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Abstract

Auctions with endogenous rationing have been introduced to stimulate competition.

Such (procurement) auctions reduce the volume put out to tender when compe-

tition is low. This paper finds a strong negative effect of endogenous rationing

on participation when bid-preparation is costly, counteracting the aim to stimulate

competition. For multiple auctioneer’s objectives mentioned in directives, we derive

optimal mechanisms, which differ due to different evaluation of the tradeoff between

participation and bid-preparation costs. Thus, the auctioneer needs to decide on an

objective. However, reducing bid-preparation costs improves the optimal values of

multiple objective functions.

Keywords: auction, participation, market design, optimal mechanism, renewable

energy support

JEL: D82, Q48, D47, D44

1. Introduction

A specter is haunting the world of auctions, especially in the energy sector – the

specter of endogenous rationing. In multi-unit auctions with endogenous rationing,

bids do not only determine the prices but also the auction volume, i.e., how much is

auctioned. This paper analyzes multi-unit procurement auctions with endogenous

rationing in an environment of costly participation and single-unit supply. Addition-

ally, we derive optimal mechanisms for different auctioneer’s objectives that have

been announced in markets in which auctions with endogenous rationing are used.

Procurement auctions find a growing number of applications throughout differ-

ent fields in both industry and public procurement. Since the auctioneer buys goods

∗We thank members of the German Ministry for Economic Affairs and Energy, Department
III B 5, Renewable Energies in the Power Supply System, as well as Silvana Tiedemann and
members of the AURES II consortium for helpful discussions.
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or services, it is vital to ensure the offers’ quality or seriousness. The auctioneer

therefore often requests a certain kind of project preparation as a requirement for

participation. To fulfill these requirements, bidders have to undertake costly mea-

sures, i.e., firms have to invest in their project even before they know whether they

can actually realize it.1 We call these costs bid-preparation costs. Only firms whose

expected profit from the auction covers their bid-preparation costs will participate

in the auction.

A worldwide large and growing field of application of multi-unit auctions with

costly bid-preparation are auctions for renewable energy support, whose yearly total

award prices reach a twelve-figure dollar amount.2 In these auctions, bid-preparation

costs play an essential role and are substantial. They mainly arise because bidders

have to meet physical requirements by submitting a (partial) approval for building

a plant on a specific site (Wigand et al., 2016; Mora et al., 2017). For onshore wind

projects, the costs of the physical requirements are between two and ten percent of

the invested amount (Wallasch et al., 2015; Quentin, 2015; Kitzing and Wendring,

2016). The field of auctions for renewable energy support became very large and

is still growing because, for example, the State Aid Guidelines of the European

Commission (2014) make auctions obligatory for all new support schemes for which

member states wish to obtain state aid approval. To achieve the ambitious develop-

ment goals for renewable energy, the auctioned volumes must increase.3 However,

this demand for new renewable energy sites requires a correspondingly high supply.

Since May 2018, the auctions for onshore wind in Germany experienced either an

under-subscription or a narrow over-subscription (BNetzA, 2019). Similar trends

can be seen in other countries such as Brazil and France (Robert and Simon, 2019).

Due to the lack of competition in these auctions, (almost) all submitted bids were

successful and prices increased to the level of the reserve price. This development

questions the use of auctions. They were introduced to provide support at market-

1Typically, the required measures are also necessary for realizing a project. Such measures are
for example the development of a prototype in the industry sector or the collection of construction
permits in the building sector.

2Worldwide, an estimated total capacity of 111 gigawatt of renewable energy was auctioned in
2017–2018 (IRENA, 2019). For estimating the monetary value, we set an average price of USD
50 per MWh, an average duration of support of 20 years, and an average of 2000 full load hours
per year (mix of different renewable energy sources). This leads to a monetary value of USD 222
billion in 2017–2018.

3Transforming the world’s energy systems toward affordable and clean energy is one of the
sustainable development goals that all United Nations Member States adopted in 2015 (United
Nations, 2015). One of the main measures to achieve this goal is to increase the share of renewable
energy in the energy mix. For example, Germany plans to increase the share of renewable energy
in the gross power consumption to 65% by 2030 (BReg, 2019a).
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based payments, to allocate support efficiently, and to learn about the cost develop-

ment in a competitive environment of renewable energy production. However, now

the concern arises that in future auctions all participating projects’ support will be

equal to the reserve price, although the costs are lower and there is a belief that

more projects with lower costs would be feasible.

Auctions with endogenous rationing have been suggested as a solution to the

problems of low competition and high auction prices (IRENA, 2015; Müller, 2018;

BReg, 2019b). Endogenous rationing means that the auction volume is adapted

to the observed supply according to pre-specified rules. It is supposed to generate

competition and, thus, keep prices low by preventing that all bidders win even if

the number of bids is below the number of goods. Two concepts of endogenous

rationing are in the focus: auctions with endogenous volume adaption and auctions

with endogenous reserve price.

In auctions with endogenous volume, the final auction volume is reduced below

the original auction volume if the number of bids is low. For example, the auction

may stipulate that only a pre-announced share (e.g., 80 %) of the original auction

volume will be awarded to bidders if the total bid volume does not exceed the origi-

nal auction volume. In this case, the highest 20 % of bids will not win. This kind of

rationing will be applied for example in Germany (BReg, 2019b), France (Ministre

de l’Europe, 2018), and Ukraine (Legislation of Ukraine, 2019). Similar measures

are applied in Brazil (IRENA, 2015), Greece (Papachristou et al., 2017), Kaza-

khstan (Abylkairova, 2018), Mexico (Jiménez, 2016), and Switzerland (Bundesamt

für Energie, 2019).

In the second approach – the auction with endogenous reserve price – the sub-

mitted bids determine a reserve price below the original reserve price. Only bids

below the endogenous reserve price are successful. Variations differ in the way the

bids determine the endogenous reserve price, e.g., by the bids’ mean or median.

Endogenous reserve prices are applied in France (Ministre de l’Europe, 2019) and

Peru (Comité, 2015).

Our analysis applies to markets in which preparing a bid is costly. A firm par-

ticipates in the auction only if her expected profit from the auction exceeds the

bid-preparation costs. Introducing endogenous rationing hits exactly this sensitive

point of an auction with costly bid preparation. By ensuring that there will always

be at least one losing bidder – the property that motivates its application – endoge-

nous rationing removes any participation incentive for the weakest bidder, causing

any bidder that expects to be the weakest participant to stay out. As a result, there

may be no participation incentive for any firm.
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Our theoretical analysis reveals that endogenous rationing has a strong negative

effect on participation. Whereas many countries discuss or decided to introduce

endogenous rationing, there is little experience with it because it has not yet been

implemented or applied repeatedly or the data are not available. An example of

an auction with endogenous volume adaption that has been conducted for several

years is the auction for the support of energy efficiency projects and programs in

Switzerland (Bundesamt für Energie, 2019). This auction indeed experienced a

relative decrease in the bid volume after the introduction of the rationing rule.

Proponents of endogenous rationing posit that it ensures against undesirable

extreme auction outcomes. In the context of renewable energy auctions the desire

for such insurance may originate in the following two facts. First, the heterogenous

community of political decision makers pursues multiple objectives such as maximiz-

ing social welfare and minimizing costs at the same time. Second, the social value

of renewable energy plants is not clearly defined.4 In Section 4, we define the four

most prevalent objectives for procurement auctions and derive for each objective

the optimal mechanism. The optimal mechanisms for the two common objectives

to maximize the auctioneer’s surplus or social welfare can each be implemented in

two ways. One design is an auction with an optimal reserve price. In the other

design, all participants are paid their bid-preparation costs for participating in an

auction with a (lower) reserve price. Both designs incentivize the same participation

in the auction. This participation differs from the participation in auctions with en-

dogenous rationing, which therefore are not optimal with respect to these two main

objectives.

The fact that it is optimal to (implicitly or explicitly) refund the bid-preparation

4 Kreiss et al. (2019) point out that the State Aid Guidelines of the European Commission
(2014), which are the superior directive for the support of renewable energies in the European
Union, stipulate related but different goals. Their prioritization is however unclear. Among these
goals are the minimization of the support payments and the minimization of the overall costs to
achieve the renewables expansion goals. The ambiguity between these two goals is also found in
the German law (BReg, 2017). The minimization of the support payments is stipulated, e.g., in the
Netherlands and the United Kingdom, and also proposed for developing countries, in some cases as
stand-alone objective without referring to the expansion goal. The minimization of the overall costs
to achieve the expansion goal is stated, e.g., in California (US) and Mexico (Kreiss et al., 2019;
IRENA, 2013). Minimizing the overall (social) costs is related to maximizing the social welfare,
which is also a goal in national laws (e.g., BMU, 2016; BReg, 2017; Kazakh Government, 2009).
Implementing this goal requires determining a monetary value of renewable energy, which, however,
is missing in the laws and directives. The maximization of the consumer surplus or low prices for
the customers are also postulated (e.g., BMU, 2016; IRENA, 2013; Hochberg and Poudineh, 2018;
Kreiss et al., 2019). A further goal is to achieve the targeted expansion of renewable energy,
which implies meeting the demand in the renewable energy auctions. This goal is stated, e.g., in
Germany, Kazakhstan, Brazil, Mexico, and also proposed for developing countries (BReg, 2017;
Kazakh Government, 2009; Hochberg and Poudineh, 2018; IRENA, 2013).
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costs emphasizes their influence on the market outcome. Indeed, we find that low-

ering the bid-preparation costs increases competition and improves the auctioneer’s

surplus and social welfare. In the context of renewable energy auctions, current

press reports and governmental statements suggest that lower bid-preparation costs

can be achieved by simplifying preparation procedures and by taking measures to

reduce the number of legal disputes that delay or prevent projects.

This paper is related to the literature on sales auctions with variable supply

and to the literature on auctions with bid-preparation costs. Several works analyze

auctions with variable supply whereas, to the best of our knowledge, we are the

first to analyze auctions with endogenous rationing. Damianov and Becker (2010)

analyze sales auctions with variable supply, in which the monopolistic seller chooses

an optimal auction volume given the bids. This models a practice commonly applied

in treasury auctions, in which the auction volume or the rule to determine the auction

volume is not fixed before the auction (Nyborg et al., 2002). This practice originates

in the wish to avoid low-price equilibria. Since bidders in treasury auctions have

multi-unit demand and are allowed to submit non-increasing demand functions, they

have an incentive to coordinate on low-price equilibria by strategically reducing their

demand. Damianov (2005) and Damianov and Becker (2010) show that the seller

can eliminate low-price equilibria by adjusting the supply to the demand.

There are crucial differences between treasury auctions and auctions for renew-

able energy support as well as between the ex-post supply adjustment and endoge-

nous rationing as analyzed in this paper. Supply adjustment and endogenous ra-

tioning differ in that supply adjustment permits that all bids are successful whereas

the motivation for endogenous rationing is to assure that there is at least one losing

bid. In particular, in a price-discriminatory (pay-as-bid) auction with supply ad-

justment an optimizing monopsonist would accept all bids below his constant item

value. In contrast to auctions for renewable energy support, treasury auctions are

offered frequently, some even on a daily basis. Bidders repeatedly demand multiple

units of the good and their bid-preparation costs are insignificant. In renewable

energy auctions and other procurement auctions, projects are awarded that will be

realized exactly once, most of the bidders participate with only one project,5 and

their bid-preparation costs are crucial. There is often only one or very few chances

for a bidder to win.6

5The percentage of single-project bidders in renewable energy auctions is often above 90%
(BNetzA, 2019). One reason is that usually for each project a legally independent project company
is founded.

6Renewable energy auctions usually take place at most a few times a year and re-participation
entails further costs due to, e.g., rescheduling of the project or renewal of permissions.
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Several works investigate standard auctions with bid-preparation costs and vol-

untary participation in single-unit settings where bidders learn their private infor-

mation before deciding on participation. Stegemann (1996) shows payoff equivalence

of the symmetric equilibria of the second-price auction and the pay-as-bid auction.

He, as well as Tan and Yilankaya (2006) and Celik and Yilankaya (2009) also analyze

asymmetric equilibria and asymmetric mechanisms whereas our analysis focuses on

symmetric equilibria in symmetric mechanisms. Samuelson (1985) derives the so-

cially optimal reserve price and the auctioneer’s surplus-maximizing reserve price.

Li and Zheng (2009) find empirical evidence for predictions of the model, for ex-

ample, a lower entry probability of bidders when the number of potential bidders

increases. Menezes and Monteiro (2000) derive an optimal (revenue-maximizing)

sales mechanism. Their optimal mechanism, translated into a procurement setting,

refunds the bid-preparation costs to all participating bidders and conducts a second-

price auction with a reserve price equal to the highest costs of a participant, the

cutoff type. We contribute to this literature by extending the analysis to multi-unit

auctions and by providing a unifying view. Our results imply that the auction with

surplus-maximizing reserve price by Samuelson (1985) implements the same optimal

mechanism as the one by Menezes and Monteiro (2000) and that Samuelson’s so-

cially optimal reserve price is one way to implement the socially optimal symmetric

mechanism.

2. Basic Model

We consider a multi-unit procurement auction for k units of a good, k ≥ 1. The

set of potential bidders consists of n risk-neutral firms each with single-unit supply,

n ≥ 1. We consider both n ≤ k and n > k because endogenous rationing has

been suggested in particular for auctions with low or even no competition. Firms

are symmetric and have independent private costs for supplying the good. The

firms’ private costs x1, x2, . . . , xn are independently drawn from the distribution F

with density f and full support on [x, x], 0 ≤ x < x̄. Let x = (x1, x2, . . . , xn) and

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn). Furthermore, let F(k,n) denote the distribution

function of the k-th lowest of n independent signals and let X(k,n) denote the asso-

ciated random variable. Thus, F(k,n−1) =
∑n−1

i=k

(
n−1
i

)
F (x)i(1− F (x))n−1−i if n > k,

and we define F(k,n−1) = 0 if n ≤ k.

Our model of a multi-unit procurement auction follows the approach of Samuel-

son (1985) for a single-unit procurement auction. Firms simultaneously decide on

their participation in the auction and on their bidding strategy. The bidding strat-

egy is relevant only if the firm participates because only participating firms can bid
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and win in the auction. We consider only pure strategies. Let m denote the number

of firms that participate in the auction. Clearly, m ≤ n.

To participate in the auction, each firm has to incur bid-preparation costs c > 0,

e.g., to meet qualification requirements set by the auctioneer. These are sunk costs

for the firms when the auction starts and they are not paid to the auctioneer. A

firm knows c and her private costs xi when she decides about her participation. If

firm i participates in the auction, she has an expected profit π(xi) from the auction.

Her profit from the auction is p − xi if she wins a good at the payment p and is

zero, otherwise. Firm i aims to maximize her expected payoff Π(xi) from the game,

where Π(xi) = π(xi)− c if she participates in the auction and Π(xi) = 0 if she does

not participate.

Our analysis, which comprises many multi-unit procurement auction formats,

assumes the following properties:

(P1) The n firms simultaneously decide whether or not to participate in the auction

and commit to a bid if they participate. Thus, when bidding, the firms know

n but do not know m.7

(P2) Bids may not exceed a reserve price r ∈ R+, r > x+ c, set by the auctioneer.8

(P3) The k lowest bids win if m ≥ k (ties at the k-th lowest bid are broken ran-

domly); all other firms obtain nothing. If m < k, all m bids win.

(P4) The reserve price r is the maximum payment from the auction, and for each

firm there exists a bid such that the firm’s payment with this bid is r if m ≤ k.

(P5) Participating firms apply a symmetric bidding function β(xi, r). If n > k,

β(xi, r) is strictly increasing in xi. If n ≤ k, β(xi, r) is weakly increasing in

xi. Let β(x, r) = (β(x1, r), β(x2, r), . . . , β(xn, r)). A symmetric equilibrium

β(x, r) exists.

An auction with properties P1–P5 is called standard auction (STD auction). STD

auctions comprise sealed-bid procurement auctions with different payment rules: the

pay-as-bid auction in which all winning bidders receive their bids, and the uniform-

price auction in which the lowest rejected bid determines the price that all winning

bidders receive.9 P3 and P5 imply that the goods are supplied by the firms with the

7This assumption is in line with the actual auctions for renewable energy support in Germany,
where the number of admitted pre-registered firms n is known, but the number of participating
firms m is unknown. Menezes and Monteiro (2000) prove revenue equivalence of first- and second-
price auction with known (i.e., revealed participation) and unknown number of bidders in the
single-unit sales auction with bid-preparation costs.

8If r < x+ c, no firm will participate in the auction.
9Dynamic auctions that each are equivalent to one of the sealed-bid auctions are the descending-

clock (English) auction or the ascending-clock (Dutch) auction (Krishna, 2010).
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lowest costs, i.e., the allocation is efficient conditional on the participating firms.

However, according to P1 and P3, it is possible that not all k goods are supplied,

even if the costs of k or more firms are below r. This is because the preparation

costs c prevent all firms with costs xi above a cutoff cost level x̂ from participating

in the auction.10

Denote by î a firm whose costs are at the cutoff costs x̂. Firm î submits the

highest bid, which wins only if a maximum of k − 1 other firms bid. Therefore, she

adjusts her bid to these cases and bids to ensure the payment r in case she wins.

For example, in the pay-as-bid auction, î’s optimal bid is β(x̂, r) = r, whereas in

the uniform-price auction β(x̂, r) = x̂ (or, weakly dominated, β(x̂, r) = r). If x̂ < x̄,

firm î is indifferent between participating and not participating, and the cutoff costs

x̂ are uniquely determined by Π(x̂, r, c, n) = 0, where

Π(x̂, r, c, n) = (r − x̂)
(
1− F(k,n−1)(x̂)

)
− c

= (r − x̂)
∑min{k,n}−1

i=0

(
n−1
i

)
F (x̂)i

(
1− F (x̂)

)n−1−i − c . (1)

The cutoff costs x̂ determine a firm’s ex-ante participation probability F (x̂). The

following lemma collects properties of F (x̂). A proof is given in the appendix.

Lemma 1. For a firm’s ex-ante participation probability F (x̂) the following hold:

• F (x̂)

< 1, if n > k or r < x̄+ c ,

= 1, otherwise.

• dF (x̂)
dr

> 0 and dF (x̂)
dc

< 0 if n > k or r < x̄+ c.

F (x̂) increases in k if n > k. F (x̂) decreases in n if n ≥ k.

Under mild conditions we have x̂ < x̄, that is, high-cost firms do not participate.

If n > k, no reserve price can induce full participation because type x̄’s profit from

the auction is zero if all firms participate. If n ≤ k, each bid wins but the high-cost

firms forgo the auction if the reserve price does not cover their supply costs and

bid-preparation costs.

The intuition behind the reaction of a firm’s ex-ante participation probability

F (x̂) and the cutoff x̂ to changes in r, k, c, and n in Lemma 1 is as follows. Increasing

the reserve price or (if n > k) the number of goods increases the marginal bidder’s

expected profit from the auction via an increased profit in case of winning or an

10A cutoff level x̂ that separates participating firms with costs xi ≤ x̂ from non-participating
firms with xi > x̂ exists because P5 implies π(xi) > π(xj) for xi < xj in equilibrium. If this did
not hold, firm i could profitably deviate by bidding like the higher-cost firm j.
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increased winning probability. This results in higher cutoff costs x̂, which implies

a higher expected number of participants E[m]. Bid-preparation costs c have to be

absorbed by the expected profits from the auction. Therefore, a higher c lowers the

cutoff level. A growth of the pool of firms reduces the marginal bidder’s expected

profits from the auction if n ≥ k. Thus, x̂ decreases in n.11

The cutoff type x̂ is the same in all STD auctions and she is the worst-off type

among the participants. Payoff equivalence holds for all STD auctions.12

Lemma 2. STD auctions are payoff equivalent.

That is, in a symmetric equilibrium, a firm with costs x has the same expected

profit in all STD auctions and the auctioneer has the same expected surplus in all

STD auctions. The symmetric bidding equilibrium in a pay-as-bid auction is, for all

x ∈ [x, x̂],

βPaB(x, r) =
(1−G(x̂))r +

∫ x̂
x
yg(y)dy

1−G(x)
= x+

(1−G(x̂))(r − x̂) +
∫ x̂
x

1−G(y)dy

1−G(x)
,

where G(x) = F(k,n−1)(x). A symmetric bidding equilibrium in the uniform-price

auction is βUP (x, r) = x for all x ∈ [x, x̂]. Lemma 2 and the equilibria are proven

in the appendix.13

If there is no competition, n ≤ k, the equilibrium payment of STD auctions

equals r, either because all bidders bid r in anticipation of the low number of bids

or because the payment rule determines a uniform payment of r.

Instruments of endogenous rationing have been suggested as a means to avoid

high payments in cases with n ≤ k. However, the next section shows that the

negative effect of endogenous rationing on participation in all cases of n and k is

sufficient to erase any desired effect on payments.

3. Endogenous Rationing (ER)

In this section, we incorporate instruments of endogenous rationing (ER) into the

STD auctions of Section 2. When we compare auctions with ER (ER auctions) and

auctions without ER (STD auctions), we assume the same reserve price r, number

of goods k, number of firms n, and payment rule, unless specified otherwise.

11Li and Zheng (2009) find empirical evidence of this “entry effect”: a negative relationship
between the number of potential bidders n and the participation probability.

12See Stegemann (1996)and Menezes and Monteiro (2000) for payoff equivalence between single-
unit first- and second-price auctions with bid-preparation costs.

13In a descending clock auction, β(x, r) = x for x ∈ [x, x̂] is a firm’s optimal exit price.
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ER auctions have properties P1, P2, and P5. They violate P4 because they are

designed to prevent an auction price r when n ≤ k. They also violate P3: albeit the

lowest bids win, less than m bids win if m ≤ k and less than k bids may win even

though more bids have been submitted. Thus, ER auctions assign goods differently

than STD auctions and give a different payment to the worst-off type. Therefore,

payoff equivalence to the STD auctions fails (e.g., Krishna, 2010, Section 3.2.2).

ER auctions share some basic properties of STD auctions, e.g., a bidder’s prob-

ability of winning increases if she reduces her bid and a winning bidder is paid at

least her bid. They differ from STD auctions in that the auction volume is variable.

As an important consequence, there will always be at least one losing bidder in the

auction (if at least one firm participates and there is no volume floor), irrespective

of the relationship between k and n. This is a crucial property if participation is

costly.

Auctions with endogenous volume and with endogenous reserve price can have

different properties. In auctions with endogenous reserve price, decreasing a bid

can even reduce the auction volume, whereas with endogenous volume, the auction

volume depends on the number but not on the size of the bids. However, some

endogenous reserve price rules, like quantile rules, can be translated into endogenous

volume rules.

3.1. Endogenous Auction Volume (EAV)

One option to endogenously ration the awards is an endogenous adaption of the

auction volume to the number of bidders, which we refer to in short as endogenous

auction volume (EAV). Concretely, if m bids are submitted, the number of winning

bids is determined according to a commonly known function

κ(m)


= k if m > µ̄ ,

< min{k,m} if µ < m ≤ µ̄ ,

= m if m ≤ µ .

The integer parameters µ and µ̄ with 0 ≤ µ < k ≤ µ̄ mark the limits of the

range of the number of bids m in which the original auction volume min{k,m}
is reduced. For the actual auction volume κ(m) holds κ(m) < κ(m + 1) for all

m ∈ {µ, µ + 1, . . . , µ̄ − 1}. Payments in the EAV auction are determined as in the

related STD auction. For example, in an uniform-price auction, the κ(m) winning

bidders are paid the (κ(m) + 1)-th lowest bid.

Examples of EAV auctions are planned auctions for innovation tenders in support

of renewable energy sources in Germany. 80 % of the original volume will be awarded
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to bidders if m ≤ k (BReg, 2019b). Thus, κ(m) = d0.8me if m ≤ µ̄ = k and,

implicitly, µ = 4, i.e., κ(m) = m if m ≤ 4.14,15

The endogenous rationing of the auction volume intends on keeping the payments

low in case of low supply. However, the endogenous volume adaptation creates a

strong adverse effect on participation.

Proposition 1. In an EAV auction with volume k and limit µ, the cutoff costs x̂

and the participants are the same as in a STD auction with the auction volume µ.

Thus, even if an EAV auction puts a much larger volume out to tender than a

STD auction, the expected number of bids may be the same in both auctions.16

The participants are determined by the cutoff costs x̂, and these are the same

in the EAV auction with volume k and in the STD auction with volume µ. In the

EAV auction, the bidder with the cutoff costs x̂ submits the highest bid and will win

only if the total number of bidders is not above µ. Otherwise, the limited number

of goods (k < m) or the rationing (κ(m) < m) prevents her from receiving a good.

Because her bid wins only if she faces no competition, her payment is r (depending

on the payment rule, either because she bids r or because the uniform price is equal

to the reserve price). Therefore, she has the same expected profit as from a STD

auction with the auction volume µ (see (1)) and participates if and only if

(r − x̂)

min{µ,n}−1∑
i=0

(
n−1
i

)
F (x̂)i

(
1− F (x̂)

)n−1−i − c ≥ 0. (2)

This proves Proposition 1.

Comparing the EAV auction with an original (maximal) volume k and the STD

auction with volume k with respect to the expected number of participants (i.e.,

bids), number of goods awarded, expected price(s), and bidders’ profits (payoffs)

yields the following results. The expected number of participating firms is lower

in the EAV auction than in the STD auction because the cutoff costs are lower.

The expected number of goods awarded is lower because fewer bids are expected

14According to the rule in Germany, no bid volume is cut in parts but the last winning bid is
fully awarded. This results in an implicit volume floor of µ = max{m : d0.8me = m} = 4. Unlike
in our model, bid volumes may be heterogenous. Then, the lower bound on the number of winning
bids can vary, but at least one bid will win.

15The abrupt switch from the volume k when m = k + 1 to the volume 0.8k when m = k could
be avoided by changing µ̄ to 1.25k, i.e., κ(m) = d0.8me if m ≤ 1.25k.

16Referring to the 80 %-rule of Germany’s auctions for innovation tenders, which implies µ = 4,
this result suggests a small number of projects awarded in these auctions because in Germany’s
renewable energy auctions, which are conducted as STD auctions, the number of projects awarded
is usually above twenty (BNetzA, 2019).
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and it is possible that the number of bids falls in between µ and k, such that the

volume is reduced. With uniform pricing, in both EAV and STD auctions, bidders

bid their costs. The expected cost of the price-determining bidder and, thus, the

expected payment to each winning bidder is lower in the EAV auction than in the

STD auction. Hence, the winning bidders’ expected profits (payoffs) are lower in the

EAV auction than in the STD auction. Since the payoff equivalence theorem applies

to different EAV auction formats, these results also hold for the pay-as-bid auction

and other auctions like the uniform-price auction in which the highest accepted bid

determines the uniform price.17

Swiss Case

The Swiss auction for energy efficiency projects and programs implements a bud-

get auction with EAV (Bundesamt für Energie, 2019). The auctioneer announces a

budget for the auction. If more than 120 % of the announced budget is demanded

by the bidders, the announced budget is awarded. If less than 120 % of the an-

nounced budget is demanded, then the awarded budget is reduced to 83.33 % of the

demanded budget. The EAV rule has been introduced in 2013. Since 2013, the

relative demand (ratio of demanded budget to announced budget) has continuously

decreased (see Figure 1).18

3.2. Endogenous Reserve Price (ERP)

An endogenous reserve price (ERP) is derived from the submitted bids.

In the first step, the firms decide about their participation. Then, participating

firms submit their bids, which may not exceed the default reserve price r. The

bids of the m ≤ n participating firms are denoted by b = (b1, b2, . . . , bm). Next,

the ERP %(b) is calculated on the basis of b, where mini∈{1,...,m}{bi} ≤ %(b) ≤
maxi∈{1,...,m}{bi} and 1 ≥ ∂%(b)

∂bi
≥ 0 for all i ∈ {1, . . . ,m}. For the award, only

bids b < %(b) are taken into consideration, or alternatively, b ≤ %(b) and b <

17If µ = 0, no firm participates and payoff equivalence applies trivially. If µ > 0, x̂ is the same in
these auctions as in the (lowest-rejected-bid) uniform-price auction. Participants are in an auction
with bidders’ types distributed i.i.d. on [x, x̂]. In all auctions, the bids of the same lowest-ranked
types win in a symmetric monotone equilibrium for all x, and the expected payoff of the worst-off
type x̂ is the lowest payoff that incentivizes participation, c. Thus, payoff equivalence applies.

18Figure 1 shows the development over the years of the demanded budget and the awarded
budget relative to the announced budget for projects and programs in total. There are separate
announced budgets for projects and programs plus, until 2014, a third budget for the best projects
or programs that are not awarded under their respective specific budget. In 2015, a second auction
round and budget for projects has been introduced. The total announced budget increased from
9 million Swiss francs in 2010 to 50 million Swiss francs in 2018. The awarded budget can exceed
the announced budget because the last project is fully awarded.
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Figure 1: Development of the relative demanded and awarded budgets in the Swiss auction for
energy efficiency projects and programs

maxi∈{1,...,m}{bi}.19 We call these accepted bids and denote their number by m′,

m′ ≤ m. The payment rule is applied as if only the accepted bids were submitted

and as if the ERP was the reserve price.20

We complement the ERP rule by a floor µ and a ceiling µ̄, with 0 ≤ µ < k ≤ µ̄.

(The case of no floor or ceiling is included by µ = 0 or µ̄ =∞, respectively.) Floor

and ceiling override rationing. If m ≥ µ > m′, then the µ lowest bids win (with

random tie-breaking) and the reserve price equals the highest of the winning bids.

If m ≤ µ or m > µ̄, all bids are accepted and the payment rule is applied with the

reserve price maxi∈{1,...,m}{bi} or r, respectively.

We focus on ERP rules with the property that for all bi ∈ (x, x̄) there exist

combinations of the other bidders’ bids b−i such that ∂%(b)
∂bi

> 0. Examples for

ERP rules %(b) are the mean rules that determine the ERP based on the mean of

the submitted bids, %(b) = α 1
m

∑m
i=1 bi with α ∈ (0, 1], and the median rules that

determine the ERP based on the median of the submitted bids, %(b) = α·median(b)

with α ∈ (0, 1].21

19To enforce rationing if n ≤ k or m ≤ k, the ERP winner-determination rule must prevent that
all bids win if all bidders bid the same, e.g., r. This is met by both forms of the ERP rule.

20That means, if m′ ≤ k, in the uniform-price auction, the price is equal to %(b).
21A different auction with median-price rule is the Medicare auction analyzed by Cramton et al.

(2015) and widely criticized by auction experts (see http://www.cramton.umd.edu/papers2010-
2014/further-comments-of-concerned-auction-experts-on-medicare-bidding.pdf, accessed
09/16/2019). One of the reasons why the Medicare auction was predicted to perform badly is

13



With an ERP, it is not an equilibrium that all bidders bid r.22 Therefore, we

focus on symmetric and strictly increasing bidding functions (P4) and assume the

existence of an equilibrium in symmetric pure strategies.

Proposition 2. In an auction with ERP %(b), the cutoff costs x̂ and the partici-

pants are the same as in a STD auction with the auction volume k = µ.

A firm î with the cutoff costs x̂ receives a good if and only if the number of bidders

m is µ or less. If m > µ, her bid will not win because the other bidders submit lower

bids, and thus, firm î’s bid bî = maxi∈{1,...,m}{bi} is not below %(b). If m ≤ µ, firm

î’s bid wins and, furthermore, determines %(b) and, therefore, her payment. Thus,

firm î participates and bids bî = r iff (2) holds. This proves Proposition 2.

The fact that firm î’s decision problem is the same in an EAV auction as in an

ERP auction reveals a parallelism between the two instruments. If µ > 0, then

x̂ > x, and all firms with x̂ ≥ xi ≥ x participate in the auction. If the ERP

is a quantile of the bids, then there is an EAV rule under which the same firms

win and their payments are the same. For example, the median rule for the ERP

corresponds to an EAV of 50 %.23 However, there are also differences, where the ERP

rules do not correspond to any EAV rule. Consider, for example, the ERP that is

equal to the mean. With this rule, an additional bid can increase or decrease the

number of winning bidders, which is impossible under an EAV rule. Furthermore,

in the uniform-price auction, bidders have an incentive to bid above their costs

because an increase in their bid may increase the ERP and may therefore increase

their payment. In contrast, bidders cannot influence their payment in the uniform-

price EAV auction, in which it is optimal for the bidders to bid their costs. Payoff

equivalence does not hold for different auctions (e.g., pay-as-bid vs. uniform pricing)

with the same ERP rule because different payment rules may determine different

sets of winners due to the differences in the bidding strategies.

This paper identifies low participation as a detrimental effect of endogenous

rationing. Auctions with ER may also be plagued by strategic manipulations. ERP

that it is not ex post individually rational in that winning bidders’ payments can be below their
bids: the k lowest bids win and the median of the winning bids is the payment to each winner.
All auctions that we analyze are ex post individually rational. Further differences to our setting
are that in the Medicare auction bids are non-binding, bids have to be above a bid floor (assumed
to be below x and necessitated by the incentives evoked by the design), and bid-preparation costs
are absent.

22Only if the bidders knew that m ≤ µ, all bidders bidding r would be an equilibrium.
23Concretely, the median rule with α = 1 that chooses the higher of the two middle values in

case of an even number of bids as the ERP (i.e., ρ(b) = b(d0.5me) where b(j) denotes the j-th lowest
bid) corresponds to the 50 %-EAV rule that rejects the bid at the 50 % boundary in case of an odd
number of bids (i.e., κ(m) = b0.5mc).
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auctions are susceptible to actions that artificially increase supply in order to profit

from a higher probability of award and higher prices. A firm may participate with a

serious bid and with an additional bid (either because multiple bids are feasible or

under a different identity) that equals the reserve price to increase the probability

of an award for the serious bid. The bid-preparation costs reduce the attractiveness

or availability of such strategic supply expansion. Auctions with ER have further

unfavorable properties. For example, with any form of ER, i.e., also with EAV, the

average payment may increase when the number of bids increases.

4. Conflicting Objectives for Optimal Auction Design

The main reason for the suggestion of endogenous rationing (ER) is the sup-

posed insurance against undesirable extreme outcomes, e.g., prices at the level of

the reserve price (i.e., the highest possible price) in case of lack of competition (i.e.,

n ≤ k). In the context of renewable energy auctions this is also because the auc-

tioneer (i.e., the heterogenous community of political decision makers) often pursues

multiple objectives that are not compatible (see Footnote 4). In this section, we em-

phasize the necessity to prioritize or weight the objectives. We will illustrate this by

comparing different objectives typically brought forward in procurement auctions.

We discuss four ex-ante objectives, which are prevalent in procurement auctions,

particularly those organized by the government or other public institutions:

O1 Maximize the auctioneer’s expected surplus Π0

O2 Maximize the expected social welfare W (minimize the expected social costs)

O3 Maximize the expected number of goods awarded Ka, given k

O4 Minimize the auctioneer’s expected payments for goods awarded

O1 and O2 require that prior to the auction the auctioneer assigns a value to ac-

quiring goods. For example, in an auction for renewable energy support, the govern-

ment’s value for a good is the social value of the energy produced by the renewable

energy plants. We assume that every acquired unit of the good has the same value

v and that c+ x < v, so that the production of the goods increases social welfare.

An optimal auction with O1 maximizes the auctioneer’s expected surplus Π0.

His expected surplus with the uniform-price rule (and any payoff-equivalent rule) is

Π0 =(v − r)
∑min{k,n}

i=1

(
n
i

)
iF (x̂)i

(
1− F (x̂)

)n−i
+ k (v − E[X(k+1,n) |X(k+1,n) ≤ x̂])F(k+1,n)(x̂) .

(3)

An optimal auction with objective O2 maximizes the expected social welfare,

which is equivalent to minimizing the expected social costs. In contrast to the auc-
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tioneer’s surplus, the social welfare takes the firms’ costs instead of the award prices

into account. The components of the social welfare are the bidders’ participation

costs, the auction winners’ costs to produce the good, and the auctioneer’s value for

every good awarded. The expected social welfare W is given by

W =− ncF (x̂)−
∑min{k,n}

i=1 E[X(i,n)|X(i,n) ≤ x̂]F(i,n)(x̂)

+ v
(

min{k, n} −
∑min{k,n}−1

i=0 (min{k, n} − i)
(
n
i

)
F (x̂)i(1− F (x̂))n−i

)
.

(4)

According to objective O3, the auctioneer aims to acquire as many as possible

of the demanded goods k. The expected number of goods awarded Ka reveals how

well an auction achieves this aim, where Ka ≤ k. Ka is given by

Ka =


∑k−1

i=1

(
n
i

)
iF (x̂)i

(
1− F (x̂)

)n−i
+ kF(k,n)(x̂) if n > k ,∑n

i=1

(
n
i

)
iF (x̂)i

(
1− F (x̂)

)n−i
if n ≤ k .

(5)

The auctioneer’s objective O4 is to minimize his expected payments, Ka multi-

plied by the average price. We include this objective because it has been brought

forward (see Footnote 4). However, it is an implausible objective (see also Proposi-

tion 3 (O4)).

Proposition 3 presents optimal auctions for objectives O1 to O4. The uniform-

price auction in the proposition could be replaced by any payoff equivalent auction.

Proposition 3 is proven in the appendix.

Proposition 3. An optimal symmetric mechanism for objective Oj,

j ∈ {1, 2, 3, 4}, can be implemented by

(Mr) a uniform-price auction with an optimal reserve price rOjr or

(Mc) a uniform-price auction with a refund of c for all participating firms and an

optimal reserve price rOjc .

The optimal cutoff type x̂Oj is unique and is the same in Mr and Mc. The optimal

cutoff type x̂Oj and reserve prices rOjr and rOjc are the following.

O1 Assume x+ F (x)
f(x)

is increasing.

If n > k or v < x̄+ 1
f(x̄)

+ c Otherwise(
v − x̂O1 − F (x̂O1)

f(x̂O1)

) (
1− F(k,n−1)(x̂

O1)
)
− c = 0 x̂O1 = x̄

rO1
r = v − F (x̂O1)

f(x̂O1)
rO1
r = x̄+ c

rO1
c = x̂O1 rO1

c = x̂O1
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O2 If n > k or v < x̄+ c Otherwise

(v − x̂O2)
(
1− F(k,n−1)(x̂

O2)
)
− c = 0 x̂O2 = x̄

rO2
r = v rO2

r ≥ x̄+ c

rO2
c = x̂O2 rO2

c ≥ x̂O2

O3 If n > k Otherwise

x̂O3 = x̄ x̂O3 = x̄

rO3
r does not exist rO3

r ≥ x̄+ c

rO3
c = x̂O3 rO3

c ≥ x̂O3

O4

x̂O3 = x

rO3
r ≤ x+ c

rO3
c ≤ x+ c

Proposition 3 enables us to compare the mechanisms that achieve objectives O1

to O4. In case of no competition (n ≤ k) and a sufficiently high value v, objectives

O1 to O3 are achieved by either mechanism Mr or Mc by choosing the lowest reserve

price that incentivizes all firms to participate. In particular, these objectives are not

achieved by excluding bidders, like endogenous rationing does. Only objective O4

is achieved by Mr or Mc with a reserve price that prevents any participation.24

In a competitive market (n > k) or if v < x̄+c, the optimal cutoff type to achieve

a specific objective is the same whether one implements Mr or Mc. However, the

four objectives ask for different cutoffs. The optimal reserve prices rr and rc, if they

exist, have the same order as the cutoff types.

Corollary 1 summarizes these relationships. It shows that achieving all objectives

with the same auction design is impossible. In particular in a competitive market

or if the value v is sufficiently low, each objective requires a specific auction design

that is incompatible with the optimal design for other objectives.

Corollary 1. Assume x+ F (x)
f(x)

is increasing. If n ≤ k and v ≥ x̄+ 1
f(x̄)

+ c then

• x̂O3 = x̂O2 = x̂O1 = x̄ > x̂O4 = x,

• rr = x̄+ c and rc = x̄ achieve O1, O2, and O3 but not O4.

24In order that rO4
r and rO4

c exist, we deviate from assumption (P2) and allow r ≤ x+ c.
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Figure 2: Reserve price rO1
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If n > k or v < x̄+ c then

• x̂O3 > x̂O2 > x̂O1 > x̂O4,

• rO2
r > rO1

r > rO4
r , and rO3

c > rO2
c > rO1

c > rO4
c .

In case of low competition, the optimal mechanism aims at maximizing (for

O1 to O3) or minimizing (for O4) participation. The case of strong competition or

sufficiently low value v involves trade-offs between participation and bid-preparation

costs. In the following paragraphs, we take a closer look at this case.

In Mc, the fixed payment of c induces participation by all firms with x ≤ x̂ and

the reserve price rc = x̂ guarantees that firms with x > x̂ do not participate.25

In an optimal mechanism Mr, the relationship between the reserve price and the

cutoff type is more complex. For the reserve price rO1
r and cutoff x̂O1 that maximize

the auctioneer’s surplus it holds that v > rO1
r > x̂O1 > x. The optimal reserve price

depends on the optimal cutoff, which varies with the number of firms. If n increases,

x̂O1 decreases, and rO1
r increases or decreases depending on whether the reverse

hazard rate F (x)/f(x) decreases or increases. In any case, by the assumption that

x + F (x)/f(x) increases, x̂O1 and rO1
r diverge when n increases. The same applies

to the effect of the costs c on reserve price and cutoff type. Figure 2 illustrates

these properties of x̂O1 and rO1
r , using a uniform distribution F on [0, 1]. With this

distribution, the optimal reserve price and cutoff value add up to the auctioneer’s

value

rO1
r + x̂O1 = v − F (x̂O1)

f(x̂O1)
+ x̂O1 = v.

25For k = 1, Menezes and Monteiro (2000) derive the optimal auction of type Mc for objective
O1.
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To attract socially optimal participation, the reserve price is set equal to a good’s

value.26 Intuitively, at rO2
r = v, the auctioneer’s expected marginal value, v(1 −

F(k,n−1)(x̂
O2)), equals the total costs of the marginal bidder, c+x̂O2(1−F(k,n−1)(x̂

O2)).

Although the expected number of goods awarded Ka is important both for the

auctioneer’s expected surplus and the expected social welfare, it is obvious that the

optimal reserve price for maximizing Ka is the highest possible reserve price that

does not exclude bidders from the auction. In a competitive market this can be

achieved only by a mechanism Mc.

On the contrary, the reserve price that minimizes the auctioneer’s payments is

as low as possible in order to exclude bidders, to prevent any award, and to pay

nothing. Clearly, this outcome is typically not pursued by an auctioneer. Thus, O4

is not a reasonable primary objective. Objective O4 may instead be subsumed under

objective O1 because the auctioneer’s surplus involves the sum of his payments.

Concluding, the four objectives conflict and cannot all be achieved with one

reserve price. The optimal surplus is achieved with less participation than is socially

optimal: the optimal reserve price rOSr is below the value of a good, which, however,

is the optimal reserve price for O2. In contrast, O3 calls for a higher reserve price

that avoids excluding bidders, which can only be achieved with a mechanism Mc.

Objective O4 requires a reserve price below the firms’ costs. These considerations

show that, while it is possible to design the auction optimally for specific goals, it is

impossible to create a panacea in form of a design that is optimal for multiple goals.

5. Policy Implications

The ER auctions do not achieve any of the three reasonable objectives O1 to

O3. Assuming an auction with ER is the optimal choice, what may an auctioneer’s

objective look like? In the STD auctions, a firm will be successful if her costs are

sufficiently low to participate and are among the k lowest costs. In an auction with

ER, a firm’s success in addition depends on how many other firms’ costs are suf-

ficiently low to participate. The auctioneer buys few goods if few costs are below

the level for participation and competition is weak. He buys many goods and ex-

presses a higher willingness to pay if competition is fierce. With an ER auction, the

auctioneer adjusts to the competition level: in good times he is willing to pay more

than in bad times. In an auction conducted by a government, like the renewable

energy auctions, it is more likely that the auctioneer’s aim is to govern the market

26For k = 1, Samuelson (1985) identifies the optimal reserve price rO2
r = v. For the same set-

ting, Stegemann (1996) shows that asymmetric equilibria of the second-price auction can improve
efficiency.
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than to adjust his willingness to pay to the market situation. Moreover, is it really

wanted that there are less than k winners if all bidders bid x in an auction with

EAV or if one bidder bids x and all others bid x+ ε in an auction with ERP?

The optimal mechanisms point at the relevance of the bid-preparation costs.

Indeed, reducing these costs supports the auctioneer’s objectives O1 to O3.

Proposition 4. The auctioneer’s surplus (O1), social welfare (O2), and the num-

ber of goods awarded (O3) in the respective optimal mechanism increase if the bid-

preparation costs decrease.

Proposition 4 is proven in the appendix. Given an optimal mechanism Mr, reduc-

ing the bid-preparation costs increases competition because lower bid-preparation

costs increase each firm’s participation probability and the number of participants.

Given an optimal mechanism Mc, lower bid-preparation costs allow reducing refund

payments to participants and total bid-preparation costs without changing partici-

pation. Therefore or after adjusting the respective optimal mechanism to the lower

c, the auctioneer’s surplus, social welfare, and the number of goods awarded increase.

In our framework, a straightforward policy implication of Proposition 4 is to

reduce the bid-preparation costs. Even if the objectives are in conflict, this mea-

sure contributes to three different objectives. Thus, any factors that unnecessarily

increase bid-preparation costs should be eliminated. Such factors include admin-

istrative or formal obstacles that increase bid-preparation costs but cannot be in-

fluenced by bidders. For example, bid-preparation costs for onshore wind projects

in Germany lie between two and ten percent of the invested amount although the

auctions’ participation requirements are the same for all bidders (Wallasch et al.,

2015). The costs of meeting the requirements differ due to different measures bidders

need to take and different obstacles they face. One of the reasons for the stagnating

development is the rigorous refusal of onshore wind projects by part of the citizens

(Quentin, 2019). Legal disputes on projects can increase bid-preparation costs dra-

matically. The German federal government advocates a compensation of citizens

in order to reduce this rejection (ZEITonline, 2020), which would in turn reduce

bid-preparation costs. Of course, as in this example, any measure that reduces the

bid-preparation costs has to take the costs for its implementation into account. Fur-

thermore, a measure that reduces bid-preparation costs by mitigating participation

requirements would have to consider potential detrimental effects on project qual-

ity. Hence, it is not advised to abrogate the participation requirements that cause

the bid-preparation costs, but to find a reasonable balance between entry barriers

that ensure the seriousness of bids and attractive conditions for participating in the

auction.
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6. Conclusion

Endogenous rationing has been suggested as a means to increase competition

in case of low participation in auctions. However, according to the analysis in this

paper its primary effect in auctions with costly participation is a strong reduction

of participation. As a consequence, endogenous rationing is not a component of

optimal auctions.

The optimal auctions to maximize the auctioneer’s surplus, social welfare, or the

number of goods awarded differ if the number of potential bidders is high. Thus,

the auctioneer then needs to prioritize objectives. If the number of potential bidders

is lower than the number of goods and the auctioneer values the goods sufficiently

high, the optimal auction is the same for the three objectives. The auctioneer then

needs to maximize participation, which he can do by setting a sufficiently high

reserve price and/or by refunding the bid-preparation costs. A policy measure that

contributes to all three objectives with any number of potential bidders – supposing

it absorbs its implementation costs and has no detrimental effect on project quality

– is to reduce bid-preparation costs.
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electricidad con recursos energéticos renovables, 2015. Circular No.5. URL:
http://www.osinergmin.gob.pe/seccion/centro_documental/energias-

renovables/Subastas/Circular%20N05_%20Precio%20M%C3%A1ximo.pdf.
Accessed: 05/06/2019.

Cramton, P., Ellermeyer, S., Katzman, B., 2015. Designed to fail: The Medicare
auction for durable medical equipment. Economic Inquiry 53, 469–485. doi:10.
1111/ecin.12101.

Damianov, D.S., 2005. The uniform price auction with endogenous supply. Eco-
nomics Letters 88, 152–158. doi:10.1016/j.econlet.2005.02.004.

Damianov, D.S., Becker, J.G., 2010. Auctions with variable supply: Uniform price
versus discriminatory. European Economic Review 54, 571–593.

European Commission, 2014. Guidelines on State aid for environmental protec-
tion and energy 2014-2020 (2014/C 200/01). URL: http://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:52014XC0628(01). Accessed: 11/25/2019.

Hochberg, M., Poudineh, R., 2018. Renewable Auction Design in Theory
and Practice: Lessons from the Experiences of Brazil and Mexico. URL:
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/04/

Renewable-Auction-Design-in-Theory-and-Practice-Lessons-from-the-

Experiences-of-Brazil-and-Mexico-EL-28.pdf. Oxford Institute for Energy
Studies Paper: EL 28, Accessed: 11/25/2019.

IRENA, 2013. Renewable Energy Auctions in Developing Countries. URL:
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/

IRENA_Renewable_energy_auctions_in_developing_countries.pdf. Ac-
cessed: 11/25/2019.

22

https://www.bmu.de/download/klimaschutzprogramm-2030-zur-umsetzung-des-klimaschutzplans-2050/
https://www.bmu.de/download/klimaschutzprogramm-2030-zur-umsetzung-des-klimaschutzplans-2050/
http://dip21.bundestag.de/dip21/btd/19/140/1914065.pdf
http://dip21.bundestag.de/dip21/btd/19/140/1914065.pdf
https://www.bfe.admin.ch/bfe/de/home/foerderung/energieeffizienz/wettbewerbliche-ausschreibungen-prokilowatt.html#kw-83176
https://www.bfe.admin.ch/bfe/de/home/foerderung/energieeffizienz/wettbewerbliche-ausschreibungen-prokilowatt.html#kw-83176
https://www.bfe.admin.ch/bfe/de/home/foerderung/energieeffizienz/wettbewerbliche-ausschreibungen-prokilowatt.html#kw-83176
http://dx.doi.org/10.2202/1935-1704.1522
http://dx.doi.org/10.2202/1935-1704.1522
http://www.osinergmin.gob.pe/seccion/centro_documental/energias-renovables/Subastas/Circular%20N05_%20Precio%20M%C3%A1ximo.pdf
http://www.osinergmin.gob.pe/seccion/centro_documental/energias-renovables/Subastas/Circular%20N05_%20Precio%20M%C3%A1ximo.pdf
http://dx.doi.org/10.1111/ecin.12101
http://dx.doi.org/10.1111/ecin.12101
http://dx.doi.org/10.1016/j.econlet.2005.02.004
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014XC0628(01)
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014XC0628(01)
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/04/Renewable-Auction-Design-in-Theory-and-Practice-Lessons-from-the-Experiences-of-Brazil-and-Mexico-EL-28.pdf
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/04/Renewable-Auction-Design-in-Theory-and-Practice-Lessons-from-the-Experiences-of-Brazil-and-Mexico-EL-28.pdf
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/04/Renewable-Auction-Design-in-Theory-and-Practice-Lessons-from-the-Experiences-of-Brazil-and-Mexico-EL-28.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA_Renewable_energy_auctions_in_developing_countries.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA_Renewable_energy_auctions_in_developing_countries.pdf


IRENA, 2015. Renewable Energy Auctions: A Guide to Design. URL:
https://www.irena.org/publications/2015/Jun/Renewable-Energy-

Auctions-A-Guide-to-Design. Accessed:11/05/2019.

IRENA, 2019. Renewable Energy Auctions: Status and Trends beyond Prices.
URL: https://www.irena.org/publications/2019/Dec/Renewable-energy-

auctions-Status-and-trends-beyond-price. Accessed: 03/02/2020.
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Appendix A. Proofs

The proofs of Lemma 1 and Proposition 3 will make use of the following lemma.

Lemma 3.

k∑
i=0

(
n
i

)
F (x)i−1(1− F (x))n−i−1(i− nF (x)) = −n

(
n−1
k

)
F (x)k(1− F (x))n−k−1 (A.1)
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(A.2)

Proof of Lemma 3: We will use the identities

(
n
i

)
i = n

(
n−1
i−1

)
and

(
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i
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(n− i) = n

(
n−1
i

)
(A.3)

and the binomial theorem

∑n
i=0

(
n
i

)
F (x)i(1− F (x))n−i = (F (x) + 1− F (x))n = 1 . (A.4)
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Proof of (A.1) via simplifying a telescoping sum.
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Proof of (A.2) via induction. For k = 1, n(1 − F (x))n−1 = n(1 − F (x))n−1, which

proves the base case. For the induction step assume (A.2) holds for k. Now look at

k + 1.
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Proof of Lemma 1: Note that F (x̂) < 1 iff x̂ < x̄ and that F (x̂) increases iff x̂

increases.

First we show that x̂ < x̄ if n > k or r < x̄+c. If a firm with costs x̄ participates,

the other n−1 firms also participate. If a firm with costs x̄ is wins a good, it receives

a payment of r by (P4). A firm with x̄ wins a good with probability 0 if n > k

and with probability 1 if n ≤ k. A firm participates iff its expected profit from

participating is non-negative. Thus, if n > k, a firm with x̄ does not participate

because (r − x̄) · 0 − c < 0. If n ≤ k, a firm with x̄ does not participate iff

(r − x̄) · 1− c < 0.

If, to the contrary, n ≤ k and r ≥ x̄+c, then the expected payoff of the worst-off

type x̄ is positive, r − x̄− c ≥ 0, and all firms participate, x̂ = x̄ and F (x̂) = 1.
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To prove the remaining properties, consider the expected profit of the firm î who

receives a good only if no more than k − 1 other firms participate if n > k or who

receives a good for sure if she participates if n ≥ k. Her expected profit is (see (1))

Π(x̂, r, c, n) = (r − x̂)(1− F(k,n−1)(x̂))− c (A.5)

=

(r − x̂)
∑k−1

i=0

(
n−1
i

)
F (x̂)i

(
1− F (x̂)

)n−i−1 − c if n > k

r − x̂− c if n ≤ k.

Since firm î participates only if Π(x̂, r, c, n) ≥ 0 and since c > 0, it follows that

x̂ < r.

If not all firms participate (x̂ < x̄), firm î is indifferent between participating

and not participating in the auction. Since firm î is indifferent if and only if her

expected profit from participating is zero, the cutoff costs x̂ are determined by

Π(x̂, r, c, n) = 0 . (A.6)

There exists a unique x̂ that fulfills (A.6), since the derivative of (A.5) with respect

to x̂ is negative for all x̂ ≤ r:27

∂Π(x̂, r, c, n)

∂x̂
=


−
∑k−1

i=0

(
n−1
i

)
F (x̂)i

(
1− F (x̂)

)n−i−1

−(r − x̂)k
(
n−1
k

)
f(x̂)F (x̂)k−1

(
1− F (x̂)

)n−k−1
if n > k

−1 if n ≤ k

< 0 . (A.7)

To determine how x̂ depends on r and c, we apply the implicit function theorem.

With (A.6) and (A.7) we get

dx̂

dr
= −

∂Π(x̂,r,c,n)
∂r

∂Π(x̂,r,c,n)
∂x̂

= −
∑min{k,n}−1

i=0

(
n−1
i

)
F (x̂)i

(
1− F (x̂)

)n−i−1

∂Π(x̂,r,c,n)
∂x̂

> 0 ,

dx̂

dc
= −

∂Π(x̂,r,c,n)
∂c

∂Π(x̂,r,c,n)
∂x̂

=
1

∂Π(x̂,r,c,n)
∂x̂

< 0 .

The cutoff costs x̂ increase in k if n > k because the probability in (A.5) increases

in k.

Further, x̂ decreases in n if n ≥ k. For given x̂, the probability of getting a

27The second term of the derivative stems from simplifying a telescoping sum (see Lemma
3(A.1)).
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good in (A.5) decreases in n because F(k,n−1)(x̂) < F(k,n)(x̂). Take the x̂ that fulfills

(A.6) for n firms. All firms with x < x̂ would have a positive expected payoff from

behaving like the firm with x̂. If there were n + 1 firms and the firm with costs x̂

was the cutoff type, its probability of getting a good would be lower and the payoff

in (A.5) would be negative. Thus, the cutoff costs with n+ 1 firms must be smaller

than with n firms. �

Proof of Lemma 2: Firms participate in the auction iff xi ≤ x̂. If n > k,

type x̂ wins iff m ≤ k and, by (P4), type x̂ can then bid to receive the maximum

payment r. Type x̂’s expected profit from the auction is, with G(x) = F(k,n−1)(x),

π(x̂, r, c, n) = (r − x̂)(1− G(x̂)) = c (see (1) and the proof of Lemma 1). If n ≤ k,

π(x̂, r, c, n) = r − x̂.

If n > k, we assume symmetric, strictly monotone equilibrium bidding functions

(P5). Denote by π(x, z) the expected profit of a firm of type x ≤ x̂ who bids as if

her type was z. Let p(z) denote the payment to a firm who bids like type z. To

maximize

π(x, z) = p(z)− (1−G(z))x for all x, z ∈ [x, x̂] ,

we derive the first-order condition

d

dz
π(x, z) =

d

dz
p(z)− g(z)x = 0 for all x, z ∈ [x, x̂] .

In equilibrium, z = x, and, thus

d

dy
p(y) = g(y)y for all y ∈ [x, x̂]

=⇒ p(x) = const +

∫ x̂

x

g(y)y dy

= (1−G(x̂)) r +

∫ x̂

x

g(y)y dy for all x ∈ [x, x̂] .

Therefore, the expected profit

π(x, r, c, n) = (1−G(x̂)) r +

∫ x̂

x

g(y)y dy − (1−G(x))x for all x ∈ [x, x̂] ,

is the same for all auctions that assign goods to the same types (P5) and in which

a firm can bid to receive r if m ≤ k (P4).

If n ≤ k, π(x, r, c, n) = r− x for all x ∈ [x, x̂] in all auctions with property (P4).

�
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Proof of equilibrium bidding functions: If n > k, π(x, r, c, n) = (1−G(x̂)) r+∫ x̂
x
g(y)y dy − (1−G(x))x for all x ∈ [x, x̂] by payoff equivalence (Lemma 2).

In a uniform-price auction, if all bidders bid according to β(x, r) = x, a firm

with type x ≤ x̂ wins and has costs x if she is among the k lowest types, which

has probability 1 − G(x). She receives the payment r if no more than k firms

participate, which has probability 1−G(x̂). Her payment is equal to her opponents’

k-th lowest bid if more than k firms participate but she is among the k lowest types.

Her expected payment from these cases is
∫ x̂
x
g(y)y dy. Thus, her expected profit is

(1−G(x̂)) r +
∫ x̂
x
g(y)y dy − (1−G(x))x.

In a pay-as-bid auction, if all bidders bid according to βPaB(x, r), a firm with

type x ≤ x̂ wins, has costs x, and receives the payment βPaB(x, r) iff she is among

the k lowest types, which has probability 1−G(x). Therefore, her expected payment

is

(1−G(x))βPaB(x, r) = (1−G(x))x+ (1−G(x̂))(r − x̂) +

∫ x̂

x

(1−G(y)) dy

= (1−G(x̂)) r +

∫ x̂

x

g(y)y dy ,

where the last step uses partial integration,
∫ x̂
x

(1 − G(y)) dy = [(1−G(y))y]x̂x +∫ x̂
x
g(y)y dy.

If n ≤ k, π(x, r, c, n) = r − x for all x ∈ [x, x̂] by payoff equivalence. Bidders

receive the payment r by bidding x (or r) in a uniform-price auction and by bidding

r in a pay-as-bid auction. �

Proof of Proposition 3: We will prove parts O1 to O4 of Proposition 3 consec-

utively.

O1 Auctioneer’s surplus. We use standard mechanism design arguments (e.g., My-

erson, 1981; Krishna, 2010) to derive optimal mechanisms when firms have to bear

participation costs in order to bid. Let qp(xi), q
p : [x, x̄] → [0, 1], define a firm’s

participation probability as a function of her costs xi, let qgi (x), qgi : [x, x̄]n → [0, 1]

denote firm i’s probability of getting an item when the costs x are announced condi-

tional on i’s participation, and let pi(x), pi : [x, x̄]n → R denote the payment to firm

i when the costs x are announced. The firms send messages x to the mechanism.

The mechanism designer chooses a mechanism (qp, (qg1 , q
g
2 , . . . , q

g
n), (p1, p2, . . . , pn))

to maximize his expected surplus, taking the firms’ (interim) individual rationality
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(IR) and incentive compatibility (IC) constraints into account. His problem is

max
(qp,(qg1 ,q

g
2 ,...,q

g
n),(p1,p2,...,pn))

∫ n∑
i=1

qp(xi)q
g
i (x)v − pi(x) dH(x)

s.t. (IR), (IC)

0 ≤ qp(xi) ≤ 1, 0 ≤ qgi (x) ≤ 1 ∀i = 1, 2, . . . , n,
n∑
i=1

qgi (x) ≤ k

whereH(x) denotes the joint distribution of the individual cost distributions, H(x) =

Πn
i=1F (xi) and H−i(x−i) = Πj 6=iF (xj).

A firm i’s (interim) expected payoff from reporting xi when supply costs are xi

is

Πi(xi) =

∫
pi(x)− qp(xi) (qgi (x)xi + c) dH−i(x−i) . (A.8)

The IR constraint and the IC constraint, which ensure truthful reporting of xi, are

Πi(xi) ≥ 0 ∀xi ∈ [x, x̄] (IR)

Πi(xi) ≥
∫
pi(x

′
i,x−i)− qp(x′i) (qgi (x

′
i,x−i)xi + c) dH−i(x−i) ∀xi, x′i ∈ [x, x̄] . (IC)

Furthermore, define firm i’s (interim) expected probability of getting a good condi-

tional on i’s participation

Qi(xi) :=

∫
qgi (x)dH−i(x−i) .

Condition (IC) implies, for all xi and x′i

Πi(xi) =

∫
pi(xi,x−i)− qp(xi) (qgi (xi,x−i)xi + c) dH−i(x−i)

≥
∫
pi(x

′
i,x−i)− qp(x′i) (qgi (x

′
i,x−i)xi + c) dH−i(x−i)

=

∫
pi(x

′
i,x−i)− qp(x′i) (qgi (x

′
i,x−i)x

′
i + c) dH−i(x−i)

+

∫
qp(x′i) q

g
i (x
′
i,x−i)(x

′
i − xi)dH−i(x−i)

= Πi(x
′
i) + qp(x′i)Qi(x

′
i)(x

′
i − xi) .

Thus, for xi > x′i,
Πi(xi)− Πi(x

′
i)

xi − x′i
≥ −qp(x′i)Qi(x

′
i)
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and for xi < x′i,
Πi(xi)− Πi(x

′
i)

xi − x′i
≤ −qp(x′i)Qi(x

′
i) .

Therefore, (IC) implies that

dΠi(xi)

dxi
= −qp(xi)Qi(xi)

and, by integration,

Πi(xi) = consti +

∫ x̄

xi

qp(z)Qi(z) dz. (A.9)

Using (A.8) and (A.9) we can rewrite the auctioneer’s expected surplus with incen-

tive compatible payoffs of firms as

Π0 =

∫ n∑
i=1

qp(xi)q
g
i (x)v − pi(x) dH(x)

=

∫ [ n∑
i=1

qp(xi)q
g
i (x)v − pi(x) +

∫
pi(x)− qp(xi) (qgi (x)xi + c) dH−i(x−i)

]
dH(x)

−
∫ n∑

i=1

Πi(xi) dH(x)

=

∫ n∑
i=1

qp(xi) [qgi (x)(v − xi)− c] dH(x)−
n∑
i=1

consti

−
∫ n∑

i=1

∫ x̄

xi

qp(z)Qi(z) dz dH(x)

=

∫ n∑
i=1

qp(xi) [qgi (x)(v − xi)− c] dH(x)−
n∑
i=1

consti

−
n∑
i=1

∫
F (xi)

f(xi)
qp(xi)Qi(xi) dH(x)

=

∫ n∑
i=1

qp(xi)

[
qgi (x)

(
v − xi −

F (xi)

f(xi)

)
− c
]

dH(x)−
n∑
i=1

consti ,

where in the next-to-last step we interchanged the order of integration in the hind-

most integral.28 To maximize his surplus, the auctioneer will choose consti as low as

28
∫ ∫ x̄

xi
qp(z)Qi(z) dz dH(x) =

∫ ∫ x̄

x

∫ x̄

xi
qp(z)Qi(z) dz dF (xi) dH−i(x−i) =∫ ∫ x̄

x

∫ z

x
qp(z)Qi(z)dF (xi) dz dH−i(x−i) =

∫ ∫ x̄

x
qp(z)Qi(z)F (z) dz dH−i(x−i) =

=
∫ ∫ x̄

x
qp(z)Qi(z)F (z)

f(z) dF (z) dH−i(x−i) =
∫ qp(xi)Qi(xi)F (xi)

f(xi)
dH(x).
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possible which is zero because (IC) (i.e., (A.9)) and (IR) bound consti to zero from

below.

Thus, the auctioneer’s problem can be written as

max
(qp,(qg1 ,q

g
2 ,...,q

g
n),(p1,p2,...,pn))

∫ n∑
i=1

qp(xi)

[
qgi (x)

(
v − xi −

F (xi)

f(xi)

)
− c
]

dH(x)

s.t. 0 ≤ qp(xi) ≤ 1, 0 ≤ qgi (x) ≤ 1 ∀i = 1, 2, . . . , n,
n∑
i=1

qgi (x) ≤ k

We assume that xi + F (xi)
f(xi)

is increasing in xi. Thus, either there exists a unique

x̃ < x̄ such that v − x̃ − F (x̃)
f(x̃)

= 0 and v − xi − F (xi)
f(xi)

≥ 0 for all xi ≤ x̃, or we have

that v − xi − F (xi)
f(xi)

≥ 0 for all xi ∈ [x, x̄], in which case x̃ = x̄. Conditional on

participation, the auctioneer will choose qgi (x) = 1 for the at most min{n, k} firms

with the lowest xi ≤ x̃, and qgi (x) = 0 for the remaining firms. Thus, for firms that

participate and have xi ≤ x̃, we get

Qi(xi) =

∫
qgi (x)dH−i(x−i) = Prob{xi is among the min{n, k} lowest costs}

=

min{k,n}−1∑
j=0

(
n−1
j

)
F (xi)

j(1− F (xi))
n−j−1 .

The auctioneer maximizes

max
(qp,(p1,p2,...,pn))

n∑
i=1

∫
qp(xi)

[
Qi(xi)

(
v − xi −

F (xi)

f(xi)

)
− c
]

dF (xi)

s.t. 0 ≤ qp(xi) ≤ 1

by choosing qp(xi) = 1 if Qi(xi)
(
v − xi − F (xi)

f(xi)

)
≥ c and qp(xi) = 0 if the inverse

holds. Because xi + F (xi)
f(xi)

and Qi(xi) are increasing in xi for all xi < x̄, there exists

a unique x̂ ≤ x̃ such that qp(xi) = 1 if xi ≤ x̂ and qp(xi) = 0 if xi > x̂. For

n > k, x̂ is determined by Qi(x̂)
(
v − x̂− F (x̂)

f(x̂)

)
= c. For n ≤ k, Qi(xi) = 1 for

all xi ∈ [x, x̄] (by the binomial theorem (A.4)). Then, either x̂ is the solution of

v − x̂ − F (x̂)
f(x̂)

= c, in which case x̂ ≤ x̄, or we have that v − x̄ − 1
f(x̄)

> c, in which

case x̂ = x̄. Summarizing, and, for convenience, setting Qi(xi) = 0 if qp(xi) = 0, we
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have

qp(xi) =

0 if xi > x̂

1 if xi ≤ x̂
(A.10)

Qi(xi) =

0 if xi > x̂∑min{k,n}−1
j=0

(
n−1
j

)
F (xi)

j(1− F (xi))
n−j−1 if xi ≤ x̂ .

(A.11)

It remains to determine payment functions p1, p2, . . . , pn such that the payoff

(A.8) satisfies incentive compatibility (A.9):

Πi(xi) =

∫
pi(x)− qp(xi) (qgi (x)xi + c) dH−i(x−i) =

∫ x̄

xi

qp(z)Qi(z) dz .

Plugging in (A.10) and (A.11) gives

Πi(xi) =


∫
pi(x)dH−i(x−i) = 0 if xi > x̂∫
pi(x)dH−i(x−i)−Qi(xi)xi − c =

∫ x̂
xi
Qi(z) dz if xi ≤ x̂

and we get

∫
pi(x)dH−i(x−i) =

0 if xi > x̂∫ x̂
xi
Qi(z) dz +Qi(xi)xi + c if xi ≤ x̂ .

(A.12)

In the case of n > k, let x(k,n−1) denote the k-th lowest of i’s opponents’ realized

costs x−i if k < n and let F(k,n−1) denote the distribution of the random variable

X(k,n−1). Note that F(k,n−1)(z) = 1−Qi(z). In the case of n ≤ k, for ease of notation

define y(k,n−1) > x̂ and F(k,n−1)(z) = 1−Qi(z) = 0 for all z ∈ [x, x̄].

Two payment functions that fulfill (A.12) are, if x̂ < x̄,

pi(x) =


0 if xi > min{x̂, y(k,n−1)}

v − F (x̂)
f(x̂)

if xi ≤ x̂ < y(k,n−1)

y(k,n−1) if xi ≤ y(k,n−1) ≤ x̂

(A.13)

or

pi(x) =


0 if xi > x̂

c if y(k,n−1) < xi ≤ x̂

min{x̂, y(k,n−1)}+ c if xi ≤ min{x̂, y(k,n−1)} .

(A.14)
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Obviously, both (A.13) and (A.14) fulfill (A.12) for xi > x̂. For xi ≤ x̂ and (A.13),

we get∫
pi(x)dH−i(x−i) = (1− F(k,n−1)(x̂))

(
v − F (x̂)

f(x̂)

)
+

∫ x̂

xi

zdF(k,n−1)(z)

= (1− F(k,n−1)(x̂))

(
v − F (x̂)

f(x̂)

)
+
[
zF(k,n−1)(z)

]x̂
xi

−
∫ x̂

xi

F(k,n−1)(z)dz

= Qi(x̂)

(
v − F (x̂)

f(x̂)

)
−Qi(x̂)x̂+Qi(xi)xi +

∫ x̂

xi

Qi(z)dz

= c+ xiQi(xi) +

∫ x̂

xi

Qi(z)dz .

For xi ≤ x̂ and (A.14), we get∫
pi(x)dH−i(x−i) = c+

∫ x̂

xi

zdF(k,n−1)(z) + (1− F(k,n−1)(x̂)) x̂

= c+
[
zF(k,n−1)(z)

]x̂
xi
−
∫ x̂

xi

F(k,n−1)(z)dz + x̂− F(k,n−1)(x̂) x̂

= c− xi(1−Qi(xi))−
∫ x̂

xi

1−Qi(z)dz + x̂

= c+ xiQi(xi) +

∫ x̂

xi

Qi(z)dz .

According to Stegemann (1996, Lemma 1), every direct mechanism in which

each firm announces its type is associated with an outcome-equivalent semi-direct

mechanism in which only participating firms announce their type.

In the semi-direct mechanism associated with (A.13), firms participate in the

auction iff xi ≤ x̂, participating firms reveal their true costs xi, and the assignment

and payments are determined by a uniform-price rule with the reserve price v− F (x̂)
f(x̂)

.

In the mechanism associated with (A.14), firms participate in the auction iff xi ≤
x̂, participating firms reveal their true costs xi and receive a payment of c, and

assignment and further payments are determined by a uniform-price rule with the

reserve price x̂. Note that, in both cases, the optimal reserve price depends on x̂,

and, therefore, on n. In both cases, by payoff equivalence, the pricing rule could be

replaced by any pricing rule with a monotonic symmetric equilibrium.29

29Stegemann (1996, Theorem 4) proves payoff-equivalence between symmetric equilibria of first-
and second-price single-unit auctions with bid-preparation costs.
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If x̂ = x̄, a payment function that fulfills (A.12) is pi(x) = c+ x̄. Then, all firms

participate and are paid (the reserve price) c+ x̄.

O2 Social welfare. We will first determine the socially optimal cutoff value x̂, which

by the assumption of symmetry is the same for all firms. Second, we will determine

the reserve price that induces socially optimal participation. Third, we will describe

a second mechanism that generates the same expected welfare.

First, assume v < x̄ + c or n > k. The first-order condition of the problem to

maximize W is ∂W/∂x̂ = 0, where

∂W

∂x̂
=− ncf(x̂)−

min{k,n}∑
i=1

x̂f(i,n)(x̂)

− vf(x̂)

min{k,n}−1∑
i=0

(
n
i

)
(min{k, n} − i)F (x̂)i−1(1− F (x̂))n−i−1(i− nF (x̂)) ,

which with f(i,n)(x̂) = nf(x̂)
(
n−1
i−1

)
F (x̂)i−1(1−F (x̂))n−i and Lemma 3(A.2) and (A.3)

leads to

(v − x̂)

min{k,n}∑
i=1

(
n−1
i−1

)
F (x̂)i−1(1− F (x̂))n−i − c = 0 . (A.15)

For v = r, Condition (A.15) equals Condition (1) to determine the cutoff costs x̂.

Thus, rO2
r = v attracts the participation that generates the social optimum.

Second, assume v ≥ x̄+ c and n ≤ k. Then, participation by all firms is socially

optimal and the auctioneer attracts participation by all firms with a reserve price

rO2
r ≥ x̄+ c, e.g., rO2

r = v.

One socially optimal mechanism is therefore a uniform-price auction with the

reserve price rO2
r = v. A second mechanism that also achieves socially optimal

participation of all types x ≤ x̂ is a uniform-price auction with rO2
c = x̂ and an

additional payment of c to all participants. In this mechanism, type x̂ has an

expected payoff from the auction of zero and is therefore the highest type that will

participate.

O3 Number of goods awarded. The maximum number of goods awarded is k if n > k

or n if n ≤ k. If n ≤ k, by Lemma 1, r ≥ x̄ + c achieves full participation and

the maximum number of goods awarded. If n > k, x̂ < x̄. Thus, under symmetric

participation a reserve price as high as possible maximizes the expected number of

bidders, and, therefore, the expected number of goods awarded. However, there is

no reserve price that achieves full participation.
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An optimal mechanism is therefore a uniform-price auction with the reserve price

rO3
c = x̄ and an additional payment of c to all participants. Then, all participants

participate and the expected number of goods awarded is maximized. If n ≤ k, a

second optimal mechanism is a uniform-price auction with the reserve price rO3
r =

x̄+ c.

O4 Auctioneer’s costs. The auctioneer minimizes his costs, that is, his payments,

by the reserve price rO4
r ≤ x+ c. Then, no firm participates and the auctioneer pays

nothing. Clearly, the auctioneer has no incentive to refund participation costs. �

Proof of Proposition 4: Denote the optimal mechanism of the type Mc or Mr

when the bid-preparation costs are c by Mc(c) and Mr(c), respectively. Let Mc(c)

be characterized by the optimal cutoff x̂ and the reserve price rc = x̂ given c and let

Mr(c) be characterized by the optimal reserve price rr given c. If the costs decrease

to c′, Mc(c) and Mr(c) are still available to the auctioneer.

We compare the values of the auctioneer’s objective functions when the costs

are c′ and he chooses Mc(c) with the situation when the costs are c and he chooses

Mc(c). In the former case his objective function O1 takes a higher value because

the same firms participate but the amount c′ he has to pay to each participant is

lower. Similarly, in the former case, the objective function O2 takes a higher value

because the participants and the auction assignment and payments (other than the

reimbursed bid-preparation costs) are the same but the total bid-preparation costs

are lower.

Next, consider the value of the auctioneer’s objective function O3 when the costs

are c and he chooses Mr(c). The auction is a STD auction with a reserve price and

by Lemma 1, dF (x̂)
dc

< 0 if n > k or r < x̄ + c. Otherwise, F (x̂) is constant in c.

Thus, if c decreases to c′, the number of participants increases weakly. When the

number of participants increases then the number of goods awarded also increases.

When costs are c′, the optimal mechanisms Mc(c′) and Mr(c′) by definition out-

perform Mc(c) and Mr(c). Therefore, the auctioneer with either of the objectives

O1 to O3 is better off with an optimal mechanism when the bid-preparation costs

are c′ than with the optimal mechanism when the bid-preparation costs are c. �

36



ZEW – Leibniz-Zentrum für Europäische  
Wirtschaftsforschung GmbH Mannheim
ZEW – Leibniz Centre for European  
Economic Research

L 7,1 · 68161 Mannheim · Germany 
Phone 	+49 621 1235-01  
info@zew.de · zew.de

Discussion Papers are intended to make results of ZEW 
research promptly available to other economists in order 
to encourage discussion and suggestions for revisions. 
The authors are solely responsible for the contents which 
do not necessarily represent the opinion of the ZEW. 

IMPRINT

//

Download ZEW Discussion Papers from our ftp server:

http://ftp.zew.de/pub/zew-docs/dp/

or see:

https://www.ssrn.com/link/ZEW-Ctr-Euro-Econ-Research.html 
https://ideas.repec.org/s/zbw/zewdip.html


	Introduction
	Basic Model
	Endogenous Rationing (ER)
	Endogenous Auction Volume (EAV)
	Endogenous Reserve Price (ERP)

	Conflicting Objectives for Optimal Auction Design
	Policy Implications
	Conclusion
	Proofs



