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Abstract: We introduce a stochastic traffic flow model to describe random traffic accidents on a single
road. The model is a piecewise deterministic process incorporating traffic accidents and is based on a
scalar conservation law with space-dependent flux function. Using a Lax-Friedrichs discretization, we
show that the total variation is bounded in finite time and provide a theoretical framework to embed
the stochastic process. Additionally, a solution algorithm is introduced to also investigate the model
numerically.
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1. Introduction

Macroscopic traffic flow models based on hyperbolic conservation laws have been intensively
investigated during the last decades, see [1, 2] for an overview. The various research directions
include theoretical and numerical investigations such for instance well-posedness [3], coupled
models [4], network extensions [2, 5], optimal control [6], or more recently, data-driven
approaches [7] while stochastic traffic models have been less considered [8, 9].

Typically, macroscopic traffic flow equations are either characterized by first-order models for the
evolution of the traffic density or second-order models, where an additional equation for the velocity
is considered. So far, the modeling of traffic accidents (or incidents) has been considered in a
deterministic setting [10–12], queueing theory approaches [13, 14] or kinetic models [15]. There are
only a few contributions, where the presence of accidents is described by a stochastic process [13].

Therefore, the aim of this paper is to combine the stochastic modeling of accidents with the
Lighthill-Whitham-Richards (LWR) model [16] of first-order type and to provide a framework that
allows for theoretical and numerical studies. The idea is to include random effects directly in the flux
function such that failures depend on the current traffic density.

We assume that accidents happen at random times and have an impact on the road capacity around
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the accident. Based on the LWR model, we incorporate these accidents by a space-dependent flux
function determining the deterministic structure between the random accidents. Obviously, the profile
of the traffic density has an impact on the probability of an accident. For instance, fluctuations in the
density lead to different velocities of the cars and an accident is more likely as it is the case for
stationary traffic situations. The traffic density does not only influence the probability of an accident.
It also indicates where an accident could happen as for example at the end of a traffic jam. In order to
capture these ideas, we face two building blocks, i.e., the deterministic dynamics between accidents
and the stochastic nature, which interrupts the deterministic flow at random times. This directly leads
to the well-known piecewise deterministic processes (PDPs), see [17, 18]. In [19], the latter idea has
been used to incorporate random machine failures of machines based on hyperbolic dynamics, where
the product density influences machine failures and vice versa. Compared to [19], we face different
challenges here: since accidents happen at various spatial positions, we use a space-dependent flux
function capturing traffic accidents as spatial capacity drops in the LWR model. This is the
deterministic part only and we need an appropriate model representing the stochasticity of traffic
accidents. Hereby, we model the position, size and the capacity reduction caused by the accident. The
modeling of random positions is done by using two relevant effects leading to traffic accidents: high
flux and tailbacks. High fluxes imply that cars drive at an appropriate speed but are also comparably
dense such that inattention leads to rear-end collision. The same holds true at tailbacks where we have
a jump from low to high density, i.e., the derivative of the traffic density is strongly positive. From the
mathematical point of view, we need a notion of derivative of the traffic density and we use functions
of so-called bounded variation. Unluckily, the LWR model with space-dependent flux does not admit
solutions which are of bounded variation in space. Therefore, we pose additional assumptions to the
classical ones guaranteeing that the solution is of bounded variation. The sampling of the times at
which accidents happen is also more involved because of a pessimistic bound on the traffic accident
rate. We therefore introduce a numerical scheme to get rid-off this bound and show that it
approximates the model in numerical examples.

There are different works about hyperbolic equation based dynamics connected to randomness as
for example random velocity fields [20, 21] and propagation of uncertainty [22]. However, in these
works, there is no influence of the conserved quantity on the stochastic nature, i.e., no bi-directional
relation between the deterministic and stochastic ideas.

The paper is organized as follows: in Section 2, we present the modeling of accidents within the
LWR model and show that the total variation of the new model is bounded. Furthermore, the stochastic
process is characterized such that accident probabilities can be embedded. In Section 3, a stochastic
solution algorithm based on a Lax-Friedrichs discretization is introduced to analyze the occurrence of
traffic accidents from a numerical point of view.

2. Modeling of accidents

Before we start with the mathematical modeling of accidents, we motivate basic ideas first. The
Lighthill-Whitham-Richards (LWR) model is described by the solution to the following hyperbolic
conservation law

ρ(x, t)+(ρ(x, t)v(ρ(x, t)))x = 0,
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where ρ(x, t) ∈ [0, ρmax] is the traffic density at x ∈ R and t > 0 bounded by ρmax > 0 and at time
t = 0 an initial profile ρ0 is prescribed. The function v : [0, ρmax] → [0, vmax] is the velocities of cars,
where v(0) = vmax > 0, v(ρmax) = 0 and v′ < 0 imply that it decreases with increasing densities. It is
also common to write f (ρ) = ρv(ρ) as the so-called LWR flux function if v satisfies the assumptions
mentioned before. If we fix the maximal density ρmax but choose a different flux function ṽ < v, cars
drive slower using ṽ. Alternatively, ρṽ(ρ) < ρv(ρ) means a lower flux and hence a lower capacity of
a road. Using a space-dependent velocity v(x, ρ), where x 7→ v(x, ρ) is a piecewise constant velocity
function, i.e., on road segments are used different v, we can model capacity differences on roads caused
by different number of lanes, speed limits, or, as we will use, accidents in the form of capacity drops.
Without loss of generality, we assume ρmax = 1 in the following.

2.1. General setting

Let f : [0, 1] → [0,∞) be a function of LWR type, e.g., f (ρ) = ρ(1 − ρ), with f (0) = f (1) = 0,
f ′′ ≤ c < 0 for some c < 0 and a unique ρ∗ ∈ (0, 1) such that f ′(ρ∗) = 0. To describe the capacities of
the road, we assume a function cr : R→ R>0 and use cr(x) f (ρ) as space-dependent flux. An appropriate
choice for cr might be piecewise constant, describing the dependency of speed limits or the number of
lanes.

We interpret an accident on a road as capacity reduction within an interval I(p, s) ⊂ (p− s, p + s) of
length s, where p ∈ R denotes the position and s ∈ R the size of the accident. The amount of capacity
reduction is denoted by c ∈ [0, cmax] with 0 ≤ cmax < 1 such that the road capacity at p is given by
(1 − c)cr(p). We denote by x 7→ ca(x, p, s, c) the capacity function of the accident. Then, it is natural
to define the space-dependent flux function

F p,s,c(x, ρ) = ca(x, p, s, c)cr(x) f (ρ).

To illustrate the function ca, we state the following examples satisfying the assumptions from before:

Example 2.1.

• Discontinuous: ca(x, p, s, c) = 1 − c1(p−s,p+s(x)
• Continuous: ca(x, p, s, c) = 1 − c1(p−s,p+s(x)(1 − (x−p)2

s2 )

Altogether, we end up with the following Cauchy problem

ρt + (F p,s,c(x, ρ))x = 0, ρ(x, 0) = ρ0(x). (2.1)

In order to state existence and uniqueness results for (2.1), we introduce the notion of total variation
TV(ρ) for a function ρ which we define as

TV(ρ) = sup

N−1∑
i=1

|ρ(xi+1) − ρ(xi)| : −∞ < x1 < · · · < xN < ∞,N ∈ N

 .
The space of functions with bounded total variation is denoted by BV(R) = {ρ ∈ L1(R) : TV(ρ) < ∞}
and we call a function a BV function if it is a function in BV(R). The Cauchy problem (2.1) admits
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a unique entropy solution, see [23] if TV(ca(·, p, s, c)cr(·)) < ∞, ρ0 ∈ BV(R) and if ca(·, p, s, c)cr(·) is
differentiable with except of finitely many points. Additionally, we need that

TV(Ψ(ρ0)) < ∞, Ψ(ρ) = sgn(ρ − ρ∗)
f (ρ∗) − f (ρ)

f (ρ∗)
.

The latter conditions arise from the technique used in [23] which is the so-called front tracking
technique. The idea is to approximate the initial condition by a simple step function leading to finitely
many Riemann problems. Using the singular mapping Ψ, which is a one-to-one mapping, the
existence of a solution is shown in the same manner as it is the case with space-independent fluxes,
see for example [24]. Due to Ψ, the existence of ρ is also ensured. Within the proof, the total variation
bounds are essential and require the assumptions on ρ0 and ca(x, p, s, c)cr(x). However, this only
shows that TV(Ψ(ρ(·, t)) is finite for all t ∈ [0,T ] but does not imply TV(ρ) < ∞, which we will need
in the modeling of stochastic accidents later. However, the following lemma provides conditions on
the data such that the solution to the scalar conservation law (2.1) remains in BV(R).

Lemma 2.2. Let a(x) := ca(x, p, s, c)cr(x) satisfy a ∈ C2(R) ∩ TV(R) and let f be an LWR flux.
Furthermore, we assume

a, a′, f , f ′ ∈ L∞(R), a′, a′′ ∈ L1(R), ρ0 ∈ BV(R).

Then there exists a constant C = C(T, ‖a‖∞, ‖a′‖∞, ‖a′′‖1, ‖ f ‖∞, ‖ f ′‖∞,TV(ρ0)) such that the solution
to (2.1) satisfies TV(ρ(t)) ≤ C for all t ∈ [0,T ] and ‖ρ(t)‖∞ ≤ ‖ρ0‖∞ + T‖a′‖∞‖ f ‖∞. Additionally, the
mapping t 7→ TV(ρ(t)) is Lipschitz continuous on [0,T ].

Proof. We prove the lemma by using the Lax-Friedrichs scheme given by

ρ
j+1
i = ρ

j
i−λ

( 1
2λ

(ρ j
i − ρ

j
i+1) +

1
2

(ai f (ρ j
i ) + ai+1 f (ρ j

i+1))

− (
1

2λ
(ρ j

i−1 − ρ
j
i ) +

1
2

(ai−1 f (ρ j
i−1) + ai f (ρ j

i ))
)
. (2.2)

Here, ρ j
i is the approximated value of ρ(xi, t j), where xi = i∆x, t j = j∆t for i ∈ Z, j ∈ N0 are

the spatial and temporal grids. The quotient λ = ∆t
∆x is an important constant used to prescribe the

domain of dependence of the numerical scheme. Note that λ is the reciprocal of a speed. To obtain a
numerical reasonable scheme for the Cauchy problem (2.1), we have to ensure that the analytic domain
of dependence is contained in the numerical domain of dependence since otherwise information gets
lost. The largest velocity at which information may propagate in our model can be recovered from
the slope of the characteristic curves and is given by supx,ρ |a(x) f ′(ρ)| ≤ ‖a‖∞‖ f ′‖∞. The distance
information is then bounded by ∆t‖a‖∞‖ f ′‖∞ ≤ ∆x, which is equivalent to

λ‖a‖∞‖ f ′‖∞ ≤ 1,

the so-called Courant-Friedrichs-Lewy (CFL) condition. The convergence of the Lax-Friedrichs
scheme has been studied in [25], whereas in [26,27] the Godunov scheme has been examined. For our
purpose, the Lax-Friedrichs scheme is a suitable choice avoiding the study of various cases as needed
for the Godunov scheme. We start with the L∞ estimate followed by the BV-estimate and conclude
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that the numerical scheme converges to the unique solution of the Cauchy problem.

• L∞ estimate. Using the CFL condition

λ‖a‖∞‖ f ′‖∞ ≤ 1,

we deduce that

|ρ
j+1
i | =

∣∣∣∣∣∣∣ρ
j
i+1 + ρ

j
i−1

2
−
λ

2
(ai+1 f (ρ j

i+1) − ai−1 f (ρ j
i−1))

∣∣∣∣∣∣∣
=

1
2
|ρ

j
i+1 + ρ

j
i−1 − λ(ai+1 f ′(ξi)(ρ

j
i+1 − ρ

j
i−1) + f (ρ j

i−1)(ai+1 − ai−1))|

≤
1
2

(
|ρ

j
i+1|(1 − λai+1 f ′(ξi)) + |ρ

j
i−1|(1 + λai+1 f ′(ξi))

)
+
λ

2
f (ρi−1)|a′(ηi)|2∆x

≤ ‖ρ j‖∞ + ∆t‖ f ‖∞‖a′‖∞.

The latter implies ‖ρ j‖∞ ≤ ‖ρ0‖∞ + T‖ f ‖∞‖a′‖∞.

• BV estimates. Using the same arguments as in the L∞ estimates, we can estimate the spatial BV
bound as follows:

TV(ρ j+1) =
1
2

∑
i∈Z

|(ρ j
i−1 − ρ

j
i−2) + λ(ai−1 f (ρ j

i−1) − ai−2 f (ρ j
i−2))

+ (ρ j
i+1 − ρ

j
i ) − λ(ai+1 f (ρ j

i+1) − ai f (ρ j
i ))|

=
1
2

∑
i∈Z

|(ρ j
i−1 − ρ

j
i−2)(1 + λai−1 f ′(ξ j

i− 3
2
)) + λ f (ρ j

i−2)∆xa′(ηi− 3
2
)

+ (ρ j
i+1 − ρ

j
i )(1 − λai+1 f ′(ξ j

i+ 1
2
)) − λ f (ρ j

i )∆xa′(ηi+ 1
2
)|

≤
1
2

∑
i∈Z

|ρ
j
i−1 − ρ

j
i−2||1 + λai−1 f ′(ξ j

i− 3
2
)|

+
1
2

∑
i∈Z

|ρ
j
i+1 − ρ

j
i ||1 − λai+1 f ′(ξ j

i+ 1
2
)|

+
λ∆x

2

∑
i∈Z

|a′(ηi+ 1
2
) f (ρ j

i ) − a′(ηi− 3
2
) f (ρ j

i−2)|.

Using the CFL condition and

|a′(ηi+ 1
2
) f (ρ j

i ) − a′(ηi− 3
2
) f (ρ j

i−2)|

≤ ‖a′‖∞‖ f ′‖∞|ρ
j
i − ρ

j
i−2| + ‖ f ‖∞|a

′′(η̃i)‖3∆x,

yields

TV(ρ j+1) ≤ (1 + ∆t‖a′‖∞‖ f ′‖∞) TV(ρ j) + ∆t
3
2
‖ f ‖∞‖a′′‖1.

Hence, we have

TV(ρ j+1) ≤ e‖a
′‖∞‖ f ′‖∞T TV(ρ0) +

3
2‖ f ‖∞‖a

′′‖1

‖a′‖∞‖ f ′‖∞
(e‖a

′‖∞‖ f ′‖∞T − 1)
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=: C1.

Furthermore, we deduce the following bound on the time difference of the total variation

TV(ρ j+m) − TV(ρ j) =

m−1∑
k=0

(TV(ρ j+k+1) − TV(ρ j+k))

≤ ∆t
m−1∑
k=0

(‖a′‖∞‖ f ′‖∞ TV(ρ j+k) +
3
2
‖ f ‖∞‖a′′‖1)

≤ m∆t(C1‖a′‖∞‖ f ′‖∞ +
3
2
‖ f ‖∞‖a′′‖1).

If t = j∆t and t̃ = ( j + m)∆t, then

|TV(ρ j+m) − TV(ρ j)| ≤ C̃1|t − t̃|.

In order to use a compactness argument for the numerical scheme to converge, we need the total
variation in space and time. For piecewise constant function ρ it holds

TVR×[0,T ](ρ) =

T
∆t∑

j=0

∆t TV(ρ j) +
∑
i∈Z

∆x

T
∆t−1∑
j=0

|ρ
j+1
i − ρ

j
i |.

We can directly estimate the first expression by

T
∆t∑

j=0

∆t TV(ρ j) ≤ TC1.

To analyze the second expression we start with

|ρ
j+1
i − ρ

j
i | =

1
2
|(ρ j

i+1 − ρ
j
i ) − λ(ai+1 f (ρ j

i+1) − ai f (ρ j
i )) − (ρ j

i − ρ
j
i−1) − λ(ai f (ρ j

i ) − ai−1 f (ρ j
i−1))|

=
1
2
|(ρ j

i+1 − ρ
j
i )(1 − λai+1 f ′(ξi+ 1

2
)) − (ρ j

i − ρ
j
i−1)(1 + λai f ′(ρi− 1

2
))

− λ∆x( f (ρ j
i )a
′(ηi+ 1

2
) + f (ρ j

i−1)a′(ηi− 1
2
))|

≤
1
2
|(ρ j

i+1 − ρ
j
i )|(1 − λai+1 f ′(ξi+ 1

2
)) +

1
2
|ρ

j
i − ρ

j
i−1|(1 + λai f ′(ξi− 1

2
))

+
1
2
λ∆x( f (ρ j

i )|a
′(ηi+ 1

2
)| + f (ρ j

i−1)|a′(ηi− 1
2
))|),

where we use the CFL condition and f ≥ 0. This leads to∑
i∈Z

|ρ
j+1
i − ρ

j
i | ≤ TV(ρ j) + λ∆x

∑
i∈Z

f (ρ j
i )|a

′(ηi+ 1
2
)|

≤ C1 + λ‖ f ′‖∞‖a′‖1
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and therefore

∑
i∈Z

∆x

T
∆t−1∑
j=0

|ρ
j+1
i − ρ

j
i | ≤

T
λ

C1 + T‖ f ′‖∞‖a′‖1

=: C2.

Let (∆tn)n∈N be a sequence, which converges to zero and ∆xn = ∆tn
λ

be the corresponding spatial
discretization, satisfying the CFL condition. The constructed sequence of piecewise constant
functions (ρ̄n)n∈N has a subsequence (ρ̄nl)l∈N, which converges to some ρ ∈ BV(R × [0,T ]) in L1

loc(R)
by Helly’s theorem. A Kruzkov type inequality, see [25], and a Lax-Wendroff type argument show
that (ρ̄n)n∈N converges to a weak entropy solution, which is unique by [23]. Consequently, the limiting
solution is the solution to the IVP satisfying claimed properties of the lemma. �

Hence, we are now able to mathematically introduce traffic accidents as partial road capacity drops
via the function a.

2.2. Random traffic accidents

In the following, we introduce a LWR model which incorporates traffic accidents. For this reason,
we start with a simple example to strengthen our motivation.

Example 2.3. In Figure 1(a), we observe a traffic situation given as the traffic density (solid line) and
the corresponding velocity (dashed line) in the case of the classical LWR model with v(ρ) = 1 − ρ. In
order to model traffic accidents, we should be able to prescribe at which positions x a traffic accident
is more likely. If we choose the traffic density and interpret it as probability (modulo normalizing), we
obtain a bad estimation since at positions, where cars are in a traffic jam (ρ ≈ 1), we assume the highest
probability of an accident. Exactly the opposite holds true if we choose the velocity as a measure of
likeliness of an accident, where at places with no cars is the probability of an accident the highest.
Therefore, we choose the flux as a representative of the probability of an accident, see Figure 1(b).
This is reasonable since the flux describes the amount of cars traveling at this place.
A very common reason for accidents are significant changes in the traffic density, i.e., end of traffic
jams or distinctive traffic waves. This is not captured by the flux and needs an additional modeling
approach, which is discussed later on in this section.

The parameters to incorporate a traffic accident in Eq (2.1) are the position p, the size s and the
capacity drop c. From the modeling perspective the position is the first parameter to consider since
there exists a dependency on the current traffic situation: if there are no cars, or cars are fully stopped
by a traffic jam, we expect no accident, whereas if cars drive with high speed and the density is high
at the same time, we expect a higher probability of an accident, see example 2.3. Also, we observe
accidents at the end of traffic jams. To summarize, the following modeling ideas should be included:

1. a higher distance between cars at lower speed implies a lower accident probability and vice versa,
2. a higher accident probability at places, where we observe an increase in the density (as for

example tailbacks).
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(a) Density ρ and corresponding velocity v(ρ) =

1 − ρ.
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(b) Density ρ and corresponding flux f (ρ) =

ρ(1 − ρ).
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(c) t = 4.9: first accident.
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(d) t = 5.85: first accident removed.
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(e) t = 22: second accident.
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(f) t = 26.35: third accident.
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(g) t = 26.8: second and third accident removed.
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(h) t = 29.35: fourth accident.

Figure 1. β = 0.
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Regarding 1. The flow F p,s,c(x, ρ) exactly describes the combination of density, i.e., car distances,
and space-dependent velocities such that at places with high capacity and where ρ = ρ∗ the probability
of an accident can be assumed to be the highest. This idea corresponds to a probability capturing
random accidents caused by human failures solely (i.e., excluding tailbacks). If the velocity function
v(ρ) is uniformly bounded for ρ ∈ [0, 1], the normalizing constant

CF :=
∫
R

F p,s,c(x, ρ(x))dx ≤ ‖a‖∞‖v‖∞

∫
R

ρ(x)dx

is finite and we can define the family of probability measures

µF
p,s,c,ρ(B) =

∫
B

1
CF

F p,s,c(x, ρ(x))dx (2.3)

for ρ ∈ BV(R) and B ∈ B(R), where the latter denotes the Borel σ-algebra on R. Here, we assume
‖ρ0‖1 > 0 then it follows CF , 0 by assumptions on F p,s,c. The probability measure µF

p,s,c,ρ exactly
describes the probability distribution of the position of an accident caused by the flows, see the
motivating example 2.3.

Regarding 2.: In 1. only the information of the flow is used to specify the probability of the position
of an accident. Here, we incorporate the fact that at ends of tailbacks the probability of an accident
is much higher, i.e., if the derivative of ρ is positive. Generally, for ρ ∈ L1(R) we can not assign a
proper derivative Dρ but if ρ ∈ BV(R) we can argue as follows: on the one hand, a classical derivative
of ρ ∈ BV(R) does not exist but on the other hand, the derivative of ρ corresponds to a signed Radon
measure Dρ by a consequence of Riesz representation theorem. Furthermore, it holds for ρ ∈ L1(R)
that

TV(ρ) = sup
{∫
R

ρ(x)φ′(x)dx : φ ∈ C1
c (R), |φ| ≤ 1

}
= |Dρ|,

where |Dρ| is the total variation of the measure Dρ and is given by

|Dρ| = Dρ+(R) + Dρ−(R).

In the latter equation we used the Hahn decomposition, i.e., there exists a measurable set B̃ ∈ B(R)
such that ρ+(B) = Dρ(B∩E) ≥ 0 and ρ−(B) = −Dρ(B∩ (R \E)) ≥ 0 satisfy Dρ(B) = Dρ+(B)−Dρ−(B)
for every B ∈ B(R). For further details, we refer the reader to [28–31].

To clarify this approach, we consider the density situation given in Figure 1(b). In this case, we
obtain

Dρ+ = 0.2 · ε−4 + 0.4 · ε−3 + 0.4 · ε−2 + 0.4 · ε1 + 0.3 · ε2,

Dρ− = 0.7 · ε−1 + 0.2 · ε0 + 0.6 · ε3 + 0.2 · ε4,

where εz denotes the Dirac measure with unit mass in z. We see directly that TV(ρ) = Dρ+(R)+Dρ−(R).
If we normalize Dρ+ by Dρ+(R), we obtain a discrete probability distribution which support consists
of the places, where a jump from low to high density is observed and the positions are related to a
probability proportional to the height of the jump. This probability distribution incorporates both, the
position and the fact that a higher speed difference from high to low determines the probability of an
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accident. The jump height in the density is directly correlated to the speed since v′(ρ) < 0. Therefore,
a natural probability measure for ρ ∈ BV(R) to describe positions of potential accidents caused by
increasing densities is then given by

µD
ρ (B) =

Dρ+(B)
Dρ+(R)

,

for every B ∈ B(R) provided Dρ+(R) > 0.
Summarizing, we define

µpos
p,s,c,ρ(B) = βµF

p,s,c,ρ(B) + (1 − β)µD
ρ (B) (2.4)

for some fixed β ∈ [0, 1]. That means, if β = 1, the influence of increasing densities is neglected (end
of tailbacks) and if β = 0, only the latter effect is incorporated. The case Dρ+(R) = 0 means that there
is no increasing part in the function ρ, which implies together with ρ ∈ L1(R) and TV(ρ) < ∞ that only
ρ = 0 can fulfill Dρ+(R) = 0.

We only have discussed the probability distribution for the position p of the accidents so far. We
assume that the size s follows the probability distribution µsize on (R,B(R)) and the capacity reduction
c follows µcap on ([0, 1),B([0, 1))).

Remark 2.4. One could also include a dependence of the distributions µsize, µcap on ρ. We keep these
distributions independent of ρ here, since it is not obvious how a functional dependence may look like
and if it is really the case in traffic flow.

In a natural way, we collect the details using the product space

E = R × R × [0, 1) × BV(R)

with norm
‖y‖E = |p| + |s| + |c| + ‖ρ‖L1(R) + TV(ρ),

for y = (p, s, c, ρ) ∈ E to define a Banach space E. Furthermore, we denote by E = σ(E) the smallest
σ-algebra generated by the open sets induced by the norm ‖ · ‖E. Finally, we define for every y ∈ E and
every B ∈ E the product measure

η(y, B) = µpos
y ⊗ µsize ⊗ µcap ⊗ ερ(B),

where we recover that εz is the Dirac measure with unit mass in z. Since η(y, B) describes the transition
from no accident to one accident, we expect η to be a kernel as the following lemma shows.

Lemma 2.5. Let (p, s, c) 7→
∫
R

ca(x, p, s, c)dx be continuous. Then η defines a Markovian kernel on
(E,E), which additionally satisfies η(y, {y}) = 0 for every y ∈ E if either µsize({s}) = 0 for all s or
µcap({c}) = 0 for all c ∈ [0, 1).

Proof. Let y ∈ E, then by definition of η(y, ·), the mapping B 7→ η(y, B) ≥ 0 is a measure. Since
E = R × R × [0, 1) × BV(R) ∈ E and by utilizing the definition of a product measure, we have

η(y, E) = µpos
y (R) · µsize(R) · µcap([0, 1)) · ερ(BV(R)) = 1.
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In the same manner, we have

η(y, {y}) = µp
ρ({p}) · µsize({s}) · µcap({c}) · ερ({ρ}) = µp

ρ({p}) · µsize({s}) · µcap({c}) = 0

since either µsize({s}) = 0 for all s or µcap({c}) = 0 for all c ∈ [0, 1) by assumption.
Given a set B ∈ E, the mapping y 7→ η(y, B) is measurable if y 7→ µ

pos
y is measurable since ερ is

measurable in ρ. It remains to show that ρ 7→ µ
p
ρ is measurable. For every B ∈ B(R) one verifies for

ρ , 0 that

0 < µF
p,s,c,ρ(B) ≤ 1, 0 < µD

ρ (B) ≤ 1.

Take y = (p, s, c, ρ), ỹ = ( p̃, s̃, c̃, ρ̃) ∈ E, satisfying ρ, ρ̃ , 0. We deduce

|µF
y (B) − µF

ỹ (B)| ≤
2

‖F p,s,c(·, ρ(·))‖1

(
‖F p,s,c(·, ρ(·)) − F p̃,s̃,c̃(·, ρ̃(·))‖1

)
≤

2
‖F p,s,c(·, ρ(·))‖1

(‖cr‖∞‖v‖∞‖ρ‖1‖ca(·, p, s, c) − ca(·, p̃, s̃, c̃)‖1

+ ‖ f ′‖∞‖cr‖∞‖ρ − ρ̃‖1).

We also have

|µD
ρ (B) − µD

ρ̃ (B)| ≤
1

Dρ+(R)
(|Dρ+(B) − Dρ̃+(B)| + |Dρ+(R) − Dρ̃+(R)|)

≤
1

Dρ+(R)
TV(ρ − ρ̃).

Hence, the mapping y 7→ µ
pos
y (B) is continuous and therefore measurable. �

So far, we only have specified the probability distribution of a jump in the case that a jump occurs.
To construct the time of a jump, or accident, we additionally need information about how likely a jump
at time t is. This can be done with rate functions and is based on the ideas of a marked point process,
or, deterministic Markov processes, see [17, 18]. Let ψ(y) > 0 be the traffic accident rate for a given
state y of the system. The normalization coefficient CF = CF(ρ) maps the state of the system to a
specific value. From the definition of CF , we know that it is the total flux, which is in fact positive
correlated to the accident probability, i.e., a higher flux implies a higher accident probability and vice
versa. Analogously, Dρ+(R) is positive correlated to the accident probability since a higher number of
tailbacks and higher increases in jumps increase the probability of an accident at tailbacks. Hence, a
possible choice for a rate function ψ : E → (0,∞) is given by

ψ(y) = λFCF(ρ) + λDDρ+(R),

where λF , λD > 0 scale the influence of accidents caused by high fluxes and ends of tailbacks,
respectively. For fixed y = (p, s, c, ρ) ∈ E, the rate ψ(y) is finite. More precisely, if ρ̄(x, t) is a weak
entropy solution to the IVP (2.1), then for a(x) = ca(x, p, s, c)cr(x) it holds that
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λFCF(ρ̄(t)) + λDD(ρ̄(t))+(R)

≤ λF‖a‖∞‖v‖∞

∫
R

ρ0(x)dx + λD TV(ρ(t))

≤ λF‖a‖∞‖v‖∞‖ρ‖1 + λDC(T, ‖a‖∞, ‖a′‖∞, ‖a′′‖1, ‖ f ‖∞, ‖ f ′‖∞,TV(ρ))
=: λ̄(y).

We have to keep in mind that for y = (p, s, c, ρ) ∈ E the values ‖a‖∞, ‖a′‖∞, ‖a′′‖1 might differ. We
know that ‖a‖∞ = 1 and a′′ = 0 for all x ∈ R \ I(p, s) by assumption. Hence, ‖a′′‖1 ≤ |I(p, s)|‖|a′′‖∞.
Therefore, we assume a ∈ C2(R), cf. Lemma 2.2.

Let φ : E → E be the deterministic evolution, i.e.,

φt((p0, s0, c0, ρ0)) = (p0, s0, c0, ρ(t)),

where ρ(t) is the unique weak entropy solution to the IVP (2.1) with initial datum ρ0 and the parameters
p0, s0, cmax = c0.

Let (Ui, i ∈ N) be a sequence of independent and identically distributed (i.i.d.) random variables
on some probability space (Ω,A, P) each having a uniform distribution on [0, 1]. Furthermore, let
(ξi, i ∈ N) be a sequence of i.i.d. exponentially distributed random variables on the same probability
space (Ω,A, P) and independent of (Ui, i ∈ N) and choose tn ∈ [0,T ], yn ∈ E. The following thinning
algorithm produces the next jump time Tn+1 and corresponding post jump location Yn+1.

Algorithm 1 Thinning algorithm
i = 1
si = tn + ξi

while Ui > ψ(φtn si(yn)) · (λ)−1 and si < T do
si+1 = si + ξi

i = i + 1
end while
Tn+1 = si

Generate Yn+1 ∼ η(φtn si(yn), ·)

One can show, see [19], that

P(Tn+1 ≤ t) = 1 − e−
∫ t

tn
ψ(φτ−tn (yn))dτ,

P(Yn+1 ∈ B|Tn+1 = t) = η(φt−tn(yn), B) (2.5)

for t ≥ tn and B ∈ E.
We set T0 = 0 and Y0 = (p0, s0, c0, ρ0) ∈ E and apply the thinning algorithm iteratively. In every

iteration we obtain a new upper bound λ̄ on the rates, which might increase but stays finite for finitely
many iterations. Let denote ((Tn,Yn), n ∈ N0) the constructed jump times and post-jump locations, then
we define the piecewise deterministic process (PDP) (X(t), t ∈ [0,T ]) as

X(t) = Yn ⇔ t ∈ [Tn,Tn+1).
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Remark 2.6.

1. The total variation bound on the solution is quite pessimistic for reasonable initial datum.
2. The total variation bound can be very large in small time intervals and the Algorithm 1 can not be

used efficiently to simulate the model.
3. We expect X being a Markov process but standard results, see [18] can not be applied since BV

is no Borel space and the existence of regular conditional distributions is not guaranteed.

Multiple accidents on roads. In order to implement multiple accidents in the model, we label
accidents and extend the state space as follows:

• positions are now given by ~p ∈ RN,
• sizes of the accidents are ~s ∈ RN,
• capacity reductions ~c ∈ [0, 1)N

and set

E = RN × RN × [0, 1)N × BV(R)

with the norm

‖y‖E = ‖~p‖l1 + ‖~s‖l1 + ‖~c‖l1 + ‖ρ‖L1(R) + TV(ρ).

Let λA > 0 be the rate of an accident and λR > 0 be the rate of resolving an accident. We define
m(~c) = min{i : ci = 0} and πi(z,~v) = (v1, . . . , vi−1, z, vi+1, . . . ) ∈ RN. A natural choice for the jump
distribution is then given by

η(y, B) =
1

λR
∑

i∈N 1ci>0 + λA

[
λR

∑
i∈N

1ci>0ε(~p,~s,πi(0,~c),ρ)(B)

+ λA

∫
R2×[0,1)

ε(πm(~c)( p̃,~p),πm(~c)(s̃,~s),πm(~c)(c̃,~c),ρ)(B)µpos
y ⊗ µsize ⊗ µcap(d(p̃, s̃, c̃))

]
. (2.6)

Here, µ
pos
y = βµF

y + (1 − β)µD
ρ , where µF

y (B) =
∫

B
1

CF
F~p,~s,~c(x, ρ(x))dx and

F~p,~s,~c(x, ρ) = cr(x) f (ρ)
∏

i∈N ca(x, pi, si, ci). The sum N(~c) =
∑

i∈N 1ci>0 corresponds to the number of
accidents and we see that B 7→ η(y, B) is a probability measure. Since πi and m are measurable
functions, the mapping y 7→ η(y, B) is measurable if again y 7→ µ

pos
y is measurable, see Lemma 2.5.

Since λA corresponds to the rate of an accident, we choose again

λA(y) = λFCF(ρ) + λDDρ+(R)

and

ψ(y) = λFCF(ρ) + λDDρ+(R) + λR

∑
i∈N

1ci>0.

The upper bound on the rate function is now given by

ψ(y) ≤ λF‖a‖∞‖v‖∞‖ρ0‖1 + λDC(T, ‖a‖∞, ‖a′‖∞, ‖a′′‖1, ‖ f ‖∞, ‖ f ′‖∞,TV(ρ0)) + λRN(~c),
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where a(x) = cr(x)
∏

i∈N ca(x, pi, si, ci), y = (~p, ~s, ~c, ρ(t)) and ρ(t) is the unique weak entropy solution
to (2.1).

We explain the choice of (2.6) by the following example. We consider two accidents with capacity
reduction ~c = (0.5, 0, 0.5, 0 . . . ), i.e., N(~c) = 2 and m(~c) = 2. We set B~p = R × Bp × R × · · · ∈ σ(RN),
B~s = R × Bs × R × · · · ∈ σ(RN) and B~c = Bc1 × Bc2 × Bc3 × R × · · · ∈ σ([0, 1)N). Then, we set
B = B~p × B~s × B~c × BV(R) and obtain

η(y, B) =
1

2λR + λA
[λR(ε0(Bc1) + ε0(Bc3)) + λAµ

p
ρ ⊗ µ

size ⊗ µcapBp × Bs × Bc2)].

This implies that the probability of resolving the first accident and no new accident, i.e., Bc1 = {0},
Bc3 = Bc2 = ∅, is given by

η(y, B) =
λR

2λR + λA
.

In the same manner we obtain the probability of having a new accident somewhere with some size and
no repairs, i.e., Bc1 = Bc3 = ∅, Bc2 = Bp = R and Bs = [0, 1),

η(y, B) =
λA

2λR + λA
.

Hence, if λA = λR, the probabilities are equal with value 1
3 .

3. Numerical treatment and computational results

The Cauchy problem (2.1) is numerically solved using the Lax-Friedrichs scheme with a temporal
step size ∆t > 0 and a fixed relation ∆t

∆x such that the scheme converges to the weak entropy solution ρ
of the Cauchy problem, cf. Lemma 2.2. We denote by

ρ0
i =

1
∆x

∫ xi+1/2

xi−2/1

ρ0(x)dx

the cell means of the initial datum ρ0 for xi = i∆x and i ∈ Z.
Since the position, size and capacity reduction stays constant between the jumps, we define the

discrete deterministic dynamics as

φ∆t
t (p0, s0, c0, ρ0) = (p0, s0, c0, ρ(t)),

where ρ0 is a piecewise constant function on [xi−1/2, xi+1/2) given by the cell means ρ0
i . Further, ρ(t) is

the piecewise constant function given by the numerical scheme with step size ∆t and a possibly smaller
last step size to reach exactly t.

Then, we approximate µF
y by

µ̄F
ȳ (B) =

∑
i∈Z

F~p,~s,~c(xi, ρi)
C̄F

∫
B
1[xi−1/2,xi+1/2)(x)dx
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and

C̄F =
∑
i∈Z

F p̄,s̄,c̄(xi, ρi)∆x.

Thanks to the piecewise constant cell averages, we enjoy an explicit representation of Dρ+ as

Dρ+ =
∑
i∈Z

(ρi − ρi−1)+εxi−1/2
and µ̄D

ρ =
Dρ+

Dρ+(R)
.

The discretized version of the rate function ψ(y) is then given by

ψ̄(y) = λFC̄F + λDDρ+(R) + λR

∑
i∈N

1ci>0.

In order to use Algorithm 1, we need a uniform upper bound on ψ̄ which will depend on the number
of accidents and grows exponentially due to the total variation bound in Lemma 2.2. In [32], less
restrictive bounds have been used to define an appropriate algorithm but the bounds propsed will also
depend on the exponential growth of the estimation of the total variation. We will introduce an
approximate scheme, where the jump times are not simulated exactly in the following. The idea is
based on the simulation algorithm introduced in [33], where an algorithm has been proposed to
approximate a continuous-time Markov Chain.

The probability that an accident occurs at a time Tn+1, which is before Tn + ∆t is given by

P(Tn+1 ≤ Tn + ∆t) = 1 − e
∫ Tn+∆t

Tn
ψ(φτ−Tn (Yn)dτ)

= ∆tψ(Yn) + o(∆t) (3.1)

as ∆t → 0. This is true since t 7→ ψ(φt(Yn)) is Lipschitz continuous by using Lemma 2.2 and the
properties of CF , i.e.,

|ψ(φt(Yn)) − ψ(φt̃(Yn))| ≤ C(‖ρ(t) − ρ(t̃)‖1 + TV(ρ(t)) − TV(ρ(t̃))) ≤ C̃|t − t̃|.

Equation (3.1) motivates the following algorithm to approximate the next jump time T a
n+1.

Algorithm 2 Approximate algorithm jump times

i = 1, y = Yn, tloc = Tn, ∆t = min{∆tre f ,
%

ψ(y) ,T − tloc}

while Ui > ∆tψ(y) and tloc < T do
tloc := tloc + ∆t
y := φ∆t(y)
∆t := min{∆tre f ,

%

ψ(y) ,T − tloc}

i := i + 1
end while
T a

n+1 = tloc + ∆t
y := φ∆t(y)
Generate Yn+1 ∼ η(y, ·)

The parameters % ∈ (0, 1], ∆tre f > 0 are user-defined and (Ui, i ∈ N) is a sequence of i.i.d. uniformly
distributed random variables. The parameter ∆tre f allows to control the accuracy of the algorithm as
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the reference step size and % is the acceptance ratio in the case that ∆tre f and T are large. We see that
Algorithm 2 uses an adaptive step size, where the adaptivity is incorporated by the current value of the
rate function ψ(y). We do not need any uniform bound, which is the obvious advantage and reduces
the computational costs. Note that the exact solution operator φ has to be replaced by the discrete one
in numerical implementations.

It remains to introduce the simulation procedure in the case that an accident happens or an accident
does not cause capacity drop anymore, i.e., the simulation of η(y, ·). The highest index i, where ci > 0
and ci = 0 corresponds exactly to N(~c) by construction if we start with c j > 0 for j = 1, . . . ,N(~c)
and c j = 0 for j > N(~c). One can use the well-known composition method, i.e., the distribution is a
weighted sum of distributions, and we obtain the following procedure:

1. Choose whether an accident happens Z1 = 1 or an accident is resolved Z1 = 0 by a Bernoulli
distributed random variable with P(Z1 = 1) = λA

λRN(~c)+λA
.

2. • Case Z1 = 1: Choose independently a position pN(~c)+1 according to the law µ
pos
y , a size sN(~c)+1

according to µsize and cN(~c)+1 ∼ µ
cap the corresponding capacity drop.

• Case Z1 = 0: Choose a uniformly distributed index on {1, . . . ,N(~c)} to indicate which
accident got removed.

Simulating the new position is straightforward since i is picked according to∑
i∈Z

F(xi, ρi)
C̄F

εxi

and then the position within cell i as a uniform distribution on [xi−1/2, xi+1/2).

3.1. Simulation results

We assume a bounded road [−L, L] ⊂ R in the following with periodic boundary conditions
ρ(−L, t) = ρ(L, t) for (2.1) to avoid difficulties with boundary treatment. We assume possibly different
road capacities on [−L, L], i.e., let

c̃road(x) =

M−1∑
m=0

cm,road1[xm,xm+1)

for −L = x0 < x1 < · · · xM = L with cm ≥ c for m = 0, . . .M − 1 and c0 = cM−1. The latter condition
avoids a discontinuity for the periodic boundary conditions and implies that cars leaving at x = L enter
in the same manner at x = −L again. Since we need enough regularity on cr to apply the total variation
bound on the solution of (2.1), we use a mollifier Mε with support [−ε, ε] and

∫
R

Mε(x)dx = 1. Then,
cr(x) = c̃road ∗ Mε(x) =

∫
R

c̃road(y)Mε(x − y)dy ∈ C∞ and | supp(c′′r )| ≤ 2εM.
We use the same ideas for the capacity reduction and define c̃a(x, p, s, c) = 1 − c1(p− s

2 ,p+ s
2 )(x) for

p ∈ [−L, L], s ∈ (−L, L) and c ∈ [0, 1− cmin]. By defining ca(x, p, s, c) = c̃a(·, p, s, c) ∗Mε(x), and using
a(x) = cr(x)

∏
i∈N ca(x, pi, si, ci), we deduce

a, a′ ∈ L∞(R), a′, a′′ ∈ L1(R)

as required.
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Remark 3.1. We face only finitely many accidents P-a.s. such that the infinite product in a can be
represented by a finite product. Therefore, the differentiation of a can be understood in the classical
sense.

The first example is devoted to the understanding of the dynamics of the LWR model with
accidents derived in the previous sections. We are interested whether the modeling ideas can be also
observed in computational experiments. The data we use is as follows: a time horizon T = 60, a
spatial discretization ∆x = 1

50 of [−10, 10] and ∆tre f = 1
20 . The initial density is chosen constant as

ρ0(x) = 0.4 and the LWR flux is given by f (ρ) = ρ(1 − ρ). We assume a road capacity given by the
non-smooth version as

c̃road(x) = 7 − 21[0,5](x),

which implies a capacity reduction on [0, 5] caused by e.g., roads under constructions. To incorporate
capacity drops caused by accidents, we use the function

c̃a(x, p, s, c) = 1 − c1[p− s
2 ,p+ s

2 ](x).

In numerical investigations, we have recovered that smoothing the latter functions does not significantly
change the results for a fixed spatial step size ∆x and ε < ∆x

2 , which reduces the computational costs
significantly. For the stochastic part, we use λR = 1

2 , λD = 1
10 , λF = 1

105 and assume

µsize =
1

0.8
1[0.2,1](x)dx, µcap =

1
2

(ε0.5 + ε0.99), (3.2)

as well as % = 1.
A first insight into the behavior of the model. Having all the parameters at hand, except β from

Eq (2.4), we can get first insights into the behavior of the model using numerical simulations for
varying β. The latter parameter describes the influence of the current flux on the position of possible
accidents, see (2.3).

Figure 6 shows the traffic density (black bold line) for different points in time and using only the
information of Dρ+ to determine the position of an accident, i.e., β = 0. The rectangles in the figures
indicate the range of the road affected by an accident, where a bright color corresponds to a capacity
drop of 0.99 and the other color of 0.5, see µcap in (3.2). Since the initial distribution is constant with
a value of 0.4, we draw the density at the first time at which an accident happens in Figure 6(a). Due
to a spatial inhomogeneous road capacity cr(x), the initial density profile changed to a non-constant
equilibrium traffic density. As we would expect, the accident happens at the incresaing part of the
density, i.e., at the end of the traffic jam, with a road capacity reduction of 0.99. At this position
a traffic jam occurs until the accident is removed, see Figure 6(b). The traffic density relaxes to an
equilibrium density again and the second accident happens at the end of the traffic jam as Figure 6(c)
indicates. Again a capacity reduction of 0.99 has been randomly chosen and a third accident occurs
right after the second accident. The latter can be seen in Figure 1(f), which shows the traffic density at
the time, where the second accident gets resolved.

At the time, where both accidents are resolved, see Figure 1(g), we see the high impact of the
previous accidents on the density, which does not reach the equilibrium state until the next accident
occurs as Figure 1(h) shows. Again, the position of the accident is at an increasing part of the density.
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Altogether, we see that our model is able to map the ideas of accidents at places with an increasing
density and the numerical solutions look very confident using the CFL condition with equality.

In the following, we discuss simulation results using the parameter β = 0.5 shown in Figure 2.
We face an approximately equilibrium density at the time of a first accident again, see Figure 2(a).
Here, the accident occurs close to the position zero, which is not an increasing part of the density. The
accident is therefore created by the flux, which is uniform on the interval [-10,10] while the density is
close to equilibrium.
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(a) t = 7.4: first accident.
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(b) t = 8.35: second accident.
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(c) t = 9.95: third accident and first accident removed.
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(d) t = 10.5: fourth accident within second accident.

Figure 2. β = 0.5.

Figure 3 shows a sample path of the model with β = 1, i.e., only flux information is used to
determine the position of an accident. We observe in Figure 3(a)–3(b) an accident at densities, which
are close to ρ∗ = 0.5 here, which is exactly what we would expect as the flux f without spatial capacity
restrictions is maximal there. The third and fourth accident occur at places with the maximal road
capacity, i.e., not in [0, 5].

In summary, we recover the modeling ideas in the simulation results again. More precisely, for
β = 0 we only have accidents at positions with an increasing density profile and in the case β = 1, the
flux determines the position of the traffic accidents.

As Figure 2(b) shows, the second accident happens at the traffic jam end. After the first accident
has been removed, a third accident occurs and Figure 2(c) shows the traffic density at the time right
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before the fourth accident occurs. The fourth accident is inside the area of the second accident and
has a small size of impact, see Figure 2(d). The latter accident occurred at this position since the flux
around ρ = 0.5 is the most highest and we are not in a stationary state.

Numerical verification of the approximate scheme. In order to verify numerically that the
approximate algorithm works well, we study the distribution of the first jump time, i.e., the first time
of an accident. Formula (2.5) exactly describes the cumulative distribution function (CDF), which can
be approximated using the Lax-Friedrichs scheme to approximate φ. Using the left-sided rectangular
rule to approximate

∫ t

0
ψ(φτ(y0))dτ and the Matlab function ecdf∗ to compute the empirical

cumulative distribution function (ECDF) yields the results shown in Figure 4 computed by using 104

samples of the first accident time T a
1 .

First of all, we observe a very good fitting of the CDF by the ECDF computed with the
approximation Algorithm 2. This implies that the corresponding probability distributions are close (in
the weak sense). Furthermore, we observe that the parameter β has no significant influence on the
shape or values of the CDF as Figures 4(a) and 4(b) show.
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(a) t = 1.8: first accident.
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(b) t = 4.45: second accident.
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(c) t = 8.15: third accident.
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(d) t = 13.15: fourth accident.

Figure 3. β = 1.

∗Documentation: https://de.mathworks.com/help/stats/ecdf.html, 2019
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(a) β = 0. (b) β = 0.5.

Figure 4. ECDF of the first accident time T a
1 compared with the CDF for T1 in (2.5).

In order to compare a histogram generated by the approximation procedure with the exact
probability density function (pdf) g(t), we can differentiate (2.5) and obtain
g(t) = ψ(φt(y0))e−

∫ t
0 ψ(φτ(y0))dτ. Figure 5 shows a histogram of samples of T a

1 and the theoretical result
g(t). We observe a good agreement between both quantities again, also independent of the choice of β.

Finally, we discuss the distribution of the first accident’s position. Figure 5 shows the histogram of
samples of the first accident’s position, where we distinguish the cases β = 0 and β = 0.5 again. In both
cases, the probability having an accident at position x = −4 is the most highest, which corresponds
to the congestion end in the stationary traffic profile, see Figure 6(c) for example. One significant
difference between β = 0 and β = 0.5 can be observed for x ∈ [0, 5], where in the case of β = 0, i.e.,
no flux information, no accident happens.

In contrast, for β = 0.5, there is a strictly positive probability having an accident in this interval,
which is clear since the stationary value of ρ is approximately at the maximal flow, i.e., at 0.5.

Impact of boundary conditions. In the following, we pose a different type of boundary conditions,
i.e., we assume an inflow condition at the left boundary and a homogeneous Neumann boundary
condition at the right boundary. We have to keep in mind that the inflow Gin(t) at the left boundary xl

can be posed only at times where f ′(ρ(xl), t) > 0, i.e., information can enter into the road segment.
Otherwise, we also use homogeneous Neumann boundary conditions at xl. We use the same
parameters and functions as in the latter numerical investigations and discuss the influence of Gin(t)
on the model. If we have no accident, the road capacity is given by the bottleneck minx cr(x) f (ρ∗) = 5

4
in our setting.

Figure 6 shows a simulation result with an inflow Gin(t) = 15
16 <

5
4 being below the capacity of the

road segment. Since β = 0, we have accidents at tailbacks only. In Figure 7, an inflow Gin(t) = 5
4 is

assumed leading to more distinctive traffic jams than the inflow before. Accidents are consequently
more likely at positions which are further to the left of the bottleneck compared to the previous case.
In Figure 7(c), we have an accident right left close to the boundary such that the inflow has not been
assigned due to f ′ ≤ 0 at this place. After this accident has been resolved, the inflow is again obtained
as one can see in Figure 7(d).

To conclude, the numerical simulations inherit the ideas for the stochastic traffic flow model and the
numerical results are convincing.
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(a) β = 0. (b) β = 0.5.

Figure 5. Histograms of T a
1 (first row) and of the first accident’s position (second row).
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(a) t = 1.25: first accident.
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(b) t = 4.6: second accident.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) t = 15.9: third accident.
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(d) t = 16.6: fourth accident.

Figure 6. Gin(t) = 15
16 , β = 0.
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(a) t = 0.35: first accident.
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(b) t = 5.8: second accident.
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(c) t = 7.2: third accident.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) t = 18.35: fourth accident.

Figure 7. Gin(t) = 5
4 , β = 0.

4. Conclusion

We successfully have derived a stochastic traffic flow model capturing random traffic accidents.
Furthermore, a tailored numerical approximation scheme has been introduced, which also has been
validated in numerical simulation examples.

The stochastic traffic flow model allows for road capacity planning and controlling variable speed
limit systems in such a way that traffic accidents are rarely events, which might be future research.
Additionally, the derivation from a microscopic model and the extension to a second order traffic
models and networks can be considered.
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