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Abstract
In this dissertation we consider issues of high-frequency statistics, whereas our data
is generated by discretization of noisy and pure Itô semimartingales. In the first part
of this thesis, we present results and tools from stochastic calculus, high-frequency
statistics and extreme value theory, being essential for all subsequent parts. Based
on noisy Itô semimartingale observations, in the second part of this work limit theo-
rems are proved, which are necessary to tackle change-point questions in the volatility
adequately. Furthermore, the consistency of a change-point test is proved as well as
consistency of the associated change-point estimator.
In the third part of the work weak limit theorems for extreme value statistics are
proved, which are appropriate for constructing uniform confidence bands for the volatil-
ity process. The respective extreme value statistics are based on pure Itô semimartin-
gale observations without microstructure noise.
The final part of the work contains weak limit theorems, which are appropriate to con-
struct uniform confidence bands for observations based on data with microstructure
noise.
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Zusammenfassung
In dieser Dissertation befassen wir uns mit Fragestellungen der Hochfrequenzstatis-
tik, wobei unsere Datenbasis die Diskretisierung von verrauschten wie auch reinen Itô
Semimartingalen ist. Im ersten Teil dieser Dissertation stellen wir Resultate und Hilfs-
mittel aus der stochastischen Analysis, Hochfrequenzstatistik und Extremwerttheorie
vor, die wesentlich für alle nachfolgenden Teile sind. Im zweiten Teil dieser Arbeit wer-
den Grenzwertsätze bewiesen, die notwendig sind, um Fragen von Strukturbrüchen in
der Volatilität adäquat behandeln zu können. Darüber hinaus wird sowohl die Kon-
sistenz eines Strukturbruchtests als auch die Konsistenz von Schätzern nachgewiesen,
die den jeweiligen Zeitpunkt des Strukturbruchs schätzen.
Im dritten Teil der Arbeit werden schwache Grenzwertsätze für Extremwertstatistiken
bewiesen, die geeignet sind, gleichmäßige Konfidenzbänder für den Volatilitätsprozess
zu konstruieren. Die jeweiligen Extremwertstatistiken basieren auf reinen Itô Semimar-
tingalen, die keinem Rauschen unterliegen.
Der letzte Teil der Arbeit enthält schwache Grenzwertsätze, die geeignet sind, gleich-
mäßige Konfidenzbänder für Beobachtungen zu konstruieren, die auf verrauschten Da-
ten basieren.
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1. Introduction

1.1. Motivation

At least since the celebrated work by Black and Scholes [15] and the independent work
of Merton [47], in which the authors have presented the famous Black-Scholes-Merton
formula for option pricing, stochastic calculus and stochastic methods are an integral
part of financial mathematics. The famous partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (BSM)

provides a link between the option value V , the underlying asset price S, the risk
free interest rate r and the volatility σ2. In (BSM) the asset price S is driven by the
geometric Brownian motion stochastic differential equation

dS = µSdt+ σSdW (GBM)

with µ being the drift rate. The theoretical foundation of the differential dW is given
in the groundbreaking papers Itô [32] and Itô [31], in which the author constructs
stochastic integrals ∫ t

0
σs dWs

for adaptive, locally bounded integrands (σt)t≥0 and presents stochastic differential
equations, respectively. With the further extension and generalization of stochastic
integration by the ’Strasbourg school of probability’, c.f. Emery and Yor [21], the
Brownian motion W has been replaced by a so called semimartingale X. As a result,
general semimartingales and the modern theory of stochastic integration have found
their way to financial mathematics. For the latter relation, the Fundamental theorem
of asset pricing due to Delbaen and Schachermayer [20] constitutes the striking bridge.
This result, being fundamental and very deep, states, roughly speaking, that the asset
price S can be modeled by a semimartingale if and only if the financial market fulfills
the so called NFLVR property. More precisely, the following holds.

Fundamental Theorem of Asset Pricing. Let S be a locally bounded semimartin-
gale. There exists an equivalent martingale measure Q for S if and only if S satisfies
the No-Free Lunch with Vanishing Risk (NFLVR) condition.

We refer to Theorem 9.1.1 in Delbaen and Schachermayer [20] and to Theorem 9.7.2.
for the conclusion NFLVR ⇒ S = semimartingale. Due to the results described
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1. Introduction

above, semimartingales possess an outstanding relevance in applications. This central
significance of these stochastic processes motivates their statistical and probabilistic
inference. We will pursue statistical inference in the high-frequency regime, that is we
have data (

Xi∆n

)
i=0...,∆−1

n
,

generated by a stochastic process X with equidistant observation points i∆n, i =
0, . . . ,∆−1

n . This work will provide further insight on volatility inference and estima-
tion of a given asset price X. More precisely, we will develop pathwise techniques
and results for functionals of the second characteristic of the semimartingale X. The
spot volatility, interpreted as a measure of dispersion in applications, is basically a
functional of the quadratic variation of the semimartingale X. While in the classical
partial differential equation (BSM) the volatility is neither random nor time depen-
dent, empirical evidence suggests to work with much more general volatility models.
In a first step, we will replace the geometric Brownian motion S in (GBM) by a gen-
eral, possibly discontinuous Itô semimartingale (Xt)t∈[0,1], i.e. a semimartingale with
characteristics being continuous with respect to the Lebesgue measure. Secondly,
considering high-frequency data, the existence of microstructure noise is empirically
evident, c.f. Chapter 8 in Schmidt-Hieber [57], such that even more general processes
(Yt)t∈[0,1], where Yt is a noisy version of Xt with exogenous additive noise, are con-
sidered. Statistical inference on certain functionals of the volatility process (σ2

t )t∈[0,1]

has attracted a huge interest in recent years. A considerable part of these research
results have been gathered and comprehensively presented in the remarkable work
Jacod and Protter [35]. Those results essentially comprise consistency and associated
central limit theorems concerning functionals of the spot volatility process (σ2

t )t∈[0,1].
In this thesis we will go a step further extending the classical results based on linear
statistics to non-linear versions. We will pursue inference via extreme value limits
of certain functionals, tackling change-point questions based on the process (Yt)t∈[0,1]

and uniform confidence for spot volatility extending and improving results in recent
literature based on (Xt)t∈[0,1] as well as for (Yt)t∈[0,1].

1.2. Outline of the thesis

This thesis is organized as follows.

In Chapter 2 we present the basic objects and collect the necessary tools from stochas-
tic calculus, high-frequency statistics, Skorohod embedding and extreme value limit
theorems, being necessary proving the main results of the thesis.

Chapter 3 contains the first part of the thesis, where we will tackle change-point
inference for noisy high-frequency data. Inference on structural breaks for discrete-
time stochastic processes, particularly in time series analysis, is a very active research
field within mathematical statistics. Parametric and nonparametric approaches are

2



1.2. Outline of the thesis

usually based on limit theorems relying on extreme value theory, cf. Csörgő and
Horváth [19] for an overview. Whereas the latter is usually concerned with i.i.d. data,
important contributions beyond that case are presented in Wu and Zhao [61], proving
limit theorems for nonparametric change-point analysis under weak dependence. These
results serve as an important ingredient not only for this chapter but also for the whole
work. Except the classical works like Müller [48] and Müller and Stadtmüller [49] so far
inference on structural breaks for continuous-time stochastic processes has attracted
less attention. Let us mention the very recent work by Bücher et al. [17], which
also deals with questions of detecting structural breaks of certain continuous-time
stochastic processes. Our target of inference is the volatility process. Understanding
the structure and dynamics of stochastic volatility processes is a highly important issue
in finance and econometrics. Due to the outstanding role of volatility for quantifying
financial risk, there is a vast literature on these topics.

In Chapter 4 we will start with inference on uniform spot volatility estimation. Whereas
the results sketched in Chapter 2 allow for pointwise inference, there is a lack of ap-
propriate tools for uniform inference. More precisely, taking into account the limit
theorems in Jacod and Todorov [38], it is easy to conclude a feasible central limit
theorem, which enables the construction of an interval C1−α(t) such that for a given
t ∈ [0, 1]

P
[
σ2
t ∈ C1−α(t)

]
−→ 1− α .

Whereas a confidence band C1−α(t) fulfills

P
[
σ2
t ∈ C1−α(t) ∀t ∈ [0, 1]

]
−→ 1− α ,

i.e. confidence intervals are sets with only local coverage and confidence bands are
sets with simultaneous coverage.
The key tool to construct asymptotic confidence sets are weak limit theorems based
on different types of statistics. Concerning the construction of confidence intervals
the limit theorems are usually provided for linear statistics, measuring the point-
wise deviation between the estimator and the unknown parameter. In contrast, the
construction of confidence bands relies on non-linear statistics measuring the global
deviation between the estimator and the unknown parameter. Beyond the construction
of confidence bands, uniform weak limit theorems allow for tackling testing problems,
which are not accessible with point-wise versions. For example, they allow to validate
a certain parametric model for the spot volatility process

(
σ2
t

)
t∈[0,1]

such as goodness

of fit tests or change-point tests.

The final Chapter 5 provides a further extension of the previous Chapter 4. Though
the theory in Chapter 4 covers a large class of stochastic volatility models and a quite
general data generating price process (Xt)t∈[0,1] including general, infinite jump ac-
tivity, it still leaves a gap concerning microstructure noise effects, as the estimators
(4.1) and (4.2) are both not noise robust. That is, the limit theorems 4.12 and 4.15

3



1. Introduction

do not hold, if we pass from (Xt)t∈[0,1] to (Yt)t∈[0,1]. Therefore we will generalize these
estimators using methods presented in Chapters 2 and 3.
To the best of our knowledge, the very relevant but mathematically involved topic
of uniform spot volatility estimation in a noisy Itô semimartingale framework has not
been rigorously discussed in the existing literature. The only work, which we are aware
of, considering uniform estimation aspects of spot volatility estimation, is Kanaya and
Kristensen [40]. Concerning the noisy framework in Subsection 3.4 the authors only
discuss possible future research directions, without providing any rigorous arguments
or results. We intend to close this gap in Chapter 5.

4



2. Some basics and tools on high
frequency statistics

In this chapter we will summarize and present the tools and results, which are used
in the main part of the thesis. Starting with fundamentals of stochastic calculus,
we will pass to important limit theorems and conclude the chapter with very recent
methods on volatility estimation. We will not present any proofs but will refer to the
corresponding literature. Unless otherwise stated, all stochastic objects are defined on
a complete filtered probability space (Ω,F, (Ft)t∈[0,1],P).

2.1. Basics in stochastic calculus

Throughout the thesis we will pursue inference on certain characteristics of a stochastic
process (Xt)t∈[0,1]. Due to the fundamental theorem of asset pricing, which has already
been mentioned in the introduction, this process, modeling the price of an asset, is
necessarily a so called semimartingale.

Definition 2.1 (Semimartingale). A semimartingale is a stochastic process X of the
form

X = X0 +M +A (2.1)

where X0 is finite valued and F0-measurable, where M is a local martingale and A is
a finite variation process.

Remark 2.2. Semimartingales are undoubtedly the most important class of stochastic
processes in stochastic calculus, probability theory and mathematical finance. On the
one hand they are the basis of modern stochastic integration due to the celebrated
Bichteler-Dellacherie Theorem, c.f. Protter [52], and on the other hand they are the
key building blocks in asset pricing theory.

Remark 2.3. It is a deep result in probability theory, that every semimartingale X
exhibits a representation in terms of random measures and truncation function κ:

X = X0 +Xc + κ ? (µ − ν) + (x− κ(x)) ? µ +B . (2.2)

The triplet
(
B,C, ν

)
is called the characteristic triplet of the semimartingale X, with

- C = [Xc, Xc] being the quadratic variation of the continuous local martingale
part Xc,

5



2. Some basics and tools on high frequency statistics

- B being the predictable process of locally finite variation, c.f. Definition 2.6 in
Jacod and Shiryaev [37] and

- ν the compensator of the jump measure µ, c.f. Theorem 1.8 in Jacod and
Shiryaev [37].

In contrast to the defining decomposition (2.1), the refined one in (2.2) is unique and
is more appropriate for further inference.

Whereas there exists a vast literature on probabilistic results for general semimartin-
gales, statistical inference, especially high-frequency statistics, with respect to these
processes has not been developed yet. Though, we refer to Aı̈t-Sahalia and Jacod [3]
for discussions, including the general case. Throughout the whole work, the price pro-
cess (Xt)t∈[0,1] will be a so called Itô semimartingale and we will stick to the univariate
case.

Definition 2.4 (Itô semimartingale). A semimartingale X is an Itô semimartingale,
if its characteristics

(
B,C, ν

)
are absolutely continuous with respect to the Lebesgue

measure.

In addition to the general representation (2.2) of an Itô semimartingale, there is the so
called Grigelionis representation, which will be used in subsequent parts of this work:

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs + Jt , (2.3)

with

Jt =

∫ t

0

∫
R
κ(δ(s, x))(µ− ν)(ds, dx) +

∫ t

0

∫
R
κ(δ(s, x))µ(ds, dx) (2.4)

and κ = x − κ(x). For a detailed discussion and presentation of this decomposition,
we refer to Subsection 1.4.3 in Aı̈t-Sahalia and Jacod [1]. We will conclude this sec-
tion with two fundamental inequalities in martingale theory, which will be key tools
calculating upper bounds for certain functionals of increments of local martingales.

Theorem 2.5 (Doob’s Lp inequality). Let
(
Xt

)
t∈[0,1]

be a right-continuous martingale

(or nonnegative submartingale) and J = [u, v] ⊂ [0, 1]. If p ∈ (1,∞), p−1 + q−1 = 1
and Xt ∈ Lp, then ∥∥∥∥sup

t∈J
|Xt|

∥∥∥∥
p

≤ sup
t∈J
‖Xt‖p . (2.5)

For a proof, we refer to Theorem 5.1.3 in Borodin [16].
A deeper and an extremely useful inequality is given by the Burkholder-Davis-Gundy
inequality. We use the notation

X∞ = lim
t−→∞

Xt

6



2.2. Stable convergence and central limit theorems

and

X∗t = sup
s≤t
|Xs|

for any stochastic process Xt. The inequality essentially states, that the norms

X 7→ E
[
(X∗∞)p

]1/p
and

X 7→ ‖[X,X]∞‖p

are equivalent on the space of continuous local martingales. For our purposes, the
following simplified version is sufficient.

Theorem 2.6 (Burkholder-Davis-Gundy). For any p ∈ (0,+∞) there exist two pos-
itive constants cp, Cp such that, for all continuous local martingales M with M0 = 0,
the following inequality holds for all t > 0:

cpE
[
[M,M ]

p/2
t

]
≤ E

[(
M∗t
)p] ≤ CpE [[M,M ]

p/2
t

]
. (2.6)

For a proof of this version, we refer to Theorem 4.1 and Corollary 4.2 in Revuz and
Yor [55].

Remark 2.7. Note that the equivalence of norms, stated in Theorem 2.6, does not
extend to general semimartingales, c.f. Revuz and Yor [55], Exercise 1.13 in Chapter
IV. Therefore, bounding moments of a general semimartingale, we have to consider
the local martingale part and the finite variation part separately. There are versions
of Theorem 2.6 for general, discontinuous local martingales, c.f. Protter [52]. The
continuous version is sufficient for applications in this work.

2.2. Stable convergence and central limit theorems

The fundamental framework, on which all results in this work are based on, is high-
frequency data. More precisely, given any data generating stochastic process (Xt)t∈[0,1],
indexed with the unit interval, we record data

(Xi∆n)i=0,...∆−1
n

(2.7)

with ∆−1
n = n ∈ N. The infill asymptotics regime implies ∆n −→ 0. In (2.7) we

have the most simple observation scheme, i.e. equidistant and deterministic. For more
general discretization schemes we refer to Jacod and Protter [35]. In the general
framework, using a semimartingale X as a data generating process, proving central
limit theorems for functionals of (2.7) provides so called non-feasible central limit
theorems. More precisely, given a statistic Φ, there is a weak limit like

Φ
(

(Xi∆n)i=0,...∆−1
n

)
d−→ UV , (2.8)

7



2. Some basics and tools on high frequency statistics

with a random variable V > 0 and U ∼ N(0, 1) such that U and V are independent.
Limits of this type are usually called mixed normal, in symbols MN(0, V 2). In general,
the distribution of the random variable V is not known, such that using (2.8) for further
statistical inference, e.g. testing and confidence, is not useful. The natural idea, to
construct an estimator Vn of V , based on (2.7), doesn’t allow to conclude

Φ
(

(Xi∆n)i=0,...∆−1
n

)
/Vn

d−→ N(0, 1) . (2.9)

However, the concept of stable convergence is exactly the right mode of convergence,
ensuring (2.9).

Definition 2.8 (Stable convergence). Let Yn be a sequence of random variables defined
on
(
Ω,F,P

)
taking values in a Polish space

(
E, E

)
. We say that Yn converges stably

with limit Y , written Yn
st−→ Y , where Y is defined on an extension

(
Ω′,F′,P′

)
, if and

only if for any bounded, continuous function g and any bounded F-measurable random
variable Z it holds that

E
[
g(Yn)Z

]
−→ E′

[
g(Y )Z

]
(2.10)

as n −→ +∞.

Remark 2.9. The extension of the original probability space is necessary, since F-

measurability of Y would imply Yn
P−→ Y , c.f. Lemma 2.3 in Podolskij and Vetter

[51].

A suitable choice of
(
E, E

)
shows that Yn is allowed to be a sequence of stochastic

processes. Furthermore, from (2.10) it is obvious, that this concept is an extension of
usual weak convergence. For further properties and results on stable convergence, we
refer the reader to Jacod and Protter [35] and Podolskij and Vetter [51]. Let us only
emphasize, that proving a stable version of (2.8),

Φ
(

(Xi∆n)i=0,...∆−1
n

)
st−→ UV ,

and having a consistent estimator of V ,

Vn
P−→ V ,

ensures

Φ
(

(Xi∆n)i=0,...∆−1
n

)
/Vn

d−→ N(0, 1) .

Proving functional stable convergence is, in general, an involved task. There is a
general result due to Jean Jacod, which is the basis of possibly every functional central
limit theorem in high-frequency statistics. For the sake of completeness, we want to
cite this result in its simplified form. Therefore, we consider functionals of the form

Y n
t =

[t/∆n]∑
i=1

χi,n ,

8



2.2. Stable convergence and central limit theorems

with χi,n being a triangular array of Fi∆n-measurable and square integrable random
variables. Finally, we use the notation ∆n

i X = Xi∆n − X(i−1)∆n
for any stochastic

process X.

Theorem 2.10 (Jacod’s Theorem). Assume there exist a continuous square integrable
local martingale M , absolutely continuous processes F , G and a continuous process B
with finite variation such that the following conditions are satisfied:

sup
t∈[0,1]

∣∣∣∣∣∣
[t/∆n]∑
i=1

E[χi,n | F(i−1)∆n
]−Bt

∣∣∣∣∣∣ P−→ 0 ,

[t/∆n]∑
i=1

(E[χ2
i,n | F(i−1)∆n

]− E2[χi,n | F(i−1)∆n
])

P−→ Ft =

∫ t

0
(v2
s + w2

s) ds ,

[t/∆n]∑
i=1

E[χi,n∆n
iM | F(i−1)∆n

]
P−→ Gt =

∫ t

0
vs ds ,

[t/∆n]∑
i=1

E[χ2
i,n1{|χi,n|>ε} | F(i−1)∆n

]
P−→ 0 ∀ε > 0 ,

[t/∆n]∑
i=1

E[χi,n∆n
i N | F(i−1)∆n

]
P−→ 0 ,

where (vs)s∈[0,1] and (ws)s∈[0,1] are predictable processes and the last convergence holds
for all bounded Ft-martingales with N0 = 0 and [M,N ] ≡ 0. Then we obtain the stable
convergence of processes:

Y n
t

st−→ Yt = Bt +

∫ t

0
vs dMs +

∫ t

0
ws dW

′
s ,

where W ′ is a Brownian motion defined on an extension of the original probability
space and independent of F.

For a proof of this result we refer to Theorem 2.1 and 3.2 in Jacod [34] or Chapter IX
in Jacod and Shiryaev [37].

Remark 2.11. (1) More general versions of Theorem 2.10 can be found in Jacod
[34] or Chapter IX in Jacod and Shiryaev [37]. Those generalizations contain
limit results beyond the square integrability of χi,n and the absolute continuity
of the processes F and G, as well as multidimensional extensions.

(2) We want to emphasize, that there is no similar result for sequences of ‘sim-
ple‘ random variables, i.e. proving stable convergence in this setting, is usually
pursued by directly checking the convergence (2.10).

(3) Theorem 2.10 can be considered as a stable functional extension of the classical
pointwise results for martingale sequences presented in Hall and Heyde [28].

9



2. Some basics and tools on high frequency statistics

(4) For a wide range of applications the random variables χi,n are functionals of an
Itô semimartingale. In this case the local martingale M in Theorem 2.10 can be
chosen to be another Brownian motion W .

(5) The extension of the original probability space is necessary in order to ensure
the existence of an independent Brownian motion. Furthermore, the extension
in Theorem 2.10 is a so called very good extension. Such extensions ensure
that the martingales M,N remain martingales on the larger probability space.
Furthermore, a semimartingale on the extension remains a semimartingale with
the same characteristic triplet and the same Grigelionis representation.

(6) The very good extension in Theorem 2.10 is of Wiener type, i.e. the second factor
of the larger probability space is the canonical Wiener space and the process W ′

is the canonical Wiener process. This construction ensures the independence of
the new Brownian motion W ′.

(7) Further statistical inference using the limit in Theorem 2.10 is only possible
to a limited extent, since the distribution of the limit process Y is usually not
accessible. Fortunately, for a wide range of applications, it holds that B ≡ 0
and v ≡ 0, i.e. after a proper rescaling and an application of stable convergence
properties a feasible central limit theorem follows.

2.3. Volatility estimation

This section is devoted to introduce and summarize methods and results on volatil-
ity estimation. In the first subsection we will repeat some tools for high-frequency
data based on direct Itô semimartingale observations. The second subsection provides
techniques and results for high-frequency data with observation noise.

2.3.1. Direct observation without microstructure noise

Based on data (2.7) we are interested in estimation of, possibly infinite dimensional,
functionals of the spot volatility process

(
σ2
t

)
t∈[0,1]

.

Remark 2.12. (1) The reason to restrict to functionals of the square of the volatil-
ity process (σt)t∈[0,1] is due to the fact that the quadratic variation process [X,X]

can be estimated and the latter includes the squared process σ2
t .

(2) It is a tempting question whether it is possible to estimate and pursue statistical
inference on functionals of the other characteristics of the Itô semimartingale X.
Whereas there exists a rich literature on the compensator ν, functionals of the
drift process (at)t∈[0,1] are, in general, not identifiable. We refer the reader to
Aı̈t-Sahalia and Jacod [3] for an extensive discussion of these questions.

10



2.3. Volatility estimation

Starting with a continuous Itô semimartingale X, i.e. µ ≡ 0 in (2.3), a useful class of
estimators applied for statistical inference on volatility are functionals of the form

V
(
f,X

)n
t

= ∆n

[t/∆n]∑
i=1

f

(
∆n
i X√
∆n

)
, (2.11)

with some smooth function f : R −→ R. The rescaling factor ∆
−1/2
n is due to the

self similarity of the Brownian motion. There exists a very rich literature on limit
theorems for V

(
f,X

)n
t
, whereas the most prominent and important subclasses are so

called power variations given by (2.11) with f(x) = |x|p and p > 0.

Example 2.13 (Consistency). For a continuous function f with polynomial growth,
càglàd process (at)t∈[0,1] and an adapted process (σt)t∈[0,1] being càdlàg, it holds that

V (f,X)nt
u.c.p.−→

∫ t

0
ρσs(f)ds , (2.12)

with
u.c.p.−→ denoting uniform convergence in probability, the operator ρ defined by

ρσs(f) = ρx(f)
∣∣
x=σs

and

ρx(f) = E
[
f
(
xU
)]
,

with U ∼ N(0, 1) and for every x ∈ R.

In (2.12) the drift process (at)t∈[0,1] does not appear in the limit, which is mainly
due to the Burkholder-Davis-Gundy inequality (2.6) and standard upper bounds for
Lebesgue integrals.
In order to construct confidence intervals with respect to functionals of the volatility
process we need associated central limit theorems.

Example 2.14 (Stable limit for power variations). The undoubtedly most important
class of estimators for applications is obtained, if f(x) = |x|p, for some p > 0. If
(σt)t∈[0,1] itself is an Itô semimartingale, then the following stable limit holds:

∆−1/2
n

(
V (f,X)nt −mp

∫ t

0
|σs|p ds

)
st−→
√
m2p −m2

p

∫ t

0
|σs|p dW ′s , (2.13)

with mp ≡ E [|U |p], U ∼ N(0, 1) and a Brownian motion W ′ independent of F defined
on an extension of the original probability space. The properties of stable convergence
imply

∆
−1/2
n

(
V (f,X)nt −mp

∫ t
0 |σs|

p ds
)

√
m2p−m2

p

m2p
V (f2, X)nt

st−→ N(0, 1) . (2.14)

11



2. Some basics and tools on high frequency statistics

Remark 2.15. Though, we will not pursue inference on integrated volatility, but
spot volatility, the class of statistics (2.11) will provide a good starting point for the
construction of our main statistics, as they will be a modification of (2.11).

We refer the reader to Chapter 5 in Jacod and Protter [35] for more central limit
theorems of this type.

When the observed process X exhibits jumps, the situation becomes quite different.
First of all, let us define a non-rescaled version, V (f,X)nt , of V (f,X)nt given by

V (f,X)nt =

[t/∆n]∑
i=1

f (∆n
i X) . (2.15)

Let ∆Xs be the size of the jump of X at time s, i.e.

∆Xs = Xs −Xs− .

Starting with the most important class of test functions f , given by f(x) = |x|p for
p ≥ 2, we have the following stochastic convergence for any t ≥ 0

V (f,X)nt
P−→

{∑
s≤t |∆Xs|p if p > 2 ,

[X,X]t if p = 2 .
(2.16)

For a sketch of the proof of the stochastic convergence (2.16) we refer to Podolskij and
Vetter [51].

Remark 2.16. (1) Note that the quadratic variation process [X,X]t can be decom-
posed via

[X,X]t = [Xc, Xc]t +
∑
s≤t
|∆Xs|2 ,

i.e. the objects of interest, (integrated) functionals of spot volatility, are not
directly accessible via those estimators if p = 2, as the jump part pops up in the
limit.

(2) Similar limit theorems and associated central limit theorems are available for
more general test functions f . Those limit theorems crucially depend on the
behaviour of the test function f around 0. We refer to Jacod and Protter [35]
for extensive discussions and numerous results.

Focusing on inference for spot volatility, one has to eliminate the jumps in the limit
process. There are basically two approaches to overcome this difficulty, so called
truncated power variations and multipower variations. Since we will only use the first
one in subsequent parts of this work, we refer to Barndorff-Nielsen and Shephard [7] for
the multipower variation approach. For a comparison of both estimators we refer the

12



2.3. Volatility estimation

reader to Jacod and Reiss [36]. We stick to the most important case in applications,
namely f(x) = x2. For a sequence vn with vn ∝ 1/n$ for some $ ∈ (0, 1/2) we define

V (f, vn, X)nt =

[t/∆n]∑
i=1

(∆n
i X)2

1{|∆n
i X|≤vn}. (2.17)

We refer to Mancini [44] for further discussions. Once truncation provides to elimi-
nate the jumps asymptotically, a similar central limit theorem as (2.8) is fulfilled by
V (f, vn, X)nt given some conditions on the jump activity. Concerning the latter, we
refer to Theorem 6.9 in Aı̈t-Sahalia and Jacod [4].

2.3.2. Microstructure noise and spectral statistics

Though the data generating Itô semimartingale X in (2.3) is a very flexible and gen-
eral model, it is empirically evident, that it is not sufficient to reflect every aspect
of high-frequency data. This is mainly due to the microstructure noise effects, which
contaminate the data (2.7). Therefore, instead of observing a discretization of the
price process (Xt)t∈[0,1], we observe a different process (Yt)t∈[0,1], which is not a semi-
martingale and is given by a superposition

Yt = Xt + εt , (2.18)

with a white noise process (εt)t∈[0,1], modeling the microstructure noise. In order to
incorporate microstructure noise, we have to extend the original probability space.

We set Gt = F (0)
t ⊗ σ (εs : s ≤ t). The data generating process (Yt)t∈[0,1] is defined

on the filtered probability space
(
Ω,G, (Gt)t∈[0,1],P

)
, which is a very good extension.

For the details of the construction we refer to Chapter 16 in Jacod and Protter [35].
Therefore, our statistical tools presented in Subsection 2.3.1 have to be modified and
extended in order to address high-frequency data

(Yi∆n)i=0,...,∆−1
n
. (2.19)

The reason why this approach of modeling is more appropriate is due to phenomena
like rounding errors or bid-ask spreads. We refer the reader to Chapter 8 in Schmidt-
Hieber [57] and Chapter 7 Aı̈t-Sahalia and Jacod [1] for extensive discussions of these
issues and on possible structures of the noise process. Since for all t

∆nV (f, Y )nt
P−→ 2tE

[
ε2
t

]
,

if µ ≡ 0 and f(x) = x2, the estimators (2.11) provide consistent estimation of char-
acteristics of the noise term, but not of X. Several statistical methods have been
developed in order to tackle this problem of asymptotic dominance of noise. Beside
the pre-averaging method there are multiscale estimators and realized kernels meth-
ods. We refer to Vetter [60] for a discussion of these approaches and corresponding
references. All these three methods have in common that they attain the optimal rate

13



2. Some basics and tools on high frequency statistics

of convergence, without being efficient, i.e. they do not attain the smallest possible
asymptotic variance coinciding with a lower bound. In Reiß [54] the so called spectral
approach is proposed, which outperforms the three methods mentioned above, since
it not only attains the optimal rate of convergence but is also efficient. Since we will
use this method in this work, we want to introduce its key objects and recent results.
Therefore we pick a sequence hn with

hn ∝ n−1/2 log (n) (2.20)

and h−1
n ∈ N.

The observation interval [0, 1] is split into h−1
n bins of length hn, such that each bin is

given by

[(k − 1)hn, khn] , k = 1, . . . , h−1
n .

Furthermore, we consider the L2 ([0, 1]) orthonormal systems, given by

Φjk (t) = Φj (t− (k − 1)hn)

ϕjk (t) = ϕj (t− (k − 1)hn)

with

Φj (t) =

√
2

hn
sin
(
jπh−1

n t
)
1[0,hn] (t) , j ≥ 0, 0 ≤ t ≤ 1 ,

ϕj (t) = 2n

√
2

hn
sin

(
jπ

2nhn

)
cos
(
jπh−1

n t
)
1[0,hn] (t) .

We define, for any stochastic process (Lt)t∈[0,1], the spectral statistics

Sjk (L) :=
n∑
i=1

∆n
i LΦjk

(
i

n

)
.

The squared volatility σ2
(k−1)hn

can be estimated locally by a parametric estimator
through oracle versions of bias corrected linear combinations of the squared spectral
statistics,

σ̂2
(k−1)hn

=

bnhnc−1∑
j=1

wjk

(
S2
jk (Y )− [ϕjk, ϕjk]n

η2

n

)
, (2.21)

with variance minimizing oracle weights wjk, given by

wjk =

(
σ2

(k−1)hn
+ η2

n [ϕjk, ϕjk]n

)−2

∑bnhnc−1
m=1

(
σ2

(k−1)hn
+ η2

n [ϕmk, ϕmk]n

)−2 . (2.22)
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2.3. Volatility estimation

The empirical scalar products [f, g]n, for any functions f and g, are given by

[f, g]n =
1

n

n∑
j=1

f

(
i− 1

2

n

)
g

(
i− 1

2

n

)
.

We want to conclude this subsection with recent limit theorems presented in Altmeyer
and Bibinger [5], extending the theory in Reiß [54] to general, stochastic volatility. We
set

ÎVn,t =

bth−1
n c∑

k=1

bnhnc−1∑
j=1

wjk

(
S2
jk (Y )− [ϕjk, ϕjk]n

η̂2

n

)
(2.23)

with η̂2 being a
√
n- rate estimator of E

[
ε2
t

]
proposed in Zhang et al. [62] and given

by

η̂2 =
1

2n

n∑
i=1

(Yi∆n − Y(i−1)∆n
)2 .

The following assumptions are imposed for the asymptotic theory in Altmeyer and
Bibinger [5].

Assumption 2.17. The volatility process σ is assumed to fulfill at least one of the
following properties.

(σ-1) There exists a random variable L with at least four finite moments, i.e. with
E[L4] < ∞ such that t 7→ σt is almost surely α-Hölder continuous on [0, 1] for
α > 1

2 and Hölder constant L, i.e. |σt − σs| ≤ L |t− s|α, 0 ≤ t, s ≤ 1, almost
surely.

(σ-2) The process σ is itself an Itô semimartingale, i.e. there exist a random variable
σ0 and adapted càdlàg processes b̃ = (̃bt)t∈[0,1], σ̃ = (σ̃t)t∈[0,1] and η̃ = (η̃t)t∈[0,1]

such that

σt = σ0 +

∫ t

0
b̃s ds+

∫ t

0
σ̃s dWs +

∫ t

0
η̃s dW

′
s .

W ′ is an (Ft)t∈[0,1]-Brownian motion, which is independent of W . Furthermore,
suppose there exists a constant κ > 0 such that |σt| > κ uniformly for 0 ≤ t ≤ 1.
For the drift process, assume there exists a random variable L′ with E[(L′)2] <∞
such that t 7→ bt is almost surely ν-Hölder continuous on [0, 1] for ν > 0 and
Hölder constant L′, i.e. |bt − bs| ≤ L′ |t− s|ν , almost surely.

We need some assumptions on the noise process.

Assumption 2.18. The microstructure noise process ε is assumed to fulfill the fol-
lowing properties.
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2. Some basics and tools on high frequency statistics

(ε-1) The stochastic process (εt)t∈[0,1] is a centered white noise process with variance
η2.

(ε-2) It has finite eighth moment.

Theorem 2.19 (Functional stable limit for spectral estimators). Given the Assump-
tions 2.17 and 2.18 the following functional stable weak convergence holds,

n1/4

(
ÎVn,t −

∫ t

0
σ2
s ds

)
st−→
∫ t

0

√
8η |σ3

s | dBs (2.24)

as n −→ ∞ on the Skorohod space D [0, 1] with another Brownian Motion B, defined
on an extension of the original space and

(
Ω,G, (Gt)t∈[0,1],P

)
and being independent

of G.

For a proof we refer to Altmeyer and Bibinger [5].

Remark 2.20. (1) Not only the convergence rate in (2.24) is optimal, but also
the asymptotic variance coincides with the best possible lower bound, i.e. the
spectral statistics provide optimal integrated spot volatility estimation.

(2) The convergence (2.24) will serve as a key tool handling the change point de-
tection problem in the parametric case, i.e. if there is a constant σ, such that
(σt)t∈[0,1] is deterministic and it holds that σt ≡ σ.

(3) After a proper rescaling of the left hand side of (2.24) and using the proper-
ties of stable convergence, one can immediately conclude a feasible central limit
theorem.

(4) Similar limit theorems for higher dimensions d are also available in Altmeyer and
Bibinger [5], including the sophisticated local method of moments estimator.

2.4. Strong invariance principles

Almost every result, which is presented in this work, is based on uniform limit theo-
rems. Key tools proving these kind of limits are so called strong invariance principles,
which are usually based on Skorohod embedding techniques. This subsection is meant
to review those results, which are used to prove our main results. Let (Xn)n∈N be a se-
quence of independent, identically distributed random variables on a probability space(
Ω,A,P

)
. Moreover, let (Yn)n∈N be a sequence of independent N(0, 1) distributed

random variables on a suitable, possibly different, extension (Ω̃, Ã, P̃). We set

Sn =

n∑
k=1

Xk and Tn =

n∑
k=1

Yk .

Let H(x) > 0, x > 0 be a monotone increasing, continuous function having the
following properties
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2.4. Strong invariance principles

(i) H(x)
x3+δ

is monotone increasing for some δ > 0 and all x > x0,

(ii) log(H(x))
x is monotone decreasing for x > x0.

Theorem 2.21. Let H(x) satisfy (i) and (ii). Define a sequence Kn by the equation
H(Kn) = n. If H(|X1|) ∈ L1, then there exists a construction of X1, X2, . . . and
Y1, Y2, . . . and a constant C > 0 such that

P
[
lim sup
n−→+∞

|Sn − Tn|
Kn

≤ C
]

= 1 .

For a proof based on dyadic construction we refer to Theorem 3 in Komlós et al. [42].

Remark 2.22. (1) We want to emphasize that according to Komlós et al. [42] The-
orem 2.21 also holds for not necessarily identically distributed X1, X2, . . ., which
will be important for some results presented in the next chapter.

(2) An application of Theorem 2.21 with H(x) = xr with r > 3 yields

|Sn − Tn| = Oa.s.(n
1/r) ,

which is not only an improvement of the classical results due to Strassen [58],
but is also shown to be optimal.

Calculating precise upper bounds for the probability of the event

sup
k≤n
|Sk − Tk| > x ,

for x > Kn, will be important in the sequel and is the content of the following result.

Theorem 2.23. Let H(x) satisfy the conditions of Theorem 2.21 and H(|X1|) ∈
L1. Then for any x, such that Kn < x < C1

√
n log(n) (more generally x > Kn,

x2/ log(H(x)) < C1n) there exist two finite sequences X1, X2, . . . , Xn and Y1, Y2, . . . , Yn
such that

P

[
sup
k≤n
|Sk − Tk| > x

]
≤ C2

n

H(ax)
,

where C1, C2 and a are positive constants depending only on the distribution function
of X1.

For a proof we refer to Theorem 4 in Komlós et al. [42].

Remark 2.24. It is often more convenient to reformulate the results presented above
using a standard Brownian Motion (B(t))t∈[0,∞) as it allows to use stochastic calculus
tools. Therefore, we set

S(t) = S[t] t ∈ R+ .
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2. Some basics and tools on high frequency statistics

Then, (2) in Remark 2.22 translates to

S(T )− B(T ) = Oa.s.(T
1/r) .

as T −→ ∞. Controlling the discretization error supk≤t≤k+1 |B(t)− B(k)| is usually
pursued using Lévy’s modulus of continuity, c.f. Revuz and Yor [55].

Remark 2.25. The quality of the strong approximation results, which have been
presented so far, crucially depends on the existence of moments. If the existence of
a moment generating function can be ensured, then a better approximation can be
proven. More precisely, if

E [exp(tX1)] <∞

for |t| < t0, t0 > 0, then it holds that

S(T )− B(T ) = Oa.s.(log(T ))

as T −→ ∞. This result, combined with the fact that the χ2-squared distribution
exhibits a moment generating function, will ensure the quite general results on uniform
confidence for spot volatility in subsequent parts of this work. Let us insist that
Oa.s.(log(T )) in the above approximation can not be replaced by Oa.s. (log(T )) unless
X1 itself is normally distributed.

2.5. Some limit theorems for extreme value statistics

This last section of this preparatory chapter is meant to gather recent and classical
limit theorems for extreme value statistics.

Lemma 2.26. Let (Zi)i∈N be a family of independent and N(0, 1) distributed random
variables. We set Yi = |Zi − Zi−1| and γn = [4 log(n) − 2 log(log(n))]1/2. Then the
following weak convergence holds,√

log(n)

(
max

1≤i≤n−1
Yi − γn

)
d−→ V , (2.25)

with

P [V ≤ x] = exp(−π−1/2 exp(−x)) , (2.26)

For a proof we refer to Lemma 1 in Wu and Zhao [61].
Proving uniform limit theorems, we need a more general result for sequences of Gaus-
sian processes which has been proven in the classical work Bickel and Rosenblatt [14].
Therefore, let Y T (·) be a sequence of separable Gaussian processes with mean µT (·)
such that Y T (·)− µT (·) is stationary. Let r(·) be the covariance function of Y T ,

MT = sup
{
Y T (t) : 0 ≤ t ≤ T

}
,

mT = inf
{
Y T (t) : 0 ≤ t ≤ T

}
and bT (t) = µT (t)(2 log(T ))1/2.
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2.5. Some limit theorems for extreme value statistics

Theorem 2.27 (Uniform limit for stationary and Gaussian sequences). Suppose that

(1) bT (t) is uniformly bounded in t and T on [0, T ] as T −→∞.

(2) bT (t) −→ b(t) uniformly on [0, T ] as T −→∞.

(3) T−1λλλ
(
{t : b(t) ≤ x , 0 ≤ t ≤ T}

)
−→ η(x) the cumulative distribution function

of a probability measure as T −→∞, with λλλ being the Lebesgue measure.

(4) b(·) is uniformly continuous on R.

(5) r(t) = 1− C |t|α + O(|t|α), 0 < α ≤ 2 with a constant C as T −→∞.

(6)
∫∞

0 r2(t) dt <∞.

Let

dt = (2 log(t))1/2 +
1

(2 log(t))1/2

×
[(

1

α
− 1

2

)
log log(t) + log(2π)−1/2(C1/αHα2(2−α)/2α)

]
,

where

Hα = lim
T−→∞

1

T

∫ ∞
0

exp(s)P[ sup
0≤t≤T

Yt > s] ds (2.27)

and Y being a Gaussian process with

E[Yt] = −|t|α

and

Cov(Yt1 , Yt2) = |t1|α + |t2|α − |t1 − t2|α .

Then

UT = (2 log(T ))1/2(MT − dT ) and VT = (2 log(T ))1/2(mT − dT )

are asymptotically independent with,

P[UT < z] −→ exp(−λ1 exp(−z)) ,
P[VT < z] −→ exp(−λ2 exp(−z)) ;

where

λ1 =

∫
exp(z) dη(z) , λ2 =

∫
exp(−z) dη(z) .

For a proof of Theorem 2.27 we refer to Theorem A1 in Bickel and Rosenblatt [14].
An immediate consequence of the theorem above is the following corollary for the
absolute value, which we will use in subsequent parts of this work.
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2. Some basics and tools on high frequency statistics

Corollary 2.28. If M
T

= sup
{
|Y T (t)| : 0 ≤ t ≤ T

}
then under the conditions of

Theorem 2.27,

P[(2 log(T ))1/2(M
T − dT ) < x] −→ exp(−(λ1 + λ2) exp(−x)) ,

as T −→∞.

Remark 2.29. The bridge constituting the connection between our general semi-
martingale framework and the limit theorems presented in this section is the strong
invariance principles presented in Section 2.4. The underlying idea is to provide sev-
eral approximation steps and to exploit the independence of Brownian increments,
such that the i.i.d. results presented in this section become applicable. This proce-
dure has already been pursued in Bibinger et al. [10] proving limit theorems based on
high-frequency data without observation noise.
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3. Change-point inference on spot
volatility

This chapter is organized as follows: First, we will give a very short treatment of
the parametric case, using limit theorems presented in the previous chapter and will
proceed with the general Itô semimartingale case. We formulate the testing problem
and the corresponding test statistic. We begin with the test for a continuous semi-
martingale (Xt)t∈[0,1] which is then extended to the general case utilizing truncation
techniques. We present the asymptotic theory including the limit theorem under the
null hypothesis, consistency of the test and consistent estimation of the change point
under the alternative hypothesis. We conduct a Monte Carlo simulation study. The
main insight is that the new test considerably increases the power compared to (op-
timally) skip sampling the noisy data to lower frequencies and applying the not noise
robust method by Bibinger et al. [10] directly. The last section gathers the proofs. This
chapter, except the first Section 3.1, has been published in Bibinger and Madensoy
[11].

3.1. The parametric case

In this short section we will present a concise discussion of the parametric case, using
the limit theorem presented in Theorem 2.19. The simplified parametric model implies
that the volatility process (σt)t∈[0,1] is neither random nor time varying, that is

σt ≡ σ

for some constant σ. Furthermore, we drop the drift and jump component of the Itô
semimartingale (Xt)t∈[0,1], i.e.

at ≡ 0 ,

and

µ ≡ 0 ,

using the notation introduced in (2.3). This implies that the data generating process
(Yt)t∈[0,1],

Yt = Xt + εt ,
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3. Change-point inference on spot volatility

is given by

Xt =

∫ t

0
σ dWs

and with (εt)t∈[0,1] fulfilling Assumption 2.18. Based on high-frequency data (2.19) we
define the statistic Qm,n, given by

Qm,n =
√
hn

m∑
k=1

σ̂2
(k−1)hn

− hn
h−1
n∑
k=1

σ̂2
(k−1)hn

 , m ∈
{

1, . . . , h−1
n

}
.

With m = bth−1
n c, it holds that

Qm,n =
√
hn

bth−1
n c∑

k=1

σ̂2
(k−1)hn

−
√
hnhnbth−1

n c
h−1
n∑
k=1

σ̂2
(k−1)hn

=
1√
hn

hn bth−1
n c∑

k=1

σ̂2
(k−1)hn

−
∫ t

0
σ2 ds


− t√

hn

hn h−1
n∑
k=1

σ̂2
(k−1)hn

−
∫ 1

0
σ2 ds

+OP(
√
hn)

∝ n1/4√
log(n)

bth−1
n c∑

k=1

hnσ̂
2
(k−1)hn

−
∫ t

0
σ2 ds


− tn1/4√

log(n)

h−1
n∑
k=1

hnσ̂
2
(k−1)hn

−
∫ 1

0
σ2 ds

+OP(
√
hn) .

We will apply Theorem 2.19. Therefore, taking into account, that according to the
calculations presented in Altmeyer and Bibinger [5], the factor 1/

√
log(n) provides

the right rescaling with respect to the variance. This yields

n1/4√
log(n)

bth−1
n c∑

k=1

hnσ̂
2
(k−1)hn

−
∫ t

0
σ2 ds


− tn1/4√

log(n)

h−1
n∑
k=1

hnσ̂
2
(k−1)hn

−
∫ 1

0
σ2 ds

+OP(
√
hn)

st−→ γB◦t ,

with a Brownian bridge (B◦t )t∈[0,1] independent of G. It is

γ2 = 8η |σ|3 ,
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3.2. The general nonparametric case

which is, in general, unknown, due to η and σ being unknown parameters. We have
to construct an estimator γ̂2

n of γ2. It is well-known that η2 can be estimated in this
model with

√
n-rate by either a rescaled realized volatility or from the negative first-

lag autocovariances of the noisy increments. Under Assumption 2.18 Zhang et al. [62]
provide a rate-optimal consistent estimator for η2:

η̂2 =
1

2n

n∑
i=1

(Yi∆n − Y(i−1)∆n
)2 = η2 +OP

(
n−1/2

)
. (3.1)

Furthermore, since

ÎVn,1
P−→ σ2 ,

we set

γ̂2
n = 8

√
η̂2(ÎVn,1)3/2 .

Therefore, after proper rescaling, we can conclude that the limit process is a standard
Brownian Bridge. Testing for jumps in the volatility parameter, we can use the test
statistic Tn given by

Tn = sup
m=1,...,h−1

n

∣∣∣(γ̂2
n)−1/2Qm,n

∣∣∣ .
As n −→ +∞ this converges to a Kolmogorov Smirnov distributed random variable.
Concerning the quantiles of the latter, we refer to Marsaglia et al. [46].

3.2. The general nonparametric case

This section tackles the change-point detection question for general volatility processes
(σt)t∈[0,1]. We will develop a test for volatility jumps. We aim to test for some càdlàg
squared volatility process (σ2

t )t∈[0,1] hypotheses of the form

H0 : there is no jump in σ2
t vs.

H1 : there is at least one θ ∈ (0, 1) such that
∣∣σ2
θ − lim

s→θ,s<θ
σ2
s

∣∣ > 0 .
(3.2)

It is standard in the theory of statistics of high-frequency data to address such ques-
tions path-wise. This means that H0 and H1 are formulated for one particular path
of the squared volatility (σ2

t (ω))t∈[0,1] and we strive to make a decision based on dis-
crete observations of the given path of (Yt(ω))t∈[0,1]. The semimartingale (Xt)t∈[0,1] is

defined on a filtered probability space (Ω(0),F (0), (F (0))t∈[0,1],P(0)).
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3. Change-point inference on spot volatility

3.2.1. Assumptions and test statistics

We need further assumptions on the coefficient processes of (Xt).

Assumption 3.1 (The processes a and σ). The processes a and σ are locally bounded.
σ is almost surely strictly positive, that is, inft∈[0,1] σ

2
t ≥ K− > 0.

Our notation for jump processes follows Jacod and Protter [35].

Assumption 3.2. Suppose supω,x |δ(s, x)|/γ(x) is locally bounded for some determin-
istic non-negative function γ which satisfies for some r ∈ [0, 2]:∫

R
(1 ∧ γr(x))λ(dx) <∞ . (3.3)

Remark 3.3. The smaller r the more restrictive Assumption 3.2. The case r = 0 is
tantamount to jumps of finite activity.

On the null hypothesis we allow for very general and rough continuous stochastic
volatility processes.

Hypothesis (H0-a). Under the null hypothesis, the modulus of continuity

wδ(σ)t = sup
s,r≤t
{|σs − σr| : |s− r| < δ}

is locally bounded in the sense that there exists a > 0 and a sequence of stopping times
Tn → ∞, such that wδ(σ)(Tn∧1) ≤ Lnδ

a, for some a > 0 and some (almost surely
finite) random variables Ln.

The regularity exponent a ∈ (0, 1] is selected for the testing problem. The test can
be repeated for different values also. The regularity exponent coincides with a usual
Hölder exponent when Ln is a fix constant. Integrating a sequence Ln enables us
to include stochastic volatility processes in our theory. Since stochastic processes as
Brownian motion are not in some fix Hölder class, it is crucial to work with (slightly)
more general smoothness classes determined by the exponent a > 0 and by Ln. Observe
that if

E
[∣∣σ2

t − σ2
s

∣∣b] ≤ C |t− s|γ+ab , for some b, C > 0 and γ > 1 ,

then the Kolmogorov Čentsov Theorem implies that

lim
n→+∞

P
(

sup
s,t∈[0,1]
|t−s|≤δ

∣∣σ2
t − σ2

s

∣∣ ≤ Lnδa) = 1

if Ln → +∞ arbitrarily slowly. In particular, we can impose that Ln = O(log(n)) for
our derivation of upper bounds in the sections below. The null hypothesis is the same
as in Assumption 3.1 of Bibinger et al. [10]. Our test distinguishes the null hypothesis
from alternative hypotheses of the following type.
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3.2. The general nonparametric case

Alternative (H1-a). Under the alternative hypothesis, there exists at least one θ ∈
(0, 1), such that ∣∣∆σ2

θ

∣∣ =
∣∣σ2
θ − lim

s→θ,s<θ
σ2
s

∣∣ = δ > 0 .

We suppose that σ2
t = σ

2,(c)
t + σ

2,(j)
t , where (σ

2,(c)
t )t∈[0,1] satisfies (H0-a). The jump

component (σ
2,(j)
t )t∈[0,1] is a pure-jump semimartingale which satisfies Assumption 3.2

with r ≤ 2.

In particular, the alternative hypothesis does not restrict to only one jump. We es-
tablish a consistent test when at least one non-negligible jump is present. Multiple
jumps and quite general jump components are possible. Consistency of our test only

requires that in a small vicinity of θ, (σ
2,(c)
t ) and (σ

2,(j)
t −∆σ2

θ1[θ,1](t)) are sufficiently
regular such that the jump ∆σ2

θ is detected. Bibinger et al. [10] impose in their Theo-
rem 4.3 the condition that all volatility jumps are positive. This condition is replaced

here by the semimartingale assumption on (σ
2,(j)
t )t∈[0,1]. Both ensure that ∆σ2

θ can
not be compensated by opposite jumps in an asymptotically small vicinity. In order
to incorporate microstructure noise, we have to extend the original probability space.

We set Gt = F (0)
t ⊗ σ (εs : s ≤ t). As we have already explained in the previous chap-

ter, the data generating process (Yt)t∈[0,1] is defined on the filtered probability space(
Ω,G, (Gt)t∈[0,1],P

)
. For the noise process we impose further assumptions being more

restrictive than Assumption 2.18.

Assumption 3.4 (The noise process). The stochastic process (εt)t∈[0,1] is defined on(
Ω,G, (Gt)t∈[0,1],P

)
and fulfills the following conditions.

(1) (εt)t∈[0,1] is a centered white noise process, E[εt] ≡ 0, and with

E
[
ε2
t

]
= η2 .

(2) The following moment condition holds.

E [|εt|m] <∞, for all m ∈ N. (3.4)

Remark 3.5. The moment condition (3.4) is standard in related literature, see for
instance Assumption (WN) of Aı̈t-Sahalia and Jacod [1], p. 221 or Assumption 16.1.1
of Jacod and Protter [35], but in a certain sense purely technical. Let us stress that
in our setting, we do impose as less assumptions as possible on the volatility process
(σt)t∈[0,1]. More precisely the regularity under (H0-a), for arbitrarily small a ∈ (0, 1],
requires the existence of all moments in (3.4). More precisely, the smaller a the larger
m has to be chosen. Nevertheless, we point out that the moment condition is not
that restrictive for standard models of volatility. In the usual case, for instance,
where (σt)t∈[0,1] itself is assumed to be an Itô semimartingale, when a ≈ 1/2, only the
existence of moments up to order m = 8 has to be imposed.
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3. Change-point inference on spot volatility

Remark 3.6. While Assumption 3.4 is in line with standard conditions on the ad-
ditive noise component in the literature, possible generalizations with respect to the
structure of the noise process (εt)t∈[0,1] in three directions are of interest: serial de-
pendence, heterogeneity and endogeneity. Such generalizations are also motivated by
stylized facts in econometrics, see Hansen and Lunde [29] for a detailed discussion.
For instance, Chapter 16 in Jacod and Protter [35] includes conditional i.i.d. noise,
endogenous as it may depend (in a certain way) on (Xt), in the theory of pre-average
estimators. This allows to model phenomena as noise by price discreteness (rounding).
Bibinger and Winkelmann [13] provide some first extensions of spectral spot volatility
estimation to serially correlated and heterogeneous noise. Though the possible exten-
sions appear to be relevant for applications, we work in the framework formulated in
Assumption 3.4, mainly due to the lack of groundwork sufficient for the present work.
Since we exploit some ingredients from previous works on spectral volatility estima-
tion, particularly the form of the efficient asymptotic variance based on Altmeyer and
Bibinger [5], a generalization of our results requires non-trivial generalizations of these
ingredients first. Furthermore, more general noise processes ask for extensive work
on the estimation of the local long-run variance replacing (3.1). This topic, however,
is beyond the scope of this work. Let us remark that it is as well not obvious how
to apply strong embedding principles in these cases to generalize our proofs. Since
Wu and Zhao [61] provide strong approximation results for weakly dependent time
series, we nevertheless conjecture that certain generalizations in the three directions
are possible.

In this subsection we construct the test first for the model (Xt)t∈[0,1] without jumps,
that is, the process (Jt) in (2.3) fulfills

Jt ≡ 0.

The construction of the test is based on a combination of the techniques by Altmeyer
and Bibinger [5] introduced in Subsection 2.3.2 and Bibinger et al. [10]. In order to
do so, we split the observation interval [0, 1] by some “big blocks” with length αnhn:

[iαnhn, (i+ 1)αnhn] , i = 0, . . . , b(αnhn)−1c − 1,

where (αn)n∈N is some N-valued sequence fulfilling as n→ +∞:

√
αn (αnhn)a

√
log (n) −→ 0 and h−$n /αn −→ 0 (3.5)

for some $ > 0 and the regularity exponent a ∈ (0, 1] under the null hypothesis (H0-
a). Using spectral estimators and averaging within each big block [iαnhn, (i+ 1)αnhn]
provides a consistent estimator for σ2

iαnhn
:

RV n,i =
1

αn

αn∑
`=1

σ̂2
hn(iαn+(`−1)), i = 0, . . . , b(αnhn)−1c − 1 . (3.6)
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3.2. The general nonparametric case

A feasible adaptive estimation is obtained by a two-stage method where η̂2 from (3.1)
and

1

αn

(k−1)∨(αn−1)∑
l=k−αn∨0

J∑
j=1

1

J

(
S2
jl (Y )− [ϕjl, ϕjl]n

η̂2

n

)
= σ2

(k−1)hn
+ OP(1) (3.7)

are inserted in the oracle weights to derive feasible estimated weights ŵjk. The result
(3.7) has been established and used in previous works on spectral volatility estimation,
see Bibinger and Winkelmann [13]. The pilot volatility estimator (3.7) is an average
of squared bias corrected spectral statistics over J Fourier frequencies and αn bins.
For some fix J ∈ N and an optimal choice of αn ∝ na/(2a+1)/ log(n), it renders a
rate-optimal estimator for which the OP(1)-term in (3.7) is OP(n−a/(4a+2)). A sub-
optimal choice of αn will not affect our results, however. Other weights than (2.22)
do not yield an asymptotically efficient estimator with minimal asymptotic variance.
With estimated versions of the optimal weights (2.22), Altmeyer and Bibinger [5] show
that a Riemann sum over the estimates (2.21) yields a quasi-efficient estimator for the
integrated squared volatility. Hence, we use the statistics (2.21) with exactly these
weights and the orthogonal sine basis (Φjk) motivated by the efficiency results of Reiß
[53]. Finally, with adaptive versions of the local volatility estimators (3.6)

RV
ad
n,i =

1

αn

αn∑
`=1

σ̂2,ad
hn(iαn+(`−1)), i = 0, . . . , b(αnhn)−1c − 1 , (3.8)

σ̂2,ad
(k−1)hn

=

bnhnc−1∑
j=1

ŵjk

(
S2
jk (Y )− [ϕjk, ϕjk]n

η̂2

n

)
,

our test statistic is given by

V n = max
i=0,...,b(αnhn)−1c−2

∣∣∣∣∣RV
ad
n,i −RV

ad
n,i+1

√
8η̂
∣∣RV ad

n,i+1

∣∣3/4
∣∣∣∣∣ , (3.9)

where η̂ =
√
η̂2, with η̂2 from (3.1). We write the absolute value in the denomina-

tor, since due to the bias correction in (2.21) the statistics (RV n,i) and (RV
ad
n,i), i =

0, . . . , b(αnhn)−1c − 1 are not guaranteed to be positive.

Remark 3.7. (1) The construction of the test statistic (3.9) is based on the idea
to compare the values of the spot volatility process

(
σ2
t

)
t∈[0,1]

on contiguous

intervals [iαnhn, (i+ 1)αnhn] and [(i+ 1)αnhn, (i+ 2)αnhn] and to reject the
null hypothesis of no jumps, if the test statistic V n fulfills V n ≥ cn for some
accurate sequence cn.

(2) The statistic (3.9) significantly differs from the statistic Vn given in Equation (13)
of Bibinger et al. [10] beyond replacing spot volatility estimates by noise-robust
spot volatility estimates. Though both statistics are quotients, the underlying
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3. Change-point inference on spot volatility

structure of them is different. Whereas in Bibinger et al. [10] the simple structure
of the (asymptotic) variance of spot volatility estimates allows to use statistics
based on their quotients, (3.9) is based on differences rescaled with their esti-
mated variances. The statistics which are used to wipe out the influence of the
noise process imply that volatility does not simply “cancel out” in our case as in
Proposition A.3 of Bibinger et al. [10]. The construction of (3.9) is particularly
appropriate from an implementation point of view, since it scales to obtain an
asymptotic distribution-free test and makes it possible to avoid pre-estimation
of higher order moments.

In order to increase the performance of the statistic, we also include a statistic V
ov
n

based on overlapping big blocks:

V
ov
n = max

i=αn,...,h
−1
n −αn

∣∣∣∣∣RV
ov
n,i −RV

ov
n,i+αn

√
8η̂
∣∣RV ov

n,i+αn

∣∣3/4
∣∣∣∣∣ (3.10)

with RV
ov
n,i given by

RV
ov
n,i =

1

αn

i∑
`=i−αn+1

σ̂2,ad
(`−1)hn

, i = αn, . . . , h
−1
n .

3.2.2. The discontinuous case

In this subsection we generalize the method to be robust in the presence of jumps in
(2.3). When (σ2

t )t∈[0,1] is our target of inference, the jumps are a nuisance quantity.
In order to eliminate jumps of (Xt)t∈[0,1] in the approach, we consider truncated spot
volatility estimates

RV
tr
n,i =

1

αn

i∑
`=i−αn+1

σ̂2,ad
(`−1)hn

1{|σ̂2,ad
(`−1)hn

|≤hτ−1
n }, i = αn, . . . , h

−1
n , (3.11)

with a truncation exponent τ ∈ (0, 1). Truncated volatility estimators have been
introduced first for integrated volatility estimation by Mancini [44] and Jacod [33].
We define the test statistics with the truncated spot volatility estimates (3.11)

V
τ
n = max

i=1,...,b(αnhn)−1c−1

∣∣∣∣∣∣RV
tr
n,iαn −RV

tr
n,(i+1)αn

√
8η̂
∣∣RV tr

n,(i+1)αn

∣∣3/4
∣∣∣∣∣∣ , (3.12a)

V
ov,τ
n = max

i=αn,...,h
−1
n −αn

∣∣∣∣∣RV
tr
n,i −RV

tr
n,i+αn

√
8η̂
∣∣RV tr

n,i+αn

∣∣3/4
∣∣∣∣∣ . (3.12b)

3.2.3. Limit theorem I: The continuous case

The hypothesis test formulated above is based on asymptotic results for the statistics
V n and V

ov
n .
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3.2. The general nonparametric case

Theorem 3.8. Set mn = b(αnhn)−1c, γmn = [4 log(mn) − 2 log(log(mn))]1/2 and
assume that Jt ≡ 0. If Assumptions 3.1 and 3.4 hold and αn satisfies condition (3.5),
then we have under (H0-a) that√

log (mn)
(√
αnV n − γmn

) d−→ V , (3.13)

where V follows an extreme value distribution with distribution function

P(V ≤ x) = exp(−π−1/2 exp(−x)).

Theorem 3.8 is a key tool tackling the testing problem which is based on non-overlapping
big blocks. The following result covers the case of overlapping big blocks.

Corollary 3.9. Given the assumptions of Theorem 3.8, the following weak convergence
holds under (H0-a):√

log (mn)
√
αnV

ov
n − 2 log (mn)− 1

2
log (log (mn))− log (3)

d−→ V, (3.14)

with V as in Theorem 3.8.

3.2.4. Limit theorem II: The general case

We extend this result to the setup with jumps in (Xt)t∈[0,1] when using truncated
functionals.

Proposition 3.10. Let mn and γmn be the sequences defined in Theorem 3.8. Suppose
αn = κh−βn for a constant κ and with 0 < β < 1, Assumption 3.1, Assumption 3.4
and Assumption 3.2 with

r < min
(

2− β

τ
, 2τ−1(1− β), τ−1,

3

4

(
1 + τ − β

2

))
. (3.15)

Then we have under (H0-a) that √
log (mn)

(√
αn V

τ
n − γmn

) d−→ V , (3.16a)√
log (mn)

√
αn V

ov,τ
n − 2 log (mn)− 1

2
log (log (mn))− log (3)

d−→ V , (3.16b)

with V as in Theorem 3.8.

It is natural that we derive the same limit results as above, since the truncation aims
to eliminate the nuisance jumps. Proposition 3.10 gives rather minimal conditions, in
particular (3.15), under that we can guarantee that the truncation works in this sense.

Remark 3.11. Condition (3.15) ensures that different error terms in the proof of
Proposition 3.10 are asymptotically negligible. Though we state it in terms of upper
bounds on the jump activity r, it rather puts restrictions on the interplay between r,
τ and β. Given a from (H0-a), we choose β close to 2a/(2a + 1) to attain the highest
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3. Change-point inference on spot volatility

possible power of the test. This results in 0 < β < 2/3, where the case β ≈ 1/2 for
a = 1/2 appears the most relevant one including a test for jumps in a semimartingale
volatility process. Rewritten in terms of bounds on τ , (3.15) gives:

max
( β

2− r
,
4

3
r +

β

2
− 1
)
< τ < min

(
r−1, 2r−1(1− β)

)
.

For finite activity, r = 0, we only have mild lower bounds on the choice of τ . Usually a
choice of τ close to 1 is advocated in previous works on truncated volatility estimation.
For β ≈ 1/2 this requires r < 1. The different error terms under noise for the maximum
obtained here actually suggest that τ = 3/4 is an even better choice when we require
only r < 4/3. Overall the conditions on the jumps are not much more restrictive than
required for central limit theorems of linear volatility estimators, see Chapter 13 of
Jacod and Protter [35]. Compared to Proposition 3.5 of Bibinger et al. [10], we relax
the conditions on (Jt) by a more sophisticated strategy of our proof. In particular, we
do not have to restrict to a Lévy-type process with independent increments, since we
work with Doob’s submartingale maximal inequality instead of Kolmogorov’s maximal
inequality. With this strategy it is also possible to generalize the result in Proposition
3.5 of Bibinger et al. [10].

3.2.5. Construction and consistency of the hypothesis test

Based on the limit results presented in Subsections 3.2.3 and 3.2.4 we can summarize
the following rejection rules. Thereto, let cα be the (1 − α)-quantile of the Gumbel-
type limit law PV of V in the limit theorems. Since the latter is absolutely continuous
with respect to the Lebesgue measure, there is a unique solution given by

cα = − log (− log (1− α))− 1

2
log (π) .

(R) Based on Theorem 3.8 and the notations used there we

reject H0-a if V n ≥ α−1/2
n

(
(log(mn))−1/2 cα + γmn

)
. (3.17)

(Rov) Based on Corollary 3.9 and the notations used there we

reject H0-a if V
ov
n ≥

(
cα + 2 log (mn) + 1

2 log (log (mn)) + log (3)
)

(log(mn)αn)1/2
. (3.18)

(Rτ ) Based on Proposition 3.10 and the notations used there we

reject H0-a if V
τ
n ≥ α−1/2

n

(
(log(mn))−1/2 cα + γmn

)
. (3.19)

(Rov,τ ) Based on Proposition 3.10 and the notations used there we

reject H0-a if V
ov,τ
n ≥

(
cα + 2 log (mn) + 1

2 log (log (mn)) + log (3)
)

(log(mn)αn)1/2
. (3.20)
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3.2. The general nonparametric case

Theorem 3.12. Suppose Assumption 3.1, Assumption 3.4, and Assumption 3.2 with
(3.15) in the case with jumps. The decision rules (3.17), (3.18), (3.19) and (3.20)
provide consistent tests to distinguish the null hypothesis (H0-a) from the alternative
hypothesis (H1-a) for the testing problem (3.2).

Consistency of the test means that under the alternative hypothesis, if for some θ ∈
(0, 1) we have that

∣∣σ2
θ − σ2

θ−
∣∣ = δ > 0 for some fix δ > 0, the power of the test, for

instance by (3.17), tends to one as n→∞:

PH1

(
V n ≥ α−1/2

n

(
(log(mn))−1/2 cα + γmn

)) n→∞−→ 1 .

Theorem 3.8 ensures that (3.17) facilitates an asymptotic level-α-test that correctly
controls the type 1 error, that is

PH0

(
V n ≥ α−1/2

n

(
(log(mn))−1/2 cα + γmn

)) n→∞−→ α .

Thereby, even for small a > 0 the test can distinguish continuous volatility paths from
paths with jumps.

Remark 3.13. The rate
√

log(mn)αn in (3.13), (3.14), (3.16a) and (3.16b) determines
how fast the power of the test increases in the sample size n. The convergence rate,
for αn close to the upper bound in (3.5) is close to na/(4a+2). The latter coincides with
the optimal convergence rate for spot volatility estimation under noise, see Munk and
Schmidt-Hieber [50]. In light of the lower bound for the testing problem without noise
established in Bibinger et al. [10] and the relation of the models with and without
noise studied in Gloter and Jacod [26], we conjecture that the above test yields an
asymptotic minimax-optimal decision rule. A formal generalization of the proof for
the detection boundary from Theorem 4.1 of Bibinger et al. [10] to our setting however
appears not to be feasible, since it heavily exploits simple χ2-approximations of squared
increments.

3.2.6. Consistent estimation of the change point

In this subsection we present an estimator for the change point θ, which is of impor-
tance, once we have decided to reject (H0-a). Therefore, we suppose (H1-a) and that
there exists one θ ∈ (0, 1) with |∆σ2

θ | > 0. The aim is to estimate θ, in general referred
to as the change point or break date in change-point statistics, which here gives the
time of the volatility jump. We suggest the estimator θ̂n, given by

θ̂n = hn argmaxi=αn,...,h−1
n −αn V

�
n,i , (3.21)

where

V
�
n,i = α−1/2

n

∣∣∣∣∣∣
i∑

`=i−αn+1

σ̂2,ad
(`−1)hn

−
i+αn∑
`=i+1

σ̂2,ad
(`−1)hn

∣∣∣∣∣∣ .
It is sufficient to use these modified non-rescaled versions of the statistics in (3.10).
We prove the following consistency result for our estimator.
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3. Change-point inference on spot volatility

Proposition 3.14. Given the assumptions of Theorem 3.8, that is, Assumptions 3.1
and 3.4, Jt ≡ 0 and αn satisfies (3.5), and assume that (H1-a) applies with one jump
time θ ∈ (0, 1). For ∆σ2

θ = δ 6= 0 it holds that∣∣θ̂n − θ∣∣ = OP
(
hn|δ−1|

√
αn log(n)

)
.

In particular, θ̂n
P−→ θ .

Remark 3.15. Put another way, we can detect jump times associated with sequences
of jump sizes δn → 0 as n→ +∞ as long as h−1

n (αn log(n))−1/2 = O(δn) in the sense of
weak consistency. Choosing αn as small as possible, such that (3.5) is satisfied, yields
the best possible rate, while for the testing problem in Theorem 3.8 we select αn as
large as possible. In the optimal case, a jump with fix size δ 6= 0 can be detected with
a convergence rate close to h−1

n . This provides important information how precisely
volatility jump times can be located under noisy observations. With jumps in (Xt),
we conjecture that an analogous results holds true under the conditions of Proposition
3.10. A sequential application of our methods allows for testing and the estimation
of multiple change points. The extension of the estimation from the one change to
the multiple change-point alternative is accomplished similarly to Algorithm 4.9 from
paragraph 4.2.2. in Bibinger et al. [10].

3.2.7. Simulations

In this subsection we investigate the finite-sample performance of the new method in
a simulation study. We also analyze the efficiency gains of our noise-robust approach
based on the spectral volatility estimation methodology in comparison to simply skip
sampling the data and applying the non noise-robust method from Bibinger et al.
[10]. Skip sampling the data, which means we only consider every 60th datapoint,
reduces the dilution by the noise and is a standard way to deal with high-frequency
data in practice. We consider n = 30, 000 observations of (2.18), a typical sample size
of high-frequency returns over one trading day. The noise is centered and normally
distributed with a realistic magnitude, η = 0.005, see, for instance, Bibinger et al. [9].
We implement the same volatility model as in Section 5 of Bibinger et al. [10], where

σt =

(∫ t

0
c · ρ dWs +

∫ t

0

√
1− ρ2 · c dW⊥s

)
· vt (3.22)

is a semimartingale volatility process fluctuating around the seasonality function

vt = 1− 0.2 sin
(

3
4π t), t ∈ [0, 1] , (3.23)

where c = 0.1 and ρ = 0.5, with W⊥ a standard Brownian motion independent of
W . We set X0 = 4 and the drift a = 0.1. We perform the simulations in R using an
Euler-Maruyama discretization scheme.
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3.2. The general nonparametric case

Figure 3.1.: Left: Histogram of statistics left-hand side in (3.16b) for h−1
n = 120 and

αn = 15, n = 30, 000, under null hypothesis and alternative hypothesis
and limit law density marked by the line. Right: Histogram of corre-
sponding not noise-robust statistics from Bibinger et al. [10] applied after
(most efficiently) skip sampling to a subset with nskip = 500 observations,
kn = 125, and limit law density marked by the line.

Performance of the test, comparison to skip sampling, bootstrap adjustment and
sensitivity analysis

Concerning the jumps of (Xt) and (σt) under the alternative hypothesis, we implement
two different model configurations. In order to grant a good comparison to Bibinger et
al. [10] in the evaluation of the efficiency gains by our method instead of a skip-sample
approach, we will adopt the setup from Section 5 of Bibinger et al. [10]. There, under
the alternative hypothesis, the volatility admits one jump of size 0.2 at time t = 2/3.
The jump size equals the range of the expected continuous movement. Under the
alternative hypothesis, (Xt) admits a jump at the same time t = 2/3. Under the null
hypothesis and the alternative hypothesis, (Xt) also jumps at some uniformly drawn
time. All price jumps are normally distributed with expected size 0.5 and variance
0.1. More general jumps are considered below.

We consider the test statistic (3.12b) with overlapping blocks and truncation. The
simulations below confirm that it outperforms the non-overlapping version (3.12a).
We set h−1

n = 120 and αn = 15. Robustness with respect to different choices of hn
and αn is discussed below. For the truncation, we set τ = 3/4 according to Remark
3.11. In all cases, we compute the adaptive feasible statistics and do not make use
of the generated volatility paths to derive the weights (2.22). We rather rely on the
two-stage method and insert (3.7) with J = 20 and (3.1) in the statistics. The spectral
estimates from (2.21) are computed as sums up to the spectral cut-off Jn = 50, smaller
than bnhnc−1 = 254, as the fast decay of the weights (2.22) in j, compare also (3.40),
renders higher frequencies completely negligible. The investigated test statistics will
be identically feasible in data applications.

Figure 3.1 visualizes the empirical distribution from 10, 000 Monte Carlo iterations
under the null hypothesis and the alternative hypothesis. The left plot shows our
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3. Change-point inference on spot volatility

statistics while the right plot gives the results for the statistics from Bibinger et al.
[10] applied to a skip sample of 500 observations. The skip-sampling frequency has
been chosen to maximize the performance of these statistics. While they are reasonably
robust to minor modifications, too large samples lead to an explosion of the statistics
also under the null hypothesis and much smaller samples result in poor power. The
length of the smoothing window kn for the statistics given in Equation (24) of Bibinger
et al. [10] is set kn = 125, adopted from the simulations in Bibinger et al. [10]. In
the optimal case, null and alternative hypothesis are reasonably well distinguished by
the skip-sampling method – but the two plots confirm that our approach improves
the finite-sample power considerably. For the spectral approach, 88% of the outcomes
under H1 exceed the 90%-decile of the empirical distribution under H0. For the opti-
mized skip-sample approach this number reduces to 75%. The approximation of the
limit law appears somewhat imprecise. The relevant high quantiles, however, fit their
empirical counterparts quite well.
Nevertheless, we propose a bootstrap procedure to fit the distribution of V

ov,τ
n under

H0 with improved finite-sample accuracy. We start with an estimator for the spot
volatility RV

tr
n,i, i = αn, . . . , h

−1
n , from (3.11), using the same h−1

n and αn as for

the test. We also define and compute RV
tr
n,i, i = 1, . . . , αn − 1, averaging over the

available number of blocks, smaller than αn, back in time. In order to smooth the
random fluctuations of the spot volatility pre-estimates, we apply a filter to the esti-
mates of length 30 with equal weights and denote σ̃2

n,i, i = 1, . . . , h−1
n , the resulting

estimated volatility path. At the boundaries we interpolate linearly to RV
tr
n,1 and

RV
tr
n,h−1

n
, respectively. Repeating each entry nhn = 250 times, we obtain a (bin-wise

constant) estimator σ̃2
n,i, i = 1, . . . , n. For two sequences of i.i.d. standard normals

{Zi}1≤i≤n, {Ei}1≤i≤n, and X∗0 = Y ∗0 = Y0, denote with

X∗i = X∗i−1 +

√
σ̃2
n,i

n
· Zi , Y ∗i = X∗i + η̂ · Ei , 1 ≤ i ≤ n ,

a pseudo path Y ∗ generated with the estimated volatility path and estimated noise
variance and the (Zi, Ei). We can iterate the procedure as a Monte Carlo simulation
and produce N = 10, 000 different pseudo paths Y ∗ using independent generalizations
of random variables (Zi, Ei). With

σ̂2∗
(k−1)hn

=

bnhnc−1∑
j=1

ŵjk

(
S2
jk (Y ∗)− [ϕjk, ϕjk]n

η̂2

n

)
,

RV
∗
n,i =

1

αn

i∑
`=i−αn+1

σ̂2∗
(`−1)hn

1{|σ̂2∗
(`−1)hn

|≤hτ−1
n }, i = αn, . . . , h

−1
n ,

we derive the pseudo test statistic

V̂ †n = max
i=αn,...,h

−1
n −1

∣∣∣∣∣RV
∗
n,i −RV

∗
n,i+1

√
8η̂
∣∣RV ∗n,i+1

∣∣3/4
∣∣∣∣∣ .
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3.2. The general nonparametric case

Figure 3.2.: Left: Empirical size and power of the new test for h−1
n = 120 and

αn = 15, n = 30, 000, by comparing empirical percentiles to ones of
limit law under H0 and H1 (light points). Empirical percentiles com-
pared to bootstrapped percentiles under H0 (dark points). Right: Per-
centage of exceedances under H1 of the 90% empirical quantile under H0

for h−1
n = 60, 90, 120, 150, 180, 210, 240, 270, 300 and αn = 5, 10, 15, 20, 25.

The line gives the marginal curve for h−1
n = 120.

In fact, the truncation with the indicator function is obsolete, since we do not have
jumps in the pseudo samples. For a test, we can use the approximative (conditional)
quantiles

q̂α(V̂ †n |F) = inf
{
x ≥ 0 : P(V̂ †n ≤ x|F) ≥ α

}
and compute q̂α(V̂ †n |F) based on Monte Carlo approximation. We reject H0 when

V
ov,τ
n > q̂1−α(V̂ †n |F) .

In the left plot of Figure 3.2 the black dots compare the empirical percentiles of the
left-hand side in (3.16b), the standardized versions of V

ov,τ
n , under H0 to the ones

of the bootstrap, i.e. q̂α(V̂ †n |F). The finite-sample accuracy of the bootstrap for the
distribution under H0 is significantly better than the limit law (light points). Since
the high percentiles of bootstrap and limit law are quite close, the power of both tests
is comparable. For a level α = 10% test, we obtain approx. 88% power using the
limit law and 89% power using the bootstrap. For a level α = 5% test, we obtain
approx. 79% and 75%, respectively.
Finally, we consider different parameter configurations (h−1

n , αn). Since we can exploit
the bootstrap to ensure a good fit under H0, we concentrate on the ability of V

ov,τ
n to

distinguish hypothesis and alternative. To quantify the ability to separate H0 and H1,
we visualize the relative number of exceedances under H1 of the 90% empirical quantile
under H0. We plot the percentage numbers in the right plot of Figure 3.2 over a grid of
different values for (h−1

n , αn). Additionally, we draw the marginal curve for h−1
n = 120
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3. Change-point inference on spot volatility

at points αn = 5, 10, 15, 20, 25 (black line). Choosing a different (reasonable) quantile
under H0 does not change the shape of the surface with respect to the values of
(h−1
n , αn). Figure 3.2 confirms that the test is reasonably robust with respect to

different values of the tuning parameters. For h−1
n sufficiently large, setting αn between

15 and 20 yields the highest power. For h−1
n , values between 60 and 180 grant a good

performance. Hence, we choose h−1
n = 120 and αn = 15 as suitable configuration for

the simulation study.

Comparison of tests with overlapping and non-overlapping statistics

We illustrate the improvement in the power of the test based on (3.12b) compared to
the non-overlapping version (3.12a). Here, we use a prominent general model for jumps
of (Xt) often considered in related literature, including Jacod and Todorov [38], with
a predictable compensator ν(ds, dz) = (1{z∈[−1,−0.2]∪[0.2,1]})/1.6 dt dz. Since jumps of
very small absolute sizes are not generated, the truncation works well and we do not see
a manipulation of the empirical distribution of the test statistics due to errors in the
truncation step. We investigate the power of the tests for different volatility-jump sizes
under the alternative, ∆σ2

θ = (10 + 5 · i)/100, i = 1, . . . , 7. The volatility-jump time θ
is randomly generated in each run according to a uniform distribution on (αnhn, 1 −
αnhn). Note that not excluding the boundary intervals [0, αnhn]∪ [1−αnhn, 1] would
slightly reduce the power in all configurations, since the test is not able to detect jumps
in these boundary blocks. In order to include common price and volatility jumps, we
add an additional price jump at θ with uniformly distributed size as according to ν
above. We keep to the parameters h−1

n = 120, αn = 15 and τ = 3/4 and compute the
adaptive statistics as in the previous paragraph in 10, 000 iterations.

Figure 3.3 confirms that the test using (3.12b) with overlapping statistics has a sig-
nificantly higher power than the test based on (3.12a) and non-overlapping statistics.
The largest difference for ∆σ2

θ = 0.2 is 17.8% at 10% testing level and for ∆σ2
θ = 0.25,

14.8% at 5% testing level. Thus, for volatility jumps with moderate absolute size in
the range considered in Figure 3.3, the overlapping statistics attain relevant efficiency
gains. The location of the volatility jump – when the boundaries are excluded – does
not affect the power of the tests. Figure 3.3 illustrates increasing power of both tests
as ∆σ2

θ gets larger. It also reveals that volatility jumps with ∆σ2
θ ≤ 0.15 are difficult

to detect in our setting where this corresponds only to approximately 20 times the av-
erage absolute increment |∆n

i Y |. Due to the required smoothing over blocks we cannot
expect to detect such small volatility jumps with good power. We can further report
a better accuracy of the theoretical limit law under H0 from Proposition 3.10 for the
empirical distribution of the statistics with overlapping compared to non-overlapping
blocks. The average amount of realizations of simulated statistics (3.12a) exceeding
the theoretical 90%-percentile is 9.99% and exceeding the 95%-percentile 6.41%. For
the statistics (3.12b) these values are 21.00% and 11.11%, respectively.
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3.2. The general nonparametric case

Figure 3.3.: Empirical power of the test based on (3.12b) with overlapping statistics
(dark, solid) and (3.12a) with non-overlapping statistics (light, dashed) for
the level 10% (points) and 5% (squares) under the alternative hypothesis
as function of the volatility-jump size ∆σ2

θ . The plot gives empirical per-
centiles exceeding the bootstrapped percentiles under the null hypothesis
for h−1

n = 120, αn = 15 and n = 30, 000.

3.2.8. Proofs

Since the proofs of the results stated in Subsections 3.2.3 and 3.2.4 are quite long, we
want to sketch the key ideas of the proof shortly.
Starting with the continuous case, for the results given in Theorem 3.8 and Corol-
lary 3.9, the main ingredients are described as follows. In the first step we carry out
the crucial approximation where we show that the error, replacing the true log-price
increments of (Xt)t∈[0,1] by Brownian increments multiplied with a locally constant ap-
proximated volatility, is negligible. More precisely, we show that the spectral statistics
Sjk (Y ) are adequately approximated through σbα−1

n (k−1)cαnhnSjk (W ) + Sjk (ε) with

the volatility approximated constant over the big blocks. The analogues of RV n,i after
the approximation are denoted Zn,i, given in (3.24).
In the second step, we conduct a time shift with respect to the volatility in Zn,i+1 to
approximate the volatility by the same constant in the differences Zn,i − Zn,i+1.
The third step is to replace the estimated asymptotic standard deviation in the de-
nominator in (3.9) by its stochastic limit. The latter step is essentially completed by a
Taylor expansion. Finally, we establish in a fourth step that the difference between the
statistics using (3.6) with oracle weights and the statistics using (3.8) with adaptive
weights is sufficiently small to extend the results to the feasible statistics.
The approximation steps combine Fourier analysis for the spectral estimation with
methods from stochastic calculus. Disentangling the approximation errors of maxi-
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3. Change-point inference on spot volatility

mum statistics requires a deeper study than for linear statistics. After an appropriate
decomposition of the terms, we frequently use Burkholder, Jensen, Rosenthal and
Minkowski inequalities to derive upper bounds.
The final step is to apply strong invariance principles from Section 2.4 and to apply
results from Sakhanenko [56] to conclude with Lemma 1 and Lemma 2, respectively,
in Wu and Zhao [61]. Concerning the non-overlapping statistics we need Lemma 1,
whereas the overlapping case needs the more involved limit result presented in Lemma
2 of Wu and Zhao [61].
In order to prove Proposition 3.10, we show that under the stated conditions the jump
robust statistics provide the same limit as in the continuous case. That is, the jumps
do not affect the limit at all. We decompose the additional error term by truncation
in several terms of different structure which we prove to be asymptotically negligible
under the mild conditions (3.15) on the jump activity and its interplay with the trun-
cation and smoothing parameters. We use Doob’s maximal submartingale inequality
to bound one crucial remainder without imposing a more restrictive Lévy structural
assumption as has been used in Bibinger et al. [10].

Proof of Theorem 3.8

For notational convenience we replace

max
i=0,...,b(αnhn)−1c−2

by max
i
,

and

min
i=0,...,b(αnhn)−1c−2

by min
i
,

respectively.
We also introduce the following notation, adapting the elements of the spectral statis-
tics on each big block. Set

Φij` (t) = Φj (t− (hn(iαn + (`− 1))))

and

ϕij` (t) = ϕj (t− (hn(iαn + (`− 1)))) .

Furthermore, we define the big block-wise spectral statistics

Sij` (L) =
n∑
ν=1

∆n
i Φij`

(ν
n

)
and the associated variance minimizing oracle weights

wij` =

(
σ2
hn(iαn+(`−1)) + η2

n [ϕij`, ϕij`]n

)−2

∑bnhnc−1
j=1

(
σ2
hn(iαn+(`−1)) + η2

n [ϕij`, ϕij`]n

)−2 .
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3.2. The general nonparametric case

We further introduce the bias correction terms

µij` = [ϕij`, ϕij`]n
η2

n
.

We can strengthen the assumptions presented in Assumption 3.1 and (H0-a) as follows.
We replace local boundedness of (σt)t∈[0,1], (at)t∈[0,1], and the modulus of continuity
(wδ(σ)t)t∈[0,1] under (H0-a) by global boundedness. We refer to Section 4.4.1 of Jacod
and Protter [35] for a proof and the construction through localization. We set

Un = max
i=0,...,b(αnhn)−1c−2

∣∣∣∣∣Zn,i − Zn,i+1∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣ ,

with

Zn,i :=
1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

(
(σiαnhnSij` (W ) + Sij` (ε))2 − µij`

)
. (3.24)

We fix some constants K+,K− > 0, such that almost surely

K− < inf
t∈[0,1]

σ2
t and K+ > sup

t∈[0,1]
σ2
t .

Finally, we will use an universal constant C which may change from line to line. We
will write Cp to indicate that the constant depends on an external parameter p. The
constant will never depend on n. The first step outlined in the sketch of the key ideas
is accomplished in the next proposition.

Proposition 3.16. Given the assumptions of Theorem 3.8, it holds under (H0-a) that√
αn log

(
h−1
n

)
max
i

∣∣∣∣∣
∣∣∣∣RV n,i −RV n,i+1∣∣RV n,i+1

∣∣3/4
∣∣∣∣− ∣∣∣∣Zn,i − Zn,i+1∣∣Zn,i+1

∣∣3/4
∣∣∣∣
∣∣∣∣∣ P−→ 0 .

Proof of Proposition 3.16.

Since hn ∝ n−1/2 log(n) we can proceed as follows. The reverse triangle inequality and
the decomposition

RV n,i −RV n,i+1∣∣RV n,i+1

∣∣3/4 − Zn,i − Zn,i+1∣∣Zn,i+1

∣∣3/4
=

RV n,i∣∣RV n,i+1

∣∣3/4 − RV n,i∣∣Zn,i+1

∣∣3/4 +
RV n,i − Zn,i∣∣Zn,i+1

∣∣3/4 − RV n,i+1∣∣RV n,i+1

∣∣3/4 +
Zn,i+1 −RV n,i+1∣∣Zn,i+1

∣∣3/4
yield the following decomposition:

max
i

∣∣∣∣∣RV n,i

(
1∣∣RV n,i+1

∣∣3/4 − 1∣∣Zn,i+1

∣∣3/4
)∣∣∣∣∣+ max

i

∣∣∣∣∣RV n,i − Zn,i∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣

+ max
i

∣∣∣∣∣RV n,i+1

(
1∣∣Zn,i+1

∣∣3/4 − 1∣∣RV n,i+1

∣∣3/4
)∣∣∣∣∣+ max

i

∣∣∣∣∣Zn,i+1 −RV n,i+1∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣

=: (I) + (II) + (III) + (IV) . (3.25)
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Starting with (II) in (3.25) we proceed as follows.
For all δ > 0 and κ− > 0, such that κ− ∈ (0,K−), the following holds:

P

[
max
i

∣∣∣∣∣
√
αn log (n)

(
RV n,i − Zn,i

)∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣ > δ

]

= P

[
max
i

∣∣∣∣∣
√
αn log (n)

(
RV n,i − Zn,i

)∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣ > δ, min

i

∣∣Zn,i+1

∣∣ ≥ K−− κ−]

+ P

[
max
i

∣∣∣∣∣
√
αn log (n)

(
RV n,i − Zn,i

)∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣ > δ, min

i

∣∣Zn,i+1

∣∣ < K−− κ−
]

≤ P
[
max
i

√
αn log (n)

∣∣RV n,i − Zn,i
∣∣ > δ

(
K−− κ−

)3/4]
+ P

[
min
i

∣∣Zn,i+1

∣∣ < K−− κ−
]

=: An +Bn. (3.26)

In (3.26) we dropped the dependence on the constants δ and K− for notational conve-
nience. We start with the term An. We split the term into various summands in the
following way:

RV n,i − Zn,i =
1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`
(
S2
ij` (X)− σ2

iαnhnS
2
ij` (W )

)

+
2

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`Sij` (ε) (Sij` (X)− σiαnhnSij` (W )) .

That yields

An ≤ P
[

max
i

∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

×
(
S2
ij` (X)− σ2

iαnhnS
2
ij` (W )

) ∣∣∣∣ > δ (K−− κ−)
3/4

2

]

+P
[

max
i

∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`Sij` (ε)

× (Sij` (X)− σiαnhnSij` (W ))

∣∣∣∣ > δ (K−− κ−)
3/4

4

]
=: A1

n +A2
n . (3.27)
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In order to handle A1
n,, we rewrite the spectral statistics Sij` (L) for any stochastic

process (Lt)t∈[0,1], using step functions ξ
(n)
ij` given by

ξ
(n)
ij` (t) : =

n∑
ν=1

Φij`

(ν
n

)
1( ν−1

n
, ν
n ](t)

which yield

Sij` (L) =

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) dLs

for any semimartingale L = (Lt)t∈[0,1].
By virtue of the Itô process structure of (Xt), we obtain that∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) dXs =

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

+

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs .

Itô’s formula yields

S2
ij` (X) =2

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ)στ dWτ

+ 2

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

+

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (τ)

)2
σ2
τ dτ

with

X̃t := X0 +

∫ t

0
ξ

(n)
ij` (s) as ds+

∫ t

0
ξ

(n)
ij` (s)σs dWs.

Similarly,

S2
ij` (W ) = 2

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

W̃τ ξ
(n)
ij` (τ) dWτ +

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (τ)

)2
dτ

with

W̃t :=

∫ t

0
ξ

(n)
ij` (s) dWs .

For notational brevity, we suppress the dependence of X̃t and W̃t, respectively on
(i, j, `, n). We bound A1

n via

A1
n ≤ A1,1

n +A1,2
n +A1,3

n ,
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where

A1,1
n = P

[
max
i

∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣ > δ (K−− κ−)
3/4

12

]
,

A1,2
n = P

[
max
i

∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (τ)

)2

×
(
σ2
τ − σ2

iαnhn

)
dτ

∣∣∣∣ > δ (K−− κ−)
3/4

6

]
,

and

A1,3
n = P

[
max
i

∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)

×
((
X̃τ − X̃hn(iαn+(`−1))−n−1

)
στ − σ2

iαnhnW̃τ

)
dWτ

∣∣∣∣ > δ (K−− κ−)
3/4

12

]
.

Starting with A1,1
n we employ Markov’s inequality, applied to the function z 7→ |z|r,

r > 0 and r ∈ N:

P
[∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ−X̃hn(iαn+(`−1))−n−1

)
× ξ(n)

ij` (τ) aτ dτ

∣∣∣∣ > δ(K−− κ−)3/4

12

]
≤ Cr (log (n))r/2 α−r/2n

× E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r].
The identity

E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]

= αrn E
[∣∣∣∣ αn∑

`=1

1

αn

bnhnc−1∑
j=1

wij`

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]
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implies, together with Jensen’s inequality, that

αr/2n E
[∣∣∣∣ αn∑

`=1

1

αn

bnhnc−1∑
j=1

wij`

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]

≤ αr/2−1
n

αn∑
`=1

E
[∣∣∣∣ bnhnc−1∑

j=1

wij`

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]

≤ αr/2−1
n

αn∑
`=1

bnhnc−1∑
j=1

wij`

× E
[∣∣∣∣ ∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r].
Concerning the second inequality we have taken into account that

∑
j wij` = 1, in

order to apply Jensen’s inequality a second time.
We employ the generalized Minkowski inequality for double measure integrals, which
implies

E
[∣∣∣∣ ∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]
≤
(∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

E
[∣∣∣(X̃τ − X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ

∣∣∣r]1/r
dτ

)r
. (3.28)

In order to bound the expectation in (3.28), we apply Burkolder’s inequality to the
local martingale part. The general case can be handled via the elementary inequality
|a+ b|p ≤ 2p (|a|p + |b|p) and the standard bound for Lebesgue integrals

∫
Ω
f(s) dµ(s) ≤ µ (Ω) sup

s
|f(s)| , (3.29)

applied to the finite variation part. Taking into account that the quadratic variation
process,

(
[X̃, X̃]t

)
t∈[0,1]

, is given by

[X̃, X̃]t =

∫ t

0
(ξ

(n)
ij` (s))2σ2

s ds
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yields

E
[∣∣∣X̃τ − X̃hn(iαn+(`−1))−n−1

∣∣∣r] ≤CrE[(∫ τ

hn(iαn+(`−1))−n−1

(ξ
(n)
ij` (s))2σ2

s ds

)r/2]
≤CrE

[(∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(ξ
(n)
ij` (s))2σ2

s ds

)r/2]
≤Crhr/2n h−r/2n = O(1) . (3.30)

(3.30) is a consequence of (3.29),

ξ
(n)
ij` (x) = O

(
1√
hn

)
, (3.31)

and the global boundedness of
(
σ2
t

)
t∈[0,1]

. Consequently, the above yields

(log (n))r/2

α
1−r/2
n

αn∑
`=1

bnhnc−1∑
j=1

wij`

× E
[∣∣∣∣ ∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
X̃τ−X̃hn(iαn+(`−1))−n−1

)
ξ

(n)
ij` (τ) aτ dτ

∣∣∣∣r]

≤ (log (n))r/2 αr/2−1
n

αn∑
`=1

bnhnc−1∑
j=1

wij`h
r
nh
−r/2
n = O

(
log (n)r/2 αr/2n hr/2n

)
.

Taking into account that

αnhn = O
(
n−

1
4a+2 (log (n))1− 2a

2a+1

)
,

we can conclude, if r > 2, that

A1,1
n = O

(
(αnhn)−1 log (n)r/2 αr/2n hr/2n

)
= O (1) , as n→∞ .

For the term A1,2
n , we start with

√
log (n)
√
αn

∣∣∣∣ αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(ξ
(n)
ij` (τ))2

(
σ2
τ − σ2

iαnhn

)
dτ

∣∣∣∣
≤
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(ξ
(n)
ij` (τ))2

∣∣σ2
τ − σ2

iαnhn

∣∣ dτ . (3.32)
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3.2. The general nonparametric case

In (3.32) the triangle inequality and Jensen’s inequality are applied. Combining the
regularity under (H0-a) and (3.5) gives

√
log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(ξ
(n)
ij` (τ))2

∣∣σ2
τ − σ2

iαnhn

∣∣ dτ
= OP

(√
log (n)

√
αn (αnhn)a

)
, uniformly in i

= O (1) , as n→∞.

Concerning A1,3
n we use further decompositions rewriting

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
στ − W̃τσ

2
iαnhn (3.33)

in the following way:

(
X̃τ − X̃hn(iαn+(`−1))−n−1

)
στ − W̃τσ

2
iαnhn

= στ

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

+ στ

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs

− σiαnhn
∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs

+ σiαnhn

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs

− σiαnhn
∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σiαnhn dWs

= στ

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds (3.34)

+ (στ − σiαnhn)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs (3.35)

+ σiαnhn

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs . (3.36)

Using this decomposition, we can bound A1,3
n via

A1,3
n ≤ A1,3,1

n +A1,3,2
n +A1,3,3

n .
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3. Change-point inference on spot volatility

We start with the probability involving the summand (3.34). We have to bound the
probability

P
[∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

wij`ξ
(n)
ij` (τ)στ

×
∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds dWτ

∣∣∣∣ > δ (K−− κ−)
3/4

36

]

≤ Cr

(√
log (n)
√
αn

)r
E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)

× στ
∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds dWτ

∣∣∣∣r] ,
where we have applied Markov’s inequality with some exponent r > 0 and r ∈ N. Set

ci,1n (τ) =

αn∑
`=1

στ

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

×1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .

In order to apply Itô isometry, we set r = 2m, with some m > 0 and m ∈ N. We
derive that

E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)στ

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) asdsdWτ

∣∣∣∣r]

= E
[(∫ (i+1)αnhn

iαnhn

(ci,1n (τ))2 dτ

)m]
≤
(∫ (i+1)αnhn

iαnhn

E
[
(ci,1n (τ))2m

]1/m
dτ

)m
,

where we have again used the Minkowski inequality for double measure integrals.
Since (iαnhn + (`1 − 1)hn, iαnhn + `1hn] and (αnhn + (`2 − 1)hn, iαnhn + `2hn] are
disjoint, if `1 6= `2 and τ is fixed, we get

E
[
(ci,1n (τ))2m

]
=

αn∑
`=1

E
[
σ2m
τ

( bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .
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3.2. The general nonparametric case

We proceed with Jensen’s inequality, which yields

αn∑
`=1

E
[
σ2m
τ

( bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

≤
αn∑
`=1

E
[
σ2m
τ

bnhnc−1∑
j=1

wij`

(
ξ

(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) as ds

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .

Using (3.31), global boundedness of the volatility and (3.30) we can conclude that

E
[ (
ci,1n (τ)

)2m ]
= O (1) .

Consequently, we can conclude as follows using (3.30):(∫ (i+1)αnhn

iαnhn

E
[
(ci,1n (τ))2m

]1/m
dτ

)m
= O ((αnhn)m) . (3.37)

That yields the following bound for A1,3,1
n

A1,3,1
n = O

(
(log (n))m hmn (αnhn)−1

)
= O (1) , as n→∞ ,

for m sufficiently large.
We proceed with the probability A1,3,2

n involving the term (3.35). We first get the
standard bound by the Markov inequality with some exponent r > 0 and r ∈ N:

P
[√

log (n)
√
αn

∣∣∣∣ αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ) (στ − σiαnhn)

×
∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWsdWτ

∣∣∣∣ > δ (K−− κ−)
3/4

36

]

≤ Cr

(√
log (n)
√
αn

)r
E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)

× (στ − σiαnhn)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWsdWτ

∣∣∣∣r] .
We define

ci,2n (τ) =

αn∑
`=1

(στ − σiαnhn)

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs

×1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .
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In order to apply Itô isometry, we set r = 2m, with m > 0 and m ∈ N. We obtain
that

E
[∣∣∣∣ ∫ (i+1)αnhn

iαnhn

ci,2n (τ) dWτ

∣∣∣∣2m] = E
[(∫ (i+1)αnhn

iαnhn

(
ci,2n (τ)

)2
dτ

)m]
≤
(∫ (i+1)αnhn

iαnhn

E
[(
ci,2n (τ)

)2m]1/m
dτ

)m
.

We have via Jensen’s inequality

E
[(
ci,2n (τ)

)2m]
= E

[ αn∑
`=1

(στ − σiαnhn)2m

( bnhnc−1∑
j=1

wij`ξ
(n)
ij` (s)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)σs dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

≤ E
[ αn∑
`=1

(αnhn)2ma
bnhnc−1∑
j=1

wij`
(
ξ

(n)
ij` (τ)

)2m(∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)2 σ2

s ds

)m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

= O
(

(αnhn)2ma h−mn

)
,

by the regularity under (H0-a). Overall we can deduce for A1,3,2
n that

A1,3,2
n = O

(
(αnhn)−1 (αnhn)2ma (log(n))m

)
= O (1) , as n→∞ ,

if m ∈ N sufficiently large. Proceeding with A1,3,3
n , we have with r > 0 and r ∈ N:

P
[∣∣∣∣
√

log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)σiαnhn

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWsdWτ

∣∣∣∣ > δ (K−− κ−)
3/4

36

]
(3.38)

≤ Cr

(√
log (n)
√
αn

)r
E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (τ)σiαnhn

×
∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWsdWτ

∣∣∣∣r].
Analogously, we set

ci,3n (τ) :=

αn∑
`=1

σiαnhn

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .
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With r = 2m, r > 0 and r ∈ N we apply Itô isometry and Minkowski inequality.

E
[(∫ (i+1)αnhn

iαnhn

ci,3n (τ) dWτ

)2m]
= E

[(∫ (i+1)αnhn

iαnhn

(
ci,3n (τ)

)2
dτ

)m]
≤
(∫ (i+1)αnhn

iαnhn

E
[(
ci,3n (τ)

)2m]1/m
dτ

)m
.

Since (iαnhn + (`1 − 1)hn, iαnhn + `1hn] and (iαnhn + (`2 − 1)hn, iαnhn + `2hn] are
disjoint if `1 6= `2 and τ is fixed, we get

E
[(
ci,3n (τ)

)2m]
=E
[ αn∑
`=1

σ2m
iαnhn

( bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

≤ E
[ αn∑
`=1

σ2m
iαnhn

bnhnc−1∑
j=1

wij`(ξ
(n)
ij` (τ))2m

×
(∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) ,

where we applied Jensen’s inequality. Proceeding with Burkholder’s inequality and
(3.29), we get

E
[ αn∑
`=1

σ2m
iαnhn

bnhnc−1∑
j=1

wij`(ξ
(n)
ij` (τ))2m

(∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

≤ KmE
[ αn∑
`=1

σ2m
iαnhn

bnhnc−1∑
j=1

wij`(ξ
(n)
ij` (τ))2m

×
(∫ τ

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (s)

)2
(σs − σiαnhn)2 ds

)m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

= O
(

(αnhn)2ma h−mn

)
,

which gives the following bound concerning A1,3,3
n :

A1,3,3
n = O

(
(αnhn)−1 (log (n))m (αnhn)2ma

)
= O (1) , as n→∞ ,

49



3. Change-point inference on spot volatility

if m is sufficiently large. We have completed the third term A1,3,3
n and so A1,3

n . Overall
the term A1

n has shown to be negligible. We proceed with A2
n from (3.27). Therefore,

we take into account that

Sij` (X)− σiαnhnSij` (W )

=

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) dXs − σiαnhn

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) dWs

=

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs +

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s)as ds .

(3.39)

Using this identity, we bound A2
n by

A2
n ≤ A2,1

n +A2,2
n ,

where the probability A2,1
n is based on the local martingale part in (3.39) and A2,2

n is
based on the finite variation part. The elementary inequality |a+ b|p ≤ 2p (|a|p + |b|p)
allows to split the discussion of A2

n. Starting with A2,1
n we proceed as follows using

Markov’s inequality with an exponent r > 0 and r ∈ N.

P
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`Sij` (ε)

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

∣∣∣∣ > δ (K−− κ−)
3/4

8

]

≤ CrE
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`Sij` (ε)

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

∣∣∣∣r]
We define

ci,4n (τ) =
1

hn

αn∑
`=1

bnhnc−1∑
j=1

wij`Sij` (ε)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) ,

such that with r = 2m, m > 0 and m ∈ N

= E
[∣∣∣∣ αn∑

`=1

bnhnc−1∑
j=1

wij`Sij` (ε)

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

∣∣∣∣r]

= E
[∣∣∣∣ ∫ (i+1)αnhn

iαnhn

ci,4n (τ) dτ

∣∣∣∣2m] ≤ (∫ (i+1)αnhn

iαnhn

E
[(
ci,4n (τ)

)2m]1/2m
dτ

)2m

.

In order to bound this expectation, we split the j-sum using the elementary inequality
|a+ b|p ≤ 2p (|a|p + |b|p) and that the weights fulfill the following growth behaviour:

wjk ∝

{
1, for j ≤

√
nhn

j−4n2h4
n, for j >

√
nhn .

(3.40)
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That yields

E
[(
ci,4n (τ)

)2m]
= E

[
1

h2m
n

αn∑
`=1

( bnhnc−1∑
j=1

wij`Sij` (ε)

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

≤ Cm
h2m
n

αn∑
`=1

E
[(√nhn∑

j=1

Sij` (ε)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ)

+
Cm
h2m
n

αn∑
`=1

E
[( bnhnc−1∑

j=
√
nhn+1

j−4nhnSij` (ε)

∫ τ

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]
× 1(hn(iαn+(`−1))−n−1,iαnhn+`hn] (τ) .

Since

j−4n2h4
n = O (1) for

√
nhn ≤ j ≤ nhn ,

it is sufficient to consider the first summand only.
The calculations pursued in Lemma 2 in Bibinger and Winkelmann [13] imply the
following, using the fact, that (εt)t∈[0,1] is independent of F (0).

E
[

1

h2m
n

αn∑
`=1

(√nhn∑
j=1

wij`Sij` (ε)

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

ξ
(n)
ij` (s) (σs − σiαnhn) dWs

)2m]

≤ CmE
[(∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (s)

)2
(σs − σiαnhn)2 ds

)m]
= O

(
(αnhn)2ma h−2m

n

)
,

such that

E
[(
ci,4n (τ)

)2]
= O

(
(αnhn)2ma h−2m

n

)
.

We can conclude that

E
[∣∣∣∣ ∫ (i+1)αnhn

iαnhn

ci,4n (τ) dτ

∣∣∣∣2m] = O
(

(αnhn)2ma α2m
n

)
.

Overall we get

A2,1
n = O

(
(αnhn)2ma (log (n))m αmn (αnhn)−1

)
= O(1) , as n→∞ ,
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if m ∈ N is sufficiently large.
The term A2,2,

n can be handled easier, using (3.29) instead of Burkholder’s inequality.
Overall it is shown that A2

n = O(1).
We can proceed with Bn from (3.26). Note that

P
[
min
i

∣∣Zn,i+1

∣∣ < K−− κ−
]
≤ P

[
min
i
Zn,i+1 < K−− κ−

]

≤
b(αnhn)−1c−2∑

i=0

P
[
Zn,i+1 < K−− κ−

]
.

It is sufficient to bound the probability

P
[
Zn,i+1 < K−− κ−

]
=P
[

1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

(
(σiαnhnSij` (W ) + Sij` (ε))2 − µij`

)
< K−− κ−

]

=P
[

1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

(
(σiαnhnSij` (W ) + Sij` (ε))2 − µij`

)
− σ2

iαnhn < K−− σ2
iαnhn− κ

−
]
.

Note that K− − σ2
iαnhn

< 0 and κ− > 0, such that we can proceed with Markov’s
inequality with an exponent r > 0 and the elementary inequality |a+ b+ c|r ≤
3r (|a|r + |b|r + |c|r):

P
[

1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

(
(σiαnhnSij` (W ) + Sij` (ε))2 − µij`

)
− σ2

iαnhn < K−− σ2
iαnhn− κ

−
]

≤ P
[

1

αn

∣∣∣∣∣∣
αn∑
`=1

bnhnc−1∑
j=1

wij`

(
(σiαnhnSij` (W ) + Sij` (ε))2 − µij`

)
− σ2

iαnhn

∣∣∣∣∣∣ > κ−
]

≤ CrE

∣∣∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`σ
2
iαnhn

(
S2
ij` (W )− 1

)∣∣∣∣∣∣
r

+ CrE
[∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`σiαnhnSij` (W )Sij` (ε)

∣∣∣∣r]

+ CrE
[∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`
(
S2
ij` (ε)− µij`

)2 ∣∣∣∣r]

= CrE
[

1

α
r/2
n

∣∣∣∣ 1
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`
(
S2
ij` (W )− 1

) ∣∣∣∣r]

+ CrE
[

1

α
r/2
n

∣∣∣∣ 1
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`Sij` (W )Sij` (ε)

∣∣∣∣r]
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+ CrE
[

1

α
r/2
n

∣∣∣∣ 1
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`
(
S2
ij` (ε)− µij`

)2 ∣∣∣∣r]
= O

(
α−r/2n

)
,

by the classical central limit theorem. This implies

P
[
min
i

∣∣Zn,i+1

∣∣ < K−− κ−
]

= O
(
α−r/2n (αnhn)−1

)
= O(1) , as n→∞ ,

if r > 0 sufficiently large. Thus, we have completed the term Bn, and so the term (II).
We proceed with (I) from (3.25). It holds that

RV n,i

(
1∣∣RV n,i+1

∣∣3/4 − 1∣∣Zn,i+1

∣∣3/4
)

= RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4∣∣RV n,i+1

∣∣3/4 ∣∣Zn,i+1

∣∣3/4
)
,

such that for every δ > 0 we have

P
[

max
i

√
αn log (n)

∣∣∣∣RV n,i

(
1∣∣RV n,i+1

∣∣3/4 − 1∣∣Zn,i+1

∣∣3/4
)∣∣∣∣ > δ

]

= P
[

max
i

√
αn log (n)

∣∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4∣∣RV n,i+1

∣∣3/4 ∣∣Zn,i+1

∣∣3/4
)∣∣∣∣ > δ,

min
i

∣∣RV n,i+1

∣∣ ∣∣Zn,i+1

∣∣ ≥ (K−− κ−)
2

2

]

+ P
[

max
i

√
αn log (n)

∣∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4∣∣RV n,i+1

∣∣3/4 ∣∣Zn,i+1

∣∣3/4
)∣∣∣∣ > δ,

min
i

∣∣RV n,i+1

∣∣ ∣∣Zn,i+1

∣∣ < (K−− κ−)
2

2

]
≤ P

[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2]
(3.41)

+ P
[

min
i

∣∣RV n,i+1

∣∣ ∣∣Zn,i+1

∣∣ < (K−− κ−)
2

4

]
. (3.42)

We start with the second probability (3.42):

P
[

min
i

∣∣RV n,i+1

∣∣ ∣∣Zn,i+1

∣∣ < (K−− κ−)
2

4

]
≤ P

[
min
i

∣∣RV n,i+1

∣∣ < K−− κ−

2

]
+ P

[
min
i

∣∣Zn,i+1

∣∣ < K−− κ−

2

]
.
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The second probability has already been considered, since

P
[

min
i

∣∣Zn,i+1

∣∣ < K−− κ−

2

]
= P

[
min
i
Zn,i+1 <

K−− κ−

2

]
= O (Bn) .

Concerning the first one, it holds that

P
[

min
i

∣∣RV n,i+1

∣∣ < K−− κ−

2

]
≤ P

[
min
i
RV n,i+1 <

K−− κ−

2

]
= P

[
min
i
RV n,i+1 <

K−− κ−

2
,max

i

∣∣RV n,i+1 − Zn,i+1

∣∣ ≤ K−− κ−

2

]
+ P

[
min
i
RV n,i+1 <

K−− κ−

2
,max

i

∣∣RV n,i+1 − Zn,i+1

∣∣ > K−− κ−

2

]
≤ P

[
min
i
Zn,i+1 < K−− κ−

]
+ P

[
max
i

∣∣RV n,i+1 − Zn,i+1

∣∣ > K−− κ−

2

]
.

Since

P
[

max
i

∣∣RV n,i+1 − Zn,i+1

∣∣ > K−− κ−

2

]
= O (An) ,

we can proceed with (3.41). For every δ > 0 and κ+ ∈ (K+,∞), it holds that

P
[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2]
= P

[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2
,

(3.43)

max
i
Zn,i ≤ K+ + κ+

]
+ P

[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2
,

(3.44)

max
i
Zn,i > K+ + κ+

]
.

We start with (3.43).

P
[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2
,

max
i
Zn,i ≤ K++ κ+

]
≤ P

[
max
i

∣∣RV n,i

∣∣ > 2
(
K++ κ+

) ]
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+ P

[
max
i

√
αn log (n)

∣∣∣(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 2δ (K−− κ−)
3/2

K++ κ+

]

≤ P
[
max
i

∣∣RV n,i − Zn,i
∣∣+
∣∣Zn,i∣∣ > 2

(
K+ + κ+

)]
+ P

[
max
i

√
αn log (n)

∣∣∣(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣)3/4
)∣∣∣ > 2δ (K−− κ−)

3/2

K++ κ+

]
≤ P

[
max
i

∣∣RV n,i − Zn,i
∣∣ > K++ κ+

]
+ P

[
max
i

∣∣Zn,i∣∣ > K++ κ+

]
(3.45)

+ P
[

max
i

√
αn log (n)

∣∣∣(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 2δ (K−− κ−)
3/2

K+ + κ+

]
(3.46)

Note that

P
[
max
i

∣∣Zn,i∣∣ > K+ + κ+

]
≤
b(αnhn)−1c−2∑

i=0

P
[∣∣Zn,i∣∣ > K+ + κ+

]
holds. We proceed with the triangle inequality and using that K+ − σ2

iαnhn
> 0

uniformly in i,

P
[
max
i

∣∣Zn,i∣∣ > K+ + κ+

]
≤ P

[∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`σ
2
iαnhn

(
Sij` (W )− 1

)∣∣∣∣ > κ+

]

+ P
[∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`σiαnhnSij` (W )Sij` (ε)

∣∣∣∣ > κ+

]

+ P
[∣∣∣∣ 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`
(
Sij` (ε)− µij`

)∣∣∣∣ > κ+

]
.

Applying the Markov inequality, bounding the volatility from above, and concluding
with a classical central limit theorem argument, yields the bound

P
[∣∣Zn,i∣∣ > K+ + κ+

]
= O

(
α−r/2n

)
,

such that

P
[
max
i

∣∣Zn,i∣∣ > K+ + κ+

]
= O

(
α−r/2n (αnhn)−1

)
= O(1) , as n→∞ ,

holds if the exponent r > 0 is sufficiently large. This completes (3.45), since the first
probability therein is included in An.
We proceed with (3.46). The discussion of this term can be traced back to An with a
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Taylor expansion. More precisely, we set ψ (x) = x3/4 and expand around the point∣∣Zn,i+1

∣∣,
ψ
(∣∣RV n,i+1

∣∣)− ψ (∣∣Zn,i+1

∣∣) = ψ′
(∣∣Zn,i+1

∣∣) (∣∣RV n,i+1

∣∣− ∣∣Zn,i+1

∣∣)
+
(∣∣RV n,i+1

∣∣− ∣∣Zn,i+1

∣∣)R (∣∣RV n,i+1

∣∣− ∣∣Zn,i+1

∣∣) .
Since ψ′

(∣∣Zn,i+1

∣∣) = OP (1), and since the remainder R is negligible,

R
(∣∣RV n,i+1

∣∣− ∣∣Zn,i+1

∣∣) = OP(1) ,

by the reverse triangle inequality and the estimates for An. Therefore, only∣∣RV n,i+1

∣∣− ∣∣Zn,i+1

∣∣
is crucial. But, using the reverse triangle inequality again this has already been worked
out in An, too. So we have completed (3.46) and so (3.43). We proceed with (3.44).
It holds that

P
[
max
i

√
αn log (n)

∣∣∣RV n,i

(∣∣Zn,i+1

∣∣3/4 − ∣∣RV n,i+1

∣∣3/4)∣∣∣ > 4δ
(
K−− κ−

)3/2
,

max
i
Zn,i > K+ + κ+

]
≤ P

[
max
i
Zn,i > K+ + κ+

]
≤ P

[
max
i

∣∣Zn,i∣∣ > K+ + κ+

]
.

Thus, this probability has already been considered within (3.45). Therefore, we also
have completed (3.44), such that we are done with (I). The terms (III) and (IV) in
(3.25) are only shifted in i. So we have finished the proof of Proposition 3.16.

For the second step described in the outline of the proof we approximate the volatility
locally constant over two consecutive blocks by shifting the index of σ(i+1)αnhn in

Zn,i+1 as follows: i+ 1 7→ i. We set

Z̃n,i :=
1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

((
σ(i−1)αnhnSij` (W ) + Sij` (ε)

)2 − µij`) .
Proposition 3.17. Given the assumptions of Theorem 3.8, it holds under (H0-a) that

√
αn log

(
h−1
n

)
max
i

∣∣∣∣∣∣∣
∣∣∣∣Zn,i − Zn,i+1∣∣Zn,i+1

∣∣3/4
∣∣∣∣− ∣∣∣∣Zn,i − Z̃n,i+1∣∣∣Z̃n,i+1

∣∣∣3/4
∣∣∣∣
∣∣∣∣∣∣∣ P−→ 0 ,

as n −→ +∞.
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Proof of Proposition 3.17.

The decomposition

Zn,i − Zn,i+1∣∣Zn,i+1

∣∣3/4 − Zn,i − Z̃n,i+1∣∣∣Z̃n,i+1

∣∣∣3/4
=

Zn,i∣∣Zn,i+1

∣∣3/4 − Zn,i∣∣∣Z̃n,i+1

∣∣∣3/4 +
Zn,i+1∣∣∣Z̃n,i+1

∣∣∣3/4 −
Zn,i+1∣∣Zn,i+1

∣∣3/4 +
Z̃n,i+1 − Zn,i+1∣∣Zn,i+1

∣∣3/4
yields, via the triangle inequality, the three terms

max
i

∣∣∣∣∣Zn,i
(

1∣∣Zn,i+1

∣∣3/4 − 1∣∣∣Z̃n,i+1

∣∣∣3/4
)∣∣∣∣∣+ max

i

∣∣∣∣∣Zn,i+1

(
1∣∣∣Z̃n,i+1

∣∣∣3/4 −
1∣∣Zn,i+1

∣∣3/4
)∣∣∣∣∣

+ max
i

∣∣∣∣∣ Z̃n,i+1 − Zn,i+1∣∣Zn,i+1

∣∣3/4
∣∣∣∣∣

=: (I) + (II) + (III) .

We start with (III). For any δ > 0 it holds that

P

max
i

∣∣∣∣∣∣∣
√
n log (n)

(
Z̃n,i+1 − Zn,i+1

)
∣∣∣Z̃n,i+1

∣∣∣3/4
∣∣∣∣∣∣∣ > δ



= P

max
i

∣∣∣∣∣∣∣
√
n log (n)

(
Z̃n,i+1 − Zn,i+1

)
∣∣∣Z̃n,i+1

∣∣∣3/4
∣∣∣∣∣∣∣ > δ,min

i

∣∣∣Z̃n,i+1

∣∣∣ ≥ K−− κ−


+ P

max
i

∣∣∣∣∣∣∣
√
n log (n)

(
Z̃n,i+1 − Zn,i+1

)
∣∣∣Z̃n,i+1

∣∣∣3/4
∣∣∣∣∣∣∣ > δ,min

i

∣∣∣Z̃n,i+1

∣∣∣ < K−− κ−


≤ P

[
max
i

√
n log (n)

∣∣∣Z̃n,i+1 − Zn,i+1

∣∣∣ > δ
(
K−− κ−

)3/4]
(3.47)

+ P
[
min
i

∣∣∣Z̃n,i+1

∣∣∣ < K−− κ−
]
. (3.48)

The probability (3.48) has already been done, since it only differs by a shift in i with
respect to the volatility from the term in Proposition 3.16. We continue with (3.47).
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3. Change-point inference on spot volatility

It holds that

Z̃n,i − Zn,i =
(
σ2

(i−1)αnhn
− σ2

iαnhn

) 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`S
2
ij` (W )

+
(
σ(i−1)αnhn − σiαnhn

) 1

αn

αn∑
`=1

bnhnc−1∑
j=1

wij`Sij` (W )Sij` (ε) .

That yields

P
[
max
i

√
αn log (n)

∣∣∣Z̃n,i+1 − Zn,i+1

∣∣∣ > δ
(
K−− κ−

)3/4]
≤ P

[
max
i

√
αn log (n)

(
σ2
iαnhn − σ

2
(i+1)αnhn

)
× 1

αn

∣∣∣∣∣∣
αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`S
2
(i+1)j` (W )

∣∣∣∣∣∣ >
(
K−− κ−

)3/4
2


+ P

[
max
i

√
αn log (n)

(
σiαnhn − σ(i+1)αnhn

)
× 1

αn

∣∣∣∣∣∣
αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`S(i+1)j` (W )S(i+1)j` (ε)

∣∣∣∣∣∣ >
(
K−− κ−

)3/4
4


≤ P

[
max
i

√
αn log (n)

∣∣∣σ2
iαnhn − σ

2
(i+1)αnhn

∣∣∣ > (
K−− κ−

)3/4
4

]

+ P

max
i

1

αn

αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`S
2
(i+1)j` (W ) > 2

 .
Concerning the first term it holds that

max
i

√
αn log (n)

∣∣∣σ2
iαnhn − σ

2
(i+1)αnhn

∣∣∣ = OP

(√
αn log (n) (αnhn)a

)
, uniformly in i

= OP(1) , as n→∞ , by (3.5).

It remains to show that

P

max
i

1

αn

αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`S
2
(i+1)j` (W ) > 2

 = O(1) .
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3.2. The general nonparametric case

We conclude with a classical central limit theorem argument, using Markov’s inequality
with r > 0.

P

max
i

1

αn

αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`S
2
(i+1)j` (W ) > 2


= P

max
i

1

αn

αn∑
`=1

bnhnc−1∑
j=1

w(i+1)j`

(
S2

(i+1)j` (W )− 1
)
> 1


≤ (αnhn)−1 E

 1

α
r/2
n

∣∣∣∣∣∣ 1
√
αn

bnhnc−1∑
j=1

w(i+1)j`

(
S2

(i+1)j` (W )− 1
)∣∣∣∣∣∣
r

= O
(

(αnhn)−1 α−r/2n

)
= O(1) , as n→∞ ,

with r > 0 sufficiently large. We have completed (3.47) and so (III).
We proceed with (I). For any δ > 0 it holds that

P

max
i

∣∣∣∣∣∣∣Zn,i
 1∣∣Zn,i+1

∣∣3/4 − 1∣∣∣Z̃n,i+1

∣∣∣3/4

∣∣∣∣∣∣∣ > δ



= P

max
i

∣∣∣∣∣∣∣Zn,i

∣∣∣Z̃n,i+1

∣∣∣3/4 − ∣∣Zn,i+1

∣∣3/4∣∣Zn,i+1

∣∣3/4 ∣∣∣Z̃n,i+1

∣∣∣3/4

∣∣∣∣∣∣∣ > δ



= P

max
i

∣∣∣∣∣∣∣Zn,i

∣∣∣Z̃n,i+1

∣∣∣3/4 − ∣∣Zn,i+1

∣∣3/4∣∣Zn,i+1

∣∣3/4 ∣∣∣Z̃n,i+1

∣∣∣3/4

∣∣∣∣∣∣∣ > δ,min

i

∣∣Zn,i+1

∣∣ ∣∣∣Z̃n,i+1

∣∣∣ ≥ (K−− κ−)2


+ P

max
i

∣∣∣∣∣∣∣Zn,i

∣∣∣Z̃n,i+1

∣∣∣3/4 − ∣∣Zn,i+1

∣∣3/4∣∣Zn,i+1

∣∣3/4 ∣∣∣Z̃n,i+1

∣∣∣3/4

∣∣∣∣∣∣∣ > δ,min

i

∣∣Zn,i+1

∣∣ ∣∣∣Z̃n,i+1

∣∣∣ < (K−− κ−)2


≤ P
[
max
i

∣∣∣∣Zn,i(∣∣∣Z̃n,i+1

∣∣∣3/4 − ∣∣Zn,i+1

∣∣3/4)∣∣∣∣ > δ
(
K−− κ−

)3/2]
(3.49)

+ P
[
min
i

∣∣Zn,i+1

∣∣ ∣∣∣Z̃n,i+1

∣∣∣ < (K−− κ−)2] . (3.50)

We start with (3.50).

P
[
min
i

∣∣Zn,i+1

∣∣ ∣∣∣Z̃n,i+1

∣∣∣ < (K−− κ−)2]
≤ P

[
min
i

∣∣Zn,i+1

∣∣ < K−− κ−
]

+ P
[
min
i

∣∣∣Z̃n,i+1

∣∣∣ < K−− κ−
]
.
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3. Change-point inference on spot volatility

Only the second probability has to be considered. But since the involved statistic only
differs by a shift in the volatility, we can bound the latter from below and argue with
the central limit theorem. So we have completed (3.50) and continue with (3.49).
We handle (3.49) via a Taylor expansion. Expanding the function ψ (x) = x3/4 around
the point |Z̃n,i+1| yields the desired result using the procedure for (III). We will omit
the details for (II), since it only differs by a shift in i. So Proposition 3.17 is proven.

We do a further approximation step, replacing the denominator in Proposition 3.17
by its limit. This is the third step outlined in the proof sketch above. Here we use the
estimator η̂2 from (3.1).

Proposition 3.18. Given the assumptions of Theorem 3.8, it holds under (H0-a) that

√
αn log

(
h−1
n

)
max
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Zn,i − Z̃n,i+1

√
8η̂
∣∣∣Z̃n,i+1

∣∣∣3/4
∣∣∣∣∣∣∣−
∣∣∣∣∣Zn,i − Z̃n,i+1
√

8ησ
3/2
iαnhn

∣∣∣∣∣
∣∣∣∣∣∣∣ P−→ 0 .

Proof of Proposition 3.18.
We have to bound the term

max
i

√
αn log (n)

∣∣∣∣∣∣∣
(
Zn,i − Z̃n,i+1

) 1
√

8η̂
∣∣∣Z̃n,i+1

∣∣∣3/4 −
1

√
8ησ

3/2
iαnhh


∣∣∣∣∣∣∣

= max
i

√
αn log(n)

∣∣∣Zn,i − Z̃n,i+1

∣∣∣max
i

∣∣∣∣∣∣∣
1

√
8η̂
∣∣∣Z̃n,i+1

∣∣∣3/4 −
1

√
8ησ

3/2
iαnhh

∣∣∣∣∣∣∣ .
We will employ a 2-dimensional Taylor expansion of order 1 with respect to the second
term. We set ψ(x, y) = x−1/2y−3/4 and expand around the point (a, b) = (η, σ2

iαnhn
).

Therefore, we have to bound the term

∂ψ(η, σ2
iαnhn

)

∂x
(η̂ − η) +

∂ψ(η, σ2
iαnhn

)

∂y

( ∣∣∣Z̃n,i+1

∣∣∣− σ2
iαnhn

)
+ OP(1). (3.51)

Since (σ2
t )t∈[0,1] can be bounded globally, we get the following uniform bounds in i:

max

(
∂ψ(η, σ2

iαnhn
)

∂x
,
∂ψ(η, σ2

iαnhn
)

∂y

)
= OP(1) .

The first summand in (3.51) with (η̂ − η) can be handled easily, using

(η̂ − η) = OP(n−1/2) .

This implies

max
i

∂ψ(η, σ2
iαnhn

)

∂x
(η̂ − η) = OP(1).
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3.2. The general nonparametric case

Proceeding with the second term in (3.51), we need bounds for the uniform error. Such
bounds are given in Bibinger and Reiß [12] on page 10 for the estimators in (3.7) with
J = 1. Such a uniform bound readily extends to the more sophisticated estimators

in the same way. Since αn ∝ h
−2a
2a+1
n is the rate-optimal choice, we get with the upper

bound from Bibinger and Reiß [12] that

max
i

∂ψ(η, σ2
iαnhn

)

∂y

( ∣∣∣Z̃n,i+1

∣∣∣− σ2
iαnhn

)
= OP

(
h

a
2a+1
n

(
log(h−1

n )
) a

2a+1

)
= OP(1) .

Proceeding with the term

max
i

√
αn log(n)

∣∣∣Zn,i − Z̃n,i+1

∣∣∣
we conclude similarly with the triangle inequality,

max
i

√
αn log(n)

∣∣∣Zn,i − Z̃n,i+1

∣∣∣
≤ max

i

√
αn log(n)

∣∣Zn,i − σ2
iαnhn

∣∣+ max
i

√
αn log(n)

∣∣∣Z̃n,i+1 − σ2
iαnhn

∣∣∣ ,
the uniform bound applied to each summand and the regularity of

(
σ2
t

)
t∈[0,1]

under

the null hypothesis (H0-a). This implies

max
i

√
αn log(n)

∣∣∣Zn,i − Z̃n,i+1

∣∣∣ = OP(1) ,

such that the convergence in Proposition 3.18 follows.

It is worth to mention that the optimal choice of αn, αn ∝ h
−2a
2a+1
n , together with

Theorem 3.8 yields a similar uniform bound as we have used above. In order to
conclude the convergence for the adaptive statistics in Theorem 3.8, we have to show
that replacing the oracle versions by the adaptive statistics does not affect the limit.
It is sufficient to show the following for the fourth step to complete the proof of the
approximation steps mentioned in the outline of the proof section.

Proposition 3.19. Given the assumptions of Theorem 3.8, it holds under (H0-a) that√
αn log

(
h−1
n

)
max
i

∣∣∣RV ad
n,i −RV n,i

∣∣∣ P−→ 0 .

Proof of Proposition 3.19.

As we have argued above, η2 can be replaced by the
√
n-rate consistent estimator

(3.1) without affecting the limit behaviour of the statistics. Therefore it is sufficient
to consider the plug-in estimation of the spot volatility in the weights (wij`). First
of all, taking into account that the asymptotic order of the weights (3.40) does not
depend on i, `, we may consider them as a function wj = wj(σ

2) of the spot volatility.
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3. Change-point inference on spot volatility

Calculating the first derivative, w′j as pursued on page 40 in Altmeyer and Bibinger
[5], we get the upper bound

w′(σ2) = OP(wj(σ
2) log2(n)) . (3.52)

In order to bound max
i
|RV ad

n,i−RV n,i|, take into account that
∑

j wj(x) = 1 for every

x. So it is sufficient to consider the term

max
i

1

αn

bnhnc−1∑
j=1

(wj(σ
2
iαnhn)− wj(σ̂2

iαnhn))

αn∑
`=1

(S2
ij`(Y )− E[S2

ij`(Y )]) .

The only difference compared with Bibinger and Winkelmann [13] and Altmeyer and
Bibinger [5], is to replace the point-wise L1 bound for |σ̂2

iαnhn
−σ2

iαnhn
| by the uniform

bound from Proposition 3.18, with that the bound

|wj(σ2
iαnhn)− wj(σ̂2

iαnhn)| = OP(wj(σ
2) log2(n)h

a
2a+1
n log(n)

a
2a+1 )

follows, using the mean value theorem and (3.52).

The key, proving the last conclusion is to apply strong invariance principles presented
in Section 2.4. First of all we have to take into account that the rescaling factors in
Ũ ′/
√

8η provide only an asymptotically distribution-free limit. So it is more adequate
for our purpose to rescale with the exact finite-sample standard deviation, that is

2

( bnhnc−1∑
m=1

(
σ2
iαnhn +

η2

n
[ϕmk, ϕmk]n

)−2)−1

.

Using a Taylor approximation and the convergence of the above variances to 8σ3
iαnhn

η,
presented in Section 6.2. of Altmeyer and Bibinger [5], it is clear that the approximation
holds.
Let Ii,ν and Ĩi,ν be the exact finite-sample variances and define L(n)

i,ν and L̃(n)
i,ν given by

L(n)
i,ν =

∑bnhnc−1
j=1 wijν

(
(σiαnhnSjν (W ) + Sjν (ε))2 − µi,ν,j

)
√
Ii,ν

,

L̃(n)
i,ν =

∑bnhnc−1
j=1 wijν

((
σ(i−1)αnhnSjν (W ) + Sjν (ε)

)2 − µi,ν,j)√
Ĩi,ν

.

The distributions of
(
L(n)
i,ν

)
ν

and
(
L̃(n)
i+1,ν

)
ν

do not depend on the volatility. Therefore,

and due to the independence of Brownian increments, the latter are two independent
families. Furthermore, the independence of Brownian increments also yields that each
family itself forms an independent family in ν. Taking into account the remark in
Komlós et al. [42] below Theorem 4, we can proceed as follows. Since we want to

62



3.2. The general nonparametric case

ensure the existence of a properly approximating independent Gaussian family (Zi)i,
according to Theorem 4 in Komlós et al. [42], we have to pick a function H such that

H(x)

x3+δ
is increasing for some δ > 0 , (3.53)

log (H (|x|))
x

is decreasing and (3.54)

∫
H (|x|) dPL(n)

i,ν

<∞ . (3.55)

We pick a power function H and set H(x) = |x|p with some p ≥ 4 such that (3.53)
and (3.54) are fulfilled. For the latter condition (3.55), by Jensen’s inequality and
Rosenthal’s inequality, we require at this point (3.4) up to m = 8. In order to control
the remainder term in the approximation, we take into account that

max
i

∣∣∣∣∣∣
(i+1)αn∑
ν=1

(
L(n)
i,ν − Zν

)
−

iαn∑
ν=1

(
L(n)
i,ν − Zν

)∣∣∣∣∣∣ ≤ 4 ·max
i

∣∣∣∣∣∣
(i+1)αn∑
ν=1

(
L(n)
i,ν − Zν

)∣∣∣∣∣∣ .
Furthermore, the triangle inequality and the Markov inequality yield

P

max
i

∣∣∣∣∣∣
(i+1)αn∑
ν=1

(
L(n)
i,ν − Zν

)∣∣∣∣∣∣ ≥ xn


≤ P

max
i

(i+1)αn∑
ν=1

∣∣∣L(n)
i,ν − Zν

∣∣∣ ≥ xn
 ≤ h−1

n∑
ν=1

P
[∣∣∣L(n)

i,ν − Zν
∣∣∣ ≥ xn]

≤
h−1
n∑
ν=1

x−pn E
[∣∣∣L(n)

i,ν − Zν
∣∣∣p] .

Applying (1.6) in Sakhanenko [56], we get

P

max
i

∣∣∣∣∣∣
(i+1)αn∑
ν=1

(
L(n)
i,ν − Zν

)∣∣∣∣∣∣ ≥ xn
 ≤ h−1

n∑
ν=1

x−pn E
[∣∣∣L(n)

i,ν

∣∣∣p] ≤ Ch−1
n x−pn ,

where C > 0 is the positive constant given in (1.6) in Sakhanenko [56]. We set

xn =
√
αn
(
log
(
h−1
n

))−1/2
.

Since there are more bins than big blocks, the conditions of Theorem 4 in Komlós
et al. [42] are fulfilled. Furthermore, we can choose p by (3.5) such that

α−p/2n h−1
n = O

((
log
(
h−1
n

))−p/2)
.
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3. Change-point inference on spot volatility

So the remainder term fulfills

max
i

∣∣∣∣∣∣
(i+1)αn∑
ν=1

(
L(n)
i,ν − Zν

)
−

iαn∑
ν=1

(
L(n)
i,ν − Zν

)∣∣∣∣∣∣ = OP

(√
αn
(
log
(
h−1
n

))−1/2
)
.

Let B be the Brownian Motion in the invariance principle. This implies that the family
(Zi)i defined as

Zi := α−1/2
n (B((i+ 1)αn)− B(iαn))

are i.i.d. standard normal variables. We set

ηi :=
1
√
αn

(
B ((i+ 1)αn)− B (iαn) + OP

(
(log (n))−1/2

))
.

The scaling properties of Brownian motion and the upper bound given for the re-
mainder term give the desired result using Lemma 1 in Wu and Zhao [61] applied to
(ηi)i.

Proof of Corollary 3.9

The proof of Corollary 3.9 works along the same lines as the one of Theorem 3.8. More
precisely,

(a) in a first step, we have to show that the overlapping versions RV
ov
n,i can be

replaced by Z
ov
n,i. In a second step, we

(b) have to do a shift in the volatility and proceed

(c) by showing that the estimated asymptotic standard deviations can be replaced
by their limits and that

(d) the difference between oracle and adaptive versions is asymptotically negligible,
where the final step is to

(e) use a limit theorem for extreme value statistics similar to Lemma 1 in Wu and
Zhao [61]. The appropriate tool for the overlapping versions is given by Lemma 2
in Wu and Zhao [61], which can be directly applied choosing H as the rectangular
kernel. The latter works, since even if the big blocks may intersect, it is crucial
that the bins remain to be disjoint.

Starting with (a) we will argue that the estimates provided in the proof of Theorem
3.8 are sufficient to conclude the limit for the overlapping statistics. We have to show
that

max
i=αn,...,h

−1
n −αn

∣∣∣∣∣
∣∣∣∣∣RV

ov
n,i −RV

ov
n,i+1

|RV ov
n,i+1|3/4

∣∣∣∣∣−
∣∣∣∣∣Z

ov
n,i − Z

ov
n,i+1

|Zovn,i+1|3/4

∣∣∣∣∣
∣∣∣∣∣ = OP(α−1/2

n log(n)−1/2) .
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3.2. The general nonparametric case

The triangle inequality, the decomposition (3.25) and a Taylor expansion yield that it
is sufficient to prove

max
i=αn,...,h

−1
n −1

√
αn log (n)

∣∣RV ov
n,i − Z

ov
n,i

∣∣ P−→ 0 .

The key step proving this is to consider the term corresponding to An in (3.26). It
is basically sufficient to translate the terms A1,1

n and A1,2
n to the overlapping case.

Starting with A1,1
n we have to take into account the fact that in the overlapping case,

the index set i ∈ {αn, . . . , h−1
n −αn} is a factor αn times larger than the index set for the

non-overlapping case. But since we can adapt the exponent r in the Markov inequality
by (3.4), we get a similar upper bound for A1,1

n . Considering the corresponding part
to the term A1,2

n we proceed as follows using Assumption (H0-a) and (3.31):√
log (n)
√
αn

αn∑
`=1

bnhnc−1∑
j=1

wij`

∫ (`+i−1+αn)hn

(`+i−1)hn

(
ξ

(n)
ij` (τ)

)2 ∣∣σ2
τ − σ2

ihn

∣∣ dτ
≤ Ln

√
log (n)
√
αnhn

αn∑
`=1

(`hn)a hn ≤ Ln
√

log (n)
√
αn (αnhn)a −→ 0, as n→∞.

Concerning (b) we have to show that

max
i=αn,...,h

−1
n −αn

∣∣∣∣∣
∣∣∣∣∣Z

ov
n,i − Z

ov
n,i+1

|Zovn,i+1|3/4

∣∣∣∣∣−
∣∣∣∣∣Z

ov
n,i − Z̃ovn,i+1

|Z̃ovn,i+1|3/4

∣∣∣∣∣
∣∣∣∣∣ = OP(α−1/2

n log(n)−1/2) .

Again, after a proper decomposition of the terms and a Taylor expansion, it is sufficient
to show that

max
i=αn,...,h

−1
n −αn

|Zovn,i − Z̃ovn,i| = OP(α−1/2
n log(n)−1/2) .

The discussion of this term works very similar as in the non-overlapping case. Using
(H0-a) and the central limit theorem, as presented above, we can conclude the desired
asymptotic behaviour by adapting the exponent r in the Markov inequality. The
third and fourth steps (c) and (d) are analogues of Propositions 3.18 and 3.19. Since
the upper bound, which is presented in Bibinger and Reiß [12], is not affected for
overlapping big blocks, we omit the details. Concerning (e) let us only mention that an
additional tool which is necessary is Lévy’s modulus of continuity theorem in order to
control the discretization error. Then, the limit (3.13) in Corollary 3.9 is an immediate
consequence of Lemma 2 in Wu and Zhao [61].

Proof of Proposition 3.10

We decompose the process Yt = Ct + Jt + εt with the continuous semimartingale part

Ct = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs
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3. Change-point inference on spot volatility

and write RV
ad
n,i(C+ε) for the statistics (3.8) applied to observations of a process where

the jump part (Jt)t∈[0,1] is eliminated. We begin with some preliminaries for the proof.
Throughout this proof, K is a generic constant that may change from line to line. For
Nn(vn) a sequence of counting processes with Nn

t (vn) =
∫ t

0

∫
R 1{γ(x)>vn}µ(ds, dx),

with γ(x) from Assumption 3.2, we have by (13.1.14) from Jacod and Protter [35]
that

P
(
Nn
hn(vn) ≥ l

)
≤ Khlnv−rln (3.56)

with r from (3.3). We may restrict to the more difficult result for V
ov,τ
n with over-

lapping statistics. With an analogous decomposition as in (3.25), the proof reduces
to

max
i=αn,...,h

−1
n

∣∣RV tr
n,i −RV

ad
n,i(C + ε)

∣∣ = OP

((
log(n)αn

)−1/2
)
. (3.57)

We separate bins on that truncations occur from (most) other bins

max
i=αn,...,h

−1
n

∣∣RV tr
n,i −RV

ad
n,i(C + ε)

∣∣
= α−1

n max
i

∣∣∣ i∑
`=i−αn+1

(
σ̂2,ad

(`−1)hn
1{|σ̂2,ad

(`−1)hn
|≤hτ−1

n } − σ̂
2,ad
(`−1)hn

(C + ε)
)∣∣∣

≤ α−1
n max

i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

|>hτ−1
n }σ̂

2,ad
(`−1)hn

(C + ε)
∣∣∣

+ α−1
n max

i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

|≤hτ−1
n }

bnhnc−1∑
j=1

ŵj`

(
S2
j`(J)+2Sj`(J)Sj`(ε)+2Sj`(J)Sj`(C)

)∣∣∣,
and consider the two terms separately. For the second maximum the term with S2

j`(J)
is the most involved one and we prove that

max
i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

|≤hτ−1
n }

bnhnc−1∑
j=1

ŵj` S
2
j`(J)

∣∣∣ = OP

(√
αn

log(n)

)
. (3.58)

With some c, c̃ ∈ (0, 1) the relation

1{|σ̂2,ad
(`−1)hn

|≤hτ−1
n } ≤ 1{

∑bnhnc−1
j=1 ŵj` S

2
j`(J)≤c hτ−1

n } + 1{|σ̂2,ad
(`−1)hn

(C+ε)|>c̃ hτ−1
n }

can be used to decompose the term in two addends. First, we prove that

max
i

∣∣∣ i∑
`=i−αn+1

1{
∑bnhnc−1
j=1 ŵj` S

2
j`(J)≤c hτ−1

n }

bnhnc−1∑
j=1

ŵj` S
2
j`(J)

∣∣∣ = OP

(√
αn

log(n)

)
.

(3.59)
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Using the elementary estimate |Φj(t)| ≤
√

2h
−1/2
n and that

∑
j≥1 ŵj` = 1, we obtain

the bound

bnhnc−1∑
j=1

ŵj` S
2
j`(J) =

bnhnc−1∑
j=1

ŵj`

( n∑
i=1

∆n
i JΦj`

(
i

n

))2

≤ 2h−1
n

( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2
.

(3.60)

We deduce the upper bound

max
i

∣∣∣ i∑
`=i−αn+1

1{
∑bnhnc−1
j=1 ŵj` S

2
j`(J)≤c hτ−1

n }

bnhnc−1∑
j=1

ŵj` S
2
j`(J)

∣∣∣
≤ max

i

∣∣∣ i∑
`=i−αn+1

(( bnhnc−1∑
j=1

ŵj` S
2
j`(J)

)
∧ c hτ−1

n

)∣∣∣
≤ max

i

∣∣∣ i∑
`=i−αn+1

((
2h−1

n

( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2)
∧ c hτ−1

n

)∣∣∣ .
We decompose this term as follows

max
i

∣∣∣ i∑
`=i−αn+1

((
2h−1

n

( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2)
∧ c hτ−1

n

)∣∣∣
≤ max

i

∣∣∣ i∑
`=i−αn+1

2h−1
n

( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2
1{∑b`nhnc

i=b(`−1)nhnc
|∆n
i J |≤
√
c/2h

τ/2
n

}∣∣∣
+ max

i

∣∣∣ i∑
`=i−αn+1

chτ−1
n 1{∑b`nhnc

i=b(`−1)nhnc
|∆n
i J |>
√
c/2h

τ/2
n

}∣∣∣
≤ max

i

∣∣∣ i∑
`=i−αn+1

2h−1
n

∣∣J`hn − J(`−1)hn

∣∣2 1{|J`hn−J(`−1)hn |≤
√
c/2h

τ/2
n }

∣∣∣
+ max

i

∣∣∣ i∑
`=i−αn+1

2h−1
n

(∣∣J`hn − J(`−1)hn

∣∣2
−
( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2)

1{∑b`nhnc
i=b(`−1)nhnc

|∆n
i J |≤
√
c/2h

τ/2
n

}∣∣∣
+ max

i

∣∣∣ i∑
`=i−αn+1

chτ−1
n 1{∑b`nhnc

i=b(`−1)nhnc
|∆n
i J |>
√
c/2h

τ/2
n

}∣∣∣
= Γ1 + Γ2 + Γ3 ,
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where we use the triangle inequality, that 1{B≤C} ≤ 1{A≤C} if A ≤ B, and elementary
inequalities for the maximum. We begin with Γ2. It holds for $ > 0 arbitrarily small
that

Γ2 ≤ 4 max
i

∣∣∣ i∑
`=i−αn+1

h−1
n

( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2
1{∑b`nhnc

i=b(`−1)nhnc
|∆n
i J |≤h

2/3+$
n

}∣∣∣
+ 2 max

i

∣∣∣ i∑
`=i−αn+1

h−1
n

(∣∣J`hn − J(`−1)hn

∣∣2 − ( b`nhnc∑
i=b(`−1)nhnc

|∆n
i J |
)2)

× 1{Nn
`hn

(h
2/3+$
n )−Nn

(`−1)hn
(h

2/3+$
n )≥2} 1

{
h
2/3+$
n ≤

∑b`nhnc
i=b(`−1)nhnc

|∆n
i J |≤
√
c/2h

τ/2
n

}∣∣∣ ,
with Nn

t (vn) from (3.56). The additional indicator function in the last addend may be

added, since |J`hn − J(`−1)hn

∣∣ =
∑b`nhnc

i=b(`−1)nhnc |∆
n
i J | when there is at most one jump

on the bin. By (3.56) with vn = h
2/3+$
n and l = 2, we obtain for the Poisson process

Nn
t (h

2/3+$
n ):

P
(
Nn
`hn(h2/3+$

n )−Nn
(`−1)hn

(h2/3+$
n ) ≥ 2

)
≤ h2

nh
−2r(2/3+$)
n ,

for all `, and we infer that

Γ2 = O
(
αnh

−1
n h4/3+2$

n

)
+OP

(
αn log(αn)h1+τ

n h−2r(2/3+$)
n

)
= O

(
α1/2
n (log(n))−1/2

)
+ OP

(
α1/2
n (log(n))−1/2

)
.

We used that αn ≤ h2/3
n by (3.5), since a ≤ 1, for the first term and that by Condition

(3.15):

α1/2
n log(αn)

√
log(n)h1+τ

n h−2r(2/3+$)
n → 0 . (3.61)

Define the sequence of random variables

Z` =
((
J`hn − J(`−1)hn

)
1{|J`hn−J(`−1)hn |≤

√
c/2h

τ/2
n }

)2
, ` = 1, . . . , h−1

n .

We have that

Γ1 = max
i=αn,...,h

−1
n

i∑
`=i−αn+1

2h−1
n Z` .

From equation (54) of Aı̈t-Sahalia and Jacod [2], we obtain the bounds

E
[(∣∣J`hn − J(`−1)hn

∣∣ ∧√c/2hτ/2n

)2]
≤ Khnhτ(1−r/2)

n , (3.62a)

Var
((∣∣J`hn − J(`−1)hn

∣∣ ∧√c/2hτ/2n

)2)
≤ Khnh2τ−rτ/2

n . (3.62b)
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Observe that

Γ1 = max
i=αn,...,h

−1
n

2h−1
n

( i∑
`=1

Z` −
i−αn∑
`=1

Z`
)
≤ 2h−1

n max
i=1,...,h−1

n

i∑
`=1

Z` .

Since
∫ t

0

∫
R δ(s, x)1{γ(x)≤

√
c/2h

τ/2
n }(µ−ν)(dx, dx) is a martingale,

(∑i
`=1 2h−1

n Z`
)

1≤i≤h−1
n

is a submartingale as the martingale increments are uncorrelated and a squared mar-
tingale is always a submartingale. We apply Doob’s submartingale maximal inequality
which yields

λP
(

max
i=αn,...,h

−1
n

i∑
`=1

2h−1
n Z` ≥ λ

)
≤ 2h−1

n E
[ h−1

n∑
`=1

Z`
]
∝ hτ(1−r/2)

n , (3.63)

such that P
(

maxi=αn,...,h−1
n

∑i
`=1 2h−1

n Z` ≥ λ
)
→ 0 for λ−1 = O(h

τ(r/2−1)
n ). Thus, Γ1

is negligible as long as

α1/2
n

√
log(n)hτ(1−r/2)

n → 0 . (3.64)

From Condition (3.15) we have that r < 2 − τ−1β and it follows that β < τ(2 − r),
what ensures the above relation. Under this condition, Γ3 becomes negligible as well,

since with (3.56) for l = 1 and vn = h
τ/2
n , we obtain that

Γ3 = OP

(
αn log(αn)hτ(1−r/2)

n

)
= OP

(√
αn

log(n)

)
.

We have proved (3.59). Finally, we show that

max
i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

|>hτ−1
n }σ̂

2,ad
(`−1)hn

(C + ε)
∣∣∣ = OP

(√
αn

log(n)

)
, (3.65)

and discuss the similar remaining second term for (3.58). With some c, c̃ ∈ (0, 1), we
use the relation

1{|σ̂2,ad
(`−1)hn

|>hτ−1
n } ≤ 1{

∑bnhnc−1
j=1 ŵj` S

2
j`(J)>chτ−1

n } + 1{|σ̂2,ad
(`−1)hn

(C+ε)|>c̃ hτ−1
n } .

With Markov’s inequality, we obtain that

P
(

max
k=1,...,h−1

n

∣∣σ̂2,ad
(k−1)hn

(C + ε)
∣∣ > λvn

)
≤ h−1

n P
(∣∣σ̂2,ad

hn
(C + ε)

∣∣ > λvn

)
(3.66)

≤ h−1
n K

E
[∣∣σ̂2,ad

hn
(C + ε)

∣∣p]
(λvn)p

= O
(
h−1
n log(n)v−pn

)
, (3.67)

69



3. Change-point inference on spot volatility

using moment bounds from Lemma 2 of Bibinger and Winkelmann [13] under condition
(3.4). We derive that

max
k=1,...,h−1

n

∣∣σ̂2,ad
(k−1)hn

(C + ε)
∣∣ = OP

(
h−$n

)
(3.68)

for arbitrary $ > 0. In particular, for $ from (3.5)

max
k=1,...,h−1

n

∣∣σ̂2,ad
(k−1)hn

(C + ε)
∣∣ = OP

(
h−$/2n

)
= OP

(√
αn

log(n)

)
.

With (3.60), we obtain the estimate

max
i

∣∣∣ i∑
`=i−αn+1

1{
∑bnhnc−1
j=1 ŵj` S

2
j`(J)>chτ−1

n }σ̂
2,ad
(`−1)hn

(C + ε)
∣∣∣

≤ max
i

∣∣∣ i∑
`=i−αn+1

1{∑b`nhnc
i=b(`−1)nhnc

|∆n
i J |>
√
c/2h

τ/2
n

}σ̂2,ad
(`−1)hn

(C + ε)
∣∣∣ .

Since for rτ < 1, we have by (3.56) that

P
( h−1

n⋃
`=1

{(
Nn
`hn

(√
c/2hτ/2n

)
−Nn

(`−1)hn

(√
c/2hτ/2n

))
≥ 2
})
≤ Kh−1

n h2
nh
−τr
n → 0 ,

we may consider instead

max
i

∣∣∣ i∑
`=i−αn+1

1{|J`hn−J(`−1)hn |>
√
c/2h

τ/2
n }σ̂

2,ad
(`−1)hn

(C + ε)
∣∣∣ .

It is thus sufficient to show that

P
( h−1

n⋃
k=αn

{(
Nn

(k−1)hn

(√
c/2hτ/2n

)
−Nn

(k−αn)hn

(√
c/2hτ/2n

))
≥ l
})
≤ Kh−1+l

n αlnh
−τrl/2
n → 0 ,

for some l < ∞ where we have applied an inequality analogous to (3.56). This holds
true, since

h−1+l
n αlnh

−τrl/2
n ≤ K h−1

n

(
h1−β−rτ/2
n

)l
and rτ < 2(1 − β) by Condition (3.15). Using (3.60), (3.66) and that the squared
jumps are summable, we obtain that for τ < 1− (3− 2$)/p with p ∈ N

max
i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

(C+ε)|>c̃ hτ−1
n }

bnhnc−1∑
j=1

ŵj` S
2
j`(J)

∣∣∣
≤ h−1

n 1{max
`
|σ̂2,ad

(`−1)hn
(C+ε)|>c̃ hτ−1

n }

= OP
(
h−3/2+p/2(1−τ)
n

)
= OP

(√
αn

log(n)

)
. (3.69)
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This is sufficient for

max
i

∣∣∣ i∑
`=i−αn+1

1{|σ̂2,ad
(`−1)hn

(C+ε)|>c̃ hτ−1
n }σ̂

2,ad
(`−1)hn

(C + ε)
∣∣∣ = OP

(√
αn

log(n)

)
. (3.70)

Equations (3.59) and (3.69) imply Equation (3.58). Maxima of the terms with cross
terms Sj`(ε)Sj`(J) and Sj`(ε)Sj`(C) can be handled similarly (or with Cauchy-Schwarz)
and are of smaller order. Equations (3.58) and (3.65) imply Equation (3.57) what fin-
ishes the proof of Proposition 3.10.

Proof of Theorem 3.12

We have to show that (3.17), (3.18), (3.19) and (3.20) yield asymptotically tests with
power 1. Concerning (3.17), that is, under (H1-a),

P
[
V n ≥ α−1/2

n

(
(log(mn))−1/2 cα + γmn

)]
−→ 1 as n→ +∞. (3.71)

We set

V̂n,i =

∣∣∣∣∣ ζni − ζni+1
√

8η̂
∣∣RV ad

n,i+1

∣∣3/4
∣∣∣∣∣ , i = 0, . . . , b(αnhn)−1c − 2 (3.72)

with

ζni := α−1
n

αn∑
`=1

(
σ̂2,ad
hn(iαn+(`−1)) − E

[
σ̂2,ad
hn(iαn+(`−1))

])
.

For θ−b(αnhn)−1θcαnhn > αnhn/2, set i∗ = b(αnhn)−1θc. For θ−b(αnhn)−1θcαnhn ≤
αnhn/2, set i∗ = b(αnhn)−1θc − 1. Since θ ∈ (0, 1), i∗ ≥ 0 for n sufficiently large. By
the reverse triangle inequality we get:

V n ≥ −V̂n,i∗ +

∣∣∣∣∣∣
∑αn

`=1 E
[
σ̂2,ad
i∗αnhn+(`−1)hn

]
−
∑αn

`=1 E
[
σ̂2,ad

(i∗+1)αnhn+(`−1)hn

]
αn
√

8η̂
∣∣RV ad

n,i+1

∣∣3/4
∣∣∣∣∣∣ .

First of all, we can conclude by Theorem 3.8 that for all i:

V̂n,i = OP

(
α−1/2
n

)
.

Then we take into account that the sum over j is convex and σ̂2,ad
hn(iαn+(`−1)) is already

bias corrected with respect to the noise part. Furthermore, bounding the volatility
from below, using the Itô isometry and

αn∑
`=1

nhn−1∑
j=1

wij`

∫ iαnhn+`hn

hn(iαn+(`−1))−n−1

(
ξ

(n)
ij` (s)

)2
σ2
s ds ∝

1

hn

∫ (i+1)αnhn

iαnhn

σ2
s ds ,
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we obtain that with a constant c > 0:

V n ≥ −OP

(
1
√
αn

)
+ c |ς (i∗, n)− ς (i∗ + 1, n)| (1− OP (1)) ,

with

ς (i, n) :=
1

αnhn

∫ (i+1)αnhn

iαnhn

σ2
s ds .

Note that the denominator in (3.72) can be ‘absorbed’ by the constant c. We give a
lower bound on |ς (i∗, n)− ς (i∗ + 1, n)|. Under the alternative hypothesis (H1-a) we
have for the continuous volatility part that∣∣∣∣∣

∫ (i∗+1)αnhn

i∗αnhn

(
σ2,(c)
s − σ2,(c)

s+αnhn

)
ds

∣∣∣∣∣ ≤ αnhnLn (αnhn)a .

The jump component of the volatility is most difficult to handle for r = 2. If it satisfies
(3.3) with some r ≥ 1, we derive for some constant Kp dependent on p the bound

∀s, t ≥ 0 : E
[∣∣σ2,(j)

t − σ2,(j)
s

∣∣p∣∣Fs] ≤ Kp E
[( ∫ t

s

∫
R

(γr(x) ∧ 1)λ(dx)ds
)p/r]

≤ Kp|t− s|((p/r)∧1) . (3.73)

With r = 2 and for p = 1, we thus obtain for i∗ = b(αnhn)−1θc that∣∣∣∣∣
∫ (i∗+1)αnhn

i∗αnhn

(
σ2,(j)
s − σ2,(j)

s+αnhn
−∆σ2

θ1[0,θ)(s)
)
ds

∣∣∣∣∣ = OP

(∫ (i∗+1)αnhn

i∗αnhn

|αnhn|1/2 ds
)

= OP((αnhn)3/2) ,

and an analogous bound for i∗ = b(αnhn)−1θc − 1. Thus, we obtain that

|ς (i∗, n)− ς (i∗ + 1, n)| = (αnhn)−1

∣∣∣∣∣
∫ (i∗+1)αnhn

i∗αnhn

(
σ2
s − σ2

s+αnhn

)
ds

∣∣∣∣∣
≥ (αnhn)−1

(∣∣∣∣∣
∫ (i∗+1)αnhn

i∗αnhn

(
σ2,(j)
s − σ2,(j)

s+αnhn

)
ds

∣∣∣∣∣−
∣∣∣∣∣
∫ (i∗+1)αnhn

i∗αnhn

(
σ2,(c)
s − σ2,(c)

s+αnhn

)
ds

∣∣∣∣∣
)

≥ (αnhn)−1 min

(∣∣∣ ∫ θ

i∗αnhn

∆σ2
θ ds

∣∣∣, ∣∣∣ ∫ (i∗+2)αnhn

θ
∆σ2

θ ds
∣∣∣)

−OP((αnhn)1/2)− Ln (αnhn)a

≥ 1

2
∆σ2

θ −OP((αnhn)1/2)− Ln (αnhn)a ,

where we have applied the reverse triangle inequality. This implies (3.71). In the
non-overlapping case two neighboring differences |ς (i, n)− ς (i+ 1, n)| incorporate the
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3.2. The general nonparametric case

volatility jump. Our above definition of i∗ ensures that we consider the most affected
one for the lower bound. A corresponding lower bound for V

ov
n in the overlapping case

becomes simpler as we always include statistics over two neighboring blocks, such that
θ is close to the end-point between the two blocks. Proving that

P
[
V n ≤ αn−1/2

(
(log(mn))−1/2 cα + γmn

)]
−→ 1− α as n→ +∞

under (H0-a), is an immediate consequence of Theorem 3.8. This completes the proof
for (3.17). We omit further details concerning (3.18), (3.19) and (3.20), since the
estimates we have presented above can be readily adapted.

Proof of Proposition 3.14

We adopt the following elementary lemma, related to Lemma B.1 in Aue et al. [6] and
Lemma D.1. in Bibinger et al. [10].

Lemma 3.20. Let f(t) and g(t) be functions on [0, θ] such that f(t) is non-negative
and increasing. As long as f(θ)− f(θ − γ) > 2 sup0≤t≤θ |g(t)| for some γ ∈ [0, θ], we
have that

argmax0≤t≤θ
(
f(t) + g(t)

)
≥ θ − γ.

An analogous result holds, if f(t) and g(t) are functions on [θ, 1] and f(t) is decreasing.

Proof of Lemma 3.20.

Since

sup
0≤t<θ−γ

|g(t)| − g(θ) ≤ 2 sup
0≤t≤θ

|g(t)| < f(θ)− f(θ − γ) ,

we derive that

max
0≤t<θ−γ

(
f(t) + g(t)

)
≤ sup

0≤t<θ−γ

(
f(t)

)
+ sup

0≤t<θ−γ

∣∣g(t)
∣∣

≤ f(θ − γ) + sup
0≤t<θ−γ

∣∣g(t)
∣∣ < f(θ) + g(θ) ,

such that argmax0≤t≤θ
(
f(t) + g(t)

)
≥ θ − γ.

Let θ ∈ (0, 1) be the change point, that is, the jump time of the volatility. Without
loss of generality δ = ∆σ2

θ > 0. Define (i∗ − 1) = dθh−1
n e, the smallest integer

such that (i∗ − 1)hn ≥ θ holds. We use the following decomposition of V
�
n,i for

i = αn, . . . , h
−1
n − αn:

V
�
n,i = α−1/2

n |An,i +Bn,i + Cn,i +Dn,i| ,
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3. Change-point inference on spot volatility

where

An,i =

i∑
`=i−αn+1

(
σ̂2,ad

(`−1)hn
− E[σ̂2,ad

(`−1)hn
]
)
−

i+αn∑
`=i+1

(
σ̂2,ad

(`−1)hn
− E[σ̂2,ad

(`−1)hn
]
)
,

Bn,i =
i∑

`=i−αn+1

(
E[σ̂2,ad

(`−1)hn
]− σ2

(`−1)hn

)
−

i+αn∑
`=i+1

(
E[σ̂2,ad

(`−1)hn
]− σ2

(`−1)hn

)
,

Cn,i =
i∑

`=i−αn+1

σ̃2
(`−1)hn

−
i+αn∑
`=i+1

σ̃2
(`−1)hn

,

Dn,i =

i∑
`=i−αn+1

δ1{`≥i∗} −
i+αn∑
`=i+1

δ1{`≥i∗} ,

with
(
σ̃2
t

)
t∈[0,1]

the path of the volatility from that the jump is eliminated:

σ2
(`−1)hn

= σ̃2
(`−1)hn

+ δ1{`≥i∗} .

By definition,
(
σ̃2
t

)
t∈[0,1]

then fulfills the regularity properties on (H0-a). This implies

that

|Cn,i| =

∣∣∣∣∣∣
i∑

`=i−αn+1

(
σ̃2

(`−1)hn
− σ̃2

(i−1)hn

)
−

i+αn∑
`=i+1

(
σ̃2

(`−1)hn
− σ̃2

(i−1)hn

)∣∣∣∣∣∣
≤ 2 max

∣∣∣∣∣∣
i∑

`=i−αn+1

(
σ̃2

(`−1)hn
− σ̃2

(i−1)hn

)∣∣∣∣∣∣ ,
∣∣∣∣∣
i+αn∑
`=i+1

(
σ̃2

(`−1)hn
− σ̃2

(i−1)hn

)∣∣∣∣∣
 .

Under (H0-a), we obtain uniformly in i that almost surely∣∣∣∣∣∣
i∑

`=i−αn+1

(
σ̃2

(`−1)hn
− σ̃2

(i−1)hn

)∣∣∣∣∣∣ ≤
i∑

`=i−αn+1

|(`− 1)hn − (i− 1)hn|a ≤ αn(αnhn)a .

This is sufficient for

max
i
|Cn,i| = OP

(√
αn log((αnhn)−1)

)
.

From the proof of Theorem 3.8 we can thus conclude the following bound:

max
i

(
|An,i|+ |Bn,i|

)
= OP

(√
αn log((αnhn)−1)

)
.

Next we consider a step-wise defined function (g(t))t∈[0,1] given by

g(ihn) = α−1/2
n (An,i +Bn,i + Cn,i)
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3.2. The general nonparametric case

and (f(t))t∈[0,1] being step-wise defined via

f(ihn) =


0, for i+ αn < i∗ ,

δα
−1/2
n (i− i∗ + αn + 1), for i∗ − αn ≤ i ≤ i∗ − 1 ,

δα
−1/2
n (αn − i+ i∗ − 1), for i∗ − 1 ≤ i ≤ i∗ + αn − 1 ,

0, for i > i∗ + αn − 1 .

The function f fulfills

- f
∣∣
[0,θ]

is monotonically increasing and

- f
∣∣
[θ,1]

is monotonically decreasing.

We get the following representation of V
�
n,i:

V
�
n,i = |g(ihn)− f(ihn)| .

The calculations above imply that

sup
t∈[0,θ]

|g(t)| = OP(
√

log((αnhn)−1)) . (3.74)

Furthermore, for i∗ − cαn ≤ i ≤ i∗ + cαn, with any 0 < c < 1, it holds that

f(ihn) > |g(ihn)| > 0 ,

with a probability tending to one as n→ +∞. Therefore,

V
�
n,i = f(ihn)− g(ihn) ,

for those i with a probability tending to one as n → +∞. For a sequence γn, with
γn ∈ [0, αnhn], it holds that

f((i∗ − 1)hn − γn) = δα−1/2
n (−bγnh−1

n c+ αn)

and

f((i∗ − 1)hn)− f((i∗ − 1)hn − γn) = bγnh−1
n cδα−1/2

n .

When we set

γn = hnδ
−1
√
αn log(n) ≤ αnhn ,

we derive with (3.74) that almost surely for n sufficiently large:

f((i∗ − 1)hn)− f((i∗ − 1)hn − γn) ≥ 2 sup
t∈[0,θ]

|g(t)| .
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3. Change-point inference on spot volatility

Therefore, f
∣∣
[0,θ]

satisfies the conditions of Lemma 3.20. This implies that

(i∗ − 1)hn ≥ argmaxi=αn,...,h−1
n −αn V

�
n,ihn ≥ (i∗ − 1)hn − γn .

An analogous procedure applied to the function f
∣∣
[θ,1]

yields that

(i∗ − 1)hn ≤ argmaxi=αn,...,h−1
n −αn V

�
n,ihn ≤ (i∗ − 1)hn + γn .

Overall this yields ∣∣∣θ̂n − (i∗ − 1)hn

∣∣∣ = OP(γn) = OP(1) ,

which completes the proof of Proposition 3.14.
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4. Uniform spot volatility estimation

This chapter is devoted to present limit theorems allowing for the construction of
confidence bands for the spot volatility process

(
σ2
t

)
t∈[0,1]

.

It is organized as follows. We start with a short discussion on literature on this topic
and afterwards the construction of the key statistic is presented. We will present the
asymptotic theory and conclude the chapter with the proofs of the presented limit
theorems.

4.1. The state of the art

Before presenting the main results, we will briefly discuss the state of the art on
uniform spot volatility estimation. Starting with Kristensen [43], the author considers
spot volatility estimation within the model

dXt = µt dt+ σt dWt ,

with a standard Brownian Motion W . The results on spot volatility estimation seem
to be quite restrictive as the author assumes the processes µ, σ and W to be mutually
independent. Based on these assumptions, the author proves a uniform consistency
result in Theorem 2 therein and a point-wise central limit theorem for the kernel based
spot volatility estimator.
Another recent work, considering some uniform inference on spot volatility is given
by Kanaya and Kristensen [40], which only address a very narrow setup and not the
general situation we are interested in.
Let us conclude this subsection with a more detailed discussion of the result presented
in Fan and Wang [23]. The main Theorem 2 in Fan and Wang [23] directly tackles
those questions, which we have raised in the introduction of this chapter. More pre-
cisely, for a data generating continuous process (Xt)t∈[0,1] they provide a Gumbel type
approximation, which allows for uniform inference concerning the spot volatility pro-
cess

(
σ2
t

)
t∈[0,1]

. Unfortunately, the limit in Theorem 2 has been proved under seriously

restrictive assumptions. In addition to other restrictions they assume

(F1) (σt)t∈[0,1] to be a stationary process and

(F2) sup {|σs − σt| : s, t ∈ [0, 1] , |s− t| ≤ a} = OP(a1/2 |log(a)|1/2).

From an application and theoretical point of view it is desirable to relax both restric-
tions.
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4. Uniform spot volatility estimation

Example 4.1 (Diffusion stochastic volatility models). In their seminal paper Hull and
White [30] consider the stochastic volatility model given by the stochastic differential
equation

dσ2
t = α(σ2

t )dt+ β(σ2
t )dBt

with a standard Brownian motion B. In general, a solution
(
σ2
t

)
t∈[0,1]

is a diffusion, i.e.

in general the latter is a non-stationary process. Thus, this well known and prominent
stochastic volatility model does not fulfill condition (F1) and therefore, the asymptotic
theory in Fan and Wang [23] is not applicable.

Example 4.2 (Rough and long memory stochastic volatility models). There is econo-
metric evidence for the fact that, in contrast to the classical stochastic volatility mod-
els, the volatility process has the property of long range dependence effects. The latter
is not reflected within the classical framework due to the uncorrelated increments of
the standard Brownian motion, driving the stochastic differential equation determin-
ing the dynamics of the volatility process. We refer to F. Engle and G.J. Lee [22] for
further discussions on these long memory effects. In order to address these empirical
facts, a lot of work has been provided in order to generalize the stochastic volatility
models. For continuous time modeling of spot volatility the prominent model due to
Comte and Renault [18] is given by the stochastic differential equation

dσ2
t =

(
m− σ2

t

)
dt+ βdBH

t ,

with a fractional Brownian motion BH .
Whereas condition (F2) doesn’t exclude these type of stochastic volatility models, the
theory presented in Fan and Wang [23] yields suboptimal convergence rates. Uniform
confidence is, however, of interest for the best feasible rate. Otherwise, the confidence
bands are far from being sharp and unreasonably conservative. More recent research
results due to Gatheral et al. [25] give plausibility arguments for rough stochastic
volatility models. Rough stochastic volatility models, e.g. processes with a small
Hurst index H, i.e. H � 1

2 , are excluded in Fan and Wang [23] due to condition (F2).

Remark 4.3 (Discontinuous price processes). The question whether we allow for
discontinuous price processes or not, is quite crucial from a statistical point of view,
since the existence of jumps requires a significant modification of the involved statistics
in order to ensure jump robustness. Nevertheless, due to econometric evidence, it
seems to be necessary to allow for non-trivial jump components. We refer to Jiang
and Oomen [39] for an extensive discussion of these aspects. Obviously, the asymptotic
theory presented in Fan and Wang [23] is not robust with respect to a non-trivial jump
component, even if the latter only exhibits finite activity.

Remark 4.4 (Microstructure noise). As we have already argued in the previous chap-
ter, microstructure noise in high-frequency data is a commonly accepted fact. The
theory presented in Fan and Wang [23] is clearly not noise robust. The extension of
their theory to noise robust estimators is postponed to the next chapter.
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4.2. The estimator and some assumptions

In the very recent independent work Koike [41] general approximation results for
maxima of Wiener functionals, based on Malliavin Calculus and Stein’s method, are
presented. Uniform confidence results for spot volatility as an application of the main
Theorem 2.1 given therein are considered as a corollary of the general asymptotic the-
ory. In contrast to this work we will consider Gumbel type approximations and also
allow for a more general model allowing for non-trivial drift and jump-component for
X.

4.2. The estimator and some assumptions

In order to tackle the estimation problem described in the introduction of this chapter,
we will employ the Nadaraya-Watson type estimator Γ̂nt , c.f. Tsybakov [59], given by

Γ̂nt =
1

bn

n∑
i=1

Kbn(t− i/n) (∆n
i X)2 , (4.1)

with a kernel function K,

Kx(z) = K (z/x) ,

and bandwidth bn. The estimator (4.1) will be used for the continuous Itô semimartin-
gale case as it is not jump robust. We will postpone the jump robust version based on
truncated realized power variation to the end of this subsection. Similar assumptions
as in Chapter 3 with respect to the spot volatility process (Γt)t∈[0,1], i.e. Γt = σ2

t and
the drift process are necessary.

Assumption 4.5 (The coefficient processes). The coefficient processes a and σ are
assumed to fulfill the following properties.

(1) The processes a and σ are locally bounded. σ is almost surely strictly positive,
that is, inft∈[0,1] σ

2
t ≥ K− > 0.

(2) The modulus of continuity

wδ(σ)t = sup
s,r≤t
{|σs − σr| : |s− r| < δ}

is locally bounded in the sense that there exists a > 0 and a sequence of stopping
times Tn →∞, such that wδ(σ)(Tn∧1) ≤ Lnδa, for some a > 0 and some (almost
surely finite) random variables Ln.

Remark 4.6. The conditions imposed in Assumption 4.5 are exactly those which
were used for the asymptotic theory in the previous chapter. In particular, using the
arguments which have already been presented, we can assume the sequence Ln to grow
arbitrarily slowly. The latter ensures that the upper bounds presented in the proof
section can be shown to be negligible.
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4. Uniform spot volatility estimation

We need further assumptions on the bandwidth (bn)n∈N.

Assumption 4.7 (The bandwidth bn). The sequence (bn)n∈N is assumed to fulfill

(1) bn −→ 0 and nbn −→∞,

(2)
√
nbn log(n)ban −→ 0 and

(3)
log(n)

√
log(n)√

nbn
−→ 0,

as n −→∞.

Let us briefly discuss the assumptions imposed on the bandwidth (bn)n∈N. The second
property (2) in Assumption 4.7 is addressed to modulate the roughness of the volatility
process (Γt)t∈[0,1], such that the rougher the volatility paths are, i.e. a being small,
the smaller the bandwidth bn has to be chosen. Assumption (3) in (4.7) is due to
strong invariance principles ensuring the strong approximation. The latter serves as
the key technique in the final step of the proof. This assumption and its necessity will
be clarified in the proof section. Let us emphasize that in contrast to the analogue
assumption in Wu and Zhao [61],

log3(n)

bn
√
n
−→ 0 as n −→ +∞ ,

we can relax this assumption significantly. The reason is twofold. On the one hand,
the authors intend to impose as less assumptions as possible on the moments of their
error terms, namely the existence of the fourth moment. On the other hand, they also
allow for dependence in the error term, which implies a slower rate of convergence in
the strong approximation. In our case, we will end up with independent and shifted
χ2 distributed random variables, such that the existence of the moment generating
function is ensured and we can apply better approximation results presented in Chap-
ter 2.
Further assumptions on the kernel function K are necessary.

Assumption 4.8 (The kernel function K). The kernel function K is assumed to fulfill

(1) K is a continuous, bounded, symmetric function with compact support such that
supp K = [−1, 1],

(2) it holds that
∫
R ΨK,δ(u)du = O (δ) as δ −→ 0, with

ΨK,δ(u) = sup {|K(x)−K(y)| : x, y [u− δ, u+ δ]}

and

(3) the limit DK,α = limδ→0 |δ|−α
∫
R (K(x+ δ)−K(x))2 dx exists for some 1 ≤ α ≤

2.
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4.3. Uniform limit theorem I: The continuous case

Remark 4.9. The class of kernels K which are allowed for our asymptotic theory
include those in the existing literature. In contrast to Fan and Wang [23] we neither
impose differentiability nor some kind of Lipschitz regularity. Let us emphasize that
the compact support property or the symmetry assumption could also be relaxed as
they are only assumed to reduce notation and more technical considerations. Promi-
nent kernel functions as the Gaussian kernel also allow for the asymptotic theory. The
crucial property is that every kernel K exhibits a certain decay behaviour with re-
spect to its tails. The symmetry assumption can simply be relaxed by considering the
symmetrization K̃, given by K̃(x) = 1

2(K(x) +K(−x)).

We will proceed with a jump robust version of Theorem 4.12. We fix a truncation
exponent τ ∈ (0, 1/2) and define the truncating sequence (un)n∈N, such that un ∝ n−τ .
A jump robust version of (4.1) is given by

Γ̂nt,τ =
1

bn

n∑
i=1

Kbn(t− i/n) (∆n
i X)2

1{|∆n
i X|≤un} . (4.2)

The general discontinuous case will provide further error terms due to the non-trivial
jump component. Therefore, we need further conditions on the bandwidth bn, ensuring
the additional terms to be negligible.

Assumption 4.10 (The bandwidth bn II). For some p with 1 < p < (2rτ)−1 and
some ` <∞, the sequence (bn)n∈N is assumed to fulfill

(1) log3/2(n)√
nbn

b`nn
τrp` = O(1) and

(2)
√
nbn log(n)nτ(r−2) = O(1),

as n −→∞.

4.3. Uniform limit theorem I: The continuous case

We will start presenting our asymptotic theory for the continuous case. More precisely,
we will prove a limit theorem for quantities of the form

sup
t∈[0,1]

∣∣∣Γ̂nt − Γt

∣∣∣ . (4.3)

The Gumbel type approximation, which we will prove in the main theorem of this
subsection needs a further rescaling of the statistic (4.3), since otherwise we could
only ensure a limit with a conditional rescaled Gumbel distribution. Therefore, we
will replace (4.3) by the rescaled version

sup
t∈[0,1]

∣∣∣Γ̂nt − Γt

∣∣∣
√

2Γ̂nt
, (4.4)

which is more appropriate for further statistical inference, e.g. testing and confidence
sets, as it will provide a distribution free limit.
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4. Uniform spot volatility estimation

Remark 4.11. Due to the missing rescaling in Theorem 2 in Fan and Wang [23], we
think that the limit presented therein only holds for σ ≡ 1. Of course, the extension
to σ ≡ c for some constant c is straightforward, but needs a modification of the limit
distribution as it is a different rescaled Gumbel distribution.

In order to formulate the main theorem of this section, we need further notation. For
mn ≥ 3, we define the sequence (dα,Kn )n≥3, given by

dα,Kn =
√

2 log(n) +
1

2
√

log(n)

[
2− α
α

log(log(n)) + log

(
CK,αHα21/α

2
√
π

)]

with

CK,α = DK,α/2λK and λK =

∫
R
K2(s) ds ,

and Hα being Pickand’s constant, c.f. Bickel and Rosenblatt [14] or (2.27) in Theorem
2.27. We set

Mn = sup
t∈[0,1]

Mn(t) ,

with

Mn(t) =

∣∣∣Γ̂nt − Γt

∣∣∣
√

2Γ̂nt
.

Theorem 4.12 (Uniform estimation of spot volatility). Under the Assumptions 4.5,
4.7, 4.8 it holds with mn = 1/bn that for all x

P
[
(2 log(mn))1/2

(√
nbn√
λK

Mn − dα,Kmn

)
≤ x

]
−→ exp(−2 exp(−x)) . (4.5)

Using Theorem 4.12 we can construct asymptotic confidence sets. Choosing bn �
n−

1
2a+1 optimally under Assumption 4.7 yields confidence bands at almost optimal

rate. We set zβ = − log(log(1− β))−1/2 and define the set Cβ given by

Cβ =
[
Γ̂n,at,`,β, Γ̂

n,a
t,u,β

]
,

with

Γ̂n,at,`,β = Γ̂nt −

(
zβ√

2 log(mn)
+ dα,Kn

) √
2λK Γ̂nt

n
a

2a+1

,

Γ̂n,at,u,β = Γ̂nt +

(
zβ√

2 log(mn)
+ dα,Kn

) √
2λK Γ̂nt

n
a

2a+1

.
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4.4. Uniform limit theorem II: The general case

Corollary 4.13 (Confidence band for spot volatility). The set Cβ is a (1− β) simul-
taneous confidence band for the unknown spot volatility process (Γt)t∈[0,1].

Proof of Corollary 4.13.
This is an immediate consequence of Theorem 4.12.

Remark 4.14. For α ∈ {1, 2} the values of Pickand’s constant Hα are known and
H1 = 1 and H2 = π−1/2, i.e. this enables uniform confidence for a large class of kernels
K. Beyond this well known cases Theorem 4.12 is only of probabilistic interest.

4.4. Uniform limit theorem II: The general case

In this section we will extend the asymptotic theory developed in the previous section
to the general case. That is, we will prove a limit theorem for quantities of the form

sup
t∈[0,1]

∣∣∣Γ̂nt,τ − Γt

∣∣∣ . (4.6)

We further set

Mn,τ = sup
t∈[0,1]

Mn,τ (t) ,

with

Mn,τ (t) =

∣∣∣Γ̂nt,τ − Γt

∣∣∣
√

2Γ̂nt,τ
.

Theorem 4.15 (Uniform estimation of spot volatility). Under the Assumptions 3.2,
4.5, 4.7, 4.8 and 4.10 it holds that for all x

P
[
(2 log(mn))1/2

(√
nbn√
λK

Mn,τ − dα,Kmn

)
≤ x

]
−→ exp(−2 exp(−x)) . (4.7)

Using Theorem 4.15 we can construct asymptotic confidence sets. We define the set
Cβ,τ , given by

Cβ,τ =
[
Γ̂n,at,τ,`,β, Γ̂

n,a
t,τ,u,β

]
,

with

Γ̂n,at,τ,`,β = Γ̂nt,τ −

(
zβ√

2 log(mn)
+ dα,Kn

) √
2λK Γ̂nt,τ

n
a

2a+1

,

Γ̂n,at,τ,u,β = Γ̂nt,τ +

(
zβ√

2 log(mn)
+ dα,Kn

) √
2λK Γ̂nt,τ

n
a

2a+1

.

Corollary 4.16 (Confidence band for spot volatility). The set Cβ,τ is a (1 − β)
simultaneous confidence band for the unknown spot volatility process (Γt)t∈[0,1].

Proof of Corollary 4.16.
This is an immediate consequence of Theorem 4.15.
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4. Uniform spot volatility estimation

4.5. Proofs

This section is intended to present the proofs of the main theorems. We will use an
universal constant C which may change from line to line. Furthermore, we will use the
notation Cp to indicate that the constant depends on an external parameter p. The
constant will never depend on n.

Proof of Theorem 4.12

The proof of Theorem 4.12 is quite lengthy and will be split into several parts. The
crucial step of the whole proof is to replace the true price process increments ∆n

i X by
(properly rescaled) Brownian increments ∆n

iW . First of all, we assume nbn, b
−1
n ∈ N,

such that there is some k ∈ N, fulfilling k/n = bn. This assumption is only due to
notational convenience. The general case can be concluded very similarly.
Furthermore, we define some repeatedly used abbreviations. We set

Ki,`
t,n = Kbn(t− (ibn + `/n)) ,

i.e. K0,`
t,n = Kbn(t− `/n). We also set, for any stochastic process (Lt),

∆n
`,iL = Libn+ `

n
− Libn+ `−1

n
.

We will use a generic constant c > 0 which may change from line to line and the
sequence νn given by

νn =

√
n log(n)

bn
.

Finally, we define indices ti,`n given by

ti,`n = ibn +
`

n
.

The approximation described above can be pursued via

Γ
n
t =

1

bn

b−1
n −1∑
i=0

σ2
ibn

nbn∑
`=1

Ki,`
t,n

(
∆n
`,iW

)2
.

Proposition 4.17. Under the assumptions of Theorem 4.12 it holds that√
nbn log(n) sup

t∈[0,1]

∣∣∣∣∣
∣∣∣∣ Γ̂nt − Γt

Γ̂nt

∣∣∣∣− ∣∣∣∣Γnt − Γt

Γ
n
t

∣∣∣∣
∣∣∣∣∣ P−→ 0 . (4.8)

Proof of Proposition 4.17.
The following decomposition holds:

Γ̂nt − Γt

Γ̂nt
− Γ

n
t − Γt

Γ
n
t

= Γ̂nt

(
1

Γ̂nt
− 1

Γ
n
t

)
+

Γ̂nt − Γ
n
t

Γ
n
t

+ Γt

(
1

Γ
n
t

− 1

Γ̂nt

)
.
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4.5. Proofs

This yields the following upper bound via the reverse triangle inequality and elemen-
tary properties of the supt∈[0,1]

≤ sup
t∈[0,1]

Γ̂nt

(
1

Γ̂nt
− 1

Γ
n
t

)
+ sup
t∈[0,1]

Γ̂nt − Γ
n
t

Γ
n
t

+ sup
t∈[0,1]

Γt

(
1

Γ
n
t

− 1

Γ̂nt

)
:= (I) + (II) + (III) .

We start with the term (II). It holds that for every δ > 0

P

 sup
t∈[0,1]

√
nbn log(n)

∣∣∣Γ̂nt − Γ
n
t

∣∣∣
Γ
n
t

> δ


= P

 sup
t∈[0,1]

√
nbn log(n)

∣∣∣Γ̂nt − Γ
n
t

∣∣∣
Γ
n
t

> δ, inf
t∈[0,1]

Γ
n
t ≥ K−− κ−


+ P

 sup
t∈[0,1]

√
nbn log(n)

∣∣∣Γ̂nt − Γ
n
t

∣∣∣
Γ
n
t

> δ, inf
t∈[0,1]

Γ
n
t < K−− κ−


≤ P

[
sup
t∈[0,1]

√
nbn log(n)

∣∣∣Γ̂nt − Γ
n
t

∣∣∣ > δ
(
K−− κ−

)]

+ P
[

inf
t∈[0,1]

Γ
n
t < K−− κ−

]
=: An +Bn .

We start with An.
It holds that

Γ̂nt − Γ
n
t =

b−1
n −1∑
i=0

[
nbn∑
`=1

Ki,`
t,n

(
∆n
`,iX

)2 − σ2
ibn

nbn∑
`=1

Ki,`
t,n

(
∆n
`,iW

)2]
.

Using Itô’s formula, it holds that

(
∆n
`,iX

)2
= 2

∫ ti,`n

ti,`−1
n

(Xτ −Xti,`−1
n

)στ dWτ + 2

∫ ti,`n

ti,`−1
n

(Xτ −Xti,`−1
n

)aτ dτ +

∫ ti,`n

ti,`−1
n

σ2
τ dτ

(
∆n
`,iW

)2
= 2

∫ ti,`n

ti,`−1
n

(Wτ −Wti,`−1
n

) dWτ +

∫ ti,`n

ti,`−1
n

dτ .
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This implies the following decomposition with respect to Γ̂nt − Γ
n
t

Γ̂nt − Γ
n
t =

2

bn

b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(Xτ −Xti,`−1
n

)στ − σ2
ibn(Wτ −Wti,`−1

n
) dτ

+
1

bn

b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(σ2
τ − σ2

ibn) dτ

+
2

bn

b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(
Xτ −Xti,`−1

n

)
aτ dτ .

Thus, we can decompose An via

An ≤ A1
n +A2

n +A3
n ,

such that A1
n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(Xτ −Xti,`−1
n

)στ − σ2
ibn(Wτ −Wti,`−1

n
) dτ

∣∣∣∣∣∣ > c

 ,
A2
n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣∣ > c


and A3

n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(
Xτ −Xti,`−1

n

)
aτ dτ

∣∣∣∣∣∣ > c

 .
We start with A1

n and employ a further decomposition(
Xτ −Xti,`−1

n

)
στ −

(
Wτ −Wti,`−1

n

)
σ2
ibn

= στ

∫ τ

ti,`−1
n

au du+ (στ − σibn)

∫ τ

ti,`−1
n

σu dWu

+ σibn

∫ τ

ti,`−1
n

(σu − σibn) dWu .

This yields the decomposition

A1
n ≤ A1,1

n +A1,2
n +A1,3

n ,
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where A1,1
n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

στ

∫ τ

ti,`−1
n

au dudWτ

∣∣∣∣∣∣ > c

 ,
A1,2
n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

(στ − σibn)

∫ τ

ti,`−1
n

σu dWudWτ

∣∣∣∣∣∣ > c


and finally A1,3

n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

σibn

∫ τ

ti,`−1
n

(σu − σibn) dWudWτ

∣∣∣∣∣∣ > c

 .
We start with A1,1

n and set

qt,1n,i(τ) =

nbn∑
`=1

Ki,`
t,nστ

∫ τ

ti,`−1
n

au du1[ti,`−1
n ,ti,`n )

(τ) .

This implies the representation

A1,1
n = P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

qt,1n,t(τ) dWτ

∣∣∣∣∣∣ > c

 .
We need a further decomposition:
Set vn = n2 and tj = j/vn for j = 1, . . . , vn. Note the difference between the indices

ti,`n and tj . Then the following decomposition holds

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

qt,1n,t(τ) dWτ

∣∣∣∣∣∣ > c


≤ P

 max
1≤j≤vn

sup
t∈[tj−1,tj ]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(
qt,1n,i(τ)− qtj ,1n,i (τ)

)
dWτ

∣∣∣∣∣∣ > c


+ P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,1
n,i (τ) dWτ

∣∣∣∣∣∣ > c

 ,
i.e. there is a decomposition

A1,1
n ≤ A1,1,1

n +A1,1,2
n .
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Starting with A1,1,1
n it holds that,

qt,1n,i(τ)− qtj ,1n,i (τ) =

b−1
n −1∑
i=0

(Ki,`
t,n −K

i,`
tj ,n

)στ

∫ τ

ti,`−1
n

au du1[ti,`−1
n ,ti,`n )

(τ) .

In order to exploit the regularity of the kernel function K, we have to rewrite the sum
as an integral using the floor function bc. This yields∣∣∣Ki,`

t,n −K
i,`
tj ,n

∣∣∣ ≤ sup

{∣∣K(z)−K(z′)
∣∣ :z, z′ ∈

[
t− (ibn + `/n)

bn
,
tj − (ibn + `/n)

bn

]}
and

nbn∑
`=1

(Ki,`
t,n −K

i,`
tj ,n

) =

∫ nbn

0
(K

i,buc
t,n −Ki,buc

tj ,n
) du

= O
(∫

R
ΨK,%(u) du

)
= O

(
|t− tj |
bn

)
,

i.e.

% =
|t− tj |
bn

.

Burkholder’s inequality and τ ∈ [ti,`−1
n , ti,`n ] yield∣∣∣∣∣

∫ ti,`n

ti,`−1
n

στ

∫ τ

ti,`−1
n

au du dWτ

∣∣∣∣∣ = OP

(∫ ti,`n

ti,`−1
n

(
στ

∫ τ

ti,`−1
n

au du

)2

dτ

) 1
2

 .

Since τ ∈ [ti,`−1
n , ti,`n ] it holds that∣∣∣∣στ ∫ τ

ti,`−1
n

au du

∣∣∣∣ = OP(ti,`n − ti,`−1
n ) = OP(n−1) .

Furthermore, t ∈ [tj−1, tj ], i.e.

O
(
|t− tj |
bn

)
= O

(
n−2b−1

n

)
.

Note that

#

{
(i, `) ∈ N2 :

1

bn
(t− (ibn + `/n)) ∈ supp K

}
= O(nbn) (4.9)
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and

1 ≤ ` ≤ nbn ,

which imply, with Cauchy-Schwarz and Burkholder inequality, the bound

max
1≤j≤vn

sup
t∈[tj−1,tj ]

√
n log(n)√
bn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(
qt,1n,i(τ)− qtj ,1n,i (τ)

)
dWτ

∣∣∣∣∣∣
= OP

(√
n log(n)b−1/2

n b1/2n n−2b−1
n n−1

)
= OP(1) .

We can proceed with A1,1,2
n . We use Markov’s inequality applied to the function

z 7→ |z|2m with m > 0 and m ∈ N. Then we have

P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,1
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤

vn∑
j=1

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,1
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤ Cm

(n log(n))m

bmn

vn∑
j=1

E

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,1
n,i (τ) dWτ

∣∣∣∣∣∣
2m .

Considering the expectation, we employ (4.9), the triangle inequality, Burkholder’s
inequality and Jensen’s inequality, such that it is sufficient to bound

E

∣∣∣∣∣
∫ (i+1)bn

ibn

q
tj ,1
n,i (τ) dWτ

∣∣∣∣∣
2m
 ≤ E

[(∫ (i+1)bn

ibn

(
q
tj ,1
n,i (τ)

)2
dτ

)m]

≤

(∫ (i+1)bn

ibn

E
[(
q
tj ,1
n,i (τ)

)2m
]1/m

dτ

)m
.

Since τ ∈ [ti,`−1
n , ti,`n ), it holds that

E
[(
q
tj ,1
n,i (τ)

)2m
]

= E

(nbn∑
`=1

Kt,`
tj ,n

στ

∫ τ

ti,`−1
n

au du1[ti,`−1
n ,ti,`n )

(τ)

)2m


= E

[
nbn∑
`=1

(
Ki,`
tj ,n

)2m
σ2m
τ

(∫ τ

ti,`−1
n

au du

)2m

1
[ti,`−1
n ,ti,`n )

(τ)

]
= O(n−2m) .
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Due to Assumptions 4.5, 4.8 and Burkholder’s inequality it holds that

(n log(n))m

bmn

(∫ (i+1)bn

ibn

E
[(
q
tj ,1
n,i (τ)

)2m
]1/m

dτ

)m
= O

(
(n log(n))mb−mn bmn n

−2m
)

= O(n−m logm(n))

= O(v−1
n ) ,

if m is sufficiently large. This implies A1,1,2
n = O(1) and so A1,1

n = O(1).
We can proceed with A1,2

n and define

qt,2n,i(τ) =

nbn∑
`=1

Ki,`
t,n(στ − σibn)

∫ τ

ti,`−1
n

σu dWu1[ti,`−1
n ,ti,`n )

(τ) .

This implies the representation

A1,2
n = P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

qt,2n,i(τ) dWτ

∣∣∣∣∣∣ > c

 .
We need a further decomposition

A1,2
n ≤ A1,2,1

n +A1,2,2
n ,

with A1,2,1
n given by

P

 max
1≤j≤vn

sup
t∈[tj−1,tj ]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(
qt,2n,i(τ)− qtj ,2n,i (τ)

)
dWτ

∣∣∣∣∣∣ > c


and A1,2,2

n given by

P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣ > c

 .
We omit the details verifying A1,2,1

n = O(1), since it works similar as for the term
A1,1,1
n .

We proceed with A1,2,2
n ,

P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤

vn∑
j=1

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣ > c

 .
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Markov’s inequality applied with z 7→ |z|2m, m > 0 and m ∈ N, yields

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤ Cm

(n log(n))m

bmn
E

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣
2m ,

whereas Burkholder’s inequality, triangle inequality, (4.9) and the generalized Minkowski
inequality yield

E

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,2
n,i (τ) dWτ

∣∣∣∣∣∣
2m ≤ CmE[

∣∣∣∣∣
∫ (i+1)bn

ibn

(
qt,2n,i(τ)

)2
dτ

∣∣∣∣∣
m]

≤ Cm

(∫ (i+1)bn

ibn

E
[(
qt,2n,i(τ)

)2m
]1/m

dτ

)m
.

For a fixed τ ∈ [ti,`−1
n , ti,`n ) it holds that

E
[(
qt,2n,i(τ)

)2m
]

=

nbn∑
`=1

(
Ki,`
tj ,n

)2m
E

[
(στ − σibn)2m

(∫ τ

ti,`−1
n

σu dWu

)2m
]

× 1
[ti,`−1
n ,ti,`n )

(τ) = O(b2ma
n n−m) .

The boundedness of the coefficient processes, the regularity of (σt)t∈[0,1] and Burkholder’s
inequality yield

(n log(n))m

bmn
E

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

qt,2n,i(τ) dWτ

∣∣∣∣∣∣
2m = O

(
(n log(n))mb−mn b2ma

n bmn n
−m)

= O
(
logm(n)b2ma

n

)
= O(v−1

n ) ,

due to Assumptions 4.5 and 4.7 for a m being sufficiently large. This completes the
term A1,2,2

n and so A1,2
n .

We can proceed with A1,3
n . We define the step functions qt,3n,i given by

qt,3n,i(τ) =

nbn∑
`=1

Ki,`
t,nσibn

∫ τ

ti,`−1
n

(σu − σibn) dWu1[ti,`−1
n ,ti,`n )

(τ)

and use the representation

A1,3
n = P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

qt,3n,i(τ) dWτ

∣∣∣∣∣∣ > c

 .
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We have a decomposition similar to the previous ones,

A1,3
n ≤ A1,3,1

n +A1,3,2
n ,

with A1,3,1
n given by

P

 max
1≤j≤vn

sup
t∈[tj−1,tj ]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(
qt,3n,i(τ)− qtj ,3n,i (τ)

)
dWτ

∣∣∣∣∣∣ > c


and A1,3,2

n given by

P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣∣ > c

 .
We omit the details on A1,3,1

n and proceed with A1,3,2
n . It holds that

P

 max
1≤j≤vn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤

vn∑
j=1

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣∣ > c

 .
Markov’s inequality with z 7→ |z|2m, m > 0 and m ∈ N, Burkholder’s inequality,
Minkowski inequality, triangle inequality and (4.9) yield

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤ Cm

(n log(n))m

bmn
E

∣∣∣∣∣
∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣
2m


≤ Cm
(n log(n))m

bmn

(∫ (i+1)bn

ibn

E
[(
q
tj ,3
n,i (τ)

)2m
]1/m

dτ

)m
.

Again, for a fixed τ ∈ [ti,`−1
n , ti,`n ), the boundedness of K, the Itô isometry, standard

Lebesgue upper bounds and the a-regularity of the volatility yield

E
[(
q
tj ,3
n,i (τ)

)2m
]

=

nbn∑
`=1

(
Ki,`
tj ,n

)2m
E

[(∫ ti,`n

ti,`−1
n

(σu − σibn)2 du

)m]
× 1

[ti,`−1
n ,ti,`n )

(τ) = O(n−mb2ma
n ) .
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Overall, via (4.9) and triangle inequality, this yields the bound

(n log(n))m

bmn
E

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

q
tj ,3
n,i (τ) dWτ

∣∣∣∣∣∣
2m

= O
(
(n log(n))mb−mn bmn b

2ma
n n−m

)
= O

(
logm(n)b2ma

n

)
= O(v−1

n )

if m ∈ N is sufficiently large and due to Assumption 4.7. This completes the term
A1,3,2
n and so A1,3

n . This yields A1
n = O(1).

We can proceed with A2
n. Therefore, we define functions kin,t given by

kin,t(τ) =

nbn∑
`=1

K`,i
t,n1[ti,`−1

n ,ti,`n )
(τ) .

Then it holds that

P

 sup
t∈[0,1]

√
n log(n)√
bn

∣∣∣∣∣∣
b−1
n −1∑
i=0

nbn∑
`=1
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t,n

∫ ti,`n
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n

(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣∣ > c


= P

 sup
t∈[0,1]

√
n log(n)√
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∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

kin,t(τ)(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣∣ > c

 .
Proceeding with the triangle inequality and Assumption 4.5, it holds that

sup
t∈[0,1]

√
n log(n)√
bn

∣∣∣∣∣∣
b−1
n −1∑
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∫ (i+1)bn

ibn

kin,t(τ)(σ2
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ibn) dτ

∣∣∣∣∣∣
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√
n log(n)√
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n −1∑
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∣∣∣∣∣
∫ (i+1)bn

ibn

kin,t(τ)(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣
≤ sup

t∈[0,1]

√
n log(n)√
bn

b−1
n −1∑
i=0

∫ (i+1)bn

ibn

kin,t(τ)
∣∣σ2
τ − σ2

ibn

∣∣ dτ
= OP

(√
nbn log(n)ban

)
= OP(1) ,

due to (4.9), triangle inequality, the boundedness of K and Assumption 4.7. We have
completed A2

n and can proceed with A3
n.

Therefore, we use a further decomposition

A3
n ≤ A3,1

n +A3,2
n ,
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with A3,1
n given by

P

 max
1≤j≤vn

sup
t∈[tj−1,tj ]

νn

∣∣∣∣∣∣
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n −1∑
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t,n −K
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tj ,n

)

∫ ti,`n
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(Xτ −Xti,`−1
n

)aτ dτ

∣∣∣∣∣∣ > c


and A3,2

n given by
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∣∣∣∣∣∣
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(Xτ −Xti,`−1
n

)aτ dτ

∣∣∣∣∣∣ > c

 .
We start with A3,1

n . First of all, the regularity of K and a proper integral representation
imply

nbn∑
`=1

(Ki,`
t,n −K

i,`
tj ,n

) = O
(∫

R
ΨK,%(u) du

)
= O(n−2bn)

with % = |t− tj | /2bn and t ∈ [tj−1, tj ].
Burkholder’s inequality, the boundedness of the coefficient processes and the standard
Lebesgue bound imply∫ ti,`n

ti,`−1
n

(Xτ −Xti,`−1
n

)aτ dτ = OP

(∫ ti,`n

ti,`−1
n

(∫ τ

ti,`−1
n

σ2
u du

)1/2

dτ

)
= OP(n−1n−1/2) .

The Cauchy Schwarz inequality and (4.9) imply

max
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sup
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√
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n n−2b−1
n n−1/2

)
= OP(1) .

We can proceed with A3,2
n via

P

 max
1≤j≤vn

√
n log(n)√
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≤
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P

√n log(n)√
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∣∣∣∣∣∣
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(Xτ −Xti,`−1
n
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Furthermore, with Markov’s inequality applied to z 7→ |z|r, r > 0, (4.9), the tri-
angle inequality, the generalized Minkowski inequality, Burkholder’s inequality, the
boundedness of the coefficient processes and the boundedness of K, we can proceed
as follows:

P

√n log(n)√
bn

∣∣∣∣∣∣
b−1
n −1∑
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nbn∑
`=1

Ki,`
tj ,n

∫ ti,`n

ti,`−1
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≤ Cr

(n log(n))r/2

b
r/2
n

E

[∣∣∣∣∣
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n

(Xτ −Xti,`−1
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∣∣∣∣∣
r]

≤ Crn3r/2(bn log(n))r/2E

[∣∣∣∣∣
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n

(Xτ −Xti,`−1
n

)aτ dτ

∣∣∣∣∣
r]

≤ Crn3r/2(bn log(n))r/2

(∫ ti,`n

ti,`−1
n

E
[∣∣∣Xτ −Xti,`−1

n

∣∣∣r]1/r
dτ

)r
= O(n3r/2(bn log(n))r/2n−rn−r/2)

= O((bn log(n))r/2) = O(v−1
n ) ,

if r is sufficiently large. This completes the term A3,2
n and so A3

n. Overall, we have
completed An.
We can proceed with Bn. We have to bound the probability

P
[

inf
t∈[0,1]

Γ
n
t < K−− κ−

]

= P

 inf
t∈[0,1]

1

bn

b−1
n −1∑
i=0

σ2
ibn

nbn∑
`=1

Ki,`
t,n(∆n

`,iW )2 < K−− κ−
 .

Using a Riemann sum approximation
∫
K = 1 and K− < inf

t∈[0,1]
σ2
t we can proceed as

follows, using

b−1
n −1∑
i=0

σ2
ibn

nbn∑
`=1

Ki,`
t,n >

b−1
n −1∑
i=0

K−
nbn∑
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t,n . (4.10)

It holds that
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σ2
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√
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≤ P

 inf
t∈[0,1]

1

nbn

b−1
n −1∑
i=0

σ2
ibn

nbn∑
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Ki,`
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 ,
where we have subtracted

∑b−1
n −1
i=0 σ2

ibn

∑nbn
`=1K

i,`
t,n on both sides and applied (4.10).

The last equality is a consequence of the elementary identity − inf(S) = sup(−S) for
any set S. Thus, we can split Bn via

Bn ≤ B1
n +B2

n ,

where B1
n is given by
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and B2

n is given by
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 .
We start with the first probability and use that (

√
n∆n

`,iW )2−1 = OP(1) via Burkholder’s
inequality, the regularity properties of the kernel K, (4.9) and triangle inequality it
holds that
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(∫
R

ΨK,%(u) du

)
= OP(%) ,

with % = |t− tj | /2bn. Therefore, it is sufficient to consider the probability
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Note that for every i ((
√
n∆n

`,iW )2 − 1))` is an i.i.d. family of centered random vari-
ables. Thus, we can argue with the classical central limit theorem which yields
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r

= O(vn(nbn)−r/2) ,

where we have used the Markov inequality with an exponent r > 0, the (4.9), the tri-
angle inequality, the boundedness of K and the boundedness of (σt)t∈[0,1]. For r > 0

sufficiently large, it holds that O(vn(nbn)−r/2)) = O(1) which completes B2
n and so

Bn. Finally, the term (II) has been completed.

We can proceed with (I). For every δ > 0 we have
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[
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√
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(4.11)
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[
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]
. (4.12)

We start with (4.12):

P
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]
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The second probability in (4.13) has already been considered in Bn, where we exploited
the boundedness of the volatility from below. We proceed with the first probability.
It holds that

P
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t∈[0,1]

Γ̂nt <
K−− κ−

2

]
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]
.

Both probabilities have already been considered. We can proceed with (4.11). We use
the decomposition
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(4.15)

We start with (4.14). It holds that
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,

i.e. this follows from An. We can proceed with (4.15):
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Only the first probability has to be considered. In contrast to Bn, in this case, we
have to bound the probability from above via K+. A Riemann sum approximation,∫
K = 1 and

b−1
n −1∑
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σ2
ibn

nbn∑
`=1

Ki,`
t,n <

b−1
n −1∑
i=0

K+
nbn∑
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t,n ,

yield the following bound:
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(√
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`,iW
)2 − 1) > κ+

 .
Due to the same argument and decomposition applied to Bn, it is sufficient to consider
the probability

P
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nbn
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∣∣∣∣∣∣
r

= O(vn(nbn)−r/2)

= O(1) ,

if r is sufficiently large via the central limit theorem, (4.9) and the triangle inequality.
This completes (4.15) and (4.11), i.e. overall, the term (I) has been shown to be
negligible. We omit the details on (II), since the procedure is exactly the same,
bounding the volatility from above. Thus, Proposition 4.17 is shown.

In order to apply limit theorems stated in Section 2.4, we need two further approxi-
mations. Therefore, we define the quantities

Γ̃nt =
1

bn

b−1
n −1∑
i=0

nbn∑
`=1

Ki,`
t,n

∫ ti,`n

ti,`−1
n

σ2
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and

Γ′
n
t =

1

nbn

b−1
n −1∑
i=0

σ2
ibn

nbn∑
`=1

Ki,`
t,n .

We have to show the following convergences in probability. The first one is given in

Proposition 4.18. Under the assumptions of Theorem 4.12 it holds that

sup
t∈[0,1]

∣∣∣Γ̃nt − Γ′
n
t

∣∣∣ = OP((nbn log(n))−1/2) .

Proof of Proposition 4.18.
It holds that

sup
t∈[0,1]

∣∣∣Γ̃nt − Γ′
n
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∣∣∣
= sup
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kin,t(τ)(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣∣
= OP(ban) = OP((nbn log(n))−1/2) ,

where we have used Assumption 4.5, the triangle inequality and (4.9).

The second convergence in probability is

Proposition 4.19. Under the assumptions of Theorem 4.12 it holds that

sup
t∈[0,1]

∣∣∣Γ̃nt − Γt

∣∣∣ = OP((nbn log(n))−1/2) .

Proof of Proposition 4.19.
For a proof of this convergence we refer to Section A.1 in Kanaya and Kristensen [40].
Therein the term R5 contains the proof of the approximation above. The idea is to
define proper step functions and to exploit the a-regularity of the volatility process
proving the bound OP(ban). Note that the setting and assumptions imposed therein,
especially the non-standard assumption K.111 are compatible with our assumptions,
since we assume our kernel to have compact support and the volatility to be uniformly
bounded and fulfilling the a-regularity due to Assumption 4.5.

Using Proposition 4.17-4.19 it is sufficient to consider the term

1

nbn

n∑
i=1

Kbn(t− i/n) ηi .

The family of random variables (ηi)i∈N, with

ηi =

(√
n∆n

iW
)2 − 1

√
2

,

are

100



4.5. Proofs

- independent, centered and normalized with

- shifted χ2 distributed random variables.

The latter ensures the existence of the moment generating function. Hence, we can
apply the approximation explained in Remark 2.25. We define the partial sums S` =∑`

i=1 ηi and T` =
∑`

i=1 Zi with standard normal random variables Zi. It holds that

max
`≤n
|S` − T`| = OP(log(n)) .

It is sufficient to consider the sequence of stochastic processes Un given by

Unt =
1√
nbn

n∑
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Kbn(t− i/n) ηi .

Furthermore, we define another sequence Wn given by

Wn
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1√
nbn

n∑
i=1

Kbn(t− i/n)Zi .

We will use a Brownian motion B from the invariance principles such that stochastic
analysis tools are applicable. Therefore, we use the stochastic integral representation
of Wn,
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1√
nbn

∫ n

0
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Abel’s partial summation and the boundedness of K yield
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]
,

where the latter bound holds uniformly in t and

% =
1

nbn
,

Rn = max
`≤n
|S` − T`| /

√
nbn .
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We have to bound Rn properly. Therefore, take into account that

max
`≤n

√
log(n)

|S` − B`|√
nbn

= max
`≤n

√
log(n)

|S` − B`|√
nbn

log(n)

log(n)
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|S` − B`|
log(n)

log(n)
√

log(n)√
nbn

=Oa.s.(1)O(1) .

The scaling invariance of the Brownian motion and a change of variables imply

(Wn
sbn)0≤s≤b−1

n

d
= (Ỹ n

s )0≤s≤b−1
n
,

with

Ỹ n
t =

∫ 1
bn

0
K

(
t− b1 + nbnvc

nbn

)
dBv .

The key step is to pass from the processes Ỹ n to another sequence of processes Y n,
being stationary and Gaussian. This sophisticated construction has already been
presented in Wu and Zhao [61], where Y n is given by

Y n
t =

∫
R
K(t− u) dBu · 1[0,b−1

n ](t) ,

being stationary and Gaussian. The approximation sup0≤t≤b−1
n

∣∣∣Ỹ n
t − Y n

t

∣∣∣ = OP(rn) =

OP(log(n)−1/2) has already been pursued on page 406 in Wu and Zhao [61]. Therefore
we omit the details. An application of Theorem 2.27 with T = b−1

n yields the desired
limit theorem, such that the proof of Theorem 4.12 is completed.

Proof of Theorem 4.15

We have to show that √
nbn log(n) sup

t∈[0,1]

∣∣∣Γ̂nt,τ − Γ̂nt

∣∣∣ P−→ 0 (4.16)

holds. Theorem 4.15 then immediately follows from Theorem 4.12. We use the de-
composition

Xt = X0 +Xc
t + Jt ,

with

Xc
t =

∫ t

0
ãs ds+

∫ t

0
σs dWs .
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The purely discontinuous local martingale (Jt)t∈[0,1] is given by

Jt =

∫ t

0

∫
R
δ(s, x)(µ− ν) (ds, dx)

and ãt = at +
∫
R κ(δ(s, x))λ(dx). It holds that

Γ̂nt,τ − Γ̂nt =
1

bn

n∑
i=1

Kbn(t− i/n)
(

(∆n
i X)2

1{|∆n
i X|≤un} − (∆n

i X
c)2
)

and

(∆n
i X)2

1{|∆n
i X|≤un} − (∆n

i X
c)2

= (∆n
i X

c + ∆n
i J)2

1{|∆n
i X|≤un} − (∆n

i X
c)2

= ((∆n
i X

c)2 + 2∆n
i X

c∆n
i J + (∆n

i J)2)1{|∆n
i X|≤un} − (∆n

i X
c)2

= (∆n
i X

c)2
1{|∆n

i X|>un} + 2∆n
i X

c∆n
i J1{|∆n

i X|≤un} + (∆n
i J)2

1{|∆n
i X|≤un} .

Thus, we have to bound the following three terms:

sup
t∈[0,1]

√
n log(n)√
bn

n∑
i=1

Kbn(t− i/n) (∆n
i X

c)2
1{|∆n

i X|>un} , (4.17)

sup
t∈[0,1]

√
n log(n)√
bn

n∑
i=1

Kbn(t− i/n) ∆n
i X

c∆n
i J1{|∆n

i X|≤un} , (4.18)

sup
t∈[0,1]

√
n log(n)√
bn

n∑
i=1

Kbn(t− i/n) (∆n
i J)2

1{|∆n
i X|≤un} . (4.19)

It is sufficient to consider (4.17) and (4.19) only, since (4.18) is a simple consequence
of (4.17) and (4.19) via Cauchy Schwarz inequality. We start with (4.17). Using the
main theorem in Fischer and Nappo [24], it holds that max

i
(∆n

i X
c)2 = OP(n−1 log(n))

and max
i
|∆n

i X
c| = Oa.s.(un). We will stick to the ideas presented in Bibinger et al.

[10] and Chapter 13 in Jacod and Protter [35].
We use the decomposition

X = X ′n +X ′′n ,

with

X ′′nt =

∫ t

0

∫
R
δ(s, x)1{γ(x)>upn} µ(ds, dx)

and

X ′nt = Xt −X ′′nt .
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4. Uniform spot volatility estimation

We define the sets Anj = {|∆n
jX
′n| ≤ un/2} and the counting process Nn, given by

Nn
t =

∫ t

0

∫
R
1{γ(x)>upn} µ(ds, dx) .

We know from (13.1.10) in Jacod and Protter [35] that

E

[
n∑
i=1

1{|∆n
i X|>un}1{(Anj )c}

]
≤

n∑
i=1

P
[
(Anj )c

]
−→ 0 ,

for all such p with 1 < p < (2rτ)−1. Using the inequality

1{|∆n
jX|>un}1Anj ≤ 1{|∆n

jX
′′n|>un/2}

we can proceed as follows. We define the sets In,t given by

In,t = [nt− nbn, nt+ nbn] ∩ Z .

It obviously holds that |In,t| ≤ n. Since Nn is a Poisson process with parameter∫
R
1{γ(x)>upn} λ(dx) = O(u−rpn ) ,

it holds that for some ` <∞, with i∗ = max In,t and i∗ = min In,t,

P
[
Nn
i∗/n −N

n
i∗/n

> `
]

= P
[
Nn

(i∗−i∗)/n ≥ `
]

= O(b`nu
−rp`
n ) .

This yields the bound

OP(log3/2(n)(nbn)−1/2b`nn
τrp`)

= OP(1) ,

via the boundedness of K and Assumption 4.10. This completes the proof of the term
(4.17). We can proceed with (4.19). Starting with the finite activity case, we get the

bound
√
n log(n)b

−1/2
n u2

n = O(1). Therefore, we can proceed with the general infinite
activity case. It is sufficient to bound

sup
t∈[0,1]

√
n log(n)√
bn

n∑
i=1

Kbn(t− i/n) (∆n
i J)2

1{(∆n
i J)2≤un}

= sup
t∈[0,1]

√
n log(n)√
bn

n∑
i=1

Kbn(t− i/n)

(
∆n
i J1

{
|∆n
i J |≤u

1/2
n

})2

.

Using the inequality (3.62a) and defining the process Z` given by

Z` =

(
∆n
` J1

{
|∆n
` J |≤u

1/2
n

})2
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we get the upper bound

λP

[
sup
t∈[0,1]

max
`∈In,t

√
n log(n)√
bn

∑̀
i=1

Kbn(t− i/n)Zi ≥ λ

]

≤
√
n log(n)b−1/2

n E

[
max
`∈In,t

∑̀
i=1

Zi

]
= O(

√
n log(n)b−1/2

n n−1u2−r
n |In,t|)

= O(1)

for λ−1 = O(ur−2
n b−1

n n−1/2 log−1/2(n)) via Doob’s submartingale inequality and As-
sumption 4.10.
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5. Uniform spot volatility estimation for
noisy Itô semimartingales

In this final chapter of this thesis we will present a further extension of the model and
the methods presented in Chapter 4. This chapter is organized as follows. Starting
with the asymptotic theory in the continuous case we will proceed with a version being
jump and noise robust. We will construct confidence sets and will conclude the chapter
with the proof section.

5.1. Construction of the main statistics and asymptotic
theory

We will start with the continuous price process X, i.e. we assume µ ≡ 0 in (2.4). As in
the previous chapter we will use a Nadaraya-Watson type estimator. More precisely,
an adaptive version Γ̂ε,adt,n of our estimator is given by

Γ̂ε,adt,n =
hn
bn

h−1
n∑
k=1

Kbn(t− khn) ζadk (Y ) , (5.1)

with

ζadk (Y ) =

bnhnc−1∑
j=1

ŵjk(S
2
jk(Y )− [ϕjk, ϕjk]n

η̂2

n
)

and the notation introduced in the Chapters 3 and 4.
In contrast to Chapter 4 we need modified assumptions on the bandwidth (bn)n∈N.

Assumption 5.1 (The bandwidth bn). The sequence (bn)n∈N is assumed to fulfill

(1) bn −→ 0 and bn/hn −→∞,

(2)
√
bn log(h−1

n )/hnb
a
n −→ 0 and

(3)
h−cn
√

log(h−1
n )√

bn/hn
−→ 0 for an arbitrarily small c ∈ (0, 1),

as n −→∞.

Remark 5.2. (1) Similar to (2) in Assumption 4.7 the second assumption above is
necessary in order to modulate the roughness of the volatility paths controlled
by the index a ∈ (0, 1).
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5. Uniform spot volatility estimation for noisy Itô semimartingales

(2) The third condition above is seemingly different to the analogous one in As-
sumption 4.7. This is mainly due to the fact that we wanted to impose as less
restrictions as possible with respect to the noise process structure, e.g. we do not
assume the existence of the moment generating function of the noise distribution.

(3) The choice of the exponent c ∈ (0, 1) crucially depends on the highest order of
existing moments of the noise process. More precisely, if

m = max
{
k ∈ N : E

[
|εt|k

]
<∞

}
,

then this would implies the choice c ≈ 1/m, i.e. the more moments exist the less
restrictive is the choice of the bandwidth.

(4) The magnitude of the parameter c ∈ (0, 1) is also directly linked to the regularity
of the volatility paths (σ2

t )t∈[0,1] controlled via a ∈ (0, 1). The latter holds in
a sense that, the smaller a ∈ (0, 1), i.e. the rougher the paths are, the smaller
c ∈ (0, 1) has to be chosen, i.e. the more restrictive is the choice of the bandwidth
(bn)n∈N.

(5) Finally, an existing moment generating function of (εt)t∈[0,1] would allow to re-
place (3) in Assumption 5.1 by

log3/2(h−1
n )h

1/2
n

b
1/2
n

= O(1) .

The conditions on the noise process, which are necessary for the asymptotic theory
of this chapter are exactly the same as formulated in Chapter 3 in Assumption 3.4.
The properties on the coefficient processes of the semimartingale X are exactly the
same as formulated in Assumption 4.5. Finally, we will also stick to Assumption 4.8
concerning the kernel function K. We set

Mn(t) =

∣∣∣Γ̂ε,adt,n − Γt

∣∣∣
√

8η̂
∣∣Γ̂ε,adt,n

∣∣3/4
and

Mn = sup
t∈[0,1]

Mn(t) .

Theorem 5.3. Under the Assumptions 3.4, 4.5, 4.8, 5.1, with the notation introduced
in Theorem 4.12, it holds that for all x

P

[√
2 log(mn)

(√
bn/hn√
λK

Mn − dα,Kmn

)
≤ x

]
−→ exp(−2 exp(−x)) .
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5.1. Construction of the main statistics and asymptotic theory

Using Theorem 5.3 we can construct asymptotic confidence sets. Choosing bn opti-

mally, i.e. bn ∝ h
1

2a+1
n yields the following confidence bands. Thereto, let zβ be the

(1− β)- quantile of exp(−2 exp(−x)) dx and define the sets Cβ given by

Cβ =
[
Γ̂ε,ad,at,n,`,β, Γ̂

ε,ad,a
t,n,u,β

]
,

with

Γ̂ε,ad,at,n,`,β = Γ̂ε,adt,n −

(
zβ√

2 log(mn)
+ dα,Kmn

) √
8η̂
∣∣Γ̂ε,adt,n

∣∣3/4
h
−a

2a+1
n

Γ̂ε,ad,at,n,u,β = Γ̂ε,adt,n +

(
zβ√

2 log(mn)
+ dα,Kmn

) √
8η̂
∣∣Γ̂ε,adt,n

∣∣3/4
h
−a

2a+1
n

.

Corollary 5.4 (Confidence band for spot volatility). The set Cβ is a (1− β) simul-
taneous confidence band for the unknown spot volatility process (Γt)t∈[0,1].

Proof of Corollary 5.4.

This is an immediate consequence of Theorem 5.3.

We can proceed with the general Itô semimartingale case with non-trivial jump mea-
sure µ. Therefore we define a jump and noise robust version Γ̂ε,τ,adt,n of Γ̂ε,adt,n given
by

Γ̂ε,τ,adt,n =
hn
bn

h−1
n∑
k=1

Kbn(t− khn) ζadk (Y )1{hn|ζadk (Y )|≤un} , (5.2)

with un ∝ hτn and τ ∈ (0, 1).

As in the previous chapter the additional jump components will lead to further error
terms. We need further conditions on (bn)n∈N being necessary to ensure that those
terms are also negligible. Note that we introduced the index r in Assumption (3.2).

Assumption 5.5 (The bandwidth bn II). For some $ > 0 the sequence (bn)n∈N is
assumed to fulfill

(1) log1/2(n)b
1/2
n h

−1/2
n h

1/3+$
n = O(1) ,

(2) log1/2(n)h
−1/2
n b

1/2
n h

τ(1−r/2)
n = O(1) and

(3) log1/2(n)b
1/2
n h

τ+1/2
n h

−2r(2/3+$)
n = O(1)

as n −→∞.

In fact, considering the details of the proof, we will observe that there are more error
terms. Nevertheless, the three conditions above are sufficient as they imply a relation
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5. Uniform spot volatility estimation for noisy Itô semimartingales

between $, τ, r and bn ensuring the additional mixed error terms to be negligible. We
set

Mn,τ (t) =

∣∣∣Γ̂ε,τ,adt,n − Γt

∣∣∣
√

8η̂
∣∣Γ̂ε,τ,adt,n

∣∣3/4
and

Mn,τ = sup
t∈[0,1]

Mn,τ (t) .

Theorem 5.6 (Uniform confidence: The general case). Under the Assumptions 3.2,
3.4, 4.5, 4.8, 5.1,5.5, with the notation introduced in Theorem 4.12, it holds that for
all x

P

[√
2 log(mn)

(√
bn/hn√
λK

Mn,τ − dα,Kmn

)
≤ x

]
−→ exp(−2 exp(−x)) .

Remark 5.7. Based on Theorem 5.6 one can construct uniform confidence bands in
the general model analogous to Corollary 5.4.

5.2. Proofs

In this section we will give the proofs of the main Theorems 5.3 and 5.6. As in the
previous chapter we will use an universal constant C, which may change from line to
line. Furthermore, we will use the notation Cp to indicate that the constant depends
on an external parameter p. The constant will never depend on n.

Proof of Theorem 5.3

The proof of Theorem 5.3 is quite lengthy and will be split into several parts. As in
the proof of Theorem 4.12 the main challenge is to show that replacing the true price
process increments ∆n

i X by properly rescaled Brownian increments ∆n
iW does not

affect the limit. The terms, which have to be considered, are more involved compared
to Theorem 4.12, since the existence of noise imply more error terms, which have to
be controlled. The final step of the proof is to conclude the extreme value limit via
Theorem 2.27. Before starting with the proof we need some minor assumptions and
further notation. First of all, we assume bn/hn, b

−1
n ∈ N, which ensures the existence

of some k ∈ N, such that khn = bn. Due to localization we can assume that all
coefficient processes in X are in fact globally bounded. Finally, we introduce some
further notation. Due to notational brevity we introduce the sequence νn given by

νn =

√
hn log(n)√

bn
,
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5.2. Proofs

and define indices t
i,`
n given by

t
i,`
n = ibn + `hn,

and fix the repeatedly used abbreviation K
i,`
t,n defined by

K
i,`
t,n = Kbn(t− ti,`n ),

i.e. K
0,`
t,n = Kbn(t− `hn).

We also set

Φij`(t) = Φj(t− ti,`−1
n )

and

ϕij`(t) = ϕj(t− ti,`−1
n ) .

Finally, we use the notation Sij`(L) for any stochastic process L for the associated
spectral statistics. We will start proving an oracle version of Theorem 5.3 replacing
the adaptive statistic Γ̂ε,adt,n by Γ̂εt,n. Finally we will show that this replacement does
not affect the limit behaviour.
The first approximation outlined above will be pursued via Γ

ε
t,n given by

Γ
ε
t,n =

hn
bn

b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`((σibnSij`(W ) + Sij`(ε))
2 − µij`) ,

with weights wij` given by

wij` =

(
σ2

t
i,`−1
n

+ η2

n [ϕij`, ϕij`]n

)−2

∑bnhnc−1
j=1

(
σ2

t
i,`−1
n

+ η2

n [ϕij`, ϕij`]n

)−2 .

Proposition 5.8. Under the assumptions of Theorem 5.3 it holds that

√
bn/hn log(n)

∣∣∣∣∣∣∣∣ Γ̂εt,n − Γt∣∣Γ̂εt,n∣∣3/4
∣∣∣∣− ∣∣∣∣Γεt,n − Γt∣∣Γεt,n∣∣3/4

∣∣∣∣∣∣∣∣ P−→ 0 .

Proof of Proposition 5.8.
The following decomposition holds

Γ̂εt,n − Γt∣∣Γ̂εt,n∣∣3/4 −
Γ
ε
t,n − Γt∣∣Γεt,n∣∣3/4

= Γ̂εt,n

(
1∣∣Γ̂εt,n∣∣3/4 −

1∣∣Γεt,n∣∣3/4
)

+
Γ̂εt,n − Γ

ε
t,n

Γ
ε
t,n

+ Γt

(
1∣∣Γεt,n∣∣3/4 −

1∣∣Γ̂εt,n∣∣3/4
)
.
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5. Uniform spot volatility estimation for noisy Itô semimartingales

This yields the following decomposition via the reverse triangle inequality and elemen-
tary properties of the supt∈[0,1].

sup
t∈[0,1]

Γ̂εt,n

(
1∣∣Γ̂εt,n∣∣3/4 −

1∣∣Γεt,n∣∣3/4
)

+ sup
t∈[0,1]

Γ̂εt,n − Γ
ε
t,n

Γ
ε
t,n

+ sup
t∈[0,1]

Γt

(
1∣∣Γεt,n∣∣3/4 −

1∣∣Γ̂εt,n∣∣3/4
)

= (I) + (II) + (III) .

We start with term (II). It holds that for every δ > 0

P

 sup
t∈[0,1]

√
bn/hn log(n)

∣∣∣Γ̂εt,n − Γ
ε
t,n

∣∣∣∣∣Γεt,n∣∣3/4 > δ


= P

 sup
t∈[0,1]

√
bn/hn log(n)

∣∣∣Γ̂εt,n − Γ
ε
t,n

∣∣∣∣∣Γεt,n∣∣3/4 > δ, inf
t∈[0,1]

Γ
ε
t,n ≥ K−− κ−


+ P

 sup
t∈[0,1]

√
bn/hn log(n)

∣∣∣Γ̂εt,n − Γ
ε
t,n

∣∣∣∣∣Γεt,n∣∣3/4 > δ, inf
t∈[0,1]

Γ
ε
t,n < K−− κ−


≤ P

[
sup
t∈[0,1]

√
bn/hn log(n)

∣∣∣Γ̂εt,n − Γ
ε
t,n

∣∣∣ > δ(K−− κ−)3/4

]
+ P

[
inf
t∈[0,1]

Γ
ε
t,n < K−− κ−

]
=: An +Bn .

We start with An. Note the following decomposition of Γ̂εt,n, given by

Γ̂εt,n =
hn
bn

b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`(S
2
ij`(X)− µij`) .

Thus, we get the decomposition

Γ̂εt,n − Γ
ε
t,n =

hn
bn

b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`(S
2
ij`(X)− σ2

ibnS
2
ij`(W ))

=
2hn
bn

b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`Sij` (ε) (Sij` (X)− σibnSij` (W )) .

This yields the decomposition

An ≤ A1
n +A2

n ,
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where with a generic constant c > 0, A1
n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`(S
2
ij`(X)− σ2

ibnS
2
ij`(W ))

∣∣∣∣∣∣ > c


and A2

n is given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`Sij` (ε) (Sij` (X)− σibnSij` (W ))

∣∣∣∣∣∣ > c

 .
Starting with A1

n, we use the notation t
i,`
n− = t

i,`
n − n−1 and define step functions ξ

(n)
ij`

given by

ξ
(n)
ij` (t) =

n∑
ν=1

Φij`

(ν
n

)
1( ν−1

n
, ν
n ](t) ,

which yields

Sij`(L) =

∫ t
i,`
n

t
i,`−1
n−

ξ
(n)
ij` (s) dLs

for any semimartingale (Lt)t∈[0,1]. The Itô process structure provides the following
decomposition∫ t

i,`
n

t
i,`−1
n−

ξ
(n)
ij` (s) dXs =

∫ t
i,`
n

t
i,`
n−

ξ
(n)
ij` (s)as ds+

∫ t
i,`
n

t
i,`
n−

ξ
(n)
ij` (s)σs dWs .

Using Itô’s formula we get the following decompositions:

S2
ij`(X) = 2

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)στ dWτ

+ 2

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

+

∫ t
i,`
n

t
i,`−1
n−

(
ξ

(n)
ij` (τ)

)2
σ2
τ dτ

and

S2
ij`(W ) = 2

∫ t
i,`
n

t
i,`−1
n−

W̃τξ
(n)
ij` (τ) dWτ +

∫ t
i,`
n

t
i,`−1
n−

(
ξ

(n)
ij` (τ)

)2
dτ ,
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with

X̃t = X0 +

∫ t

0
ξ

(n)
ij` (s)as ds+

∫ t

0
ξ

(n)
ij` (s)σs dWs ,

W̃t =

∫ t

0
ξ

(n)
ij` (s) dWs .

Using the representations above we can pursue a further decomposition

A1
n ≤ A1,1

n +A1,2
n +A1,3

n ,

where A1,1
n is given by

P
[

sup
t∈[0,1]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣ > c

]
,

A1,2
n is given by

P
[

sup
t∈[0,1]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(
ξ

(n)
ij` (τ)

)2
(σ2
τ − σ2

ibn) dτ

∣∣∣∣ > c

]

and A1,3
n is given by

P
[

sup
t∈[0,1]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

ξ
(n)
ij` (τ)

×
(

(X̃τ − X̃t
i,`−1
n−

)στ − σ2
ibnW̃τ

)
dWτ

∣∣∣∣ > c

]
.

Starting with A1,1
n we need a further decomposition. Therefore, we set td = dh2

n and
vn = h−2

n for d = 1, . . . , vn. Note that h−1
n ∈ N, s.t. vn is well defined. We have a

further decomposition

A1,1
n ≤ A1,1,1

n +A1,1,2
n ,

with A1,1,1
n given by

P
[

max
1≤d≤ṽn

sup
t∈[td−1,td]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

(K
i,`
t,n −K

i,`

td,n
)

bnhnc−1∑
j=1

wij`

×
∫ t

i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣ > c

]
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and A1,1,2
n given by

P

 max
1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣ > c

 .
Starting with A1,1,1

n we have to exploit the regularity properties of the kernel K.
Therefore, note∣∣∣Ki,`

t,n −K
i,`

td,n

∣∣∣ ≤ sup

{∣∣K(z)−K(z′)
∣∣ : z, z′ ∈

[
t− ti,`n
bn

,
td − t

i,`
n

bn

]}

and it holds that

bn/hn∑
`=1

(K
i,`
t,n −K

i,`

td,n
) =

∫ bn/hn

0
(K

i,buc
t,n −Ki,buc

td,n
) du

= O
(∫

R
ΨK,%(u) du

)
= O

(∣∣t− td∣∣
bn

)
,

i.e.

% =

∣∣t− td∣∣
bn

.

Furthermore, Jensen’s inequality for convex linear combinations, the triangle inequal-
ity for integrals, Burkholder’s inequality and the boundedness of the coefficient pro-
cesses imply∣∣∣∣∣∣

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣
= OP

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(∫ τ

t
i,`−1
n−

(ξ
(n)
ij` (s))2σ2

s ds

)1/2

|ξ(n)
ij` (τ)|dτ


= OP(h1/2

n ) .

Overall using t ∈ [td−1, td], the bounds calculated above and the Cauchy Schwarz

inequality, we get the bound O(h
5/2
n bn) = OP(1) concerning A1,1,2

n since

#

{
(i, `) ∈ N2 :

1

bn
(t− (ibn + `hn)) ∈ supp K

}
= O(bn/hn) (5.3)

and

1 ≤ ` ≤ bn/hn ,
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such that the i− sum can be simply bounded via triangle inequality in a way that the
term still remains negligible as n −→∞. We can proceed with A1,1,2

n . It holds that

P

 max
1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣ > c


≤

vn∑
d=1

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣ > c

 .
With Markov’s inequality applied to z 7→ |z|r with r > 0 we get

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣ > c


≤ CrE

∣∣∣∣∣∣νn
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣
r .

Using (5.3) and the triangle inequality concerning the i− sum, Jensen’s inequality
concerning the `− sum, the boundedness of the coefficient processes, the boundedness
of K and Jensen’s inequality applied to the j− sum we can proceed as follows:

E

∣∣∣∣∣∣νn
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣
r

≤ CrνrnE

∣∣∣∣∣∣
bn/hn∑
`=1

K
i,`

td,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣
r

≤ Crνrn(bn/hn)rE

∣∣∣∣∣∣
bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣∣
r

≤ Crνrn(bn/hn)rE

bnhnc−1∑
j=1

wij`

∣∣∣∣∣
∫ t

i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣
r
 .

Proceeding with the generalized Minkowski inequality and Burkholder inequality we
calculate the bound

Crν
r
n(bn/hn)r

bnhnc−1∑
j=1

wij`E

[∣∣∣∣∣
∫ t

i,`
n

t
i,`−1
n−

(X̃τ − X̃t
i,`−1
n−

)ξ
(n)
ij` (τ)aτ dτ

∣∣∣∣∣
r]

≤ Crνrn(bn/hn)r
bnhnc−1∑
j=1

wij`

(∫ t
i,`
n

t
i,`−1
n−

E
[∣∣∣∣(X̃τ − X̃t

i,`−1
n−

)ξ
(n)
ij` (τ)aτ

∣∣∣∣r]1/r

dτ

)r
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≤ Crνrn(bn/hn)r
bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

|ξ(n)
ij` (τ)|E

∣∣∣∣∣
∫ τ

t
i,`−1
n−

(ξ
(n)
ij` (s))2σ2

s ds

∣∣∣∣∣
r/2
1/r

dτ


r

= O(νrn(bn/hn)rh−r/2n hrn) = O(v−1
n ) ,

with r being sufficiently large. This completes the term A1,1,2
n and so A1,1

n . We can

proceed with A1,2
n . Therefore, we define functions k

i
n,t given by

k
i
n,t(τ) =

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`1[t
i,`−1
n− ,t

i,`
n )

(τ) .

Then the identity

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

(
ξ

(n)
ij` (τ)

)2
(σ2
τ − σ2

ibn) dτ

∣∣∣∣∣∣ > c


= P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

k
i
n,t(τ)(ξ

(n)
ij` (τ))2(σ2

τ − σ2
ibn) dτ

∣∣∣∣∣∣ > c


holds. Proceeding with the triangle inequality, Minkowski inequality and Assumption
4.5 it holds that

sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

k
i
n,t(τ)(ξ

(n)
ij` (τ))2(σ2

τ − σ2
ibn) dτ

∣∣∣∣∣∣
≤ sup

t∈[0,1]
νn

b−1
n −1∑
i=0

∣∣∣∣∣
∫ (i+1)bn

ibn

k
i
n,t(τ)(ξ

(n)
ij` (τ))2(σ2

τ − σ2
ibn) dτ

∣∣∣∣∣
≤ sup

t∈[0,1]
νn

b−1
n −1∑
i=0

∫ (i+1)bn

ibn

∣∣∣kin,t(τ)(ξ
(n)
ij` (τ))2(σ2

τ − σ2
ibn)
∣∣∣ dτ

= OP(νnbnb
a
n) = OP(1) ,

due to (5.3), the triangle inequality, the boundedness of K, Jensen’s inequality,(3.31)
and Assumption 5.1. We have completed A1,2

n and proceed with A1,3
n . We need further

decompositions.

(X̃τ − X̃t
i,`−1
n−

)στ − σ2
ibnW̃τ

= στ

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds

+ στ

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs − σibn

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs
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+ σibn

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs − σibn

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σibn dWs

= στ

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds+ (στ − σibn)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs

+ σibn

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)(σs − σibn) dWs .

That yields a further decomposition

A1,3
n ≤ A1,3,1

n +A1,3,2
n +A1,3,3

n ,

with A1,3,1
n given by

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

ξ
(n)
ij` (τ)στ

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds dWτ

∣∣∣∣∣∣ > c

 ,
A1,3,2
n given by

P
[

sup
t∈[0,1]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

ξ
(n)
ij` (τ)

× (στ − σibn)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs dWτ

∣∣∣∣ > c

]

and A1,3,3
n given by

P
[

sup
t∈[0,1]

νn

∣∣∣∣ b
−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n

t
i,`−1
n−

ξ
(n)
ij` (τ)σibn

×
∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)(σs − σibn) dWs dWτ

∣∣∣∣ > c

]
.

We start with A1,3,1
n and define

ct,1n,i(τ) =

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds1[t

i,`−1
n− ,t

i,`
n )

(τ) .

With respect to A1,3,1
n this yields the representation

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ct,1n,i(τ) dWτ

∣∣∣∣∣∣ > c

 .
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We employ a further decomposition

P

 sup
t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ct,1n,i(τ) dWτ

∣∣∣∣∣∣ > c


≤ P

 max
1≤d≤ṽn

sup
t∈[td−1,td]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(ctd,1n,i (τ)− ct,1n,i(τ)) dWτ

∣∣∣∣∣∣ > c


+ P

 max
1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣∣ > c


= A1,3,1,1

n +A1,3,1,2
n .

Proceeding with A1,3,1,1
n it holds that

ct,1n,i(τ)− ctd,1n,i (τ)

=

bn/hn∑
`=1

(K
i,`
t,n −K

i,`

td,n
)

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds1[t

i,`−1
n− ,t

i,`
n )

(τ) .

As we have already argued in A1,1,1
n it holds that

bn/hn∑
`=1

(K
i,`
t,n −K

i,`

td,n
) = O(%) ,

with

% =
|t− td|
bn

≤ |td−1 − td|
bn

= O(h2
nb
−1
n ) .

Furthermore, due to Jensen’s inequality, (3.31), standard Lebesgue upper bounds and
the boundedness of the coefficient process, it holds that

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds1(t

i,`−1
n− ,t

i,`
n ]

(τ) = OP(1) .

Due to (5.3), the triangle inequality, Burkholder’s inequality and the bounds calculated
above we get

max
1≤d≤ṽn

sup
t∈[td−1,td]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

(ctd,1n,i (τ)− ct,1n,i(τ)) dWτ

∣∣∣∣∣∣
≤ max

1≤d≤ṽn
sup

t∈[td−1,td]

νn

b−1
n −1∑
i=0

∣∣∣∣∣
∫ (i+1)bn

ibn

(ctd,1n,i (τ)− ct,1n,i(τ))2 dτ

∣∣∣∣∣
1/2

= OP(νnb
−1/2
n h2

n) = OP(1) .
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We can proceed with A1,3,1,2
n . With Markov’s inequality applied to the function z 7→

|z|2m, m ∈ N and m > 0, it holds that

P

 max
1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤

vn∑
d=1

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤ Cr

vn∑
d=1

E

∣∣∣∣∣∣νn
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣∣
2m .

Due to (5.3) and triangle inequality, it is sufficient to bound the following term via Itô
isometry and the generalized Minkowski inequality, such that

E

∣∣∣∣∣
∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣
2m
 = E

[∣∣∣∣∣
∫ (i+1)bn

ibn

(ctd,1n,i (τ))2 dτ

∣∣∣∣∣
m]

≤

(∫ (i+1)bn

ibn

E
[
(ctd,1n,i (τ))2m

]1/m
dτ

)m
.

For a fixed τ ∈ [t
i,`−1
n− , t

i,`
n ) we can conclude the following bound with Jensen’s inequality

E
[
(ctd,1n,i (τ))2m

]
= E

bn/hn∑
`=1

(
K
i,`

td,n

)2mbnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds

2m
× 1

[t
i,`−1
n− ,t

i,`
n )

(τ)

= E

bn/hn∑
`=1

(
K
i,`

td,n

)2mbnhnc−1∑
j=1

wij`

(
ξ

(n)
ij` (τ)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)as ds

)2m


× 1
[t
i,`−1
n− ,t

i,`
n )

(τ)

= O(1) .

That yields the bound

P

νn
∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,1n,i (τ) dWτ

∣∣∣∣∣∣ > c

 = O(bmn ν
2m
n ) = O(v−1

n ) ,

for m being sufficiently large.This completes the term A1,3,1,2
n and so A1,3,1

n .
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We can proceed with A1,3,2
n . Therefore, we define functions ct,2n,i given by

ct,2n,i(τ) =

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`ξ
(n)
ij` (τ)(στ − σibn)

∫ τ

t
i,`−1
n−

ξ
(n)
ij` (s)σs dWs1[t

i,`−1
n− ,t

i,`
n )

(τ) ,

which yields the following representation and decomposition with respect to A1,3,2
n
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t∈[0,1]

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ct,2n,i(τ) dWτ
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≤ P
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sup
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b−1
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+ P
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1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,2n,i (τ) dWτ

∣∣∣∣∣∣ > c


= A1,3,2,1

n +A1,3,2,2
n .

We omit the details concerning A1,3,2,1
n and refer to A1,3,1,1

n . We proceed with A1,3,2,2
n .

The triangle inequality, and Markov’s inequality applied to the function z 7→ |z|2m
with m > 0 and m ∈ N yield

P

 max
1≤d≤ṽn

νn

∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,2n,i (τ) dWτ
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≤

vn∑
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P
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b−1
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i=0

∫ (i+1)bn

ibn

ctd,2n,i (τ) dWτ

∣∣∣∣∣∣ > c


≤ Cm

vn∑
d=1

E

∣∣∣∣∣∣νn
b−1
n −1∑
i=0

∫ (i+1)bn
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∣∣∣∣∣∣
2m .

Again, due to (5.3) and triangle inequality, it is sufficient to bound the following term
via Itô isometry and the generalized Minkowski

E
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E
[
(ctd,2n,i (τ))2m

]1/m
dτ
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.
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For a fixed τ ∈ [t
i,`−1
n− , t

i,`
n ) we can conclude the following bound with Jensen’s inequal-

ity, (3.31) and Assumption 4.5

E
[
(ctd,2n,i (τ))2m

]
= E
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n
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s ds
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× 1
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(τ)

= O(h−mn b2ma
n bmn ) .

Overall, we get the bound

P
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∣∣∣∣∣∣
b−1
n −1∑
i=0

∫ (i+1)bn

ibn

ctd,2n,i (τ) dWτ

∣∣∣∣∣∣ > c

 = O(h−mn bmn b
2ma
n ν2m

n ) = O(v−1
n ) ,

for m being sufficiently large due to Assumption 5.1. We have completed A1,3,2,2
n and

so A1,3,2
n . We can proceed with A1,3,3

n . Therefore, we define functions ct,3n,i given by

ct,3n,i(τ) =
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(τ) .

This yields the following representation and decomposition with respect to A1,3,3
n
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n +A1,3,3,2
n .
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We omit the details concerning A1,3,3,1
n and refer to A1,3,1,1

n . We proceed with A1,3,3,2
n .

The triangle inequality, and Markov’s inequality applied to the function z 7→ |z|2m
with m > 0 and m ∈ N, yield

P
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1≤d≤ṽn
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∣∣∣∣∣∣
2m .

Again, due to (5.3) and triangle inequality, it is sufficient to bound the following term
via Itô isometry and the generalized Minkowski

E

∣∣∣∣∣
∫ (i+1)bn

ibn

ctd,3n,i (τ) dWτ

∣∣∣∣∣
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 = E

[∣∣∣∣∣
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∣∣∣∣∣
m]

≤

(∫ (i+1)bn

ibn

E
[
(ctd,3n,i (τ))2m

]1/m
dτ

)m
.

For a fixed τ ∈ [t
i,`−1
n− , t

i,`
n ) we can conclude the following bound with Jensen’s inequal-

ity, (3.31), Burkholder’s inequality and Assumption 4.5

E
[
(ctd,3n,i (τ))2m

]
= E
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Overall, we can conclude the bound
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 = O(h−mn bmn b
2ma
n ν2m

n ) = O(v−1
n ) ,

for m being sufficiently large due to Assumption 5.1. We have completed the term
A1,3,3,2
n and so A1,3,3

n . Finally, we have completed the term A1,3
n , i.e. A1

n has also been
shown to be negligible. We can proceed with A2

n. We need a further decomposition
and take into account that
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n .

Starting with A2,1
n we use the order of the weights wjk,

wjk ∝

{
1, for j ≤

√
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j−4n2h4
n, for j >

√
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(5.4)

in order to use a further decomposition
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+ P

 sup
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We start with A2,1,1
n an define functions ct,4n,i given by

ct,4n,i(τ) =
1
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K
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and infer the representation as well as the decomposition
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n

We will only sketch the upper bound for A2,1,1,1
n and refer to similar calculations in pre-

ceding parts of this work. Using the bound in Lemma 2 in Bibinger and Winkelmann
[13], the independence of (εt)t∈[0,1], the regularity of the kernel K and Burkholder’s
inequality, we infer the bound
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We can proceed with A2,1,1,2
n . We have the bound
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We proceed with the generalized Minkowski inequality which yields

E
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.

Lemma 2 in Bibinger and Winkelmann [13], Burkholder’s inequality, Assumption

4.5,(3.31) and a fixed τ ∈ [t
i,`−1
n− , t

i,`
n ) yield the bound

E[(ctd,4n,i (τ))2m] = O(h−2m
n log(n)b2an ) .

Overall using (5.3), the triangle inequality and standard Lebesgue integral upper
bounds we conclude
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n ) ,

due to Assumption 4.5 for m being sufficiently large. We have completed the proba-
bility A2,1,1,2

n and so A2,1,1
n . We can proceed with A2,1,2

n . Therefore, it is sufficient to
note that

j−4n2h4
n = O(1) for

√
nhn ≤ nhn .

We omit the details, since the procedure is very similar to A2,1,1
n . Hence, we have

completed the term A2,1,2
n and so A2,1

n . The probability A2,2
n is in fact easier than A2,1

n

as it only includes a (finite variation) Lebesgue integral, such that we can use standard
Lebesgue integral upper bounds instead of Burkholder’s inequality. We will therefore
omit the details. Finally, the probability A2

n has been completed and so An, i.e. we
can proceed with Bn. We have to bound the probability
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we can proceed as follows. Using a similar argument applied for Bn in the previous
chapter we have the following decomposition
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n +B2
n +B3
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We will only give a more detailed argument for the term B1
n, as the other terms can

be handled very similarly, c.f. Chapter 3.
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n .

The term B1,1
n can be handled analogous to several terms, which we have considered

previously, exploiting the regularity of the kernel K. We omit the details. We proceed
with B1,2

n using (5.3), the triangle inequality, the Markov inequality with an exponent
r > 0, the boundedness of the volatility process and a classical central limit theorem
argument such that
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with m being sufficiently large. That completes B1,1
n and so B1

n. That implies Bn to
be negligible. Finally we have completed the term (II). We can proceed with (I). For
every δ > 0 and a generic constant c > 0 (it may change from line to line) we have
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. (5.6)

Starting with probability (5.5) it holds that
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[
sup
t∈[0,1]

√
bn/hn log(n)Γ̂εt,n(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c

]

= P

[
sup
t∈[0,1]

√
bn/hn log(n)Γ̂εt,n(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c, sup

t∈[0,1]
Γ̂εt,n ≤ 2(K+ + κ+)

]
(5.7)

+ P

[
sup
t∈[0,1]

√
bn/hn log(n)Γ̂εt,n(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c, sup

t∈[0,1]
Γ̂εt,n > 2(K+ + κ+)

]
.

(5.8)

Considering (5.7) we have

P

[
sup
t∈[0,1]

√
bn/hn log(n)Γ̂εt,n(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c, sup

t∈[0,1]
Γ̂εt,n ≤ 2(K+ + κ+)

]

≤ P

[
sup
t∈[0,1]

√
bn/hn log(n)(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c

]
,

i.e. it can be traced back to An using a Taylor expansion of the function x 7→ x3/4
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around the point Γ
ε
t,n. Proceeding with (5.8) it holds that

P

[
sup
t∈[0,1]

√
bn/hn log(n)Γ̂εt,n(|Γεt,n|3/4 − |Γ̂εt,n|3/4) > c, sup

t∈[0,1]
Γ̂εt,n 2(K+ + κ+)

]

≤ P

[
sup
t∈[0,1]

Γ̂εt,n > 2(K+ + κ+)

]

≤ P

[
sup
t∈[0,1]

Γ̂εt,n > K+ + κ+

]
+ P

[
sup
t∈[0,1]

|Γ̂εt,n − Γ
ε
t,n| > K+ + κ+

]
.

Only the first probability has to be considered. Since we have already presented similar
arguments we will only indicate the proof. Note that we can bound the volatility from
above, such that

b−1
n −1∑
i=0

σ2
ibn

bn/hn∑
`=1

K
i,`
t,n <

b−1
n −1∑
i=0

K+

bn/hn∑
`=1

K
i,`
t,n .

Afterwards, we can split the probability into three terms including supt∈[0,1]. Then
we can split each probability via max

1≤d≤ṽn
supt∈[td−1,td] and max

1≤d≤ṽn
. The former can

be handled via the kernel regularity, the latter can be handled using the Markov
inequality combined with the central limit theorem which has already been presented
above. Concerning the probability 5.6 we refer to 4.12 and omit the details. We have
completed the term (I). We skip the term (III), since bounding the volatility from
above it is a direct consequence of (I). We have completed the proof of Proposition
5.8.

In order to apply the result in Theorem 2.27 we need further approximation steps.
Therefore, we define the quantities

Γ̃εt,n =
1

bn

b−1
n −1∑
i=0

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij`

∫ t
i,`
n−

t
i,`−1
n−

σ2
u du

and

Γ′
ε
t,n =

hn
bn

b−1
n −1∑
i=0

σ2
ibn

bn/hn∑
`=1

K
i,`
t,n

bnhnc−1∑
j=1

wij` .

Then we have the following approximation.

Proposition 5.9. Under the assumptions of Theorem 5.3 it holds that

sup
t∈[0,1]

|Γ̃εt,n − Γ′
ε
t,n| = OP((bn/hn log(n))−1/2) .
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Proof of Proposition 5.9.
We will use Jensen’s inequality, (5.3), the triangle inequality and Assumption 4.5. This
yields

sup
t∈[0,1]

|Γ̃εt,n − Γ′
ε
t,n| = sup

t∈[0,1]

∣∣∣∣∣∣ 1

bn

b−1
n −1∑
i=0

∫ (i+1)bn

ibn

k
i
n,t(τ)(σ2

τ − σ2
ibn) dτ

∣∣∣∣∣∣
= OP(ban) = OP((bn/hn log(n))−1/2) .

Proposition 5.10. Under the assumptions of Theorem 5.3 it holds that

sup
t∈[0,1]

|Γ̃εt,n − Γt| = OP((bn/hn log(n))−1/2) .

Proof of Proposition 5.9.
We will omit the details and refer to the argument presented in 4.19 combined with
the fact that the j− sum is convex.

Due to the approximations pursued above,

η̂2 = η2 +OP(n−1/2)

a two-dimensional Taylor expansion of the function (x, y) 7→ x1/2y3/4 around the point
|(η,Γt)| , and a Riemann sum approximation of

∫
K = 1 it is sufficient to consider the

sequence of stochastic processes U
n
t given by

U
n
t =

1√
bn/hn

h−1
n∑
`=1

Kbn(t− `hn)ρ` ,

with a family of random variables (ρ`)1≤`≤h−1
n

given by

ρ` =

∑bnhnc−1
j=1 wj`(σtSj`(W )) + Sj`(ε))

2 − (σ2
t + [ϕj`, ϕj`]n

η2

n ))√
I`n,t

.

Note that ρ` ∈ Lp for every p and `, i.e. we can use Remark 2.22. Furthermore, taking
into account the calculations for the final parts of the proof of Theorem 4.12, it is
sufficient to proceed as follows: With S` =

∑`
i=1 ρi it holds with an arbitrarily small

c > 0 that

max
`≤h−1

n

|S` − B`|√
bn/hn

= max
`≤h−1

n

√
log(n)

|S` − B`|√
bn/hn

h−cn
h−cn

= max
`≤h−1

n

|S` − B`|
h−cn

h−cn
√

log(n)√
bn/hn

= Oa.s(1)O(1) .
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Now, we have to pass to a sequence of stochastic processes Y
n
t being Gaussian and

stationary. Again, we refer to the final parts of the proof of Theorem 4.12, as the
procedure is exactly the same. To finalize the proof of Theorem 5.3 we have to show
that the limit is not affected, if we replace the oracle version Γ̂εt,n by the adaptive

version Γ̂ε,adt,n .

Proposition 5.11. Under the assumptions of Theorem 5.3 it holds that

sup
t∈[0,1]

|Γ̂εt,n − Γ̂ε,adt,n | = OP((bn/hn log(n))−1/2) .

Proof of Proposition 5.11.

The proof can be traced back to the proof of Proposition 3.19, exploiting the uniform
bound given therein and the compact support of the kernel K. We will therefore omit
the details.

Finally, the proof of Theorem 5.3 has been completed.

Proof of Theorem 5.6

Due to Proposition 5.11 it is sufficient to show that

sup
t∈[0,1]

√
bn/hn log(n)|Γ̂ε,τt,n − Γ̂εt,n|

P−→ 0 .

The procedure is very closely based on the proof of Proposition 3.10. Therefore, we
will keep the exposition very short, referring to the above proof. We use the notation

K
0,k
t,n = K

k
t,n. We have to bound the terms

sup
t∈[0,1]

νn

h−1
n∑
k=1

K
k
t,nζk(X

c + ε)1{hn|ζk(Y )|>un} , (5.9)

sup
t∈[0,1]

νn

h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkS
2
jk(J)1{hn|ζk(Y )|≤un} , (5.10)

sup
t∈[0,1]

νn

h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkSjk(J)Sjk(X
c)1{hn|ζk(Y )|≤un} , (5.11)

sup
t∈[0,1]

νn

h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkSjk(J)Sjk(ε)1{hn|ζk(Y )|≤un} . (5.12)

We will only discuss the quadratic terms (5.9) and (5.10). The remaining mixed terms
can be handled via Cauchy Schwarz inequality. Starting with (5.10) we fix some
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c, c ∈ (0, 1) and get the decomposition

sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkS
2
jk(J)1{hn|ζk(Y )|≤un}

∣∣∣∣∣∣
≤ sup

t∈[0,1]
νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkS
2
jk(J)1{∑bnhnc−1

j=1 wjkS
2
jk(J)≤chτ−1

n

}
∣∣∣∣∣∣ (5.13)

+ sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkS
2
jk(J)1{|ζk(Xc+ε)|>chτ−1

n }

∣∣∣∣∣∣ . (5.14)

We will only consider (5.13) and infer the bound

sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,n

bnhnc−1∑
j=1

wjkS
2
jk(J)1{∑bnhnc−1

j=1 wjkS
2
jk(J)≤chτ−1

n

}
∣∣∣∣∣∣

≤ 2 sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nh

−1
n |Jkhn − J(k−1)hn |

2
1{|Jkhn−J(k−1)hn |≤

√
c/2h

τ/2
n

}
∣∣∣∣∣∣ (5.15)

+ 2 sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nh

−1
n

(
|Jkhn − J(k−1)hn |

2 −
( bknhnc∑
i=b(k−1)nhnc

|∆n
i J |
)2)∣∣∣∣∣∣

× 1{∑bknhnc
i=b(k−1)nhnc

|∆n
i J |≤
√
c/2h

τ/2
n

} (5.16)

+ sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nch

τ−1
n 1{∑bknhnc

i=b(k−1)nhnc
|∆n
i J |≤
√
c/2h

τ/2
n

}
∣∣∣∣∣∣ . (5.17)

Proceeding with (5.16) we have

2 sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nh

−1
n

(
|Jkhn − J(k−1)hn |

2 −
( bknhnc∑
i=b(k−1)nhnc

|∆n
i J |
)2)∣∣∣∣∣∣

× 1{∑bknhnc
i=b(k−1)nhnc

|∆n
i J |≤
√
c/2h

τ/2
n

}

≤ 4 sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nh

−1
n

( bknhnc∑
i=b(k−1)nhnc

|∆n
i J |
)2
1{∑bknhnc

i=b(k−1)nhnc
|∆n
i J |≤h

2/3+$
n

}
∣∣∣∣∣∣

+ 2 sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nh

−1
n

(
|Jkhn − J(k−1)hn |

2 −
( bknhnc∑
i=b(k−1)nhnc

|∆n
i J |
)2)∣∣∣∣∣∣

× 1{
Nkhn (h

2/3
n +$)−N(k−1)hn (h

2/3+$
n )≥2

}1{
h
2/3+$
n ≤

∑bknhnc
i=b(k−1)nhnc

|∆n
i J |≤
√
c/2h

τ/2
n

}
= OP((log(n))1/2b1/2n h−1/2

n h1/3+2$
n ) +OP((log(n))1/2b1/2n hτ+1/2

n h−2r(2/3+$)
n ) ,
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which is negligible, due to Assumption 5.5. Proceeding with (5.15) we define the
sequence (Z`)`=1,...,h−1

n
given by

Zk =

((
Jkhn − J(k−1)hn

)
1{|Jkhn−J(k−1)hn |≤

√
c/2h

τ/2
n

})2

.

We use Theorem 2.5, the bound (3.62a) and set In,t = [−bn/hn+t/hn, t/hn+bn/hn]∩Z.
This yields

λP

[
sup
t∈[0,1]

max
`∈In,t

νn
∑̀
k=1

K
k
t,nh

−1
n Zk ≥ λ

]
≤ νnh−1

n E

[
max
`∈In,t

∑̀
k=1

Zk

]
= O(νnbn/hnh

τ(1−r/2)
n )

= O((log(n))1/2h−1/2
n b1/2n hτ(1−r/2)

n ) ,

which is negligible if λ−1 = O((log(n))−1/2h
τ(r/2−1)
n b

−1/2
n h

1/2
n ). We omit the details

on (5.17) as the bound can be concluded similarly. Considering the term (5.9), it is
sufficient to bound

sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nζk(X

c + ε)1{∑bnhnc−1
j=1 wjkS

2
jk(J)>chτ−1

n

}
∣∣∣∣∣∣

≤ sup
t∈[0,1]

νn

∣∣∣∣∣∣
h−1
n∑
k=1

K
k
t,nζk(X

c + ε)1{∑bknhnc
b(k−1)nhnc

|∆n
i J |>
√
c/2h

τ/2
n

}
∣∣∣∣∣∣ .

A decomposition similar to (5.16) completes the term using the bounds in Lemma 2
in Bibinger and Winkelmann [13].
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6.1. Conclusion and summary

In this thesis we have provided new results for inference on stochastic volatility models
deepening and extending existing literature. In Chapter 3 we have extended the results
in Bibinger et al. [10]. We have provided weak limit theorems for noise and jump robust
statistics and constructed a consistent change-point test. Finally we have proved a
consistency result for the change-point estimator.
In Chapter 4 we have crucially improved and generalized the results presented in Fan
and Wang [23]. Our results allow for more general price process models including
infinite activity jumps as well as for more general stochastic volatility models. In
particular, we were able to show that serious restrictions, e.g. stationarity of the spot
volatility process imposed in Fan and Wang [23] are unnecessary.
In Chapter 5 we have provided an even more general method being noise and jump
robust. We have proved limit theorems for extreme values and explained how to
construct confidence bands.

6.2. Further questions

Though the results we have presented are quite general, there are still several open
questions which we will address in this section.
Concerning Chapter 3 there are still open question. Starting with the global change-
point problem, that is, constructing a consistent testing procedure, to detect changes
in the regularity index a of the volatility process (σ2

t )t∈[0,1]. Therefore, similar func-
tional stable limit theorems as presented in Theorem 5.4 Bibinger et al. [10], are key
tools tackling this testing problem. A second open question, which we have already
mentioned in Remark 3.13, is a formal proof of the conjecture that our test yields an
asymptotic minimax-optimal decision rule.
A further challenging but very interesting question is concerning the asymptotic dis-
tribution of the change-point estimator θ̂n in (3.21). That is, to investigate the limit
distribution of the random variable T given by

δ

hn
√
αn log(n)

|θ̂n − θ|
d−→ T .

The limit distribution of the change-point remains unknown in the case with mi-
crostructure noise as well as in the pure semimartingale case.
Though, the models which have been considered in Chapter 4 and Chapter 5 are quite
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general, it might be useful to pass to a more general class of processes (Xt)t∈[0,1], if we
intend to model within different areas of applications beyond financial mathematics.
Typical fields of applications are turbulence modeling, hydrology and electricity mar-
kets. From an application point of view it is desirable to be able to reflect phenomena
which exhibit long and short range dependence. Therefore, we could consider Xt given
by

Xt =

∫ t

0
σs dB

H
s ,

where the standard Brownian motion W has been replaced by a fractional Brownian
motion BH , allowing for more flexibility in modeling. We refer to Manuel Corcuera
et al. [45] for high-frequency statistics with respect to Xt. Furthermore, the model
above also allows for very interesting and possibly challenging theoretical questions.
Some of these possible questions are

(1) constructing uniform confidence bands for (σ2
t )t∈[0,1],

(2) change-point inference for (σ2
t )t∈[0,1] and

(3) change-point inference for the Hurst index H ∈ (0, 1), extending the recent work
Bibinger [8].

Due to the fact that Xt is beyond the semimartingale framework almost every classical
result in stochastic calculus is not applicable within this model. Therefore, these
questions offer exciting challenges linked to other areas of stochastic analysis such as
Malliavin calculus and rough path theory.
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Appendix A. Some useful inequalities

In this appendix we will present two inequalities, which we have used in the main part
of this dissertation.

A.1. Rosenthal’s inequality

In Chapter 3, we have used Rosenthal’s inequality for sums of i.i.d. variables.

Theorem A.1 (Rosenthal’s inequality). Let p ≥ 1. Suppose that X,X1, . . . , Xn are
independent, identically distributed random variables with mean 0 and X ∈ Lp. Set
Sn =

∑n
k=1Xk, n ≥ 1. Then it holds that

E[|Sn|p] ≤

{
CpnE[|X|p], if p ∈ [1, 2]

Cpn
p/2E[|X|p], if p ≥ 2 ,

(A.1)

with an universal constant Cp.

For a proof we refer to Gut [27].

A.2. Sakhanenko’s inequality

Controlling the error term in the proof of Theorem 3.8, we have used the following
inequality.

Theorem A.2 (Sakhanenko’s inequality). Let ξ1, . . . , ξn be independent random vari-
ables and Z be a standard normal random variable constructed on some probability
space. We set

δ = |Sn/c− Z|

with Sn =
∑n

j=1 ξj and c2 =
∑n

j=1 Var(ξj). Then

E[δα] ≤ (Cα)α
n∑
j=1

E[min
{
|ξj/c|α+1, |ξ/c|α

}
]

holds for α ≥ 2 with an universal constant C.

For a proof we refer to Sakhanenko [56].
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