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1. Introduction

For students in many countries, the transition from primary to secondary

school marks an important step towards adolescence that also affects their

future educational and professional careers. The modalities of this transition

vary between, and sometimes also within, countries and frequently involve

an element of choice whereby students can express their preferences over a

set of schools.1 This set of alternative schools can be quite large and cover

the entire country, or it can be limited to local school districts. In the latter

case, every district typically constitutes an independent assignment market.

School district consolidation is the process whereby previously independent

assignment markets are merged so that students can now choose from a

greater set of alternative schools, and can be undertaken to reduce adminis-

trative costs or to foster integration of racially and economically segregated

areas. This phenomenon has taken place in the U.S. for over one hundred

years: the number of school districts has fallen from 125,000 in 1900 to

84,000 in 1950 to under 15,000 today (Brasington, 1999).2 School district

consolidations have also occurred in several other countries, e.g. in Germany

(Riedel et al., 2010), Hungary (Bukodi et al., 2008), Sweden (Söderström

and Uusitalo, 2010), and New Zealand (Waslander and Thrupp, 1995).

However, as in the case of the U.S., school district consolidation is rarely a

smooth process and is often met with reluctance by some of the indepen-

dent districts that are to integrate (Berry and West, 2008). One of the many

reasons for the reluctance of districts to merge is the concern that their stu-

dents will attend worse schools after consolidation takes place (Fairman and

Donis-Keller, 2012). This concern is not entirely unwarranted, as district

consolidation not only leads to more choice for students, but also to more

competition for a place in their preferred schools. Which effect dominates is

unclear a priori and depends on many factors, not least on students’ charac-

teristics and preferences. In this paper, we shed light on the welfare effects

of school district consolidation with a theoretical school choice model and

with an empirical analysis of the Hungarian nationwide school assignment

system.

1See matching-in-practice.eu, accessed on 19 September 2019
2Source: Institute of Education Sciences, U.S. Department of Education.
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In our theoretical model, we study district consolidation as the merger be-

tween disjoint Gale-Shapley many-to-one matching markets that are pos-

sibly different in terms of their size and their ratio between students and

school seats. Students are assigned to schools using the student-optimal

stable matching (SOSM) before and after consolidation takes place, but be-

fore district consolidation students can only attend schools within their own

district.3 Although this modelling choice does not take into account several

important features of the consolidation process, such as peer-effects and ad-

ministrative costs, it allows us to analyse the interplay between the choice

and competition effects within a school choice framework. To this end, we

compare theoretically how many students attend a more (or less) preferred

school after district consolidation takes place.

Example 1 shows that district consolidation can, in some cases, harm all

students. In fact, for any given school choice problem, there is a way to

partition the set of schools and students into districts such that we obtain

this negative result (Proposition 1). The reason for this is that there is a

trade-off between efficiency and stability, and the stability requirements of

the SOSM become more stringent in a broader market. However, this occurs

only in very particular and, some may argue, fabricated examples. To gain

a more-in-depth knowledge of the welfare effects of district consolidation

on the average-case scenario, we compute the expected welfare gains from

consolidation for students in random markets, in which preferences are se-

lected uniformly at random. Proposition 2 shows that district consolidation

generates expected welfare gains for all students, particularly for those who

belong to districts that are relatively small, or have a high ratio of local

students per school seat.

These theoretical predictions are compared to empirical results that are

obtained by using the data from secondary school admissions in Hungary,

and in particular, from its capital city Budapest during 2015. We focus

on Budapest because i) we have data on students’ stated preferences over

3The SOSM is the most preferred stable matching for all students. It is consistently
implemented in real-life school choice and college admissions in several regions, including
Boston (Abdulkadiroğlu et al., 2014), Chile (Hastings et al., 2013; Correa et al., 2019),
Hungary (Biró, 2008), Paris (Hiller and Tercieux, 2014) and Spain (Mora and Romero-
Medina, 2001).
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all schools in its 23 districts, as well as schools’ priorities over all students

from the 23 districts; ii) students are assigned using the student-optimal

stable matching (SOSM) (Biró, 2008); iii) Hungary consolidated primary

school districts in 2013 (Kertesi and Kézdi, 2013), thus the analysis of the

unconsolidated case for secondary schools is particularly meaningful; and

iv) we have additional data on students’ and schools’ characteristics that

reveal which school features drive students’ preferences, such as schools’

previous results in mathematics and Hungarian, distance to the students’

home addresses, and socio-economic status. Our empirical strategy is to

compare the SOSM in the integrated market to the matching that results in a

counterfactual disintegrated market. In order to compute the counterfactual

matchings, we need to construct a complete set of preferences over all market

participants – schools and students. To this end, our strategy is to estimate a

parametric form of students’ preferences over schools, and schools’ priorities

over students. However, despite our data being remarkably detailed, we still

need to overcome two technical problems here.

The first issue that needs to be addressed concerns estimating students’

preferences. In the student-proposing deferred acceptance algorithm (used

to compute the SOSM) it is only a weakly dominant strategy for students to

report their complete rank-order lists (ROLs) of schools truthfully. There-

fore, stated ROLs may differ from the real preferences because students sub-

mit strategic ROLs by either omitting schools which they deem unattainable

or by truncating their ROLs if they are confident that they will be assigned

to more preferred schools. Both types of omissions have consistently been

observed in the field (Chen and Pereyra, 2019) and in the lab (Castillo and

Dianat, 2016); and both are particularly important for us because the aver-

age student in Budapest ranks only four schools, even when they are allowed,

and encouraged, to rank all schools. The fact that students submit rather

short preference lists is the reason why we need a parametric approach to

construct their “true” complete ROLs. However, the fact that students may

omit some of their top-ranked schools also renders standard approaches to

estimate multinomial preferences inapplicable.

A second closely linked technical complication concerns the estimation of

schools’ priorities: Hungarian schools only report their priorities over the

set of students who actually apply to them and not over the entire set of
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students. In Hungary and many other countries, schools’ priorities are based

on tests, interviews, and previous grades with weights decided by each school

(subject to basic governmental guidelines). Therefore, the admission criteria

at each school contain important idiosyncratic components that are unob-

servable to us. Thus, even though Fack et al. (2019) have shown how to

estimate students’ preferences without assuming truth-telling behaviour, we

cannot directly apply their discrete choice methods which rely on observ-

ing complete schools’ priorities over students (for example, when schools’

priorities are based on a centralised exam).

To overcome these technical challenges in preference estimation, our empir-

ical strategy builds on two identifying assumptions. Our first assumption

is that the observed assignment is stable, which implies that a student’s

assigned school must be her top choice among her ex-post feasible schools

(and vice versa for schools). The approach is similar to Fack et al. (2019)

and Akyol and Krishna (2017). In their settings, ex-post feasible choice

sets can be constructed because each student’s priority at every school is

observed. This is not the case in our setting, where students’ and schools’

feasible choice sets are latent and therefore need to be endogenised to point-

identify parameters. Our second identifying assumption is that students

use undominated strategies, i.e. a school is ranked above another one if

the former is preferred to the latter. The submitted ROLs then reveal the

true partial preference order of students over schools (although they con-

tain no information about the comparison between ranked and unranked

alternatives) (Haeringer and Klijn, 2009). The method is implemented as a

Gibbs sampler that imposes bounds on the latent match valuations that are

derived from stability and from the observed ROLs. This approach gener-

alises the matching estimator, proposed in Logan et al. (2008) and Menzel

and Salz (2013) for the marriage market, from a one-to-one matching to a

many-to-one matching setting, which is suitable for the school admissions

problem studied in this paper. We test our proposed estimation method in

Monte-Carlo simulations, and we find that it yields unbiased estimators for

students’ preferences and schools’ priorities. Our estimator is implemented

in the open source statistical software R and available online.4

4See github.com/robertaue/stabest.
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Our main finding is that the consolidated school market in Budapest is ad-

vantageous for the majority of students and yields significant welfare gains

when compared to the counter-factual situation in which students only at-

tend schools within their home districts. This result is robust to whether

the counterfactual matching is obtained with reported or estimated students’

preferences. The welfare gains from school district consolidation are equiva-

lent to attending a school that is five kilometres closer to the students’ home

address. In other words, the average student would be willing to incur an

additional travel distance of five kilometres to attend their assigned school

in the consolidated market, rather than the counterfactual assigned school

in their home district.

We empirically confirm our theoretical result which states that students

who live in smaller districts or districts with less school capacity benefit

more from school district consolidation than the average student. Also, the

median student incurs a welfare gain that is positive and almost as large as

the average welfare gain. To explain these large utility gains, we devise a

method to decompose the total gains into a choice effect and a competition

effect. We find that the substantial welfare gains are largely due to an

enhanced choice set, and that the consolidated market does not lead to

significantly increased competitive pressure. This can be explained by the

institutional details of the school market in Hungary and in Budapest, which

is characterised by a sizeable nominal overcapacity of school seats relative to

the number of students. In particular, we show that the gains from school

district consolidation are significantly smaller (but still positive) if we adjust

the schools’ capacity to have just as many school seats as there are students

in the aggregate.

The parametric specification of students’ utility from choosing a school yields

insights into the determinants of students’ preferences. We find that travel

distance is an important factor that determines students’ choices, but stu-

dents also prefer schools with a high average academic achievement, and

those with a higher average socio-economic status. Our results further imply

that students dislike schools which hold additional oral entrance exams, all

else equal. Moreover, we find that students have assortative preferences. For

instance, students with a high socio-economic background have a stronger

preference for schools with a high average socio-economic status than other
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students. The same holds for students who are particularly strong in Math-

ematics or Hungarian language.

Our results have important implications for the design of school choice mar-

kets. The consolidation of school districts generates positive, large welfare

gains for students. In our empirical setting, significantly more than half of

all students strictly benefit from district consolidation (between 69% to 75%

of the students) and their gains are large, in particular for high-ability stu-

dents. Only a small fraction of students (between 2% to 4%) are harmed by

district consolidation. Our findings suggest that school admission systems

should be consolidated if possible, rather than conducted independently by

districts. If this was put to a vote, we find that a large majority of students

would vote in favour of consolidation.

Organisation of the Paper. This paper proceeds as follows. Section 2 dis-

cusses the related literature. Section 3 presents our model and the theoreti-

cal results. Section 4 introduces our data and the Hungarian school system.

Section 5 presents the estimation strategy. Section 6 showcases our empiri-

cal results, namely the welfare gains from district consolidation using both

stated and estimated preferences for both students and schools. Section 7

concludes.

2. Related literature

Although there is an extensive empirical literature studying school district

consolidation, the majority of it is unrelated to that of matching markets.

This literature has four main findings: i) there is evidence of overall im-

provement in students’ performance after district consolidation, yet these

improvements are not uniformly distributed and there may be losses for spe-

cific groups of students (Leach et al., 2010; Cox, 2010; Berry, 2005; Berry

and West, 2008);5 ii) small and look-alike districts are more likely to merge

(Brasington, 1999; Gordon and Knight, 2009); iii) there is empirical evidence

of increased fiscal efficiency due to district consolidation (Duncombe et al.,

5There is also a well-established link relating larger school sizes with lower students’
performances, which is not the focus of this paper.
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1995; Howley et al., 2011), and iv) district consolidation has diversified the

racial composition of schools (Alsbury and Shaw, 2005; Siegel-Hawley et al.,

2017).

Our paper is more closely related to the literature on two-sided matching,

to which we contribute on two fronts. We build on the work ofOrtega (2018,

2019), who studies the integration of different one-to-one disjoint matching

markets; all of them balanced and of the same size. He shows that i) inte-

gration benefits more agents than those it harms, and ii) there are expected

welfare gains from integration for all agents in random markets. We extend

these results to the substantially more general setting of many-to-one match-

ing markets in which each district has potentially different sizes and ratios

between schools and students. Furthermore, we show that in any school

choice problem, there exists a way to partition of students and schools into

districts such that district consolidation weakly harms every student when

the SOSM is consistently chosen

We assume that school districts are disjoint, whereas a related series of pa-

pers assume instead that the only the set of schools is disjoint but the pool of

students is shared. This implies that some students may receive several ad-

mission offers whereas others may get none. Manjunath and Turhan (2016)

and Turhan (2019) show that iterative matching procedures can lead to

larger welfare gains and fewer incentives to misrepresent preferences when

the initial partition of the society is coarser. Using a similar approach,

Doğan and Yenmez (2017) show that students are weakly better off when

all schools join a centralised clearinghouse, whereas Ekmekci and Yenmez

(2019) show that no school has incentives to integrate. Hafalir et al. (2019)

also study district consolidation assuming instead that districts are allowed

to exchange a fraction of students as long as each student becomes better

off in the exchange. They identify conditions in which stable mechanisms

satisfy individual rationality, diversity, and balancedness desiderata.

All the aforementioned papers assume there is a school choice system before

and after consolidation occurs, but a few others assume instead that each

school conducts its own admission system before consolidation (Chade et al.,

2014; Che and Koh, 2016; Hafalir et al., 2018). Some empirical papers ex-

amine students’ welfare after school choice is established (Braun et al., 2010;
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Machado and Szerman, 2018; Baswana et al., 2019), but to our knowledge

none of those authors have studied district consolidation with school choice

before and after the merge of districts occurs.

The second strand of the literature to which we contribute is the estimation

of students’ preferences and schools’ priorities from observed data. The most

common identifying assumption is truth-telling, where under the SOSM, a

student is truth-telling if she submits her k most preferred schools. Ab-

dulkadiroğlu et al. (2017) and Che and Tercieux (2019), for example, follow

this truth-telling assumption in their analysis of the New York City high

school match. However, truth-telling is only a weakly dominant strategy,

even when schools can be listed at no cost. Commonly observed and ratio-

nalisable strategies that are inconsistent with truth-telling include skipping

“infeasible” schools and truncating ROLs after “safe” schools. Therefore,

other identifying assumptions have been explored in the literature.

A less restrictive identifying assumption is that students do not swap their

true preference orderings over schools when submitting a ROL, i.e. that

students only use undominated strategies. Fack et al. (2019) use this as-

sumption to estimate preferences in the Paris school choice context. This

assumption is due to the fact that it is a strictly dominated strategy in the

student-proposing deferred acceptance algorithm to rank school s′ before

school s if a student actually prefers school s over school s′ (Haeringer and

Klijn, 2009).

Another commonly used identifying assumption is stability of the observed

matching, which implies that a student’s assigned school must be the top

choice among her ex-post feasible schools. Stability is a more innocuous

assumption than undominated strategies in that it permits inconsequential

‘mistakes’ (Artemov et al., 2017), and it can be guaranteed to prevail in

large markets under fairly general conditions (Fack et al., 2019). However,

empirical models that rely exclusively on the stability of the observed match-

ing suffer from multiple stable equilibria that may exist so that the model

may be ill-specified (Tamer, 2003). One way to solve this problem is by

restricting the preferences in the market in order to ensure that there is a

unique stable matching (Agarwal and Diamond, 2014). This approach has

been applied to capital and credit markets (Sørensen, 2007; Chen, 2013) and
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the U.S. medical match (Agarwal, 2015). In the school choice context, this

has been applied for Paris (Fack et al., 2019) and for college admissions in

Mexico (Bucarey, 2018), Turkey (Akyol and Krishna, 2017), and Norway

(Kirkebøen, 2012). If such assumptions are not met, then only the joint

match surplus may be identifiable from observational data (Logan et al.,

2008; Menzel and Salz, 2013; Menzel, 2015; Weldon, 2016). In this paper,

we avoid imposing these rather restrictive assumptions on students’ prefer-

ences by developing an estimator based on the idea of Fack et al. (2019)

to combine the stability assumption with the aforementioned assumption of

undominated strategies. This combination allows us to point identify our

parameters of interest, as we show by means of a Monte Carlo simulation.

Our methodological contribution to the literature lies in developing a method

to simultaneously estimate the parametric form of students’ preferences and

schools’ priorities in such settings where only partial ROLs and the final

assignment are known to the econometrician, but where preferences and

priorities are not perfectly aligned. We generalize the idea of Fack et al.

(2019) to combine the stability and the undominated strategies assump-

tions to contexts where students’ feasible choice sets are unobserved, and so

we extend it to include latent feasible choice sets using a data augmentation

approach.

3. Model

We theoretically study district consolidation by extending the classical school

choice framework of Gale and Shapley (1962) and Abdulkadiroğlu and Sönmez

(2003). An extended school choice problem (ESCP) is a tuple (T, S,D,�
,B, q), where:

• T is a set of students.

• S is a set of schools. We refer to Ω = T ∪ S as the society.

• q is the number of students that each school can accept.

• D := {D1, . . . , Dr} is a partition of T ∪S into r subsets such that each

of them has some students and some schools. TDi and SDi denote the
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set of students and schools in district Di. A population P is the union

of some (possibly all) districts.

• �t is the strict preference ordering of student t over all schools in S.

We write s �t s′ to denote that t prefers school s to school s′ (and

s <t s
′ if either s �t s′ or s = s′). We use �:= (�t)t∈T to denote the

preference profile of all students.

• Bs is the strict priority structure of school s over all students in T .

We use t Bs t
′ to represent that student t has a higher priority than

student t′ at school s. We use B := (Bs)s∈S to denote the priorities of

all schools.

We assume that each district Di has qni students, ni+ki schools and q(ni+

ki) school seats, where ki is a positive or negative integer that reflects the

imbalance between the supply and demand for school seats in each district. If

ki > 0, the district is underdemanded ; if ki < 0 the district is overdemanded ;

if ki = 0 then the district is balanced and each student is guaranteed a seat

in his own district. We will assume that K :=
∑r

i ki ≥ 0, i.e. the society as

a whole is either balanced or underdemanded and the size of its unbalance

is K.6 We also use N :=
∑r

i ni.

The admission policy of each school s is given by a choice rule Chs : 2T ×
{qs} 7→ 2T , which maps every nonempty subset T ′ ⊆ T of students to a

subset Chs(T
′, qs) ⊆ T ′ such that |Chs(T

′, qs)| ≤ qs. We assume that for

each school s, Chs(·, qs) is responsive to the priority ranking Bs, i.e. for each

T ′ ⊆ T , Chs(T
′, qs) is obtained by choosing the highest-priority students in

T ′ until qs students are chosen.

Given a population P with students TP and schools SP , a matching µ :

TP ∪SP 7→ TP ∪SP is a correspondence such that for each (t, s) ∈ TP ×SP ,

µ(t) ∈ SP ∪ {t}, µ(s) ⊆ TP , |µ(s)| ≤ qs and µ(t) = s if and only if t ∈ µ(s).

We write µ(t) = t if student t is unmatched under µ. A matching scheme

σ is a function that specifies a matching for each district Di, denoted by

σ(·, Di) : TDi ∪ SDi 7→ µ : TDi ∪ SDi , as well as for the society as a whole,

denoted by σ(·,Ω) : T ∪ S 7→ T ∪ S. As no confusion shall arise, when

6This assumption is satisfied in our data.
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referring to an arbitrary district, we will simply write σ(·, D). The matchings

σ(·, D) and σ(·,Ω) denote the assignment of students to schools before and

after consolidation occurs, respectively.7

A matching µ : TP ∪SP 7→ TP ∪SP is stable if @(t, s) ∈ TP ×SP such that

i) µ(t) = t and |µ(s)| < qs, or ii) s �t µ(t) and tBs t
′ ∈ µ(s). The matching

µSOSM is the student-optimal stable matching if it is a stable matching and

all students weakly prefer over any other stable matching. Such matching

always exists and can be computed using the student-proposing deferred

acceptance algorithm (Gale and Shapley, 1962; Roth and Sotomayor, 1992).

A matching scheme σ is stable if all its corresponding matchings σ(·, D) and

σ(·,Ω) are stable. We denote by σSOSM the matching scheme for which all

its corresponding matchings (for each district and for the entire society) are

student-optimal.

Welfare Effects of Consolidation. We are interested in the effect of dis-

trict consolidation on students’ welfare. First, we compare the number

of students who benefit after consolidation occurs against those who be-

come worse off. The sets T+(σ) := {t ∈ T : σ(t,Ω) �t σ(t,D)} and

T−(σ) := {t ∈ T : σ(t,D) �t σ(t,Ω)} represent the students who bene-

fit and lose from consolidation under the matching scheme σ. In general,

T−(σ) 6= ∅, i.e. some students become worse off after consolidation. In fact,

for some ESCP we have that T−(σ) > T+(σ) = 0, even when σ = σSOSM, i.e.

even when we choose the student-optimal stable matching (SOSM) before

and after consolidation, as in the following example.8

Example 1. Consider two balanced school districts D1 and D2, the first one

with schools s1, s2 and students t1, t2, whereas the second one has school s3

and student s3. All schools have capacity one. The preferences and priorities

appear below. The SOSM before consolidation occurs appears in squares,

whereas the SOSM after consolidation appears in circles.

7Matching schemes are analogous to the concept of assignment schemes in cooperative
game theory (Sprumont, 1990).

8The assumption that the SOSM is systematically chosen is often imposed in the
literature (Doğan and Yenmez, 2017; Hafalir and Yenmez, 2017; Ekmekci and Yenmez,
2019; Ortega, 2018, 2019). See also Kumar et al. (2020) for a similar core selection rule.
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D1
t1 : s2 � s1 � s3 s1 : t1 B t3 B t2

t2 : s1 � s2 � s3 s2 : t2 B t1 B t3

D2 t3 : s1 � s3 � s2 s3 : t3 B t1 B t2

This table can be read as follows: before consolidation, student t1 is matched

to school s2 , which is her top priority. After district consolidation, student

t1 is instead matched to school s1 , which is only second in her rank order

list. It follows that the two students from district D1 are harmed by district

consolidation, whereas the one student from district D2 retains her initial

match. Hence, the number of losers is larger than the number of winners:

|T−(σSOSM)| = 2 > 0 = |T+(σSOSM)|.

Example 1 shows how consolidation can be bad for students, even when they

are systematically assigned to schools using the SOSM. It can be generalised

to show that, for any ESCP, we can partition the society into districts in

such a way that every student is weakly better off before than after district

consolidation. Formally, let D′ = {D′1, . . . D′r′} be a partition of T ∪ S
satisfying the following property:

if t ∈ TD′i and t ∈ σSOSM(s,Ω), then s ∈ SD′i for any i ∈ {1, . . . , r′} (1)

The above property says that if a student in district D′i is matched after

consolidation, his matched school should also be in district D′i. Note that

because we have assumed that i) the society is either balanced or under-

demanded and ii) each school is better than remaining unmatched, each

student is matched after consolidation. Thus, property (1) implies that ev-

ery district is either balanced or underdemanded. If this property holds, we

obtain the following result.

Proposition 1 (Sometimes all students are made weakly worse-off by dis-

trict consolidation). Let D′ be a partition of T ∪ S satisfying property (1).

Then ∀t ∈ T , σSOSM(t,D′) <t σSOSM(t,Ω).

Proof. For each x ∈ T ∪ S, the consolidated matching scheme σ(x,D′) =

σSOSM(x,Ω) is feasible because of condition (1), and it is also stable. This
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matching is, in general, different from the district-level matching scheme

σSOSM(x,D′), as Example 1 shows, because there are fewer stability con-

straints imposed in the smaller school choice problem. Because σSOSM(x,D′)

is by definition weakly preferred by each student to any other stable match-

ing such as σ, we must have ∀t ∈ TΩ, σSOSM(t,D′) <t σSOSM(t,Ω).

We can obtain such a strong negative result because of condition (1). This

condition makes the extra available choices for each student worthless, as

every student ends up in a school in their own district. However, the effect of

added competition for school remains present, and that is why in some cases

a significant fraction of all students become worse off after consolidation, as

in Example 1. We emphasise that Proposition 1 is a worst-case result, and

therefore tells us little about what to expect on an average instance of an

ESCP. To answer this question, we examine next the average gains from

district consolidation in random markets.

Random markets. Another way to analyse students’ welfare changes is to

quantify the gains from district consolidation in terms of ranking of their

assigned school in random ESCPs, in which the schools’ priorities and stu-

dents’ preferences are generated uniformly at random.9

The absolute rank of a school s in the preference order of a student t (over all

potential schools in the society) is defined by rkt(s) := |{s′ ∈ S : s′ <t s}|.
Given a matching µ, the students’ absolute average rank of schools can be

defined by

rkT (µ) :=
1∣∣T ∣∣ ∑

t∈T

rkt(µ(t))

where T is the set of students assigned to a school under matching µ. Then,

the welfare gains from consolidation for students of district Di are defined

as

γT (σSOSM) = rkT (σSOSM(·, Di))− rkT (σSOSM(·,Ω))

9Random matching problems were first studied by Wilson (1972) and have been ex-
tensively studied ever since.
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Proposition 2 approximates the students’ welfare gains from consolidation

as function of ni and ki, providing a set of interesting comparative statistics

as a corollary.

Proposition 2. In a random ESCP, the expected welfare gains from con-

solidation for students γT (σSOSM) can be approximated by

N +K

q

(
log(ni+kiki

)

ni
−

log(N+K
K )

N

)
if ki ≥ 0 (2)

N +K

q

(
q(ni + ki)

ni log(niki )
−

log(N+K
K )

N

)
if ki < 0 (3)

The above approximations have two important and testable implications for

empirical studies on district consolidation, and we present them below.

Corollary 1. The gains from consolidation are positive for all districts, in

particular:

1. Students from overdemanded districts benefit more from consolidation

than those from underdemanded districts (if the whole society is un-

derdemanded).

2. A smaller size of the district size ni leads to larger expected welfare

gains from consolidation.

Although we postpone the derivation of the approximations in Proposition

2 to appendix Appendix A, we provide some intuition for the comparative

statistics below. It is well-known that, in a two-sided matching problem with

different sizes, the agents in the short side choose whereas the agents in the

large side get chosen, a phenomenon that increases as the imbalance between

the two sides of the market grows (Ashlagi et al., 2017). Thus, if a local

district is underdemanded, students get assigned to highly ranked schools

before consolidation, which makes the gains from consolidation smaller. On

the contrary, if students belong to an overdemanded district, they are as-

signed to a poorly ranked school before consolidation, which leads to large

potential gains from consolidation (which indeed occur, since the whole so-

ciety is underdemanded). This explains our first comparative statistic.
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The second comparative statistic is due to the relationship between relative

and absolute rankings. In small districts, even if students are assigned to

some of their preferred schools within their district, it is unlikely that those

schools are in the top of their preference list. Thus, in small districts, there

is large potential for welfare gains.

4. Data

This section describes the school admission system in Hungary and the data

employed. Hungary has a nation-wide integrated school market which means

that every student can apply to any school in the entire country, and a

centralised assignment mechanism is used to allocate students to schools.

In this system, every student submits a rank order list (ROL) of arbitrary

length, ranking the school programmes that he would like to attend. In turn,

each school programme ranks all the students that applied to it according

to several criteria such as grades, additional exams and entrance interviews.

The specific weighting of these criteria is decided upon by each school but

must comply with specific governmental regulations (e.g. the weight of the

interview score cannot be more than 25%). School programmes submit

a strict ranking of their more preferred students, whereas the remaining

students are simply deemed unacceptable and are not ranked against each

other. The assignment of students to schools is conducted using the deferred

acceptance student-proposing algorithm (Biró, 2008). This algorithm has

been used since 2000 in a fully consolidated fashion, allowing students to

apply and be assigned to any school in the entire country.10

For our empirical analysis, we use data from the national centralised match-

ing of students to secondary schools in Hungary, the so-called KIFIR dataset,11

along with student-level data from the national assessment of basic compe-

tencies (NABC), both from the year 2015. Our data encompasses the uni-

verse of all students in Hungary who apply to a secondary school programme

in 2015 (at an age of 14, with some exceptions). Each secondary school of-

fers general or specialised study programmes with different quotas that are

10See Biró (2012) for a detailed description of its implementation.
11KIFIR stands for Középiskolai Felvételi Információs Rendszer, which translates to

“Information System on Secondary School Entrance Exams”.
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known ex-ante by students. The reader is referred to Appendix B.4 for

details on these original data sources. Due to data protection arrangements,

access to these data was restricted and our estimation routines were run by

officials at the Hungarian Ministry of Education on their local computer.

We restrict our attention to the greater Budapest area which comprises 23

well-defined districts, so as to obtain a realistic setting within which the

(un)consolidation of school districts can be studied. Budapest lends itself to

this type of analysis because it is a geographically relatively small market

that is tightly integrated, and yet the market is large enough to permit a

meaningful study of the decomposition of a unified admission system into

smaller and well-defined districts. Figure 1 shows the geographical area of

Budapest with school district borders, and with arrows between districts

that send their students to study to other districts. Figure 1 also shows

that there is a considerable amount of inter-district movements, especially

in the inner parts of the city.

We can link the application records in the KIFIR database to the corre-

sponding information in the NABC dataset for 10,880 students who applied

for a secondary school place in Budapest in 2015. In order to attain compa-

rable competitive conditions, we adjust the schools’ capacities by removing

any seats that were assigned to students not in our sample. In total, there

are 881 school programmes of 246 schools that are located in the city of Bu-

dapest. A school programme sometimes contains several particular classes

in which students specialize on languages or computer science, for instance.

Thus, schools can offer multiple programs within the same age cohort. We

aggregate school programmes at the school level in order to reduce the sam-

ple size and the associated computational burden, which is not negligible in

our context.12 Combining the 246 schools with 10,880 students still leaves

us with almost 2.7 million possible student-school combinations to be con-

sidered. We focus on three school types – four-year grammar schools, voca-

tional secondary, and vocational schools – which the students apply to after

having completed eight years of primary education. For all students in the

sample, their location of residence is approximated by their zip code, and

12We converted students’ ROLs to the school level by keeping the most preferred school
programme of every school.
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flows of accepted students across Budapest
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Figure 1: Flows of accepted students between school districts in Budapest. Flows from
one district D to another district D′ are bent to the left when viewed from D′. The width
of the flow arrows from district D to another district D′ is proportional to the number of
students who live in district D and who were accepted at a school in district D′.

the Open Source Routing Machine (Luxen and Vetter, 2011) was used to

compute travel distances from each of Hungary’s zip code centroids to every

known school location.

Table 1 shows student-level summary statistics of our data. Panel A shows

that most students were born in 2002, and that there are as many girls as

boys, as one would expect. The students’ mean grade average in the previous

school year is four (on a scale from one to five, where five is the highest grade

in the Hungarian grading system). Their math, Hungarian, and SES scores

from the NABC13 were standardised by us since their absolute numbers have

13Where these scores were missing in our data, we imputed the missing values using
predictive mean matching, as implemented in the package mice in R (van Buuren and
Groothuis-Oudshoorn, 2011); see Appendix B.4.
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Table 1: Secondary School Applicants in Budapest: Summary Statistics.

Mean SD Min Max N

Panel A. Student characteristics
birth year 2,000.1 0.550 1,996 2,002 10,880
female 0.495 0.500 0 1 10,880
grade average 4.064 0.693 1.000 5.000 10,880

math score (NABC)* 0.000 1.000 −3.825 3.521 10,880

hungarian score (NABC)* 0.000 1.000 −4.186 3.176 10,880

ability† 1.472 1.398 -3.662 6.006 10,880

SES score* 0.000 1.000 −4.111 1.651 10,880
ROL length 4.093 1.800 1 24 10,880
applies to home district 0.680 0.466 0 1 10,880
ROL length within home district 1.054 0.965 0 7 10,880

Panel B. Attributes of first-choice school
distance (km) 7.100 4.630 0.105 36.645 10,880
ave. math score (enrolled students) 0.320 0.716 −1.971 1.754 10,880
ave. hungarian score (enrolled students) 0.352 0.699 −2.006 1.686 10,880
ave. SES score (enrolled students) 0.090 0.582 −1.886 1.212 10,880

Panel C. Attributes of assigned school
match rank 1.476 0.924 1.000 11.000 9,783
matched to first choice 0.711 0.453 0.000 1.000 9,783
distance (km) 7.061 4.653 0.105 36.645 9,783
assigned to home district 0.297 0.457 0.000 1.000 9,783
ave. math score (enrolled students) 0.195 0.686 −1.971 1.754 9,783
ave. hungarian score (enrolled students) 0.230 0.669 −2.006 1.686 9,783
ave. SES score (enrolled students) −0.012 0.571 −1.886 1.212 9,783

Variables indicated with an asterisk are z-normalized. The 2015 Hungarian and math test scores are taken by

the students as part of the admissions process. † ability is the first principal component of the joint distribution
of students’ grades, their math, and their hungarian scores. Socioeconomic status is a composite measure which
includes, amongst other variables, the number of books that the household has, or the level of parental education.

no meaning. The variable measuring students’ socio-economic status (SES)

is a composite measure that includes, amongst other variables, the number

of books that the household has, or the level of parental education. This

indicator was also standardized. Since the students’ grade average, their

math, and their Hungarian NABC scores are highly correlated, we created a

composite measure that we call “ability” and which is constructed as the first

principal component of these variables. Table 1 shows that the students from

Budapest in our sample file applications to about four schools, on average.14

Roughly seventy percent of the students apply to at least one school in their

14Actually, students apply for course programmes, many of which may be offered by
the same school. Thus, the actual length of the students’ rank order lists is larger than
this.
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home district, and on average, students include only one school from their

home district in their submitted rank order list.

Panel B shows some attributes of students’ first choice school, and panel

C shows attributes of the students’ actual assigned school. Panel C shows

that the average match rank is 1.46,15 with more than seventy percent of all

students being assigned to their top choices. This is probably due to the fact

that there is much excess capacity: the schools in the sample reportedly have

vastly more seats than there are students (cf. tables 1 and 2). This peculiar

fact has been confirmed in conversation with officials from the Hungarian

ministry of education on several occasions. The distribution of the number

of programmes the students apply to, and of the actual match rank in the

2015 matching round, are shown in figure 2. Figure 2 confirms that most

students submit rather short ROLs, and the vast majority of students are

assigned to their submitted top choice.
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Figure 2: Distribution of the length of students’ ROLs and of their realised match rank.

Table 2 shows the school-level summary statistics. School programmes in

Budapest are very attractive so that many students from outside Budapest

rank a school in Budapest as their top choice. Therefore, students from

Budapest face stiff competition in their “domestic” school market, and re-

stricting the attention to students from Budapest will likely lead to a much

more relaxed assignment problem. In order to circumvent this problem, we

subtracted the number of admitted students from outside Budapest from the

15With 1 being the most preferred school.
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schools’ capacity so as to maintain the original “tightness” of the market –

this is the adjusted capacity that is used throughout our analysis.

Table 2: Secondary Schools in Budapest: Summary Statistics.

Statistic Mean St. Dev. Min Max N

capacity 137.098 96.306 6 502 246
adjusted capacity 116.447 90.586 6 498 246
applications 411.199 456.929 7 2,392 246
ROL1 applications 44.228 44.254 0 251 246
acceptable applications 130.638 124.433 0 698 246
assigned students 39.768 31.499 0 157 246
avg. match rank 47.229 34.011 2 187 242
entrance interview 0.439 0.497 0 1 246
enrolled students’ average

math −0.130 0.778 −1.971 1.754 246
Hungarian −0.084 0.747 −2.006 1.686 246
SES −0.185 0.643 −1.886 1.212 246

assigned students’ average
math −0.248 0.670 −2.355 1.643 246
Hungarian −0.253 0.694 −2.332 1.476 246
SES −0.135 0.638 −1.789 1.282 246

The average school receives over four hundred applications, of which only

130 are deemed “acceptable”. In the end, about forty students are assigned

to each school on average. The comparably small number of acceptable ap-

plications could indicate that it is quite costly for schools to rank all their

applicants consistently, and so they focus on only ranking those students

which are most likely to be admitted to the school. Note that our estima-

tion approach assumes that schools submit their priority lists truthfully, i.e.

that every student who is labelled “unacceptable” is really less preferred

than any other applicant that is actually ranked by the school. This as-

sumption could be violated if schools strategically choose to omit very high

achieving students, because they feel that these students are more likely to

be admitted to a more prestigious school, and thus want to avoid the work-

load of prioritising these students. However, we think that this is probably

a minor problem and schools are overall truth-telling.

We also collected data on whether a school holds an additional entrance in-

terview, and we found that about forty percent of all schools do so.16 Table 2

16This information was manually collected from the website
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also summarises the school-level averages of admitted and currently enrolled

students. The standard deviation of these school-level averages is more than

two-thirds of the total variance across students, which is normalised to one.

Thus, there is evidence of a substantial amount of sorting by ability and

socio-economic status.

5. Empirical strategy

Our empirical strategy to estimate the gains from district consolidation in a

school choice market can be summarised as follows: we compute the SOSM

in an unconsolidated, district-level school market and compare it to the

SOSM in the consolidated, city-wide school market. In a first pass, we use

the submitted rank order lists to obtain an ad hoc measure of the consolida-

tion gains. This approach has some shortcomings since the submitted rank

order lists are incomplete, as will be outlined below. To circumvent these

shortcomings, we develop a procedure to estimate the complete preference

order of all market participants. This allows us to compute a more complete

SOSM in the unconsolidated market, and also to compare utility outcomes.

Figure 3 summarises our strategy at a glance.

Figure 3: Our empirical strategy

https://felvizsga.eu/felvi.php which provides information about admission procedures at
different Hungarian schools. Last accessed on 11 November 2019.
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In section 3 we have shown theoretically that one can expect overall welfare

gains from school district consolidation, but that the magnitude of these

gains may depend on the specific market characteristics. We test these pre-

dictions using student-level administrative data from the Hungarian school

assignment system KIFIR. The KIFIR dataset contains the stated pref-

erences of students over all schools that are included in their submitted

rank order lists, and the respective rankings of schools over their applicants.

These submitted rank order lists allow us to perform an ad hoc qualitative

assessment of the consolidation gains in terms of foregone rank order items.

However, using the short submitted rank order lists has two shortcomings.

The first problem is related to the computation of the matching in an uncon-

solidated district-level school market. As table 1 shows, over thirty percent

of all students have not included any school from their home district in their

submitted rank order lists, and on average, students included only a sin-

gle school from their home district in their submitted rank order list. This

is probably because the school market in Budapest has been consolidated

for a long time. As a result, many students would remain unmatched in a

counter-factual, disintegrated school market. Moreover, it seems reasonable

to assume that students would adjust their submitted rank order lists if the

school market were to be disintegrated. Thus, the SOSM in a disintegrated

school market cannot be well described by using the submitted short rank

order lists from the consolidated school market.

Second, it is unclear how a change in a student’s match rank translates to

utility gains or losses, because the former is an ordinal concept, whereas the

latter is a cardinal concept. Also, the cardinal concept of utility is more

appropriate to compute aggregate welfare measures. To overcome this, we

present a data augmentation approach to back out the “true” complete pref-

erence ordering from the submitted rank order lists. Our method is based

on the discrete choice framework (Train, 2009) and we use it to compute the

different SOSM allocations and to evaluate their welfare implications. This

method is outlined in more detail in the next subsection.
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5.1. Preference estimation: methodology

We observe a school choice market with a set of students (T ) and a set of

schools (S). We write students’ utilities over the set of schools Ut(s), and

schools’ valuations over the set of students Vs(t) as

Ut(s) = Ut0 + Xtsβ + εts (4)

Vs(t) = Vs0 + Wstγ + ηst (5)

where Xts and Wst are observed characteristics that are specific to the

school-student match st. Xts could, for instance, include a school fixed

effect or the travel distance from t to s. The terms Ut0 and Vs0 are the

outside utilities of not being matched to any student or school. These are

assumed to be zero, so that the latent utilities represent the net utility of

being matched. The match valuations Ut(s) and Vs(t) are treated as latent

variables that are to be estimated along with the structural parameters β

and γ.

Throughout, we will denote by Ut the vector of student t’s utilities over

the entire set of schools, and by Vs school s’s valuations over the entire

set of students. We make use of the common indexing notation whereby

the elements of some vector Z that do not refer to the student-school pair

ts are denoted by Z−ts, i.e. U−ts denotes the entire set of utility numbers

but for Ut(s). We further assume that the structural error terms εts and

ηst are independent across alternatives, and normally distributed with unit

variance. While one could in principle allow for more general correlation

structures, it is customary (and necessary) in the discrete choice literature to

put some structure on the error terms in order to ensure identification (Train,

2009). Including a sufficiently rich set of controls and co-variates allows us

to model the dependencies across alternatives in a more transparent manner

than if we had left the co-variance structure completely unspecified.

We introduce some more notation for convenience below. We observe stu-

dents’ submitted partial rank order lists over schools, rk, and schools’ sub-

mitted partial priority orderings over students, pr. Following the notation

of Fack et al. (2019), we denote the observed rank order list of student t as

Lt = (s1
t , s

2
t , . . . , s

Kt
t ), where skt ∈ S is some school. Denote the rank that

student t assigns to school s as rkt(s), with 1 ≤ rkt(s) ≤ Kt if s ∈ Lt and
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rkt(s) = ∅ else. The observed rank order lists rk encompass all individually

observed rankings rkt(s). Similarly, denote the set of students who apply to

school s as Ls, and let the priority number that school s assigns to student t

be prs(t). Priority numbers are like ranks, in that they take discrete values,

and a lower priority number means higher priority. Schools are required to

prioritise all students who apply to them, but they may rank some students

as “unacceptable”. We say that prs(t) = +∞ if student t is unacceptable

to school s, and prs(t) = ∅ if student t did not apply at school s. Thus,

prs(t) ∈ {1, 2, . . . , |Ls|,∞, ∅}.

Given the specification of the error terms and the observed rankings, equa-

tions (4) and (5) can be regarded as representing two distinct rank-ordered

probit models (Train, 2009, p.181). However, the complications outlined in

the introductory part of this section imply that an estimation as such is

unlikely to succeed in obtaining the true preference parameters. Because

schools only rank students who apply to them, and geographical distance

is not an admission criterion, we cannot follow the approach of Burgess

et al. (2015) to construct the feasible choice set of each student in order to

identify her true preferences. For the same reason, the construction of the

stability-based estimator that is proposed in Fack et al. (2019) cannot be

applied. Still, we follow their idea in that we use a combination of identify-

ing assumptions to identify the model parameters. These are described in

turn.

We chose a Bayesian data augmentation approach, owing to its flexibility,

and because it allows us to directly estimate the latent variables U and V

which are our prime objects of interest for the purpose assessing the gains

of integration. Similar approaches have been used by Logan et al. (2008)

and Menzel and Salz (2013) in the context of one-to-one matching markets.

Following Lancaster (2004, p.238), who describes a data augmentation ap-

proach for an ordered multinomial probit model, we simulate draws from the

posterior density of the structural preference parameters p(β, γ|data) by con-

sidering the component conditionals p(U|β, γ,V, data), p(V|β, γ,U, data),

p(β|γ,U,V, data) and p(γ|β,U,V, data). We assume a vague prior for the

structural preference parameters γ and β. Details of the conditional pos-

terior distributions are spelled out in Appendix B.2. Our data comprises

the co-variates X and W, of the assignment µ and of the submitted rank
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order and priority lists. In general, the Gibbs algorithm to sample from the

posterior density can be described as follows:

1. for all t, s: draw Ut(s) from p(Ut(s)|β, γ,U−ts,V, data) = N(Xisβ, 1),

truncated to [U t(s), U t(s)]

2. for all s, t: draw Vs(t) from p(Vs(t)|β, γ,V−st,U, data) = N(Wstγ, 1),

truncated to [V s(t), V s(t)]

3. draw β from p(β|γ,U,V, data) = N
(
b, (X′X)−1

)
, with b = (X′X)−1X′U

4. draw γ from p(γ|β,U,V, data) = N
(
g, (W′W)−1

)
, with g = (W′W)−1W′V

5. repeat steps 1–4 N times

Key to our estimation methodology are the truncation intervals for Ut(s)

and Vs(t). These intervals are functions of the data and the latent variables

in the model, and they are specific to the particular set of identifying re-

strictions that is used. The bounds of these intervals could be very tight, or

they could encompass the entire real line. We describe possible identifying

restrictions below, and outline how they can be used to construct these trun-

cation intervals; a detailed derivation of the truncation intervals is deferred

to Appendix B.1.

Weak truth-telling (WTT). Weak truth-telling requires that the student

truthfully submits his or her top-Kt choices, and that any unranked al-

ternative is valued less than any ranked alternative. Formally, this implies

that Ui(s) ≥ Ui(s
′) if (but not only if) rkt(s) < rkt(s

′) or s′ /∈ Lt. That is,

any unranked school is assumed to be less preferable than any ranked school.

A similar reasoning can be applied to schools’ priorities over students, with

the difference that a school s cannot rank a student t unless t applies to s.

However, a school can label a student as “unacceptable” which implies that

all students labelled in this manner are valued less than any other ranked

student. So we can bound Vs(t) ≥ Vs(t′) if s ∈ Lt ∩ Lt′ and prs(t) < prs(t
′)

or prs(t
′) = +∞. Taken together, these bounds pin down the truncation

intervals and the component conditionals in steps 1 and 2 above.
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Undominated Strategies (UNDOM). The assumption of undominated strate-

gies is similar to that of weak truth-telling, but is restricted to the submit-

ted rank order lists. That is, we can bound Ut(s) ≥ Ut(s
′) if s, s′ ∈ Lt and

rkt(s) < rkt(s
′). The bounds for the school’s valuation over students are the

same as in the weak truth-telling case because a school cannot decide not

to rank a student; it must at least decide whether the student is acceptable

or not. Undominated strategies is thus a weaker, but also more general,

condition than weak truth-telling in the sense that the latter implies the

former, but not vice versa.

Stability. If we assume that the matching of students to schools is stable in

the sense outlined in section 3, a different set of bounds can be applied to

the latent valuations. Denote the observed matching as µ such that µ(t) = s

and i ∈ µ(s) if student t is assigned to school s. Stability implies that there

is no pair of a student t and a school s such that Vs(t) > mint′∈µ(s) Vs(t
′)

(so there is no school s that would like to see student t enrolled rather than

one of its currently enrolled students) and Ut(s) > Ut(µ(t)) (no student t

would prefer being enrolled at s rather than at his current school). This

condition implies that we can bound the realization of Ut(s) conditional on

the matching µ, and on the match valuations U−ts and V−ts. Analogous

bounds can be placed on Vs(t) with straightforward extensions for cases

where schools are not operating at full capacity. These bounds are spelt out

in appendix Appendix B.1 in greater detail. This identifying assumption can

be used on its own, or in conjunction with the assumption of undominated

strategies.

5.2. Identification

Fack et al. (2019) provide an illuminating discussion of the merits of dif-

ferent estimation procedures in the Paris school choice context where the

econometricians can observe students’ priorities at all schools. They argue

that the identifying restriction stability alone allows for point-identification

in large markets as in the Paris setting, but can also be used in conjunc-

tion with UNDOM.17 While we characterise our estimation approach in the

17Weldon (2016, p.158) studies identification of preference parameters using stability-
based estimators in a large number of small independent matching markets, and concludes
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same terms as they do, our setting differs from theirs in that the students’

relative rankings at various schools is only incompletely observed. Our pre-

ferred identifying assumption is the combination of undominated strategies

and stability because it allows point identification, and it guarantees that

the observed matching µ is stable under the estimated latent match val-

uations. The stability property is also convenient because it allows us to

replicate the observed matching by computing the SOSM based on prior-

ity and preference lists that are computed from the estimated latent match

valuations.

The usual conditions for identification in additive random utility models

apply, and preference parameters are identified up to the variance of the

unobserved random utility component which we restrict to unity. In these

models, only utility differences are identified, and so we can identify only up

to J − 1 alternative-specific constants in a choice situation with J alterna-

tives, with one constant being normalised to zero. Moreover, the effect of

the decision makers’ characteristics are only identified as interactions with

characteristics that vary across alternatives. Furthermore, since only utility

differences matter, only the differences of the error terms are identified. This

is handled implicitly in our data augmentation approach, by drawing the er-

rors subject to lower and upper bounds that are implied by the observed

rank order lists. Lastly, parameters are only identified if there is sufficient

heterogeneity in the observed choices: If everyone were to choose the same

option, then any parameter which leads to this option being assigned a util-

ity of plus infinity could rationalise what is observed in the data (Train,

2009; Cameron and Trivedi, 2005).

Preference parameters under the identifying restriction of weak truth-telling

can in principle be identified by utilising a rank ordered model where the

choice set encompasses the entire set of schools.18 However, because students

may omit some of their most preferred schools if chances of admission are

that identification depends strongly on the precise parameter configurations of the match-
ing agents.

18Variants of this are the rank ordered logit model (Beggs et al., 1981) or a rank
ordered probit model (Yao and Böckenholt, 1999). Whereas the rank ordered logit model
has analytically tractable expressions for the likelihood, the rank ordered probit model
has not, and thus requires simulation or Bayesian estimation techniques.
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small, this assumption is often violated and parameter estimates are biased

in such a model (Fack et al., 2019). To see this, consider a very popular

school s+ to which chances of admission are so small that most students,

although they would rank it first, never actually include it in their submitted

ROL. But then, the probability that school s+ is the most preferred option

differs from the probability that it is ranked first, and so the likelihood is

misspecified. This may not be a problem at all if the researcher was merely

concerned with describing the actual application behaviour of students in

an existing school choice problem, but it becomes a problem if one is to

study the effects of changing the rules of an existing allocation mechanism.

When considering the impact of the changing of rules, it seems reasonable to

assume that students’ true underlying preferences would remain unchanged,

but that the changed admission rules would lead to an alteration in students’

behaviour . Therefore, an analysis that is based on student’s true preferences

would retain its validity in a counter-factual allocation mechanism, while an

analysis (based on reported preferences) that does not take into account

strategic reporting would not be applicable.

The alternative, and weaker, identifying assumption of undominated strate-

gies merely makes a statement about how likely it is for an individual student

to prefer school s over school s′, given the student’s and the schools’ observ-

able characteristics. This probability can be identified non-parametrically

from the observed ROLs, conditional on s and s′ being part of the submitted

ROL, even if some top choices, or some very unattractive alternatives, were

omitted due to strategic reasoning. If we assume that the student’s decision

to include both s and s′ in her ROL is independent of whether she ranks s or

s′ higher, then these conditional non-parametric estimates can be matched

to the unconditional model-implied probabilities, and hence the model is

completely specified. Therefore, the coefficients on alternative-specific co-

variates can in principle be identified by their relative contribution to the

probability that a particular choice s is ranked before an alternative s′. Of

course, the usual limitations that apply in multinomial choice models also

apply here; for example, preference parameters are only identified up to the

scale of the error variance. In this regard we deviate from Fack et al. (2019,

p.1507) who argue that an econometric model based on undominated strate-

gies is incomplete in the sense of Tamer (2003), because “the assumption
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[. . . ] does not predict a unique ROL for the student”. In our Monte Carlo

study, we instead find that this assumption does permit point identification

of preference parameters.

If, in addition, one is willing to make the assumption that the observed

matching is stable with respect to the decision makers’ true preferences,

this stability assumption can serve as an additional source of identification.

To illustrate this, consider some school s− which is so unpopular that only

a few students have included it in their ROLs. Because of this, the prob-

ability that this school is preferred to some other school s′ is only poorly

identified, and this can lead to significant uncertainties in the parameter

estimates. However, if school s− has some vacant seats, the stability of

the observed matching implies that no other student prefers this school over

their currently assigned school. In general, the stability assumption imposes

additional bounds on a student’s latent match valuation if some school have

vacant seats and if the student is matched to another school; or if a school’s

latent valuation of this student is larger than the least valued student who

is currently assigned to that school. Similar considerations apply for the

bounds on schools’ valuations over students. So, the stability assumption

places additional identifying restrictions on the distributions of latent errors

and structural parameters.

5.3. Monte-Carlo evidence

Monte Carlo simulations provide further evidence that our method for iden-

tification works as intended. Specifically, we compare various estimation

approaches that are based on different identifying assumptions as laid out

above, and we show that a combination of stability and undominated strate-

gies allows us to obtain unbiased parameter estimates with a reasonably

small variance.

The data generating process of our Monte Carlo study is borrowed from

Fack et al. (2019), but with slight adjustments.19 We consider markets with

T ∈ {100, 200, 500} students and six schools with a total capacity of 0.95 ·T

19Their data generating process is described, and the code is made available, in their
online appendix.
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seats, so there is slight excess demand. Students’ utility over schools is given

by

Ut(s) = δs − dts + 3 · (at · ās) + εts

where δs is a school fixed effect, dts is the distance from student t to school s,

at is the students’ grade and ās is the average grade of all students at school s

(or put differently, the schools’ academic quality). Hence, the true preference

parameter in the data generating process is a vector β0 = (1,−1, 3)′. εts

follows a standard normal distribution. For the exposition, we assume that

δs is known to the econometrician and therefore enters the estimation as an

additional co-variate. The schools’ valuation over students (which translates

into the students’ priorities) is given by

Vs(t) = at + ηst

where ηis is also standard normally distributed. Here, the true priority pa-

rameter γ0 is a scalar equal to one. We subsume all preference and priority

parameters as θ0 = (β′0, γ0)′. In the market, students choose their opti-

mal application portfolio, given their equilibrium beliefs about admission

probabilities, and a small application cost. This leads some students to

skip seemingly unattainable top choices, or to truncate their ROL at the

bottom. As a result, the submitted ROLs are likely to violate the assump-

tion of WTT. Based on the simulated submitted ROLs, students and school

seats are matched according to the SOSM. We refer the reader to the online

appendix of Fack et al. for further details.

Our major departure from their approach is with their assumption that

a student’s ranking at a school is known to the econometrician. Instead,

we assume that the econometrician only observes the relative rankings of

students who applied at school s. Also, normally distributed errors are used

on both sides of the market instead of the type-I extreme value distributed

errors used by Fack et al..

For our Monte Carlo study, we simulated one hundred independent realisa-

tions of these markets. In the simulated markets with two hundred students,

a share of 0.69 of the submitted rank order lists satisfied WTT across all

32



simulations.20 For every sample k, we estimated students’ preferences over

schools (β̂k), and schools’ priorities over students (γ̂k) using the data aug-

mentation approach described above. In line with the recommendations

laid out in Fack et al. (2019), the following different sets of identifying

assumptions were used to compute the truncation intervals based on the

strategically submitted ROLs:

1. weak truth-telling (WTT)

2. stability

3. undominated strategies

4. stability + undominated strategies

As a benchmark, we estimated the model under the assumption of undom-

inated strategies based on true and complete ROLs.21 We let the Gibbs

sampler run for 20,000 iterations, with a burn-in period of 10,000 iterations.

To reduce the parameter estimates’ serial correlation, we used only every

fifth sample, and discarded the rest.

Figure 4 shows box plots22 of the estimation errors (θ̂k − θ0) across the

one hundred realised data sets, for different estimation approaches. Table

3 shows the corresponding mean squared error and bias statistics.23 The

first three panels of figure 4 depict the distribution of the estimation errors

of students’ preference parameters (β̂k − β0). As expected, the benchmark

case where the complete ROLs are known on both sides allows us to iden-

tify the parameters very precisely. Furthermore, the estimates for student

preferences that are derived under the assumption of weak truth-telling are

biased. This too is to be expected because the assumption of weak truth-

telling does not hold in the data generating process.

When the estimation is conducted using only the stability assumption, the

20See section 5.1. In the market with one hundred students, this share was 0.72, and
in the market with five hundred students, it was 0.64.

21With completely observed ROLs, this is equivalent to the assumption of WTT.
22All box plots in this paper are drawn according to the “basic box plot” tyle as in

McGill et al. (1978).
23Appendix B.3 presents the same results for T = 100 and T = 500 students.
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Figure 4: Box plots of the distributions of estimation errors across one hundred simulated
markets (six schools with 190 seats and 200 students).

results are noisy and biased. Under the stability assumption, the best es-

timation results are those for the coefficient on travel distances dts, but

worse results are obtained for the schools’ quality δs and for the interaction

parameter. This is in line with the previous literature on stability based esti-

mators of preferences in small two-sided matching markets. That literature

has reached a consensus that the preference parameters are only identified

under certain assumptions on the observable characteristics (Weldon, 2016,

pp.158-168) or certain preference structures such as perfectly aligned pref-

erences (Agarwal and Diamond, 2014), and may not be identified at all

in other circumstances. Note that this is not necessarily at odds with Fack

et al. (2019) who argue that a stability based estimator can be used to point-

identify preference parameters, for their stability-based estimator is based

on the assumption that students’ feasible choice sets are known, whereas we

assume that this is not the case.

The estimates that are derived under undominated strategies are much more

precise, but also appear to suffer from a slight bias, which could be a result of

the small sample size. Finally, when we combine stability and undominated

strategies, our estimates are virtually indistinguishable from the benchmark

estimates that are derived using the true and complete ROLs. Interestingly,
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Table 3: MSE and Bias Statistics on the Monte Carlo Simulation.

Method Preferences Priorities

dis δs ai · ās ai

Panel A. Mean squared error (MSE)
benchmark (true prefs.) 0.0187 0.0038 0.0227 0.0016
weak truth–telling 0.0598 0.0581 0.3243 0.0032
stability 0.2903 0.1597 4.8612 0.0788
undominated strategies 0.0338 0.0103 0.0539 0.0030
stability + undom. strat. 0.0323 0.0088 0.0448 0.0030

Panel B. Bias
benchmark (true prefs.) -0.0066 -0.0023 -0.0027 -0.0009
weak truth–telling 0.1937 -0.2302 -0.5425 0.0004
stability -0.1273 -0.3132 0.9949 -0.0204
undominated strategies 0.0055 -0.0421 -0.1179 0.0001
stability + undom. strat. -0.0219 0.0134 -0.0183 0.0026

estimates for the schools’ priority function are quite good in all estima-

tion approaches, although the priority lists are only incompletely observed.

This insight could lend support to alternative two-step estimators where the

schools’ priority structure is estimated first, and students’ preferences are

estimated in a second step, as in He and Magnac (2019).

To confirm that the combination of stability and undominated strategies

is indeed able to correct the estimation bias due to strategic reporting, we

compute the share of submitted ROLs satisfying WTT in each sample mar-

ket, and plot this share against the parameter estimate in that sample. This

is done in figure 5. Each dot in that figure represents one parameter esti-

mate in one single simulated market. The lines represent the least square

estimates for the relation between the share of ROLs that satisfy WTT and

the estimation error. The corresponding regression coefficients are shown in

table 4 and asterisks indicate their significance. The leftmost three panels

of that figure show that the estimation error for students’ utility parameters

under the WTT assumption decreases in absolute terms as the share of sub-

mitted ROLs satisfying WTT increases (green line). On the other hand, the

benchmark estimates and the estimates under stability and undominated

strategies are not dependent on the share of ROLs that satisfy WTT. For

schools’ priority parameters, there is no significant relation between either of

the estimates and the WTT share, although the point estimates are weakly

positive. We conclude from this figure that the proposed estimation ap-
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Figure 5: Dependence of the estimation error in different specifications on the share of
submitted ROLs that satisfy the WTT assumption. Every dot represents one parameter
estimate in one sample market. One hundred simulated markets, six schools with 190
seats, and 200 students.

proach that relies on a combination of undominated strategies and stability

is robust to the strategic submission of preference lists.

Table 4: Robustness of Estimation Procedures to Violations of WTT.

Method Preferences Priorities

dis δs ai · ās ai

benchmark (true prefs.) -0.155 -0.040 0.122 0.134

weak truth–telling -0.398 0.780*** 1.756*** 0.199

stability 0.488 0.143 -10.336* 1.670**

undominated strategies 0.157 0.083 -0.307 0.181
stability + undom. strat. 0.143 0.047 -0.381 0.153

p-values indicated by ∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01. The table shows the coefficients from
separate linear regressions of the estimation error on the share of ROLs satisfying WTT, by
estimation approach and parameter. For an estimation approach to be robust to violations of
the WTT assumption, the estimation error should not depend on the share of ROLs satisfying
WTT.
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6. Empirical results

This section reports our estimates of the gains from consolidation. First,

we present results that are based on the actual submitted preference lists.

Next, we present our estimates of students’ preferences that are used to

construct complete preference lists. These complete preference lists are used

to estimate the consolidation gains, circumventing the restrictions that are

imposed by the first approach.

6.1. Gains from consolidation: using reported preferences

We first approach the problem of estimating the gains from consolidation

from a purely descriptive standpoint. To this end, we take the students’

submitted rank order lists (ROLs) as given, and re-compute the SOSM under

different district consolidation scenarios.24 As a benchmark outcome, we use

the matching in the consolidated market comprising all districts in Budapest.

This matching is denoted by µBP and it is almost identical to the actual

matching observed in the KIFIR dataset. This matching is compared to

the matching that obtains in a district-level school market (µd). For every

student, we compare the match rank obtained in the district-level market to

the match rank in the benchmark scenario. This difference in match ranks

is used as a measure for the consolidation gains.

There are two major complications with the aforementioned approach: first,

a considerable number of students do not include any school from their home

district in their submitted rank order list, and second, some individual school

districts cannot actually accommodate all domestic students, even though

there is much excess school capacity in the aggregate. These problems lead

to a large number of students not being matched in the counter-factual

matching. We assume that these unmatched students would prefer being

matched rather than being unmatched, and that the option of being un-

matched is as good as the school that they ranked last. In doing so, we

obtain a lower bound for the consolidation gains.

24For all purposes, we made use of the implementation of the SOSM that
is provided as part of the R package matchingMarkets, available on cran.r-
project.org/package=matchingMarkets.
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Because district number 23 has only one single school, it does not even offer

one school for every track (gymnazium, secondary or vocational). Therefore,

we merge this district to its neighbouring district number 20. We show some

summary statistics of the district-level and consolidated matches in table 5

below.

Table 5: Matching Statistics based on Reported Preferences.

Panel A. Unconsolidated matching
matched students 6,554
share top choice match 0.78
avg. match distance [km] 3.49

Panel B. Consolidated matching
matched students 10,494
share top choice match 0.43
share matched in home district 0.30
avg. match distance [km] 7.10

Table 6 contains a detailed account of the consolidation gains per district.

That table shows that the vast majority of students is strictly better off in

the consolidated market, either because they are assigned to a more preferred

school in the consolidated market (29%) or because they are unmatched in

the unconsolidated market (40%). Only 4% of the students are assigned to

a more preferred school in the unconsolidated market. Moreover, there is

not a single district in which more students would prefer the unconsolidated

market over the integrated market in Budapest. Motivated by the general

insights of corollary 1, figure 6 shows how the share of students who strictly

gain from consolidation varies along two key dimensions: district size (left

panel) and excess capacity (right panel). Figure 6a shows that the share of

consolidation winners is practically unrelated to district size and is above

fifty percent throughout. This share appears to be negatively correlated

with the excess capacity in a district, as shown in Figure 6b.

To test whether these relationships are significant, we computed a linear

regression of the winners’ shares per district on the size and relative excess

capacity per district. Column (1) in table 7 shows that the relationship

with a district’s size is insignificant, albeit estimated to be negative. The

coefficient for a district’s capacity is negative and significantly different from

zero.
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Table 6: Losers (−) and Winners (+) from Consolidation (Reported Preferences).

District seats students excess seats − 0 + unmatched

1 338 95 243 3 9 26 50
2 1,191 634 557 36 241 190 148
3 928 743 185 32 263 227 213
4 865 746 119 32 319 241 151
5 625 217 408 5 50 32 122
6 1,243 172 1,071 14 24 51 77
7 1,312 212 1,100 14 73 48 70
8 2,524 290 2,234 11 79 77 119
9 2,116 275 1,841 19 73 98 77
10 2,012 591 1,421 45 120 224 194
11 1,025 713 312 13 181 169 347
12 956 359 597 17 142 108 90
13 3,290 449 2,841 44 148 152 100
14 2,893 796 2,097 52 189 247 291
15 701 454 247 11 99 120 219
16 770 659 111 1 96 162 397
17 147 628 -481 0 40 107 481
18 503 873 -370 17 177 245 432
19 773 444 329 13 68 120 237
20 1,643 573 1,070 31 157 189 189
21 2,518 641 1,877 14 258 204 157
22 273 316 -43 7 51 92 165

Total 28,646 10,880 17,766 431 2,857 3,129 4,326

Seats refers to number of seats after removing those given to students from outside Budapest. Excess
seats refers to seats minus students. The symbols −, 0 and + denote the number of losers, indifferences
and winners from consolidation, respectively. Data obtained using stated preferences.

Although the share of winners is above fifty percent in all districts, it is by

no means clear that district consolidation would also be politically feasible

ex ante. Our majority share measure is composed of those who strictly gain

from consolidation ex post. As Fernandez and Rodrik (1991) note, ex ante

uncertainty about the identity of those who gain and those who loose due to

a reform induces a bias towards the status quo in majority votes. This bias

can effectively prevent the implementation of a reform even when it would

be supported by a majority ex post. This would be especially true for those

districts where the majority share of winners is not so large.

Next, we examine how our theoretical predictions about the distribution of

quantitative rank order gains relates to our empirical results. Corollary 1

states that the expected gains from consolidation are larger for smaller mar-

kets and markets with less capacity. Figure 7a shows that there is practically

no correlation between district size, as measured by the number of students

per district, and the average rank gains from consolidation. Moreover, panel
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(b) Share of winners and excess capacity

Figure 6: Majority support for an integrated market in Budapest, using stated preference
lists. One observation denotes one district.

Table 7: Testing the Relationship between Consolidation Gains and District Statistics.

Dependent variable:

consolidation winners’ share average rank gain

district size (# students) −0.0002 −0.0008
(0.0001) (0.0005)

relative excess capacity −0.0256∗∗ −0.1191∗∗

(0.0111) (0.0478)

Observations 22 22
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses, intercept not shown. One observa-

tion denotes one district. Statistics obtained using states preferences.

7b shows that there is a strong negative partial correlation between the av-

erage rank order gains, and the districts’ excess capacity. Column (2) in

table 7 contains the estimated coefficients and standard errors from a re-

gression of average rank order gains per district on the size and capacity per

district. The table shows that the coefficient for district size is rather small,

and also insignificant, whereas the the coefficient for district-level capacity

is significantly negative. Therefore, we find robust empirical support for the

first part of Corollary 1, but we cannot statistically confirm the validity of

the second part.
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(b) Average rank gains and excess capacity??

Figure 7: Rank order gains from an integrated market in Budapest, using stated preference
lists. One observation denotes one district.

6.2. Preference estimation results

We now turn to the key building block of our structural approach to comput-

ing the gains from consolidation. In order to derive the complete preference

ordering over schools and students, we estimate a general model of students’

preferences and schools’ priorities that was described in detail in section 5.1.

See section 4 for an in depth discussion of the data sources.

We assume that students’ preferences over schools depend on the geograph-

ical distance and on the squared distance, between a student’s place of resi-

dence and the schools’ location. To proxy for the schools’ academic quality,

we computed the average of the mean NABC scores in math and Hungarian

of students currently enrolled at that school. Also, we computed the aver-

age SES score of those students. Finally, we included the interaction terms

of the students’ math, Hungarian, and socio-economic scores with their re-

spective school-level means in order to test whether there is evidence for

assortative matching, similar to what Fack et al. (2019) find. To account for

any unobserved heterogeneity across schools, we include school dummies,

as we have a rather small set of observable school-level characteristics.25

25Because we are essentially estimating a discrete choice model over the set of schools,
the preference specification cannot include an intercept, as this would not be identified.
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We assume that schools select their students based on their gender, math

and Hungarian NABC scores, and the SES score. The NABC scores are a

proxy for the outcome of a nationwide assessment which we do not observe.

We estimated a separate set of coefficients for each tier of the Hungarian

school system. Our Gibbs sampler was initialized with zero values for all

parameters and valuations. Because the estimation procedure is rather time

consuming, we let it run for only ten thousand iterations and discarded the

first five thousand iterations. To reduce the serial correlation, only every

tenths estimate of the remaining five thousand iterations was used so that

the posterior means are averaged across five hundred iterations. By visual

inspection, we confirmed that the coefficient estimates had converged to

their stationary posterior distribution after about two thousand iterations.

The posterior means of the parameter estimates for two different identifying

assumptions that were discussed in section 5.1 – weak truth-telling (WTT),

and stability in combination with undominated strategies – are shown in

table 8 below and will be discussed in turn. Notice that our Bayesian esti-

mation approach allows us to directly sample from the posterior parameter

distribution, so that we do not need to rely on asymptotic results as in

conventional estimation approaches. That is why table 8 does not include

asymptotic p-values but instead shows the 95% confidence intervals of the

posterior distribution.

First, consider the results of the college selection equation (top panel of

table 8) across the two identifying assumptions. These results are qualita-

tively similar to each other: students dislike schools that are further away

from them, but the marginal disutility of travelling is decreasing because the

squared distance term is positive. Students also value academic quality and

prefer schools with a higher average SES score, but they dislike the presence

For the same reason, the first school dummy was omitted lest an intercept is introduced by
means of a linear combination of school dummies. In the empirical specification, it turned
out that some multicollinearity problems arose even when excluding one school dummy,
possibly due to numerical inaccuracies or the presence of interactions. Thus, some more
school dummies had to be excluded. To this end, we chose the following approach: In a
first step, all fixed effects for schools numbered 2 through to 246 were used to generate a
design matrix X for the problem at hand. In step k, we checked whether the matrix X′X
had full rank. If not, we dropped one school fixed effect and continued with step k + 1,
else we stopped. This procedure resulted in a set of fixed effects for the schools numbered
2 through to 243.
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Table 8: Posterior Parameter Means under Two Different Identifying Assumptions.

Student’s selection of schools stability + undom. WTT
β̄ 95% CI β̄ 95% CI

distance (km) -0.148 [-0.152;-0.144] -0.339 [-0.341;-0.336]
distance (km2) 0.002 [ 0.002; 0.003] 0.007 [ 0.007; 0.007]
academic quality 0.750 [ 0.681; 0.818] 1.487 [ 1.458; 1.515]
avg. SES 1.520 [ 1.411; 1.650] 0.462 [ 0.418; 0.509]
oral entrance exam -1.457 [-1.698;-1.240] -4.436 [-4.587;-4.288]
math × ave. math 0.183 [ 0.166; 0.196] 0.185 [ 0.175; 0.195]
hungarian × ave. Hungarian 0.222 [ 0.205; 0.237] 0.303 [ 0.293; 0.315]
SES × ave. SES 0.294 [ 0.279; 0.308] 0.356 [ 0.347; 0.368]

Schools’ selection of students γ̄ 95% CI γ̄ 95% CI

gymnazium
female -0.930 [-0.947;-0.909] -0.013 [-0.040; 0.014]
math score 0.049 [ 0.033; 0.066] 0.194 [ 0.171; 0.218]
Hungarian score 0.394 [ 0.376; 0.413] 0.224 [ 0.199; 0.249]
SES score 0.038 [ 0.024; 0.053] 0.096 [ 0.076; 0.116]

secondary school
female -0.439 [-0.481;-0.401] 0.124 [ 0.089; 0.159]
math score 0.184 [ 0.163; 0.205] 0.236 [ 0.208; 0.265]
Hungarian score 0.287 [ 0.262; 0.315] 0.231 [ 0.203; 0.259]
SES score 0.053 [ 0.032; 0.072] 0.103 [ 0.082; 0.123]

vocational school
female 0.094 [ 0.043; 0.158] 0.051 [-0.031; 0.131]
math score 0.101 [ 0.063; 0.136] 0.078 [ 0.025; 0.129]
Hungarian score 0.189 [ 0.152; 0.226] 0.144 [ 0.089; 0.200]
SES score 0.011 [-0.023; 0.044] 0.015 [-0.020; 0.051]

Posterior means of preference and priority parameters under two different identifying assumptions. Fixed effects
for schools numbered 2 through to 243 were included in students’ preference equation and are not reported here.
Confidence intervals from the posterior parameter distribution of the Gibbs sampler.

of an oral entrance exam. The coefficient for the presence of an entrance

exam is much smaller (i.e. more negative) in the WTT result: this is an

indication that students strategically omit highly competitive schools which

hold an entrance exam, so that the WTT estimates of the oral interview

are biased downwards, whereas our stability based estimator corrects for

this bias. This result confirms how important it is correct for biases due to

strategic reporting when estimating students’ preferences. The interaction

terms are all positive, which suggests that there is sorting on both academic

ability and on socioeconomic background. Both estimation approaches yield

results that are qualitatively quite similar. Note that the variance of the in-

teracted variables is much larger than that of the school-level variables, so

that the interaction terms’ contribution towards explaining student prefer-

43



ences is actually quite large.

The results of the student selection equation (bottom panel) show that stu-

dents’ math and Hungarian scores are important variables that schools con-

dition their choices on. Somewhat surprisingly, the female coefficient is neg-

ative in the stability + undom. specification, whereas it is minimal in the

WTT specification. The large negative estimated coefficients for the female

indicator is due to the stability requirement: in the data, female students

have higher Hungarian scores than male students.26 At the same time, the

Hungarian score is also a key determinant of the schools’ priority decision.

But in the aggregate, roughly as many female students as male students are

admitted to each school, and so the negative female coefficient is needed

to ensure that not too many female students form instabilities with school

seats occupied by male students.27 Hence, we think that the negative fe-

male coefficient merely reflects the schools’ desire to have a balanced gender

composition, but it does not indicate discrimination of female students per

se.

All schools except for vocational schools appear to select on the students’ so-

cioeconomic status although the coefficient is rather small compared to the

Hungarian score. Yet, in combination with the students’ taste for schools

with a higher average socio-economic status, and the tendency of students

with higher socio-economic backgrounds to prefer schools with a higher av-

erage socio-economic status, these results may be indicative of social sorting

patterns that could be interesting in their own right.

Constructing complete preference lists. In order to obtain complete pref-

erence lists for the entire market, we use the estimated coefficients of the

student and school selection equations as represented in table 8 and com-

bine them with one set of draws from the distribution of error terms that

respect the upper and lower bounds derived from stability and imposed by

submitted preference lists. Thus, the estimated utility for student i visiting

26See table A4 in the appendix.
27A quick way to check if this explanation is correct would be to re-estimate the model

without the stability bounds. However, we were as of now unable to re-do the analysis
due to difficult remote data access conditions.
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school s is

Ût(s) = Xtsβ̄ + ε̂ts

where ε̂ts is one particular realization of the latent error distribution such

that Ût(s) respects the bounds that are imposed by the identifying assump-

tions. This estimated latent utility comes straight from the Gibbs sampler.

Schools’ latent match utilities are constructed analogously. These estimates

of the latent valuations can then be used to construct, for each market

participant, a complete preference ordering of the other market side. Note

however, that every such set of valuations is only one particular draw from

an infinite manifold of possible realizations. Currently, we only use a sin-

gle realization of the valuations, and we believe that the large market size

validates this approach.

6.3. Gains from consolidation: using estimated preferences

We now repeat the analysis of section 6.1 above, but using the complete

rank order lists described above. Again, we compare the outcome of a

consolidated city-wide match to the district-level matching scheme. Instead

of the rank order gains, we computed the average gains in latent utility.

For a student t, this is defined as the utility difference between visiting the

assigned school in the consolidated market, µBP (t), and the assigned school

in the district level market, µd(t):

∆Ut ≡ Ût(µBP (t))− Ût(µd(t))

Utility is a unitless quantity which is hard to interpret per se, but our utility

specification allows us to express these gains in terms of travel distances:

∆Ukmt ≈ ∆Ut∣∣∣∂Ût(µBP (t))
∂dtµBP (t)

∣∣∣ ,
with dtµBP (t) being the travel distance between student t’s zip code of res-

idence and her assigned school in the consolidated market.28 Because stu-

28Because distance travelled enters the utility specification quadratically, it matters in
principle whether the partial derivative is evaluated at the district level matching µd, or
at the integrated matching µBP . However, the estimated quadratic term is very small (see
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dents dislike utility, we use the absolute value in the denominator, so that

∆Ukmt > 0 corresponds to a positive welfare gain due to market consoli-

dation. Therefore, ∆Ukmt is a measure of the additional travel time that a

student would be willing to incur in order to visit the school in the consol-

idated market, rather than the assigned school in the district level school

market. As before, we merge district 23 to its neighbouring district number

20. We also conducted the same analysis with artificially balanced markets

where the number of school seats was equal to the number of students in

every district. Those results are reported in Appendix B.6.

Table 9 shows some summary statistics of the resulting district-level and

consolidated, city-wide matchings. Table 9 shows that some students remain

unmatched in the district-level matching. This is because the school market

in Budapest has been an integrated one for a long time already, so some

districts do not have enough school seats to accommodate all students of

their own district. In the consolidated market, all students are matched

because there is enough capacity in the aggregate, and because preference

lists are complete.

Table 9: Matching Statistics based on Estimated Preferences.

Panel A. Unconsolidated matching
matched students 9,986
share top choice match 0.83
avg. match distance [km] 3.55

Panel B. Consolidated matching
matched students 10,880
share top choice match 0.66
share matched in home district 0.29
avg. match distance [km] 7.14

Table 10 shows that the vast majority of students (67%) strictly benefit from

participating in a consolidated market. Only 2% of the students are assigned

to a less preferred school under the consolidated assignment. As in the

table 8), which allows us to use the following approximation:∣∣∣∣∣∂Ût(µBP (t))

∂dtµBP (t)

∣∣∣∣∣ =
∣∣−0.148 + 2(0.002dtµBP (t))

∣∣ ≈ 0.148.

Hence, one utility unit is approximately worth seven kilometres of avoided travel distance.
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analysis made with stated preferences, we observe that more students benefit

from district consolidation than those that are harmed, and this observation

holds for every single school district.8% of the students remain unassigned

in the unconsolidated market because there are three school districts with

more students than school seats.

Table 10: Losers (−) and Winners (+) from Consolidation (Estimated Preferences).

District seats students excess seats − 0 + unmatched

1 338 95 243 3 9 83 0
2 1,191 634 557 3 216 415 0
3 928 743 185 3 253 487 0
4 865 746 119 8 273 465 0
5 625 217 408 2 43 172 0
6 1,243 172 1,071 8 20 144 0
7 1,312 212 1,100 3 81 128 0
8 2,524 290 2,234 18 64 208 0
9 2,116 275 1,841 24 71 180 0
10 2,012 591 1,421 59 123 409 0
11 1,025 713 312 8 153 552 0
12 956 359 597 8 134 217 0
13 3,290 449 2,841 4 163 282 0
14 2,893 796 2,097 51 196 549 0
15 701 454 247 0 92 362 0
16 770 659 111 0 24 635 0
17 147 628 -481 0 6 141 481
18 503 873 -370 0 31 472 370
19 773 444 329 33 70 341 0
20 1,643 573 1,070 6 166 401 0
21 2,518 641 1,877 0 265 376 0
22 273 316 -43 0 30 243 43

Total 28,646 10,880 17,766 241 2,483 7,262 894

Seats refers to number of seats after removing those given to students from outside Budapest. Excess
seats refers to seats minus students. The symbols −, 0 and + denote the number of losers, indifferences
and winners from consolidation, respectively. Data obtained using estimated preferences.

The first row in table 11 shows summary statistics of the consolidation gains

∆Ut. Because not all students are matched in the unconsolidated market,

those gains cannot be computed for all students. The average gains are

positive, but some students also lose due to market consolidation. However,

the median is positive so that the majority of all students gain. The second

row of that table shows the utility gains, converted to distance units ∆Ukmt .

It shows that the average student’s gains are equivalent to saving more than

five kilometres in travel distances, even though students actually incur longer

travel distances in the consolidated market, as table 9 shows. Accordingly,

the utility gains greatly outweigh the additional travel distances that are
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incurred in the consolidated market.

Table 11: Measures of Consolidation Gains in Latent Utility Changes.

Mean SD Min Median Max N

total gains
in latent utility units 0.819 0.916 -1.895 0.600 5.799 9,986
in equivalent kilometres 5.532 6.187 -12.805 4.054 39.180 9,986

decomposition
choice effect I 0.750 0.798 0.000 0.548 5.010 10,880
competition effect I 0.103 0.590 -3.655 0.000 5.352 9,986
choice effect II 0.865 0.899 0.000 0.663 5.799 9,986
competition effect II -0.040 0.295 -3.000 0.000 2.000 10,880

As in section 6.1, we now ask whether market consolidation can be decided

upon unanimously if every district had one vote, and if those votes were

bound to reflect the majority view in those districts. It is assumed that

students who are unmatched in the district-level matching prefer the con-

solidated matching. Of course, this is an ex post perspective, as was already

discussed in section 6.1. Figure 8 shows that a majority of all students in

every district strictly prefers the consolidated market over the disintegrated

market. The left panel of figure 8 shows that there is no correlation between

the majority shares and the district sizes, and the right panel of that figure

shows a strong negative correlation between the majority shares and the

relative excess capacities, by district.

Table 12: Testing the Relationship between Consolidation Gains and District Statistics.

Dependent variable:

share consol. winners ave. latent util. gain

district size (100 students) −0.0190 −0.0850
(0.0135) (0.0499)

relative excess capacity −0.0306∗∗ −0.1417∗∗∗

(0.0120) (0.0442)

Observations 22 22
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses, intercept not shown. One obser-

vation denotes one district. Statistics obtained using inferred complete preferences.

Next, we relate the average consolidation gains in latent utility units per

district to two key district characteristics, size and capacity. Figure 9 shows

that there is a weakly positive correlation between the average utility gains
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(b) Share of winners and excess capacity??

Figure 8: Majority support for an integrated market in Budapest, using inferred complete
preference lists. One observation denotes one district.

and district size, and a negative correlation between average gains and

district-level excess capacity. A test based on a regression of district-level

average gains on district characteristics is reported in table 12 and shows

that both the district size (as measured in hundreds of students) as well as

the district capacity (as measured by relative excess capacity) have a nega-

tive partial effect on the average gains in latent utility, but only the marginal

effect of district capacity is significantly different from zero. Qualitatively,

these results are in line with parts one and two of Corollary 1 in section 3.

But the graphical results, as well as the lack of significance for the effect of

district size show that these postulated relationships are quite noisy. This

can be explained by the fact that the theoretical results were derived un-

der the stark assumption of random preferences on both sides of the market.

But the previous subsection has just revealed the opposite, namely that pref-

erences systematically depend on market observables. It is therefore quite

understandable that the district level results exhibit a considerable amount

of variability that cannot be explained by theory alone.

Decomposition of the utility gains. As we write in the theoretical section,

district consolidation has two effects on students’ welfare: first, it leads to

more choice, which is unambiguously good, and second, it may increase or
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Figure 9: Average latent utility gains (∆Ut) of an integrated market in Budapest, us-
ing inferred complete preference lists. One observation denotes average statistics in one
district.

decrease competition. Increased competition means that it becomes more

difficult for a given student to be admitted to his or her favourite schools.

Whether competition increases or decreases depends on many factors. If the

schools in some sub-market are very attractive, or if this market is not as

tight as the aggregate market (from the students’ perspectives), then district

consolidation will lead to more competition, so that domestic students may

be hurt. The composition of choice and competition effects may help to

explain the large utility gains from consolidation that we find.

In order to explain the large welfare gains we have documented, we isolate

the effects of choice and competition in a decomposition exercise. The idea

is to keep an individual student t fixed, and assign her to the most preferred

feasible school, given that all other students are restrained to attend only

local schools. The competition effect is then the change of student t’s welfare

as all other students’ choice sets are enlarged to include the entire integrated

market. Similarly, the choice effect is the change of that student t’s welfare as

her choice set is expanded to include all schools, keeping the other students’

choice sets constant. This is repeated for all students, and the results are

aggregated. The idea is illustrated in figure 10, and more details on the

procedure can be found in Appendix B.5. As this figure shows, there are
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Figure 10: Decomposition of the gains from market consolidation into choice and compe-
tition effects

always two ways to measure either the choice, or the competition effect. We

shall refer to the resulting statistics as type-I and type-II effects.

Table 11 shows summary statistics of the choice and competition effects

that are calculated in both ways. In general, the sum of the competition

and choice effects of either type should be equal to the total welfare effect

of consolidation. However, because not all students are assigned to a school

in the district level matching (c.f. table 9), the type-I competition effect

and the type-I choice effect cannot be computed for all students. However,

this affects only very few students, and so the average choice gains and

the average competition effects approximately add up to the total gains.

The results show that the choice effects account for the vast share of total

welfare gains, while the average competition effects are much smaller in

magnitude, and vary in sign. Whereas the average type-II competition effect

is small and negative, the type-I competition effect is small and positive.

Therefore, it remains an open question whether competition is stronger in

the consolidated market, or in the district-level markets.29

The fact that the competition effects are so small in magnitude is probably

29At first glance, it may seem counter-intuitive that competition could be weaker in
the consolidated, aggregate market. But this can be explained by the fact that the school
districts are very different. A few districts have a large number of school seats that far
exceeds the number of their domestic students (see table 6). While the market tightness
increases for students in those districts as all districts are integrated, the aggregate market
tightness may decrease as a result. Therefore, the majority of students may experience
more favourable competition in the aggregate market.
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related to the fact that the Hungarian school market is characterized by

much excess capacity, as was already discussed. Thus, an integrated market

leads to significant welfare gains due to increased choice, but increases the

competitive pressure by only a small amount.

In order to further explain the gains from market consolidation, we regress

the student-level gains, and the competition and choice effects that were

computed above, on student- and district-level observables. Table 13 shows

the results of this linear regression analysis. The coefficients describe a

“consolidation premium” that can be ascribed to various observable stu-

dent characteristics. The results for the type-I and type-II decomposition

are similar, and so we discuss only results related to the type-I choice and

competition effects.

Table 13: Explaining Gains from Consolidation with Students Observables.

Dependent variable: latent utility gains
type-I decomposition type-II decomposition

total choice competition choice competition
(1) (2) (3) (4) (5)

socio-economic 0.0085 0.0141 -0.0067 0.0187∗∗ -0.0097∗∗∗

status (SES) (0.0097) (0.0086) (0.0062) (0.0095) (0.0034)

ability 0.0143∗∗ 0.0443∗∗∗ -0.0238∗∗∗ 0.0267∗∗∗ -0.0139∗∗∗

(0.0070) (0.0062) (0.0045) (0.0069) (0.0025)

district size -0.1408∗∗∗ -0.2106∗∗∗ 0.0692∗∗∗ -0.1443∗∗∗ 0.0038
(100 students) (0.0172) (0.0160) (0.0110) (0.0169) (0.0063)

relative excess -0.3101∗∗∗ -0.0457∗∗ -0.2720∗∗∗ -0.2958∗∗∗ -0.0116
capacity (0.0246) (0.0221) (0.0157) (0.0242) (0.0087)

gymnazium -0.1308∗∗∗ -0.2487∗∗∗ 0.0785∗∗∗ -0.1544∗∗∗ 0.0368∗∗∗

(0.0352) (0.0311) (0.0225) (0.0346) (0.0123)

secondary -0.0288 -0.0670∗∗ 0.0134 -0.0425 0.0188
(0.0331) (0.0292) (0.0211) (0.0326) (0.0115)

constant 2.2938∗∗∗ 1.9240∗∗∗ 0.4160∗∗∗ 2.2997∗∗∗ -0.0215
(0.0767) (0.0691) (0.0490) (0.0755) (0.0272)

district FE Yes Yes Yes Yes Yes

Observations 9,986 10,880 9,986 9,986 10,880

The table shows regression coefficients of students’ gains on student observables. Variables ’district size’ and
’relative excess capacity’ refer to the students’ home districts; the school type refers to the school type of the
assigned school in the integrated market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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The first column of this table shows that students with a higher socio-

economic status (SES) benefit relatively more from district consolidation.

The italicised adverb is important because students benefit on average, but

some students benefit more than others. However, we cannot reject the null

hypothesis of there being no effect at all. The second and third columns

reveal that this is because students with a higher SES benefit more from

increased choice, but benefit less from the more favourable competitive con-

ditions in the consolidated market.30 Again, these effects are insignificant

although the effects in the fourth and fifth column that are related to the

type-II effects would indeed be significantly different from zero.

A similar, but exacerbated pattern can be observed for students with higher

academic ability. High-ability students benefit more from district consoli-

dation than average students, and they benefit comparatively more from an

enhanced choice set, and less from more relaxed competitive conditions in

the aggregate. These effects are statistically significant. Students in larger

districts or those districts with a lot of excess capacity, benefit significantly

less than other students. This is consistent with the predictions of corol-

lary 1 and with the district-level findings reported in table 12. Contrary to

what we find in the district-level analysis in that table, the negative effect of

district size on the consolidation gains is now estimated to be significantly

different from zero in the student-level analysis.

The results imply that there is a consolidation premium for high-ability stu-

dents, and possibly for students from a higher socio-economic background.

As table 1 shows, the explanatory variable SES is standardized and has

unit variance, whereas the variance of “ability” is about 1.5. Because the

estimated coefficient in table 13 is also larger for “ability” than for SES,

it follows that an increase in student ability by one standard deviation in-

creases the consolidation premium by about 1.5×0.014 ≈ 0.021 utility units,

whereas an increase of the socio-economic status indicator by one standard

deviation increases the consolidation premium by only 0.009. So besides

being insignificant, the estimated effect of a higher socio-economics status

on consolidation gains is also much less relevant. Thus, it appears that the

highly selective consolidated Hungarian school system benefits high-ability

30Recall that the type-I competition effects are positive on average.
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students more than those from higher socio-economic background, if the

latter benefit at all.

However, there are some caveats to the above conclusion. First, the variables

measuring SES and student ability are highly correlated (r = 0.47) and so

there will be a large overlap of high-SES and high-ability students among

those who benefit a lot from market consolidation. Second, the overall ef-

fects are rather small compared to the total variance of the consolidation

gains, which is close to one utility unit (see table 11). On that account,

the systematic factors driving the consolidation gains are rather small, and

idiosyncratic factors seem to be the most important determinants.31

7. Conclusion

We analyse the effects of school market consolidation theoretically and em-

pirically employing a structural preference model. The theoretical predic-

tions show that market consolidation leads to substantial welfare gains for

students, and that students who live in smaller markets, or in markets with

fewer available school seats, are expected to have larger welfare gains. Our

empirical results confirm that the average student greatly benefits from hav-

ing a consolidated school market, and that more than half of all students

are better off in the consolidated school market. We find that the gains

from consolidation are larger in school districts which have little capacity

compared to the number of students, and in smaller districts. By and large,

these results are independent of whether we use students’ stated preferences

or an inferred complete preference ranking. Moreover, our results indicate

that high-ability students benefit more from market consolidation than other

students.

As a by-product, we establish a method to consistently estimate students’

31This finding may in part be due to measurement error in our explanatory variables
that is likely to attenuate our parameter estimates towards zero. As was described in
section 4, we do not exactly observe the students’ characteristics which the school can
condition their admission choices on. Instead, we must rely on supplementary information
from the NABC, and we also make use of imputed data because it is important to have
a complete set of students for our empirical approach. Therefore, we may overestimate
the contribution of the unobserved idiosyncratic preference and priority shocks to the
formation of students’ preferences and schools’ priorities.
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preferences in school markets with school-specific admission criteria un-

known to the researcher. Our estimation approach avoids a bias that is

otherwise introduced by students’ strategic reporting of their preferences.

We show by means of a Monte Carlo study that this method works as in-

tended. We find that students favour nearby schools which have a high

academic reputation and peers with a high socio-economic status, but dis-

like having to sit school-specific entrance exams. We also find that there is

evidence for sorting on academic ability, and social status. Schools appear

to base their admissions mostly on the students’ abilities in Hungarian, with

math scores and socio-economic background being less important.

We compute consolidation gains under the assumption that the students’

and schools’ characteristics remain fixed throughout, while only the admis-

sion system is changed. Thus, our results should be interpreted as measuring

the isolated, or partial effect of the admission system on students’ welfare.

We think that we can accurately describe and measure this partial effect,

and that it is a valuable statistic in itself that informs the debate on the

merits of centralized assignment mechanisms. But, of course, there are other

effects that could be taken into account.

Recall that the status quo and starting point of our analysis, is the com-

pletely consolidated school market in Budapest, so that the gains from con-

solidation are more accurately described as hypothetical losses from market

disintegration. But if that school market were to be disintegrated, then both

students and schools could probably react in unforeseeable ways, and this

could attenuate the losses of disintegration and, conversely, reduce the gains

from consolidation. For instance, schools could increase their capacity, but

they could also increase the diversity of their educational profile in response

to the changed environment. Also, the unobservable component to schools’

attractiveness that we subsume in a fixed effect for each school could change

as a result, so that the students’ preference orderings may actually change,

thus leading to a different counter-factual assignment. It could appear to

the reader that one could estimate these second order consequences of dis-

trict consolidation by means of an iterative procedure whereby the schools’

average academic qualities, and students’ preferences, are updated in turns

until a “steady state” is reached. But in our opinion, such a mechanistic

steady state analysis is unlikely to mirror the multitude of individual and
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institutional responses, and would thus be somewhat speculative. Therefore,

we refrained from this approach, focusing on what we can measure, and not

on what we cannot measure.

Our results contribute to the growing literature on school market consoli-

dation, and its effects on student welfare. If the aggregate school market

has excess capacity, then a consolidated school market probably leads to

large welfare gains that benefit substantially more than half of all students.

Intuitively, students greatly benefit from an expanded choice set, while the

competitive pressure does not increase by very much. On the other hand, our

supplementary analysis in Appendix B.6 shows that, if the school market as

a whole is roughly balanced, with just enough capacity to accommodate all

students, then the students’ welfare become significantly smaller (but remain

positive). In such a case, more students benefit from district consolidation

than those who are harmed by it, but the median student is unaffected by

district consolidation. The reason is that the benefits of an expanded choice

set in the consolidated market are largely offset by increased competitive

pressure. In general, high-ability students benefit most from school market

consolidation, which is presumably due to a rather competitive assignment

system that allows those students to attend the best schools in an increased

choice set. Students with a high socio-economic background also benefit

relatively more, but less so than high-ability students.
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Appendix A. Proofs

The proof of proposition 2 is as follows:

Proof. Combining two existing results, we can show that in random ESCPs

rkT (σSOSM(·,Ω)) ≈ N +K

qN
log

(
N +K

K

)
+ 1

We obtain the expression above by combining two known properties of

matching markets: i) each many-to-one matching market with responsive

preferences has a corresponding one-to-one matching market (lemma 5.6 in

Roth and Sotomayor, 1992), and ii) the students’ absolute average rank of

schools in random one-to-one matching markets can be approximated by
N+K
N log(N+K

K ) (theorem 2 in Ashlagi et al., 2017).32 This approximation

maps remarkably well the simulation for many-to-one markets in Table 4

in Ashlagi et al. (2017). For example with N = 198,K = 2, q = 5, their

simulations give a rank of 1.9 whereas the approximation gives 1.93. We

emphasize that our approximation only works for relatively small values of

q; when q is large instead then there is a large probability that each agent

will be assigned to his most desired school, and thus rkT (σSOSM(·,Ω)) ≈ 1.

To compare the gains from consolidation, we only need to approximate

rkT (σSOSM(·, D)). To do this, we define the relative rank of a school s in

the preference order of a student t ∈ TDi (over potential schools in within

his own district) as r̂kt(s) :=
∣∣{s′ ∈ SDi : s′ <t s}

∣∣. Given a matching µ, the

students’ relative average rank of schools is defined by

r̂kT (µ) :=
1∣∣T ∣∣ ∑

t∈T

r̂kt(µ(t))

where T is the set of students assigned to a school under matching µ.

In a district with qni students, q(ki + ni) school seats and with ki > 0, we

can approximate the students’ relative average rank of schools (using the

32Ashlagi et al. (2017) prove that for any stable matching, the following inequalities
hold with high probability: (1− ε) N+K

N
log(N+K

K
) ≤ rkT (µ) ≤ (1 + ε) N+K

N
log(N+K

K
).
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same tools as before) as

r̂kT (σSOSM(·, D)) ≈ ni + ki
qni

log

(
ni + ki
ki

)
+ 1 (A1)

whereas in a district with ki < 0, the approximation becomes

r̂kT (σSOSM(·, D)) ≈ ni + ki

1 + ni
ni+ki

log
(
ni
ki

) (A2)

The final step in the proof closely follows the proof of Proposition 3 in

Ortega (2018). To relate the students’ relative average rank of schools before

consolidation to the absolute ranking, suppose that a school is ranked h

among all schools in its district. A random school from another district

could be better ranked than school 1, between schools 1 and 2, ..., between

schools h−1 and h, ..., between schools ni+ki−1 and ni+ki, or after school

ni + ki. Therefore, a random school from another district is in any of those

gaps with probability 1/(ni + ki + 1) and thus has h/(ni + ki + 1) chances

of being more highly ranked than our original school with the relative rank

h. There are N + K − ni − ki schools from other districts. On average,
h(N+K−ni−ki)

ni+ki+1 schools will be ranked better than it. Furthermore, there were

already h schools in its own district better ranked than it. This implies that

his expected ranking is h+ h(N+K−ni−ki)
ni+ki+1 ≈ h(N+K)

ni+ki
. Substituting h for (A1)

and (A2), respectively, we obtain students’ relative average rank of schools

before consolidation. After some algebra, and getting rid of the constants

(which are irrelevant in large markets), it follows that

γT (σSOSM) ≈ N +K

q

(
log(ni+kiki

)

ni
−

log(N+K
K )

N

)

if ki ≥ 0, and

γT (σSOSM) ≈ N +K

q

(
q(ni + ki)

ni log(niki )
−

log(N+K
K )

N

)

if ki < 0.
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Appendix B. Supplementary material (for online publication only)

Appendix B.1. Explicit computation of the bounds on latent valuations

The estimation procedure relies on imposing upper and lower bounds on

the latent valuations. This section describes explicitly how these bounds

can be computed at every step of the estimation procedure, under various

identifying restrictions. For convenience, we repeat the notation that is used

to describe students’ and schools’ ordinal preferences and priorities here.

We denote the observed rank order list of student i of length Lt as Lt =

(s1
t , s

2
t , . . . , s

Li
t ), where skt ∈ S. Denote the rank that student t assigns to

school s as rkt(s), with 1 ≤ rkt(s) ≤ Lt if s ∈ Lt and rkt(s) = ∅ else. Collect

all observed ranks into rk = {rkt(s)}t∈T,s∈S . The preference orderings that

is induced by these observed ranks are a subset of students’ unobserved

strict preference ordering � = {�t}t∈T , i.e. rkt(s) < rkt(s
′) ⇒ s �t s′ but

not vice versa, because students may find it optimal to not rank all schools

if the application procedure is costly. This is the ,,skipping at the top” and

,,truncation at the bottom” problem that was discussed in the main text and

that precludes the application of standard revealed preference arguments to

estimate a reduced-form model of students’ preferences.

Similarly, denote the set of students who apply to school s as Ls, and let

the the priority number that school s assigns to student t be prs(t). Priority

numbers are like ranks, in that they take discrete values and a lower priority

number means higher priority. Schools are required to prioritize all students

who apply to them, but they may rank some students as “unacceptable”.

We say that prs(t) = +∞ if student t is unacceptable to school s, and

prs(t) = ∅ if student t did not apply at school s. Furthermore, denote

the set of ranked students that are acceptable to school s as `s = {t ∈
Ls : prs(t) < ∞} and define the largest priority number of any school s as

prs = max{prs(t) : t ∈ Ls} ∈ {|`s|,∞}. Thus, prs(t) ∈ {1, 2, . . . , |`s|,∞, ∅}.
The set of all observed priority rankings is given by pr = {prs(t)}t∈T,s∈S .

Again, the priority structure induced by prs is a subset of the unobserved

true priority ordering B = {Bs}s∈S .

Because the bounds depend on the observed ranks and priorities, but also

on the latent valuations of students and schools, they must be computed

65



anew in every iteration of the Gibbs sampler. More concretely, the vector

of latent utilities at the current iteration step k is constructed as

U
(k)
ij =

U
(k)
ij if the pair ij has been visited in iteration k

U
(k−1)
ij else.

An analogue updating scheme is used to construct the vector of latent val-

uations V. This Gauss-Seidel style updating scheme ensures that, at any

point in the iteration scheme, the upper and lower bounds are satisfied for

the entire vector of latent utilities and valuations, but it comes at a higher

computational burden. The alternative would be to compute upper and

lower bounds once in every iteration k, using only the last estimates of the

latent utilities U
(k−1)
ij .33 In what follows, we will omit the index of the

current iteration round k, and assume that any reference to Uis = Ui(s)

is made with respect to the most recent available estimate of Ui(s), either

from iteration k or from iteration k − 1.

Lastly, we will in the following exposition use the order > on the set of ranks,

or priorities. Since either a rank rkt(s) or a priority prs(t) can take the value

∅, it is necessary to define the behaviour of this operator with respect to ∅:
we will assume that the statement a > ∅ is false for all values of a, whereas

a ≥ ∅ is true if, and only if, a = ∅. Also, as a convention, the minimum of

an empty set returns ∞ and the maximum of an empty set returns −∞.

Weak truth-telling (WTT)

Having clarified the notation, we now turn to describe how upper and

lower bounds implied by the weak truth-telling assumption (WTT) are con-

structed. WTT posits that, on the side of the students, any unranked al-

ternative school s : rkt(s) = ∅ is worse than any ranked alternative s′ with

rkt(s
′) 6= ∅. Given latent valuations U−it, and observed ranks rk, the upper

33Wouldn’t such an updating scheme also guarantee that all all the bounds are satisfied?
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and lower bounds for utility Ut(s) can be expressed as follows:

U t(s) =


+∞ rkt(s) = 1

mins′∈Lt{Ut(s′) : rkt(s
′) < rkt(s)} rki(s) > 1

mins′∈Lt{Ut(s′)} rki(s) = ∅

U t(s) =


maxs′∈Lt{Ut(s′) : rkt(s

′) > rkt(s)} rkt(s) < Lt

maxs′ /∈Lt{Ut(s′)} rkt(s) = Lt < |S|

−∞ rkt(s) = ∅ ∧ rkt(s) = |S|

In our setting, schools only get to see those students who apply to them

and hence, prs(t) = ∅ does not imply that the school s considers student t

worse than any or all of their ranked students t′ ∈ Ls that showed up their

application list. Therefore, WTT does not allow us to infer anything about

the upper and lower valuation bounds for those students that did not apply

at school s. Schools are required to prioritize all students that apply to them,

but if school s deems student t ∈ Ls unacceptable, it assigns prs(t) = ∞
to that student, which implies that this student t is less preferred than any

other ranked student t′ ∈ Lt : prs(t
′) < ∞. This, however, does not allow

us to infer anything about how school s priorities student t relative to other

students that are equally unacceptable. Hence, the upper bounds for school

s’s valuation of student t, Vs(t), conditional on V−st and observed priorities

pr are given by

V s(t) =

+∞ prs(t) ∈ {1, ∅}

mint′∈Ls{Vs(t′) : prs(t
′) < prs(t)} 1 < prs(t) ≤ prs

and the lower bounds by

V s(t) =

−∞ prt(s) ∈ {prs, ∅}

maxt′∈Ls{Vs(t′) : prs(t
′) > prs(t)} 1 ≤ prs(t) < prs
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Undominated Strategies (UNDOM)

Under undominated strategies (UNDOM), unranked alternatives are not

assumed to be worse, from the students’ perspective. Therefore, UNDOM

imposes fewer restrictions than WTT. Given latent valuations U−it, and

observed ranks rk, the upper and lower bounds for utility Ut(s) can be

expressed as follows:

U t(s) =

+∞ rkt(s) ∈ {1, ∅}

mins′∈Lt{Ut(s′) : rkt(s
′) < rkt(s)} rki(s) > 1

U t(s) =

−∞ rkt(s) ∈ {Lt, ∅}

maxs′∈Lt{Ut(s′) : rkt(s
′) > rkt(s)} rkt(s) < Lt

Because schools are cannot choose to intentionally not rank a student who

applies there, the upper and lower bounds under UNDOM are exactly the

same that were derived under WTT.

Stability

Finally, consider an observed matching µ where µ(s) denotes the set of all

students that are assigned to school s, and µ(t) denotes the assigned school

of student t (a student can only be assigned to one school at once). If

student t is unassigned, µ(t) = t. Every school can accommodate at most

qs students, so we define the convenience function

χ(s) = 1 (|µ(s)| = qs)

that indicates whether a school is at full capacity or not. Further, define

the feasible set of student t as the set of schools that do not classify student

t as unacceptable or have not ranked student t, and that either have some

vacant seats, or would favour student t over one of their currently admitted

students:

Ft =

{
s ∈ S : (prs(t) <∞∨ prs(t) = ∅) ∧

(
¬χ(s) ∨ Vs(t) > min

t′∈µ(s)
Vs(t

′)

)}
.
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This feasible set of student t is unobserved (it is a latent set) because it

depends on the latent valuations V.

We now outline conditions on the valuations and utilities that, if satisfied,

guarantee that the observed matching µ is stable. Logan et al. (2008) have

used similar conditions to estimate the parameters of a one-to-one marriage

market model, and we adapt their setting to a many-to-one matching mar-

ket. Before we proceed, we introduce the following assumption:

Assumption 1 (Non-wastefulness). The matching µ is non-wasteful: all

schools operate at full capacity (|µ(s)| = qs) or no student is unmatched

(µ(t) 6= t).

This assumption is convenient in order to ensure that one can always find

utilities and valuations that are consistent with a stable matching and it

is also the approach that was taken by Sørensen (2007, p.2732). Without

this assumption, it would be necessary to specify outside options for agents,

which would complicate the analysis, but pose no substantial challenges to

it. Conditional on the latent set Ft, stability requires that student t’s utility

for any school in this latent set be less than that of her currently assigned

school. Therefore, the upper bound for a student t’s valuation of school s is

given by

U t(s) =

Ut(µ(t)) µ(t) /∈ {s, t} ∧ s ∈ Ft
+∞ else

Similarly, the lower bounds are given by

U t(s) =

maxs′∈Ft\{s}{Ut(s′)} µ(t) = s

−∞ else

Note that we assume that all schools are acceptable to the student. This

implies that if student t is unmatched (µ(t) = t), then we cannot bound

her utility for any school, be it in her feasible set or not. Instead, stability

requires that her feasible set be empty. This, places bounds on the schools’

valuations for student t which will be described shortly.

We define school s’s feasible set as the set of students who are acceptable

to school s, and who would prefer going to school s than to their current

school, or are unassigned under the matching µ. We chose to include only
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students that are acceptable to school s in this set because it simplifies the

notation below. Thus, the feasible set is given by

Fs = {t ∈ T : prs(t) <∞∧ (Ut(s) > Ut(µ(s)) ∨ µ(t) = t)} .

Again, this is a latent set that depends on the latent student utilities U.

Then, upper and lower bounds of school s’s valuation of student t can be

constructed if school s is at full capacity, i.e. if χ(s) is true:

V s(t) =

mint′∈µ(s){Vs(t′)} χ(s) ∧ t /∈ µ(s) ∧ t ∈ Fs
+∞ else.

Similarly, the lower bounds are given by

V s(t) =

maxt′∈Fs\µ(s){Vs(t′)} χ(s) ∧ t ∈ µ(s)

−∞ else.

In general, the upper and lower bounds on utilities and valuations are inter-

dependent, and are not unique.

Combination of UNDOM and Stability

The combination of the two assumptions that students and schools play un-

dominated strategies, and that the assignment is stable, allows us to tighten

the bounds. For instance, let [U rkt (s), U
rk
t (s)] be the bound that is imposed

by the assumption of undominated strategies on the valuation Ut(s), and let

[Uµt (s), U
µ
t (s)] be the bounds that follow from the requirement that the ob-

served matching µ be stable. An obvious way to combine these two bounds

is to simply set

U t(s) = max
{
U rkt (s), Uµt (s)

}
U t(s) = min

{
U
rk
t (s), U

µ
t (s)

}
and for Vt(s) in an analogous manner. Now, the question is whether so

truncation intervals that are constructed in this way are non-empty, i.e.

whether U t(s) ≤ U t(s). We will show that, for any given stable matching

µ, observed priorites pr and preference ranks rk, there is at least one set
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of preferences U and valuations V such that the assumptions UNDOM and

stability are satisfied:

Lemma 1. Consider any given non-wasteful stable matching µ that is de-

rived from the observed partial rankings rk and priority structures pr. Then,

there exists a complete preference structure � and priority ordering B such

that

1. � and B are consistent with rk and pr, respectively and

2. µ is stable under � and B.

Thus, the set of utilities U and valuations V that satisfies the bounds im-

posed by UNDOM and stability is non-empty for any observed matching

µ.

Proof. The first point is obvious: fix an arbitrary set of utility numbers

{Ut(s) : s ∈ Lt} and valuation numbers {Vs(t) : t ∈ Ls} that respect

the ordering implied by the observed ranks rk and priorities pr; there will

always be such numbers. For the second point, note that we can equivalently

express students’ preferences and schools’ priorities in terms of their partial

rank and priority order lists, or in terms of their utilities and valuations.

Since the observed matching µ is stable under the former, it must also be

stable under the latter representation and so, any set of utility and priority

numbers that respects the bounds imposed by UNDOM also satisfies the

bounds that are imposed by stability. Next, we need to show that there are

always utility and valuation numbers for the remaining non-ranked pairs

such that there are no blocking pairs. Consider any such pair t, s such that

s /∈ Lt. Under the student-proposing deferred acceptance mechanism, no

student can be assigned to a school that she did not include in her stated

rank order list rkt, and hence s 6= µ(t). Then there are four remaining cases

to consider:

Case 1 Student t is not unmatched, and school s is at full capacity, i.e.

µ(t) 6= t and |µ(s)| = qs. Stability is satisfied if Ut(s) < Ut(µ(t)) or

Vs(t) < mint′∈µ(s) Vs(t
′), or both.
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Case 2 Student t is not unmatched, and school s has spare capacity. Sta-

bility is satisfied for all Ut(s) < Ut(µ(t)) and Vs(t) ∈ R.

Case 3 Student t is unmatched, and school s is at full capacity. Stability

is satisfied for all Vs(t) < mint′∈µ(s) Vs(t
′) and Ut(s) ∈ R.

Case 4 Student t is unmatched, and school s has spare capacity. This case

is ruled out under the assumption that µ is non-wasteful.

Hence, if the matching µ is non-wasteful, it will always be possible to find

utilities and valuations that respect both the partially observed rank and

priority structures, and stability properties.

However, we observe in our dataset that roughly ten percent of all students

are not assigned to a school in the first matching round (c.f. table 1) so that

the allocation is not non-wasteful in the sense outlined above, and the last

case of the proof does not go through.34 This could appear to be a problem

for our estimation approach, because the existence of an unmatched student

t and a school that has spare capacity s necessarily leads to instability in

our estimation approach. The solution would be to endogenously determine

“latent” unacceptable students, to exclude such students from the sample,

or to artificially label them as being “unacceptable”, neither approach of

which is very attractive. Instead, we note that if there exists a student t

who is unmatched, and a school s with spare capacity, it must either be

that t did not apply to s, in which case the bounds on the latent utility

and on the latent valuation are ±∞, or that student t did rank school s,

but school s ranked student t as unacceptable, in which case the valuation

and utility bounds are well defined. Only the former case represents a case

of true instability, whereas the latter case is well covered by our estimation

approach. Most importantly, if such a case of true instability should occur,

it will not affect the parameter estimates in either direction, because the

utilities and valuations are not restricted and simply add some white noise

to the parameter updates.

34In the Hungarian school choice system, the main matching round is followed by a
subsequent round in which any unmatched students are assigned to the closest feasible
school.
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Appendix B.2. Posterior distributions

The Bayesian estimator uses the data augmentation approach (proposed by

Albert and Chib, 1993) that treats the latent valuation variables as nui-

sance parameters. This section describes the components conditionals of

the Gibbs sampler that is used to sample from the posterior distribution

of the parameters of interest β and γ, p(β, γ|data) where the data are ob-

served co-variates, and possibly rank and priority structures or matching

information.

Conditional distribution of utilities and valuations

Recall that it is assumed that εts, ηst ∼ N(0, 1), as is customary and neces-
sary in the discrete choice literature. Then, the component conditionals for
the unobserved latent utilities and valuations are given by

p(Ut(s)|β, γ,U−ts,V, data) ∝ exp

{
−(Ut(s)−Xtsβ)2

2

}
1(Ut(s) ∈ [U t(s)U t(s)])

p(Vs(t)|β, γ,V−st,U, data) ∝ exp

{
−(Vs(t)−Wstγ)2

2

}
1(Vs(t) ∈ [V s(t), V s(t)])

Note that, although the error terms are uncorrelated and independent across

alternatives, the utilities are not because their truncation intervals are en-

dogenously determined. For example, if we observe a student’s ranking

across three different schools A, B, and C such that rkt(A) < rkt(B) <

rkt(C), this implies that Ut(A) > Ut(B) > Ut(C). Therefore, the distri-

bution of utilities across schools is not iid normal, but rather a multivari-

ate normal distribution subject to a system of linear inequality constraints.

Commonly known techniques for sampling from these distributions with lin-

ear constraints are rather slow when the number of alternatives is very large,

as is the case in our setting with thousands of students, and hundreds of

schools.35 Instead, we embed the sampling from this intractable distribution

into our Gibbs sampler. However, we found that this procedure is rather

slow to converge, and also exhibits very strong serial correlation so that a

sufficiently large number of Gibbs samples must be drawn.

35The function rtmvnorm2 in the R package tmvtnorm (https://cran.r-project.org/
package=tmvtnorm, version 1.4-10) does provide such a a method
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Conditional distribution of utility and valuation parameters

We assume a vague prior for the structural parameters β and γ which, to-

gether with the assumption that the error terms have unit variance, implies

that the posteriors of β and γ follow a normal distribution (Lancaster, 2004,

p.120). Also, we note that the scale and the location of the utilities and val-

uations are not identified, as in any discrete choice model. Our assumption

that the idiosyncratic errors have unit variance pins down the scale of utility,

and the assumption that these errors are zero in expectation pins down the

location of utilities. Hence the component conditional distribution of the

utility parameter is given by

p(β|γ,U,V, data) = p(β|U, data) = N
(
b, (X′X)−1

)
for b = (X′X)−1X′U, and similarly, the conditional component for the pri-

ority parameter γ reads

p(γ|β,U,V, data) = p(γ|V, data) = N
(
g, (W′W)−1

)
for g = (W′W)−1W′V.
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Appendix B.3. More Monte Carlo results

100 students

In a smaller market with only one hundred students, the stability-based

estimator performs very poorly compared to any other estimation strategy:
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Monte Carlo Evidence, 100 samples, 100 students

Figure A1: Distributions of estimation errors across one hundred simulated markets (six
schools with 95 seats and 100 students).

500 students

The variance of the estimates improves considerably in larger markets, as

figure A2 below shows. However, the stability based estimator still produces

estimates that are rather imprecise, and also biased.

75



(a) Mean squared error (MSE)

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) 0.0393 0.0065 0.0391 0.0028
weak truth–telling 0.0643 0.0496 0.2832 0.0048
stability 4.7436 0.3016 28.3876 0.1974
undominated strategies 0.0547 0.0114 0.0801 0.0049
stability + undom. strat. 0.0517 0.0107 0.0798 0.0047

(b) Bias

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) -0.0144 0.0091 0.0223 0.0001
weak truth–telling 0.1498 -0.2091 -0.4897 -0.0050
stability -1.0446 -0.2945 3.0821 -0.0283
undominated strategies -0.0016 -0.0073 -0.0323 0.0003
stability + undom. strat. -0.0213 0.0146 0.0093 0.0011

Table A1: MSE and bias statistics for one hundred simulated markets (six schools with
95 seats and 100 students).
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Figure A2: Distributions of estimation errors across one hundred simulated markets (six
schools with 475 seats and 500 students).
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(a) Mean squared error (MSE)

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) 0.0083 0.0016 0.0093 0.0010
weak truth–telling 0.0549 0.0743 0.6863 0.0398
stability 0.0446 0.1207 0.3576 0.0328
undominated strategies 0.0158 0.0086 0.0343 0.0015
stability + undom. strat. 0.0163 0.0035 0.0217 0.0016

(b) Bias

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) -0.0129 -0.0019 0.0152 -0.0208
weak truth–telling 0.2179 -0.2704 -0.8242 -0.1892
stability 0.0141 -0.3243 -0.2801 0.0242
undominated strategies -0.0207 -0.0726 -0.1198 -0.0181
stability + undom. strat. -0.0515 -0.0238 -0.0404 -0.0172

Table A2: MSE and bias statistics for one hundred simulated markets (six schools with
475 seats and 500 students).
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Appendix B.4. Data sources and construction

Since the data that we use contain very sensitive information, we had no

direct access to it but instead let submitted our code to the Hungarian

Education Authority (HEA) who executed it on their local computes. In

order to develop our estimation routines, we were able to use an example

dataset that closely resembled the actual data structure. This appendix

is intended to provide some more information on the construction of our

working data set.

Table A3 shows summary statistics of the student-level NABC data. Most

students are fifteen years old at the time of the NABC test (in 2015). The

NABC scores in Hungarian and mathematics are the results of a standard-

ized test procedure. The socio-economic status (SES) is a composite measure

that is based on responses given by students in an accompanying survey, so

that this variable has more missing data. Also, the grade average is based

on student’s own responses and may thus be biased. Therefore, we use the

NABC scores as a proxy for student’s academic ability.

statistic mean SD min max N

Birth year 2000.1 0.58216 1996 2002 88,959
Female 0.494 0.5 0 1 88,967
Last grade average 3.9837 0.7668 1 5 60,843
NABC score Hungarian 1559.9 202.36 820.97 2199.2 82,237
NABC score math 1612.1 196.5 907.81 2307.3 82,176
Socioeconomic status (csh) -0.0226 1.01 -3.15 1.88 64,971

Table A3: Summary statistics of the original NABC (2015) data

Table A4 shows that there are significant differences in test outcomes and

between male and female students. Female students perform much better in

Hungarian on average (almost one third of a standard deviation), whereas

male students perform better in math on average (one tenth of a standard

deviation). Also, female students obtain a slightly better SES index (five

percent of a standard deviation) but notice that the SES index is based on

self reporting, so it could be due to different reporting behaviour. In all

cases, the differences in means are significant at the one percent level.

Table A5 shows key statistics of the nation-wide matching scheme. The data

comprises almost four hundred thousand applications from almost ninety
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mean t-test

statistic all male female diff. t p

NABC score Hungarian 1,560 1,538 1,583 -45.04 -32.109 <0.001
NABC score math 1,612 1,621 1,603 18.89 13.793 <0.001
Socioeconomic status (csh) -0.023 -0.037 -0.008 -0.029 -3.644 <0.001

Table A4: Gender differences in test outcomes. Raw NABC (2015) data. Two-sample
t-test with equal variance.

thousand students to over six thousand school programs. Each record cor-

responds to the application of a student to a school and contains the ranks

rkt(s) and rks(t), an indicator whether the school finds the student accept-

able, and a match indicator. On average, each student applies to 4.5 school

programs, or to 2.8 different schools. Almost 95% of all students are as-

signed to a school, of which three quarters are eventually assigned to their

top choice program.36 We link this data to a school survey in order to obtain

the precise location of each school, and the school’s district.

# students 88, 401
# school programs 6, 181
# schools (OMid-telephely-tipus) 1, 793
# student-school applications 395, 222
length of submitted ROL (school programs) 4.471
length of submitted ROL (schools) 3.002
# assigned 83, 482
.. share top choice 0.759
.. average match rank 1.486

Table A5: Summary statistics of the original application data (KIFIR)

The HEA used a confidential concordance table to link records from the

KIFIR and NABC datasets. As described in the main text, we restricted

the linked sample to students who applied to at least one school from Bu-

dapest, which leaves us with 10,088 students. As table A3 shows, the NABC

scores and, in particular, the SES are missing for a quite substantial share of

our sample. Because the computation of the student-optimal stable match-

ing depends on the composition of the student sample, we were reluctant

36The admission system ensures that any students who are unmatched at the end of
the main matching round are assigned to the nearest school which still has free capacity.
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to drop records with missing data, as this would have left us with rather

few complete records. Instead, we opted for a data imputation approach

and used the R package mice to construct a complete dataset. Missing vari-

ables were imputed using predictive mean matching, were missing values are

replaced by actual values from other records that resemble the incomplete

record, conditional on other observed characteristics. As predictors, we used

an extended set of variables that included also some results from the 2017

NABC round (where available), and further student level variables that are

not shown here. This procedure is repeated a few times, until the imputed

values converge in expectation. It is recommended that researchers con-

struct multiple imputed datasets to assess the robustness of their analysis

with respect to these imputations, but due to the substantial computational

burden of our estimation procedures, this was infeasible in our context. The

following table A6 shows details of the imputation procedure. It can be seen

that the imputed mean of the variables referring to academic ability is lower

than in the original data. Our imputation procedure naturally introduces

measurement error into the data, which, in a classical regression framework,

should lead to estimated coefficients that biased towards zero. We expect

that this is also true for our estimation procedure which is, comprises a data

augmentation approach with a linear regression. Nevertheless, it is our opin-

ion that the drawbacks of using an imputed data set are greatly outweighed

by the benefit of having a comprehensive set of students for the estimation

procedure (which relies on stability considerations, and thus, on the entirety

of the student population) and for the counter-factual matches (which are

more directly dependent on the entire student population).

raw data imputed data

statistic N mean SD N mean SD p

Birth year 10, 879 2, 000.06 0.55 1 2, 001.00 – 0.09
Sex (1=female,2=male) 10, 880 1.50 0.50 0 – – –
Last grade average 6, 598 4.12 0.68 4,282 3.97 0.70 < 0.01
NABC score Hungarian 9, 934 1, 659.63 183.87 946 1, 612.10 192.57 < 0.01
NABC score math 9, 948 1, 607.88 186.60 932 1, 569.42 189.95 < 0.01
Socioeconomic status (SES) 7, 097 0.45 0.87 3,783 0.41 0.88 0.02

Table A6: Results of the imputation procedure, using predictive mean matching and ten
iterations. The p-value is computed for a two-sided t-test with unequal variances.

In order to ease the interpretation of estimated preference parameters, we

decided to standardize the NABC scores and the SES index to having a

mean of zero, and unit standard deviation. This is shown in table 1 in the
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main text.
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Appendix B.5. Decomposing the gains from consolidation: details

This section presents in detail how we construct the decomposition of the

students’ consolidation gains into a choice effect and a competition effect.

In doing so, we make use of the large market approximation to matching

markets (Azevedo and Leshno, 2016) by which school-specific cutoff scores

play the role of prices that balance the supply of, and the demand for school

seats. The cutoff score at school s under the matching µ is the lowest

valuation among all students who where admitted to that school under µ,

or

cs(µ) = min
t∈µ(s)

Vs(t)

We assume that the school market consists of relatively few schools and

a large number of students so that the addition (or deletion) of a single

student has practically no effect on a schools’ cutoff score, in line with the

framework Azevedo and Leshno (2016). In order to decompose the total

consolidation gains, we compute the school-level cutoff scores under the

district wise matching µd and under the integrated matching µBP . The

effect of increased choice, keeping everything else constant, can then be

computed as the difference between student t being matched to her most

preferred feasible school in her own district, and globally, using either the

district-level or the city-wide cutoffs. Let the feasible set of student t under

the cutoffs {cs(µ)}s∈S be

Fµt = {s ∈ S : Vs(t) ≥ cs(µ)}

and denote the set of schools in district d as Sd. Then, the choice gain of

student t can either be expressed as

∆ch−IUt = max
s∈FµBPt

Ut(s)− max
s∈FµBPt ∩Sd

Ut(s)

or

∆ch−IIUt = max
s∈Fµdt

Ut(s)− max
s∈Fµdt ∩Sd

Ut(s)

as is illustrated in figure 10. The only difference between ∆ch−IUt and

∆ch−IIUt is the usage of a different baseline scenario to compute the cutoffs –

the global cutoffs {cs(µBP )} for ∆ch−IUt and the local cutoffs for ∆ch−IIUt.

It is easy to see that the choice gains will always be weakly positive by
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construction. It can also happen that a student is not assigned in one

of the counter-factual scenarios. In our empirical application, the choice

gains ∆ch−IUt are missing for about one quarter of all students, because

their set of feasible schools within their home district is empty under the

global cutoff scores. In a similar manner, one can compute the change in

student t’s welfare as the market is opened up to external competition. We

call this change a competition gain, but it is not a priori clear whether

students actually gain or lose from competition. The competition gain can

be computed either as

∆co−IUt = max
s∈FµBPt ∩Sd

Ut(s)− max
s∈Fµdt ∩Sd

Ut(s)

or as

∆co−IIUt = max
s∈FµBPt

Ut(s)− max
s∈Fµdt

Ut(s)

Now, ∆co−I
t differs from ∆co−IIUt in that student t’s choice set is restricted

to feasible schools within her home district d in the former, but not in the

latter. It is easy to see that the sum of ∆ch−IUt and ∆co−IUt is identical

to the sum of ∆ch−IIUt and ∆co−IIUt unless some type-I choice gains are

missing. Also, the sum of the choice and competition gains are equal to the

total welfare gains.
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Appendix B.6. Balanced markets

The Hungarian school market is characterized by a great amount of nominal

excess capacity. To see whether, and if so, how, this affects the conclusions

drawn in the main text, we repeated the analysis in section 6.3 with an artifi-

cially balanced market. This was achieved by scaling the schools’ capacities

proportionally within each district until the total number of seats equals

the total number of students (up to the integer constraint). In doing so, we

guarantee that every student is matched to some school. Of course, this is

a highly artificial setting, but it serves as a useful comparison benchmark

against which the results from the main text can be viewed.

Table A7a shows the match statistics for the balanced markets. The consoli-

dation gains were computed analogue to the main text. The first row of table

A7b shows that the consolidation gains are now very small compared to the

large gains achieved in the unbalanced markets, and the median student nei-

ther gains nor looses due to district consolidation. The de-composition into

choice and competition effects, also shown in table A7b, shows why this is

the case: The choice, and the competition effects now have about equal mag-

nitudes and opposite signs, and so they cancel each other.37 Interestingly,

the competition effects are now strictly negative.38

Figure A3a shows that there is a weakly negative relationship between ex

post majority support for market consolidation and district size. A linear

regression analysis (not shown here) confirms this, but does not find a sig-

nificant effect (p = 0.139). The important difference to result from the main

37The choice and competition effects of type-I could not be computed for one quarter
of the students because the school market is now balanced, and thus very tight. This
leads to the situation where many students have no feasible school in their home district,
given the consolidated school-level cutoff. This problem does not arise with the choice-
and competition effects of type-II.

38This is a rather peculiar results, and it is worth some discussion. Recall that the
competition gains are computed by comparing the students’ feasible choice sets under
different scenarios, and that those are in turn based on the schools’ admission cutoffs (see
section Appendix B.5). With balanced markets, it turns out that the school level cutoffs
are empirically larger than the district-level cutoffs. This holds true for all but one school.
The fact that there is one exception leads to the conclusion that this is an empirical
phenomenon that arises in a large market, but that it is not a strict implication of the
way we constructed the feasible choice sets per se. The larger cutoffs in the integrated
market results in smaller feasible choice sets, and so the competition effects are negative
in our sample.
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district markets
# matched 10,880
share top choice match 0.57
ave. match distance [km] 3.53

consolidated market
# matched 10,880
share top choice match 0.54
share matched in home district 0.18
ave. match distance [km] 8.99

(a) Assignment statistics of the district-wise and integrated student-school matching.

Mean SD Min Median Max N

total gains
in latent utility units 0.033 1.131 -7.000 0.000 5.000 10,880
in equivalent kilometres 0.223 7.639 -47.297 0.000 33.784 10,880

decomposition
choice effect I 1.190 1.203 0.000 0.929 7.445 7,536
competition effect I -1.055 1.289 -8.060 -0.566 0.000 7,536
choice effect II 1.050 0.981 0.000 0.888 6.725 10,880
competition effect II -1.017 0.818 -6.791 -0.924 0.000 10,880

(b) Various measures of consolidation gains, expressed in latent utility changes.

Table A7: Gains from market consolidation using inferred complete preferences lists and
artificially balanced markets: summary statistics

text, which were derived with the original amount of excess capacity, not all

districts have a majority of consolidation winners. Figure A3b shows that

there is a weakly negative correlation between average latent utility gains

and district size, similar to figure 9a. Again, this negative effect is insignifi-

cant in a linear model (p = 0.448). Thus, we cannot confirm the prediction

of Corollary 1 in this case. Because all district-level school markets were

exactly balanced in this exercise, it is not possible to determine how the

excess capacity affects the gains from consolidation.

We also estimated a linear regression of the students’ total gain and their

choice and competition gains on student and district observables, the results

of which are shown in table A8. Contrary to table 13, students with a

higher SES gain less than the average student, but the coefficient is equally

insignificant. Furthermore, high-ability students have significantly larger

consolidation gains. Interestingly, the estimated effect of a student’s home

district size is now significantly positive, contrary to the correlation in figure

A3b. However, when the district FEs are not included (results not shown

here), the effect is significantly negative.
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(b) Average latent utility gains and district sizes

Figure A3: Majority support for, and average latent utility gains of market consolidation,
using inferred complete preference lists and balanced markets.

In conclusion, this appendix shows that the results from the main text do not

necessarily carry over to situations where the aggregate school market has

less excess capacity or is even balanced. With artificially balanced markets,

the median student neither gains nor losses due to market consolidation,

and the share of students who gain is below fifty percent in many districts.

This is somewhat at odds with the theoretical predictions in chapter 3 where

we showed that the expected consolidation gains are positive for students

in all districts (Corollary 1), and it could be due to the fact that those

theoretical results were derived under the assumption of uniform and random

preferences. Therefore, it seems imperative for theoretical researchers to

extend the set of possible preference structures that are accommodated by

their models.
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Dependent variable: latent utility gains
type-I decomposition type-II decomposition

total choice competition choice competition
(1) (2) (3) (4) (5)

socio-economic status SES -0.0099 0.0585∗∗∗ -0.0716∗∗∗ 0.0494∗∗∗ -0.0594∗∗∗

-0.0121 -0.0164 -0.017 -0.0106 -0.0091

ability 0.0839∗∗∗ 0.0404∗∗∗ 0.0235∗ 0.0066 0.0772∗∗∗

-0.0088 -0.0123 -0.0127 -0.0077 -0.0066

district size (100 students) 0.2044∗∗∗ -0.1431 0.2173 0.0203 0.1841∗∗∗

-0.0559 -0.1533 -0.1587 -0.0492 -0.042

school type: gymnazium 0.0993∗∗∗ 0.0854∗∗ -0.0089 -0.0193 0.1186∗∗∗

-0.0295 -0.0424 -0.0438 -0.0259 -0.0222

school type: secondary -0.5061∗∗∗ 1.4227∗∗∗ -1.4857∗∗∗ 1.3117∗∗∗ -1.8178∗∗∗

-0.1579 -0.4762 -0.4928 -0.1388 -0.1186

Constant -0.5061∗∗∗ 1.4227∗∗∗ -1.4857∗∗∗ 1.3117∗∗∗ -1.8178∗∗∗

-0.1579 -0.4762 -0.4928 -0.1388 -0.1186

district FE Yes Yes Yes Yes Yes

Observations 10,880 7,536 7,536 10,880 10,880

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses.

Table A8: Explaining gains from consolidation with students observables (balanced mar-
kets). The table shows regression coefficients of students’ gains on student observables.
The school type refers to the school type of the assigned school in the integrated market.
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