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Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-77454, Marne-la-Vallée, France
hauswirth@univ-mlv.fr

M. Kilian
†

School of Mathematical Sciences, University College Cork, Cork, Ireland
†Corresponding author. Email: m.kilian@ucc.ie

and

M. U. Schmidt

Institut für Mathematik, Universität Mannheim, B6, 28-29, 68131 Mannheim, Germany
schmidt@math.uni-mannheim.de

Communicated by: Prof. Alexander I. Bobenko

[Received on 15 January 2018; accepted on 3 July 2020]

We prove that every properly embedded minimal annulus in S
2 × R is foliated by circles. We show that

such minimal annuli are given by periodic harmonic maps C → S
2 of finite type. Such harmonic maps are

parameterized by spectral data, and we show that continuous deformations of the spectral data preserve
the embeddedness of the corresponding annuli. A curvature estimate of Meeks and Rosenberg is used to
show that each connected component of spectral data of embedded minimal annuli contains a maximum
of the flux of the third coordinate. A classification of these maxima allows us to identify the spectral data
of properly embedded minimal annuli with the spectral data of minimal annuli foliated by circles.
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1. Introduction

In S
2 × R, there is a two-parameter family of embedded minimal annuli foliated by horizontal constant

curvature curves of S
2. A member of this family is called an Abresch annulus. The simplest non-compact

examples are the totally geodesic � × R, where � is a simple closed geodesic on S
2. There exists a

one-parameter family of periodic properly embedded annuli which are small graphs over � × R. These
examples were described analytically by Pedrosa and Ritore [1] and they called them unduloids. They
appear in the isoperimetric profile of S

2 × S
1. These examples are rotational surfaces around vertical

geodesics. A one-parameter helicoidal family, obtained by rotating a great circle on S
2 at a constant rate

in the third coordinate about an axis passing through a pair of antipodal points on the rotated great circle
was constructed by Rosenberg [2].

A two-parameter family of deformations of previous examples was constructed by the first-named
author [3], and by Meeks and Rosenberg (see [4, Section 2]) using variational arguments. This involves
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2 L. HAUSWIRTH ET AL.

solving a Plateau problem with boundaries given by two geodesics �1 and �2 in parallel sections S
2 ×{t1}

and S
2 ×{t2}. The stable annulus bounded by these geodesics is foliated by horizontal constant curvature

curves (see Theorem 2.4). Schwarz symmetry along boundary geodesics then gives a complete and
properly embedded example. The two parameters (up to isometries of S

2 × R) of such compact annuli
are the distance between the two sections including the boundary, and the position of one geodesic in
S

2 × {t}, keeping the other fixed. They are periodic in the third direction, foliated by constant curvature
curves of S

2 and have a vertical plane of symmetry.
Constant mean curvature (CMC) tori in R

3 give rise to minimal annuli in S
2 × R under certain

conditions as follows. The Gauß map of a cmc torus is a harmonic map G : T
2 → S

2. Its holomorphic
quadratic differential is

Q = 〈Gz, Gz〉(dz)2

where z = x + iy is a global holomorphic coordinate on the torus. Since 〈Gz, Gz〉 : T
2 → C is

holomorphic, it is a non-zero constant 〈Gz, Gz〉 ≡ c ∈ C
×. After a linear change of coordinate, we can

assume c = ±1/4. Then the map X : C → S
2 × R,

X(z) = (G(z), Re(−2i
√

cz))

is conformal and harmonic, and thus locally a minimal surface in S
2 × R (possibly branched). We can

choose the sign of c ∈ R in such a way that the large curvature line on the (cmc) torus corresponds to a
horizontal curve in S

2 × {t}. In this case, X is an immersion. If the Gauß map G is periodic along this
horizontal curve then, we have a minimal annulus.

The Gauß map of the flat cmc cylinder in R
3 yields the totally geodesic annulus in S

2×R, and the Gauß
maps of Delaunay surfaces yield the unduloids and the helicoids in S

2 × R under this correspondence.
Supplementing these rotational examples, there is a two-parameter family of harmonic maps studied by
Abresch [5]. To describe the equations of Wente tori in R

3, Abresch studies conformal CMC H = 1/2
immersions with large lines or small lines of curvature contained in a plane. He studies constant mean
curvature surfaces parametrized by R

2, with the coordinate axes x and y yielding the lines of principal
curvature, and solves closing conditions for the surface to obtain CMC tori. On these lines, the image of
the Gauß map is a circle in S

2.
In a conformal parametrization with |c| = 1/4, the metric of the minimal annulus in S

2 × R is given
by ds2 = cosh2ω |dz|2, where ω : C → R is a solution of the sinh-Gordon equation

(∗∗) �ω+ sinhω coshω = 0,

where � denotes the Laplacian of the flat metric |dz|2. The metric of the corresponding cmc H = 1/2
surface in R

3 is given by ds̃2 = e2ω|dz|2. Abresch classified all real analytic solutions ω : C → R of the
system

(I)

{
�ω + sinhω coshω = 0
sinh(ω)(ωxy)− cosh(ω)(ωx)(ωy) = 0

,

where the second equation is the condition that all small curvature lines are planar. He proves that this
family contains cmc H = 1/2 tori. These tori have doubly periodic harmonic maps G and so yield
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PROPERLY EMBEDDED MINIMAL ANNULI IN S
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minimal annuli by considering X(z) = (G(z), x) (the map X(z) = (G(z), y) is branched). The horizontal
curves of this family have non-constant curvature. Abresch also studies solutions of the system

(II)

{
�ω + sinhω coshω = 0
cosh(ω)(ωxy)− sinh(ω)(ωx)(ωy) = 0

,

where the second equation is the condition that all large lines of curvature are planar. A solutionω induces
a cmc immersion of C in R

3 and a doubly periodic Gauß map G : R
2 → S

2. The second equation is the
condition that the immersion X(z) = (G(z), y) has horizontal constant curvature curves and parameterizes
the whole Abresch family. It was conjectured by Meeks–Rosenberg [4] that any properly embedded genus
zero minimal surface in S

2 × R belongs to this family. In this direction, Hoffman–White [6] proved that
if a properly embedded annulus of S

2 ×R contains a vertical geodesic, then it is a helicoid type example.
The first author in [3] characterized Abresch annuli as the only annuli which are foliated by horizontal
curvature curves. Our main result confirms this conjecture:

Main theorem. A properly embedded minimal annulus in S
2 × R is an Abresch annulus.

The proof combines methods from geometric analysis with techniques of integrable systems. The
technique is similar to the one used in the classification of Alexandrov embedded cmc tori of S

3 given
by the authors in [7, 8]. We use spectral curve theory and study the moduli space of properly embedded
annuli of finite type. Locally cmc surfaces in S

3 and minimal annuli in S
2 × R both give rise to solutions

of the sinh-Gordon equation, but the global closing conditions are different in a subtle way. One of the
differences is in the closing condition of the third coordinate function which give some additional real
analytic constraint. Furthermore, in S

2 ×R there exists a 2-parameter family of deformations of the totally
geodesic annulus, while in S

3, there is only a 1-parameter family of rotational Alexandrov embedded
cmc annuli.

The first ingredient is a linear area growth and curvature estimate of Meeks–Rosenberg. Due to [9,
Theorem 7.1] (see Theorem 3.2 below), the curvature K and thus the area growth of a properly embedded
minimal annulus X in S

2 × R are bounded by constants depending on the flux of the third coordinate
h : C/τZ → R along horizontal sections. Properly immersed annuli in S

2 × R are parabolic (see
Theorem 2.2) and the flux corresponds to the length of the period τ of the corresponding solution of the
sinh-Gordon equation (∗∗) (see Lemma 3.1). If the flux |τ | ≥ ε0, there is a constant C1 > 0 depending
only on ε0 such that

|K| ≤ C1(ε0).

We improve the linear area growth estimate of [9, Theorem 1.1] using parabolicity, and prove in Lemma 3.3
that there is a constant C2 > 0 depending only on ε0 such that for any t > 0,

Area(X ∩ S
2 × [−t, t]) ≤ C2(ε0)t.

This estimate has two consequences. First, it implies that properly embedded minimal annuli in S
2 × R

are of finite type. By the algebro-geometric correspondence such annuli are described by algebraic data,
the so-called spectral data (a, b). It consists of two polynomials of degree 2g, respectively g+1 for some
g ∈ N0. The polynomial a encodes a hyperelliptic Riemann surface called spectral curve. The genus of
the spectral curve is called spectral genus. The other polynomial b encodes the closing conditions. One
can deform a minimal annulus by deforming the corresponding spectral data. Starting with an embedded
minimal annulus in S

2 × R, the Whitham deformation allows us to deform the annulus preserving
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4 L. HAUSWIRTH ET AL.

minimality, closing condition as well as embeddedness. Applying this to the totally geodesic annulus
allows us to flow through the path-connected component of embedded minimal annuli. In this way, we
are able to construct the whole family of Abresch annuli via Whitham deformation theory (see Section 8
and Appendix A). Applying this deformation to annuli gives us additional degrees of freedom for the
deformation in contrast to the doubly periodic case.

The second consequence of the curvature estimate is in Lemma 10.1 the compactness of the space of
spectral data of properly embedded minimal annuli with periods τ bounded away from zero. As a direct
consequence each connected component of the space of such spectral data (a, b) contains a maximum of
the length |τ | of the period τ , since connected components are closed.

We show in Theorem 9.4 that there always exists a Whitham deformation of (a, b) increasing |τ |, if
the polynomial a has non-unimodular roots. This implies that the spectral data of all local maxima of |τ |
correspond to the unique totally geodesic annulus in S

2 × R. These spectral data are not unique. Each
connected component of spectral data (a, b) of Abresch annuli contains such spectral data. In particular,
each connected component of spectral data of properly embedded minimal annuli contains spectral data
of an Abresch annulus.

Helicoidal and rotational unduloids are of spectral genus one, while the Riemann’s type examples are
of spectral genus two. This family of Abresch annuli is characterized by an additional symmetry of the
spectral data (a, b). In Theorem 11.3, we show that this symmetry cannot be broken along continuous
deformations of these spectral data. Therefore the connected components of the Abresch annuli form the
only connected components of properly embedded minimal annuli.

2. Minimal annuli and the sinh-Gordon equation

2.1 Local parametrization.

We consider X = (G, h) : C → S
2 × R a minimal surface conformally immersed in S

2 × R (see
[10, Section 1]). As usual write z = x + iy. The horizontal component G : C → S

2 of the minimal
immersion is a harmonic map. If we denote by (C, σ 2(u)|du|2) the complex plane with metric induced
by the stereographic projection of S

2, the map G satisfies

Gzz̄ + 2(log σ ◦ G)uGzGz̄ = 0.

The holomorphic quadratic Hopf differential associated to the harmonic map G is given by

Q(G) = (σ ◦ G)2GzḠz(dz)2.

Conformality reads as X(z) = (G(z), Re
∫ −2i

√
Q) and the zeroes of Q are double. The unit normal

vector n in S
2 × R has the third coordinate

〈n, ∂

∂t 〉 = n3 = |g|2 − 1

|g|2 + 1
, where g2 := −Gz

Gz̄

.

We define the real function ω : C → R by n3 := tanhω. The metric ds2 is given (see e.g. [11]) in a local
coordinate z by ds2 = 4|Q| cosh2ω. We remark that the zeroes of Q correspond to the poles of ω, so that
the immersion is well defined. Moreover the zeroes of Q are points, where the tangent plane is horizontal.
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The Jacobi operator is

L = 1

4|Q| cosh2ω

(
∂2

x + ∂2
y + Ric(n)+ |dn|2) = 1

4|Q| cosh2ω

(
∂2

x + ∂2
y + 4|Q| + 2|∇ω|2

cosh2ω

)
.

Since n3 = tanhω is a Jacobi field obtained by vertical translation in S
2 × R, we have

L tanhω = 0 ⇐⇒ �ω + 4|Q| sinhω coshω = 0,

where � = ∂2
x + ∂2

y is the Laplacian of the flat metric.
Consider a minimal annulus X properly immersed in S

2 × R. If X is tangent to a horizontal section
x3 = 0, the set X ∩{x3 = 0} bounds on X a compact component in some half-space x3 ≥ 0 or x3 ≤ 0 with
boundary in S

2 × {0}, a contradiction to the maximum principle (see [10, p. 700]). Hence, the annulus is
transverse to every horizontal section S

2 × {t} and intersects the level section in one compact connected
component, topologically a circle. The third coordinate map h : X → R is a proper harmonic map on each
end of X, with dh �= 0. Then each end of X is parabolic and the annulus can be conformally parameterized
by C/τZ. We will consider in the following conformal minimal periodic immersions X : C → S

2 × R

with X(z + τ) = X(z).
Since dh �= 0, the Hopf differential Q has no zeroes. If h∗ is the harmonic conjugate of h, we can

use the holomorphic map i(h + i h∗) : C
2 → C to parameterize the annulus by the conformal parameter

z = x + iy. In this parametrization, the period of the annulus is τ ∈ R and

X(z) = (G(z), y) with X(z + τ) = X(z).

We say that we have parameterized the surface conformally by its third coordinate. We remark that
Q = 1

4 (dz)2 and ω satisfies the sinh-Gordon equation (∗∗).

Remark 2.1 In this article, we will relax the condition τ ∈ R into τ ∈ C, but we will parameterize our
annuli conformally such that Q will be constant, independent of z and 4|Q| = 1. This is a linear change
in the conformal parameter z �→ ei	z

In summary, we have

Theorem 2.2 [10, Theorem 1.2] A minimal annulus properly immersed is parabolic and X : C/τZ →
S

2 × R has conformal parametrization X(z) = (G(z), h(z)) with

(1) Harmonic map G : C/τZ → S
2, and h(z) = Re(−iei	/2z).

(2) Constant Hopf differential Q = 1
4 exp(i	) dz2.

(3) The metric of the immersion is ds2 = cosh2ω dz ⊗ dz̄.

(4) The third coordinate of the unit normal vector is n3 = tanhω.

(5) The function ω : C/τZ → R is a solution of (∗∗).

In particular, the intersection of a properly immersed annulus with each horizontal section S
2 × {t} is

topologically a circle.
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6 L. HAUSWIRTH ET AL.

Conversely, if a minimal immersion X : C/τZ → S
2 × R has a linear third coordinate like in (1),

which has to be constant along the lines parallel to the period τ , then the pre-image X−1[K] of a compact
K ⊂ S

2 × R is bounded in C/τZ and X is proper.

2.2 Annuli foliated by constant curvature curves.

The function ω determines the geometry of the annulus. We are interested in a 2-parameter family of
minimal annuli foliated by horizontal curves with constant geodesic curvature. For these reasons, we
make the following definition:

Definition 2.3 An Abresch annulus of S
2 × R is an embedded minimal annulus foliated by horizontal

constant curvature curves.

For minimal surfaces in R
3, Shiffman [12] characterized such surfaces by the vanishing of the Jacobi

field u = cosh2ω (∂xkg). In [3], this is done for S
2 × R:

Theorem 2.4 [3, Section 2] Let X be a minimal annulus immersed in S
2 ×R, transverse to every section

of S
2 ×{t} and parameterized by the third coordinate. Then the geodesic curvature in S

2 of the horizontal
level curve γh(t) = X ∩ (S2 × {t}) is given by

kg(γh) = −ωy

coshω
. (2.1)

The function u = cosh2ω (∂xkg) is a Jacobi field, so that u is a solution of the elliptic equation

L u = �gu + Ric(n)u + |dn|2u = 0.

Here, Ric(n) is the Ricci curvature of the two planes tangent to X, |dn| is the norm of the second
fundamental form and �g = 1

cosh2ω
�.

Let X be a compact minimal annulus immersed in S
2 × R, with Index(L) ≤ 1. If X is bounded by

two curves �1 and �2 with constant geodesic curvature, then u is identically zero and X is foliated by
horizontal curves of constant curvature in S

2.

This theorem proves the existence of a 2-parameter family of minimal surfaces foliated by horizontal
constant geodesic curvature curves. They are similar to Riemann’s minimal example of R

3. Meeks–
Rosenberg [13] prove the existence by solving a Plateau problem between two geodesics �1 and �2

contained in two horizontal sections S
2 × {t1} and S

2 × {t2} and then find a stable minimal annulus
bounded by the geodesics. By the theorem above this annulus is foliated by horizontal circles and using
symmetries along horizontal geodesics in S

2 × R, one obtains a properly embedded minimal annulus in
S

2 × R. This annulus is periodic in the third direction.

Proposition 2.5 [3, Section 3] A minimal annulus foliated by constant curvature horizontal curves admits
a parametrization by the third coordinate where the metric ds2 = cosh2ω |dz|2 satisfies the Abresch system{

�ω + sinhω coshω = 0

u = cosh2ω (∂xkg) = (ωxy)− tanh(ω)(ωx)(ωy) = 0.
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Abresch [5] solved this system using elliptic functions and separation of variables

∂x

( ωy

coshω

)
= ∂y

( ωx

coshω

)
= (ωxy)− tanh(ω)(ωx)(ωy)

coshω
= 0.

The solution ω : C → R yields the immersion up to isometry (see Section 5.1). The period closes in C

because horizontal curves are circles. Abresch [5], proved that the real functions x �→ f (x) and y �→ g(y)

f = −ωx

coshω
and g = −ωy

coshω

depend only on one variable, and for c ≤ 0, d ≤ 0 satisfy the system

−(fx)
2 = f 4 + (1 + c − d)f 2 + c, −fxx = 2f 3 + (1 + c − d)f ,

−(gy)
2 = g4 + (1 + d − c)g2 + d, −gyy = 2g3 + (1 + d − c)g.

(2.2)

Conversely, we can recover the solution ω from functions f and g by

sinhω = (1 + f 2 + g2)−1(fx + gy)

There is a solution of the system if and only if c ≤ 0 and d ≤ 0, ω is doubly periodic and exists on the
whole plane R

2.

3. The curvature estimate of Meeks and Rosenberg

Meeks–Rosenberg [4] study properly embedded minimal annuli in S
2 × R. They prove a bound on the

curvature in terms of the third coordinate of the flux.

Lemma 3.1 Let γ be a simple closed curve not homologous to zero on a properly embedded minimal
annulus X, and let η = Jγ ′/|Jγ ′| be a unit vector field tangent to X and orthogonal to γ ′ along γ . Consider
η3 = 〈η, ∂

∂t 〉 and the third coordinate of the flux map

F3 =
∫
γ

η3 ds.

If X is conformally parameterized with Q = 1
4 ei	(dz)2, and τ the period of X along γ , then F3 = |τ |.

Proof. After a conformal change of coordinate we may assume that the annulus is parameterized by
its third coordinate with real period |τ |. Along a horizontal curve x �→ X(x, y0) the co-normal is η =
sech (ω) (Gy, 1). Hence the third coordinate of the flux map is

F3 =
∫ |τ |

0
η3 ds = |τ |. �

Meeks and Rosenberg prove the following curvature estimate:
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8 L. HAUSWIRTH ET AL.

Theorem 3.2 [13, Theorem 7.1] For any properly embedded minimal annulus X in S
2 × R with |F3| ≥

ε0 > 0, there exists a constant C1 > 0 depending only on ε0 such that |K| ≤ C1(ε0).

They also prove a linear growth estimate for minimal surfaces embedded in general product spaces
M ×R, but in S

2 ×R the annulus is parabolic and we can improve the result with a recent result of Mazet
[14], and an estimate of Heintze–Karcher [15]. This implies that geometrically, an embedded annulus
has a uniform tubular neighbourhood.

Lemma 3.3 If X : C/τZ → S
2 × R is a properly embedded minimal annulus, then X is the restriction

of an ε1-tubular embedded neighbourhood Tε1 of the annulus i.e. there is ε1 > 0 such that

Y : (C/τZ)× (−ε1, ε1) → S
2 × R with Y(z, s) = ExpX(z)(s n(z))

is an embedded three-dimensional manifold Tε1 = Y [(C/τZ)× (−ε1, ε1)] into S
2 × R. The constant ε1

depends only on a lower bound of the flux F3 = |τ | ≥ ε0 > 0. Thus for any t > 0, there is a constant
C2 > 0 which depends only on ε0 such that

2t|τ | ≤ Area(X ∩ S
2 × [−t, t]) ≤ C2(ε0)t.

Proof. We denote the equidistant surface by X(s) = Y(C/τZ, s) and its mean curvature by Hs. Following
[15], the differential of the exponential map Y : (z, s) → ExpX(z)(sn(p)) is uniformly bounded on
C × (−ε1, ε1) for ε1 > 0 depending only on the geometry of S

2 × R, and the upper bound of the Gaußian
curvature K of X(0) = X[C/τZ]. So ε1 depends by Theorem 3.2 only on the lower bound ε0 of the flux.
Then the projection πs along the geodesics of the equidistant surface X(s) to X(0) is a quasi-isometry.
Consequently there exists a constant K1 > 0 such that K−1

1 (ε0)|v| ≤ |dπs(v)| ≤ K1(ε0)|v| holds for any
v ∈ TY(z,s)X(s) and s ∈ (−ε1, ε1).

Since the Ricci curvature is positive, we have d
ds Hs = (Ric(∂s) + |dns|2) ≥ 0 and the equidistant

surface X(s0) has mean curvature vector pointing outside the tubular neighbourhood Ts0 .
Each equidistant surface X(s) has a shape operator which satisfies a Riccati-type equation, hence by

Karcher [16], the second fundamental form of X(s) is uniformly bounded on [−ε1, ε1].
We satisfy the hypothesis of Theorem 7 in Mazet [14]. If there is a parabolic annulus X such that

Tε1 = Y [(C/τZ) × (ε1, ε1)] is not embedded, a subregion of X would produce a connected component
S bounded or unbounded into the tubular neighbourhood Tε1 , which contradicts the maximum principle
(see [14]).

This uniform bound of the minimal width of the embedded tubular neighbourhood of the surface
gives a linear area growth estimate. There is a constant C depending only on the geometry of S

2 × R and
ε0 such that

2ε1t|τ | ≤ ε1Area(X ∩ S
2 × [−t, t]) ≤ CVol(Tε1 ∩ [−t, t]) ≤ 4Cπ t,

where the constant C2 = 4Cπ/ε1 depends only on ε0. The Area(X ∩ S
2 × [−t, t]) is at least 2t|τ | since

the metric is ds2 = cosh2ω |dz|2. �

In the following, we will deform minimal annuli keeping F3 bounded away from zero. Then the
curvature of the annulus will remain uniformly bounded. As a corollary we derive a uniform estimate for
ω, and hence for the third coordinate of the normal n3 = tanhω.
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Proposition 3.4 For ε0 > 0 there exists C0 such that the solutions of the sinh-Gordon equation in
Theorem 2.2 of all properly embedded minimal annuli X in S

2 × R with |τ | ≥ ε0 are uniformly bounded
by supz∈X |ω(z)| ≤ C0(ε0). Since n3 = tanhω is bounded away from the value n3 = 1, the intersection
Tε1 ∩ (S2 × {t}) is a tubular neighbourhood in S

2 of the level curve X ∩ (S2 × {t}) with a width ε > 0
uniformly bounded above by a constant c > 0 depending only on ε1 and C0.

Proof. Assume on the contrary that there exists a sequence Xn of such annuli and a sequence of points
zn ∈ Xn such that ωn(zn) goes to infinity. In the foregoing lemma, we have seen that the corresponding
sequence τn is bounded by ε0 ≤ |τn| ≤ C2(ε0)/2. By passing to a subsequence, we may assume that
τn converges. Consider a sequence of translations tne3 such that Xn + tne3 is a sequence of annuli with
zn + tne3 ∈ S

2 × {0}. Then by the curvature estimate of Meeks and Rosenberg there is a subsequence
converging locally to an embedded minimal surface X0 in S

2 ×[−t, t]. The area estimate shows that X0 is
an annulus, with the limiting flux lim |τn|. By our hypothesis this leads to a pole occurring at the height
t = 0 since |ω| → ∞. The limit normal vector n3(zn) = tanhωn(zn) → ±1 and the annulus X0 would be
tangent to the height S

2 × {0}, a contradiction to the maximum principle (compare [10, p. 700]). �

Adapting an argument of Lockhart–McOwen [17], Meeks–Pérez-Ros [9] prove the following:

Theorem 3.5 An elliptic operator L u = �u + qu on a cylinder S
1 × R has for bounded and continuous

q a finite dimensional kernel in the space of uniformly bounded C2 functions on S
1 × R.

4. Finite type theory of the sinh-Gordon equation

4.1 Pinkall–Sterling induction.

Suppose ω is a solution of the sinh-Gordon equation (∗∗). There is an iteration of Pinkall–Sterling [18]
to obtain an infinite hierarchy of solutions u0, u1, . . . of the linearized sinh-Gordon equation (LSG for
short):

L un = �un + un cosh(2ω) = 0. (4.1)

For given un they solve the system

τn;z̄ = 1
2 ie−2ωun, τn;z = −2i un;zz + 4iωzun;z

and then define

un+1 = −2iτn;z − 4iωzτn.

Each function constructed in this way is complex valued, and un : C → C has real and imaginary part
that are both solutions of (4.1). Starting this iteration procedure with u−1 = 0 yields a sequence of Jacobi
fields with first terms

u−1 = 0, u0 = ωz, u1 = ωzzz − 2ω3
z , u2 = ωzzzzz − 10ωzzzω

2
z − 10ω2

zzωz + 6ω5
z , . . . .
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10 L. HAUSWIRTH ET AL.

Finite type means (see [10, Definition 2.1 and Proposition 2.2]) that these solutions obey

N∑
i=0

aiui + biūi = 0 for some N ∈ N and a0, . . . , aN , b0, . . . , bN ∈ C.

and span a finite dimensional vector space in the kernel of L.
Now the combination of Proposition 3.4 and Theorem 3.5 implies that the solution ω of the sinh-

Gordon equation of a properly embedded minimal annulus is of finite type:

Theorem 4.1 A properly embedded minimal annulus in S
2 × R is of finite type.

Proof. By Theorem 2.2, the properly embedded annulus is parabolic and can be parameterized confor-
mally by its third coordinate. The metric is given by ds2 = cosh2ω |dz|2 and n3 = tanhω is the third
coordinate of the normal. By Proposition 3.4, the solution ω : C → R of the sinh–Gordon equation (∗∗)
is uniformly bounded. Schauder estimates apply and we have

|ω|Ck,α ≤ C0

for a constant C0 depending on the annulus X = X(C/τZ). Now, we apply Theorem 3.5 which assures
that the operator

�+ cosh(2ω) : C2,α(C/τZ) → C0,α(C/τZ)

has finite-dimensional kernel in the space of uniformly bounded C2 functions on C/τZ. Hence the
Pinkall–Sterling iteration spans a finite dimensional space and ω is of finite type. �

4.2 Potentials

Finite type solutions of the sinh–Gordon equation give rise to algebraic objects called potentials. We
recall their definition and refer to [10] for details:

Definition 4.2 The elements ξλ of the following open subset of a 3g + 1 dimensional real vector space
are called potentials:

Pg =
{

g∑
d=−1

ξ̂dλ
d

∣∣∣∣∣ ξ̂−1 ∈ (
0 iR+
0 0

)
, tr(ξ̂−1ξ̂0) �= 0, ξ̂d = −¯̂

ξ t
g−1−d ∈ sl2(C) for d = −1, . . . , g

}
.

The ‘Symes method’ [19–21] constructs solutions ω : C → R of the sinh-Gordon equation in terms
of these potentials ξλ ∈ Pg. This construction is detailed in [10] and summarized below.

4.3 From the potential to the solution of sinh-Gordon.

Expanding a function ζλ : C → Pg as

ζλ =
(

0 β−1

0 0

)
λ−1 +

(
α0 β0

γ0 −α0

)
λ0 + . . .+

(
αg βg

γg −αg

)
λg
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we associate a matrix 1-form defined by

α(ζλ) =
(
α0 β−1λ

−1

γ0 −α0

)
dz −

(
ᾱ0 γ̄0

β̄−1λ −ᾱ0

)
dz̄ (4.2)

We recall a well-known existence and uniqueness result, see e.g. [19, Theorem 2.5] and [10,
Proposition 3.2 and Remark 3.3]:

Proposition 4.3 [10] For each ξλ ∈ Pg there is a unique solution ζλ : C → Pg of

dζλ = [ ζλ, α(ζλ) ] with ζλ(0) = ξλ. (4.3)

If ξλ is normalized by |β−1γ0| = 1
16 , then the function ω : C → R with ieω(z) := 4β−1(z) is a solution of

the sinh-Gordon equation of finite type, and α(ζλ(z)) = α takes the following form with |γ | = 1:

α := 1

4

(
2ωz iλ−1eω

iγ e−ω −2ωz

)
dz + 1

4

(−2ωz̄ iγ̄ e−ω

iλ eω 2ωz̄

)
dz̄. (4.4)

Remark 4.4 The Lax equation (4.3) preserves β−1(z) ∈ iR+, and we can define a function ω : C → R

by setting 4β−1(z) := ieω. Now β−1,z = 2α0β−1 implies that 2α0 = ωz. Since the trace of the right-hand
side in (4.3) vanishes, the coefficients of a(λ) = −λ det ζλ(z) = −λ det ξλ do not depend on z ∈ C.
Therefore, a(0) = β−1γ0 does not depend on z, and γ0 is equal to iγ eω(z) with γ ∈ C. The normalization
|a(0)| = 1

16 implies |γ | = 1. Since second derivatives commute ∂z∂z̄ζλ = ∂z̄∂zζλ, the function ω solves
the sinh-Gordon equation.

The polynomial a(λ) := −λ det ξλ satisfies the reality condition

λ2ga(1/λ̄) = a(λ). (4.5)

Since χλ = λ
1−g

2 ξλ is traceless and satisfies tχ1/λ̄ = −χλ for any ξλ ∈ Pg and for λ ∈ S
1, the determinant

is the square of a norm and we have det χλ ≥ 0 for λ ∈ S
1. Thus

λ−g a(λ) ≤ 0 for λ ∈ S
1 (4.6)

The condition tr(ξ̂−1ξ̂0) in Definition 4.2 implies that a(0) �= 0 and by symmetry the highest coefficient
of a is non-zero. We denote (see also [10, (2.9)])

Mg = {a ∈ C
2g[λ] | a = −λ det ξλ with ξλ ∈ Pg}. (4.7)

4.4 Spectral curve.

The spectral curve is defined by the determinant of a polynomial Killing field ζλ. A property of the
Lax equation is that a(λ) = −λ det ζλ = −λ det ξλ is independent of z. Following Bobenko [22], the
polynomial a defines a hyperelliptic Riemann surface �:
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12 L. HAUSWIRTH ET AL.

Definition 4.5 For ξλ ∈ Pg set a(λ) = −λ det ξλ ∈ Mg. The associated spectral curve � of genus g is
defined by adding (∞, 0) and (∞, ∞) as branch points in the compactification of

�× = {(ν, λ) ∈ C
2 | det(ν 1 − ζλ) = 0} = {(ν, λ) ∈ C

2 | ν2 = λ−1a(λ)}. (4.8)

� has three involutions (compare [10, (2.11)]):

σ : (λ, ν) �→ (λ, −ν), ρ : (λ, ν) �→ (λ̄−1, −λ̄1−gν̄), η : (λ, ν) �→ (λ̄−1, λ̄1−gν̄).

The involution σ is the hyperelliptic involution. The involution η has no fixed point while ρ fixes all
points of the unit circle |λ| = 1. In particular, the roots of a are interchanged by λ �→ λ̄−1.

4.5 Isospectral set.

The following set of all potentials with the same spectral curve and the same off-diagonal product
a(0) = β−1γ0 is called isospectral set:

I(a) := {ξλ ∈ Pg | λ det ξλ = −a(λ)} (4.9)

For a given potential ξλ ∈ Pg with corresponding solution ω of the sinh-Gordon equation the tangent
space of I(a) at ξλ ∈ Pg is associated to the hierarchy of solutions u0, u1, . . . of LSG (4.1). Each of these
Jacobi fields can be integrated to a long time solution of the sinh-Gordon equation. These integrals fit
together to a group action.

4.6 Group action.

In [10, Definition 4.2] a continuous group action is defined on I(a):

π : C
g × I(a) → I(a). (4.10)

It integrates the family of solutions of the linearized sinh-Gordon equation u0, u1, . . . into deformations
of the solutions ω of the sinh-Gordon equation. In particular, these flows exist for all time and are
quasi-periodic. The group action of (z, 0, ...0) ∈ C

g integrates the first solution u0 = ωz and hence
represents the annulus as a two-dimensional subgroup of the isospectral set. For t2 ∈ iR the normal
variation of the group action of (0, t2, 0, . . . , 0) is the Shiffman Jacobi field. On minimal annuli of S

2 ×R

conformally parameterized by the third coordinate, this Jacobi field is given by u = cosh2ω (∂xkg) =
(ωxy)− tanh(ω)(ωx)(ωy). Here kg is the geodesic curvature (see Theorem 2.4) of the horizontal curve.

Proposition 4.6 [10, Proposition 4.3] The group action (4.10) is commutative:

π(t′)π(t)ξλ = π(t + t′)ξλ = π(t)π(t′)ξλ.

An important property of spectral curves without singularities (i.e. the polynomial a has only simple
roots), is that the isospectral set I(a) has only one orbit diffeomorphic to a real g–dimensional torus.
This property implies that all annuli with smooth spectral curves are immersed into the Jacobian � (S1)g

and have a quasi-periodic polynomial Killing field. Since this polynomial Killing field depends only on
ω, this means that also the metric is quasi-periodic:
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Proposition 4.7 (1) For a ∈ Mg the isospectral set I(a) is compact and the corresponding solutions
ω are uniformly bounded in terms of a bound on the coefficients of a.

(2) If a ∈ Mg has 2g pairwise distinct roots, then I(a) is a connected smooth g-dimensional manifold
diffeomorphic to a g-dimensional real torus: I(a) ∼= (

S
1
)g

.

Proof of (1): The proof of [10, Proposition 4.9] shows the compactness of I(a) and establishes a bound on
all coefficients of ξλ ∈ I(a) in terms of a bound on the coefficients of a. Hence, the formulas (4.2) and (4.4)
imply that the corresponding solutionsω of the sinh-Gordon equation are also uniformly bounded in terms
of a bound on the coefficients of a.

(2) is proven in [10, Theorem 4.8]. �

5. Minimal annuli of finite type

5.1 From the solution of sinh-Gordon to the immersion.

We identify the sphere S
2 with SU2/U(1). The map g �→ gσ3ḡt maps SU2 into S

2 ⊂ R
3 with σ3 = (

i 0
0 −i

)
.

Theorem 5.1 [10, Theorem 1.3] Let ξλ be a potential and ζλ : C → Pg the polynomial Killing field (4.3)
and let Fλ : C → SL2(C) be the unique solution of

F−1
λ dFλ = α(ζλ) := α(ω) with Fλ(0) = 1 (5.1)

with α(ω) as in (4.4) and ω as in Proposition 4.3. Then for any constant γ ∈ S
1, the maps

Xλ(z) = (Fλσ3F−1
λ , Re(−i

√
γ λ−1z))

with λ ∈ S
1, define a 1-parameter isometric family of conformal minimal immersions C → S

2 × R of
finite type with metric ds2 = cosh2ω |dz|2. If λ = γ = 1, then X1(x, y) = (F1σ3F−1

1 , y) is an immersion
conformally parameterized by its third coordinate.

Remark 5.2 (Reality condition) From the relation ᾱt
∣∣
1/λ̄

= − α|λ, the solution of (5.1) satisfies F̄t
1/λ̄

=
F−1
λ . For λ ∈ S

1, α(ω) takes values in su2 and Fλ takes values in SU2. The values of Fλ at general λ ∈ C
×

belong to SL2(C) since tr(α(ω)) = 0. The variable λ is called spectral parameter, and the map Fλ the
extended frame of the associated family Xλ.

5.2 The Sym point and conformal parametrization.

If Fλ is the extended frame of a minimal surface Xλ : R
2 → S

2 × R conformally parameterized by its
third coordinate, then there is λ0 ∈ S

1, such that

Xλ0(z) = (Gλ0(z), y) = (Fλ0(z)σ3F−1
λ0
(z), Re(−iz)).

The Hopf differential is given by Qλ0(z) = −4β−1γ0λ
−1
0 (dz)2 = 1

4 (dz)2 i.e. β−1γ0 = − λ0
16 . The value

of λ0 = eiθ associate to an immersion Xλ is called the Sym point. In the following, we will prefer a
conformal parametrization which fixes the Sym point to λ0 = 1. To do that, we make the conformal
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14 L. HAUSWIRTH ET AL.

change z �→ ei(1−g)θ/2z and apply the Möbius transformation λ �→ eiθλ. Then F̃λ(z) = Feiθ λ(e
i(1−g)θ/2z)

is the extended frame obtained from the potential

ξ̃λ = ei(1−g)θ/2ξeiθ λ.

In particular, we have

det ζ̃λ(z) = det ξ̃λ = −λ−1ã(λ) = −λ−1e−igθa(eiθλ).

The immersion is locally given by

X̃1(z) = Xλ0(e
i(1−g)θ/2z) = (F̃1(z)σ3F̃−1

1 (z), Re (−iei(1−g)θ/2z)). (5.2)

Definition 5.3 A finite type minimal immersion X : R
2 → S

2 × R is conformally parameterized by its
Sym point if there is a polynomial Killing field

ζλ : C → {
ξλ ∈ Pg | λ det ξλ = −a(λ) and β−1γ0 = a(0) = − 1

16 ei(1−g)θ := − 1
16 ei	

}
which solves the Lax equation (4.3) with a ∈ Mg. If Fλ is the frame (5.1) associated to ξλ, then in this
parametrization the immersion is given by (5.2)

5.3 Higher order roots of a.

Different ξλ of different isospectral sets may give the same solution ω of sinh-Gordon and the same
extended frame Fλ. This is the case if and only if one of the initial values ξλ has a root at someλ = α0 ∈ C

×.
Then also the corresponding polynomial Killing field ζλ has a root at λ = α0 for all z ∈ C. In this case,
we may reduce the order of ξλ and ζλ without changing the corresponding extended frame Fλ. This
configuration corresponds to a singular spectral curve, i.e., the polynomial a has a root of order at least
two at α0. We can remove this singularity without changing the surface. There is a polynomial p such that
ξ̃λ = ξλ/p does not vanish at α0 and is the initial value of a polynomial Killing field ζ̃λ without zeroes at
α0. We show in [10, Proposition 4.4] that both polynomial Killing fields ζλ and ζλ/p induce congruent
minimal surfaces in S

2 × R:

Proposition 5.4 [10, Proposition 4.4] If a polynomial Killing field ζλ with initial value ξλ ∈ I(a) ⊂ Pg

has zeroes in λ ∈ C
×, then there is a polynomial p with |p(0)| = 1 and the following properties:

(1) ξλ/p has no zeroes in λ ∈ C
×, and has degree g − deg p.

(2) If Fλ and F̃λ are the extended frames of ζλ respectively ζλ/p, then F̃λ(p(0)z) = Fλ(z) for all z, and
the induced immersions conformally parameterized by their Sym points are congruent.

Hence, among all polynomial Killing fields that give rise to a minimal surface of finite type there is
a unique one of smallest possible degree (without roots in λ ∈ C

×).

Proposition 5.5 [10, Lemma 4.7] Let I(a) be the isospectral set associated to a ∈ Mg.
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(1) If a has a double root α0 with |α0| = 1, then I(a) = {ξλ ∈ I(a) | ξα0 = 0} and there is an
isomorphism

I(a) −→ I(α0(λ− α0)
−2a) defined by ξλ �→ √

α0(λ− α0)
−1 ξλ

(2) If a has double root α0 with |α0| �= 1 then I(a) = {ξλ ∈ I(a) | ξα0 �= 0} ∪ {ξλ ∈ I(a) | ξα0 = 0}
and there is an isomorphism

{ξλ ∈ I(a) | ξα0 = 0} −→ I(|α0|2(λ− α0)
−2(1 − ᾱ0λ)

−2a) defined by ξλ �→ |α0|(λ− α0)
−1(1 − ᾱ0λ)

−1ξλ.

Proof of (1): If a has a double root at α0 with |α0| = 1 , then for any ξλ ∈ I(a), we have ξα0 = 0, because
the determinant is a norm for any λ ∈ S

1.
Proof of (2): If a has a double root at α0 with |α0| �= 0, then the isospectral set splits into the set of
potentials with a zero at α0 (which again can be removed), and the set of potentials non-vanishing at α0.
In the latter case ξα0 is nilpotent, and the surface is called a bubbleton. �

In general, the action (4.10) has several orbits. Two potentials belong to the same orbit, if and only
if they have the same roots of the same order. In Proposition 7.2, we shall see that either all elements in
the orbit of a potential correspond to embedded minimal annuli, or none.

6. Spectral data of minimal annuli of finite type

In this section, we characterize potentials which correspond to periodic minimal immersions. This prop-
erty turns out to be a property of the polynomial a: For a given a ∈ Mg either all elements of the isospectral
set I(a) (4.9) have this property or no element. We study the monodromy Mλ(τ ) = Fλ(z + τ)Fλ(z)−1 of
the extended frame Fλ for a period τ . By construction, the monodromy takes values in SU2 for |λ| = 1.
The monodromy depends on the choice of base point z, but its conjugacy class and hence eigenvalues
μ, μ−1 do not. The eigenspace of Mλ(τ ) depends holomorphically on (μ, λ).

Let ζλ be a solution of the Lax equation (4.3) with initial value ξλ ∈ Pg, with period τ so that
ζλ(z + τ) = ζλ(z) for all z ∈ C. Then for z = 0 we have

ξλ = ζλ(0) = ζλ(τ ) = F−1
λ (τ ) ξλ Fλ(τ ) = M−1

λ (τ )ξλ Mλ(τ )

and thus

[ Mλ(τ ), ξλ ] = 0.

Hence, the eigenvalues ν of ξλ and μ of Mλ(τ ) are different functions on the same Riemann surface
�, but the eigenspaces of Mλ(τ ) and ξλ coincide point-wise. At λ = 0 and λ = ∞, the monodromy
Mλ(τ ) = Fλ(τ ) has essential singularities. The existence of a closed annulus depends on the existence of
the functionμ having the correct behaviour at λ = 0 and λ = ∞. Additionally, the condition F(τ ) = ±1
at the Sym point λ = 1 reformulate as μ(1) = ±1. In the case where a has only simple roots, we have
only to prove that μ is holomorphic on � \ {0, ∞}, which is a weaker condition than μ = f (λ)ν + g(λ)
with holomorphic functions f , g defined on C

× in the general case (when ν has higher order roots, f
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16 L. HAUSWIRTH ET AL.

could have poles). In particular, there exits a polynomial b of degree g + 1 such that the meromorphic
differential takes the form:

d lnμ = b(λ)dλ

νλ2
. (6.1)

Keeping this in mind we define spectral data of a minimal cylinder.

Definition 6.1 [10, Definition 5.10] For each g ∈ N0 = N∪{0} let Mg
ann denote the space of spectral data

(a, b) ∈ C
2g[λ]×C

g+1[λ] of a minimal cylinder of finite type in S
2 ×R with the following properties:

(i) λ2ga(λ̄−1) = a(λ) and λ−ga(λ) ≤ 0 for all λ ∈ S
1, and a(0) = − 1

16 ei	.

(ii) λg+1b(λ̄−1) = −b(λ).

(iii) b(0) = τei	

32 ∈ ei	/2
R.

(iv) Re
(∫ 1/ᾱi

αi

b(λ)dλ
νλ2

)
= 0 for all roots αi of a where the integral is computed along the straight line

segment from αi to ᾱ−1
i .

(v) The unique function h : �̃ → C where �̃ = �−∪γi and γi are closed cycles over the straight lines
connecting αi and ᾱ−1

i , such that

σ ∗h(λ) = −h(λ) and dh = b(λ)dλ

νλ2

takes values in iπZ at all roots of λ �→ (λ− 1)a(λ).

(vi) There are holomorphic functions f , g defined on C
× with μ = eh = f ν + g (this follows from the

other conditions unless a has higher order roots).

The disjoint union of all these sets is denoted by Mann = ⋃
g∈N0

Mg
ann.

For all (a, b) ∈ Mann let A(a, b) denote the corresponding set of minimal annuli.

Remark 6.2 The normalization |a(0)| = 1
16 in (i) is related to 4|Q| = 1 in Theorem 2.2.

For potentials ξλ without roots (i.e. of minimal degree) the commuting monodromy can be written as
Mλ(τ ) = f ξλ + g 1 with functions f , g on C

×. This implies condition (vi).
If (a, b) ∈ Mg

ann, then also (a, −b) ∈ Mg
ann. Since A(a, −b) = A(a, b) we neglect this ambiguity.

Theorem 6.3 [10, Corollary 5.9] If ξλ ∈ Pg corresponds to a periodic minimal immersion X : C/τZ →
S

2 × R, then there exists a polynomial b, which obeys (i)-(vi) with a(λ) = −λ det(ξλ). If (a, b) obeys
(i)-(vi), then all ξλ ∈ I(a) correspond to minimal annuli of finite type.

6.1 Spectral data of the Abresch annuli.

In the following proposition, we describe the spectral data MAbr = M0
Abr ∪ M1

Abr ∪ M2
Abr of the Abresch

annuli:

Proposition 6.4 [10, Proposition 7.2]
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(1) The spectral data M0
Abr of Abresch annuli of genus 0 consists of the pair a(λ) = −1

16 and b(λ) =
± π

16 (λ− 1), which is unique up to the sign of b.

(2) The spectral data M1
Abr of Abresch annuli of genus 1 are 2 one-dimensional families:

i. a(λ) = 1
16α (λ − α)(αλ − 1) and b(λ) = b(0)

γ
(λ − γ )(γ λ − 1) parameterized by α ∈ (0, 1] with

γ ∈ [α, 1] and b(0) ∈ iR both determined by α.

ii. a(λ) = −1
16β (λ + β)(βλ + 1) and b(λ) = b(0)(1 − λ)(1 + λ) parameterized by β ∈ (0, 1] with

b(0) ∈ R determined by β.

(3) The spectral data M2
Abr of Abresch annuli of genus 2 is a two-dimensional family:

a(λ) = λ−α
16βα (αλ − 1)(λ + β)(βλ + 1) and b(λ) = b(0)

γ
(1 + λ)(λ − γ )(γ λ − 1) parameterized by

(α,β) ∈ (0, 1]2 with γ ∈ [α, 1] and b(0) ∈ iR determined by α and β.

Proof. The proof is given in [10]. The Abresch system (2.2) gives the relationωzzz−2ω3
z = − 1

4ωz̄+ c−d
2 ωz.

We apply the iteration of Pinkall–Sterling described in Section 4 and obtain a corresponding polynomial
a. Finally, we construct b with (a, b) ∈ Mann. �

6.2 Spectral data with higher order roots of a.

We next characterize pairs (a, b), (ã, b̃) of spectral data in Mann for which ã = p2a and b̃ = pb (see
Propositions 5.4 and 5.5). We decorate the objects corresponding to (ã, b̃) with a tilde and set λ̃ = λ.
Suppose first (ã, b̃) ∈ Mg

ann. Choose any polynomial p such that p2 divides ã, and

λdeg pp(λ̄−1) = p(λ) |p(0)| = 1. (6.2)

Due to Condition (vi) in Definition 6.1, h̃ is holomorphic on �̃× and p divides b̃. For a = ã/p2 and
b = b̃/p, we have dh = dh̃. Then (a, b) obeys conditions (i)–(vi) in Definition 6.1 with f = pf̃ and g = g̃.

Conversely, for (a, b) ∈ Mg
ann we set ã = p2a and b̃ = pb. This implies h̃ = h with λ̃ = λ. The

relations σ ∗h = −h and σ ∗ν = −ν imply

g = cosh(h) = cosh(h̃) = g̃,
f

p
= sinh(h)

νp
= sinh(h̃)

ν̃
= f̃ .

For (ã, b̃) to satisfy condition (vi), p must divide f (λ)
λ−1 = sinh(h)

ν(λ−1) . Thus sinh(h) vanishes at the roots of p.
Differentiation gives that the following meromorphic function is either holomorphic or has first-order
poles at the roots of p:

dh/dλ

(λ− 1) ν p(λ)
= b(λ)

(λ− 1) λ2 a(λ) p(λ)
. (6.3)

For such p, we have indeed (ã, b̃) ∈ Mg
ann. We summarize the discussion in the following

Lemma 6.5 (Compare [8, Lemma 5.3]) For (ã, b̃) ∈ Mg
ann choose any polynomial p obeying (6.2) such

that p2 divides ã. Then p divides b̃ and (a, b) ∈ Mg−deg p
ann with ã = p2a and b̃ = pb.
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18 L. HAUSWIRTH ET AL.

Conversely, suppose (a, b) ∈ Mg
ann and p obeys (6.2). If in addition sinh(h) vanishes at the roots of

p, and the function (6.3) has at the roots of p at worst simple poles, then (p2a, pb) ∈ Mg+deg p
ann . �

Due to Proposition 5.5 (compare [10, Sections 4 and 6]), the corresponding sets A(p2a, pb) and
A(a, b) are related. For pairs (a, b) ∈ Mg

ann and (p2a, pb) ∈ Mg+deg p
ann as in Lemma 6.5 we have A(a, b) ⊂

A(p2a, pb) with equality if all roots of p are unimodular.
We interpret the supplementation of non-real singularities (away from S

1) as an enrichment of the
complexity and the removal as a reduction of the complexity. Geometrically, this corresponds to adding
or removing bubbletons by a suitable Bianchi–Bäcklund transform. Adding or removing a unimodular
singularity does not change the complexity. It will turn out that the enrichment of complexity destroys
embeddedness, while the reduction of complexity preserves embeddedness. Finally, we determine for
the totally geodesic annulus all possible higher order roots:

Lemma 6.6 For (a, b) ∈ M0
Abr, the pair of polynomials (p2a, pb) belongs to Mdeg p

ann if and only if the
polynomial p obeys (6.2) and has simple roots in {2n2 − 1 + 2n

√
n2 − 1 | n ∈ Z}.

Proof. For (a, b) ∈ M0
Abr the eigenvalue μ of the monodromy is calculated in [10, p. 733]:

h = lnμ = πi

2
(λ−1/2 + λ1/2).

Therefore, sinh(h) vanishes at λ−1/2 + λ1/2 ∈ 2Z ⇐⇒ λ ∈ {2n2 − 1 + 2n
√

n2 − 1 | n ∈ Z}. Now the
statement follows from Lemma 6.5. �

The spectral data in M1
Abr ∪ M2

Abr have higher order roots, if α = 1 and γ = 1 or if β = 1. In these
cases they are of the form (ã, b̃) = (p2a, pb) as in Lemma 6.5 with (a, b) ∈ M0

Abr ∪ M1
Abr.

7. The spectral data of properly embedded minimal annuli

In this section, we first show that all potentials in the isospectral set I(a) of spectral data (a, b) ∈ Mg
ann

correspond to proper minimal embeddings, if one potential ξλ ∈ I(a) without roots does so. This allows
us to define the spectral data Mg

emb ⊂ Mg
ann of properly embedded minimal annuli. In a second step, we

show that these sets Mg
emb are open and closed subsets of Mg

ann. In particular, all continuous deformations
of spectral data preserve these subsets Mg

emb. We remark that the arguments are similar to the arguments
of [8, Section 7]. The main difference is the replacement of [8, Proposition 7.2] by the following lemma.
In this lemma, we conceive minimal immersions C/τZ → S

2 ×R as maps on C which are periodic with
period τ and compare two such immersions with different periods on bounded discs B(w, r) ⊂ C. The
diameter of these discs B(w, r) will be larger than the length of the periods.

Lemma 7.1 For ε0 > 0 there exists r > 0 and ε2 > 0 with the following property: a minimal annulus
X̃ : C/τ̃Z → S

2 × R properly immersed with |τ̃ | ≥ ε0 is a proper embedding, if for all w ∈ C/τ̃Z there
exists a proper minimal embedding Xw : C/τwZ → S

2 × R with |τw − τ̃ | < ε2, |τw| ≥ ε0 which obeys
on the discs B(w, r) ⊂ C

‖X̃(z)− Xw(z)‖C2(B(w,r),S2×R) < ε2. (7.1)
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Proof. Due to the linear area growth in Lemma 3.3 the length of the periods |τw| of the proper embeddings
Xw are bounded by C2(ε0)/2. For given ε0 > 0, choose r such that the diameter 2r of B(w, r) is larger than
C2(ε0)/2 + ε2 > max{|τw|, |τ̃ |}. For sufficiently small ε2, the C2-bound (7.1) guarantees that the minimal
immersion X̃ stays on B(w, r) in the tubular neighbourhood Tε1 of the proper minimal embedding Xw

constructed in Lemma 3.3. Moreover, for sufficiently small ε2 this part of X̃ is locally a normal graph
over the corresponding part of X . If |τw − τ̃ | is small enough, then by unique continuation the whole
image X̃[B(w, r)] is a normal graph over the corresponding part of X and therefore embedded. Since all
horizontal intersections are embedded circles X̃ is a proper embedding. �

We shall apply this lemma only to minimal annuli of finite type. Since the linear third coordinate of a
minimal annulus X̃ : C/τ̃Z → S

2 ×R of finite type is constant along the lines parallel to the period τ̃ , the
pre-image of a compact set in S

2 ×R is bounded in C/τ̃Z and X̃ is proper. We verify the other assumptions
of the lemma by considering the potentials ξ̃λ and ξw,λ of both minimal annuli X̃ and Xw. More specifically,
we assume that the corresponding spectral data (ã, b̃), (a, b) ∈ Mann with ξ̃λ ∈ I(ã) and ξw,λ ∈ I(a) are
sufficiently close in Mg

ann with ε0 ≤ min{|τ̃ |, |τ |}. Since on the compact isospectral sets I(ã) and I(a)
all derivatives of the corresponding immersions are uniformly bounded, the C2-bound (7.1) is satisfied if
the potentials ξ̃λ and ξw,λ translated by w are sufficiently close, i.e., ‖π(w)ξ̃λ − π(w)ξw,λ‖ is sufficiently
small.

Let us now prepare the definition of spectral data of properly embedded annuli and prove that the
property of being properly embedded depends only on the corresponding spectral data:

Proposition 7.2 (Compare [8, Proposition 7.3]) Let ξλ ∈ Pg have no roots in λ det ξλ ∈ C
× and

correspond to a properly embedded minimal annulus X : C/τZ → S
2 × R. Then, we have:

(1) If a(λ) = −λ det ξλ has only simple roots, then {π(t)ξλ | t ∈ C
g} = I(a) and all ξ̃λ ∈ I(a)

correspond to properly embedded minimal annuli.

(2) If ã(λ) = −λ det ξλ has higher order roots, then I(ã) is the closure of {π(t)ξλ | t ∈ C
g} and all

ξ̃λ ∈ I(ã) correspond to properly embedded minimal annuli.

Proof of (1): Due to Theorem 6.3, all ξ̃λ ∈ I(a) correspond to minimal immersions X̃ : C/τZ → S
2 ×R.

The continuity and the commutativity of the group action (4.10) in Proposition 4.6

π(z + t)ξλ = π(z)π(t)ξλ = π(t)π(z)ξλ

and the compactness of I(a) implies that for all ε > 0 there exists a δ > 0 such that

‖π(z)π(t)ξ̃λ − π(z)ξ̃λ‖ = ‖π(t)π(z)ξ̃λ − π(z)ξ̃λ‖ ≤sup
ξλ∈I(a)

‖π(t)ξλ − ξλ‖ ≤ ε for ξ̃λ ∈ I(a) and |t| < δ.

Hence, for |t| < δ the immersion X̃λ corresponding to π(t)ξλ obeys (7.1) with suitable isometric copies
Xw of the immersion corresponding to ξλ. Due to Lemma 7.1, there exists a δ > 0, such that for all
t ∈ B(0, δ) the minimal annuli corresponding to π(t)ξ̃λ are properly embedded, if ξ̃λ corresponds to a
minimal proper embedding. Hence, the set of all t ∈ C

g such that π(t)ξλ corresponds to a minimal proper
embedding is C

g. If a has only simple roots, then due to [10, Proposition 4.12] C
g acts transitively on

I(a) and all ξ̃λ ∈ I(a) correspond to minimal proper embeddings. This proves (1).
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20 L. HAUSWIRTH ET AL.

Proof of (2): Let ã = p2a with a polynomial p obeying (6.2). Since ξλ ∈ I(ã) would vanish at all roots
of p on S

1, p has no roots on S
1 and deg p is even. For deg p = 2, we parameterize in [10, Section 6]

I(ã) by pairs (L, ξλ) of lines L ∈ CP1 together with ξλ ∈ I(a). The elements ξ̃λ ∈ I(ã) without roots
correspond to pairs such that L⊥ is not an eigenline of the value of ξλ at a root of p [10, Proposition 6.6].
Such ξ̃λ forms a dense orbit in I(ã). By induction in deg p

2 , we conclude for general p without roots on S
1

that {π(t)ξ̃λ | t ∈ C
g+deg p} is dense in I(ã), if ξ̃λ ∈ I(ã) has no roots. The first assertion together with

Lemma 7.1 implies (2). �
Let us now define the spectral data of properly embedded minimal annuli. Any such annulus corre-

sponds to many (a, b) ∈ Mann. If we replace (a, b) ∈ Mg
ann by (p2a, pb) ∈ Mg+deg p

ann as in Lemma 6.5,
then A(a, b) ⊂ A(p2a, pb). This is the only ambiguity of (a, b). Indeed all properly embedded minimal
annuli correspond, up to the sign of b, uniquely to (a, b) ∈ Mann and ξλ ∈ I(a) without roots such that
all (ã, b̃) ∈ Mann with X ∈ A(ã, b̃) are of the form (ã, b̃) = (p2a, pb) in Lemma 6.5. Proposition 7.2
shows that for all properly embedded minimal annuli, these minimal sets A(a, b) contain only properly
embedded minimal annuli. Therefore any properly embedded minimal annulus is contained in the set
A(a, b) of an element (a, b) ∈ Memb ⊂ Mann defined as follows:

Definition 7.3 Let Mg
emb denote the space of (a, b) ∈ Mg

ann whose A(a, b) contain only properly
embedded minimal annuli. The union

⋃
g∈N0

Mg
emb is denoted by Memb.

For the second application of Lemma 7.1, we will utilize the openness and properness of the map
ξλ �→ −λ det ξλ.

Lemma 7.4 (compare [8, Lemma 3.4]) The following map is open and proper:

A : Pg → Mg, ξλ �→ −λ det ξλ (7.2)

Proof. In [10, Proposition 4.4] the properness is proven. Due to [10, Proposition 4.12 and Theorem 6.8]
the orbits of the group action (4.10) are the subsets of I(a) of all elements ξλ with the same roots on C

×

counted with multiplicities. For any a ∈ Mg, an off-diagonal potential

ξλ =
(

0 λ−1β(λ)

γ (λ) 0

)
belongs to I(a), if and only if the polynomials β and γ of degree g obey β(λ)γ (λ) = a(λ) and γ (λ) =
−λgβ(λ̄−1). The roots of β are g roots of a, which are mapped by λ �→ λ̄−1 onto the remaining g roots
of a. For any choice of such roots, β and γ are determined up to multiplication by inverse unimodular
numbers. At higher order roots α ∈ C

× \ S
1 of a, we can choose the multiplicity of the root of β at α

between zero and the multiplicity of the root α of a. The sum of the multiplicities of the roots of β at
α and at ᾱ−1 has to be equal to the multiplicity of the root of a at α. Therefore, there exists in every
orbit of the isospectral group action (4.10) at least one off-diagonal ξλ. Due to the relation between the
polynomials a and β and γ , the map A (7.2) is open at off-diagonal ξλ. Since the isospectral action (4.10)
acts by diffeomorphisms on Pg and preserves the fibres of the map A, this map is (globally) open. �

Now we show that Mg
emb is open and closed in Mg

ann (compare [8, Proposition 7.5]):
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Proposition 7.5 For all g ∈ N0 the space Mg
emb is an open and closed subset of Mg

ann.

Proof. We combine Lemmas 7.1 and 7.4 and show that Mg
emb is open and closed in Mg

ann. For both
arguments, we choose a compact neighbourhood N ⊂ Mg

ann of some (a, b) ∈ Mg
ann. The continuous

function (a, b) �→ |τ | takes a minimum ε0 > 0 on N with constants ε2 > 0 and r > 0 in Lemma 7.1. The
image M ⊂ Mg of N with respect to the projection (a, b) �→ a is compact.

First, we use the properness of (7.2) to prove that Mg
emb is open in Mann, so let (a, b) ∈ Mg

emb.
Therefore, any ξλ ∈ I(a) corresponds to a proper minimal embedding X and has in A−1[M] an open
neighbourhood, whose immersions X̃ obey (7.1) with w = 0, Xw = X and the constants ε2 and r. The
union U of these open neighbourhoods is in A−1[M] an open neighbourhood of the compact subset
A−1[{a}]. Due to Lemma 7.1, the following set O is contained in Mg

emb:

O = {(ã, b̃) ∈ Mg
ann | ξ̃λ ∈ U for all ξ̃λ ∈ I(ã)}.

We claim that O is an open neighbourhood of (a, b) in N . Let a sequence (an, bn)n∈N in N \ O converge
to (ã, b̃) ∈ Mg

ann. Then, there exists a sequence (ξn)n∈N in A−1[{an}] \ U. The set

A−1[{an | n ∈ N} ∪ {ã}]
is compact, since A is proper. A subsequence of (ξn)n∈N converges to ξ̃ ∈ A−1[{ã}]. If ã �∈ M, then
(ã, b̃) �∈ O. Otherwise, the subsequence of (ξn)n∈N is mapped by A to a convergent sequence in M. This
subsequence stays in the compact subset A−1[M] \ U of A−1[M] and has limit ξ̃λ �∈ U. This again implies
(ã, b̃) �∈ O. Therefore N \ O is closed and Mg

emb ⊃ O is open in Mg
ann.

Now we use the openness of A to show that Mg
emb is closed in Mg

ann. Let (an, bn) be a sequence in Mg
emb

converging in Mg
ann to the aforementioned (a, b). We have to show that any ξ̃λ ∈ A−1[{a}] corresponds to

an embedded annulus X̃ . Since A is open every neighbourhood of ξ̃λ contains elements of A−1[{an}] for
sufficiently large n. Therefore ξ̃λ is the limit of a sequence ξλ,n ∈ A−1[{an}]. Then X̃ fulfils the condition
of Lemma 7.1 and is embedded. �

We summarize the results of this section in the following theorem (compare [8, Theorem 3]):

Theorem 7.6 The subsets Mg
emb ⊂ Mg

ann have the following properties:

(1) M0
emb = M0

Abr.

(2) Let (ã, b̃) = (p2a, pb), (a, b) ∈ Mann and p be as in Lemma 6.5.

• If (ã, b̃) ∈ Mg+deg p
emb , then (a, b) ∈ Mg

emb.

• If (a, b)∈Mg
emb and all roots of p belong to S

1, then (ã, b̃) ∈ Mg+deg p
emb .

(3) For all g ∈ N ∪ {0}, the subset Mg
emb is closed and open in Mg

ann.

Proof. The only solution of the sinh-Gordon equation for g = 0 is trivial ω = 0. Therefore, M0
emb is

equal to M0
Abr which contains the spectral data of the unique totally geodesic annulus.

Property (2) follows from the properties of A(a, b) and A(p2a, pb) in the situation of Lemma 6.5;
Due to Propositions 5.4 and 5.5, we have in all cases A(a, b) ⊂ A(p2a, pb) with equality, if all roots of
p are unimodular. Property (3) is proven in Proposition 7.5. �
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8. A smooth parametrization of Mg
ann

In this section, we adapt two methods of the theory of moduli spaces of spectral curves to the present
situation. The first method is a parametrization of the moduli space by the values of the function h in
property (v) of Definition 6.1 at the roots of b. This parametrization was introduced by Marchenko–
Ostrowskii [23] in the context of periodic solutions of Hill’s equation. The other method are the Whitham
deformations, which were introduced by Krichever [24] in the study of moduli space theory. We next
describe the Whitham deformations of the spectral curves of the sinh-Gordon equation.

We construct vector fields on the space of spectral data. We conceive lnμ as a function depending on
λ and t. This function has on� simple poles at λ = 0 and λ = ∞. Let us take a covering O1, O2, . . . , O2g

of open subsets of �, such that each Oi contains at most one branch point αi and O2g+1 is an open
neighbourhood of (∞, 0), and O2g+2 an open neighbourhood of (∞, ∞). We can locally express the
meromorphic function on � by

lnμ =
⎧⎨⎩

fi(λ)ν + πi ni on Oi, 1 ≤ i ≤ 2g
ν f2g+1(λ)+ πi n2g+1 on O2g+1

ν f2g+2(λ)+ πi n2g+2 on O2g+2.

We can write locally on the open set Oi,

∂t lnμ = ∂t fi(λ)ν − ȧ(λ)fi(λ)

2λν
.

We remark that at each branch point ∂t lnμ has a first-order pole on �. Since the branches of lnμ differ
from each other by an integer multiple of 2πi, then ∂t lnμ is single valued on� and can have poles only
at the branch points of �, or equivalently at the zeroes of a and at λ = 0 or λ = ∞. Collecting all these
conditions, we can write ∂t lnμ globally on � by

∂t lnμ = c(λ)

νλ
(8.1)

with a real polynomial c of degree at most g + 1 which satisfies the reality condition

λg+1c(λ̄−1) = c(λ). (8.2)

The abelian differential d lnμ of the second kind is of the form (6.1), where b is a real polynomial of
degree g + 1 which satisfies the reality condition (ii) in Definition 6.1. We differentiate (6.1) with respect
to t, and (8.1) with respect to λ and obtain

∂2
tλ lnμ = ∂λ

c

νλ
= c′

νλ
− c

νλ2
− cν ′

ν2λ
= 2ν2λ2c′ − 2λν2c − ca′λ+ ca

2ν3λ3
,

∂2
λt lnμ = ∂t

b

νλ2
= ḃ

νλ2
− bν̇

ν2λ2
= 2ν2λḃ − bȧ

2ν3λ3
.

Since λ does not depend on t both second derivatives coincide:

−2ḃa + bȧ = −2λac′ + ac + λa′c. (8.3)
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Both sides in the last formula are polynomials of degree at most 3g + 1 which satisfy a reality condition.
This corresponds to 3g + 2 real equations. Choosing a polynomial c which satisfies the reality condi-
tion (8.2), we thus obtain a vector field on the space of (a, b) ∈ C

2g[λ] × C
g+1[λ]. In the case where a

and b have only simple roots αi respectively βi, this vector field is equal to

ȧ(αi) = αia′(αi) c(αi)

b(αi)
ḃ(βi) = 2βi a(βi) c′(βi)− a(βi) c(βi)− βi a′(βi) c(βi)

2 a(βi)
. (8.4)

When a and b have no common roots, then equation (8.3) uniquely determines the singular parts of ȧ
a

at the roots of a and the singular parts of ḃ
b at the roots of b. Condition (i) in Definition 6.1 uniquely

determines a in terms of the roots of a and ȧ in terms of the singular parts of ȧ
a . Therefore, (8.3) defines

a smooth vector field on the space of pairs (a, b) ∈ C
2g[λ] × C

g+1[λ] with resultant(a, b) �= 0 and with
properties (i)–(ii) in Definition 6.1. These vector fields extend to meromorphic vector fields on the space
of (a, b)with properties (i)–(ii) in Definition 6.1. Let us now determine those vector fields which preserve
Mg

ann. Their values at (a, b) with resultant(a, b) �= 0 span the tangent space of Mg
ann which is locally at

(a, b) a submanifold of C
2g[λ] × C

g+1[λ].

Lemma 8.1 At all (a, b) ∈ Mg
ann with resultant(a, b) �= 0 the moduli space Mg

ann is a submanifold of
(a, b) ∈ C

2g[λ] × C
g+1[λ]. The tangent space is the image of the isomorphism of the following subspace

of c ∈ C
g+1[λ] onto the corresponding solutions (ȧ, ḃ) of (8.3):

T(a,b)Mg
ann � {c ∈ C

g+1[λ] | c obeys (8.2), c(1) = 0 and Im(c(0)/b(0)) = 0}. (8.5)

If Re(c(0)/b(0)) < 0, then |τ | is increasing.

Proof. We shall use the Implicit Function Theorem. The space of polynomials (a, b) ∈ C
2g[λ]×C

g+1[λ],
which obey the first equation in condition (i) and condition (ii) in Definition 6.1 form a real (3g + 3)-
dimensional vector space. If we impose in addition, the third equation in condition (i) the space becomes
a real (3g + 2)-dimensional affine space. Due to condition (vi) higher order roots of a are common roots
of a and b, which are excluded by resultant(a, b) �= 0. So the inequality in condition (i) and condition (vi)
are locally preserved. Condition (iii) is equivalent to the vanishing of one real function and the two
conditions (iv)–(v) are equivalent to the values of h at the 2g + 1 roots of a(λ)(λ − 1) being constant.
Using the transformation properties of h with respect to the involutions, we see that Mg

ann is at (a, b)
with resultant(a, b) �= 0 locally the level set of 2g + 2 real functions. If the kernel of the derivatives of
all these functions has real dimension g, then these derivatives are linearly independent. Moreover, the
corresponding level sets are real g-dimensional submanifolds of C

2g[λ] × C
g+1[λ]. Finally, the tangent

space of this submanifold is equal to the kernel of the derivatives of these functions.
Let (ȧ, ḃ) be an element in this kernel. Then all periods of ḋh vanish and this 1-form is exact. By the

transformation properties of dh there exists a polynomial c ∈ C
g+1[λ] obeying (8.2), such that dḣ is equal

to the exterior derivative of (8.1). Since we conceive lnμ locally as a function depending on λ and t, the
polynomials (ȧ, ḃ) obey (8.3). The antisymmetry of (8.1) guarantees that the values of h at the 2g roots
of a(λ) are preserved. The value of h at λ = 1 is preserved if and only if c(1) = 0. It remains to preserve
property (iii) such that b(0) = τei	/32 takes values in ei	/2

R, where 	 is defined by a(0) = −ei	

16 . We
insert λ = 0 into (8.3) and obtain

b(0)√−a(0)
= τei	/2

8
, ∂t ln

b(0)√−a(0)
= ḃ(0)

b(0)
− ȧ(0)

2a(0)
= −c(0)

2b(0)
. (8.6)
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Hence property (iii) is preserved if and only if Im(c(0)/b(0)) = 0, and |τ | is increasing for
Re(c(0)/b(0)) < 0. So the kernel of the derivatives of the functions, whose level set is locally Mg

ann, is
the image of the isomorphism of the space (8.5) onto the corresponding solutions (ȧ, ḃ) of (8.3). This
subspace (8.5) of c ∈ C

g+1[λ] has real dimension g and the proof is complete. �

The polynomials (a, b) describe the dependence of d lnμ and λ on each other. Let us now use locally
the function lnμ instead of its derivative d lnμ. This allows us to extend the foregoing lemma to all
(a, b) ∈ Mg

ann with no common roots of a and the function f . Here f is the first of the two holomorphic
functions f , g : C

× → C in condition (iv) of Definition 6.1 with μ = f ν + g. This condition that a and
f have no common roots is equivalent to the condition that lnμ and λ generate the same functions as λ
and ν. Due to g2 − f 2ν2 = 1, the roots of f are points where μ2 = 1. They are possible roots of p, such
that (ã, b̃) = (p2a, pb) belongs to Mg

ann as in Lemma 6.5. By an appropriate choice of p, we can always
achieve in Lemma 6.6 that the corresponding function f̃ has no common roots with ã. Moreover, the set
of roots of such p contains not only all the common roots of f and a, but in addition can also contain
finitely many of the infinitely many roots of f .

For the proof of the following proposition, it is convenient to slightly enlarge Mg
ann.

Definition 8.2 For all g ∈ N0, let Mg
per denote the space of all (a, b) ∈ C

2g[λ] × C
g+1[λ] which obey

conditions (ii)–(iv),(vi) in Definition 6.1 and slightly weaker conditions (i) and (v): In condition (i) we
remove the inequality λ−ga(λ) ≤ 0 for unimodular λ and in condition (v) we restrict the values of h only
at all roots of a and not at λ = 1.

Let us now fix an element (a, b) ∈ Mg
ann such that the corresponding f has no common root with a. We

choose simply connected neighbourhoods V1, . . . , VM in C
× at all roots of b including the common roots

with a. Let U1, . . . , UM denote the pre-images in �∗ of V1, . . . , VM under the map λ. For m = 1, . . . , M,
we choose on Um a branch of the function lnμ. On Um, the function 1

2πi
(lnμ + σ ∗ lnμ) is equal to a

constant integer nm at the branch point. These branches obey

(lnμ− nmiπ)2 = Am for m = 1, . . . , M, (8.7)

with holomorphic functions Am on Vm which vanish at the roots of a. Since σ ∗(lnμ− nmiπ) = −(lnμ−
nmiπ), the function Am depends only on λ (see Theorem 8.2 in [25]). If we choose Um and Vm pairwise
disjoint, then the derivative of Am has no roots besides the corresponding root of b (d lnμ vanishes at
roots of b). The roots of b are exactly the roots of the derivative of Am. For small enough Um and Vm,
there exists a biholomorphic map λ �→ zm(λ) from Vm to a simply connected open neighbourhood Wm of
0 ∈ C, such that Am coincides with

Am(λ) = zdm
m (λ)+ Am,dm . (8.8)

At a root of b, which is not a root of a the constant Am,dm �= 0, and dm − 1 is the order of the root of b. At
a common root of a and b, the constant Am,dm = 0 and dm is an odd integer in the case of common roots
of a and b, and an even integer in the case of double points.

We describe spectral data (â, b̂) ∈ C
2g[λ] × C

g+1[λ] in a neighbourhood of the given spectral data
(a, b) by small perturbations Â1, . . . , ÂM of the polynomials A1, . . . , AM . More precisely, we consider
polynomials Â1, . . . , ÂM of the form

Âm(zm) = zdm
m + Âm,2zdm−2

m + Âm,3zdm−3
m + . . .+ Âm,dm (8.9)
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with coefficients Â = ((Â1,2, . . . , Â1,d1), . . . , (ÂM,2, . . . , ÂM,dM )) ∈ C
d1−1 × . . . × C

dM −1 = C
g+1. Here,

the centre of the local parameter zm is chosen in such a way, that the sum of the roots of Âm is zero.
Let A = ((A1,2, . . . , A1,d1), . . . , (AM,2, . . . , AM,dM )) be the corresponding coefficients of the polynomi-
als A1, . . . , AM (8.8). For sufficiently small supremum norm ‖Â − A‖∞, we glue each Wm of the sets
W1, . . . , WM to CP1 \ (V1 ∪ . . .∪ VM) along the boundary of Vm in such a way that for all m = 1, . . . , M
the polynomial Âm coincides with the unperturbed function Am in a tubular neighbourhood of the bound-
ary ∂Wm. We obtain a new copy of CP1. By uniformization, there exists a new global parameter λ̂,
which is equal to 0 and ∞ at the two points corresponding to λ = 0 and λ = ∞, respectively. This
new parameter is unique up to multiplication with elements of C

×. There exists a biholomorphic map
λ̂ = φ(λ) which changes the parameter λ ∈ CP1 \ (V1 ∪ . . . ∪ VM) in the global parameter λ̂. Fur-
thermore, for each m = 1, . . . , M there is a biholomorphic map λ̂ = φm(zm) which changes the local
parameter zm ∈ Wm into λ̂. Let λ̂ �→ â(λ̂) be the polynomial whose roots (counted with multiplicities)
coincide with the roots of Â1(λ̂), ..., ÂM(λ̂) and the roots of λ̂ �→ a ◦ φ−1(λ̂) on C

× \ (V1 ∪ . . . ∪ VM).
Now �̂ = {(ν̂, λ̂) ∈ C

2 | ν2 = λ̂−1â(λ̂)} yields a new hyperelliptic curve. The equations

(lnμ− nmπi)2 = Âm(λ̂) = Âm ◦ φ−1
m (λ̂) = Âm(zm) for m = 1, . . . , M (8.10)

define a function μ on the pre-image of φm(Wm) ∩ CP1 by the map λ̂ into �̂. The function μ extends to
the pre-image of C

∗ \ (V1 ∪ . . .∪ VM) by λ̂ = φ(λ) and coincides with the unperturbed μ on this set. On
�̂ the differential d lnμ is meromorphic and takes the form d lnμ = b̂ dλ̂

ν̂λ̂2 with a unique polynomial b̂.
By taking the derivative of (8.10), we have

2(lnμ− nmπi) ∂λ̂ lnμ = Â′
m(zm(λ̂)) z′

m(λ̂).

The roots of b̂ are the roots of the derivatives of Â1, ..., ÂM . Let us now impose a reality condition on
these coefficients, such that (â, b̂) obey the reality conditions (i)–(ii) in Definition 6.1. The involution
ρ interchanges the roots of b. Since m ∈ {1, . . . , M} labels these roots, the involution ρ also acts on
{1, . . . , M}. We denote this action by m �→ ρm. We may choose the open sets V1, . . . , VM in such way,
that the map λ �→ λ̄−1 maps Vm onto Vρm and η maps Um onto Uρm. Furthermore, we choose the local
parameters z1, . . . , zM such that

zρm(λ) = z̄m(λ̄
−1) for all m = 1, . . . , M.

Now, we impose on the coefficients Â the following reality condition:

(Âρm,1, . . . , Âρm,dρm) = (Âm,1, . . . , Âm,dm) for m = 1, . . . , M. (8.11)

These conditions ensure that both anti-holomorphic involutions ρ and η of the hyperelliptic spectral
curve � of (a, b) extend to corresponding involutions of �̂ defined by â. Since the involutions ρ and η
interchanges λ = 0 and λ = ∞, we may choose the new parameter λ̂ in such a way, that both ivolutions

act as λ̂ �→ ¯̂
λ−1. This condition determines the new spectral parameter λ̂ uniquely up to λ̂ �→ eiθ λ̂. In order

to satisfy condition (iii) in Definition 6.1, we impose the condition that the derivative of λ �→ λ̂ = φ(λ)

has at λ = ∞ the form λ �→ Cλ for some C > 0. In this way, the parameter λ̂ is uniquely determined and
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the spectral data (â, b̂) obey conditions (ii)–(iii) in Definition 6.1 and the weaker form of condition (i) in
Definition 7.3. So far, we have constructed for sufficiently small ε on the set

Aε =
{

Â ∈ C
g+1 | ‖Â − A‖∞ ≤ ε and Â satisfies (8.11)

}
. (8.12)

the map � from the coefficients Â onto the corresponding pair (â, b̂) of spectral data:

� : Aε → C
2g[λ] × C

g+1[λ], Â �→ �(Â) = (â, b̂). (8.13)

Proposition 8.3 Let the first polynomial of the pair (a, b) ∈ Mg
ann have no common root with the

corresponding function f in condition (vi) of Definition 6.1. For small ε, the map � in (8.13) is an
embedding and Mg

per is locally at (a, b) the real submanifold �[Aε] of C
2g[λ] × C

g+1[λ] with

T(a,b)Mg
per � {c ∈ C

g+1[λ] | c obeys (8.2) and Im(c(0)/b(0)) = 0}. (8.14)

Proof. We adapt the proof of Lemma 8.1 to the present situation. Since we removed in condition (i) the
inequality λ−ga(λ) ≤ 0 for unimodular λ, the space of all polynomials a which satisfy this modified
condition (i) constitute an affine real 2g-dimensional subset of C

2g[λ]. Furthermore, in condition (iii) we
restrict the value of one real function and in condition (v) the values of the function h at the roots of a.
By construction of the map� the functions λ and lnμ (8.8) generate locally the same functions as λ and
ν. This ensures condition (vi). Therefore Mg

per is the level set of 2g + 1 smooth real functions on an open
subset of R

3g+2. So it suffices to show that the kernel of these functions is (g + 1)-dimensional. By the
same arguments as in the proof of Lemma 8.1, this kernel is described by meromorphic functions (8.1)
with polynomials c ∈ C

g+1[λ] in the space (8.14). It remains to show that for c = 0 there is no non-trivial
(ȧ, ḃ). For c = 0 equation (8.3) implies that ȧ vanishes at all roots of a which are no roots of b. For the
common roots, we use the map � in (8.13) instead of equation (8.3).

First, we remark that the polynomials Â1, . . . , ÂM (8.9) are uniquely determined by the values of lnμ
and finitely many derivatives of lnμ at the roots of d lnμ. This implies that � is bijective. Furthermore,
Cauchy’s Integral Formula implies that the inverse map �−1 is smooth.

In a second step, we show that Ȧ(0) vanishes for a smooth family (−ε, ε) → Aε , t �→ Â(t), if the
corresponding ∂t lnμ (8.1) vanishes. If the polynomial Am changes, then also the biholomorphic map
λ �→ zm(λ) changes. If we differentiate (8.10) with zm(λ̂) = φ−1

m (λ̂), we obtain

2(lnμ− nmπi) ∂t lnμ = ˙̂Am(zm(λ̂))+ Â′
m(zm(λ̂))żm(λ̂).

The equations (8.1) and (6.1) imply

λ̂ c(λ̂)

b̂(λ̂)
=

˙̂Am(zm(λ̂))

Â′
m(zm(λ̂)) z′

m(λ̂)
+ żm(λ̂)

z′
m(λ̂)

. (8.15)

This implies Ȧ(0) = 0 for c = 0. Since common roots of a and b are roots of some Âm, ȧ vanishes at
all common roots of a and b. By equation (8.3) ȧ vanishes at all other roots of a, so ȧ = 0 for c = 0.
Now (8.3) implies ḃ = 0. Since (8.14) has dimension g + 1 the proof is complete. �
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Theorem 8.4 Let (a, b) ∈ Mg
ann have the following two properties:

(i) the function f in condition (vi) of Definition 6.1 has no common root with a.

(ii) a has no unimodular root.

Then Mg
ann is locally at (a, b) a real submanifold of C

2g[λ] × C
g+1[λ] with tangent space (8.5).

Proof. Due to the foregoing proposition Mg
per is locally at (a, b) a manifold. Condition (ii) guarantees that

the inequality in condition (i) of Definition 6.1 is satisfied on a small neighbourhood of (a, b) ∈ Mg
per.

The function h in condition (v) takes imaginary values at unimodular λ. Therefore Mg
ann is locally at

(a, b) the level set of the smooth function� : Aε → R, which maps the spectral data to the values of the
corresponding function Im h = Im lnμ at λ = 1. Since there exists a polynomial c in the space (8.14)
with c(1) �= 0, the derivative �′(0) is non-zero. Now the theorem follows from Proposition 8.3 and the
Implicit Function Theorem. �

9. Local maxima of |τ | on Mg
ann

In this section, we classify the local maxima of the function (a, b) �→ |τ | on Mg
ann. For this purpose, we

need to consider possible singularities of Mg
ann at some (a, b) ∈ Mg

ann. We shall see that it suffices to
consider singularities of Mg

ann at (a, b) with a having only simple roots. We shall restrict to these cases.
But our methods apply to more general situations. By Lemma 8.1, Mg

ann can only have singularities at
(a, b) with resultant(a, b) = 0 and by Theorem 8.4 only if there exists a common root of a, b and f (the
function defined in condition (vi) of Definition 6.1). If a has only simple roots, then a root α of a is also a
root of b if and only if it is a root of f . We prove that in this case Mg

ann is locally at (a, b) homeomorphic to
the level set of a smooth function� : Bε → R on some open subset Bε � B of a real (g+1)-dimensional
subspace of C

g+1. Moreover, at the point B ∈ Bε which corresponds to (a, b) the Hessian�′′(B) is neither
positive nor negative semi-definite. For such level sets the tangent cone spans the tangent space.

Let (a, b) ∈ Mg
ann be such an element with a having only simple roots and resultant(a, b) = 0.

Due to Lemma 6.6, there exists a unique polynomial p whose roots are contained in the roots of a,
such that (ã, b̃) = (p2a, pb) ∈ Mg+deg p

ann satisfy the assumptions of Theorem 8.4. We apply the smooth
parametrization described in Section 8 to this pair (ã, b̃). To simplify notation, we do not decorate most
of the corresponding objects by a tilde. So let V1, . . . , VM be the pairwise disjoint open neighbourhoods
of the roots of b̃ and let �̃ : Aε → Mg+deg p

per be the corresponding embedding (8.13) in Proposition 8.3

which maps the coefficients Â of the polynomials (8.9) onto an open neighbourhood of (ã, b̃) in Mg+deg p
per .

The geometric genus of the spectral curve �̂ corresponding to �̃(Â) is g, if and only if the polynomial
Âm (8.9) has one odd order root for all m in the following subset of {1, . . . , M}:

N := {m ∈ {1, . . . , M} | Vm contains a common root of ã and b̃}.
For m ∈ N , dm = 2�m + 1 is odd and Âm has one odd order root if and only if it is of the form

Âm(zm) = (zm − 2B̂m,1)p
2
m(zm) with pm(zm) = z�m

m + B̂m,1z�m−1 + . . .+ B̂m,�m . (9.1)

We supplement the new coefficients (B̂m,1 . . . , B̂m,�m)m∈N by the old ones:

B̂m,l = Âm,l for m ∈ {1, . . . , M} \ N and 2 ≤ l ≤ dm. (9.2)
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So the index set of the new coefficients B̂m,l is

{(m, l) | m ∈ N , 1 ≤ l ≤ �m} ∪ {m ∈ {1, . . . , M} \ N , 1 ≤ l ≤ dm}.

It has g + 1 elements and B̂ = (B̂m,l) takes values in C
g+1. Let � : C

g+1 → C
g+deg p+1 be the polynomial

injection, which maps B̂ onto the corresponding Â with (9.1) for m ∈ N and with (9.2) for m �∈ N . Then

� : Bε = �−1[Aε] ↪→ Aε , B̂ �→ �(B̂). (9.3)

is a smooth injection. The elements of Bε satisfy (8.11) for m ∈ {1, . . . , M} \ N and

(B̂ρm,1, . . . , B̂ρm,�m) = (B̂m,1, . . . , B̂m,�m) for m ∈ N . (9.4)

So Bε is an open subset of a real (g+1)-dimensional subspace of C
g+1. Let B ∈ Bε be the element whose

image A = �(B) corresponds to (ã, b̃). For m ∈ N the coefficients Bm,l vanish, and for m �∈ N only
Bm,dm does not vanish. By definition of � there exists for all (â, b̂) ∈ �̃[�[Bε]] ⊂ Mg+deg p

per a unique

polynomial p̂ which obeys (6.2) and has the same degree as p such that (â/p̂2, b̂/p̂) belongs to Mg
per. We

define

� : Bε → Mg
per, B̂ �→ �(B̂) = (â/p̂2, b̂/p̂) with (â, b̂) = �̃(�(B̂)). (9.5)

On a neighbourhood of a common root of a and b the roots of μ2 − 1 coincide with the roots of ã, since f̃
does not vanish there. By Cauchy’s Argument Principle the number of roots ofμ2 −1 is locally preserved
in Mg

per. We conclude that �[Bε] is open in Mg
per.

Lemma 9.1 Let (a, b) ∈ Mg
ann with resultant(a, b) = 0 such that a has only simple roots. For sufficiently

small ε > 0 a neighbourhood of (a, b) in Mg
ann ⊂ Mg

per is parameterized by the level set of a smooth
function � : Bε → R. If �′(B) = 0, then there exists a two-dimensional subspace of TBBε on which the
Hessian �′′(B) is neither positive nor negative semi-definite.

Proof. We already proved that � : Bε ↪→ Mg
per is a parametrization of an open neighbourhood of

(a, b) = �(B) in Mg
per. Let �̃ : Aε → R be the smooth function in the proof of Theorem 8.4 whose

level set parameterizes a neighbourhood of (ã, b̃) = �̃(A) in Mg+deg p
ann with A = �(B). The level set of

� = �̃ ◦ � : Bε → R parameterizes an open neighbourhood of (a, b) in Mg
ann. In N , there is no fixed

point of ρ, since a has only simple roots. For each m ∈ N let Vm denote

Vm =
{ ˙̂B ∈ TBBε | ˙̂Bm,l = 0 for all (m, l) �∈ {(m, 1), (ρm, 1)}

}
. (9.6)

First consider the case that b̃(1) = 0. This is equivalent to b(1) = 0, since the roots of p are contained in
the set of non-unimodular roots of a. In this case Vm contains λ = 1 for a unique m ∈ {1, . . . , M} \ N .
The corresponding Am,dm does not vanish. By (8.15) the partial derivative of � with respect to the real
coefficient B̂m,dm does not vanish, and there is nothing to prove.
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Now we assume b̃(1) �= 0. Clearly, it suffices to show that�′(B) vanishes on Vm and�′′(B) is on Vm

neither positive nor negative semi-definite. For Bm,2 = 0, . . . , Bm,�m = 0 only two coefficients of Âm(zm)

depend on B̂m,1:

Âm,2 = −3B̂2
m,1, Âm,3 = −2B̂3

m,1.

Hence �′(B) vanishes on Vm and �′′(B)|Vm is determined by the restriction of �̃′′(A) to{ ˙̂A ∈ TAAε | ˙̂Am,l = 0 for all (m, l) �∈ {(m, 2), (m, 2)}
}

. (9.7)

In Proposition 8.3, we identified TAAε with a subspace of c ∈ C
g+deg p[λ]. Let αm denote the value of λ

at the common root in Vm. Due to (8.15), the space (9.7) is identified with{
c(λ) = ĉ(λ) b̃(λ)

(λ−αm)(ᾱmλ−1)

∣∣∣ ĉ ∈ C
2[λ], λ2ĉ(λ̄−1) = −ĉ(λ) and Im(ĉ(0)/αm) = 0

}
. (9.8)

With ĉ(λ) = iλ this space contains an element with c(1) �= 0. So �̃′(A) does not vanish on (9.7), and
�′′(B) has on Vm a non-zero eigenvalue. The multiplication of B̂m,1 by i and of B̂ρm,1 by −i preserves (9.4)
and switches the sign of the Hessian �′′(B). This completes the proof. �

Lemma 9.2 Let � ∈ C
∞(�, R) on an open subset � � 0 of R

g+1 obey �(0) = 0 = �′(0). Then

{
v ∈ R

g+1 | �′′(0)(v, v) = 0 and there exists w ∈ R
g+1 with �′′(0)(v, w) �= 0

} ⊂
⊂ {γ̇ (0) | γ ∈ C∞((−ε, ε),�) with γ (0) = 0 and �(γ (t)) = 0 for t ∈ (−ε, ε)}. (9.9)

Proof. Let v, w ∈ R
g+1 with �′′(0)(v, v) = 0 and �′′(0)(v, w) �= 0. Then

ϒ : (−δ, δ)× (−δ, δ) → R (x, y) �→
{

2x−2�(x(v + yw)) for x �= 0

�′′(0)(v + yw, v + yw) for x = 0

is for small δ > 0 smooth withϒ(0, 0) = 0 and ∂ϒ(0,0)
∂y = 2�′′(0)(v, w) �= 0. Due to the Implicit Function

Theorem, there exists a smooth function x �→ y(x) on a small interval x ∈ (−ε, ε) with y(0) = 0 and
ϒ(x, y(x)) = 0 = �(x(v+y(x)w)). The derivative v of x �→ x(v+y(x)w) at x = 0 belongs to the tangent
cone. �

Lemma 9.3 Let (a, b) ∈ Mg
ann be a local maximum of the function (a, b) �→ |τ | on Mg

ann such that a has
only simple roots. Then g = 0.

Proof. For (a, b) with resultant(a, b) �= 0, we apply Lemma 8.1. For a polynomial c in the space, (8.5)
with Re(c(0)/b(0)) �= 0 the derivative of |τ | (8.6) does not vanish. For g > 0, the space (8.5) contains
c(λ) = (λ− 1)(b̄(0)λg − b(0)) with these properties. So g has to vanish.

For resultant(a, b) = 0, we apply Lemma 9.1 and use the local parametrization of Mg
ann by the level

set of � : Bε → R. We choose m ∈ N . As in the proof of Lemma 9.1, we distinguish between b̃(1) = 0
and b̃(1) �= 0. In the first case, we apply Lemma 9.2. For ĉ(λ) = (λ − 1)(ᾱmλ + αm) the element c
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of (9.8) vanishes at λ = 1 and c(0)/b̃(0) is a non-zero real number. Along the corresponding element
of (9.7) the derivative �̃′(A) vanishes in contrast to the derivative of |τ |. The multiplication of B̂m,1 by
i and of B̂ρm,1 by −i preserves (9.4) and switches the sign of �′′(B). Therefore, Vm (9.6) has for each
m ∈ N a base v1, v2 with �′′(B)(v1, v1) = 0 = �′′(B)(v2, v2). Since �′′(B) does not vanish on Vm, they
obey �′′(B)(v1, v2) �= 0. By Lemma 9.2, there exist smooth functions y1, y2 : (−ε, ε) → R such that

(−ε, ε) → R, x �→ x(v1 + y1(x)v2) and (−ε, ε) → R, x �→ x(v2 + y2(x)v1)

stay in the level set of �. Along both paths |τ | has a critical point at x = 0. Since c(0)/b̃(0) �= 0 the
second derivative of |τ | at x = 0 does not vanish and has opposite signs on both paths. Along one of both
paths |τ | is not a local maximum.

We extend this argument to the case b̃(1) �= 0. In this case the proof of Lemma 9.1 shows that the
level set of � is at B a smooth submanifold of Bε . Its tangent space contains Vm for all m ∈ N . We
choose any vector w ∈ TBBε , with �′(B)(w) �= 0. By the Implicit Function Theorem there exists for any
non–trivial v ∈ Vm a smooth function y : (−ε, ε) → R with y(0) = 0 = y′(0) such that (−ε, ε) → Bε ,
x �→ xv + y(x)w stays in the level set of �. Along this path the first derivative of |τ | at x = 0 vanishes.
Since (9.8) contains an element with c(0)/b̃(0) ∈ R

×, for some v ∈ V the second derivative of |τ | at
x = 0 does not vanish. Furthermore, for some v ∈ V , |τ | has no local maximum at x = 0. Hence (a, b)
is no local maximum of |τ | for g > 0. �

Theorem 9.4 If a pair (ã, b̃) ∈ Mg
ann is a local maximum of the function (a, b) �→ |τ | on Mg

ann, then all
roots of ã are unimodular. In particular there exist (a, b) = (− 1

16 , b) ∈ M0
ann and a polynomial p as in

Lemma 6.5 with (ã, b̃) = (p2a, pb).

Proof. Due to Lemma 6.5, there exists for every (ã, b̃) ∈ Mg
ann a unique p satisfying (6.2) with maximal

degree whose square divides ã. This p divides b̃ and (a, b) = (ã/p2, b̃/p) ∈ Mg−deg p
ann with a having only

simple roots. By Cauchy’s Argument Principle the number of roots of the holomorphic function μ2 −1 is
locally preserved in Mg

ann. This implies that the mapping (a, b) �→ (p2a, pb) extends to an embedding of a
neighbourhood of (a, b) in Mg−deg p

ann into Mg
ann. Consequently, (a, b) is a local maximum of |τ | in Mg−deg p

ann

if (ã, b̃) is a local maximum of |τ | in Mg
ann. The foregoing lemma implies g = deg p. In particular, all

roots of ã are even order roots and the corresponding spectral curve has geometric genus zero. Since b
has only one unimodular root, condition (vi) in Definition 6.1 implies that all non-unimodular roots of ã
are double roots.

Now let p2 contain all unimodular roots of ã. Again (a, b) = (ã/p2, b̃/p) ∈ Mg−deg p
ann and a has only

non-unimodular double roots. This implies that (a, b) satisfies the assumptions of Theorem 8.4. Again by
Cauchy’s Argument Principle a neighbourhood of (a, b) in Mg−deg p

ann is embedded into Mg
ann, and (a, b) is

a local maximum of |τ |, if (ã, b̃) is. If g > deg p, then c(λ) = (λ− 1)(b̄(0)λg−p − b(0)) belongs to (8.5)
and (a, b) is no critical point of |τ |. This implies that all roots of ã are unimodular. �

10. Connected components of Mg
emb

In this section, we show that Mg
emb is empty for g > 2 and has for g ≤ 2 at most the same number of

connected components as Mg
Abr, i.e. up to the sign of b one for g = 0 and g = 2, and two for g = 1. We

first derive from the curvature estimate that each connected component of Mg
emb contains a maximum of

|τ | and then show that this maximum belongs to Mg
Abr.
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Lemma 10.1 For g ∈ N0 and ε0 > 0 the following sets are compact:

{(a, b) ∈ Mg
emb | |τ(a, b)| ≥ ε0}. (10.1)

Proof. Let us first prove that the coefficients of a are bounded, if |τ | ≥ ε0. Due to Proposition 3.4 the
solutionsω of the sinh-Gordon equation corresponding to all ξλ ∈ I(a) are bounded by |ω| ≤ C0(ε0). For
any roots α1, . . . ,αg of a, such that ᾱ−1

1 , . . . , ᾱ−1
g are the remaining roots of a, there exist an off-diagonal

ξλ = (
0 β
γ 0 ) ∈ I(a) with

β = i

4λ
√∏

d |αd |
∏

d

(1 − ᾱdλ) γ = i

4
√∏

d |αd |
∏

d

(λ− αd).

The corresponding ω at z = 0 is due to Proposition 4.3 and Remark 4.4 equal to ω(0) = − 1
2

∑
d ln |αd |

and ∇ω(0) = 0. Since |ω(0)| ≤ C0(ε0) all roots of a are bounded away from ∞ and 0 and the coefficients
of a are bounded.

Next, we shall show that the coefficients of b are bounded. Lemma 3.3 gives a bound on |τ | from
above. Hence, it suffices to show that the polynomials b with the properties (ii)–(iv) in Definition 6.1 are
uniquely determined by τ and a and depend continuously on (τ , a) ∈ C × Mg. We first consider a in
the subspace M1

g of polynomials a ∈ Mg with pairwise different roots. The corresponding hyperelliptic
compact Riemann surfaces � have a canonical base of A and B cycles, such that twice the integrals in
property (iv) are the A-periods of the 1-form (6.1). These cycles extend to open subsets of M1

g and the
A-periods depend continuously on (a, b). The polynomials b with the properties (ii)–(iii) in Definition 6.1
for τ = 0 correspond to the holomorphic 1-forms on this compact Riemann surface. The A-periods define
an isomorphism from the g–dimensional space of (real) holomorphic 1-forms to R

g. Hence the basis of
such holomorphic 1-forms dual to the A-cycles also depends continuously on a. This implies that the
polynomials b with the properties (ii)–(iv) in Definition 6.1 are uniquely determined by (τ , a) and depend
continuously on (τ , a) ∈ C × M1

g.
Now we assume that for a sequence (τn, an) ∈ C×M1

g with limit (τ , a) ∈ C×Mg the corresponding
sequence bn with properties (ii)-(iv) in Definition 6.1 is unbounded. Let p be the up to sign unique
polynomial (6.2) such that p2 divides a and ã = a/p has pairwise different roots. We choose a norm
on C

g+1[λ] and pass to a subsequence such that (bn/‖bn‖) converges. The corresponding sequence of
functions hn/‖bn‖ defined in Definition 6.1 (v) are multivalued and meromorphic on the corresponding
sequence �n of compact hyperelliptic Riemann surfaces. The real part of hn/‖bn‖ is single valued and
harmonic on �×

n (4.8). Due to the maximum principle of harmonic functions they are bounded outside
small discs around λ = 0 and λ = ∞. Therefore the real parts of hn/‖bn‖ converge to a harmonic
function on

�× = {(λ, ν) ∈ C
2 | ν2 = λ−1ã(λ)}.

In particular, p divides the limit of bn/‖bn‖. The arguments for a ∈ M1
g show that this limit is now

uniquely determined by the limit of τn/‖bn‖ and ã. Since τn is bounded and ‖bn‖ is unbounded, the limit
of τn/‖bn‖ vanishes together with the limit of bn/‖bn‖. This contradicts the unboundedness of bn and
proves that (10.1) are bounded subsets of C

2g[λ] × C
g+1[λ].

It remains to prove that (10.1) is also closed in C
2g[λ] × C

g+1[λ]. For sequences (an, bn) in Mg
emb,

which converge in C
2g[λ] × C

g+1[λ] the limit (a, b) clearly has properties (i)-(iii). By the Maximum
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Modulus Theorem the corresponding functions fn and gn in Definition 6.1 (vi) converge on compact
subsets of C

×. Therefore the limit also has the remaining properties (iv)-(vi) and belongs to Mg
ann. Since

Mg
emb is closed in Mg

ann (Proposition 7.5) the limit belongs also to Mg
emb. �

In particular, each connected component of Mg
emb contains a maximum of (a, b) �→ |τ |. Next we

apply the characterization of the local maxima of |τ | in the foregoing section.

Theorem 10.2 For g ∈ N0 each connected component of Mg
emb contains a maximum (ã, b̃) ∈ Mg

Abr of
|τ |. In particular, Mg

emb has at most as many connected components as Mg
Abr, i.e., up to the sign of b̃ one

for g = 0 and g = 2, two for g = 1 and none for g > 2.

Proof. Due to Lemma 10.1, the continuous function (a, b) �→ |τ | has in every connected component
of Mg

emb a maximum (ã, b̃). Theorem 9.4 shows that ã has only unimodular roots. By Theorem 7.6 all
roots of ã are roots of the function f in condition (vi) of Definition 6.1 of the unique (a, b) ∈ M0

Abr. The
corresponding elements of the form (ã, b̃) = (p2a, pb) ∈ Mdeg p

ann are determined in Lemma 6.6. Up to sign
of b̃, there are four such elements with p having only unimodular roots. Since they belong to Mg

Abr, we
finally obtain (ã, b̃) ∈ Mg

Abr. This shows that every connected component of Mg
emb contains an element

of Mg
Abr, and Mg

emb has at most as many connected components as Mg
Abr. �

11. Isolated property of the Abresch family

In this section, we prove that for all g = 0, 1, 2 the space Mg
Abr is open and closed in Mg

ann. Our proof is
based on the Four-Vertex Theorem. There exists another proof which uses the smooth parametrization of
spectral data in Section 8 and the Inverse Function Theorem.

Consider the solution ω : C/τZ → R of the sinh-Gordon equation corresponding to spectral data
(a, b) ∈ Mg

Abr. By Section 2, there exist two elliptic functions x �→ f (x) = −ωx
coshω and y �→ g(y) = −ωy

coshω .
The Jacobi operator on C/τZ is given by

L = 1

cosh2ω

(
∂2

x + ∂2
y + 1 + 2|∇ω|2

cosh2ω

)
= 1

cosh2ω

(
∂2

x + ∂2
y + 1 + 2f 2(x)+ 2g2(y)

)
.

We use Fourier analysis. We define the set of periodic eigenfunctions {en} associate to eigenvalues
λ0 < λ1 ≤ λ2.... repeated with multiplicity,

∂2
x en(x)+ 2f 2(x)en(x) = −λnen(x). (11.1)

where f is an elliptic function which satisfies

−(fx)
2 = f 4 + (1 + c − d)f 2 + c = (f 2 − δ1)(f

2 − δ2).

If τ denotes the period of the annulus in the x-direction, which coincides with a period of f , then the set
{en}n∈N span the Hilbert space L2(R/τZ). A bounded solution of L u = 0 decomposes into

u(x, y) =
∑
n≥0

un(y)en(x),
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where un : R → R are uniformly bounded functions.

Lemma 11.1 Let u : C/τZ → R be a bounded solution of L u = 0, where x �→ f (x) and y �→ g(y)
are the functions defined in Section 2. Then u cannot have more than two zeroes on horizontal sections
unless it vanishes identically.

Proof. The following elliptic differential equations define functions x �→ f (x) and y �→ g(y)

−(fx)
2 = f 4 + (1 + c − d)f 2 + c = (f 2 − δ1)(f

2 − δ2)

−(gy)
2 = g4 + (1 + d − c)g2 + d = (g2 − β1)(g

2 − β2)

with roots 2δ1 = −(1 + c − d) + √
�, 2δ2 = −(1 + c − d) − √

�, 2β1 = −(1 + d − c) + √
�,

2β2 = −(1 + d − c)− √
� and� = (1 + c − d)2 − 4c = (1 + d − c)2 − 4d, we see that f is oscillating

around zero between −√
δ1 and

√
δ1 since δ2 < 0 and g is oscillating between −√

β1 and
√
β1.

We solve the equation (11.1) on [0, τ/2]. The function ℘ := α− f 2 (with 3α = −(1 + c − d)) is the
Weierstrass ℘-function which satisfies the elliptic equation

(℘ ′)2 = 4℘3 − g2℘ − g3

for constants g2, g3 depending only on constants c and d. The equation (11.1) transforms into the Lamé
equation

∂2
x en − 2℘en = −μnen

On [0, τ/2], the functions e0 = √
f 2 − δ2, e1 = f , e2 = √

δ1 − f 2 are known as Lamé functions of degree
one of the first kind (see [26, Chapter XXIII]). These functions extend to [0, τ ] by symmetry and they
are the first three eigenfunctions of the Lamé operator.

The function e0 = √
f 2 − δ2 > 0 is an eigenfunction associate to the eigenvalue λ0 = −δ1 with

boundary data e0(0) = e0(τ/2), ∂xe0(0) = ∂xe0(τ/2) = 0. The second eigenfunction e1 = f is associate
to eigenvalue λ1 = 1 + c − d with e1(0) = −e1(τ/2), ∂xe0(0) = ∂xe0(τ/2) = 0. The third function is
e2 = √

δ1 − f 2 associate to eigenvalue λ2 = −δ2 with e2(0) = e2(τ/2) = 0 and ∂xe0(0) = −∂xe0(τ/2).
These eigenfunctions extend by symmetry to R/τZ. They are the first three eigenfunctions of the spectrum
with λ0 < λ1 < λ2 and have at most two zeroes on each horizontal curve. If ek is an eigenfunction having
strictly more than two zeroes on a period [0, τ ], then the associated eigenvalues λk > λ2. If not, one can
argue by contradiction and compute W = ek(∂xe2)− (∂xek)e2. Then W ′ = (λk − λ2)eke2 and by studying
the behaviour of W between two consecutive zeroes of ek , the function e2 has to change sign. Thus e2

would have at least four zeroes, a contradiction.
Now we consider a bounded Jacobi field u on C/τZ. By Fourier expansion, we decompose u as

u(x, y) =
∑
n≥0

un(y)en(x).

Since u is bounded on C/τZ then un is bounded on R. Inserting u in the equation L u = 0 we obtain a
countable set of equations for n ∈ N:

∂2
y un(y)+ 2g2(y)un(y)+ (1 − λn)un(y) = 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/integrablesystem

s/article/5/1/xyaa005/5899243 by guest on 03 N
ovem

ber 2020



34 L. HAUSWIRTH ET AL.

For n ≥ 2, we have (1 − λn) < 1 − λ2 = 1 + δ2 = 1
2 (1 + d − c + √

�) = −β1. But as we remarked for

equation (11.1), the function
√

g2 − β2 > 0 is the first periodic eigenfunction associated with the first
eigenvalue μ0 = −β1 of

∂2
y v(y)+ 2g2(y) v(y) = −μ v(y) (11.2)

It is a well known fact (see [27] for example) that for μ < μ0 the equation (11.2) cannot have bounded
solutions on R. Then un = 0 for n ≥ 2. The function u is a linear combination of e0, e1, e2 and we obtain
a contradiction with the following lemma. �

Lemma 11.2 For any real constants α0,α1,α2, the function α0e0 + α1e1 + α2e2 has at most two roots on
R/τZ.

Proof. The functions e0, e1 and e2 obey e2
0 + δ2 = e2

1 = δ1 − e2
2. Therefore, the expression

(α0e0 + α1e1 + α2e2)(α0e0 + α1e1 − α2e2)(α0e0 − α1e1 + α2e2)(α0e0 − α1e1 − α2e2)

is an even polynomial p(e1) of degree four with respect to e1 with real coefficients not depending on
e0 and e1. Along the period τ the function e1 takes all values in (−√

δ1,
√
δ1) exactly twice and ±√

δ1

exactly once. At two points in the pre-image of one value of e1 in (−√
δ1,

√
δ1) the function e0 takes the

same value and e2 takes values with opposite sign. Therefore every root of p(e1) corresponds to at most
one root of α0e0 + α1e1 + α2e2. For non-vanishing values e1 at roots of α0e0 + α1e1 + α2e2, the negative
−e1 is the value at a root of α0e0 − α1e1 + α2e2 and not of a root of α0e0 + α1e1 + α2e2. Therefore at
most two of the four roots of p(e1) are the values of e1 at one root of α0e0 + α1e1 + α2e2. �

Now we prove the main theorem of this section.

Theorem 11.3 For g = 0, 1, 2 the set Mg
Abr is open and closed in Mg

emb.

Proof. Since Mg
Abr is closed in Mg

ann, it is also closed in Mg
emb. To prove openness we show that a sequence

(an, bn) in Mg
emb \ Mg

Abr cannot converge to (a, b) ∈ Mg
Abr. Let us assume to the contrary that a sequence

(an, bn) in Mg
emb \ Mg

Abr converges to (a, b) ∈ Mg
Abr. Due to Lemma 7.4 the map A (7.2) is proper.

After passing to a subsequence there exists a sequence ξλ,n ∈ I(an) which converges to ξλ ∈ I(a). This
sequence ξn,λ corresponds to a sequence of properly embedded minimal annuli Xn and the limit ξλ to an
Abresch annulus X. Since (an, bn) �∈ Mg

Abr the proper minimal embeddings Xn are not foliated by constant
curvature lines and have non–trivial Shiffman’s Jacobi fields un on Xn. We shall now use un and construct
a non–zero bounded Jacobi field v on X . Using the Four-Vertex Theorem on embedded horizontal curves
we conclude that v has at least four zeroes and then v ≡ 0, a contradiction to Lemma 11.1.

On compact sets un converges to zero. Since ωn is bounded in Ck,α norm by Proposition 3.4 on the
whole annulus, the Jacobi field un = (ωn,xy) − tanh(ωn)(ωn,x)(ωn,y) is bounded on Xn. We translate the
sequence of annuli Xn, such that |un(0)| is the maximum of un and renormalize

vn := un

|un(0)| .
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Then there is a subsequence which converges by Arzela–Ascoli’s Theorem to a bounded function v on
X with |v(0)| = 1. We denote by dsn = cosh2ωn |dz|2 and ds = cosh2ω |dz|2 the associated metrics with
ωn → ω uniformly. The Jacobi operators are given by

Ln = 1

cosh2ωn

(
∂2

x + ∂2
y + 1 + 2

|∇ωn|2
cosh2ωn

)
.

Since ωn is bounded by Proposition 3.4, the Jacobi field un = (ωn,xy)− tanh(ωn)(ωn,x)(ωn,y) is bounded
on Xn and vn converges by Arzela–Ascoli’s Theorem to a bounded solution of L v = 0, a bounded Jacobi
function on X. Since un = cosh2ωn (∂xkg) (see Theorem 2.4), it has at least four zeroes on any level
horizontal curve by the Four-Vertex Theorem (see [28]). The set of curves � = {v−1

n (0)} = {u−1
n (0)}

separate at least four nodal domains intersecting every horizontal curve (see Theorem 2.4). By counting
the number of zeroes of vn on each horizontal section x �→ X(x, y0), we deduce that v cannot have
generically two zeroes on horizontal curves and we argue as follows to get a contradiction. Otherwise,
it means that two or three zeroes of vn coalesce in the limit. We find an open interval y ∈ (t1, t2), such
that on every curve γ (t) = A ∩ S

2 × {t} the zeroes of vn coalesce in the limit at two zeroes. A coalescing
of zeroes will produce a new nodal curve �0 = v−1

0 (0) generically transverse to horizontal sections of
X ∩ S

2 × [t1, t2]. We can find a horizontal section transverse to �0. Since �0 is a limit of several nodal
curves collapsing together at the limit, v will not change sign along γ (t) crossing�0, or v will change sign
but with ∂xv = 0 on �0. This contradicts a Theorem of Cheng [29] on the singularity of nodal curves for
the solution of an elliptic operator which are isolated and describing equiangular curves at the singularity.

In summary, the Four-Vertex Theorem implies that v0 has at least four zeroes generically on each
horizontal section. Now the analysis of the Jacobi operator on C/τZ in Lemma 11.1 gives a contradiction.
We conclude that such a Jacobi field cannot exist on an Abresch annulus X. �

12. Proof of the main theorem

Due to Proposition 7.2, the unique potential ξλ without roots of a properly embedded minimal annulus
is contained in the isospectral set I(a) of spectral data (a, b) ∈ Mg

emb. Therefore, it suffices to show
the equality Mg

emb = Mg
Abr for all g ∈ N0. Due to Theorem 10.2, every connected component of Mg

emb

contains a connected component of Mg
Abr. Finally, Theorem 11.3 shows that all connected components

of Mg
Abr coincide with connected components of Mg

emb. This implies that the connected components of
Mg

emb coincide with the connected components of Mg
Abr and proves Mg

emb = Mg
Abr for all g ∈ N0.

A. Whitham deformation of spectral genus 0, 1 and 2

We apply the Whitham flow described in Section 10 to the Abresch family. The whole Abresch family
of Riemann’s type examples turns out to be a deformation of the totally geodesic annulus.

In the section on the Whitham flow, we defined the vector field (8.3) on the space of pairs of poly-
nomials (a, b) ∈ Rg ⊂ C

2g[λ] × C
g+1[λ] in terms of a third polynomial c of degree g + 1. All three

polynomials a, b and c obey reality conditions (i)-(ii) in the definition of Rg and (8.2). In Lemma 8.1 we
characterize those polynomials c, whose vector fields preserve Mg

ann.
We start with the spectral data of the totally geodesic annulus as described in Proposition 6.4. They

are given by a(λ) = −1/16 and b(λ) = ± π

16 (λ − 1). Due to Proposition 5.5 (1), the spectral data

(ã, b̃) = (p2a, pb) described in Lemma 6.6 with polynomials p having roots contained in S
1 correspond

to the same annulus. It suffices to consider the case p = (λ−1)(λ+1) since the other cases can be obtained
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from this case by removing higher order roots. So, we look for all deformations of a(λ) = 1
16 (λ−1)2(λ+1)2

and b(λ) = ± πi
16 (λ− 1)2(λ+ 1) in M2

ann preserving embeddedness. The corresponding c’s have to obey
c(1) = 0 and Re c(0) = 0. The solution space is the two-dimensional space spanned by i(λ3 − 1) and
i(λ2 − λ). Therefore they obey

λ3c(1/λ) = −c(λ).

This implies that all of them preserve the symmetry

λ4a(λ−1) = a(λ) λ3b(1/λ) = b(λ) λ3c(1/λ) = −c(λ).

The flow induced by the corresponding vector fields (8.3) is integrated in [10, Section 7]. It gives a
two-dimensional family parameterized by (α,β) ∈ (0, 1] × (0, 1]

a(λ) = 1

βα
(λ− α)(αλ− 1)(λ+ β)(βλ+ 1) b(λ) = b(0)

γ
(1 + λ)(λ− γ )(γ λ− 1)

with b(0) ∈ iR and γ ∈ [α, 1] determined by α and β. For α = 1 = β, the polynomial a has two double
roots. By removing them we obtain the element of M0

Abr. For α = 1 and β ∈ (0, 1] the polynomial a has
a double root at λ = 1 and for α ∈ (0, 1] and β = 1 at λ = −1. By removing them, we obtain the two
families in M1

Abr. In this way, we sweep out all of MAbr.
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