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Abstract

In recent times, distributed consensus protocols have received widespread at-
tention in the area of blockchain and smart grid. Consensus algorithms aim to
solve an agreement problem among a set of nodes in a distributed environment.
Participants in a blockchain use consensus algorithms to agree on data blocks
containing an ordered set of transactions. Similarly, agents in the smart grid em-
ploy consensus to agree on specific values (e.g., energy output, market-clearing
price, control parameters) in distributed energy management protocols.

This thesis focuses on the security and privacy aspects of a few popular
consensus-based protocols in blockchain and smart grid. In the blockchain area,
we analyze the consensus protocol of one of the most popular payment systems:
Ripple. We show how the parameters chosen by the Ripple designers do not
prevent the occurrence of forks in the system. Furthermore, we provide the
conditions to prevent any fork in the Ripple network. In the smart grid area, we
discuss the privacy issues in the Economic Dispatch (ED) optimization problem
and some of its recent solutions using distributed consensus-based approaches.
We analyze two state of the art consensus-based ED protocols from Yang et
al. (2013) and Binetti et al. (2014). We show how these protocols leak private
information about the participants. We propose privacy-preserving versions of
these consensus-based ED protocols. In some cases, we also improve upon the
communication cost.






Zusammenfassung

Neuerdings haben verteilte Konsensprotokolle im Bereich Blockchain und Smart
Grid grofle Aufmerksamkeit erhalten. Konsensalgorithmen haben das Ziel, ein
Ubereinstimmungsproblem zwischen einer Gruppe von Knoten in einer verteil-
ten Umgebung zu 16sen. Teilnehmer an einer Blockchain verwenden Konsens-
algorithmen, um sich auf Datenblocke zu einigen, die aus einer geordneten
Menge von Transaktionen bestehen. In dhnlicher Weise verwenden Teilnehmer
am Smart Grid einen Konsens, um bestimmte Werte (z. B. Energieausbeute,
Marktraumungspreis, Steuerungsparameter) in Protokollen fiir das verteilte En-
ergiemanagement zu vereinbaren.

Diese Arbeit fokusiert die Sicherheits- und Datenschutzaspekte einiger
gingiger konsensbasierter Protokolle im Bereich Blockchain und Smart Grid. Im
Blockchain-Bereich analysieren wir das Konsensprotokoll eines der gangigsten
Zahlungssysteme: Ripple. Wir zeigen, wie die von Ripple-Designern gewahlten
Parameter das Auftreten von Gabelungen im System nicht verhindern. Dariiber
hinaus definieren wir die Voraussetzungen, um Gabelungen im System zu verhin-
dern. Im Bereich Smart Grid diskutieren wir die Datenschutzaspekte des Opti-
mierungsproblems Economic Dispatch (ED) und einige seiner neusten Losungen
unter Verwendung verteilter konsensbasierter Ansétze. Wir analysieren zwei
State of the Art konsensbasierte ED-Protokolle von Yang et al. (2013) und
Binetti et al. (2014). Wir zeigen, wie diese Protokolle private Informationen
iiber die Teilnehmer preisgeben. Wir schlagen Versionen dieser konsenbasierten
ED-Protokolle vor, welche die Probleme hinsichtlich der Preisgabe personlicher
Daten losen. In einigen Fallen verbessern wir auch die Kommunikationskosten.
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Chapter 1

Introduction

1.1 Motivation

The consensus is one of the most fundamental problems in distributed systems
research and has been studied over the last four decades. The main goal of
the consensus algorithms is to ensure that nodes in a distributed setting can
agree on a particular shared state. This area of research has developed over the
years since its early theoretical results [1, 2, 3], practical implementations [4],
and most recently renewed overwhelming adaptation in blockchain [5, 6, 7] and
smart grid [8, 9].

The blockchain or distributed ledger stores a growing list of transactions or
records in the form of data blocks on top of a peer to peer (P2P) network. The
blockchain protocols employ consensus such that the participants can agree on
the set of transactions to be included in the database. From the security perspec-
tive, the consensus protocols in blockchain must be fault-tolerant from malicious
(or byzantine) attackers. However, the consensus algorithms used by different
blockchain protocols are often non-standard. They differ from traditional ones
[4] due to practical requirements such as network model, latency, number of
participants, etc. Therefore, these new-age blockchain-based consensus proto-
cols require rigorous security assessment and analysis such that claimed security
guarantees actually hold in practice.

The smart grid is the modern electricity network that supports the informa-
tion communication channel in parallel to the energy delivery network. It uses
a new generation of distributed energy management protocols. The network
nodes use consensus algorithms to agree on a set of common parameters such
as final electricity output, market-clearing price, estimates of different variables
for optimization. The development of consensus protocols for the smart grid
is currently an extension of multi-agent control and consensus research [10].
Traditional consensus research [1, 2, 3, 4] focuses on developing fault-tolerant
protocols in the presence of byzantine attackers. However, the consensus re-
search in industrial control systems concentrates on asymptotic behavior and
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convergence rate of the agreement between nodes. Furthermore, the consensus
algorithms in the smart grid often consider several practical factors such as ac-
tuation, physical properties, non-linear optimization, network graph [10, 9], etc.
In the smart grid, the consensus protocols are iterative. The participants start
with some initial values, and asymptotically agree on a specific amount at the
end of the protocol. In this agreement process, participants share their inputs
with others for computation. However, the data from participants might be
privacy-sensitive or confidential. For instance, a set of participants would like
to agree on the average energy consumption per month in a locality. Henceforth,
if individual nodes send their consumption data to others, it could reveal per-
sonal behavioral traces. Therefore, the design of privacy-preserving distributed
consensus protocols in a smart grid is necessary and opens a new research di-
rection.

1.2 Contributions

This thesis analyses the security and privacy aspects of some of the new gener-
ation consensus protocols in the application area of blockchain and smart grid.

The Ripple payment system [11] has evolved as one of the most prominent
cryptocurrency and blockchain network. Its consensus algorithm [5] promises
much faster ledger closing speed than its competitor Bitcoin’s Proof of Work
(PoW) consensus. In this thesis, our first contribution is on the security analysis
of Ripple’s consensus protocol. We show that the parameters provided by Ripple
designers in the whitepaper [5] do not prevent blockchain fork, and might lead to
double spending in the system. We furthermore present the overlap conditions
between consensus participants to prevent any fork in its blockchain.

The Economic Dispatch (ED) is a fundamental optimization problem in
smart grid energy management. The problem involves the minimization of total
operating cost while satisfying some system constraints. As several distributed
consensus-based protocols to solve ED problem have been proposed lately to
replace traditional centralized calculation, we have observed that most of the
current solutions are not secure. In particular, we study two state-of-the-art dis-
tributed ED protocols from Yang et al. [8] and Binetti et al. [9]. In this work, we
demonstrate attacks to show how confidential information about participants is
leaking while running both protocols and developed two privacy-preserving ver-
sions. The first one is called as Privacy Preserving Economic Dispatch (PPED)
protocol [12], which is constructed on top of Yang et al. ED protocol [§8]. We
have analyzed the security of PPED in the information-theoretic setting. In our
solution, we also improve upon the communication cost from the original Yang
et al. protocol. The second protocol is known as Privacy Preserving Binetti
(PPB) [13] based on Binetti’s ED protocol [9]. To construct such private ED
protocols, we have used cryptographic building blocks from secure multiparty
computation (SMC) [14, 15].

The PPED protocol considers quadratic cost function, whereas the PPB
protocol can be applied to more realistic non-convex cost function optimization
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in a smart grid. As the participants in a smart grid are identifiable and regu-
lated, we assume semi-honest attacker nodes instead of byzantine nodes in the
analysis of PPED and PPB protocols.

1.3 Thesis Structure

This thesis is organized into three parts, as follows:

Part 1 consists of chapter 2, where we formally define various notions
related to consensus, multiparty computation, etc., which will be useful
in the latter part of the thesis.

Part II focuses on the security of the Ripple payment system, partic-
ularly on its consensus protocol. Chapter 3 gives a brief introduction to
blockchain-related concepts and different blockchain consensus algorithms.
Chapter 4 overviews the Ripple payment system and surveys its related
security and privacy results. Chapter 5 describes Ripple’s consensus pro-
tocol and our analysis.

Part III presents privacy in consensus-based distributed economic dispatch
protocols in the smart grid. First, we give the background on the smart
grid, its security and privacy challenges, privacy-enhancing technologies
in chapter 6. In chapter 7, the ED problem is introduced, and we survey
previous works related to privacy in ED protocols. Chapter 8 presents
an attack on existing consensus-based ED protocol from Yang et al. [8]
and introduces the PPED protocol to solve the distributed ED problem
in a privacy-preserving manner. Chapter 9 discuses consensus-based ED
protocol from Binetti et al. [9], we show how it leaks private information
and we transform it into a privacy-preserving distributed protocol named
PPB. Finally, we conclude our thesis in chapter 10.

Publications: The contents of this thesis are primarily based on three papers
and one poster, previously published in TRUST’15 [16], FNSS’16 [12], Nord-
Sec’18 [13] and EuroS&P’17 [17]. Some other papers written during the doctoral
research but not included in this thesis are [18, 19, 20].

Chapter 4 and 5 of Part I extend the description and analysis of Ripple
previously published in [16].

Chapter 7 of Part III extends the description and related works of ED
previously published in [12] and [13].

Chapter 8 of Part IIT extends the results published in [12].
Chapter 9 of Part III is based on [13].

The attack discussed in chapter 9 of Part III was first presented in [17].
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Chapter 2

Preliminaries

This chapter introduces the necessary technical background to understand this
thesis. First, we discuss consensus in distributed systems and some well-known
results. Then we give some mathematical basis and present underlying concepts
of the cryptographic building blocks used in this thesis. We use the terms
“node”, “party”, and “participant” indistinctly.

2.1 What is Consensus?

The consensus is a fundamental problem in distributed systems that solves the
system reliability in the presence of faulty nodes. At the core, it is an agreement
problem where all non-faulty nodes have to agree on a specific value after some
nodes propose some value. In distributed systems research, this problem has a
long history and has been studied for the last 40 years [1, 2, 3, 4]. The goal of any
consensus algorithm is to reach identical decisions. We present the properties
of a consensus algorithm as given in [21, p. 150][22, p. 18] as follows:

Definition 2.1.1. (Consensus) In a n node system, suppose ¢t nodes are faulty
and every node P; has some input value z;. The consensus holds if the following
properties are satisfied:

e Agreement: All non-faulty nodes agree on the same value.

e Validity: The agreed value is one of the input values possessed by the
nodes.

e Termination: All non-faulty nodes should terminate within a finite time.

The security of any consensus algorithm is typically evaluated with property-
based approach, i.e., showing how these properties such as agreement, validity,
termination are satisfied. The quality of a consensus protocol depends on dif-
ferent measures such as maximum number of faulty nodes ¢ (in terms of n)
a protocol can tolerate, worst case termination time of honest nodes, and the
communication complexity.



8 CHAPTER 2. PRELIMINARIES

2.1.1 Byzantine General Problem

The byzantine general problem [1, 2] was introduced by Lamport, Pease, and
Shostak, and is a fundamental problem in fault-tolerant distributed systems.
This problem states an agreement problem among a set of nodes(“generals”) in
the presence of faulty nodes (known as byzantine). A node is called byzantine if
it can have arbitrary behavior such as not sending any messages, sending wrong
messages to different nodes, lying about input. Byzantine nodes can collude to-
gether or can be controlled by one specific adversary. We call a system reached
byzantine agreement when the nodes reach consensus as defined in 2.1.1 in the
presence of byzantine nodes. Lamport et al. in [2] showed that the necessary
and sufficient condition to reach a byzantine agreement is ¢ < %. In the cryp-
tographic sense, byzantine attackers are the strongest possible attackers, also
known as malicious attackers. The genre of protocols that solves consensus with
byzantine faulty nodes are known as byzantine fault tolerant (BFT) protocols.

2.1.2 Models for Communication in Distributed Setting

There are different network models for communication to design distributed
consensus algorithms:

Synchronous Model

In this model, nodes function in synchronous rounds. In each round, each
node can send a message to the other nodes, receive messages from the other
nodes, and perform some local computation. More specifically, there exist a
known fixed upper bound § for the time to send one message from one node
to another and a known fixed upper bound ¢ on the relative computational
speeds of different nodes [23]. In general, the synchronous model assumes point
to point communication channel such that nodes are connected with pairwise
secure and authenticated channels. Furthermore, a fully connected graph is a
standard setting for synchronous consensus protocols [2].

Partial Synchrony Model

Some models consider a relaxed setting to design consensus protocols in practice.
Dwork et al. in [23] introduced partial synchrony model where there exist fixed
bounds for message delivery (§) and relative computation speed (¢). However, &
and ¢ are not known beforehand by the protocol participants. Another variant
is known as the eventual synchrony model, where synchrony eventually holds
after some unknown but fixed time interval.

Asynchronous Model

In the asynchronous network model, messages arrive after finite but unbounded
time. This model is also known as the eventual delivery model. In a fully
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asynchronous model, messages might be arbitrary dropped or delayed. More
specifically, there are no upper bounds for ¢ and ¢.

2.1.3 Fischer-Lynch-Paterson (FLP) Impossibility Result

Fischer, Lynch, and Paterson in [3] proved that no deterministic algorithm could
solve the consensus problem in a fully asynchronous network model even with
one faulty byzantine node. This influential result in distributed consensus is
known as FLP impossibility result'. In the eventual delivery model, even though
there exists no deterministic algorithm to reach the consensus, consensus pro-
tocol construction is possible with randomization [3].

For further reading about consensus problems in distributed systems, we
recommend the book by Lynch [21].

2.2 Mathematical and Cryptographic Prelimi-
naries

We describe some basic notions from graph theory and algebraic structures used
in this thesis in brief.

e A group G is a set and an associated binary operation - that takes two ele-
ments of the set and maps the elements to a third element. The operation
satisfies four group axioms.

Closure: a,be G=a-be G

Associativity: a-(b-¢) = (a-b)-c

Identity: There exists e € G, such that for all a € G we have a - e =
e-a=a

1 1

Inverse: For all @ € G, there exists a™! € G, such that a-a™! =a~!-

a = e, where e is the identity element from the previous condition.

e A group G is cyclic, if there exists a generator element g € G, such that
any other element of G can be generated by repeated application of g with
itself. Equivalently, g € G is generator of cyclic group G if for any h € G
there exists an integer ¢ such that h = g¢*.

e A group G is commutative if for all a,b € G, we have a-b =10 a.

e A field F' is a set, associated with two binary operations, addition + and
multiplication -, such that:
— it is a commutative group over addition +.

— the additive identity is zero (0). There exists a different multiplicative
identity 1 # 0.

IThis paper was awarded Dijkstra Prize in 2001
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— G\ {0} is a commutative group over multiplication operator -.

— The multiplication operator - distributes over the addition operator
+. That is for all a,b,c € G, we have a- (b+c¢)=a-b+a-c.

o A field with finite number of elements is called Finite field or Galois Field.
The number of elements in a Finite Field is always p¥, for some prime p
and non negative integer k. Finite fields are called prime field, if the total
number of elements is a prime p. All prime fields of size p are isomorphic
to set of natural numbers modulo p. This field is denoted as F), or Z,,.

e A graph consists of a set of nodes V' and a set of directed edges £ C V x V.
In case of undirected graph, E consists of unordered tuples; in case of
directed graph FE consists of ordered tuples. A graph (V, E) is connected,
if for any u,v € V, there exists a sequence of nodes uy,us, -+ ,ug such
that (u,u1), (ug,us),- -, (ug,v) € E. A graph (V, E) is fully connected if
for any u,v € V, (u,v) € E.

o A hash function H : {0,1}* — {0, 1}" maps an arbitrary length string to a
short digest. Typically h is about 128 or 256. For a regular hash function,
the expected property is the output should be random for any input.
However, cryptographic hash functions exhibit additional properties.

— Pre-image Resistance: For any polynomial time adversary, given ran-
domly chosen y € {0,1}" it is hard to output any = € {0,1}*, such
that H(z) = y.

— Collision Resistance: For any polynomial time adversary it is hard
to output any (x1,x2), such that H(z1) = H(x2).

— One-wayness: For any polynomial time adversary, for any randomly
chosen input string = of some length, given H(z) it is hard to output
x.

o A digital signature scheme is a public key cryptographic primitive consist-
ing of three algorithms Key Generation, Signing, and Verification. The
Key generation algorithm generates a public key and a corresponding pri-
vate key. Any party holding the private key can sign on arbitrary mes-
sages. Any other party having access to the public key can verify the
authenticity of message signature pairs.

2.3 Secure Multiparty Computation (SMC)

Secure multiparty computation (known as SMC or MPC or SMPC) is a family
of cryptographic techniques for privacy-preserving computation. The goal of
SMC is to enable multiple parties to jointly compute a function while keeping
input data private. The SMC protocols exist in two-party as well as multiparty
setting. One classic example of SMC is a solution to millionaires problem by
Yao’s garbled circuit construction [24], where two millionaires find who has more
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wealth without revealing their wealth. Since then, many SMC protocols have
been proposed, and existing literature includes [25, 14, 26, 27].
Succinctly, one can define a generic SMC protocol as following [28]:

Definition 2.3.1. (SMC) In a n node system, parties Py, - - - , P, want to com-
pute the function y = f(z1,- - ,z,) where z; is the private input of P;. Consider
an external adversary A that can corrupt and control a subset of participating
parties (minority). An SMC protocol should satisfy the following security prop-
erties:

e Input privacy: parties learn the output y and the information inferred
from y, nothing else can be learned from the protocol execution.

e Correctness: all honest parties are guaranteed to learn the correct out-
put y in presence of adversary A.

Let’s take an example of the generalized millionaire’s problem with n parties
where x1, -+, x, be the wealth of individual parties. Clearly, f(x1, - ,z,) =1
if z; > x; Vi # j. An SMC protocol to solve the generalized millionaire’s prob-
lem should follow the security properties as mentioned earlier in 2.3.1. While
running the SMC protocol, only the identity of the richest millionaire is allowed
to be revealed to all parties (input privacy). Second, the SMC protocol should
output the correct result, i.e., the richest party is guaranteed to win, and an
adversary A cannot alter the result (correctness).

There are two distinct approaches to construct SMC protocols. The first
genre is Yao’s garble circuit approach, where the function is computed as a
binary circuit. The gates of the circuit are “encrypted” to form a garbled circuit.
The security of such schemes relies on the computational assumption and follows
from the security of the encryption scheme. The second family of protocols is
secret sharing based, where the function is presented as an arithmetic circuit. In
general, the Yao-based garbled circuit approach is more suitable for two-party
computation, and the secret sharing based strategy is ideal for the multi-party
setting. In this work, our focus will be on secret sharing based SMC protocols.

The Simulation Paradigm

A more formal definition of SMC [29, 30][31, sec. 7.1] considers ideal/real sim-
ulation paradigm. In the “ideal world”, an incorruptible or trusted party helps
the parties to perform the computation. Parties can directly send their input
to the trusted party, trusted party computes the function, and send back the
output to them. It models the idealized version of the protocol, including any
allowable information leakage. In the “real world”, the parties run the protocol
among themselves to compute the function without any trusted party. The real
world SMC protocol is secure if compared to the ideal world execution, the real
world protocol execution does not reveal more information to the adversary. In
other words, if the adversary learns the same information in both worlds, the
real world protocol is secure.
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2.3.1 Adversarial Model

As we mentioned earlier in 2.3.1, the model for SMC considers an adversary
A that controls some subset of the participating parties and wants to attack
the protocol execution. The controlled subset by the adversary is known as cor-
rupted parties. The adversary can be classified based on the corruption strategy,
adversarial behavior, and computational power. The following classification is
based on [32]:

Corruption Models

The adversary can corrupt the participating nodes in two ways: static corruption
and adaptive corruption. In a static corruption model, the adversary can control
and corrupt a fixed number of participants. The role of honest parties and
corrupted parties are fixed throughout the computation in this model. In the
adaptive corruption model, the adversary has the ability to corrupt parties
during the computation. Once a party is corrupted at some point will remain
corrupted throughout the computation in this model. Another model known as
proactive corruption considers corrupted parties to be corrupted for a certain
amount of time. A computing party in a proactive corruption model can be
corrupted during computation like in adaptive corruption but can be honest
again after a specific time.

Adversarial Behavior

The adversarial behavior can be classified based on the action of the corrupted
parties during computation. Such as behavior can be classified as semi-honest
and malicious. In semi-honest (also known as passive or honest-but-curious)
adversary model, the corrupted parties strictly follow the protocol specification,
but may analyze the message exchanges to gain additional information dur-
ing the protocol execution. In malicious (also known as “active”) adversarial
model, the corrupted party can deviate arbitrarily from the protocol specifi-
cation. This model is a much stronger adversarial model than semi-honest,
because the adversary has additional freedom of deviating from the protocol.
Furthermore, another model in SMC known as rational adversary model consid-
ers game-theoretic strategies to model the rational behavior of corrupted parties.
This adversary model is a stronger adversary than semi-honest but weaker than
the malicious model.

Computational Power

In SMC, the adversarial power is modeled based on two computational complex-
ity categories. First, the adversary is computationally bounded. In this setting,
we assume probabilistic polynomial time (PPT) adversaries which cannot solve
cryptographic hard problems. This is known as computationally bounded set-
ting.
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The second type of adversary has no computational limits, known as
computationally unbounded adversary. This type of adversary comes under
information-theoretic setting. The results in this setting do not rely on any
cryptographic assumptions of complexity classes. Any protocol which is secure
in the information-theoretic setting is trivially secure in the computationally
bounded setting.

2.3.2 SMC Security Guarantee

The security guarantees in SMC protocols can be categorized as following [33,
32, 34]:

Information-theoretic Security

An SMC protocol achieves information-theoretic security or unconditional secu-
rity or perfect security if the adversary does not obtain any additional informa-
tion running the real world protocol than it learns under ideal setting (with a
trusted third party). The result of a real world execution with a real adversary
should be the same as the result of ideal execution with a trusted party and
ideal world adversary. This security level is achievable with a computationally
unbounded adversary in the information-theoretic setting. In this model, it
is usually assumed that the parties are connected with ideal private channels
where the adversary cannot eavesdrop or modify the message communication
between two honest parties.

Statistical Security

The statistical security level is quite similar to perfect security. In this security
level, the adversary learns no additional information than in an ideal setting
but with a negligible probability. The result of a real world protocol execution
with a real adversary should be statistically close to the result of ideal execu-
tion with a trusted party and ideal world adversary. Once again, it considers
computationally unbounded adversary in the information-theoretic setting.

Computational Security

An SMC protocol can achieve computational security level against a PPT ad-
versary such if breaking the security of the protocol, implies the adversary has
to solve a computationally hard problem. Any functionality can be securely
computed under appropriate cryptographic assumptions achieves computational
security [35, 36].

2.4 Secret Sharing

Secret sharing is one of the important techniques used in SMC protocols. Infor-
mally speaking, it involves distributing a secret among a group of participants
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such that the share of each party does not reveal anything about the secret, but
together they can reconstruct the secret value. The idea of secret sharing came
independently from Adi Shamir [37] and Bob Blakley [38] to overcome the single
point failure problem of secret data storage. It has been a subject of research
by its own with various applications (e.g., SMC, byzantine agreement, threshold
cryptography, attribute-based encryption). A detailed survey on different secret
sharing mechanisms can be found in [39]. Some scheme needs everyone’s shares
to reconstruct the secret; on the other hand, some schemes require only a subset
of the parties are needed to reconstruct the secret. The latter ones are known as
threshold sharing schemes. A threshold secret sharing scheme can be described
as [40]:

Definition 2.4.1. ((t,n) threshold secret sharing scheme) A (t,n) threshold
secret sharing scheme can take s as a secret input and output n shares guaran-
teeing two following properties:

e Recoverability: Any subset of ¢ shares can be used to reconstruct the
secret s.

e Secrecy: A subset of less than ¢ shares does learn anything about s.

In our work, we particularly focus on Shamir’s secret sharing scheme [37],
which is a backbone of BGW protocol [14].

2.4.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme [37] is based on polynomials over a finite field
F. A (t,n) Shamir’s threshold scheme is perfectly secure against a semi-honest
adversary controlling ¢ — 1 nodes. The necessary condition for this scheme is
|F| > n, where n is the number of participants. For simplicity, we can con-
sider F = Z, such that the prime p is bigger than n (p > n). In real-world
applications, the prime p that defines the field size is much bigger than n to
avoid overflows. If we want to design a (2,n) threshold secret sharing scheme,
the secret could be the slope of a line, and each share can be distinct points
on the line. Henceforth, 2 parties can find the slope of the line, but one point
on the line says nothing about the secret. Similarly, this idea can be general-
ized as for (3,n) scheme with a quadratic function and for (¢,n) scheme with
a (t — 1) degree polynomial function. Note, any ¢ points in a two-dimensional
plane uniquely determines a polynomial of degree <t — 1 (if such a polynomial
exists). Shamir’s scheme consists of three steps: i) Initialization, iii) Distribu-
tion of Shares, and iii) Reconstruction. In the following, we explain the steps
using Shamir’s (¢,n) threshold secret sharing scheme:

Consider a dealer who wants to share the secret s € Z, among the parties
Py,...,P,.

i) Initialization:

The dealer selects n distinct non-zero elements 1, ..., x, from Z, (public).
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ii) Distribution of Shares:

The dealer constructs a random polynomial fs(z) € Z,[X] of degree at most
t — 1 such that fs(0) = s. This can be done by choosing uniformly random ¢ — 1
elements from Z, as a1, ...,a;—1 and defining f,(x) as follows:

fs(x)=s+az+ - +a_12""" modp (2.1)

Thereafter, the dealer can compute y; = fs(x;) (for 1 <4 < n ) and distribute
the share y; to P;. As a result, every party P; gets the a point (z;,y;) on the
polynomial fs(z) as a secret share.

iii) Reconstruction:

The secret reconstruction can be done with polynomial interpolation. If ¢ dis-
tinct points are known from t parties, the polynomial (degree < ¢ — 1) can
be constructed with some interpolation methods (e.g., vandermonde matrix,
lagrange interpolation). One can use lagrange interpolation method for recon-
struction of the secret as solving a system of linear equation with vandermonde
matrix is costlier. Without the loss of generality, we suppose that the shares
use for reconstruction are yi,...,y;. The polynomial fs(z) can be represented
as follows:

fs(x) = Zyi -0 (x) (2.2)
i=1

Here, §1(x),...,0:(x) are lagrange basis polynomials of degree at most ¢ — 1.
Let’s take an example of §; (z) polynomial, it has at most t—1 roots as s, -+, ¢
and 01(z1) = 1 (as fs(x1) = y1). This polynomial can be represented as:
01(x) = C1-(x—x2)-(x—x3) - - - (x—2¢) where Cf is a constant. Now, the constant
_ d1(x1) _

T (wr—z2)-(z1—x3) - (wr—xy) T (w1—w2)-(z1—23)(B1—xy)

Henceforth, é;(x) = (I(f:;za)).‘((;cl—j;sg))'::.((-"thggt) and similarly one can define §;(z)
as:

term C; can be found as C;

t

s(r)= [ =% (2.3)

T — X
j=1j#i "

Recoverability: Let’s see how any t shares can recover secret s. First, one can

find:
.
0;(0) = —L
© ._H Ty — X
J=1,j#i

This 6;(0) is a constant depends on which share holders are involved but
independent of the shares y;’s. This value can be pre-computed and as we have
the shares y1, ..., 4:’s, the secret can be found as: s = f,(0) = Zle yi - 0;(0).

Secrecy: Here we verify whether Shamir’s scheme satisfies the secrecy
property i.e. less than ¢ shares reveal anything about the secret s or not.
Without the loss of generality, suppose t — 1 parties Ps, ..., P; are contributing
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their respective shares ys,...,y; to reconstruct the secret. ~We need to
show these ¢ — 1 shares do not reveal any information about the secret s.
The secret s can be written as: s = f,(0) = S2'_, 5 - 6:(0). This implies
y1-01(0) =5 — ', yi-8;(0). Note that d;(0) = H;ZQ xl%z;j, is non-zero as all
x; and x1 — x;’s are non-zero. Hence it follows that without knowing the value
of y1, the secret value s remains unknown. Perfect security is achieved as we
have a bijective relation between any possible value of s € Z,, and any possible
value of the missing share y; € Z,,.

Example:

Let’s assume a dealer wants to distribute a secret among three parties Py, Ps, P3
using (2, 3) Shamir’s scheme i.e., can tolerate upto one corrupt party. The dealer
chooses to work in the field F = Z;3 and share the secret s = 7. He picks a; € F
uniformly at random. Suppose a; = 5 and he constructs the polynomial:

fs(x) = s+ 5z mod 13

Now the dealer can compute the shares y; = fs(1) = 7+ 5 mod 13 = 12,
Yo = fs(2) = 7410 mod 13 =4 and y3 = fs(3) = 7+ 15 mod 13 = 9. Each
share y; is sent privately to respective party P;. Let’s assume P; and Ps together
want to reconstruct the secret from their share. We can use lagrange method
as explained previously. We use equation 2.3 to get:
61(z) = Il;=3 ;;_'ij mod 13 = £=2 mod 13 = (z — 3)(1 — 3)"" mod 13 =
(x—3)(=2)"! mod 13 = (z—3)(11)~! mod 13 = (z—3)-6 mod 13 = (6z—18)
mod 13. Similarly, we can find d5(z) = [];_; ;=5 mod 13 = 2=1 mod 13 =
(x—1)(2)7! mod 13 = (x —1)-7 mod 13 = 7z — 7 mod 13. Finally, we can
find the secret s by using equation 2.2 as:
s = fs(0) = Xic1,3¥i-0:(0) = y1-01(0) +y3-03(0) = 12-(6-0—18)+9-(7-0-7)
mod 13 = (=216 — 63) mod 13 = —279 mod 13 =7.

2.5 Secure Computation from Secret Sharing

Ben-Or, Goldwasser and Widgerson (BGW) protocol [14] is a foundational SMC
protocol in information-theoretic model. They demonstrated that any function
with n-ary input can be computed with perfect (information-theoretic) security,
assuming private encrypted channel. The main results of their paper were as
follows considering a complete synchronous network of n parties with pairwise
private encrypted channel:

Theorem 1. For every n-ary input function f, there exits a protocol to compute
[ with perfect security in presence of T semi-honest adversaries as long as T < 3.

Theorem 2. For every n-ary input function f, there exits a protocol to compute
| with perfect security in presence of t malicious adversaries (or Byzantine) as
long as T < % (requires a broadcast channel).
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In the following, we describe how addition and multiplication gates are se-
curely evaluated. The idea can be extended to arbitrary functions, as any arbi-
trary function can be expressed in terms of addition and multiplication gates.

2.5.1 Secure Addition

A secure addition protocol can be implemented using the homomorphic property
of additive secret sharing [41]. Suppose the set of participants of the multiparty
protocol hold shares of a value x € F,. The ordered set of shares is denoted
by [z]p, the order denotes which share is owned by which participant. If the
shares are generated by using a degree ¢t polynomial f, then the set of shares
is also denoted as [x; f],. As the secret sharing scheme is linear, the following
properties hold for any z,y,a € F, and degree t polynomials f,g: F, = F,

o [z flp+[yiglp =[x +y; (f+9)p
o afz; fl, = |ax; fl,
o [ flp - [ys9lp = [2y; (f9)lp

Here, share addition (+) and share multiplications (-) are defined as follows.
Suppose, [z]p = (21, @2, -+, #n) and [y]p = (y1, 42, ,yn), then

i [:E]p—"_[y]p: (371+y17332+92a"‘ axn+yn)

o afz], = (ax1,aze, -, axy)

i [x]p : [y]p = (xlylv ZT2Y2, - 7$nyn)

Because of the linear homomorphic property of the secret sharing scheme,
the secure addition protocol can be trivially realized where parties generate
[z +y], by calculating [z], + [y],- This is a non interactive protocol with perfect
security.

2.5.2 Secure Multiplication

As described in the previous section, [x], - [y], which can be calculated locally
is in fact [xy],. However, the polynomial corresponding to the resultant share
is a degree 2t polynomial, even though the original polynomial is of degree t.
Genaro, Rabin and Rabin [42] described a secure multiplication protocol to
address this issue.

Suppose, we have sets of shares [z; f], and [y; g], which have been distributed
to a set of players Py, -, P,. As we have discussed before, [zy; (fg)] can be
calculated locally by individual players. We know,

oy = (19)(0) = S A(f9)@) mod p.
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Here A;’s (for 1 < i < n) are known Lagrange multipliers,

H kL—z mod p.

1<k<n
ki

Every player P; can share their share of xy (i.e. (fg)(i)) using a degree ¢
polynomial h;. i.e. player P; can choose a random degree polynomial h; s.t.
hi(0) = (fg)(i) and send h;(j) to every other player P;. Now every player can
locally compute shares of xy with respect to the degree t polynomial

(@) =Y Aihi(x)
This holds because,

1. HO) = > Nhi(0) = >0 N(fg9)(i) = wxy, which implies
(H(1),---,H(n)) are valid shares of xy.

2. each share H(i) = >_ A\jh;(i) can be locally computed by player P;.

Combining secure addition and multiplication we can securely evaluate any
arithmetic circuit.

2.5.3 Bit Decomposition and Bitwise Circuit Evaluation

If we want to compare two numbers, the resultant circuit cannot be written as a
small constant depth arithmetic circuit. If we write the operation as a polyno-
mial, the resultant circuit will have gates proportional to the field size which can
be huge. Suppose, we have access to the bitwise sharings ([aop, - - , [@e—1]p),
([bo]p7 . [bg 1]p). Here, a;,b; € {0,1} C F,, for i € [0,¢—1]. Then the function

S 0 a;2" < Zé 2 b;2 can be securely computed in constant rounds.

n [15], Damgard et al. presented a novel constant round unconditionally
secure bit decomposition protocol. Suppose [a], are shares of a € F,. The
bit decomposition protocol takes [a], as input and outputs ([ao]p, - -, [ae—1]p)s
where a = Zf éaﬂl Using this bit decomposition protocol we can securely
evaluate any bitwise circuit e.g. comparison or finding maximum index.

2.6 Summary

We have described the necessary background on consensus, mathematical pre-
liminaries, and secure multiparty computation (SMC) to understand this thesis.
In the SMC section, we have focused primarily on secret sharing-based arith-
metic circuit protocols.
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Chapter 3

A Brief Introduction to the
Blockchain

3.1 Introduction

The term blockchain is often used to refer to current distributed ledger technolo-
gies. Generally speaking, a blockchain is a distributed database that stores a
growing list of transactions or records in the form of a chain of blocks. Each data
block is immutable through cryptographic algorithms to ensure the integrity of
the transactions. In a blockchain, instead of a central authority, a group of nodes
that do not necessarily trust each other, maintain shared ledger states through
some distributed protocol. The blockchain stores an ordered set of transactions
where distributed notes run a consensus protocol to agree on the contents of the
transactions and their order. The information is stored in a sequence of blocks,
and individual blocks can contain one or more transactions. The concept of
the blockchain originated from Satoshi Nakamoto’s Bitcoin whitepaper in 2008
[43] and further open-source deployment in 2009 as a part of Bitcoin software.
The Bitcoin is a decentralized electronic payment system and a cryptocurrency
which uses blockchain as its public ledger for monetary transaction. It uses
the Proof of Work (PoW) based consensus mechanism. The Bitcoin system al-
lows parties to transfer monetary values without any central institution such as
a bank. As a central authority cannot verify the validity of a transaction, the
distributed network of nodes has to reach a consensus on whether or not a trans-
action is valid. In Bitcoin PoW, a group of nodes known as miners solve a hard
computational problem to generate new blocks. Since the inception of bitcoin,
many blockchain initiatives such as Ethereum [6], Ripple [11], and Hyperledger
[7] have received considerable attention in academia as well as in industry. The
current usage of blockchain is not only limited in decentralized cryptocurrency
similar to Bitcoin but also applied in smart contracts, supply chains, Internet
of Things (IoT), Industry 4.0, smart grid, etc. In this chapter, we will give an
overview of blockchain systems and consensus algorithms related to this thesis.

21
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3.2 Blockchain Overview

3.2.1 Definition

The definition of a blockchain can be application-specific, and one can find
several definitions with its evolving features and requirements [44, 45]. Cachin
and Vukoli¢ in [44] defined a blockchain as:

“a distributed database holding a continuously growing list of
records, controlled by multiple entities that may not trust each
other.”

The International Organization for Standards (ISO) is currently working on
the standards for blockchain terminologies in ISO/TC 307. They have infor-
mally described blockchain in [46] as:

“a shared, immutable ledger that can record transactions across dif-
ferent industries, thus enhancing transparency and reducing trans-
action costs. It is a digital platform that records and verifies trans-
actions in a transparent and secure way, removing the need for mid-
dlemen and increasing trust through its highly transparent nature.”

In 2018, NIST released a technical overview of blockchain and informally
defined it as [45]:

“Blockchains are distributed digital ledgers of cryptographically
signed transactions that are grouped into blocks. Each block is cryp-
tographically linked to the previous one (making it tamper evident)
after validation and undergoing a consensus decision. As new blocks
are added, older blocks become more difficult to modify (creating
tamper resistance). New blocks are replicated across copies of the
ledger within the network, and any conflicts are resolved automati-
cally using established rules.”

3.2.2 Key Concepts

We discuss some key concepts in blockchain to get a better understanding.

Blocks

A block (also known as a ledger) is a data structure that contains a header
and a list of transactions in the blockchain. Every block is identifiable with its
hash value in the block header. Each block has a hash pointer connected to the
previous block, thus creating a blockchain (see Fig. 3.1). A Hash pointer points
to the address where the data is stored and includes the hash of that data. The
hash pointers link data blocks together, starting from the genesis block to make
blockchain tamper-resistant. If an adversary wants to tamper a specific block
in the blockchain, he needs to change every hash pointer of all preceding blocks
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Figure 3.1: Blocks in Blockchain

leading up to the genesis block. Generally, a block header has five attributes,
such as block hash value, previous block hash value, nonce, timestamp, and
Merkle root. The nonce is a random value found during the mining process in
PoW based blockchains. Finding out an appropriate nonce that creates a valid
block in PoW blockchain is a hard problem. Miners use the majority of their
computation power to find such nonces. The set of transactions in a block uses
Merkle tree data structure representation. It is a binary hash tree, where at
a lower level, every two transaction hashes are grouped into one to make new
parent hash and finally converges to the Merkle root hash at the top of the tree.
Merkle tree helps to preserve the transaction orders in a block, and one can
verify a transaction in a block against the root efficiently in logarithmic time.

Transactions

Transactions are the atomic elements inside a block, particularly in
cryptocurrency-based blockchains. A transaction is a transfer of some monetary
tokens or coins which is broadcasted and collected in a block. A user needs to
sign a transaction with its private key before broadcasting to the network. The
transactions are irreversible once they get confirmed in the blockchain. Anyone
can see every transaction details inside a block as they are unencrypted. In
blockchain, there are two types of transaction models: i) unspent transaction
output (UTXO0), and ii) account-based transaction. Bitcoin and cryptocurren-
cies based on Bitcoin use UTXO transaction model. The key elements of a
UTXO transaction are a set of inputs, outputs, and the transaction hash known
as transaction identifier. In UTXO, the entire history of a coin transaction is
recorded with unspent outputs where each output has an owner and a value.
The total monetary value in all inputs must be greater or equal, then the to-
tal value of all outputs to produce a valid transaction. Cryptocurrencies like
Ripple and Ethereum use account-based transaction model. It is much simpler
where all transactions are recorded based on sender accounts. The blockchain
records the changes in the user account balance due to a transaction rather than
recording the history of a coin movement.
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Nodes

A blockchain operates on top of a peer to peer (P2P) network where nodes can
have different roles while running a specific blockchain protocol. For example,
Bitcoin supports three types of nodes such as full node, miners, and lightweight
clients [47]. In general, the whole blockchain is shared across distributed nodes,
and every node can have a replicated copy of the blockchain. A full node in the
Bitcoin network maintains a complete copy of the blockchain. Full nodes are
dedicated to check for new incoming transactions and blocks in the network and
forward them to other nodes. They can also validate the transactions inside a
new block. The miners are full nodes who are additionally responsible for doing
PoW computation to add a new block on top of the existing Bitcoin blockchain.
Finally, the lightweight clients use Simple Payment Verification (SPV) protocol
to verify a transaction included in the blockchain. These nodes only require to
store the block header rather than maintaining the full blockchain. As Ripple
blockchain does not employ PoW, it does not have miner nodes like Bitcoin or
Ethereum. Instead, a set of nodes called wvalidators (also known as wvalidating
nodes) take part in the consensus process to validate and add new blocks in the
blockchain. Other than the nodes, a network user is a person or an entity who
uses the blockchain network such as making or receiving a transaction.

Digital Signatures

Digital signatures play an important role in blockchain while sending a trans-
action or a block. Transactions or blocks are hashed and digitally signed by the
sender before broadcasting to the other nodes for data integrity and authen-
ticity. The digital signature algorithms have three steps: i) key generation, ii)
signing, and iii) verification. In the key generation, anyone can create a private
key and a public key. In signing, the sender signs data such as transaction
with its private key and broadcasts the transaction with the signature to other
nodes. In verification, other nodes can verify the authenticity of the transaction
using the signature, the transaction, and the public key of the sender. In a cen-
tralized system, a Public Key Infrastructure (PKI) is required to bind the user
identity with its public key. Cryptocurrency-based blockchains (e.g., Bitcoin,
Ripple, Ethereum) use public keys as pseudonyms instead of PKI. Blockchain
users can generate as many key pairs by themselves, and the hash of the public
key is known as the user address. Some blockchain protocols include some fees
to create a new address to prevent Sybil attacks. In Sybil attacks, the attack-
ers create a large amount of pseudonyms to hamper reputation of a network.
Most of the blockchain protocols use elliptic curve digital signature algorithm
(ECDSA) over the secp256kl curve, which provides 128-bit security.

Blockchain Consensus Mechanism

In a centralized banking system, a trusted central authority controls the validity
of a specific transaction. The central authority has access to control privileges
and can take the necessary measures against attacks such as double-spending.
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A decentralized blockchain replaces these centralized trust systems with a con-
sensus mechanism. When a new transaction seeks validation, each validating
nodes can add or reject that transaction in its candidate block locally on top
of the global ledger. In the consensus phase, the nodes communicate with each
other, and the majority reach an agreement on the next candidate block to be
added to the global blockchain. As some participant nodes can be byzantine and
behave arbitrarily with malicious intent, blockchain consensus protocols need to
be byzantine fault-tolerant. In general, blockchain consensus protocols assume
eventual synchrony time model [44]. The blockchain protocols typically use a
broadcast channel where honest nodes receive the same set of messages with the
same order. As pointed out by Cachin et al. [44], the blockchain form of con-
sensus is similar to atomic broadcast or total order broadcast in crash tolerant
distributed computing. Note that the blockchain consensus is not only agree-
ing on the total order and it involves a validation step for BFT consensus. In
blockchain, consensus protocols require to follow safety and liveness properties
[44, 48, 49].

e Safety: The safety property (or consistency or common prefiz [49]) en-
sures that if a honest node accepts or rejects any transaction, then every
other honest nodes will eventually decide for the same transaction.

e Liveness: The liveness property ensures that all honest nodes are guar-
anteed to decide for a value and terminate to reach a consensus. This
assures that the blockchain grows at a steady rate.

3.2.3 A Simple Blockchain Model: How does it Work?

Current blockchain technologies include many functionalities of the Bitcoin net-
work. Some common functionalities are transaction integrity of the ledger, pre-
vention of double-spending, anonymity of user identity, etc. The general work-
flow in a blockchain is depicted in Figure 3.2. Suppose Alice wants to send some
bitcoin to Bob. So Alice creates a bitcoin transaction transferring the funds to
Bob, digitally signs it with her private key and broadcasts it to the network.
Next step, the transaction has to be validated by the validating nodes (miners
in case of Bitcoin) to check different requirement for a correct transaction (e.g.,
if Alice has sufficient funds). All validating nodes collect all received transac-
tions in a block and run a consensus protocol (PoW for Bitcoin) for network
approval. If the majority of the miners reach a consensus that the transactions
in a block are valid, the block is appended to the blockchain. After the block
containing Alice’s transaction added to the blockchain, the transition from Alice
to Bob become successful. The current blockchain technologies include differ-
ent cryptographic techniques such as hashchain, Merkle tree, digital signatures,
pseudonyms, consensus protocols to prevent double-spending attacks and create
an immutable ledger.
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Figure 3.2: How does a Blockchain work

3.2.4 Blockchain Classification

Blockchain can be classified depending on its deployment, access rights, and
verification [44]:

Permissionless Blockchain

Permissionless or public blockchain is open for anyone. Anyone can run a node
to maintain the blockchain. Anyone can write to the shared state and add a
new transaction by paying the transaction fee. Anyone can join the consensus
protocol to validate correct blocks and become a miner. Some examples of
permissionless blockchain are Bitcoin and Ethereum.

Permissioned Blockchain

Permissioned blockchain can be further divided into a consortium and a pri-
vate. In consortium blockchain, only a pre-selected group of participants within
a consortium can write to the blockchain. This restricted write permission gives
that group of participants to run and influence the consensus protocol. They
can also control who can issue a transaction. On the other hand, anyone can
read the written transactions in the blockchain. A private blockchain is similar
to consortium blockchain where the write permission is limited to a single par-
ticipant or single organization. The read permission can be open to the public
or could be limited to a subset of the blockchain users. One use case can be
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data management and information sharing inside an organization. Hyperledger
network [7] is an example of a permissioned blockchain.

3.3 Fork in Blockchain

A blockchain fork is a situation where two or more blocks have the same distance
from the genesis block. Suppose, the block height hy, is the distance between the
genesis block g and the block b such that h, = 0. The blockchain head is a
block with maximum block height h = hpeqq. Furthermore, let us define B,
being the set of blocks with a block height h. Then a blockchain fork happens
when |Bpeqq| > 2 [50]. In this situation, the nodes in the network can not
reach an agreement that which block is the current blockchain head; thus, one
chain becomes two or multiple chains. In other words, a fork happens when
two or numerous different blocks get clear majority votes from the network
participants to get accepted in the blockchain. A fork is always undesirable
in any blockchain system as it could lead to a double-spending attack, create
confusion in the network or reduce network performance, etc. For instance,
Alice has only two bitcoins, but if the blockchain forked, she might be able to
perform two bitcoin transactions to Bob and once again to Eve. In PoW based
blockchains, a fork happens when two or more miners find the solution for a
block around the same time. In other consensus-based blockchains, it is possible
when two or more different blocks get clear majority votes. We will discuss the
forks in the Ripple payment system in chapter 5. Bitcoin resolves forks in its
blockchain by longest chain rule. It means the network will eventually select
the chain with the most work and drop the others. Note that some forks can be
intentionally and permanently introduced due to software upgrades or protocol
changes. However, these type of forks are not relevant to our topic of discussion.

3.4 Blockchain Consensus Algorithms

We review different consensus algorithms in blockchain in focus on security and
privacy.

3.4.1 Proof of Work (PoW)

Bitcoin and Ethereum employ PoW consensus each node has to perform some
amount of work to add a block to the blockchain. The PoW systems use some
mathematical problem, for which it is difficult to find a solution, but it is easy
to verify valid solutions. To get a solution to the challenge, a miner node has
to perform a considerable amount of computational work. The first miner finds
the answer gets to add its proposed block to the blockchain and receive some
reward. As verifying the correctness is easy, other nodes can agree on a correct
block. The steps of PoW consensus in Bitcoin can be simplified as follows:
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1. Nodes listen for the new transactions on the network, validate its correct-
ness, and accumulate new transactions in a block.

2. Each miner node works on the PoW puzzle for its block. The puzzle
includes finding a nonce such that H(hprey||hiz||nonce) < target, where
H is a cryptographic hash function (SHA-256 for Bitcoin), hpye, is hash of
the previous block, hy, is the Markle root of its proposed block including
new transactions and target is a 256 bit number which is publicly known.

3. The first miner who solves the puzzle broadcasts its block in the network.

4. Other nodes verify the correctness of the solution, accept the block, and
start working on the next block. The miner who found the correct solution
receive its mining fee.

The PoW difficulty depends on the target value. The puzzle becomes harder
when target value is reduced, resulting in smaller number of possible solutions.
The Bitcoin network updates the target value in every 2016 blocks to make
the puzzle more difficult. Any node can take part in PoW based consensus by
starting mining; thus, it is suitable for permissionless blockchain. The miners
together can make a corporate network (known as mining pool) to generate
more hashing power thus increases the probability of finding a new block. The
PoW based systems are susceptible to 51% to attack. This attack is possible
when colluding attackers control more than 51% of the computing power in the
network. PoW based consensus can support a large number of nodes; however,
the transaction confirmation is slow. On average, a Bitcoin transaction takes
ten minutes to get confirmed in its blockchain.

3.4.2 PBFT

Byzantine Fault Tolerant (BFT) based consensus algorithms aim to solve the
consensus problem with a voting process in the presence of Byzantine nodes.
Castro and Liskov showed that BFT could be practical with Practical Byzantine
Fault Tolerance (PBFT) protocol in [4]. The PBFT protocol assumes that
the number of Byzantine nodes ¢ < 7 where n is the number of total nodes
in the network. The protocol is leader-based, and only the leader node (also
known as primary replica) is responsible for committing a new block with the
ordered transaction. PBF'T based protocols require every node to know all other
nodes participating in the consensus protocol. The primary node is selected by
the other participant nodes (also known as secondary replica). Each round of
PBFT has a view which is a configuration of replicas with a primary. Secondary
replicas can collectively replace the primary node with a secondary node by view-
change voting procedure if the first shows some Byzantine behavior. The PBFT
protocol works in asynchronous network assuming that messages between non-
faulty nodes arrive within fixed but unknown time delay. This network model
is known as eventual synchrony and known to be a reasonable assumption for
blockchain implementations [44]. The protocol can be described in three phases:
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pre-prepare, prepare and commit. We can briefly describe PBFT in blockchain
scenario:

1. Client sends a transaction request to the primary node.

2. In pre-prepare, the primary node assigns the transaction request with a
unique sequence number and broadcasts it to secondary replicas.

3. In prepare, each non-faulty replica agree on a valid transaction (e.g., check-
ing the signature, transaction hash) with the corresponding sequence num-
ber.

4. In the commit phase, each replica sends its commit message to other
replicas for reaching consensus, executes the transaction and replies to
the client.

5. Clients receives replies from the replicas and ¢ + 1 identical acknowledg-
ments confirm the transaction validation.

Some variants of PBFT algorithm is currently used in Hyperledger Fabric [7],
BFT-SMaR¢t [51] and Tendermint [52] consensus protocol. On scalability per-
spective, PoW based blockchain protocols suffer from high latency for a trans-
action to get validated, where PBFT based protocols can support low latency
in transaction validation. On the other hand, PBFT based protocols behave
poorly with a higher number of nodes (currently maximum 20 nodes) thus more
applicable in permissioned blockchain.

3.4.3 Consensus with Flexible Trust

In the last two sections, we discussed PoW based consensus, which is suitable
for permissionless blockchain and PBFT based consensus being used in permis-
sioned blockchain. The credit networks like Ripple [5] and its offspring Steller
[63] stand in between, and their blockchains operate in a semi-permissioned
manner. Both blockchains are permissionless as any node can join the consen-
sus protocol, but each node must trust a consortium of nodes, thus somewhat
similar to permissioned blockchains. This trust assumption is known as flexible
or subjective or asymmetric trust i.e. each node must trust a group of nodes of
its choice to run the consensus protocol [54].

The Ripple blockchain (known as XRP ledger) consensus is a voting based
protocol performed by so-called wvalidating nodes or validators in the network.
Any node is open to join the network and run as a validator. Each validator
requires to define a Unique Node List (UNL). Every validator trusts its own
UNL member that they would not collude to make malicious attempts such as
validate an invalid transaction. However, Ripple validators are not free to make
their trust assumption as Ripple network provides “a default and recommended
list” in every UNL. Thus it caused disputes over its decentralization [5]. The

consensus protocol in Ripple assumes the number of byzantine nodes ¢ < ¥
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whereas traditional PBFT can tolerate upto 7, where n is the number of con-
sensus participants. We will discuss Ripple’s consensus protocol in detail and
give our security analysis in chapter 5.

The Stellar blockchain has evolved independently with similar design prin-
ciple like Ripple. Similar to Ripple, it is also a credit network for cross border
transactions. The Steller Consensus Procotol (SCP) [55] introduces Federated
Byzantine Quorum Systems (FBQS), where any node is open to join the con-
sensus process and can define its own trusted set of nodes known as a Quorum
Slice. Different quorum slices may overlap and make a Quorum which is the
sufficient number of nodes to reach consensus. For example, if a PBFT system
has total nodes n = 3t + 1 with ¢ byzantine nodes, the Quorum consists with
2t + 1 nodes. Recently, Kim et al. [56] (Figure 2) showed current SCP deploy-
ment might fail in a sequence in the absence of two particular nodes controlled
by Stellar foundation.

This idea type “UNL” or “Quorom Slice” in consensus protocols can be
traced back to Byzantine quorum systems [57] to achieve BET. However, Byzan-
tine quorum systems consider symmetric trust assumption, whereas the trust
assumption in Ripple or Steller is asymmetric. Recently, Cachin and Tackmann
in [54] have formalized a model of Byzantine quorum systems with asymmetric
trust assumption.

3.4.4 Other Alternatives

Some other alternatives have emerged in parallel for blockchain consensus mech-
anism. As PoW mining is costly in terms of energy usage, proof of stake (PoS)
came as a substitution where computational power is replaced with the “stake”
in the network. The idea is that the more capital a node has invested in the
network, it is more likely that the node will want the network to succeed rather
than attacking the system. In PoS, the probability of adding the block in the
blockchain by a node is proportional to the relative stake of that node in the
network. PoS can be incorporated with PoW as well as BFT based protocols.

In Algorand blockchain [58], the authors proposed a PoS Byzantine agree-
ment protocol with participant replacement mechanism. Ethereum’s Casper [59]
is another permissionless blockchain implementation with PoS consensus.

Proof of Elapsed Time (PoET) is a consensus algorithm proposed by Intel
where the computational puzzle in PoW systems get replaced by trusted execu-
tion environment (TEE) such as Intel’s Software Guard Extension (SGX). The
consensus mechanism is leader based, and leader must be randomly chosen to
add a new block. Each node has to wait a random time interval and node with
the shortest waiting time will be the leader to finalize a block.

Furthermore, SGX can verify the proof that waiting time is indeed random,
and the winner has completed that time duration. Currently, Hyperledger Saw-
tooth platform deployed PoET in its permissionless and permissioned version.
The security of PoOET depends on the trusted hardware modules as an attacker
nodes might perform rollback attacks and key extraction [44].
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3.5 Summary

We have discussed the necessary background on blockchain, its key components,
and particularly different types of consensus mechanism. We outlined how con-
sensus in Ripple or Stellar differ from PoW and standard BFT based consensus.
In the next chapters, we will talk about the Ripple credit network, its consensus
algorithm, and our security analysis.
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Chapter 4

Ripple Credit Network

4.1 Introduction

Ripple is a distributed payment system and global remittance service based on
credit networks [11]. The initial idea behind Ripple network started with I Owe
You (IOU). It was drafted by Ryan Fugger back in 2004 [60]. Since then Ripple
payment system [61] has evolved independently of Bitcoin and gained consid-
erable popularity over the years after its public inception in 2013. Originally,
Ripple has emerged as a competitor of Bitcoin with much faster trans