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Summary

The recent explosion of data availability opens up opportunities for companies to make

better decisions. However, it is not clear, in general, how to get from data to a good

decision. Exploiting these data for improved decision making requires adequate method-

ologies. Inventory management decisions are a particularity important set of decision

problems for virtually every company that buys, produces, distributes, or sells physi-

cal products. In this dissertation, we investigate the question of how to get from data

to a good decision in inventory management problems. To this end, we revisit three

fundamental inventory management problems, propose new data-driven methodologies,

and measure their impact on inventory performance. Chapter II covers the newsvendor

problem. To investigate how to exploit the available data, we propose a framework that

distinguishes three levels on which data can generate value. Furthermore, we present a

novel solution method that integrates the traditionally separate steps of demand esti-

mation and inventory optimization into a single optimization problem. In our empirical

analysis with real-world data, we find that data-driven methods outperform traditional

approaches in most cases and that the benefit of improved forecasting dominates other

potential benefits of data-driven methodologies. Chapter III is concerned with managing

inventories for multiple products in a product category. We present a novel data-driven

solution approach based on machine learning that integrates the estimation and opti-

mization steps and takes complex substitution effects into account. We evaluate our

approach on two real-world datasets. We find that our data-driven approach outper-

forms the benchmark on the first dataset and performs competitively on the second.

Chapter IV focuses on dynamic inventory problems. We propose a novel solution ap-

proach that leverages auxiliary data. Our approach divides the problem into multiple

single-stage problems using dynamic programming and uses machine learning methods

in each stage to improve inventory decisions. In a computational study, we find that

our method performs close to the optimal decision and significantly outperforms the

benchmark.
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Chapter I

Introduction

The International Data Corporation estimates the total amount of data that is created,

captured, or replicated worldwide to grow from 33 zettabytes 1 in 2018 to 175 zettabytes

by 2025 (Reinsel et al. 2018). This data is generated e.g. by mobile phones and comput-

ers that track user behavior, sensor-equipped machinery that reports its current status

and condition, and digitized vehicles that transmit their positions and mileage. Parallel

to this development, the processing capabilities of modern computers have also improved

significantly and enabled the handling of the emerging Big Data.

More and better data open up opportunities for companies to make better decisions.

The explosion of data availability and computing power has led to increased interest and

adoption of data-driven decision making across industries (Brynjolfsson and McElheran

2016a,b). Exploiting these data for better decision making requires new methodologies

and algorithms. One of these methodologies that has attracted a lot of attention in

recent years is machine learning. Examples of machine learning applications include

approaches that leverage large data sets to predict crime (Kadar and Pletikosa 2018),

predict results of football matches (Baboota and Kaur 2019), or predict retail store sales

(Kaneko and Yada 2016). Deriving optimal decisions, however, is usually not considered

in machine learning. The lack of established methodologies for data-driven decision

making is one of the reasons why many companies are still struggling to leverage the

available data.

Inventory management decisions are a particularity important set of decision problems

for virtually every company that buys, produces, distributes, or sells physical products.

Controlling inventories is especially challenging when customer demand is uncertain. In

1One zettabyte is equal to one trillion gigabytes.
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Chapter I. Introduction

competitive environments, good service is a key factor for success. Thus, companies

attach great importance to product availability to satisfy their existing customers and

attract new ones. On the one hand, holding too little inventory leads to stock-outs,

unsatisfied customers, and finally to financial disadvantages. On the other hand, hold-

ing too much inventory is associated with excessive costs, such as warehousing costs,

handling costs, costs of capital, and depreciation. Depending on the company and its

business model, the value and therefore also the costs of inventory are substantial. For

example, the world’s largest chemical company, BASF, holds inventories with a value

of over 11.2 billion Euro, corresponding to approximately 13% of total assets (BASF

2020); one of Germany’s largest retailers, REWE Group, holds inventories with a value

of over 4.1 billion Euro, corresponding to approximately 13% of total assets (REWE

2020). Thus, managing the trade-off between too little and too much inventory and tak-

ing appropriate inventory decisions contributes significantly to a company’s economic

success.

It is at the heart of operations research and management science to provide models,

methods, and insights to help make better inventory decisions. However, most traditional

inventory management approaches do not provide ways to get from data to decision in

this new data-rich world. They either make strong and unrealistic assumptions about

the data or concentrate only on a limited part of the data and neglect the remaining

information. Thus, new methods are needed that leverage the available data to the

fullest.

Motivated by the recent explosion of data availability, the main research question of

this dissertation is

How to get from data to good decisions in inventory management?

To answer this question, we revisit three fundamental inventory management problems

in Chapters II to IV and investigate the potential benefits of data-driven decision making

therein.

Chapter II covers the most fundamental stochastic inventory problem, the newsvendor

problem. In the newsvendor problem, the decision-maker has to manage the trade-off

between ordering too much and ordering too little of a single product with uncertain

demand for a single selling period. Traditionally, the newsvendor problem is solved based

on a demand distribution assumption. However, in reality, the true demand distribution

is hardly ever known to the decision-maker. Instead, large datasets of point-of-sales

data as well as auxiliary feature data are available that enable the use of empirical

2



Chapter I. Introduction

distributions. Chapter II investigates how to exploit this data for improved decision

making.

To address this question, we identify three levels on which data can generate value.

The first level is demand estimation, where data can help to improve the demand forecast.

The second level is inventory optimization, where data can replace demand distribution

assumptions. The third level is integrated estimation and optimization, where the inven-

tory decision is estimated directly from data. While most traditional methods use the

first two levels, we introduce new methods for integrated estimation and optimization

based on machine learning and quantile regression that do not require the assumption of

a specific demand distribution. We empirically evaluate the impact of data-driven deci-

sion making on the three levels with point-of-sales data of a large German bakery chain.

We find that data-driven methods outperform traditional approaches in most cases. Fur-

thermore, we find that the benefit of improved forecasting (first level) dominates other

potential benefits of data-driven methodologies.

Chapter III is concerned with managing inventories for multiple products in a product

category. Managing inventories for these products is particularly challenging due to

substitution effects within the category. Substitution effects occur if a customer cannot

find his or her preferred product, due to a stock-out, and substitutes for a similar product

within the same category. This substitution behavior makes the inventory decisions for

individual products interdependent, and the resulting optimization problem notoriously

hard. Another difficulty is that, again, the true demand distributions of products are

usually unknown to the decision-maker. In this chapter, we investigate the question

of how to leverage the available data for the multi-product newsvendor problem under

customer substitution, and we measure its value for a real-world problem.

To answer this question, we present a novel solution approach for the multi-product

newsvendor problem. Our method integrates the demand estimation step and the in-

ventory optimization step into a single optimization problem. The method is based on

modern machine learning techniques that leverage large available datasets, including,

data on historical sales, weather, store location, and special days, and are able to take

complex substitution effects into account. We empirically evaluate our approach on two

real-world datasets of a large German bakery chain. Furthermore, we evaluate the effects

of demand estimation accuracy, feature data, and substitution on overall performance.

We find that our data-driven approach outperforms the model-based benchmark on the

first dataset and performs competitively on the second dataset. Our forecast accuracy

3



Chapter I. Introduction

analysis reveals that the performance difference is mainly due to the additional data that

can be leveraged by our method compared to the benchmark approach. Another bene-

fit of our approach is that it prescribes a decision for any combination of feature data

values once it is trained. There is no need to solve the notoriously hard multi-product

newsvendor problem in each period.

In Chapter IV, we focus on another fundamental class of inventory management prob-

lems, namely dynamic inventory problems. Dynamic inventory problems occur in a large

number of industrial, distribution, and service applications. Most models in the liter-

ature assume that the demand distribution is stationary and known a priori in these

contexts. In reality, this is rarely the case. Instead, the actual demand distribution

is unknown and may change over time. The recent explosion of data availability may

help to avoid such assumptions. We revisit the classical stochastic dynamic inventory

problem of Scarf (1959), where the demand distribution is unknown, and the decision-

maker has access to historical demand data and associated feature data instead. The

main question that we address in is how to incorporate feature data into the inventory

decision.

To answer this question, we combine concepts of classical dynamic inventory manage-

ment and machine learning to develop a data-driven solution approach that leverages

auxiliary data such as weather, location, and calendar data for the stochastic dynamic

inventory problem. More specifically, we built the idea of predictive prescriptions of

Bertsimas and Kallus (2020). Predictive prescriptions are functions that prescribe a

decision for a stochastic optimization problem given some feature data. The approach

is similar to sample average approximation. However, instead of assigning the same

weight to every historical demand realization, these realizations are reweighed according

to their importance for the decision, using machine learning. The concept can be ap-

plied to general single-stage optimization problems but it is not immediately clear how

to transfer it to multi-stage problems. We use the dynamic programming formulation

of the dynamic inventory problem to split it into successive single-stage problems and

apply the concept of predictive prescriptions to each of these problems. In a computa-

tional study, we compare our approach to an extant non-parametric method and to the

optimal dynamic programming solution. In our computational, we find that our method

results in an optimality gap of only 0.75% to 2.92% whereas the benchmark results an

optimality gap of of 6.63% to 7.58%.

4



Chapter II

A Data-driven Newsvendor

Problem: From Data to Decision

with Jakob Huber, Moritz Fleischmann,
and Heiner Stuckenschmidt1

Abstract

Retailers that offer perishable items are required to make ordering decisions for hundreds

of products on a daily basis. This task is non-trivial because the risk of ordering too

much or too little is associated with overstocking costs and unsatisfied customers. The

well-known newsvendor model captures the essence of this trade-off. Traditionally, this

newsvendor problem is solved based on a demand distribution assumption. However,

in reality, the true demand distribution is hardly ever known to the decision maker.

Instead, large datasets are available that enable the use of empirical distributions. In

this paper, we investigate how to exploit this data for making better decisions. We

identify three levels on which data can generate value, and we assess their potential.

To this end, we present data-driven solution methods based on Machine Learning and

Quantile Regression that do not require the assumption of a specific demand distribution.

We provide an empirical evaluation of these methods with point-of-sales data for a

large German bakery chain. We find that Machine Learning approaches substantially

outperform traditional methods if the dataset is large enough. We also find that the

1The research presented in this chapter is based on a paper entitled “A Data-driven Newsvendor
Problem: From Data to Decision” coauthored with Jakob Huber, Moritz Fleischmann and Heiner
Stuckenschmidt.
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Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

benefit of improved forecasting dominates other potential benefits of data-driven solution

methods.

2.1. Introduction

Demand uncertainty is a major challenge in supply chain management practice and

research. An important remedy for demand risk is the deployment of safety stock. In

order to set appropriate stock levels, many inventory models assume a specific demand

distribution (Silver et al. 2017). These problems are then solved in a two-step procedure.

First, the parameters of a given demand distribution are estimated, and second, an

optimization problem based on this distribution is solved. Despite the theoretical insights

generated, the distribution assumption is problematic in real-world applications, as the

actual demand distribution and its parameters are not known to the decision maker in

reality and may even change over time (Scarf 1958).

The growing availability of large datasets (“Big Data”) may help overcome this issue

and improve the performance of inventory models in real-world situations. Data that are

indicative of future demand provide an opportunity to make better-informed decisions.

These data include external information that is available through the Internet and data

from internal IT systems. While this potential is widely recognized (see e.g. Bertsimas

and Kallus (2020)), it is unclear how to best exploit it. Extant literature is rather frag-

mented in that regard and proposes multiple alternative directions. Our paper intends

to contribute to a more wholistic understanding of the potential of data-driven inven-

tory management. To this end, we distinguish three levels on which data can be used

to revise the traditional decision process (see Figure 2.1). We discuss how these levels

are interrelated, and we quantify their respective impact in a real-life application.

The first level on which data can be exploited is demand estimation. The available

data may contain information about future demand that can be extracted by suitable

forecasting methods. These methods use historical demand data and other feature data

(e.g. weekdays, prices, weather, and product ratings) to estimate future demand. The

output of these models is a demand estimate together with historical forecast errors.

If additional information can be extracted, the reduced demand risk results in more

accurate decisions. Machine Learning (ML) has attracted a great deal of attention in the

past decade. ML methods are able to process large datasets and have been successfully

6
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Demand estimation

(Section 3.2)

Inventory optimization

(Section 3.3)

data

inventory 

decision

point forecast

forecast errors

(a) Separate estimation and optimization

Integrated estimation and optimization

(Section 3.4)

data

inventory 

decision

(b) Integrated estimation and optimization

Figure 2.1.: The three levels of data-driven inventory management

applied to numerous forecasting problems (Barrow and Kourentzes 2018, Crone et al.

2011, Carbonneau et al. 2008, Thomassey and Fiordaliso 2006).

On the second level, the inventory decision is optimized based on the demand forecast

and the historical forecast errors. To this end, it is necessary to incorporate the remaining

uncertainty associated with the forecast. Traditionally, uncertainty is modeled through a

demand distribution assumption (Silver et al. 2017). We call this approach model-based

since it explicitly models a demand distribution. However, this assumption might be

misspecified and leads to suboptimal inventory policies (Ban and Rudin 2019). Instead

of speculating about a parametric demand distribution, the assumption can be replaced

by empirical data that are now available on large scale. This approach is called Sample

Average Approximation (SAA) (Kleywegt et al. 2002, Shapiro 2003) and we call it data-

driven as it does not rely on a distribution assumption.

On the third level, demand estimation and optimization are integrated into a single

model that directly predicts the optimal decision from historical demand data and feature

data, as depicted in Figure 2.1b (Beutel and Minner 2012, Sachs and Minner 2014, Ban

and Rudin 2019, Bertsimas and Kallus 2020). This approach is also data-driven, as it

does not require the assumption of a demand distribution and works directly with data.
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Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

From the existing literature, it is not yet clear whether and under which circumstances

data-driven approaches are preferred to model-based approaches. Furthermore, the ques-

tion of the conditions under which separate or integrated estimation and optimization

is superior remains open.

To shed light on these questions, we focus on the newsvendor problem as the basic

inventory problem with stochastic demand. We empirically analyze the effects of data-

driven approaches on overall costs on the three levels. Moreover, we develop novel

data-driven solution methods that combine modern ML approaches with optimization

and empirically compare them to well-established methods.

In our approaches, we integrate Artifical Neural Networks (ANNs) and Decision Trees

(DTs) into an optimization model. Most previous work on integrated estimation and

optimization assumed the inventory decision to be linear in the explanatory features

(Beutel and Minner 2012, Sachs and Minner 2014, Ban and Rudin 2019). This assump-

tion poses many restrictions on the underlying functional relationships. We extend this

literature by integrating multiple alternative ML methods and optimization in order to

avoid these strong assumptions and incorporate unknown seasonality, breaks, thresholds,

and other non-linear relationships. Recently, Oroojlooyjadid et al. (2018) and Zhang and

Gao (2017) also used ANNs in this context.

We evaluate our solution approaches with real-world data from a large bakery chain

in Germany. The company produces and sells a variety of baked goods. It operates a

central production facility and over 150 retail stores. Every evening, each store must

order products that are delivered the next morning. Reordering during the day is not

possible. Most of the goods have a shelf life of only one day. Thus, leftover product at

the end of the day is wasted, while stock-outs lead to lost sales and unsatisfied customers.

From an optimization perspective, the problem can be represented by a newsvendor

model, and the available point-of-sales data can be used to calculate forecasts. We apply

our data-driven methods to the problem and compare their performance to the perfor-

mance of well-established approaches. To summarize, our key contributions include the

following:

� We identify and conceptualize three levels of data-driven approaches in inventory

management.

� We investigate the impact of the three levels on overall performance in a newsven-

dor problem.

8



Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

� We present novel data-driven solution approaches to the newsvendor problem based

on Machine Learning.

� We compare our method to well-established approaches on the three levels and

show that data-driven methods outperform their model-based counterparts on our

real-world dataset in most cases.

The remainder of this paper is organized as follows. In the next section, we provide

an overview of related literature. In Section 2.3, we describe the problem and introduce

the methodology, including the data-driven ML approaches. Section 2.4 contains an

introduction to the reference models, an empirical evaluation, and a discussion of the

results. In Section 2.5, we summarize our findings and outline opportunities for further

research.

2.2. Related Literature

Most inventory management textbooks assume that the relevant demand distribution

and its parameters are exogenously given and known (Silver et al. 2017). For a review of

newsvendor-type problems, see Qin et al. (2011). In this section, we review the literature

on inventory problems in which the demand distribution is unknown. More specifically,

we focus on Robust Optimization, Sample Average Approximation (SAA), and Quantile

Regression (QR).

One approach that needs only partial information on demand distributions is robust

optimization (Ben-Tal et al. 2009). Scarf (1958) studies a single period problem in which

only the mean and the standard deviation of the demand distribution are known. He then

optimized for the maximum minimum (max-min) profit for all distributions with this

property. Gallego and Moon (1993) further analyzed and extended it to a setting where

reordering is possible. Bertsimas and Thiele (2006) and Perakis and Roels (2008) provide

more insights into the structure of robust inventory problems. The main drawback of

robust optimization is its limitation to settings with very risk-averse decision makers.

For most real-world applications, robust optimization is overly conservative. For our

analysis, we focus on methods that minimize expected costs instead of the max-min

objective.

A data-driven method with a wider range of applications is Sample Average Approx-

imation (SAA) (Kleywegt et al. 2002, Shapiro 2003). Here, the demand distribution
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assumptions are replaced by empirical data. Levi et al. (2007) analyze the SAA solution

of a newsvendor model and its multi-period extensions. The authors calculate bounds

on the number of observations that are needed to achieve similar results compared to the

case with full knowledge of the true demand distribution. These bounds are indepen-

dent of the actual demand distribution. More recently, Levi et al. (2015) showed that

the established bound is overly conservative and does not match the accuracy of SAA

obtained in simulation studies. Therefore, they develop a tighter bound that is distri-

bution specific. In this paper, we provide empirical support for the good performance

of SAA and compare the results of diverse methods.

Instead of using sequential estimation and optimization, integrating both steps into a

single optimization model has been suggested (Bertsimas and Kallus 2020). Beutel and

Minner (2012) incorporate a linear regression function for demand into their newsvendor

model. The authors test their approach on simulated data and actual retail data. The

model was later extended to situations with censored demand observations (Sachs and

Minner 2014). Ban and Rudin (2019) propose an algorithm that is equivalent to the one

in Beutel and Minner (2012), in addition to a kernel optimization method. Furthermore,

the authors show several properties of the algorithm and test it with empirical data in

a newsvendor-type nurse staffing problem. Oroojlooyjadid et al. (2018) and Zhang and

Gao (2017) integrate a neural network into a newsvendor model and compare it to sev-

eral other approaches from the literature. However, they do not distinguish the effects

of estimation, optimization, and integrated estimation and optimization. A drawback

of extant research on integrated estimation and optimization is that non-linear relation-

ships between inventory decision and feature data remain understudied. By using ML

instead of a linear decision rule, our approaches can detect a priori unknown non-linear

relationships between the optimal decision and the input features. Furthermore, we

disentangle the effects of the three different levels of data usage highlighted in Figure

2.1.

It is well known that the optimal solution to the standard newsvendor model corre-

sponds with a certain quantile of the demand distribution (Silver et al. 2017). Estimating

a certain quantile of a distribution is known as Quantile Regression (QR) in the statis-

tics and ML literature (Koenker 2005). A very general approach to QR is presented

by Takeuchi et al. (2006). The authors derive a quadratic programming problem and

provide bounds and convergence statements of the estimator. Taylor (2000) use an ANN

for QR in order to estimate conditional densities of financial returns. Similarly, Cannon
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(2011) describes an implementation of ANNs for QR and gives recommendations on

solution approaches with gradient algorithms. More related to our application, Taylor

(2007) applies QR to forecast daily supermarket sales. The proposed method can be

interpreted as an adaption of exponential smoothing to QR. In the empirical evaluation,

the author tests three implementations of the method: one with no regressors, one with

a linear trend term, and one with sinusoidal terms to account for seasonality. None

of the papers on QR we found uses QR to evaluate the costs of an inventory decision.

For our solution approach, we build on the existing literature on QR by integrating

ML methods into the optimization model and and evaluate the resulting costs of the

newsvendor decision.

The challenge of incorporating demand uncertainty in inventory models without de-

mand distribution assumptions is most recently also discussed by Trapero et al. (2019).

They argue that the typical assumption of normal i.i.d. forecast errors should be ques-

tioned and suggest using a non-parametric kernel density approach for short lead times.

Prak and Teunter (2019) propose a framework for incorporating demand uncertainty in

inventory models that mitigates the parameter estimation uncertainty.

To summarize, we empirically evaluate the impact of data-driven approaches on the

three levels (1) estimation, (2) optimization, and (3) integrated estimation and optimiza-

tion. To this end, we extend the literature by proposing novel data-driven approaches

to the newsvendor problem that are based on ML and build on the existing knowledge

on QR in order to leverage existing big data and computation power for inventory opti-

mization. We also illustrate the connection between QR and integrated estimation and

optimization in the newsvendor context. Finally, we empirically compare the data-driven

methods to their model-based counterparts and other well-established approaches.

2.3. Methodology

2.3.1. Problem Description

We consider a classical newsvendor problem with an unknown demand distribution: a

company sells perishable products over a finite selling season with uncertain demand.

The company must choose the number of products to order prior to the selling season.

If the order is too high and not all products can be sold, the company bears a cost of co

for each unit of overage. If the order is too low and more units could have been sold, the
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company bears costs of cu for each unit of underage. Thus, the objective is to minimize

the total expected costs according to

min
q≥0

E
[
cu(D − q)+ + co(q −D)+

]
, (2.1)

where q is the order quantity and D is the random demand. The well-known optimal

solution to this problem is to choose as the order quantity the quantile of the cumulative

demand distribution function F that satisfies

q∗ = inf

{
p : F (p) ≥ cu

cu + co

}
, (2.2)

where cu
cu+co

is the optimal service level. The service level represents the probability of

satisfying demand in a given period.

The problem that we address is that in most real-world cases, the actual demand

distribution F is unknown. However, historical data Sn = {(d1,x1), ..., (dn,xn)} are

available, where dt is the demand and xt is a vector of covariates or features (e.g.

weekday, historical demand, and price) in period t. These data can be leveraged in

different ways to reduce demand risk.

In the following sections, we present approaches that use the data on the three levels

introduced in Section 2.1. First, we introduce forecasting models based on ML that we

use throughout our analysis. Next, we describe a data-driven optimization approach

that leverages the empirical distribution of forecast errors. Finally, we present novel

data-driven models that integrate ML and the optimization model.

2.3.2. Demand Estimation

If the underlying structure of the demand data is unknown, it is reasonable to consider

very general forecasting models. ML methods have been applied to numerous forecasting

tasks. Compared to traditional forecasting methods, ML is able to “learn” non-linear re-

lationships between inputs and outputs. The most widely and successfully used methods

are Artificial Neural Networks (ANNs) and Gradient Boosted Decision Trees (DTs).

ANNs are data-driven models that can approximate any continuous function (Hornik

1991), making them suitable for forecasting if enough data are available and it is difficult

to specify the underlying data generation process. An overview of time series forecasting
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with ANNs is provided by Zhang et al. (1998). The multilayer perceptron with a single

hidden layer is commonly used for time series forecasting (Zhang et al. 1998):

ŷ(x) = o
(
W(2)a

(
W(1)x + b(1)

)
+ b(2)

)
(2.3)

Equation (2.3) specifies a fully-connected feed-forward ANN. All input nodes x are

connected to the nodes in the hidden layer, which is represented by the weight matrix

W(1). The activated output of the hidden layer is connected to the output layer by

W(2). The vectors b(1), b(2) describe the bias for each node. The functions a(·) and o(·)
are the activation functions of the hidden layer and output layer, respectively.

Decision trees (DTs) are simple binary trees that map an input to the corresponding

leaf node. Since the introduction of Classification and Regression Trees (CART) several

approaches have been developed that combine multiple DTs for one prediction (e.g.

Random Forrest Breiman (2001)). Gradient boosted DTs are tree ensemble models,

that use K additive functions to predict the output ŷ (Friedman 2001):

ŷ(x) =
K∑
k=1

fk(x), (2.4)

where each function fk represents a decision tree that maps the input x to the corre-

sponding leaf in the tree.

2.3.3. Optimization

Recall that the true demand distribution F is unknown to the decision maker. In the

following sections, we present two different ways to deal with this problem: traditional

model-based optimization and data-driven optimization based on SAA. Both approaches

use the point forecast and the historical estimation errors as inputs to determine an

inventory decision.

Model-based Optimization

The model-based approach assumes a certain forecast error distribution F̄ (e.g. normal

distribution) whose parameters θ (e.g. mean and standard deviation) are estimated

based on historical forecast errors. The order quantity is then optimized by evaluating
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the function at the service level quantile and adding it to the forecast:

q(x) = ŷ(x) + inf

{
p : F̄ (p, θ̂) ≥ cu

cu + co

}
, (2.5)

where ŷ(x) is the mean forecast, given that the features x, and θ̂ are the parameters of

the error distribution estimated from the resulting forecast errors. In our evaluation, we

adopt normally distributed errors for the model-based approaches.

Of course, this approach yields the optimal decision if the distribution assumption is

true. However, in reality, the distribution is unknown and may even change over time.

The observed forecast errors depend on the model chosen to produce the forecast. A

misspecified model leads to errors that are not distributed as assumed. If the demand

distribution is misspecified, highly distorted decisions may result. Ban and Rudin (2019)

show this for the example of a normal distribution assumption where the actual demand

is exponentially distributed.

Data-driven Optimization with Sample Average Approximation

A data-driven method to optimize the inventory decision is SAA. Here, the error distribu-

tion F̄ is determined by the empirical forecast errors ε1, ..., εn. A distribution assumption

is not needed. Thus,

F̄ (p) =
1

n

n∑
t=1

I(εt ≤ p). (2.6)

To optimize the order quantity, the service level quantile of the empirical distribution

is selected and added to the point forecast. Thus, the resulting order quantity given the

features x is

q(x) = ŷ(x) + inf

{
p :

1

n

n∑
t=1

I(εt ≤ p) ≥ cu
cu + co

}
. (2.7)

The performance of the optimization highly depends on the quality of the forecast,

the number of available data points, and the target service level. Levi et al. (2007,

2015) provide worst-case bounds for a given number of observations. An important and

intuitive result is that if the optimal service level is close to 0 or 1, i.e., extreme quantiles

need to be estimated, the required sample size is much higher than for service levels close

to 0.5, as extreme observations are rare.
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2.3.4. Integrated Estimation and Optimization with Quantile

Regression

Instead of sequentially forecasting demand and optimizing inventory levels, one can

also directly optimize the order quantity by integrating the forecasting model into the

optimization problem. The optimal order quantity q of the standard newsvendor model

(2.1) is then a function of the feature data x. Instead of first estimating the mean demand

and the error distribution and then solving the newsvendor problem, we can now directly

estimate the optimal order quantity from the feature data. Beutel and Minner (2012)

and Ban and Rudin (2019) formulate this problem as a linear program. This implies

that the optimal order quantity is a linear function of the features. We extend these

approaches by incorporating ML and thus also allowing for non-linear relationships:

min
Φ

1

n

n∑
t=1

[
cu(dt − qt(Φ,xt))

+ + co(qt(Φ,xt)− dt)+
]
, (2.8)

where qt(Φ,xt) is the output of the ML method in period t with parameters Φ (e.g.

weight matrix of an ANN) and input variables xt.

By introducing dummy variables ut and ot for the underage and overage in period t,

the problem can be reformulated as a non-linear program:

min
Φ

1

n

n∑
t=1

(cuut + coot) (2.9)

subject to:

ut ≥ dt − qt(Φ,xt) ∀t = {1, ..., n}, (2.10)

ot ≥ qt(Φ,xt)− dt ∀t = {1, ..., n}, (2.11)

ut, ot ≥ 0 ∀t = {1, ..., n}. (2.12)

The objective function (2.9) minimizes the empirical underage and overage costs, while

the constraints (2.10) to (2.12) ensure that deviations of the estimate from the actual

demand are correctly assigned to underages and overages. By solving the problem for

the empirical data Sn = {(d1,x1), ..., (dn,xn)}, we obtain parameters Φ∗ for the ML

method that minimize the empirical costs with respect to these data. Once the model

has been trained, the resulting order quantity for period p is the quantile forecast with
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qp(Φ
∗,xp).

Bertsimas and Kallus (2020) and Ban and Rudin (2019) showed that integrating

forecasting in the optimization model is equivalent to the more general QR problem

in Takeuchi et al. (2006). For a better understanding, we elaborate on this relation in

more detail. The basic idea of QR is to estimate the unobservable quantile by modifying

the loss function of a standard regression model. Minimizing the sum of squared errors∑n
t=1(yt− ŷt)2 yields the mean, while minimizing the sum of absolute errors

∑n
t=1 |yt− ŷt|

yields the median. By weighting the underages with the quantile τ ∈ (0, 1) and overages

with (1 − τ), thus
∑n

t=1 τ(yt − ŷt)+ + (1 − τ)(ŷt − yt)+, we obtain an estimate for the

quantile (Koenker 2005). The optimal solution of the newsvendor model is the quantile

τ = cu
cu+co

of the demand distribution; thus, (1− τ) = co
cu+co

. Inserting these values of τ

and (1− τ) into the objective function of the quantile regression yields the optimization

problem (2.9).

The main advantage of QR over the model-based approach and SAA is its ability to

model conditional quantiles under heteroscedasticity and for unknown error distribu-

tions. However, the performance of the approach depends crucially on the underlying

model q. On the one hand, if q is too simplistic (e.g. linear), the model might not be able

to capture the structure in the training data. On the other hand, if q is too complex,

there is a risk of overfitting the model.

2.3.5. Summarizing the Three Levels of Data-driven Inventory

Management

We conclude this chapter by linking our methodology explained in Subsections 2.3.2 -

2.3.4 to our framework of data-driven inventory management introduced in Figure 2.1.

To this end, Figure 2.2 positions each piece of our methodology in the framework.

On the first level (demand estimation), we choose a parametric forecasting model

(e.g. ETS or ANN). For the ML models, this includes the selection and optimization

of hyper-parameters (e.g. number of layers of ANNs). We then use the data to fit the

model by optimizing its parameters in order to minimize a certain objective function

(i.e. MSE). The outputs of the first level of data-driven inventory management are a

point demand forecast and the resulting empirical error distribution.

On the second level (inventory optimization), we operationalize a model-based ap-

proach by fitting a normal distribution and distinguish it from a data-driven (SAA)

16



Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

data

inventory 

decision

(i.e. order 

quantity)

point forecast

forecast errors

Choice of 

parametric 

forecasting 

model

(e.g. ETS, 

ANNs)

Model fitting

(e.g. 

minimize 

MSE)

Choice of 

distribution

(e.g. model-

based, SAA)

Optimization

(i.e. derive 

quantile)

Demand estimation Inventory optimization

(a) Separate estimation and optimization

data

Choice of 

parametric 

QR model

(e.g. linear, 

ANNs, DTs)

Model fitting 

(i.e. solve 

(8))

inventory 

decision

(i.e. order 

quantity)

(b) Integrated estimation and optimization

Figure 2.2.: Relating our methodology to the three levels of data-driven inventory
management

approach. We then optimize by selecting a certain quantile of the respective demand

distribution. This gives us the resulting order quantity.

On the third level (integrated estimation and optimization), we choose a paramet-

ric QR model (e.g. ANNs) and fit its parameters by solving problem (2.8) instead of

minimizing the MSE.

From the existing literature, it is not yet clear how the choices on each of the three

levels affect performance. In the following, we investigate this question empirically.

2.4. Empirical Evaluation

Our empirical evaluation aims to assess the impact of data-driven approaches for the

three levels – (1) demand estimation, (2) optimization, and (3) integrated estimation and

optimization – on average costs for the newsvendor problem. To this end, we evaluate

the performance of the methods with respect to costs by using a real-world dataset to

compare it to various standard approaches.
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2.4.1. Data

We evaluate the proposed approaches using daily demand data of a German bakery

chain. The observed sales are not necessarily equal to demand, as stock-outs occur and

lead to censored demand information (Conrad 1976). In order to estimate the daily

demand in the case of a stock-out, we leverage intra-day sales patterns of point-of-sales

data (Lau and Lau 1996). In particular, for each product and weekday, we determine

the average demand proportion of each hour in relation to the total demand on days

on which the product was not sold out. This process allows us to interpolate the sales

when a stock-out occurs and obtain an estimate for historical demand. The approach is

feasible because we have access to point-of-sales data and information on the overage for

each product per day. Figure 2.3 shows the strong weekly seasonality of demand for (a)

a representative product and (b) a box plot that confirms this pattern for all time series.

While median demand on Tuesdays and Thursdays is the lowest, it is slightly higher on

Mondays, Wednesdays and Fridays. The median demand on Saturday is higher than it

is for all other days. The standard deviation of demand does not vary strongly across

the weekdays.
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(b) Boxplot of demand per weekday

Figure 2.3.: The demand shows a strong weekly seasonality. The demand levels for
working days (Mon-Fri) are comparable, while the demand level on the weekend (Sat)
is noticeably higher.

The dataset comprises eleven stock-keeping units, namely, six breads and five buns,

for five stores over a period of 88 weeks, where each store is open from Monday to

18



Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

Data Source Features

Master Data store class, product category, opening times (day, hours/duration)
Transactional Data lagged sales, rolling median of sales, binary promotional information
Calendar day of year, month, day of month, weekday, public holiday, day type, bridge

day, nonworking day, indicators for each special day, school holidays
Weather temperature (minimum, mean, maximum) and cloud cover of target day
Location general location (city, suburb, town); in proximity to the store: shops (bak-

eries, butcher, grocery, kiosk, fast-food, car repair), amenities (worship, med-
ical doctors, hospitals), leisure (playground, sport facility, park), education
(kindergarden, school, university)

Table 2.1.: Features used in the machine learning methods

Saturday. This configuration amounts to 55 ordering decisions per day. Additionally, we

enrich the dataset with external explanatory features related to calendar, weather, and

location of the store (see Table 2.1). We split the dataset into a training set containing

up to 63 weeks and a test set containing the remaining 25 weeks (see Table 2.2). We

perform a rolling 1-step-ahead prediction evaluation on the test set in order to assess the

performance of the methods. We fit the models and distribution parameters every 10

days on a rolling training dataset with constant size. Due to computational constraints,

we fit the parameters of the ANNs every 50 days only. To evaluate the effect of the

amount of available data, we use different sample sizes for the training set. The full

training set (sample size 1.0) covers 63 weeks, while the smallest training set (sample

size 0.1) contains only 6 weeks (see Table 2.2).

sample 1.0 0.8 0.6 0.4 0.2 0.1

train length (days) 378 300 228 150 78 36
test length (days) 150 150 150 150 150 150

Table 2.2.: Training & test periods for different sample sizes.

While traditional time series methods such as exponential smoothing or ARIMA are

able to process only a single times series at a time, a major advantage of the ML methods

is their ability to deal with a large number and variety of features. In order to leverage

this advantage, we do not only train them with a single time series per product but

alternatively also across products and stores. In the latter case, we also include the

features listed in Table 2.1.
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2.4.2. Experimental Design

In our experiment, we evaluate the impact of different (1) estimation, (2) optimization,

and (3) integrated estimation and optimization approaches on the costs of the newsven-

dor model. We start by assessing the impact of forecast performance. In addition to the

ANNs and DTs introduced in the previous section, we evaluate six different reference

forecasting methods, which we outline in the next section. For each forecasting method,

we measure the forecast accuracy (Section 2.4.4) and then investigate its impact on costs

(Section 2.4.5). Second, we compare the model-based optimization assuming a normal

distribution (Norm) with the data-driven optimization using SAA. To this end, we cal-

culate the average costs for different target service levels (Section 2.4.5). Third, we assess

the performance of the integrated estimation and optimization approach with QR and

compare it to the separate approaches (Section 2.4.5). Fourth, we evaluate the sensitiv-

ity to the sample size in order to assess the value of a large training set (Section 2.4.5).

Overall, the database of the evaluation results comprises more than 9.1 million entries,

i.e., close to 0.6 million point forecasts and approximately 8.6 million order quantities.

We employ the Wilcoxon signed-rank test to test the statistical significance of our results

at the 5% significance level.

2.4.3. Reference Methods and ML Setup

In order to evaluate the ML approaches, we compare them to well-established forecasting

methods. With the exception of the first approach (Median), we rely on methods that

are explicitly able to model seasonal time series because the demand for baked goods

exhibits a strong weekly seasonality (see Figure 2.3).

Reference Methods

Median and Seasonal-Median

The first benchmark forecast is the median of the entire training set (Median); it does not

consider seasonality. Nonetheless, we include it in our comparison in order to evaluate

the benefit of seasonal demand models. Its seasonal variant estimates the median by

weekday (S-Median).
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Seasonal-Näıve

A popular benchmark method for forecasting is the Näıve method and its seasonal

variant (S-Näıve). The forecast is set to the last observed value from the same part

of the season: ŷt+h = yt+h−m. Hence, we need to specify only the frequency of the

seasonality m, which we set to 6 for the considered time series.

Seasonal Moving Average

The seasonal moving average method (S-MA) sets the forecast to an average of the

last observations from the same part of the season: ŷt+h = 1
k

∑k
i=1 yt+h−mk. Besides

setting the frequency of the seasonality m, we must set k, which controls the number of

considered values. We determine k in the range from 3 to 12 based on the last 20% of

the training set for each time series. We choose the value of k that minimizes the sum

of squared errors.

Seasonal Autoregressive Integrated Moving Average

Autoregressive integrated moving average (ARIMA) and its seasonal variant S-ARIMA

represent a widely used forecasting method. The autoregressive part of ARIMA rep-

resents a linear combination of past values, while the moving average part is a linear

combination of past forecast errors. The time series must be stationary, which can

be achieved by differencing. We employ the method auto.arima() function from the

forecast package (Hyndman and Khandakar 2008) for the statistical software R (R

Core Team 2017) in order to identify the most suitable model per time series. The

auto.arima() function selects a suitable model using a step-wise approach that tra-

verses the space of possible models in an efficient way until the best model is found.

Exponential Smoothing

Exponential smoothing methods calculate the forecast by computing a weighted average

of past observations. The weights decay as the observations get older. Hyndman et al.

(2002, 2008) propose innovation space models that generalize exponential smoothing

methods (ETS ). These models include a family of 30 models that cover different types

of errors, seasonal effects and trends (none, additive, multiplicative). We use the ets()
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function from the forecast package (Hyndman and Khandakar 2008) for the statistical

software R (R Core Team 2017).

ML Setup

In this subsection, we introduce methods that take multiple time series and additional

features (see Table 2.1) into account. For these methods, we also evaluate the integrated

estimation and optimization approach introduced in Section 2.3.4.

Linear Regression

The linear regression model uses lagged demand data (lags: 1, 2, . . ., 6, 12, 18) which

are linearly scaled between 0 and 0.75 as input. The weekly seasonality is modeled

through binary variables. When all time series across stores and products and the

extended feature set are used for the prediction, further variables are introduced. In

order to avoid overfitting, we include a regularization term in the objective function.

The integrated linear approach is equivalent to the models in Beutel and Minner (2012)

and Ban and Rudin (2019).

ANNs

We apply ANNs as described in Section 2.3.2. Several hyper-parameters (learning rate,

batch size, number of hidden nodes, activation function of hidden layer) are optimized

by a random search (Bergstra and Bengio 2012) in combination with cross-validation on

the training set. As activation function for the output layer we use a linear function,

which is reasonable for regression with ANNs (Zhang et al. 1998).

In order to encode deterministic seasonality, we use trigonometric functions as fea-

tures, as proposed by Crone and Kourentzes (2009). This is a parsimonious approach

which requires only two additional input variables. Additionally, the approach is non-

parametric, as no seasonal indices need to be estimated. The two variables are xt,1 and

xt,2 in period t, with m representing the frequency of the seasonality:

xt,1 = sin(2πt/m) (2.13)

xt,2 = cos(2πt/m) (2.14)

The input consists of lagged demand information (lags: 1, 2, . . ., 6, 12, 18), which
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is linearly scaled between 0 and 0.75, as this is similar to what other seasonal methods

consider. When all time series across products and stores are considered, we enrich the

dataset with further explanatory features (see Table 2.1).

The performance of an ANN depends on its initial weights, which are randomly set.

Therefore, we employ an ensemble of ANNs with the median ensemble operator, as this

approach is robust to the initial weights and provides reliable results (Barrow et al.

2010, Kourentzes et al. 2014). Another crucial aspect is the training of ANNs. We

use the stochastic gradient-based algorithm ADAM proposed by Kingma and Ba (2015)

to optimize the weights of the ANN. We also employ early stopping to avoid overfit-

ting and train an ensemble of 50 ANNs in order to obtain more reliable and accurate

results (Barrow et al. 2010, Kourentzes et al. 2014).

DTs

The DT approach is a tree-based ensemble model as described in Section 2.3.2. We use

Microsoft’s LightGBM implementation (Ke et al. 2017). Similar to the ANNs, several

hyper-parameters (learning rate, number of leaves, minimum amount of data in one

leaf, maximum number of bins, maximum depth of tree) are selected based on a random

search within the training data (Bergstra and Bengio 2012). The number of trees is

controlled by early stopping, which also reduces the risk of overfitting. We consider the

same features as in the other ML methods.

2.4.4. Point Forecast Analysis

The relevant performance measure of the newsvendor model is overall costs (overage and

underage). Before evaluating the impact of the different estimation and optimization

approaches on cost in Section 2.4.5, we separately measure the accuracy of the point

forecasts in order to relate it to overall costs in the subsequent analysis.

For each forecasting method introduced in the previous section, we compute a set of

common accuracy measures, including the Mean Percentage Error (MPE), Symmetric

Mean Absolute Percentage Error (SMAPE), Mean Absolute Percentage Error (MAPE),

Mean Absolute Scaled Error (MASE) (Hyndman and Koehler 2006), Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), and Relative Absolute Error (RAE). We

provide more than one measure because each of them has its strengths and weaknesses.

For instance, RMSE and MAE are scale-dependent error measures and do not allow for
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comparisons between time series at different scales, while percentage-based error mea-

sures (SMAPE, MAPE) are not always defined and may result in misleading outcomes

if demand is low. Table 2.3 shows the average forecast accuracy over all time series by

method.

Method MPE SMAPE MAPE MASE RMSE MAE RAE

Median -22.34 29.71 39.43 1.01 39.89 15.70 1.72
S-Median -21.45 24.74 33.73 0.82 28.42 11.99 1.31
S-Näıve -11.84 28.71 34.86 0.92 27.80 12.56 1.37
S-MA -14.61 23.32 30.15 0.75 22.27 10.14 1.11
ETS -12.47 22.19 28.47 0.71 21.83 9.66 1.06
S-ARIMA -14.35 22.88 29.71 0.73 21.40 9.87 1.08

Linear -18.73 23.75 32.07 0.77 23.43 10.54 1.15
DT-LGBM -18.80 22.88 31.13 0.73 21.98 9.92 1.08
ANN-MLP -14.73 22.63 29.59 0.72 21.28 9.75 1.07

Linear (all) -14.33 22.14 29.18 0.71 21.23 9.63 1.05
DT-LGBM (all) -13.44 21.51 28.34 0.68 20.06 9.15 1.00
ANN-MLP (all) -12.62 21.42 27.87 0.68 20.09 9.16 1.00

Table 2.3.: Forecast performance of the point predictions (sample size: 1.0). The best
performance for each metric is underlined. Results that do not differ from the one of
the best method at a significance level of 5% for each metric are printed in bold face.

Not surprisingly, the worst accuracy is achieved by the Median forecast, which is the

only method that does not incorporate the weekly seasonality pattern. The results im-

prove noticeably (more than 5 percentage points in MAPE) when the weekly seasonality

is considered (S-Median). S-Median is also more robust against sudden changes in de-

mand and provides more reliable results than S-Näıve. S-MA outperforms all baseline

methods (Median, S-Median, S-Näıve) and its accuracy is even competitive to more

sophisticated approaches. It is not as prone to outliers but follows minor level shifts.

Overall, ETS is the best method compared to models that are trained on a single time

series as it captures the main characteristics of the time series by computing the weighted

average of past observations. Even the more complex ML approaches cannot improve

the forecast. However, when trained across stores and products with additional features,

the ML methods further improve significantly. ANN-MLP and DT-LGBM also outper-

form ETS. The information contained in the features and supplementary time series has

additional explanatory potential that is effectively extracted by all three ML approaches.
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We note that the negative MPE throughout all methods indicates that in the test data,

there are low-demand events that cannot be foreseen by the models based on historical

demand. These low-demand events are more frequent, more extreme, or both during the

test period than events of unexpectedly high demand. This observation might be due

to the fact that situations with very low demand (e.g. supply disruption, partial shop

closing, and construction) are more likely than situations with extremely high demand.

2.4.5. Inventory Performance Analysis

The purpose of the newsvendor model is to determine the cost-minimal order quantity

by considering demand uncertainty and underage and overage costs. In order to perform

a comprehensive analysis of the introduced methods, we calculate the order quantities

and compute the resulting average costs for each approach. As underage and overage

cost may vary among products and stores, we analyze multiple target service levels.

The target service level cu/(cu + co) is the optimal probability of having no stock-out

during the day. In the repeated newsvendor model, this corresponds to the long run

fraction of periods in which demand is fully satisfied. By setting the unit price and the

sum of underage and overage costs (cu + co) to 1.00 and varying their relative share,

we obtain six different target service levels. This process allows us to interpret cu as

the profit margin and co as the unit costs (e.g. material and production costs) of an

item. In order to compare the different methods, we measure the performance relative

to the best method for each target service level. Additionally, we report the realized

average service level for each approach. We calculate the realized service level as the

relative share of days on which total demand was met. A large deviation of the realized

service level from the target service level indicates that a method tends to overestimate

or underestimate the optimal order quantity. Note that the reported service level just

serves to characterize the solution by relating it to the newsvendor solution. It does not

reflect a cost-service trade-off since costs include both overage and underage costs. The

results are reported in Table 2.4.

In the following sections, we analyze the effects of (1) demand estimation, (2) opti-

mization, and (3) integrated estimation and optimization on average costs and observed

service levels. Furthermore, we evaluate the sensitivity of the results to the size of the

available sample.

25



Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

M
et

h
o
d

T
S

L
=

0
.5

T
S

L
=

0
.6

T
S

L
=

0
.7

T
S

L
=

0
.8

T
S

L
=

0
.9

T
S

L
=

0
.9

5
E

st
im

a
ti

o
n

O
p

ti
m

iz
a
ti

o
n

∆
C

o
st

S
L

∆
C

o
st

S
L

∆
C

o
st

S
L

∆
C

o
st

S
L

∆
C

o
st

S
L

∆
C

o
st

S
L

Benchmarks

M
ed

ia
n

N
o
rm

7
2
.5

%
0
.6

1
8
3
.9

%
0
.7

2
9
3
.2

%
0
.7

9
9
9
.4

%
0
.8

6
9
7
.8

%
0
.9

2
9
2
.0

%
0
.9

5
S

A
A

7
2
.5

%
0
.6

1
7
9
.4

%
0
.7

0
8
7
.9

%
0
.7

9
9
9
.6

%
0
.8

7
1
0
9
.5

%
0
.9

4
1
0
1
.9

%
0
.9

8
S

-M
ed

ia
n

N
o
rm

3
1
.8

%
0
.6

4
3
3
.5

%
0
.7

4
3
4
.7

%
0
.8

3
3
4
.9

%
0
.8

9
3
2
.2

%
0
.9

5
2
9
.6

%
0
.9

7
S

A
A

3
1
.8

%
0
.6

4
3
0
.3

%
0
.7

2
3
0
.4

%
0
.8

0
2
9
.5

%
0
.8

8
2
7
.4

%
0
.9

5
3
1
.2

%
0
.9

8
S

-N
a
iv

e
N

o
rm

3
8
.0

%
0
.5

1
3
7
.5

%
0
.6

3
3
7
.0

%
0
.7

5
3
7
.3

%
0
.8

5
3
7
.2

%
0
.9

3
3
7
.2

%
0
.9

6
S

A
A

3
8
.4

%
0
.5

1
3
7
.6

%
0
.6

1
3
5
.6

%
0
.7

1
3
4
.3

%
0
.8

1
3
2
.2

%
0
.9

1
3
3
.3

%
0
.9

6
S

-M
A

N
o
rm

1
1
.5

%
0
.5

6
1
3
.6

%
0
.6

8
1
6
.0

%
0
.7

8
1
7
.6

%
0
.8

6
1
8
.3

%
0
.9

4
1
6
.6

%
0
.9

7
S

A
A

1
0
.5

%
0
.5

2
1
1
.0

%
0
.6

2
1
1
.4

%
0
.7

3
1
1
.7

%
0
.8

2
1
2
.2

%
0
.9

2
1
3
.9

%
0
.9

6
E

T
S

N
o
rm

6
.1

%
0
.5

3
6
.7

%
0
.6

4
7
.0

%
0
.7

4
7
.1

%
0
.8

3
5
.6

%
0
.9

1
5
.7

%
0
.9

5
S

A
A

6
.2

%
0
.5

0
6
.5

%
0
.6

1
6
.7

%
0
.7

1
6
.7

%
0
.8

0
5
.6

%
0
.9

0
5
.9

%
0
.9

5
S

-A
R

IM
A

N
o
rm

8
.5

%
0
.5

5
8
.9

%
0
.6

5
8
.8

%
0
.7

5
8
.3

%
0
.8

4
7
.5

%
0
.9

2
7
.2

%
0
.9

5
S

A
A

8
.0

%
0
.5

2
8
.1

%
0
.6

2
8
.0

%
0
.7

1
7
.7

%
0
.8

1
6
.5

%
0
.9

1
7
.2

%
0
.9

5

MLsingletimeseries

L
in

ea
r

N
o
rm

1
5
.8

%
0
.5

8
1
7
.7

%
0
.6

9
1
9
.6

%
0
.7

8
2
0
.8

%
0
.8

5
2
0
.2

%
0
.9

3
2
0
.9

%
0
.9

5
S

A
A

1
5
.6

%
0
.5

6
1
7
.2

%
0
.6

6
1
8
.9

%
0
.7

5
2
0
.1

%
0
.8

4
2
0
.7

%
0
.9

3
2
1
.8

%
0
.9

6
Q

R
1
0
.6

%
0
.5

4
1
0
.7

%
0
.6

4
1
1
.4

%
0
.7

3
1
1
.2

%
0
.8

2
1
1
.8

%
0
.9

1
1
8
.9

%
0
.9

6
D

T
-L

G
B

M
N

o
rm

9
.0

%
0
.6

0
8
.6

%
0
.6

8
8
.5

%
0
.7

6
8
.8

%
0
.8

3
1
0
.2

%
0
.8

9
1
5
.2

%
0
.9

3
S

A
A

7
.9

%
0
.5

7
7
.7

%
0
.6

5
7
.8

%
0
.7

3
8
.4

%
0
.8

1
1
0
.0

%
0
.8

9
1
4
.4

%
0
.9

4
Q

R
1
1
.1

%
0
.5

9
1
0
.8

%
0
.6

8
1
2
.1

%
0
.7

8
1
5
.3

%
0
.8

5
2
0
.8

%
0
.9

3
2
9
.0

%
0
.9

6
A

N
N

-M
L

P
N

o
rm

7
.2

%
0
.5

5
8
.4

%
0
.6

6
9
.0

%
0
.7

5
9
.6

%
0
.8

3
9
.4

%
0
.9

1
1
0
.5

%
0
.9

5
S

A
A

6
.6

%
0
.5

2
7
.6

%
0
.6

3
8
.2

%
0
.7

2
8
.6

%
0
.8

2
8
.6

%
0
.9

1
1
0
.2

%
0
.9

5
Q

R
7
.5

%
0
.5

3
7
.9

%
0
.6

4
8
.6

%
0
.7

3
9
.8

%
0
.8

2
1
3
.0

%
0
.9

1
1
8
.1

%
0
.9

5

MLpooledtimeseries
+features

L
in

ea
r

(a
ll
)

N
o
rm

5
.9

%
0
.5

3
5
.5

%
0
.6

4
5
.6

%
0
.7

5
6
.1

%
0
.8

4
4
.9

%
0
.9

1
4
.0

%
0
.9

5
S

A
A

5
.4

%
0
.5

1
5
.3

%
0
.6

2
5
.0

%
0
.7

2
5
.3

%
0
.8

2
5
.2

%
0
.9

1
4
.9

%
0
.9

5
Q

R
5
.1

%
0
.5

2
4
.5

%
0
.6

2
5
.2

%
0
.7

2
7
.2

%
0
.8

1
1
0
.0

%
0
.9

0
1
2
.8

%
0
.9

5
D

T
-L

G
B

M
(a

ll
)

N
o
rm

0
.6

%
0
.5

3
0
.4

%
0
.6

2
0
.0

%
0
.7

1
0
.1

%
0
.8

0
0
.4

%
0
.8

7
2
.1

%
0
.9

2
S

A
A

0
.9

%
0
.5

1
0
.4

%
0
.6

1
0
.0

%
0
.6

9
0
.0

%
0
.7

9
0
.2

%
0
.8

8
1
.7

%
0
.9

2
Q

R
1
.6

%
0
.5

2
1
.7

%
0
.6

1
1
.6

%
0
.7

1
3
.1

%
0
.8

0
6
.4

%
0
.9

0
1
1
.4

%
0
.9

4
A

N
N

-M
L

P
(a

ll
)

N
o
rm

0
.7

%
0
.5

2
0
.7

%
0
.6

3
0
.7

%
0
.7

3
0
.7

%
0
.8

2
0
.0

%
0
.9

0
0
.0

%
0
.9

5
S

A
A

0
.3

%
0
.5

1
0
.2

%
0
.6

1
0
.3

%
0
.7

2
0
.4

%
0
.8

1
0
.4

%
0
.9

0
1
.5

%
0
.9

5
Q

R
0
.0

%
0
.5

0
0
.0

%
0
.6

1
0
.9

%
0
.7

2
3
.3

%
0
.8

2
6
.8

%
0
.9

1
1
1
.2

%
0
.9

5

T
a
b

le
2
.4

.:
In

ve
n
to

ry
p

er
fo

rm
an

ce
an

al
y
si

s:
A

ve
ra

ge
co

st
in

cr
ea

se
re

la
ti

ve
to

th
e

b
es

t
ap

p
ro

ac
h

an
d

av
er

ag
e

se
rv

ic
e

le
ve

l
(S

L
)

fo
r

va
ri

ou
s

ta
rg

et
se

rv
ic

e
le

ve
ls

(T
S
L

s)
an

d
a

sa
m

p
le

si
ze

of
1.

0.
M

et
h
o
d
s

d
en

ot
ed

w
it

h
al

l
ar

e
tr

ai
n
ed

on
d
at

a
ac

ro
ss

al
l

p
ro

d
u
ct

s
an

d
st

or
es

.
T

h
e

b
es

t
ap

p
ro

ac
h

fo
r

ea
ch

ta
rg

et
se

rv
ic

e
le

ve
l

is
u
n
d
er

li
n
ed

.
R

es
u
lt

s
th

at
d
o

n
ot

d
iff

er
fr

om
th

e
on

e
of

th
e

b
es

t
m

et
h
o
d

at
a

si
gn

ifi
ca

n
ce

le
ve

l
of

5%
fo

r
ea

ch
se

rv
ic

e
le

ve
l

ar
e

p
ri

n
te

d
in

b
ol

d
fa

ce
.

26



Chapter II. A Data-driven Newsvendor Problem: From Data to Decision

The Effect of Demand Estimation

To evaluate the effect of demand estimation on costs, we compare the average cost of

the different estimation approaches for each target service level in Table 2.4. The best

approach for each target service level is underlined. We see that the approaches based on

the ML forecasts that use data across stores and products and additional features (all)

provide the lowest average costs for all target service levels. The performance of ANN-

MLP and DT-LGBM is very similar, while methods based on the Linear forecast yield

higher costs. An interesting result is that ETS performs best when training is restricted

to single time series. This is particularly noteworthy when considering its computational

efficiency compared to the ML methods. Overall, we observe that approaches based

on accurate estimation methods achieve significantly lower costs, independent of the

optimization approach. Thus, the level of demand estimation has a substantial impact

on overall performance.

In order to further substantiate this statement, we conduct a correlation analysis.

We compute the Spearman’s rank correlation coefficient ρ between costs and forecast

accuracy (SMAPE and RMSE) for each store-article-service level combination. The

results are depicted in Table 2.5.

Costs SMAPE RMSE

Costs - 0.8799 (± 0.1211) 0.9406 (± 0.0481)
SL 0.4202 (± 0.2879) 0.4253 (± 0.2834) 0.3034 (± 0.2678)

Table 2.5.: Median of Spearman’s Correlations (± standard deviation) between abso-
lute service level deviation (SL), costs, and forecast accuracy (SMAPE, RMSE).

The analysis supports the claim that the general ranking of methods with respect to

costs is similar to the ranking with respect to forecast accuracy, with a median ρ of

0.8799 for the rank correlation of costs and SMAPE and 0.9406 for the median rank

correlation of costs and RMSE. The reason for this observation is that more accurate

point predictions lead to more precise demand distribution estimates, which make the

succeeding optimization phase less crucial.

We complement the above cost analysis by looking at the realized service levels which

provide further insights into the order quantities obtained from the different methods.

Table 2.5 also shows the Spearman Correlations between the absolute service level

deviations (i.e. difference between average observed service level and the newsvendor
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target service level) and costs and forecast errors, respectively.

From Table 2.4, we can see that all methods overachieve the target service level on

average. This matches our observation of Section 2.4.4, that all forecasting methods

overestimate the demand on average, due to events with unexpectedly low demand in

the test data.

We further see that the correlation between the absolute service level deviation and

costs is relatively low (0.4202). This shows that the ability of a method to achieve a

desired service level on average is not a very good indicator for the cost performance of

that method. The service level measures only whether or not there was a stock-out and

thus indicates the direction of the deviation from the optimal order quantity on average.

It does not take into account the order of magnitude of overages and underages. The

low correlation between the forecast accuracy measures and the service level deviation

confirms this conclusion.

The Effect of Optimization

To assess the impact of model-based vs. data-driven optimization on costs, we compare

the average cost of Norm and SAA for each estimation method and target service level.

We perform a Shapiro-Wilk test on the residuals of the forecasts of S-ARIMA and ETS

and find that for approximately one quarter of the time series the residuals are normally

distributed at 95% confidence level. Thus, the normal distribution assumption can be

justified, although one cannot expect that all residuals follow the distribution assumption

in a real-world data set. We observe that the performance differences between SAA and

Norm are relatively small and the effect of accurate demand estimation clearly outweighs

the effect of data-driven optimization. However, for the majority of estimation methods,

SAA leads to lower costs than Norm for target service levels up to 0.9, while the normal

distribution assumption can be beneficial for higher service levels.

The good performance of SAA and its weaknesses for higher service levels are in line

with the theoretical results of Levi et al. (2015). The authors provide a bound on the

accuracy of SAA for the newsvendor model (Theorem 2 Improved LRS Bound) that does

not rely on assumptions on the demand distribution. The bound has an exponential rate

that is proportional to the sample size and min(cu, co)/(cu + co). In our case, the bound

implies that using SAA, in order to obtain the same accuracy for a service level of 0.9

(0.95) as for a service level of 0.8, we would need 1.5 (4) times more data. However,
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in the bakery industry, such high service levels are not common, and our dataset is

sufficient to let SAA outperform Norm for service levels up to 0.9 for most approaches.

The Effect of Integrated Estimation and Optimization

We also employ the QR approach that integrates the demand estimation into the opti-

mization model for the linear approach and the ML methods DT-LGBM and ANN-MLP.

In order to focus on the effect of integrated estimation and optimization, we compare

QR to SAA for the respective approaches. For DT-LGBM and ANN-MLP trained on

single time series, QR performs worse than SAA, while Linear QR outperforms SAA.

For high service levels QR generally performs relatively poor for all three estimation

approaches. When trained on data across stores and products and including features,

integration of estimation and optimization improves the performance of Linear (all) and

ANN-MLP (all) for low service levels. However, for high target service levels, SAA and

Norm perform better than QR for all estimation approaches.

The theoretical advantage of the QR approach is its ability to estimate conditional

quantiles that depend on the features (see Figure 2.4). The observation that for the

approaches trained only on single time series, QR is not beneficial, might be explained

by the fact that too little features are available to leverage the feature-dependency of

the quantile. The previous statement is supported by the fact that Linear (all) and

DT-LGBM (all) improve through integration at low service levels as more data are

available and feature-dependent variance can be estimated more accurately. However,

this theoretical advantage cannot be observed for higher service levels. We suspect that

more extensive hyper-parameter optimization in combination with alternative scaling of

the input data for each individual target service level might improve the performance.

Our results for the single time series case are in line with the outcome of the empirical

analysis of Ban and Rudin (2019) who also report that separate estimation and opti-

mization outperforms the linear integrated approach on their relatively small dataset of

one year. We observe that this effect gets smaller when the models are trained with

pooled time series and features.

The effect of learning across products and external features

Our dataset comprises sales data of several breads and buns across multiple stores.

These products are relatively similar to one another and therefore one time series might
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Figure 2.4.: Forecasts for different service levels using ANN QR.

contain information about the other. Univariate time series models can only consider a

single product at time, while ML methods are able to process a large number of inputs.

Therefore, we train linear (all), DT-LGBM (all), and ANN-MLP (all) across all products

and stores. The pooling of training data also makes it possible to enhance the data set

with a large number of additional features that cannot be employed if the models are

trained per time series.

From Table 2.4 we observe that indeed all ML methods benefit from the additional

data and improve significantly. DT-LGBM (all) and ANN-MLP (all) perform similarly

and outperform all other methods. We note that a similarity of time series is not specific

to our case but can be found in many retail settings.

Sensitivity to Sample Size

The power of the data-driven approaches lies in their ability to leverage large amounts

of available data, which makes them very flexible but may limit their deployability if

not enough data is available. In order to determine the dependency of the different

approaches on data availability, we vary the size of the training data and compare the

results on a fixed test set (see Table 2.2). The results of this experiment are given in

Table 2.6 and depicted in Figure 2.5 for the data-driven approaches. We present only

the results for target service level 0.7, noting that the qualitative results also apply to

the other service levels.

Based on our results, the methods can be divided into three groups: The first group
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Figure 2.5.: Effect of the sample size (TSL = 0.7).

consists of methods whose performance hardly depends on the sample size. In our

case this includes methods based on the S-Näıve forecast. The S-Näıve approaches

simply forecast the demand of the same weekday of the week before. Thus, it does not

improve as more data becomes available. The second group consists of methods whose

performance diminishes as more training data become available. The approaches with a

Median (not depicted in Figure 2.5, see Table 2.6) and S-Median forecast are part of this

group. The costs increase as more training data are available and as more “outdated”

data are included. In our real-world case, this observation implies that, for example,

demand data from Winter is used to estimate the median forecast for Summer although

these data are not representative of this season. The third group consists of methods

whose performance improves as more data become available. This group comprises the

ML methods proposed in this paper. We also include methods based on S-ARIMA,

ETS, and linear forecast in this group. However, the performance of S-ARIMA and

ETS stagnates for sample sizes larger than 0.6. This effect might be due to the fact

that we use a little over one year of training data and consequently some months are

included twice. It seems that the ML approaches can account for this matter. Thus,

in the present application, the purely data-driven approaches benefit most from a large

training set.

Comparing the different optimization methods, we find that with a sample size of

S = 0.4 (150 days) and larger, the data-driven SAA method yields lower costs than its

model-based counterpart Norm for most forecasting methods at a service level of 0.7.
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This observation implies that a normal distribution assumption is beneficial in our case

only if a very limited dataset is available or if the target service level is very high (see

Section 2.4.5).

The performance and the ranking of the methods varies depending on the sample size.

However, if more data are available, it is possible to employ a method that reduces the

costs compared to the best method on the smaller dataset. For sample size 0.1, ETS

Norm is the best approach, while costs can be reduced by 17.4% using an DT-LGBM

Norm with a sample size of 1.0.

2.5. Conclusion

In this study, we propose a framework for how data can be leveraged in inventory

problems on three different levels: demand estimation, optimization, and integrated

estimation and optimization. We highlight that integrated estimation and optimization

in the newsvendor problem is equivalent to the Quantile Regression problem, and we

introduce novel data-driven methods for the newsvendor problem based on Machine

Learning and Quantile Regression. Moreover, we empirically compare the methods

to well-established standard approaches on a real-world dataset. We are specifically

interested in the effect of data-driven approaches on the three levels on the overall

performance.

The key result of our evaluation is that data-driven approaches outperform their

model-based counterparts in most cases. In our evaluation, this finding already holds

for a demand history of beyond 25 weeks (i.e. 150 data points). However, overall per-

formance depends heavily on the demand estimation method employed. We found that

poor forecasts cannot be compensated for by the choice of the subsequent optimization

approach. Thus, the selection of the forecast model is the most crucial decision in the

case of separated estimation and optimization.

The empirical evaluation of the Quantile Regression approaches revealed that inte-

grating forecasting and optimization is beneficial only if enough data are available to

estimate the conditional quantiles and limited to target service levels smaller than 0.8.

When working with single time series, separate estimation and optimization yields su-

perior results. This finding is in line with the empirical analysis of Ban and Rudin

(2019).
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More sophisticated estimation methods such as ANNs and Gradient Boosted Deci-

sion Trees require more training data in order to produce reliable results. However,

these methods are also the only methods that constantly improve as more data becomes

available. In our example, the demand history should contain more than six months of

training data before employing Machine Learning. If a limited amount of data is avail-

able, simple methods such as the seasonal moving average can be suitable alternatives.

The major advantage of ML methods is that they are very flexible with respect to

the input and that they are naturally able to process large datasets. The ability of ML

methods to leverage similarities of time series across products and stores significantly

improved their performance in our case. Additionally, they do not require restrictive

assumptions on the demand process. Hence, they can identify patterns that traditional

time series methods cannot detect. For instance, they can model multiple seasonalities

(e.g. week and year), special days (e.g. public holidays), promotional activities and

outliers (Barrow and Kourentzes 2018). A drawback of these approaches is that they are

a black box, which makes it more difficult to justify the resulting predictions. However,

when the improvements in forecast accuracy can be easily measured, as in the case

of baked goods, the advantage of accurate predictions should outweigh the issue of

interpretability.

Data-driven inventory management is an active field of research with a variety of

opportunities for future work. Our analysis is based on a particular data set of bakery

products. It would be interesting to repeat the analysis on other data sets, including

other products. The methodology is applicable to perishable products with repetitive

sales (bread, fresh produce, newsprint,...). In other newsvendor situations, little or no

historical sales data may be available (fashion, electronics, sport events,...). In that case,

forecasting requires other leading indicators than historical sales. It will be interesting

to investigate the performance of alternative approaches to derive decisions from data

under those circumstances.

We presented a data-driven approach for the single-item newsvendor model. It seems

natural to explore the multi-product case as well. Particularly in the bakery domain, it

is a common practice to plan safety stocks on the product category level. This step is

reasonable because the substitution rates within a category in the case of stock-outs are

high for perishable goods (Van Woensel et al. 2007). Thus, it could be possible to leverage

hierarchical demand forecasts (Huber et al. 2017) in order to optimize inventory and to

make globally optimal decisions. Especially for the multi-product case, joint capacity
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restrictions and lot sizes should also be considered.

Some bakery products can be sold over multiple days. Thus, expanding the model to a

multi-period inventory model is reasonable. It would widen the application of the model

to many other grocery products that can be reordered during the selling season. There

are several papers that deal with the the multi-period problem with unknown demand

distribution (e.g. Godfrey and Powell (2001), Levi et al. (2007)). Given the inherent

similarity between reorder point calculations and newsvendor trade-offs, one may expect

machine learning approaches to also be beneficial in that context.

In our application, there is no lead time. However, in other problem settings lead time

plays an important role. Prak et al. (2017) show that using one-period-ahead forecast

errors to optimize inventories leads to insufficient safety stock levels in case of a positive

lead time.

In addition to the problem specific extensions, the methodology of the presented

approaches may also be adjusted. Other machine learning approaches can be used for

integrated forecasting and optimization, e.g., random forest or kernel methods.
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Chapter III

Data-driven Inventory Management

under Customer Substitution

with Jakob Huber, Moritz Fleischmann,
and Heiner Stuckenschmidt1

Abstract

Most retailers that sell perishable goods offer multiple products in a product category

(e.g., fresh food or fashion). Managing the inventories of these products is especially

challenging due to frequent stock-outs and resulting substitution effects within the cat-

egory. Furthermore, the true demand distributions of products are usually unknown to

the decision maker. New digital technologies have enormously expanded the availability

of data, storage capacity, and computing power and may thereby help improve inven-

tory decisions. In this paper, we present a novel solution approach for the multi-product

newsvendor problem. Our method is based on modern machine learning techniques that

leverage large available datasets (e.g., data on historical sales, weather, store location,

and special days) and are able to take complex substitution effects into account. We

empirically evaluate our approach on two real-world datasets of a large German bakery

chain. We find that our data-driven approach outperforms the model-based benchmark

on the first dataset and performs competitively on the second dataset.

1The research presented in this chapter is based on a paper entitled “Data-driven Inventory Manage-
ment under Customer Substitution” coauthored with Jakob Huber, Moritz Fleischmann and Heiner
Stuckenschmidt.
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3.1. Introduction

Stock-outs are common in many retail settings. When customers cannot find their pre-

ferred product in stock, some might choose a similar product instead (Gruen et al. 2002,

Van Woensel et al. 2007). This substitution behavior makes inventory optimization for

multi-product portfolios challenging due to the resulting interdependencies of stocking

decisions. A second major challenge is that demand distributions are usually unknown

and have to be estimated from the available data. Recent advances in data storage

and processing technologies have led researchers to develop decision models that work

with “big data” (Feng and Shanthikumar 2018). Although the adoption of data-based

decision making has increased in practice, many companies are still struggling to turn

data into better decisions (Brynjolfsson and McElheran 2016b).

In this paper, we address a multi-product newsvendor problem, where demand dis-

tributions are unknown. We present and test a novel solution approach based on ma-

chine learning (ML) that prescribes ordering decisions for substitutable products. Our

method leverages the available data directly and without demand distribution assump-

tions and takes the complex substitution effects into account. Once the ML model has

been trained, i.e., optimized, ordering decisions can be obtained instantaneously without

solving the notoriously difficult multi-product newsvendor problem in each period.

Traditionally, solving the multi-product newsvendor problem with unknown demand

distributions involves two steps: demand estimation and inventory optimization. The de-

mand estimation problem and the inventory optimization problem are usually addressed

separately in the literature and in practice.

The objective in the estimation problem is to find a demand model with a “good

fit” to the data. There is a large set of well-established and refined estimation methods

that predict demand distributions. Time-series approaches such as moving averages,

exponential smoothing, and ARIMA have been widely used in practice and implemented

in most forecasting software programs. More recently, ML approaches have been applied

to forecasting tasks, as they are able to leverage large data sets due to advances in

information technology (Carbonneau et al. 2008, Crone et al. 2011). The problem of

optimal inventory levels is usually not addressed in the forecasting and ML literature.

The objective of the inventory optimization problem is to maximize the overall profit

by setting appropriate inventory levels for each product given the demand distributions.

While the classical single-product newsvendor problem is well-solved, the multi-product
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version is known to be hard to solve, due to the interdependencies between individual

stocking decisions (Netessine and Rudi 2003, Schlapp and Fleischmann 2018). The

operations research (OR) literature on this problem is mainly concerned with establishing

theoretical properties (Parlar and Goyal 1984, Netessine and Rudi 2003, Schlapp and

Fleischmann 2018) and developing efficient optimization algorithms (Hübner et al. 2016,

Farahat and Lee 2018, Zhang et al. 2018). These studies assume that the demand

distributions are known to the decision maker. Few papers study the interaction between

estimation and optimization in a multi-product newsvendor setting (Kök and Fisher

2007, Sachs 2015).

Despite its widespread application in practice and research, the strict separation of

estimation and optimization may lead to suboptimal solutions to the original inventory

problem. Choosing a demand model based on “traditional” criteria (e.g. mean squared

error) in the estimation step does not necessarily lead to a model that produces good

decisions in the optimization step (Prak et al. 2017, den Boer and Sierag 2020, Bertsimas

and Kallus 2020). Additionally, changes in the demand distribution estimates require

a de novo execution of the optimization algorithm which is computationally expensive,

especially in dynamic retail environments with many products and categories.

While den Boer and Sierag (2020) propose a model selection approach that selects

models based on their corresponding decision quality rather than their “goodness of

fit”, the need for a demand model can be questioned more fundamentally, the more data

gets available to replace these model assumptions.

Instead of first estimating a demand model and then optimizing inventory decisions,

integrated estimation and optimization approaches have been proposed for the single-

product newsvendor problem (Liyanage and Shanthikumar 2005, Beutel and Minner

2012, Ban and Rudin 2019, Huber et al. 2019). We refer to these as data-driven

approaches compared to the traditional model-based approaches because they do not

require prespecified demand model assumptions. The multi-product version of the

newsvendor problem is known to be much harder than its single-period counterpart

due to the interdependencies of stocking decisions. To the best of our knowledge, no

data-driven approach exists for the multi-product version for more than two products.

Thus, the question as to what such an approach could look like remains to be answered.

We apply the idea of data-driven optimization to a multi-product newsvendor problem

with unknown demand distributions. Our method builds on an artificial neural network

(ANN) that is able to process large datasets. The ANN is trained on a problem-specific
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loss function that reflects the complex interactions between substitutable products. Once

trained, the ANN prescribes inventory decisions without the need to solve an optimiza-

tion problem in each period. We evaluate our approach based on two datasets of a large

German bakery chain for two different product categories (breads and buns), each con-

sisting of 6 products. The datasets comprise historical sales data and data on additional

features, such as store location, opening hours, and weather data. From our analysis of

the real-world problem, we derive insights for retailers on the importance of data and

substitution for inventory decisions.

To summarize, our main contributions in this paper are as follows:

� We present a novel data-driven solution approach for the multi-product newsvendor

problem.

� We document the viability of our method with real-world data.

� We derive insights for retailers with respect to considering data and substitution

in inventory management decisions.

The remainder of this paper is structured as follows. In the next section, we summarize

the related literature. Section 3.3 contains the formal problem description of the multi-

product newsvendor problem with unknown demand distributions. In Section 3.4, we

introduce our solution approach. In Section 3.5, we report and discuss the results of the

empirical evaluation. Finally, we summarize our findings and outline opportunities for

further research in Section 3.6.

3.2. Related Literature

In this section, we review the ML literature on demand forecasting, the OR literature

on the multi-product newsvendor problem under customer substitution, and empirical

studies on substitution rates.

A large part of ML is concerned with the prediction of a certain quantity (e.g. de-

mand), given a large dataset of features. For an overview of ML methods, see Hastie

et al. (2017). We restrict our review to references that use ML for demand forecasting.

Carbonneau et al. (2008) use several ML methods to forecast demand in a supply chain.

They find that recurrent neural networks and support vector machines are the most
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accurate forecasting techniques tested on their dataset. Barrow et al. (2010) study the

performance of different neural network setups in a time-series forecasting task. Crone

et al. (2011) report the results of the NN3 forecasting competition with a focus on

ANNs. The results suggest that ANNs perform competitively with traditional statisti-

cal approaches but cannot outperform them. Barrow and Kourentzes (2018) use ANNs

to predict call center arrivals from time-series data with a focus on outlying periods. In

general, ML is concerned with prediction alone and does not consider optimal decision

making. In our approach, we use ML, namely ANNs, to get from data to decisions

directly, in a multi-product newsvendor problem.

There are many studies in the OR literature on the structural properties of the multi-

product newsvendor problem under customer substitution and on the related solution

algorithms. Kök et al. (2015) provide a broad review of the topic. Two main modeling

approaches for substitution can be distinguished. Models in the first approach assume a

specific customer choice model, e.g., a multinomial logit model (van Ryzin and Mahajan

1999, Musalem et al. 2010, Vulcano et al. 2010, 2012, Topaloglu 2013, Farahat and Lee

2018). Models in the second approach represent substitution by exogenous substitution

rates. We follow the latter approach which is prevalent in the inventory management

literature. For the two-product case, Parlar and Goyal (1984) show that the objective

function of the maximization problem is concave under mild conditions and provide

necessary optimality conditions. This work is extended for more than two products

by Netessine and Rudi (2003), who derive necessary optimality conditions for the more

general case. The authors study the centralized case and competition. Schlapp and

Fleischmann (2018) include capacity restrictions in addition to substitution.

Another stream of the extant research focuses on efficient optimization algorithms

to solve real-world inventory problems. To this end, Zhang et al. (2018) develop two

mixed-integer linear programs that are able to solve problems of realistic sizes for many

applications. For very large problems, they provide approximation algorithms. Closely

related to our work is Kök and Fisher (2007), who describe a step-by-step approach from

the estimation of substitution rates and demand distributions to the final inventory

decision. They develop a heuristic for the problem, apply their approach to a large

supermarket chain and are able to gain a large increase in profit relative to the current

practice. Based on the work of Kök and Fisher (2007), Hübner et al. (2016) develop

an optimal solution procedure and heuristics to increase solution quality and speed.

The work on the multi-product newsvendor problem relies on the separate estimation
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of demand distributions and the optimization of inventory levels, where an optimization

problem needs to be solved in each period if the distribution estimate changes. We

integrate both problems into a single optimization problem that needs to be solved only

once. While estimation and optimization have been integrated for the single-product

problem (Liyanage and Shanthikumar 2005, Beutel and Minner 2012, Ban and Rudin

2019, Huber et al. 2019) and for the two-product case with a linear decision rule (Sachs

2015), we are not aware of any approach for more than two products and with a nonlinear

ML approach.

To estimate exogenous substitution rates, Anupindi et al. (1998) propose an approach

based on maximum likelihood estimation that works with inventory transaction data.

They test their approach with data from vending machines. Kök and Fisher (2007)

generalize this approach to dynamic choice processes. The estimation method in Fisher

and Vaidyanathan (2014) is also based on MLE. Wan et al. (2018) compare the accuracy

of a customer choice model (nested logit) to exogenous substitution rates in a multi-store

environment. For the estimation of substitution rates in our empirical evaluation, we

adapt the methodology of Anupindi et al. (1998), as all the necessary data are available.

There are several empirical studies that measure substitution rates for diverse product

categories. For ground coffee, orange juice, peanut butter tomato sauce, and toothpaste,

Emmelhainz et al. (1991) found that between 65% and 83% of customers substitute in

response to a stock-out. Campo et al. (2000) find substitution rates of 44% and 51% for

cereals and margarine, respectively. The most extensive study by Gruen et al. (2002)

found that substitution rates vary significantly by category and are approximately 45%

on average. Most related to our research is the work of Van Woensel et al. (2007).

The authors investigate consumer responses to stock-outs of bakery bread and find that

approximately 82% of customers are willing to substitute for another product if their

first choice is unavailable. From these empirical studies, we conclude that substitution

rates are high across different product categories and that the multi-product nature of

the problem should therefore be taken into account when making inventory decisions.

To summarize, the literature on ML and OR is still relatively disjointed. The ML

literature in the retail context is mostly concerned with estimating demand distribu-

tions from data and does not consider optimal decision making. The OR literature on

the multi-product newsvendor problem focuses on theoretical properties and efficient

optimization algorithms with strong distributional assumptions. To avoid these strong

assumptions, we propose a method that integrates demand estimation and inventory op-
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timization into a single optimization problem. Our approach can leverage large datasets,

is able to reflect the inherently challenging substitution effects, and prescribes feature-

dependent inventory decisions without having to solve an optimization problem in each

period.

3.3. Problem Formulation

We study the multi-product newsvendor problem with stock-out-based substitution,

where demand distributions are unknown. As a starting point, we follow the prevalent

model formulation in the inventory management literature (Netessine and Rudi 2003,

Kök et al. 2015, Schlapp and Fleischmann 2018).

Consider a retailer selling n partially substitutable products with uncertain demand

Di of product i over a finite selling season. The retailer must choose the order quantity qi

of product i before the selling season, such that the expected total profit Π is maximized.

The unit sales price of product i is pi, and the unit cost is ci. Unsold units of product

i that are left over at the end of the season have a unit salvage value of si. Naturally,

pi > ci > si ≥ 0.

To model substitution, we assume that a fraction αji ∈ [0, 1] of customers who

cannot find their preferred product j in stock (i.e. when Dj > qj) will substitute

for product i, where
∑

i 6=j αji ≤ 1. This substitution behavior results in an infla-

tion of the initial demand Di of product i. The substitution demand of product i is

Ds
i = Di +

∑
j 6=i αji(Dj − qj)+.

Thus, the retailer’s objective is to maximize the expected total profit according to

max
qi≥0

Π = E
∑
i

[
uiD

s
i − ui(Ds

i − qi)+ − oi(qi −Ds
i )

+
]
, (3.1)

=
∑
i

(
uiqi − (ui + oi)E [qi −Ds

i ]
+) , (3.2)

where ui = pi−ci and oi = ci−si are product i’s underage and overage costs, respectively.

The major difficulty in solving problem (3.1) is thatDs
i depends on the order quantities

of the other products j 6= i. Netessine and Rudi (2003) show that the objective function

with more than two products is not necessarily concave or quasiconcave, which makes

the problem particularly hard to solve.

In contrast to the traditional problem, we assume that the probability distributions
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of the initial demand Di for each product i are not known to the decision maker a

priori. Instead, historical data ST = {(d1,x1), ..., (dT ,xT )} are available, where dt =

[d1,t, ..., dn,t] is a vector of historical demand realizations of all n products, and xt =

[x1,t, ..., xm,t] is a vector of m covariates or features (e.g., store location, opening hours,

and weather data) in period t.

The traditional approach to solving this problem would be first to estimate a model

for the distribution of Di for every product i from these data and then to optimize

the actual inventory problem (3.1). Each time the distribution estimate changes (e.g.,

due to seasonality or the influence of other features), the problem needs to be solved

again. We propose an alternative solution approach that integrates the estimation into

the optimization problem and is optimized only once. We elaborate on our data-driven

method and the traditional model-based approach in the following section and empiri-

cally compare them in Section 3.5.

3.4. Solution Approaches

3.4.1. “Traditional” Model-based Approach

Most of the inventory management literature on the multi-product newsvendor problem

neglects the fact that the demand distributions of products are unknown to the decision

maker (Netessine and Rudi 2003, Kök et al. 2015, Schlapp and Fleischmann 2018). The

extant papers that address both the inventory problem and the demand estimation prob-

lem use a two-step procedure. First, estimating a demand model. Second, optimizing

the inventory decisions based on the estimated demand distributions (Kök and Fisher

2007).

Estimation

If only historical demand data d1, ...,dT are available, one can approximate the actual

demand distributions with a parametric distribution or the empirical distribution. If

additional feature data x1, ...,xT (e.g. weekdays, opening hours, weather data) are

available that are correlated with demand, the estimates might be improved because the

conditional forecast can be more accurate (Ban and Rudin 2019, Huber et al. 2019).

Based on a specific measure for “goodness of fit” (e.g., mean squared error), one
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would choose a demand model that “fits” the data ST = {(d1,x1), ..., (dT ,xT )} well.

The estimate for the demand distributions is then constructed from the point forecast

of the demand model that has the best “fit” and the historical forecast errors of that

model, i.e. residuals.

For our analysis, we choose an exponential smoothing approach as it has been shown

to perform well in a single product setting, even compared to more complex ML methods

that leverage more data (Huber et al. 2019). In our implementation, we use the ets()

function from the forecast package (Hyndman and Khandakar 2008) for the statistical

software R (R Core Team 2017). It is based on Hyndman et al. (2002, 2008) who propose

innovation space models that generalize exponential smoothing methods (ETS ). These

models include a family of 30 models that cover different types of errors, seasonal effects

and trends (none, additive, multiplicative).

Optimization

Given an estimate D̂i for the demand distribution of each product i from a demand

estimation procedure, the next step is to solve the original multi-product newsvendor

problem (3.1). This problem is known to be notoriously hard to solve due to the noncon-

vexity of the objective function (Netessine and Rudi 2003). Obtaining optimal analytical

solutions is intractable, and there are only a few efficient solution algorithms that pro-

vide near-optimal solutions in reasonable time for real-world problem sizes (Hübner et al.

2016, Zhang et al. 2018). Zhang et al. (2018) developed two mixed-integer linear pro-

gram (MILP) formulations of the problem that we use throughout the paper for the

optimization part of the model-based solution approach. For expositional purposes, we

introduce only the first formulation and refer the reader to Zhang et al. (2018) for more

details.
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max
qi≥0

∑
i

(
uiqi − (ui + oi)

1

n

∑
t

yi,t

)
(3.3)

subject to:

yi,t ≥ qi − d̂i,t −
∑
j 6=i

αjivi,t ∀i, t (3.4)

vi,t ≤ d̂i,t − qi +Mizi,t ∀i, t (3.5)

vi,t ≥ d̂i,t − qi −Mizi,t ∀i, t (3.6)

vi,t ≤ d̂i,t(1− zi,t) ∀i, t (3.7)

vi,t, yi,t ≥ 0 ∀i, t (3.8)

zi,t ∈ {0, 1} ∀i, t (3.9)

The authors reformulate the expectation in the objective function of the original

problem (3.1) as a finite summation over the discrete demand estimates
(
d̂i,t

)
t=1,...,T

. If

D̂i is assumed to be continuous, then one might also generate i.i.d. samples from D̂i.

yi,t = qi − d̂i,t −
∑

j 6=i αji(d̂j,t − qj)
+ and vi,t = (d̂i,t − qi)

+ represent overages and

underages, respectively. Constraints (3.4) to (3.8) ensure that these equations hold. To

linearize the (·)+ functions, the formulation uses binary variables zi,t, where zi,t = 1 if

qi ≥ d̂i,t (i.e., vi,t = 0) and zi,t = 0 if qi < d̂i,t (i.e., vi,t = d̂i,t− qi). Mi is an upper bound

of the order quantity qi of product i.

3.4.2. Data-driven Approach

Although the demand model might have a “good fit” to the data based on the loss mini-

mization problem, choosing the model according to a criterion that does not incorporate

the quality of the decisions can lead to suboptimal results for the overall problem if the

model is misspecified (Liyanage and Shanthikumar 2005, den Boer and Sierag 2020).

Additionally, if the distribution estimate of the demand model changes (e.g., through

changes in feature values), then the optimization model needs to be re-solved.

We propose the estimation of the optimal order quantities directly from data with

an ML approach (e.g., ANN) without prespecifying a demand model. To this end, we

express the order quantities qi,t as a function of the feature vector xt and parameters W
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of the ML approach (e.g., the weight matrix of an ANN). Instead of minimizing the L2

norm, we replace the loss function with the objective function of the actual multi-product

newsvendor problem.

max
W

1

n

∑
t

∑
i

(
uiqi,t(W,xt)− (ui + oi)

(
qi,t(W,xt)− dsi,t

)+
)
, (3.10)

where dsi,t = di,t +
∑

j 6=i αji(dj,t − qj,t(W,xt))
+.

Given the historical dataset of demand and features ST = {(d1,x1), ..., (dT ,xT )}, we

can train the network, i.e., optimize the parameters W in (3.10). Note that compared

to the model-based approach, the decision variables of the optimization problem are no

longer the inventory decisions but rather the parameters of a regression model. This

regression model is then used to estimate the optimal decisions.

Our data-driven approach has several theoretical advantages compared to the tra-

ditional approach. First, it does not rely on a specific demand model that has been

selected on the basis of a “goodness-of-fit” criterion. Second, demand uncertainty is

feature-dependent, while in the model-based approach, only the mean of the demand

distribution is feature-dependent. Third, once the model is trained, it prescribes a deci-

sion for any combination of features, without solving an additional optimization problem

in each period. The latter leads to less computational effort compared to the model-

based approach, where the optimization problem (3.3) - (3.9) has to be solved in each

period.

While (3.10) is generally indepentent of a specific regression model, we choose an

ANN to represent the order quantity in our approach because it is able to approximate

any continuous function (Hornik 1991), which makes it suitable for forecasting if enough

data are available, and it is difficult to specify the underlying data generation process.

We rely on feed-forward neural networks, i.e., multilayer perceptrons. In a feed-forward

neural network with L hidden layers (L ≥ 1), the output h(k)(x) of each layer k gets

passed to the next layer (1 ≤ k ≤ L+ 1):

h(k+1)(W,xt) = σ(k+1)(b(k+1) + W(k+1)h(k)(x)) (3.11)

The output of the input layer is defined as h0(x) = x, while the output of the last

layer represents the prediction of the network, i.e., the order quantities, q(W,x) =
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h(L+1)(W,x). The output of each layer is connected with a fully connected weight

matrix W(k) to the next layer. The input of a layer is adjusted with the biases b(k) of

each neuron before it passes an activation function σ(k).

The performance of an ANN depends on its architecture and the hyperparameter set-

tings. We optimize these hyperparameters (learning rate, patience for early stopping,

batch size, number of hidden nodes, number of hidden layers, and activation function of

hidden layers) with tree of parzen estimators (Bergstra et al. 2011, 2013) in combination

with cross-validation of the training set. We use rectified linear units (RELUs) as acti-

vation functions at the input layer and the hidden layers and a linear activation function

at the output layer (Zhang et al. 1998). Moreover, we train and employ an ensemble of

multiple ANNs with the median ensemble operator, as this approach is robust to the

initial weights (Barrow et al. 2010, Kourentzes et al. 2014). To optimize the weights of

an ANN, we use the stochastic gradient-based algorithm ADAM proposed by Kingma

and Ba (2015) in combination with early stopping to avoid overfitting. The input con-

sists of the lagged demand information of each product and further explanatory features

(see Section 3.5).

3.5. Empirical Evaluation

3.5.1. Data Description and Preparation

We evaluate our proposed approach using data from a large German bakery chain. In this

section, we describe the datasets and the data preparation process. The datasets com-

prise the hourly sales data of the six most frequently sold stock-keeping units from the

product categories buns and breads for nine stores over a period of 987 days. We enrich

the datasets with additional master data, transactional data, and external explanatory

features related to the calendar, weather, and location of the store (see Table 3.1).
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Data Source Features

Master Data store class, product category, opening times (day, hours/duration)
Transactional Data lagged sales, rolling median of sales, binary promotional information
Calendar day of year, month of year, day of month, day of week, public holiday, day

type, bridge day, nonworking day, indicators for each special day, school hol-
idays

Weather temperature (minimum, mean, and maximum) and cloud cover of target day
Location general location (city, suburb, and town); in proximity to the store: shops

(bakeries, butcher, grocery, kiosk, fast food, and car repair), amenities (wor-
ship, medical doctors, and hospitals), leisure (playground, sports facility, and
park), education (kindergarten, school, and university)

Table 3.1.: Features used in the machine learning methods.

To apply and compare our optimization approaches, we need price and cost param-

eters, substitution rates, and daily demand data. We report price and cost parameters

for both product categories in Tables 3.2 and 3.3. Unit prices can be directly observed,

whereas unambiguous cost parameters cannot be obtained due to varying cost account-

ing methods and parameters. The unit costs for each category are based on expert

judgment.

Buns P1 P2 P3 P4 P5 P6

Unit price [EUR] 0.30 0.50 0.60 0.50 0.50 0.50
Unit cost [EUR] 0.06 0.06 0.06 0.06 0.06 0.06

Table 3.2.: Price and cost parameters for buns.

Breads P1 P2 P3 P4 P5 P6

Unit price [EUR] 1.75 2.45 2.45 1.70 2.85 2.95
Unit cost [EUR] 0.60 0.60 0.60 0.60 0.60 0.60

Table 3.3.: Price and cost parameters for breads.

We estimate the substitution probabilities similar to Anupindi et al. (1998). Based

on the transaction data, the method measures the spillover demand from stocked-out

products to the products that are still available. From the magnitude of spillover de-

mand in stock-out periods compared to non-stock-out periods, substitution rates can be

estimated. As the assumption of stationary demand during the day does not hold in our

case, due to a strong intraday sales pattern, we apply the approach to each hour of the
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day. We obtain an estimate for the substitution matrices for each hour of the day and

compute the average over all hours. The results are shown in Tables 3.4 and 3.5.

↗ P1 P2 P3 P4 P5 P6 Total

P1 - 0.11 0.15 0.14 0.14 0.15 0.69
P2 0.22 - 0.08 0.11 0.12 0.12 0.65
P3 0.24 0.07 - 0.07 0.08 0.07 0.53
P4 0.26 0.09 0.07 - 0.12 0.12 0.66
P5 0.19 0.10 0.10 0.12 - 0.14 0.65
P6 0.17 0.13 0.11 0.11 0.13 - 0.65

Table 3.4.: Estimated substitution rates of buns (from row to column).

↗ P1 P2 P3 P4 P5 P6 Total

P1 - 0.14 0.09 0.25 0.12 0.12 0.72
P2 0.19 - 0.09 0.19 0.14 0.14 0.75
P3 0.07 0.09 - 0.07 0.10 0.10 0.43
P4 0.17 0.16 0.09 - 0.20 0.10 0.72
P5 0.18 0.12 0.09 0.24 - 0.12 0.75
P6 0.16 0.13 0.08 0.22 0.15 - 0.74

Table 3.5.: Estimated substitution rates of breads (from row to column).

Overall, we estimate that 43 % to 75 % of customers are willing to substitute for

another product if their first choice is not available. To validate our results, we compare

our estimates to earlier empirical work on substitution. Van Woensel et al. (2007) found

rates of 75% to 82% for bakery products. However, the product portfolio in their study

was much larger (208 products); therefore, it is also more likely that a substitution with

a more similar product takes place and that substitution rates are higher. We note that

in the category buns, the substitution rates to product 1 are relatively high. The same

is true for product 4 in the category breads. These products stand out, as they have the

lowest price within their respective categories.

A main drawback of point-of-sale data (e.g., our dataset) is that lost demand is unob-

servable in cases of stock-outs. Frequent stock-outs distort the sales data in two ways.

First, the sales data of the out-of-stock product are censored if customers cannot find

their preferred product and choose to substitute another product or leave the store with-

out buying anything at all. Second, the sales data of the substitute products is inflated
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by the demand of the out-of-stock products. To address these problems, we decensor

and deflate historical sales data by applying the following procedure to each product

category on each day:

Define the set of all products of the category as L = {P1, ..., Pn} ;

while at least one product in L goes out of stock do

find product P̃ that goes out of stock first;

delete P̃ from L;

decensor the demand of product P̃ based on Lau and Lau (1996);

deflate the demand of all products in L based on substitution rates;

end

The decensoring of sales in Step 4 is based on Lau and Lau (1996). In particular,

we calculate the average hourly share of demand for product P̃ in relation to the total

demand on days on which the product was not sold out. Based on this averaged intraday

demand pattern, we extrapolate the sales data when a stock-out occurs to estimate

uncensored demand. To deflate the demand of the products in L, we subtract the sales

in each hour of stock-out of product P̃ that are due to substitution demand.

Table 3.6 shows the average share of the daily demand of each product within each

category. While this proportion is relatively homogeneous for breads (8.5% to 23.8%),

product 1 dominates buns with a share of 64.3%.

Category P1 P2 P3 P4 P5 P6

Buns 0.643 0.107 0.070 0.068 0.057 0.055
Breads 0.220 0.139 0.205 0.238 0.113 0.085

Table 3.6.: Average share of the demand of each product within each category.

We split the dataset into a training set, containing 110 weeks, and a test set, containing

the remaining 31 weeks, and perform a rolling 1-step-ahead prediction evaluation on the

test set to assess the performance of the methods. We fit the models and determine the

error distributions every 14 days on a rolling training dataset of constant size.

3.5.2. Results

In this section, we report the results of our data-driven approach relative to the ex

post optimal decision, i.e., relative to the optimal decision of the deterministic problem
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after demand has realized. To put these results into perspective and compare them

to a traditional approach that does not leverage additional feature data, we employ a

model-based approach. To this end, we use exponential smoothing as discussed in 3.4.1

in the estimation step and the MILP discussed in Section 3.4.1 in the optimization step.

We solve the MILP to near optimality (optimality gap ≤ 0.01%) with Gurobi 8.1.

Figure 3.1 depicts the relative profit to the ex post maximum profit (= 1) of the

data-driven and model-based approaches.
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Figure 3.1.: Average profit relative to ex post maximum profit.

We observe that the traditional model-based approach with the exponential smoothing

forecast (ETS) and MILP optimization achieves 95% and 88% of the maximum profit for

the categories buns and breads, respectively. Our data-driven method outperforms the

benchmark by 2 percentage points in the category buns and achieves the same average

profit in the category breads. Note that the exponential smoothing benchmark already

performs quite well, even without additional feature data. This confirms previous results,

where seasonal exponential smoothing approaches have proven to perform well in sales

forecasting tasks (Huber et al. 2019). As we discuss in Section 3.5.2 in more detail,

calendar information, especially days of the week, is a very important feature in our

setting due to the weekly seasonal demand pattern. This information is also available

to the exponential smoothing method.
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Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

Ex-post optimal

Model-based (ETS)

Data-driven (ANN)

(a) Category: buns.

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

Ex-post optimal

Model-based (ETS)

Data-driven (ANN)

(b) Category: breads.

Figure 3.2.: Average order quantities per product and product category. The scale is
not provided for reasons of confidentiality.

In Figure 3.2, we report the resulting average order quantities of our data-driven

approach, the model-based benchmark, and the ex post optimal decisions. For buns and

breads, it is optimal not to order product 1 and product 4, respectively. Both products

have the lowest profit margin in their respective category (see Tables 3.2 and 3.3).

Additionally, the substitution rates from these products to other products are relatively

high. Therefore, it is optimal to “force” customers to substitute for higher-margin

products by not including the lower-margin products in the assortment. We observe
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that both the model-based and the data-driven approaches follow this logic. Naturally,

the order quantities of the data-driven and model-based approaches are generally higher

than the optimal decision for the ex post deterministic problem, as they include safety

stock to buffer against uncertainty.

To summarize, the data-driven method slightly outperforms the model-based bench-

mark on the first dataset, while it is competitive on the second dataset. In the following,

we provide more insights into the effects that influence the decisions and performance

of our approach.

The Effect of Demand Estimation Accuracy

A reason for the superior performance of our data-driven approach might be that it

is able to leverage more data than the model-based exponential smoothing method.

Therefore, we employ a model-based approach, where an ANN represents the demand

model instead of ETS. Thus, the model is able to process the same data as our data-

driven approach.

To measure the effect of demand estimation accuracy, we compute a set of common ac-

curacy measures, including symmetric mean absolute percentage error (SMAPE), mean

absolute percentage error (MAPE), mean absolute scaled Error (MASE) (Hyndman and

Koehler 2006), root mean square error (RMSE), mean absolute error (MAE), and rela-

tive absolute error (RAE) for both the ETS and ANN forecast. We provide more than

one measure because each has its strengths and weaknesses. For instance, RMSE and

MAE are scale-dependent error measures and do not allow for comparisons between time

series at different scales, while percentage-based error measures (SMAPE and MAPE)

are not always defined and may result in misleading outcomes if demand is low. Table 3.7

shows the average forecast accuracy over all time series by method.

Category Method RMSE MAE MAPE SMAPE MASE

Buns ETS 75.15 28.50 20.39 18.91 0.84
ANN 44.13 22.00 16.75 15.59 0.67

Breads ETS 4.77 3.33 36.47 28.04 0.83
ANN 4.70 3.25 35.34 27.61 0.82

Table 3.7.: Forecast performance of the point predictions.

We observe that the ANN forecast outperforms the ETS forecast in all accuracy

measures across both categories. The difference is relatively small for the category
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breads, while it is relatively large for the category buns. Although the ANN forecast is

more accurate, its impact on the overall performance in terms of profit is not immediately

clear. Thus, we use a two-step method, where we first forecast a demand distribution

with ETS or ANN and then optimize based on the MILP (3.3) to (3.9). We report the

resulting profits in Figure 3.3.
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Figure 3.3.: Average profit relative to ex post maximum profit.

Not surprisingly, higher forecast accuracy leads to higher profits. Using the ANN as

the forecast method in the model-based approach yields better results compared to the

ETS forecast, with 2 percentage points in the category buns and 1 percentage point

in the category breads. Recall, however, that the optimization step of the model-based

approach has to be re-solved in each period, whereas the data-driven approach is trained

only once.

When comparing the model-based ANN approach to the data-driven ANN approach,

we observe that the performance is similar for both approaches, while the model-based

approach even outperforms the data-driven approach by 1 percentage point in the cate-

gory breads. We conclude that the empirical distribution estimate of the ANN is more

accurate than the estimate of the ETS approach, which results in higher profits, and

the profit increase of our data-driven approach is likely due to its ability to leverage

additional feature data.

54



Chapter III. Data-driven Inventory Management under Customer Substitution

The Effect of Feature Data

We investigate the importance of the individual groups of feature data that are lever-

aged by our data-driven method. We use permutation feature importance (PFI), which

measures the profit loss of the model after the feature values are permuted. PFI was

originally introduced for random forest prediction models by Breiman (2001). We adapt

the methodology and measure the profit loss after permutation instead in the increase

of the prediction error after permutation. To this end, we randomly shuffle one set of

features (see Table 3.1) at a time and therefore suppress its contribution to overall profit.

For each set of features, we repeat the permutation 1,000 times. The permutation of

an important feature with high prediction value will result in a high profit loss. The

permutation of an unimportant feature will result in a low or no profit loss. The results

are depicted in Figure 3.4.
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Figure 3.4.: Profit loss through permutation feature importance (PFI).

We observe that for both categories, calendar data, master data, and transaction data

are the most important feature sources, although to a varying extent. Surprisingly,

weather data have almost no value for optimizing inventory decisions in our datasets,

even though they are used in many models for food retail (e.g., Beutel and Minner

(2012), Kök and Fisher (2007)). For the category buns, excluding calendar data results

in a substantial profit loss of 15.08%, while it is only 3.61% for the category breads.
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Similarly, transaction data have different importance in both datasets. The impact of

location data is relatively small (1.37 and 2.04%) in both datasets.

From the feature analysis, we conclude that calendar data, master data, and transac-

tion data are important features in our dataset. Although breads and buns are relatively

similar (fresh bakery products), the extent of profit loss through PFI varies greatly.

Therefore, retailers should carefully select features for inventory optimization.

The Effect of Substitution

Next, we investigate the effect of substitution on the decisions and resulting average

profits. To this end, we compare our data-driven approach and the model-based bench-

mark with their single-product newsvendor counterparts that ignore substitution effects.

We report the percentage of lost profit by ignoring substitution in Figure 3.5.
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Figure 3.5.: Profit loss through ignoring substitution.

We observe that ignoring substitution leads to a profit loss of approximately 14.5%,

independent of the decision method used, in the category buns. For the category breads

the loss through ignoring substitution is much lower (approximately 3.4%), also inde-

pendent of the decision method. The importance of substitution effects in the category

buns is mainly due to the specific characteristics of product 1. Product 1 has by far

the largest share of demand within the category (64.3%), the lowest profit margin, and

the highest rates of substitution for other products (69%). Due to these properties, it

is optimal to not order product 1 at all (fill rate = 0), as enough customers substitute

for higher-margin products. We see a similar but smaller effect with product 4 in the

category breads. It is also the lowest-margin product within the category, but it is not

as dominant in terms of demand share (23.8%).
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Overall, we find that accounting for substitution is a very important aspect that drives

the performance of the methods considered. The large demand shifts away from product

1 in the category buns and from product 4 in the category breads result in large profit

gains. However, they might be in conflict with other strategic objectives of the retailer.

We discuss this issue in the following section and propose the implementation of fill-rate

constraints.

The Effect of Fill-rate Constraints

In the previous section, we observed large demand shifts from low-margin products to

substitutes due to very low ordering decisions for these products, which even resulted

in an abandonment of these products from the assortment. We see similar effects in

other applications of multi-product inventory models to real-world problems. Kök and

Fisher (2007) find that “[p]roducts with low profit are dropped from the assortment, the

number of facings of products with low marginal return are reduced, and the number

of facings of those with higher returns are increased.” They state that their recom-

mendation suggests a more than 50% increase in profits compared to the current state.

However, these decisions optimize the short-term profit. The long-term effects of stock-

outs (e.g., dissatisfied customers and future demand losses) are not captured in these

models, although they might be important for customers’ store choice (Briesch et al.

2009). Including these long-term effects in the underage costs ui of each product i is

difficult, as long-term shortage costs are extremely difficult to estimate. Therefore, we

propose adding target fill-rate constraints to the MILP (3.3) to (3.9) that account for

strategic service level requirements.

We set a target fill-rate per category as

βcat ≤
1
n

∑
t

∑
i (qi − yi,t)

1
n

∑
t

∑
iDi,t

. (3.12)

Additionally, we introduce target fill-rate constraints per product as

βprod
i ≤ 1−

1
n

∑
t vi,t

1
n

∑
tDi,t

∀i. (3.13)

We set the category fill rate to values between 0.80 and 0.99 and the product fill rate

to values between 0.80 and 0.95 and optimize the MILP based on the ETS and ANN
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distribution forecast. The resulting profits and fill rates are shown in Table 3.8 and

Figure 3.6.
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Figure 3.6.: Average profit relative to ex post maximum profit of model-based ap-
proaches with fill-rate constraints at the category level.

Across all methods and categories, we can observe a trade-off between short-term

profit and service (fill rate), which is illustrated in Figure 3.6. As soon as one of the

fill-rate constraints is effective, the profit decreases. In the category buns, a product

fill rate of 0.80 already drastically reduces the profit as the demand shifting away from

product 1 to more profitable products is suppressed. In the category breads, this effect

is smaller, as the products are more homogeneous with respect to volume and margin.

Low category fill-rate constraints do not harm the profit too much, as they still allow

for substitution.

When the long-term objectives of the retailer (e.g., attracting customers by means of

a large assortment) are in conflict with the short-term objective of optimized inventories,

fill-rate constraints can help achieve desired trade-off.

3.6. Conclusions

In this paper, we study the multi-product newsvendor problem with unknown demand

distributions. We introduce a data-driven solution approach that takes the complex

substitution effects into account and goes from data to decision in a single optimization

problem. We empirically compare our method to a traditional model-based approach

on a real-world dataset of a large German bakery chain. Furthermore, we evaluate
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the effects of demand estimation accuracy, feature data, and substitution on overall

performance in our dataset.

Our key result is that our approach outperforms a state-of-the-art method on the first

dataset and performs competitively on the second dataset. From our forecast accuracy

analysis, we conclude that the performance difference is mainly due to the additional

data that can be leveraged by our method compared to the benchmark approach. In

addition to the benefit of slightly better performance, our approach prescribes a decision

for any combination of feature data values once it is trained. There is no need to solve

an optimization problem in each period; only infrequent updates of the parameters (in

our case, every two weeks) are needed. Furthermore, it does not rely on a demand dis-

tribution assumption and thus mitigates the risk of a misspecified demand model. Our

approach can easily integrate additional explanatory feature data if available. Similar

to previous research (Kök and Fisher 2007), we find in our empirical analysis that it is

optimal for the maximization of short-term profits to delete a low-margin product from

the assortment of each category. However, this might conflict with the long-term objec-

tives (e.g., attracting customers through a large assortment) of the retailer. Therefore,

we propose fill-rate constraints that account for this trade-off.

In addition to the methodological findings, we also provide empirical insights that

might be valuable for inventory managers in fresh food retail. First, we estimate sub-

stitution rates from real-world sales data. Our estimates are in line with the previous

research on bakery products, which directly asked customers for their substitution be-

havior (Van Woensel et al. 2007). Thus, we provide evidence for the applicability of

data-based approaches for substitution estimation. Second, we find that ignoring sub-

stitution effects can result in significant profit reductions depending on product charac-

teristics. In our case, ignoring substitution in the category buns resulted in a profit loss

of approximately 14.5% and in the category breads of approximately 3.4%. Third, we

analyze the impact of different feature data sources (master data, transactional data,

calendar, weather, and location) on overall profits. While the impact depends on the

product category, fresh food retailers should especially focus on calendar data, master

data, and transaction data.

The interface between ML and OR is an active field of research that provides many

opportunities for future work. In this paper, we focus on the bakery industry. It would be

interesting to apply our method to other data-rich areas of inventory management, e.g.,

e-commerce, and analyze the impact of more feature data. To incrementally improve
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our method, we could apply more advanced ML methods to further improve forecast

accuracy (e.g., recurrent neural networks). A more subnational extension of the analysis

could include multi-period considerations, where products can be reordered during the

selling season.

61



Chapter IV

Prescriptive Analytics for Dynamic

Inventory Management
1

Abstract

Dynamic inventory problems occur in a large number of industrial, distribution, and

service applications. Most models in the literature assume that the demand distribution

is stationary and known a priori in these contexts. In reality, this is rarely the case. In-

stead, the actual demand distribution is unknown and may change over time. The recent

explosion of data availability may help to avoid unrealistic assumptions. In this paper,

we combine concepts of classical dynamic inventory management and machine learn-

ing to develop a data-driven solution approach that leverages auxiliary data, including,

weather, location, and calendar data, for the stochastic dynamic inventory problem. In

a computational study, we compare our approach to an extant non-parametric method

and to the optimal dynamic programming solution. We find that our approach performs

close to the optimal solution with a gap of only 0.75% to 2.92%, whereas the benchmark

without feature data achieves an optimality gap of 6.63% to 7.58%.

4.1. Introduction

One of the main challenges in inventory management is demand uncertainty. In the

literature, there are two fundamentally different ways of capturing demand uncertainty

1The research presented in this chapter is based on a paper entitled “Prescriptive Analytics for Dynamic
Inventory Management”.
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in stochastic inventory models. Parametric approaches assume that the demand un-

certainty is characterized by a specific probability distribution that is known to the

decision-maker. Non-parametric or data-driven approaches rely directly on historical

data without any assumptions on the underlying demand distribution. While most in-

ventory models belong to the first group, the rising availability of data in practice has led

to an increased interest in data-driven approaches (e.g., Ban and Rudin (2019), Huber

et al. (2019), Ban (2020)). These data not only comprise information about historical

demand but also additional feature data such as weather, location, and calendar data

that might be correlated with demand and thus can help to improve inventory decisions.

For dynamic inventory problems, however, feature data that have explanatory value for

demand have largely been ignored so far.

It is at the heart of machine learning (ML) to use available feature data to predict

uncertain quantities (e.g., demand). The explosion of available data and developments

in ML algorithms have enabled ML applications such as predicting crime (Kadar and

Pletikosa 2018), predicting results of football matches (Baboota and Kaur 2019), or

predicting retail store sales (Kaneko and Yada 2016). Deriving optimal decisions under

uncertainty, however, is usually not considered in ML.

In this paper, we combine ideas of classical inventory management and ML to develop a

non-parametric solution approach that leverages feature data for the dynamic inventory

problem under non-stationary demand.

Bertsimas and Kallus (2020) present a general solution approach for stochastic opti-

mization problems that leverages feature data and call it predictive prescriptions. Pre-

dictive prescriptions are functions that prescribe a decision for a stochastic optimization

problem given some feature data. One way of constructing predictive prescriptions is to

assign weights to the historically observed quantities (e.g., demand) with ML according

to their value for the decision and then solve the weighted sample average approximation

problem. The approach can be applied to general single-stage optimization problems but

it is not immediately clear how to transfer it to multi-stage problems.

The main idea of our paper is to use a dynamic programming (DP) formulation of the

dynamic inventory problem that splits the problem into successive single-stage problems

and apply the concept of predictive prescriptions to each of these problems.

We test our method in a computational study and compare it to a data-driven ap-

proach without feature data (Ban 2020) and to the optimal dynamic programming solu-

tion. We find that our approach performs close to the optimal policy with an average gap
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of only 0.75% to 2.92%, while the approach ignoring feature data results in an average

optimality gap of 6.63% to 7.58%.

To summarize, our main contributions are:

� We combine ideas from classical inventory management and machine learning to

leverage feature data for the dynamic inventory problem under non-stationary

demand.

� We show how to apply the idea of predictive prescriptions to a multi-period problem

using dynamic programming.

� We compare our method in a computational study to the optimal solution and to

a less data-rich benchmark and find that our approach performs close to optimal.

The remainder of this paper is structured as follows. In the next section, we review the

related literature. Section 4.3 contains the problem definition and model formulation.

In Section 4.4, we test our approach in a computational study. Finally, we summarize

our findings and outline opportunities for further research in Section 4.5.

4.2. Related Literature

In this section, we review the literature on inventory models with non-stationary demand

and data-driven inventory models that do not require demand model assumptions.

Most of the literature on stochastic dynamic inventory management builds on the

seminal work of Scarf (1959), who developed the theory of K-convexity to prove the

optimality of (s, S)-policies for the multi-period problem. Karlin (1960a) investigates the

optimal policy for the problem with non-stationary demand and different cost structures.

Further theoretical results for special cases can be found in Karlin (1960b) for seasonal

demand, and (Zipkin 1989) for cyclic demand. Our dynamic programming formulation

builds on the theoretical results of Scarf (1959), and we exploit K-convexity. It is

applicable to problems without specific assumptions on the demand process (e.g., trends

or periodicity).

While the aforementioned literature is concerned with the structure of the optimal

policy, another stream of research focuses on computing the actual values for a given

policy. Due to the computational complexity of the problem, these methods solve the
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problem heuristically. Silver (1978) present a heuristic approach that sequentially deter-

mines if it is time to order, how many periods the order should cover, and how much to

order. It can be interpreted as a stochastic version of the Silver-Meal heuristic. Askin

(1981) present an alternative and use an order-up-to level in combination with a least

period cost approach. Morton and Pentico (1995) and Bollapragada and Morton (1999)

present myopic heuristics that perform well if the demand variation across periods is

relatively small. Bollapragada and Rao (2006) include supply uncertainty and capacity

limits and derive a heuristic based on the first two moments of the uncertain quantity.

The discussed heuristics assume a non-stationary but known demand distribution which

is rarely accurate in real-world situations.

In a departure from the previous work, the literature on non-parametric inventory

management does not require demand distribution assumptions. Liyanage and Shan-

thikumar (2005), Beutel and Minner (2012), Ban and Rudin (2019) and Huber et al.

(2019) consider the single-period newsvendor problem and incorporate feature data into

the optimization problem. Non-parametric multi-period models include Kunnumkal and

Topaloglu (2008) and Huh and Rusmevichientong (2009). These models do not require

assumptions on the demand distribution and leverage historical demand/sales data di-

rectly. However, they do not consider additional feature data. Most related to our work

is Ban (2020) who develops a data-driven solution approach for the stationary problem

that uses historical sales data. The author derives finite sample properties and bounds

of her approach and investigates the influence of censored data. Feature data is not con-

sidered. To the best of our knowledge, no data-driven approach that leverages feature

data is currently available for dynamic inventory problems with non-stationary demand.

Motivated by this gap in the literature and the increase in data availability, we develop

a DP for the dynamic inventory problem, that exploits feature data to improve the

inventory decisions. To this end, we use the concept of predictive prescriptions developed

by Bertsimas and Kallus (2020). Predictive prescriptions prescribe a decision for a

problem, given some feature data. Bertsimas and Kallus (2020) describe various ML

approaches that can be used to construct these decisions and study their asymptotics.

They apply their approach to single-period problems, a two-stage shipment problem,

and a real-world single-period inventory problem of a large media company. We transfer

the idea of predictive prescriptions to a multi-period inventory problem and combine it

with a non-parametric dynamic programming approach.
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4.3. Problem Definition and Model Formulation

4.3.1. Problem Definition

We study the stochastic dynamic inventory problem of Scarf (1959). However, we drop

the assumption of full knowledge of the demand distribution.

Thus, the problem is defined as follows. For each period t = 1, ..., T , the decision-

maker has to decide about the order quantity q of a single product to minimize discounted

costs, given a discount factor αt. Demand D is uncertain, and demand that cannot be

met is backlogged. The backordering costs and inventory holding costs in period t are

bt and ht, respectively. If an order is placed in period t, it entails a fixed ordering cost

Kt and a per-unit ordering cost ct.

Instead of full knowledge of the demand distribution, the decision maker has access

to a data set {(d1, x1), ..., (dN , xN)}. That is, for N historical periods, there is a set of

tuples (dn, xn) with n = 1, ..., N , where dn is the historical demand in period n and xn

is the historical feature vector in period n.

4.3.2. Model Formulation

To solve the above problem without assumptions on the demand distribution and to

leverage the data set {(d1, x1), ..., (dN , xN)}, we use the idea of predictive prescriptions

from Bertsimas and Kallus (2020).

Bertsimas and Kallus (2020) develop a general framework to include auxiliary fea-

ture data X that is correlated with the uncertain quantity D (in our case demand)

into stochastic optimization problems. They use the term predictive prescriptions for

functions z(x) that prescribe a decision, given an observation of feature data x, i.e.,

z(x) = arg min
z∈Z

E [c(z;D)|X = x] . (4.1)

They propose to construct these prescriptions by solving the following weighted sample

average approximation problem

ẑ(x) = arg min
z∈Z

N∑
n=1

wN,n(x)c(z; dn). (4.2)
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where the weight functions wN,n(x) are based on ML approaches, such as kNN, kernel

methods, local linear methods, and decision trees that leverage the observation of feature

data x. This is a very generic formulation that applies to any single-stage stochastic

program.

However, it is not immediately clear, how predictive prescriptions can be applied

to multi-period problems because the uncertainty unfolds in multiple stages and the

decisions in different periods are interdependent. In the following, we show how to use

a DP formulation of the problem to apply the concept of predictive prescriptions to our

multi-period inventory problem.

The main reasoning behind dynamic programming is to divide a complex multi-stage

problem into multiple interrelated single-stage problems and solve those iteratively. We

use this idea to apply predictive prescriptions to each single-stage problem of the DP

formulation of the dynamic inventory problem.

As a starting point, we recap the classical DP formulation of Scarf (1959) with the

notation of Ban (2020) and apply predictive prescriptions to each of the single-stage

problems.

The total cost of ordering the quantity q in period t are

Ot(q) =

Kt + ctq, if q > 0

0, otherwise.
(4.3)

Denote the stock level after deliveries in period t by y. The single-period newsvendor

cost function is therefore

C(y, d) = bt(d− y)+ + ht(y − d)+, (4.4)

and the Bellman equations can be formulated as

VT+1(x) = 0, ∀x ≥ 0 (4.5)

Vt(It) = min
y≥It
{Ot(y − It) + E [Ct(y,Dt) + αtVt+1(y −Dt)]}, 1 ≤ t ≤ T, (4.6)

where It is the inventory level at the beginning of period t, I1 is known, and αt ∈ [0, 1)

is the discount factor in period t. Note that It can be negative due to backordering.

Scarf (1959) shows that the optimal solution to the problem is a (st, St)
T
t=1-policy, i.e.,
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if the inventory level It in period t drops to or below the reorder level st, it is optimal

to order up to the level St. Given this policy, (Scarf 1959) shows that the optimal

order-up-to level St in each period t can be found by minimizing

Gt(y) = cty + Et [Ct(y,Dt)] + αtEt [Vt+1(y −Dt)] , (4.7)

where

VT+1(x) = 0, ∀x ≥ 0

Vt+1(x) =

Gt+1(St+1) +Kt − ctx, if x < st+1,

Gt+1(x)− ctx, if x ≥ st+1,
1 ≤ t ≤ T − 1 (4.8)

and optimal reorder point for each period t = 1, ..., T is

st = min
s
{D ≤ s ≤ St|Gt(s)−Gt(St)−Kt = 0} . (4.9)

With (4.8), (4.7) can be rewritten as

GT (y) = cTy + ET [CT (y,DT )] , (4.10)

Gt(y) = (1− αt)cty + Et [Ct(y,Dt)] + αtctEt [Dt] + αtGt+1(st+1)Et [It(y − st+1)]

+ αtEt [Gt+1(y −Dt)Ict(y − st+1)] , t = 1, ..., T − 1, (4.11)

where It(x) := I(x < Dt) and Ict(x) is its compliment.

To evaluate the expectations in the specified model and calculate optimal (st, St)
T
t=1

values, one would need perfect knowledge of the (non-stationary) demand distribution

of Dt. This is not the case in most real-world settings.

We propose to construct predictive prescriptions instead. To do so, we follow the

approach of Ban (2020) who replace the expectations in (4.10) and (4.11) by sample

averages. We proceed analogously but use weighted sample averages, in line with (Bert-

simas and Kallus 2020). Thus, we define

ĝT (y, d) = cTy + CT (y, d) (4.12)

ĝt(y, d) = (1− αt)cty + Ct(y, d) + αtctd+ αtĜt+1(ŝt+1, xt+1)I(y − ŝt+1 ≤ d)

+ αtĜt+1(y − d, xt+1)I(y − ŝt+1 > d), t = 1, ..., T − 1, (4.13)
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and set

Ĝt(y, xt) =
N∑

n=1

wN,n(xt)ĝt(y, dn), (4.14)

where we use ML and the feature data to construct weight functions wN,n(xt) to reweigh

the historical demand data.

We then choose the inventory control parameters as

Ŝt = arg min
y∈[D,D]

Ĝt(y, xt) (4.15)

and

ŝt = min
s

{
D ≤ s ≤ Ŝt|Ĝt(s, xt)− Ĝt(Ŝt, xt)−Kt = 0

}
. (4.16)

In our analysis below, we use two alternative ML approaches to design the weight

functions wN,n(xt), namely k Nearest Neighbor (kNN) regression (Hastie et al. 2017) and

Classification and Regression Trees (CARTs) (Breiman et al. 1984). Both approaches

are non-parametric ML algorithms that do not make strong prior assumptions about the

functional relationship between input and output. kNN is a relatively simple, effective,

and popular ML method that has proven to perform well in single-stage problems if the

feature space is not too large (Bertsimas and Kallus 2020). kNN is an unsupervised

learning method and if the feature space is large it might have problems to distinguish

between valuable data and noise. CARTs are supervised learning methods that generally

perform well, even if the feature space is very large.

The kNN weighting assigns a weight of 1
k

to all kNNs and a weight of 0 to all other data

points. To measure the distance, we use the L2-norm || · || such that the neighborhood

containing the k nearest neighbors isNk(x) = {xi|
∑N

j=1 I [||x− xi|| ≥ ||x− xj||] ≤ k, i =

1, ..., N}. Thus, the kNN weight function is

wkNN
N,n (xt) =

1

k
I[xn ∈ Nk(xt)]. (4.17)

Note that kNN is an unsupervised learning approach, i.e., whether a data point is a

kNN depends only on the feature values, not on the actual demand observation.

CARTs (Breiman et al. 1984) are binary trees that split a dataset into disjoint regions

R(·), called “leaves”. The trees are constructed recursively by splitting the data in each

node into two child nodes such that the “impurity” (e.g., mean squared error) of the
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target variable in each node is minimized. The splitting stops as soon as a pre-specified

stopping criterion is met (e.g., the maximum number of splits). The final nodes of the

tree are the leaves. While the splitting is done on the feature values, the splitting rule

is designed according to the target values (in our case demand). Once the tree has been

constructed, the weight function is

wCART
N,n (xt) =

I [R(xt) = R(xn)]

|{j|R(xj) = R(xt)}|
. (4.18)

Each historical data point that resides in the same leaf as the current data point receives

a weight of 1/(total number of data points in the leaf), all other data points have a weight

of 0. Note that CART is a supervised learning algorithm that requires knowledge of the

historical demand data to minimize impurity.

4.4. Computational Study

4.4.1. Study Design

In the previous chapter, we developed a method to incorporate feature data into multi-

period inventory problems. We now test the viability of our approach and measure the

value of additional feature data for inventory performance in a numerical study.To this

end, we compare our data-driven approach with kNN weighting (DD-kNN ) and CART

weighting (DD-CART ) with the optimal solution obtained by the dynamic program

with full information of the (non-stationary) demand distribution and the data-driven

approach of Ban (2020) that does not consider feature data (DD-NoFeatures). We com-

pare both the cost incurred for each approach and the obtained policy values (st, St)
T
t=1.

We simulate 50 training data sets {(d1, x1), ..., (dN , xN)} and corresponding test sets

{(d1, x1), ..., (dT , xT )}. Each training set consists of N = 50, 100, 200 periods and each

test set has a length of T = 100. For all simulations, we use the following cost parameters:

bt = 10, ht = 1, ct = 0.1, Kt = 1280, αt = 1, for all periods t = 1, ..., T .

As a basis for our study, we adapt the demand model from the simulation experiment

of Bertsimas and Kallus (2020) which we find to be sufficiently complex to challenge

our approach. In this model, the demand depends on three features. The feature data
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evolves according to the following 3-dimensional ARMA(2, 2) process:

xt − Φ1xt−1 − Φ2xt−2 = ut + Θ1ut−1 + Θ2ut−2, (4.19)

where x0 = x1 = u0 = u1 = 0, u ∼ N (0,Σu) and

Φ1 =

0.5 −0.9 0

1.1 −0.7 0

0 0 0.5

 ,Φ2 =

 0 −0.5 0

−0.5 0 0

0 0 0

 , (4.20)

Θ1 =

 0.4 0.8 0

−1.1 −0.3 0

0 0 0

 ,Θ2 =

 0 −0.8 0

−1.1 0 0

0 0 0

 ,Σu =

 1 0.5 0

0.5 1.2 0.5

0 0.5 0.8

 . (4.21)

Demand is then generated according to the following model:

dt = max{0, 150 + A(xt + δ/4) + (Bxt)ε}, (4.22)

where ε ∼ N (0, 1), δ ∼ N (0, 1), and

A =

 2.8

2.8

0.35

 , B =

 −6

0.75

−6

 . (4.23)

Figure 4.1 shows the dependence of the demand on the three features and the resulting

demand process over time for one exemplary selling horizon. We observe that demand

fluctuates strongly over time, the features have different degrees of predictive value, and

feature 1 exhibits significant heteroscedasticity.

A major focus in current ML research is on feature engineering. In reality, it is hard

to identify or engineer the features that have high predictive power and some selected

features might just add noise to the problem. To address this issue, we add additional

feature data to our model that have no predictive power to the 50 runs with N = 100.

We use u = 0, 3, 6, 12, 24, 48, 96 additional features. The additional features are normally

distributed with 0 mean and sets of 3 features have the same covariance as the original

features x.
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(a) Dependence of demand on feature 1. (b) Dependence of demand on feature 2.

(c) Dependence of demand on feature 3. (d) Demand over time.

Figure 4.1.: Feature dependent demand.
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To obtain the weights for our approach, we implement a kNN algorithm and use the

CART algorithm from the Scikit-learn package in Python (Pedregosa et al. 2011).

To obtain the (st, St)
T
t=1 values for a given demand model (known distribution, DD-

NoFeatures, DD-kNN and DD-CART ), we use the following algorithm that exploits

K-convexity (Bollapragada and Morton 1999): Starting from an upper bound on the

order-up-to level, we evaluate (4.7) respectively (4.14) and then interatively decrease y

by one unit. The lowest function value is stored. Once, the value of the function is

greater than the lowest function value so far plus K, the loop terminates. This point of

the function is the reorder level st (or ŝt) and the point where the lowest function value

is obtained is the order-up-to level St (or Ŝt).

4.4.2. Results

To evaluate our data-driven approaches DD-kNN and DD-CART, we compare them to

the optimal solution with known demand distribution and to the data-driven approach

without feature data DD-NoFeature, in terms of resulting costs and decisions.

Figure 4.2 shows the relative cost increase of DD-kNN, DD-CART, and DD-NoFeature

compared to the optimal approach for the tested sample sizes N = 50, 100, 200 averaged

over the 50 simulation runs. We observe that our approach DD-kNN performs best

with an average optimality gap of only 0.75% (N = 200), 1.21% (N = 100), and 2.66%

(N = 50) and relatively small variation. DD-CART performs second best with an

average optimality gap of 2.93% (N = 200), 3.41% (N = 100), and 5.58% (N = 50).

The benchmark approach DD-NoFeature achieves an average optimality gap of 7.03%

(N = 200), 6.63% (N = 100), and 7.58% (N = 50). All approaches benefit from

larger samples through lower costs and lower cost variation with the exception of DD-

NoFeatures for N = 200. The results illustrate the viability of our approach and show its

ability to extract the relevant information from the feature data to come up with near-

optimal decisions. Especially our approach with kNN regression performs well with little

modelling and implementation effort.

The lower costs of our approaches relative to the benchmark without feature data is a

result of better decisions. To get an intuition for the differences of the resulting policies,

Figure 4.3 shows the sample path of the (st, St)
T
t=1 values of the different methods for a

selected sample season. The volatile pattern of the optimal (st, St)
T
t=1 values is a direct

result of the simulated ARMA(2, 2) demand process (see Figure 4.1d). As feature data
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Figure 4.2.: Average relative cost increase (%) with 75% confidence intervals for varying
sample sizes.

Figure 4.3.: Example of (st, St)
T
t=1 values for one selling horizon.
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is ignored by DD-NoFeature, we observe that the (st, St)
T
t=1 values of the approach do

not follow the optimal pattern, are constant over the main part of the planning horizon,

and show an “end-of-horizon-effect”. The (st, St)
T
t=1 values of our approaches follow the

optimal pattern rather closely.

To analyse the policies more generally, Figure 4.4 shows the average relative error of

the reorder level and the order-up-to level, respectively, of all approaches, compared to

the optimal parameters for the tested sample sizes N = 50, 100, 200. We observe that

(a) Reorder level st. (b) Order-up-to level St.

Figure 4.4.: Average relative errors (%) of policy parameters and 75% confidence in-
tervals for varying sample sizes.

both approaches with feature data perform similar in terms of average relative errors for

the policy parameters. Note that the larger relative errors for st, compared to St, are due

to the difference in absolute values between both parameters. DD-kNN has significantly

lower variation in the error, which also explains its superior cost performance. For the

data-driven approaches, we see a positive sample size effect in the accuracy of the reorder

level. In the benchmark approach DD-NoFeature, the relative error gets even larger with

a larger sample size.

Figure 4.5 shows the average runtimes of the tested approaches for different sample

sizes. The optimal policy parameters are calculated with a sampling approach with 400

samples. The runtime of the optimal approach depends mainly on this sample size. It

takes on average 348 seconds to solve the problem optimally with this approach for one

selling season with 100 periods on a standard PC (Intel Core i5, 2.3 GHz, 8 GB RAM).

The runtime of the data-driven approaches depends linearly on the sample size and is

very similar across the three data-driven methods. Both approaches with feature data
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(DD-kNN, DD-CART ) take 2 to 8 seconds longer than DD-NoFeatures due to the upfront

reweighting of the data points. In relative terms, this amounts to a runtime increase of

4% to 6%. Overall, the runtime increase is small compared to the performance increase

of our feature based approaches compared to the method without features.

Figure 4.5.: Average runtimes (in seconds) depending on the sample size.

In our sampling approach, we assumed so far that the decision-maker can identify

and incorporate those features that have predictive value for the inventory decision. In

reality, however, identifying and engineering the most relevant features can be difficult.

Therefore, Figure 4.6 depicts the average relative cost increase compared to the opti-

mal approach of the tested methods if, in addition to the three useful features, several

“useless” features are included, that have no predictive value for the inventory decision.

As the DD-NoFeature does not consider feature data, there is no impact of the larger

feature space on costs. Our approach based on kNN suffers from a larger feature space,

and the performance decreases with more features. As kNN takes into account the

distance of all features without considering their impact on the demand, the average

costs increase significantly with a larger feature space. On the other hand, the average

performance of our CART approach is more stable. CARTs split the data according to

the “impurity” of the target variable (in our case demand) in each node. Therefore, they

can identify the features with predictive value. Nevertheless, kNN is better, except for

a very large number of irrelevant features.

In summary, for the considered setting, both our approaches perform close to the

optimal solution in terms of costs and parameter accuracy. Especially applying the
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Figure 4.6.: Average relative cost increase (%) with 75% confidence intervals for varying
dimensions of the feature space.

data-driven approach with kNN reweighing can save up to 5.87% of costs compared to

the benchmark approach that does not consider feature data if enough data is available

(N = 200). If the feature space is very large, the performance of our kNN approach

deteriorates and DD-CART outperforms it.

4.5. Conclusions

In this paper, we develop a methodology to leverage the ever-increasing amount of avail-

able data for dynamic inventory decisions. To this end, we incorporate feature data

into a data-driven dynamic inventory model by combining ideas from traditional inven-

tory management and machine learning. We build on the idea of predictive presciptions

(Bertsimas and Kallus 2020) that have been developed for single-stage stochastic prob-

lems and show how to apply the concept to a multi-stage problem by means of dynamic

programming. Our method estimates a non-stationary (s, S)-policy by reweighing the

historical demand samples with machine learning and feature data in a dynamic pro-

gram. In a numerical study, it performs close to the optimal decision with a gap of only

0.75% to 2.92% whereas the benchmark without feature data achieves an optimality gap
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of 6.63% to 7.58% in our computational study. These results are in line with the results

of similar predictive prescriptions for single-stage problems (Bertsimas and Kallus 2020).

Thus, we conclude that our approach for multi-stage problems is viable and performs

well for our dataset.

Our method is very flexible and can incorporate different machine learning approaches

to reassign weights to the historical data. In particular, we show that the size of the

feature space should be taken into account when choosing an estimation method. If the

feature space is small, unsupervised learning methods like kNN perform well. If the fea-

ture space is very large, supervised learning approaches like CART should be preferred

as they can filter irrelevant features. The runtime increase for incorporating feature

data is only 4% to 6%. We conclude that by ignoring feature data, many traditional

inventory models miss out on significant optimization potential, and combining tradi-

tional inventory management approaches with machine learning to data-driven methods

provides near-optimal decisions with very little computational effort. If the noise in the

data is small, already relatively simple methods like kNN perform well.

Our study considers a specific feature-driven demand model. Future studies should

verify the generalizability of our results for other demand models, including, both other

theoretical models and real-world data. Furthermore, other machine learning approaches

such as kernel methods, artificial neural networks, or random forests could be applied

to assign the weights to the data.

For given data, our approach searches for the optimal parameters by means of enumer-

ation. This requires a relatively high computational effort. For time-critical applications,

one could alternatively solve the parameter optimization heuristically.

Our approach is a multi-period version of the method by Bertsimas and Kallus (2020)

and could be applied in future research projects to other operations management prob-

lems that are usually solved by dynamic programming.

78



Bibliography

Anupindi, R., Dada, M., and Gupta, S. (1998). Estimation of Consumer Demand with Stock-

Out Based Substitution: An Application to Vending Machine Products. Marketing Sci-

ence, 17(4):406–423.

Askin, R. G. (1981). A procedure for production lot sizing with probabilistic dynamic demand.

AIIE Transactions, 13(2):132–137.

Baboota, R. and Kaur, H. (2019). Predictive analysis and modelling football results using ma-

chine learning approach for English Premier League. International Journal of Forecasting,

35(2):741–755.

Ban, G.-Y. (2020). Confidence Intervals for Data-Driven Inventory Policies with Demand

Censoring. Operations Research, 68(2):309–326.

Ban, G. Y. and Rudin, C. (2019). The big Data newsvendor: Practical insights from machine

learning. Operations Research, 67(1):90–108.

Barrow, D., Crone, S. F., and Kourentzes, N. (2010). An evaluation of neural network ensembles

and model selection for time series prediction. In The 2010 International Joint Conference

on Neural Networks (IJCNN), Barcelona, Spain.

Barrow, D. and Kourentzes, N. (2018). The impact of special days in call arrivals forecasting:

A neural network approach to modelling special days. European Journal of Operational

Research, 264(3):967–977.

BASF (2020). Consolidated Financial Statements 2019. Technical report, BASF SE, Lud-

wigshafen am Rhein.

Ben-Tal, A., Ghaoui, L. E., and Nemirovski, A. (2009). Robust optimization. Princeton

University Press, New Jersey.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for Hyper-parameter
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