecture. But even in more fluctuating scenarios the new elections

should not interfere with the user experience. For the evaluation the time needed

for the complete election process was measured. The time was measured from the

point, where the old leader is shutdown and the election algorithm is triggered

until the process returned with a new leader or in the worst case failed due to a

time out. The evaluation was executed with an increasing amount of connected

peers until a total of 50 devices was reached. The results for the measurements

can be seen in Figure 8.3. For an increasing number of devices in the pervasive

system the time needed to perform the election first increases rapidly until settling

between about 600ms and 800ms after reaching a total of 32 devices. This effect

has two different causes. First, the load on the PC used for the evaluation is

increasing heavily leading to slightly longer response times. But the second and

more relevant cause is, that the number of devices recognizing the loss of the

leader rises and therefore, increasingly more messages are generated announcing

the need for a new leader and voting on the possible new leaders. The reason

why the overall time needed does not rise further, is the timeout of 800ms for the

election process. If the peer responsible for coordinating the election is reaching

this timeout, it will ignore further messages and determine the winner of the

election. The prerequisite therefore is, that over half of the available peers actually

voted. If this is not the case the election failed. Thus, a fitting timeout for the

expected size of the pervasive system is important, as a too large value would

lead to longer and a too small value to more failed elections. This is in the

responsibility of the administrator deploying the system. For the evaluation the

chosen timeouts did not lead to any failed elections.

The second overhead introduced by the consensus algorithm is for evaluating the

permissions before sending out the new configuration. This is done locally on the

elected leader and if the evaluation turns out positive, the transmission is similar

to the process discussed in Section 8.3.1. The measurement for the permission

check was conducted with an increasing number of devices in the system up to a

total of 50 devices. It started when the leader received an inquiry to distribute

118

119

5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

Devices

T
im

e
[m

s]

Figure 8.4.: The average overhead introduced by the permission evaluation exe-
cuted by the leader upon receiving a new configuration.

a new configuration and ended as soon as he was finished with the permission

evaluation and the distribution process started. The results of this overhead

evaluation can be seen in Figure 8.4, which also shows the time needed on top

of the previously discussed configuration distribution if the consensus algorithm

is enabled. Overall, the computation time increases linearly with the number of

devices, but even in the worst case it barely exceeds 14ms. Thus, the introduced

delay is not recognizable for the user and does not interrupt the workflow.

In summary, the major overhead introduced by the consensus algorithm is the

election of new leaders. While this process needs a substantial amount of coordina-

tion, it has not a high impact on the usability. In scenarios like smart classrooms

or meeting rooms it is normally possible to elect a stable leader and thus reduce

the need of new elections. Additionally, reconfigurations of the complete pervasive

system, and with that the introduction of new rules and the need for the leader,

is not extremely frequent. Therefore, the worst case, that one device has to

wait for publishing its new configuration until an election phase is finished, is

not very likely. The actual impact on the normal operation of the PerFlow

Middleware, when the leader is stable, is very low and does not influence the

experience of the users.

119

120 8.3. Performance Measurements

8.3.3. PerFlow Middleware Communication Overhead

For each outgoing message the PerFlow Middleware first has to determine

all possible receivers according to the routes. This extra step in the process means

the introduction of an overhead. Following, the influence of this overhead on the

PerFlow system is evaluated by measuring the time needed to send messages

between two applications. As BASE is used as the underlying communication

middleware for PerFlow, it is also used as the baseline for the evaluation of the

communication overhead. Therefore, each measurement is done first only with the

BASE middleware and second with the addition of the PerFlow Middleware.

These measurements were conducted on a single PC, because the determination

of possible receivers is only performed locally and not influenced by messages

received from other peers over the network. Thus, a local setting was chosen to

eliminate possible uncertainties introduced by network delays. As a payload for

the measurements, two uncompressed pictures with 500x500 and 1000x1000 pixels

were used, which resulted in approximately 0.75MB and 3.0MB of transmitted

data to each receiver per message. The overhead was measured for 5, 20, and 50

receiving applications and repeated for 100 times per image. Each measurement

was performed with and without PerFlow.

5 receivers 20 receivers 50 receivers

−1

−0.5

0

0.5

1

0.45

−0.12

0.28
0.49

−0.79
−0.66

T
im

e
[m

s]

500px
1000px

Figure 8.5.: Overhead introduced by the PerFlow Middleware. The values
represent the delta to a communication via the BASE middleware
only.

120

121

Figure 8.5 shows the overhead generated by the Route Controller of the PerFlow

Middleware compared to a direct communication via the BASE middleware.

Independent of the payload and the number of receiving applications, the difference

in execution time is with values between +1ms and -1ms within the uncertainty of

measurement. The interpretation of the rules contained in the JSON configuration

is only executed once beforehand to generate the routes. Therefore, the main

computational work is already done, when a message is transmitted and the

determination of the receivers is only a mere lookup of the routes. This leads to the

conclusion, that the PerFlow Middleware does not introduce a recognizable

overhead during sending messages and is not affecting the responsiveness of

applications.

Additionally, the PerFlow Middleware could even outperform the commu-

nication via BASE in some circumstances. This may be counterintuitive, as the

BASE middleware is still used for the transmission of each single message. The

effect can be credited to a better and more effective parallelization of the data

serialization and the calls to the BASE middleware for sending the data. Thus,

especially with higher amounts of receivers and larger payloads, it is possible for

the PerFlow Middleware to be more effective while sending the data.

8.3.4. PerFlow Virtual Extension Communication Overhead

To evaluate the performance of the PerFlow Virtual Extension, we measured

the time an image needs from being sent by an application until it is displayed

at a virtual device. For the measurement we use three images as payloads

with 1000x1000, 500x500, and 250x250 pixels. The images are transmitted

uncompressed and are thus representing a payload of 0.19MB, 0.75MB, and

3.00MB. As Figure 7.4 shows, the virtual displays cover only a limited area of

a physical display. Therefore, these resolutions of the images are sufficient for

the use case. The transmission, and therefore the measurement, is split into two

parts: first, sending the image from the application to the Virtual Controller and

second, handing it over to the virtual environment and displaying the image. The

first step contains the serialization of the image at the application, sending it via

the PerFlow Middleware, and deserializing it at the Virtual Controller. In

the second step the data is again serialized at the Virtual Controller, handed over

121

122 8.3. Performance Measurements

to the virtual environment developed with the Unity3D engine, where the image

is deserialized and displayed. The evaluation is repeated 300 times per image.

250px 500px 1000px
0

20

40

60

80

100

120

140

16.01

21.73

37.75

29.86
43.69

93.58

T
im

e
[m

s]

App to VC
VC to VE

Figure 8.6.: The overhead introduced by the PerFlow Virtual Extension
showing the time needed to forward the information to the correct
virtual device. The measurement is split into sending from the appli-
cation to the Virtual Controller (App to VC) and from the Virtual
controller to the displays in the virtual environment (VC to VE).

Figure 8.6 shows the time needed in total and for each of the two steps. The

measurement was conducted with one application sending to one virtual display.

The effort needed to send the image to the Virtual Controller is similar to sending

to a physical display. Thus, the main overhead of the PerFlow Virtual

Extension is in handing the data over to the game engine and displaying it in

the virtual environment. Even for the largest image, the time needed to send it

from the Virtual Controller to the virtual display is with 37.75ms not recognizable

for the user. If the virtual environment is executed with 30 frames per second,

the measured delay is under two frames (one frame equals 33.33ms). This does

not influence user experience as for users it seems as the physical and virtual

displays are synchronized. For a single image the transmission via the PerFlow

Middleware consumes up to 71% of the needed time from application to virtual

display (69% on average).

Next, we evaluate how the PerFlow Virtual Extension scales with an

increasing amount of virtual devices. Therefore, we measure the time needed

122

123

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Devices

T
im

e
[m

s]

App to VC
VC to VE

Figure 8.7.: The transaction time needed to send the same picture to an increasing
number of services in the PerFlow Virtual Extension.

to send an image to several virtual displays. The evaluation again measures

the time from the application to the Virtual Controller and from there to the

virtual displays. For this measurement we used the largest image with 1000x1000

pixels. The amount of virtual displays was increased up to ten displays placed

in the virtual classroom. Figure 8.7 shows the resulting transaction times. The

average increase for the complete process is 19.06ms for each additional display.

To send an image to all ten displays simultaneously, PerFlow needs on average

302.94ms. In an optimized scenario it is highly unlikely for all applications to

update their virtual display at the same time. The time needed by the PerFlow

Middleware to send the image to the Virtual Controller increases only by

5.07ms per additional display. Therefore, with only a few displays the effort to

distribute the image in the pervasive system is larger then handing it over to the

virtual environment and displaying it. Starting with six simultaneously receiving

virtual displays, we see a shift in the effort needed and displaying the image

gets more time consuming. Nonetheless, even in the worst case displaying the

image takes 164.73ms, which accounts for less then 5 frames, when the virtual

123

124 8.4. User Study

environment is executed with 30 frames per second. This is not noticeable by the

user in the typical use cases of the PerFlow system, e.g., a presentation, where

such a delay in a slide change would not be interruptive.

8.4. User Study

As the PerFlow Tool is mainly aimed at end users with little to no IT

knowledge, one of the main requirements is a high usability (RNF4). The user has

to understand the tool fast and be able to create new rules for the pervasive systems

without having a deeper knowledge about the theory behind it. To evaluate, if

the users are able to really use all the offered functionalities of PerFlow and if

they are able to do so without trouble, two user studies were conducted.

The following section first introduces the methodology of the user study and the

overall procedure. Afterwards, the participants of the study and their recruitment

are discussed before taking a deeper look on the tasks they had to perform and on

the data acquisition. Lastly, the results of the study are shown and the assessment

of the PerFlow Tool by the users is discussed in detail.

8.4.1. Methodology

For the evaluation of the PerFlow Tool two separate user studies were con-

ducted. They were in their process nearly identical and the users were in both

studies confronted with the same use cases and tasks. But in the second study

some details at the visual scripting tool itself and at the documents handed out

to the participants were tweaked based on the feedback of the first study.

At the beginning of the study, the participants received a short explanation of

the PerFlow Tool. Described on about half a page, this included the overall

goal of the visual scripting tool and how it can be used in smart environments.

Additionally, the different visual scripting elements were explained shortly together

with the functionalities offered by the tool itself comprising also about half a

page. Lastly, one simple example for a rule created in the PerFlow Tool was

shown. The participants then had a few minutes to familiarize themselves with

the visual scripting tool and read the short introduction. As the goal of PerFlow

124

125

as a pervasive middleware is to organize the information flow in many different

scenarios, users may encounter the system without knowing it beforehand e.g.,

by holding a lecture in a new classroom. Therefore, the explanations and the

introduction time for the tool was purposely short as users in real life scenarios

may also encounter the system with nothing more as a short on-screen manual.

In the next step, the participants are provided with a sheet describing several

scenarios and tasks they should perform by using the PerFlow Tool. In each

of these tasks, they are asked to reconfigure a pervasive system according to what

they would need in order to fulfill the needs of the current scenario. The scenario

and tasks are discussed in more detail in Section 8.4.2. After each reconfiguration,

the prototype of the PerFlow Tool saved the new set of rules allowing to check

later if the users were able to create a valid configuration for the pervasive system.

Lastly, the participants were asked to fill out a questionnaire and describe their

experience with the visual scripting tool and how well they received it.

Based on the feedback the users gave in the first study, the PerFlow Tool itself

and the description provided in the second study were refined. For the tool, the

amount of visual scripting elements were reduced by condensing functionalities

of redundant elements. Additionally, the naming scheme for the elements and

their descriptions were improved to be less technical. The same applies to the

overall user interface of the tool. These changes resulted in the design presented

in Section 6.6. Further, the description of the visual scripting tool handed out to

the participants was also written less technical and therefore easier to understand.

Both descriptions, for the first and second study, can be seen in the Appendix

C.1 and C.2.

8.4.2. Scenario and Questionnaire

After the participants had some time to familiarize themselves with the PerFlow

Tool, they were handed out a description for two different scenarios. Each

contained several tasks for the user to solve by using the visual scripting tool.

The handouts with the description of PerFlow, the scenarios, and tasks are

shown in Appendix C.1 for the first study and Appendix C.2 for the second study.

During the first scenario, the participants pose as the teacher in a smart classroom

and need to reconfigure the system in three different ways e.g, for a head on

125

126 8.4. User Study

presentation first and then for the students to use it during group work. The

second scenario placed the users in the role of an employee at an airport. Here,

they needed to reconfigure a smart airport lounge in four different ways to allow,

for instance, visitors to use the screen or send text messages to connected devices.

For the task descriptions, the participants were provided with information on

which users and devices should be able to communicate with each other and

which information they want to share. Thus, they needed to figure out how these

descriptions translate to possible rules and how they can be built by using the

provided visual scripting elements on their own.

Regarding the data collection and the analysis of the results for a user study,

we encounter many different models. Before designing the questionnaire and

the actual conduction of the study, a decision for one of these models had to be

made. The two most prominent and well known models are the Unified Theory

of Acceptance and Use of Technology (UTAUT) model [191] and Technology

Acceptance Model (TAM) [41] with its extensions TAM2 [190] and TAM3 [189].

The goal of the UTAUT model is to determine, if the user is intending to use

the system by looking at the key constructs of performance expectancy, effort

expectancy, social influence, and facilitating conditions. These constructs are

combined with further personal informations of the user. The TAM model on the

other hand focuses more on how the user perceives the usefulness and ease-of-use

of the evaluated system. In most scenarios the administrator chooses a suitable

pervasive middleware for the intended use and sets up the smart environment.

Therefore, it is not the decision of the later end-user if the PerFlow system

and its visual scripting tool is deployed in a specific use case. In the scenario of

the smart lecture room the university or school decides on the system to deploy,

while the lecturer reconfiguring it during the lesson is only able to use what he

was provided with. Thus, for the user study the valuation of the usefulness and

ease-of-use for the system by the user is more valuable as the intention of use, as

the user regardless of his intention would have to use it if it is deployed in the

smart environment.

Therefore, the TAM model is used as the basis for the questionnaire handed out

to the participants after they completed all given tasks. The questionnaire first

asked for some personal information including the gender, age, and IT knowledge.

For the data acquisitionm the questionnaire contains five groups with a total of

126

127

23 Likert-scaled questions between 7 (strongly agree) and 1 (strongly disagree)

and five open questions for comments. The five question categories are for the

Personal Information, Scenario, Ease of use, Usefulness, and User Interface. The

complete questionnaire for the user study can be seen in Appendix C.3.

8.4.3. Participants

In total, 43 users participated in the two studies, 20 in the first and 23 in the second.

The focus was on getting a possible diverse crowd of participants. Therefore,

the users were recruited from students participating in varying courses at the

university and in the private environment of students and colleagues. Within the

questionnaire, the participants were asked for some personal information, of which

the most important one is summarized in the Table 8.1 for both studies.

Study 1 Study 2

Total participants 20 23
Mean age 31.6 years 26.6 years
Male / Female 60.0% / 40.0% 43.5% / 56.5%
IT background 55.0% 45.5%

Table 8.1.: Personal information of the participants taking part in the first and
second user study.

The information shows that the distribution of male to female participants is nearly

50%. While the average age of the participants was 29.1 years, the oldest user was

57 years and the youngest 19 years old. Of all participants 5 have an educational

degree below highschool, 10 a highschool degree, and 28 have an academic degree.

Most importantly for the user study about half of the participants do not work or

study in an IT related field. As the PerFlow Tool is aiming to non professional

users, like the lecturer in the scenario introduced in Section 4.1, the feedback and

assessment of users without knowledge in pervasive systems or programming is

highly valued.

8.4.4. Results

After describing the structure of the user study, the participants, and the tasks

they had to fulfill, the next section will focus on the results obtained through

127

128 8.4. User Study

the questionnaire. As already discussed, two studies were conducted and the

PerFlow Tool, as well as the documentation, was improved in between based

on the feedback of the first study. While it was certainly helpful to evaluate the

Likert-scale questions, the most important feedback for the improvements came in

the form of the open questions where many participants gave useful suggestions.

Additionally, the participants were monitored while solving the tasks. During

the overhaul of the PerFlow Tool, the functionalities itself and the process

of creating new rules remained unchanged. The changes can be categorized in

improved naming scheme, simplified visual scripting language, and improved error

handling. Many participants, especially these without IT knowledge, showed

problems understanding some of the terms used for the visual scripting language

and tool. Therefore, a less technical naming scheme was introduced, which means

that e.g., the “Input Device” and “Output Device” was renamed to “Sender”

and “Receiver”. Further, in the first iteration of the PerFlow Tool the visual

scripting language was more complex and contained e.g., redundant elements

which could be used to create the same outcome in different ways. Some users

found this confusing, which led to a reduction of elements. Lastly, the error

handling was improved by identifying possible error sources and eliminating them.

This has been done by e.g., changing text fields to drop down boxes or not allowing

certain combinations of elements. Due to the simplification of the user interface

and the overall more understandable naming scheme it was also possible to slightly

shorten the documentation for the participants without introducing obstacles for

the users.

During the study the PerFlow Tool saved the created rules for each user and

tasks. This allowed the evaluation of how the users performed and if it would have

been possible to use the created configurations in a real system. By looking at

the results, the effect of the improvements between the studies is visible. During

the first study seven out of the 20 participants created in at least one task rules

with minor to severe errors, which would have led to a faulty system. Even so

the handout with the introduction for the visual scripting tool was simplified

and reduced in length for the second study the participants produced way better

results. Only two out of the 23 participants created the same kind of errors, while

one other user made a small error, which would have easily been caught with an

improved error handling while saving the configuration.

128

129

Scenario Ease of Use Usefulness User Interface

5

5.5

6

6.5

7

5.88 5.8
5.92 5.95.87

6.28

6.02
6.17

R
at

in
g

Study 1
Study 2

Figure 8.8.: Comparison of the average rating of the first and second user study
in the different categories. The values show an overall increase in the
second study.

The average results for the four categories of Likert-scaled questions can be seen

in Figure 8.8. Additionally, the results for both studies can be compared. As

the description of the PerFlow Tool was simplified and less information was

provided, the results showed that the participants rated the scenario, helping

material, and documentation lower in the second study. Especially the question

on how satisfied the participants were with the provided helping material dropped

from an average 6.10 to a 5.65 rating. Nonetheless, the ratings in all other

categories increased and were between 6 (moderately agree) and 7 (strongly agree)

for the second study. The strong improvement is visible in the average values,

where especially an increase from 5.80 to 6.28 for the the Ease of use can be seen

and the User Interface is also evaluated as more intuitive. Especially noteworthy

is that the result for the statement “I find the application easy to use.” was raised

by 0.6 points to 6.35 and for “The function of the elements is clear.” the result

increased by 0.81 points to 6.26 in average. In both studies the participants saw

the overall appeal of the application and valuated the Usefulness of the PerFlow

Tool for the scenarios with 5.97 in average. Even though the participants were

already quite satisfied with the visual scripting tool in the first study, some small

tweaks without altering the functionalities made a large impact in the perceived

129

130 8.5. Summary

Ease of use. Appendix C.4 shows the average results for each question for the

first and second user study.

8.5. Summary

In this chapter, the evaluation of the prototype of the PerFlow system, includ-

ing the PerFlow Middleware, PerFlow Tool, and PerFlow Virtual

Extension, was presented. The evaluation was split into four parts. First, a

qualitative evaluation was performed introducing the PerLE testbed for perva-

sive classrooms. Second, the implementation effort for developers while using

the PerFlow Middleware was examined. Third, four different performance

measurements were conducted looking at the time needed to reconfigure the

PerFlow system and the overhead introduced by the middleware, the virtual

extension, and the consensus algorithm. Fourth, two user studies were discussed

showing the usability and ease of use of the PerFlow Tool.

Requirement Discussion

RF1 - Information Exchange PerLE
RF2 - Runtime Reconfiguration PerLE
RF3 - Bundling Information Flow PerLE
RF4 - Heterogeneity Support PerLE
RF5 - Device Management PerLE
RF6 - Access Control PerLE
RF7 - Remote Access PerLE
RNF1 - Responsiveness Performance Measurements
RNF2 - Fault Tolerance User Study
RNF3 - Generalizability PerLE & User Study
RNF4 - Usability User Study & Implementation Effort
RNF5 - Extensibility PerLE

Table 8.2.: The requirements for PerFlow introduced in Chapter 4 and where
they are discussed in the evaluation.

In Table 8.2 the requirements introduced in Chapter 4 are shown together with

the associated part of the evaluation. The functional requirements RF1 - RF7

were discussed in Section 8.1 and the fulfillment was shown at the example of

the PerLE testbed. Further, the conducted performance measurements showed

130

131

that it is possible to develop applications in the PerFlow system which are

responsive (RNF1). The user studies resulted in a high usability (RNF4) and after

some small adjustments most of the participants in the second study made no

mistakes while creating the rules (RNF2). Additionally, in Section 8.2 we could

show that a high usability (RNF4) of the PerFlow Middleware is also given for

developers. During the evaluation three possible use cases for smart classrooms,

meeting rooms, and airport lounges were discussed, which support the argument

for a generalizable system (RNF3). Lastly, during the development of the PerLE

testbed several new file formats were introduced for the communication via the

PerFlow Middleware e.g., PDF or voice recordings, showing the extensibility

of the system (RNF5).

131

9. Conclusion and Outlook

In the previous chapter, we discussed the evaluation of the prototype for the

PerFlow system, including the PerFlow Tool and PerFlow Virtual

Extension. The evaluation was comprised of a proof of concept with the

PerLE testbed, an analysis of the implementation effort, several performance

measurements, and a two stage user study for the visual scripting language and

tool. In this chapter we close the thesis with a conclusion and give an outlook on

possible future work.

9.1. Conclusion

With the increasing number of smart devices in today’s environments many people

are encountering them in a daily basis. This is not only true for people directly

working in the field of information technology or people with a high interest in

novel technologies, but also for many others. Often, users are even forced to

interact with smart devices, if, for instance, their employer deploys a new smart

meeting room or their school decides to introduce intelligent classrooms. This

ubiquity of smart devices bears several challenges. While smart environments

are often set up by administrators and offer possibilities to adapt themselves to

the surrounding context, it is impossible to predict every scenario a user could

encounter. Therefore, end users need the possibility to influence the behavior

of the system on their own. This is especially challenging for users that are not

familiar with smart devices. Further, while people start relying on their smart

devices and use them for help with their daily task, these systems are often getting

critical to the work performance of some users. This leads to the fact, that users

may need access to their systems even while they are not physically on location.

To tackle these challenges and answer the research questions postulated in Section

1.2, this thesis presented the PerFlow system. The design of the system is

split into three major parts, each supporting one of the research questions. First,

133

134 9.1. Conclusion

the PerFlow Middleware is responsible for handling the communication

in a pervasive system and allows the reconfiguration of the information flow

during runtime. To achieve this, application developers are not required to define

themselves to which other applications or devices they want theirs to connect.

Instead, they need to inform the middleware which information their application

is able to provide or receive. The middleware is then responsible to distribute the

data. This is done by the middleware according to configurations provided by users.

After handing over a new configuration, the middleware is also responsible for

validating and distributing it throughout the system. Second, with the PerFlow

Tool we offer end users an easy to use visual scripting tool to enable them

to create their own configurations for the middleware and thus reconfigure the

system to their needs. Therefore, an own visual scripting language was introduced.

The language is designed to create rules for the information flow in a pervasive

system. Users submit new sets of rules and the middleware interprets them and

reconfigures the system accordingly. Third, the PerFlow Virtual Extension

gives developers the possibility to transfer their services and applications to a

virtual environment. Which gives end users the ability to have a comparable user

experience remotely as the users physically on location. The virtual extension

utilizes an existing game engine and provides a proxy to enable the communication

of virtual applications with the middleware.

Finally, the thesis discusses the implementation of a prototype for the complete

PerFlow system and provides an in depth evaluation. The evaluation was

conducted in four steps. First, showing with a proof of concept that it is possible

to reconfigure the pervasive system during the runtime. Therefore, the PerLE

testbed was introduced, showing how PerFlow could be used in a learning

environment scenario. Second, the evaluation showed that the use of the Per-

Flow Middleware reduces the implementation effort for application developers.

Third, performance measurements led to the conclusion that the PerFlow

Middleware does not introduce a noticeable overhead compared to the used

communication middleware. Additionally, remote users are also experiencing no

overhead when using the PerFlow Virtual Extension. Fourth, a two stage

user study demonstrated that it is possible for unexperienced users to configure a

pervasive system with the introduced PerFlow Tool.

134

135

9.2. Outlook

During the design and development of the PerFlow system we encountered

several research challenges. These provide a promising starting point for possible

future work.

While the PerFlow Middleware showed good performance with BASE [16]

as the chosen communication middleware, it may be worth analyzing different

middlewares. In this case, it would be of special interest to look at middlewares

with different communication models. As BASE uses remote procedure calls, a

comparison with middlewares based on publish-subscribe or tuple spaces could

lead to new insights.

Further, as the PerFlow Tool can be easily exchanged for other visual scripting

tools, it provides the possibility to compare different visual scripting languages.

The chosen data flow based visual alphabet showed in the user study a good

usability for the configuration of the information flow. Nonetheless, a comparison

with other alphabets, e.g., an iconic, graph, or box based alphabet, could lead to

further insights. This would require to first analyze how the different alphabets

could be applied to the use case of a pervasive system and then design and develop

a new language and visual scripting tool.

Additionally, a direct integration of the PerFlow Middleware into the archi-

tecture of a game engine could lead to a significant performance improve. With

such an integration the separate proxy for the PerFlow Virtual Extension

and thus one extra serialization step could be saved. But this would require a

cooperation with one of the commercial developers to get access to the low level

architecture of their game engine.

Lastly, a large and long term field study for the complete PerFlow system would

be desirable. By deploying the system for instance at a university or school, it

would be possible to analyze how lectures benefit from pervasive systems and how

lecturers and students rate the usability.

135

Bibliography

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.

Towards a better understanding of context and context-awareness. In

H. Gellersen, editor, Handheld and Ubiquitous Computing, First Interna-

tional Symposium, HUC’99, Karlsruhe, Germany, September 27-29, 1999,

Proceedings, volume 1707 of Lecture Notes in Computer Science, pages

304–307. Springer, 1999.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design

and implementation of an intentional naming system. In D. Kotz and

J. Wilkes, editors, Proceedings of the 17th ACM Symposium on Operating

System Principles, SOSP 1999, Kiawah Island Resort, near Charleston,

South Carolina, USA, December 12-15, 1999, pages 186–201. ACM, 1999.

[3] Adobe Inc. Adobe Connect web conferencing software.

https://www.adobe.com/products/adobeconnect.html. Online; accessed:

October 02, 2019.

[4] S. Ahmed, M. Sharmin, and S. I. Ahamed. A smart meeting room with perva-

sive computing technologies. In L. Chung and Y. Song, editors, Proceedings

of the 6th ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD 2005),

May 23-25, 2005, Towson, Maryland, USA, pages 366–371. IEEE Computer

Society, 2005.

[5] E. Aitenbichler, J. Kangasharju, and M. Mühlhäuser. Mundocore: A

light-weight infrastructure for pervasive computing. Pervasive and Mobile

Computing, 3(4):332–361, 2007.

[6] A. J. Albrecht and J. E. G. Jr. Software function, source lines of code, and

development effort prediction: A software science validation. IEEE Trans.

Software Eng., 9(6):639–648, 1983.

xix

xx Bibliography

[7] Amazon Web Services, Inc. AWS IoT. https://aws.amazon.com/de/iot/.

Online; accessed: September 26, 2019.

[8] Apple Inc. Apple HomeKit. https://www.apple.com/de/ios/home/. Online;

accessed: September 26, 2019.

[9] Apple Inc. Apple Human Interface Guidelines. https://developer.apple.

com/design/human-interface-guidelines/. Online; accessed: August

17, 2019.

[10] Artifex Software, Inc. Ghostscript. https://www.ghostscript.com/. On-

line; accessed: August 6, 2019.

[11] K. Ashton. That ‘internet of things’ thing. RFID journal, 22(7):97–114,

2009.

[12] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.

Computer Networks, 54(15):2787–2805, 2010.

[13] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware

systems. IJAHUC, 2(4):263–277, 2007.

[14] R. Bardohl. A visual environment for visual languages. Sci. Comput.

Program., 44(2):181–203, 2002.

[15] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM - A compo-

nent system for pervasive computing. In Proceedings of the Second IEEE

International Conference on Pervasive Computing and Communications

(PerCom 2004), 14-17 March 2004, Orlando, FL, USA, pages 67–76. IEEE

Computer Society, 2004.

[16] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. BASE - A micro-

broker-based middleware for pervasive computing. In Proceedings of the

First IEEE International Conference on Pervasive Computing and Com-

munications (PerCom’03), March 23-26, 2003, Fort Worth, Texas, USA,

pages 443–451. IEEE Computer Society, 2003.

[17] S. Benford and L. E. Fahlén. A spatial model of interaction in large vir-

tual environments. In Third European Conference on Computer Supported

Cooperative Work, ECSCW’93, Milano, Italy, September 13-17, 1993, Pro-

ceedings, page 107. Kluwer Academic Publishers, 1993.

xx

https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://www.ghostscript.com/

Bibliography xxi

[18] S. Benford, C. Greenhalgh, G. Reynard, C. Brown, and B. Koleva. Un-

derstanding and constructing shared spaces with mixed-reality boundaries.

ACM Trans. Comput.-Hum. Interact., 5(3):185–223, 1998.

[19] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages

with only two formation rules. Commun. ACM, 9(5):366–371, 1966.

[20] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Macmillan

Education UK, 1976.

[21] J. Botev, A. Höhfeld, H. Schloss, I. Scholtes, P. Sturm, and M. Esch. The

hyperverse: concepts for a federated and torrent-based ‘3d web’. IJAMC,

2(4):331–350, 2008.

[22] A. Bröring, S. Schmid, C. K. Schindhelm, A. Khelil, S. Käbisch, D. Kramer,

D. L. Phuoc, J. Mitic, D. Anicic, and E. Teniente. Enabling iot ecosystems

through platform interoperability. IEEE Software, 34(1):54–61, 2017.

[23] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications: from

the laboratory to the marketplace. IEEE Personal Commun., 4(5):58–64,

1997.

[24] M. M. Burnett and A. L. Ambler. A declarative approach to event-handling

in visual programming languages. In Proceedings of the 1992 IEEE Workshop

on Visual Languages, September 15-18, 1992, Seattle, Washington, USA,

pages 34–40. IEEE Computer Society, 1992.

[25] H. E. Byun and K. Cheverst. Supporting proactive ‘intelligent’ behaviour:

the problem of uncertainty. In Proceedings of the UM03 Workshop on User

Modeling for Ubiquitous Computing, pages 17–25, 2003.

[26] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: context-aware re-

flective middleware system for mobile applications. IEEE Trans. Software

Eng., 29(10):929–945, 2003.

[27] D. Carlson and A. Schrader. Dynamix: An open plug-and-play context

framework for android. In 3rd IEEE International Conference on the Internet

of Things, IOT 2012, Wuxi, Jiangsu Province, China, October 24-26, 2012,

pages 151–158. IEEE, 2012.

[28] E. Catmull. A Subdivision Algorithm for Computer Display of Curved

Surfaces. PhD thesis, Dept. of Computer Science, Univ. of Utah, 1974.

xxi

xxii Bibliography

[29] A. T. S. Chan and S. N. Chuang. MobiPADS: A reflective middleware for

context-aware mobile computing. IEEE Trans. Software Eng., 29(12):1072–

1085, 2003.

[30] C. Chang, S. Ling, and S. Krishnaswamy. ProMWS: Proactive mobile

web service provision using context-awareness. In Ninth Annual IEEE

International Conference on Pervasive Computing and Communications,

PerCom 2011, 21-25 March 2011, Seattle, WA, USA, Workshop Proceedings,

pages 69–74. IEEE Computer Society, 2011.

[31] S. Chang. Visual languages: A tutorial and survey. IEEE Software, 4(1):29–

39, 1987.

[32] S. Chang, M. J. Tauber, B. Yu, and J. Yu. A visual language compiler.

IEEE Trans. Software Eng., 15(5):506–525, 1989.

[33] K. Charntaweekhun and S. Wangsiripitak. Visual programming using

flowchart. In 2006 International Symposium on Communications and Infor-

mation Technologies, pages 1062–1065. IEEE, 2006.

[34] H. Chen. An intelligent broker architecture for pervasive context-aware

systems. PhD thesis, University of Maryland, Baltimore County, 2004.

[35] S. Chetan, J. Al-Muhtadi, R. Campbell, and M. D. Mickunas. Mobile gaia:

a middleware for ad-hoc pervasive computing. In Second IEEE Consumer

Communications and Networking Conference, 2005. CCNC. 2005, pages

223–228, Jan 2005.

[36] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing

a context-aware electronic tourist guide: some issues and experiences. In

T. Turner and G. Szwillus, editors, Proceedings of the CHI 2000 Conference

on Human factors in computing systems, The Hague, The Netherlands,

April 1-6, 2000., pages 17–24. ACM, 2000.

[37] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis. The

RUNES middleware: a reconfigurable component-based approach to net-

worked embedded systems. In Proceedings of the IEEE 16th International

Symposium on Personal, Indoor and Mobile Radio Communications, Berlin,

Germany, September 11-14, 2005, pages 806–810. IEEE, 2005.

xxii

Bibliography xxiii

[38] G. Costagliola, A. D. Lucia, S. Orefice, and G. Polese. A classification

framework to support the design of visual languages. J. Vis. Lang. Comput.,

13(6):573–600, 2002.

[39] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems - concepts

and designs (3. ed.). International computer science series. Addison-Wesley-

Longman, 2002.

[40] N. Davies, K. Mitchell, K. Cheverst, and G. Blair. Developing a context

sensitive tourist guide. In 1st Workshop on Human Computer Interaction

with Mobile Devices, GIST Technical Report G98-1, volume 1, 1998.

[41] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User acceptance of computer

technology: A comparison of two theoretical models. Management Science,

35(8):982–1003, 1989.

[42] M. Davis. Media streams: An iconic visual language for video annotation.

In Proceedings of the 1993 IEEE Workshop on Visual Languages, August

24-27, 1993, Bergen, Norway, pages 196–202. IEEE Computer Society, 1993.

[43] A. K. Dey. Context-aware computing: The cyberdesk project. In Proceedings

of the AAAI 1998 Spring Symposium on Intelligent Environments, pages

51–54, 1998.

[44] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[45] Dom4j. Flexible XML framework for Java. https://dom4j.github.io/.

Online; accessed: August 6, 2019.

[46] Easy Virtual Fair. Easy Virtual Fair. Online; accessed: October 02, 2019.

[47] W. K. Edwards, M. W. Newman, J. Z. Sedivy, and S. Izadi. Challenge:

recombinant computing and the speakeasy approach. In I. F. Akyildiz, J. Y.

Lin, R. Jain, V. Bharghavan, and A. T. Campbell, editors, Proceedings

of the Eighth Annual International Conference on Mobile Computing and

Networking, MOBICOM 2002, Atlanta, Georgia, USA, September 23-28,

2002, pages 279–286. ACM, 2002.

[48] S. R. Ellis. Nature and origins of virtual environments: a bibliographical

essay. In R. M. BAECKER, J. GRUDIN, W. A. BUXTON, and S. GREEN-

xxiii

https://dom4j.github.io/

xxiv Bibliography

BERG, editors, Readings in Humanâ€“Computer Interaction, Interactive

Technologies, pages 913 – 932. Morgan Kaufmann, 1995.

[49] C. Escoffier, S. Chollet, and P. Lalanda. Lessons learned in building perva-

sive platforms. In 11th IEEE Consumer Communications and Networking

Conference, CCNC 2014, Las Vegas, NV, USA, January 10-13, 2014, pages

7–12. IEEE, 2014.

[50] C. Escoffier, R. S. Hall, and P. Lalanda. ipojo: an extensible service-oriented

component framework. In 2007 IEEE International Conference on Services

Computing (SCC 2007), 9-13 July 2007, Salt Lake City, Utah, USA, pages

474–481. IEEE Computer Society, 2007.

[51] Facebook Technologies, LLC. Oculus Rift S. https://www.oculus.com/

rift-s/. Online; accessed: August 6, 2019.

[52] Facebook Technologies, LLC. Oculus Venues.

https://www.oculus.com/experiences/go/1555304044520126/. Online;

accessed: October 02, 2019.

[53] J. Feng and J. Li. Google protocol buffers research and application in online

game. In IEEE Conference Anthology, pages 1–4, Jan 2013.

[54] W. A. Fetter. A progression of human figures simulated by computer

graphics. IEEE Computer Graphics and Applications, (9):9–13, 1982.

[55] H. W. Franke. Computer graphics - computer art. Springer Science &

Business Media, 2012.

[56] E. Frécon and M. Stenius. DIVE: a scaleable network architecture for

distributed virtual environments. Distributed Systems Engineering, 5(3):91–

100, 1998.

[57] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura:

Toward distraction-free pervasive computing. IEEE Pervasive Computing,

1(2):22–31, 2002.

[58] E. P. Glinert. Out of flatland: towards 3-d visual programming. In S. A.

Szygenda, editor, Proceedings of the 1987 Fall Joint Computer Conference

on Exploring technology: today and tomorrow, pages 292–299. ACM, 1987.

[59] E. J. Golin and S. P. Reiss. The specification of visual language syntax. J.

Vis. Lang. Comput., 1(2):141–157, 1990.

xxiv

https://www.oculus.com/rift-s/
https://www.oculus.com/rift-s/

Bibliography xxv

[60] Google Inc. Google Android Design Guidelines. https://developer.

android.com/docs/quality-guidelines. Online; accessed: August 17,

2019.

[61] Google Inc. Gson library. https://github.com/google/gson. Online;

accessed: August 6, 2019.

[62] Google Inc. Protocol Buffers. https://developers.google.com/

protocol-buffers/. Online; accessed: August 6, 2019.

[63] M. L. Graf. A visual environment for the design of distributed systems. In

Visual Languages and Applications, pages 53–67. Springer, 1990.

[64] C. Greenhalgh and S. Benford. Virtual reality tele-conferencing: Imple-

mentation and experience. In Fourth European Conference on Computer

Supported Cooperative Work, ECSCW’95, Stockholm, Sweden, September

11-15, 1995, Proceedings, page 163. Kluwer Academic Publishers, 1995.

[65] J. Gregory. Game engine architecture. AK Peters/CRC Press, 2017.

[66] R. Grimm. One.world: Experiences with a pervasive computing architecture.

IEEE Pervasive Computing, 3(3):22–30, 2004.

[67] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. E. Anderson,

B. N. Bershad, G. Borriello, S. D. Gribble, and D. Wetherall. System support

for pervasive applications. ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[68] T. Gu, H. K. Pung, and D. Zhang. A service-oriented middleware for

building context-aware services. J. Network and Computer Applications,

28(1):1–18, 2005.

[69] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot):

A vision, architectural elements, and future directions. Future Generation

Comp. Syst., 29(7):1645–1660, 2013.

[70] S. Gundlach and M. K. Martin. Mastering CryENGINE. Packt Publishing

Ltd, Birmingham, UK, 2014.

[71] M. Handte, C. Becker, and K. Rothermel. Peer-based automatic configura-

tion of pervasive applications. Int. J. Pervasive Computing and Communi-

cations, 1(4):251–264, 2005.

xxv

https://developer.android.com/docs/quality-guidelines
https://developer.android.com/docs/quality-guidelines
https://github.com/google/gson
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

xxvi Bibliography

[72] M. Handte, G. Schiele, V. Majuntke, C. Becker, and P. J. Marrón. 3pc:

System support for adaptive peer-to-peer pervasive computing. TAAS,

7(1):10:1–10:19, 2012.

[73] P. Hanrahan and W. Krueger. Reflection from layered surfaces due to sub-

surface scattering. In M. C. Whitton, editor, Proceedings of the 20th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

1993, Anaheim, CA, USA, August 2-6, 1993, pages 165–174. ACM, 1993.

[74] T. R. Hansen and J. E. Bardram. Activetheatre - A collaborative, event-

based capture and access system for the operating theatre. In M. Beigl,

S. S. Intille, J. Rekimoto, and H. Tokuda, editors, UbiComp 2005: Ubiq-

uitous Computing, 7th International Conference, UbiComp 2005, Tokyo,

Japan, September 11-14, 2005, Proceedings, volume 3660 of Lecture Notes

in Computer Science, pages 375–392. Springer, 2005.

[75] HashiCorp. HashiCorp Consul. https://www.hashicorp.com/products/

consul/. Online; accessed: July 18, 2019.

[76] F. Heger, G. Schiele, R. Süselbeck, L. Itzel, and C. Becker. Scalability

in peer-to-peer-based mmves: The continuous events approach. In 2012

IEEE Consumer Communications and Networking Conference (CCNC), Las

Vegas, NV, USA, January 14-17, 2012, pages 629–633. IEEE, 2012.

[77] S. Helal, W. C. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen.

The gator tech smart house: A programmable pervasive space. IEEE

Computer, 38(3):50–60, 2005.

[78] K. Herrmann, K. Rothermel, G. Kortuem, and N. Dulay. Adaptable per-

vasive flows - an emerging technology for pervasive adaptation. In Second

IEEE International Conference on Self-Adaptive and Self-Organizing Sys-

tems, SASO 2008, Workshops Proceedings, October 20-24, 2008, Venice,

Italy, pages 108–113. IEEE Computer Society, 2008.

[79] C. K. Hess, M. Román, and R. H. Campbell. Building applications for

ubiquitous computing environments. In F. Mattern and M. Naghshineh,

editors, Pervasive Computing, First International Conference, Pervasive

2002, Zürich, Switzerland, August 26-28, 2002, Proceedings, volume 2414 of

Lecture Notes in Computer Science, pages 16–29. Springer, 2002.

xxvi

https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/

Bibliography xxvii

[80] D. D. Hils. Visual languages and computing survey: Data flow visual

programming languages. J. Vis. Lang. Comput., 3(1):69–101, 1992.

[81] M. Hirakawa, M. Tanaka, and T. Ichikawa. An iconic programming system,

HI-VISUAL. IEEE Trans. Software Eng., 16(10):1178–1184, 1990.

[82] S. Holloway and C. Julien. The case for end-user programming of ubiquitous

computing environments. In G. Roman and K. J. Sullivan, editors, Proceed-

ings of the Workshop on Future of Software Engineering Research, FoSER

2010, at the 18th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010,

pages 167–172. ACM, 2010.

[83] J. Hong, E. Suh, J. Kim, and S. Kim. Context-aware system for proactive

personalized service based on context history. Expert Syst. Appl., 36(4):7448–

7457, 2009.

[84] J. Hong, E. Suh, and S. Kim. Context-aware systems: A literature review

and classification. Expert Syst. Appl., 36(4):8509–8522, 2009.

[85] HTC Corporation. HTC Vive. https://www.vive.com/de/product/. On-

line; accessed: August 6, 2019.

[86] S. Hu, J. Chen, and T. Chen. VON: a scalable peer-to-peer network for

virtual environments. IEEE Network, 20(4):22–31, 2006.

[87] S.-Y. Hu. Spatial publish subscribe. In Proc. of IEEE Virtual Reality (IEEE

VR) workshop, Massively Multiuser Virtual Environment (MMVEâ€™09),

2009.

[88] M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts

and principles. IEEE Internet Computing, 9(1):75–81, 2005.

[89] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free

coordination for internet-scale systems. In P. Barham and T. Roscoe, editors,

2010 USENIX Annual Technical Conference, Boston, MA, USA, June 23-25,

2010. USENIX Association, 2010.

[90] IFTTT, Inc. IFTTT: If this then that. https://ifttt.com/. Online; accessed:

September 26, 2019.

xxvii

https://www.vive.com/de/product/

xxviii Bibliography

[91] ILIAS open source e-Learning Society. ILIAS open source learning man-

agement system. https://www.ilias.de/en/. Online; accessed: October 02,

2019.

[92] A. Indraprastha and M. Shinozaki. The investigation on using unity3d game

engine in urban design study. Journal of ICT Research and Applications,

3(1):1–18, 2009.

[93] H. Ingo. Four modifications for the Raft consensus algorithm. Technical

report, 2015.

[94] S. Izadi, A. Agarwal, A. Criminisi, J. M. Winn, A. Blake, and A. W.

Fitzgibbon. C-slate: A multi-touch and object recognition system for

remote collaboration using horizontal surfaces. In Second IEEE International

Workshop on Horizontal Interactive Human-Computer Systems (Tabletop

2007), October 10-12 2007, Newport, Rhode Island, USA, pages 3–10. IEEE

Computer Society, 2007.

[95] M. Jeronimo and J. Weast. UPnP design by example, volume 158. Intel

Press, 2003.

[96] JGraphT. JGraphT library of graph theory data structures and algorithms.

https://jgrapht.org/javadoc/. Online; accessed: August 20, 2019.

[97] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces project:

Experiences with ubiquitous computing rooms. IEEE Pervasive Computing,

1(2):67–74, 2002.

[98] JS Foundation. Node-RED. https://nodered.org/. Online; accessed: August

17, 2019.

[99] JSON. JSON Introduction. http://json.org/. Online; accessed: August

6, 2019.

[100] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance

broadcast for primary-backup systems. In Proceedings of the 2011 IEEE/I-

FIP International Conference on Dependable Systems and Networks, DSN

2011, Hong Kong, China, June 27-30 2011, pages 245–256. IEEE Compute

Society, 2011.

[101] P. Kauff and O. Schreer. An immersive 3d video-conferencing system using

shared virtual team user environments. In W. Broll, C. Greenhalgh, and

xxviii

https://jgrapht.org/javadoc/
http://json.org/

Bibliography xxix

E. F. Churchill, editors, Proceedings of the 4th International Conference on

Collaborative Virtual Environments 2002, Bonn, Germany, September 30 -

October 02, 2002, pages 105–112. ACM, 2002.

[102] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. S. Magalhães, and

R. H. Campbell. Monitoring, security, and dynamic configuration with the

dynamicTAO reflective ORB. In J. S. Sventek and G. Coulson, editors,

Middleware 2000, IFIP/ACM International Conference on Distributed Sys-

tems Platforms, New York, NY, USA, April 4-7, 2000, Proceedings, volume

1795 of Lecture Notes in Computer Science, pages 121–143. Springer, 2000.

[103] C. D. Kounavis, A. E. Kasimati, and E. D. Zamani. Enhancing the tourism

experience through mobile augmented reality: Challenges and prospects.

International Journal of Engineering Business Management, 4:10, 2012.

[104] P. Lalanda, C. Hamon, C. Escoffier, and T. Leveque. icasa, a development

and simulation environment for pervasive home applications. In Proc. CCNC,

2014.

[105] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[106] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, 1998.

[107] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[108] P. A. Laplante. Requirements engineering for software and systems. Auer-

bach Publications, 2017.

[109] R. Lea, Y. Honda, and K. Matsuda. Virtual society: Collaboration in 3d

spaces on the internet. Computer Supported Cooperative Work, 6(2/3):227–

250, 1997.

[110] G. Lepouras and C. Vassilakis. Virtual museums for all: employing game

technology for edutainment. Virtual Reality, 8(2):96–106, 2004.

[111] M. Lewis and J. Jacobson. Game engines in scientific research - introduction.

Commun. ACM, 45(1):27–31, 2002.

[112] Linden Research, Inc. Second Life. https://secondlife.com. Online;

accessed: October 02, 2019.

xxix

https://secondlife.com

xxx Bibliography

[113] B. Liskov and J. Cowling. Viewstamped replication revisited. Technical

report, MIT, 2012.

[114] A. D. Lucia, R. Francese, I. Passero, and G. Tortora. Development and

evaluation of a virtual campus on second life: The case of seconddmi.

Computers & Education, 52(1):220–233, 2009.

[115] V. Majuntke, S. VanSyckel, D. Schäfer, C. Krupitzer, G. Schiele, and

C. Becker. COMITY: coordinated application adaptation in multi-platform

pervasive systems. In 2013 IEEE International Conference on Pervasive

Computing and Communications, PerCom 2013, San Diego, CA, USA,

March 18-22, 2013, pages 11–19. IEEE Computer Society, 2013.

[116] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The

scratch programming language and environment. TOCE, 10(4):16:1–16:15,

2010.

[117] C. Marinagi, P. Belsis, and C. Skourlas. New directions for pervasive

computing in logistics. Procedia - Social and Behavioral Sciences, 73:495 –

502, 2013.

[118] J. Martin. Managing the Data Base Environment. A James Martin book.

Pearson Education, Limited, 1983.

[119] meetyoo conferencing GmbH. meetyoo conferencing.

https://meetyoo.com/en/. Online; accessed: October 02, 2019.

[120] Microsoft Corporation. Azure IoT Hub. https://azure.microsoft.com/de-

de/services/iot-hub/. Online; accessed: September 26, 2019.

[121] Microsoft Corporation. Microsoft Teams. https://products.office.com/en-

us/microsoft-teams/group-chat-software. Online; accessed: October 02,

2019.

[122] Microsoft Corporation. Microsoft Universal Windows Platform. https:

//docs.microsoft.com/en-us/windows/uwp/. Online; accessed: August

6, 2019.

[123] Microsoft Corporation. Microsoft UWP Design Guidelines. https://docs.

microsoft.com/en-us/windows/uwp/design/. Online; accessed: August

17, 2019.

xxx

https://docs.microsoft.com/en-us/windows/uwp/
https://docs.microsoft.com/en-us/windows/uwp/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/

Bibliography xxxi

[124] G. S. P. Miller. Efficient algorithms for local and global accessibility shading.

In D. Schweitzer, A. S. Glassner, and M. Keeler, editors, Proceedings of the

21th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, pages 319–326.

ACM, 1994.

[125] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac. Internet of

things: Vision, applications and research challenges. Ad Hoc Networks,

10(7):1497–1516, 2012.

[126] K. L. Morse. Interest management in large-scale distributed simulations.

Technical report, Information and Computer Science, University of Califor-

nia, Irvine, 1996.

[127] M. A. Musen, L. M. Fagan, and E. H. Shortliffe. Graphical specification

of procedural knowledge for an expert system. Expert systems: the user

interface, pages 15–35, 1988.

[128] B. A. Myers. Visual programming, programming by example, and program

visualization: a taxonomy. In ACM sigchi bulletin, volume 17, pages 59–66.

ACM, 1986.

[129] B. A. Myers. Taxonomies of visual programming and program visualization.

J. Vis. Lang. Comput., 1(1):97–123, 1990.

[130] B. A. Myers, J. F. Pane, and A. J. Ko. Natural programming languages

and environments. Commun. ACM, 47(9):47–52, 2004.

[131] J. Naber, C. Krupitzer, and C. Becker. Transferring an interactive display

service to the virtual reality. In 2017 IEEE International Conference on

Smart Computing, SMARTCOMP 2017, Hong Kong, China, May 29-31,

2017, pages 1–8. IEEE Computer Society, 2017.

[132] J. Naber, M. Pfannemüller, J. Edinger, and C. Becker. Perflow: Configuring

the information flow in a pervasive middleware via visual scripting. In Pro-

ceedings of the 16th EAI International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous. ACM, 2019.

to be puplished.

[133] J. Naber, D. Schäfer, S. VanSyckel, and C. Becker. Interactive display

services for smart environments. In Y. Wu, G. Min, N. Georgalas, J. Hu,

xxxi

xxxii Bibliography

L. Atzori, X. Jin, S. A. Jarvis, L. C. Liu, and R. A. Calvo, editors, 15th

IEEE International Conference on Computer and Information Technology,

CIT 2015; 14th IEEE International Conference on Ubiquitous Computing

and Communications, IUCC 2015; 13th IEEE International Conference on

Dependable, Autonomic and Secure Computing, DASC 2015; 13th IEEE

International Conference on Pervasive Intelligence and Computing, PICom

2015, Liverpool, United Kingdom, October 26-28, 2015, pages 2157–2164.

IEEE, 2015.

[134] J. Naber, S. Schmitz, and C. Becker. Perle: A testbed for pervasive

middlewares in learning environments. In IEEE International Conference on

Pervasive Computing and Communications Workshops, PerCom Workshops

2019, Kyoto, Japan, March 11-15, 2019, pages 474–479. IEEE, 2019.

[135] B. J. Nelson. Remote Procedure Call. PhD thesis, Pittsburgh, PA, USA,

1981.

[136] M. W. Newman, J. Z. Sedivy, C. Neuwirth, W. K. Edwards, J. I. Hong,

S. Izadi, K. Marcelo, and T. F. Smith. Designing for serendipity: sup-

porting end-user configuration of ubiquitous computing environments. In

B. Verplank, A. G. Sutcliffe, W. E. Mackay, J. Amowitz, and W. W. Gaver,

editors, Proceedings of the 4th Conference on Designing Interactive Systems:

Processes, Practices, Methods, and Techniques, DIS 2002, London, England,

UK, June 25-28, 2002, pages 147–156. ACM, 2002.

[137] NextVR Inc. NextVR: Virtual Reality Events. https://nextvr.com/. Online;

accessed: October 02, 2019.

[138] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm. A sloc counting

standard. Technical report, Cocomo II Forum, 2007.

[139] M. Nidd. Service discovery in deapspace. IEEE Personal Commun., 8(4):39–

45, 2001.

[140] D. A. Norman. The invisible computer - why good products can fail, the

personal computer is so complex, and information appliances are the solution.

MIT Press, 1999.

[141] NSpeex. Speex for .NET. https://github.com/aijingsun6/NSpeex. On-

line; accessed: August 6, 2019.

xxxii

https://github.com/aijingsun6/NSpeex

Bibliography xxxiii

[142] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. Comparison of json

and xml data interchange formats: a case study. Caine, 9:157–162, 2009.

[143] OASIS. MQTT Specification Version 3.1.1. http://docs.oasis-open.org/

mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2018. Online; accessed:

August 6, 2019.

[144] D. Ongaro. Consensus: Bridging theory and practice. PhD thesis, Stanford

University, 2014.

[145] D. Ongaro and J. K. Ousterhout. In search of an understandable consensus

algorithm. In G. Gibson and N. Zeldovich, editors, 2014 USENIX Annual

Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June

19-20, 2014., pages 305–319. USENIX Association, 2014.

[146] openHAB Foundation e.V. openHAB. https://www.openhab.org/. Online;

accessed: September 26, 2019.

[147] Oracle Inc. Java SE 9. https://docs.oracle.com/javase/9/docs/api/

overview-summary.html. Online; accessed: August 6, 2019.

[148] Oracle Inc. SAX parser for Java. https://docs.oracle.com/javase/9/

docs/api/javax/xml/parsers/SAXParser.html. Online; accessed: Au-

gust 6, 2019.

[149] J. K. Ousterhout. Scripting: Higher-level programming for the 21st century.

IEEE Computer, 31(3):23–30, 1998.

[150] F. Paganelli and D. Giuli. An ontology-based system for context-aware and

configurable services to support home-based continuous care. IEEE Trans.

Information Technology in Biomedicine, 15(2):324–333, 2011.

[151] L. Pantel and L. C. Wolf. On the suitability of dead reckoning schemes

for games. In L. C. Wolf, editor, Proceedings of the 1st Workshop on

Network and System Support for Games, NETGAMES 2002, Braunschweig,

Germany, April 16-17, 2002, 2003, pages 79–84. ACM, 2002.

[152] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics

and directions. In 4th International Conference on Web Information Systems

Engineering, WISE 2003, Rome, Italy, December 10-12, 2003, pages 3–12.

IEEE Computer Society, 2003.

xxxiii

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oracle.com/javase/9/docs/api/overview-summary.html
https://docs.oracle.com/javase/9/docs/api/overview-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/parsers/SAXParser.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/parsers/SAXParser.html

xxxiv Bibliography

[153] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-

oriented computing: a research roadmap. Int. J. Cooperative Inf. Syst.,

17(2):223–255, 2008.

[154] D. J. Patterson, O. Etzioni, D. Fox, and H. Kautz. Intelligent ubiquitous

computing to support alzheimer’s patients: Enabling the cognitively disabled.

In Adjunct Proceedings, page 21, 2002.

[155] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the

presence of faults. J. ACM, 27(2):228–234, 1980.

[156] P. Petridis, I. Dunwell, S. de Freitas, and D. Panzoli. An engine selection

methodology for high fidelity serious games. In K. Debattista, M. D. Dickey,

A. Proença, and L. P. Santos, editors, Second International Conference

on Games and Virtual Worlds for Serious Applications, VS-GAMES 2010,

Braga, Portugal, March 25-26, 2010, pages 27–34. IEEE Computer Society,

2010.

[157] Protobuf-Net. Protocol Buffers library for idiomatic .NET. https://github.

com/protobuf-net/protobuf-net. Online; accessed: August 6, 2019.

[158] P. Raverdy, V. Issarny, R. Chibout, and A. de La Chapelle. A multi-

protocol approach to service discovery and access in pervasive environments.

In H. Ahmadi and T. L. Porta, editors, 3rd Annual International ICST

Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services, MOBIQUITOUS 2006, San Jose, California, USA, July 17-21,

2006, pages 1–9. IEEE Computer Society, 2006.

[159] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang. Middleware for

pervasive computing: A survey. Pervasive and Mobile Computing, 9(2):177–

200, 2013.

[160] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. S. Silver, B. Silverman, and Y. B.

Kafai. Scratch: programming for all. Commun. ACM, 52(11):60–67, 2009.

[161] L. Ricci and E. Carlini. Distributed virtual environments: From client

server to cloud and P2P architectures. In W. W. Smari and V. Zeljkovic,

editors, 2012 International Conference on High Performance Computing &

Simulation, HPCS 2012, Madrid, Spain, July 2-6, 2012, pages 8–17. IEEE,

2012.

xxxiv

https://github.com/protobuf-net/protobuf-net
https://github.com/protobuf-net/protobuf-net

Bibliography xxxv

[162] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,

and K. Nahrstedt. A middleware infrastructure for active spaces. IEEE

Pervasive Computing, 1(4):74–83, 2002.

[163] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and

F. Eliassen. The digihome service-oriented platform. Softw., Pract. Exper.,

43(10):1205–1218, 2013.

[164] F. M. Roth, M. Pfannemüller, C. Becker, and P. Lalanda. An interoperable

notification service for pervasive computing. In 2018 IEEE International

Conference on Pervasive Computing and Communications Workshops, Per-

Com Workshops 2018, Athens, Greece, March 19-23, 2018, pages 842–847.

IEEE Computer Society, 2018.

[165] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. O. Hallsteinsen, J. Lorenzo,

A. Mamelli, and U. Scholz. MUSIC: middleware support for self-adaptation

in ubiquitous and service-oriented environments. In B. H. C. Cheng,

R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors, Software Engi-

neering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], volume

5525 of Lecture Notes in Computer Science, pages 164–182. Springer, 2009.

[166] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork:

the context-aware archaeological assistant. In Computer applications in

archaeology. Tempus Reparatum, 1998.

[167] D. Saha and A. Mukherjee. Pervasive computing: A paradigm for the 21st

century. IEEE Computer, 36(3):25–31, 2003.

[168] M. Satyanarayanan. Mobile computing: where’s the tofu? Mobile Computing

and Communications Review, 1(1):17–21, 1997.

[169] M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE

Personal Commun., 8(4):10–17, 2001.

[170] M. Satyanarayanan. From the editor in chief: The many faces of adaptation.

IEEE Pervasive Computing, 3(3):4–5, 2004.

[171] B. N. Schilit, N. Adams, and R. Want. Context-aware computing applica-

tions. In First Workshop on Mobile Computing Systems and Applications,

WMCSA 1994, Santa Cruz, CA, USA, December 8-9, 1994, pages 85–90.

IEEE Computer Society, 1994.

xxxv

xxxvi Bibliography

[172] W. N. Schilit. A System Architecture for Context-aware Mobile Computing.

PhD thesis, New York, NY, USA, 1995.

[173] A. Schmidt, M. Beigl, and H. Gellersen. There is more to context than

location. Computers & Graphics, 23(6):893–901, 1999.

[174] F. B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[175] A. Sherman, P. A. Lisiecki, A. Berkheimer, and J. Wein. ACMS: the akamai

configuration management system. In A. Vahdat and D. Wetherall, editors,

2nd Symposium on Networked Systems Design and Implementation (NSDI

2005), May 2-4, 2005, Boston, Massachusetts, USA, Proceedings. USENIX,

2005.

[176] G. Singh and M. H. Chignell. Components of the visual computer: a review

of relevant technologies. The Visual Computer, 9(3):115–142, 1992.

[177] T. Sivaharan, G. S. Blair, and G. Coulson. GREEN: A configurable and

re-configurable publish-subscribe middleware for pervasive computing. In

R. Meersman, Z. Tari, M. Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu,

H. Jacobsen, J. P. Loyall, M. Kifer, and S. Spaccapietra, editors, On the

Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,

OTM Confederated International Conferences CoopIS, DOA, and ODBASE

2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings,

Part I, volume 3760 of Lecture Notes in Computer Science, pages 732–749.

Springer, 2005.

[178] M. Slater, V. Linakis, M. Usoh, and R. Kooper. Immersion, presence and

performance in virtual environments: an experiment with tri-dimensional

chess. In M. Green, K. M. Fairchild, and M. Zyda, editors, Proceedings of

the ACM Symposium on Virtual Reality Software and Technology, VRST

1996, Hong Kong, July 01-04, 1996, pages 163–172. ACM, 1996.

[179] S. P. Smith and D. Trenholme. Rapid prototyping a virtual fire drill

environment using computer game technology. Fire safety journal, 44(4):559–

569, 2009.

[180] J. P. Sousa and D. Garlan. Aura: an architectural framework for user

mobility in ubiquitous computing environments. In J. Bosch, W. M. Gen-

tleman, C. Hofmeister, and J. Kuusela, editors, Software Architecture:

xxxvi

Bibliography xxxvii

System Design, Development and Maintenance, IFIP 17th World Computer

Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architec-

ture (WICSA3), August 25-30, 2002, Montréal, Québec, Canada, volume

224 of IFIP Conference Proceedings, pages 29–43. Kluwer, 2002.

[181] N. A. Streitz, J. Geißler, J. M. Haake, and J. Hol. DOLPHIN: integrated

meeting support across local and remote desktop environments and live-

boards. In J. B. Smith, F. D. Smith, and T. W. Malone, editors, CSCW ’94,

Proceedings of the Conference on Computer Supported Cooperative Work,

Chapel Hill, NC, USA, October 22-26, 1994, pages 345–358. ACM, 1994.

[182] M. R. Stytz. Distributed virtual environments. IEEE Computer Graphics

and Applications, 16(3):19–31, 1996.

[183] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and chal-

lenges for realising the internet of things. Cluster of European Research

Projects on the Internet of Things, European Commision, 3(3):34–36, 2010.

[184] I. E. Sutherland. A head-mounted three dimensional display. In American

Federation of Information Processing Societies: Proceedings of the AFIPS

’68 Fall Joint Computer Conference, December 9-11, 1968, San Francisco,

California, USA - Part I, volume 33 of AFIPS Conference Proceedings,

pages 757–764. AFIPS / ACM / Thomson Book Company, Washington

D.C., 1968.

[185] S. L. Tanimoto. VIVA: A visual language for image processing. J. Vis.

Lang. Comput., 1(2):127–139, 1990.

[186] D. L. Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50,

2000.

[187] J. Tumblin and H. E. Rushmeier. Tone reproduction for realistic images.

IEEE Computer Graphics and Applications, 13(6):42–48, 1993.

[188] U. Varshney. Pervasive healthcare and wireless health monitoring. Mob.

Netw. Appl., 12(2-3):113–127, Mar. 2007.

[189] V. Venkatesh and H. Bala. Technology acceptance model 3 and a research

agenda on interventions. Decision Sciences, 39(2):273–315, 2008.

xxxvii

xxxviii Bibliography

[190] V. Venkatesh and F. D. Davis. A theoretical extension of the technology

acceptance model: Four longitudinal field studies. Management Science,

46(2):186–204, 2000.

[191] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis. User acceptance

of information technology: Toward a unified view. MIS Quarterly, 27(3):425–

478, 2003.

[192] P. Verissimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser.

Cortex: Towards supporting autonomous and cooperating sentient entities.

Proceedings of European Wireless 2002 (EW2002), pages 595–601, 2002.

[193] W3C. Extensible markup language (xml) 1.0 (fifth edition). https://www.

w3.org/TR/REC-xml/. Online; accessed: August 6, 2019.

[194] R. Want, T. Pering, and D. L. Tennenhouse. Comparing autonomic and

proactive computing. IBM Systems Journal, 42(1):129–135, 2003.

[195] T. Wark, P. I. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Va-

lencia, D. Swain, and G. Bishop-Hurley. Transforming agriculture through

pervasive wireless sensor networks. IEEE Pervasive Computing, 6(2):50–57,

2007.

[196] T. Weis, M. Handte, M. Knoll, and C. Becker. Customizable pervasive

applications. In 4th IEEE International Conference on Pervasive Computing

and Communications (PerCom 2006), 13-17 March 2006, Pisa, Italy, pages

239–244. IEEE Computer Society, 2006.

[197] M. Weiser. The computer for the 21 st century. Scientific american,

265(3):94–105, 1991.

[198] M. Weiser. Hot topics: ubiquitous computing. Computer, 26(10):71–72, Oct

1993.

[199] W. Westera, R. Nadolski, H. G. K. Hummel, and I. G. J. H. Wopereis. Serious

games for higher education: a framework for reducing design complexity. J.

Comp. Assisted Learning, 24(5):420–432, 2008.

[200] L. Williams. Casting curved shadows on curved surfaces. In S. H. Chasen

and R. L. Phillips, editors, Proceedings of the 5th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH 1978, Atlanta,

GA, USA, August 23-25, 1978, pages 270–274. ACM, 1978.

xxxviii

https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/

Bibliography xxxix

[201] F. Zhu, M. W. Mutka, and L. M. Ni. Service discovery in pervasive computing

environments. IEEE Pervasive Computing, 4(4):81–90, 2005.

xxxix

Appendix

xli

xliii

A. Example applications for BASE and PerFlow

This appendix provides the source code for the example applications used in

the evaluation of the implementation effort in Section 8.2. For the BASE and

PerFlow applications sending the images the classes starting the main thread and

capturing the image are not included, as they are not relevant for the functionality

of the middleware. This is also the case for the actual window showing the image

to the user in the BASE service and PerFlow receiver application.

A.1. BASE Application

The BASE application is a single class runnable as a thread and captures the

screen every two seconds. The screenshot is then sent to all available services in

the system.

1 public class BASEApplication extends Device implements Runnable {

2 ServiceRegistry registry;

3 ReferenceID ownID = new ReferenceID(SystemID.SYSTEM);

4

5 public BASEApplication() {

6 setup(Logging.MAXIMUM_VERBOSITY, 500);

7

8 registry = ServiceRegistry.getInstance();

9 }

10

11 @Override public void run() {

12 while (true) {

13 try {

14 Thread.sleep(2000);

15

16 ServiceDescriptor[] descriptors = registry.lookup(new String[]{

IBASEService.class.getName()}, ServiceRegistry.LOOKUP_BOTH);

17

18 for (ServiceDescriptor d : descriptors) {

19 BASEProxy proxy = new BASEProxy();

20 proxy.setSourceID(ownID);

xliii

xliv A. Example applications for BASE and PerFlow

21

22 proxy.setTargetID(d.getIdentifier());

23 proxy.receiveImage(ScreenCapture.capture());

24 }

25 } catch (Exception e) {

26 Logging.error(getClass(), "Error sending image.", e);

27 }

28 }

29 }

30 }

Listing A.1: BASE example application

A.2. BASE Service

The BASE service for receiving and showing the images is split into four classes

and the interface for the service. The main class starts the middleware and

registers the service. Further, it needs a BASE proxy, BASE skeleton and the

implementation of the actual service.

1 public class BASEServiceMain extends Device {

2

3 public static void main(String args[]) {

4 setup(5000);

5

6 BASEService service = new BASEService();

7 BASESkeleton skeleton = new BASESkeleton();

8 skeleton.setImplementation(service);

9

10 registerService("BASEService", service, skeleton, new String[]{

IBASEService.class.getName()});

11 }

12 }

Listing A.2: BASE example service: Main class

xliv

xlv

1 public interface IBASEService {

2

3 public void receiveImage(SerializableImage img) throws

InvocationException;

4 }

Listing A.3: BASE example service: Interface

1 public class BASEService extends Service implements IBASEService {

2 ImageViewer viewer = new ImageViewer();

3

4 @Override public void receiveImage(SerializableImage img) throws

InvocationException {

5 viewer.showImage(img.getImage());

6 }

7 }

Listing A.4: BASE example service: Service

1 public class BASEProxy extends Proxy implements IBASEService {

2

3 @Override public void receiveImage(SerializableImage img) throws

InvocationException {

4 Object[] args = new Object[1];

5 args[0] = img;

6 String method = "void receiveImage(SerializableImage)";

7 Invocation invocation = proxyCreateDeferred(method, args);

8 proxyInvokeDeferred(invocation);

9 }

10 }

Listing A.5: BASE example service: Proxy

1 public class BASESkeleton extends Skeleton {

2

xlv

xlvi A. Example applications for BASE and PerFlow

3 @Override protected Result dispatch(String method, Object[] args) {

4 IBASEService impl = (IBASEService) getImplementation();

5 try {

6 if (method.equals("void receiveImage(SerializableImage)")) {

7 impl.receiveImage((SerializableImage) args[0]);

8 return new Result(null, null);

9 }

10

11 return new Result(null, new InvocationException("Illegal

signature."));

12 } catch (Throwable t) {

13 return new Result(null, t);

14 }

15 }

16 }

Listing A.6: BASE example service: Skeleton

A.3. PerFlow Sender Application

The sender application developed with PerFlow behaves exactly like the BASE

application. The only exception beeing, that it does not need to determine the

receivers itself.

1 public class PerFlowApplication extends ConfigurableDevice implements

Runnable {

2 private MessageProxy proxy;

3

4 public PerFlowApplication () {

5 setup(Logging.MAXIMUM_VERBOSITY, 500);

6

7 proxy = new MessageProxy();

8 proxy.setSourceID(getDeviceID());

9 registerConnection(true, true, false, "screenCapture", "

streaming", IMessage.ABBREVIATION_IMAGE);

10 }

xlvi

xlvii

11

12 @Override public void run() {

13 while (true) {

14 try {

15 Thread.sleep(2000);

16

17 proxy.sendImage("screenCapture", ScreenCapture.capture())

;

18 } catch (Exception e) {

19 Logging.error(getClass(), "Error sending image.", e);

20 }

21 }

22 }

23 }

Listing A.7: PerFlow example sender

A.4. PerFlow Receiver Application

In contrast to the BASE service developers do not need to implement interface,

proxy, or skeleton for the PerFlow receiver application.

1 public class PerFlowServiceMain extends ConfigurableDevice {

2

3 public static void main(String args[]) {

4 setup(5000);

5

6 PerFlowService service = new PerFlowService();

7

8 registerDevice("PerFlowService", service);

9 registerConnection("PerFlowService", false, true, false, "

screenCapture", "streaming", IMessage.ABBREVIATION_IMAGE);

10 }

11 }

Listing A.8: PerFlow example receiver: Main class

xlvii

xlviii A. Example applications for BASE and PerFlow

1 public class PerFlowService extends AbstractMessageReceiver {

2 ImageViewer viewer = new ImageViewer();

3

4 @Override

5 public void receiveImage(ReferenceID source, String messageType,

SerializableImage val) {

6 viewer.showImage(val.getImage());

7 }

8 }

Listing A.9: PerFlow example receiver: Receiver

xlviii

xlix

B. Reconfiguration times for different configuration sizes

In addition to performance analysis in Section 8.3.1 the following appendix includes

two figures with the time needed to reconfigure the system with configuration

containing 5 or 20 rules.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Devices
T

im
e

[m
s]

get connectors
interpretation

send configuration
send routes

Figure B.1.: Time needed to reconfigure the information flow for up to 100 devices.
The values are measured with a configuration containing 5 rules.

xlix

l B. Reconfiguration times for different configuration sizes

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Devices

T
im

e
[m

s]

get connectors
interpretation

send configuration
send routes

Figure B.2.: Time needed to reconfigure the information flow for up to 100 devices.
The values are measured with a configuration containing 20 rules.

l

li

C. User Study

The following part of the appendix contains all documents used throughout the

two conducted user studies. In Section C.1 the handout for the first user study and

in Section C.2 the handout for the second user study is shown. Both contain first

the explanation of the PerFlow system and a short example. Afterwards, the

scenarios and tasks are explained. Lastly, Section C.3 contains the questionnaire

used for both studies.

C.1. PerFlow Tool: First User Study Handout

The handout for the first user study consists of two pages. The first page described

the goals of the system and provided a short tutorial on how to use it. Additionally,

a small example rule is shown. The second page introduced two scenarios with

several tasks each. Overall, the described visual scripting elements and their

naming differs from the design introduced in 6.6, as they were refined between

the user studies based on the collected feedback.

li

lii C. User Study

V
is

ua
l S

cr
ip

tin
g

To
ol

 -
U

se
 C

as
es

 Th

an
k

yo
u

 v
er

y
m

u
ch

 f
o

r
p

ar
ti

ci
p

at
in

g
in

 t
h

is
 s

ce
n

ar
io

/s
u

rv
ey

 w
h

ic
h

 i
s

p
ar

t
o

f
m

y

m
as

te
r

th
e

si
s

ab
o

u
t

“V
is

u
al

 S
cr

ip
ti

n
g

fo
r

A
d

m
in

is
tr

at
in

g
th

e
In

fo
rm

at
io

n
 F

lo
w

 i
n

P
er

va
si

ve
 S

ys
te

m
s”

.

Th
e

go
al

 o
f

th
e

to
o

l i
s

to
 e

n
ab

le
 u

se
rs

 t
o

 c
o

n
tr

o
l t

h
e

 c
o

m
m

u
n

ic
at

io
n

 w
it

h
in

 a
 s

m
ar

t

en
vi

ro
n

m
en

t
(e

.g
.,

 S
m

ar
t

H
o

m
e

s)
 w

it
h

o
u

t
ex

te
n

si
ve

 I
T

kn
o

w
le

d
ge

.
W

it
h

in
 s

u
ch

sy
st

e
m

s,

w
e

h
av

e
a

va
ri

et
y

o
f

d
if

fe
re

n
t

d
ev

ic
e

s
an

d
 t

h
e

m
id

d
le

w
ar

e
(M

W
)

is

re
sp

o
n

si
b

le

fo
r

es
ta

b
lis

h
in

g
th

e
n

et
w

o
rk

an

d

h
er

eb
y

en
a

b
le

s
co

m
m

u
n

ic
at

io
n

b
et

w
e

en
 t

h
e

d
ev

ic
e

s.

Th
e

V
is

u
a

l S
cr

ip
ti

n
g

 T
o

o
l a

p
p

lic
at

io
n

 g
et

s
al

l a
va

ila
b

le
 d

ev
ic

e
s

an
d

 m
es

sa
ge

 a
tt

ri
b

u
te

s

w
h

en
 it

 is
 lo

ad
ed

.

Th
e

u
se

r
ca

n
 t

h
en

 f
o

rm
 c

o
n

fi
gu

ra
ti

o
n

s
b

y
fo

rm
u

la
ti

n
g

ru
le

s.
 T

o
 s

ta
rt

 a
 r

u
le

,
si

m
p

ly

d
ra

g
 a

n
d

 d
ro

p
 a

 n
o

d
e

fr
o

m
 t

h
e

lis
t

o
n

 t
h

e
le

ft
 o

n
to

 t
h

e
w

o
rk

sh
ee

t.
 T

h
e

n
o

d
e

s

re
p

re
se

n
t

d
e

vi
ce

s
o

r
fu

n
ct

io
n

al
it

y
an

d
 b

y
w

ir
in

g
n

o
d

es
 t

o
ge

th
er

, w
e

ca
n

 b
u

ild
 r

u
le

s.

To
 w

ir
e

n
o

d
es

 t
o

g
et

h
er

,
cl

ic
k

o
n

 t
h

ei
r

re
sp

ec
ti

ve
 i

n
p

u
t-

/o
u

tp
u

t
p

o
rt

s.
 A

 c
o

n
n

ec
ti

o
n

b
et

w
e

en
 t

w
o

 n
o

d
e

s
in

d
ic

at
e

s
an

 i
n

fo
rm

at
io

n
 f

lo
w

 f
ro

m
 t

h
e

re
sp

ec
ti

ve
 o

u
tp

u
t-

 t
o

in
p

u
t-

p
o

rt
.

W
h

en
 t

h
e

R
u

n
-B

u
tt

o
n

 i
s

cl
ic

ke
d

,
th

e
ap

p
lic

at
io

n
 g

en
er

at
es

 a
 f

ile
,

w
h

ic
h

 i
s

gi
ve

n
 t

o

th
e

M
W

.
Th

e
M

W
 t

h
en

,
in

 t
u

rn
,

co
n

fi
gu

re
s

th
e

in
fo

rm
at

io
n

 f
lo

w
 a

cc
o

rd
in

g
to

 t
h

e

sp
ec

if
ie

d
 r

u
le

s.
 W

h
en

e
ve

r
th

e
 m

id
d

le
w

ar
e

re
ce

iv
es

 a
 m

e
ss

ag
e,

 it
 c

h
ec

ks
 w

it
h

in
 t

h
e

ru
le

s
w

h
er

e
th

e
m

e
ss

ag
e

sh
al

l b
e

se
n

t
to

.

Th
e

to
o

l i
s

ap
p

lic
ab

le
 t

o
 v

ar
io

u
s

u
se

 c
as

e
s.

 W
e

 w
ill

 lo
o

k
at

 a
 c

la
ss

ro
o

m
 a

n
d

 a
n

 a
ir

p
o

rt

u
se

 c
as

e.

Fo
r

ea
ch

 o
f

th
e

fo
llo

w
in

g
sc

e
n

ar
io

s,
 p

le
as

e
co

m
p

le
te

 a
ll

ta
sk

s
b

y
fo

rm
u

la
ti

n
g

ru
le

s

u
si

n
g

th
e

V
is

u
a

l S
cr

ip
ti

n
g

 T
o

o
l.

 A
ft

er
 e

ac
h

 t
as

k,
 p

le
as

e
 c

lic
k

th
e

R
u

n
-B

u
tt

o
n

 (!
) t

o
 s

av
e

yo
u

r
so

lu
ti

o
n

.

To
 c

le
ar

 t
h

e
w

o
rk

sh
ee

t
an

d
 r

em
o

ve
 a

ll
n

o
d

e
s

an
d

 c
o

n
n

ec
ti

o
n

s,
 c

lic
k

th
e

C
le

a
r-

B
u

tt
o

n
.

 A
d

d
it

io
n

al
 in

fo
rm

at
io

n
:

D
ev

ic
es

 in
 o

u
r

Se
tu

p
 h

av
e

th
e

fo
llo

w
in

g
at

tr
ib

u
te

s:

-
D

ev
ic

eI
D

, a
 u

n
iq

u
e

n
am

e
o

f
th

e
o

w
n

er

e.
g

.,
 S

tu
d

en
t1

7

-
D

ev
ic

e
Ty

p
e,

 d
es

cr
ib

e
s

th
e

h
ar

d
w

ar
e

ty
p

e

o
f

th
e

d
ev

ic
e

e.
g

.,
 T

V

-
U

se
rG

ro
u

p
, d

ef
in

e
s

th
e

gr
o

u
p

 o
f

u
se

rs

th
at

 t
h

e
o

w
n

er
 b

el
o

n
gs

 t
o

 (
u

su
al

ly
 a

 r
o

le
)

e.
g

.,
 S

tu
d

en
ts

M
es

sa
g

es
 t

h
at

 a
re

 s
en

t
w

it
h

in
 t

h
e

n
et

w
o

rk
 c

o
n

si
st

 o
f

th
e

fo
llo

w
in

g
in

fo
rm

at
io

n
:

-
M

es
sa

ge
ID

, a
 u

n
iq

u
e

id
en

ti
fi

e
r

(n
o

t
u

se
d

 in
 o

u
r

se
tt

in
g)

-
M

es
sa

ge
Ty

p
e,

 d
e

sc
ri

b
e

s
th

e
ty

p
e

o
f

d
at

a

as
so

ci
at

ed
 t

o
 a

 m
es

sa
ge

e.

g
.,

 Im
a

g
e

-
M

es
sa

ge
So

u
rc

e,
 t

h
e

d
e

vi
ce

ID

th
at

 s
en

t
th

e
m

e
ss

ag
e

(n
o

t
u

se
d

 in
 o

u
r

se
tt

in
g)

-
M

es
sa

ge
Ta

rg
et

, t
h

e
ta

rg
et

o
f

th
e

m
e

ss
ag

e.

e.

g
.,

 S
tu

d
en

ts
:g

ro
u

p
A

A
 p

o
ss

ib
le

 r
u

le
 c

o
u

ld
 lo

o
k

lik
e

th
is

:

It
 m

ea
n

s
th

at
 a

ll
m

es
sa

ge
s

(o
f

an
y

ki
n

d
) t

h
at

 a
re

 s
en

t
fr

o
m

 t
h

e

d
ev

ic
e

“S
tu

d
en

t2
0

”
sh

al
l

b
e

d
el

iv
er

ed

to

al
l

p
o

rt
ab

le

d
ev

ic
es

 a
n

d
 a

d
d

it
io

n
al

ly
 t

o
 t

h
e

st
at

io
n

ar
y

d
ev

ic
e

“P
ro

je
ct

o
r1

”.

A
s

yo
u

 c
an

 s
e

e,
 a

n
 o

u
tp

u
t

p
o

rt
 c

an
 h

av
e

co
n

n
ec

ti
o

n
s

to
 m

u
lt

ip
le

 n
o

d
es

.
M

u
lt

ip
le

co
n

n
ec

ti
o

n
s

to
 o

n
e

in
p

u
t

p
o

rt
 a

re
 n

o
t

al
lo

w
ed

,
b

es
id

e
s

th
e

in
p

u
t

p
o

rt
 o

f
th

e

“F
ilt

er
in

gO
n

M
es

sa
ge

Ty
p

e”
-N

o
d

e,

so

th
at

it

ca

n

h
an

d
le

th

e
co

n
n

ec
ti

o
n

to

th

e

“P
ri

o
ri

ti
ze

M
e

ss
ag

e
Ty

p
e”

-N
o

d
e

w
it

h
o

u
t

h
av

in
g

to
 s

p
ec

if
y

a
se

p
ar

at
e

p
ri

o
ri

ti
ze

 r
u

le
.

To
 d

el
et

e
a

 c
o

n
n

ec
ti

o
n

,
si

m
p

ly
 c

lic
k

a
t

th
e

p
o

rt
 t

h
a

t
st

a
rt

ed
 t

h
e

co
n

n
ec

ti
o

n
.

Si
n

ce

co
n

n
ec

ti
o

n
 a

 n
o

d
e

to
 it

se
lf

 is
 n

o
t

al
lo

w
ed

, t
h

e
co

n
n

ec
to

r
w

ill
 b

e
d

el
et

ed
.

If
 y

o
u

 h
av

e
an

y
q

u
es

ti
o

n
s,

 f
e

e
l f

re
e

to
 a

sk
 m

e!

lii

liii

U
se

 C
as

e:
 S

m
ar

t
C

la
ss

ro
o

m

Th
e

sm
ar

t
cl

as
sr

o
o

m
 u

se
 c

as
e

 il
lu

st
ra

te
s

a
si

m
p

le
 c

o
u

rs
e

sc
en

ar
io

 w
it

h
 2

0
 s

tu
d

en
ts

an
d

 o
n

e
in

st
ru

ct
o

r.
 E

ac
h

 p
er

so
n

 h
as

 a
 p

er
so

n
al

 d
e

vi
ce

 i
n

 c
la

ss
 (

ID
s:

 I
n

st
ru

ct
o

r1
,

St
u

d
en

t1
,

St
u

d
en

t2
,

St
u

d
en

t3
,

…
)

an
d

th

er
e

ar
e

tw
o

st

at
io

n
ar

y
in

fr
as

tr
u

ct
u

re

d
ev

ic
es

,
P

ro
je

ct
o

r1

an
d

P

ro
je

ct
o

r2
.

In
 t

h
e

b
eg

in
n

in
g

o
f

th
e

co
u

rs
e,

 t
h

e
in

st
ru

ct
o

r
p

re
se

n
ts

 t
h

e
th

eo
re

ti
ca

l
p

ar
t

o
f

h
is

co
u

rs
e.

 T
o

 d
o

 s
o

,
h

e
se

n
d

s
h

is
 p

re
se

n
ta

ti
o

n
 t

o
 P

ro
je

ct
o

r1
 b

ec
au

se
 i

t
is

 b
ig

ge
r

an
d

m
o

re
 c

en
tr

al
 t

o
 t

h
e

cl
as

sr
o

o
m

. F
u

rt
h

er
m

o
re

, h
e

 s
en

d
s

a
h

an
d

o
u

t
to

 a
ll

st
u

d
en

ts
 t

h
at

su
m

m
ar

iz
e

s
th

e
co

n
te

n
t

o
f

h
is

 p
re

se
n

ta
ti

o
n

.
A

ft
er

w
ar

d
s,

 a
n

 i
n

-c
la

ss
 e

xe
rc

is
e

is
 o

n

th
e

sc
h

ed
u

le
. T

h
e

st
u

d
en

ts
 h

av
e

to
 w

o
rk

 t
o

ge
th

er
 in

 g
ro

u
p

s
to

 s
o

lv
e

d
if

fe
re

n
t

ta
sk

s.

Th
e

in
st

ru
ct

o
r

d
et

er
m

in
e

s
fo

u
r

gr
o

u
p

s
(g

ro
u

p

A
-D

)
o

f
fi

ve

st
u

d
en

ts

ea
ch

an

d

p
ro

vi
d

es
 d

if
fe

re
n

t
m

at
er

ia
ls

 t
o

 t
h

e
re

sp
ec

ti
ve

 g
ro

u
p

s.
 A

ft
er

 c
o

m
p

le
ti

n
g

th
e

ta
sk

s,
 t

h
e

st
u

d
en

ts
 d

et
er

m
in

e
o

n
e

gr
o

u
p

 le
ad

er
 t

o
 p

re
se

n
t

th
e

d
er

iv
e

d
 s

o
lu

ti
o

n
.

To
 d

o
 s

o
, t

h
e

le
ad

er
s

se
n

d
 t

h
ei

r
so

lu
ti

o
n

 t
o

 P
ro

je
ct

o
r2

.
Th

e
se

 le
ad

er
s

al
so

 s
en

d
 t

h
e

fi
n

al
 s

o
lu

ti
o

n

to
 t

h
e

in
st

ru
ct

o
r.

 T
o

 p
re

ve
n

t
a

b
o

tt
le

n
ec

k
at

 t
h

e
In

st
ru

ct
o

r-
 a

n
d

 P
ro

je
ct

o
r2

-D
ev

ic
e

s,

al
l m

e
ss

ag
es

 a
re

 s
en

t
to

 t
h

e
Fi

le
 S

er
ve

r
fi

rs
t,

 a
n

d
 t

h
en

 h
an

d
ed

 t
o

 t
h

e
ta

rg
et

 d
ev

ic
es

.

Ta
sk

s:

1
.

B
eg

in
n

in
g

o
f

th
e

cl
as

s
-

W
o

rk
sh

ee
t:

a.

Se
n

d
 m

e
ss

ag
e

o
f

ty
p

e
P

re
se

n
ta

ti
o

n
 f

ro
m

 In
st

ru
ct

o
r1

-D
e

vi
ce

 t
o

P
ro

je
ct

o
r1

-D
e

vi
ce

.

b
.

Se
n

d
 m

e
ss

ag
e

o
f

ty
p

e
H

an
d

o
u

t
fr

o
m

 In
st

ru
ct

o
r1

-D
e

vi
ce

 t
o

 a
ll

d
ev

ic
es

 w
it

h
 u

se
r

gr
o

u
p

: S
tu

d
en

ts
.

 C

lic
k

“R
u

n
”

an
d

 s
av

e
yo

u
r

co
n

fi
gu

ra
ti

o
n

. T
h

en
, c

le
ar

 t
h

e

w
o

rk
sh

e
et

.

2
.

In
-c

la
ss

 e
xe

rc
is

e
-

W
o

rk
sh

e
et

:

a.

D
et

er
m

in
e

o
u

tp
u

t
d

ev
ic

e
gr

o
u

p
s:

 G
ro

u
p

A
 =

 S
tu

d
en

t
1

-5
, G

ro
u

p
B

=
St

u
d

en
t6

-1
0

 (
n

eg
le

ct
 G

ro
u

p
C

 a
n

d
 G

ro
u

p
D

).

b
.

Se
n

d
 m

e
ss

ag
e

s
fr

o
m

 In
st

ru
ct

o
r1

-D
ev

ic
e

w
it

h
 t

ar
ge

t
gr

o
u

p

St
u

d
en

ts
:g

ro
u

p
A

 e
tc

. t
o

 t
h

e
re

sp
e

ct
iv

e
gr

o
u

p
s.

 C

lic
k

“R
u

n
”

an
d

 s
av

e
yo

u
r

co
n

fi
gu

ra
ti

o
n

. T
h

en
, c

le
ar

 t
h

e

w
o

rk
sh

e
et

.

3
.

A
ft

er
 g

ro
u

p
 w

o
rk

 -
 W

o
rk

sh
e

et
:

Se
n

d
 m

e
ss

ag
e

s
fr

o
m

 d
et

er
m

in
ed

 g
ro

u
p

 m
em

b
er

s
(G

ro
u

p
A

:S
tu

d
en

t2
,

G
ro

u
p

B
:S

tu
d

en
t9

)
to

 F
ile

Se
rv

er
1

 a
n

d
 f

ro
m

 F
ile

Se
rv

er
1

 t
o

 t
h

e
In

st
ru

ct
o

r1
-

D
ev

ic
e

an
d

 P
ro

je
ct

o
r2

-D
ev

ic
e.

 C

lic
k

“R
u

n
”

an
d

 s
av

e
yo

u
r

co
n

fi
gu

ra
ti

o
n

. T
h

en
, c

le
ar

 t
h

e
w

o
rk

sh
e

et
.

U
se

 C
as

e:
 S

m
ar

t
A

ir
p

o
rt

 L
o

u
n

ge

N
o

w
,

w
e

ar
e

in
 a

 s
m

ar
t

ai
rp

o
rt

 lo
u

n
ge

.
Fo

r
th

is
 u

se
 c

as
e

,
w

e
as

su
m

e
th

at
 t

h
er

e
is

 a

d
ev

ic
e

w
it

h
 ID

: C
en

tr
al

Sy
st

e
m

 t
h

at
 p

er
io

d
ic

al
ly

 s
en

d
s

m
e

ss
ag

es
 o

f
d

if
fe

re
n

t
ty

p
es

 t
o

st
at

io
n

ar
y

an
d

m

o
b

ile

d
ev

ic
es

w

it
h

in

th
e

lo
u

n
ge

.
Th

e
ad

m
in

is
tr

at
o

r
o

f
th

e

m
id

d
le

w
ar

e
ca

n

co
n

fi
gu

re

th
is

co

m
m

u
n

ic
at

io
n

b

y
d

et
e

rm
in

in
g

w
h

at

ki
n

d

o
f

m
e

ss
ag

es
 a

re
 s

en
t

to
 t

h
e

d
if

fe
re

n
t

d
ev

ic
e

ty
p

e
s

in
 t

h
e

lo
u

n
ge

.
In

 o
rd

er
 n

o
t

to
 m

is
s

al
ar

m

n
o

ti
fi

ca
ti

o
n

s,

th
es

e
m

e
ss

ag
e

ty
p

es

ar
e

to

p
ri

o
ri

ti
ze

.

Th
e

d
ev

ic
e

s
in

 t
h

is
 u

se
 c

as
e

ar
e

st
at

io
n

ar
y

TV
s

an
d

 s
p

ea
ke

r
sy

st
e

m
s

an
d

 p
o

rt
ab

le

d
ev

ic
es

su

ch

as

p
h

o
n

e
s,

la

p
to

p
s

o
r

ta
b

le
ts

fr

o
m

th

e
vi

si
to

rs
.

Th
e

p
er

va
si

ve
 s

ys
te

m
 in

 t
h

is
 u

se
 c

as
e

ad
d

it
io

n
al

ly
 p

ro
vi

d
es

 c
o

n
te

xt
u

al
 in

fo
rm

at
io

n
.

Th
e

ad
m

in
is

tr
at

o
r

w
an

ts
 t

o
 m

ak
e

u
se

 o
f

th
at

.
Si

n
ce

 t
h

e
lo

u
n

ge
 i

s
q

u
it

e
 s

m
al

l
w

it
h

o
n

ly
 a

 f
ew

 v
is

it
o

rs
 a

t
th

e
sa

m
e

ti
m

e
,

h
e

d
ec

id
e

s
to

 g
iv

e
 v

is
it

o
rs

 t
h

e
p

o
ss

ib
ili

ty
 t

o

w
at

ch
 v

id
eo

s
o

n
 t

h
e

st
at

io
n

ar
y

TV
s

if
 t

h
ey

 a
re

 c
lo

se
 t

o
 t

h
e

m
 a

n
d

 a
s

lo
n

g
as

 t
h

er
e

is

n
o

 a
la

rm
. H

e
d

ec
id

e
s

to
 s

p
ec

if
y

a
ra

n
ge

 o
f

tw
o

 m
et

er
s

to
 d

e
te

rm
in

e
“c

lo
se

n
es

s”
.

C
o

n
fi

gu
ra

ti
o

n
 –

 W
o

rk
sh

ee
t:

1
.

Se
n

d
 v

id
eo

s
fr

o
m

 C
en

ta
lS

ys
te

m
 t

o
 a

ll
TV

s.

2
.

Se
n

d
 a

u
d

io
 f

ile
s

fr
o

m
 C

en
ta

lS
ys

te
m

 t
o

 a
ll

sp
ea

ke
r

sy
st

e
m

s.

3
.

Se
n

d
 t

ex
t

m
e

ss
ag

e
s

fr
o

m
 C

en
ta

lS
ys

te
m

 t
o

 a
ll

p
o

rt
ab

le
 d

ev
ic

es
.

4
.

Se
n

d
 a

la
rm

 n
o

ti
fi

ca
ti

o
n

s
fr

o
m

 C
en

ta
lS

ys
te

m
 t

o
 a

ll
d

e
vi

ce
s.

5
.

If
 t

h
e

lo
ca

ti
o

n
 o

f
an

y
p

o
rt

ab
le

 d
ev

ic
e

is
 c

lo
se

 (
ra

d
iu

s:
 t

w
o

 m
et

er
s)

 t
o

 t
h

e

lo
ca

ti
o

n
 o

f
an

y
d

ev
ic

e
o

f
ty

p
e

st
at

io
n

ar
y:

TV
, s

en
d

 m
e

ss
ag

e
s

o
f

ty
p

e
V

id
eo

to
 t

h
e

d
ev

ic
e

o
f

ty
p

e
st

at
io

n
ar

y:
TV

.

6
.

P
ri

o
ri

ti
ze

 M
e

ss
ag

e
Ty

p
e

A
LA

R
M

. (
N

o
te

: T
h

e
P

ri
o

ri
ti

ze
-N

o
d

e
ca

n
 o

n
ly

 b
e

co
n

n
ec

te
d

 t
o

 t
h

e
“F

ilt
er

in
g

O
n

M
es

sa
g

eT
yp

e”
 (

FO
M

T)
 n

o
d

e
a

n
d

 t
h

is
 n

o
d

e

ca
n

 h
a

n
d

le
 m

u
lt

ip
le

 in
co

m
in

g
 c

o
n

n
ec

ti
o

n
s.

 S
o

, y
o

u
 d

o
n

’t
 n

ee
d

 t
o

 s
p

ec
if

y
a

se
p

a
ra

te
 r

u
le

)

 C

lic
k

“R
u

n
”

an
d

 s
av

e
yo

u
r

co
n

fi
gu

ra
ti

o
n

. T
h

en
, c

le
ar

 t
h

e
w

o
rk

sh
e

et
.

liii

liv C. User Study

C.2. PerFlow Tool: Second User Study Handout

The handout for the second user study consists of three pages. The first page

describes again the goals of the system and gives a short tutorial on how to use the

visual scripting tool. The description is shortened and the tutorial simplified based

on the user feedback of the first study. Overall, the wording was less technical.

The second page only shows an example route and the third pages introduces the

scenarios and tasks.

liv

lv

W
h

at
 is

 t
h

e
go

al
 o

f
th

e
P

er
Fl

o
w

 a
p

p
lic

at
io

n
?

Th
e

go
al

 o
f

P
er

Fl
o

w
 is

 t
o

 e
n

ab
le

 u
se

rs
 t

o
 c

o
n

tr
o

l t
h

e
co

m
m

u
n

ic
at

io
n

 w
it

h
in

 a
 s

m
ar

t

en
vi

ro
n

m
en

t
(e

.g
.,

 S
m

ar
t

H
o

m
e

s)
 w

it
h

o
u

t
ex

te
n

si
ve

 I
T

kn
o

w
le

d
ge

.
W

it
h

in
 s

u
ch

en
vi

ro
n

m
en

ts
,

w
e

h
av

e
a

va
ri

et
y

o
f

d
if

fe
re

n
t

d
ev

ic
e

s
w

h
ile

 a
 s

o
ft

w
ar

e
sy

st
em

 i
s

re
sp

o
n

si
b

le

fo
r

es
ta

b
lis

h
in

g
th

e
n

et
w

o
rk

an

d

h
er

eb
y

en
ab

le
s

co
m

m
u

n
ic

at
io

n

b
et

w
e

en
 t

h
e

d
ev

ic
e

s.

Th
e

P
er

Fl
o

w
 a

p
p

lic
at

io
n

 s
h

o
w

s
al

l
av

ai
la

b
le

 d
e

vi
ce

s
an

d
 p

o
ss

ib
le

 m
e

ss
ag

e
ty

p
es

 i
n

th
e

en
vi

ro
n

m
en

t.

Th
e

u
se

r
ca

n
 t

h
en

 f
o

rm
 c

o
n

fi
gu

ra
ti

o
n

s
b

y
fo

rm
u

la
ti

n
g

ro
u

te
s

b
et

w
ee

n
 s

en
d

er
s

an
d

re
ce

iv
e

rs
. T

o
 s

ta
rt

 a
 r

o
u

te
, s

im
p

ly
 d

ra
g

 a
n

d
 d

ro
p

 a
n

 e
le

m
en

t
fr

o
m

 t
h

e
lis

t
o

n
 t

h
e

le
ft

o
n

to
 t

h
e

w
o

rk
sh

ee
t.

 T
h

e
el

e
m

en
ts

 r
ep

re
se

n
t

d
e

vi
ce

s
o

r
fi

lt
er

s
an

d
 b

y
w

ir
in

g
th

em

to
ge

th
er

,
w

e
ca

n
 b

u
ild

 r
o

u
te

s.
 T

o
 w

ir
e

el
em

en
ts

 t
o

g
et

h
er

,
cl

ic
k

o
n

 t
h

ei
r

re
sp

ec
ti

ve

in
p

u
t-

/o
u

tp
u

t
p

o
rt

s.
 A

 c
o

n
n

ec
ti

o
n

 b
et

w
ee

n
 t

w
o

 e
le

m
en

ts
 i

n
d

ic
at

es
 a

n
 i

n
fo

rm
at

io
n

fl
o

w
 f

ro
m

 t
h

e
re

sp
ec

ti
ve

 o
u

tp
u

t-
 t

o
 a

n
 in

p
u

t-
p

o
rt

.

Fo
r

ex
am

p
le

,
o

n
e

ro
u

te
 c

o
u

ld
 b

e
th

at
 s

tu
d

en
ts

 w
h

o
 w

an
t

to
 s

u
b

m
it

 a
ss

ig
n

m
en

ts

(s
en

d
er

)
to

 t
h

e
le

ct
u

re
r

d
e

vi
ce

 (
re

ce
iv

er
).

Th
e

to
o

l i
s

ap
p

lic
ab

le
 t

o
 v

ar
io

u
s

u
se

 c
as

e
s.

 W
e

 w
ill

 lo
o

k
at

 a
 c

la
ss

ro
o

m
 a

n
d

 a
n

 a
ir

p
o

rt

u
se

 c
as

e.

Fo
r

ea
ch

 o
f

th
e

fo
llo

w
in

g
sc

e
n

ar
io

s,
 p

le
as

e
co

m
p

le
te

 a
ll

ta
sk

s
b

y
fo

rm
u

la
ti

n
g

ru
le

s

u
si

n
g

th
e

P
er

Fl
o

w

ap
p

lic
at

io
n

.
A

ft
er

ea

ch

co
n

fi
gu

ra
ti

o
n

,
p

le
as

e
cl

ic
k

th
e

Sa
ve

C
o

n
fi

g
u

ra
ti

o
n

-B
u

tt
o

n
 t

o
 s

av
e

yo
u

r
so

lu
ti

o
n

.

To
 c

le
ar

 t
h

e
w

o
rk

sh
ee

t
an

d
 r

em
o

ve
 a

ll
n

o
d

es
 a

n
d

 c
o

n
n

ec
ti

o
n

s,
 c

lic
k

th
e

C
le

a
r-

B
u

tt
o

n
.

H
o

w
 t

o
 c

re
at

e
th

e
ro

u
te

s
1

.
El

em
en

ts
 c

an
 b

e
ad

d
ed

 f
ro

m
 t

h
e

lis
t

o
n

 t
h

e
le

ft
 v

ia
 d

ra
g

&
 d

ro
p

.

2
.

O
n

e
co

n
fi

gu
ra

ti
o

n
 c

an
 c

o
n

ta
in

 m
u

lt
ip

le
 r

o
u

te
s.

3
.

To
 s

ta
rt

 a
 r

u
le

, u
se

 a
 S

e
n

d
e

r
e

le
m

en
t

an
d

 t
o

 e
n

d
 a

 R
e

ce
iv

e
r

el
e

m
en

t.

a.

W
h

er
e

b
o

th
 n

o
d

es
 (

Se
n

d
e

rs
 a

n
d

 R
e

ce
iv

e
rs

)
ca

n
 b

e
id

en
ti

fi
e

d
 b

y
an

ID
 (

e.
g.

 S
tu

d
en

t8
)

b
.

Yo
u

 c
an

 a
d

d
 m

u
lt

ip
le

 ID
s

b
y

cl
ic

ki
n

g
th

e
“+

”
b

u
tt

o
n

.

c.

A
s

a
st

an
d

ar
d

 t
h

e
“A

ll”
 b

o
x

is
 c

h
ec

ke
d

 t
o

 s
e

le
ct

 a
ll

p
o

ss
ib

le

se
n

d
er

s
o

r
re

ce
iv

er
s.

 U
n

ch
ec

k
th

is
 if

 y
o

u
 w

an
t

to
 s

el
ec

t
sp

ec
if

ic

d
ev

ic
es

 b
y

th
ei

r
ID

.

d
.

W
h

en
 s

ta
rt

in
g

a
n

ew
 r

u
le

 w
it

h
 a

 S
e

n
d

e
r

n
o

d
e

yo
u

 h
av

e
to

 s
el

ec
t

a

m
e

ss
ag

e
 t

yp
e

 f
o

r
th

is
 r

u
le

 (
e.

g.
 p

re
se

n
ta

ti
o

n
).

4
.

Se
n

d
e

r
an

d
 R

ec
e

iv
e

r
Fi

lt
e

rs
 c

an
 b

e
u

se
d

 t
o

 li
m

it
 t

h
e

n
u

m
b

e
r

o
f

m
at

ch
in

g

se
n

d
er

s
o

r
re

ce
iv

er
s.

 Y
o

u
 c

an
:

a.

Fi
lt

er
 f

o
r

th
e

d
e

vi
ce

 t
yp

e
 (

e.
g.

 T
V

 o
r

p
o

rt
ab

le
).

b
.

Fi
lt

er
 f

o
r

sp
ec

if
ic

 g
ro

u
p

s
(e

.g
. S

tu
d

en
ts

).

c.

C
h

ai
n

 f
ilt

er
s

if
 b

o
th

 o
f

th
em

 s
h

o
u

ld
 f

it
 (

e.
g.

 S
tu

d
en

ts
 A

N
D

 L
ec

tu
re

r)

5
.

C
o

n
te

xt
 F

ilt
e

rs
 a

re
 u

se
d

 t
o

 c
h

ec
k

if
 t

h
e

co
n

te
n

t
o

f
th

e
m

e
ss

ag
e

h
as

 a

ce
rt

ai
n

 v
al

u
e.

6
.

To
 c

o
n

n
e

ct
 t

w
o

 n
o

d
es

 f
ir

st
 c

lic
k

o
n

 t
h

e
o

u
tg

o
in

g
p

o
rt

 (
ci

rc
le

 o
n

 t
h

e
ri

gh
t)

o
n

 o
n

e
n

o
d

e
an

d
 t

h
en

 o
n

 t
h

e
in

go
in

g
p

o
rt

 (
ci

rc
le

 o
n

 t
h

e
le

ft
)

o
f

th
e

o
th

er
.

7
.

To
 d

e
le

te
 a

 n
o

d
e

, c
lic

k
th

e
re

cy
cl

e
b

in
 ic

o
n

 o
f

th
e

co
rr

es
p

o
n

d
in

g
n

o
d

e.
 T

o

d
e

le
te

 a
 c

o
n

n
e

ct
io

n
, c

lic
k

o
n

 t
h

e
co

n
n

ec
ti

o
n

.

8
.

A
ft

er
 f

in
is

h
in

g
o

n
e

co
n

fi
gu

ra
ti

o
n

 (
m

ay
 h

av
e

se
ve

ra
l r

o
u

te
s)

 f
ir

st
 c

lic
k

o
n

Sa
ve

 C
o

n
fi

g
u

ra
ti

o
n

 a
n

d
 t

h
en

 C
le

a
n

 t
h

e
w

o
rk

sh
ee

t.

If
 y

o
u

 h
av

e
an

y
q

u
es

ti
o

n
s,

 f
ee

l f
re

e
to

 a
sk

!

lv

lvi C. User Study

Ex
am

p
le

Th
e

 in
st

ru
ct

o
r

1
(s

en
d

er
)

ca
n

 s
en

d
 p

re
se

n
ta

ti
o

n
s

(m
es

sa
ge

 t
yp

e)
 f

ro
m

 h
is

 t
ab

le
t

(s
en

d
er

 f
ilt

er
)

to
 p

ro
je

ct
o

r
1

 (
re

ce
iv

er
).

H
e

ca
n

 s
en

d
 t

h
e

p
re

se
n

ta
ti

o
n

s
to

 a
ll

d
ev

ic
es

 (
re

ce
iv

er
)

w
h

ic
h

 a
re

 in
 t

h
e

gr
o

u
p

 s
tu

d
en

ts
 a

n
d

 f
ro

m
 d

ev
ic

e
ty

p
e

la
p

to
p

 (
re

ce
iv

er
 f

ilt
er

s)
.

lvi

lvii

U
se

 C
as

e:
 S

m
ar

t
C

la
ss

ro
o

m

Th
e

sm
ar

t
cl

as
sr

o
o

m
 u

se
 c

as
e

 il
lu

st
ra

te
s

a
si

m
p

le
 c

o
u

rs
e

sc
en

ar
io

 w
it

h
 1

0
 s

tu
d

en
ts

an
d

 o
n

e
in

st
ru

ct
o

r.
 E

ac
h

 p
er

so
n

 h
as

 a
 p

er
so

n
al

 d
ev

ic
e

in
 c

la
ss

 (
ID

s:
 I

n
st

ru
ct

o
r,

St
u

d
en

t1
,

St
u

d
en

t2
,

St
u

d
en

t3
,

…
)

an
d

th

er
e

ar
e

tw
o

st

at
io

n
ar

y
in

fr
as

tr
u

ct
u

re

d
ev

ic
es

,
P

ro
je

ct
o

r1
 a

n
d

 P
ro

je
ct

o
r2

.
In

 t
h

e
b

eg
in

n
in

g
o

f
th

e
co

u
rs

e,
 t

h
e

in
st

ru
ct

o
r

p
re

se
n

ts
 t

h
e

th
eo

re
ti

ca
l p

ar
t

o
f h

is
 c

o
u

rs
e

. T
o

 d
o

 s
o

, h
e

se
n

d
s

h
is

 p
re

se
n

ta
ti

o
n

 t
o

 t
h

e

la
rg

e
an

d
 c

en
tr

al
 P

ro
je

ct
o

r1
.

Fu
rt

h
er

m
o

re
,

h
e

 s
en

d
s

a
h

an
d

o
u

t
to

 a
ll

st
u

d
en

ts
.

A
ft

er
w

ar
d

s,
 a

n
 i

n
-c

la
ss

 e
xe

rc
is

e
is

 o
n

 t
h

e
sc

h
ed

u
le

.
Th

e
 s

tu
d

en
ts

 h
av

e
 t

o
 w

o
rk

to
ge

th
er

 i
n

 g
ro

u
p

s
to

 s
o

lv
e

d
if

fe
re

n
t

ta
sk

s.
 T

h
e

in
st

ru
ct

o
r

d
et

er
m

in
es

 t
w

o
 g

ro
u

p
s

(g
ro

u
p

 A
 a

n
d

 B
)

an
d

 p
ro

vi
d

es
 d

if
fe

re
n

t
m

at
er

ia
ls

 t
o

 t
h

e
re

sp
e

ct
iv

e
gr

o
u

p
s.

 A
ft

er

co
m

p
le

ti
n

g
th

e
ta

sk
s,

 o
n

e
gr

o
u

p
 l

ea
d

er
 p

re
se

n
ts

 t
h

e
so

lu
ti

o
n

s.
 T

o
 d

o
 s

o
,

th
ey

 s
en

d

th
ei

r
so

lu
ti

o
n

 t
o

 P
ro

je
ct

o
r2

 a
n

d
 t

o
 t

h
e

in
st

ru
ct

o
r.

 T
h

e
so

lu
ti

o
n

s
sh

o
u

ld
 a

ls
o

 b
e

sa
ve

d

o
n

 t
h

e
u

n
iv

er
si

ti
es

 f
ile

 s
er

ve
r.

Ta
sk

s:

1
.

C
o

n
fi

gu
ra

ti
o

n
 1

: B
eg

in
n

in
g

o
f

le
ct

u
re

Se
n

d
 p

re
se

n
ta

ti
o

n
s

fr
o

m
 In

st
ru

ct
o

r
to

 P
ro

je
ct

o
r1

.

Se
n

d
 h

an
d

o
u

ts
 f

ro
m

 In
st

ru
ct

o
r

to
 a

ll
d

ev
ic

e
s

o
f

gr
o

u
p

 S
tu

d
e

n
ts

.

 C

lic
k

“S
av

e
C

o
n

fi
gu

ra
ti

o
n

”.
 T

h
en

, c
le

ar
 t

h
e

w
o

rk
sh

e
et

.

2
.

C
o

n
fi

gu
ra

ti
o

n
 2

:
In

-c
la

ss
 e

xe
rc

is
e

A
llo

w
 t

h
at

 c
h

at
 m

e
ss

ag
es

 c
an

 b
e

se
n

d
 f

ro
m

 m
e

m
b

er
s

o
f

gr
o

u
p

 A

to
 a

ll
o

th
er

 m
em

b
er

s
o

f
gr

o
u

p
 A

.

Se
n

d
 e

xe
rc

is
e

sh
e

et
s

fr
o

m
 t

h
e

 In
st

ru
ct

o
r

to
 s

tu
d

en
ts

 in
 g

ro
u

p
 A

an
d

 g
ro

u
p

 B
.

 C

lic
k

“S
av

e
C

o
n

fi
gu

ra
ti

o
n

”.
 T

h
en

, c
le

ar
 t

h
e

w
o

rk
sh

e
et

.

3
.

C
o

n
fi

gu
ra

ti
o

n
 3

:
A

ft
er

 g
ro

u
p

 w
o

rk

Se
n

d
 t

h
e

so
lu

ti
o

n
s

fr
o

m
 t

h
e

le
ad

er
s

o
f

ea
ch

 g
ro

u
p

 (
Le

ad
er

 o
f

G
ro

u
p

 A
: S

tu
d

en
t2

, L
ea

d
er

 o
f

G
ro

u
p

 B
: S

tu
d

en
t9

)
to

 t
h

e

Fi
le

Se
rv

er
.

Se
n

d
 t

h
e

so
lu

ti
o

n
s

fr
o

m
 t

h
e

Fi
le

Se
rv

er
 t

o
 t

h
e

In
st

ru
ct

o
r

an
d

P
ro

je
ct

o
r2

.

 C

lic
k

“S
av

e
C

o
n

fi
gu

ra
ti

o
n

”.
 T

h
en

, c
le

ar
 t

h
e

w
o

rk
sh

e
et

.

U
se

 C
as

e:
 S

m
ar

t
A

ir
p

o
rt

 L
o

u
n

ge

N
o

w
,

w
e

ar
e

in
 a

 s
m

ar
t

ai
rp

o
rt

 lo
u

n
ge

.
Fo

r
th

is
 u

se
 c

as
e

,
w

e
as

su
m

e
th

at
 t

h
er

e
is

 a

d
ev

ic
e

w
it

h
 ID

: C
en

tr
al

Sy
st

e
m

 t
h

at
 p

er
io

d
ic

al
ly

 s
en

d
s

m
e

ss
ag

es
 o

f
d

if
fe

re
n

t
ty

p
es

 t
o

st
at

io
n

ar
y

an
d

m

o
b

ile

d
ev

ic
es

w

it
h

in

th
e

lo
u

n
ge

.
Th

e
ad

m
in

is
tr

at
o

r
o

f
th

e

m
id

d
le

w
ar

e
ca

n

co
n

fi
gu

re

th
is

co

m
m

u
n

ic
at

io
n

b

y
d

et
e

rm
in

in
g

w
h

at

ki
n

d

o
f

m
e

ss
ag

es
 a

re
 s

en
t

to
 t

h
e

d
if

fe
re

n
t

d
ev

ic
e

ty
p

es
 in

 t
h

e
lo

u
n

ge
. T

h
e

d
e

vi
ce

s
in

 t
h

is
 u

se

ca
se

 a
re

 s
ta

ti
o

n
ar

y
TV

s
an

d
 s

p
ea

ke
r

sy
st

em
s

an
d

 p
o

rt
ab

le
 d

ev
ic

es
 s

u
ch

 a
s

p
h

o
n

e
s,

la
p

to
p

s
o

r
ta

b
le

ts
 f

ro
m

 t
h

e
 v

is
it

o
rs

.
Th

e
 e

n
vi

ro
n

m
en

t
in

 t
h

is
 u

se
 c

as
e

 a
d

d
it

io
n

al
ly

p
ro

vi
d

es
 c

o
n

te
xt

u
al

 i
n

fo
rm

at
io

n
.

Th
u

s,
 a

 l
ig

h
t

se
n

so
r

ex
is

ts
 w

h
ic

h
 c

an
 b

e
u

se
d

 f
o

r

ro
u

te
s.

 Ta
sk

s:

1
.

C
o

n
fi

gu
ra

ti
o

n
 1

: S
et

ti
n

g
u

p
 t

h
e

lo
u

n
ge

Se
n

d
 v

id
eo

s
fr

o
m

 t
h

e
C

en
ta

lS
ys

te
m

 t
o

 a
ll

d
e

vi
ce

s
o

f
th

e
ty

p
e

 T
V

s.

Se
n

d
 a

u
d

io
 f

ile
s

fr
o

m
 t

h
e

C
en

ta
lS

ys
te

m
 t

o
 a

ll
sp

ea
ke

r
sy

st
e

m
s.

Se
n

d
 t

ex
t

m
e

ss
ag

e
s

fr
o

m
 a

ll
d

ev
ic

e
s

w
it

h
in

 t
h

e
gr

o
u

p
 o

f
vi

si
to

rs

to
 a

ll
p

o
rt

ab
le

 d
ev

ic
e

s.

Se
n

d
 t

h
e

lig
h

t
le

ve
l v

al
u

e
 f

ro
m

 L
ig

h
tS

en
so

r
to

 L
ig

h
tB

u
lb

 if
 t

h
e

lig
h

t
le

ve
l i

s
b

el
o

w
 2

0
.

 C

lic
k

“S
av

e
C

o
n

fi
gu

ra
ti

o
n

”.
 T

h
en

, c
le

ar
 t

h
e

w
o

rk
sh

e
et

.

lvii

lviii C. User Study

C.3. Questionnaire

Participant Information

What is your gender?

• Female

• Male

• Other

What is your age?

Are you working in or studying an IT-related field?

• Yes

• No

Please rate your confidence using a computer or similar technological devices?

• Not at all Confident

• Slightly Confident

• Moderately Confident

• Very Confident

• Extremely Confident

What is your highest educational degree?

Scenario-Related Statements

Overall, I am satisfied with the ease of completing the tasks.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

lviii

lix

Overall, I am satisfied with the amount of time it took to complete the tasks.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Overall, I am satisfied with the provided information for completing the tasks

(scenario description).

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Do you have any comments (positive or negative) that are related to the scenarios?

Ease of Use - Statements

I find the application easy to use.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Learning to operate the application was easy for me.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

My interaction with the application was clear and understandable.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

I find the application to be flexible to interact with.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

lix

lx C. User Study

I find it easy to get the application to do what I want it to do.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Overall, I am satisfied with how easy it is to use this application.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Usefulness - Statements

I find the application useful in completing the tasks (configuring the information

flow).

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

I could effectively complete the tasks using this application.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Using the application enables me to accomplish the tasks (more) quickly.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

This application has all the functions and capabilities I expect it to have.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

lx

lxi

Overall, I find the application useful.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

User Interface and Visual Language - Statements

The organization of information on the screen is clear.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

I find the various functions in this application well integrated.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

The construction of configurations, i.e. rules, is intuitive.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

The functionality of nodes is clear.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

The application gave error messages that clearly told me how to fix problems.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

lxi

lxii C. User Study

The application prevented me from doing careless mistakes.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

The on-screen messages provided within this application are clear.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

The application is user friendly.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Overall, I enjoyed using and playing around with the application.

• Strongly Disagree (1)

• ...

• Strongly Agree (7)

Comments

What did you especially like when using the application?

What did you not like when using the application?

Did you encounter any problems?

Further Comments:

Thank you for participating in our user study!

lxii

lxiii

C.4. Survey Results

Study 1 Study 2

S
ce
n
ar
io

Overall, I am satisfied with the ease of completing the
tasks.

5.70 6.00

Overall, I am satisfied with the amount of time it took to
complete the tasks.

5.85 5.96

Overall, I am satisfied with the provided information for
completing the tasks (scenario description).

6.10 5.65

E
a
se

of
U
se

I find the application easy to use. 5.75 6.35
Learning to operate the application was easy for me. 6.10 6.26
My interaction with the application was clear and under-
standable.

5.25 6.17

I find the application to be flexible to interact with. 5.95 6.09
I find it easy to get the application to do what I want it
to do.

5.80 6.35

Overall, I am satisfied with how easy it is to use this
application.

5.95 6.48

U
se
fu
ln
es
s

I find the application useful in completing the tasks (con-
figuring the information flow).

6.45 6.43

I could effectively complete the tasks using this applica-
tion.

6.00 6.13

Using the application enables me to accomplish the tasks
(more) quickly.

5.53 5.83

This application has all the functions and capabilities I
expect it to have.

5.37 5.39

Overall, I find the application useful. 6.21 6.30

U
se
r
In
te
rf
a
ce

The organization of information on the screen is clear. 5.95 6.30
I find the various functions in this application well inte-
grated.

6.11 6.09

The construction of configurations, i.e. rules, is intuitive. 5.70 6.43
The functionality of nodes is clear. 5.45 6.26
The application gave error messages that clearly told me
how to fix problems.

5.79 6.06

The application prevented me from doing careless mis-
takes.

5.71 5.95

The on-screen messages provided within this application
are clear.

6.20 6.15

The application is user friendly. 5.80 6.00
Overall, I enjoyed using and playing around with the ap-
plication.

6.40 6.26

Table C.1.: The average result for each question and both user studies.

lxiii

Publications Contained in this Thesis

• J. Naber, D. Schäfer, S. VanSyckel, and C. Becker. Interactive display

services for smart environments. In 2015 IEEE International Conference

on Computer and Information Technology; Ubiquitous Computing and Com-

munications; Dependable, Autonomic and Secure Computing; Pervasive

Intelligence and Computing, pages 2157-2164. IEEE, 2015.

• J. Naber, C. Krupitzer, and C. Becker. Transferring an interactive display

service to the virtual reality. In 2017 IEEE International Conference on

Smart Computing (SMARTCOMP), pages 1-8. IEEE, 2017.

• J. Naber, S. Schmitz, and C. Becker. Perle: A testbed for pervasive mid-

dlewares in learning environments. In 2019 IEEE International Conference

on Pervasive Computing and Communications Workshops (PerCom Work-

shops), pages 474-479. IEEE, 2019.

• J. Naber, M. Pfannemüller, J. Edinger, and C. Becker. Perflow: Configuring

the information flow in a pervasive middleware via visual scripting. In Pro-

ceedings of the 16th EAI International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous. ACM, 2019.

to be puplished.

lxv

Lebenslauf

Seit 02/2014 Akademischer Mitarbeiter

Lehrstuhl für Wirtschaftsinformatik II

Seit 02/2014 Mitarbeiter IT und Course Material

Mannheim Business School

08/2011 – 01/2014 Master of Science Wirtschaftsinformatik

Universität Mannheim

08/2008 – 07/2011 Bachelor of Science Wirtschaftsinformatik

Universität Mannheim

lxvii

	Abstract
	Acknowledgments
	Introduction
	Motivation and Problem Definition
	Research Questions
	Contributions
	Structure

	Theoretical Foundations
	Pervasive Systems
	Pervasive Computing
	Service-Oriented Architectures
	Adaptation

	Visual Scripting
	Visual Alphabet
	Visual Grammar

	Virtual Environments
	Augmented and Virtual Reality
	Distributed Virtual Environments
	Game Engines

	Related Work
	Classifications
	Configurable Pervasive Middlewares
	Remote Participation Systems
	Summary

	Requirement Analysis
	Scenario
	Functional Requirements
	Nonfunctional Requirements

	System Model
	Middleware Design
	PerFlow Architecture
	Structuring the Information Flow
	Structure
	Local Connector Registry
	Information Exchange

	Configuration of the Information Flow
	Rule Definition
	Route Definition
	Rule Interpretation

	Configuration Distribution
	Naive Configuration Distribution
	Leader and Consensus based Configuration Distribution

	Configuration Enforcement
	Sending and Receiving Information
	Information Handling

	PerFlow Tool
	Visual Scripting Language
	Visual Scripting Tool
	Connection to PerFlow Middleware

	PerFlow Virtual Extension
	The Virtual Environment
	Connection to PerFlow Middleware

	Summary

	Prototype Implementation
	Implementation of the PerFlow Middleware
	Implementation of the PerFlow Tool
	The Visual Scripting Tool
	Communication with PerFlow Middleware

	Implementation of the PerFlow Virtual Extension
	Virtual Classroom Environment
	Communication with PerFlow Middleware

	Summary

	Evaluation
	Proof of Concept
	The PerLE Testbed for Pervasive Classrooms
	Requirements Evaluation

	Implementation Effort
	Performance Measurements
	Reconfiguration Overhead
	Consensus Algorithm Overhead
	PerFlow Middleware Communication Overhead
	PerFlow Virtual Extension Communication Overhead

	User Study
	Methodology
	Scenario and Questionnaire
	Participants
	Results

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix
	Example applications for BASE and PerFlow
	BASE Application
	BASE Service
	PerFlow Sender Application
	PerFlow Receiver Application

	Reconfiguration times for different configuration sizes
	User Study
	PerFlow Tool: First User Study Handout
	PerFlow Tool: Second User Study Handout
	Questionnaire
	Survey Results

	Publications Contained in this Thesis
	Curriculum Vitae

