
Architecture and Prototype

of a Real-Time Processor Farm
Running at 1 MHz

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Alexander Walsch, Master of Science

aus Günzburg

Mannheim, 2002

Dekan: Professor Dr. Herbert Popp, Universität Mannheim
Referent: Professor Dr. Volker Lindenstruth, Universität Heidelberg
Korreferent: Professor Dr. Reinhard Männer, Universität Mannheim

Tag der mündlichen Prüfung: 6. November 2002

Abstract

Triggers are key components in large scale high energy physics experiments. Nowadays
experiments produce data at a rate of several TByte/s, which is more than any storage
system can handle. Not all of the data produced is of importance and as a matter of fact
only a tiny amount of all events are interesting to the experiment. Thus, data has to be
reduced in real-time. This is commonly done by pipelined trigger systems.

The Level-1 trigger of the LHCb experiment is a hardware/software based system built
around standard components whenever possible. The trigger is the second stage in the
LHCb trigger pipeline having an average input of 1 MHz and a bandwidth requirement of
more than 4 GByte/s. The input data is initially split amongst several input feeds with
sub-events being as small as 128 Byte. Data have to be sent to a compute node which
runs a track finding algorithm and produces a result message at a MHz rate.

The system uses a high-speed network available off-the-shelf which connects commodity
PCs. The interface to the NIC is PCI.

The thesis gives an overview of the different networking requirements that have to
be met to satisfy the LHCb boundary conditions. The requirements of the project do
not allow to use common data transfer methods. However, based on a shared memory
architecture a new method of transferring data is introduced. The method uses additional
reconfigurable logic which allows to send data in bursts over the PCI bus directly into the
network inducing almost no overhead.

Based on the Scalable Coherent Interface, tests concerning speed, throughput, latency,
and scalability are presented. Based on the latest simulation results done at CERN, an
approximate system size is calculated and a basic timing analysis of the system is given.
The system is characterized by multiple nodes sending to one single receiver. Therefore,
the Level-1 trigger is prone to network congestion since the receiving node can not handle
the aggregate input data rate. However, a hardware based data scheduling mechanism,
the TagNet, is introduced which avoids congestion in the system.

A 30 node prototype is presented which has been built around Linux PCs connected
by an SCI network. The system is able to process data with a MHz rate. Sub-events
have been chosen to be as small as 128 Byte. Data transfer has been scheduled by a basic
implementation of the TagNet. The system has been used to prove basic functionality and
to measure important input parameters concerning the system.

Zusammenfassung

Trigger Systeme sind Schlüsselkomponenten in modernen Hochenergie Physik Exper-
imenten. Gegenwärtige Experimente erzeugen Datenraten, die einige TByte/s betragen.
Kein Speicher kann diese Datenmenge aufnehmen. Zweitens sind auch nicht alle Daten
relevant. Nur ein kleiner Bruchteil der Ereignisse sind für das Experiment von Bedeutung.
Deshalb entwickelt man Trigger Systeme. Diese reduzieren die Datenmenge, indem sie
nur die relevanten Daten selektieren. Am Ende ist die Datenrate so gering, dass man auf
Band schreiben kann.

Trigger Systeme sind häufig mehrstufig aufgebaut. Der Level-1 Trigger des LHCb
Experiments am CERN ist die zweite Stufe eines vierstufigen Systems und hat eine Ein-
gangsrate von 1 MHz. Die Gesammtbandbreite, die das System bereitstellen muss, beträgt
voraussichtlich 4 GByte/s. Die Eingangsdaten sind verteilt und nur 128 Byte im Durch-
schnitt. Alle Daten, die zu einem Ereignis gehören, müssen an einen bestimmten Rechner
gesendet werden.

Das System benutzt ein Hochgeschwindigkeits Netzwerk, das kommerziell erhältlich
ist. Als Schnittstelle zwischen Rechner und Netzwerk ist PCI vorgesehen.

Diese Arbeit beschäftigt sich mit den Anforderungen an das Netzwerk, die erfüllt wer-
den müssen, damit es für LHCb in Frage kommt. Auf einer Shared Memory Architektur
basierend wird eine neue Art der Datenübertragung erarbeitet, die externe rekonfigurier-
bare Logik verwendet und sehr gut zum verschicken von kleinen Datenblöcken geeignet
ist.

Basierend auf der SCI Technologie werden Tests vorgestellt, die Geschwindigkeit,
Durchsatz, Latenz und Skalierbarkeit diskutieren. Die Grösse des endgültigen Systems
wird anhand Simulationsdaten berechnet und eine Zeitanalyse vorgestellt.

Da ein Datenempfänger eine Eingangsbandbreite von 4 GByte/s nicht empfangen kann,
muss der Datentransfer in Stufen stattfinden. Deshalb wird ein Netzwerk vorgestellt, das
die Daten orchestriert, um Netzwerküberlastungen vorzubeugen.

Die erarbeiteten Konzepte werden anhand eines 30 Knoten Prototyps vorgestellt. Der
Prototyp besteht aus Linux PCs, die durch ein SCI Netzwerk verbunden sind. Das System
kann Datenblöcke, die nur 128 Byte gross sind, mit einer MHz Rate verarbeiten. Der
Datentransfer wird durch eine vorläufige Version des Orchestrierungs Netzwerks gesteuert.

Contents

1 Introduction 1
1.1 High Energy Physics Experiments . 1
1.2 High Energy Physics at CERN . 2
1.3 Trigger Systems . 3

1.3.1 The HERA-B Trigger System . 5
1.3.2 The BaBar Trigger System . 5

1.4 Motivation of this Thesis . 6

2 The LHCb Experiment 9
2.1 Physics Introduction . 9
2.2 The Large Hadron Collider . 9
2.3 The LHCb Detector . 10
2.4 The LHCb Trigger System . 12

3 The LHCb Level-1 Trigger 15
3.1 Vertex Locator . 15
3.2 Front-End Electronics . 18
3.3 Readout Units (RUs) and Network . 19
3.4 Track Finding Algorithm . 21
3.5 Trigger Output . 21

4 LHCb Level-1 Trigger Networking 23
4.1 LHCb Networking Requirements . 23
4.2 The Peripheral Component Interconnect (PCI) 24

4.2.1 PCI Overview . 24
4.2.2 PCI Bus Protocol . 25
4.2.3 PCI Timing Diagram . 29
4.2.4 Interrupts . 30

4.3 High-speed, Low Latency Interconnects . 30
4.3.1 Scalability . 31
4.3.2 Input/Output Models . 31
4.3.3 Protocol Overhead . 32
4.3.4 Memory Models . 34

4.4 The Scalable Coherent Interface (SCI) . 34
4.4.1 Concepts of SCI . 35
4.4.2 SCI Logical Layer . 36
4.4.3 The Dolphin Implementation . 40

i

ii CONTENTS

4.5 Traffic Shaping and Network Congestion . 46

5 Performance of the Scalable Coherent Interface 49
5.1 Software initiated Data Transfer . 49

5.1.1 Point-to-Point Bandwidth . 49
5.1.2 Maximum Performance Tests . 51
5.1.3 Synchronization by Remote Interrupts 55
5.1.4 Minimum Data Packet Latency . 55

5.2 Hardware initiated Data Transfer . 58
5.2.1 Increasing Performance by using FPGAs 58
5.2.2 Non-Interleaved Transfer Mode . 59
5.2.3 Interleaved Transfer Mode . 63

5.3 Large SCI Ringlets . 64

6 Level-1 Trigger General Architecture 65
6.1 Level-1 Trigger System Architecture Overview 65

6.1.1 Network Feeds (RUs) . 66
6.1.2 Compute Nodes (CNs) . 68

6.2 Network Topology and Size . 69
6.3 Network Traffic . 70

6.3.1 Routing . 70
6.3.2 Scheduled Data Transfer . 70

6.4 Level-1 Decision Unit Interface . 73
6.5 Timing . 73

7 The Level-1 Trigger Prototype 77
7.1 Baseline Architecture . 77
7.2 Network Feeds . 79

7.2.1 Data Scheduling and TagNet Prototype 79
7.2.2 DMA Logic . 82

7.3 Global Shared Memory . 87
7.4 Data Transfer . 88

7.4.1 Transfer Order . 88
7.4.2 Data Format . 88

7.5 Data Integrity . 89
7.6 The Level-1 Decision Unit Interface . 92
7.7 System Performance . 94
7.8 System Frequency . 95
7.9 Scalability . 96

7.9.1 Non-Scheduled Transfer . 97
7.9.2 Scheduled Transfer . 98

7.10 B-Link Performance . 101
7.11 System Latency . 102
7.12 Fault Tolerance . 104

8 Summary and Outlook 105

CONTENTS iii

A Implementation 109
A.1 Design Flow . 109
A.2 TagNet Implementation . 109
A.3 Virtual to Physical Address Translation . 110

B Contents of the CD 113

C Glossary 115

Acknowledgments 117

Bibliography 119

Index 123

List of Figures

1.1 CERN as seen from above. Figure from [3]. 2
1.2 Location of LHC experiments. Figure from [3]. 3
1.3 Sample trigger logic and buffering scheme. 4

2.1 Polar angles of the b- and b-hadrons calculated by the PYTHIA event generator.
Figure from LHCb TP [1] . 10

2.2 Schematic drawing of the LHCb detector as seen from above. Figure from the
VELO TDR [8]. 11

2.3 LHCb trigger system stages including latencies and suppression rates. 12

3.1 Arrangement of the detector stations along the beam axis. The interaction
region (±σ) is depicted as well. Figure from VELO TDR [8] 16

3.2 Schematic view of a R- and Φ- measuring sensor. Figure from VELO TDR
[8] . 17

3.3 Front-end electronics architecture. Figure from VELO TDR [8]. 17
3.4 Block diagram of the off detector electronics. Figure from [15]. 18
3.5 Abstract view of the LHCb Level-1 Trigger. 20
3.6 RU as implemented at CERN. The on-board processor is not shown. Figure from

[19]. 20

4.1 Modern chipset architecture with the host bridge (HB) being the external I/O
controller. 25

4.2 Example physical address space. 26
4.3 PCI bus arbitration. Figure from [24]. 28
4.4 PCI write transaction. Figure from [24]. 29
4.5 Left: Data path for programmed I/O. Right: Data path for DMA. 31
4.6 Overhead PIO mode. The CPU is sending data to the NIC. 33
4.7 Overhead DMA mode. Left: Setup of the DMA controller. The CPU is sending a

DMA descriptor to the NIC. Right: The NIC fetches data out of memory which
implies more wait cycles on the PCI bus than in case of writing to memory. 33

4.8 Write operation to a remote memory region. 34
4.9 SCI topologies. 35
4.10 SCI transaction phases. 37
4.11 Transaction types. 38
4.12 Format of an SCI request send packet. 39
4.13 Block diagram of the link controller chip LC3. 41
4.14 SCI trace of a request-send packet. 42
4.15 Simplified block diagram of the Dolphin PSB66. 43

v

vi LIST OF FIGURES

4.16 Block diagram of the Dolphin SCI card. In the sketch two LC3s are con-
nected by the B-Link bus which allows a two-dimensional topology. 45

4.17 Address spaces and address translations in SCI clusters. 45
4.18 Packet buffers in SCI cards. 46

5.1 The point-to-point bandwidth results obtained with PIO and SDMA for
block sizes less than 1024 byte. 50

5.2 The point-to-point bandwidth results obtained with PIO and SDMA for
block sizes between 1024 byte and 1 MByte on a logarithmic scale. 51

5.3 Performance measured on the receiving node with different numbers of data
sources. 52

5.4 2D-torus as used for the benchmark tests presented. Always the same node has
been used as receiver. It is depicted as a blanc circle. Direction of SCI data packets
is depicted by the arrows. 53

5.5 Maximum performance measured on node #19, the receiving node, with
one data sources and two data sources. 53

5.6 Maximum performance measured on node #19 with a variable number of
data sources. 54

5.7 PCI-to-PCI latency measured as explained in the text. Paths, which include
route nodes are labeled routed data. 56

5.8 Longest data path in a 9 × 3 torus. Data is sent from node #00 to node #28 via
route node #08. The arrows depict the flow of the SCI data packet. 57

5.9 Data transfer using HDMA (bottom) compared to common transfer (top). Local
and remote physical memory regions are of equal size. The size of the physical
memory region associated with the HDMA engine which is depicted on the right
of the bottom figure is not important for the data transfer since it is only used to
configure the HDMA engine via PCI. 58

5.10 Device-to-device copy. Non-interleaved mode is depicted on the left side, the tan-
dem mode operation solution on the right side. 59

5.11 FPGA initiated transfer vs. PIO for block sizes less than 1024 Byte as measured
in a point-to-point connection. The different curves are explained in the text. . . . 60

5.12 PCI trace of a 128 Byte HDMA transfer as seen on a 64-bit/66 MHz bus. The
total transaction time equals 34 clock cycles. 60

5.13 Sketch of the PCI cycles of a DMA transfer as seen on a 64-bit/66 MHz bus. The
cycles can also be seen on the PCI trace in figure 5.12 61

5.14 Packet frequency in MHz as measured for block sizes less than 1024 Byte on the
sending node. 61

5.15 Sketch of PCI cycles as measured on receiving and sending node of an 128 Byte
SCI transaction. 62

5.16 Sketch of PCI cycles of a 128 Byte transaction into local memory. 62
5.17 The hostbridge buffers the incoming data such that it can issue a burst on the

system bus. 63
5.18 PCI trace of an interleaved transaction. The idle time in between bursts is reduced

to a minimum of 1 clock cycle. 63
5.19 PCI cycles for one DMA transfer as seen on a 32-bit/33 MHz bus using the PCI

64/33 SCI card. 64

LIST OF FIGURES vii

6.1 The Level-1 architecture as discussed in this chapter. 66
6.2 Number of VELO clusters per ODE (13 on average). Minimum bias events with

Level-0 decision applied have been used as input data for simulation. Noise is not
included. Data has been taken from [42]. 67

6.3 Number of VELO clusters per event (1286 on average). Noise is not included.
Data has been taken from [42]. 67

6.4 Left: Processing time for 2D track search vs. number of R clusters for B → π+π−.
Right: Time for full tracking. The plots have been taken from [45]. 68

6.5 Dimensional routing in a 5 × 4 torus. 70
6.6 Under the control of the TagNet data is moved by a DMA engine from the event

buffers to the SCI NIC card without CPU intervention. 71
6.7 The TagNet connecting the RUs and the TagNet Scheduler. Both TagNet slave

and TagNet scheduler logic is implemented in FPGAs. 72
6.8 Several fractions of a few events moving through a part of the torus. Data belong-

ing to the same event is depicted in the same color. The packets are tagged by
event/RU/Dest/timestep giving the ID, source RU, destination node and the time
step at which they have entered the network. The scheduler is not shown. 72

6.9 A) The sequence of certain operations during the transport phase for the first 2
RUs. Deviating from the text TRUdata has been split into the time to transport
the first packet (Tpacket) and the remaining time. Ttag is divided into two parts,
Ttaga for decoding the tag and setting up the remote DMA transfer and Ttagb for
forwarding the tag. B) Looking at the emerging pattern for 4 RUs the accumulation
of the non-overlapping components becomes clear. Since order of delivery is not
guaranteed packets might overtake each other. 74

7.1 30 nodes out of 32 Linux computers are connected to a 10× 3 torus. The picture
on the right shows the SCI cabling. 78

7.2 This figure shows the current setup in Heidelberg. 30 nodes are connected by the
Scalable Coherent Interface and form a two-dimensional torus topology. The three
nodes to the left are mockup input feeds connected by a basic implementation of
the scheduling network TagNet. The node labeled L1DU Interface receives 128-bit
result messages from every compute node. 79

7.3 The picture shows the setup for a mockup RU as used in the system presented. . . 80
7.4 The three sending nodes (RUs) also depicted on the left in figure 7.2 are connected

by the TagNet links. The node numbers refer to the numbers introduced in figure
7.2 . 81

7.5 Finite state machine of the TagNet logic. Using the terms introduced in 6.5,
Ttaga accounts to 12 clock cycles and Ttagb to 13 clock cycles. The time spent in
the PCIsend state is identical to TRUdata with its duration being defined by the
assertion period of the PCI FRAME# signal. Only when the internal output buffer
is empty (IntOut=0) the BOn signal is deasserted, thus avoiding buffer overflow. . 81

7.6 This logic analyzer screen shot shows the tag flow as measured with three RUs.
The first RU receives a tag (TIn 01), asserts its busy signal (BOn 01) during an
ongoing transfer, and forwards the tag to the adjacent node (TOn 01) after the
PCI transaction has been finished. The nodes are connected as depicted in figure 7.4 82

7.7 Schematic of DMA logic. 83

viii LIST OF FIGURES

7.8 Output of the design software as provided by Altera. It reveals that only 15% of
the logic is used. 83

7.9 Layout of the descriptor buffer. Up to 64 different descriptors can be stored at
this point which is sufficient for the current system size. After each transfer the
descriptor pointer (DP) is incremented. 84

7.10 Every single compute node can export m chunks of memory. The figure shows three
compute nodes exporting two memory regions each as an example. Afterwards
the RUs import all exported regions. CN #2 runs two processes which map the
memory regions into their virtual address space to have access to data sent via SCI. 87

7.11 During the initialization phase every RU imports the memory regions exported by
the compute nodes. This is done by software and results in 52 virtual addresses
when 26 CNs export two memory regions each. After those addresses have been
translated to physical addresses they are transferred to the DMA engines’ descrip-
tor buffer located in the FPGA. The figure shows a snapshot of some descriptor
buffer entries after initialization. Descriptor entries labeled NU are not in use. . . 88

7.12 Since no scheduler has been implemented so far the order in which remote nodes
are accessed is set by the order of descriptors. The figure shows the descriptor
order in a buffer. The read pointer is depicted to the left. It is incremented every
time a transfer has been finished. 89

7.13 A 64-bit mockup data word as transferred every PCI data cycle. The least signif-
icant bit is to the right. 89

7.14 Flow diagram of the algorithm checking the incoming data packets. 90
7.15 Result of a 5 min test run. The algorithm tested the buffers Ntries times, reported

8 times that the buffer shows data mismatches, and missed a total of 237 events. . 91
7.16 A time histogram shows that in 76% of all loops the event data is successfully

checked within 1µs. After 2µs 99.87% of all data is checked successfully. The part
of the events being highlighted in red corresponds to 30000 events. 92

7.17 Level-1 Decision Unit Interface as implemented in software. 93
7.18 The Level-1 Decision Unit Interface collects data coming from 26 CNs and calcu-

lates some statistics. All nodes executed a total of 379901605 loops, verified almost
100% of all data as valid and the next in line. 93

7.19 The figure shows a PCI trace of 128 Byte bursts in one of the sending nodes. The
send frequency in the trace is 1.24 MHz. 94

7.20 The figure shows a PCI trace in one of the receiving nodes. The trace shows a
setup for N = 26 resulting in Tidle = 21µs on the top PCI trace. The bottom
measurement shows a zoomed PCI trace, which shows the data packets coming
from the different RUs and the 128-bit result message sent to the Level-1 Decision
Unit Interface . 95

7.21 The figure shows a PCI trace in the Level-1 Decision Unit Interface. The PCI
traffic shows asynchronous behavior. 95

7.22 Maximum TagNet frequency in MHz as measured for block sizes up to 1024 Byte.
The time periods measured differ by 14 clock cycles compared to the data presented
in figure 5.11. 96

7.23 One RU sends 128 Byte of data with the maximum frequency of 1.96 MHz. The
logic analyzer shows the FRAME# signal on the PCI bus of the sending node. . . 97

7.24 Two RU try to send 128 Byte of data with the maximum frequency of 1.96 Mhz
each. However, retry traffic can be observed on one of the nodes. 97

LIST OF FIGURES ix

7.25 After the third RU starts sending the data rate on two RUs drops significantly. . . 97
7.26 Two RUs share a horizontal ringlet and try to send with 128 Byte of data with a

rate close to 2 MHz. The PCI FRAME# signal is analyzed and shows retry traffic
for the RU presented by FRN 02. However, aggregate maximum transfer rates of
up to 478 MByte/s payload can be observed. 98

7.27 Two RUs share a horizontal ringlet and are connected by the TagNet. The SCI
cabling is chosen such that packets sent by RU#2 have to traverse the bypass FIFO
of RU#1. 98

7.28 Retry traffic caused by bypass traffic. RU#1 has to issue retries which is due to
bypass traffic originating from RU#2. 99

7.29 No retry traffic can be observed by adjusting the bypass traffic frequency. The
sustained bandwidth accounts to 432 MByte/s. 99

7.30 Displacing the RUs minimizes SCI bypass buffer occupancy on the node further
downstream. The direction of request-send packets is depicted by two example
transfers. 99

7.31 Two RUs being located as proposed in figure 7.30 increase BLink. The peak band-
width measured is 478 MByte/s whereas the average bandwidth over a long time
interval is 472 MByte/s which is due to the overhead implied by the TagNet imple-
mentation. The block size has been set to 4096 Byte with the network load being
balanced. 100

7.32 Two RUs being displaced send into the same partition. The trace shows retry
traffic at a total bandwidth of 453 MByte/s and a block size of 512 Byte. 100

7.33 Two RUs being displaced send into the same column. Retry traffic on both RUs
can be observed. The aggregate bandwidth is 453 MByte/s with the block size
being 512 Byte. 101

7.34 Aggregate bandwidth for two CNs in a ringlet. The maximum bandwidth achieved
is 478 MByte/s. The measurement has been taking on the receiving sides. The
aggregate data packet frequency is 3.92 MHz with the data size being 128 Byte.
Sending nodes are CN 01 and CN 02 whereas CN 04 and CN 05 are receivers (see
figure 7.27). 101

7.35 Aggregate bandwidth for two CNs in a torus. All traffic goes through the same
route node. The maximum bandwidth observed has been 450 MByte/s. Sending
nodes are CN 01 and CN 02 whereas CN 13 and CN 23 are receivers (see figure
7.27). 102

7.36 Packet path for system latency measurements. 102
7.37 Latency as measured with two PCI tracers. 103

A.1 Flat ribbon cables have been used to connect the boards. 110

List of Tables

4.1 LC3 packet types as described in [31]. 42

5.1 Average synchronization time in busy and idle mode. 55
5.2 Line parameters for the fit lines shown in figure 5.7. The parameter x

denotes the number of hops. 56
5.3 Results of Packet Latency measurements as shown in figure 5.7. 56

7.1 TagNet signals, direction, and meaning. 80
7.2 Address space of DMA logic. 85
7.3 128-bit message sent to the Level-1 Decision Unit Interface 92
7.4 System Latency for the setup shown in figure 7.36. 103

A.1 Assignment of the RX and TX channels. 110

xi

Chapter 1

Introduction

Trigger systems are widely used in high energy physics experiments to reduce the tremen-
dous amount of data by event selection and filtering in real-time. Taking the LHCb
experiment as an example, 1012 bb̄ pairs are created in one year. The total number of in-
teractions can be calculated to be 4×1014. However, due to the small branching ratios for
interesting B decays of 10−5 or less and the limited detector acceptance the events that
contain valuable physics information have to be extracted. This happens by pipelined
trigger systems. The first trigger stage selects events based on part of the event data. All
subsequent trigger stages take those events and apply different, specialized algorithms to
reduce background events.

This thesis describes the requirements of the LHCb Level-1 trigger, the second of four
trigger stages. A networked cluster of PCs is used to run the trigger algorithm. The farm
has to process one event every microsecond with the total bandwidth required being about
4 GByte/s.

1.1 High Energy Physics Experiments

Accelerator experiments in high energy physics are characterized by interaction of parti-
cles, particle production, and particle decay. Production and decay have different proba-
bilities which are described by Quantum Mechanics and observed in particle detectors.

Taking the LHCb experiment as an example, protons collide with a frequency of 40 MHz.
The interaction point, the primary vertex, can be measured with a resolution of 49µm
along the beam axis using a silicon vertex detector. The experiment is intended to measure
decay probabilities of B-mesons. Those particles decay a few mm apart, at the secondary
vertex, and are measured with a resolution of 225µm along the beam axis. About 1012 bb̄
pairs are expected in one year of data taking (107s) [1]. However, due to limited detector
acceptance and small branching ratios of the order of 10−5 or less, only a small fraction
of events are stored for offline analysis. The LHCb trigger system will select and filter
this fraction of interesting events from the large number of events producing b quarks and
other pp events in real-time.

1

2 Chapter 1. Introduction

1.2 High Energy Physics at CERN

CERN is the Organization for Nuclear Research and the world’s largest particle physics
center. The word ”CERN” is a French abbreviation and stands for ”Convention Eu-
ropéene de la Recherche Nucléaire”. CERN has been founded in 1954 being one of the
first European joint ventures. From the original 12 signatories to the CERN convention,
membership has grown to 20. More than 6500 scientists, which amounts to more than
half of the world’s particle physicists, come to CERN doing their research. 500 universi-
ties and over 80 nationalities are represented. One of the collaborating institutes is the
”Kirchhoff-Insitut für Physik” in Heidelberg, Germany. Its responsibility is, among others,
to build a small, but important part for one of the upcoming accelerator experiments -
the Level-1 trigger for the LHCb experiment.

However, the challenge imposed by the experiments is not only an attracting place for
particle physicists. Computer scientists and engineers from around the world contribute
to the electronics and computer systems required by the experiments to handle the huge
amount of data. Sometimes even every days life is affected by results achieved by the
people working at CERN. The most famous example is certainly the invention of the
World Wide Web by Tim Berners-Lee in 1989. The original proposal can be found under
[2].

Currently a new accelerator, the LHC1, is installed in the place of the LEP2. Figure 1.1
shows an aerial view of the area. The large circle demonstrates the path which accelerated
particles will take. Its circumference is about 27 km. CERN is located close to Geneva
in Switzerland. However, more than half of the area covered by the accelerator ring is
located in France.

Figure 1.1: CERN as seen from above. Figure from [3].

1LHC: Large Hadron Collider.
2Large Electron Positron Collider

1.3. Trigger Systems 3

Originally the LHC experiments have been scheduled to take their first data in the year
2005. However, because of delays the experiments will start in the year 2007.

Four new LHC experiments, each having its own detector, are currently under construc-
tion:

• ALICE: The aim is to study the physics of strongly interacting matter at extreme
energy densities, where the formation of a new phase of matter, the quark-gluon
plasma, is expected.

• ATLAS: A general purpose experiment having the main effort to discover the Higgs
particle3.

• CMS: A general purpose experiment looking into physics beyond the Standard
Model and into discovery of the Higgs.

• LHCb: Precision Measurements of CP violation and rare decays.

Figure 1.2 shows the location of the four LHC experiments. All detectors are located
about 100 m underneath the surface. The LHCb experiment, which is the one of interest
in this thesis, is depicted on the right bottom.

Figure 1.2: Location of LHC experiments. Figure from [3].

1.3 Trigger Systems

The data rate of nowadays experiments is in the TByte/s range exceeding the capabilities
of storage systems today and in the foreseeable future. Secondly, but even more impor-

3The Higgs Particle or Higgs Boson is associated to the origin of mass.

4 Chapter 1. Introduction

tant, not all data are of interest for physics offline analysis. Therefore, the data has to be
analyzed and successively reduced in real-time. Events that are valuable for physics ana-
lysis are kept whilst events which are not relevant are discarded. However, this makes the
trigger system to the most crucial part in the experiment since any failure results in loss of
valuable physics data or even in wrong interpretation of results. Triggering is commonly
done by pipelined systems. Usually systems like that have three or four pipeline stages.

The first stage in the system selects events by analyzing a part of the total data stream
coming from the detector. Only events that have been selected are analyzed by the other
trigger stages. The following trigger stages reject those remaining events based on a filter-
ing algorithm looking for specific characteristics. Therefore, the data rate is successively
reduced such that final storage on tape is feasible. The last trigger stage usually analyzes
all data associated with an event while the other stages deal with a subset. Every pipeline
stage applies the same principle; data are kept in a buffer and a copy or subset of it are
analyzed by the trigger logic. However, since buffers are not of infinite size a trigger deci-
sion has to be made in time to avoid a buffer overflow. Thus, the trigger decision has to
be broadcast within a certain latency window.

Trigger logic can be implemented either in hardware or software. Software solutions are
often desired to stay flexible during the runtime of the experiment. However, software is
usually not feasible for front-end trigger stages since the latency requirements can not be
met.

Upon a positive trigger decision the buffered data are forwarded to the next trigger stage.
Since a large fraction is rejected both the overall amount of data and the data rate are
reduced such that storage on tape for final analysis is feasible.

Figure 1.3 shows how data are successively reduced by the LHCb Level-0 and Level-1 trigger
systems by applying the principle explained above.

Figure 1.3: Sample trigger logic and
buffering scheme.

Taking the LHCb experiment as an example the suppression factor of the first trigger
stage, the Level-0 , is 40, reducing the event rate from 40 MHz to 1 Mhz. During analysis
the Level-0 input data is kept in a buffer. However, the maximum latency is 4µs. After a
Level-0 accept the accepted events are analyzed by the Level-1 trigger which accepts events
at 40 kHz. The data are buffered for 1.6 ms which is the total time that can be used by

1.3. Trigger Systems 5

hardware and software being in the Level-1 latency path. Therefore, two important tasks
have to be fulfilled when designing a trigger stage:

• The hardware, e.g. networks, busses, have to cope with the data rate.

• The overall latency requirements have to be met.

The LHCb experiment will look at certain asymmetries in the decay of the B-meson.
However, similar experiments are running at the moment. Before the LHCb trigger system
is introduced in chapter 2 the trigger systems of the high energy physics experiments
HERA-B [4] at DESY4, and BaBar [5] at SLAC5 are described briefly.

1.3.1 The HERA-B Trigger System

The HERA-B trigger system comprises four trigger stages which successively reduce the
input rate and look for physics information. However, there is also a pre-trigger stage
involved that does not reduce the data rate but rather chooses a region of interest.

The following stages are involved:

• The Level-1 Trigger (First Level Trigger, FLT) consists of a network of roughly
100 custom-built massively parallel and pipelined processors. It receives the initial
detector data at a rate of 10 MHz and must deliver a suppression of 200 with a
latency of 12µs.

• The Level-2 Trigger (Second Level Trigger, SLT) handles an input rate of 50 kHz. It
is a software based trigger running on a compute farm of 240 Linux PCs. It reaches
a suppression factor of 100, which results in an output rate of 500 Hz. The average
processing time is about 4 ms.

• The Level-3 Trigger (Third Level Trigger, TLT) is executed on the same compute
farm and reduces the rate by a factor of 10. It is the first trigger stage that has
access to all event data whilst the FLT and SLT see only part of the entire data
stream. The latency has been set to 100 ms.

• The Level-4 Trigger (Fourth Level Trigger, 4LT) is implemented on a different com-
pute farm using 200 CPUs. The data rate is reduced by a factor of 2.5 before data
is stored on magnetic tape.

1.3.2 The BaBar Trigger System

The BaBar trigger is a two-level hierarchy trigger. The Level-1 trigger has been imple-
mented in hardware whilst the Level-3 trigger is a software approach:

• The Level-1 trigger is configured to have an output rate of less than 2 kHz with
triggers typically produced within 11 − 12µs. The trigger data are processed by
three specialized hardware processors.

4DESY: Deutsches Elektronen Synchrotron located in Hamburg, Germany.
5SLAC: Stanford Linear Accelerator Center located at Stanford University n Menlo Park, CA.

6 Chapter 1. Introduction

• The Level-3 trigger is running on an online computer farm with access to the com-
plete event data. The output rate of the Level-3 trigger has been set to less than
100 Hz. There is no Level-2 trigger involved in data analysis.

1.4 Motivation of this Thesis

This thesis describes the requirements of the LHCb Level-1 trigger and the work that has
been done to build a first prototype. The Level-1 trigger is the second of four trigger
stages and has been planned as a software trigger to stay flexible during the runtime of
the experiment. Usually experiments like this run for about 15 years.

The trigger receives a new event being more than 4 kByte in size every microsecond.
Therefore, the trigger system requires a sophisticated network solution. A second bound-
ary condition that has been set on the trigger stage is a tight latency requirement. In 1999
the latency had been agreed to be 256µs. However, since events are queued both at the
input stage and the processor the latency has been increased to 1.6 ms in 2001.

A software based trigger could be built around processors that compute a trigger result in
parallel. However, additional communication overhead as imposed by MPI6, e.g., suggests
to favor a single processor solution. Therefore, the trigger is planned as a cluster of PCs
with each CPU running a process that analyzes one complete event. However, delay in
data analysis must be avoided. Delay of data analysis of one microsecond means one
additional CPU and thus additional cost of 3k Euro. Upon completion of analysis a
result message is sent to a central trigger supervisor.

The incoming event is initially scattered amongst some input feeds with the fragment size
being not more than 200 Byte7 on average. All fragments have to be delivered to a specific
compute node. Upon arrival of the complete event the software starts to process the data.
Since the total input data stream equals 4 GByte/s, the data must be scheduled since the
receiving node can not handle incoming data at such rate.

The requirements on the trigger can be summarized as follows:

• A system has to be built that allows transmission of event fragments with a MHz
rate. Since event fragments are small this part has been considered as the most
crucial part of the system.

• Event fragments have to reach a specific target without causing network congestion.

• The system should use standard components whenever possible. The amount of
custom built electronics should be minimized.

• The trigger issues an output message in chronological order with a MHz rate.

The network under investigation is a shared memory based solution, which can transfer
messages without any software overhead; the Scalable Coherent Interface (SCI). However,
to satisfy the MHz requirement of the LHCb Level-1 trigger a method which has been
named hardware initiated DMA (HDMA) has been invented. HDMA uses an external

6Message Passing Interface
7This number has been used as assumption in 1999.

1.4. Motivation of this Thesis 7

DMA engine, which is located on the same PCI bus, to push data into a shared memory
region. This transfer scheme is also called device-to-device copy. Therefore, DMA logic
has been implemented in an FPGA with PCI interface. The first FPGA that has been used
was an ORCA8 chip by Lucent [6]. Results looked very promising when ORCA FPGAs
were used in tandem mode as explained in 5.2.3. However, when modern motherboards
providing a 66 MHz/64-bit PCI bus arrived on the market using the ORCA chips was not
making sense anymore since the internal logic could not be clocked at 66 MHz. Another
drawback was the internal 32-bit data bus of the ORCA chip feeding the external 64-bit
PCI bus. Thus, everything had to be transferred to faster FPGAs. It has been decided
to use Altera APEX9 devices. The vast majority of the results in this thesis is based on
Altera chips.

8OR3TP12 FPSC
9APEX20KE

Chapter 2

The LHCb Experiment

The LHCb experiment studies CP violation on neutral B-mesons. A spectrometer is used
to detect particle tracks. To get the best possible physics performance, it covers low polar
angles up to 300 mrad. The detector reconstructs B-decay vertices with a resolution being
in the micrometer range. Different sub-detectors provide particle information which is
analyzed by the trigger system. The four stage pipelined trigger successively reduces the
data rate from 40 MHz to 200 Hz such that it can be written on tape for offline analysis.

2.1 Physics Introduction

The LHCb experiment is dedicated to the study of CP violation in hadronic systems which
originate from b-quarks. CP violation can be observed in decay asymmetries of the neutral
B-meson. CP violation has first been observed in the neutral kaon system. In the Standard
Model of particle physics the mixing of quarks is described by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The CKM matrix has four free parameters, three Euler angles,
and one complex phase. The latter allows CP violation to occur within the Standard
Model. CP violation in the kaon system is tiny and implies theoretical uncertainties.
However, the Standard Model predicts large effects in the B-meson system.

2.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a high luminosity proton-proton collider with a center
of mass energy of 14 TeV. Luminosity is a magnitude which corresponds to the number
of particle interactions at the collision point. Compared to other experiments that are in
operation or under construction, LHCb will be the richest source for B-mesons. Figure
2.1 shows the polar angles θ at which b and b-hadrons have to be expected. The depicted
maxima suggest that the LHCb detector should cover low polar angles. The polar angle
is defined with respect to the beam axis in the pp center-of-mass system.

The LHCb experiment plans to run with an average luminosity of 2×1032cm−2s−1. How-
ever, LHCb’s luminosity is less compared to Belle (4.6 × 1033cm−2s−1) [7] and BaBar

9

10 Chapter 2. The LHCb Experiment

0
1

2
3

1
2

3

θb [r
ad]

θ
b [rad]

Figure 2.1: Polar angles of the b-
and b-hadrons calculated by the PYTHIA
event generator. Figure from LHCb TP
[1]

(7.25 × 1033cm−2s−1) [5] since events with multiple interactions should be minimized.
Events at LHCb are characterized by proton-proton (pp) interactions, which produce
about 1012bb̄ pairs in one year. The LHCb detector is designed to exploit the large num-
ber of b-hadrons produced in order to make precision studies of CP asymmetries and rare
decays in B-meson systems. However, the amount of interesting events is in the order of
10−5 or less and thus, requiring an effective trigger system.

2.3 The LHCb Detector

The LHCb detector is a single-arm spectrometer with a forward angular coverage from
10 mrad to 300 mrad in horizontal projection and to 250 mrad in the vertical projection
[1]. The layout of the spectrometer is shown in figure 2.2.

The detector can reconstruct B-decay vertices with a resolution in the micrometer range
and provides particle identification for charged particles. A high performance trigger,
which is optimized to select events with B-mesons efficiently, is foreseen. Based on particles
with large transverse momentum and displaced secondary vertices a trigger decision is
made.

LHCb comprises a number of different sub-detectors. Parts of the detector are outlined
briefly:

• The beam pipe around the interaction point is divided into two conical sections. The
first leads through RICH1 and has an opening angle of 25 mrad, the second section
has a 10 mrad opening angle.

• The Vertex Locator (VELO) features a series of silicon stations placed along the
beam direction. It is used to provide precise measurements of track coordinates
close to the interaction region. It is discussed in more detail in 3.1.

• Two Ring Image Cherenkov Detectors identify charged particles over the momen-
tum range 1-150 GeV/c. The upstream detector (RICH1) contains both a silicon
aerogel and a C4F10 gas radiator whilst RICH2, located downstream behind the
magnet, contains a CF4 radiator. Three different radiators are used to cover the full
momentum range.

2.3. The LHCb Detector 11

Figure 2.2: Schematic drawing of the LHCb detector as seen from above. Figure from the VELO
TDR [8].

• The spectrometer dipole magnet is located close to the interaction region to mini-
mize its size. Magnets are used to bend charged particle tracks depending on their
momentum and charge.

• The tracking system (T1-T9) consists out of a series of stations containing Inner (IT)
and Outer Tracker (OT) components. The tracker provides track reconstruction and
precise momentum measurement for charged particles.

• The calorimeter system comprises a scintillator pad detector (SPD), a preshower
detector (PS), an electromagnetic calorimeter (ECAL), and a hadron calorimeter
(HCAL). The purpose of the calorimeter system is to provide identification of elec-
trons and hadrons for trigger and offline analysis, with measurement of position and
energy.

• The muon detector (M1-M5) provides muon identification and Level-0 trigger infor-
mation.

The detector is presented as foreseen in the LHCb TP [1]. However, the latest develop-
ments in the LHCb experiment do foresee a detector which implies reduced material budget
— the LHCb light detector. Changes to the detector will also affect the Level-1 trigger
input since it is planned to have a magnetic field in the VELO to get momentum informa-
tion. A special station called TT1 is also foreseen as Level-1 input. However, the amount
of data and the data rate, which are very important boundary conditions, do not change.

12 Chapter 2. The LHCb Experiment

2.4 The LHCb Trigger System

The detector produces a total data rate of 40 TByte/s and thus exceeds capabilities of
present network architectures and storage media. LHCb implements a selective four stage
trigger system that analyzes the sub-detectors in different trigger stages. Events with
B-mesons can be distinguished from other inelastic pp interactions by the presence of
secondary vertices and particles with high transverse momentum pT . Figure 2.3 shows the
different stages of the LHCb trigger system.

Figure 2.3: LHCb trigger system stages including latencies and suppression rates.

The pipeline comprises the following stages:

• Level-0 comprises three high pT triggers, which operate on muons, electrons, and
hadrons. Additionally a pile-up veto is issued, which suppresses events with more
than one pp interaction. The Level-0 operates on the bunch-crossing frequency of
40.08 MHz. The maximum Level-0 output rate is limited by the Level-0 derandomizer
and accounts to 1.11 MHz. The latency of the Level-0 is set to be 4.0 µs.

• The Level-1 selects events, which have a secondary vertex. The Level-1 operates
at Level-0 output rate of 1.11 MHz and reduces the event rate to 40 kHz. The
Level-1 overall latency has been set to 1.638 ms. The Level-1 trigger is discussed in
chapter 3.

• The Level-2 eliminates events with fake secondary vertices by using momentum
information. The Level-2 operates at the Level-1 output rate and achieves a sup-
pression factor of 8. Its latency is about 10 ms.

• The Level-3 uses all detector information and selects events, which are associated
with specific b-hadron decay modes. Level-3 has a latency of about 200 ms and
accepts events at the data recording rate of 200 Hz.

2.4. The LHCb Trigger System 13

A specific feature of LHCb is the fact that Level-0 and Level-1 trigger decisions are trans-
mitted by the TFC. The TFC also distributes the LHC reference clock which runs at
40 MHz. The clock is used to drive all the electronics such that a synchronous readout is
possible. Control commands which are used to reset the front-end electronics or to recover
from an error condition are also transferred by the TFC. In case of a calibration event the
TFC has to guarantee that triggers corresponding to calibration events are accepted. The
TFC distribution network is based on the Trigger, Timing, and Control (TTC) network
developed by the RD12 experiment [9]. The network transmits the information over an
optical channel. If a device depends on timing information it must incorporate a TTC
receiver chip (TTCrx).

Chapter 3

The LHCb Level-1 Trigger

The Vertex Locator is the data source for the Level-1 trigger. It is comprised of a number
of silicon stations which allow precision measurements of charged particle tracks around the
interaction region. The detector is read out by front-end chips in a radiation environment.
The data gets digitized and preprocessed by the Off Detector Electronics and is finally sent
to the input stage of the Level-1 processor farm. The Readout Units assemble sub-events
out of data belonging to the same event and send that data to a specific compute node.
The input rate is 1 MHz on average with peak values up to 1.11 MHz.

A track finding algorithm performs its track finding task once all sub-events have arrived.
Upon completion of the algorithm a result message is sent to the Level-1 Decision Unit
which produces the 40 kHz output signal.

3.1 Vertex Locator

The vertex locator is the data source for the Level-1 trigger. Furthermore, a second source
of input will be part of the final system; the trigger tracker TT1 will provide momentum
information. TT1 will be a full Si tracker composed of two half-stations being located
between RICH1 and the magnet (see figure 2.2 for location of the RICH1 and the magnet).
The final detector layout is changed at the time of writing. Some information which is
more current than figure 2.2 can be obtained from a talk by Tatsuya Nakada given for the
LHCC1 referees [10].

The vertex locator (VELO) provides information for precise reconstruction of charged
particle tracks around the interaction region. Displaced secondary vertices are a significant
sign of b-hadron decay and thus vital to the experiment. The detector features a series of
silicon stations which are placed along the beam axis. It is the only detector which also
provides some backwards information which is used to separate events with more than
one primary vertex. The location of the VELO within the LHCb detector can be seen in
figure 2.2.

1Large Hadron Collider Committee

15

16 Chapter 3. The LHCb Level-1 Trigger

Since the geometry of the VELO is not final at the time of writing the design as described
in the VELO TDR [8] is discussed instead. The final geometry will probably have less
stations which reduces the amount of data that has to be handled by the Level-1 trigger.
However, since the trigger tracker has been introduced as an additional input the final
amount of data does not change significantly. The TDR VELO comprises 25 stations each
providing an R and φ measurement. The arrangement of the disc-shaped stations is shown
in figure 3.1.

1 m

10
 cm

15 mrad

390 m
rad

z

x

cross section
at x =0:

top view:

z

y
60 mrad

2 VETO stations
R-measuring sensors only

Interaction region σ = 5.3 cm

right

beam axis

Left and right halves are retracted
from the beam axis by 3 cm during
LHC injection.

25 VELO stations
1 station = 1 left and 1 right detector module
1 module = 1 R- and 1 φ-measuring sensor

left

Figure 3.1: Arrangement of the detector stations along the beam axis. The interaction
region (±σ) is depicted as well. Figure from VELO TDR [8]

The two stations depicted on the left are exclusively R measuring stations and part of
the Level-0 pile-up veto system. The TDR VELO is located outside the magnetic field
which implies straight tracks. However, in the final VELO design the detector will most
likely be placed in a magnetic field to gain momentum information. Detector information
is read out by analyzing the 204.800 analog readout channels. One VELO station is made
of four half-circular silicon sensors covering the left and right part and measuring R and
Φ respectively. Figure 3.2 shows a schematic view of a R- and Φ- measuring sensor.
The R-measuring sensor has azimuthal strips at constant radius whilst the Φ-measuring
sensor has radial strips with a stereo angle to resolve track finding ambiguities. Both
sensor types span 182◦ and have variable strip pitches. The R-sensor has strip pitches
from 40µm up to 92µm whilst the Φ-sensor has strip pitches from 37µm to 98 µm. The
innermost radius for both sensor types is 8 mm and the outermost radius 42 mm. The
detector has a low occupancy of less than 1%. Test-beam measurements have shown R-
sensor resolutions in between 3.6µm and 4.6µm depending on the strip pitch and the track
angle[8].
Figure 3.2 also shows the 16 front-end chips mounted on one sensor. Every front-end chip
will read out 128 channels in a radiation environment. Currently two candidates do exist
that are under study:

• The SCTA VELO, a chip derived from the SCT128A [11] developed for ATLAS [12].

3.1. Vertex Locator 17

R sensor

strips
readout chips

routing lines

φ sensor

84
 m

m

16
 m

m

2048 strips
 read out

2048 strips
 read out

Figure 3.2: Schematic view of a R-
and Φ- measuring sensor. Figure from
VELO TDR [8]

• The BEETLE chip [13] developed in the ASIC laboratory of the Kirchhoff-Institut
für Physik in Heidelberg [14].

Both front-end chips have to sample the detector information with the LHC bunch cross-
ing frequency of 40 MHz. The data have to be stored in the chip for 4 µs until the
Level-0 trigger decision is received. The Level-0 trigger accepts events with a maximum
frequency of 1.11 MHz which corresponds to a readout time of 900 ns. Reading out the
buffer with the Level-0 output frequency is achieved by multiplexing the channels in groups
of 32 at 40 MHz. Thereafter, the analog data is transmitted via twisted pair cables to the
Off Detector Electronics (ODE) located in the radiation free counting room. Figure 3.3
shows the architecture of the front-end.

Sensor

FE chips

Hybrid

Vacuum Tank

ECS
Slave
Crate

 LHCb
 Data
Acquisition

Experiment
Control
System

Wall

Repeater Cards

Power
Supply

HV& LV Timing
 & Fast
Control

L1
Trigger

TFC

DAQ

L1

ECS

FADC Synchronization
Logic

L1PreProcessor
Block

L1
Buffer

Data
Processor

Digitizer board

60 m Twisted Pairs
Cables

Figure 3.3: Front-end electronics architecture. Figure from VELO TDR [8].

18 Chapter 3. The LHCb Level-1 Trigger

3.2 Front-End Electronics

The Off Detector Electronics (ODE) board comprises the following functionalities:

• Digitization of the analog data coming from the front-end chips.

• Level-1 trigger preprocessing.

• Data Buffering during Level-1 latency.

• DAQ interface.

A schematic of the ODE can be seen in figure 3.4.

32

DAQ
interface
processor

Data
encapsulation

To RU
(L1-Trigger)

To DAQ

FADC

40 MHz

64 x

analog

analog

analog

analog

FE

Pedestal
subtraction
Common mode
suppression

Hit detection
Re-ordering
Cluster
encoding S-Link

16 x

Sync
FPGA

8

32

32

32

8 x 1 x

9

9

8 x

L1 buffer

32

32

32

32

32

ODE-board

L1PPI

32

8

8

8

DAQI

Cluster
encapsulation
L1 trigger
interface

16 x 8 x

S-Link

1 x

Figure 3.4: Block diagram of the off detector electronics. Figure from [15].

Each ODE board receives 64 analog signals from 16 front-end chips. Since one analog
signal transmits data originating from 32 detector channels this accounts to 2048 detector
channels total. The signals are digitized, processed, and packed with event header infor-
mation. A Flash ADC (FADC) with 8-bit precision clocked at 40 MHz is used. Afterwards
the data is shipped to the Level-1 trigger processor and the DAQ.

The ODE buffers the data for roughly 1.6 ms. In this time the ODE has to preprocess
the data for the Level-1 trigger, the data have to be shipped to the Level-1 trigger, the
Level-1 algorithm has to run the trigger algorithm, and a Level-1 trigger decision has to
be made.

The Level-1 trigger preprocessor interface (L1PPI) performs the following tasks on the
digitized data coming from the VELO:

• Pedestal subtraction

Each channel of the detector has an offset (pedestal). The pedestal is measured in
a special run and can be subtracted at first. The pedestal data, which is 1 Byte in
size, can be downloaded by ECS2 before the experiment starts.

2Experimental Control System

3.3. Readout Units (RUs) and Network 19

• Faulty channel masking

If a detector channel is faulty it must be ignored. One mask bit per detector channel
can be downloaded via ECS. This prevents wrong detector hit information in case
of channel oscillations.

• Common mode suppression

So far only linear common mode suppression has been analyzed. The implementation
is flexible such that different algorithms can be implemented. For a more detailed
coverage see [15].

• Hit detection

A hit is defined as a channel which has an amplitude above a certain threshold value.
The threshold value is an 8-bit value which can be downloaded via ECS.

• Topological re-ordering (optional)

This feature only applies when the detector channels are read out in an order that
does not reflect the geometrical sequence. A dual port memory is foreseen where
data can be stored and read out in a different order.

• Cluster encoding

The Level-1 trigger algorithm requires clusterized data. The following encoding
scheme is proposed:

Cluster of one hit: the cluster position is the strip position.

Cluster of two hits: the cluster position is the first position; an extra bit signals a
two strip cluster.

Cluster of three or more hits: only two adjacent strips are taken to form a cluster.
A cluster of four, e.g., is treated as 2 clusters of 2.

• Cluster encapsulation

ODE encapsulates the data with a 32-bit header and trailer, respectively. Every data
packet can be associated with an event by a 16-bit event ID which is monotonically
increased by one. The interface between the ODE Level-1 preprocessor and the
Level-1 trigger has been defined to be one S-Link [16] per ODE board. The cluster
data from 8 preprocessors are combined in one S-Link. The S-Link width has been
chosen to be 32-bit with a transfer frequency of 40 MHz. Event fragment length is
strongly varying for different events. Therefore, an output FIFO buffers the data
before it is transferred to the Level-1 . The maximum amount of hit clusters per
ODE board is 127 with a hit cluster being 16 bits in size.

3.3 Readout Units (RUs) and Network

Figure 3.5 shows an abstract view of the LHCb Level-1 trigger.

After the hit cluster data has been preprocessed by the ODE as described above, it is
sent to the input stage of the Level-1 trigger — the Readout Units. The number of RUs
has been assumed to be about 25 in 1999. A detailed discussion will follow in chapter 6.

20 Chapter 3. The LHCb Level-1 Trigger

Figure 3.5: Abstract view of the LHCb Level-1 Trigger.

The input stage of the RU is equipped with FIFOs which buffer the incoming data from
ODE. The FIFO size is variable between 4k and 128k × 32-bit. The data is merged to
a so-called sub-event and stored in a sub-event buffer. Figure 3.6 shows a photograph of
the RU [17] as implemented at CERN [18].

Figure 3.6: RU as implemented at CERN. The on-board processor is not shown. Figure from
[19].

The RU forwards the sub-event to one of the compute nodes (CN) which is depicted in
figure 3.5. To handle this task the RU is equipped with a 64-bit/ 66 MHz PCI bus, which
is the interface to the network card, two FPGAs to implement any necessary logic, and an

3.4. Track Finding Algorithm 21

on-board processor running an embedded Linux distribution. However, all data belonging
to a specific event has to be processed by one compute node. The compute node has to be
chosen right before event distribution and the sub-event data have to be orchestrated. The
entire system is synchronized by a passive fiber optical clock distribution system (TTC)
as mentioned in 2.4.

Since the RUs receive event fragments with a maximum frequency of 1.11 Mhz and the data
belonging to one event is rather small3 the network solution to the distribution problem
has to copy data with a minimum of overhead. Although total event data size varies
depending on present studies, it is certain that the overall network capacity will exceed
4 GByte/s. The CNs are COTS4 PCs which are connected by a commercially available
interconnect which plugs into the RUs PCI bus.

3.4 Track Finding Algorithm

Once all sub-events have been written into the memory of a compute node a software
algorithm performs its pattern recognition task to do the track finding. The algorithm
is looking at particle tracks traversing the VELO. If it finds indications for a secondary
vertex the event could be an event containing B-physics.

How the final algorithm will look like is not sure at the time of writing. Different ap-
proaches are currently tested with simulated data. However, the following steps give an
outline of the proposed algorithm:

• 2D Tracking: B-mesons are typically produced below a polar angle of 200 mrad
within the acceptance of the detector. The algorithm reconstructs all tracks in the
rz plane. Thus, only R information is used at first. A track is defined as at least
three hits on consecutive stations being on a straight line.

• Primary Vertex Search: The primary vertex which is the pp interaction point is
determined by histogramming the 2D tracks.

• 3D Search: Tracks with a significant impact parameter (IP) which is typically
greater than 100 µm are chosen for 3D track reconstruction [20]. The IP is defined
as the distance of the primary vertex to the track. Usually around 5 tracks are
chosen.

• Secondary Vertex: The reconstructed 3D tracks are required to form a secondary
vertex which is significantly separated from the primary vertex. The impact param-
eter information of those tracks is used to form a total B-event probability.

3.5 Trigger Output

The trigger produces a 128-bit output message for every event. It has been agreed on
that the output of the Level-1 trigger must be in the same order as the input. The output

3It was assumed to be 200 Byte when I joined the project.
4commercial off-the-shelf

22 Chapter 3. The LHCb Level-1 Trigger

is sent to the Level-1 Decision Unit which produces a 40 kHz trigger signal. The trigger
is distributed to the front-end by the TTC system. The exact content of the output
message is not final yet. However, it will most likely contain the event ID and the B-event
probability as computed by the track finding algorithm.

Chapter 4

LHCb Level-1 Trigger Networking

PCI is an I/O bus that can be found in any commodity PC. The Level-1 RUs and the CNs
use PCI as an interface to the network. PCI is a synchronous bus with a peak bandwidth
of 528 MByte/s in its fastest implementation. PCI performance of the sending node is
an important issue since every microsecond a sub-event has to be transferred to the NIC.
There are several methods of sending data to a remote node. A shared memory approach
is chosen to transfer data since no additional overhead is involved. Therefore, movement
of data is totally transparent.

PIO and DMA are used to perform I/O. PIO means that the CPU writes data whereas
in DMA mode the data is fetched from memory by the NIC. However, a DMA controller
has to be set up first which means an additional bandwidth requirement.

The Scalable Coherent Interface offers a hardware-based distributed shared memory solu-
tion. One implementation offers peak SCI link speeds up to 667 MByte/s and a sustained
PCI bandwidth of 300 MByte/s.

4.1 LHCb Networking Requirements

The requirements to the LHCb Level-1 interconnect have been introduced in chapter 3.
They can be summarized as follows:

• PCI Interface

The interface between the interconnect and both the RU and the CNs is PCI as
mentioned in 3.3. PCI is a local bus that can be found in any commodity PC which
means minimization of cost. A requirement set on the interface is both availability
at present for hands-on tests and in the near future when the final system will be
built.

• High-speed, low latency interconnect

The Level-1 trigger interconnect has to provide a total bandwidth of several GByte/s.
In addition, the Level-1 network latency is part of the total Level-1 latency path.

23

24 Chapter 4. LHCb Level-1 Trigger Networking

• Minimized overhead

The Level-1 interconnect has to satisfy the MHz requirement. This means that every
microsecond a new transaction to a specific target has to be initiated. Additional
overhead means additional traffic on both the PCI bus and the network links.

• Scalability

The dimension of the network is not final. The peak input rate of the LHCb
Level-1 trigger is 1.11 MHz with the average being 1 MHz. The number of in-
put feeds is not final yet since it depends strongly on the detector geometry which
is undergoing changes at the time of writing. The LHCb network must provide
a bandwidth of 4 GByte/s independent of the number of input feeds and number
of compute nodes. If the bandwidth requirement can not be met data can not be
delivered.

• Availability and Cost

The network should be available as of today since a prototype must be built. Network
cost should be minimized since every large scale project like LHCb has to set a budget
on its expenses.

4.2 The Peripheral Component Interconnect (PCI)

4.2.1 PCI Overview

The PCI Local Bus is a high performance bus for interconnecting chips, expansion boards,
and processor/memory subsystems. It has been developed at Intel in the early 1990s as
a standard method of interconnecting chips on a board. Later the PCI Special Interest
Group, or “PCI SIG” has adopted it as an industry standard. Under the PCI SIG the
definition of PCI has been extended to define a standard expansion bus interface connector
for add-in boards.

First use of PCI in personal computers has been made in 1994 with introduction of the
“Saturn” chipset and “Alfredo” motherboard for the 486 processor by Intel. With in-
troduction of chipsets and motherboards for the Intel Pentium processor, PCI started to
replace earlier bus architectures such as ISA, EISA, VL1, and Micro Channel2. Both ISA3

and EISA4 expansion buses are synchronized by an 8 MHz bus clock signal with a bus
width of 16-bit and 32-bit, respectively. The ISA bus has initially continued to coexist
with PCI for support of “legacy” add-in boards that do not require the high performance
of the PCI bus. But as legacy boards are redesigned, PCI is expected to completely replace
ISA as well.

In 1998 the PCI SIG announced that Compaq, Hewlett-Packard, and IBM had submitted
a new specification for review called ”PCI-X”. The new standard defines an increased PCI
bus speed up to 133 MHz. It also includes changes in the PCI communications protocol

1VESA LocalBus
2Introduced by IBM. Micro Channel has been used as the primary expansion bus used in IBM’s Personal

System/2 (PS/2) and RS/6000 computers over the period from 1987 to 1995.
3Industry Standard Architecture
4Extended Industry Standard Architecture

4.2. The Peripheral Component Interconnect (PCI) 25

affecting data transfer rates and electrical timing requirements. For details on PCI-X see
[21].

4.2.2 PCI Bus Protocol

PCI is a synchronous bus architecture with all data transfers being performed relative to
a system clock (CLK). The initial PCI specification permitted a maximum clock rate of
33 MHz allowing one bus transfer to be performed every 30 ns. Later, Revision 2.1 of the
PCI specification extended the bus definition to support operations at 66 MHz. The vast
majority of today’s personal computers continue to implement a PCI bus that runs at a
maximum speed of 33 MHz. However, high-performance boards as provided by Tyan[22]
or SuperMicro [23] are built around high-end chipsets which offer fast 64-bit/66 MHz PCI
buses for PC systems. Figure 4.1 shows a simplified view of a modern chipset architecture.
The chipset provides an interface to the system bus, a memory controller, and interfaces
to busses like PCI or AGP.

Figure 4.1: Modern chipset architec-
ture with the host bridge (HB) being the
external I/O controller.

PCI implements a 64-bit multiplexed Address and Data bus (AD[63:0]). The following
details are based on 64-bit PCI buses since they have been used in the setups presented.
However, 64-bit connector cards can be used in 32-bit slots since the wider bus is fully
backwards compatible. At 33 MHz, a 64-bit slot supports a peak data transfer rate of
264 MByte/s, and a 66 MHz slot up to 528 MByte/s. These values have only academic
character as presented in upcoming chapters. In real-life performance numbers like these
can never be achieved.

PCI defines support for both 5 Volt and 3.3 Volt signaling levels. A ”keying” scheme is
implemented in the PCI connectors to prevent inserting an add-in board into a system
with incompatible supply voltage. Although used most extensively in PC compatible sys-
tems, the PCI bus architecture is processor independent. PCI signal definitions are generic
allowing the bus to be used in systems based on other processor families. PCI includes
strict specifications to ensure the signal quality required for operation at 33 and 66 MHz.
Components and add-in boards must include unique bus drivers that are specifically de-
signed for use in a PCI bus environment. This restriction along with the high bus speed
dictates that most PCI devices are implemented as custom ASICs. However, current FP-
GAs5 offer solutions which are not based on ASICs anymore. For a brief discussion see

5Field Programmable Gate Array

26 Chapter 4. LHCb Level-1 Trigger Networking

5.2. The higher speed of PCI limits the number of expansion slots on a single bus to no
more than 3 or 4 for 33 MHz buses and 2 slots for 66 MHz architectures.

To permit expansion buses with more slots, the PCI SIG has defined a PCI-to-PCI Bridge
mechanism. PCI-to-PCI Bridges are ASICs that electrically isolate two PCI buses while
allowing bus transfers to be forwarded from one bus to another. Each bridge device has a
“primary” PCI bus and a “secondary” PCI bus. Multiple bridge devices may be cascaded
to create a system with many PCI buses. However, modern chipsets are mostly composed
of a host bridge with multiple independent PCI buses originating from it as depicted in
figure 4.1.

There are three PCI address spaces which are supported. The PCI Configuration Address
Space is mandatory to configure the device. I/O Address Space and Memory Address
Space are customary.

• Configuration Space

PCI supports an auto configuration mechanism. Each PCI device possesses a 256 Byte
block which is called PCI Configuration Address Space. However, only the first
64 Byte are predefined by the PCI specification — the Configuration Header Re-
gion. The PCI configuration space contains entries which specify the device. Other
registers allow configuration of the device’s I/O addresses, memory addresses, inter-
rupt levels, etc. The device is configured by configuration transactions which is done
by the OS and the BIOS on startup.

• I/O Space

Intel x86 processors do have a separate I/O space next to their memory space. The
PCI I/O space provides the capability to read and write from I/O addresses. I/O
address ranges have to be configured at startup time. However, I/O regions can
not be mapped to the virtual address space of a process. Any access to I/O space
requires a system call which implies additional latency.

• Memory Space

PCI memory space is mapped into the physical address space of the processor if
required by the device. Figure 4.2 shows how a 32-bit physical address space is seen
by the processor. PCI memory address regions can be accessed by load and store
operations of the processor. A PCI memory address region can be mapped to the
virtual address space of a process.

Figure 4.2: Example physical address space.

The following printout lists two PCI devices including their address spaces on a desktop
computer. The information can be retrieved by reading /proc/pci on a Linux system:

4.2. The Peripheral Component Interconnect (PCI) 27

Bus 0, device 8, function 0:
Class 0200: PCI device 1113:1211 (rev 16).
IRQ 11.
Master Capable. Latency=64. Min Gnt=32.Max Lat=64.
I/O at 0xe400 [0xe4ff].
Non-prefetchable 32 bit memory at 0xe8000000 [0xe80000ff].

Bus 1, device 0, function 0:
Class 0300: PCI device 1002:4742 (rev 92).
IRQ 11.
Master Capable. Latency=64. Min Gnt=8.
Non-prefetchable 32 bit memory at 0xe4000000 [0xe4ffffff].
I/O at 0xd000 [0xd0ff].
Non-prefetchable 32 bit memory at 0xe6000000 [0xe6000fff].

As shown by the printout, PCI devices are listed by their location which is specified by
bus number, device, and function. Devices which have different bus numbers are either
separated by a PCI bridge or the host bridge. Some contents of the PCI Configuration
Space, e.g. the master capability, are displayed as well.

Bus Arbitration

A bus which is shared by many devices needs an arbiter that decides which device is
allowed to drive the bus next. A PCI device which is able to demand bus ownership
is said to have bus master capability. However, if a device is able to drive the bus is
determined by its implementation. Figure 4.3 shows two transactions and the REQ# and
GNT# signals which are used for bus arbitration.

The bus master, which initiates a transaction, arbitrates for bus ownership by asserting a
REQ# signal to a central arbiter. The arbiter grants ownership of the bus by asserting
the GNT# signal. REQ# and GNT# are unique on a per slot basis allowing the arbiter
to implement a bus fairness algorithm. Arbitration in PCI is hidden in the sense that it
does not consume clock cycles. The current initiator’s bus transfers are overlapped with
the arbitration process that determines the next owner of the bus.

The timing diagram in figure 4.3 can be analyzed as follows:

• Cycle 1 - Master#1 has already asserted REQ#1 asking for the bus.

• Cycle 2 - GNT#1 is asserted as response to REQ#1. In addition Master#2 is asking
for the bus by asserting REQ#2.

• Cycle 3 - A data transaction is initiated. For more details regarding the signals see
18.

• Cycle 4 - Data transaction. Master#2 is still asking for the bus and receives a GNT#
from the arbiter.

• Cycle 5 - Master#1 has finished its transaction.

• Cycle 6 - REQ#2 is deasserted and Master#2 is initiating a data transfer.

28 Chapter 4. LHCb Level-1 Trigger Networking

Figure 4.3: PCI bus arbitration. Figure from [24].

• Cycle 7 - REQ#1 has been asserted all the time. However, since the arbiter is fair
Master#2 has been able to transfer data.

Data Transfer

The multiplexed Address and Data bus allows a reduced pin count on the PCI connector
that enables lower cost and smaller package size for PCI components. PCI bus cycles
are initiated by driving an address onto the AD[63:0] signals during the first clock edge
called the address phase. The address phase is signaled by the activation of the FRAME#
signal and the C/BE[3:0]# signals. The latter signals the type of transfer (memory read,
memory write, I/O read, I/O write, etc.). Although it is not widely implemented, PCI
supports 64-bit addressing. Unlike the 64-bit data bus option which requires a longer
connector with an additional 32-bits of data signals, 64-bit addressing can be supported
through the base 32-bit connector. Dual Address Cycles are issued in which the low order
32-bits of the address are driven onto the AD[31:0] signals during the first address phase,
and the high order 32-bits of the address (if non-zero) are driven onto the AD[31:0] signals
during a second address phase. The remainder of the transfer continues like a normal bus
transfer.

A PCI bus transfer consists of one address phase and any number of data cycles. I/O
operations that access registers within PCI targets have only a single data phase. Mem-
ory transfers that move blocks of data usually consist of multiple data cycles that read or
write multiple consecutive memory locations. A transfer like that is called a burst trans-
action. Burst transactions make best use of the bus resource. During the data phase the
C/BE[3:0]# signals serve as byte enable to indicate which data bytes are valid. Both the

4.2. The Peripheral Component Interconnect (PCI) 29

initiator and target may insert wait states into the data transfer by deasserting the IRDY#
and TRDY# signals. Valid data transfers occur on each clock edge in which both IRDY#
and TRDY# are asserted. Both the initiator and target may terminate a bus transfer
sequence at any time. The initiator signals completion of the bus transfer by deasserting
the FRAME# signal during the last data phase. A target may terminate a bus transfer
by asserting the STOP# signal. When the initiator detects an active STOP# signal, it
must terminate the current bus transfer and re-arbitrate for the bus before continuing. If
STOP# is asserted without any data cycle completing, the target has issued a retry. If
STOP# is asserted after one or more data cycles have successfully completed, the target
has issued a disconnect.

4.2.3 PCI Timing Diagram

The following timing diagram illustrates a write transaction on the PCI bus:

Figure 4.4: PCI write transaction. Figure from [24].

• Cycle 1 - The bus is idle.

• Cycle 2 - The initiator asserts a valid address and places a write command on the
C/BE# signals. This is the address phase. Turnaround cycles can be seen for
IRDY#, TRDY#, and DEVSEL#. Turnaround cycles are inserted when one agent
stops driving the bus and a different agent starts to drive the bus.

• Cycle 3 - The initiator drives valid write data and byte enable signals. The initia-
tor asserts IRDY# low indicating valid write data is available. The target asserts
DEVSEL# low as an acknowledgment it has positively decoded the address (the
target may not assert TRDY# before DEVSEL#). The target drives TRDY# low
indicating it is ready to capture data. The first data phase occurs as both IRDY#
and TRDY# are low. The target captures the write data.

30 Chapter 4. LHCb Level-1 Trigger Networking

• Cycle 4 - The target deasserts TRDY# indicating it is not ready to capture the next
data.

• Cycle 5 - The initiator provides the same data and byte enables as in cycle 4. This
time both IRDY# and TRDY# are low and thus the data phase valid. The target
captures the write data.

• Cycle 6 - The initiator provides new data and byte enables. The second data phase
occurs as both IRDY# and TRDY# are low. The target captures the write data.

• Cycle 7 - The initiator deasserts IRDY# indicating it is not ready to provide the
next data.

• Cycle 8 - The initiator provides new data and byte enables. The target captures the
write data. Since this is the last data phase FRAME# is deasserted.

• Cycle 9 - The transaction has been finished. IRDY#, TRDY#, and DEVSEL# are
deasserted.

4.2.4 Interrupts

Any interrupt capable PCI device can generate interrupt requests to request servicing from
the system software. After the system startup configuration software executes, the system
initialization begins. The system or the operating system must provide a device-specific
interrupt service routine for each interrupt driven device in the system. Furthermore,
the operating system must build an interrupt jump table in memory. Each entry in
the interrupt table must contain the start address of a device-specific interrupt service
routine associated with a particular device. Most interrupt capable devices come with
a loadable kernel module which is loaded during startup of the operating system. The
operating system calls the initialization code within the driver, which probes the bus for
the card. The driver contains the device’s interrupt handler and is responsible for placing
the start address of the handler into the proper entry of the interrupt table. Every time
an interrupt request occurs the processor interrupts its current task, pushes the contents
of specific registers into stack memory, and executes the interrupt handler which has been
associated with the interrupt issued. Thus, every time an interrupt occurs the current
process is suspended and the interrupt handler code is executed. For more information on
PCI interrupt-related issues see [25].

4.3 High-speed, Low Latency Interconnects

The LHCb Level-1 trigger requires a high-speed low latency network card which is available
for hands-on experience and prototyping. A second important fact is the cost of the
network since the LHCb budget does not foresee equipment in the upper price range.
The following subsections point out important boundary conditions with respect to the
Level-1 trigger interconnect.

4.3. High-speed, Low Latency Interconnects 31

4.3.1 Scalability

Scalability is a property which describes how well a network is suitable for small and large
size networks. Very often a small system is set up and increased in size if more compute
power is needed. However, the probability of saturation for some network paths increases
the more sending nodes participate in network traffic. The parts of the network where
saturation effects occur are called hot spots.

A nearly ideal network will scale linearly in total bandwidth the more network nodes
are added with the latency staying almost the same. An example of a none-scalable
interconnect is a bus — the maximum bandwidth which is shared among all participants
prevents a scalable system. Latency in a torus topology will increase since the distance
between the nodes also increases. However, a switch could help to compensate that effect.
Switches have the disadvantage that they get expensive for large cluster solutions. In
addition, switches create a central hot spot. Any network traffic has to traverse the
switch. Therefore, the traffic pattern observed on the output depends highly on the
intrinsic properties of the device.

Scalability is a crucial part of the LHCb interconnect since it has high bandwidth require-
ments and must have a latency which can be predicted.

4.3.2 Input/Output Models

There are three main ways to perform I/O for a PCI device:

• Programmed I/O

• Interrupt-driven I/O

• DMA-driven I/O

Programmed I/O (PIO)

The CPU explicitly sends and receives data to and from the device. Therefore, CPU cycles
have to be used to perform I/O which is usually avoided since the overhead for the CPU is
too significant. However, PIO is an attractive way to transfer data in embedded systems
where no other work has to be done while an I/O device is being used. Figure 4.5 shows
the data path for programmed I/O.

Figure 4.5: Left: Data path for programmed I/O. Right: Data path for DMA.

32 Chapter 4. LHCb Level-1 Trigger Networking

Interrupt-driven I/O

The CPU initiates an operation with a device. The user process that has initiated the
request is blocked and some other process runs. When the device has finished the task
an interrupt is generated. The interrupt handler either makes the user process runnable
if all I/O has been completed or it schedules the next I/O request if there is more work
to be done. This transfer scheme enables the CPU to process other jobs while I/O is
taking place. The interrupt response time can be up to 20µs and depends heavily on
the architecture. However, in case of an Intel based machine running standard Linux
the interrupt latency for a PCI interrupt handled by the Dolphin SCI driver has been
measured to be 8.4µs. Additionally, interrupts cause performance loss of other tasks.

DMA-driven I/O

The term DMA stands for Direct Memory Access and requires hardware support in the
form of a DMA controller on the PCI device. The DMA capable device can access the
main memory of the system. Figure 4.5 shows the path of the data for DMA-driven I/O.
Before a DMA transfer can be issued the DMA engine has to be programmed. The control
registers of the DMA engine typically include an address, a length, and commands like
read or write. Depending on the DMA engine the control registers offer space for one or
multiple transfers. A setup where the DMA engine is programmed to transfer multiple
independent data blocks is called chained mode DMA.

The key feature of DMA is the fact that the I/O device can directly access memory,
and therefore transfer data between controllers and memory without CPU intervention.
However, the DMA engine has to be set up in an initialization phase which is not efficient
for small block sizes. DMA controllers use physical addresses. Thus, when programming
a DMA controller from a user space program the virtual address of a buffer must be
translated to its physical counterpart. This is done by some underlying software like a
device driver. The memory pages used by DMA controllers have to be pinned to memory
to avoid the they are swapped during a DMA operation.

4.3.3 Protocol Overhead

The LHCb data flow does foresee that a sub-event has to be transferred by the network
card (see 3.3) every microsecond. Since it has been agreed on that data should traverse
the PCI bus of the RU at first it can be calculated that one data transfer is allowed to
utilize 66 clock cycles assuming a 64-bit/66 MHz PCI bus. Assuming PCI bursts such that
there is no wait cycle in between PCI data cycles and assuming furthermore an average
packet size of 128 Byte a maximum overhead of 50 clock cycles can be calculated.

The LHCb Level-1 trigger should transfer data using as little overhead as possible. There
will be some overhead on the network link concerning routing, reliability of transfers, and
error detection.

Reliability of data is a crucial issue. Corrupted or lost messages can not be tolerated. In
traditional LANs some protocol software took care of reliability of data transfers. Data
has been kept in a buffer, messages have been acknowledged, and corrupted or lost data

4.3. High-speed, Low Latency Interconnects 33

has been retransmitted if necessary. However, this must not be done in software since a
software protocol stack can not be executed in the sub-microsecond range.

Figures 4.6 and 4.7 show PCI bus scenarios as observed when using PIO and DMA,
respectively.

Figure 4.6: Overhead PIO mode. The
CPU is sending data to the NIC.

Figure 4.7: Overhead DMA mode. Left: Setup of the DMA controller. The CPU is sending a
DMA descriptor to the NIC. Right: The NIC fetches data out of memory which implies more wait
cycles on the PCI bus than in case of writing to memory.

The scenario in figure 4.6 shows a PCI transaction where data is pushed to the network
card by PIO. Concerning overhead two kinds can be observed and must be distinguished.
The PCI bus protocol implies little overhead. The figure shows an address phase (A),
some wait cycles (W) and one idle cycle (I). The idle cycle in between data transfers is
not necessary if the same agent issues back-to-back transfers. PCI overhead of less than
10 clock cycles would be extremely fast assuming a fast response time of the PCI target
and transactions being issued almost back-to-back by the chipset. This is certainly hard
to achieve with common chipset implementations. The figure also shows that the data
payload on the bus can have overhead as well. This is depicted by a possible trailer (T)
and header (H). However, if T and H could be minimized or even vanish this scenario
could be a solution to the LHCb transfer problem if nearly back-to-back transfers were
possible.

Figure 4.7 shows the PCI bus scenario when data is transferred using DMA. As depicted
there are two transfers that have to be initiated. The first transfer is the setup of the
DMA engine. A descriptor is pushed into the network card at first. After a period of time
depending on the network card a PCI memory read transfer is fetching the data out of the
memory. The advantage of DMA is certainly visible for large block sizes (e.g. > 512 Byte)
but rather a throttle for small messages as the Level-1 trigger is concerned with.

34 Chapter 4. LHCb Level-1 Trigger Networking

4.3.4 Memory Models

There are two memory models supported when talking about cluster interconnects; the
shared memory and the message passing (distributed memory) model. In a shared mem-
ory system accesses to remote locations are transparent since a common global address
space is used. Therefore, virtual addresses have to be translated to the physical address
counterpart. If the memory page that has to be accessed reflects a remote location it is
mapped to the local network card. It looks up the destination node in its internal address
translation tables and transfers the data to the destination. In a shared memory environ-
ment load and store operations can be done without any software overhead. Figure 4.8
shows the data flow in a shared memory environment assuming that the NIC (Network
Interface Controller) is located on the PCI bus of the system.

Figure 4.8: Write operation to a remote memory region.

In a message passing system the processors communicate by sending messages like send
and receive API calls. However, this usually implies overhead since at least the receiver
of the data has to be specified. An example given is the TCP header. The 192-bit TCP
header specifies source and destination port amongst other things. To transfer the TCP
header on the PCI bus three clock cycles have to be used in addition.

4.4 The Scalable Coherent Interface (SCI)

The IEEE Standard for Scalable Coherent Interface [26] provides computer bus-like ser-
vices. However, instead of a bus, it uses a collection of fast point-to-point unidirectional
links to provide the high bandwidth needed for high-performance multiprocessor systems.
SCI supports distributed shared memory with optional cache coherence scalable up to
64k nodes. Like other system area network (SAN) solutions as Myrinet [27], the primary
objective of SCI is to provide high bandwidth in the Gbit/s range, low latency in the
microsecond range, and low CPU overhead for communication operations.

SCI has been designed to address scalability in many respects. Some examples are pre-
sented:

• Scalability of performance - the aggregate bandwidth grows with increasing num-
ber of system nodes;

4.4. The Scalable Coherent Interface (SCI) 35

• Scalability of interconnect distance - SCI networks offer link distances from cen-
timeters to hundreds of meters depending on the link media and physical layer
implementation.

• Scalability of memory systems - the number of processors supported is not limited.
This is especially important when cache coherency is implemented.

• The addressing capability is limited to support 64k nodes which by far exceeds
any existing compute cluster.

4.4.1 Concepts of SCI

• The SCI interconnect uses unidirectional point-to-point links. The number of
links grows as nodes are added to the system. Every additional node provides its
own elasticity buffers increasing the number of buffers in the system. Therefore, the
aggregate bandwidth scales if the traffic pattern is chosen such that link segments
do not get saturated. The links allow concurrent data transfers.

• The signals that are transmitted are low voltage differential signals. An LVDS
standard for SCI [28] has been developed that defines low-voltage differential signals
with a voltage swing of 250 mV.

• SCI has been designed to connect up to 64k nodes. A node can either be a worksta-
tion, a server, a single processor with its cache, a memory module, I/O controllers
and devices, or bridges to other interconnects or buses.

• topology independence; SCI allows a variety of different topologies. Some are
shown in figure 4.9

Figure 4.9: SCI topologies.

The basic SCI topology is a ringlet. However, both switched and multi-dimensional
tori are feasible.

• Fixed addressing scheme. SCI uses a 64-bit fixed addressing scheme, which has
been defined by the Control and Status Register (CSR) standard [29]. The 64-bit
SCI address is divided into two parts. The most significant 16 bits specify the node
ID, the remaining 48 address bits are used for addressing within the nodes.

• SCI utilizes a 64-bit hardware-based distributed shared memory (DSM). The
distribution of the memory is transparent to software and processors. A remote mem-
ory access initiated by the processor is handled by the SCI hardware. A processor

36 Chapter 4. LHCb Level-1 Trigger Networking

can invoke remote memory operations by load and store operations. The operating
system does not need to be involved in transactions since memory operations can be
executed from user-level. This results in latencies in the low microsecond range.

• Bus-like services. SCI defines transactions to read, write, and lock memory re-
gions. This functionality is well known from computer buses. Additionally message
passing and global time synchronization are supported. Interrupts can be delivered
remotely and broadcasts are foreseen. Transactions can be tagged with four different
priorities. Bandwidth allocation has been developed to assign transfer bandwidth
to nodes that are willing to send. This can be compared to bus arbitration. A
queue allocation protocol has been developed to facilitate traffic to nodes, which are
heavily loaded.

• Split transactions. SCI splits its transactions into request and response phase.
Therefore, link utilization increases since multiple outstanding transactions per node
are possible. Thus, transactions can be pumped into a network with a very high rate
using the interconnect in a pipelined fashion.

• SCI defines an optional cache coherence protocol, which is based on a distributed-
directory approach. However, the cache coherency protocol is highly sophisticated
and complex. Therefore, three different subsets of cache coherency have been defined
— the minimal set, a typical set, and the full set. SCI network controllers attached
to an I/O bus like PCI can not participate in cache coherency actions since local
memory access can not be snooped. However, cache coherence is not needed for
LHCb since data is not shared between nodes.

• Reliability in hardware. Error detection based on a 16-bit CRC6 code is done in
hardware. Transactions and hardware protocols are provided that allow a sender to
detect failure due to packet corruption. A receiver can inform a sender that it is not
capable of accepting further packets. Since actions are taken on a per packet basis
SCI does not guarantee in-order delivery of packets.

• Layered specification. Three different layers are foreseen by the SCI standard:
the physical layer, the logical layer, and the optional cache coherency layer. The
logical layer is described in more detail in 4.4.2. Three physical layer models have
been described in the standard. One parallel electrical link has been foreseen to
cover short distances of a few meters. Two serial links have been specified to work
for longer distances.

• C code. The basic concepts of SCI are distributed as C code. The major reason
for this approach is the fact that C is unambiguous and that the specification can
executed as a simulation. Packet formats and the physical layer specification are not
distributed as C code.

4.4.2 SCI Logical Layer

The logical layer describes types of transactions, packet types and formats, packet encod-
ings, the standard node interface structure, bandwidth and queue allocation protocols,

6Cyclic Redundancy Check

4.4. The Scalable Coherent Interface (SCI) 37

error processing, addressing and initialization issues, and SCI-specific CSRs.

Transactions

Transactions are split and are made of a request and a response sub-action. Therefore, the
nodes involved are called the requester and the responder. A transaction is initiated by
the requester, which sends a packet to the responder. Subsequently a response packet is
sent from the responder to the requester. However, this only applies for transactions with
response sub-action. Packets carry addresses, command and status information, and data.
The latter depends on the type of transaction. One node can have up to 64 outstanding
transactions.

Both request and response sub-action consist of a send packet which is generated by the
sender and an echo packet returned by the receiver. Figure 4.10 shows the different phases
of a transaction.

Figure 4.10: SCI transaction phases.

The echo packet tells the sender if a packet has been accepted properly or rejected. If a
packet has been accepted it is stored in the receivers input queue. In this case the sending
node can discard its send packet. If a packet can not be accepted the echo packet will
cause retransmission of the send packet. The latter can occur if the input queue of the
receiving node is filled.

A consequence is that SCI can not guarantee in-order delivery of send packets. A packet
which is rejected can be overtaken by a later packet, which finds an empty buffer slot.

Figure 4.10 also shows an intermediate node labeled agent. Agents could be bridges or
switches coupling two or more SCI ringlets. An agent is responsible for the echo sub-
action. If the agent takes a send packet off a ringlet to forward it to the target ring it
has the responsibility to acknowledge this by sending an echo packet back to the sender.

38 Chapter 4. LHCb Level-1 Trigger Networking

Therefore, echo packets are not end-to-end confirmations but local ring acknowledgments.
End-to-end confirmation is provided by response sub-actions.

Transaction Types

Three transaction types can be distinguished:

• transactions with responses (read,write, and lock transactions)

• move transactions

• event transactions

Figure 4.11 shows an overview of possible transaction types.

Figure 4.11: Transaction types.

Read transactions copy data from the responder to the requester with 0, 16, 64, or 256 Byte
being transferred. In a 16 Byte transaction (readsb; selected-byte read) the size of the
transferred data can differ between 1 and 16 Byte. 0 Byte is used for cache coherency
purposes and not discussed here.

Write transactions transfer data from the requester to the responder. Possible data sizes
can be seen in figure 4.11. The 16 Byte write transaction (writesb; selected-byte write)
has variable data size.

The lock transaction is an atomic operation that copies data to a memory location and
delivers the original value back. The new value is transferred in the request packet whereas
the old value is returned in the response packet.

Move transactions are used to copy data to a memory location when no response sub-
action is desired. This could be because of real-time applications where timeliness is
more important than guaranteed delivery. However, flow control is still present since echo
packets are in use. Two different kinds of move transactions are specified; direct move
(dmove) and broadcast moves. However, broadcasts are specified as options.

Event transactions lack both flow control and response sub-action. They are intended for
special purposes like delivering a time stamp for global time synchronization.

4.4. The Scalable Coherent Interface (SCI) 39

Packets

There are four basic packet types: request send, request echo, response send, and response
echo packets. During the initialization phase and during re-synchronization packets like
init and sync are in use also. Figure 4.12 shoes the format of a request send packet.

Figure 4.12: Format of an SCI request send packet.

SCI packets are made of a sequence of 16-bit symbols. The packet header usually comprises
seven symbols (14 Byte) and the trailer (CRC) one symbol. The meaning of the different
fields of the packet is as follows:

• The target ID holds the address of the destination node. If a node receives a packet
the target ID is inspected and a decision is made whether the packet is taken off the
ring or forwarded to the output link.

• The flow control field contains information for the bandwidth allocation. The com-
mand field specifies the type of the request transaction.

• The source ID specifies the address of the originator of the packet.

• Time of death specifies when the packet has to be discarded. The 6-bit transaction
ID allows in conjunction with the source ID 64 outstanding transactions per node.

• Three symbols are foreseen to carry address offsets at the responder.

• Header extensions applies to some cache coherency transactions only.

• The packet can carry either 0,16,64,or 256 Byte of data.

• The 16-bit CRC code protects the packet content excluding flow control information.

40 Chapter 4. LHCb Level-1 Trigger Networking

Compared to the request packet introduced, response send packets carry status information
instead of the address offset. Echo packets are four symbols in size whereas the special
packets for initialization and control are eight symbols long.

Packet Encoding

The 16-bit symbols are the basic units for packet encoding. However, two other signals
are needed. The clock signal determines symbol boundaries whereas the flag signal marks
start and stop of packets. In order to enable SCI links to run continuously and at high
speeds, the space between packets is filled with idle symbols. Idle symbols serve two
purposes:

• they allow SCI nodes to synchronize the incoming data stream to the local clock.

• they transfer allocation and other network control information

At least one idle packet has to be transferred on a link in between regular packets. Only
special packets may be transported back-to-back. Idle symbols are created whenever a
node takes a packet off the ring and are replaced when a node inserts a packet. Control
information stored in the idle symbols has to be reinserted properly such that the allocation
protocol can work properly.

Allocation Protocols

Two allocation protocols are foreseen by the SCI standard. The queue allocation protocol
ensures that the input queue of the receiver reserves some space such that retransmitted
packets get eventually accepted. The bandwidth allocation protocol eventually guarantees
some bandwidth to a sending node such that it can send its packets. However, a more
detailed discussion on those topics will be provided in 4.4.3 when the Dolphin implemen-
tation is discussed.

The Scrubber

Corrupted packets having a wrong target ID, e.g., will not be taken off the ringlet by any
node. Therefore, packets would circulate forever and waste bandwidth. However, the SCI
protocol does foresee a special node to take care of this and other tasks — the scrubber. It
monitors ringlet activity and is responsible for maintaining network functions like deletion
of corrupted or stale packets and idle symbols. It also handles packets with addressing
errors.

4.4.3 The Dolphin Implementation

Link Controller 3

Dolphin Interconnect [30] has released its PCI 64/66 SCI Adapter based on the SCI
link chip LC3 and the PCI bridge chip PSB66. The card promises SCI link speeds of

4.4. The Scalable Coherent Interface (SCI) 41

667 MByte/s, a sustained PCI bandwidth of more than 300 MByte/s, and an application-
to-application latency less than ten microseconds. This section focuses on the Dolphin
implementation and points out some implementation details.

The SCI link chip LC3 provides high speed SCI links, sends and receives SCI packets,
and provides an interface to Dolphin’s back interface B-link. Figure 4.13 shows a block
diagram of the LC3 chip.

Figure 4.13: Block diagram of the link controller chip LC3.

The chip comprises high speed SCI input and output links, queues for sending and receiving
packets, lookup tables for packet routing, a bypass FIFO to store an incoming packet if
necessary. This is only the case if the node is sending a packet from its send queue.
In addition some upper level protocol management for transaction handling has been
implemented.

When a packet is received the stripper block takes the packet off the ring. The target
ID field is compared with the criteria that have to be met to strip the packet off the
ringlet. Criteria are that the packet has to be routed or that its final destination has been
reached. If the receive queue has space available the packet is stored and forwarded to the
B-Link afterwards. If no space is available in the receive queue the packet is discarded
and a echo busy packet is sent to the sending node. Both send and receive queue can
store up to 8 packets. However, one buffer space for the opposite send packet type is
reserved. This means that a maximum of 7 request-send packets can be stored since one
slot is reserved for a response-send packet and vice versa. Scheduling between request
and response packets is done automatically. If the packet uses the node just as a bypass
node the packet is forwarded into the bypass FIFO. The time it takes to bypass a node is
depicted in the figure. TLat By will be determined in 5.1.4.

The LC3 can check one packet at a time. After sending a packet it has to check its bypass
FIFO. Therefore, the bypass FIFO must be large enough to buffer the largest possible

42 Chapter 4. LHCb Level-1 Trigger Networking

packet size. The LC3 uses the basic packet types introduced in 4.4.2. Table 4.1 shows the
packets used by the LC3.

Table 4.1: LC3 packet types as described in [31].

Packet Type Description

request-send read or write request sub-action content
request-echo request sub-action local acknowledgment
response-send read or write response sub-action content
response-echo response sub-action local acknowledgment

sync data path deskew packet
init hardware init reset, stop, and clear packets

Figure 4.14 shows an SCI tracer screen shot. The LVDS signals of the SCI link are
converted into TTL, which can be analyzed using a logic analyzer. The transfer shows
an nwrite64 packet. This is a send-request packet having a data payload of 64 Byte. The
target and destination IDs are highlighted. The signal F1 is the SCI flag signals which
delimits packets. The clock signal does not apply since the logic analyzer has been used
in state analyzing mode. The chronological order of the symbols is from top to bottom.
Therefore one symbol is transmitted in between target and source ID (compare figure
4.12).

Figure 4.14: SCI trace of a request-
send packet.

The LC3 supports all SCI data packet sizes besides the 256 Byte packet. A 128 Byte SCI
packet has been defined instead.

Bandwidth Allocation

The LC3 implements a fair-only bandwidth allocation protocol. The bandwidth is allo-
cated through idle symbols. The SCI standard defines low and high-type priority levels
[26]. However, only low-type idles have been implemented by Dolphin. Therefore, no node
can be privileged. A node can only send a packet if the packet can be postpended to an
idle symbol on the ringlet with a specific bit, the idle.lg, set. Thus, sending of packets
can be blocked if the bypass FIFO is emptied at the moment or no idle symbol with its
idle.lg bit set is on the link. Bypass traffic is always prioritized. Therefore, if the packet

4.4. The Scalable Coherent Interface (SCI) 43

frequency on the link is such that the idle interval in between the packets is less than the
bypass FIFO size a node could undergo starvation. To avoid this a starving nodes begins
to issue flow control by clearing idle.lg7 bits to prevent other packet producing nodes from
sending.

Queue Allocation

Queue allocation as defined by the SCI standard [26] is a reservation scheme. A node can
be in four different queue allocation states. If a packet can not be transmitted due to a
filled receive queue the internal state of the node switches to a state where queuing space
is preallocated for certain packets. At the same time the requester is notified by an echo
busy packet to send with a different priority. The so called A/B aging protocol avoids life
locks and has been implemented according to the SCI standard [26].

The PSB66 - The Interface to PCI

The PSB66 is Dolphin’s interrupt capable interface to the PCI bus. The bridge supports
fast 64-bit/66 Mhz busses according to the PCI Local Bus Specification, revision 2.1 [32].
Only those features are discussed in this section that play a significant role in the result
section. Figure 4.15 shows a simplified block diagram of the PCI chip.

Figure 4.15: Simplified block diagram of the Dolphin PSB66.

The PCI chip keeps track of outstanding transactions with a stream model. Whenever a
PCI transaction causes an SCI request a stream buffer is occupied until the SCI trans-
action is completed. For nreadnn and nwritenn transactions this becomes true when the

7This is one specific bit of an idle symbol.

44 Chapter 4. LHCb Level-1 Trigger Networking

response send packet is received. As the block diagram shows, 16 streams have been im-
plemented for reading and writing each. Every stream entry can hold 128 Byte of data.
Streams can be filled and emptied in the most efficient way by nread128 and nwrite128
transactions. However, also nread64 and nwrite64 transaction are used if the amount of
data exceeds 64 Byte but is less than 128 Byte. The remaining data is sent using selected
byte transactions. However, only one outstanding transaction is allowed for partially filled
buffers. Therefore, the most efficient way to send data is the usage of 128 Byte data pay-
load packets. Dolphin guarantees that they are translated into 128 Byte SCI request-send
packets and eventually are written in a 128 Byte PCI burst transaction on the remote PCI
bus. Partially filled buffers are flushed when one of the following events happen:

• The address crosses a 128 Byte boundary.

• A Timeout exceeds a limit, which can be set through a CSR register. The minimum
value is 0.96µs.

• Non-continuous addresses.

There are other ways to flush the stream buffers. However, that requires access to certain
CSRs.

A DMA engine is implemented. Since some results are presented, which make use of the
DMA engine the key features are summarized:

• DMA push mode pushes data from PCI to SCI.

• DMA pull mode pulls data from SCI to PCI.

• Single and chained mode capability.

• Operates with 8 Byte granularity.

• Up to 256 DMA Control Blocks (DMACB) can be processed.

The PCI 64/66 SCI Adapter Card

The basic board which allows simple ringlet topologies comes with one LC3 chip. A
second SCI link chip can be added by mounting a daughter card. Figure 4.16 shows a
block diagram of a Dolphin SCI card carrying a daughter card to allow two-dimensional
topologies.

Dolphin’s B-Link, a 64-bit/80 MHz bus, is used as a backend interconnect. It can connect
up to eight LC3 SCI link chips and allows data rates of up to 610 MByte/s. The B-Link
packet format is a superset of the SCI packet format.

When using a two-dimensional topology data has to be routed to reach its final destination.
The current default setting uses dimensional routing such that data first traverses the
network in direction of the daughter card cabling, eventually gets taken off the ringlet and
is sent in direction of the main card cabling. Internally this is accomplished by using a
table lookup. However, this is the default routing scheme. Others have been implemented,
but must be configured before usage.

4.4. The Scalable Coherent Interface (SCI) 45

Figure 4.16: Block diagram of the
Dolphin SCI card. In the sketch two
LC3s are connected by the B-Link bus
which allows a two-dimensional topol-
ogy.

Software Interface

The SISCI8 API is available at Dolphin’s Internet site, which provides support for creating
and exporting local memory segments, and connecting to and mapping of remote memory
segments. Figure 4.17 shows how the shared memory is set up.

Figure 4.17: Address spaces and address translations in SCI clusters.

A node which wants to share memory with other nodes allocates a certain amount of
memory and exports it into the SCI address space. Other nodes import the region into
their physical address space and eventually map it to the virtual address space of the
calling process. The translation between the local physical addresses and the global SCI
addresses is maintained by on-board address translation tables (ATTs).

Once the memory mappings have been set up communication between nodes can be estab-
lished by using CPU load and store operations. Thus, the importing process uses a store
operation to a virtual memory address in case of a write operation. The virtual address is
translated to its physical counterpart by the MMU. However, by importing the memory
segment the region has been mapped to the SCI NIC as demonstrated in figure 4.8 and
the data are transferred to the remote location via the SCI NIC.

8Software Infrastructure for SCI

46 Chapter 4. LHCb Level-1 Trigger Networking

4.5 Traffic Shaping and Network Congestion

The LHCb Level-1 trigger network has to provide an aggregate bandwidth of 4.2 GByte/s.
Event data being 4.2 kByte in size is sent to a specific CN within a microsecond. Since
neither present nor future CNs which are based on PCs can stand an input requirement
like this, traffic has to be scheduled to avoid congestion in the receiver. Neither memory
bandwidth nor the PCI bus can satisfy the bandwidth requirement. However, the first
buffers that will overflow are the input buffers of the NIC.

A network can be understood as a network of queues. Every node attached to the network
has an input and an output queue. If the rate at which packets arrive exceeds the rate
at which packets can be transmitted the queue size grows increasing the latency for the
network path. Even if the packet arrival rate is less than the transmission rate the queue
size will grow as the arrival rate approaches the transmission rate. The reason is that a
node does not only receive and pass packets. It also has to make a routing decision on
every packet received. If a node reaches a saturation point which means that no buffer
space is available anymore it could do one of the following things: drop the packet or
issue some kind of flow control. Packets have to be resent which could be happen by
a hardware protocol as foreseen by SCI or in software as widely implemented in TCP
solutions. However, issuing flow control can quickly congest the entire network. If one
node restricts the packet flow coming from another node, the other node’s input buffer
will fill up and so on. To prevent congestion on the entire network the traffic has to be
scheduled when packets enter the network. A method will be introduced in chapter 6.
Applying a congestion control mechanism when packets have already entered the network
usually does not apply.

Figure 4.18 shows the buffers that are present in an SCI network using Dolphin’s network
equipment.

Figure 4.18: Packet buffers in SCI cards.

Every receive queue can hold 8 packets total. However, it always reserves one buffer slot
for the opposite packet type. This means that a maximum of 7 request-send packets can
be stored in the queues since one queue space is reserved for a response-send packet.

Queuing space in case of the Dolphin SCI card can be summarized as follows:

4.5. Traffic Shaping and Network Congestion 47

• There is space for one 128 Byte packet in the bypass FIFO.

• If a packet has to be routed there is space for 14 request-send packets at the most.

• A receiving node can store up to 7 request-send packets.

A CN can hold up to 7 request-send packets. If traffic is not scheduled packets coming
from the network feeds would arrive at the same time causing buffer overflow and there-
fore retry traffic. Chapter 6 introduces the TagNet which schedules the transfers in the
Level-1 compute farm such that a receiving CN can handle the input rate without buffer
overflow.

Chapter 5

Performance of the Scalable
Coherent Interface

Dolphin’s SCI implementation is analyzed in means of throughput, interrupt capability,
and latency. This is done to get a general understanding of the hardware. Both soft-
ware initiated and hardware initiated transfer modes are presented. Software initiated
DMA offers bandwidth performance up to 248 MByte/s for large block sizes whilst PIO
dominates for small data sets. However, since a global shared memory can be set up trans-
ferring data directly by hardware seems to be advisable for applications that require better
performance. Hardware initiated DMA offers a way for excellent PCI bus utilization and
thus minimization of overhead caused by PCI idle cycles. Whilst the non-interleaved mode
uses one data source and seems to be sufficient for most applications, the interleaved mode
offers best possible PCI bus utilization. Both methods can transfer small data blocks of
192 Byte and less with a rate beyond 1 MHz. Data packet latency is determined and a
the maximum PCI-to-PCI latency for different sized tori is calculated. Calculations and
performance measurements on large ringlets show that no network congestion caused by
increased path length has to be expected when staying underneath 107 nodes for an idle
ringlet.

5.1 Software initiated Data Transfer

5.1.1 Point-to-Point Bandwidth

The point-to-point bandwidth between two adjacent SCI nodes is measured in a six-node
ringlet. The PIO measurements use the C language library memcpy function to copy the
data into a memory region which has been imported by the sending node using the SISCI
library. Copying the data is totally transparent since the C programmer uses a virtual
target address and is not aware on which node the address is located. Software initiated
DMA (SDMA) measurements differ since the DMA engine of the PSB66 has to be set
up. The DMA engine can be used in single or chained DMA mode. The following results
were obtained using chained DMA mode, which is especially appropriate for small block

49

50 Chapter 5. Performance of the Scalable Coherent Interface

sizes. The maximum number of different DMA descriptors that has been loaded into the
PSB66 is 256. All measurements use DMA push mode unless stated otherwise, which
means that data are pushed to a remote location. All measurements have been done using
a 64-bit/66 MHz PCI bus unless stated otherwise.

0

10

20

30

40

50

60

70

80

90

100

110

0 100 200 300 400 500 600 700 800 900 1000 1100

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

PIO
SDMA

SDMAr

Figure 5.1: The point-to-point bandwidth results obtained with PIO and SDMA for
block sizes less than 1024 byte.

Fig. 5.1 shows the results for block sizes less than 1 kByte. Time measurements for soft-
ware initiated transfers are done on the sending node using the gettimeofday() call. It
provides an accuracy in the order of microseconds. However, to insure proper functional-
ity timing has been double checked with a PCI analyzer. One characteristic of the PIO
curve is that maximum performance is very poor. The data curve reaches its maximum of
86 MByte/s at a 512 Byte block size. PCI analysis on the sending node reveals that the
maximum PCI burst length is only a few data cycles. More important is the fact that the
host bridge only forms 32-bit wide data packets on a 64-bit bus. A possible explanation is
that CPU-to-device data movement, which is a PCI memory write transactions, is not well
supported. However, this result may vary depending on the chipset used. The chipsets
used in these section are ServerWorks IIIHE-SL and IIIHE chipsets [33] with the write
combining feature obviously not enabled. The maximum burst length observed has been
restricted to not more than 5 clock cycles. To reach high throughput, DMA capability of
the PCI card is assumed by the chipset manufacturers. The SDMA data curve is rising
and does not reach its maximum in the plotted data range. However, PIO guarantees
higher throughput for block sizes smaller than 768 byte. The advantage of PIO is its true
zero software overhead while SDMA has the disadvantage that the DMA engine of the
SCI card has to be programmed prior to transfers. The header(H) and trailer(T) depicted
in figure 4.6 does vanish in case of the SCI card. Since DMA is capable of PCI bursts
when fetching data from host memory, its performance outranges PIO for larger block
sizes. The SDMAr labeled plot reads from a remote location. Performance is very poor
compared to writing since data is fetched out of remote memory. However, the major
reason for performance loss is the fact that the SCI card issues only one outstanding read
at a time. Idle times of 2.8µs in between memory reads can be observed on the remote

5.1. Software initiated Data Transfer 51

side. Since the maximum performance is only about 41 MByte/s, reading is not shown in
the upcoming plot for block sizes greater than 1 kByte.

80

100

120

140

160

180

200

220

240

260

1000 10000 100000 1e+06 1e+07

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

PIO
SDMA

Figure 5.2: The point-to-point bandwidth results obtained with PIO and SDMA for
block sizes between 1024 byte and 1 MByte on a logarithmic scale.

Fig. 5.2 shows the results for blocks greater than 1 kByte. While the PIO data curve does
not climb above 86 MByte/s, the SDMA data points show a point-to-point bandwidth of
up to 248 MByte/s. Moving block sizes greater than 1 MByte shows that the curve really
reaches its maximum.

5.1.2 Maximum Performance Tests

Maximum performance tests have been conducted in a 10 × 3 node torus using SDMA.
One node has been chosen to act as data sink and a variable number of nodes have been
chosen to act as data sources. One test utilizes only nodes that are located in the same
horizontal ringlet and therefore analyzes the maximum performance if no packet routing
takes place. The other test has been conducted using the entire system. Data block sizes
are 128 Byte, which corresponds to one SCI data packet, 1 kByte, 10 kByte, 100 kByte,
and 1 MByte. A PCI analyzer in the target node calculates the total bandwidth.

Ten node ringlet - no routing

Fig. 5.3 shows the results of the ringlet topology. For one source, the result is similar to
the plots already discussed; two sources push the maximum bandwidth up to 315 MByte/s.
An analysis of the PCI bus shows that the back-to-back transmission gap between PCI
bursts on the receiving side can be as low as 9 clock cycles. All data on the PCI bus is
transferred using bursts of 128 Byte in size. The maximum bandwidth can be achieved
by two nodes acting as senders. Pushing the target node to the limit by adding data
sources decreases the aggregate bandwidth by 15 MByte/s at the most. Five data sources
can push a maximum data rate of 298 MByte/s. Analysis of the sending nodes reveals
that bandwidth is not distributed to equal amounts. The sending node, which is sitting

52 Chapter 5. Performance of the Scalable Coherent Interface

0

50

100

150

200

250

300

350

100 1000 10000 100000 1e+06 1e+07

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

one source
two sources

three sources
four sources
five sources

seven sources
nine sources

Figure 5.3: Performance measured on the receiving node with different numbers of data
sources.

upstream at the most and thus does not have a bypass FIFO filled by the other sending
nodes, gets allocated the most bandwidth. For a more detailed discussion on that topic
see 7.9.

30 node torus

Similar performance tests have been made in the torus topology shown in Fig. 5.4. To
build a torus, each node has to be equipped with an additional SCI mezzanine card, which
sits on top of the SCI PCI card. Thus, each card is able to send data in x or y direction,
to receive data from x and y links, and to reroute packets from x into y direction.

Fig. 5.5 shows one of the results of the torus topology. The results with two data sources
differ depending on the combination of sending nodes. The maximum bandwidth for two
data sources equals 315 MByte/s. However, figure 5.5 also shows a combination with a
maximum throughput of 232 MByte/s in the target node. This is even less than the result
obtained for one sender and one receiver. Combinations have been chosen as follows:

• two sources i: Node #00 and node #20 are sending nodes. Data coming from
node #00 has to be routed at node #09. Data originating from node #20 is routed
on node #29.

• two sources ii: Node #00 and node #10 are sending nodes. Data from node #10
does not have to be routed. Target and source share the same torus row.

• two sources iii: Node #09 and node #20 are sending nodes. Data originating from
node #09 does not have to be routed. Target and source share the same column.

5.1. Software initiated Data Transfer 53

Figure 5.4: 2D-torus as used for the benchmark tests presented. Always the same node has
been used as receiver. It is depicted as a blanc circle. Direction of SCI data packets is depicted by
the arrows.

0

50

100

150

200

250

300

350

100 1000 10000 100000 1e+06 1e+07

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

one source
two sources i
two sources ii
two sources iii

Figure 5.5: Maximum performance measured on node #19, the receiving node, with one
data sources and two data sources.

Combination ii shows poor performance. It is the only combination with both x and y
SCI receive queues being filled at the same time. Figure 4.18 shows the two receive queues
being present in Dolphin SCI cards. Obviously queue read out via the B-Link is not fair.
Since one receive queue is preferred the other queue is not read out frequently enough
making the bandwidth drop.

However, even more data sources have been added. The results are shown in figure 5.6.

The source nodes in figure 5.6 have been chosen as follows:

54 Chapter 5. Performance of the Scalable Coherent Interface

0

50

100

150

200

250

300

350

100 1000 10000 100000 1e+06 1e+07

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

one source
five sources

ten sources i
ten sources ii
ten sources iii

fifteen sources

Figure 5.6: Maximum performance measured on node #19 with a variable number of
data sources.

• five sources: all data sources are located in the upper most 10 node ringlet of figure
5.4.

• 10 sources i: top row in figure 5.4.

• 10 sources ii: 5 nodes are located in the top row, 5 in the bottom row.

• 10 sources iii: 5 nodes are located in the middle row, 5 in the bottom row.

• 15 sources: 5 nodes are chosen from a row, respectively.

Five sources all located in the same horizontal ringlet have been chosen. The resulting
curve reaches its maximum at 1 kByte with a maximum of 315 MByte/s, which equals
the maximum value obtained for two sending nodes.

Three different combinations have been chosen, which use 10 sending nodes. Combina-
tion i, giving the best result, uses 10 nodes located in the upper most row of figure 5.4.
Therefore, all packets are taken off the horizontal ringlet by node #09, which inserts them
into the vertical ringlet to reach node #19. Combination ii uses two different route nodes.
However, the packets originating from the bottom row have to traverse the bypass FIFO
of node #09 after they have entered the vertical ringlet. Since a node does not send data
during bypass traffic this accounts to a drop in aggregate bandwidth of 12 MByte/s. The
third combination uses 5 nodes from a row, respectively. The bandwidth drops signifi-
cantly to 236 MByte/s. The fraction of packets that originates from the middle row is not
routed. Therefore, the receiving node #19 has to accept data packets both from its x and
y SCI links at the same time. The same comes true for the result utilizing 15 nodes. This
finding has already been observed in figure 5.5.

5.1. Software initiated Data Transfer 55

Taking the results obtained into account it can be stated that a network with one receiver
that accepts packets from more than one sending node shows a peak PCI bandwidth of
315 MByte/s. However, there are two situations that have impact on performance. If a
receiver has to accept data packets both from x and y direction the bandwidth drops by
30% regardless of the number of sending nodes. Nodes that either send or route data are
influenced by bypassing traffic. This can be observed by a 4% drop of aggregate bandwidth
at the receiving node.

5.1.3 Synchronization by Remote Interrupts

An SCI card is able to fire an interrupt on a remote node. This is commonly used to
inform a remote node that a transaction can be started or is finished. The time for asyn-
chronous remote process synchronization has been determined with the following setup.
Two processes have been started on separate nodes that notify each other with the help of
the remote interrupt service provided by SCI. The communication has been set up on such
a way that the node that has been interrupted sent a remote interrupt to the node that
interrupted it. This results in a ping pong like communication pattern. The rate at which
two nodes can communicate using the remote interrupt service has been measured. The
time, tsync, it takes to send a remote interrupt to a user space process is shown in table
5.1. However, this value includes the SCI network latency, the interrupt latency of the
operating system and architecture. The synchronization time tsync is measured on an idle
node, which means that its PCI bus is totally free of traffic, and on a busy node, which
means that the PCI bus shows maximum traffic. To keep the node busy, two SCI nodes
send large blocks of data to guarantee a sustained bus utilization of about 320 MByte/s.

Table 5.1: Average synchronization time in busy and idle mode.

mode tsync

Idle 22.6µs

Busy 35.2µs

Analysis of the PCI bus interrupts shows that there is only negligible fluctuation between
interrupts in the idle state of the node. Differences in tsync of up to 2µs can be seen in
the busy state.

5.1.4 Minimum Data Packet Latency

Packet latency is measured from PCI-to-PCI bus using two PCI analyzers. Each one trig-
gers on the transferred data pattern. Both trigger signals are analyzed on an oscilloscope
and a time difference is calculated. Fig. 5.7 shows a Number of hops vs. time curve for
routed and not routed data packets. The not routed data points have been taken using a
single one-dimensional ringlet whilst the routed data points correspond to data traversing
two dimensions. A data receiver and a data sender are exchanging 128 Byte packets of
data. The number of nodes residing in between are denoted hops. A hop can either be
a simple hop where data is forwarded or it can be a route node. On a route node data

56 Chapter 5. Performance of the Scalable Coherent Interface

is taken off the ringlet and injected into the other one. Both sides trigger on the first
PCI data cycle since delays caused by the chipset when accessing host memory are not of
interest.

1.4

1.6

1.8

2

2.2

2.4

2.6

0 2 4 6 8 10

tim
e

[µ
s]

Number of hops

not routed

routed

Figure 5.7: PCI-to-PCI latency measured as explained in the text. Paths, which include
route nodes are labeled routed data.

Four data points have been taken for routed and not routed paths, respectively. Fit curves
are straight lines. Line parameters are summarized in table 5.2.

Table 5.2: Line parameters for the fit lines shown in figure 5.7. The parameter x denotes
the number of hops.

data fit line

not routed 0.06 × x + 1.40
routed 0.06 × x + 1.97

By analyzing the fit data three important parameters can be extracted. The slope of the
lines equals the bypass latency of a node which is depicted in figure 4.13 and accounts to
TLat By = 60ns. The difference in ordinate values, which can be calculated to be 570 ns
is the routing latency TLat Rt. The PCI-to-PCI latency TLat PCI can be calculated to be
1.40 µs being the y-axis intercept of the not routed data curve. Table 5.3 lists a summary
of the findings.

Table 5.3: Results of Packet Latency measurements as shown in figure 5.7.

latency result

TLat PCI 1.40µs

TLat Rt 570ns

TLat By 60ns

Taking the results above into account the maximum PCI-to-PCI latency for a n × m

5.1. Software initiated Data Transfer 57

torus can be calculated to be TLmax = TLat PCI + TLat Rt + (m + n − 4) × TL By. This
calculation assumes dimensional routing. Figure 5.8 shows a torus with the longest path
highlighted.

Figure 5.8: Longest data path in a 9 × 3 torus. Data is sent from node #00 to node #28 via
route node #08. The arrows depict the flow of the SCI data packet.

Taking the dimensions of the torus in the figure into account a maximum latency of
2.44µs can be calculated. However, this calculation assumes that no bypass or route node
is sending data itself. An SCI 128 Byte data packet comprises 72 symbols (see 4.12)
assuming no header extension. The Dolphin SCI link transfers a symbol every 3 ns. Thus,
the time a packet has to wait in the bypass FIFO accounts to 216 ns. Therefore, assuming
that the packet has to wait whenever it bypasses a node a maximum latency of 4.17µs can
be calculated for a congestion free system. The SCI cabling in the figure does not reflect
the cabling in the real world since long cables are avoided.

58 Chapter 5. Performance of the Scalable Coherent Interface

5.2 Hardware initiated Data Transfer

5.2.1 Increasing Performance by using FPGAs

When using PIO a process pushes data to a virtual address. The address is translated
to its physical counterpart which has been mapped to the SCI NIC earlier. Eventually
the CPU writes into the SCI card’s input buffer via the PCI bus. To get access to the
PCI bus the system’s host bridge becomes bus master and issues memory write cycles
towards the SCI card, which acts as PCI target. The SCI card transfers the data and
writes it to a memory location of the remote node where it can be accessed by a remote
process. This is depicted in the top figure of 5.9. However, the results presented in 5.1
show poor performance since burst length is limited to five clock cycles with data cycles
being restricted to 32-bit in width.
However, once the shared memory has been set up during the initialization phase, data
can be pushed to a remote location by writing to the physical address associated with the
imported memory region. This region is also visible to another PCI device. Therefore,
any PCI device can access the input buffers of the SCI card by issuing PCI memory write
cycles. A DMA engine implemented on a FPGA provides the necessary functionality to
access the network card without data having to traverse the hostbridge. This transfer
mode is referred to as Hardware initiated DMA (HDMA).

Figure 5.9: Data transfer using HDMA (bottom) compared to common transfer (top). Local
and remote physical memory regions are of equal size. The size of the physical memory region
associated with the HDMA engine which is depicted on the right of the bottom figure is not
important for the data transfer since it is only used to configure the HDMA engine via PCI.

An FPGA (Field Programmable Gate Array) is a reconfigurable integrated circuit that

5.2. Hardware initiated Data Transfer 59

contains many identical logic cells that can be viewed as standard components. Each logic
cell can independently take on any one of a limited set of personalities. The individual cells
are interconnected by a matrix of wires and programmable switches. The array of logic
cells and interconnects form a fabric of basic building blocks for logic circuits. Designs
can be implemented using an abstract description language like VHDL [34] or Verilog [35].
They allow to describe logic components like finite state machines or single gates. Specific
software provided by the FPGA vendor is used to create an FPGA configuration file. The
results presented in this section have been created by implementing a DMA engine in an
Altera APEX20KE [36] device and a Lucent OR3TP12 FPSC [6]. Both FPGAs come with
custom made PCI cores. A more detailed explanation of the logic blocks can be found in
7.2.2.

Data are transferred directly from the FPGA to the memory mapped input buffers of the
SCI card located on the same PCI bus. Afterwards the data are sent to their remote
destination. This is depicted in the bottom figure of 5.9. This method of operation is also
known as device-to-device copy. The data to be transferred has to be written into a buffer
located on the FPGA board in an initialization phase. For test reasons data can just
be generated on the fly. Since no host bridge is involved except for PCI bus arbitration,
this mode promises very high data rates even for small packets. This method of data
transaction can be implemented in two different ways. One method uses two FPGAs,
each having its own PCI slot on the same bus, in tandem mode which means that the
FPGAs operate interleaved. The other method, which is easier to implement but less
efficient because of the increase of PCI idle cycles in between bursts, is to use only one
FPGA. Both setups are sketched in figure 5.10.

Figure 5.10: Device-to-device copy. Non-interleaved mode is depicted on the left side, the
tandem mode operation solution on the right side.

However, in both methods the FPGA board requests bus mastership and send data in a
single burst to the SCI card which starts a data transaction to a remote location. The
address which is needed for the PCI transactions have to be stored in an HDMA descriptor
buffer. Afterwards transfers are controlled by state machines implemented in the FPGA
and no software is necessary.

5.2.2 Non-Interleaved Transfer Mode

In the setup presented an Altera APEX20KE FPGA board [36] and a Dolphin 64/66 SCI
card [30] are located on the same 64-bit/66 MHz bus of a standard Linux PC with a

60 Chapter 5. Performance of the Scalable Coherent Interface

ServerWorks IIIHE chipsets. Figure 5.11 shows the results of a point-to-point connection
benchmark with variable data packet size.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000 1100

T
hr

ou
gh

pu
t [

M
B

yt
e/

s]

Blocksize [Byte]

SCI PIO
SCI HDMA
HM HDMA

Figure 5.11: FPGA initiated transfer vs. PIO for block sizes less than 1024 Byte as measured
in a point-to-point connection. The different curves are explained in the text.

Three curves show the difference between HDMA and PIO initiated by the CPU. The data
curve labeled SCI PIO is identical to the data presented in figure 5.1. The HDMA curves
have been measured by using a PCI tracer in the sending node. A process on the sending
side initializes and triggers the FPGA, which pushes the data to the address specified.
After the transfer has been completed the receiving process is notified and starts checking
the received data stream.

The data labeled HM HDMA shows data written into local host memory. HM HDMA
performance depends on the chipset since the FPGA tries to send one burst per transfer.
Since target retry and target disconnects slow down transmission the maximum data rate
observed has been 267 MByte/s. The data labeled SCI HDMA shows the performance
of an SCI point-to-point connection. The curve reaches its maximum at 128 Byte since
the SCI card issues a target disconnect type C on reception of 128 Byte. Both a target
disconnect and a new transfer require a new bus arbitration. Since the FPGA we use
can not have more than one outstanding transaction its internal PCI core state machine
requires to be in its initial state before a new arbitration request can be issued. Figure
5.12 shows a transaction as observed on the sending node.

Figure 5.12: PCI trace of a 128 Byte HDMA transfer as seen on a 64-bit/66 MHz bus. The
total transaction time equals 34 clock cycles.

5.2. Hardware initiated Data Transfer 61

Figure 5.13 shows a sketch of a PCI transfer depicted in figure 5.12 in terms of clock cycles.
The target setup time of the SCI card is seven clock cycles. This time is fixed since it is
due to the SCI card’s PCI interface chip PSB66. The burst-to-burst gap of 10 clock cycles
can be minimized by choosing a different FPGA type or by a method introduced in the
following section.

Figure 5.13: Sketch of the PCI cycles of a DMA transfer as seen on a 64-bit/66 MHz bus. The
cycles can also be seen on the PCI trace in figure 5.12

However, the minimum number of PCI cycles required for one 128 Byte burst can be cal-
culated to be 25 assuming one idle cycle in between bursts. Thus, a maximum bandwidth
of 325 MByte/s for an SCI card used as target can be calculated which is 61 % of the
theoretical bandwidth of the PCI bus.

Figure 5.14 shows the packet frequency for block sizes less than 1 kByte.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000 1100

f [
M

H
z]

Blocksize [Byte]

SCI packet frequency

Figure 5.14: Packet frequency in MHz as measured for block sizes less than 1024 Byte on the
sending node.

SCI HDMA data measured and presented in figure 5.11 has been analyzed in terms of
frequency. A maximum frequency of 2.56 MHz can be extracted for sending 64 Byte
bursts. Even for data bursts of 192 Byte in size the frequency is beyond 1 MHz.

However, figure 5.11 shows odd behavior of the HM HDMA curve for the 128 Byte and
256 Byte data points. Data transfer to local memory seems to be less efficient than data
transfer to remote memory via the SCI card. PCI cycles have been analyzed for SCI
transfers on the sending and receiving side, and for HM HDMA transfers. Figure 5.15
shows the result of the analysis.

The left part of the figure is also shown in figure 5.13. However, the 34 clock cycles total
on the sending side are distributed differently on the receiving side. The PCI command
issued is MWI (memory write and invalidate) which results in one wait cycle before data
is actually sent. The MWI PCI command is semantically identical to a memory write
transaction. However, it guarantees a minimum transfer of one complete cache line. After

62 Chapter 5. Performance of the Scalable Coherent Interface

Figure 5.15: Sketch of PCI cycles as measured on receiving and sending node of an 128 Byte
SCI transaction.

a complete burst transfer on the receiving side 16 idle cycles can be observed on average.
Neither retry traffic nor disconnects have been observed on the receiving side.

Figure 5.16: Sketch of PCI cycles of a
128 Byte transaction into local memory.

Figure 5.16 shows the PCI cycles involved on an HDMA transaction into local memory.
The node used is the same as the receiving node depicted in figure 5.15. However, the PCI
command issued is memory write which results in three wait cycles instead of one in the
previous case. The DMA engine always sends the following burst after ten clock cycles
which amounts to 30 clock cycles total. When looking for retry traffic and disconnects
it becomes clear that odd performance in figure 5.11 is caused by frequent retries on the
PCI bus when the FPGA pushes data into local memory.

Figure 5.17 shows the reason of the performance loss.

The hostbridge buffers the incoming data such that it can utilize the faster system bus best.
The buffer is flushed either when it is filled or after a timeout applies. The host bridge
does not accept data when it flushes its buffer. In case of 128 Byte and 256 Byte transfers
the FPGA can not fill the buffer in one complete burst. The hostbridge eventually writes
the buffer content into host memory and does not accept any incoming data anymore.

5.2. Hardware initiated Data Transfer 63

Figure 5.17: The hostbridge buffers
the incoming data such that it can issue
a burst on the system bus.

The FPGA sends data with 10 idle cycles in between bursts whereas the SCI card issues
16 idle cycles on the receiving side. The hostbridge buffer is not flushed yet when new
data arrives in case of HM HDMA resulting in retry traffic. The SCI card being the slower
PCI initiator sends its data when the hostbridge is ready to accept a new burst resulting
in better performance on the PCI bus.

In case of larger block sizes the buffer can be filled in one complete burst utilizing the
hostbridge best in case of HM HDMA. The SCI card does not accept bursts larger than
128 Byte which decreases performance compared to the hostbridge for larger block sizes.

5.2.3 Interleaved Transfer Mode

Interleaved mode has been tested in a 32-bit/33 MHz PCI environment since all COTS1

PCs come with only two 64-bit/66 MHz PCI slots. The FPGAs, which have been used to
demonstrate the capability of interleaved transfer mode (Lucent ORCA OR3TP12 FPSC)
have an internal 32-bit bus and a PCI core that is not pipelined and therefore do not allow
more than one outstanding PCI request. A sketch of the setup can be seen on the right of
figure 5.10. At the time of benchmarking Dolphin’s SCI cards built around the link chip
LC2 and the PCI bridge chip PSB64 have been used. Since the LC2 supports a maximum
of 64 Byte data payload per SCI packet the DMA burst packet size has been chosen to
be 64 Byte, as well. However, the results in tandem mode are very promising. Sending
64 Byte packets to the SCI card a rate of 1.51 MHz with a back-to-back burst gap as low
as 1 PCI clock cycle has been observed. Figure 5.18 shows a PCI trace of an interleaved
transaction on a 32-bit/33 MHz PCI bus.

Figure 5.18: PCI trace of an interleaved transaction. The idle time in between bursts is reduced
to a minimum of 1 clock cycle.

1commercial off-the-shelf

64 Chapter 5. Performance of the Scalable Coherent Interface

A sketch of the PCI bus cycles can be seen in figure 5.19. Figure 5.18 also shows how the
devices take turns in accessing the PCI bus. This can be seen by looking at the two PCI
REQ and GNT signals. The meaning of the signals have been explained in 4.2.

Figure 5.19: PCI cycles for one DMA transfer as seen on a 32-bit/33 MHz bus using the PCI
64/33 SCI card.

The four wait cycles in between the PCI address cycle and the data cycles are due to the
target setup time of the SCI card and can not be minimized.

5.3 Large SCI Ringlets

Most of the work presented in this thesis has been done of moderate sized ringlets of up to
10 nodes and tori. However, some tests have been made using a large ringlet of 30 nodes.
Emphasis has not been to look at performance but rather on stability and scalability.

Large ringlets are prone to network congestion if the number of nodes exceeds a certain
number. The combined network latencies of request-send and request-echo packet must
not exceed a time limit which is set by the packet frequency on the sending node. Send
queue slots of the LC3 are flushed when the request-echo packet has been received. The
packet buffers are depicted in figure 4.18. The bypass latency of a node has been measured
in 5.1.4 to be 60 ns. Assuming a ringlet of N nodes, 7 slots in the send queue, and a packet
frequency of 1.11 MHz which corresponds to the peak LHCb frequency, the non-equation
7 × 900 ns > N × 60 ns has to hold true.

N can be calculated to be 107 with these simple assumptions. However, if a request-send
packet has to wait in a bypass FIFO because the node is sending itself an additional delay
of 216 ns has to be added for one hop (compare section 5.1.4). Therefore, 7 × 900 ns >
N × (60 ns + 216 ns) must hold true, resulting in 22. Echo packets are not end-to-end
confirmations but local to ringlets. Therefore, even large size tori can be realized.

To get a real hands-on example, traffic in a 30 node ringlet has been chosen such that
data packets have been sent by two nodes equipped with FPGAs to 14 nodes each. The
30 node ringlet appeared to be stable since there has not been any network problem after
12 hours. No retry traffic has been observed on the feeding PCI busses which have been
monitored with logic analyzers. Additionally some tests using software initiated transfers
have been made successfully.

Chapter 6

Level-1 Trigger General
Architecture

The basic architecture of the Level-1 vertex trigger system is presented and a preliminary
timing analysis of the system is outlined. The system is based on PCs connected by
SCI in a 2D torus topology. The input data stream is initially scattered between several
RUs, which have to send data to a specific node in the network. On reception a software
algorithm performs data analysis and sends a result message to the Level-1 Decision Unit
Interface. The Level-1 Decision Unit Interface reorders the events and forwards them to
the Level-1 Decision Unit. A maximum latency is set on the overall data path through
the Level-1. To avoid network congestion at the receiver, the data are orchestrated by the
TagNet. The TagNet is a scheduling network which provides a flexible congestion control
mechanism. The TagNet is managed by the TagNet scheduler that keeps track of events
currently processed and CPUs which are available to accept new data. The network farm
size is calculated to be 17 rows and 18 columns.

6.1 Level-1 Trigger System Architecture Overview

The results already presented suggest that SCI can be used as baseline solution for the
LHCb Level-1 trigger. Figure 6.1 shows the basic components of the Level-1 trigger.

The figure shows a 2D topology which connects a certain number of CNs. The network
feeds, the RUs, are connected by a congestion control or scheduling network. This chapter
focuses on the following topics:

• The data packet latency depends on the length of the network path. Therefore, an
estimate on the network size with respect to number of input feeds and number of
compute nodes is given.

• SCI allows a different network topology. However, the network topology chosen
must provide an aggregate bandwidth of more than 4 GByte/s and must allow to

65

66 Chapter 6. Level-1 Trigger General Architecture

Figure 6.1: The Level-1 architecture as discussed in this chapter.

add both RUs and CNs easily without causing network congestion. Additionally,
central congestion must be avoided.

• The CNs can not receive data with a rate of more than 4 GByte/s. Therefore, data
transfer has to be scheduled to avoid congestion at the receiver.

• All hardware that has to be traversed by the data in between Level-0 accept and
the time the algorithm starts to process the event contributes to the Level-1 latency.
Therefore, a timing estimate is given.

6.1.1 Network Feeds (RUs)

The number of RUs is determined by the amount of data that has to be expected. However,
the technique how data are transferred is given by the event rate.

The absolute maximum Level-0 trigger accept rate is defined by the readout time of the
Level-0 derandomizer. The average rate over a large time window is 1 MHz, which has
been chosen as a compromise between the physics performance of the experiment and
the cost and complexity of the front-end electronics. Some triggers will be rejected by
the central readout supervisor when there is a risk of overflowing buffers in the front-
end electronics or overloading the Level-1 trigger system. For more information on LHCb
electronics see [37, 38, 39]. However, the maximum Level-0 trigger rate can be determined
to be 1/900 ns being 1.11 MHz . Thus, the only way how this can be accomplished with
standard components is an approach using HDMA as explained in 5.2.

The buffer depth of the off-detector electronics (ODE) can accommodate a maximum
latency of 1820 events [40]. Thus, taking the maximum Level-0 rate into account the
maximum time an event is allowed to stay in the Level-1 system can be determined to be
1638 µs .

6.1. Level-1 Trigger System Architecture Overview 67

Figure 6.2 shows the latest results on VELO clusters per ODE (13 on average) at the
time of writing, Noise, spill-over and common mode corrections are not included in this
simulation result.

The data corresponding to an event is distributed between the R and φ sectors of the
VELO. The number of VELO stations is not final yet. However, to use some hands-on
numbers the following calculations are based on 25 stations as outlined in the VELO TDR
[8].

A hit cluster corresponds to a 16-bit value. Figure 6.3 shows an average number of 1286
cluster hits per event. However, the average number of cluster hits is assumed to be 1800
since noise is not included [41]. Therefore, the data payload of an event is about 3600 Byte
on average. Given the average input rate of 1 MHz this amounts to 3.6 GByte/s.

Figure 6.2: Number of VELO clusters per ODE (13 on average). Minimum bias events with
Level-0 decision applied have been used as input data for simulation. Noise is not included. Data
has been taken from [42].

Figure 6.3: Number of VELO clusters
per event (1286 on average). Noise is not
included. Data has been taken from [42].

One ODE board reads out one of the 1001 180◦ segments of the VELO. The number of
ODE boards depends on the detector geometry since one board can read out 2048 detector
channels. This amounts to 26 Byte data payload on average per board. Currently three
ODE boards are planned to feed one RU, which corresponds to 34 RUs total. Therefore,
the data volume that has to be expected adds up to 78 Byte of data payload per RU.
Data that is shipped to a CN by the RUs also gets a 4 Byte source identifier per ODE link
and an additional 8 Byte overhead per RU. Therefore, every RU has to send additional
overhead amounting to 20 Byte. The current Readout Unit implementation is discussed
in detail in [17]. About 34 RUs which have to send a data payload of 98 Byte each are
required. However, this value depends strongly on the amount of input data. The overall
event size is more likely to increase rather than decrease. In addition, overhead has to be

1The number is based on 25 stations.

68 Chapter 6. Level-1 Trigger General Architecture

transmitted (see 6.5). Therefore, the system should be able to handle an overall bandwidth
of 4.5 GByte/s. The RUs should also be capable of sending up to 256 Byte with a MHz
rate.

6.1.2 Compute Nodes (CNs)

Another input required to design the system is the amount of computing needed for
the track reconstruction task. There have been various studies on this subject [43, 44].
However, all of them can give only a rough estimate of the computing cycles required, since
the algorithms are changing and depend heavily on the event size. It is therefore mandatory
to design a system that is scalable in respect of the computational and bandwidth needs
of the experiment.
Due to the inherent combinatorial aspect of the tracking the algorithms used up to now
show non-linear behavior. The left plot in figure 6.4 shows the dependency of the time
it takes to search for 2D tracks on the number of R clusters for B → π+π− events.
The scattered data points in figure 6.4 are pile-up events which will not be selected by
the Level-0 trigger. Pile-up events have more than one primary vertex and need more
compute time.

Figure 6.4: Left: Processing time for 2D track search vs. number of R clusters for B → π+π−.
Right: Time for full tracking. The plots have been taken from [45].

An average processing time can be extracted by analyzing a realistic mix of background
and physics events. However, at the time of writing only simulation data for physics
events has been available — B → π+π− events. For those events the time estimated for
the entire algorithm including search for 3D tracks is around 4.8 ms on average[45]. This
timing analysis is shown on the right of figure 6.4. Minimum bias events are expected to
show a very similar distribution. However, taking both improvements to the algorithm
and changes to the detector geometry into account the average processing time is believed
to be reduced to 2 ms.
Since total event sizes are small the entire event will easily fit into the level 1 cache of
commodity PCs. The level 1 cache runs with processor speed and therefore results obtained

6.2. Network Topology and Size 69

for processing times can be scaled by a factor of four to reflect equipment available in three
years [46].

The number of nodes is given by the average processing time and the input rate. With
the given numbers and an extrapolation of compute power accessible when the experiment
starts about 250 twin processor nodes are required. Driven by costs the system should use
commodity components wherever possible. PCs are used for computing since they are the
most cost effective systems on the market.

Due to the complexity of track finding it has been decided to use a software based approach.
However, to speed up the track finding task a hardware preprocessor card could be added
if necessary.

6.2 Network Topology and Size

The trigger requires a massive parallel system which has to meet several characteristics.
The system should scale easily since the number of network feeds is not final yet. The
network architecture has to provide guaranteed delivery in hardware since the CPU load
of handling loss of data in software is prohibitive. The RUs have to send event data within
900 ns. The term sending must not be understood as network latency but rather as the
time it takes the RU to write a data packet into the NICs input buffer.

Transferring data by using the shared memory concept is advisable, since there is no
software overhead involved and a message can be transmitted in a single burst on the
PCI bus. SCI has been chosen to be the baseline network technology. The shared memory
concept is implemented in hardware, delivery of data packets is guaranteed on the hardware
level, and writing data into the SCI NICs input buffer is feasible in less than 1µs. However,
the concept presented does not exclusively require SCI but rather a network technology
which translates a write to a physical address to a remote memory write operation. A
2D-torus has been chosen to be used as baseline network topology. Network solutions
using external switches increases cost dramatically in large networks. Additionally, large
switches imply central hot spots since all data has to traverse the internal bus of the
switch. A 2D solution is depicted in figure 6.1. Two RUs share the same horizontal ringlet
to make better use of the available bandwidth. The SCI link provides a theoretical peak
bandwidth of 667 MByte/s. However, one RU sending 128 Byte packets with a MHz rate
accounts to 122 MByte/s. Placing two RUs in one row increases the link utilization.

The number of torus rows can be calculated to be 17 assuming 34 RUs as demonstrated
in 6.1.1. In section 6.1.2 the number of CNs has been estimated to be 250.

The maximum bandwidth in both horizontal and vertical ringlets will be restricted by the
maximum bandwidth in a link segment, BLink. The results in section 5.1 show that a
node with its bypass FIFO filled can not send with full rate. Therefore, it is advisable to
account for this by defining BLink to be the maximum aggregate bandwidth on a link with
no sending node on the ringlet being throttled. Defining Btot to be the total aggregate
bandwidth in the Level-1 network farm, the following non-equation must hold true for a
column:

70 Chapter 6. Level-1 Trigger General Architecture

BLink ≥ Btot

ncol

BLink ≥ BLink × nrows

ncol

with ncol being the number of CN columns in the torus. Finally, this yields:

nrows ≤ ncol

Taking the numbers calculated above into account it can be assumed that the Level-1 trigger
will be composed of 17 rows and 17 columns equipped with CNs.

6.3 Network Traffic

6.3.1 Routing

In a 2D network data can reach a node on various ways depending on the routing strategy
used. The Dolphin SCI implementation allows basically two different strategies for routing;
driven by a table lookup and driven by a rule based procedure. In both cases the address
of the destination node is used. Since tables, node IDs and procedures are configurable
the system provides flexibility which allows to implement some degree of fault tolerance.
However, the default routing scheme for this application is, as illustrated in figure 6.5,
dimensional routing.

Figure 6.5: Dimensional routing in a
5 × 4 torus.

Data is first sent along the horizontal ring until it reaches its target column. Eventually,
data packets are routed to the vertical ring and reach the destination node. Several
concurrent routes, which are in agreement with the scheduling rules are shown.

6.3.2 Scheduled Data Transfer

The boundary conditions of the Level-1 network farm require that an event is sent within
a microsecond. However, since the total event size is 3.6 kByte in size taking current

6.3. Network Traffic 71

simulations into account, the CN has to cope with a data rate of 3.6 GByte/s if all sub-
events arrive at the same time. The event size will most likely grow up to 4.5 kByte giving
a data rate of 4.5 GByte/s. However, data must not arrive at the same time since neither
event size can be handled by the receiver. Therefore, transfers have to be scheduled.

Scheduling of transfers and sending data are coupled closely. To handle the high rate
the data has to be moved from the RUs without software intervention. This is achieved
by moving the assembled sub event via a DMA engine from the local buffer via the PCI
bus to the SCI network interface card. The DMA engines will be implemented in FPGAs
located on the RUs as described in [17]. To control the global traffic pattern generated
by the sources all RUs have to be synchronized to a certain degree. This synchronization
is implemented with the help of the TagNet, that connects the DMA engines, and the
TagNet Scheduler, that assigns events to nodes that are available in such a way that no
congestion in the network is possible. There are two separate hot spots in the network.
One is the receiving CN that can not handle the data rate. The second source of congestion
is traffic directed to one vertical ringlet. The aggregate bandwidth in one vertical ringlet
must always be less than BLink. However, the latter is achieved by the scheduler which
assigns events to CNs. Therefore, Every node has to send an availability message to the
scheduler after an event has been processed. A schematic of the RU logic can be seen in
figure 6.6.

Figure 6.6: Under the control of the TagNet data is moved by a DMA engine from the event
buffers to the SCI NIC card without CPU intervention.

The RUs transmit cluster hit information originating from the same event to a selected
CPU of the farm. A 14-bit destination ID is distributed to all RUs within the ring. Upon
reception of a destination ID a table lookup gives the physical address of the correspond-
ing buffer in the target node and an SCI transaction is initiated. Thereafter the tag is
forwarded to the next RU in the TagNet ring with the forwarding scheme being flexible
and programmable by a register addressable via PCI. The TagNet is supervised by the
TagNet scheduler, which receives sorts and queues node IDs of idle nodes before transmit-
ting them. Additionally, the scheduler monitors the status of the events being processed.
However, to prevent data corruption, messages on the TagNet are Hamming encoded to
protect the data integrity which is of the uttermost importance in this part of the system.
A corrupted target address, e.g., could lead to an event being moved partially to different
nodes. A separate TagNet note focusing on implementation issues is prepared by a group
at CERN. For more information see [18]. Figure 6.7 shows RUs and the TagNet scheduler
as connected by the TagNet.

72 Chapter 6. Level-1 Trigger General Architecture

Figure 6.7: The TagNet connecting the
RUs and the TagNet Scheduler. Both
TagNet slave and TagNet scheduler logic
is implemented in FPGAs.

Figure 6.8: Several fractions of a few events moving through a part of the torus. Data belonging
to the same event is depicted in the same color. The packets are tagged by event/RU/Dest/timestep
giving the ID, source RU, destination node and the time step at which they have entered the
network. The scheduler is not shown.

To understand the scheduling principle it is helpful to go through the process of several
events passing through the network. In figure 6.8 the location of data packets correspond-
ing to several events are shown at different time steps.

The event number, sending RU, destination node and time step are encoded in the form
event/RU/Dest/timestep. Event fractions originating from different events are sent at the
same time. However, since under the control of the TagNet sub-events belonging to the
same event are not sent at the same time no congestion at the receiving CN is possible.

6.4. Level-1 Decision Unit Interface 73

6.4 Level-1 Decision Unit Interface

For every event processed by the system a result is produced. Therefore, the trigger
has an asynchronous output of 1 MHz. This small message of 128-bit in size has to be
forwarded to he Level-1 Decision Unit within the allowed maximum latency time. Since
the Level-1 Decision Unit expects the events to arrive in order in which they entered the
vertex trigger system, the events have to be reordered. The total data traffic originating
from this action is negligible compared to the event data stream.

The content of the Level-1 vertex trigger result message is not final yet. The Level-1
Decision Unit Interface must be aware when events have entered the system because the
messages have to be forwarded to the Level-1 Decision Unit within the Level-1 maximum
latency. This could either happen by receiving Level-0 trigger information or by setting
up a dedicated communication between the TagNet scheduler and the Level-1 Decision
Unit Interface.

The result messages are written into the Level-1 Decision Unit Interface buffer, which is
addressed by the event ID. A read pointer always points to that table entry, which has to
be forwarded next. If the message is received within the maximum latency the message
is forwarded to the Level-1 Decision Unit. In case of a maximum latency violation a time
out message is created. The physical connection between to the Level-1 Decision Unit
is S-Link, a protocol engineered at CERN and described in [16]. The node hosting the
Level-1 Decision Unit Interface is equipped with an SCI card that allows memory mapped
access to the table that has been mentioned above.

6.5 Timing

To illustrate the amount of time that is spent during the different stages of processing it
is instructive to look at a specific sample configuration of the system. The timing values
used are either taken directly from tests with prototypes, or have been extrapolated from
those tests.

As outlined in 6.1 the average event is expected to contain about 1800 cluster hits with
noise hits and additional detector information included. A hit is stored in 2 Byte. A fixed
amount of overhead is needed for organizing the event. Currently an additional overhead
of 20 Byte per RU is assumed. Due to the fact that the data is split into a large number
of small fragments this overhead accumulates to 680 Byte on average assuming a system
with 34 RUs as data sources.

Data can be sent in packets of 128 Byte, 64 Byte, and 16 Byte on the SCI link. Assuming
an average load of 128 Byte per RU one 128 Byte SCI packet will be sent. Therefore,
the total expected average event size that has to be transported roughly corresponds to
4.2 kByte. However, since neither the final detector architecture nor the data that is used
to feed the track finding algorithm is final data can easily increase up to 4.5 kByte per
event on average.

The time to process an event in the system can be divided into the following main phases:

1. The transport phase Tt

2. The processing phase Tp (see 6.1.2)

74 Chapter 6. Level-1 Trigger General Architecture

3. The notification phase Tn

Transport Phase Tt

For a detailed description of the different modules involved in the data flow from the
VELO detector to the RUs see chapter 3.

Figure 6.9: A) The sequence of certain operations during the transport phase for the first 2
RUs. Deviating from the text TRUdata has been split into the time to transport the first packet
(Tpacket) and the remaining time. Ttag is divided into two parts, Ttaga for decoding the tag and
setting up the remote DMA transfer and Ttagb for forwarding the tag. B) Looking at the emerging
pattern for 4 RUs the accumulation of the non-overlapping components becomes clear. Since order
of delivery is not guaranteed packets might overtake each other.

The transport phase is the time needed for the data to be transferred from the ODEs to the
RUs and finally to the buffer in the processing node. For this the following assumptions
are based on measurements, simulations and estimates. Figures 6.9A and 6.9B illustrate
certain aspects of the timing:

• TL0: Data movement to the RUs starts after the Level-0 trigger signal.

• TODE: The ODE has to move the data into the RUs input buffer. TODE roughly
contributes 10µs.

• TRU : The sub-event has to be assembled inside the RU and directory structures have
to be filled. The event stays in the RUs until it is processed by the DMA engines.

6.5. Timing 75

Figure 6.9 shows that TRU depends on the location of the RU within the TagNet
chain. TRU can be estimated to be between 4µs and 38µs assuming 34 RUs ignoring
additional queuing time in case of very large events.

• Tsched: After notification by the Level-0 the scheduler assigns the event to a free CN.
This will be done in hardware using an FPGA. The scheduler will need less than
1µs for this.

• Ttag: The tag created by the scheduler travels through the TagNet and has to be
analyzed by every TagNet client. Ttag accounts for the time it takes to analyze the
tag, setup the DMA engine, and forward the tag. Ttag can be assumed to contribute
150 ns.

• TRUdata: The data has to be transported to the network interface card. This is
the sub-event size including headers and overhead divided through the net PCI
throughput including any applicable wait states and bus turn around cycles. First
measurements have been presented in section 5.2. The upper limit for TRUdata is
900 ns.

• Tnetwork: Transport through the network. This time depends on the amount of data
to be transported and the latency inherent to the network. The network latency
depends on the distance between source and target in units of network nodes in
between and route nodes that have to be traversed. The latency of the last packet
originating from the last RU determines the component of the latency that is not
hidden by overlapping transfers. Due to the scheduling of the transfer it can be as-
sumed that all nodes are idle when receiving a packet. Numbers have been presented
in section 5.1.4. In addition to this latency the time to transport the data through
the network contributes with 4µs/kByte as measurements on the feeding PCI bus
have shown.

• Tqueue: time to wait for the processor to finish the previous event. This time de-
pends on the buffer scheme chosen. In a single buffer setup the event gets processed
immediately whilst in a double buffer scenario immediate processing can be delayed
by the previous event.

Since events can stay for a non predictable time in the RUs input buffers an exact timing
analysis is impossible. An example calculation is shown assuming a m × n torus and an
event size of Es. Tt can be calculated as follows:

Tt = TL0 + TODE + TRU1

+n(Ttag + TRUdata)
+Tnetwork + Tqueue

For immediate forwarding, two RUs per horizontal ring, and the timing analysis presented

76 Chapter 6. Level-1 Trigger General Architecture

in section 5.1.4 the equation reduces to:

Tt = 10µs + TRU1

+n ∗ 1.05µs

+1.40µs + 570ns

+(m + n − 4) ∗ 60ns

+
Es

2n
4µsec/kByte

+Tqueue

or n = 17, m = 18 and assuming an event of 4.0 kByte in size the largest expected Tt is:

Tt = 32.15µs + TRU1 + Tqueue

Assuming immediate processing and 4µs for TRU1, Tt amounts to 36.15µs.

Notification Phase

As described above, two messages have to be transmitted during the notification phase.
Both originate at the processing nodes after finishing the processing steps. One message,
the trigger result, is sent to the Level-1 Decision Unit Interface that sorts the result
messages according to event numbers and forwards the message to the Level-1 Decision
Unit. The earliest moment at which the front end buffers can be released is after the
global Level-1 has distributed the decision in case of a reject and after the data has been
transmitted out of the front-end buffers in case of an accept. This has to happen within
the maximum latency time. The second message, that has to be sent, indicates that the
node is ready to accept another event. This has to be sent to the scheduler. This message
is sent outside the latency window and thus the time this transaction takes is only of
concern for the efficiency but not for the latency. Both messages can be assumed to be
transferred in less than 5µs. However, if both entities are implemented in the same node
the messages can be combined.

Chapter 7

The Level-1 Trigger Prototype

A prototype of the Level-1 vertex trigger system has been implemented. The system is
capable to send small messages with a rate of more than 1 MHz as required by the LHCb
experiment. However, the TagNet version implemented is very basic and only allows static
assignment of compute nodes. The system comprises three RUs, 26 CNs, and the Level-1
Decision Unit Interface which amounts to 30 nodes total. Mockup data has been analyzed
in the receiving CN. A packet loss has never been detected. However, since the system
is based on a standard Linux distribution the analyzing process might be suspended such
that events could be missed. A frequent occurring reason are interrupts. However, an
overall system analysis shows that almost 100% of the events are analyzed.

There are two important parameters that go directly into the system architecture — the
maximum link bandwidth and the maximum bandwidth that the B-Link can handle. Both
are presented. BLink has been determined to be 432 MByte/s (75% of maximum SCI net
bandwidth) for a system that does not use displaced RUs. For a system using displaced
RUs BLink increases at least to 478 MByte/s which is 83% of the maximum SCI net
bandwidth. The maximum B-Link bandwidth has been determined to be 450 MByte/s
(88% of maximum B-Link net bandwidth).

7.1 Baseline Architecture

The concept presented in chapter 6 has been implemented as basic version which does not
include the TagNet scheduler. The TagNet has to fulfill two different tasks. Traffic shaping
prevents network congestion and can be implemented by using one bit. Load balancing and
resource management require full system information since no buffer must be overwritten
before the previous buffer content has been analyzed. Therefore, the TagNet scheduler
is of importance for the latter whereas a prototype showing a MHz performance without
network congestion can be realized using a simpler solution. In fact, for the current
prototype it is assumed that the time for event analysis does not differ and therefore event
buffers can be overwritten after a certain amount of time. The shared memory regions
that have to be addressed by the network feeds are not chosen dynamically. A static

77

78 Chapter 7. The Level-1 Trigger Prototype

setting has been implemented with target addresses being used in a fixed order. At the
time of writing the Level-1 track finding algorithm is optimized for efficiency and not used
in this implementation. Therefore, every compute node runs a process that checks for data
packet loss prior to sending a message to the Level-1 Decision Unit Interface. As outlined
in chapter 6 the Level-1 trigger will be a real-time cluster of about 300 twin processor
nodes. In order to demonstrate 10% of the full scale system, a 30 node Linux cluster is
used to demonstrate the basic concept. Figure 7.1 shows a picture of the cluster nodes.

Figure 7.1: 30 nodes out of 32 Linux computers are connected to a 10 × 3 torus. The picture
on the right shows the SCI cabling.

24 nodes are equipped with ServerWorks IIIHE-SL , the remaining 6 nodes with Server-
Works IIIHE chipsets [33]. Both chipsets support fast 64-bit/66 MHz PCI buses, which is
essential for fast I/O via the PCI local bus. All nodes are equipped with two Pentium III
processors. 24 run 800 MHz CPUs, 6 of them 733 MHz processors. Currently the nodes
are equipped with 512 MByte RAM, a current SuSE Linux distribution, an up-to-date
kernel version, and sufficient disk space (40 GByte). All compute nodes utilize Dolphin
PCI 64/66 PCI SCI cards built around the SCI link controller chip LC3 [30] located in
a 64-bit/66 MHz PCI slot. The nodes are connected, as depicted in figure 7.2, forming
a two-dimensional torus. However, the figure does not reflect the real cabling since long
cable lengths should be avoided. In the real setup the nodes are preferribly connected
interlaced. Three nodes serve as input feeds (RUs) and send data packets using hardware
initiated DMA as described in section 5.2. Currently 26 nodes receive data packets from
the sending nodes. Those nodes are referred to as compute nodes in the following sections.
Upon reception of the data packets coming from the RUs, a 128-bit result message is sent
to the result node, the L1DU Interface (Level-1 Decision Unit Interface). Sending the
data to the CNs is synchronized by a basic TagNet implementation. However, the output
produced by the compute nodes is not synchronized and not necessarily in order. All
results presented in this chapter refer to this setup unless stated otherwise.

Input feeds need additional logic to implement the DMA engine and the TagNet logic.
Altera Apex PCI boards1 are used in the current prototype since no sufficient amount
of RUs as planned for the experiment is available. However, to use the terminology
introduced in chapter 6 the input feeds are termed RUs. The Altera board is located
on the same PCI bus as the Dolphin SCI card. Thus, the data can be written into the

1based on the APEX20KE FPGA

7.2. Network Feeds 79

Figure 7.2: This figure shows the current setup in Heidelberg. 30 nodes are connected by the
Scalable Coherent Interface and form a two-dimensional torus topology. The three nodes to the left
are mockup input feeds connected by a basic implementation of the scheduling network TagNet.
The node labeled L1DU Interface receives 128-bit result messages from every compute node.

SCI card directly without crossing a PCI bridge or the hostbridge. Major characteristics
of the logic implemented are a PCI interface to the 64-bit/66 MHz PCI bus, an internal
descriptor buffer, a mockup data generator, and the DMA engine, which sends data to the
physical address specified by the entries in the descriptor buffer.

Currently x-y routing is used with y and x-axis depicted in the figure.

7.2 Network Feeds

7.2.1 Data Scheduling and TagNet Prototype

A basic TagNet without a scheduler has been implemented. This is sufficient for current
tests focusing on system performance as outlined in 7.1. The sending nodes are connected
by the scheduling network as depicted on the left of figure 7.2. The implementation uses
1-bit signals and does not have an input queue. However, this is sufficient to build a
prototype running at 1 MHz which has been considered to be the most crucial part of
the system. A handshake signal is required to avoid loss of tags. Additionally, the signal
is used to monitor the system utilization. This busy logic has been implemented for the
prototype only and will be replaced by an input queue in future implementations. Since
the upcoming implementations are managed by the TagNet scheduler overflow of TagNet
queues is avoided.

However, the current version is simple and sufficient to study the network traffic and
performance of an SCI cluster which is fed at 1 MHz.

Since the order in which the CNs are addressed is fixed the tag is a single pulse latched
by the tag receiving node on reception. Four signals have been implemented. Naming

80 Chapter 7. The Level-1 Trigger Prototype

Figure 7.3: The picture shows the setup for a mockup RU as used in the system presented.

conventions are introduced in table 7.1.

Table 7.1: TagNet signals, direction, and meaning.

Signal Direction Description

TIn xx IN tag in
TOn xx OUT tag out
BIn xx IN busy in
BOn xx OUT busy out

The parameter xx is either 01,01 or 02 in the current implementation. The signals are also
depicted in figure 7.4. All signals are negative logic. Since the FPGAs2 provide 16 RX
and TX LVDS channels the four signals have been implemented using one channel each.
Since no clock signal is transmitted, and therefore the clocks of transmitter and receiver
are not synchronized, the tag line is asserted for 4 clock cycles. Given a design clock
frequency of 66 MHz this time period is more than sufficient to satisfy setup and hold
time requirements of the tag receiving register. A schematic view of the current TagNet
chain can be seen in figure 7.4.

RU#1 (see figure 7.2) receives a tag and starts its DMA transfer. Besides the TIn and
TOn lines a busy logic has been implemented such, that a DMA engine signals its busy
state to the prior node in the TagNet chain. After a node has finished its DMA transfer
it forwards the tag to the downstream node, which pushes its data to the same remote
node as the one before. This produces the same traffic pattern as shown in figures 6.8 and
6.9. However, forwarding a tag is only possible if the adjacent node does not assert its
busy signal. Upon tag reception a node asserts its busy line to signal an ongoing transfer.
Every node has a pipelined output that allows to store and forward one tag while a new
transfer is already processed. If the output queue is full the BOn signal is not deasserted

2Altera APEX20K400E

7.2. Network Feeds 81

Figure 7.4: The three sending nodes (RUs) also depicted on the left in figure 7.2 are connected
by the TagNet links. The node numbers refer to the numbers introduced in figure 7.2

immediately. A state machine diagram as depicted in figure 7.5 shows the four states of
the TagNet implementation.

Figure 7.5: Finite state machine of the TagNet logic. Using the terms introduced in 6.5, Ttaga

accounts to 12 clock cycles and Ttagb to 13 clock cycles. The time spent in the PCIsend state is
identical to TRUdata with its duration being defined by the assertion period of the PCI FRAME#
signal. Only when the internal output buffer is empty (IntOut=0) the BOn signal is deasserted,
thus avoiding buffer overflow.

State transitions depend on the status of the external TIn and BIn and the internal
PCIdone, IntOut, and PCIsetup signals. PCIdone signals that a PCI transaction has been
finished successfully. After forwarding the tag the system can either return into its idle
state or start a new PCI transaction upon reception of an external TIn pulse. The time in
terms of clock cycles has been measured for the states. Tag reception and PCI transfer do
not overlap and account to 35 clock cycles for a 128 Byte transfer. The internal latency of
the FPGA and tag forwarding do overlap and account to a total of 13 clock cycles. Figure
5.11 shows HDMA results which have not been controlled by the TagNet. The given
TagNet implementation applies an additional overhead of 14 clock cycles per transfer.

82 Chapter 7. The Level-1 Trigger Prototype

The system is stimulated by an external LVDS tag generator implemented in an FPGA.
The stimulation frequency can be programmed by writing into a CSR register accessible
from PCI. If the first node in the TagNet chain deasserts its busy out signal it receives a tag
from the external tag generator. The TagNet signals are analyzed with a logic analyzer.
The resulting picture can be seen in figure 7.6.

Figure 7.6: This logic analyzer screen shot shows the tag flow as measured with three RUs. The
first RU receives a tag (TIn 01), asserts its busy signal (BOn 01) during an ongoing transfer, and
forwards the tag to the adjacent node (TOn 01) after the PCI transaction has been finished. The
nodes are connected as depicted in figure 7.4

The logic analyzer screen shot shows 128 Byte PCI transactions happening at a rate of
1.24 MHz. Whenever a tag is received a PCI transaction is initiated. The tag flow is
depicted by arrows. For this setup the BIn signal of the last node in the TagNet chain is
statically deasserted such that the last node can always forward its tag.

The busy logic allows to monitor the system utilization during run time. For highest
performance BOn must be deasserted as briefly as possible. In the best of all cases a new
tag is received one clock cycle after BOn has been deasserted. The screen shot in figure
7.6 shows a system running not at full speed.

7.2.2 DMA Logic

As outlined in 5.2 a DMA engine has been implemented in an FPGA, which allows to
push data to a specified physical address. A schematic of the design can be seen in figure
7.7.

The major building blocks are the PCI interface, which is provided by Altera, the master
interface, the target interface, and the DMA engine module itself. The figure also shows the
TagNet logic component, which has been described in 7.2.1. Master and target interfaces
are state machines that manage PCI master and target transactions, respectively. The
design is capable of performing PCI target memory read/write and PCI master memory
write transactions. There has been no need to implement master read functionality or
transactions concerning PCI I/O space. An FPGA configuration file is created by using
the Quartus II [47] software provided by Altera [36]. A screen shot of the compilation
process is depicted in figure 7.8.

Each individual DMA transfer is characterized by a descriptor which is shown in figure
7.9. One descriptor holds four 32-bit entries which are target address, blocksize, and two
unused fields for future use. Hence, one descriptor uses 16 Byte of buffer space.

7.2. Network Feeds 83

Figure 7.7: Schematic of DMA logic.

Figure 7.8: Output of the design software as provided by Altera. It reveals that only 15% of
the logic is used.

The field target address holds a 32-bit PCI address whilst the entry blocksize holds the
data block size to be transferred in units of PCI data cycles, which means that an entry
of 0x4, e.g., is equivalent to a block size of 32 Byte on a 64-bit PCI bus. Two additional
fields have been implemented. One field is foreseen to hold the offset into the data buffer
where event data is stored. However, since mockup data is sent at the moment this specific

84 Chapter 7. The Level-1 Trigger Prototype

Figure 7.9: Layout of the descriptor
buffer. Up to 64 different descriptors can
be stored at this point which is sufficient
for the current system size. After each
transfer the descriptor pointer (DP) is in-
cremented.

entry is also unused.

Each DMA transaction can be triggered by either a tag received by the TagNet TIn signal
or a software trigger issued by a local process. DMA transactions are programmable in
means of number of transactions per trigger and number of descriptors that are actually
stored in the descriptor buffer. One trigger can cause anything in between one and an
infinite number of DMA transactions. However, the maximum number of descriptors has
been limited to 64, which is sufficient for the current test environment. After each transfer
a descriptor pointer as shown in figure 7.9 is incremented such that it points to the target
address field of the following descriptor. Software triggering has been used for debugging
and benchmarking purposes as presented in 5.2.

In case of the Level-1 prototype one descriptor is read from the descriptor buffer on tag
reception. The PCI master state machine requests the PCI bus and becomes bus master.
A PCI burst, which is characterized by the entries of the descriptor, is directed towards
the SCI card located in the same bus. On reception of the data the SCI card issues a
remote data transfer into a memory region, which has been exported by the remote node
in an initialization phase. After the PCI transfer has been finished the descriptor pointer
is incremented and the tag forwarded. The latter is only done immediately if the BOn
line of the downstream node is not asserted.

The descriptor buffer is a memory mapped region and thus can be accessed by PCI read
and write memory cycles. Additionally four 32-bit registers accessible from PCI have been
implemented. The registers are used to configure the device and to get information used
for trouble shooting and status.

7.2. Network Feeds 85

Table 7.2: Address space of DMA logic.

Region Offset Name Access Size

BAR0 0x100 DMACNTRL R/W 32-bit
BAR0 0x200 FRQ R/W 32-bit
BAR0 0x300 DESCS R/W 32-bit
BAR0 0x400 TAGS R 32-bit
BAR1 0x0 DESCBUF R/W 256 × 32-bit

• DMACNTRL:

Bit field Name Description
31:11 Transfers Number of transfers
10:8 Resv1 Reserved
7:6 Mode Transfer Mode
5 TagNetEn Enable DMA triggered by tag
4 Resv2 Reserved
3 Clear General clear
2 Resv3 Reserved
1 Status DMA status
0 Start Start DMA transaction

DMACNTRL.Transfers: DMACNTRL.Transfers is the number of DMA trans-
fers, which is processed after reception of a tag or a software trigger. In case of the
Level-1 prototype this bit field is set to one.

DMACNTRL.Mode:

The design can be programmed in terms of how many transfers it should issue per
trigger. In case of the Level-1 trigger prototype only one transfer is initiated per
tag. However, for trouble shooting and stability various settings are possible:

0X: As many DMA transfers are processed as shown in DMACNTRL.Transfers.
However, the maximum number is DESCS + 1.

11: As many transactions are performed as set in DMACNTRL.Transfers regardless
of DESCS. If DMACNTRL.Transfers is greater than DESCS + 1 the descriptor
buffer gets processed again from the beginning. This setting has been implemented
if number of desired transfers is greater than the number of descriptors that can be
stored.

10: This mode has been used for stability tests. The logic loops through the de-
scriptor buffer contents until it is stopped by software.

DMACNTRL.TagNetEn: The design can be stimulated both by an external
signal and by software. This bit enables an external stimulation of the DMA engine
by the TagNet.

DMACNTRL.Clear: The DMACNTRL.Clear bit sets the descriptor pointer
and the TagID as shown in 7.13 to zero.

86 Chapter 7. The Level-1 Trigger Prototype

DMACNTRL.Status: The status of the design can be monitored by reading
a status bit. On completion of a transaction the bit is set.

DMACNTRL.Start: The start bit is set by software process and is redundant
if the DMA engine is triggered externally. It initiates a DMA transfer as specified
by the entries in the descriptor buffer.

• FRQ: The tag generator has been implemented in the same design. However, only
the first client in a TagNet chain is connected to the output of the generator. The
frequency of the tag can be set by writing to this register. The tag generator is
shown in figure 7.4.

• DESCS: Not all entries of the descriptor buffer have to be occupied. The value in
this register is the actual number of descriptors − 1 that are stored.

• TAGS: Every TagNet client can be checked with respect to the number of transfers
it has issued so far. This register has been very helpful for trouble shooting since
the number of processed tags has to be identical for every TagNet client.

• DESCBUF: Memory mapped descriptor buffer, which can store 64 descriptors in
its current implementation as shown in figure 7.9.

Software Interface

To access both registers and the descriptor buffer from PCI a software library has been
used [48]. PCI commands like memory read and write can be used from user space. As
outlined in 4.4.3 the SISCI library provided by Dolphin allows to import remote memory
regions. However, the addresses retrieved are virtual addresses and can not be used by
the DMA logic directly. To translate virtual addresses into their physical counterpart a
function callable from user space has been implemented into a Linux kernel module.

To initialize the device to be used correctly in Level-1 trigger prototype mode the following
steps have to be executed.

• First the system is reset by DMACNTRL.Clear. This is done every time the system
is used to stop any potential ongoing transfers.

• The physical addresses of the imported memory regions and the size of the data to be
transferred is written to DESCBUF. Since the SISCI API delivers a virtual address,
the physical address has to be acquired by a call which has been implemented in a
Linux kernel module [48]. More details can be found in the appendix A.3.

• DESCS has to be initialized depending on how many descriptors should be used. In
case of a 26 node cluster having two data buffers each, this number would be 52.

• The DMA engine has to be programmed to initiate one transfer per incoming trigger
in case of the LHCb Level-1 trigger prototype. This is done by using the DMACN-
TRL register.

7.3. Global Shared Memory 87

7.3 Global Shared Memory

If compute nodes want to exchange data using the shared memory concept a memory
region accessible from all participating nodes is setup. No difference to common memory
operations can be seen since user space processes use virtual addresses to access remote
memory. Thus, a totally transparent programming model is utilized. In our environment
all nodes used as data receivers export m physical memory regions of s kByte each into
the global SCI address space. Both m and s are variable and can be set on startup. Every
RU imports all the regions and therefore will end up with a total shared memory chunk of
m×s kByte per CN and m×N addresses with N being the number of compute nodes. N
is limited by the maximum amount of imports which is 16k in the current implementation
of the PSB66.

Figure 7.10: Every single compute node can export m chunks of memory. The figure shows
three compute nodes exporting two memory regions each as an example. Afterwards the RUs
import all exported regions. CN #2 runs two processes which map the memory regions into their
virtual address space to have access to data sent via SCI.

Figure 7.10 shows three nodes exporting two physical memory regions each into the global
SCI memory space and one RU importing the regions afterwards. The import/export
functionality has been implemented in C using the SISCI API, a programming interface
provided by Dolphin. When a region is imported and mapped to user space, a virtual
address is returned to the calling process. However, to use this address with hardware
devices the virtual address must be translated into its physical counterpart. Every RU
runs a process that imports the regions at system initialization time. The virtual addresses
are stored in an array and translated to physical addresses one after the other. After
the address translation has been finished every RU holds an array of physical addresses
pointing to remote memory regions. In the current test environment every compute node
exports two memory regions of 4 kByte each which is sufficient for the event sizes used
in the prototype. As depicted in figure 7.2 one node is used to function as the Level-1
Decision Unit Interface, which receives the 128-bit result messages. Thus, in the largest
possible setup 26 compute nodes are used.

All physical addresses are transferred to the descriptor buffer of the DMA engine via the
PCI bus. Besides the addresses the data size to be transferred has to be stored. Figure

88 Chapter 7. The Level-1 Trigger Prototype

7.11 shows the content of some descriptor buffer entries after initialization time.

Figure 7.11: During the initialization phase every RU imports the memory regions exported
by the compute nodes. This is done by software and results in 52 virtual addresses when 26 CNs
export two memory regions each. After those addresses have been translated to physical addresses
they are transferred to the DMA engines’ descriptor buffer located in the FPGA. The figure shows
a snapshot of some descriptor buffer entries after initialization. Descriptor entries labeled NU are
not in use.

Every descriptor holds four 32-bit data words; the address, the data transfer size in units
of 4 Byte, and two fields that are currently not in use. If node #1 sends to address
0xc2000000, e.g., a remote data transfer of size 128 Byte via the SCI interface card is
initiated.

7.4 Data Transfer

7.4.1 Transfer Order

The current implementation uses a static address buffer since the scheduler has not been
implemented yet. Thus, the order, in which CNs are addressed is determined by the order
of addresses stored in the descriptor buffer. Memory regions are imported and their base
addresses stored in the descriptor buffer row by row starting from the upper left corner of
the torus sketched in figure 7.2. Since every CN exports two memory regions, the second
region is filled in a second iteration. Figure 7.12 gives an overview of the final order of
base addresses in the descriptor buffer.

Once the system starts transferring data RU #1 will transfer its data to CN #1 buffer
#1. After the transfer has been finished RU #2 will transfer the second data chunk to
that compute node. In the meantime RU #1 has received a new trigger command and
transfers data with the target being in the second column of the torus. Thus, after three
trigger signals have been issued a simultaneous transfer can be observed. A compute node
is addressed again after N trigger signals with N being the number of compute nodes.

7.4.2 Data Format

The data, which is transferred in a PCI burst, is variable in size and can be set during
the initialization phase. If datasize indicates the size of the data block measured in byte
and baseaddress marks the address of the remote buffer as stored in the descriptor buffer

7.5. Data Integrity 89

Figure 7.12: Since no scheduler has
been implemented so far the order in
which remote nodes are accessed is set by
the order of descriptors. The figure shows
the descriptor order in a buffer. The read
pointer is depicted to the left. It is in-
cremented every time a transfer has been
finished.

of RU#1, the RUs write to the buffer sequentially starting at baseaddress. Thus, for
datasize equal to 128 Byte the write offsets are set to 0 Byte, 128 Byte, and 256 Byte for
RUs #1, #2, and #3, respectively.

The data being transferred are mockup data, which hold an identifier unique to a trans-
ferred event. The tag ID is incremented for every new event whilst the index field is
incremented every PCI data cycle. Thus, every data word holds an identifier, which is
unique during a certain time frame, e.g. more than 53ms in case of a 16-bit wide counter
and a transfer rate of 1.24 MHz. This simplifies troubleshooting in case of problems. For
128 Byte bursts 16 64-bit data words are transferred. Figure 7.13 shows a data word as
transferred in one data cycle on the PCI bus.

Figure 7.13: A 64-bit mockup data word as transferred every PCI data cycle. The least
significant bit is to the right.

7.5 Data Integrity

The current TagNet loop is not closed since the CNs do not report back to the TagNet
scheduler after processing an event. Therefore, a statistical proof of event reception has
been chosen. A data integrity process running on every node checks the incoming data
and creates some statistics. However, a standard Linux distribution is used which does not
guarantee that the process is active all the time. The process can be suspended because
of context switches or interrupts that have to be processed.

Data is written into the host memory of the compute nodes and is overwritten again after
m × N transfers. The time this takes depends on the sending frequency of the RUs and
the number of event buffers in the system. For the results presented here the setup chosen
comprises 26 CNs having two event buffers each and three RUs sending a data packet every
810 ns. Since data transfer happens in a round-robin scheme it can be calculated that

90 Chapter 7. The Level-1 Trigger Prototype

every buffer is overwritten after 42.12µs (m = 2). The time period in between memory
accesses must be used to check if all packets have arrived.
As explained above every compute node receives three packets coming from different
sources. The current test environment focuses on sending 128 Byte packets, which is
equivalent to the SCI packet size. Therefore, checking one 32-bit word every packet is suf-
ficient to check for lost data packets. Every compute node exports two memory regions,
event buffer 1 and event buffer 2, which are addressed by the sending nodes. After data
has been written to buffer 1 of a node a certain time period passes by where all other
nodes receive their data packets. When the node is addressed again data is written into
the second buffer, buffer 2. This time is 21µs in the current setup. Figure 7.14 shows a
data flow diagram of the algorithm which checks for data integrity.

Figure 7.14: Flow diagram of the algorithm checking the incoming data packets.

The first data packet residing at offset zero in one of the buffers is analyzed by reading
its first 32-bit word. As depicted in figure 7.13 the less significant 32-bit of a 64-bit word
hold the tag ID and the index. Thus, the data transferred by the other two data packets
can be compared easily by comparing the tag ID of all three data packets. If the buffer
has been checked the process continues to check the other buffer.
If all three buffer slots show identical contents a 128-bit message is sent to the Level-1
Decision Unit Interface and the other buffer is analyzed. This is depicted by the blue
(left) part in the data flow diagram. Since the tag IDs are temporarily stored until the
next iteration is processed the algorithm can check if the new data received is the next
that is expected. Under normal conditions the next data set analyzed has always been the
expected one.
The current implementation waits for data to arrive in one buffer but checks the other
one. The other data buffer must have new data by that time. However, if the buffers

7.5. Data Integrity 91

are checked using this scheme, this has to happen within the 21µs. There are two events
that could detain the algorithm from its job and therefore induce wrong interpretation of
results. One is process scheduling. It has been determined that the Dolphin device driver
accesses the SCI card every second and thus causes a context switch. However, features
like that can be turned off by manipulating the device driver. The second reason of process
suspension are interrupts. Since standard Linux distributions have been used on the CNs
the system clock which is based on periodic hardware interrupts is updated every 10 ms.
Thus, the operating system has to process 100 interrupts every second. Every interrupt
means suspension of the running process, interrupt handling, and eventually running the
process again. This accounts to a total estimated minimum suspension time of 15µs
for every interrupt processed. The number is based on the findings outlined in 4.3.2.
Additionally, the system is equipped with an Ethernet card which creates an interrupt
whenever a packet is received.

The algorithm reports mismatches in buffer slot contents by writing to a log file. However,
a second method of debugging has been used. Whenever a situation occurs which is not
understood a specific rare pattern is written to one of the sending nodes. Both nodes
are equipped with PCI analyzers and trigger on the defined pattern. Therefore, the PCI
trace on RU and CN can be analyzed to check for lost packets. However, in all cases that
have been analyzed so far the reason of error messages has been the CN itself. Caused
by a context switch or an interrupt data can not be checked and is eventually already
overwritten when the process is running again.

Thus, situations that are understood but deliver buffer mismatches are ignored and no
message is sent to the Level-1 Decision Unit Interface. However, if situations occur which
seem to need further investigation the process branches into the right part of the flow
diagram depicted in figure 7.14. Being in that part of the flow diagram will trigger PCI
analyzers and produce an entry to a log file.

Figure 7.15 shows the summarized results after the system has been running for 5 minutes.

Figure 7.15: Result of a 5 min test run.
The algorithm tested the buffers Ntries
times, reported 8 times that the buffer
shows data mismatches, and missed a to-
tal of 237 events.

The histogram resembles the log file written on one various picked CN. The algorithm
looped 14612248 times (Ntries), reported that all buffer slots contain valid data for all
events besides eight — NAllOK is 14612240. NAllOK is incremented whenever the buffer
slots are identical which is depicted by the blue left part in figure 7.14. However, 237
events have been missed since NNextAllOK equals 14612013. NNextAllOK is incremented
whenever the three buffer slots are identical and additionally contain the data expected
next. Running for five minutes caused 30000 interrupts by the system clock. Therefore,

92 Chapter 7. The Level-1 Trigger Prototype

the process has been suspended for 450 ms total. Most of the times the process has been
running to poll for new data to arrive. However, sometimes the process gets suspended
in its critical phase. The critical phase is defined as the portion of the code which reads
and compares the three buffer slots. During process suspension the data buffer might be
overwritten by the following event.

Figure 7.16 shows the amount of time it takes until an event is checked. Especially the
tails in the histogram account for suspension time caused by interrupts. The number of
events that take more than 5µs to be checked accounts to less than 6500 for this specific
example.

Figure 7.16: A time histogram shows
that in 76% of all loops the event data
is successfully checked within 1µs. Af-
ter 2µs 99.87% of all data is checked suc-
cessfully. The part of the events being
highlighted in red corresponds to 30000
events.

The result shows that all data packets are delivered and almost 100% of all events can
be checked by the process. This is possible without using a real-time operating system.
Given the overall Level-1 latency of 1.6 ms a real-time operating system is not necessarily
required.

7.6 The Level-1 Decision Unit Interface

As described in the previous section a message is sent to the Level-1 Decision Unit In-
terface after the event buffer contents have been analyzed. Every event buffer in the
system writes its message into a shared memory region located on the Level-1 Decision
Unit Interface. The message sent by the CNs can be seen in table 7.3.

Table 7.3: 128-bit message sent to the Level-1 Decision Unit Interface .

Bit field Name Description
127:96 Nallok Number of transfers
95:64 Ntries Number of Algorithm loops
63:48 NodeID Node ID
47:32 Status Error Status
31:16 TagID TagID
15:0 Rsv Reserved

The TagID field holds the tag ID of the analyzed data, Status holds the error status of the
event data currently checked, Ntries the total number of loops the process has executed

7.6. The Level-1 Decision Unit Interface 93

so far, and Nallok the number of loops with the analyzed event being the next expected
one. The node ID of the node transmitting the message is also transferred. Currently
three different status messages are distinguished. Under normal condition the status field
signals that the data received has been correct. A different status message is sent if the
three tag IDs compared are different but the situation is understood. The third status
message produced labels a non understood condition. If the latter status message occurs
the situation can be analyzed with a PCI tracer located in the node that detected the
condition.

Figure 7.17: Level-1 Decision Unit In-
terface as implemented in software.

The Level-1 Decision Unit Interface has been implemented as a cyclic buffer. Every event
buffer in the system gets assigned one buffer slot. Figure 7.17 shows a sketch of the buffer
allowing memory mapped access from every CN. A read pointer (RP) is moved along the
buffer entries. On reception of the next message an internal statistic is updated. If a
message does not occur within a certain time a timeout watchdog increments an internal
timeout counter and moves the read pointer to the next entry.

The Level-1 Decision Unit Interface software reports the system status. A summary can
be seen in figure 7.18.

Figure 7.18: The Level-1 Decision
Unit Interface collects data coming from
26 CNs and calculates some statistics.
All nodes executed a total of 379901605
loops, verified almost 100% of all data as
valid and the next in line.

The system has been running for 5 minutes. This can roughly be calculated by taking
the number of tries and the system frequency of 1.24 MHz into account. 20 situations
have occurred where the results reported by the processes running on the CNs do not
match the buffer mismatches that have already been investigated closely. However, these
mismatches reported do not show any wrong event data. The mismatches might be due
to additional interrupts that have to be handled. An interrupt source is the Ethernet card

94 Chapter 7. The Level-1 Trigger Prototype

being present in every CN. However, the setup has focused to identify packet loss. The
interrupt handling of the Linux OS is of minor interest at this point. Within the time
period checked close to 100% of the events have equivalent buffers. Almost 100% of all
events that have been checked successfully also had had the next expected tag ID.

Compared to the number of interrupts that is expected it can be stated that almost none
of the interrupts occurring do influence the system. This measurement has been made on
a compute cluster running standard Linux. Therefore, also a system wide analysis shows
that a real-time operating system is not required necessarily for the LHCb Level-1 trigger.

7.7 System Performance

Since a global shared memory is used overhead is minimized. Both the sending and
receiving nodes transmit the data in PCI bursts, which are characterized by the FRAME#
signal asserted longer than one PCI clock cycle. A 128 Byte PCI data burst sequence on
the sending node can be seen in figure 7.19. The burst frequency is measured to be
1.24 MHz, which corresponds to a period of Tburst = 810ns.

Figure 7.19: The figure shows a PCI trace of 128 Byte bursts in one of the sending nodes. The
send frequency in the trace is 1.24 MHz.

A PCI burst, as depicted by the frame signal in figure 7.19, is characterized by one address
cycle, seven wait cycles due to the target setup time of the Dolphin PCI card, and 16 data
cycles to transfer 128 Byte. 30 idle cycles are in between bursts if the system is running
with 1.24 MHz as expected according to section 5.2.2.

Figure 7.20 shows PCI transactions in one of the compute nodes. After reception of three
data packets, each sent from a different RU the PCI bus is idle for a certain period of time.
The idle time depends on the number of compute nodes N. Since 26 nodes export memory
regions the idle time can be calculated to be Tidle = N × Tburst. The zoomed trace shows
the reception of three data packets coming from the RUs and the 128-bit result message.
Differences in time in between packet reception is due to different network paths.

As explained earlier a 128-bit result message is sent to the Level-1 Decision Unit Interface.
These messages are not synchronous compared to the data packets presented in figures
7.19 and 7.20. The messages received are not necessarily in the same order as an analysis
shows. Reasons are differences in latency due to different network paths or simply delayed
response of the analyzing process due to process scheduling. A PCI trace taken on the
result node can be seen in figure 7.21.

The messages, which can be seen in the figure correspond to the message format shown in
table 7.3. The system has always been monitored with PCI tracers. It has been running
stable for several days and could be restarted without any problems. The traffic patterns
measured and presented do agree with the patterns expected.

7.8. System Frequency 95

Figure 7.20: The figure shows a PCI trace in one of the receiving nodes. The trace shows a
setup for N = 26 resulting in Tidle = 21µs on the top PCI trace. The bottom measurement shows
a zoomed PCI trace, which shows the data packets coming from the different RUs and the 128-bit
result message sent to the Level-1 Decision Unit Interface .

Figure 7.21: The figure shows a PCI trace in the Level-1 Decision Unit Interface. The PCI
traffic shows asynchronous behavior.

7.8 System Frequency

The maximum transfer frequency of the system as implemented at the moment has been
measured. The maximum frequency is reduced by the busy logic of the TagNet implemen-
tation. A timing analysis of the TagNet implementation has been made in 7.2.1. It has
been measured that the TagNet accounts to an additional overhead of 14 clock cycles per
transfer. By looking at the dependency Ncc = 14 + N128 × 34, with Ncc being the number
of clock cycles per transfer and N128 being the number of 128 Byte bursts, it becomes clear
that the system is slowed down especially for small block sizes. Taking 128 Byte transfers
as an example, the difference between the data presented in figure 5.11 and the result ob-
tained with TagNet connections is 580 kHz. Therefore, an approach with an input queue
and pipelined transfers are significant to the final system. However, the results achieved
are within the requirements of the Level-1 trigger and can be considered sufficient for basic
analysis of the system. Figure 7.22 shows the maximum frequency that the system can
achieve in the current implementation. The measured results are less compared to figure
5.11 because of the overhead of the TagNet implementation.

As shown in the figure 7.22 the maximum frequency supported by the current implemen-

96 Chapter 7. The Level-1 Trigger Prototype

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000 1100

f [
M

H
z]

Blocksize [Byte]

TagNet frequency

Figure 7.22: Maximum TagNet frequency in MHz as measured for block sizes up to 1024 Byte.
The time periods measured differ by 14 clock cycles compared to the data presented in figure 5.11.

tation is 1.38 MHz for 128 Byte packets. This corresponds to an input bandwidth of
168 MByte/s. For our current tests usually the slightly smaller frequency of 1.24 MHz is
chosen. This corresponds to 810 ns, which is slightly less than the readout time of the
Level-0 derandomizer.

7.9 Scalability

A 2D-torus has been chosen as topology. Compute power can be added by adding a
column, input bandwidth can be added by adding a torus row. The latter will also add
additional compute power to the system. However, one limit could be set by the maximum
number of memory regions that can be imported by one RU. Currently this number is
set to 128. A RU in the final LHCb Level-1 trigger will import at least 1200 memory
regions. However, the number has been fixed because of software implementation issues
and is expected to be increased by the developers at Dolphin soon.

The system has been fed by maximum frequencies as shown in figure 7.22. No retry traffic
caused by SCI network congestion has been observed. This statement holds true for setups
utilizing different numbers of columns. However, since it is planned to use two RUs in
the horizontal ringlets such scenarios have been investigated. Systems that do not scale
can be identified by congestion. Congestion is commonly caused by independent devices,
which substantially use the same part of the network. However, this can be identified by
analyzing the RUs. If there is congestion in the network retry traffic on the RUs PCI bus
can be measured since the buffer of the SCI card has not been cleared meaning that the
node has not delivered its data yet. This is commonly caused by the following reasons:

• The receiving node can not accept all request send packets.

• An intermediate node can not cope with the bypassing traffic. This is caused by
sharing the same link segments.

7.9. Scalability 97

The first argument does not hold true for the system presented since traffic directed to
a CN is orchestrated by the TagNet logic. However, if more than one RU is planned
to be used on one horizontal ringlet both input feeds use parts of the horizontal ring
concurrently. The bandwidth available through the SCI network should be sufficient for 2
RUs. However, the results presented in chapter 5 suggest that bypassing traffic can have
a serious impact on a sending RU.

7.9.1 Non-Scheduled Transfer

Three RUs have been placed next to each other in a six node ringlet. Each RU has
been configured to send 128 Byte packets to one specific receiver with maximum possible
frequency. Figures 7.23, 7.24, and 7.25 show the result of one of the test runs.

Figure 7.23: One RU sends 128 Byte
of data with the maximum frequency of
1.96 MHz. The logic analyzer shows the
FRAME# signal on the PCI bus of the
sending node.

Figure 7.24: Two RU try to send
128 Byte of data with the maximum fre-
quency of 1.96 Mhz each. However, retry
traffic can be observed on one of the
nodes.

Figure 7.25: After the third RU starts
sending the data rate on two RUs drops
significantly.

The RUs have been initialized to send with the maximum frequency fmax of 1.96 MHz
as shown in figure 5.14. As the traces show, one RU can send with maximum frequency.
However, if a second and third RU starts sending data only one RU can keep the maximum
data rate. Only the RU, which is located upstream at the most such that its bypass FIFO
is never filled by the request send packets of the other RUs achieves full bandwidth. This
test has been made with RUs, which have not been synchronized and an intended data rate
of 239 MByte/s per RU. Figure 7.26 shows a similar setup in a 10 node ringlet. However,
every RU has been sending data to four different receiving nodes each.

98 Chapter 7. The Level-1 Trigger Prototype

Figure 7.26: Two RUs share a horizon-
tal ringlet and try to send with 128 Byte
of data with a rate close to 2 MHz. The
PCI FRAME# signal is analyzed and
shows retry traffic for the RU presented
by FRN 02. However, aggregate maxi-
mum transfer rates of up to 478 MByte/s
payload can be observed.

Aggregate peak bandwidths of 478 MByte/s have been measured corresponding to 83%
of the net SCI bandwidth. However, retry traffic has been observed on the node being
located downstream at the most. In case of the LHCb Level-1 trigger this effect would
lead to a non-predictable latency time. A node that throttles might influence all RUs since
the tag can not be forwarded on time. However, the PCI interface of the RU could detect
such a situation and forward the tag in advance.

7.9.2 Scheduled Transfer

The same measurements have been done in the LHCb prototype environment using the
TagNet implementation. Figure 7.27 shows a sketch of a setup with two RUs being located
next to each other.

Figure 7.27: Two RUs share a horizontal ringlet and are connected by the TagNet. The SCI
cabling is chosen such that packets sent by RU#2 have to traverse the bypass FIFO of RU#1.

Different block sizes have been used with the maximum frequency allowed by the TagNet
implementation (see figure 7.22). One or more FRAME# signals asserted for 9 clock
cycles in a row followed by a burst of data identifies retry traffic on the PCI bus. However,
no impact on the sending frequency could be found for block sizes up to 256 Byte in size.
However, when using 512 Byte blocks retry traffic can be observed. Figure 7.28 shows
that the FRAME# signal of RU#1 (FRN01) signals retry traffic on the PCI bus.

By choosing 512 Byte block sizes the bypass FIFO of RU#1 always experiences the same
traffic pattern; four 128 Byte packets separated by 150 ns and a larger gap caused by the
TagNet overhead. However, this traffic scheme is sufficient to see the retry effect. The

7.9. Scalability 99

Figure 7.28: Retry traffic caused by
bypass traffic. RU#1 has to issue retries
which is due to bypass traffic originating
from RU#2.

TagNet frequency has been adjusted such that no retry traffic can be observed anymore.
The frequency can be adjusted in single clock cycles on the PCI bus. Figure 7.29 shows
the traffic pattern when no retry traffic occurs anymore.

Figure 7.29: No retry traffic can be
observed by adjusting the bypass traffic
frequency. The sustained bandwidth ac-
counts to 432 MByte/s.

The bandwidth measured is 432 MByte/s. This bandwidth is the maximum bandwidth
feasible in a system of 2 RUs being located next to each other. This bandwidth, BLink,
has been introduced in 6.2. If two RUs want to utilize BLink, they are allowed to send
with a frequency of 1.79 MHz each, 128 Byte packets assumed.
However, RUs do not have to be located next to each other as depicted in chapter 6 figure
6.1. Figure 7.30 shows an architecture with displaced RUs.

Figure 7.30: Displacing the RUs minimizes SCI bypass buffer occupancy on the node further
downstream. The direction of request-send packets is depicted by two example transfers.

The figure shows six RUs connected by the TagNet and 24 CNs. As an example concurrent

100 Chapter 7. The Level-1 Trigger Prototype

data transfer of RU#1 and RU#2 is shown. If the RUs on the far left send data to partition
A, no request-send packet has to traverse the bypass FIFOs of the RUs located in the center
of the torus. Only targets which are located in partition B require bypassing the second
RU column. The same situation is true for RUs being located in the center of the torus.
Only when traffic is directed to a destination in A data packets will bypass a RU column.
Assuming scheduling such that the load in the system is balanced every RU has to bypass
50% of the rows traffic. In the original setting the RU being located further downstream
has to cope with 100% of the traffic originating from the RU upstream.

Measurements have been made with balanced traffic to investigate if BLink can be in-
creased by a setup like this. 512 Byte transfers have shown no impact on neither RU. The
block size has been increased up to 4096 Byte with no retry traffic observed. Figure 7.31
demonstrates that no retry traffic can be observed anymore on neither RU.

Therefore, it can be stated that displacing the RUs increases BLink. BLink peak band-
widths of 478 MByte/s have been observed. This can be calculated to be 83% of the net
SCI bandwidth. It corresponds to one RU sending 128 Byte packets with a frequency of
1.96 MHz as depicted in figure 5.11. However, the average bandwidth observed over a
long time period has been 472 MByte/s.

Figure 7.31: Two RUs being lo-
cated as proposed in figure 7.30 increase
BLink. The peak bandwidth measured
is 478 MByte/s whereas the average
bandwidth over a long time interval is
472 MByte/s which is due to the overhead
implied by the TagNet implementation.
The block size has been set to 4096 Byte
with the network load being balanced.

Unbalanced tests have been conducted as well. Figure 7.32 shows the result of a setup
where both RUs send in partition B all the time. Since every request-send packet of RU#2
must traverse RU#1 the traffic pattern is similar to a setup with non-displaced RUs.

Figure 7.32: Two RUs being displaced
send into the same partition. The trace
shows retry traffic at a total bandwidth of
453 MByte/s and a block size of 512 Byte.

However, a different setup has been chosen to investigate the traffic pattern when RUs
being located in the same row send constantly into the same column. Figure 7.33 reveals
that retry traffic can be observed on both sending nodes. The aggregate bandwidth for
this setup has been set to 453 MByte/s. Therefore, a filled bypass FIFO can not be the
reason for performance loss.

The B-Link is the reason for decreased system performance since the aggregate bandwidth

7.10. B-Link Performance 101

Figure 7.33: Two RUs being displaced
send into the same column. Retry traffic
on both RUs can be observed. The aggre-
gate bandwidth is 453 MByte/s with the
block size being 512 Byte.

in this setup accounts to 89% of the peak net bandwidth of the B-Link. This calculation
assumes one bus turn-around cycle in between packets. However, this will be investigated
in 7.10.

The SCI driver running on the RUs implements some heartbeat functionality which checks
the local SCI card every 100 ms. Additionally remote nodes are probed every second.
This causes additional traffic on the RUs PCI bus which is not due to network congestion.
However, in the final system those features will be turned off.

It can be stated that a system with two RUs in a row is feasible. However, the results
presented have impact on the way the TagNet scheduler must assign CNs. It must be
avoided that RUs being located in the same row send to the same partition at any given
time.

7.10 B-Link Performance

The RUs have to send the data to a specified CN. Therefore, the data have to be routed.
BB−Link is defined as the maximum bandwidth that can be handled by the B-Link. The
aggregate peak bandwidth has been measured in a ringlet and in a torus. The sending
nodes have been chosen to be CN 01 and CN 02 whereas the receiving nodes have been
chosen to be CN 04 and CN 05. The nodes are depicted in figure 7.27. In case of the torus
the data path has been chosen such that a route node is in between sending and receiving
nodes. Thus, receiving nodes have been moved to be CN 13 and CN 23 with CN 03 being
the route node.

Figure 7.34 shows the result of the measurement taken in the ringlet. The aggregate peak
bandwidth observed at the receivers is 478 MByte/s. The aggregate data packet frequency
is 3.92 MHz with the data size being 128 Byte.

Figure 7.34: Aggregate bandwidth for
two CNs in a ringlet. The maximum
bandwidth achieved is 478 MByte/s. The
measurement has been taking on the re-
ceiving sides. The aggregate data packet
frequency is 3.92 MHz with the data size
being 128 Byte. Sending nodes are CN
01 and CN 02 whereas CN 04 and CN 05
are receivers (see figure 7.27).

102 Chapter 7. The Level-1 Trigger Prototype

The very same setup has been transferred to a torus. Figure 7.35 shows the result of the
measurement. The top screen shot shows the situation when only one CN is receiving
data. However, when both CNs receive data the peak aggregate bandwidth drops to
450 MByte/s which is BB−Link. The maximum B-Link net bandwidth can be calculated
to be 512 MByte/s. Therefore, the measured value for BB−Link is 88% of the theoretical
one.

Figure 7.35: Aggregate bandwidth
for two CNs in a torus. All traffic
goes through the same route node. The
maximum bandwidth observed has been
450 MByte/s. Sending nodes are CN 01
and CN 02 whereas CN 13 and CN 23 are
receivers (see figure 7.27).

The only difference in the data path between ringlet and torus is the passage through the
B-Link in the route node. However, in the final system data will not be routed by one
single node at a rate coming close to this performance test. A scheduled system will pick
the targets such that traffic originating from one torus row gets distributed into different
columns. Assuming a system with two RUs in one row sending 128 Byte with 1.11 MHz
each, the aggregate bandwidth on the horizontal accounts to 271 MByte/s. Assuming a
system with 17 CN columns, every route node has to provide the fraction of 16 MByte/s
on its B-Link to satisfy routing requirements.

7.11 System Latency

The time an event stays in the Level-1 prototype has been measured. Figure 7.36 shows
the setup and the packet path, which has been used for measurements.

Figure 7.36: Packet path for system latency measurements.

Two PCI tracers have been used to measure the time an event stays in the system. One

7.11. System Latency 103

PCI tracer has been located in RU#3, which is the last RU in line that sends a packet
to a specific CN. The PCI tracer triggers on a specific data set, which is sent to CN#00.
The path of the 128 Byte SCI send packet is shown in red. On CN#00 a modified packet
integrity algorithm is running. It polls on the event buffer where data is expected next and
checks it immediately. After reception of all three data packets the 128-bit result message
is sent to the Level-1 Decision Unit Interface. The path for this message is shown in
green color. The Level-1 Decision Unit Interface is also equipped with a PCI tracer, which
triggers on the message coming from CN#00. Since both tracers are capable of producing
an external trigger signal both signals can be fed into an oscilloscope and the latency can
be measured. Figure 7.37 shows the result of one measurement. Several measurements
have been made. The result is shown in table 7.4.

Figure 7.37: Latency as measured
with two PCI tracers.

Table 7.4: System Latency for the setup shown in figure 7.36.

TSY SLAT ∆TSY SLAT

7.38 µs 0.27 µs

The time measured can be split as follows:

• TnetworkIN : Data is moved to the specified CN. The path is shown in red color.

• TCN : The process compares the three received SCI packets and sends a message to
the Level-1 Decision Unit Interface .

• TnetworkOUT : Data is moved to the Level-1 Decision Unit Interface. The path is
shown in green color.

If the results presented in section 5.1.4 are taken into account TSY SLAT for the setup
presented in figure 7.36 can be split up in the following way:

TSY SLAT = TnetworkIN + TCN + TnetworkOUT

= 2 × TLat PCI + 2 × TLat Rt + 8 × TLat By + TCN

= 4.42µs + TCN

104 Chapter 7. The Level-1 Trigger Prototype

With the value measured for TSY SLAT , TCN roughly accounts to 3 µs. The measurements
have been verified by choosing a CN which does not require routing of data packets. The
measured value has been less according to the results presented in section 5.1.4. The
latency does not depend on the system traffic. Setups have been chosen where only part
of the network are utilized. No influence on the system latencies has been observed.

7.12 Fault Tolerance

Some simple tests with respect to fault tolerance have been made. The full system has
been started and one CN, which has been randomly chosen has been stopped but not
powered off. All measuring devices attached to the system have shown normal output.
The same result has been achieved by stopping the Level-1 Decision Unit Interface. A
CN node has been stopped and its PCI bus monitored. All messages are still written to
the specified location in host memory. However, since the data integrity check process has
been killed no result message is returned. These observations show that the system is not
influenced by a node that crashed. However, in case of a power failure one node will affect
two ringlets. To prevent that case, it has to be considered to implement a fault tolerance
system in hardware, which can cope with power failures in a CN.

Chapter 8

Summary and Outlook

This thesis has been the first step towards the design and implementation of the Level-1
trigger processor of the LHCb experiment. Boundary conditions have been set upon
the trigger which have been studied both theoretically and in experimental work. The
boundary conditions which had to be met are as follows:

• A large scale COTS compute farm should be connected by high-speed interconnect.
The number of network nodes is not final and depends heavily on simulations done
by physicists at CERN. Therefore, a scalable solution had to be found which satisfies
network latency and bandwidth needs.

• The Level-1 trigger receives data every microsecond with data being split into tiny
fragments of 128 Byte on average. The interface to the NIC is PCI to minimize cost
especially on the receiving side. Therefore, data has to be moved across the PCI
bus every microsecond, avoiding additional overhead and making best use of the
bus resource. Additionally, the 128 Byte data fragment size is an assumption of the
author. Average data sizes change frequently depending on the latest simulation.

A shared memory based NIC has been investigated — the Scalable Coherent Interface.
Analyzing the PCI bus with respect to additional overhead, revealed that moving data
by SCI contains no overhead on the PCI bus which has seemed to be a possible solution
for the LHCb project. However, using conventional methods like PIO and DMA make
the system depend on the CPU load, the chipset, and on the response time of the SCI
hardware in case of DMA. The latter is especially noteworthy when discussing backup
solutions without system changes. PIO which is especially appropriate for small block
sizes could not give the necessary yield on the sending side. However, data is not located
in the host memory of a PC in case of LHCb and the data does not have to traverse the
hostbridge of the sending node.

Therefore, a solution named Hardware Initiated DMA (HDMA) has been introduced.
HDMA relies on a device-to-device copy with an additional logic device being located on
the same PCI bus as the SCI NIC. Once an initialization phase has been finished, data
can be moved directly to a remote node without intervention of the CPU or the chipset.
The latter is only used for bus arbitration which happens reasonably fast in nowadays I/O
solutions. The logic has been implemented in an FPGA with PCI interface. Initial studies

105

106 Chapter 8. Summary and Outlook

on a 32-bit/33 MHz architecture have been done with interleaved and non-interleaved
solutions. Especially the interleaved solutions has made best possible use of the PCI
resource. Using data bursts and only one idle cycle between different mockup sub-events,
data rates of up to 1.51 MHz for 64 Byte data payloads could be achieved.

With 64-bit/66 MHz bus solutions becoming available the interleaved transfer scenario had
to be dropped because of lacking slot resources on the motherboards. However, moving to
faster FPGAs making use of the fast PCI bus has shown a promising result. Measurements
have been presented in chapter 5.2, showing results of HDMA, packet latency, and behavior
of large ringlets.

Packet latency is a crucial issue when designing a large scale system. The LHCb Level-1
trigger can be calculated to have roughly 300 farm nodes. The SCI cards have sufficient
buffer space each as mentioned in 4.5. However, scenarios with multiple senders sending to
one receiver and a data rate being as high as 4.5 GByte/s on the receiving side will cause
congestion and retry traffic. A hardware based scheduling network has been designed
which is only touched in this thesis. The basics of the TagNet are discussed and data
traffic as foreseen has been sketched and measured. The network latency can also be
predicted for large systems by extrapolating hands-on results presented in this thesis.

Taking the buffer space and the SCI protocol into account the maximum ringlet size which
does not show retry traffic has been calculated. The calculation is based on the network
path combined with the fact that SCI output buffers are not end-to-end based but rather
ringlet oriented. The maximum ringlet size which can be run congestion free has been
roughly determined to be around 100 which is far beyond the size the LHCb experiment
will implement. The expected maximum ringlet size will be around 18 for the final system.

Taking the consideration above into account a 30 node compute farm has been set up. It
comprises three sending nodes (RUs), 26 receiving nodes (CNs), and one dedicated node
which receives the result messages of the CNs. A TagNet basic version has been imple-
mented using the internal LVDS drivers of the FPGAs and flat ribbon cables. However,
this implementation has been successful in many overnight runs guaranteeing data orches-
tration and congestion control. A software suite has been developed which initialized the
compute farm in the beginning, starts processes on every CN, and a software based Level-1
Decision Unit Interface process on one node. Stimulated by an external tag generator the
system has been moving data for many days in row, keeping a log file when a situation
occurred which could mean an error condition. A data integrity process has been running
on every CN. No packet loss has been detected. However, mainly caused by interrupts the
process is sometimes suspended and can not check its event buffers.

Many obstacles had to be taken until the system had been up and running. Trouble
shooting revealed that part of the cards had a design flaw. After their replacement the
cluster ran out of the box. Two FPGA families have been used since 1999. However, since
logic has been described in VHDL porting of functionality to the Altera solution has not
been that time consuming. However, dealing with the PCI core of the Altera does require
more logic compared to Lucent.

Two bottlenecks have been investigated which have not been obvious in the very beginning
of the project. Bypassing traffic is influencing the RU being further downstream and thus
limiting BLink to 432 MByte/s. However, by displacing the RU first measurements have
shown that BLink can be increased up to 472 MByte/s of sustained bandwidth.

107

The maximum bandwidth that the B-Link can handle has been measured as well. The
result has no significance for LHCb since the TagNet scheduler will choose the CNs such
that BB−Link will never reach the crucial bandwidth of 450 MByte/s. However, the
aggregate bandwidth in a vertical ringlet must never exceed BLink, therefore requiring
that nrows ≤ ncol.

SCI has been shown to be a reasonable solution for the LHCb Level-1 trigger. However,
a backup solution can be investigated. The concept of HDMA could also be applied to
message passing solutions which support PIO. This has never been prototyped but could
work with solutions like Atoll [49], QNIX [50], and the Infinibridge[51] based on Infiniband
[52] just emerging.

The PCI bus utilization on the CNs is small due to the TagNet. Assuming an event size
of 4.5 kByte and an event being sent to a specific CN every 250µs the overall bandwidth
roughly accounts to 18 MByte/s. Even for larger events the PCI bus on the receiving nodes
is far from being utilized significantly. Future investigations might include the combination
of one SCI receiver and a multiprocessor board having more than two CPUs.

The idea mentioned above are not of uttermost importance. Important steps that have to
be done in the near future include:

• Take the results of this thesis into account and start a simulation of the system with
a size equal to the final trigger.

• Implementation of the TagNet in a more sophisticated way which includes the sched-
uler and makes data distribution dynamic.

• Implementation of the Level-1 Decision Unit Interface in hardware.

• Reduction of the 10 idle cycles in between PCI burst. This might require a pipelined
PCI core.

Especially the last item mentioned could push the performance of the system. However,
a faster input might also require to increase the SCI link frequency. Future investigations
might also concentrate on a PCI-X based SCI solution. However, at the time of writing
no implementation has been released.

Appendix A

Implementation

A.1 Design Flow

Both TagNet and the DMA logic have been implemented using VHDL descriptions. The
source files have been synthesized using Synopsys FPGA Express [53], which creates an
EDIF netlist [54] as output. The netlist serves as input for the Altera Quartus II software
[47], which creates a configuration file. The device has been configured using JTAG
configuration. For more details on the PCI board that has been used and its configuration
refer to [55].

A.2 TagNet Implementation

The tag forwarding mechanism is pipelined and allows to store one tag whilst a new tag
is already processed. Since the current implementation does not foresee any pipelining in
the input stage the store and forward state machine in tagnetFSM waits for three clock
cycles after the tag has left the FPGA. This has been implemented to account for the
latency of the BIn signal, which has to be set after the adjacent board receives the tag. If
no wait cycles had been implemented two tags could be sent back-to-back, which results
in loss of the second tag.

The physical layer of the TagNet links has been designed using the internal LVDS drivers
of the Altera Apex20K400E. This simple implementation does not synchronize the signals
on reception. The signal TIn is asserted for four clock cycles, which makes sure that the
receiving node can receive the signal. The actual cabling, which has been used for all the
results presented in 7 can be seen in figure A.1.

Despite the crude setup signalling has always been reliable. However, the total cabel
length is less than 50 cm since problems with longer cables have been observed. Table A.1
shows the TagNet signals and their assignments to the FPGA’s TX and RX lines.

Aux0 is used to transmit the output tag of the tag generator.

109

110 Chapter A. Implementation

Figure A.1: Flat ribbon cables have been used to connect the boards.

Table A.1: Assignment of the RX and TX channels.

TagNet line top unit ouput (VHDL) channel

TIn tagIn RX0
TOn tagOut TX3
BIn bsyin RX1
BOn bsyout TX0

Aux0 LVDSexponeout TX1
Aux1 LVDSexptwoout TX2

A.3 Virtual to Physical Address Translation

When a program looks up a virtual address, the address is converted to a physical address
in order to access physical memory. The step is usually performed by splitting the address
into bitfields. In the Linux operating system each bitfield is used as an index into an array,
called a page table , to retrieve either the address of the next table or the address of the
physical page that holds the virtual address.

The function

PSI_getPhysAddress(const void* virtAddr, void** physAddr, void**busAddr);

which is part of the psi device driver developed in Heidelberg [48], walks along those page
tables and returns the physical and the bus address. On Intel x386 bus addresses and

A.3. Virtual to Physical Address Translation 111

physical addresses are identical. For more information on these topics refer to [56].

Appendix B

Contents of the CD

• The complete source of this thesis including all figures.

• All Hardware descriptions and software that has been used for the results presented.
The CD contains a README file which should be consulted first.

• All documentation mentioned in the bibliography.

113

Appendix C

Glossary

Compute Node (CN) — A node of the Level-1 farm that processes event data. In the
prototype presented, a CN runs an algorithm which checks for packet loss.

Direct Memory Access (DMA) — A facility of some architectures which allows a
peripheral to read and write memory without intervention by the CPU.

ECS — The Experimental Control System handles configuration, monitoring, and oper-
ation of all experimental equipment.

Event data — VELO data originating from the same interaction.

Field Programmable Gate Array (FPGA) — A gate array where the logic network
can be programmed into the device after its manufacture. An FPGA consists of an ar-
ray of logic elements, either gates or lookup table RAMs, flip-flops and programmable
interconnect wiring.

LHC — LHC stands for Large Hadron Collider.

LHCb — One of the four LHC experiments.

NIC — Network Interface Card.

Off Detector Electronic (ODE) — The ODE digitizes the data coming from the VELO
front-end chips, buffers the data during Level-1 latency, and preprocesses the data for the
Level-1 algorithm.

Peripheral Component Interconnect (PCI) — A standard for connecting peripherals
to a personal computer, designed by Intel.

Programmed I/O (PIO) — Read and write operations are initiated by the CPU.

Readout Unit (RU) — Feeds the Level-1 network.

Scalable Coherent Interface (SCI) — IEEE Std 1596-1992 is a high-performance, low
latency interconnect that supports distributed shared memory.

Sub-event data — Part of the event data. A sub-event is assembled by the RUs and has
to be sent to a CN within a microsecond.

Trigger — Part of a readout chain which looks for valuable data in real-time. If data is
assumed to be worth keeping a trigger signal is issued. Otherwise the data are discarded
and therefore reduced.

115

Acknowledgments

Many people contributed and helped on the way to complete this thesis. My adviser
Prof. Dr. Volker Lindenstruth contributed with many ideas and discussions. Without his
help and the working environment he provided this thesis would not have been possible.

I want to thank both present and former members of the Chair for the various contributions
and discussions. Especially I want to mention Konstantinos Giapoutzis, Dr. Ivan Kisel,
Falk Lesser, Rolf Schneider, Dr. Markus W. Schulz, and Timm M. Steinbeck. I want to
thank Béatrice Bähr for her kind support especially when I prepared my trips to meetings
and conferences.

It was the first time that I worked in a large collaboration like LHCb with people coming
from all around the world. There is one person I want to mention especially because of
the discussions we had on the Readout Unit, the meaning of life, and because working
with you has always been a lot of fun — thank you Hans.

117

Bibliography

[1] LHCb Technical Proposal.
CERN LHCC 98-4 .

[2] T. Berners-Lee. WWW proposal.
http://www.w3.org/History/1989/proposal .

[3] CERN document server.
http://weblib.cern.ch .

[4] HERA-B Home Page.
http://www-hera-b.desy.de/ .

[5] BaBar Home Page.
http://www.slac.stanford.edu/BFROOT/ .

[6] Lucent Technologies.
http://www.lucent.com .

[7] BELLE Home Page.
http://bsunsrv1.kek.jp/ .

[8] LHCb Vertex Locator Technical Design Report.
CERN LHCC 2001-011 .

[9] TTC System Information.
http://ttc.web.cern.ch/TTC/intro.html .

[10] T. Nakada. Meeting with LHCC referees.
http://documents.cern.ch/AGE/current/fullAgenda.php?ida=a02917 .

[11] F. Anghinolfi et al. SCTA - a Rad-Hard BiCMOS Analogue Readout ASIC for the
ATLAS Semiconductor Tracker. IEEE Trans. Nucl. Science Vol. 44, No. 3, June 1997.

[12] ATLAS Homepage.
http://atlasinfo.cern.ch/Atlas/Welcome.html .

[13] D. Baumeister et al. The Beetle Reference Manual.
CERN LHCb 2001-046 .

[14] Kirchhoff-Institut für Physik.
http://www.kip.uni-heidelberg.de .

119

120 BIBLIOGRAPHY

[15] Aurelio Bay et al. LHCb VELO Off Detector Electronics Preprocessor and Interface
to the Level-1 Trigger.
CERN LHCb 2001-043 .

[16] CERN S-Link Homepage.
http://hsi.web.cern.ch/HSI/s-link/ .

[17] Jose Francisco Toledo. Study and Design of the Readout Unit Module for the LHCb
Experiment. PhD thesis, University of Valencia, Gandia, 2001.

[18] Hans Muller’s Home Page.
http://hmuller.home.cern.ch/hmuller .

[19] Hans Müller private communication.
Hans.Muller@cern.ch .

[20] H. Dijkstra. The LHCb Vertex Locator and Level-1 Trigger.
CERN LHCb 2000-001, TRIG .

[21] PCI SIG PCI-X Specification.
http://www.pcisig.com/specifications/pci_x .

[22] Tyan Computer Corporation.
http://www.tyan.com .

[23] SuperMicro Computer, Inc.
http://www.supermicro.com/ .

[24] V. Lindenstruth. Informatik II Vorlesung.
http://www.kip.uni-heidelberg.de/ti/Lehre/index.shtml .

[25] Tom Shanley and Don Anderson. PCI System Architecture. Addison-Wesley Long-
man, Inc., 1995.

[26] IEEE Standard for Scalable Coherent Interface (SCI) 1596-1992. The Institute of
Electrical and Electronics Engineers, Inc. 1993.

[27] Myricom Homepage.
http://www.myri.com .

[28] IEEE Standard for Low Voltage Differential Signals (LVDS) for Scalable Coherent
Interface (SCI) 1596.3-1996. The Institute of Electrical and Electronics Engineers,
Inc. 1996.

[29] IEEE Standard Control and Status Register (CSR) Architecture for Microcomputer
Buses 1212-1991. The Institute of Electrical and Electronics Engineers, Inc. 1991.

[30] Dolphin Interconnect.
http://www.dolphinics.no .

[31] LC3 Specification.
http://www.dolphin.no .

BIBLIOGRAPHY 121

[32] PCI Special Interest Group. PCI Local Bus Specification, Revision 2.1. 5200 Elam
Young Parkway, Hillsboro, Oregon 97214-6497, USA.

[33] ServerWorks, Inc.
http://www.serverworks.com .

[34] IEEE 1076 VHDL Reference Manual.
http://www.ieee.org .

[35] IEEE 1364-1995 Verilog Language Reference Manual.
http://www.ieee.org .

[36] Altera Corporation.
http://www.altera.com .

[37] J. Christiansen. Requirements to the L0 front-end electronics.
CERN LHCb 2001-014 .

[38] J. Christiansen. Requirements to the L1 front-end electronics.
CERN LHCb 2001-127 .

[39] LHCb Electronics Key Parameters.
http://lhcb-elec.web.cern.ch/lhcb-elec/html/key_parameters.htm .

[40] Y. Ermoline. Vertex Detector Electronics: L1 electronics systems issues.
CERN LHCb 2001-124 .

[41] Hans Dijkstra, private communication.
hans.dijkstra@cern.ch .

[42] Niels Tuning, private communication.
niels.tuning@cern.ch .

[43] Roland Richter. Implementierung eines Algorithmus für den LHCb Level-1 Vertex
Trigger. Master’s thesis, Univerität Heidelberg, 2000.

[44] LHCb Trigger Meetings.
http://documents.cern.ch/AGE/current/displayLevel.php?fid=2l63 .

[45] Ivan Kisel, private communication.
ikisel@kip.uni-heidelberg.de .

[46] Moore’s Law.
http://www.intel.com/research/silicon/mooreslaw.htm .

[47] Altera Quartus II Software.
http://www.altera.com/products/software/quartus2/qts-index.html.

[48] Alice High Level Trigger Software and Documentation.
http://www.kip.uni-heidelberg.de/ti/L3/.

[49] L. Rzymianowicz et al. Atoll: A Network on a Chip.
PDPTA 99. Las Vegas, June 1999 —.

122 BIBLIOGRAPHY

[50] A. De Vivo et al. QNIX: A Flexible Solution for a High Performance Network.
SCI 2002. Orlando, July 2002 —.

[51] Mellanox Technologies.
http://www.mellanox.com —.

[52] Infiniband Trade Association.
http://www.infinibandta.org/home —.

[53] Synopsys.
http://www.synopsys.com .

[54] Edif.
http://www.edif.org .

[55] Altera Apex 20KE PCI Development Board.
http://www.altera.com/literature/ds/dspcibd20ke.pdf.

[56] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers. O’Reilly & Asso-
ciates, Inc., 1998.

Index

Symbols
TLat By . 56
TLat PCI . 56
TLat Rt . 56

A
address

physical . 110
translation . 110
virtual . 110

B
B-Link . 44
bandwidth allocation 42

C
CERN . 2
CN see compute node
compute node . 20, 68
congestion. .46
CP violation . 9

D
DMA . 31

F
FPGA . 58

H
hardware initiated DMA. . see HDMA58
HDMA. 58

interleaved . 63
non-interleaved.59

hit cluster
distribution . 67

L
latency . 55
LC3. 40
Level-0

maximum accept rate 66

Level-1
architecture . 65
Decision Unit Interface 73
network topology 69
timing . 73

LHCb
detector . 10
ODE. 18
Trigger. .12
VELO . 15

M
message passing . 34

O
overhead . 32

P
page table. .110
PCI . 25

arbitration . 27
data transfer . 28
interrupts . 30
timing . 29

PIO . 31
prototype

data integrity . 89
data scheduling 79
DMA logic . 82
fault tolerance 104
general architecture 77
global shared memory 87
system frequency. 95
system latency 102
system performance 94
TagNet . 79

PSB66 . 43

Q
queue allocation . 43

123

124 INDEX

R
Readout Supervisor 66
Readout Unit . 19
Readout Units

number . 66
RU see Readout Unit

S
scalability . 31, 96
scheduled data transport 70
SCI . 34

interrupt . 55
latency. .55
logical layer . 36
maximum performance 52
packets . 39
performance . 49
routing. .70
transactions . 37

shared memory. .34
SISCI API . 45, 49, 87

T
TagNet. .71

scheduler. .71
traffic pattern . 72

timing . 73
notification phase 73
processing phase 73
transport phase 73

torus
latency. .56

track finding . 68
Track Finding Algorithm 21
traffic shaping . 46
trigger output . 21
trigger systems . 3

BaBar . 5
HERA-B . 5

V
vertex

primary . 1
secondary . 1

