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Abstract

Does X affect Y? Answering this question is particularly difficult if reverse
causality is looming. Many social scientists turn to panel data to address such
questions of causal ordering. Yet even in longitudinal analyses, reverse
causality threatens causal inference based on conventional panel models.
Whereas the methodological literature has suggested various alternative
solutions, these approaches face many criticisms, chief among them to be
sensitive to the correct specification of temporal lags. Applied researchers
are thus left with little guidance. Seeking to provide such guidance, we
compare how different panel models perform under a range of different
conditions. Our Monte Carlo simulations reveal that unlike conventional
panel models, a cross-lagged panel model with fixed effects not only offers
protection against bias arising from reverse causality under a wide range of
conditions but also helps to circumvent the problem of misspecified tem-
poral lags.
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Introduction

Many studies in the social sciences try to answer questions about causal

relationships such as: Does bad pay cause occupations to feminize (England,

Allison, and Wu 2007)? Is the risk of divorce increased by limited financial

resources (Killewald 2016)? What is the effect of social contacts on labor

market success (Mouw 2006)? Most methodologists consider controlled

randomized experiments as the “gold” standard for causal inference (Imbens

and Rubin 2015; Rosenbaum 2017). Useful as they are, however, experi-

ments are hardly a silver bullet for social science research. Many interesting

variables related to human behavior and its consequences—such as working

conditions, family life, or social contacts—are difficult to manipulate, with

ethical, political, and practical restrictions forcing researchers to deviate

from the experimental ideal (Shadish, Cook, and Campbell 2002). More

often than not, social scientists therefore have to rely on observational data

for causal inference (e.g., Morgan and Winship 2015).

Panel data have become particularly prominent for causal inference based

on observational data (Bell and Jones 2015; Brüderl and Ludwig 2015; Imai

and Kim 2019). A key reason for the popularity of panel models is that they

allow to exploit change within units over time (e.g., individual change) to

eliminate unobserved time-invariant heterogeneity, which considerably

reduces the risk of confounding (Allison 2009; Halaby 2004; Wooldridge

2010). Moreover, researchers frequently turn to panel data since they expect

them to determine causal order (Vaisey and Miles 2017). Reconsidering the

abovementioned research questions, one might ask: Does feminization of

occupations reduce pay? Do spouses adjust their work behavior in anticipa-

tion of marital problems? Do successful people associate with one another?

As these examples illustrate, the causal arrow often might run in both direc-

tions or even only in the other direction. Establishing causal order by

accounting for reverse causality therefore is a key challenge in many social

scientific areas of research.1

In stark contrast to the well-known issue of unobserved heterogeneity,

however, it is much less clear for researchers how to deal with reverse

causality. Even with panel data, it is far from trivial to identify the causal

effect of X on Y if reverse causality is present. Having long recognized this

problem, the econometric and statistical literature has developed various
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models to disentangle the dynamic interplay of X and Y with observational

data. This includes first-difference (FD) models with lagged independent

variables (Allison 2009), dynamic panel models relying on instrumental

variables (Arellano and Bond 1991), cross-lagged structural equation models

(Finkel 1995), and, more recently, cross-lagged panel models with fixed

effects (FE; Allison, Williams, and Moral-Benito 2017). Yet the number

of suggestions seems to equal the number of critics (e.g., Bellemare,

Pepinsky and Masaki 2017; Reed 2015), some of which even conclude that

none of the abovementioned models solves the problem of reverse causality

under general conditions (Brüderl and Ludwig 2015).2

Further complicating the matter for applied researchers, Vaisey and Miles

(2017) recently showed that panel models are sensitive to the correct speci-

fication of temporal lags. Specifically, they demonstrated that lagged first-

difference (LFD) models provide highly misleading estimates if the effect of

X on Y is not fully lagged as captured by the observed data. However, it is an

open question whether this problem also applies to other panel models. Even

more importantly, applied researchers currently find little guidance other

than the warning not to “rely on the ordering of the data to establish causal

priority unless the lags between panels match the real-world causal lags in

the processes under study” (Vaisey and Miles 2017:64). While this advice is

well justified, it does not address the question what researchers can do if they

face reverse causality and/or are uncertain about the precise temporal nature

of the “real-world causal lags.”

In sum, the absence of clear modeling standards leaves researchers uncer-

tain how to deal with reverse causality in panel models and what to do if the

timing of causal effects is unknown. Aiming to provide such guidance, we

first give a short overview of existing approaches by discussing respective

models and their key assumptions regarding reverse causality. We then

simulate panel data in order to assess how different panel models perform

under varying conditions. Specifically, we vary the degree of time-invariant

unobserved heterogeneity, the presence of reverse causality, and the tem-

poral lags of the causal effect of X on Y. Based on the results, we identify

different scenarios for which certain panel models are adequate. We con-

clude with recommendations for researchers on how to deal with reverse

causality in practice.

Panel Models in Face of Reverse Causality

In the following three subsections, we review different panel models, focus-

ing on their exogeneity assumptions. These assumptions are not only crucial
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for understanding why reverse causality threatens conclusions derived from

models that assume strict exogeneity but also offer a potential solution to the

problem by relaxing this assumption.3 For the sake of simplicity, we assume

a balanced panel with n ¼ 1, . . . , N, units of analysis, t ¼ 1, . . . , T, panel

waves, and NT observations, but the core assumptions about reverse causality

also extend to unbalanced panels. We further focus on identifying the effect

of X on Y, thus considering reverse causality—the effect of Y on X—as a

nuisance that threatens causal inference rather than a substantive phenom-

enon one is interested in.4

Panel Models Assuming Strict Exogeneity

Consider we want to estimate the effect of a set of variables X on an outcome

variable Y using panel data. A good starting point for introducing models for

microlevel panels with large N and small T is the pooled OLS (POLS) model,

yit ¼ b1xit þ b2Zi þ eit;

which maps the outcome variable yit as an additive linear function of the

time-varying variables xit, a vector of time-invariant covariates Zi, and an

error term eit that is assumed to be independent and identically distributed.

Unbiased and consistent estimation is achieved if the error term is contem-

poraneously exogenous, that is, if it is not correlated with contemporaneous

values of the independent variables:

E eitjxit; Zið Þ ¼ 0:

While generally allowing for the possibility of reverse causality, within

POLS, causal inference for the effect of a variable X on Y is valid only if the

model adequately captures all variables that simultaneously affect X and Y.

Unfortunately, this strong assumption is rarely met in empirical applications,

as many confounders either might not have been measured adequately or

were not observed in the first place (see Brüderl and Ludwig 2015; Halaby

2004). POLS estimates therefore face an inherent risk of bias due to unmea-

sured unit-specific confounders that violate the key assumption of contem-

poraneous exogeneity.

A next natural step is to decompose the error term into a unit-specific part ai

and an idiosyncratic part eit in order to estimate a model that simultaneously

covers both sources of error. There are two major approaches of how to treat

the unit-specific error term ai. The first approach is the FE model, which

allows the unit-specific error term ai to be correlated with the independent

variables and removes between-unit heterogeneity by estimating unit-specific
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constants or, equivalently, by subtracting unit-specific means from X and Y

(here and in the following, see Allison 2009; Brüderl and Ludwig 2015;

Wooldridge 2010). In contrast to POLS, uncontrolled influences of

unit-specific confounders Zi, also called time-invariant unobserved hetero-

geneity, do not bias FE estimates because all time-invariant unobserved

heterogeneity is fully captured by the unit-specific error term ai. For the FE

model, the equation hence does not contain time-invariant variables and

reduces to

yit ¼ bxit þ ai þ eit:

The second approach is the random effects (RE) model. The RE model

also includes a unit-specific error term ai, but unlike in the FE model, this

unit-specific error term is assumed to be uncorrelated with the independent

variables, being treated as a random variable following a certain probability

distribution, usually the standard normal distribution with mean zero and

constant variance s2
a : ai*Nð0;s2

aÞ. In contrast to the FE model, the RE

model therefore can provide estimates for time-invariant variables, but this

comes at the cost of requiring an additional exogeneity assumption about

time-invariant unobserved heterogeneity:

Eðaijxit; ZiÞ ¼ 0:

Despite these differences of the FE and the RE models in handling unob-

served heterogeneity, they share the core assumption of strict exogeneity:

E eisjxit; aið Þ ¼ 0 for all s; t ¼ 1; . . . ;T :

The key point is that this assumption is necessarily violated in case of

reverse causality. Strict exogeneity forbids current values of eis to be corre-

lated with past, present, and future values of xit. However, if yit affects xitþ1,

that is, if reverse causality is present, eit is necessarily correlated with xitþ1.

By violating one of the core assumptions of both RE and FE models, the

presence of reverse causality thus introduces bias to estimates from both

models. As Bellemare, Pepinsky, and Masaki (2017) show, many scholars

hope to overcome this problem by lagging the independent variables in their

panel data models (also see Reed 2015):

yit ¼ bxit�1 þ ai þ eit:

The idea behind this approach is that while eit is correlated with xitþ1 in

case of reverse causality, eit�1 may be not. Yet as Reed (2015) demonstrates

both analytically and with simulations, reverse causality also biases point
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estimates and statistical inference in these models. Bellemare et al. (2017)

explain why endogeneity problems also occur with this approach: While

lagging the independent variable helps to get rid of the strong and untestable

strict exogeneity assumption, it introduces the similarly strong and untestable

assumption that unobserved variables are serially uncorrelated. Identification

requirements in models with lagged independent variables thus are usually

similarly strong as those in models with contemporaneous values of X.

Therefore, simply lagging X in RE or in FE models rarely solves the endo-

geneity problem posed by unobserved variables (see Bellemare et al.

2017:960).

Panel Models Relaxing the Strict Exogeneity Assumption

The key takeaway message from the previous section is that relaxing the

assumption of strict exogeneity is needed for dealing with reverse causality.

One such approach is offered by a close relative of the FE model, the FD

model. Instead of controlling for time-invariant unobserved heterogeneity by

demeaning the data, the FD model eliminates ai by means of subtraction of

first order (see Lee 2016, for a generalization of the differencing method).

Suppose separate equations for two time points:

yit ¼ b1xit þ b2Zi þ ai þ eit

yit�1 ¼ b1xit�1 þ b2Zi þ ai þ eit�1:

Taking the difference of these equations removes both the unit-specific

error ai and all time-invariant regressors Zi:

Dyit ¼ bDxit þ Deit:

Since the unit-specific error term ai disappears from the equation after

calculating the first difference, the FD model requires no exogeneity assump-

tion about ai. Furthermore, like the FE model, the FD model assumes strict

exogeneity for unbiased estimation of the effects of independent variables xit

(Wooldridge 2010:316). However, as Cameron and Trivedi (2009:264) note,

the FD model rests on a weaker version of the exogeneity assumption than the

FE model, since the FD model uses only values from the previous wave for

differencing, whereas the FE model uses all past and future values for calcu-

lating within deviations from person-specific means (Halaby 2004:534). This

fact can be exploited in the FD framework to deal with situations in which Y

affects X.
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In particular, a LFD model has been suggested in order to tackle reverse

causality (Allison 2009; for empirical applications, see England et al. 2007;

Leszczensky 2013; Levanon, England and Allison 2009; Martin, Van Gun-

ten, and Zablocki 2012). The model is specified as follows:

yit � yit�1 ¼ bðxit�1 � xit�2Þ þ ðeit � eit�1Þ:

Compared to FE or RE models, the LFD model promises to offer protec-

tion not only against bias arising from unobserved time-invariant heteroge-

neity but also from reverse causality. The former is achieved by eliminating

the unit-specific error term ai by taking first differences, the latter by allow-

ing for a causal feedback process of X on Y by permitting a correlation of xit

with future values of eit.

Unfortunately, though, as Vaisey and Miles (2017) recently showed, esti-

mates from the LFD model suffer from severe bias if the model does not

adequately depict the true timing of causal effects. This is because the LFD

model rests on the crucial assumption that the change of Y between two

points in time is indeed a function of the specified difference of X between

two preceding points in time. Yet as Vaisey and Miles (2017) demonstrate in

simulations with three panel waves, if the true causal effect of X on Y is

contemporaneous rather than lagged, the LFD model substantially under-

estimates the true effect size and provides estimates that go in the opposite

direction. Whether or not the application of the LFD model is appropriate

thus crucially depends on whether or not the lags in the panel data match the

real-world causal lags in the process under study. This risk of specification

error highlights the need for precise theorizing regarding the actual lag

structure of the causal process under investigation. The LFD model accord-

ingly is hardly a panacea for dealing with reverse causality; in fact, it can do

more harm than good if it is applied without precise theoretical knowledge

about the underlying data generating process or if the temporal lags in the

available data simply do not match the actual causal process.

Dynamic Panel Models Allowing for Both Strict and Sequential
Exogeneity

In addition to the LFD model, dynamic panel models have been sug-

gested to address the endogeneity problem caused by reverse causality.

Dynamic panel models try to map the interplay between X and Y over

time by including lagged values of the dependent variable on the right-

hand side of the equation:
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yit ¼ b1yit�1 þ b2xit þ ai þ eit:

However, as Nickell (1981) has shown, including a lagged-dependent

variable (LDV) in FE or RE models necessarily induces a correlation of the

idiosyncratic error eis and the LDV, thus violating the strict exogeneity

assumption and resulting in biased estimates, as shown above. This so-

called dynamic panel or Nickell bias is particularly large for microlevel

panels with large N and small T but can remain quite substantial for larger

T (e.g., T >10). Furthermore, if the LDV is correlated with X, the estimates

for these independent variables are also biased.

One prominent econometric model to resolve this issue has been sug-

gested by Anderson and Hsiao (1981, 1982) and extended and popularized

by Arellano and Bond (1991). Since the LDV from the first lag is correlated

with eis, these dynamic panel estimators take first differences to remove

time-invariant unobserved heterogeneity:

Dyit ¼ b1Dyit�1 þ b2Dxit þ Deit:

Then yit�2, the LDV from second-order lags of Y is used as an instru-

mental variable (IV) for Dyit�1 (Anderson and Hsiao 1981, 1982). Whereas

this early IV estimator only uses a small proportion of all available instru-

ments, namely one instrument for each panel wave, the nowadays commonly

used generalized method of moments (GMM; see Hansen 1982) increases

efficiency by estimating a set of equations with varying number of instru-

ments depending on the number of available previous panel waves. Arellano

and Bond (1991) recommend to use all preceding levels of the LDV

(yit�2; yit�3; . . . ) as instruments (standard or difference GMM; see also

Holtz-Eakin, Newey, and Rosen 1988), while extensions highlighted the

value of using FDs of the LDV (Dyit�2; Dyit�3; . . . ) or combinations of both

sets of variables as instruments (system GMM; Arellano and Bover 1995;

Blundell and Bond 1998).

The important point is that both types of GMM estimators allow distinguish-

ing between strictly exogenous variables on the one hand and sequentially

exogenous, so-called predetermined, variables on the other. As in case of FE

or RE models, strictly exogenous variables are not allowed to be correlated with

past, present, and future values of the error term. By contrast, predetermined

variables are assumed to be sequentially exogenous. Like strict exogeneity,

sequential exogeneity forbids the current idiosyncratic error eis to be correlated

with previous and current values of xit. Unlike strict exogeneity, however, it

allows for current values of eis to be correlated with future values of xit:
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E eisjxitð Þ ¼ 0 for t � s:

Independent variables that are assumed to be predetermined are treated in

a similar way as Y is in the Arellano-Bond (AB) model, that is, they are

instrumented using lagged values of the same independent variable. Com-

pared to RE and FE models, AB-type panel estimators thus weaken the

exogeneity assumption for a subset of regressors, thereby providing consis-

tent estimates even if reverse causality is present.5

In principle, the AB estimator and related dynamic panel models offer a

powerful toolbox to tackle endogeneity problems caused by both reverse

causality and unobserved heterogeneity. However, despite its wide applica-

tion in econometrics, the approach is known to suffer from downward bias in

face of a large number of moment conditions (Hsiao 2007:90) and weak

instruments problems (Bun and Windmeijer 2010), both of which can under-

mine causal inference. In addition, AB estimators show poor finite-sample

performance (Newey and Windmeijer 2009) and require a large number of

sampled units (Moral-Benito, Allison, and Williams 2018).

The cross-lagged panel model with FE addresses some of these concerns.

It is based on work by Moral-Benito (2013) who showed that a dynamic

panel model with lagged independent variables and FE can be estimated by

maximum likelihood without taking FDs and without any assumptions about

initial observations of X and Y. Allison, Williams, and Moral-Benito (2017)

further showed that the maximum likelihood (ML) method suggested by

Moral-Benito (2013) can be implemented in a structural equation modeling

(SEM) framework, hence calling it the ML-SEM method (also see Bollen

and Brand 2010 for a general structural equations approach to panel mod-

els).6 Consider the following equation:

yit ¼ b1yit�1 þ b2xit�1 þ b3Zi þ ai þ eit;

which includes lagged values of the dependent variable yit�1 and a random

error term eit. ai represents the combined time-invariant effects of all time-

invariant unobserved variables, thus being a unit-specific FE. ML-SEM,

however, does not treat ai as a fixed parameter but as a latent variable that

is allowed to correlate with xit and yit at all points in time. ML-SEM thus

provides FE estimates for time-varying covariates (see also Allison 2009;

Bollen and Brand 2010), while initial values of Y and X are treated as strictly

exogenous. Similar to the RE model, if unit-specific regressors Zi are

included, as in the above equation, it is further necessary for identification

of the effects of Zi to assume that they are uncorrelated with ai.
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The equation above can then be reproduced within the SEM framework.

Following Allison et al. (2017), Figure 1 illustrates the model for T¼ 4. For

the ease of model presentation, covariates Zi are not displayed. Like the

LFD model and AB-type estimators, the ML-SEM method allows for

reverse causality by assuming sequential exogeneity for xit. As explained

before, residuals eit are allowed to correlate with all future values of such

predetermined explanatory variables. In Figure 1, this is illustrated by the

bidirectional arrow between x3 and e2, which allows a reverse causal effect

from Y on X. The other correlations between the predetermined variable X

and the error term for Y at any prior time point are omitted from the graph

for ease of illustration. At the same time, it is possible to assume strict

exogeneity for a subset of regressors that are expected to be uncorrelated

with previous values of Y and to estimate the effects of time-invariant

variables, not just control them as in the FE and FD model. We omit both

types of predictors, as they do not affect the considerations regarding

reverse causality. Importantly, as illustrated by the absence of arrows

between e2 ; e3; and e4 in Figure 1, ML-SEM rests on the assumption of

no serial correlation of errors.

Figure 1. Path diagram for four-period ML-SEM. Source: Allison et al. (2017:6).
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In Monte Carlo simulations, Moral-Benito (2013), Allison et al. (2017),

and Moral-Benito et al. (2018) show that applying the ML-SEM method to

the cross-lagged panel model with FE seems to keep the promise of offering

protection against both time-invariant unobserved heterogeneity and reverse

causality. Comparing ML-SEM and AB estimators, all three simulation

studies highlight advantages of ML-SEM regarding unbiasedness efficiency,

and finite sample performance.

However, these earlier simulations do not consider the problem raised by

Vaisey and Miles (2017), that is, that inference based on FD models is prone to

bias due to misspecification of temporal lags.7 Hence, like for RE, FE, and AB

models, it remains open whether the ML-SEM method for cross-lagged panel

models with FE is sensitive to the correct specification of temporal lags.

Summary

Let us briefly summarize our discussion of different panel models and their

exogeneity assumptions, which are crucial for addressing reverse causality. As

is well known, the POLS and the RE model will provide biased estimates if

reverse causality and/or time-invariant unobserved heterogeneity are present

because both of them introduce endogeneity and therefore violate the key

exogeneity assumptions. While the FE and the FD model provide protection

against endogeneity arising from unobserved heterogeneity, they also yield

biased estimates in case of reverse causality because reverse causality violates

the assumption of strict exogeneity. In contrast, the LFD model accounts for

both time-invariant unobserved heterogeneity and reverse causality by relax-

ing the strict exogeneity assumption and only requiring sequential exogeneity.

As shown by Vaisey and Miles (2017), however, the LFD model only provides

unbiased estimates if the effect of X on Y is indeed fully lagged, thus being

prone to specification error. Finally, the AB and ML-SEM models also prom-

ise to perform well in case of time-invariant unobserved heterogeneity and/or

reverse causality, the latter of which is achieved by assuming sequential rather

than strict exogeneity. However, it is an open question whether these models

are also sensitive to the specification of temporal lags.

Simulation Study

In order to assess how different panel models perform under different con-

ditions regarding reverse causality, we simulate panel data varying the

degree of unobserved heterogeneity, the extent of reverse causality, and the

temporal nature of the causal effect of X on Y.
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Consider two random variables, Y and X, which might have a reciprocal

causal relationship, as well as a vector of time-invariant variables Zi that have

time-invariant effects on both Y and X. To determine the starting values yi0

and xi0, we drew correlated random variables (r ¼ 0.5) and added a standard

normally distributed independent error term eit to Y and mit to X. Then, the

data generating process was set into motion by the following two equations:

yit ¼ b1yit�1 þ ð1� l Þb2xit þ lb3xit�1 þ b4Zi þ eit with eit*Nð0; 1Þ;

xit ¼ b5yit�1 þ b6Zi þ mit with mit*Nð0; 1Þ:

The parameter b1 influences the degree of autocorrelation of the outcome

variable Y in the data.8 This effect of yit�1 on yit was set to 0.2, 0.5, or 0.8 in

the simulation. Because the extent of autocorrelation did not substantially

affect the results, we condense our findings by only reporting results for

b1 ¼ 0:5 in the following (but see Section A of the Online Supplementary

for the results if b1 ¼ 0:2 or b1 ¼ 0:8).

The parameters b2 and b3 map the causal effects of interest and are set to

1. Following Vaisey and Miles (2017), we introduced the parameter l to

switch between contemporaneous and lagged effects of X on Y. For l ¼ 0,

the effect is purely contemporaneous; for l ¼ 1, purely lagged; and for

l ¼ 0:5, there is both a contemporaneous and a lagged effect, with an equal

strength of 0.5.9

Reverse causality is captured by the parameter b5, which is set to either 0

or 0.5. Finally, b4 and b6 give the time-invariant effects of time-invariant

unit-specific variables on X and Y, thus representing unobserved heteroge-

neity. Time-invariant unobserved heterogeneity also is either absent (0) or

present (0.5).10

Table 1 summarizes the different parameters of the simulation and their

possible values. In total, our simulation covers 3� 3� 2� 2¼ 36 scenarios.

Table 1. Components of the Simulation and Parameter Values.

Parameter(s) Concept Values

b1 Autocorrelation 0.2; 0.5; 0.8
b2=b3 Contemporaneous/lagged effect of X 1
l Contemporaneous versus lagged world 0; 0.5; 1
b4=b6 Unobserved heterogeneity: Y/X 0; 0.5
b5 Reverse causality 0; 0.5
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For each scenario, we simulated 500 data sets with N¼ 500 observations and

T ¼ 5 panel waves.11

Based on these simulated data, we estimated the different panel models

discussed above in order to assess their performance. To explore how the

different models respond to the problem of wrong temporal lags, we used

three different specifications for each model: one including only the con-

temporaneous effect of X, one including only the lagged effect of X, and one

including both the contemporaneous and the lagged effect of X. The model

that includes both a contemporaneous and a lagged effect is justified on two

grounds. On the one hand, both contemporaneous and lagged values of X

might affect Y; for example, marital problems can be caused both by past and

by current financial problems. On the other hand, such a model corresponds

to a situation in which substantive knowledge and theory are not precise

enough to determine the correct temporal lag for the effect of X on Y. A

model with both a contemporaneous and a lagged effect allows researchers to

address this uncertainty by estimating both effects (for an approach to handle

atheoretical lags, see also Cranmer, Rice, and Siverson 2017).

We estimated all models using Stata version 14.1. For the AB-estimators,

we used the user-written command xtabond2 (Roodman 2012), which is

more flexible than the standard Stata command. We rely on the approach

advocated by Arellano and Bond (1991) taking FDs in a first step to remove

unobserved heterogeneity and then using second- and higher order lags of the

dependent variables as instruments in a standard GMM framework to deal

with reverse causality.12 For the ML-SEM method, we used the user-written

command xtdpdml, which serves as a shortcut for Stata’s sem command

(Williams, Allison, and Moral-Benito 2018). In the ML-SEM, coefficients

for the effects of X on Y, and vice versa, are constrained to be equal across all

points in time. Our Stata code is publicly and permanently available at the

Harvard Dataverse (Leszczensky and Wolbring 2019).

Results

We present results obtained from three different specifications of the six

models discussed in Panel Models in Face of Reverse Causality section: the

POLS model, the RE model, the FE model, the FD model, the AB estimator,

and the cross-lagged model with fixed effects (ML-SEM). Following Vaisey

and Miles (2017), we distinguish between three worlds that differ with

respect to the timing of causal effects. In the contemporaneous world, xt has

an effect on yt. In the lagged world, xt�1 has an effect on yt. Finally, in the

mixed world, both xt and xt�1 affect yt to a similar extent. We use the term
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“scenario” to further distinguish whether time-invariant unobserved hetero-

geneity and/or reverse causality affected the data generating process within

these three worlds. This leaves us with four scenarios for each of the three

worlds.

Contemporaneous World

We start by considering a world in which Y is only affected by the contem-

poraneous value of X, that is, in which l ¼ 0 and, accordingly, the effect of

xit is 1 and the effect of xit�1 is 0. As noted above, such a world may be at

odds with a causal inference perspective because cause and effect cannot

occur at exactly the same point in time. Examining the performance of panel

models in such a world is still informative, however, since in many empirical

applications, the exact timing of a causal effect is unknown. For example, if

both X and Y are repeatedly measured with panel gaps of one year, causal lags

that are much shorter than the one-year gap between the points of observation

might be more accurately captured by the contemporary effect of X on Y than

by the lagged one.

Figure 2 shows how the different panel models perform in four different

scenarios. The tabulated results of all models in Figure 2 are found in Section

B in the Online Supplementary, as are all other models on which the follow-

ing figures are based. The two horizontal lines in Figure 2 represent the true

causal effects of xit (equal to 1) and xit�1 (equal to 0). For all six models, we

estimated one specification that only includes the contemporaneous effect of

X on Y (depicted by a square), one that only includes the lagged effect of X on

Y (depicted by a circle), and one that includes both effects (depicted by a

triangle). The point estimates and 95 percent confidence intervals are aver-

aged over the 500 runs of the simulation.

Panel A in Figure 2 depicts the simplest possible scenario in which

neither time-invariant unobserved heterogeneity nor reverse causality con-

tributed to the data generating process. Although empirical applications

rarely face the luxury of such an idealized scenario, it serves as a useful

benchmark for comparison.

Starting with the models that only include the contemporaneous effect of

X on Y (squares in Figure 2), from POLS to ML-SEM, all of them correctly

identify the true effect of xt. This is hardly surprising, of course, since the

assumption of strict exogeneity as well as the weaker assumptions of con-

temporaneous and sequential exogeneity hold if neither time-invariant unob-

served heterogeneity nor reverse causality are present.
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Turning to the models that include only the lagged effect of X on Y (circles

in Figure 2); however, most models fail to identify the lagged nil effect. The

coefficient of the FD model (�0.5) replicates the finding by Vaisey and

Miles (2017), that is, a LFD model produces biased estimates in the opposite

direction of the true effect if the specification does not accurately map the

actual causal process. Extending their finding, Figure 2 indicates that this

problem of misspecified lags similarly applies to the RE, the FE, and the ML-

SEM model, all of which yield significant negative coefficients even though

no lagged effect contributed to the data generating process. In fact, only the

POLS and the AB model correctly identify the lagged nil effect.

Finally, if both the contemporaneous and the lagged effect of X on Y are

included in the estimation equation, all models correctly identify both effects

(triangles in Figure 2). This finding suggests that it may be a promising

approach to include both contemporaneous and lagged effects for addressing

the problem of misspecified temporal lags. The question, however, is

whether this approach also works in the other scenarios and worlds.

In the next scenario, we therefore added time-invariant unobserved het-

erogeneity to the data generating process. The results in panel B of Figure 2

show precisely the pattern one would expect for this scenario. Estimates from

the POLS and the RE model are biased, as both of them assume the absence

of time-invariant unobserved factors. In contrast, the other four models

account for such unobserved heterogeneity; accordingly, the results of the

FE, the FD, the AB, and the ML-SEM model are not biased by time-invariant

unobserved heterogeneity.

In the third scenario, we switched time-invariant unobserved heterogene-

ity back off, the well-known consequences of which we just saw. Instead, we

added reverse causality, that is, a causal feedback loop from yt�1 on xt. Panel

C in Figure 2 shows the results. Both the POLS and the RE model again yield

biased estimates, this time because their exogeneity assumptions do not hold

under reverse causality. For the same reason, the FE and the FD model now

also yield biased estimates. In contrast, both the AB and ML-SEM model

produce unbiased estimates. As in the previous scenarios, however, for ML-

SEM, this only holds true if the contemporaneous effect of X is included in

the model, either alone or in combination with the lagged effect. The lagged

effect of X obtained from ML-SEM, by contrast, again is heavily biased if the

existent contemporaneous effect is not modeled.

In the final scenario, we switched time-invariant unobserved heterogene-

ity back on, thus considering the most likely case for applied researchers in

which causal inference is threatened both by time-invariant unobserved het-

erogeneity and by reverse causality. Minor variations aside, panel D in
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Figure 2 shows that reentering time-invariant unobserved heterogeneity does

not change the main conclusions derived from panel C. While results of

POLS, RE, FE, and FD models are biased in presence of time-invariant

unobserved heterogeneity and reverse causality, AB and ML-SEM yield

unbiased estimates of the effects of X on Y even in this most delicate

scenario.

Comparing the AB and ML-SEM models that successfully identify the

effects of X on Y, two results stand out. First, whereas AB always correctly

identifies the lagged nil effect of X, ML-SEM only does so if it additionally

includes the contemporaneous effect of X. Adding to the results by Vaisey

and Miles (2017), ML-SEM therefore falls prey to precisely the same

problem as the FD or FE model; AB, by contrast, is not affected by this

particular specification problem. Second, however, ML-SEM produces

smaller standard errors than AB, thus being more efficient. This advantage

in efficiency is consistent with simulations by Allison et al. (2017) and

Moral-Benito (2013).

Lagged World

We continue with a world in which Y is solely a function of the lagged value

of X, that is, in which l ¼ 1 and, accordingly, the effect of xit is 0 and the

effect of xit�1 is 1. Figure 3 shows the results for the world in which X has a

lagged, but no contemporaneous effect on Y. In general, the results mirror

those of the purely contemporaneous world described in the preceding sec-

tion. First, even in the idealized scenario in which neither time-invariant

unobserved heterogeneity nor reverse causality are present, all models but

the POLS fail to correctly identify the nil effect of contemporaneous values

of X (panel A). Second, introducing time-invariant unobserved heterogeneity

again biases the results of the POLS and RE model but not of the FE, FD, AB,

and ML-SEM models (panel B). Third, even in absence of unobserved het-

erogeneity, reverse causality results in biased estimates in all models but the

LFD, AB, and the ML-SEM models (panel C). Finally, this result again also

holds in the most challenging scenario in which both reverse causality and

time-invariant unobserved heterogeneity contributed to the data generating

process (panel D).

In sum, the results confirm that only the AB and ML-SEM model are able

to identify the true causal effects of both the lagged and the contemporaneous

value of X in all scenarios. Complementing the finding by Vaisey and Miles

(2017), the results caution against including (only) a contemporaneous effect

in panel models as a default. If the actual causal effect is lagged, only

853Leszczensky and Wolbring



F
ig

u
re

3
.

Si
m

u
la

ti
o
n

re
su

lt
s

fo
r

th
e

la
gg

ed
w

o
rl

d
(n
¼

5
0
0
,
t
¼

5
,
5
0
0

it
er

at
io

n
s;

9
5
%

co
n
fid

en
ce

in
te

rv
al

s)
.
U

n
b
ia

se
d

es
ti
m

at
es

ar
e

co
lo

re
d

in
b
la

ck
an

d
b
ia

se
d

es
ti
m

at
es

in
gr

ay
.
T

h
e

so
lid

h
o
ri

zo
n
ta

l
lin

es
re

p
re

se
n
t

th
e

tr
u
e

es
ti
m

at
es

.

854



modeling a contemporaneous effect leads to the underestimation of the actual

causal effects with coefficients potentially even switching signs.

Mixed World

In the final step, we consider a world in which Y is affected both by the con-

temporaneous and by the lagged value of X, that is, in which l ¼ 0:5 and,

accordingly, the effects of both xit and xit�1 are 0.5. The performance of the

different models under such circumstances is important because in many empiri-

cal applications both past and current values of X might affect the current out-

come. For example, both past and current pay might affect how attractive an

occupation is to males and females and thus the current rate of female employees.

Figure 4 shows the results for such a mixed world. In contrast to the

previous figures, the graphs include only one horizontal line, at which both

effects of 0.5 should be located in case of unbiased estimation. We again

address the four different scenarios, in turn, beginning with the simplest one

in which neither time-invariant unobserved heterogeneity nor reverse caus-

ality are present.

Panel A in Figure 4 shows that all six models correctly identify both the

contemporaneous and the lagged effect of X, but only if both of them are

included in the model. The exception from this pattern is the POLS model,

which always correctly identifies the respective effect because of its weaker

requirement of contemporaneous exogeneity. In contrast, due to their more

demanding assumptions of strict or sequential exogeneity, most other models

underestimate the respective effect if only either one of the two effects is

included.

Panel B in Figure 4 shows once again that entering time-invariant unob-

served heterogeneity induces bias in estimates from POLS and RE models.

The pattern mirrors the one of the scenario with a fully contemporaneous

effect that we described above, so we do not reiterate it here. Likewise,

panels C and D in Figure 4 show that, irrespective of whether or not time-

invariant unobserved heterogeneity is present, reverse causality again biases

the results not only of the POLS and RE model but also of the FD and FE

model. In contrast, both AB and ML-SEM yield unbiased estimates. How-

ever, as before, the former model is much less efficient than the latter one.

Robustness Checks

To examine whether our findings are sensitive to sample size, we ran all

simulations with n ¼ 100. As the results in Section C of the Online
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Supplementary show, reduced sample size has little implications for our

findings; all results described above hold. Reflecting the loss of statistical

power, the only notable yet entirely expectable differences are increased

standard errors. This holds true for all models, but especially for ML-SEM.

As a further robustness check, returning to a sample size of n ¼ 500, we

varied the length of the panel, considering both less (t¼ 3) and more (t¼ 10)

points in time. Section D in the Online Supplementary shows that with t ¼
10—besides more precise estimates—the results are again very similar to

those obtained for t ¼ 5.

Section E in the Online Supplementary shows that with t ¼ 3, the results

also are very similar to those obtained for t ¼ 5. Again, only the AB model

with one effect and the ML-SEM that include both the contemporaneous and

the lagged effect of X on Y identify the actual effects in all different scenar-

ios. However, in the most complex scenario that entails both time-invariant

unobserved heterogeneity and reverse causality, losses in efficiency are so

huge that point estimates are neither significantly different from zero nor

from one in most cases. This serves as a note of caution that dynamic panel

models might be the right choice in face of reverse causality but are pretty

demanding regarding the data. As these robustness checks illustrate, the

length of the panel appears to be more important than the number of obser-

vations in this regard.

In a final robustness check, we introduced serial correlation by simulating

a first-order autoregressive process: eit ¼ 0:2 eit�1 þ mit with mit*Nð0;s2
mÞ.

While previous simulations by Brüderl and Ludwig (2015) highlight that this

setup causes severe problems for AB estimators, little is known about how

ML-SEM performs under serial correlation. Since ML-SEM also assumes no

serial correlation of the errors (see Dynamic Panel Models Allowing for Both

Strict and Sequential Exogeneity subsection), it is likely that serial correla-

tion causes problems for this model, too. The results depicted in Section F in

the Online Supplementary corroborate this concern, showing that the pres-

ence of serial correlation biases results from ML-SEM.

Conclusions and Recommendations for Researchers

This simulation study aimed to provide guidance on how to deal with reverse

causality using panel data. After reviewing existing panel models and their

key assumptions regarding reverse causality, we assessed their performance

under different specifications and a wide range of conditions. Our results

demonstrate that frequently used panel models, such as RE or FE models,

suffer from biases due to reverse causality, thus being hardly a silver bullet if
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causal inference is threatened by reverse causality. As also shown, and con-

sistent with Vaisey and Miles (2017), the LFD model is generally better

suited to handle reverse causality, but only if the effect of X on Y is indeed

fully lagged.

Extending the findings by Vaisey and Miles (2017), we further showed

that not only the LFD model, but all considered panel models except for

POLS are very sensitive to the correct specification of temporal lags. Our

simulation thus reveals that the problem of misspecified lags is rather gen-

eral, as it also applies to the RE model, the FE model, the AB estimator, and

the cross-lagged panel model with FE (ML-SEM). If the effect of X on Y is

fully contemporaneous and no lagged effect contributed to the data generat-

ing process, all of these models, except for AB, nevertheless yield a statis-

tically significant lagged effect. On the other hand, if the actual causal effect

is fully lagged, only modeling a contemporaneous effect all models, includ-

ing AB, underestimated the actual causal effect with coefficients even

switching signs. These findings caution against an unreflected specification

of contemporaneous effects in panel models without knowledge about the

actual causal process at work. The same holds for using lagged effects as a

default.

Our simulation results also show that ML-SEM may help researchers to

overcome the problem of misspecified temporal lags. Whereas ML-SEM

falls prey to precisely the same lag specification problem as other models,

our simulations show that this problem only occurs if ML-SEM includes

either a contemporaneous or a lagged effect of X on Y. If both effects are

specified, by contrast, ML-SEM provides correct estimates of both effects in

all scenarios.

While earlier work has warned researchers what not to do in order to deal

with reverse causality (e.g., Brüderl and Ludwig 2015; Vaisey and Miles

2017), our simulation study thus offers guidance on what researchers can do

with (at least) three waves of panel data. In short, ML-SEM including both a

contemporaneous and a lagged effect of X on Y provides correct estimates of

both effects, even in case of reverse causality. If the contemporaneous effect

in ML-SEM is negligible, this approach can also serve to justify the appli-

cation of the LFD model or the AB estimator.

While our simulation results indicate that researchers can rely on ML-

SEM to address reverse causality, the method is no panacea either. First of

all, it is important to note that our simulation only generated scenarios in

which the correct lags are available in the data. While applied empirical

research has to make this assumption, more research is needed to explore

how ML-SEM and other models perform in cases in which the timing of
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panel waves does not match the true causal process under investigation. In

any case, addressing reverse causality imposes high requirements on the data.

Like other panel models, ML-SEM requires a sufficient amount of within

variation and at least three panel waves if a lagged effect is included. In

addition, ML-SEM contains more parameters to estimate than standard panel

models, especially if—as we recommend—both the contemporaneous and

the lagged effect of X are specified. While our simulations showed that point

estimates are still correct in a setting with three waves and 500 observations,

standard errors become so large that it became hard to derive any meaningful

substantive conclusions from the empirical results.

Using ML-SEM, further problems can arise that are not directly related to

reverse causality but might still limit its usefulness in empirical applications.

First, as shown in a robustness check, ML-SEM provides biased estimates in

case of serial correlation. Given that serial correlation is rather common

using panel data, researchers must be aware of this issue and pay special

attention to serial correlation, for example, by directly modeling persistence

of variables over time and controlling for variables causing it. Second, ML-

SEM requires an iterative algorithm that can fail to converge or can be slow

to run (Williams et al. [2018] provide tips for dealing with convergence

problems). As shown in Section G in the Online Supplementary, conver-

gence of ML-SEM is not a major issue in simulations with five waves, but it

proved to be problematic in shorter panels with only three waves. Further-

more, longer panels (t >10) and unbalanced panels can cause estimation

problems; sometimes, switching the software (e.g., to MPlus or R’s lavaan

package) might help. Finally, given the rather favorable conditions in our

simulation of a simple and systematic data generating process, complete

data, and the exclusion of time-varying covariates, additional challenges may

also arise in real-world data that contain missing values, nonnormally dis-

tributed variables, and interaction effects. Although Moral-Benito et al.

(2018) and Williams, Allison, and Moral-Benito (2018) highlight that ML-

SEM can use full information maximum likelihood to deal with missing data

and also give recommendations on how to deal with nonnormality, it remains

open to future research whether our simulation results also hold for such

more complex scenarios.

These practical issues aside, our recommendation for researchers facing

reverse causality with panel data is straightforward: use ML-SEM to estimate

both the contemporaneous and the lagged effect of X on Y. Only this

approach yields unbiased estimates of both effects even if reverse causality

is present, and it allows solving the problem of misspecified lags that plagues

other panel models.
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Notes

1. Some authors use the term “reverse causality” exclusively for situations in which

Y affects X, but X does not affect Y, while referring to situations where X and Y

affect one another as “reciprocal causality” instead. Arguing that the arrow from

Y to X is key, we use the term “reverse causality” to denote any situation in which

Y affects X, irrespective of whether or not X also affects Y.

2. More specialized approaches exist for certain data structures. For example, based

on repeated observation of complete networks (e.g., a school class or a firm), the

so-called stochastic actor-oriented model (Snijders, van de Bunt, and Steglich

2010; Steglich, Snijders, and Pearson 2010) can be used to disentangle the inter-

play of network formation (e.g., the development of friendships or business ties)

and individual behavior (e.g., changes in attitudes or profit). Since we focus on

microlevel panels with large N and small T, we neither discuss these methods nor
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methods for time series analysis (see Box et al. 2015; Box-Steffensmeier et al.

2014, for introductions).

3. Since we cover models from different methodological literatures that often run

parallel to each other, a detailed review of the respective traditions is beyond the

scope of this article. We provide references for further reading on the different

models in the respective subsections.

4. This is purely for ease of illustration; we by no means deny that researchers often

are interested in reciprocal effects in the first place. In fact, the models we discuss

can be used to address both causal directions.

5. However, Arellano and Bond (1991) introduced generalized method of moment–

estimation based on the explicit assumption of no serial correlation in the errors.

This condition is crucial for consistency, since only then lagged values are valid

instruments.

6. Hamaker et al. (2015) recently introduced a random intercept cross-lagged panel

model (RI-CLPM) in the structural equation modeling literature that achieves a

similar thing as the ML-SEM method proposed by Allison, Williams, and Moral-

Benito (2017), that is, it provides estimates that are not biased by reverse caus-

ality and time-invariant unobserved heterogeneity. In line with our focus of

estimating the effect of X on Y rather than reciprocal effects, we focus on ML-

SEM rather than the RI-CLPM, even though both models can be modified to

capture either a uni- or a bidirectional relation between X and Y.

7. Vaisey and Miles (2017) generalize this finding to fixed effects (FE) models

without explicitly demonstrating that the problem also applies to these models.

One additional contribution of our study is thus to explore the robustness of FE

model toward this kind of specification error

8. Technically speaking, the parameter b1 determines the amount of true state

dependence in the data. Autocorrelation—defined as the correlation of the idio-

syncratic errors—depends on the amount of true state dependence, but it may

also have other sources such as time-invariant unobserved heterogeneity or cau-

sal feedback loops. In a robustness check (see Robustness Checks subsection),

we further introduced serial correlation by simulating a first-order autoregressive

process in which eit has a direct effect on eitþ1.

9. From a causal inference perspective, a contemporaneous causal effect is an

oxymoron, as a cause needs to precede its consequences (e.g., Granger 1969;

Woodward 2003). Using observational data, however, it is important to consider

contemporaneous effects because the true causal effect in empirical studies prob-

ably lies between the idealized extremes of a fully contemporaneous and a fully

lagged effect if the gaps between panel waves do not perfectly match the timing

of the real-world causal process. Furthermore, we only report simulation results

for situations in which causality between X and Y runs in both directions. In a
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robustness check, we also explored how models perform when the causal arrow

only runs from lagged Y to contemporaneous X. The following findings also hold

for this case.

10. To rule out that biases from different sources, for example, from time-invariant

unobserved heterogeneity and reverse causality, cancel each other out, we reran

the simulations with a negative effect of time-invariant unobserved heterogeneity

(�0.5). The substantial results were the same as reported below.

11. A run of the main simulation set-up with 1,000 instead of 500 simulated data sets

yielded the same results.

12. We also explored how the classical AB approach performs in the main simulation

setup (n ¼ 500, t ¼ 5, 500 iterations) as compared to the modified version

suggested by Blundell and Bond (1998). In the absence of unobserved hetero-

geneity, both approaches perform well. If unobserved heterogeneity is present,

the AB estimator outperforms the approach by Blundell and Bond in terms of

unbiasedness, though the later estimator offers gains in efficiency in more com-

plex scenarios.
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