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Abstract
Passengers traveling by train may need to change trains on their route. If the focal 
train of a passenger is late, the passenger might miss his connection and has to 
decide how to continue his trip. Delay management addresses the question whether 
the connecting train should wait (or not) for the delayed passengers. If the connect-
ing train waits, delays would get transferred through the network. In literature, sev-
eral works consider delays and their impact on railways and how to reschedule dis-
turbed plans. We focus on works, aiming to minimize passenger inconvenience as 
it is done in delay management. In the last two decades, dozens of works consider-
ing the delay management problem have emerged, tackling the problem in different 
ways. In this paper, an overview on the existing literature is given, and a new clas-
sification is introduced. We provide a taxonomy scheme for railway problems at an 
operational level and show how the field of delay management fits to other parts of 
the planning process. Moreover, limitations of the delay management approaches 
are discussed and future research opportunities are suggested.

Keywords Delay management · Railways · Operational problems · Review

1 Introduction

The focus of this review is on delay management (DM) for railways. DM, which 
was introduced by Schöbel (2001) and Suhl et al. (2001), searches for the answer 
of the so-called wait-depart decision. Should a connecting train wait for a delayed 
feeder and propagate the delay in the network or depart on time so that transfer-
ring passengers will miss their connection? In the last two decades, dozens of works 
considering this problem have been published. Figure  1 illustrates the growth of 
new publications since 2001 (the numbers arise from the reviewed literature in this 
paper). The proposed models for DM range from simple rules of thumb to com-
plete network optimizations. To the best of our knowledge, a survey on these models 
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has been neglected so far. Furthermore, a distinction between DM and other related 
areas is missing. The operational problems are often summarized under the term 
real-time management (Lusby et al. 2011).

DM can be seen as a strong tool to reduce delays for passengers. In several stud-
ies, the results under dispatching are compared with results where no dispatching 
at all was done. Usually mentioned as never wait strategy in literature, trains do not 
wait at all for each other. The never wait strategy performs weaker than applied dis-
patching, as can be seen in, e.g., Kliewer and Suhl (2011), Dollevoet et al. (2012, 
2015), showing that there exists a considerable impact on delay reduction.

In practice, such as, e.g., in Germany, statistics on the punctuality only refer to 
trains. While the punctuality level for long-distance trains amounts to around 80%, 
this indicator only accounts for non-canceled trains that suffer a delay smaller than 
6 min (Die Welt 2018). The delay of passengers is not reported but passengers on 
a canceled train might be facing transfer problems and probably also delays. The 
same holds for the tolerance of small delays. They are not part of the statistic but in 
reality they may cause connection conflicts for passengers (Die Welt 2017). For rail-
ways, as service providers, a passenger-friendly dispatching might be worth further 
investigation.

In 2017 a simulation tool, called PANDA (Rückert et al. 2017, see Sect. 3.2), was 
applied in a real-world project with Deutsche Bahn (DB), the German railway pro-
vider. The tool detects connection conflicts and simulates the consequences on the 
arrival delays of passengers to support dispatchers in their decision-making process 
(Deutsche Bahn 2017).

Planning problems for railways are manifold, beginning with long-term problems, 
such as building new infrastructure, to very short-termed problems, e.g., making dis-
patching decisions (Lusby et al. 2011). We concentrate on the operational level where 
railway providers have to cope with daily disturbances. Thereby, the literature often 
distinguishes between small disturbances leading to delays of several minutes (maybe 
even hours) and large disruptions that will cause a temporary break-down of the sys-
tem (see, e.g., Ghaemi et al. 2017). When coping with small delays, dispatchers can 

Fig. 1  Number of new publications per five year interval (with a shortened last interval)
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set different goals. One goal is to return as fast as possible to the original schedule and 
avoid further delay propagation in the network. We call it the train perspective with the 
objective to minimize train delays. Another goal is to minimize delays for passengers, 
i.e., the passenger perspective, on which we concentrate.

In this review, we give a comprehensive overview on DM literature but we do not 
claim completeness. Therefore, we explain the characteristics of DM and distinguish 
it from other research areas on the short-term level and show how the planning pro-
cess of Lusby et al. (2011) can be adjusted to the new categories that have arisen. 
Then we review the literature in the field of DM by developing a taxonomy scheme 
for operational problems containing five different attributes.

The train perspective is usually the goal in real-time rescheduling (RTR) where 
train delays are minimized. As we will see in Sect.  2.1, DM and RTR differ in 
several aspects. There exist numerous reviews on RTR, but most of them contain 
only a part of the DM literature or neglect it totally. The term RTR has a broad 
scope, sometimes covering all operational problems after any type of disturbance 
has occurred. This paper understands RTR as timetable rescheduling in case of 
small disturbances. In the following, we give a short overview on existing literature 
reviews in related areas.

– The above-mentioned review of Lusby et al. (2011) tackles all planning problems 
over all levels in general and gives an overall view on the railway industry. DM 
or RTR are not mentioned as seperate classes.

– Cacchiani et al. (2014) give a comprehensive overview on problems in railway 
real-time management. Some works in DM are mentioned, but they are described 
briefly and not the complete existing literature is considered.

– The same holds for Fang et  al. (2015) where all problems in rescheduling are 
addressed and compared with each other; its focus lies on solution methods.

– In Lusby et al. (2018) a review on robustness in railway planning is presented, 
but DM is addressed only briefly. The major part is dedicated to robust timeta-
bling.

– Ghaemi et  al. (2017) report about large disruptions and how to recover from 
them with rescheduling models. DM models are not considered.

The paper is structured as follows: in Sect. 2, we first define the term DM by intro-
ducing the main characteristics and then distinguish DM from other problems on 
the operational level. In Sect. 3, a taxonomy scheme for classifying the literature is 
proposed and applied to the related literature. Finally in Sect. 4, some concluding 
remarks and ideas for further research are given.

2  Preliminaries

In this section, we first (Sect. 2.1) highlight the key criteria to classify a model as 
DM model by exploiting a state-of-the-art model. In Sect.  2.2, we place the DM 
problem among other operational problems and illustrate the influence of DM on 
other related fields.
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2.1  Key criteria in DM

The level of detail of a railway network can be described from a macroscopic or micro-
scopic point of view. In a macroscopic view, the network is sketched in a “rough” way, 
consisting of stations and tracks connecting stations. However, details such as the num-
ber of platforms or division of tracks into block sections are neglected. In microscopic 
models, these details are modeled additionally, leading to blown up models with sev-
eral additional constraints.

The majority of the models in DM are macroscopic models while RTR models 
are often modeled in a microscopic manner as the feasibility from an infrastructure 
point of view is more important for the infrastructure manager. We will see some 
exceptions in Sects. 2.2 and 3.2. In Kecman et al. (2013) macroscopic and micro-
scopic models for railways are compared in terms of performance and run time. 
They find out that macroscopic models perform quite well and find also feasible 
solutions for the network schedule without taking a detailed view into account.

The macroscopic perspective can be modeled with event-activity networks 
(EAN). We first introduce a model from Dollevoet et al. (2012) which is built upon 
an EAN, to explain key criteria with this model at hand. The model from Dollevoet 
et  al. (2012) is an advanced model of the earlier model from Schöbel (2001) that 
incorporates the opportunity to reroute passengers in case of broken connections. 
The explanation for EAN and the model from Dollevoet et al. (2012) are concise as 
we will only give an idea of them. For a more detailed explanation we refer for EAN 
to Müller-Hannemann and Rückert (2017) and for the model to the original source.

An EAN N = (E,A) consists of events (nodes) e ∈ E and activities (arcs) a ∈ A . 
Events can be categorized as arrival, departure, origin and destination events, with

Arrival and departure events represent the arrival and departure of a train at a station 
with arrival and departure times. Origin and destination events are related to pas-
senger types p ∈ P , which are characterized by a unique combination of the origin-
destination (OD) pair that passengers want to travel and their desired departure time, 
timep . Then, for each type p ∈ P , an origin event Org(p) ∈ Eorg and a destination 
event Dest(p) ∈ Edest is introduced as the start and end point of its path through the 
network together with timep . Furthermore, we assume to know the size wp of each 
passenger type p ∈ P.

Arcs result from activities in the directed graph. We distinguish between driving, 
waiting and changing activities meaning that a train drives between consecutive sta-
tions, waits at a station and passengers can change between trains, respectively. As 
the EAN N  is a directed graph, we can identify all ingoing arcs, denoted by I(e) , 
and all outgoing arcs, denoted by O(e) , of an event e ∈ E . Additionally, starting and 
finishing activities for passengers ( a ∈ Astart(p) and a ∈ Afin(p)∀ p ∈ P ) are neces-
sary in order to start or finish a trip. For starting activities, Org(p) is connected to all 
departure events e ∈ Edep and for finishing activities, all arrival events e ∈ Earr are 
connected to Dest(p) . The set of activities is then as follows:

E = Earr ∪ Edep ∪ Eorg ∪ Edest.
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The minimum time required to perform an activity a ∈ Adrive ∪Await ∪Achange 
is declared as �a . Parameters for delays are denoted by Δe as the delay at an event 
e ∈ Earr ∪ Edep and Δa the delay during an activity a ∈ Adrive ∪Await.

To compute delays, first the starting point of a train schedule has to be included by 
the parameter �e for the planned arrival or departure times of an event e ∈ Earr ∪ Edep . 
The earliest possible arrival time for a passenger of type p ∈ P without delays, denoted 
by tp , can be computed in a preprocessing step with a shortest path algorithm (see 
König and Schön 2020 for an explicit formulation). The preprocessing model cor-
responds to the DM problem where all delays are set to zero, i.e., the preprocessing 
model only consists of a modified objective function (Eq. (1)) and the shortest path 
problem (Eqs. (6)–(8) and (11)) and possesses no delay constraints.

Actual arrival and departure times are determined by scheduling decision variables, 
i.e., xe for the (potentially rescheduled) time of an event e ∈ Earr ∪ Edep . The resched-
uled times represent a timetable that is temporarily feasible for delayed trains (a dis-
position timetable). Passenger delays are measured when they exit a train at their final 
station. For this purpose, another decision variable tp ∈ ℕ is introduced that denotes the 
arrival time of passenger type p ∈ P at the final destination.

In DM, wait-depart decisions have to be made; therefore, a binary decision variable 
za for the changing activities a ∈ Achange is introduced:

The routing part of the model needs an additional binary decision variable yap rep-
resenting whether activity a ∈ A is included in a path of passenger type p ∈ P . It is 
defined as follows:

The complete model looks as follows (see e.g., Dollevoet et al. 2012; Dollevoet and 
Huisman 2014; König and Schön 2020):

s.t.

A = Adrive ∪Await ∪Achange ∪O(Org(p)) ∪ I(Dest(p)).

za =

{

1 if connection a is maintained,

0 otherwise.

yap =

{

1 if activity a is assigned to passengers of type p,

0 otherwise.

(1)min
∑

p∈P

wp

(

tp − tp
)

(2)xe ≥ �e + Δe ∀e ∈ Earr ∪ Edep,

(3)xe ≥ xe� + �a + Δa ∀ a = (e�, e) ∈ Adrive ∪Await,

(4)xe ≥ xe� + �a −M1

(

1 − za
)

∀ a = (e�, e) ∈ Achange,
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In DM the focus is on the passenger, i.e., in “classical” DM models, the objective 
function (Eq. (1)) minimizes the passenger-weighted delay. Similar formulations are 
minimizing passenger inconvenience or minimizing the time spent by a passenger in 
the railway system. For further objectives in DM we refer to Dollevoet et al. (2018). 
Another objective in the railway industry, taking the train perspective into account, 
is to minimize train delays, i.e., minimizing deviations from a given train schedule. 
This is usually the goal in railway RTR. Both objectives differ as decisions under-
lying a passenger perspective are not necessarily easy to operate and might cause 
further delays for trains. Decisions related to train delays can cause inconvenience 
for passengers. In Sect. 3.2, we present some hybrid models that concentrate on pas-
senger and train delay simultaneously.

The central question in DM for railways is if a connecting train should wait for a 
delayed feeder train or depart on time. In constraints (4), the decision, if a transfer 
is possible, is determined with the binary variable za (i.e., za = 1, a ∈ Achange ). Pas-
sengers are only allowed to change trains if sufficient time for transferring between 
the arrival and departure of consecutive trains is available, with M1 chosen large 
enough. While the question seems easy, the answer is not trivial. If the connect-
ing train departs without waiting, transferring passengers miss their connection. 
Depending on the schedule, they might face severe delays and might have to wait 
a long time before they can continue their journey. When railway providers operate 
a cyclic timetable, a train might drive with a periodicity of one or two hours. It is 

(5)yap ≤ za ∀ p ∈ P, a ∈ Achange,

(6)
∑

a∈O(Org(p))

yap = 1 ∀ p ∈ P,

(7)
∑

a∈O(e)∩A(p)

yap =
∑

a∈I(e)∩A(p)

yap ∀ p ∈ P, e ∈ Earr ∪ Edep,

(8)
∑

a∈I(Dest(p))

yap = 1 ∀ p ∈ P,

(9)tp ≥ xe −M2

(

1 − yap
)

∀ p ∈ P, e = Dest(p) ∈ Edest, a ∈ Afin(p),

(10)za ∈ {0, 1} ∀ a ∈ Achange,

(11)yap ∈ {0, 1} ∀ p ∈ P, a ∈ A,

(12)xe ∈ ℕ ∀ e ∈ Earr ∪ Edep,

(13)tp ∈ ℕ ∀ p ∈ P.
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even worse if this is the last train of the evening and passengers risk stranding some-
where. If the connecting train waits, it is also delayed and on the next station other 
passengers are concerned with maintaining their connection. The delay can spread 
through the network and repercussions will get visible in other parts of the network. 
In König and Schön (2020), the emergence of new connections due to delays is also 
possible, i.e., passengers can jump on late trains for which in an undelayed case no 
connection was planned.

Time constraints determining new arrival and departure times including possible 
source delays to yield the disposition timetable are modeled in constraints (2)–(3). 
An event cannot be scheduled earlier than it was planned in the original timetable 
(Eq. (2)). The same holds for activities in train schedules (Eq. (3)). Please note, to 
link the objective (Eq.  (1)) with the rescheduled arrival time at a passenger’s des-
tination, auxiliary constraints that transfer the arrival time of passenger streams to 
the tp variables are necessary (Eq. (9)). Another way is to modify the objective by 
including the connection decision via the za variables directly therein, see e.g., Schö-
bel (2007), Schachtebeck and Schöbel (2010).

A specialty of this model is to assume passenger rerouting, i.e., in case of a 
missed or broken connection, passengers can change their route and will eventually 
reach their destination via a different route. In earlier models (and some more recent 
models as, e.g., Dollevoet et al. 2015) this option for the passengers is not incorpo-
rated. If passengers miss a connection, they have to wait a full cycle time for the next 
train on the line. The rerouting is included via a shortest path problem in constraints 
(6)–(8). An expanded set of decision variables is therefore necessary: the yap vari-
ables representing the passenger streams. To ensure that passenger changing activi-
ties are feasible only if the corresponding train connection is maintained, constraints 
(5) are further necessary. Finally, in constraints (10)–(13) the requirements for the 
variable sets are defined.

Other DM models incorporate different kinds of capacities, leading to additional 
constraints. So far, capacities of tracks have been taken into account in Schöbel 
(2009) and Schachtebeck and Schöbel (2010). In Dollevoet et al. (2015) the capac-
ity of stations is additionally included to the capacity of tracks and in König and 
Schön (2020) train capacity constraints are considered. In some publications these 
constraints are modeled with “Big M” constraints, so the model remains a mixed 
integer program (MIP) (e.g., Schachtebeck and Schöbel 2010). In König and Schön 
(2020) the resulting model is a mixed-integer nonlinear program (MINLP) due to 
modeling passenger streams with continuous variables. For a further description on 
these models, we refer to Sect. 3.2.

2.2  Placement on the operational level in the railway planning process

For the different levels in the railway planning process a scheme is provided by 
Lusby et  al. (2011) (see Fig.  2). They divided the problems into three different 
levels, strategic for long-term planning (several years), tactical for mid-term (one 
year) and operational for short-term (one day) planning. The different problems are 
interrelated and plans have to be coordinated. For an explanation of the strategic 
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problems we refer to Lusby et al. (2011) since these are out of our scope. The main 
problem on the tactical level is the timetable generation (also mentioned as timeta-
bling). To compute a timetable, arrival and departure times of trains for all stations 
on their respective line are determined. Track allocation is often part of timetabling 
as the timetable has to fulfill operational requirements to be feasible, such as capac-
ity restrictions on tracks. For a comprehensive overview on timetabling, we refer to 
Cacchiani and Toth (2012). The allocation of rolling stock, such as trains (Cacchiani 
et al. 2012) and schedules for operating staff on trains, i.e., the crew (Caprara et al. 
1998), depend also on the timetable. For the operational level they call these prob-
lems real-time management but this is only a rough classification. In the following, 
we demonstrate how the operational level can be structured in different problems.

In the last years, several new problems, as e.g., disruption management and DM, 
have arisen; some of them combining different levels and problems. These emerg-
ing problems need to be placed in the planning process (such as DM). In the litera-
ture, different understandings of the terms exist and some problems seem to depend 
on each other, e.g., disruption management and crew rescheduling. We suggest to 
sharply distinguish between the problems. In the following, we will revise the part 
of the operational level and provide a finer granularity of detail. Figure 3 presents an 
overview on different problems (written in the bubbles) on the operational planning 
level and related problems on the tactical level.

Arrows depict influences between different problems. Please note, in Fig. 3 only 
arrows concerning operational problems are included. Between the problems on the 
tactical level (and strategic level which is not shown here) exist also arrows, but 
they are beyond the scope of this paper. The size of the bubbles is representing the 
amount of literature, e.g., as there exists more literature for RTR than for all other 
operational problems, the bubble for RTR is the biggest on that level. In the follow-
ing, we will briefly explain neighboring problems of DM on the operational level 

Fig. 2  Planning process in railways (Lusby et al. 2011)
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and interrelations. We further give examples for related literature on the neighbor-
ing problems and the arrows. DM itself has been explained in Sect. 2.1. Everything 
lying inside DM and DM + RTR will be discussed extensively in Sect. 3.2.

2.2.1  DM and timetabling

DM models are highly affected by timetabling as the majority of the models aims 
at developing disposition timetables. We will see several models computing dis-
position timetables in the literature in Sect. 3.2.

The other direction, the influence of DM on timetabling, leads to so-called 
robust timetables which try to cover some delay cases to make the timetable 
robust against disturbances. DM is integrated in the computation of delay-resist-
ant timetables in Liebchen et al. (2010). First, a timetable is computed and then 
evaluated in delay scenarios by solving it with DM models. The resulting disposi-
tion timetables are used to revise the original timetables. In Goerigk et al. (2014), 
the timetable is based on an EAN and takes a DM model into account. Cicerone 
et  al. (2012) develop a multi-stage recovery model to integrate robustness into 
timetables with the aid of disposition timetables.

2.2.2  DM, disruption management and rolling stock rescheduling

As mentioned above (see Sect.  2.1), operational problems can be differentiated 
between minor disturbances and major disruptions. The goal of disruption man-
agement is to develop strategies for handling large-scale disruptions with a long 
(possibly unknown) recovery time. The remaining operational problems primarily 

Fig. 3  Problems on the operational planning level
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account for minor disturbances. Please note, we differentiate here between dis-
ruption management and rolling stock rescheduling. Usually, these problems are 
merged together. For further information on disruption management we refer to 
Ghaemi et al. (2017).

In some approaches for disruption management, several characteristics from the 
DM literature are used. Louwerse and Huisman (2014) aim to maximize the service 
level offered to passengers. In case of a disruption, a disposition timetable is com-
puted based on an EAN, similar to common practices in DM. Further enhancements 
for this model are proposed in Veelenturf et  al. (2016a) by modeling all phases 
from the beginning of the disturbance to the reconstitution of the original timetable. 
Binder et al. (2017) develop a multi-objective integer program (IP) where one of the 
objectives is passenger satisfaction. Therefore, disposition timetables considering a 
macroscopic view are constructed.

A different approach is developed in Schmidt et  al. (2017). Alternative route 
choices of passengers in case of complete blockages are compared. Thereby, a deci-
sion has to be made if the passenger waits for the recovery of the system or takes 
another train (possibly leading to a detour). Decisions are made under uncertainty, 
including probability distributions for some scenarios, and dominance relations 
between the strategies are revealed.

The problem of rolling stock rescheduling aims for an adjusted allocation of the 
rolling stock after a disturbance has occurred. For rolling stock rescheduling there 
exist influences from DM, such as, e.g., the passenger perspective.

Kroon et al. (2014) include the passenger perspective by minimizing passenger 
delays when rolling stock has to be rescheduled after large disruptions. Therefore, 
passenger flows are simulated. In a follow-up paper of Veelenturf et al. (2017), pas-
senger behavior and improvements for passenger service are evaluated. The model is 
formulated with a macroscopic view and adapts stopping patterns of trains.

2.2.3  DM and RTR 

RTR determines a feasible timetable after a disturbance occurred and the actual 
timetable can no longer be operated. For related literature, see the reviews presented 
in Sect. 1. In recent years, the conjunction of DM and RTR has become stronger. 
There exist even combined works where both areas are merged that closely that we 
included a seperate bubble for these models, called DM + RTR.

One example for DM models influenced by RTR is Schöbel (2009). In Schöbel 
(2009) the capacity of tracks is added to the classical DM model. It was the first try 
to include a microscopic view, too. We will explain this model further in Sect. 3.2, 
see the class of [pmadh].

For the other influence direction, the influence of DM on RTR, there exist also 
some approaches in the literature. The model from Caimi et al. (2012), for example, 
belongs to the RTR area and proposes a predictive traffic management support sys-
tem. The problem formulation is proposed as a rescheduling model with a detailed 
network description. But in the objective function, customer satisfaction is maxi-
mized by weighting the delay and maintained connections, which is usually done in 
DM literature.
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Examples for mixed approaches of DM + RTR are Corman et  al. (2012) and 
Dollevoet et al. (2014). Corman et al. (2012) integrate both the passenger and the 
train perspective simultaneously in a bi-objective problem with the aim of finding 
Pareto optimal solutions. The constraints are modeled in a microscopic perspec-
tive; therefore, we explain the model in the class of [pmidh] . Dollevoet et al. (2014) 
instead solve a macroscopic model from DM and a microscopic model from RTR 
iteratively. As the main objective is to minimize passenger delay, we explain this 
work in the class of [pmade] (see for both works Sect. 3.2).

2.2.4  Additional literature—slightly related to DM

Crew rescheduling determines feasible crew schedules after a disturbance has 
occurred. It is similar to RTR but for staff instead of trains (see Veelenturf et  al. 
2016b, Verhaegh et  al. 2017). There exist also works in crew rescheduling influ-
enced by disruption management and influences from timetabling on RTR. In Fig. 3 
we see further arrows between RTR, disruption management, and rolling stock 
rescheduling. These arrows will not be described further as they are not influenced 
by DM. For related literature, we refer to the above-mentioned reviews (see Sect. 1).

Malucelli and Tresoldi (2019) propose a simulation-based approach for disrup-
tion management combining crew and rolling stock rescheduling that can be used 
for small disturbances as well. The regularity of service relies not on a timetable but 
on a frequency based service, i.e., the headway of two vehicles is determined instead 
of deviations from a given timetable. Crew and rolling stock rescheduling are per-
formed if the regularity of the service cannot be guaranteed any longer. The perfor-
mance of the approach is measured with different regularity functions reflecting the 
reliability of the service.

In Goerigk et  al. (2013), the concepts of DM, timetabling and line planning 
are combined. DM is included by generating some delay instances and evaluating 
robustness for the timetable and the planned lines. On the other hand, it is analyzed 
if the line concept and the timetable facilitate the emergence of delays. This arrow 
is not included in Fig. 3 since the area from the strategical level is not part of the 
figure.

3  DM literature

In Sect.  3 the literature on DM is reviewed and classified. In Sect.  3.1 we will 
explain a taxonomy scheme for different attributes of models and methods on the 
operational level. Section 3.2 contains the literature review structured with the pro-
posed taxonomy scheme. We further give an overview of applications in the real 
world.
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3.1  Taxonomy

The existing literature often distinguishes between a macroscopic and a micro-
scopic view to differentiate between DM and rescheduling. Sometimes it is men-
tioned that DM models get their information for the decision-making process in 
an online or offline manner, see, e.g., Schmidt (2013), Rückert et al. (2017). How-
ever, not all information statuses are covered with that, i.e., stochastic models are 
not considered. Some attributes were already mentioned above, in Sect. 2.1, when 
describing key criteria for DM.

The focus of the objective can either be on the passenger—we mark these 
works with attribute level [p]—or on the train, marked with [t]. In DM the focus 
is usually on the passenger; therefore, the majority of the works will be classified 
as [p]. Nevertheless, there exist some mixed or hybrid models where passenger 
and train focus are combined (as mentioned above in Sect. 2.2).

Delays can arise due to different causes and lead to disturbances of different 
length. As explained above (Sect.  2.1), different approaches are necessary for 
either coping with minor disturbances [m] or large disruptions [l]. DM usually 
considers delays in a smaller time window; the discussed works will all assume 
minor disturbances [m].

The perspective on the railway network can be macroscopic [a] or microscopic 
[i] depending on the level of detail. For DM it is common to model the network in 
a macroscopic view, as shown in Sect. 2.1. Nevertheless, we will see some excep-
tions, taking a microscopic perspective into account in the following Sect. 3.2.

Another category of attributes is the available input to solve the problem. We 
will differentiate in three attribute levels for the information at hand, according 
to Jaillet and Wagner (2010). If all delays are assumed to be known so that the 
decision can be made under full information, we call the model deterministic 
[d]; in literature often described as offline models. For less available input, where 
no exact delay is given but delays follow a known distribution function, we will 
describe the model as stochastic [s]. Moreover, the input data may be incomplete 
[n], i.e., no information on the future is available at the point in time the deci-
sion has to be made. Future information is obtained dynamically as time goes by; 
therefore, this type is often called online models in literature.

Finally, we differentiate between exact solution methods [e] and heuristics [h]. 
With the macroscopic view on a railway network, the modeling is done in simpli-
fied terms with fewer constraints and binaries than RTR. The older, more basic 
models, can often be solved exactly in a deterministic setting, as we will see in 
Sect. 3.2. For more developed models, heuristic methods are often applied addi-
tionally to shorten computation times.

A certain type of heuristics are so-called dispatching rules, where wait-depart 
decisions are made through rule-based strategies. With these dispatching rules, 
the decision can be made quickly and easily as only partial information is neces-
sary. A rule called regular waiting time (RWT) determines the amount of time 
a train is allowed to wait for a delayed feeder train depending on the train type. 
Other dispatching rules prescribe that trains do not wait at all (NW) and that all 
trains wait for all (delayed) feeder trains (AW). In the past, some of them were 
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used for practice in Germany, e.g., RWT: a long-distance train is allowed to wait 
up to 3 min for a delayed long-distance train (Stelzer 2016). Dispatching rules, 
especially NW, RWT and AW, are, therefore, often used in numerical studies for 
comparison with optimization models that are harder to solve, taking advantage 
of the fast and easy computation; see, e.g., Dollevoet et al. (2012), Dollevoet and 
Huisman (2014), Dollevoet et al. (2014), Bauer and Schöbel (2014), Schön and 
König (2018).

To go back to models under incomplete information, algorithms that solve these 
models are called online algorithms. These algorithms have to take the dispatch-
ing decision only with past and current information. They are often further evalu-
ated with different performance measures as, e.g. competitive analysis (see, e.g., 
Lan et  al. 2008, Agrawal et  al. 2014). Determining the quality of an online algo-
rithm is done by computing the ratio of an optimal offline algorithm (the omnisci-
ent adversary) and the analyzed online algorithm, the competitive ratio. The ratio 
indicates the quality of an online algorithm, e.g., an algorithm is 2-competitive if the 
online algorithm finds a solution that is never twice as bad as the optimal solution. 
Some dispatching rules need no input data at all to determine a solution, e.g., an AW 
implies that all trains always wait, independently from considering any information. 
Some works in the literature run simulations of the network, trying to include as 
much real-world data as possible to simulate different processes. Solutions are usu-
ally derived by applying some of the above-mentioned dispatching rules as the goal 
is rather on the comprehension of the processes than yielding an exact solution.

Moreover, some works pursue the determination of the computational complex-
ity of different DM problems. The computational complexity gives a hint for the 
computational effort to derive a solution for the considered problem by analyz-
ing its worst-case time requirements as a function of the size of its input. In the 
works reviewed, polynomial (P), non-deterministic polynomial (NP) and PSPACE 
problems, i.e., the set of all problems that can be solved on a deterministic Turing 
machine using space restricted by a polynomial in the input size, are evaluated. For 
a deeper explanation, we refer to Papadimitriou (2003). All categories and attributes 
are summarized in Table 1.

Table 1  Attributes and their 
corresponding attribute levels

Attribute Attribute level

Focus passenger [p], train [t]
Delay cause minor disturbance [m], large disruption [l]
Perspective macro [a], micro [i]
Input deterministic [d], stochastic [s], incomplete [n]
Solution exact [e], heuristic [h]
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3.2  Literature classification

In the following, we will go through the different classes in DM literature. These 
classes are created with the attribute levels from Table  1 and we group articles 
together according to their attribute-level combination. Some works contain more 
than one attribute level in the respective attribute; these works can be considered as 
hybrid models. Other authors have developed more than one model in their works 
differing in their attribute level. In this case, we classify the work, to the best of 
our knowledge, according to the attribute level that dominates. As all the reviewed 
works have minor disturbances and a passenger focus (a few works focus addition-
ally on trains) in common, we differentiate the classes according to the attribute’s 
perspective and input. Different solution methods will be explained therein.

3.2.1  Macroscopic deterministic models [�����] + [�����]

The first class, representing the largest class, considers works with a macroscopic 
perspective and deterministic input. Solution methods vary; we will see standard 
optimization models in DM, as introduced in Sect. 2.1 that can be solved exactly as 
well as different heuristic methods.

The model of Schöbel (2001) is formulated as a MIP based on an EAN with the 
objective of minimizing passenger delay. Solutions can be obtained by using stand-
ard MIP solvers. All consecutive standard optimization models are built upon an 
EAN. This model is further enhanced in several works considering different aspects 
DM is confronted with.

In Schöbel (2007) the DM model, which is based on an EAN (Schöbel 2001), 
is compared to a path-based formulation and shown to be equivalent. A general-
ized IP formulation is given by computing exact passenger weights for the objective 
function. In a numerical study, the generalized formulation is analyzed and the size 
of the EAN is reduced by deleting redundant events. The proposed DM problem 
can be solved with standard MIP solvers. Additionally, an exact solution algorithm 
is proposed that splits the problem into independent subproblems and solves them 
individually.

Heilporn et al. (2008) derive a variable reduction for the DM problem in Schö-
bel (2001). They model the DM problem in two versions by neglecting departure 
events and therefore reducing the number of decision variables. The equivalence of 
the new modeling variants and the model from Schöbel (2001) is shown. The first 
model can be solved with standard solvers while for the second one a constraint gen-
eration approach is proposed. The two modeling variants differ in their performance 
depending on the size of the network.

In Gatto et al. (2004) the complexity of the DM problem with a single delayed 
train is evaluated. The authors analyze the number of passenger transfers and derive 
a minimum cut reduction. They further examine the structure of the network by 
applying a dynamic program. Additionally, the NP-completeness of a problem with 
a single delayed train and allowance for passengers to change their route is shown.
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The work of Gatto et al. (2004) is complemented in Gatto et al. (2005) where the 
difference for DM problems that are polynomially solvable and the ones that are NP-
complete are exposed. They find out that the complexity depends on factors such as 
the network topology and slack times in the schedule.

Ginkel and Schöbel (2007) formulate a bicriteria DM problem, that minimizes 
the missed connections for passengers and train delays simultaneously. In the objec-
tive function the focus is on passengers [p] and trains [t] as well. Therefore, we can 
classify the model as [ p

t
made] . The aim is to find Pareto solutions for the multicrite-

ria model. The model has similarities to project planning and can be solved exactly 
by adapting a project planning method. Efficient solutions can be found quickly ( < 1 
min), so the authors suggest that the model could also be used in settings under 
incomplete information. Further, a proof for the NP-completeness of the bicriteria 
DM problem is given.

The following works further enhance the DM problem by adding different restric-
tions making the optimization models more realistic. First steps towards consider-
ing the capacities of tracks in a DM model have been proposed in Schöbel (2009). 
The infrastructure constraints are modeled in a microscopic view and the model can 
therefore, be seen as a special case. The model is a hybrid, consisting of the attribute 
levels [a] and [i] as well. Therefore, the model in Schöbel (2009) can be described 
as [pma

i
dh] . Two heuristics are proposed; one that fixes the order of trains and then 

solves DM with additional precedence constraints. Secondly, a heuristic that solves 
the DM problem without track capacities and then resolves the problem with head-
way constraints is developed.

In Schachtebeck and Schöbel (2010), taking the capacity of tracks into account 
and considering the order of trains and their headways is evolved. Priority con-
straints are added to the IP of the DM problem. The problem can be solved opti-
mally. However, the additional constraints lead to longer computation times. There-
fore, a preprocessing step was included to reduce the problem size similar to Schöbel 
(2007). After the preprocessing, the model performs significantly faster. Additional 
heuristics are also proposed. These heuristics decompose the problem by solving 
a DM problem with fixed priorities of trains in one step and the order of trains on 
a line in another step. The first two heuristics solve the subproblems in varying 
sequences. For the last two heuristics, the wait-depart decisions are fixed in a first 
step, too. The heuristics show a significantly shorter computation time, but the rela-
tive error of the solution grows with the size of the network.

The capacity of stations is taken into account in Dollevoet et al. (2015). The DM 
model with track capacity (Schachtebeck and Schöbel 2010) is supplemented with 
constraints that schedule the platform track assignment in stations. The model can 
be solved exactly, but for larger instances an iterative heuristic is developed. Firstly, 
the platform track assignment is fixed and based upon this wait-depart decisions 
and priorities of trains are determined. Afterwards, the platform track assignment 
is rescheduled for each station individually. This procedure can be repeated until 
no further improvement is possible. The platform track assignment alone can be 
solved in polynomial time. The passenger delays could be reduced, but the program 
reschedules many trains which might lead to further passenger inconvenience.
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Dollevoet et al. (2012) consider the aspect of passenger rerouting, for the model 
formulation see Sect. 2.1. In other DM models, it is assumed that passengers, who 
miss a connection, have to wait a complete cycle time for the next train. In Dollevoet 
et al. (2012), a shortest path problem is included to look for alternative routes for 
passengers. The model can be solved exactly, but again the additional constraints 
extend solution times. The DM problem with rerouting is compared to the classical 
DM problem and a never-wait policy; the problem with rerouting outperforms the 
other.

In a follow-up paper from Dollevoet and Huisman (2014) heuristics for larger 
instances of DM with passenger rerouting (as described in Dollevoet et  al. 2012) 
are evaluated. The penalty for a missed train connection is accommodated by a 
model that is used in Schöbel (2007) to reveal the assumption that passengers wait a 
complete cycle time. Additionally, an iterative heuristic is proposed that solves the 
model from Schöbel (2007) first and then computes new passenger routes. The pro-
posed heuristics are tested against dispatching rules and the exact solution. Among 
the heuristics, the iterative heuristic performed best with a quite small gap to the 
optimal solution and in shorter computation time.

First attempts to determine the complexity of DM with passenger rerouting have 
been proposed in Dollevoet et al. (2012). Schmidt (2013) proves DM with passenger 
rerouting to be NP-hard. For one OD pair the problem is strongly NP-hard. A poly-
nomial-time algorithm is developed that is able to find an optimal solution in certain 
cases. For general DM problems with passenger rerouting, in the sense that there is 
more than one OD pair, the calculation of lower bounds is proposed.

In König and Schön (2020), the capacity of trains is taken into account and spill 
effects are evaluated. The model further considers passenger rerouting as it is done 
in Dollevoet et al. (2012). Passenger streams are broken down into fractions leading 
to a MINLP. Three different linearizations (exact and approximate) are proposed. 
The approximation is based on McCormick envelopes that relax the problem. The 
exact linearizations are formulated first with SOS1 constraints (special ordered sets 
of type 1) and second with a logarithmic representation of integer variables. In a 
numerical study the three new proposed approaches are compared to the DM model 
from the literature. A considerable spill effect is measured as the DM model with 
train capacities outperforms the reference model neglecting train capacities in every 
scenario. For larger test instances, the exact formulations had problems to deliver 
results in a reasonable time while the McCormick approximation was able to obtain 
results.

A special case in this class is the model of Dollevoet et al. (2014), as it is a com-
bination of a macroscopic DM model ( [pmade] ) and a microscopic rescheduling 
model ( [tmide] ). Both models are solved iteratively by first determining which con-
nections to drop and which to maintain. For the achieved disposition timetable the 
microscopic model determines the feasibility for operating. The DM model is based 
on the model from Dollevoet et al. (2012) by only taking the scheduling constraints 
into account to derive the disposition timetable. Since the main objective of the 
approach is to minimize passenger delay, we assign this model to DM.

A different approach for modeling DM models is presented in Suhl et al. (2001) 
and Kliewer and Suhl (2011) (for the description of Kliewer and Suhl (2011) see 
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the class of [pmanh] ). These models stem not from EAN. In Suhl et  al. (2001) a 
model for scheduling arrival and departure times with a nonlinear objective func-
tion is developed. In the objective function different weights are assigned for the 
waiting place of the passengers (in the train or on the platform) and the additional 
waiting time to describe passenger inconvenience. The model is solved using SOS2 
variables (special ordered sets of type 2) and the resulting MIP can be solved also 
for large instances. The model is evaluated for a few scenarios by deriving a solu-
tion solely on the basis of the optimization compared to an optimization considering 
waiting time rules for trains (see [pmanh] ). It turns out that the optimization with-
out waiting restrictions for trains performs better. In Suhl et al. (2001), two further 
approaches are evaluated independently which belong to different classes. As the 
macroscopic and deterministic attribute levels dominate, we assigned the overall 
work to this class. Suhl et al. (2001) introduce also several dispatching rules, e.g., 
AW, NW, RWT (see Sect.  3.1), as they have been used for the German railways. 
These heuristics belong to the class of [pmanh]. These dispatching rules are evalu-
ated with different waiting times for RWT and it turns out that AW performs badly, 
especially for larger delays. RWT and NW perform quite similar, whereas NW is 
slightly better. RWT shows the best performance for waiting times of 2 or 3 min. 
Moreover, Suhl et  al. (2001) propose a multi-agent system that is able to behave 
autonomously, classified as [pmidh] . The microscopic view is appropriate as agents 
represent microscopic items. The system consists of a passenger generator, a topol-
ogy manager for the infrastructure of the network and an assistant for dispatchers. 
Everything is controlled by a simulation server. The German network served as test 
basis by applying NW and AW in the simulation. With the aid of the simulation, 
passenger information for dispatchers can be gained.

These software agents are further developed in Biederbick and Suhl (2007). 
The complete German network is implemented in the simulator. Passengers can 
be directed individually with a “passenger router”. In a numerical study several 
dispatching strategies are tested with and without passenger rerouting. Passenger-
related dispatching strategies show thereby a good performance.

Berger et al. (2011a) introduce a dynamic decision support system that includes 
updating delay information and respective new arrival and departure times as well 
as a simulation of passenger flows. The objective of minimizing passenger delay 
is reformulated in three different ways. The underlying EAN takes the passengers 
as multi-commodity flow into account. Solutions are obtained by an algorithm that 
uses the RWT of the German railways and updates information on passengers and 
timetables repeatedly. The disposition tool is able to demonstrate the effects of the 
dispatching decisions in the network in reasonable time.

A combination of optimization and simulation is proposed in Kanai et al. (2011) 
that minimizes passenger disutility. Several congestion formulas leading to differ-
ent disutility functions in the objective are evaluated. Train traffic and passenger 
flows are simulated simultaneously. The optimization part determines if connec-
tions should be maintained by applying a tabu search heuristic. In a numerical study 
the different objectives and dispatching decisions are varied and it turns out that the 
interaction of simulation and optimization leads to decreased passenger disutility.
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Rückert et  al. (2017) introduce PANDA, a web-based decision support tool for 
dispatchers. PANDA reflects real-time information on passenger flows and evalu-
ates the effects of wait-depart decisions in the network. The model formulation is 
proposed on the basis of an EAN that determines how stable a connection is and 
decides on the amount of affected passengers. A case study with the data of the 
German network shows that passengers benefit from PANDA’s recommendation. 
In a second case study, the authors analyze the impact of an early rerouting which 
decreases the delay of passengers as well. Currently, PANDA is used in a study from 
DB on the German network as mentioned in Sect. 1.

Enhancements for PANDA are studied in Lemnian et al. (2016) by conducting a 
sensitivity analysis and expanding the scope of wait-depart decisions. In the sensi-
tivity analysis the amount of passengers that is needed to change a dispatching deci-
sion of PANDA is analyzed. An IP formulation is given and experiments are per-
formed revealing that decisions are either very stable or very unstable. The impact 
of joint subsequent waiting decisions is further evaluated in a conflict tree to take 
the propagation of decisions through the network into account. Experiments on this 
show no significant impact.

3.2.2  Macroscopic incomplete information models [�����]

The following class considers also a macroscopic view but possesses incomplete 
information. In theses works different heuristic methods are developed.

Kliewer and Suhl (2011) use a deterministic model, a simplified model from Suhl 
et al. (2001), in order to obtain a benchmark by computing ex-post optimal solutions 
and to derive a re-optimization policy for a large numerical study on dispatching 
rules. As the main investigation is on the rule-based methods, we classify the work 
of Kliewer and Suhl (2011) as [pmanh] . Kliewer and Suhl (2011) propose further 
dispatching rules on the basis of transferring passengers to different trains. In the 
numerical study these passenger-dependent strategies and dispatching strategies 
without considering information of passengers, (as mentioned above, e.g., RWT, 
AW, NW) are compared to the optimization with full information and a dynamic re-
optimization policy. The passenger-related strategies outperform the other dispatch-
ing rules and even the re-optimization policy. The advantage of these rules is that 
they can be applied easily and much faster with less information (some need none at 
all).

 Bauer and Schöbel (2014) developed dynamic heuristics by computing a solution 
for deterministic models repeatedly when new information is available. The model 
from Schachtebeck and Schöbel (2010) is modified and solved with and without 
track capacities. To yield a robust algorithm, a learning strategy that is able to cope 
with incomplete information is proposed. The solution is obtained by iteratively per-
forming a re-optimization. In a numerical study the heuristics outperform simple 
dispatching rules and are able to compete with the solutions derived in deterministic 
settings.

Some of the works within this class propose online algorithms for different sce-
narios and determine the competitive ratio of the algorithms, a performance measure 
as introduced in Sect. 3.1. Anderegg et al. (2002) are the first who propose a bound 



353

1 3

A review on railway delay management

for the competitive ratio for the solution of a simplified DM problem with unknown 
delay. The central decision that has to be made, is how long a vehicle should wait 
at a station for another delayed vehicle with focus on minimizing passenger waiting 
time. An extended version of the paper can be found in Anderegg et al. (2009).

In Gatto et  al. (2007) the DM problem on a single train line under incomplete 
information is compared to the Ski-Rental problem, a well-known problem from the 
literature. The authors prove that this DM problem can be solved with algorithms, 
belonging to the class of 2-competitive online algorithms. The exact value of the 
competitive ratio is determined to be the golden ratio (a value of ≈ 1.618).

In a follow-up paper, Gatto et  al. (2008) consider the DM problem from Gatto 
et  al. (2007) for a weakened adversary (usually the opponent is assumed to be 
omniscient). Further special cases are evaluated to close some gaps on the bounds 
for the competitive ratio.

Krumke et al. (2011) model the DM problem from Gatto et al. (2007) as a two-
person zero-sum game and achieve an improved lower bound for the competitive 
ratio. The problem is further extended for the case of two possible delays for pas-
sengers and, therefore, a 3-competitive online algorithm is presented. Addition-
ally, they propose a new objective that models the operator’s total profit and find 
out that no deterministic algorithm can have a bounded competitiveness for this 
problem.

In Bender et al. (2013) the DM problem of a single train line from Gatto et al. 
(2007) is evaluated with other measures than the competitive analysis. The adver-
sary is weakened, i.e., assuming that for the DM problem the delay at the follow-
ing station is known (the algorithm can use lookahead). They measure the perfor-
mance of the proposed online algorithm with weaker versions of the competitive 
ratio, namely comparative and average-case analysis where the expected cost of 
the online algorithm is determined with a probability function. Furthermore, a 
stylized stochastic program is developed that includes the number of delayed pas-
sengers as a discrete random variable. The decision to wait for a delayed feeder 
train is allowed to be taken only once. For a small example of three stations, the 
stochastic program outperforms the algorithm from average analysis and a bal-
ancing algorithm from literature. Due to the complex and time-consuming com-
putation, the stochastic program was not part of the numerical study. But with the 
stochastic program, ideas for the class of [pmash] are proposed.

3.2.3  Macroscopic stochastic models [�����]

The class of macroscopic stochastic models is rather scarce. All works in this 
class derive their solution heuristically.

Berger et al. (2011b) develop TOPSU-RDM, a simulation platform that eval-
uates different heuristics for the DM problem, drawing delays from underlying 
distribution functions. The platform combines the tasks of building a model, 
finding an appropriate solution algorithm and experimentally evaluating it. The 
implemented solution algorithms, called engines, contain several dispatching 
rules and a Monte Carlo tree search. The performance of the engines is evaluated 
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and the Monte Carlo search shows a rather poor performance as the solution 
time is restricted. Furthermore, a proof that making wait-depart decisions under 
incomplete information is PSPACE-hard is also given. The decisions depend on 
the global structure of the network, the schedule, the passenger routes and the 
imposed delays.

A stochastic dynamic program (SDP) incorporating delay distributions from sta-
tistical literature is developed in Schön and König (2018). Potential recourse actions 
for the decision process are determined on single train lines, considering effects on 
feeder and connecting trains. The objective function is modeled with a Bellman 
equation that minimizes passenger delays. A state space reduction speeding up solu-
tion times is applied for the solution. The SDP outperforms simple dispatching rules 
and a re-optimization strategy in a numerical study and yields results close to a full-
information model.

3.2.4  Microscopic deterministic models [�����]

Finally we review DM models with a microscopic perspective on the network, con-
sisting only of a small number of works. All models are deterministic and derive 
their solutions with heuristics [pmidh].

Corman et  al. (2012) propose a hybrid approach that combines goals of DM 
and RTR. The bi-objective function minimizes train delays and missed passenger 
connections. Moreover, the model is built on the basis of an alternative graph with 
detailed infrastructure components as it is common for RTR. Therefore, we classify 
this work as [ p

t
midh] . To determine the Pareto front of non-dominated schedules, 

two heuristics are proposed and tested on data of the Dutch railways. The “com-
promise” solutions obtained by both heuristics seem promising for taking good dis-
patching decisions.

In Corman et  al. (2017) DM and RTR are merged together yielding a “micro-
scopic DM model”. The microscopic perspective models the infrastructure while the 
passenger-centric objective aims to minimize the time spent in the system by pas-
sengers. Lower and upper bounds for the passenger flows of the resulting MIP are 
proposed. Several heuristics are designed that fix the train order or solve parts of 
the model iteratively. In a large numerical study with data from the Dutch railways 
the heuristics were able to solve also larger problem instances and reduce passenger 
waiting times.

In Xu et al. (2018) wait-depart decisions for last connections at a day’s end are 
made. The model incorporates the passenger’s choice behavior for transferring with 
the goal of maximizing the number of maintained connections and minimizing aver-
age waiting times. The constraints are formulated in a microscopic view to ensure 
feasibility of the disposition timetable. A genetic algorithm is developed and tested 
in a case study of Beijing’s subway. With the aid of the algorithm, maintained con-
nections of last trains could be increased.

Finally, all discussed works are summarized for each attribute class in Table 2, 
sorted in the sequence as discussed above. As all of the mentioned works relate to 
small disturbances [m], a column for the attribute of delay cause was omitted.
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Applications on real-world data in the reviewed literature of Sect.  3.2 are pre-
sented in Table 3 for every country in alphabetical order. The applications are dis-
tinguished between countries the data set is taken from. The majority of the works 
are applied to the German network, which is a massive network requiring a lot of 
operational services every day, followed by the Dutch network. Some works from 

Table 2  Summary of discussed literature on DM neglecting the attribute level [m]

Publication Attribute

Focus Perspective Input Solution

Schöbel (2001) p a d e
Gatto et al. (2004) p a d e
Gatto et al. (2005) p a d e
Schöbel (2007) p a d e
Heilporn et al. (2008) p a d e
Ginkel and Schöbel (2007) p, t a d e
Schöbel (2009) p a, i d h
Schachtebeck and Schöbel (2010) p a d e, h
Dollevoet et al. (2012) p a d e
Schmidt (2013) p a d e
Dollevoet and Huisman (2014) p a d h
Dollevoet et al. (2014) p, t a d e
Dollevoet et al. (2015) p a d e, h
König and Schön (2020) p a d e, h
Suhl et al. (2001) p a, i d, n e, h
Biederbick and Suhl (2007) p a, i d h
Berger et al. (2011a) p a d h
Kanai et al. (2011) p a d h
Rückert et al. (2017) p a d h
Lemnian et al. (2016) p a d h
Kliewer and Suhl (2011) p a d, n e, h
Bauer and Schöbel (2014) p a n h
Anderegg et al. (2002) p a n h
Anderegg et al. (2009) p a n h
Gatto et al. (2007) p a n h
Gatto et al. (2008) p a n h
Krumke et al. (2011) p a n h
Bender et al. (2013) p a n, s h
Berger et al. (2011b) p a s h
Schön and König (2018) p a s h
Corman et al. (2012) p, t i d h
Corman et al. (2017) p i d h
Xu et al. (2018) p i d h
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the class of [pmade] and [pmanh] are missing as these works contain theoretical con-
siderations only. Other networks in the world that are not mentioned here might be 
also worth an investigation, providing further opportunities for research.

4  Conclusion and future research

We have reviewed the literature for railway DM problems. The area of DM mod-
els is embedded on the operational level of planning problems among related 
short-term problems. Influences between DM and the other problems such as, 
e.g., disruption management, RTR etc. are depicted. For the short-term problems, 
a new taxonomy scheme is developed that classifies the literature on the basis of 
five different attributes and their attribute levels. The taxonomy is applied to clas-
sify literature assigned to DM. With this classification scheme areas with scarce 
or even no works can be detected easily.

As seen in Sect. 3.2, all models have minor disturbances in common and nearly 
all of them focus on passengers only. There exist only three exceptions taking a train 
perspective additionally into account (Ginkel and Schöbel (2007), Corman et  al. 
(2012), Dollevoet et  al. (2014)). Furthermore, a macroscopic view is included in 
most of the works considered. Only six works build the model on a microscopic 
view, three of them together with a macroscopic view. This reflects the key criteria 
as explained in Sect. 2.1. Moreover, models with deterministic input represent the 
largest part of the existing literature (about two-thirds of all papers). Exact and heu-
ristic solution methods therein are represented half-and-half. The other third consists 
of models with incomplete information, usually solved with heuristics. Stochastic 

Table 3  Applications on real-
world data

Country Publication

Belgium Heilporn et al. (2008)
China Xu et al. (2018)
Germany  Bauer and Schöbel (2014), 

Berger et al. (2011a, b), Bieder-
bick and Suhl (2007), Ginkel 
and Schöbel (2007), Kliewer 
and Suhl (2011), König and 
Schön (2020), Lemnian et al. 
(2016), Rückert et al. (2017), 
Schachtebeck and Schöbel 
(2010), Schöbel (2001, 2007, 
2009), Schön and König (2018), 
Suhl et al. (2001)

Greece Bender et al. (2013)
Japan Kanai et al. (2011)
Netherlands Corman et al. (2012, 2017), 

Dollevoet and Huisman (2014), 
Dollevoet et al. (2012, 2014, 
2015)



357

1 3

A review on railway delay management

models are rather rare. In Berger et al. (2011b) a simulation platform using stochas-
tic distribution functions is presented; Bender et al. (2013) briefly sketch a stochastic 
program and Schön and König (2018) model an SDP for a single train line. When 
considering the stochastic nature of delays, the question arises why not more sto-
chastic approaches exist. One may argue that taking stochasticity into account may 
lead to problems that are harder to solve or cannot be solved fast enough for real-
world applications. On the other hand, including delays after a known distribution 
results in models that are closer to the real world. As a deterministic setting seems 
to be too optimistic while a setting where nothing about the future is known might 
be too pessimistic, stochastic models could be a compromise that are worth future 
investigation.

The passenger perspective could be improved by learning more about passenger 
patterns, as e.g., in Ortega et al. (2018). Currently, DB also uses passenger patterns 
to represent different passenger groups. They developed in their research depart-
ment the “persona concept” to better understand individual needs of their custom-
ers (Deutsche Bahn 2015). At the moment it is used for product development but it 
might also be helpful for a passenger-oriented dispatching. A further possibility is to 
integrate the passenger directly into dispatching decisions with an automated feed-
back system as it is proposed in Stelzer et al. (2016).

A different strategy to model short-term problems with an even stronger focus on 
the passenger is studied in Lijesen (2014). They anticipate the decisions of passen-
gers how to reach the destination. In Keyhani et al. (2017) the latest point in time, 
when the journey of a passenger should start to reach his destination in time with a 
probability of nearly 100%, is determined. The included delay distributions origi-
nate from historical delay data of DB. The decision-making process from a passen-
ger’s point of view is also used in Schmidt et al. (2017) (see Sect. 2.2). They show 
how a passenger should decide for the continuation of his trip when a disruption 
of unknown dimension has occurred. This might be worth further investigation as 
all of these works take stochasticity for the delay into account and are “close to the 
customer”.

Nearly all models in the literature on DM assume that passengers will always 
reach (even if delayed) their destination. In reality, passengers might abort their 
journey (be it on their own decision or due to external circumstances). In König and 
Schön (2020), a first model that focuses on spilling passengers due to overloaded 
trains is presented. However, further reasons for aborted trips should be analyzed, 
e.g., if no alternative connection is possible anymore. In last train scheduling, a spe-
cial emphasize is put on how to dispatch the last train of the day. So far, only litera-
ture on metro systems exists, such as, e.g., Kang et al. (2015) with focus on time-
table rescheduling and Xu et al. (2018) (see the class of [pmidh] in Sect. 3.2). Last 
train scheduling might be also interesting for railway providers of long-distance or 
regional trains, especially when railway companies have to pay for a hotel if the pas-
senger has missed the last connection of the day (a common practice in Germany, 
see Deutsche Bahn 2019).

An overview of applications on real-world data in the reviewed literature is pro-
vided in Table 3. Numerical studies are done for some countries more often (e.g., 
Germany and the Netherlands) than for others. For many countries, no studies on 
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DM exist at all and a first step towards passenger-oriented solutions at the occur-
rence of delays might be worth looking at. Furthermore, the infrastructure of the 
investigated railway networks differs in size and shape. While, e.g., the network in 
Germany is massive and rather unstructured, the network in France has the shape 
of a star, concentrated on Paris (SNCF 2019) and Japan’s Shinkansen runs on lines 
from North to South (Japan Rail Pass 2019). The evaluated literature always focuses 
on one country but it might be also interesting to compare the performance of the 
same DM model or dispatching rule on networks of different countries.

In Fig. 3 railway problems on the operational level and their interconnections are 
shown. Several links between these problems already exist, but literature for com-
bined approaches is rare, e.g., Veelenturf et al. (2017) consider aspects from DM, 
RTR and rolling stock rescheduling in case of disruptions. The delay for passen-
gers and the costs for the rescheduling of timetable and rolling stock are minimized 
equally. Passenger delays could be reduced by adjusting timetables without increas-
ing rescheduling costs for rolling stock. Focusing on the delay for passengers or 
restoring a valid timetable solely might be falling short of an “optimal” solution for 
handling disturbances in the railway system. For railway providers it seems desir-
able to run holistic models that are able to serve passengers’ and operators’ needs.

The interconnection between the different problems on the operational level 
offers additional potential for further research. This seems to be not only possible for 
railways but also for other industries. A first work, motivated by railway DM is pro-
posed in Santos et al. (2017). The authors introduce the Airline DM problem con-
sidering priority decisions and capacity restrictions for an airport; it is based (among 
others) on the model from Schachtebeck and Schöbel (2010).
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