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Abstract

In this thesis, we present and analyse several ensemble based methods for inverse problems.
The aim is to analyse various particle based methods for sampling as well as optimization
in inverse problems.
Firstly we examine the ensemble Kalman inversion, which has been originally introduced
as a sampling method for Bayesian inverse problems, but can also be viewed as deriva-
tive free optimization method. Furthermore, we present various transformed methods
of the ensemble Kalman inversion, which allow to incorporate box-constraints as well as
regularization for the underlying optimization problem.
In addition, we also consider a more general class of particle based sampling methods, such
as the ensemble Kalman sampler, which is based on an interacting Langevin dynamics, a
particle system resulting from an Gaussian approximation, as well as a kernelized Fokker–
Planck based particle system.
In the last part of this work, we discuss machine learning applications in inverse problems.
Here, we consider data-driven regularization, where the regularization parameter will be
chosen by solving a bilevel optimization problem. Moreover, we consider an incorporation
of neural networks into inverse problems. For this incorporation the neural network will
act as a model-informed surrogate for the complex forward model. The neural network
and the unknown parameter will be trained in a one-shot fashion.

Zusammenfassung

In dieser Arbeit präsentieren und analysieren wir verschiedene ensemblebasierte Metho-
den für inverse Probleme. Das Ziel ist es, verschiedene partikelbasierte Methoden sowohl
zur Generierung von Stichproben als auch zur Optimierung für inverse Probleme zu
analysieren.
Zunächst behandeln wir die Ensemble Kalman Inversion, die ursprünglich als Stichproben-
verfahren für Bayessche inverse Probleme eingeführt wurde, allerdings auch als ableitungs-
freies Optimierungsverfahren betrachtet werden kann. Desweiteren stellen wir verschiedene
Transformationen der Ensemble Kalman Inversion vor, die es erlauben Box-Einschränkun-
gen sowie Regularisierungsverfahren in das zugrundeliegende Optimierungsproblem einzu-
bauen.
Zusätzlich betrachten wir eine größere Klasse von partikelbasierten Stichprobenverfahren.
Diese beinhaltet den Ensemble Kalman Sampler, der auf einer interagierenden Langevin
Dynamik basiert, ein aus einer Gaussapproximation resultierendes Partikel-System, sowie
ein Partikel-System, das aus einer kernbasierten Fokker–Planck Gleichung entsteht.
In dem letzten Teil dieser Arbeit diskutieren wir Anwendungen des maschinellen Lernens
auf inverse Probleme. Wir betrachten daten-getriebene Regularisierungsverfahren, in de-
nen der Regularisierungsparameter durch die Lösung eines Bilevel-Optimierungsproblems
gewählt wird. Außerdem betrachten wir die Eingliederung von neuronalen Netzen in in-
verse Probleme. Für diese spielt das neuronale Netz die Rolle eines Modell-informierten
Surrogats für das komplexe Vorwärtsmodell. Das neuronale Netz und der unbekannte
Parameter werden parallel trainiert.
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1 Introduction

The research area of inverse problems has seen a wide range of applications in science.
Some examples of this contain medical imaging, which includes tomography and acoustics,
or geophysics, such as seismic inversion and Darcy flow. This is just a short extract from
a long list of applications. Inverse problems are concerned with the task of recovering
some quantity of interest, which cannot be observed directly. Typically, the information
of interest can only be observed indirectly through a forward model, which is based on an
underlying physical system. These models are often based on partial differential equations.

Inverse problems are typically ill-posed and one aspect in the theory for inverse problems is
to provide well-posedness results of the underlying optimization problem. This means, one
solves a regularized problem, where a unique solution exists, which is stable with respect
to changes in the data. In particular, the stability is an important property in the presence
of noise in the data, which could arise from the measurement. Classical approaches for
inverse problems are concerned with the choice of the regularization parameter and the
corresponding convergence result in the small noise limit.

An alternative approach for the regularization of inverse problems is the Bayesian ap-
proach. Here, the unkown parameter as well as the data are modelled as random variables.
The task of the Bayesian inverse problem is to quantify the information of the unknown pa-
rameter conditioned on the realization of the data. The resulting solution of the Bayesian
inverse problem is given by a probability distribution. This distribution might be not ac-
cessible in a straightforward way and there has been a wide range of research on sampling
methods for Bayesian inverse problems. However, the advantage of this perspective for
inverse problems is the possibility of doing statistical analysis for inverse problems.

In this thesis, we are going to analyse several particle based methods for inverse problems.
These methods will focus on sampling as well as on optimization for inverse problems.
In particular, one major part of this work is about the ensemble Kalman filter applied
to inverse problems. The ensemble Kalman filter has been originally introduced for data
assimilation problems and more recently has been formulated to solve inverse problems.
This method is known as the ensemble Kalman inversion. As it has been introduced origi-
nally, the ensemble Kalman inversion can be interpreted as a sampling method for inverse
problems in the Bayesian setting. However, by exploiting its gradient flow structure, the
ensemble Kalman inversion can also be seen as derivative-free optimization method.

While the ensemble Kalman inversion is the main aspect of the particle based optimization
methods, we present a range of alternative particle based sampling methods for inverse
problems. Here, we will consider the ensemble Kalman sampler, which is based on an
interacting Langevin dynamic. This method can be interpreted as Markov chain Monte
Carlo method, where constructed dynamics has the target distribution as stationary dis-
tribution in the long-time limit. Furthermore, we provide a particle system which is based
on a Gaussian approximation as well as a Fokker–Planck based particle system, which

1



1 Introduction

is constructed by approximating the Fokker–Planck equation of Langevin dynamics in a
reproducing kernel Hilbert space.

1.1 Outline

Chapter 2

We start this work with an introduction of several tools which will be needed for the later
chapters. This includes an introduction to inverse problems in Section 2.1, where we start
with general nonlinear inverse problems. Here, the focus will be on the definition of well-
posedness and Tikhonov regularization. In Section 2.2 we consider the Bayesian approach
for inverse problems. We discuss well-posedness of the problem, establish the connection
to regularization of classical inverse problems via the MAP estimate and introduce basic
sampling methods for the posterior distribution. The last Section 2.3 introduces data
assimilation problems. We keep the focus on the Kalman filter and its extension to the
ensemble Kalman filter.

Chapter 3

In Chapter 3 we consider the so called ensemble Kalman inversion and its formulation
as derivativefree particle based optimization method. We firstly introduce the ensemble
Kalman inversion as application of the ensemble Kalman filter to inverse problems as it has
been originally introduced in [112]. Based on the continuous-time formulation presented
in [200], we analyie the optimization scheme in the linear setting. While the existing re-
sults were based on unperturbed observations, resulting in a system of ordinary differential
equations, we consider the ensemble Kalman inversion with perturbed observations, lead-
ing to a system of stochastic differential equations. We show well-posedness of the scheme,
which means we verify existence of unique strong solutions of the underlying stochastic
differential equation, and quantify the ensemble collapse. Here, the theoretical analysis
is based on stochastic Lyapunov functions. Further, we incorporate variance inflation in
order to ensure convergence of the data misfit. The presented theoretical analysis will be
verified by a numerical example.

This chapter is based on joint work with Dirk Blömker, Claudia Schillings and Philipp
Wacker and the corresponding article Well posedness and convergence analysis of the en-
semble Kalman inversion, Inverse Problems, Volume 35, Number 8, 2019 (doi: 10.1088/1361-
6420/ab149c).

Chapter 4

In this chapter, we focus on the analysis of the ensemble Kalman inversion for inverse
problems where the unknown parameter satisfies box-constraints. Following the ideas of
projected gradient descent method we formulated the projected ensemble Kalman inversion
and derive its continuous-time limit resulting again in a system of ordinary differential
equations. In order to ensure convergence to a minimizer of the constrained optimization
problem, we present a transformed method, which manipulates the preconditioner of the
scheme to ensure descent direction of the method. We analyze the introduced method in
both linear and nonlinear numerical examples.
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1.1 Outline

This chapter is based on joint work with Neil Chada and Claudia Schillings and contains
the results of the publication On the incorporation of box-constraints for ensemble Kalman
inversion, Foundations of Data Science, Volume 1, Issue 4, 2019 (doi: 10.3934/fods.2019018).

Chapter 5

Chapter 5 is devoted to extend the presented theoretical result of the ensemble Kalman
inversion in Chapter 3, which has been based on noisefree data, to the incorporation of
noise into the underlying data. Firstly, we introduce the Tikhonov regularized ensemble
Kalman inversion presented in [41], and establish well-posedness and convergence results
for the resulting system of stochastic differential equations, which is based on a fixed regu-
larization parameter. Secondly, we formulate various ideas of adapting the regularization
parameter, which includes data-driven regularization and also the MAP formulation of
the Bayesian inverse problem. We conclude this chapter with a numerical analysis of the
introduced adaptive schemes, which highlights that these schemes are promising directions
to go in.

This chapter is based on joint work with Neil Chada, Claudia Schillings and Xin Tong,
which has not been published yet.

Chapter 6

In Chapter 6 we present various particle based sampling methods. Roughly speaking, the
considered methods are all designed in order to solve the Bayesian inverse problem by
converting a sample from the prior distribution into a sample from the posterior distri-
bution. These methods include the so called ensemble Kalman sampler, which is based
on an interacting Langevin dynamics and has been introduced in [83], a particle system
resulting from an Gaussian approximation, which aims to minimize the Kullback–Leibler
divergence between the Gaussian approximation and the posterior distribution, and lastly
a Fokker–Planck based particle system introduced in [175], which approximates the associ-
ated Fokker–Planck equation of Langevin dynamics in a reproducing kernel Hilbert space.
We connect all of these methods through its gradient structured formulation resulting in a
system of ordinary differential equations and stochastic differential equations respectively.
Furthermore, we present derivativefree modications of these methods by precondition-
ing with the sample covariance of the particle system. In order to tune the accuracy of
the derivativeapproximation through the sample covariance, we introduce localisation by
preconditioning with a localised sample covariance based on weights depending on the
distance of the particles. We demonstrate the effectiveness of the presented methods in a
row of numerical examples.

This chapter is based on joint work with Sebastian Reich and the correspoding preprint
Fokker–Planck particle systems for Bayesian inference: Computational approaches, arXiv
e-prints, 2019 (arXiv:1911.10832).

Chapter 7

This chapter concerns Machine learning approaches in the context of inverse problems.

The first part of this chapter, Section 7.1, is about data-driven regularization, where we
consider bilevel optimization as methodology to learn a regularization parameter for min-
imization based inverse problems. We view the underlying bilevel optimization problem

3



1 Introduction

as stochastic optimization problem by viewing the unknown parameter and the data as
random variables. The upper-level problem is given by some risk-measure between the
unknown parameter and the solution of the lower level problem, which is the regularized
minimization problem of the corresponding inverse problem depending on the regulariza-
tion parameter and the data. Assuming to have access to training data, we consider an
empirical approximation of the stochastic optimization problem and provide both offline
and online consistency results for the size of training data approaching infinity. In the
offline setting we analyze the minimization task of the empirical lossfunction, whereas we
introduce the stochastic gradient descent method in order to solve the stochastic optimiza-
tion problem online. In both settings, we firstly provide an abstract consistency result for
general nonlinear forward models and general regularization function and secondly verify
the presented result for linear forward model under Tikhonov regularization. We provide
various numerical examples analyzing the presented consistency results.
This part of the chapter is based on joint work with Neil Chada, Claudia Schillings and
Xin Tong, and the preprint Consistency analysis of bilevel data-driven learning in inverse
problems, arXiv e-prints, 2020 (arXiv:2007.02677).

In the second part of this chapter, Section 7.2-7.2.2, we consider the incorporation of neu-
ral networks into inverse problems. We replace the complex forward model by a neural
network acting as a physics-informed surrogate model, which will be trained in a one-shot
fashion. This means we train the unknown parameter and the neural network at once,
i.e. the neural network is only trained for the underlying unknown parameter. We con-
nect the neural network based one-shot formulation to the Bayesian approach for inverse
problems and apply the ensemble Kalman inversion in order to solve the optimization
problem. We provide numerical experiments to highlight the promising direction of neural
network based one-shot formulation together with the application of the ensemble Kalman
inversion.
This part of the chapter is based on joint work with Philipp Guth and Claudia Schillings
and the preprint Ensemble Kalman filter for neural network based one-shot inversion,
arXiv e-prints, 2020 (arXiv:2005.02039).
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2 Preliminaries

The first chapter is devoted to set up some basic background which will be needed in the
rest of this work. In Section 2.1, we start the discussion by introducing inverse problems
with a focus on well-posedness and Tikhonov regularization. This means, we state exis-
tence and uniqueness results, a stability result and convergence results from the literature.
In particular, this part is based on the textbooks [76, 118, 204].

The second part, Section 2.2, concerns the Bayesian approach for inverse problems, where
we discuss well-posedness of the problem, discuss prior modelling and connect the Baysian
inverse problem to classical regularization via the maximum a-posteriori estimators. Fur-
thermore, we give a short introduction of the Markov chain Monte Carlo method, which is
used to build up Monte Carlo estimates for the posterior distribution. This section follows
the approaches presented in the textbook [216] and the Acta Numerica article [215].

In Section 2.3, we introduce the research field of data assimilation with focus on the
Kalman filter, which is based on the textbooks [147, 186, 216] and the Acta Numerica
article [185].

2.1 Introduction to inverse problems

In this section, we introduce a general setting of ill-posed inverse problems and explain
basic ideas of regularization. Typically, inverse problems are applied in situations where
the quantity of interest is only availiable indirectly through observations. To define an in-
verse problem, one firstly has to define the corresponding forward problem, which typically
based on an underlying physical system. The task of the inverse problem is to quantify
information, which cannot be observed directly, but it can be observed indirectly through
the forward model. The research field of inverse problems has a wide range of applications
such as (medical) imaging [18, 35, 42, 167], geophysics [219], oil industry [114] and many
more. From a mathematical perspective, inverse problems are often applied to models
based on partial differential equations [51, 178] such as inverse scattering [132] or parame-
ter identifications [13, 141]. The focus will be on the minimization based formulation with
regularization of inverse problems [107, 124] . In this work, we will mainly focus on the
so called Tikhonov regularization. For more details, we refer the reader to the following
textbooks [76, 118, 204].

2.1.1 Inverse problems

In the following we introduce the challenges of inverse problems. Let X and Y be Banach
spaces and consider a possibly nonlinear operator H : D(H) → Y, where D(H) ⊂ X
denotes the domain of H. We call the computation of the data (sometimes also called

5



2 Preliminaries

observation)

y = H(θ), (2.1)

for given parameter θ ∈ X , the forward problem. The corresponding inverse problem
is to recover the unknown parameter θ ∈ X for given data y ∈ Y. Usually, the given data
y results from an approximation of a physical model. We include noise models, which
will be the additive noise model in this work, i.e. the inverse problem is to recover the
parameter θ from noisy observation

H(θ) + ξ = y, (2.2)

where ξ denotes observational noise.

So far we have introduced two problems, the forward and inverse problem. But what are
the challenges of these introduced problems? Firstly, we will define what we mean by
well-posed problems and explain why inverse problems are in general ill-posed.

Definition 2.1.1 (Hadamard 1902, [91]). A problem is called well-posed, if

• there exists a solution (existence),

• the solution is unique (uniqueness),

• the solution’s behavior changes continuously with the initial conditions (stability).

If one of these properties does not hold, the problem is called ill-posed.

Remark 2.1.2. We assume that the forward model H is linear, i.e. we assume that
H(·) = L· for some L ∈ L(X ,Y), where L(X ,Y) denotes the space of all linear and
bounded maps from X to Y. While the forward problem (2.1) is obviously well-posed, there
are certain assumptions necessary to ensure well-posedness of the corresponding inverse
problem (2.2). For example sufficient conditions are given in the following:

• The assumption y ∈ R(L) or surjectivity of L ensures existence of solutions. Through
noise it could happen, that the perturbation shifts the noisefree observation outside
of the range of the forward map L although there exists a true parameter θ† which
generates the data y = Lθ† + ξ. This is issue is illustrated in Figure 2.1.

X R(L)

L

y†

θ†

y

ξ

Figure 2.1: Ill-posed through observational noise. Occurance of noise might shift the ob-
served data outside of the range of the forward map L.
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2.1 Introduction to inverse problems

X R(L)

L

y

θ1

θ2
L

Figure 2.2: Ill-posed through multiple solutions. Two different parameter θ1 ∈ X and
θ2 ∈ X might map onto the observed data y.

• Injectivity of L ensures uniqueness of solutions, whereas in other cases problems
in distinguishability of the solutions could arise. We demonstrate this problem in
Figure 2.2.

• If L−1 exists and is continuous, the solution is stable. In case of discontinuous
inverse L−1 noise in the measurement will obviously lead to instability in the solution
of the inverse problem, as the following Figure 2.3 demonstrates.

X R(L)

L
y†

θ†

y

ξ

L−1

Figure 2.3: Ill-posed through discontinuity. Instability in the solution of the inverse prob-
lem resulting from a discontinuous inverse operator L−1.

In the following example we will illustrate the occurrence of ill-posed inverse problems.

Example 2.1.3 ([118, Example 1]). We consider an inverse problem based on the heat-
equation 

∂2u(t,x)
∂t2

− ∂u(t,x)
∂t = 0, t > 0,

u(t, x) = 0, x ∈ {0, 1},
u(t, x) = θ0(x), t = 0.

(2.3)

The inverse problem is to recover the unknown initial condition θ0(·) given the state u(T, ·)
at time T > 0. As an interpretation, one can think about a stick of length 1 with unit
thermal conductivity and the ends of the stick are set with fixed temperature, in this setting
0. The temperature distribution u(t, x) is modelled through (2.3). Hence, we aim to recover

7
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the initial temperature distribution of the stick given the current temperature distribution
in T > 0.

Applying the Fourier transformation, we can write the solution of the heat-equation as

u(t, x) =
∞∑
k=1

ck exp(−(kπ)2t) sin(kπx),

where the coefficients ck can be found by the Fourier sine coefficients of the initial state

θ0(x) =
∞∑
k=1

ck sin(kπx). (2.4)

Hence, the inverse problem can be broken down to finding the coefficients ck of the initial
state given the data at time T > 0. The issue of this task can be seen in the following

scenario. Let us consider two initial states θ
(1)
0 (·) and θ

(2)
0 (·), which are equal in all com-

ponents of (2.4), but only differ in one high-frequency component. The difference of both
states can be written as

θ
(1)
0 (x)− θ(2)

0 (x) = cN sin(Nπx)

for large N ∈ N. Pushing the initial conditions forward to the solution of the heat-equation,
the difference of both solutions at time T > 0 is exponentially small

u(1)(T, x)− u(2)(T, x) = cN exp(−(Nπ)2T ) sin(Nπx),

which means that information arising in high-frequency has a low effect on the corre-
sponding solution of the heat-equation and hence, will not be covered in the presence of
measurements errors.

The first intuition how to solve the inverse problem (2.2) would be to minimize the data
misfit, i.e. to solve

min
θ∈D(H)

‖H(θ)− y‖2. (2.5)

As we have seen in Remark 2.1.2, solving (2.5) is again not a well-posed problem. In fact,
just fitting the data will usually lead to so called overfitting, i.e. the optimization method
to solve (2.5) fits the noise within our data for the inverse problem (2.2), which will lead
to worse resulting estimation for the unknown truth θ†. This incident can also be seen
in Figure 2.3 and will be discussed in more details in subsection 2.1.2. To stabilize the
solution of inverse problems, the key idea is to introduce regularization of the optimization
problem (2.5) [14, 76, 204].

2.1.2 Tikhonov regularization

To ensure that the inverse problem (2.2) is well-posed, we incorporate Tikhonov regular-
ization into the minimization problem (2.5). The idea behind regularization is to control
the data misfit and the norm of the approximate solution simultaneously. This means we
can control the bias and variance trade-off. While on the one side we control how accurate
the data should be fitted, on the other side we control regularity in our parameters. We
define the Tikhonov regularization as follows:
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Definition 2.1.4. For given regularization parameter κ > 0 and compact, positive and
convex nonnegative regularization functional ϕ : X → R+ we define the Tikhonov
loss function Tκ : X → R+ through

Tκ(θ) =
1

2
‖H(θ)− y‖2Y + κϕ(θ). (2.6)

Every minimizer θκ ∈ X of (2.6) (provided that it exists) is called Tikhonov regularized
solution and we write

θκ ∈ arg min
θ∈D(H)

Tκ(θ). (2.7)

Remark 2.1.5. Suppose H(·) = L· for some L ∈ L(X ,Y) and ϕ(θ) = ‖θ−m‖2C for given
m ∈ X and given compact, positive and self-adjoint operator C ∈ L(Y,Y), i.e. we consider
the Tikhonov loss function

Tκ(θ) =
1

2
‖Lθ − y‖2Y +

κ

2
‖θ −m‖2C . (2.8)

For fixed regularization parameter we compute the first and second order derivatives w.r.t.
θ of the Tikhonov loss function

∇θTκ(θ) = L∗(Lθ − y) + κC−1(θ −m),

∇2
θTκ(θ) = L∗L+ κC−1.

Here, L∗ denotes the adjoint operator of L. Since C is a positive definite operator, the
Tikhonov regularization acts as shifting the eigenvalues of the Hessian information of the
Tikhonov loss function away from 0. In particular, in the linear setting this result leads
to a strongly convex Tikhonov loss function.

In the following, we will formulate the existence result for the Tikhonov loss function (2.8)
with linear forward operators, where we assume for simplicity m = 0. In the linear setting
it is possible to compute the Tikhonov regularized solution explicitly.

Theorem 2.1.6 ([118, Theorem 2.5], [76, Theorem 5.1]). Let X and Y be separable Hilbert
spaces, H(·) = L· for some L ∈ L(X ,Y) and assume that L is a compact operator with
singular system (σn, vn, un). Then the Tikhonov regularized solution exists, is unique, and
is given through

θκ = (L∗L+ κC)−1L∗y.

In the following, we will present the generalized existence result to nonlinear forward
models. While in the linear setting the Tikhonov loss function was a quadratic one, in
general this is not the case for the nonlinear setting. In particular, it is no longer clear
whether a unique minimizer exists and how to compute a minimizer if it exists.
However, the existence of Tikhonov regularized solutions for general convex nonnegative
regularization functional ϕ and sufficiently smooth forward map H can be verified. As it
is not possible anymore to compute the Tikhonov regularized solution explicitly, there are
several assumptions on the Banach spaces X , Y and the forward model H, including its
domain and its derivative, necessary. We summarize these necessary assumptions:

Assumption 2.1.7. Let X and Y be infinite dimensional reflexive Banach spaces, H :
D(H) → Y be a nonlinear map with D(H) ⊂ X closed and convex and ϕ(·) = 1

q‖ · ‖
q for

1 ≤ q <∞. Assume that:

9
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• H is weak-to-weak sequentially continuous, i.e. for xn ⇀ x0 in X , with xn ∈ D(H),
n ∈ N and x0 ∈ D(H) it holds true that H(xn) ⇀ H(x0) in Y. Here, ”⇀” denotes
weak convergence.

• There exists a minimizing norm solution θ� of the operator equation H(θ) = y, which
means that

H(θ�) = y, with ‖θ�‖q = inf{‖θ‖q | θ ∈ D(H), H(θ) = y}. (2.9)

• There exists a bounded linear operator H ′ ∈ L(X ,Y) such that for the one-side
derivative at θ� and for every θ ∈ D(H) it holds true that

lim
t→0

H(θ� + t(θ� − θ))−H(θ�)

t
= H ′(θ�)(θ − θ�).

We note that the above assumptions and the corresponding existence result can be gen-
eralized to further regularization functions ϕ. Howerver, for simplicity we will focus on
the above defined regularization and refer to [204] for more details on the generalization.
Under Assumption 2.1.7 a Tikhonov regularized solution, i.e. a minimizer of (2.6), exists.

Theorem 2.1.8 ([204, Proposition 4.1]). Let Assumption 2.1.7 hold. Then for all κ > 0
and y ∈ Y there exists a Tikhonov regularized solution θκ minimizing (2.6).

So far, we have stated the existence result for the Tikhonov regularized solution of the
inverse problem. To ensure well-posedness, we state the following stability result w.r.t.
the data.

Theorem 2.1.9 ([204, Proposition 4.2]). For all κ > 0 the minimizers of (2.6) are stable
w.r.t. the data y. This is, for every sequence (yn)n∈N in Y converging to y, i.e. lim

n→∞
‖yn−

y‖ = 0, every sequence (θnκ)n∈N of minimizers to the corresponding Tikhonov lossfunction

Tnκ (θ) =
1

2
‖H(θ)− yn‖2 + κϕ(θ)

has a subsequence (θnkκ )k∈N which converges weakly in X and the weak limit θ̃ of each such
subsequent is a minimizer of (2.6). Further, it holds true that

lim
k→∞

ϕ(θnkκ ) = ϕ(θ̃).

Another property one is interested in, is what happens with the regularized solution if the
assumed noise level tends to zero. In general, the regularization should be chosen such
that the regularized solution in the limit of noise going to zero coincides with the noisefree
solution, i.e. with the best-approximate solution to

H(θ) = y†,

which is given by the minimizing norm solution θ� defined in (2.9).

Some examples of convergence results with respect to the noise level for Tikhonov regu-
larization can be found in [78, 89, 103] and for general convex loss functionals [31, 90, 166,
187].
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Remark 2.1.10. While the regularization function ϕ is given, the regularization param-
eter κ is free to choose. For example in the linear setting, i.e. for the Tikhonov loss
function (2.8), the operator C and the shift m can be interpreted as prior belief about how
the solution should look like and is assumed to be given. The choice of the regularization
parameter is a central question in the literature of Tikhonov regularization [77, 126, 168].
In this part of this work we will focus on a priori choices, which are only depending on the
noise level ε, and a posteriori choices, which depend on the noise level ε and the data y.

We assume that the data yε is a perturbed image of the underlying true parameter θ†, i.e.
yε = H(θ†)+ξε, where we define y† = H(θ†). Further, we assume that we have an estimate
of the noise level ε > 0, such that we can ensure

‖yε − y†‖ ≤ ε.

We cite the following convergence result under a priori choice of regularization parameter.

Theorem 2.1.11 ([204, Corollary 4.6]). Let (εn)n∈N be a sequence converging to zero and
yεn ∈ R(H) such that ‖yεn − y†‖ ≤ εn. If the regularization parameter κn = κ(εn) is
chosen depending on the noise level, such that

lim
n→∞

κ(εn) = 0, lim
n→∞

ε2
n

κ(εn)
= 0,

then there exists a subsequence such that

lim
k→∞

θκ(εnk ) = θ�,

where θ� is some minimizing norm solution defined in (2.9).

For the a posteriori choice of regularization parameter, we focus on the so called Morozov
discrepancy principle, which has been originally introduced by Morozov [163] and was
studied for example in [7, 26]. Alternative heuristic methods for a posteriori choices are
for example the L-curve method [95] or the quasi-optimality condition [12].

The discrepancy principle suggests that we cannot expect a more accurate recovering of
θ† than the measurements accuracy, since otherwise the solution would get be to the noise
in our data. Let θκ be the Tikhonov regularized solution depending on κ > 0 and define

ψ(κ) : R+ → R+, ψ(κ) = ‖H(θκ)− yε‖.

The Morozov discrepancy principle states that the regularization parameter κdiscr =
κ(ε, yε) should be chosen such that

τ1ε ≤ ψ(κ(ε, yε)) ≤ τ2ε, (2.10)

for some 1 ≤ τ1 ≤ τ2. This means that the regularized solution should not try to fit the
data more accurately than up to the specified noise level. For general nonlinear forward
models it is not clear, whether κdiscr satisfying (2.10) exists or not. We refer to [7] for
more details on necessary conditions for existence of κdiscr. However, for simplicity we
assume that κdiscr satisfying (2.10) exists.
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Theorem 2.1.12 ([7, Theorem 4.5]). Assume that for all minimizing norm solutions θ�

it holds true that

lim inf
t↘0

‖(1− t)θ� − y‖2

t
= 0.

Let (εn)n∈N be a sequence converging to zero and yεn ∈ R(H) such that ‖yεn − y†‖ ≤ εn.
Further, assume that κndiscr = κ(εn, y

εn) satisfy (2.10). Then it holds true that

lim
n→∞

κ(εn, y
εn) = 0 and lim

n→∞

ε2
n

κ(εn, yεn)
= 0.

Note that application of Theorem 2.1.11 implies existence of a subsequence converging to
a minimizing norm solution θ�.

Remark 2.1.13. The discrepancy principle can also be used within a iterative solution
procedure of the inverse problem for fixed regularization parameter κ. As for general non-
linear forward maps H it is not possible to compute the minimizer of Tκ explicitly, one
often applies gradient based optimization methods in order to compute a minimizer of Tκ.
Denoting θi the i-th iteration of the optimization method, the aim is to find a sequence
decreasing the Tikhonov lossfunction, i.e.

Tκ(θi) ≥ Tκ(θi+1).

The discrepancy principle states that one cannot expect to fit the data more accurate than
the noise level ε, which can then be used as a early stopping criterion. In particular, the
optimization method will be stopped in case

‖H(θi)− yε‖ ≤ ε.

Note that this stopping criterion does not change the choice of regularization parameter.
However, it can help to prevent overfitting of the noise in the data.

Remark 2.1.14. While in Assumption 2.1.7 regularization functions of the form ϕ(·) =
1
q‖ · ‖

q, for 1 ≤ q <∞ are covered, and hence, the stated convergence results hold, we will

focus on the choice ϕ(·) = 1
2‖·‖

2 and we will refer this choice to Tikhonov regularization in
the rest of this work. In the particular, we consider Tikhonov loss function Tκ : X → R+

of the from

Tκ(θ) =
1

2
‖H(θ)‖2 +

κ

2
‖θ −m‖2C0

,

where m ∈ X and C0 ∈ L(X ,X ), compact, positive and self-adjoint are given. We will
state the connection to the Bayesian approach of inverse problems and in particular, to
the maximum a-posteriori estimate in Section 2.2.

Other common regularization methods We give a brief literature overview of alternative
common regularization methods for inverse problems. In PDE based inverse problems,
iterative regularization methods with the combination of early stopping are often applied
[11, 77, 156]. Some examples of iterative methods are the Landweber and steepest descent
method [93], regularized Newton methods [122] and iterated Tikhonov methods [198]. For
a detailed overview we refer the interested reader to [125].
Parallel to the iterative methods in the imaging community, the focus went to regular-
ization methods based on total variation (TV) [44, 194], which is the most common edge
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perserving regularization method [43, 188]. The total generalized variation (TGV) [30]
makes use of second and higher order information.
There are several other examples for regularization methods, such as truncated singular
value decomposition [94], wavelet shrinkage [72], infimal convolutional type regularization
[33, 32] or regularization in a reproducing kernel Hilbert space [164, 165]. Furthermore, the
Bayesian approach to inverse problems has been invented which opens up the possibilities
to analyze inverse problems from a statistical perspective, see Section 2.2 for more details.

2.1.3 Numerical examples

We will demonstrate in simple toy examples the effects of regularization and the impor-
tance of the chosen regularization parameter κ. While our first example is a linear PDE
based example, the second example is to train a so called neural network, which will be
used to approximate a function. In both examples we see that it is a challenging task to
balance between fitting the data and regularization.

Example 2.1.15 (Linear example: Partial differential equation). We consider the follow-
ing one-dimensional partial differential equation{

− d2p
dx2 (x) + p(x) = θ(x), x ∈ D := (0, π)

p(x) = 0, x ∈ ∂D,
(2.11)

and consider the problem of recovering the unknown function θ† from noisy observation

y = Lθ† + ξ†,

where ξ† is a realization of observational noise and the forward operator is defined through

L = O ◦ L−1, L = − d2

dx2
+ id on D(L) = H2 ∩H1

0 .

Here the operator L−1 is the solution operator of (2.11) and O observes the dynamical sys-
tem at K = 24−1 equispaced observation points. We solve the PDE (2.11) numerically on
a uniform mesh with mesh size h = 2−8 by a finite element method with continuous, piece-
wise linear ansatz functions. The reference solution θ† will be sampled from a Gaussian
distribution

θ† ∼ N (0, C0),

where we set C0 = 10 · (− d2

dx2 )−1.
In Figure 2.4 we can see the Tikhonov regularized solutions for different choices of regu-
larization parameter κ. While the estimate without regularization clearly overfits the data,
the resulting estimate with Tikhonov regularization improves effectively. We can also see
that the choice of regularization parameter κ is crucial, as for too big values, the truth
cannot be recovered very well and for too small values we can see overfitting again. In Fig-
ure 2.5 we can see the corresponding data fitting of our estimates. While we fit the data
exactly in the setting without regularization, we allow more tolerance for greater values of
κ. If κ is chosen too small, the noise in the data will be fitted again.

Example 2.1.16 (Nonlinear example: Training a neural network). Our next model prob-
lem will be motivated from a machine learning application example. We consider a deep
neural network (DNN) to approximate the function f : [−1, 1]→ R defined as

f(x) = sin(2πx), x ∈ [0, 2π]
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Figure 2.4: Resulting parameter estimates for different choices of regularization parameter:
(a) without regularization, (b) with κ = 10−2, (c) with κ = 10−4 and (d) with
κ = 10−8
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Figure 2.5: Resulting observational estimates for different choices of regularization param-
eter: (a) without regularization, (b) with κ = 10−2, (c) with κ = 10−4 and (d)
with κ = 10−8
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given the training data set {xk, f(xk)}Kk=1. We will consider a DNN which is defined as
a function fθ : Rd → R, where the input is defined as x ∈ Rd and the parameters of the
DNN are denoted by θ. For more details on the definition of a DNN see Section 7.2.1. By
training the NN with respect to the training data {xk, yk = u(xk)}Kk=1, we aim to solve the
Tikhonov regularized minimization problem

min
θ

1

2

K∑
k=1

‖fθ(xk)− yk‖2 +
κ

2
‖θ‖2, (2.12)

where our training data is perturbed by some noise, i.e.

yk = f(xk) + ξk.

Here ξk denotes again the realization of the observational noise. We can translate the
minimization problem into the inverse problem of finding θ such that

ỹ = fθ(x̃) + ξ, (2.13)

given the data set (x̃, ỹ) with x̃ := (x1, . . . , xK) and ỹ := (y1, . . . , yK), where yi := fθ(xi).
In this setting the inverse problem aims to find the parameter θ ∈ RNθ such that fθ(·) fits
the data best possible. We will define our NN to approximate the function f(x) with L = 2
hidden layers with N1 = 10, N2 = 10 nodes and N3 = 1 output node. We choose a logistic
function

σ(x) =
1

1 + e−x

as activation function. To train our NN we will use the MATLAB function fminunc to min-
imize (2.12) with and without Tikhonov regularization. The chosen optimization method
is a quasi-Newton method.

Figure 2.6 shows different results of the function approximation through the NN for differ-
ent choices of regularization parameters. Similarly, as in the example before, in absence of
regularization we see the effect of fitting the noise in the data. In the case of too high values
of regularization parameter the resulting function approximation acts close to a regression
line.

2.2 Bayesian approach for inverse problems

In the next section, we will introduce an alternative viewpoint of inverse problems. Instead
of using optimization methods to solve the inverse problem by minimizing deterministic
(regularized) loss functions, we will introduce the Bayesian perspective of inverse problems.
In the Bayesian approach, we are viewing the unknown parameter as random variable
and using the incoming data to do statistical inference. The Bayesian approach can be
interpreted as regularization, which makes the inverse problem well-posed. In particular,
it is possible to connect the Bayesian approach via the maximum a posteriori estimate to
the Tikhonov regularized solution introduced in the previous section for classical inverse
problems. We will give more details on the connection in Section 2.2.3. For an example of
the application of the Bayesian approach in inverse problems, presented in Section 2.1 and
in particular, to inverse problems based on elliptic PDEs similar to the Example 2.1.15,
we refer to [59, 224].
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Figure 2.6: Resulting function approximations for different choices of regularization pa-
rameter: (a) without regularization, (b) with κ = 1, (c) with κ = 10−2 and
(d) with κ = 10−4

The presented introduction is mainly based on the textbooks [118, 216] and the articles
[60, 215]. While the finite dimensional setting has been discussed in [118, 215], the focus
lies on the general setting of infinite dimensional Banach spaces in [60, 216].
For the rest of this work, we will denote our underlying probability space by (Ω,A,P),
where Ω is some nonempty set, A is a σ-algebra over Ω and P is a probability measure
on (Ω,A). If we talk about a random variable S which is valued on a separable Hilbert
space X , we consider a A-B(X )-measurable mapping S : Ω→ X , where B(X ) denotes the
Borel-σ-algebra over X . Further, we sometimes write S ∼ ρ for some probability measure
ρ on (X ,B(X )), which corresponds to the distribution of S, i.e.

P(S ∈ B) = ρ(B), B ∈ B(X ).

Usually, we denote random variables by capital letters, while we denote the realizations
of these random variables through the corresponding lowercase letters.

2.2.1 Bayesian inverse problems: Well-posedness results

In the following, we will introduce the Bayesian setting for our inverse problem. Let X be
a separable Hilbert space, denoting our (possibly infinite-dimensional) parameter space,
and Y = RK denotes our finite-dimensional observation or data space respectively. We
consider the stochastic model

Y = H(Θ) + Ξ, (2.14)

where
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• Θ denotes the unknown parameter modelled as X -valued random variable,

• H : X → RK is our given forward model, which is some (possibly nonlinear) mea-
surable mapping from the parameter space to the observation space,

• Ξ denotes the additive observational noise modelled as RK-valued random variable
with mean zero and symmetric positive definite covariance matrix Γ,

• Y denotes the noisy observation modelled as RK-valued random variable.

Within this model we study the joint probability distribution of (Θ, Y ), and in particular,
we employ the Bayesian approach to inverse problems, where we condition the random
variable Θ on the realization of observation Y = y. We take the following assumptions:

• We assume that the noise Ξ is Gaussian distributed, i.e. Ξ ∼ N (0,Γ), where Γ ∈
RK×K is a symmetric positive definite covariance matrix .

• We assume that we have access to some prior information about our unknown pa-
rameter Θ, which is given through the marginal distribution of Θ, denoted by Q0.

• We assume that the random variable Θ and the noise Ξ are independent.

The Bayesian inverse problem is the task of conditioning the random variable Θ with
prior distribution Q0 on the realization of the observation Y = y, i.e. to find

Q∗y(B) = P(Θ ∈ B | Y = y), B ∈ B(X ). (2.15)

We call the conditioned distribution (2.15) posterior distribution.
In general, it is not clear whether the resulting posterior distribution has also Lebesgue
density and can be written down in a simple way, since the parameter space is possibly
infinite-dimensional.
However, application of Bayes’ rule in the finite-dimensional setting suggests, that the
Radon–Nikodým derivative of the posterior distribution Q∗y with respect to the prior Q0,
exists and is given through

dQ∗y
dQ0

(θ) ∝ exp

(
−1

2
‖H(θ)− y‖2Γ

)
.

This can be seen in the following finite dimensional example.

Example 2.2.1. In this example we assume a finite dimensional parameter space X = RI
and derive the posterior distribution given by its conditional probability density function.
We assume that Q0 has a Lebesgue probability density function, i.e. Q0(dθ) = q0(θ) dθ,
where q0 denotes the prior density, and we denote the joint probability density function of
(Θ, Y ) by q(Θ,Y ). Further, we assume that the marginal density function of Y is positive,

i.e. qY (y) =
∫
RI q(Θ,Y )(θ, y) dθ > for all y ∈ RK . Hence, by application of Bayes Theorem,

Θ conditioned on Y = y is distributed according to the probability density function defined
by

ρ∗(θ) =
qY |Θ=θ(y)

qY (y)
q0(θ),

where qY |Θ=θ denotes the conditional probability density function of Y conditioned on
Θ = θ. As we have assumed Gaussian noise, Y | Θ = θ has Lebesgue density defined by

qY |Θ=θ(y) =
1√

det(2πΓ)
exp(−1

2
‖H(θ)− y‖2Γ),
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and the posterior density function ρ∗ can be computed by

ρ∗(θ) =
1

Z
exp(−1

2
‖H(θ)− y‖2Γ)q0(θ),

where Z =
∫
RI exp(−1

2‖H(θ)−y‖2Γ)q0(θ) dθ denotes the normalization constant. Suppress-
ing the normalization constant, we often write

ρ∗(θ) ∝ exp(−1

2
‖H(θ)− y‖2Γ)q0(θ).

We note that we have introduced the notation ‖ · ‖Γ = ‖Γ−1/2 · ‖, where ‖ · ‖ denotes the
norm of the underlying finite dimensional space, in this particular case RK . The following
theorem extends the result of Example 2.2.1 to the infinite dimensional setting.

Theorem 2.2.2 ([216], Theorem 6.6). Let H : X → RK be continuous, Ξ ∼ N (0,Γ) for
some symmetric positive definite covariance matrix Γ ∈ RK×K and Θ ∼ Q0. Then Q∗y is
absolutely continuous w.r.t. Q0, where the Radon–Nikodým derivative is given through

dQ∗y
dQ0

(θ) ∝ exp

(
−1

2
‖H(θ)− y‖2Γ

)
. (2.16)

We call this expression likelihood and define Φ(θ, y) := 1
2‖H(θ)− y‖2Γ as the potential.

The next question is if the posterior distribution given through (2.16) is well-defined and
if it is stable w.r.t. changes in the data y. We will present existing well-posedness results
for the Bayesian inverse problem from the literature. Well-posedness in the sense of
consistency w.r.t. changes in the data has been discussed in [1, 52, 139], while consistency
w.r.t. numerical approximation of the forward model can be found in [53].
We will state sufficient conditions on the forward map H and the prior distribution Q0 such
that the posterior distribution exists and is stable w.r.t. the data y. We note that all of
the presented well-posedness results also hold in the setting of general infinite-dimensional
spaces, i.e. for some Banach space X as parameter space and some Banach space Y as
observation space, see [60]. Nevertheless, we will stick to the case of finite-dimensional
observation to stay consistent with the rest of this work.
The following assumptions on the potential Φ ensure that the posterior measure defined
through (2.16) is well-defined

Assumption 2.2.3. Let Φ : X × RK → R+ be continuous, X ′ ⊂ X with Q0(X ′) = 1 and
assume the following:

1. There exists a monotonically nondeacreasing function b1 : R+×R+ → R+ separately
in each argument such that for all θ ∈ X , r > 0 and y ∈ BRK (0, r)

Φ(θ, y) ≥ −b1(r, ‖θ‖X ).

2. There exists a monotonically nondeacreasing strictly positive function b2 : R+×R+ →
R+ such that for all θ ∈ X ′, r > 0 and y1, y2 ∈ BRK (0, r)

|Φ(θ, y1)− Φ(θ, y2)| ≤ b2(r, ‖θ‖X )‖y1 − y2‖RK .

3. For every r > 0 it holds true that

exp(b1(r, ‖Θ‖X )) ∈ L1(X ,B(X ),Q0).
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4. We have Q0(B) > 0 for some bounded set B ∈ B(X ).

With these assumptions we are now able to ensure that the posterior distribution is well-
defined.

Theorem 2.2.4 ([60], Theorem 4.3). Let Assumption 2.2.3 hold. Then, for every y ∈ RK

Z(y) :=

∫
X

exp(−Φ(θ, y))Q0(dθ) (2.17)

is positive and finite and the posterior probability measure defined through

dQ∗y
dQ0

(θ) =
1

Z(y)
exp

(
−1

2
‖H(θ)− y‖2Γ

)
is well-defined.

In order to state stability results for the posterior distribution, we introduce the Hellinger
distance, which is a distance between two probability measures.

Definition 2.2.5. For two probability measures µ1, µ2 ∈ P(X ,B(X )), where P denotes the
space of probability measures on the measurable space (X ,B(X )), we define the Hellinger
distance through

dH(µ1, µ2) :=

∫
X

(√
dµ1

dν
(θ)−

√
dµ2

dν
(θ)

)2

ν(dθ)

1/2

,

where ν is a dominating measure of µ1 and µ2, i.e. µ1 � ν and µ2 � ν.

The stability analysis is based on the Hellinger distance, as one can bound distances of
moments w.r.t. two measures by the Hellinger distance, i.e. for f ∈ L2(X ,B(X), µ1) ∩
L2(X ,B(X), µ2) it holds

‖Eµ1 [f ]− Eµ2 [f ]‖X ≤ cdH(µ1, µ2),

for some constant c > 0. Further, one can bound the total variation distance, which is
defined as

dTV (µ1, µ2) = sup
B∈B(X )

|µ1(B)− µ2(B)|,

by the Hellinger distance through

1

2
d2
H(µ1, µ2) ≤ dTV (µ1, µ2) ≤ dH(µ1, µ2).

For the well-posedness of the solution to the Bayesian inverse problem, it is left to consider
stability w.r.t. changes in the initial conditions. First, we will formulate the stability w.r.t.
the data y.

Theorem 2.2.6 ([60], Theorem 4.5). Let Assumption 2.2.3 hold and assume further, that

exp(b1(r, ‖Θ‖X ))(1 + b2(r, ‖Θ‖)2) ∈ L1(X ,B(X ),Q0).

Then there exists C = C(r) > 0 such that for all y1, y2 ∈ BRK (0, r)

dH(Q∗y1
,Q∗y2

) ≤ C‖y1 − y2‖RK .
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This result states that small changes in the data will result in small changes of the posterior
measure, quantified in the Hellinger distance.
Another interesting property to consider is the stability w.r.t. changes in the forward
model. Since in most of the examples for inverse problems a numerical approximation is
necessary, it is crucial to ensure stability of the posterior in changes of say the accuracy
of the forward model. We denote the potential resulting from the approximated forward
model through ΦN , where ΦN converges in some sense to Φ with N going to infinity. We
make the following assumptions.

Assumption 2.2.7. Let Φ : X × RK → R+ and ΦN : X × RK , N ∈ N, be continuous,
X ′ ⊂ X with Q0(X ′) = 1 and assume the following:

1. There exists a monotonically nondecreasing function b1 : R+ → R+ separately in
each argument, which is independent of N ∈ N, such that for all θ ∈ X ′

Φ(θ, y) ≥ −b1(‖θ‖X ),

ΦN (θ, y) ≥ −b1(‖θ‖X ).

2. There exists a monotonically nondeacreasing strictly positive function b2 : R+ → R+,
which is independent of N ∈ N and there exists a sequence (δN )N∈N converging to
zero, such that for all θ ∈ X ′

|Φ(θ, y)− ΦN (θ, y)| ≤ b2(‖θ‖X )δN .

3. It holds true that
exp(b1(‖Θ‖X )) ∈ L1(X ,B(X ),Q0).

4. We have Q0(B) > 0 for some bounded set B ∈ B(X ).

The next Theorem establishes the the stability of the posterior with respect to approxima-
tion errors in the forward model, i.e. it proves that the approximated posterior distribution
defined through

dQN
y

dQ0
(θ) =

1

ZN (y)
exp (−ΦN (θ, y)) , (2.18)

ZN (y) :=

∫
X

exp(−ΦN (θ, y))Q0(dθ) (2.19)

is well-defined under Assumption 2.2.7 and converges under further integrability conditions
on b1 and b2 in Hellinger distance against the posterior distribution Q∗y.
Theorem 2.2.8 ([60], Theorem 4.8 and Theorem 4.9). Let Assumption 2.2.7 hold and
fix y ∈ Y arbitrary. Then (2.17) and (2.19) are positive and finite, and the (approximate)
posterior measures (2.16) and (2.18) respectively are well-defined. Furthermore, the lower
bound on (2.19) is independent on N .
Assume additionally that

exp(b1(‖Θ‖X ))
(
1 + b2(‖Θ‖)2

)
∈ L1(X ,B(X ),Q0),

then there exists a constant C > 0 such that for sufficiently large N it holds true that

dH(Q∗y,QN
y ) ≤ CδN .

So far, we have seen that the Bayesian inverse problem of finding (2.15) is a well-posed
problem. In general it is not possible to write down the posterior distribution in a closed
way or to construct straightforward samples from it. Therefore, there are several methods
necessary to construct estimates for different kind of quantities of interest.
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2.2.2 Gaussian measures

In the previous section, we have introduced the well-posed Bayesian inverse problem, which
is the update of the prior distribution by inclusion of the observations, resulting in the
conditioned probability distribution - the posterior distribution (2.16). So far, we have not
introduced special cases of prior distributions, while we have just considered integrability
conditions to ensure the well-posedness.

In this section, we will introduce Gaussian distribution, which will be used as prior. We
define a Gaussian random variable on separable Hilbert spaces by requiring that each
continuous linear functional of this random variable results in a one-dimensional Gaussian
random variable.

Definition 2.2.9. Let µ be a probability measure on a separable Hilbert space X and
assume that the second moment of µ exists. We call µ Gaussian measure with mean
m ∈ X and covariance operator C ∈ L(X ,X ), which is positive, self-adjoint and trace
class, if, for ξ ∼ µ it holds true that

〈ξ, h〉X ∼ N (〈m,h〉X , 〈h,Ch〉X )

for all h ∈ X . We call the random variable ξ Gaussian distributed.

Similar to the finite-dimensional case, Gaussian measures are uniquely determined by
its mean and covariance operator. Further, the following Theorem ensures existence of
Gaussian measures.

Theorem 2.2.10 ([197]). Let X be a separable Hilbert space and C ∈ L(X ,X ) be a
positive, self-adjoint and trace class operator. Then there exists a Gaussian measure on
X with covariance operator C.

One important property of Gaussian distributed random variables is that every affine
linear transformation is again Gaussian distributed.

Proposition 2.2.11. Let X1 and X2 be separable Hilbert spaces and ξ ∼ N (m,C) be a
Gaussian distributed random variable on X1. For s ∈ X2 and L ∈ L(X1,X2) it holds true
that

Lξ + s ∼ N (Lm+ s, LCL∗).

In the following example, we study the Bayesian inverse problem under a Gaussian prior
assumption.

Example 2.2.12 (Linear Gaussian case). We assume that X = RI and the prior Q0

is a Gaussian distribution N (m0, C0), and the forward map H is linear, defined through
H(θ) = Lθ, where L ∈ RK×n. Hence, we can write the prior density through

dQ0(θ) = ρ0(θ) dθ =
1√

det(2πC0)
exp

(
−1

2
‖m0 − θ‖2C0

)
dθ,

and the likelihood through

dQ∗y
dQ0

(θ) =
1√

det(2πΓ)
exp

(
−1

2
‖Lθ − y‖2Γ

)
.
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Using

dQ∗y(θ) =
1√

det(2πΓ)
exp

(
−1

2
‖Lθ − y‖2Γ

)
1√

det(2πC0)
exp

(
−1

2
‖m0 − θ‖2C0

)
dθ

gives with some further computations that the posterior distribution is again Gaussian with
mean my and covariance matrix Cy, given through

my = m+C0L
>(LC0L

>+ Γ)−1(y−Lm), Cy = C0−C0L
>(LC0L

>+ Γ)−1LC0. (2.20)

While the mean is getting shifted into direction of the data y, the uncertainty in the dis-
tribution, given through the covariances, is getting reduced. Note that this example can be
extended to the infinite dimensional setting.

2.2.3 Maximum a-posteriori estimators and connection to regularization

In this section, we want to connect the introduced Bayesian approach to the classical
regularization methods based on optimization. Therefore, we introduce the point estimator
called maximum a-posteriori estimator (MAP). We will stick to the finite-dimensional
setting for simplicity, i.e. we will assume that our parameter space is given by X = RI
and, similar as before, our observation space is Y = RK .
Before introducing MAP estimators, we will briefly recall the idea of maximum likelihood
estimator. In our setting the likelihood function for given data y1, . . . , yM ∈ RK is defined
through

LM : RI → R+, θ 7→ LM (θ) =
M∏
i=1

q(yi | θ) (2.21)

where in our setting we have denoted the likelihood for arbitrary data y ∈ RK and fixed
θ ∈ RI by

q(y | θ) =
1

C(y)
exp(−Φ(θ, y)),

C(y) =

∫
RI

exp(−Φ(θ, y)) dθ.

(2.22)

Note that in general, one can take other density functions instead of q(y | θ) to define
likelihood estimators. However, we will stick to this class of density functions defined
through (2.22).
Before defining the MAP estimator, we define the maximum likelihood estimator arising
in nonparametric statistics in order to view the MAP estimator as its modification in the
Bayesian perspective.

Definition 2.2.13. For given data y1, . . . , yM ∈ RK the maximum likelihood estima-
tor (MLE) is defined by the maximizer of the Likelihood function LM defined in (2.21)
provided it exists. We write for a maximum likelihood estimate

θML ∈ arg max
θ∈RI

LM (θ).

In our context, we assume to have prior belief on the unknown parameter θ ∈ RI , such that
we can use this information to construct in some sense an update of the ML estimator. If
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2.2 Bayesian approach for inverse problems

we assume that the prior distribution has Lebesgue density ρ0, we can write the posterior
distribution through Lebesgue density again, i.e.

dQ∗y(θ) =
1

Z(y)
exp(−Φ(θ, y)) · ρ0(θ) dθ,

Z(y) =

∫
RI

exp(−Φ(θ, y)) · ρ0(θ) dθ.

In this context, we will denote the posterior density through

q∗y(θ) =
1

Z(y)
exp(−Φ(θ, y)) · ρ0(θ) (2.23)

and define the MAP estimator in the following.

Definition 2.2.14. Let X = RI , Y = RK and consider a prior distribution with Lebesgue
density ρ0, i.e.

dQ0(θ) = ρ0(θ) dθ.

If a maximizer of (2.23) exists, we denote every maximizer of (2.23) by maximum a-
posteriori estimator and we write

θMAP ∈ arg max
θ∈RI

q∗y(θ).

We can interpret the MAP estimator in some sense as regularized maximizer of the like-
lihood function. This interpretation will be more obvious if we consider a Gaussian prior
and connect the MAP estimator to the Tikhonov regularized solution defined in (2.7).

We assume that our prior is Gaussian N (m0, C0) with mean m0 ∈ RI and symmetric
positive definite covariance C0 ∈ RI×I . Hence, we can write the prior density explicitly
through

ρ0(θ) =
1√

det(2πC0)
exp(−1

2
‖m0 − θ‖2C0

),

such that the MAP estimators are given by maximizing the posterior density

q∗y(θ) ∝ exp

(
−1

2
‖H(θ)− y‖2Γ −

1

2
‖m0 − θ‖2C0

)
. (2.24)

Taking the negative logarithm of (2.24) leads to the equivalent computation of the MAP
estimator through the minimization problem

arg min
θ∈RI

‖H(θ)− y‖2Γ + ‖m0 − θ‖2C0
. (2.25)

By this representation of the MAP estimator, we can view the computation as the com-
putation of the Tikhonov regularized solution similar as in (2.7).

We refer the interested reader to [118] in the finite dimensional setting, and for a gen-
eralization to the infinite dimensional setting of the MAP estimators and its consistency
analysis, we refer to [61].
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2.2.4 Karhunen–Loéve expansion: Alternative prior models

In this section, we give a brief introduction to the Karhunen–Loéve (KL) expansion based
on [154]. The KL expansion can be interpreted as spectral decomposition of a random
field corresponding to its covariance operator. Before introducing different classes of prior
choices, we introduce the KL expansion for general L2(D) valued random fields for some
domain D ⊂ Rd.
When talking about a second-order random field, we mean a random field Θ = (Θ(x))x∈D,
which is a family of real value random variables on the underlying probability space, such
that Θ(x) ∈ L2(Ω) for all x ∈ D. We define the mean function of Θ by

m : D → R, m(x) = E[Θ(x)],

and the covariance function by

c : D × C → R, c(x, y) = E[(Θ(x)−m(x))(Θ(y)−m(y))].

We note that for X = L2(D), we can interpret the Gaussian measure N (m,C) defined in
Definition 2.2.9 as random field with mean function m and covariance function c repre-
senting the covariance operator C, i.e. for each h ∈ L2(D) we can write

Ch(x) =

∫
D
c(x, y)h(y) dy.

Karhunen–Loéve expansion for random fields

The KL expansion can be interpreted as Fourier series representation of a stochastic pro-
cess or more general of a random field respectively. We will formulate the Karhunen–Loéve
Theorem for L2(D)-valued random field for some D ⊂ Rd. The KL expansion provides a
representation of the random field based on an orthonormal basis of its covariance operator
C ∈ L(L2(D), L2(D)), defined by

Ch(x) =

∫
D
c(x, y)h(y) dy,

with covariance function c : D ×D → R.

Theorem 2.2.15 (Karhunen–Loéve Theorem for L2 random field, [154, Theorem 7.52]).
Let D ⊂ Rd and consider a second-order random field Θ = (Θ(x))x∈D. Then for all ω ∈ Ω
we can write

Θ(x, ω) = m(x) +
∞∑
i=1

√
νiϕi(x)ζi(ω), (2.26)

where the sum converges in L2-sense,

ζi(ω) :=
1

νi
〈Θ(·, ω), ϕi(·)〉L2(D)

and (νi, ϕi)i∈N are the eigenvalues and eigenfunctions of the covariance operator C, i.e.

Cϕi(x) =

∫
D
c(x, y)ϕi(y) dy = νiϕi(x)

with ν1 ≥ ν2 ≥ · · · ≥ 0.
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We note that the random variables (ζi) have mean zero and are pairwise uncorrelated.
Furthermore, if Θ is a Gaussian random field, the random variables (ζi) are i.i.d. N (0, 1)
distributed.
The truncation of this KL expansion representation gives the possibility to approximate
random fields, i.e. we can approximate the second-order random field Θ by

ΘM (x, ω) = m(x) +
M∑
i=1

√
νiϕi(x)ζi(ω).

This results in a random field ΘM with mean function m and covariance function

cM =

M∑
i=1

νiϕi(x)ϕi(y).

This means, in order to use the KL expansion to approximate the random field Θ one has
to solve the eigenvalue problem Cϕi = νϕi, for the covariance operator C of Θ.
The truncated random field ΘM approximates the original random field Θ in the following
sense.

Theorem 2.2.16 (uniform convergence of the KL expansion, [154, Theorem 7.53]). Let
D ⊂ Rd be closed and bounded and consider a second-order random field Θ = (Θ(x))x∈D
with continuous covariance function c. Then the eigenfunctions ϕi(·) of the covariance
operator C are continuous and the series expansion of C converges uniformly. In partic-
ular,

sup
x,y∈D

|c(x, y)− cM (x, y)| ≤ sup
x∈D

∞∑
i=M+1

νiϕi(x)→ 0,

as M →∞. Furthermore, the truncated random field ΘJ converges to Θ in the sense that

lim
M→∞

sup
x∈D

E[|ΘM (x)−Θ(x)|2] = 0.

The KL expansion gives now the motivation of choosing a prior model through a series
representation

Θ(x, ω) = m(x) +
∞∑
i=1

√
νiϕi(x)ζi(ω) (2.27)

by different choices of the system (νi, ϕi)i∈N and different distributions of (ζi)i∈N. We
consider models, such that E[ζ1] = 0 and the function m acts as mean function of the
random field.

Uniform priors

Motivated by the series representation (2.26), the first class of priors we consider is the
class of uniform priors. The idea is to start with a series representation of the underlying
functional, and randomizing this series representation by introducing random coefficients.
We refer to [117] for more details on random functions generated by this way. It is worth-
while to refer to [180] for the construction of probability measures of infinite sequences of
i.i.d. random variables, which is fundamental in order to define these kind of prior models.
For the introduction of uniform priors, we consider an underlying Banach space X =
L∞(D), D ⊂ Rd bounded and open with Lipschitz boundary, and let

√
ν = (

√
νi)i∈N be
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in `1. The series of random variables is specified as uniformly distributed, i.e. we consider
ζ = (ζi)i∈N as i.i.d. sequence of random variables with ζ1 ∼ U([−1, 1]). Further, we assume
the following boundary conditions on the mean function m and the sequence

√
ν:

ess inf
x∈D

m(x) ≥ ml, ess sup
x∈D

m(x) ≤ mu, ‖
√
ν‖`1 =

δ

1 + δ
ml,

where ml ≤ mu and δ > 0 are constants. Let ϕi : D → R be real-valued normalized
functions, i.e ϕi ∈ X with ‖ϕi‖L∞ = 1, and we define X ′ as the closure of the linear span
of (ϕi)i∈N and m w.r.t. the norm ‖ · ‖L∞ . Hence, we have found a separable Banach
space (X ′, ‖ · ‖L∞) and we can state the following result regarding the truncated series
representation

ΘM (x, ω) = m(x) +

M∑
i=1

√
νiϕi(x)ζi(ω). (2.28)

Theorem 2.2.17 ([60, Theorem 2.1]). For P-almost all ω ∈ Ω, the sequence (ΘM (·, ω))M∈N
given by (2.28) is a Cauchy sequence in X ′ and the limiting function Θ(·, ω) given by (2.27)
satisfies for almost every x ∈ D

1

1 + δ
ml ≤ Θ(x, ω) ≤ mu +

δ

1 + δ
.

Furthermore, under certain regularity assumptions on ν, ϕ and m, one can ensure Hölder
continuity of the random field Θ.

Theorem 2.2.18 ([60, Theorem 2.3]). Assume that there are constants C, a > 0, α ∈
(0, 1], such that for all i ∈ N

|ϕi(x)− ϕi(y)| ≤ Cia|x− y|α, |m(x)−m(y)| ≤ C|x− y|α, x, y ∈ D.

Further, assume that
∑∞

i=1 |νi|iaγ < ∞ for some γ ∈ (0, 2). Then for P-almost all ω ∈ Ω
it holds true that Θ(·, ω) ∈ C0,β(D) for all β < αγ

2 .

Random fields constructed in this way have been considered in the context of forward
uncertainty quantification [49, 50] where the effect of randomizing the input data on the
solution of the model equation has been discussed. For Bayesian inverse problems, uniform
prior models have been considered in [206].

Gaussian random field priors

Returning to the setting of L2(D)-valued random fields, we consider the special case of
Gaussian random fields and its KL expansion. In many PDE based inverse problems, the
unknown parameter is modelled as a Gaussian random field whose covariance function
is described by the Whittle–Matérn class. Following [192, 151], we firstly introduce the
Whittle–Matérn class covariance and secondly connect this class to a stochastic partial
differential equation resulting in a fast approximation approach.
The covariance function of the Whittle–Matérn class is defined by

c(x, y) =
σ2

Γ(α)2α−1

(
‖x− y‖

`

)α
Kα

(
‖x− y‖

`

)
, x, y ∈ D = Rd

where Kα denotes the modified Bessel function of second kind and order α > 0 and Γ(·)
denotes the Gamma function. The length parameter ` > 0 is a scaling parameter, σ2 is
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the marginal variance of the random field and the parameter α controlling the smoothness
of the random field. The stochastic partial differential equation (SPDE) approach states
that samples of the Whittle–Matérn class may be generated by solving the SPDE

(Id−`2∆)(α+d/2)/2Θ = `d/2
√
γW,

where W is Gaussian white noise on D = Rd, ∆ denotes a Laplacian operator on D and
the constant γ is defined as

γ = σ2 2dπd/2Γ(α+ d/2)

Γ(α)
.

We can formally describe the covariance operator of the Gaussian random field by

CWM = `dγ(Id−`2∆)−(α+d/2).

In our application for our presented numerical examples, we often choose σ > 0 such that
`dγ = β > 0 and we set α = α + d/2 as well as τ = `−1, such that we can specify the
covariance operator of the Whittle–Matérn class as

CWM = β · (τ2 · Id−∆)−α,

with parameters β > 0, τ > 0 and α > d/2. In order to generate samples of the Whittle–
Matérn class, one can apply the KL expansion using the eigensystem of CWM. For more
details of the relation between α and the smoothness of the corresponding random field we
refer to [60]. Furthermore, we note that similar to the ideas of uniform prior modelling in
(2.28), one can introduce various prior models by choosing different series representations.
For example besov priors for Bayesian inverse problems have been considered in [58, 146].

2.2.5 Basic sampling methods for Bayesian inverse problems

In the following section, we will discuss the Markov chain Monte Carlo method, which is a
sampling based methods to solve the Bayesian inverse problem. The method is based on
either generating samples of the posterior distribution (2.16) or approximating quantities
of interest, which are given as expected values w.r.t. the posterior distribution, i.e. for
Z ∼ Q∗y:

QInt = E[F (Z)] =

∫
X
F (θ)Q∗y(dθ). (2.29)

Assuming to have a finite-dimensional parameter space X = RI and to have access to a
Lebesgue density ρ∗, one could use general methods of numerical integration to approxi-
mate the integral ∫

RI
F (θ)ρ∗(θ) dθ.

However, in many cases the parameter space is of high dimension or we even have no
access to a Lebesgue density, such that basic numerical integration methods will fail. The
basic idea for the following part are Monte Carlo methods, a method which approximates
integrals independent of dimension of the state space, but in our case has to assume to
have access to samples of the posterior distribution. To generate samples of the posterior
distribution or to approximate the quantity of interest (2.29) directly, we will introduce
Markov chain Monte Carlo methods.
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Markov chain Monte Carlo methods

The basic idea of Markov chain Monte Carlo (MCMC) methods is to construct a Markov
chain with stationary distribution given by posterior Q∗ in order to construct a sample
of the posterior distribution and hence, construct a Monte Carlo estimate of the quantity
of interest (2.29). The idea behind this can be seen from the following: Suppose that the
current state of a Markov Chain (Xk)k∈N with transition kernel P is initialized according
to X0 ∼ Q∗, where P is invariant w.r.t. Q∗, it follows that

X1 ∼ Q∗ ◦ P = Q∗, . . . , Xk ∼ Q∗ ◦ P k = Q∗,

where we have defined µ ◦ P (dx) =
∫
X P (z, dx)µ(dz) and P k = P ◦ P ◦ · · · ◦ P . Further,

suppose that P k converges weakly to Q∗ as k tends to infinity, then for large enough k ∈ N,
P k approximates Q∗ and heuristically it holds

Xk+1 ∼ P k+1 = P k ◦ P ≈ Q∗ ◦ P = Q∗.

Hence, one expects the possibility of generating a sample of the target distribution Q∗ by
running the Markov chain, which can then be used to approximate the quantity of interest
through a Monte Carlo estimate

1

N

N∑
i=1

F (Xk+i) ≈ E[F (Z)].

While in the case of an i.i.d. sample of Q∗, this approximation can easily be verified
through the strong law of large numbers, one has to investigate more work in the setting
of Markov chains, as the resulting sample is correlated. To make this idea rigorous, we
follow the derivation in [220] which is mainly based on the textbook [169]. We also refer
to [221] for Metropolis-Hastings methods on general state spaces. We will focus on time-
homogenous Markov chains with transition kernel P , which means for the Markov chain
(Xk)k∈N it holds

P(Xk+1 ∈ B | X1 = x1, . . . , Xk = xk) = P(Xk+1 ∈ B | Xk = xk) = P (xk, B),

for all B ∈ B(X ), x1, . . . , xk ∈ X and k ∈ N. We start this discussion by a formal definition
of invariance of a Markov chain.

Definition 2.2.19. Let P be the transition kernel of a Markov chain. We call a Markov
chain invariant w.r.t. a probability measure µ, if µ ◦ P = P .

In order to formulate the convergence theorems for MCMC methods, we need to define
the properties of irreducibility and periodicity.

Definition 2.2.20. A Markov chain and its corresponding transition kernel P are called
irreducible w.r.t. a σ-finite measure ϕ on (X ,B(X )) with ϕ(X ) > 0, if for each x ∈ X
and A ∈ B(X ) with ϕ(A) > 0, there exists an k ∈ N depending on x and A, such that
P k(x,A) > 0. We will write ϕ-irreducible Markov chain and ϕ-irreducible transition kernel
respectively.

Definition 2.2.21. Let µ be a probability measure on (X ,B(X )). A µ-irreducible tran-
sition kernel P is called periodic, if there exists d ≥ 2 and A0, . . . , Ad−1 ∈ B(X ) nonempty
and disjoint such that for all i ∈ {0, . . . , d− 1} and all x ∈ Ai

P (x,Aj) = 1 for j = i+ 1 mod d.

Otherwise, we call the transition kernel aperiodic.
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2.2 Bayesian approach for inverse problems

We note that for a ϕ-irreducible Markov chain, every set A ∈ B(X ) with ϕ(A) > 0 can
be reached with positive probability after finitely many steps. Further, periodicity of a
Markov chain means that the chain stays in a loop with probability one.
The next crucial property to be considered is the notion of recurrence, which we define in
the following.

Definition 2.2.22. Let µ be a probability measure on (X ,B(X )). A µ-irreducible Markov
chain (Xk)k∈N with invariant distribution is called recurrent, if

Px(lim sup
k→∞

{Xk ∈ A}) > 0, for all x ∈ X ,

Px(lim sup
k→∞

{Xk ∈ A}) = 1, for µ-almost all x ∈ X ,

for all A ∈ B(X ) with µ(A) > 0. Here, Px denotes the measure under which the Markov
chain starts a.s. in x ∈ X . Further, we call the Markov chain Harris recurrent, if
Px(lim supk→∞ {Xk ∈ A}) = 1 for all x ∈ X .

Recurrence, in particular Harris recurrence, of a Markov chain means that the process
returns infinitely many times to each A ∈ X with µ(A) > 0 independent of the starting
position. We call a Markov chain ergodic if it is Harris recurrent and aperiodic.
The following theorem states, that irreducibility and invariance of the Markov chain imply
recurrence and if the Markov chain is also aperiodic, the Markov chain converges to its
invariant distribution.

Theorem 2.2.23 ([220, Theorem 1]). Let P be a µ-irreducible transition kernel and
assume that µ ◦ P = P . Then P is recurrent and µ is the unique invariant distribution of
P . Further, if P is aperiodic, then for µ-almost all x ∈ X

lim
k→∞

dTV (P k(x, ·), µ) = 0.

If P is Harris recurrent, then the convergence holds for all x ∈ X .

We are now ready to formulate the law of large numbers for Markov chains, which result
from the ergodic theorem for Markov chains.

Theorem 2.2.24 ([220, Theorem 3]). Let (Xk)k∈N be a ergodic Markov chain with in-
variant distribution µ and assume F ∈ L1(X ,B(X ), µ), real valued. Then for any initial
distribution of X0 it holds true that

lim
N→∞

1

N

N∑
i=1

F (Xi)
a.s.
= Eµ[F ] =

∫
X
F (x)µ(dx),

where the convergence holds almost surely.

In order to apply Theorem 2.2.24 to generate an estimate for (2.29) one has to construct
a Markov chain with transition kernel P satisfying

• P is invariant w.r.t. the posterior Q∗,

• P is a Q∗-irreducible transition kernel,
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• P is Harris recurrent.

To ensure the invariance of P , it is often easier to verify the so called detailed balance
condition, which is also referred to the reversibility of the Markov chain.

Definition 2.2.25. The transition kernel P of a Markov chain satisfies the detailed bal-
ance condition w.r.t. µ if

µ(dx)P (x,dz) = µ(dz)P (z,dx).

The Markov chain will then be called reversible.

Lemma 2.2.26 ([60, Lemma 5.2]). A Markov chain which is reversible w.r.t. µ is also
invariant with respect to µ.

Metropolis–Hastings algorithm

The aim is to construct a transition kernel P which is invariant w.r.t. the posterior Q∗,
Q∗-irreducible and Harris recurrent. The Metropolis-Hastings algorithm has been intro-
duced by Nicholas Metropolis et al. in 1953 [161] and has been generalized by Wilfred
Keith Hastings in 1970 [97]. The algorithm is based on an acceptance-rejection method.
Based on a proposal kernel, the next state will be proposed and then accepted with prob-
ability specified by a likelihood ratio depending on the target distribution. For simplicity,
we assume that the parameter space is finite dimensional X = RI and the posterior dis-
tribution Q∗ has Lebesgue density ρ∗. We formulate the Metropolis-Hastings method in
Algorithm 1.

Remark 2.2.27. Algorithm 1 first proposes the next state regarding the proposal transition
kernel, and then accepts the proposed state with probability α(θk, θ

′
k+1). Heuristically, α

can be interpreted in the following way: Assume that the proposal kernel is symmetric,

i.e. q(x, x′) = q(x′, x). Then α(x, x′) = min(1, ρ
∗(x′)
ρ∗(x) ) measures the ratio between the

posterior density evaluated at x and x′. Firstly, if the density value at the proposed state
x′ is greater than at the current state, the proposed state will always be accepted. Secondly,
if the density at the proposed state is smaller than at the current state, we accept with
the ratio ρ∗(x′)/ρ∗(x), such that we reject states which are less likely w.r.t. posterior
distribution.

The following proposition verifies the application of Algorithm 1.

Proposition 2.2.28 ([118, Proposition 3.12], [220, Corollary 2]). Let ρ∗ : RI → [0,∞)
be a probability density function and Q be the proposal Markov transition kernel with
density q. Let (Θk)k∈N be the Markov chain generated by Algorithm 1 with corresponding
transition kernel P . If Q is an aperiodic transition kernel, then the transition kernel P is
also aperiodic. Further, if Q is Q∗-irreducible and α(θ, θ′) > 0 for Q∗-almost all θ, θ′ ∈ RI ,
then the transition kernel P is also Q∗-irreducible and P is Harris recurrent.

With these properties we can apply Theorem 2.2.23 and Theorem 2.2.24 in order to verify
the application of a sample generated by Algorithm 1 as MC estimate for the a quanitity
of interest (2.29).
In the following, we will give an example of a proposal transition kernel Q which can be
used in Algorithm 1.
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2.2 Bayesian approach for inverse problems

Algorithm 1: Metropolis–Hastings algorithm

Input:

• target distribution Q∗(dθ) ∝ ρ∗ dθ,

• proposal Markov transition kernel Q : RI × B(RI)→ [0, 1] with density
q : RI × RI → [0,∞), i.e.

Q(x,A) =

∫
A
q(x, x′) dx′, A ∈ B(X ),

• acceptance probability

α(x, x′) :=

{
min

(
1, ρ

∗(x′)q(x′,x)
ρ∗(x)q(x,x′)

)
, ρ(x)q(x, x′) > 0

1 , else
,

• initial probability distribution ν0 on RI .

Output: Markov chain (Θk)k∈{1,...,N}
Draw X1 ∼ ν0 and set Θ1 = X1.
for k=1,. . . , N do

• Given the current state Θk = θk, propose θ′k+1 according to Q(θk, ·).

• Draw U ∼ U([0, 1]) and set

Θk+1 =

{
θ′k+1 , if U ≤ α(θk, θ

′
k+1),

θk , else.

Example 2.2.29. We choose a Gaussian random walk kernel, which can be described
by Q : RI × B(RI) with Qs(θ, ·) = N (θ, s2C0), where C0 ∈ RI×I could be the covariance
matrix of the prior distribution or some alternative symmetric positive-definite matrix. We
note that s > 0 is a tuning parameter, which can be optimized. The resulting Metropolis–
Hastings algorithm finds the next state by jumping randomly around the current state until
one of the proposed states is accepted. A rule of thumb states that the step size parameter
s should be chosen such that the acception rate

∫
RI
α(θ, θ′)Qs(θ,dθ

′)Q∗(dθ) ≈ 1

N

N∑
k=1

α(θk, θ
′
k+1)

is approximately 25%, see [191].

Remark 2.2.30. We note that the Metropolis–Hastings algorithm can be generalized to
the infinite dimensional setting, where one has to replace the Lebesgue densities in the
definition of α by Radon–Nikodým derivatives. In this setting, we can choose a Gaussian
random walk kernel, defined by the preconditioned Crank-Nicolson (pCN) proposal, see
for example [54]. For Gaussian prior assumption Q0 = N (0, C0), the proposal can be
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described by Q : X × B(X ) with

Qs(θ, ·) = N (
√

1− s2θ, s2C0),

where s is again a step size parameter, which can be optimized. The acceptance probability
α is then defined by

α(θ, θ′) = min
(
1, exp(Φ(θ)− Φ(θ′))

)
,

where Φ is the Radon-Nikodým derivative of the posterior distribution Q∗ w.r.t. prior Q0.

Example 2.2.31. To give more details on the procedure of the Metropolis–Hastings algo-
rithm, we consider the following 2-dimensional toy example. We define the forward map
H : R2 → R with H(θ1, θ2) = log(θ1 − (θ2

2 + 1)). Our prior is assumed to be Gaussian
Q0 = N (0, C0), with C0 = 5 · Id ∈ R2×2 and the noise is assumed to be Σ ∼ N (0,Γ)
with Γ = 0.1 ∈ R+. We generate an underlying truth θ† ∼ Q0 and the corresponding
data y = H(θ†) + ξ†, where ξ† ∼ N (0,Γ) is a realization of the noise. We run the MCMC
method with pCN proposal, where we have chosen s = 0.8 in order to ensure an acceptance
rate approximately around 25%. In Figure 2.7 we can see the first 10 and the first 100
iterations of Algorithm 1, where the green points correspond to the realized points, while
the red points denote the rejected proposed points. In Figure 2.8 we show a sample of size
1000 generated through Algorithm 1, which has been run for N = 105 iterations, and we
have collected the last 1000 iterations to generate the sample.
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Figure 2.7: Resulting path of the Metropolis–Hastings MCMC method. The first 10 (left)
and 100 (right) iterations are shown.

MH-MCMC algorithm

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

accepted

Figure 2.8: Resulting sample of the Metropolis–Hastings MCMC method. The last 1000
iterations are shown.
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Beside the Random Walk Metropolis Hastings method, general sampling methods for
Bayesian inverse problems and specifically MCMC methods have been studied extensively.
Similar to the ideas of the Metropolis Hastings methods, the Gibbs sampling method
[86, 85] or Hybrid monte carlo methods [73, 21], which are based on Hamiltonian systems,
can be used to construct a Markov chain whose stationary distribution is given by the
posterior. There exists also various MCMC methods based on multi-level Monte Carlo
methods [87, 48]. Furthermore, MCMC methods can be constructed by applying of the
stationary distribution resulting from the Langevin equation [171, 177, 92], which will be
discussed in Chapter 6 in more details.

An alternative approach to construct MC estimates is to use particle based sampling meth-
ods. The main idea goes back to sequential Monte–Carlo (SMC) methods [162], which
have been successfully applied to PDE based inverse problems [129] (Navier–Stokes) and
to elliptic inverse problems [22]. The basic idea is to sequentially evolve a particle system
from the prior to the posterior distribution by tempering the posterior density function.
Here, in each step it is possible to implement resampling through importance sampling
[9, 152], which itself can be applied to Bayesian inverse problems [2]. There is much
ongoing research in the area of particle based sampling methods for Bayesian inverse
problems, such as ensemble Kalman inversion [112] - Chapter 3, ensemble Kalman sam-
pling [83] - Chapter 6 and discretization of the Fokker-Planck equation [175] - Chapter 6.
Furthermore, in [153] the promising Stein variational gradient descent method has been
introduced. This method is based on minimizing a kernalized Stein discrepancy, which
quantifies the observance of the Stein identity. The accuracy of these methods are de-
scribed in the Kullback–Leibler divergence or Wasserstein distance. Similar ideas are
considered in [160] in order to sample via measure transport maps, where the aim is to
minimize the Kullback–Leibler divergence.

2.3 Introduction to data assimilation

In the following section, we introduce the field of data assimilation, see for example
[186, 216, 147, 185]. The data assimilation problem deals with the combination of two
information sources.

1. Dynamical system: We consider a time-dependent physical system described
through our mathematical model.

2. Observations: We assume to have access to a time series of observations of the un-
derlying dynamical system. These observation are usually modelled to be perturbed
by some noise.

The field of data assimilation uses both the dynamical system as well as the observations
in order to build sequentially more accurate estimates of the state of the dynamical system
or to construct predictions of the future state. Typically, the tools are based on Bayesian
models. The methodology to combine models with data goes back to Kalman [119, 120].
The research field of data assimilation has a wide range of application such as in weather
forecasting [121], oil reservoir simulation [173], turbulence modeling [157] and geophysical
sciences [37].

We introduce the mathematical model of the filtering problem and present various versions
of the filtering tool called Kalman filter (KF). Throughout this section we will consider a
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finite-dimensional state space RI . We refer the interested reader to [131] for extension to
Hilbert space valued state spaces.

2.3.1 The mathematical model

In this work, we will focus on the discrete time formulation of the data assimilation
problem. We assume that the state of the dynamical system is given through the Markov
chain Z = (Zj)j∈N defined by

Zj+1 = Hj(Zj) + ξj , j ∈ N, (2.30)

with Z0 ∼ π0 for some probability distribution π0 on RI , where the dynamics are described
through the possibly nonlinear mappings Hj : RI → RI . We assume that our dynamic
is perturbed by noise given through ξ = (ξj)j∈N, which is an i.i.d. sequence with ξj ∼
N (0,Σ) for symmetric and positive definite Σ ∈ RI×I , where ξ0 and Z0 are stochastically
independent. We denote the current state Zj at each time as signal and refer to equation
(2.30) as the stochastic dynamical system.
Further, we assume to have access to a given time series of data, or also called observa-
tions, Y = (Yj)j∈N which are described through the observation model (2.31) below. The
observations are playing the role of reducing the uncertainty in the stochastic dynamical
system.

Yj+1 = hj+1(Zj+1) + ηj+1, j ∈ N, (2.31)

where hj : RI → RK denotes the observation map and η = (ηj)j∈N denotes noise, which
is given through an i.i.d. sequence with η1 ∼ N (0,Γ) for symmetric and positive definite
Γ ∈ RK×K .
We call the task of determining information about the signal Z, given the observation y,
data assimilation problem.

Remark 2.3.1. We can easily connect the data assimilation problem to the inverse prob-
lem introduced in section 2.1, by considering the deterministic dynamical system

Zj+1 = Hj(Zj), j ∈ N,

with Z0 ∼ π0. The task of recovering Z0 given the whole time series of observation y
defined through (2.31) can be formulated by the model (2.2).

Since the task is to condition the information about the signal on the incoming data,
similar as in the inverse problem context, the basic idea is to use Baysian methods. The
idea is to update the information about the state, which is given through a probability
distribution, by conditioning to the incoming data sequentially. In this way, one could
interpret the data assimilation problem as a time depending sequential inverse problem.

2.3.2 The prediction, filtering and smoothing problem

The prior information about the signal is given through our stochastic dynamical system
and the assumptions on the noise model ξ. Using the Chapman–Kolmogorov equation for
the Markov chain resulting from the system (2.30) we obtain the marginal distribution
density πj(z) of Zj given through

πZj+1(dz′) = P(Zj+1 ∈ dz′) =

∫
RI
πj(dz

′ | z)πZj (dz),
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where we assume that the distribution of Z0 has Lebesgue density π0 and the transition
probability densities can be computed through

πj(dz
′ | z) =

1√
det(2πΣ)

exp

(
−1

2
‖z′ −Hj(z)‖2Σ

)
dz′.

Similar to the Bayesian approach for inverse problems, we can compute the probability
density function (PDF) of the observation Yj conditioned on the state Zj = z which is
given through

πYj (y | z) =
1√

det(2πΓ)
exp

(
−1

2
‖y − h(z)‖2Γ

)
.

We define the different problems of prediction, filtering and smoothing as the task of
conditioning the PDF of the signal Zj to the given time series of observations. We assume
that a realization y1:Nobs = (y1, . . . , yNobs) of observations Y 1:Nobs = (Y1, . . . , YNobs), Nobs ∈
N, is given. The data assimilation problem is to compute the conditional distribution of
the state Zj given the observations y1:Nobs , i.e.

πZj |y1:Nobs (dz) = P(Zj ∈ dz | Y 1:Nobs = y1:Nobs). (2.32)

We call the task of computing (2.32)

1. prediction problem if j > Nobs,

2. filtering problem if j = Nobs,

3. and smoothing problem if j < Nobs.

We denote (2.32) as prediction, filtering and smoothing distribution respectively.
In this work, the focus is on the filtering problem and we introduce the Kalman filter, a
method which aims to compute the filtering distribution sequentially for Nobs = 1, 2, . . . , J ,
J ≥ 0. We note that filtering and smoothing problems are related by the end time of
any specified time interval, where, conditioned on the same data, both solutions have to
coincide [147, Theorem 2.12].
Filtering methods are typically split into two parts. Given the filtering distribution
πZj |y1:j (dz), the first part is the prediction step, which computes the distribution of
the next state through

πZj+1|y1:j (dz) = P(Zj+1 ∈ dz | Y 1:j = y1:j) =

∫
RI
πj+1(dz | z′)πZj |y1:j (dz′). (2.33)

The second step is the Bayesian assimilation step, which uses the distribution result-
ing from the prediction step as prior distribution to compute the filtering distribution
πZj+1|y1:j+1(dz) with the help of the Bayesian theorem

πZj+1|y1:j+1(dz) =
πYj+1(yj+1 | z)πZj+1|y1:j (dz)∫
RI πYj+1(yj+1 | z)πZj+1|y1:j (dz)

. (2.34)

Similar as in the case of Bayesian inverse problems, methods to compute, approximate or
sample from the filtering distribution are necessary.
Given a stochastic dynamical system (2.30) and observations (2.31), we call the recur-
sively computation of the prediction (2.33) followed by the Baysian update step (2.34)
sequential data assimilation.
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2.3.3 Linear Kalman filter

We introduce the Kalman filter, which solves the sequential data assimilation problem in
a linear and Gaussian setting exactly. We assume that the signal is described through

Zj+1 = FjZj + ξj , j ∈ N, (2.35)

for linear forward maps Fj ∈ L(RI ,RI) and the observations are given by

Yj+1 = Aj+1Zj+1 + ηj+1, j ∈ N (2.36)

with linear observation operator Aj ∈ L(RI ,RK). For simplicity, we assume that F = Fj
and A = Aj are constant for all j ∈ N. We remind the reader that the noise is described
through i.i.d. sequences (ξj)j∈N and (ηj)j∈N with ξj ∼ N (0,Σ) and η ∼ N (0,Γ). Since
our dynamical model is linear and the noise is assumed to be Gaussian, our filtering
distribution πZj |y1:j remains Gaussian if the initial probability distribution is also Gaussian.
We assume that Z0 ∼ N (m0, C0) and compute the filtering distribution recursively.

Through the linear and Gaussian assumptions, we can describe the filtering distribution
through

πZj |y1:j = N (mj , Cj),

and derive the computation of the mean mj and the covariance Cj .

Given the mean mj and covariance Cj of iteration j, the first part is to compute the
update of the mean and the covariance based on the prediction step (2.33), which is just
using the dynamics (2.35). The prediction step is given by

m̂j+1 = Fmj , Ĉj+1 = FCjF
> + Σ, (2.37)

where we have used that Zj ∼ N (mj , Cj) and ξj are independent.

The next step is the Bayesian update step (2.34) and corresponds to the Bayesian formu-
lation for inverse problems in the linear Gaussian setting (2.20) where we set our prior
distribution to Q0 = N (m̂j+1, Ĉj+1). We update the mean and covariance by application
of (2.20)

mj+1 = m̂j+1 + Ĉj+1A
>(AĈj+1A

> + Γ)−1(yj+1 −Am̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1A
>(AĈj+1A

> + Γ)−1AĈj+1.

We define the so called Kalman gain matrix by

Kj = ĈjA
>(AĈjA

> + Γ)−1, (2.38)

and write the Bayesian update step as

mj+1 = m̂j+1 +Kj+1(yj+1 −Am̂j+1),

Cj+1 = Ĉj+1 −Kj+1AĈj+1.
(2.39)

We will refer mj as the state estimator of the current iteration j. In the following
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Algorithm, we summarize the linear Kalman filter.

Algorithm 2: Linear Kalman filter

Input: initial mean m0 and covariance C0, observations (y1, . . . , yN )
Output: (πj)j=1,...,N

for j = 0, . . . , N − 1 do
Prediction step:
Map the mean and covariance through the dynamical system

m̂j+1 = Fmj , Ĉj+1 = FCjF
> + Σ

Bayesian assimilation step:
Update the mean and the covariance by

mj+1 = m̂j+1 +Kj+1(yj+1 −Am̂j+1),

Cj+1 = Ĉj+1 −Kj+1AĈj+1,

Kj+1 = Ĉj+1A
>(AĈj+1A

> + Γ)−1.

Filtering distribution: πj+1 = N (mj+1, Cj+1).

Further, we note that given Cj > 0, we can ensure that also Ĉj+1 > 0 and hence, Cj+1 > 0.
Suppose Cj > 0, then

Ĉj+1 = FCjF
> + Σ > 0,

since Σ > 0. To ensure that Cj+1 also stays positive definite, we apply the Woodbury-
matrix identy, see for example [147, Lemma 4.4],

Cj+1 = Ĉj+1 − Ĉj+1A
>(AĈj+1A

> + Γ)−1AĈj+1 = (Ĉ−1
j+1 +A>Γ−1A)−1,

which implies the update
C−1
j+1 = Ĉ−1

j+1 +A>Γ−1A.

Hence, C−1
j+1 exists and is positive definite, and we imply that also Cj+1 stays positive

definite.
To give an overview of the described KF method, we present the following Figure 2.9.

2.3.4 Variational perspective of the Kalman filter

Before introducing the ensemble Kalman filter, we will first generalize the ideas of the
linear Kalman filter to non-Gaussian models. While in the linear Kalman filter setting
the filtering distribution stays always Gaussian, we now introduce another perspective of
the Kalman filter, where we view the update steps in the sense of solving minimization
problems. We write the update of the mean from equation (2.39) through the minimization
problem

mj+1 = arg min
v∈RI

Ij+1(v), (2.40)

with

Ij(v) :=
1

2
‖yj −Av‖2Γ +

1

2
‖v − m̂j‖2Ĉj , (2.41)

where m̂j and Ĉj are defined through the prediction step (2.37). The structure of this
minimization problem can be seen through the Bayesian perspective of the update with

37



2 Preliminaries

Prior:

mj �→ m̂j+1

Prediction step:
(based on dynamical system)

Cj �→ Ĉj+1

Update step:
(based on observations)

Measurements

m̂j+1 �→ mj+1

Ĉj+1 �→ Cj+1

Filtering:

πj+1 = N (mj+1, Cj+1)

π0 = N (m0, C0)

Figure 2.9: Summary of the linear Kalman filter method.

prior Q0 = N (m̂j , Ĉj) and the connection to the MAP estimator introduced in section
2.2.3.
While the prediction step considers only the dynamical system to give a state estimation,
the Bayesian update connects the predicted state to the incoming data. This can also
be seen in the definition of the loss functional (2.41), where the first term measures the
data misfit, and the second part regularizes this data fit to the predicted state, which is
interpreted as prior information.
The following Theorem states that the Bayesian update step on mj+1 in (2.39) can be
derived through solving the minimization problem (2.40).

Theorem 2.3.2. Let A ∈ RK×n be of rank K and m̂j+1, Ĉj+1 be given through (2.37).
The solution of the minimization problem (2.40) is given through

v∗ = m̂j+1 +Kj+1(yj+1 −Am̂j+1).

Proof. The gradient of I w.r.t. v is given by

∇vI(v) = −A>Γ−1(yj+1 −Av) + Ĉ−1
j+1(v − m̂j+1)

and the Hessian
∇2
vI(v) = A>Γ−1A+ Ĉ−1

j+1 > 0,

which ensures that I is strictly convex, and hence it is sufficient to solve

∇vI(v) = 0 (2.42)

in order to find the global minimizer of I. Note that Ĉj+1 is positive definite and invertible.
Solving (2.42) leads to the global minimizer

v∗ = (Ĉ−1
j+1 +A>Γ−1A)−1(A>yj+1 + Ĉ−1

j+1m̂j+1)
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2.3 Introduction to data assimilation

= (I −Kj+1A)Ĉj+1(A>Γ−1yj+1 + Ĉ−1
j+1m̂j+1),

where we have used the Woodbury-matrix identity to compute

(Ĉ−1
j+1 +A>Γ−1A)−1 = Ĉj+1 − Ĉj+1A

>(Γ +AĈj+1A
>)−1AĈj+1 = (I −Kj+1A)Ĉj+1.

Note that the last equality states(
(I −Kj+1A)Ĉj+1

)
·
(
Ĉ−1
j+1 +A>Γ−1A

)
= I,

which can be reordered such that we have

(I −Kj+1A)Ĉj+1A
>Γ−1A = Kj+1A,

and since A is of rank K, we can write

v∗ = (I −Kj+1A)Ĉj+1A
>Γ−1yj+1 + (I −Kj+1A)m̂j+1

= m̂j+1 +Kj+1(yj+1 −Am̂j+1),

which coincides with the update formula given in (2.39).

This optimization perspective gives the opportunity to generalize the idea of the Kalman
filter to general nonlinear dynamics and observation models.

2.3.5 Extended Kalman filter

We extend the ideas of the Kalman filter to nonlinear dynamical system. Therefore, we
consider the stochastic dynamical system (2.30) and the corresponding observations (2.31)

Zj+1 = H(Zj) + ξj , Yj+1 = h(Zj+1) + ηj+1, j ∈ N,

where H : RI → RI and h : RI → RK are possibly nonlinear. The idea behind the ex-
tension of the Kalman filter, is to linearize in each iteration the nonlinear system around
the current state estimate and apply the linear Kalman filter update step introduced in
section 2.3.3. The accuracy of this linearization approximation depends crucially on how
strong the nonlinearity in the dynamical system is. In particular, for strongly nonlin-
ear forward models, methods based on Gaussian approximation perform poorly, as the
resulting distribution from (2.33) and (2.34) are poorly approximated through Gaussian
measures. However, the so called extended Kalman filter (ExKF), can be viewed as the
best linear unbiased estimator of the linearized dynamical system. This estimator can
often be a good approximation of the original nonlinear system.
Given the previous state estimation mj , we obtain the linearized approximation of the
stochastic dynamical system (2.30) through

Zj+1 = Hj(mj) +DHj(mj)(Zj −mj) + ξj , j ∈ N,

where DHj denotes the derivative of the forward map Hj . For simplicity, we assume
again the linear observation model (2.36). Note that one can easily extend the ideas to a
linearized observation model.
Further, we assume again for simplicity a fixed observational model, i.e. A = Aj for all
j ∈ N. We define the linearized dynamical system through

Zj+1 = FjZj + bj + ξj , j ∈ N,
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for Fj := DH(mj) and bj := Hj(mj)− Fjmj . We assume again Gaussian initial distribu-
tion Z0 ∼ N (m0, C0) and compute the prediction step similar to (2.37) by

m̂j+1 = Fjmj + bj , Ĉj+1 = FjCjF
>
j + Σ.

and the Bayesian update step similar to (2.39)

mj+1 = m̂j+1 +Kj+1(yj+1 −Am̂j+1),

Cj = Ĉj+1 −Kj+1AĈj+1,

where the Kalman gain matrix Kj is defined through (2.38).

2.3.6 Ensemble Kalman filter

The ensemble Kalman filter can be viewed as a Monte Carlo approximation of the Kalman
filter. While in the linear setting of the dynamical system (2.35) and observations (2.36)
the filtering distribution stays Gaussian, in the nonlinear setting the filtering distribution
is in general non-Gaussian. The idea of the ensemble Kalman filter is to use a particle
system, i.e. a sample initialized by the prior distribution Z0 ∼ π0, which will be updated
to approximate the non-Gaussian filtering distribution (2.34). These updates are based
on the linear Kalman filter steps (2.37) and (2.39). Since we do not use any Gaussian
assumptions and approximate the filtering distribution through a particle system, we are
able to apply the ensemble Kalman filter in nonlinear dynamical systems (2.30). For
simplicity, we again assume linear observations (2.36).

In the previous presented linear Kalman filter, we have approximated the filtering distri-
bution through N (mj , Cj) in each iteration. As in the nonlinear case we are non-Gaussian,
we approximate the filtering distribution through

πZj |y1:j (dv) ≈ π̂j(dv) =
1

M

M∑
m=1

δ
v

(m)
j

(dv), (2.43)

where (v
(m)
j )m=1,...,M denotes the particle system of the current iteration, initialized as

i.i.d. sample v
(m)
0 ∼ π0, m = 1, . . . ,M . We will denote M as the ensemble size of the

particle system.

We introduce the ensemble Kalman filter (EnKF) with perturbed observation.

Given the current particle system (v
(m)
j )m=1,...,M , the particles are updated in the following

prediction step and analysis step. The prediction step uses the dynamical system
(2.30) to predict the system’s current state. Therefore, we map the particles within our
dynamical system system

v̂
(m)
j+1 = H(v

(m)
j ) + ξ

(m)
j , m = 1, . . . ,M, (2.44)

where we again assume fixed H = Hj for all j ∈ N and ξ
(m)
j are i.i.d. samples fromN (0,Σ).

Further, we compute the empirical mean and the sample covariance of the particle system

m̂j+1 =
1

M

M∑
m=1

v̂
(m)
j+1, Ĉj+1 =

1

M

M∑
m=1

(v
(m)
j+1 − m̂j+1)(v

(m)
j+1 − m̂j+1)>. (2.45)
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2.3 Introduction to data assimilation

We refer to (2.44) and (2.45) as prediction step. Using these predictions, we apply
the linear Kalman update (2.39) to each particle itself, which corresponds to a Gaussian
approximation. This means we update each particle by

v
(m)
j+1 = v̂

(m)
j+1 +Kj+1(ỹ

(m)
j+1 −Av̂

(m)
j+1),

ỹ
(m)
j+1 = yj + η

(m)
j+1, η

(m)
j+1

i.i.d.∼ N (0,Γ).

Kj = ĈjA
>(AĈjA

> + Γ)−1,

(2.46)

where we denote ỹ
(m)
j+1 as perturbed observation and Kj is again the introduced Kalman

gain. We refer to (2.46) as analysis step. One additional advantage of the EnKF is, that
we do not have to update the covariance matrix as in (2.37) and (2.39). Instead, we only
have to compute the sample covariance in each iteration, which saves computational effort.
To give an overview of the described EnKF method, we present the Figure 2.10 and
Algorithm 3.

Prior:

v
(m)
j �→ v̂

(m)
j+1

Prediction step:
(based on dynamical system)

m̂j+1 =
1
M

∑
v̂
(m)
j+1

Update step:
(based on observations)

Measurements

v̂
(m)
j+1 �→ v

(m)
j+1

Filtering:

π̂j+1 =
1
M

∑
δ
v
(m)
j+1

(v
(m)
0 ) ∼ π0

Ĉj+1 =
1
M

∑
(v̂

(m)
j+1 − m̂j+1)⊗ (v̂

(m)
j+1 − m̂j+1)

Figure 2.10: Summary of the ensemble Kalman filter method.

Similar to the variational motivation of the KF, one can also view the analysis step of the
EnKF in a variational fashion. Given v̂mj and Ĉj+1 from the prediction step, the natural
choice of loss function would be

I(m)
j (v) =

1

2
‖y(m)
j − v‖Γ +

1

2
‖v − v̂(m)

j ‖
2
Ĉj
,

and update each particle by minimizing the loss function I(m)
j . However, since we have a

finite ensemble size, we can not ensure that the sample covariance Ĉj is positive definite,
such that we have to include some auxilary term by defining

Ĉεj := Ĉj + εI.
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Algorithm 3: Ensemble Kalman filter

Input: initial ensemble (v
(j)
0 )Jj=1 ∼ π0, observations (y1, . . . , yN )

Output: (π̂j)j=1,...,N

for j = 0, . . . , N − 1 do
Prediction step:

• Map the particles through the dynamical system

v̂
(m)
j+1 = H(v

(m)
j ) + ξ

(m)
j , m = 1, . . . ,M,

• Define sample mean and sample covariance

m̂j+1 =
1

M

M∑
m=1

v̂
(m)
j+1,

Ĉj+1 =
1

M

M∑
m=1

(v
(m)
j+1 − m̂j+1)(v

(m)
j+1 − m̂j+1)>.

Analysis step:

• Define the Kalman gain

Kj+1 = Ĉj+1A
>(AĈj+1A

> + Γ)−1.

• Update each ensemble member by

v
(m)
j+1 = v̂

(m)
j+1 +Kj+1(ỹ

(m)
j+1 −Av̂

(m)
j+1),

where we consider perturbed observation

ỹ
(m)
j+1 = yj + η

(m)
j+1, η

(m)
j+1

i.i.d.∼ N (0,Γ).

Approximate filtering distribution: π̂j+1 = 1
M

M∑
m=1

δ
v

(m)
j+1

.

We define the loss functions

I(m),ε
j (v) =

1

2
‖y(m)
j − v‖Γ +

1

2
‖v − v̂(m)

j ‖
2
Ĉεj

(2.47)

and verify that

lim
ε→0

(v∗ε)
(m) = v

(m)
j+1,

where (v∗ε)
(m) are the global minimizers of (2.47) and v

(m)
j+1 are the updates computed in

(2.46).

Theorem 2.3.3. Let A ∈ RK×n be of rank K and {v̂(m)
j+1}Mm=1, Ĉj+1 be given through

(2.44) and (2.45). The solutions of the minimization problems

min
v∈RI

I(m)
j+1(v)
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2.3 Introduction to data assimilation

are given through
(v∗ε)

(m) = m̂j+1 +Kε
j+1(yj+1 −Am̂j+1),

where
Kε
j = ĈεjA

>(AĈεjA
> + Γ)−1.

Furthermore, it follows that

lim
ε→0

(v∗ε)
(m) = v

(m)
j+1,

Proof. The proof follows similar to the proof of Theorem 2.3.2

Literature overview

The EnKF has been originally introduced by Evensen [80] and has been reported to pro-
duce reliable estimates of the unknown parameters with low computational cost, making
the method very appealing for large scale problems. Areas of application include, for
example, groundwater flow[172], climate models [203], biological problems [105], image re-
construction [34], building [213] and material sciences [108]. For linear dynamical systems
and Gaussian initial conditions, analyses of the large ensemble size limit has been done e.g.
in [143, 149], and for nonlinear systems the mean-field Kalman filter has been considered
in [148]. In [46, 102] multilevel methods for the EnKF have been proposed. In compar-
ison to the mean-field limit, another interesting perspective to consider is the long-time
behaviour of the scheme. In [133, 136, 222] the long-time behaviour and ergodicity of the
ensemble Kalman filter with arbitrary ensemble size have been analyzed by establishing
time uniform bounds to control the filter divergence with variance inflation techniques
and ensuring, in addition, the existence of an invariant measure. Accuracy results for a
fixed ensemble size in the linear Gaussian setting can be found in [158, 223], and for the
ensemble Kalman-Bucy filters applied to continuous-time filtering problems in [64, 67].
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3 A particle based optimization method -
Basics of ensemble Kalman inversion

The following chapter is devoted to give a basic introduction to the EnKF applied to
inverse problems. Following [112] we will introduce in Section 3.1 the ensemble Kalman
inversion by interpreting the inverse problem as artificial dynamical system and applying
the EnKF. The resulting algorithm can be interpreted from an optimization perspective as
well as from the Bayesian perspective as sequential update of the posterior distribution.
We derive a continuous-time limit of the ensemble Kalman inversion in Section 3.2 in
form of an coupled system of stochastic differential equations (SDE) and illustrate the
resulting gradient flow structure driven by the drift term. In Section 3.3 we present a
well-posedness result in form of unique existence of strong solutions of the underlying SDE
system. Convergence results of the ensemble Kalman inversion in the linear setting are
presented in Section 3.4, where we quantify the ensemble collapse and provide convergence
results of the data misfit. The presented results in Section 3.3-3.4 will mainly extend
the existing results from [200, 201] to the ensemble Kalman inversion with perturbed
observation. We finally present numerical results in Section 3.5 in order to verify the
presented theoretical results.

3.1 The ensemble Kalman filter applied to inverse problems

The application of the EnKF to solve inverse problems of the structure (2.2) has been
introduced in [112]. In this section, we will follow the presented derivation of the EnKF
applied to inverse problems - the so called ensemble Kalman inversion (EKI).
The introduction will be based on the general inverse problem

q = G(θ) + ζ, (3.1)

where G : H → Rp is some possible nonlinear map between a separable Hilbert spaces H
and a finite-dimensional space Rp, q ∈ Rp is some observational measurement and ζ ∈ Rp
denotes Gaussian observational noise with known symmetric positive definite covariance
operator Γ ∈ Rp×p, i.e. ζ ∼ N (0,Γ).

Remark 3.1.1. We note that for different choices of spaces H, Rp and forward models G,
we will be able to include additional regularization. More details on this will be presented
in chapter 5 and chapter 7. In the setting of solving general inverse problems

y = H(θ) + ξ,

we will set H := X , G := H : X → RK , q := y ∈ RK , ζ = ξ and p = K. However, we will
introduce the EKI for (3.1) in order to be able to introduce different variants of the EKI
by modifying the forward model G.
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3 A particle based optimization method - Basics of ensemble Kalman inversion

While the KF and the EnKF respectively has been introduced for time-dependent dynam-
ical systems, we assume that all of the time-dependence is included in the forward model
G, for example by observing the total time interval, and consider a static system modelled
through G. As seen in the preliminaries 2, inverse problems modelled through (3.1) are
typically ill-posed and we consider regularization through prior knowledge.
We define an artificial dynamical system with state space Z = H×Rp through the signal

Zn+1 = ψn(Zn),

where we define the mapping

ψn(z) := ψ(z) :=

(
θ

G(θ)

)
for z ∈ Z.

The corresponding observations are modelled through

qn+1 = OZn+1 + ζn+1,

with observation operator O = [0, I], which projects Zn to its observation G(θn), and
(ζn)n∈N is an i.i.d. sequence with ζ1 ∼ N (0,Γ). This leads to the perturbed observation
case, where the original data q is used to generate (qn)n∈N by perturbation

qn = q + ζn.

This time-dependent dynamical system has been introduced as artificial time-dependent
system, where the time is completely independent of the forward model G.
In order to solve this artificial system, the authors in [112] propose to apply the data
assimilation tool EnKF, which is known as the EKI method.

We consider the interacting particle system (Z
(j)
n )j=1,...,J with Z

(j)
n ∈ Z from which we can

generate the estimate of the unknown parameter θ of the inverse problem (3.1) through

θ̄n =
1

J

J∑
j=1

θ(j)
n =

1

J

J∑
j=1

O⊥Z(j)
n , O⊥ = [I, 0].

We assume that there exists a true unknown parameter θ† which generates the observation
y, i.e.

q = G(θ†) + ζ†.

The initialization of this particle system is based on some prior knowledge about the
unknown parameter θ† available through some probability distribution Q0. We generate

an i.i.d. sample (θ
(j)
0 )j=1,...,J from the distribution Q0 and set

Z
(j)
0 =

(
θ

(j)
0

G(θ
(j)
0 )

)
.

We will see that based on this initialization we can ensure that the resulting EKI estimate
θ̄n will stay in the linear subspace spanned from the initial ensemble, i.e.

θ̄n ∈ S := span{θ(j)
0 , j = 1, . . . , J}.

Hence, the choice of the initial ensemble is a design parameter which is related to the
choice of a subspace S ⊂ H, where the underlying truth θ† is expected to be inside. We
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3.1 The ensemble Kalman filter applied to inverse problems

note that for second-order random fields it is sometimes usefull to initialize the ensemble
through the truncated KL-basis of the covariance function.

Following the EnKF prediction and analysis step, the EKI algorithm is described in the
follwing.

Algorithm 4: Ensemble Kalman inversion (original)

Input: initial ensemble (Z
(j)
0 )Jj=1, observation q

Output: θ̄N
for n = 0, . . . , N − 1 do

Prediction step:

• Map the ensemble of particles through dynamics

Ẑ
(j)
n+1 = ψ(Z(j)

n ).

• Define sample mean and sample covariance

Z̄n+1 =
1

J

J∑
j=1

Ẑ
(j)
n+1,

Cn+1 =
1

J

J∑
j=1

(Ẑ
(j)
n+1 − Z̄n+1)⊗ (Ẑ

(j)
n+1 − Z̄n+1).

Analysis step:

• Define the Kalman gain

Kn+1 = Cn+1O∗(OCn+1O∗ + Γ)−1,

where O∗ is the adjoint operator of O = [0, I].

• Update each ensemble member by

Z
(j)
n+1 = Ẑ

(j)
n+1 +Kn+1(q

(j)
n+1 −OẐ

(j)
n+1), (3.2)

where we consider perturbed observation

q
(j)
n+1 = q + ζ

(j)
n+1, ζ

(j)
n+1

i.i.d.∼ N (0,Γ).

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N = 1

J

J∑
j=1
O⊥Z(j)

N .

We note that in the standard EnKF method the application of perturbed observations is
necessary to capture statistical properties of the distribution conditioned to observations.
In the EKI context the perturbed observations are motivated as randomization of the
data in order to move around in the initial subspace S and improve the approximation.
Though both methods, i.e. the limit of the EKI with perturbed observations and the later
discussed deterministic limit from [200], can be analysed from an optimization perspective.
The EKI variant with perturbed observation is shown to be second order accurate, whereas
the deterministic limit underestimates the covariance in the linear, Gaussian setting, see
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3 A particle based optimization method - Basics of ensemble Kalman inversion

e.g. [80]. In addition, in the nonlinear setting, methods that add noise to data are
reported to be more robust to assumptions about linearity and normality, see e.g. [230]
and the references therein. The focus in Section 3.3-3.4 will be on the EKI with perturbed
observations, as the presented analysis provides valuable insights for the development of
methods for the nonlinear, non-Gaussian setting.
While the EKI has been introduced in an artificial state space Z, the analysis of this
algorithm will be based on the estimates in the parameter space H. In order to prove the
well-known subspace property, we take a deeper look into the update formula (3.2) for

Z(j)
n =

(
θ

(j)
n

p
(j)
n

)

initialized by p
(j)
0 = G(θ

(j)
0 ).

We split the prediction step in Z into the following computations

Ẑ
(j)
n+1 =

(
θ̂

(j)
n+1

p̂
(j)
n+1

)
=

(
θ

(j)
n

G(θ
(j)
n )

)
,

Z̄n+1 =

(
θ̄n
Ḡn

)
, Cn+1 =

(
Cθθn+1 Cθpn+1

(Cθpn+1)> Cppn+1

)
,

where we have defined the empirical means and sample covariances

θ̄n :=
1

J

J∑
j=1

θ(j)
n , Ḡn :=

1

J

J∑
j=1

G(θ(j)
n ),

Cθθn+1 :=
1

J

J∑
j=1

(θ(j)
n − θ̄n)⊗ (θ(j)

n − θ̄),

Cθpn+1 :=
1

J

J∑
j=1

(θ(j)
n − θ̄n)⊗ (G(θ(j)

n )− Ḡ),

Cppn+1 :=
1

J

J∑
j=1

(G(θ(j)
n )− Ḡ)⊗ (G(θ(j)

n )− Ḡ).

Here, the operator ⊗ denotes the tensor product (or rank one operator) given by

z1 ⊗ z2 : H2 → H1 with h 7→ z1 ⊗ z2(h) := 〈z2, h〉H2 · z1

for Hilbert spaces (H1, 〈·, ·〉H1), (H2, 〈·, ·〉H2) and z1 ∈ H1, z2 ∈ H2. This gives the possi-
bility to split the Kalman gain in

Kn+1 =

(
Cθpn+1(Cppn+1 + Γ)−1

Cppn+1(Cppn+1 + Γ)−1,

)
and write the update of each ensemble member Z

(j)
n through

Z
(j)
n+1 =

(
θ

(j)
n+1

p
(j)
n+1

)
=

(
θ

(j)
n + Cθpn+1(Cppn+1 + Γ)−1(q

(j)
n+1 −G(θ

(j)
n )

G(θ
(j)
n ) + Cppn+1(Cppn+1 + Γ)−1(q

(j)
n+1 −G(θ

(j)
n )

)
.

We are now ready to formulate the subspace property for the EKI method.
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3.1 The ensemble Kalman filter applied to inverse problems

Lemma 3.1.2 ([112, Theorem 2.1]). Let S be the linear span of {θ(j)
0 }Jj=1, then θ

(j)
n ∈ S

for all (n, j) ∈ N× {1, . . . , J}.

Proof. Using the definition of Cupn+1, we obtain the update formula

θ
(j)
n+1 = θ(j)

n +
1

J

J∑
k=1

〈G(θ(k)
n )− Ḡn, (Cppn+1 + Γ)−1(q

(j)
n+1 −G(θ(j)

n ))〉θ(k)
n ,

which states that the updated θ
(j)
n+1 is a linear combination of the previous ensemble

{θ(j)
n }Jj=1.

In particular, with this result, one can ensure that the EKI estimate θ̄n always stays in
the subspace spanned by the initial ensemble.

Since our theory will be based on the inverse problem (2.2) with parameter space X , we
formulate the updates in the parameter space and set the notation H := X , G := H :
X → RK , q := y ∈ RK , ζ = ξ and p = K. Hence, the theory will be based on the EKI
applied to (2.2), which is formulated in the following algorithm.

Algorithm 5: Ensemble Kalman inversion

Input: initial ensemble (θ
(j)
0 )Jj=1, observation y

Output: θ̄N
for n = 0, . . . , N − 1 do

Prediction step:
Define sample mean and sample covariance

θ̄ =
1

J

J∑
j=1

θ(j), H̄ =
1

J

J∑
j=1

H(θ(j)),

Cpp =
1

J

J∑
j=1

(H(θ(j))− H̄)⊗ (H(θ(j))− H̄),

Cθp =
1

J

J∑
j=1

(θ(j) − θ̄)⊗ (H(θ(j))− H̄)

(3.3)

Analysis step:
Update each ensemble member by

θ
(j)
n+1 = θ(j)

n + Cθpn+1(Cppn+1 + Γ)−1(y
(j)
n+1 −G(θ(j)

n ), (3.4)

where we consider perturbed observation

y
(j)
n+1 = y + ξ

(j)
n+1, ξ

(j)
n+1

i.i.d.∼ N (0,Γ). (3.5)

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N .
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Literature overview

While the EKI has been invented in [112], there have been earlier ensemble based methods
which aim to solve inverse problems [45, 75]. Although the EKI shows promising success
from a practical perspective, the theoretical understanding of the scheme is limited. Most
of the existing results in the literature are based on a formally derived continuous-time
limit of the algorithm presented in [200], which can be seen as an interacting system of
gradient flows described by a coupled system of SDEs. We also refer to [15, 16, 183]
for the continuous-time limit of the EnKF in the data assimilation context. In [25], first
theoretical verifications of the continuous-time limit can be found, where the authors
view the original EKI algorithm as a discrete approximation of the underlying system of
coupled SDEs. More recently, a stabilized continuous-time limit has been proposed in [8].
We distinguish between two perspectives of the EKI. The first one is the motivation of
the EKI as a sampling method, whereas in the second perspective the focus lies in the
long-time behaviour as an optimization method.

EKI as sampling method: The large ensemble size limit of the EKI has been discussed
in [79], where the authors show that the EKI method is not consistent with the Bayesian
perspective in general nonlinear settings. However, it can be interpreted as a point esti-
mator of the underlying unknown parameter. Furthermore, the mean-field limit has been
analyzed based on kinetic methods in [99] and a connection of the mean-field limit to the
Fokker–Planck equation has been discussed in [69]. For the original EKI method, in [71]
the authors suggest to introduce weights on the particles in order to correct the particle
system to obtain a consistent mean-field limit from a Bayesian perspective. A alternative
perspective has been proposed in [83] and further discussed in [70, 113], known as the
ensemble Kalman sampling method. The basic idea is to shift the pertubation from the
observations to the particles itself, resulting in a system of SDEs where the diffusion part
takes place in the parameter space itself. Theoretical studies are based on the mean-field
limit and the corresponding Fokker–Planck equation.

EKI as optimization method: From an alternative perspective, the EKI can be viewed
as an optimization method of the least-squares misfit functional. The gradient flow struc-
ture of the EKI has been highlighted in [200, 201] and the viewpoint as derivative-free
optimization method has been pointed out in [140], where the authors apply the EKI for
the training of neural networks. First convergence results for the EKI as an optimization
method have been shown in the linear setting based on the continuous-time limit [200, 201],
while convergence for the nonlinear setting for the discrete method has been considered in
[39]. Here, the authors suggest non-constant step sizes and covariance inflation in order
to tune the method. However, when talking about EKI as an optimization method for
inverse problems, a natural question is how to deal with noise in the data. First results
were based on the incorporation of the discrepancy principle [201]. In the discrete set-
ting, the connection to deterministic regularisation techniques have been established in
[109, 110]. In particular, in [41] the authors incorporate Tikhonov regularization within
the algorithm of EKI and present first theoretical results based on the continuous-time
limit of the resulting scheme.

3.1.1 Motivation through Optimization

In the following we will build a connection between the EKI estimate and the Tikhonov
regularized solution introduced in subsection 2.1.2 and the MAP estimate of the BIP. To
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3.1 The ensemble Kalman filter applied to inverse problems

do so, we consider the inverse problem

y = Lθ + ξ,

for linear forward map L ∈ L(X ,RK) with the corresponding Tikhonov loss function

Tκ =
1

2
‖Lθ − y‖2Γ +

1

2
‖θ −m‖2C , κ = 1,

for some symmetric and positive definite operators Γ ∈ RK×K , C ∈ L(X ,X ) and the
regularized solution

θ∗ = (L∗Γ−1L+ C)−1(L∗y + C−1m).

Recall, that this solution corresponds to the MAP estimate of the BIP with Gaussian prior
Q0 = N (m,C). Similar to example 2.2.12 application of the Woodbury-matrix-identity
gives

θ∗ = m+ CL∗(LCL+ Γ)−1(y − Lm).

Consider an i.i.d. initial ensemble {θ(j)
0 }Jj=1 with θ

(1)
0 ∼ N (m,C) and consider one update

step of Algorithm 5, i.e. we set N = 1. Define the empirical mean and sample covariance
of the initial ensemble by

mJ =
1

J

J∑
j=1

θ
(j)
0 , CJ =

1

J − 1

J∑
j=1

(θ
(j)
0 −mJ)⊗ (θ

(j)
0 −mJ).

Since we can write for linear forward models

Cθp =
1

J

J∑
j=1

(θ
(j)
0 −mJ)⊗ (Lθ

(j)
0 − LmJ)

=
1

J

J∑
j=1

(θ
(j)
0 −mJ)⊗ (θ

(j)
0 −mJ)L∗ =

J − 1

J
CJL

∗

and similarly

Cpp1 =
J − 1

J
LCJL

∗,

the EKI estimate can be written through

θ̄1 = mJ + CJL(LCJL
∗ + Γ)−1(y +

1

J

J∑
j=1

ξ
(j)
1 − LmJ).

Taking the limit J →∞ gives that

lim
J→∞

θ̄1 = m+ CL(LCL∗ + Γ)−1(y − Lm) = θ∗

almost surely. Thus, we have seen, that for linear forward models and Gaussian prior,
the EKI estimate results exactly in the classical Kalman filter update and in the MAP
estimate respectively for the large ensemble size limit J →∞.
For fixed J ≥ 2, we can interpret the update of the EKI estimate

θ̄n+1 = θ̄n + Cθθn L(LCθθn L
∗ + Γ)−1(y +

1

J

J∑
j=1

ξ
(j)
n+1 − Lθ̄n)
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3 A particle based optimization method - Basics of ensemble Kalman inversion

as randomized computation of the MAP estimate for an sequential prior distribution
Qn = N (θ̄n, C

θθ
n ), i.e. E[θ̄n+1] is the minimizer of the loss functional

In(θ) =
1

2
‖Lθ − y‖2Γ +

1

2
‖θ − θ̄n‖Cθθn ,

if one can ensure that Cθθn is strictly positive definite. This can be guaranteed for a large
enough amount of particles or by introduction of socalled covariance inflation, which we
introduce in subsection 3.2.2.
Note that without taking expectation on θ̄n+1 this update is not exact, as it is perturbed

by the randomization through 1
J

J∑
j=1

ξ
(j)
n+1. This fact gives the rise to interpret the EKI

as sequential method in a Bayesian fashion, where the particles represents a sequentially
updated distribution Qn. We will give more details in the next section.

3.1.2 Motivation through Bayesian inverse problems

We motivate the EKI method from a Bayesian perspective of inverse problems. Therefore,
we consider the stochastic model (2.14), where we assume that we have some prior informa-
tion about the unknown parameter given through a probability distribution, i.e. Θ ∼ Q0,
and the noise is assumed to be Gaussian Ξ ∼ N (0,Γ), stochastically independent of Θ.
Recall, that the posterior is given through

Q∗y(dθ) =
1

Z
exp(−Φ(θ, y))Q0(dθ),

Z =

∫
X

exp(−Φ(θ, y))Q0(dθ),

where we have defined the potential Φ(θ, y) = ‖H(θ) − y‖Γ. We introduce an artificial
discrete-time dynamical system, mapping the prior into the posterior distribution, where
we define

Qn(dθ) ∝ exp(− n
N

Φ(θ, y))Q0(dθ), (3.6)

which gives the posterior distribution for n = N , i.e. QN = Q∗y. This formulation gives
rise to introduce the sequential update formulation

Qn+1(dθ) =
1

Zn
exp
(
−hΦ(θ, y)

)
Qn(dθ) , n = 0, . . . , N − 1,

Zn =

∫
exp(−hΦ(θ, y))Qn(dθ),

with h = N−1 denoting the step size of artificial time. This means that the current
iteration is absolutely continuous w.r.t. the previous one, i.e. Qn+1 � Qn.
Figure 3.1 demonstrates this idea as sequential update of the prior measure ending up in
the posterior at stage N .
Taking a deeper look into the log-likelihood, we see

−hΦ(θ, y) = −h
2
‖H(θ)− y‖Γ = −1

2
‖H(θ)− y‖ 1

h
Γ,

which states that the introduced artificial discrete-time system coincides with a scaling of
the noise covariance

Γ 7→ 1

h
Γ. (3.7)
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Q0 Q1 Q2 QN−2 QN−1 QN = Q∗

y

1

N
1

N
1

N
1

N

artificial time

Figure 3.1: Sequential update from the prior distribution to the posterior distribution.

The application of the EKI method can now be viewed as sequential MC-method. Similar
to (2.43), we aim to approximate Qn in each update step through a an ensemble of particles

(θ
(j)
n ), i.e.

Qn(dθ) ≈ 1

J

J∑
j=1

δ
θ
(j)
n

(dθ).

We note that for general method one can introduce weights w
(j)
n , summing up to 1, which

has been set equaly weighted in our setting, i.e. w
(j)
n = 1

J similar to (2.43). The ensemble
of particles at time n can now be sequentially updated to those at time n+ 1 in order to
approximate the distribution Qn+1. One hopes that these update steps are exact in the
limit J → ∞. We introduce the scaling (3.7) of the noise covariance and apply EKI in
order to approximate Qn through a Gaussian approximation.

3.2 Continuous-time limit of the ensemble Kalman inversion

We present a formal derivation of the continuous-time limit for the EKI, which has been
firstly proposed in [200], and preliminary theoretical studied in [25]. In the context of
EnKF and the ESRF applied to continuous-time data assimilation problems, the time
limit has been studied in [145, 144] as well as for the ensemble Kalman–Bucy filter [17]
and its long-time stability [64].

Recall, that for a given artificial step-size h > 0 and J ≥ 2 particles, the EKI iteration for
the j-th particle is given by

θ
(j)
n+1 = θ(j)

n + Cθp(θn)(Cpp(θn) + h−1Γ)−1(y
(j)
n+1 −H(θ(j)

n )), j = 1, . . . , J , (3.8)

where the initial particles θ
(j)
0 , j = 1, . . . , J are draws from the prior distribution, and in

each step, we consider artificially perturbed data

y
(j)
n+1 = y + ξ

(j)
n+1 ,

where the perturbations ξ
(j)
n+1, w.r.t. both j and n, are i.i.d. random variables distributed

according to N (0, h−1Γ).

We can rewrite (3.8) in terms of

θ
(j)
n+1 = θ(j)

n + Cθp(θn)(Cpp(θn) + h−1Γ)−1(y
(j)
n+1 −H(θ(j)

n ))

= θ(j)
n + hCθp(θn)(hCpp(θn) + Γ)−1(y −H(θ(j)

n ))

+
√
hCθp(θn)(hCpp(θn) + Γ)−1Γ

1
2 ξ

(j)
n+1,
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with ξ
(j)
n+1 are i.i.d. distributed according to N (0, I), again w.r.t. both j and n. Hence, we

can view ∆W
(j)
n+1 :=

√
∆t ξ

(j)
n+1, ∆t = h, as increments of J independent brownian motions

in RK , and we rewrite the EKI update as

θ
(j)
n+1 = θ(j)

n + ∆tCθp(θn)(hCpp(θn) + Γ)−1(y −H(θ(j)
n ))

+ Cθp(θn)(∆tCpp(θn) + Γ)−1Γ
1
2 ∆W

(j)
n+1.

With this point of view, the continuous-time limit of the discrete EKI (3.8) is formally a
time discretization of the following SDE:

dθ
(j)
t = Cθp(θt)Γ

−1(y −H(θ
(j)
t )) dt+ Cθp(θt)Γ

−1/2 dW
(j)
t . (3.9)

The processes W (j) are independent Brownian motions on RK . We further denote by
Ft = σ(θs, s ≤ t) the filtration introduced by the particle dynamics.
The continuous-time limit of the EKI is still an open point, and has to be verified. In
particular, there are two open questions

• Does the continuous-time interpolation θ
(j)
h (t) of the EKI converge to the continuous-

time limit θ(j)(t), which is given through a solution of a set of coupled SDEs, and in
which sense does it converge?

• Can we say something about the stability error ‖θ(j)
h (t)− θ(j)(t)‖, if the time tends

to infinity? Do the limits of θ
(j)
h (t) and θ(j)(t) coincide with t→∞?

The second point is an important point, as our analysis is based on the long-time behaviour
study of the continuous-time limit (3.9).

3.2.1 Gradient flow structure - Derivative free optimization method

Through the derived continuous-time limit, the authors from [200] proposed to view the
EKI method through its gradient flow structure. To see the connection between the EKI
and a gradient flow, we will first assume that the forward response operator is linear,
i.e. H(·) = L· with L ∈ L(X ,RK). The continuous-time limit (3.9) can be read as

dθ
(j)
t =

1

J

J∑
k=1

〈
L(θ

(k)
t − θ̄t), (y − Lθ

(j)
t ) dt+

√
Γ dW

(j)
t

〉
Γ

(θ
(k)
t − θ̄t). (3.10)

By defining the empirical covariance operator

C(θ) =
1

J

J∑
k=1

(θ(k) − θ̄)⊗ (θ(k) − θ̄),

we simplify notation and equation (3.10) can be rewritten in the form

dθ
(j)
t = C(θt)L

∗Γ−1(y − Lθ(j)
t ) dt+ C(θt)L

∗Γ−1/2 dW
(j)
t . (3.11)

Since we assume a linear setting, we can compute the derivative of the potential w.r.t. the
parameter θ

∇θΦ(θ, y) = ∇θ
(

1

2
‖Lθ − y‖2Γ

)
= L∗Γ−1(Lθ − y).
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3.2 Continuous-time limit of the ensemble Kalman inversion

By this fact, we can interpret the drift of (3.11) as preconditioned gradient flow, where
the preconditioner is given through the sample covariance C(θ),

dθ
(j)
t = −C(θt)∇θΦ(θ

(j)
t , y) dt+ C(θt)L

∗Γ−1/2 dW
(j)
t .

In [200] the main analysis has been based on this gradient flow structure. While the
diffusion part has been suppressed, the convergence analysis is based in a deterministic
setting on the system of coupled ODEs

d

dt
θ(j) = −C(θ)∇θΦ(θ(j), y), (3.12)

and its long-time behaviour t→∞ as the EKI has been viewed as optimization method.
This perspective of the EKI as gradient flow, opens the possibility to interpret the EKI as
derivative free optimization method and therefore as black-box solver of the corresponding
optimization problem. Also for nonlinear forward models H we consider the corresponding
system of coupled ODEs, and connect this system to an approximation of its gradient flow.
To do so, we consider the drift of (3.9) as system of ODEs

d

dt
θ(j) = Cθp(θ)Γ−1(y −H(θ)). (3.13)

We follow the interpretation of (3.13) as approximate gradient flow in [140]. Using the
definition of the empirical covariance, (3.13) can be formulated equivalently as

d

dt
θ(j) =

1

J

J∑
k=1

〈
H(θ(k))− H̄,Γ−1(y −H(θ(j))

〉
(θ(k) − θ̄). (3.14)

We assume that the forward map H is Fréchet differentiable and consider the linearization

H(θ(k)) = H(θ(j) + θ(k) − θ(j)) ≈ H(θ(j)) +DH(θ(j))(θ(k) − θ(j)),

where DH denotes the Fréchet derivative of H. The linearization is getting the more
accurate the closer the particles θ(j) and θ(k) are lying to each other, i.e. the smaller
‖θ(k) − θ(j)‖2X is. Applying

H(θ(k))− H̄ =
1

J

J∑
l=1

(
H(θ(k))−H(θ(l))

)
≈ 1

J

J∑
l=1

(
H(θ(j)) +DH(θ(j))(θ(k) − θ(j))−

(
H(θ(j)) +DH(θ(j))(θ(l) − θ(j))

))
=

1

J

J∑
l=1

DH(θ(j))(θ(k) − θ(l))

= DH(θ(j))(θ(k) − θ̄)

to (3.14) leads to

d

dt
θ(j) ≈ 1

J

J∑
k=1

〈
DH(θ(j))(θ(k) − θ̄),Γ−1(y −H(θ(j))

〉
(θ(k) − θ̄)
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=
1

J

J∑
k=1

〈
θ(k) − θ̄, DH∗(θ(j))Γ−1(y −H(θ(j))

〉
(θ(k) − θ̄)

= C(θ)DH∗(θ(j))Γ−1(y −H(θ(j))).

By computing

∇θΦ(θ, y) = ∇θ
(

1

2
‖H(θ)− y‖2Γ

)
= DH∗(θ)Γ−1(H(θ)− y)

we obtain the approximate gradient flow structure

d

dt
θ(j) ≈ −C(θ)∇θΦ(θ(j), y).

This approximation leads to the hope of first proving that the particle system is collapsing,
i.e. the spread (θ(j)− θ̄) is converging to zero, and then using the property of the approxi-
mate gradient flow structure in order to apply EKI as optimizer. However, this idea itself
leads to the conflict, that also the preconditioner C(θ) will degenerate and might not stay
strictly positive definite in time, such that no descent direction can be guaranteed. We
will discuss this issue in section 3.4 in more detail.
Another arising problem through the gradient flow persepective and the analysis of the
long-time behaviour t→∞, is the loss of regularization effect from the original introduced
EKI method, which would only coincide with the solution until time t = 1. We will first
study theoretical convergence results based on noisefree data in section 3.4 and in chapter
5 we will discuss possibilities how to incorporate regularization to handle the case of noisy
data.
Through the deterministic perspective, one can simplify the analysis of the EKI and apply
theory based on ODEs to study the asymptotical behaviour. First theoretical results for
EKI has been based on this deterministic version, see for example [200, 201].
However, the original derivation of the EKI has been based on perturbed observations,
which imply a nontrivial diffusion of the continuous-time limit (3.9). Therefore, our the-
oretical results will be mainly based on analysis of the set of coupled SDEs (3.9).

Remark 3.2.1. We note that the presented methods in [200] and also the results for
the EKI method we are going to present in the rest of this work can be straightforwardly
extended to the ensemble square root filter (ESRF), a filtering method which itself can
be viewed as a deterministic variant of the EnKF. The basic idea in the filtering context
is to update the particles deterministically in a way such that the empirical covariance
exactly satisfies the Kalman identity (2.39). To do so, in the linear setting an explicit
transformation of the particles, also known as the ensemble transform Kalman filter, can
be found [186, 147]. Based on [16, 15] the continuous-time limit of the ESRF applied to
inverse problems can be formulated as

d

dt
θ(j) =

1

J

J∑
k=1

〈
H(θ(k))− H̄,Γ−1(y − 1

2
H(θ(j) − 1

2
H̄)

〉
(θ(k) − θ̄).

In the linear setting, a gradient flow structure can be achieved in the sense of

d

dt
θ(j) = −C(θ)

(
1

2
∇θΦ(θ(j), y) +

1

2
∇θΦ(θ̄, y)

)
.

This approach can be seen as a deterministic variant of the EKI method.
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3.2 Continuous-time limit of the ensemble Kalman inversion

3.2.2 Covariance inflation

In the high-dimensional setting, the EnKF is known to have certain difficulties, in partic-
ular in the case where the dimension of the parameter space is larger than the ensemble
size. The main issue is that the particle system resulting from the EnKF underestimates
the uncertainty stored through the sample covariance operator. One common way to al-
leviate this issue is through the incorporation of covariance inflation [5, 6, 135]. The idea
is to inflate the sample covariance by addition of another positive definite operator, for
example by the prior covariance operator, i.e.

C(θ) 7→ C(θ) + κC0,

where κ > 0 is a parameter to choose, which scales the effect of the covariance inflation.
In the previous section, we have seen that for EKI the sample covariance is acting as a
preconditioner of a gradient flow structured dynamic. If the ensemble size is less than the
size of parameter space, which is in fact a problem in high dimensions, the preconditioned
gradient flow structure can not ensure a strictly decreasing direction w.r.t. the potential Φ,
since the sample covariance C(θ) might not be strictly positive definit. Following the ideas
in [200], we propose to inflate the preconditioning effect through the sample covariance
artificially. In the linear deterministic EKI setting, i.e. the system of coupled ODEs (3.12),
we can inflate the effect of the covariance by additive covariance inflation which leads to
the modified gradient flow structure

d

dt
θ(j) = −(C(θ) + κB)∇θΦ(θ(j), y),

for some self-adjoint, positive definite operator B : X → X .
While in the linear setting, due to the gradient flow structure, it is straightforward to
introduce the covariance inflation into EKI, it is not the case for nonlinear forward prob-
lems. In the previous section we have seen, that the EKI can be viewed as gradient flow
approximatively. Assuming that H is Fréchet differentiable, we consider the following
approximation based on the Taylor expansion

H(θ(j))−H(θ̄) ≈ DH(θ̄)(θ(j) − θ̄),

where DH(θ̄) denotes the Fréchet derivative of H at θ̄. Hence, we will approximate the
mixed sample covariance Cθp(θ) by

Cθp(θ) ≈ 1

J

J∑
j=1

(θ(j) − θ̄)⊗ (DH(θ̄)(θ(j) − θ̄)) = C(u)DH∗(θ̄).

Here, we have introduced a further approximation H̄ ≈ H(θ̄). We will incorporate covari-
ance inflation in sense of

Cθp(θ) ≈ C(θ)DH∗(θ̄) 7→ (C(θ) + κB)DH∗(θ̄),

and we will write the EKI with covariance inflation through the following approximation

d

dt
θ(j) =

(
Cθp(θ) + κB DH∗(θ̄)

)
Γ−1(y −H(θ(j))). (3.15)

By application of this method of variance inflation one should mention that there exists
the disadvantage of computing the derivative of the nonlinear map H.
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3.3 Well-posedness of the ensemble Kalman inversion

In the previous section, we have introduced the continuous-time limit of the EKI, which is
given through a system of coupled SDEs (3.9), which takes values in an infinite-dimensional
space X . As we want to study the behaviour of solutions to these infinite-dimensional
SDEs, our aim is to break everything down w.l.o.g. to the finite-dimensional case. There-
fore, we will first extend the subspace property from the discrete version Lemma 3.1.2 to a
continuous version of it. With the help of this subspace property we will be able to work in
a coordinate system of this initialized subspace and consider w.l.o.g. a finite-dimensional
parameter space X .
Using the definition of the empirical covariance, (3.9) can be formulated equivalently as

dθ
(j)
t =

1

J

J∑
k=1

〈
H(θ

(k)
t )− H̄t, (y −H(θ

(j)
t )) dt+

√
Γ dW

(j)
t

〉
Γ

(θ
(k)
t − θ̄t). (3.16)

The formulation (3.16) reveals that solutions satisfy a generalization of the subspace prop-
erty of Lemma 3.1.2 to continuous-time.

Lemma 3.3.1. Assume that H is locally Lipschitz and let S be the linear span of {θ(j)
0 }Jj=1,

then θ
(j)
t ∈ S for all (t, j) ∈ [0,∞)× {1, . . . , J} almost surely.

We rely on the subspace property of Lemma 3.3.1, and first show that we can reduce
the infinite-dimensional X -valued setting without loss of generality to a finite-dimensional
setting.

Lemma 3.3.2. Without loss of generality we assume that the initial ensemble (θ
(j)
0 )j∈{1,...,J}

is linearly independent almost surely and spans a J-dimensional vector space S. Further-
more, we assume that H(·) = L· for some L ∈ L(X ,RK).
Then there exists a linear operator L̃ : RJ → RK such that equation (3.11) restricted to S
is equivalent to

dv
(j)
t =

1

J

J∑
k=1

〈
L̃v

(k)
t − L̃v̄t, (y − L̃v

(j)
t ) dt+ Γ

1
2 dW

(j)
t

〉
Γ

(v
(k)
t − v̄t) (3.17)

for v
(j)
t ∈ RJ , v̄t := 1

J

J∑
k=1

v
(k)
t , in the following sense: For θ

(j)
t =

J∑
k=1

(v
(j)
t )k · θ

(k)
0 one has

that θt is a S-valued solution of (3.11) if and only if vt is a solution of (3.17).

Proof. By Lemma 3.3.1, any S-valued process u(t) can be uniquely expanded as a linear

combination θ(j)(t) =
J∑
l=1

v
(j)
l (t) · θ(l)(0) for every j ∈ {1, . . . , J}, t ≥ 0 and coordinates

v
(j)
l (t) ∈ R. Let Ψ−1 : RJ → S denote the basis isomorphism, i.e. Ψ : S → RJ with u =
J∑
l=1

vlθ
(l)(0)

Ψ7→ (v1, . . . , vJ)>. Since Ψ is a linear isomorphism, (3.11) can be equivalently

transformed to

dΨ(θ(j)(t)) = Ψ(dθ(j)(t))

=
1

J

J∑
k=1

〈L(θ(k)(t)− θ̄(t)), (y − Lθ(j)(t)) dt+ Γ
1
2 dW

(j)
t 〉Γ(Ψ(θ(k)(t))−Ψ(θ̄(t))) .
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Thus, with L̃ = LΨ−1, we obtain

dΨ(θ(j)(t)) =
1

J

J∑
k=1

〈L̃Ψ(θ(k)(t)− θ̄(t)), (y − L̃Ψ(θ(j)(t))) dt+ Γ
1
2 dW

(j)
t 〉Γ

· (Ψ(θ(k)(t))−Ψ(θ̄(t)))

The assertion follows with v(j) := Ψ(θ(j)).

Remark 3.3.3. We note that Lemma 3.3.2 can be generalized to the nonlinear setting,
by introduction of of H̃(·) = (H ◦ Ψ−1)(·), which is again nonlinear. Hence, also in the
nonlinear setting, the original system of infinite dimensional SDEs can be breaked down
to a system of finite dimensional SDEs with a similar structure as (3.17).

3.3.1 Well-posedness result - Linear setting

The following section is devoted to prove existence and uniqueness of global solutions of the
set of coupled SDEs (3.11). The local existence and uniqueness of X -valued local solutions
to (3.11) is straightforward by the local Lipschitz-property of the drift and diffusion on
the right-hand side.
In this part, we will assume that the forward response operator is linear, i.e. H(·) = L·
with L ∈ L(X ,RK). Then recall, that the continuous-time limit (3.16) reads as

dθ
(j)
t =

1

J

J∑
k=1

〈
L(θ

(k)
t − θ̄t), (y − Lθ

(j)
t ) dt+

√
Γ dW

(j)
t

〉
Γ

(θ
(k)
t − θ̄t).

Recall that the empirical covariance operator is defined by

C(θ) =
1

J

J∑
k=1

(θ(k) − θ̄)⊗ (θ(k) − θ̄).

and equation (3.10) can be rewritten in the form

dθ
(j)
t = C(θt)L

∗Γ−1(y − Lθ(j)
t ) dt+ C(θt)L

∗Γ−1/2 dW
(j)
t .

Remark 3.3.4. By Lemma 3.3.2 we can imply that solving equation (3.11) is equivalent to
solving the finite-dimensional equation (3.17). Thus, to simplify notation we will assume
w.l.o.g. that X = RI , I ∈ N, I ≤ J . Further, in the case of linearly independent initial
ensemble we can assume I = J .
When studying the dynamical behavior of the ensemble, we will sometimes require the
following assumption for the extension of our results to the parameters space:

The linear operator L̃ defined above is one-to-one. (3.18)

However, we note that Assumption (3.18) seems to be a rather strict assumption: It re-
quires that the forward operator ”sees everything” and secondly, this means that

{L̃Ψ(u
(j)
0 )}Jj=1 ⊂ RK

is linearly independent. This implies the restriction on the number of particles J ≤ K.
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3 A particle based optimization method - Basics of ensemble Kalman inversion

However, note that this assumption is on the operator L̃, i.e. we do not assume that L is
one-to-one. The discretization of the parameter space via the ensemble of particles acts as
a regularization of the inverse problem in this setting. We will need assumption (3.18) only
when we want to prove dynamical properties in the parameter space. This makes sense as
we cannot hope for convergence to the true parameter if the forward operator is indifferent
with respect to some components of this parameter value. Our convergence results in the
observation space hold without assumption (3.18).

In order to prove the existence and uniqueness of global solutions we rewrite the set of
coupled SDEs (3.11) as a single SDE of the following form:

dθt = F (θt) dt+G(θt) dWt,

with θt = (θ
(j)
t )j∈{1,...,J} ∈ RIJ×1,Wt = (W

(j)
t )j∈{1,...,J} ∈ RJ2×1 and

F (x) = (C(x)L∗Γ−1(y − Lx(j)))j∈{1,...,J} ∈ RIJ×1,

G(x) = diag(C(x)L∗Γ−
1
2 )j∈{1,...,J} ∈ RIJ×J

2
,

where x = (x(j))j∈{1,...,J} ∈ RIJ×1 and diag(Bj)j∈{1,...,J} is a diagonal block matrix with
matrices (Bj)j∈{1,...,J} on the diagonal.
Before formulating the well-posedness result of the EKI, we will prove the following auxi-
lary result, which we will need several times when studying the system of SDEs.

Lemma 3.3.5. Let M be a symmetric and nonnegative d× d-matrix, then for all choices
of vectors (z(k))k=1,...,J in Rd we have

J∑
k,l=1

〈z(k), z(l)〉〈z(k),Mz(l)〉 ≥ 0.

Proof. Let (v(m))m=1,...,d be an orthonormal basis of eigenvectors such that Mv(m) =

λmv
(m) with λm ≥ 0. Then z(l) =

d∑
m=1

z
(l)
m v(m) and thus

J∑
k,l=1

〈z(k), z(l)〉〈z(k),Mz(l)〉 =
J∑

k,l=1

d∑
m,n=1

z(k)
n z(l)

n z
(k)
m z(l)

m λm =
d∑

n,m=1

λm(
J∑
k=1

z(k)
n z(k)

m )2 ≥ 0.

We will now formulate and prove the main result of this section on the well-posedness of
the EKI.

Theorem 3.3.6. Let θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → X which

are linearly independent almost surely. Then for all T ≥ 0 there exists a unique strong
solution (θt)t∈[0,T ] (up to P-indistinguishability) of the set of coupled SDEs (3.11).

Proof. For the proof we will assume without loss of generality that X = RI as discussed
before. Due to the local Lipschitz property of the drift F and the diffusion G, we can
ensure through standard arguments existence and uniqueness of local strong solutions for
(3.11) (up to a stopping time). Therefore, we note that both F and G are polynomials.
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The global existence of a strong solution is based on stochastic Lyapunov theory. See for
example Theorem 3.5 of [137]. We just need to construct a function V ∈ C2(X ;R+) such
that for some constant c > 0

LV (x) := ∇V (x) · F (x) +
1

2
trace(GT (x)Hess[V ](x)G(x)) ≤ cV (x) (3.19)

and
inf
|x|>R

V (x)→∞ as R→∞ (3.20)

hold true.
We can uniquely decompose y ∈ RK as y = y1 + y2, with y1 ∈ R(Γ−

1
2L) and y2 ∈

R(Γ−
1
2L)⊥, whereR(Γ−

1
2L) denotes the image of Γ−

1
2L. We fix θ̃ ∈ RJ such that Γ−

1
2Lθ̃ =

y1 and define the Lyapunov function

V (θ) := 2V1(θ) + V2(θ) + ‖Γ−1/2L‖2F =
2

J

J∑
j=1

‖θ(j) − θ̄‖2 + ϕ(‖θ̄ − θ̃‖2) + ‖Γ−1/2L‖2F ,

where we define ϕ(z) = log(1 + z). First note that for z > 0 it holds true that ϕ′(z) ≤
1, zϕ′(z) ≤ 1 and |zϕ′′(z)| ≤ 1. Obviously, (3.20) is satisfied. The generator L applied to
V is given by LV = LV1 + LV2 with

LV1(θ) =− J + 1

J3

J∑
j,l=1

〈θ(j) − θ̄, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ(j) − θ̄)〉

LV2(θ) =− ϕ′(‖θ̄ − θ̃‖2)
2

J

J∑
l=1

〈θ̄ − θ̃, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ̄ − θ̃)− y2〉

+ ϕ′(‖θ̄ − θ̃‖2)
1

J3

J∑
j,l=1

〈θ(j) − θ̄, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ(j) − θ̄)〉

+ ϕ′′(‖θ̄ − θ̃‖2)〈θ̄ − θ̃, C(θ)L>LC(θ)(θ̄ − θ̃)〉

=− ϕ′(‖θ̄ − θ̃‖2)
2

J

J∑
l=1

〈θ̄ − θ̃, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ̄ − θ̃)〉

+ ϕ′(‖θ̄ − θ̃‖2)
1

J3

J∑
j,l=1

〈θ(j) − θ̄, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ(j) − θ̄)〉

+ ϕ′′(‖θ̄ − θ̃‖2)〈θ̄ − θ̃, C(θ)L>LC(θ)(θ̄ − θ̃)〉,

where we used 〈Γ−
1
2L(θ(l)− θ̄), y2〉 = 0 for all l ∈ {1, . . . , J} which is true by construction.

We can bound the generator by application of Cauchy-Schwarz inequality and Young’s
inequality

ϕ′(‖θ̄ − θ̃‖2)
2

J

J∑
l=1

〈θ̄ − θ̃, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ̄ − θ̃)〉

= 2ϕ′(‖θ̄ − θ̃‖2)〈θ̄ − θ̃, C(θ)L>Γ−1L(θ̄ − θ̃)〉
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3 A particle based optimization method - Basics of ensemble Kalman inversion

≤
(
ϕ′(‖θ̄ − θ̃‖2)‖θ̄ − θ̃‖2‖Γ−1/2L‖F

)2
+ ‖C(θ)L>Γ−

1
2 ‖2F

≤ ‖Γ−1/2L‖2F + ‖C(θ)L>Γ−
1
2 ‖2F ,

and

ϕ′′(‖θ̄ − θ̃‖2)〈θ̄ − θ̃, C(θ)L>LC(θ)(θ̄ − θ̃)〉

≤ |ϕ′′(‖θ̄ − θ̃‖2)|‖θ̄ − θ̃‖2‖C(θ)L>Γ−
1
2 ‖2F

≤ ‖C(θ)L>Γ−
1
2 ‖2F .

Further, we note that

‖C(θ)L>Γ−
1
2 ‖2F =

1

J2

J∑
j,l=1

〈θ(j) − θ̄, θ(l) − θ̄〉〈Γ−
1
2L(θ(l) − θ̄),Γ−

1
2L(θ(j) − θ̄)〉.

Thus, as L>Γ−1L is a symmetric non-negative matrix, we can show that the generator
satisfies (3.19)

LV (θ) = 2LV1(θ) + LV2(θ)

≤ −2(J + 1)

J
‖C(θ)L>Γ−

1
2 ‖2F + ‖Γ−1/2L‖2F + 2‖C(θ)L>Γ−

1
2 ‖2F

≤ V (θ).

3.4 Convergence analysis of the ensemble Kalman inversion
- Linear setting

In this section, we study the so called ensemble collapse and the convergence of the resid-
uals. The idea is to split the convergence results into two parts. The first part is to
prove that the spread of the ensemble of particles stays bounded and that the particles
are converging to their joint mean. The second part is to study the behaviour of the mean
of the ensemble itself, whether it converges to a good estimate of our underlying inverse
problem.
Recall, that we consider a true underlying parameter θ† ∈ X which constructs our obser-
vations, i.e.

y = Lθ† + ξ†,

where ξ† ∼ N (0,Γ) is a realization of the measurements noise. We introduce the following
quantities we are going to analyse:

parameter space observation space

spread e(j) = θ(j) − θ̄ e(j) = Γ1/2(Lθ(j) − Lθ̄)

residual r(j) = θ(j) − θ† r(j) = Γ1/2(Lθ(j) − y)
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3.4 Convergence analysis of the ensemble Kalman inversion - Linear setting

The spread e describes the difference of each particle to the ensembles mean and the
residual r describes the difference of each particle to the underlying truth θ†. As our
forward model L is in general mapping to a lower dimensional space, we can not expect to
prove convergence results in the parameter space. We aim to study the quantities mapped
by our forward model L, i.e. we consider the spread of the mapped particles e and the
data misfit r. For simplicity in our computations, we scale both quantities e and r by the
symmetric and positive definite matrix Γ1/2.
We can describe the introduced quantities by the SDEs

de
(j)
t = −C(et)L

∗Γ−1Le
(j)
t dt+ C(et)L

∗Γ−
1
2 d(W

(j)
t − W̄t), (3.21)

dr
(j)
t = dθ

(j)
t = C(θt)L

∗Γ−1(y − Lθ(j)
t ) dt+ C(θt)L

∗Γ−1/2 dW
(j)
t ,

with W̄t := 1
J

J∑
j=1

W (j).

The dynamical behavior of the empirical mean is given by

dθ̄t =
1

J

J∑
k=1

(θ
(k)
t − θ̄t)〈L(θ

(k)
t − ūt), (y − Lθ̄t) dt+ Γ

1
2 dW̄t〉Γ.

3.4.1 Quantification of the ensemble collapse

We quantify the ensemble collapse, which means the convergence of the ensemble spread
towards zero, in the parameter as well as in the observation space in Lp and almost surely
sense.
For the computation of the dynamics describing the processes e and r, we will apply
several times Itô’s formula. In order to use Itô’s formula we have to calculate the following
quadratic covariation in many cases:

Lemma 3.4.1. Let (W (j))j=1,...,J be independent Brownian motions in RK , u, v ∈ RK

and let l 6= j ∈ {1, . . . , J}. Then with W̄ = 1
J

∑J
k=1W

(k),

〈u, d(W (j) − W̄ )〉〈v, d(W (j) − W̄ )〉 =
J − 1

J
〈u, v〉 dt,

〈u, d(W (j) − W̄ )〉〈v, d(W (l) − W̄ )〉 = − 1

J
〈u, v〉 dt.

Proof. We can write

W (j) − W̄ = − 1

J

J∑
k=1,k 6=j

W (k) +
J − 1

J
W (j),

and, since W (k) are independent Brownian motions, it follows

〈u, d(W (j) − W̄ )〉〈v, d(W (j) − W̄ )〉 =
1

J2

J∑
k=1,k 6=j

〈u,dW (k)〉〈v,dW (k)〉

+
(J − 1)2

J2
〈u,dW (j)〉〈v,dW (j)〉

=
J − 1

J
〈u, v〉dt.
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Similarly, we obtain

〈u, d(W (j) − W̄ )〉〈v, d(W (l) − W̄ )〉 = − 1

J

J∑
k=1

(〈u,dW (j)〉〈v,dW (k)〉+ 〈u,dW (k)〉〈v,dW (l)〉)

+
1

J2

J∑
i,k=1

〈u,dW (i)〉〈v,dW (k)〉

= − 1

J
〈u, v〉 dt.

Ensemble collapse in the observation space - Auxiliary results:

We begin with our first auxiliary result, which states that the Lp norm stays bounded in
time for p depending on the ensemble size J .

Lemma 3.4.2. Let p ∈ [2, J + 3) and θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 :

Ω→ X such that E[ 1
J

J∑
j=1
|e(j)

0 |p] <∞. Then

t ∈ [0,∞) 7→ ‖et‖Lp(Ω,RK) := E

 1

J

J∑
j=1

|e(j)
t |p

 1
p

is monotonically decreasing in t. Furthermore there exists a constant C > 0 such that for
all t ≥ 0 ∫ t

0
E

 1

J

J∑
j=1

|e(j)
s |p+2

 ds < C.

Proof for p = 2. We will prove the assertion in the case p = 2, in order to give the key
ideas. The case p > 2 is very similar, but much more technical.

Applying Γ−
1
2L to e(j) implies that the quantity e(j) satisfies (see (3.21) and (3.3))

de
(j)
t = −C(et)e

(j)
t dt+ C(et) d(W

(j)
t − W̄t)

= − 1

J

J∑
k=1

e
(k)
t 〈e

(k)
t , e

(j)
t 〉 dt+

1

J

J∑
k=1

e
(k)
t 〈e

(k)
t ,d(W

(j)
t − W̄t)〉.

Itô’s formula gives

d|e(j)
t |2 = 2〈e(j)

t , de
(j)
t 〉+ 〈de(j)

t , de
(j)
t 〉

= − 2

J

J∑
k=1

〈
e
(j)
t , e

(k)
t

〉2
dt+ 2e

(j)T
t C(et) d(W

(j)
t − W̄t)

+
1

J2

J∑
k,l=1

〈
e
(k)
t , e

(l)
t

〉〈
e
(k)
t , d(W

(j)
t − W̄t)

〉〈
e
(l)
t , d(W

(j)
t − W̄t)

〉
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and with Lemma 3.4.1 to evaluate the Itô correction we get

d|e(j)
t |2 = − 2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉2 dt+ 2e

(j)T
t C(et) d(W

(j)
t − W̄t) +

J − 1

J3

J∑
k,l=1

〈e(k)
t , e

(l)
t 〉2 dt .

Taking the sum over all particles leads to

d

 1

J

J∑
j=1

|e(j)
t |2

 = − 2

J2

J∑
j,k=1

〈e(j)
t , e

(k)
t 〉2 dt+

2

J

J∑
j=1

e
(j)>
t C(et) d(W

(j)
t − W̄t)

+
J − 1

J3

J∑
j,k=1

〈e(j)
t , e

(k)
t 〉2 dt

= −J + 1

J3

J∑
j,k=1

〈
e
(j)
t , e

(k)
t

〉2
dt+

2

J

J∑
j=1

e
(j)>
t C(et) d(W

(j)
t − W̄t)

= −J + 1

J3

J∑
j,k=1

〈
e
(j)
t , e

(k)
t

〉2
dt+

2

J

J∑
j=1

e
(j)>
t C(et) dW

(j)
t .

The last step follows from
∑

j e
(j) = 0. This yields

1

J

J∑
j=1

|e(j)
t |2 −

1

J

J∑
j=1

|e(j)
0 |

2

= −J + 1

J3

∫ t

0

J∑
j,k=1

〈e(j)
t , e

(k)
t 〉2 dt+

2

J

∫ t

0

J∑
j=1

e
(j)>
t C(et) dW

(j)
t .

(3.22)

Note that we cannot simply take the expectation, as we do not know if the stochastic
integral is a martingale. We introduce a localization, where we set t, s ≥ 0 and let (τn)n∈N
with τn

n→∞ a.s. be a sequence of deterministically bounded stopping times, such that∫ s+(t∧τn)

s
e(j)T
s C(es) dW (j)

s

is a martingale for every j ∈ {1, · · · , J}. This is possible by definition of local martingales,
with any stochastic integral being one. For example we can take for τn the minimum of n
and the first exit time of es at radius n. Then, for all n ∈ N, from (3.22) (after rebasing
the integration interval from [0, t] to [s, s+ t]) we obtain

E

 1

J

J∑
j=1

|e(j)
s+(t∧τn)|

2

− E

 1

J

J∑
j=1

|e(j)
s |2

 = −E

∫ s+(t∧τn)

s

J + 1

J3

J∑
j,k=1

〈e(j)
r , e(k)

r 〉2 dr


As τn → ∞, applying Fatou’s lemma on the left hand side and applying the monotone
convergence theorem on the right hand side gives

E

 1

J

J∑
j=1

|e(j)
s+t|2

− E

 1

J

J∑
j=1

|e(j)
s |2

 ≤ −E
∫ s+t

s

J + 1

J3

J∑
j,k=1

〈e(j)
r , e(k)

r 〉2 dr

 ≤ 0, (3.23)
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which implies that E[ 1
J

J∑
j=1
|e(j)
t |2] is monotonically decreasing in t.

Finally,

∫ t

0
E

J + 1

J3

J∑
j=1

|e(j)
s |4

 ds ≤
∫ t

0
E

J + 1

J3

J∑
j,k=1

〈e(j)
s , e(k)

s 〉2
 ds ≤ E

 1

J

J∑
j=1

|e(j)
0 |

2

 ,
where the first inequality is trivial by inserting non-negative terms in the sum and the
second inequality is (3.23) with s = 0. This proves the second claim.

Let us finally remark that τn →∞ necessarily holds. If we assume that τn → τ∗ then the

previous argument with s = 0 and arbitrary T > 0 gives E[ 1
J

J∑
j=1
|e(j)
t∧τ∗ |

2] < ∞. Thus, it

would follow t < τ∗ for our choice of stopping time.

Proof for p > 2. Since e(j) ∈ RK , note that componentwise

de(j)
m = − 1

J

J∑
l=1

e(l)
m 〈e(l), e(j)〉dt+

1

J

J∑
l=1

e(l)
m 〈e(l), d(W (j) − W̄ )〉.

We define the Lyapunov function (for equivalent notions of ”p-norms” of the ensemble,
see Lemma 3.4.3)

Vp(e) =
1

J

K∑
m=1

(
J∑
j=1

|e(j)
m |2)

p
2

and according to Ito’s lemma it holds that

dVp(e) =
K∑
m=1

J∑
j=1

∂Vp

∂e
(j)
m

de(j)
m +

1

2

K∑
m,m′=1

J∑
j,j′=1

de(j)
m

∂2Vp

∂e
(j)
m ∂e

(j′)
m′

de
(j′)
m′

Analogously to the case p = 2 the expectation is given by

E[Vp(es+t)] = E[Vp(es)]

− C(p, J)E[

∫ s+t

s

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(

J∑
l=1

e(l)
m e(l)

n )2]] dr]

+ E[

∫ t

0

p

J2

K∑
m=1

((

J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m 〈e(l),d(W (j) − 1

J

J∑
r=1

W (r))〉)]

(3.24)

by defining C(p, J) := p
J2 (1− (p−2+J)·(J−1)

2J2 − p−2
2J2 ) > 0.

Thus, similarly to Lemma 3.4.2 we obtain by introducing stopping times and using Fatou’s
Lemma

E[Vp(es+t)]− E[Vp(es)]

≤ −C(p, J)E[

∫ s+t

s

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(

J∑
l=1

e(l)
m e(l)

n )2]] dr] ≤ 0,
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and setting s = 0 leads to

E[Vp(e0)] ≥ C(p, J)E[

∫ t

0

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(

J∑
l=1

e(l)
m e(l)

n )2]] ds].

Note that

E[

∫ t

0

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2]] ds] < C

Now we bound the integrand by below by:

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1)(

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2) ≥
K∑
m=1

(
J∑
k=1

|e(k)
m |2)

p
2

+1 = JVp+2(e),

Thus, we also have

E[

∫ t

0
Vp+2(es) ds] < C (3.25)

for all p < J + 3.

The following result states the equivalent notions of the previous introduced Lyapunov
function Vp and the ”p-norms” of the ensemble of particles.

Lemma 3.4.3. For am,j ∈ R, m = 1, . . . , d, j = 1, . . . , J and p ∈ N,

J∑
j=1

(

d∑
m=1

|am,j |2)
p
2 ≤ d(p−1)/2

d∑
m=1

J∑
j=1

|am,j |p

and
d∑

m=1

J∑
j=1

|am,j |p ≤ Jp/2
d∑

m=1

(
J∑
j=1

|am,j |2)
p
2 .

By symmetry we also have

d∑
m=1

(
J∑
j=1

|am,j |2)
p
2 ≤ Jp/2

d∑
m=1

J∑
j=1

|am,j |p and
d∑

m=1

J∑
j=1

|am,j |p ≤ d(p−1)/2
J∑
j=1

(
d∑

m=1

|am,j |2)
p
2 .

Proof. We start with the first claim and write

J∑
j=1

(

d∑
m=1

|am,j |2)
p
2 =

J∑
j=1

Tj

with T 2
j = (

∑d
m=1 |am,j |2)p. We continue by expressing T 2

j using the multinomial theorem
and Young’s inequality

T 2
j =

∑
k1+···+kd=p

( p
k1, . . . , kd

) d∏
m=1

|am,j |2km
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=
∑

k1+···+kd=p

( p
k1, . . . , kd

) d∏
m=1,km 6=0

|am,j |2km

≤
d∑

m=1

|am,j |2p
∑

l1+···+ld=p−1

( p− 1
l1, . . . , ld

)
=

d∑
m=1

|am,j |2pdp−1.

This means that

J∑
j=1

(

d∑
m=1

|am,j |2)
p
2 ≤ d

p−1
2

J∑
j=1

√√√√ d∑
m=1

|am,j |2p ≤ d
p−1

2

J∑
j=1

d∑
m=1

|am,j |p,

which proves the first statement. For the second claim we can write by concavity of the
square root

d∑
m=1

(

J∑
j=1

|am,j |2)
p
2 =

d∑
m=1

(
√
J

√√√√ J∑
j=1

|am,j |2
J

)p ≥ J−
p
2

d∑
m=1

J∑
j=1

|am,j |p,

i.e.
d∑

m=1

J∑
j=1

|am,j |p ≤ J
p
2

d∑
m=1

(

J∑
j=1

|am,j |2)
p
2 .

Before proving the Lp convergence of the spread in the observation space, we state that
the stochastic integral in (3.22) is indeed a martingale. This property gives the possibility
to take directly the expectation in (3.22) and prove convergence in Lp.

Lemma 3.4.4. For all j ∈ {1, . . . , J} the process

(M(t))t≥0 :=
(∫ t

0
e(j)T
s C(es) dW (j)

s

)
t≥0

is a (global) martingale.

Proof. The local martingale given by the stochastic integral is a true martingale by Itô-
isometry if we show that following second moment is finite (cp.[84, Theorem 2.4])

‖e(j)T
· C(e·)‖Λ2;T := E[

∫ T

0
‖e(j)T
s C(es)‖2F ds] =

∫ T

0
E[‖e(j)T

s C(es)‖2F ] ds <∞

for all T ≥ 0. For this, we first estimate the Frobenius norm, denoted by ‖ · ‖F , by

‖e(j)T
s C(es)‖2F := trace e(j)TC(e)(e(j)TC(e))T =

1

J2

J∑
k,l=1

〈e(l), e(k)〉〈e(j), e(k)〉〈e(l), e(j)〉

≤ 1

J2

J∑
k,l=1

|e(l)|2|e(j)|2|e(k)|2
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Thus, it holds true that

1

J

J∑
j=1

‖e(j)T
s C(es)‖2F ≤

1

J3

J∑
j,k,l=1

|e(l)|2|e(j)|2|e(k)|2 = (
1

J

J∑
j=1

|e(j)|2)3 ≤ 1

J

J∑
j=1

|e(j)|6

and with Lemma 3.4.2 it follows

1

J

J∑
j=1

‖e(j)T
· C(e·)‖Λ2;T ≤

∫ T

0
E[

1

J

J∑
j=1

|e(j)|6] ds ≤ C,

since p+ 2 := 6 ≤ J + 4.

Analogously, we prove the martingale property for the following stochastic integral in the
setting of p > 2 which arises in (3.24). The idea of the proof is similar to the setting for
p = 2, but is getting more technically again.

Lemma 3.4.5. For all k ∈ {1, . . . , J} and p ∈ (2, J+3
2 ) the process

(M(t))t≥0 :=

∫ t

0

p

J2

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m )e(l)>dW (k)


is a (global) martingale.

Proof. Similarly to the proof of Lemma 3.4.4 we estimate the Frobenius norm of the
integrand by

‖
K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m )e(l)>‖2F ≤ C1(J)
K∑
m=1

(
J∑
k=1

|e(k)
m |2)p−2

J∑
j,l=1

(e(l)
m )2(e(j)

m )2|e(l)|2

≤ C2(J,K)
J∑
k=1

|e(k)|2(p−2)
J∑

j,l=1

|e(l)|4|e(j)|2

≤ C3(J,K)

J∑
l=1

|e(l)|2p+2,

where we have used Jensen’s inequality and the fact |e(j)
m |2 ≤

K∑
n=1
|e(j)
n |2 = |e(j)|2. The

assertion follows by the bound (3.25) in the proof of Lemma 3.4.2, which we obtained by
localization and Fatou’s Lemma without martingale property.

Ensemble collapse in the observation space - Main results for L2 conver-
gence:

We are now ready to formulate our main result for the quantification of the ensemble
collapse in Lp sense. We first formulate the result in the case for p = 2 to give more
details on the main idea, and second give the more general result for p > 2, which is again
more technically.
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Theorem 3.4.6. Let θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable random variables θ

(j)
0 : Ω→ X

such that C0 := E[ 1
J

J∑
j=1
|e(j)

0 |2] <∞. Then, the ensemble collapse is quantified by

E

 1

J

J∑
j=1

|e(j)
t |2

 ≤ 1
J+1
J2 t+ 1

C0

. (3.26)

Proof. By Lemma 3.4.4 we can directly take expectations in (3.22) to obtain

E

 1

J

J∑
j=1

|e(j)
t |2

 = E

 1

J

J∑
j=1

|e(j)
0 |

2

− J + 1

J3

∫ t

0
E

 J∑
j,k=1

〈e(j)
s , e(k)

s 〉2
 ds.

Note that by dropping the non-negative mixed terms j 6= k and by using Jensen’s and
Young’s inequality

J + 1

J3
E

 J∑
j,k=1

〈e(j)
s , e(k)

s 〉2
 ≥ J + 1

J2
E

 1

J

J∑
j=1

|e(j)
s |2

2

.

Thus setting t 7→ h(t) := E[ 1
J

J∑
j=1
|e(j)
t |2] we can write

h(t) = h(0)− J + 1

J2

∫ t

0
h2(s) ds−

∫ t

0
p(s)ds

for a non-negative function p ≥ 0. Hence, we can differentiate to obtain the differential
inequality

h′ ≤ −J + 1

J2
h2 ,

from which by a comparison argument for scalar ODE it follows that

h(t) = E

 1

J

J∑
j=1

|e(j)
t |2

 ≤ 1
J+1
J2 t+ 1

h(0)

.

Corollary 3.4.7. Under the same assumptions as in Theorem 3.4.6 and under Assump-
tion (3.18) it holds true that

E

 1

J

J∑
j=1

|e(j)
t |2

 ≤ 1

σmin

1
J+1
J2 t+ 1

C0

,

where σmin is the smallest eigenvalue of the positive definite operator L∗Γ−1L.

Proof. The assertion follows directly from the inequality

|e(j)|2 = |Γ−
1
2Le(j)|2 = 〈e(j), L∗Γ−1Le(j)〉 ≥ σmin|e(j)|2,

since L∗Γ−1L is positive definite.
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Remark 3.4.8. We note that the bound in (3.26) deteriorates with growing number of
particles J , i.e. the result does not quantify the ensemble collapse in the large ensemble
size limit. However, the presented analysis is tailored for fixed ensemble size and we will
demonstrate in the numerical experiments that the derived bound (3.26) can be efficiently
used to quantify the collapse in this setting.

Ensemble collapse in the observation space - Main results for higher-order
moments:

We state our next main result for the ensemble collapse in the sense of higher-order
moments convergence, where the proofs are very similar to but technically more involved
than the case p = 2.

Theorem 3.4.9. Let p ∈ (2, J+3
2 ) and let θ0 = (θ

(j)
0 )j∈{1,...,J} be F0-measurable maps

θ
(j)
0 : Ω→ X such that E[ 1

J

J∑
j=1
|e(j)

0 |p] <∞. Then it holds true that

E

 1

J

J∑
j=1

|e(j)
t |p

 ≤ J
p
22

pC(p, J)K
− 2
pJ

1− 2
p t+

(
K

p−1
2 E

[
1
J

J∑
j=1
|e(j)

0 |p
])− 2

p


p
2

with C(p, J) := p
J2 (1− (p−2+J)·(J−1)

2J2 − p−2
2J2 ) > 0.

Proof. The proof based on Itô’s formula and a comparison principle for ODEs is very
similar to the case p = 2. By (3.24) we get that E[Vp(et)] is monotonically decreasing and
it follows

E[Vp(et)] ≤ E[Vp(e0)]− C(p, J)J

∫ t

0
E[Vp+2(es)] ds.

By Jensen’s inequality it follows

Vp+2(e) =
1

J

K∑
m=1

(
J∑
j=1

|e(j)
m |2)

p
2
p+2
p ≥ K−

2
pJ
− 2
p (Vp(e))

p+2
p

and we obtain

E[Vp(et)] ≤ E[Vp(e0)]− C(p, J)J
1− 2

pK
− 2
p

∫ t

0
E[Vp(es)]

p+2
p ds.

Similarly to the proof of Theorem 3.4.6 we get

h′ ≤ −C(p, J)J
1− 2

pK
− 2
ph

p+2
p ,

by defining h(t) := E[Vp(et)], from which it follows that

h(t) ≤ (
2

p
C(p, J)K

− 2
pJ

1− 2
p t+ (h(0))

− 2
p )−

p
2 .

Finally, we conclude with

E[
1

J

J∑
j=1

|e(j)
t |p] ≤ J

p
2 (

2

p
C(p, J)K

− 2
pJ

1− 2
p t+ (K

p−1
2 E[

1

J

J∑
j=1

|e(j)
0 |

p])
− 2
p )−

p
2
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by using Lemma 3.4.3.

Remark 3.4.10. Note that a larger ensemble seems to regularize the dynamics. The
higher the ensemble number J , the larger is the highest moment of ensemble collapse we
can bound.

The restriction 2p < J + 3 comes from the fact that we need the martingale property of
the stochastic integral, which we obtain from the bounds in Lemma 3.4.2.

Corollary 3.4.11. Under the same assumptions as in Theorem (3.4.9) and under As-
sumption (3.18) it holds true that

E

 1

J

J∑
j=1

|e(j)
t |p

 ≤ J
p
2σmin · 2

pC(p, J)K
− 2
pJ

1− 2
p t+

(
K

p−1
2 E

[
1
J

J∑
j=1
|e(j)

0 |p
])− 2

p


p
2

,

where σmin is the smallest eigenvalue of the positive definite operator L∗Γ−1L and C(p, J)
is defined in Theorem 3.4.9.

Ensemble collapse in the observation space - Main results for almost sure
convergence:

While we have considered the Lp convergence in the previous sections, we now focus on the
almost sure setting. This means we aim to prove that the particle members are converging
to its mean almost surely. The idea of the proofs for almost sure convergence is based on
the application of stochastic Lyapunov theory.

Theorem 3.4.12. Let θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → X and

γ : R+ → R+ a positive, monotonically increasing and differentiable function such that∫∞
0

γ′(s)2

γ(s) ds <∞. Then the trivial solution of

de
(j)
t = −C(et)e

(j)
t dt+ C(et)d(W

(j)
t − W̄t) (3.27)

is almost surely asymptotically stable with rate function ρ(t) = (γ(t))−
1
2 . In particular,

(e
(j)
t )j=1,...,J converges to zero almost surely as t→∞.

For examples of γ see the remark below.

Proof. The idea of this proof is based on Theorem 4.6.2 in [159]. We define the stochastic
Lyapunov function

V (e, t) = γ(t)
1

J

J∑
j=1

|e(j)|2.

The generator applied to V fulfills

LV (e, t) =
γ′(t)

J

J∑
j=1

|e(j)|2 − γ(t)
J + 1

J3

J∑
j,k=1

〈e(k), e(j)〉2
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≤ γ′(t)

J

J∑
j=1

|e(j)|2 − γ(t)
J + 1

J3

J∑
j=1

|e(j)|4.

We can maximize this expression w.r.t. (|e(1)|2, . . . , |e(J)|2) and get the following bound
for LV .

LV (e, t) ≤ γ′(t)2

γ(t)

1

4

J2

J + 1
=: η(t)

Since
∫∞

0 η(t) dt <∞, with Theorem 4.6.2 of [159] the trivial solution of (3.27) is almost

surely asymptotically stable with rate function ρ(t) = (γ(t))−
1
2 .

Corollary 3.4.13. Under the same assumptions as in Theorem 3.4.12 and assumption

(3.18) it holds true that (e
(j)
t )j=1,...,J converges to zero almost surely as t → ∞ with rate

function ρ(t) = (γ(t))−
1
2 .

Remark 3.4.14. We give two examples of admissible γ(t):

• γ(t) = (t+ ε)α for α ∈ (0, 1) and ε > 0 sufficiently small to obtain the rate function
ρ(t) = 1

(t+ε)
α
2

.

• γ(t) = (t + ε) log(t + ε)−α for arbitrarily small α > 1
2 and ε > 0 to obtain the rate

function ρ(t) = log(t+ε)
α
2

(t+ε)
1
2

Ensemble collapse in the parameter space:

We can also prove some theoretical result for the ensemble spread without the strong
assumption (3.18). The result states a monotone decreasing spread over time, but not the
collapse. For the ensemble collapse we need (3.18), see also Corollary 3.4.11 and 3.4.13.

Proposition 3.4.15. Let θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → X such

that E[ 1
J

J∑
j=1
|e(j)

0 |2] < ∞. Then it holds true that t 7→ E[ 1
J

J∑
j=1
|e(j)
t |2]

1
2 is monotonically

decreasing for t ≥ 0.

Proof. Itô’s formula leads to

d|e(j)
t |2 = 2〈e(j)

t ,de
(j)
t 〉+ 〈de(j)

t , de
(j)
t 〉

= − 2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉〈Γ−

1
2Le

(k)
t ,Γ−

1
2Le

(j)
t 〉 dt

+
2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉〈Γ−

1
2Le

(k)
t ,d(W

(j)
t − W̄t)〉

+
1

J2

J∑
k,l=1

J − 1

J
〈e(k)
t , e

(l)
t 〉〈Γ−

1
2Le

(k)
t ,Γ−

1
2Le

(l)
t 〉dt

and taking the mean over all particles j ∈ {1, . . . , J} gives

d(
1

J

J∑
j=1

|e(j)
t |2) = −J + 1

J3

J∑
j,k=1

〈e(k)
t , e

(j)
t 〉〈Γ−

1
2Le

(k)
t ,Γ−

1
2Le

(j)
t 〉dt
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+
2

J2

J∑
k,j=1

〈e(k)
t , e

(j)
t 〉〈Γ−

1
2Le

(k)
t , d(W

(j)
t − W̄t)〉.

Again, we do not know, whether the stochastic integral is a martingale, and we need again
a localization. Consider as in Lemma 3.4.2 a sequence of stopping times (τn)n∈N with
τn →∞ a.s., such that∫ t∧τn

0

2

J2

J∑
k,j=1

〈e(k)
s , e(j)

s 〉〈Γ−
1
2Le(k)

s , d(W (j)
s − W̄s)〉

is a martingale. We obtain for all n ∈ N

E[
1

J

J∑
j=1

|e(j)
t∧τn |

2] =E[
1

J

J∑
j=1

|e(j)
0 |

2]− E[

∫ t∧τn

0

J + 1

J3

J∑
j,k=1

〈e(k)
s , e(j)

s 〉〈Γ−
1
2Le(k)

s ,Γ−
1
2Le(j)

s 〉 ds]

and hence, as we have the positivity of the integrand by Lemma 3.3.5, we obtain that

E[ 1
J

J∑
j=1
|e(j)
t∧τn |

2] is monotonically decreasing and bounded. Analogously to the proof of

Lemma 3.4.2, we can pass to the limit n → ∞ by Fatou’s lemma and the monotone
convergence theorem. This implies for t > s ≥ 0

E[
1

J

J∑
j=1

|e(j)
t+s|2] ≤E[

1

J

J∑
j=1

|e(j)
s |2]− E[

∫ s+t

s

J + 1

J3

J∑
j,k=1

〈e(k)
r , e(j)

r 〉〈Γ−
1
2Le(k)

r ,Γ−
1
2Le(j)

r 〉dr]

In particular, it follows that E[ 1
J

J∑
j=1
|e(j)
t |2] is monotonically decreasing.

3.4.2 Convergence to ground truth

While we have seen in the motivation of EKI as optimizer, that to overcome the issue
of fitting the noise one has to include some regularization or stopping criterion in the
case that the data y is perturbed by some measurements noise. However, we consider
the assumption that y is the image of a truth θ† ∈ X under L without noise and we are
interested now in the analysis of the convergence to the truth. This means, we analyse
the EKI as optimization method without care of the ill-posedness of the inverse problem
itself. More details on the possibilities for consideration of noisy observations will be given
in the later part of this work, see chapter 5.
Recall the equation for the residuals r

dr
(j)
t = −C(rt)r

(j)
t dt+ C(rt) dW

(j)
t . (3.28)

The following properties can be shown for the residuals.

Proposition 3.4.16. Let y be the image of a truth θ† ∈ X under L and θ0 = (θ
(j)
0 )j∈{1,...,J}

be F0-measurable maps θ
(j)
0 : Ω→ X such that E[ 1

J

J∑
j=1
|r(j)0 |2] <∞. Then E[ 1

J

J∑
j=1
|r(j)t |2]

1
2

is monotonically decreasing.

Proof. The assertion follows by similar arguments to the proof of Proposition 3.4.15.
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The aim is now to prove the convergence of the residuals towards zero. This means, we
want that the particles fit the data. However, by looking at the dynamics of the residuals
described through (3.28) we can see the problems of proving this result.

First we not that

C(r) =
1

J

J∑
k=1

(
(Lθ(k) − y)− (Lθ̄ − y)

)(
(Lθ(k) − y)− (Lθ̄ − y)

)>
=

1

J

J∑
k=1

(Lθ(k) − Lθ̄)(Lθ(k) − Lθ̄)> = C(e).

In the previous part we have proved the convergence of the spread e in several senses,
including almost sure convergence and Lp convergence. If this convergence, now happens
to fast, we can not expect that the residuals r are still moving through the dynamics

dr
(j)
t = −C(et)︸ ︷︷ ︸

→0

r
(j)
t dt+ C(et)︸ ︷︷ ︸

→0

dW
(j)
t .

For example we could initialize the particle system with an ensemble of zero spread and
will stay in the initial state for all of the time.

To give some light into this issue, we consider the following toy example of ODE

z′(t) = −tαz(t),

where the solution will only converge to zero if the rate of increase of tα is low enough,
in particular if α ≤ 1. We can view tα as playing the role of ensemble collapse, described
through C(e). This means on the one side we have to control the lower bound of the
ensemble spread, such that the collapse does not happen to fast, but on the other side, we
need the ensemble to collapse as every particle shell converge to the same true observation
y.

To avoid this issue of ”too fast” or ”too slow” ensemble collapse, we introduce the so called
variance inflation, which increases the preconditioning effect of the covariance operator
artificially. The variance inflation can help to stabilize the convergence of the system and
is often used in practice for this reason, see for example [80, 134]. See also Section 3.2.2
for more details.

Variance Inflation

In order to correct rank deficiencies of the empirical covariance operator C(r), we will use
variance inflation in the following sense. Let B ∈ L(RK ,RK) be some positive definite
operator (for example the identity) and consider the equation

dr
(j)
t = −

(
C(rt) +

1

tα +R
B

)
r
(j)
t dt+ C(rt) dW

(j)
t , α ∈ (0, 1), R > 0. (3.29)

This modification gives convergence of the mapped residuals. For sufficiently small rt, the
new term will dominate, and for α ∈ (0, 1) we then expect convergence to 0 at a rate faster
than any polynomial. The question is now whether and when this asymptotic for small rt
sets in.
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Theorem 3.4.17. Assume that y is the image of a truth θ† ∈ X under L and let r0 =

(r
(j)
0 )j∈{1,...,J} be F0-measurable maps r

(j)
0 : Ω → RK such that E[ 1

J

J∑
j=1
|r(j)0 |2] < ∞, B ∈

L(RK ,RK) a positive definite operator and (r
(j)
t )t≥0,j=1,...,J the solution of (3.29). Then

for all β > 0 it holds true that E[ 1
J

J∑
j=1
|r(j)t |2] ∈ O(t−β) and E[ 1

J

J∑
j=1
|r(j)t |2] is monotonically

decreasing.

Proof. Let B ∈ L(RK ,RK) be a positive definite operator, α ∈ (0, 1), R > 0 and assume,
that the smallest eigenvalue of B is λmin = c > 0.

We derive an equation for 1
J

J∑
j=1
|r(j)t |2 by using Itô’s formula:

d|r(j)t |2 = −2

〈
r
(j)
t ,

(
C(rt) +

1

tα +R
B

)
r
(j)
t

〉
dt+ 2〈r(j)t , C(rt)dW

(j)
t 〉

+
1

J

J∑
j=1

〈
r
(k)
t − r̄t, C(rt)(r

(k)
t − r̄t)

〉
dt.

Taking the empirical mean over all particles yields

d
1

J

J∑
j=1

|r(j)t |2 = − 2

J

J∑
j=1

〈
r
(j)
t ,

(
C(rt) +

1

tα +R
B

)
r
(j)
t

〉
dt+

2

J

J∑
j=1

〈r(j)t , C(rt)dW
(j)〉

+
1

J

J∑
k=1

〈r(k)
t − r̄t, C(rt)(r

(k)
t − r̄t)〉dt .

Thus, for all t, s ≥ 0, it follows similarly to the proof of Lemma 3.4.2 that

E

 1

J

J∑
j=1

|r(j)t+s|2
 ≤ E

 1

J

J∑
j=1

|r(j)s |2
− 2

J

∫ s+t

s
E

 J∑
j=1

〈r(j)r , C(rr)r
(j)
r 〉

 dr

− 2

J

∫ s+t

s

1

rα +R
E

 J∑
j=1

〈r(j)r , Br(j)r 〉

 dr

+
1

J

∫ s+t

s
E

 J∑
j=1

〈r(j)r − r̄r, C(rr)(r
(j)
r − r̄r)〉

 dr

≤ E

 1

J

J∑
j=1

|r(j)s |2
− 1

J

∫ s+t

s
E

 J∑
j=1

〈r(j)r ,

(
C(rr) +

1

rα +R
B

)
r(j)r 〉

 dr ,

where we have used Lemma 3.3.5 and the non-negativity of B. This gives the monotonicity,
as both the covariance C(rr) as well as B are non-negative matrices.

We can even improve the estimate to obtain the asymptotic rate. Consider S(t) =

1
J

J∑
j=1
|r(j)t |2, then

d(tβS(t)) = βtβ−1S(t)dt+ tβdS(t) .
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3.4 Convergence analysis of the ensemble Kalman inversion - Linear setting

We use all the previous estimates for the terms in dS together with the non-negativity of
the covariance matrix C(rt) and B ≥ λmin > 0 to obtain

tβES(t) ≤ β
∫ t

0
τβ−1ES(τ)dτ − 2

J

∫ t

0
τβ

λmin
τα +R

ES(τ)dτ

≤
∫ t

0
τβ−1

[
β −

2λmin
J

τ

τα +R

]
ES(τ)dτ .

There is a time T > 0 such that the integrand in the equation above is negative for all
t > T and thus using the monotonicity of ES(τ) we obtain for all t > T

tβES(t) ≤
∫ T

0
τβ−1

[
β −

2λmin
J

τ

τα +R

]
dτES(0),

which gives the asymptotic rate t−β for ES(t).

Remark 3.4.18. In case of a positive semidefinite matrix B, the convergence of the
residuals will then take place in the image space of the matrix B. We can generalize the
proof straightforwardly to this setting by projections of the quantities to the corresponding
subspace.

We can also verify almost sure convergence faster than any polynomial rate.

Theorem 3.4.19. Assume that y is the image of a truth θ† ∈ X under L and let r0 =

(r
(j)
0 )j∈{1,...,J} be F0-measurable maps r

(j)
0 : Ω → RK and B ∈ L(RK ,RK) a positive

definite operator. Then the solution of (3.29) is almost surely asymptotically stable with

rate function ρ(t) = t−
β
2 for all β > 0. In particular, (r

(j)
t )j=1,...,J converges to zero almost

surely as t→∞.

Proof. We define the Lyapunov function

V (r, t) = tβ
1

J

J∑
j=1

|r(j)|2

and obtain

LV (r, t) ≤ βtβ−1

J

J∑
j=1

|r(j)|2 − tβ 1

J

J∑
j=1

〈r(j),
(
C(r) +

1

tα +R
B

)
r(j)〉.

Thus,

LV (r, t) ≤ 1

J

J∑
j=1

|r(j)|2
(
β − λmint

tα +R

)
tβ−1.

There exists a T > 0 such that the bracket above is non-positive for all t ≥ T and we
obtain ∫ ∞

0
LV (r, t) dt ≤

∫ T

0
LV (r, t) dt.

Moreover, by neglecting the negative term in the bracket for t ≤ T we obtain

E[

∫ T

0
LV (rt, t) dt] ≤ E[

∫ T

0
βsβ−1 1

J

J∑
j=1

|r(j)s |2 ds] ≤ T β

J
E[

J∑
j=1

|r(j)0 |
2] <∞,

by using the monotonicity of the sum. Hence,
∫∞

0 LV (rt, t) dt <∞ and we conclude with

rt is almost surely asymptotically stable with rate function ρ(t) = t−
β
2 .
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3 A particle based optimization method - Basics of ensemble Kalman inversion

Remark 3.4.20. Note that the convergence rate is faster than any polynomial rate. How-
ever, the proof reveals that the constant in the convergence result will grow w.r.t. the rate β
and α ∈ (0, 1), which is consistent with the numerical experiments presented in subsection
3.5.

Our aim is to use variance inflation in the parameter space, such that we can apply
Theorem 3.4.17. We will use variance inflation in the finite-dimensional system of SDEs
of the coordinates in the parameter space.

Let y ∈ LS where LS is the linear span of {Lθ(1)
0 , . . . , Lθ(J)} and consider the equation

dθ
(j)
t = (C(θt) +

1

tα +R
B)L∗Γ−1(y − Lθ(j)

t ) dt+ C(θt)L
∗Γ−

1
2 dW

(j)
t , (3.30)

j = 1, . . . , J , for B positive definite, R > 0 and α ∈ (0, 1). Since y ∈ LS, the subspace

property still holds, i.e. θ
(j)
t ∈ S for all (t, j) ∈ [0,∞) × {1, . . . , J}. The following result

transfers the results of Theorem 3.4.17 to the parameter space:

Corollary 3.4.21. Let y ∈ LS and assume that y is the image of a truth θ† ∈ X under

L, L∗ is assumed to be one-to-one and let (θ
(j)
t )t≥0,j=1,...,J be the solution of (3.30). Then

1. lim
t→∞

E[ 1
J

J∑
j=1
|e(j)
t |2] = 0.

2. lim
t→∞

E[ 1
J

J∑
j=1
|r(j)t |2] = 0.

3. (r
(j)
t )t≥0 converges almost surely to zero with rate function ρ(t) = t−

β
2 for all β > 0.

Proof. Let R > 0 and α ∈ (0, 1) and observe

dr
(j)
t = −(C(rt) +

1

tα +R
Γ−

1
2LB(Γ−

1
2L)∗)r

(j)
t dt+ C(rt) dW

(j)
t .

Since Γ−
1
2LB(Γ−

1
2L)∗ is positive definite the second and third assertion follow directly

from Theorem 3.4.17 and 3.4.19. The proof of the first assertion is similar to the proof of
Theorem 3.4.6.

3.5 Numerical results

We consider the problem of recovering the unknown data θ† from noisefree observations

y† = L(θ†),

where p = L−1(θ) is again the solution of the one-dimensional elliptic equation

−d2p

dx2
+ p = θ in D := (0, π),

p = 0 on ∂D,

(3.31)

see also (2.11) from subsection 2.1.3.
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3.5 Numerical results

Recall that the forward response operator is defined by

L = O ◦ L−1 with L = − d2

dx2
+ id on D(L) = H2 ∩H1

0 ,

with the operator O observing the dynamical system at K = 24−1 equispaced observation
points xk = k

24 , k = 1, . . . ,K. We approximate the forward problem (3.31) numerically
on a uniform mesh with meshwidth h = 2−8 by a finite element method with continuous,
piecewise linear ansatz functions.

We choose the initial ensemble of particles based on the eigenvalue and eigenfunctions
{λj , zj}j∈N of the covariance operator C0, defined by C0 = β(L − id)−1 for β = 10.

From the Bayesian perspective we may interpret this as prior distributed by µ0 = N (0, C0).
We set our jth initial particle to θ(j)(0) =

√
λjζjzj with ζj ∼ N (0, 1), i.e. we use the

Karhunen-Loève expansion to generate draws from µ0.

We use equation (3.8) as discretization of the EKI continuous-time limit

dθ
(j)
t = C(θt)L

∗Γ−1(y − Lθ(j)
t ) dt+ C(θt)L

∗Γ−
1
2 dW

(j)
t

for the following simulations.

Ensemble collapse We illustrate the results from section 3.4, in particular we verify the
bounds on the ensemble collapse derived in Theorem 3.4.6 and in Theorem 3.4.9.

Figure 3.2: Ê( 1
J

J∑
j=1
|e(j)(t)|2) with w.r. of time. Q = 1000 paths with J = 5 (left) and

J = 15 (right) particles has been simulated.

Figure 3.2 shows that the Monte Carlo approximation of the expected value Ê[ 1
J

J∑
j=1
|e(j)
t |2]

is bounded from above by (J+1
J2 t + C)−1 with C = (Ê[ 1

J

J∑
j=1
|e(j)

0 |2])−1, as expected from

Theorem 3.4.6.

Similarly Figure 3.3 demonstrates that the approximated higher moments Ê[ 1
J

J∑
j=1
|e(j)
t |p]

− 1
p

are bounded by J
1
2 (2
pC(p, J)J

1− 2
pK
− 2
p t+C)−

1
2 with C = (K

p−1
2 Ê[ 1

J

J∑
j=1
|e(j)

0 |p])
2
p , compare

Theorem 3.4.9.

In order to verify the almost sure ensemble collapse numerically, we have simulated Q = 10
paths.

79



3 A particle based optimization method - Basics of ensemble Kalman inversion

Figure 3.3: Ê( 1
J

J∑
j=1
|e(j)(t)|p)−

1
p , p = bJ+3

2 c − 1, w.r. of time. Q = 1000 paths with J = 5

(left) and J = 15 (right) particles has been simulated.

Figure 3.4: Paths of |e(t)|2 w.r. of time. Q=10 paths with J = 5 (left) and J = 15 (right)
particles has been simulated.

From Theorem 3.4.12 we know, that e(t) converges almost surely to zero with rate func-
tion ρ(t) = t−

α
2 for every α ∈ (0, 1). Figure 3.4 illustrates this behavior, the expected

convergence rates can be observed in this example.

Convergence to ground truth We compare simulations of the ensemble Kalman inversion
without variance inflation with simulations of the ensemble Kalman inversion with variance
inflation. The variance inflation is used in the following setting: We set α ∈ {1

2 ,
3
4} and

R = 1 in equation (3.30). The number of particles is J = 15, i.e. the forward response
operator is bijective as a mapping from the subspace spanned by the initial ensemble to
the data space.

Figure 3.5 shows the differences of the EKI estimation in the parameter space as well as
in the observation space. We observe that the simulations with variance inflation giving a
better estimation in the observation space as well as in the parameter space. If we reduce
the variance inflation in time faster, i.e. we increase the parameter α from 1

2 to 3
4 , the

effect of the variance inflation decreases. The following figures demonstrate the effect on
the ensemble collapse and the residuals.

The idea of the variance inflation was to slow down the convergence of the particles to
the ensemble mean, i.e. to control the rate of the ensemble collapse, in order to ensure
the convergence of the residuals in the observation space. Figure 3.6 illustrates that we
can ensure a higher spread of the ensemble in the simulations with variance inflation in
comparison to the simulations without variance inflation in the observation space.
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3.5 Numerical results

Figure 3.5: EKI estimation without VI vs. EKI estimation with VI. J=15 particles and
Q=1000 paths has been simulated.

Figure 3.6: Comparison of the spread of the ensemble w.r. to time with VI and without
VI.

Figure 3.7: Comparison of the residuals w.r. to time with VI and without VI.

Figure 3.7 points out that we end up with convergence of the residuals in the observation
and parameter space in case of variance inflation. Without variance inflation the simula-
tions show a slight increase of the residuals in the parameter space, suggesting that the
convergence of the residuals will slow down in the observation space as well.

To emphasize this result, we reduce the dimension of the example and we set h = 24 with
K = 3 equispaced observation points. Furthermore, we set again R = 1 and α = 1

2 and we
use J = 3 particles, such that the forward response operator is again bijective as mapping
from the subspace spanned by the initial ensemble to the observation space.

Figure 3.8 shows again the difference of the EKI estimation with and without variance
inflation. Figure 3.9 points out the effect of the variance inflation. While the residuals
in the observation space without variance inflation diverge, we obtain convergence of the
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3 A particle based optimization method - Basics of ensemble Kalman inversion

Figure 3.8: EnKF estimation without VI vs. EnKF estimation with VI. J=3 particles and
Q=10000 paths has been simulated.

Figure 3.9: Comparison of the residuals w.r. to time with VI and without VI.

Figure 3.10: Comparison of the ensemble spread w.r. to time with VI and without VI.

residuals in the observation space using variance inflation. In addition, in Figure 3.10 we
can see that the ensemble of particles still collapse in the parameter space as well as in
the observation space.
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4 Constrained ensemble Kalman inversion

In this chapter, we consider the incorporation of box constraints to the EKI method in-
troduced in the previous section. The original EKI method does not allow for additional
constraints on the parameter, arising for example from applications due to additional
knowledge about the underlying system. Our focus lies in the incorporation of box-
constraints, which can, for example, be applied in the context of hierarchical methods
for EKI [40]. For these methods, the hyperparameters are often modelled through a uni-
form distribution. It is well-known that the application of EKI may lead to unfeasible
estimates of the unknown parameters, i.e. does not satisfy the box constraints, which are
obtained from the uniform distribution on the hierarchical parameters. As a result, we
will provide the incorporation of constraints for the EKI. We refer to [4, 212] for a liter-
ature overview of existing methods for the treatment of linear and nonlinear constraints
for Kalman-based methods. Common approaches are based on projection to the feasible
set [128, 225], where a generalization to nonlinear constraints can be obtained through
linearization ideas. Many variants are motivated by interpreting the Kalman-based up-
dates as a solution of a corresponding optimization problem [4], which allows to contain
straightforward constraints on the state and parameters. In the context of EKI, there has
been a new approach to handle linear equality and inequality constraints for the EnKF
and EKI by reparameterizing the solution of the optimization problem in the range of the
covariance, i.e. by seeking the solution of the optimization problem in a subspace defined
by the initial ensemble [3]. In [100], the authors introduce the EKI in order to solve equal-
ity constrained inverse problems, which are incorporated in the original least-squares loss
functional. The update step results from the stationary point of the corresponding La-
grangian function. For our setting, we focus on the optimization viewpoint of the EKI and
we introduce a projection-based method to the feasible set to incorporate box constraints.
We modify the original EKI method in order to ensure that the estimate of the unknown
parameter remains within a box of the parameter domain. The presented ideas build up
on the theory of Bertsekas [19, 20] and others [202, 211]. We note that box constraints for
inverse problems have been considered in a different context and for different applications
[106].

We start with the formulation of the underlying box-constrained optimization problem in
Section 4.1. In Section 4.2, we recall the projected gradient descent method and provide
a convergence analysis based on its continuous-time limit. To do so, we make use of ideas
inspired from barrier methods, which help to avoid arising discontinuities. In Section 4.2.1,
we provide an example showing that preconditioning does not lead to a descent direction
in general. Section 4.3 provides the formulation of the projected EKI method, which will
be theoretically studied by its continuous-time formulation. We close the chapter with
numerical results in Section 4.4
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4 Constrained ensemble Kalman inversion

4.1 Formulation of the box-constrained optimization prob-
lem

Throughout this section we assume that the parameter space is finite-dimensional, i.e. X =
RI , the forward model is linear, i.e. let H(·) = L·, for L ∈ L(X ,RK) and that we have
linear constraints for the underlying unknown parameter θ ∈ RI , which are defined through
the set

Bc = {θ ∈ RI | 〈cj , θ〉+ δj ≤ 0},

for cj ∈ RI and δj ∈ R for j = 1, . . . ,m. We define fj : RI → R with f(θ) = 〈cj , θ〉 + δj
and write the set of constraints through

Bc = {θ ∈ RI | fj(θ) ≤ 0}. (4.1)

For given noisefree observation y, we aim to solve the inverse problem under constraints
on the unknown parameter θ

y = Lθ + ξ, s.t. θ ∈ Bc,

where ξ ∈ RK is the assumed measurements noise with symmetric and positive definit
covariance Γ.
In order to solve this problem, we solve the constrained optimization problem

min
θ∈Bc

Φ(θ), with Φ(θ) = ‖Lθ − y‖2Γ. (4.2)

We note that the constrained optimization problem (4.2) is convex, which implies that
necessary optimality conditions are also sufficient [20]. It is sufficient to assume that θ∗ is
a Karush Kuhn Tucker (KKT)-point for (4.2), i.e. there exists λ∗ ∈ Rm such that

• θ∗ ∈ Bc,

• λ∗j ≥ 0 for all j ∈ {1, . . . ,m},

• λ∗j (〈cj , θ∗〉 − δj) = 0 for all j ∈ {1, . . . ,m},

• ∇Φ(θ∗) +
m∑
j=1

λ∗jcj = 0,

in order to ensure that θ∗ is a global minimizer of (4.2). We can view box-constraints
as special case of the set (4.1) with fj(θ) = ±θj + δj by setting cj = ±ej , where ej is the
j-th unit vector in RI and δj corresponds to the lower or upper bound on θj ∈ R.

Remark 4.1.1. We note that L>Γ−1L is always symmetric and positive semidefinite. In
case that L>Γ−1L is strictly positive definite, the optimization problem (4.2) is strictly
convex. In particular, there exists at most one stationary point θ∗ which is the global
minimum for the problem (4.2) (cp. [20], Proposition 2.1.1). However, please note that
the assumption on the regularity of L>Γ−1L is in general not satisfied for inverse prob-
lems. Typically, the number of unknown parameters is much larger than the number of
observations, i.e. n� K, in the applications of interest.

Remark 4.1.2. The condition L>Γ−1L > 0 is well-known in the context of data assim-
ilation and is related to the strong observability condition. As a result this condition for
the case of ensemble Kalman filter has been well-documented, see e.g. [24? ].
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4.2 Projected gradient descent method

The idea behind the incorporation of box-constraints in EKI is based on the projected
gradient descent method and the theory behind. Therefore, we will introduce the projected
gradient descent method, before we will study the box-constraints within EKI.

4.2 Projected gradient descent method

We will give a brief overview of projected gradient descent method in order to solve the
constrained optimization problem (4.2). We refer to the work of Bertsekas [20] for more
details on this method in the discrete-time setting.
Recall, that we denote the underlying box with Bc which is now considered to be

Bc = {θ ∈ RI | ai ≤ θi ≤ bi, i = 1, . . . ,m}

and define the projection onto the box as P : RI → Bc by

(P(θ))i =


ai, if θi < ai,

θi, if θi ∈ [ai, bi]

bi, if θi > bi,

, i = 1, . . . ,m,

(P(θ))i = θi, i = m+ 1, . . . , n.

The projected gradient method with step size αk > 0 is based on the iteration

θk+1(βk) = P(θk − βk∇Φ(θk)). (4.3)

By considering βk going to zero and using directional derivatives one can derive a continuous-
time limit.

(
dθ

dt

)
i

=


−∇iΦ(θ), θi ∈ (ai, bi),

−∇iΦ(θ)1[0,∞)(−∇iΦ(θ)), θi = ai,

−∇iΦ(θ)1(−∞,0](−∇iΦ(θ)), θi = bi,

i = 1, . . . ,m,

(
dθ

dt

)
i

= −∇iΦ(θ), i = m+ 1, . . . , n.

(4.4)

More details can be found for the continuous-time limit of the projected EKI in Section
4.3.

Remark 4.2.1. Since the right hand side (RHS) of (4.4) is discontinuous, it is not obvious
that a solution to this system exists. To ensure unique existence we consider a smoothed
version of (4.4) by approximating the limit by ideas inspired from barrier methods. To do
so, we introduce the following parametrized, convex optimization problems

min
θ∈Bc

Φ(θ)− 1

ι

2m∑
i=1

log(−fi(θ)).

with parameter ι > 0 and inequality constraints fi(θ) = ai−θi, i = 1, . . . ,m and fi+m(θ) =
θi − bi, i = 1, . . . ,m. For ι → ∞, the log barrier functions get closer to the indicator
function of the feasible set of the original problem. In the following, we consider the
equivalent problems

min
θ∈Bc

ιΦ(θ)−
2m∑
i=1

log(−fi(θ)), (4.5)
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4 Constrained ensemble Kalman inversion

where we define Φ̃(θ) = ιΦ(θ)−
∑2m

i=1 log(−fi(θ)). We approximate (4.4) for i ∈ {1, . . . ,m}
by

dθ

dt
= −ι∇Φ(θ) +

2m∑
i=1

1

fi(θ)
∇fi(θ) = −∇Φ̃(θ) . (4.6)

For our theoretical results we will always consider the smoothed initial value problem
(4.5). In the following theorem we present the convergence result for the smoothed initial
value problem.

Theorem 4.2.2. Let θ0 ∈ B and θ(t) denote the solution of the smoothed initial value
problem (4.6) with θ(0) = θ0. Further assume that L>Γ−1L is positive definite, and there
exists a (unique global) minimizer θ∗ι of (4.5). Then for each ι > 0 it holds true that

lim
t→∞

θ(t) = θ∗ι ,

i.e. the solution θ(t) converges to the (global) minimizer of (4.5).

Proof. We define V (θ) = 1
2‖θ − θ

∗
ι ‖2 and prove that V is a strict Lyapunov-function by

the strict convexity of the optimization problem. The flow of V satisfies

dV (θ)

dt
= 〈dθ

dt
, θ − θ∗ι 〉 = 〈−∇Φ̃(θ), θ − θ∗ι 〉 < 0 ,

thus, the claim follows.

Remark 4.2.3. By duality arguments (see [29, 11.2] for more details), the accuracy of
the approximation can be bounded by

Φ(θ∗ι )− Φ(θ∗) ≤ 2m

ι
,

where θ∗ denotes the minimizer of the original problem (4.2). In particular, Φ(θ∗ι )→ Φ(θ∗)
for ι→∞ and thus θ∗ι → θ∗.

Corollary 4.2.4. Let θ0 ∈ Bc and θ(t) denote the solution of the smoothed initial value
problem (4.6) with θ(0) = θ0. Further assume that there exists a (global) minimizer of
(4.5). Then it holds true that

lim
t→∞

Φ(θ(t)) = Φ(θ∗ι ),

where θ∗ι is a KKT-point of (4.5).

Proof. Let θ∗ι be an arbitrary KKT-point of (4.5). The flow in the observation space is
given by

dLθ

dt
= −ιL∇Φ(θ) +

2m∑
i=1

1

fi(θ)
L∇fi(θ) ,

which corresponds to the gradient flow of a strictly convex optimization problem in the
observation space. Thus, the claim follows by the same arguments as before in Theorem
4.2.2.
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4.2 Projected gradient descent method

4.2.1 The preconditioned projected gradient method

We extend the previous results to the preconditioned version of the iteration (4.3), which
is in discrete-time given by

θk+1(β) = P(θk − βDk∇Φ(uk)),

for a symmetric, positive definite matrix Dk. It is well known that arbitrary choice of
Dk gives no descent for any choice of β > 0. We discuss this issue briefly in an example,
which demonstrates that the preconditioning of the gradient flow does not lead to a descent
direction in general (cp. [19]). This can also be seen in Figure 4.1.

P(xk − αDk∇Φ(xk))

x
k
− αDk∇Φ(xk)

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 4.1: Varying contour lines of the function Φ(x) defined in Example 4.2.5, with
both the preconditioned descent direction in the unconstrained case and the
projected preconditioned descent direction.

Example 4.2.5. We consider the 2-dimensional quadratic example, where we define the
quadratic function

Φ(x) = x>Qx+ x1 = (x1 − x2)2 + 2x2
2 + x1, with Q =

(
1 −1
−1 3

)
,

and consider the minimization problem of Φ with the constraints x1 ∈ R, x2 ≤ 0. The
gradient of Φ is given by

∇Φ(x) =

(
2x1 − 2x2 + 1
−2x1 + 6x2

)
.

We assume that the current iterate is given by xk =

(
1
0

)
and we choose the symmetric,

positive definite symmetric matrix

Dk =

(
1 2
2 10

)
as a preconditioner. For arbitrary β > 0, the next iteration is given by

xk+1 = P(xk − αDk∇Φ(xk)) =

(
1 + α

0

)
,
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4 Constrained ensemble Kalman inversion

where P is the projection onto R× R≤0. Then,

Φ(xk+1) = (1 + α)2 + 1 + α > 2 = Φ(xk) ,

i.e. for all β > 0 the function value of the objective function increases.

Example 4.2.5 shows that a simple projection strategy for the EKI, which is a precondi-
tioned gradient flow in the linear case, does not lead to a convergent descent method in
general.
To ensure a descent direction for the preconditioned projected gradient method, we follow
the approach of [19, Proposition 1], which suggests to use matrices Dk diagonal with
respect to the subset of indices containing

I+(θk) =

{
i ∈ {1, . . . ,m} | θki = ai,

∂Φ(θk)

∂θi
> 0 ∨ θki = bi,

∂Φ(θk)

∂θi
< 0

}
. (4.7)

A matrix B = (bi,j)i,j=1...,m ∈ Rm×m is called diagonal with respect to a subset I ⊂
{1, · · · ,m} if

bi,j = 0, for all i ∈ I, j ∈ {1, . . . ,m} \ {i}.

We will give more details on the modification of the preconditioner in the context of the
EKI in the following. In particular, we will make use of variance inflation introduced in
Section 3.2.2 to ensure a descent.

4.3 Projected ensemble Kalman inversion

In this section, we introduce the incorporation of projection into EKI and derive the
corresponding continuous limit of the algorithm. We provide a complete convergence
analysis of the proposed modification in the linear setting. This analysis includes the
analysis of the ensemble collapse and the convergence to the truth.
To incorporate the projection into our scheme we modify the iteration (3.8) described in
Section 3.1. For the derivation we assume a possibly nonlinear forward map H : RI → RK
and we define the prediction step in its projected form as

θ
(j)
n,P = P(θ(j)

n ), θ̄P =
1

J

J∑
j=1

(θ
(j)
n,P), H̄P =

1

J

J∑
j=1

H(u
(j)
n,P),

and similarly for the covariances

Cθpn,P =
1

J

J∑
j=1

(θ
(j)
n,P − θ̄P)⊗ (H(θ

(j)
n,P)− H̄P),

Cppn,P =
1

J

J∑
j=1

(H(θ
(j)
n,P)− H̄P)⊗ (H(θ

(j)
n,P)− H̄P).

We construct our update formula in its closed form by{
θ̃

(j)
n+1,P = θ

(j)
n,P + Cθpn,P(Cppn,P + h−1Γ)−1(y −H(θ

(j)
n.P)),

θ
(j)
n+1,P = P(θ̃

(j)
n+1,P),

where we consider the case of unperturbed observation, i.e. we consider y
(j)
n+1 = y for all

n ∈ N and all j = 1, . . . , J .
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4.3 Projected ensemble Kalman inversion

4.3.1 Continuous-time limit

We now derive the continuous-time limit for the projected EnKF for inverse problems.
Recall the equations in its closed form, given by the componentwise increments

(θ
(j)
n+1)i − (θ(j)

n )i = P
(

[P(θ̃(j)
n )]i +

[
Cθpn,P(Cppn,P +

1

h
Γ)−1(y −H(P(θ(j)

n ))
]
i

)
− P

(
[P(θ̃(j)

n )]i

)
.

By using the Neumann expansion for part of the Kalman gain, we observe for positive-
semidefinite C ∈ RK×K that(

1

h
Γ + C

)−1

=

(
1

h
Γ(I + Γ−1C)

)−1

=

(
1

h
Γ

)−1

+
∞∑
k=1

(
−
(

1

h
Γ

)−1

C

)k(1

h
Γ

)−1

= hΓ−1 +
∞∑
k=1

hk+1(Γ−1C)kΓ−1. (4.8)

By defining

vi :=

[
Cθpn,PΓ−1(y −H(P(θ(j)

n ))

]
i

,

using (4.8) and the definition of directional derivatives, we obtain

lim
h→0

(θ
(j)
n+1)i − (θ

(j)
n )i

h
=


vi, (θ̃

(j)
n )i ∈ (ai, bi),

1[0,∞)(vi)vi, (θ̃
(j)
n )i ≤ ai,

1(−∞,0](vi)vi, (θ̃
(j)
n )i ≥ bi,

i = 1, . . . ,m

lim
h→0

(θ
(j)
n+1)i − (θ

(j)
n )i

h
= vi(θ

(j)
t ), i = m+ 1, . . . , n.

Finally, we obtain the continuous-time limit for the EKI by

(
dθ(j)

dt

)
i

=


vi(θ

(j)
t ), (θ

(j)
t )i ∈ (ai, bi),

1[0,∞)(vi(θ
(j)
t ))vi(θ

(j)
t ), (θ

(j)
t )i = ai,

1(−∞,0](vi(θ
(j)
t ))vi(θ

(j)
t ), (θ

(j)
t )i = bi,

i = 1, . . . ,m

(
dθ(j)

dt

)
i

= vi(θ
(j)
t ) i = m+ 1, . . . , n,

(4.9)

where vi(θ
(j)) is given by

vi(θ
(j)) =

[
Cθp(θ)Γ−1(y −H(θ(j)))

]
i
.

We remind the reader that in the linear case we can write v(θ(j)) as
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4 Constrained ensemble Kalman inversion

v(θ(j)) = −C(θ)∇Φ(θ(j)), (4.10)

with Φ(θ) = 1
2‖Lθ − y‖2Γ from the minimization problem (4.2), which shows the inter-

pretation of the projected EKI as preconditioned projected gradient method, where the
preconditioning matrix C(θ) is adapted over time.

Remark 4.3.1. Due to the projection onto the feasible set, the RHS of (4.9) is discontin-
uous similar as in the case of the projected gradient descent method. Based on the ideas
of Remark 4.2.1 we introduce again a smoothed system

dθ(j)

dt
= −ιC(θ)∇Φ(θ(j)) +

2m∑
i=1

1

fi(θ)
∇fi(θ), j = 1, . . . , J,

where fi(θ) = ai − θi, fi+m(θ) = θi − bi, i = 1, . . . ,m.

4.3.2 Transformed method for the EnKF

In Example 4.2.5 we have seen that in the case of preconditioned projected gradient
methods, it is not possible to ensure a descent direction for an arbitrary choice of a
positive definite matrix Dk. Based on the results of Bertsekas [19], we will transform (4.9)
in a way such that the preconditioner is diagonal with respect to an index set I+(u) which
is built similar to the set from (4.7). Since we consider a system of particles we will use a
preconditioner which is diagonal with respect to an index set which depends on the whole
ensemble of particles θ = (θ(j))j=1,...,J , in particular we set

I+(θ) :=

{
i ∈ {1, . . . ,m} | θ̄i = ai,

∂Φ(θ̄)

∂xi
> 0 ∨ θ̄i = bi,

∂Φ(θ̄)

∂xi
< 0

}
.

Similarly, we could also choose the index set to be

Î+(θ) := ∪
j∈{1,...,J}

{
i ∈ {1, . . . ,m} | θ(j)

i = ai,
∂Φ(θ(j))

∂xi
> 0 ∨

θ
(j)
i = bi,

∂Φ(θ(j))

∂xi
< 0

}
.

In this work, we will focus on the choice of I+(θ). Therefore, we consider the precondi-
tioned gradient flow given by

(
dθ(j)

dt

)
i

=


pi(θ

(j)
t ), (θ

(j)
t )i ∈ (ai, bi)

1[0,∞)(pi(θ
(j)
t ))(pi(θ

(j)
t )), (θ

(j)
t )i = ai

1(−∞,0](pi(θ
(j)
t ))(pi(θ

(j)
t )), (θ

(j)
t )i = bi,

, i = 1, . . . ,m,

(
dθ(j)

dt

)
i

= pi(θ
(j)
t ), i = m+ 1, . . . , n,

(4.11)

where p(θ
(j)
t ) = −D(θt)∇Φ(θ

(j)
t ) and the preconditioner is given by

(D(θt))i,j =


(C(θt) + εI)i,j , i, j ∈ {1, . . . , n} \ I+(θt)

0, i ∈ I+(θt), j 6= i ∨ j ∈ I+(θt), j 6= i

ε, i = j ∈ I+(θt).

(4.12)
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4.3 Projected ensemble Kalman inversion

Let {x(j)}Jj=1 be a system of particles in RI . Without loss of generality we assume I+(x) =
{1, . . . , r} for r ≤ m, such that the the preconditioner D(x) can be written as(

ε Idr 0

0 Ĉ(x) + ε Idn−r

)
=

(
0 0

0 Ĉ(x)

)
+ ε Id

n
,

where (Ĉ(x))i,j∈{1,...,n−r} = (C(x))i,j∈{r+1,...,n}.

Remark 4.3.2. Consider the continuous-time limit of the projected EKI in equation (4.9).
When we introduce variance inflation for (4.10) with the help of a diagonal matrix, e.g.
by

v(θ(j)) = −(C(θ) + εI)∇Φ(θ(j)),

then the preconditioner D(θ) = C(θ) + εI is diagonal with respect to the index set I+(θ)
and can be written in the form of (4.12).
This can be seen as follows: For simplicity, we assume m = n. Since θ(j) evolves by (4.11),

we have that θ
(j)
i ∈ [ai, bi] for all i and j. Let i ∈ I+(θ), then it follows

θ̄i = ai ∨ θ̄i = bi.

Since the particles are feasible for all t ≥ 0, we obtain

θ
(j)
i = ai ∀j ∨ θ

(j)
i = bi j = 1, . . . , J,

and finally θ
(j)
i − θ̄i = 0 for all j. This leads to

(C(θ) + εI)ik =
1

J

J∑
j=1

(θ
(j)
i − θ̄i)(θ

(j)
k − θ̄k) = 0,

for i ∈ I+(θ), k ∈ {1, . . . , n} and i 6= k.
Hence, we can view the projected EnKF with variance inflation as special case of the
presented transformed method.

4.3.3 Convergence Results

For the next part we will study the convergence of the solution (θ
(j)
t ) of the smoothed

system of (4.11)

du
(j)
t

dt
= −ιD(ut)∇Φ(u

(j)
t ) +

2m∑
i=1

1

fi(u)
∇fi(u), (4.13)

to possible KKT-points for (4.5). Note that we have defined f in Remark 4.2.1.
We consider a KKT-point θ∗ι of (4.5) and aim to prove the convergence of the residuals

r̃
(j)
t := θ

(j)
t − θ∗ι .

In order to prove convergence of the residuals we have to control the empirical covariance
C(θt), in particular we have to control the ensemble spread

e
(j)
t = θ

(j)
t − θ̄t,

which we have already studied for the unconstrained EKI in Section 3.4.
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4 Constrained ensemble Kalman inversion

4.3.4 Ensemble Collapse

The following proposition states that we can bound the ensemble spread et over time.

Proposition 4.3.3. Let θ0 = (θ
(j)
0 )j∈{1,...,J} ∈ Bc, j = 1, . . . , J be the initial ensemble and

θ(t) denotes the solution for the smoothed flow (4.13). Then, it holds true that

1

J

J∑
j=1

|e(j)
t |2 ≤

1

J

J∑
j=1

|e(j)
0 |

2,

for all t ≥ 0.

Proof. We define the function V (θ) = 1
J

J∑
j=1

1
2 |θ

(j) − θ̄|2 and show that V (u) ≤ 0 in order

to imply the monotonicity of the quantity e. We have

dV (θt)

dt
=− 1

J

J∑
j=1

〈θ(j)
t − θ̄t, ιD(θt)L

>Γ−1L(θ
(j)
t − θ̄t)〉

− 1

J

J∑
j=1

〈θ(j)
t − θ̄t,∇f̃(θ

(j)
t )−∇f̃(θt))〉,

with f̃(θ) = 1
ι

∑2m
i=1 log(−fi(θ)) and ∇f̃(θt) = 1

J

∑J
j=1 f̃(θ(j)). The first inner product can

be straightforwardly shown to be smaller or equal than zero by exploiting the linearity of
∇Φ. Using the convexity of f̃ gives

− 1

J

J∑
j=1

〈θ(j)
t − θ̄t,∇f̃(θ

(j)
t )−∇f̃(θt))〉 ≤ 0 ,

which implies the monotonicity of the quantity e and proves the assertion.

4.3.5 Convergence of the residuals

We are now ready to formulate the following theorem regarding the residual in the pa-

rameter space r̃
(j)
t .

Theorem 4.3.4. Let θ0 = (θ
(j)
0 )j∈{1,...,J} ∈ Bc be the initial ensemble and θ(t) denotes the

solution of (4.13), L>Γ−1L be positive definite, ε > 0, Bc 6= ∅ and θ∗ι be the KKT-point
for (4.5). Then it holds true that

lim
t→∞

1

J

J∑
j=1

|r̃(j)
t |2 = lim

t→∞

1

J

J∑
j=1

|θ(j)
t − θ∗ι |2 = 0.

Proof. By assumption, we have that L>Γ−1L is positive definite and Bc 6= ∅, i.e. there
exists a unique global minimizer θ∗ι of (4.5).

We define the function V (θ) = 1
J

J∑
j=1

1
2 |θ

(j) − θ∗ι |2 and prove

dV (θt)

dt
< 0,
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4.3 Projected ensemble Kalman inversion

for θt = (θ
(j)
t )j=1,...,J .

The variance inflation breaks the subspace property of the EKI and gives the convergence
to the KKT-point:

1

J

J∑
j=1

d1
2 |θ

(j)
t − θ∗ι |2

dt
=

1

J

J∑
j=1

〈θ(j)
t − θ∗ι ,−D(θ)∇Φ(θ

(j)
t )−∇f̃(θ

(j)
t )〉

=− 1

J

J∑
j=1

〈θ(j)
t − θ∗ι , C(θ)L>Γ−1L(θ

(j)
t − θ∗ι )〉

− 1

J

J∑
j=1

ε〈θ(j)
t − θ∗ι ,∇Φ(θ

(j)
t ) +∇f̃(θ

(j)
t )〉

=− 1

J2

J∑
j,k=1

〈θ(j)
t − θ∗ι ), θ

(k)
t − θ∗ι 〉〈θ

(k)
t − θ∗ι , L>Γ−1L(θ

(j)
t − θ∗ι )〉

− 1

J

J∑
j=1

ε〈θ(j)
t − θ∗ι ,∇Φ(θ

(j)
t ) +∇f̃(θ

(j)
t )〉 < 0,

where we have used the convexity of Φ and f̃ and Lemma 3.3.5.

Corollary 4.3.5. Let θ0 = (θ
(j)
0 ) ∈ Ω be the initial ensemble, ε > 0 and assume that there

exists a (global) minimizer for (4.5). Then it holds true that

lim
t→∞

1

J

J∑
j=1

|Φ(θ
(j)
t )− Φ(θ∗ι )|2 = 0,

where θ∗ι is a KKT-point of (4.5).

Proof. The claim follows similarly to the proof of Corollary 4.2.4.

Time-dependent variance inflation Instead of using variance inflation with constant
multiplier ε, we will reduce the variance inflation over time similar to the variance inflation
in the unconstrained case (3.30). We set ε(t) = 1

tα+R , with α ∈ (0, 1) and R > 0.
We will quantify the ensemble collapse with given rate in the following Proposition.

Proposition 4.3.6. Let θ0 = (θ
(j)
0 )j∈{1,...,J} ∈ Bc be the initial ensemble and θ(t) denotes

the solution of (4.13), L>Γ−1L be positive definite and ε(t) = 1
tα+R , with α ∈ (0, 1) and

R > 0. Then it holds true that

1

J

J∑
j=1

|e(j)
t |2 ∈ O(t−(1−α)).

Proof. We consider again the function V (θ) = 1
J

J∑
j=1

1
2 |θ

(j) − θ̄|2 and use

dV (θt)

dt
=− 1

J

J∑
j=1

〈θ(j)
t − θ̄t, D(θt)L

>Γ−1L(θ
(j)
t − θ̄t)〉
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4 Constrained ensemble Kalman inversion

− 1

J

J∑
j=1

〈θ(j)
t − θ̄t,∇f̃(θ

(j)
t )− ∇̄f̃(θt))〉

≤ − 1

J

J∑
j=1

〈θ(j)
t − θ̄t, ε(t)L>Γ−1L(θ

(j)
t − θ̄t)〉,

similarly to the proof of 4.3.3. Thus, it follows that

dV (θt)

dt
≤ −ε(t)σmin(L>Γ−1L)V (θt).

By using the bound

V (θ0) ≥
∫ t

0
σmin(L>Γ−1L)ε(s) ds · V (θt),

for all t ≥ 0 we conclude with

1

J

J∑
j=1

|e(j)
t |2 ∈ O(t−(1−α)).

As shown before we can also prove the convergence of the residuals in the parameter space
when we reduce the variance inflation over time.

Corollary 4.3.7. Let θ0 = (θ
(j)
0 )j∈{1,...,J} ∈ Bc be the initial ensemble and θ(t) denotes

the solution of (4.13), L>Γ−1L be positive definite and ε(t) = 1
tα+R , with α ∈ (1

2 , 1) and
R > 0. Furthermore, let θ∗ι be the KKT-point of (4.5). Then it holds true that

1

J

J∑
j=1

|r̃(j)
t |2 ∈ O(t−(1−α)).

Proof. We define the function V (θ) = 1
J

J∑
j=1

1
2 |θ

(j) − θ∗ι |2 and prove

dV (θt)

dt
< 0,

for θt = {θ(j)
t }Jj=1. Similarly to the proof of Theorem 4.3.4 we obtain

dV (θt)

dt
=− 1

J2

J∑
j,k=1

〈θ(j)
t − θ∗ι , θ

(k)
t − θ∗ι 〉〈L>Γ−1L(θ

(k)
t − θ∗ι ), θ

(j)
t − θ∗ι 〉

− 1

J

J∑
j=1

(ε(t)〈θ(j)
t − θ∗ι ,∇Φ(θ

(j)
t )〉+ 〈θ(j)

t − θ∗ι ,∇f̃(θ
(j)
t )〉).

and we conclude with
dV (θt)

dt
≤ −ε(t)σmin(L>Γ−1L)V (θt).
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4.4 Numerical results

4.4 Numerical results

We seek to verify that the BC optimization introduced in Section 4.3 works in practice.
In the following section, we consider two PDE based examples in order to illustrate the
effect of the incorporation projection. The first example is based on a linear 1D elliptic
PDE, whereas the second example is based on a nonlinear 2D PDE. While our theory is
only provided in the linear setting, we observe promising results in the nonlinear example,
too. For the continuum limit we solve the ODE through the MATLAB solver ode45.

4.4.1 Linear PDE

Our forward model is again the linear 1D elliptic PDE from subsection 3.5, where we seek
a solution p ∈ U := H1

0 (D) from

−d2p

dx2
+ p = θ x ∈ D = (0, π),

p = 0 x ∈ ∂D.

We specify the covariance of the noise as Γ = γ2I where γ = 0.01, and we choose T = 106.
The initial ensemble θ0 is again chosen through a Fourier basis representation of N (0, C0)
with C0 = β(L − id), and the inflation parameters are taken as α = 0.75, R = 1 and an
ensemble-size J = 5.

As stated in Remark 4.3.2, the projected EKI with variance inflation can be viewed as
a special case of the transformed version provided in (4.11). This suggests that both
methods should perform similarly and outperform the original EKI with no constraint.
For the numerics we now specify the projected EKI as the projected EKI without variance
inflation and the transformed EKI as the projected EKI with variance inflation. For
the linear case we compared the projected EKI, the transformed version and the original
method without projecting onto the box. Note that the numerical solution of both the
projected EKI and the transformed EKI are based on a smoothed version of the indicator
function 1y(x) by a linear function 1̃y(x) with 1̃y(y) = 1 and 1̃y(y ± ι) = 0 for the upper
and lower bound respectively.

Our numerics will consist of two different cases:

1. The truth θ† lies outside the box and O gives full observations.

2. The truth θ† lies outside the box, and O gives low-dimensional observations.

To understand the effect of the different forms of observations, if we have full observations
then there exists a unique KKT-point to (4.2), implying the true parameter is a KKT point.
If we have low-dimensional observations then L>Γ−1L is only positives semi-definite. Thus,
we can only expect convergence of the cost functions. For the first case we choose full
observations and for the latter we choose 15 observations.

Our first set of experiments for the linear PDE are shown in Figures 4.2 - 4.4, where we
assume that we have full observations. The left hand side image of Figure 4.2 compares
the performance of the different methods at reconstructing the truth. As known with EKI,
it can exhibit a smooth reconstruction which we can see. For the projected EKI we notice
a similar performance, however it takes into consideration the constraints as part of its
reconstruction is on the boundary. However when analyzing the transformed EKI, we see
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4 Constrained ensemble Kalman inversion

Figure 4.2: Transformed EnKF estimation in comparison to the EnKF estimation and the
projected EnKF estimation. J = 5 particles have been simulated.

Figure 4.3: Ensemble spread in the transformed EnKF in comparison to the EnKF and
the projected EnKF. J = 5 particles have been simulated.

Figure 4.4: KKT-Residuals and difference of the misfit functional and the global minimum
in the transformed EnKF in comparison to the projected EnKF. J = 5 particles
have been simulated.

an improvement over previous methods, which is also evident from the comparison of the
observations from the right hand image.

Figure 4.3 shows the expected ensemble collapse of each method. We observe the spread
behaves almost at an identical rate for the EKI and projected EKI. To highlight further
the benefit of using the transformed version, Figure 4.4 demonstrates this by showing a
sharper decrease in both the KKT residuals as well as the difference of the misfit functional
to global minimizer. As the projected method eventually levels flattens at 10−1 for both,
the transformed version continues to achieve smaller differences.
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Figure 4.5: Transformed EKI estimation in comparison to the EKI estimation and the
projected EKI estimation. J = 5 particles have been simulated.

Figure 4.6: Difference of the misfit functional and the global minimum in the transformed
EKI in comparison to the EKI and the projected EKI. J = 5 particles have
been simulated.

The second set of experiments in the linear setting are shown in Figures 4.5 - 4.6, where
we assume that we have only 15 observation points. The obtained results are analogous to
the full observation case, in which the transformed version outperforms the other methods
again.

4.4.2 Darcy flow

To demonstrate the effectiveness of the transformed projection, we consider a second
example of a 2D nonlinear PDE. We will use an analogous nonlinear version of our linear
elliptic PDE, which arises in subsurface flow. The forward problem associated with the
Darcy flow model is using the permeability a ∈ L∞(D) to solve

−∇ · (a∇p) = f, x ∈ D = (0, π)2,

p = 0, x ∈ ∂D,
(4.14)

where ∇· denotes the divergence and we have imposed zero boundary conditions. Our
forward solver is based on a second-order centred finite difference method with mesh size
h = 2−4. We take a constant source term of (4.14) as f = 1. The inverse problem
associated with (4.14) , where we specify a = exp(θ), is to reconstruct θ from noisy
measurement

y = O(p) + ξ, ξ ∼ N(0,Γ),
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4 Constrained ensemble Kalman inversion

where O : H1
0 (D) ∩H2(D) → RK denotes the linear observation map, which takes mea-

surements at K equidistant chosen points in D, i.e. O(p) = (p(x1), . . . , p(xK))>, for p ∈ V,
x1, . . . , xK ∈ D.
We stick to the same setting as in subsection 4.4.1, but with the modifications of only
having 16 observation points, and testing a system with n = 64. Our prior θ ∼ N(0, C0)
is simulated through a KL expansion of the form

θ =

J∑
j

√
νjζjϕj , ζ ∼ N(0, I),

where (νj , ϕj) is the eigenbasis of the covariance operator C0, expressed as

C0 := β(Id−∆)−α,

where the hyperparameters are specified as β = 1 and α = 2. See Section 2.2.4 for more
details on the KL expansion.
Further, we have modified (4.9) by incorporation of variance inflation following the ideas
introduced in (3.15) in section 3.2.2

vi(θ
(j)) =

[(
Cθp(θ) + κB DH∗(θ̄)

)
Γ−1(y −H(θ(j)))

]
i
,

to which we again refer as transformed method.

Figure 4.7: Transformed EKI parameter estimation in comparison to the EKI estimation
and the projected EnKF estimation. J = 5 particles have been simulated.

For the nonlinear experiments Figure 4.7 shows the performance of each method w.r.t. the
truth. It can be seen that the EKI without constraints does not remain within the feasible
set unlike the other two methods, despite Figure 4.8 looking identical across all methods.
To see a more indepth representation of the performance we analyze the ensemble spread
seen in Figure 4.9 where they all seem to converge to zero and the rates look similar.
However, by looking at the difference of the misfit functional with the minimizer in Figure
4.10, we see the difference of the transformed method continues to decrease while for the
projected EKI it starts to flatten, likewise with the original EKI. This highlights further
the benefit of using the transformed EKI.

98



4.4 Numerical results

Figure 4.8: Transformed EKI observation estimation in comparison to the EKI estimation
and the projected EKI estimation. J = 5 particles have been simulated.

Figure 4.9: Ensemble spread in the transformed EKI in comparison to the EKI and the
projected EKI. J = 5 particles have been simulated.

Figure 4.10: Difference of the misfit functional and the global minimum in the transformed
EKI in comparison to the projected EKI. J = 5 particles have been simulated.
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5 Tikhonov regularization for ensemble Kalman
inversion

In the previous chapter, we have seen that the EKI can be interpreted as an optimizer
to fit the observed data. While we have proved the convergence of the residual in the
case of noisefree observations, the natural question then is how to avoid fitting the noise
within the data if there is pertubation within the measurements. In [201], the authors
suggest to use a stopping criterion based on the Morozov discrepancy principle. Another
recent approach is based on the viewpoint of the EKI as an iterative regularization method
[110] and incorporates regularization within the EKI algorithm. In particular, in [41] the
authors incorporate Tikhonov regularization within the EKI method. In this thesis, we will
keep the focus on the Tikhonov regularized EKI. Throughout this section, we will work in
the finite-dimensional setting, i.e. we assume X = RI . However, using again the subspace
property in Lemma 5.1.2, the presented results can be extended to the infinite-dimensional
setting.

We start by formulating the Tikhonov regularized EKI in Section 5.1. In Section 5.2, based
on the continuous-time limit of the method, we provide a well-posedness result for fixed
regularization parameter choice, which is based on the unique existence of strong solutions
from the underlying system of coupled SDEs. Furthermore, we formulate convergence
results in the long-time limit. The theoretical results are again strongly based on stochastic
Lyapunov functions. Section 5.3 is devoted to present ideas of adaptive choices of the
regularization parameter. We again close the chapter by verifying of the presented methods
through numerical experiments in Section 5.4.

5.1 Introduction of the Tikhonov regularized ensemble Kalman
inversion

In order to incorporate Tikhonov regularization into EKI, following the derivation in
[41], we extend the underlying inverse problem by prior information about the unknown
paramater, which leads to the following equations

y = H(θ) + ξ

0 = θ + η,
(5.1)

where ξ ∼ N (0,Γ) is the noise of the original inverse problem and η ∼ N (0, κ−1C0)
corresponds to the prior belief on θ. Here C0 ∈ RI×I is a positive definite matrix, which
stores the covariance structure of θ and κ > 0 corresponds to the regularization parameter.
We will see the connection to the regularization parameter defined in Definition 2.1.4.
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5 Tikhonov regularization for ensemble Kalman inversion

To derive the Tikhonov regularized ensemble Kalman inversion (TEKI), we set

H = RI , p = K + I, q =

(
y
0

)
, G(θ) =

(
H(θ)
θ

)
, ζ =

(
ξ
η

)
,

in (3.1), resulting in the extended inverse problem

q = G(θ) + ζ,

with

ζ ∼ N (0,Σ), Σ =

(
Γ 0
0 κ−1C0

)
.

Application of the EKI to this inverse problem leads to the following algorithm.

Algorithm 6: Tikhonov regularized ensemble Kalman inversion

Input: initial ensemble (θ
(j)
0 )Jj=1, extended observation q

Output: θ̄N
for n = 0, . . . , N − 1 do

Prediction step:
Define sample mean and sample covariance

θ̄ =
1

J

J∑
j=1

θ(j), H̄ =
1

J

J∑
j=1

H(θ(j)), Ḡ =

(
H̄
θ̄

)

Bpp =
1

J

J∑
j=1

(G(θ(j))− Ḡ)⊗ (G(θ(j))− Ḡ),

Bθp =
1

J

J∑
j=1

(θ(j) − θ̄)⊗ (G(θ(j))− Ḡ)

Analysis step:
Update each ensemble member by

θ
(j)
n+1 = θ(j)

n +Bθp
n+1(Bpp

n+1 + Σ)−1(q
(j)
n+1 −G(θ(j)

n )), (5.2)

where we consider perturbed observation

q
(j)
n+1 = q + ζ

(j)
n+1, ξ

(j)
n+1

i.i.d.∼ N (0,Σ′). (5.3)

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N .

Note that the usage of Σ′ in the perturbed observations gives us the possibility to consider
different cases. By setting Σ′ = 0, we end up in the unperturbed observations case, which
results in the ODE setting and has been studied for EKI in [200]. In [41] the authors also
focused mainly on the case of Σ′ = 0. In this thesis, we will extend the results to the
setting of

Σ′ =

(
Γ 0
0 C0,

)
resulting in an SDE driven by a Brownian motion in RK and a Brownian motion in RI
independently.
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5.1 Introduction of the Tikhonov regularized ensemble Kalman inversion

Following the continuous-time interpretation of the EKI, the continuous-time limit of the
TEKI is formally given by

dθ
(j)
t = Bθp(θt)Σ

−1(q −G(θ
(j)
t ) dt+Bθp(Σ′)−

1
2 dW̃

(j)
t , (5.4)

where W̃ (j) are independent Brownian motions on RK × RI . Note that we can write the
sample covariances as

Bpp(θ) =

(
Cpp(θ) Cpθ(θ)
Cθp(θ) Cθθ(θ)

)
, Bθp(θ) =

(
Cθp(θ)
Cθθ(θ)

)
,

with

Cpp(θ) =
1

J

J∑
j=1

(H(θ(j))− H̄)⊗ (H(θ(j))− H̄),

Cθp(θ) =
1

J

J∑
j=1

(θ(j) − θ̄)⊗ (H(θ(j))− H̄),

Cθθ(θ) =
1

J

J∑
j=1

(θ(j) − θ̄)⊗ (θ(j) − θ̄)

Assuming

Σ′ = Σ =

(
Γ 0
0 κ−1C0

)
we can write (5.4) as

dθ
(j)
t = Cθp(θt)Γ

−1(y −H(θ
(j)
t )) dt+ κCθθ(θt)C

−1
0 θ

(j)
t dt

+ Cθp(θt)Γ
− 1

2 dW
(j)
t + κ

1
2Cθθ(θt)C

− 1
2

0 dŴ
(j)
t ,

(5.5)

where W (j) are Brownian motions on RK and Ŵ (j) are Brownian motions on RI , which
are all independent from each other.

Remark 5.1.1. We note that Σ′ might also be chosen as

Σ′ =

(
Γ 0
0 0

)
(5.6)

resulting formally in the system of SDEs

dθ
(j)
t = Cθp(θt)Γ

−1(y −H(θ
(j)
t )) dt+ κCθθ(θt)C

−1
0 θ

(j)
t dt

+ Cθp(θt)Γ
− 1

2 dW
(j)
t ,

(5.7)

where the diffusion only takes part in the observation space through the Brownian motions
W (j) in RK . This method corresponds to the scheme, where we consider the perturbation
(5.3) only in the observations and no pertubations in the particles itself.
The results based on (5.5) presented in the following part, can be straightforwardly obtained
similar for (5.7) by dropping the corresponding part resulting from the diffusion driven by
Ŵ (j). The adaptive choice of the regularization parameters will also be based on (5.7).
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5 Tikhonov regularization for ensemble Kalman inversion

Following the ideas of approximate preconditioned gradient structure of the EKI, in the
long time behavior the TEKI aims to minimize the Tikhonov regularized loss functional

Tκ(θ) =
1

2
‖H(θ)− y‖2 +

κ

2
‖θ‖2C0

. (5.8)

Note that through the scaling by C0 one can enforce regularity on θ. We use the definition
of the sample covariances and write (5.5) as

dθ
(j)
t =

1

J

J∑
k=1

〈H(θ(k))− H̄,Γ−1(y −H(θ
(j)
t )) dt〉(θ(k) − θ̄)

+κ
1

J

J∑
k=1

〈θ(k) − θ̄, C−1
0 θ

(j)
t dt〉(θ(k) − θ̄)

+
1

J

J∑
k=1

〈H(θ(k))− H̄,Γ−
1
2 dW

(j)
t 〉(θ(k) − θ̄)

+κ
1
2

1

J

J∑
k=1

〈θ(k) − θ̄, C−
1
2

0 dŴ
(j)
t 〉(θ(k) − θ̄).

This formulation again reveals that solutions satisfy the well known subspace property of
Lemma 3.3.1.

Lemma 5.1.2. Assume that H is locally Lipschitz and let S be the linear span of {θ(j)
0 }Jj=1,

then θ
(j)
t ∈ S for all (t, j) ∈ [0,∞)× {1, . . . , J} almost surely.

Remark 5.1.3. Considering (5.5) with a linear and bounded forward map G(·) = A·, we
observe that we can mainly transfer the results of section 3.4 to the resulting SDE. Hence,
we can on the one side ensure existence of unique strong solutions for (5.5) and on the
other side we can omit the results for the ensemble collapse. Furthermore, by Lemma
3.3.1 it follows again, that one can assume without lose of generality a finite-dimensional
parameter space X, see Lemma 3.3.2.

5.2 Convergence results for fixed regularization parameter

For the convergence analysis of the TEKI, we will assume a linear forward model, i.e. we
assume H(·) = L· for some L ∈ L(X ,RK). Hence, denoting C(θ) = Cθθ(θ), we can write
(5.5) as

dθ
(j)
t = C(θt)L

∗Γ−1(y − Lθ(j)
t ) dt+ κC(θt)C

−1
0 θ

(j)
t dt

+ C(θt)

(
L>Γ−

1
2 dW

(j)
t + κ

1
2C
− 1

2
0 dŴ

(j)
t

)
,

(5.9)

By taking the limits in (5.9), we now establish the existence and uniqueness of strong
solutions.

Corollary 5.2.1. Let θ0 = (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → X which

are linearly independent almost surely. Then for all T ≥ 0 there exists a unique strong
solution (θt)t∈[0,T ] (up to P-indstinguishability) of the set of coupled SDEs (5.9).
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5.2 Convergence results for fixed regularization parameter

Proof. Since the set of coupled SDEs (5.9) can be viewed by (5.4) with G : RI → RK ×RI
with

G(θ) =

[
L
I

]
θ,

which is again a bounded and linear map, the result follows directly by application of
Theorem 3.3.6.

5.2.1 Quantification of the ensemble collapse

In comparison to the EKI without regularization, we are now able to prove the ensemble
collapse in the parameter space.

Corollary 5.2.2. Let (θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → X such that

K0 = E
[

1
J

J∑
j=1
|Σ−

1
2G(e

(j)
0 )|2

]
<∞, then it holds true that

E
[

1

J

J∑
j=1

|Σ−
1
2G(e

(j)
t )|2

]
≤ 1

C−1
0 + J+1

J2 t
.

Furthermore, it follows

E
[

1

J

J∑
j=1

|e(j)
t |2

]
∈ O

(
1

t

)
.

Proof. The first assertion follows by Theorem 3.4.6 and the second assertion follows by
the definition of G.

Similarly, we can also ensure the almost sure ensemble collapse in the observation space
as well as in the parameter space, see Theorem 3.4.12.

5.2.2 Convergence of the regularized loss function

In the following we will present convergence results regarding the regularized loss function
given by (5.8). First of all, by application of Proposition 3.4.16 we can ensure that

E
[

1

J

J∑
j=1

Tκ(θ
(j)
t )

]
,

is monotonically decreasing in time. Furthermore, we will analyse

r̃
(j)
t := θ

(j)
t − θ∗,

where θ∗ is the global minimizer of Tκ, i.e. θ∗ is given by the Tikhonov regularized solution

θ∗ :=
(
L>Γ−1L+ C−1

0

)−1
L>Γ−1y,

and satisfies

∇Tκ(θ∗) = 0.
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5 Tikhonov regularization for ensemble Kalman inversion

Theorem 5.2.3. Assume that y are noisy measurements of the true parameter θ† un-
der L, i.e. y = Lθ† + η†, where η† ∈ RK denotes a realization of noise and let θ0 =

(θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω→ RK such that we have bounded moments

E
[

1
J

J∑
j=1
|r̃(j)

0 |2
]
<∞. Then E

[
1
J

J∑
j=1
|r̃(j)
t |2

]
is strictly monotonically decreasing in time.

Proof. We assume w.l.o.g. κ = 1, as we can extend the result to arbitrary κ > 0 by
transforming C0 7→ 1

κC0. By application of Itô’s formula to (5.9) we can derive the

dynamics of ‖r̃(j)
t ‖2 for fixed j ∈ {1, . . . , J}. The dynamics are given by

d‖r̃(j)
t ‖2 =2〈θ(j)

t − θ∗,dθ
(j)
t 〉+ 〈dθ(j)

t , dθ
(j)
t 〉

=
2

J

J∑
k=1

(
〈L(θ(k) − θ̄), y − Lθ(j)〉Γ − 〈θ(k) − θ̄, θ(j)〉C0

)
〈θ(j) − θ∗, θ(k) − θ̄〉 dt

+
1

J2

J∑
k,l=1

〈L(θ(k) − θ̄),Γ
1
2 dW (j)〉Γ〈L(θ(l) − θ̄),Γ

1
2 dW (j))〉Γ〈θ(k) − θ̄, θ(l) − θ̄〉 dt

+
1

J2

J∑
k,l=1

〈θ(k) − θ̄, C
1
2
0 dŴ (j)〉C0〈θ(l) − θ̄, C

1
2
0 dŴ (j))〉C0〈θ(k) − θ̄, θ(l) − θ̄〉 dt

+
1

J

J∑
k=1

(
〈L(θ(k) − θ̄),Γ

1
2 dW (j)〉Γ

)
〈θ(k) − θ̄, θ(j) − θ∗〉

+
1

J

J∑
k=1

(
〈θ(k) − θ̄, C

1
2
0 dŴ (j)〉C0

)
〈θ(k) − θ̄, θ(j) − θ∗〉,

which leads to

=
2

J

J∑
k=1

(
〈L(θ(k) − θ̄), y − Lθ(j)〉Γ − 〈θ(k) − θ̄, θ(j)〉C0

)
〈θ(j) − θ∗, θ(k) − θ̄〉dt

+
1

J2

J∑
k,l=1

〈L(θ(k) − θ̄), L(θ(l) − θ̄)〉Γ〈θ(k) − θ̄, θ(l) − θ̄〉 dt

+
1

J2

J∑
k,l=1

〈θ(k) − θ̄, θ(l) − θ̄〉Γ〈θ(k) − θ̄, θ(l) − θ̄〉dt

+
1

J

J∑
k=1

(
〈L(θ(k) − θ̄),Γ

1
2 dW (j)〉Γ

)
〈θ(k) − θ̄, θ(j) − θ∗〉

+
1

J

J∑
k=1

(
〈θ(k) − θ̄, C

1
2
0 dŴ (j)〉C0

)
〈θ(k) − θ̄, θ(j) − θ∗〉

=:LV (θ
(j)
t ) dt+ dMt.

Note that integration over the stochastic part of this dynamic, denoted by dMt, describes
a local martingale. Hence, we will focus on LV (θ(j)). Using ∇Tκ(θ∗) = 0 and taking the
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5.2 Convergence results for fixed regularization parameter

mean over all j ∈ {1, . . . , J}, we obtain

1

J

J∑
j=1

LV (θ(j)) =

(
2

J2

J∑
j,k=1

(
〈θ(k) − θ̄, LΓ−1(y − Lθ(j))− C−1

0 θ(j)

+ L>Γ−1(Lθ∗ − y) + C−1
0 θ∗〉〈θ(j) − θ∗, θ(k) − θ̄〉

)
dt

+
1

J2

J∑
k,l=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ(l) − θ̄)〉〈θ(k) − θ̄, θ(l) − θ̄〉 dt

=

(
− 2

J2

J∑
j,k=1

〈θ(k) − θ̄,
(
LΓ−1L> + C−1

0

)
(θ(j) − θ∗)〉 · 〈θ(j) − θ∗, θ(k) − θ̄〉dt

)

+
1

J2

J∑
k,l=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ(l) − θ̄)〉〈θ(k) − θ̄, θ(l) − θ̄〉 dt,

and by θ(l) − θ̄ = (θ(l) − θ∗)− (θ̄ − θ∗) we obtain

=− 1

J2

J∑
j,k=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ(j) − θ∗)〉〈θ(j) − θ∗, θ(k) − θ̄〉 dt

− 1

J

J∑
k=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ̄ − θ∗)〉〈θ̄ − θ∗, θ(k) − θ̄〉 dt.

Similarly to the proof of Lemma 3.4.2, we consider a sequence of stopping times (τn)n∈N
with τn →∞ a.s., such that

Mt∧τn =

∫ t∧τn

0

1

J

J∑
k=1

(
〈L(θ(k) − θ̄),Γ

1
2 dW (j)〉Γ + 〈θ(k) − θ̄), C

1
2
0 dŴ (j)〉C0

)
〈θ(k)−θ̄, θ(j)−θ∗〉

is a martingale. We obtain for all for all n ∈ N

E

 1

J

J∑
j=1

|r̃(j)
t∧τn |

2

 = E

 1

J

J∑
j=1

|r̃(j)
0 |

2

+ E[

∫ t∧τn

0

1

J

J∑
j=1

LV (θ(j)
s ) ds],

Since (L>ΓL + C−1
0 ) is strictly positive definite, by application of Lemma 3.3.5 we have

that 1
J

∑J
j=1 LV (θ(j)) < 0 and we obtain that ϕ is monotonically decreasing and bounded.

Similar to the proof of Lemma 3.4.2, by Fatou’s lemma and the monotone convergence
theorem, we obtain in the limit

E

 1

J

J∑
j=1

|r̃(j)
t+s|2

 ≤ E

 1

J

J∑
j=1

|r̃(j)
s |2

+

∫ t

s
E[

1

J

J∑
j=1

LV (θ(j)
r )] dr,

which implies that E

[
1
J

J∑
j=1
|r̃(j)
t |2

]
is strictly monotonically decreasing in time.
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5 Tikhonov regularization for ensemble Kalman inversion

Variance inflation Recalling the perspective of the EKI as preconditioned gradient flow,
we will incorporate variance inflation into the algorithm in order to ensure convergence
of the Tikhonov regularized loss function. In the case of the EKI without Tikhonov
regularization, variance inflation lead to convergence of the residuals, see Theorem 3.4.17
and 3.4.19. By translating this to the setting with Tikhonov regularization, this would
mean

lim
t→∞

E
[

1

J

J∑
j=1

I(u
(j)
t , y)

]
→ 0.

This above result is not desirable as it would suggest that limt→∞ θt = 0, since G is
mapping into a space which dimension is higher than RI itself. The aim will be to prove,
that the scheme will converge to the minimizer of Tκ(θ).
Under the assumption of the forward problem being linear and C0 being strictly positive
definite, it follows that the loss function Tκ is strongly convex, since

∇2Tκ = L>Γ−1L+ C−1
0 > 0.

We will denote the smallest eigenvalue of∇2Tκ by λmin > 0. In order to ensure convergence
to the unique minimizer of Tκ, we will incorporate variance inflation into the system of
SDEs (5.9) in the following way

dθ
(j)
t =

(
C(θt) +

1

tα +R
B

)(
L>Γ−1(y − Lθ(j)

t ) + C−1
0 θ(j)

)
dt

+ C(θ)

(
L>Γ−1/2 dW

(j)
t + κ

1
2C
− 1

2
0 dŴ

(j)
t

)
,

(5.10)

where α ∈ (0, 1), R > 0 and B denotes a strictly positive definite matrix. Now that we
have introduced variance inflation into scheme, we state the result of convergence towards
the minimizer of the functional Tκ(θ). The intuition behind this result can be seen in the
gradient flow structure of (5.10)

dθ
(j)
t =

(
C(θt) +

1

tα +R
B

)
∇Tκ(θ(j)) dt+ C(θ)

(
L>Γ−1/2 dW

(j)
t + κ

1
2C
− 1

2
0 dŴ

(j)
t

)
.

Theorem 5.2.4. Assume that y are noisy measurements of the true parameter θ† un-
der L, i.e. y = Lθ† + η†, where η† ∈ RK denotes a realization of noise and let θ0 =

(θ
(j)
0 )j∈{1,...,J} be F0-measurable maps θ

(j)
0 : Ω → RK such that we have bounded mo-

ments E
[

1
J

J∑
j=1
|r̃(j)

0 |2
]
< ∞. Furthermore let B ∈ L(RI ,RI) be a strictly positive definite

operator. Then for all α > 0 it holds true that

E
[

1

J

J∑
j=1

|r̃(j)
t |2

]
∈ O

(
t−(1−α)

)
.

Proof. We again assume w.l.o.g. κ = 1. Using the results presented in the proof of

Theorem 5.2.3, the SDE for 1
J

J∑
j=1
|r̃(j)
t |2 corresponding to (5.10) is given by

d
1

J

J∑
j=1

‖r̃(j)
t ‖2 =− 1

J2

J∑
j,k=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ(j) − θ∗)〉〈θ(j) − θ∗, θ(k) − θ̄〉dt
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− 1

J

J∑
k=1

〈θ(k) − θ̄,
(
L>Γ−1L+ C−1

0

)
(θ̄ − θ∗)〉〈θ̄ − θ∗, θ(k) − θ̄〉dt

− 1

J

1

tα +R

J∑
j=1

〈θ(j) − θ∗,
(
L>Γ−1L+ C−1

0

)
(θ(j) − θ∗)〉 dt

+
1

J

J∑
k=1

(
〈L(θ(k) − θ̄),Γ

1
2 dW (j)〉Γ

)
〈θ(k) − θ̄, θ(j) − θ∗〉

+
1

J

J∑
k=1

(
〈θ(k) − θ̄, C

1
2
0 dŴ (j)〉C0

)
〈θ(k) − θ̄, θ(j) − θ∗〉.

Taking the integral and expectation and similar localization arguments as in Lemma 3.4.2
leads to

h(t+ s) ≤ h(s)− λmin

∫ t

s

1

rα + c
h(r) dr,

where we have set t 7→ h(t) := E[ 1
J

J∑
j=1
‖r̃(j)
t ‖2] and λmin denotes the smallest eigenvalue of

(L>Γ−1L+ C−1
0 ). It follows ∫ t

0

1

rα + c
h(r) dr ≤ h(0),

for all t ≥ 0. By using the monotonicity of h(r), we obtain∫ t

1

1

rα + c
drh(t) ≤ h(0),

and by using ∫ t

1

1

rα + c
dr ≥ 1

(1 +R)(1− α)
(t1−α − 1)

we conclude with

h(r) ∈ O(t−(1−α)).

5.3 Adaptive regularization parameter choice

An important point to consider, in the theory of regularization for inverse problems, is the
choice of the regularization parameter. The parameter itself can depend largely on the
problem itself and the specific form of regularization. In this section, we describe a specific
way to find a good choice of the Tikhonov parameter κ based on the bilevel data-driven
regularization introduced in Section 7.1. Figure 5.1 describes the task of adapting the
regularization parameter withing the algorithm of EKI. While in the algorithm presented
in section 5.1 we kept the regularization parameter κ fixed, we now consider approaches
where we adapt the regularization parameter between the prediction step and the update
step.
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Prediction step

Learning step

y
(j)
n+1 = H(θ

(j)
n ) + ξ

(j)
n+1

κn+1 = ?

θ
(j)
n+1 = θ

(j)
n +Bθp

n (Bpp
n + Σ(κn+1))

−1

(

z −

(

y
(j)
n+1

θ
(j)
n

))

Estimate
Update step

Adaptive regularization
Initial ensemble

Figure 5.1: Description of the task of choosing the regularization parameter adaptively.

• The first method is based on a bilevel optimization problem (7.1). We will mainly
present some heuristic idea of incorporation of the bilevel optimization approach to
learn the regularization parameter within TEKI. We will give theoretical verification
for the regularization based on bilevel optimization in general in section 7.1. While
in section 7.1 we will assume to have access to training data, we will use our pre-
diction step to generate artificial training data which will then be used to adapt the
regularization parameter.

• The second method is based on the MAP formulation in the Bayesian framework of
inverse problems.

We note that the presented methods were build up independently of the recently proposed
adaptive regularization methods for EKI provided in [111], which is motivated from the
viewpoint of the EKI as Gaussian approximation in a Bayesian tempering setting and
further, incorporates early stopping criteria.

5.3.1 Data-driven regularization within EKI

Recall that through the Bayesian setting of the inverse problem

Y = H(Θ) + Ξ,

we view Θ and Ξ as independent random variables distributed by N (0, κ−1C0)⊗N (0,Γ).
To get access to training data, we can draw (θ(j))Jj=1 samples of the prior distribution,

(ξ(j))Jj=1 realizations of the assumed noise and compute

y(j) = H(θ(j)) + ξ(j).

To incorporate those ideas of learning the regularization parameter from training data,
we will give an alternative view point of EKI with perturbed observations. Instead of
considering perturbations directly to the true observation as in (3.5), we will now view
the perturbation as producing training data in each iteration.
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Furthermore, instead of computing an optimal regularization parameter only at the be-
ginning of the methods, we assume in each iteration that our current ensemble of particles
represents current prior information in the form of an empirical distribution

Qn =
1

J

J∑
j=1

δ
θ
(j)
n
.

We will first introduce the basic idea of the adaptive regularization scheme in the linear
setting, i.e. we assume H(·) = L· for L ∈ L(X ,RK). Afterwards we will extend this idea
to the general nonlinear setting.
We view (Θ,Ξ) ∼ Qn ⊗N (0,Γ) and compute

κ̂Jn+1 = arg min
κ

E(Θ,Ξ)[‖(L>Γ−1L+ κC−1
0 )−1L>Γ−1(LΘ + Ξ)−Θ‖2],

where (L>Γ−1L+ κC−1
0 )−1L>Γ−1(Lθ + ξ) denotes the Tikhonov regularized solution for

realized θ and ξ, i.e. for the generated data y = Lθ + ξ. Using the artificial data we
approximate the expected value empirically, i.e.

E(Θ,Ξ)[‖(L>Γ−1L+ κC−1
0 )−1L>Γ−1(LΘ + Ξ)−Θ‖2]

≈ 1

J

J∑
j=1

‖(L>Γ−1L+ κC−1
0 )−1L>Γ−1y

(j)
n+1 − θ

(j)
n ‖2.

(5.11)

Our training data is produced by perturbing the particles mapped by the forward operator,

y
(j)
n+1 = Lθ(j)

n + ξ
(j)
n+1.

Following the ideas of [10, 47] we now employ a way to update the regularization parameter
κn in each iteration by seeking to decrease (5.11) adaptively. To do so, we will do in each
update step a gradient descent step of

fn+1(κ) :=
1

J

J∑
j=1

‖(L>Γ−1L+ κC−1
0 )−1L>Γ−1y

(j)
n+1 − θ

(j)
n ‖2,

with respect to κ. We define

v
(j)
n+1(κ) := θκ(y

(j)
n+1)− θ(j)

n , (5.12)

which represents the difference of the current particle θ
(j)
n to the minimizer θκ(y

(j)
n+1) =

(L>Γ−1L + κC−1
0 )−1L>Γ−1y

(j)
n+1 of the Tikhonov regularized loss function. From (5.12)

we can write the loss function

fn+1(κ) :=
1

J

J∑
j=1

1

2
‖v(j)
n+1(κ)‖2, (5.13)

where for simplicity we now drop the dependance of n and j. To do a gradient descent
with respect to (5.13) we need to compute its derivative which means we also need to
compute the derivative of (5.12). To proceed we compute both f ′(κ) and v′(κ). To aid we
use the chain rule,

d‖v(j)
n+1(κ)‖2

dκ
= (v

(j)
n+1)>(κ) · (v(j)

n+1)′(κ), (5.14)

111



5 Tikhonov regularization for ensemble Kalman inversion

and compute

(v
(j)
n+1)′(κ) =

dθ
(j)
n+1(κ)

dκ
=
d(L>Γ−1L+ κC−1

0 )−1L>Γ−1y
(j)
n+1

dκ
,

=
d(L>Γ−1L+ κC−1

0 )−1

dκ
L>Γ−1y

(j)
n+1,

= −(L>Γ−1L+ κC−1
0 )−1C−1

0 (L>Γ−1L+ κC−1
0 )−1

·L>Γ−1y
(j)
n+1.

Therefore, using the expression for the derivative of v, we can now express the derivative
of (5.14) as

d‖v(j)
n+1(κ)‖2

dκ
=−

(
(L>Γ−1L+ κC−1

0 )−1L>Γ−1y
(j)
n+1 − θ

(j)
n

)
(L>Γ−1L+ κC−1

0 )−1

· C−1
0 (L>Γ−1L+ κC−1

0 )−1L>Γ−1y
(j)
n+1.

To simplify the derivation described above we present Tikhonov EKI with adaptive regu-
larization in Algorithm 7. Note that we only consider perturbation in the observation y
described by the choice of Σ′ defined in (5.6).

Algorithm 7: Linear TEKI: adaptive learning regularization

Input: initial ensemble (θ
(j)
0 )Jj=1, κ0 = 1, observation y

Output: θ̄N
for n = 0, . . . , N − 1 do

Learning step:
Construct training data by

y
(j)
n+1 = Lθ(j)

n + ξ
(j)
n+1

and adaptively learn κn by updating

κn+1 = κn − γn · f ′n+1(κn),

Update step:
Update the ensemble of particle by using the TEKI update formula (5.2)

θ
(j)
n+1 = θ(j)

n +Bθp
n

(
Bpp
n + Σ(κn+1)

)−1
(
q −

(
y

(j)
n+1

θ
(j)
n

))
.

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N .

Remark 5.3.1. An important question to ask from Algorithm 7 is how to choose the step
size γn. It is well known in optimization that it can be beneficial to choose a non-fixed step
size for maximum learning. Our choice for γn will be based on the Armijo rule to ensure
that we have a correct descent direction at every iteration.

With the introduced method of learning the regularization parameter κ, we can now fill
in the gap of Figure 5.1 by the following Figure 5.2, which explains the idea of learning
the regularization parameter by the use of artificial training data.
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Prediction step

Learning step

y
(j)
n+1 = H(θ

(j)
n ) + ξ

(j)
n+1

(

θ
(j)
n , y

(j)
n+1

)

κn+1 = κn − γn · f ′

n+1(κn)

θ
(j)
n+1 = θ

(j)
n +Bθp

n (Bpp
n + Σ(κn+1))

−1

(

z −
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y
(j)
n+1

θ
(j)
n
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Estimate
Update step
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Adaptive regularization
Initial ensemble

Figure 5.2: Representation of adaptive regularized ensemble Kalman inversion with the
inclusion of data-driven learning.

5.3.2 Generalization to nonlinear setting

While for linear forward models we have used the closed expression of the Tikhonov
regularized solution, we are not able to use this expression in the nonlinear setting. To
avoid this issue, we will present another way of choosing the regularization parameter
adaptively.
For our first method, we will make use of the data-driven regularization approach, which
will be studied in more detail in section 7.1. In particular, we consider the following bilevel
optimization problem in a general nonlinear setting with Tikhonov regularization, i.e.

κ̂ ∈ arg min
κ>0

EQ(Θ,Y )[‖Rκ(Y )−Θ‖2]

Rκ(y) := arg min
θ∈RI

1

2
‖H(θ)− y‖2Γ +

κ

2
‖θ‖2C0

,

where we view (Θ, Y ) ∼ Q(Θ, Y ) as random variables. We assume that we have given

the current ensemble of particles (θ
(j)
n )Jj=1, which represent current information about the

unknown true parameter θ†. Furthermore, assume that we have given a current regular-
ization parameter κn. The method is similarly to the previous one based on learning the

regularization parameter over time with the help of artificial training data (θ
(j)
n , y

(j)
n+1),

constructed in the prediction step. The update step (5.2) pushes the current ensemble

to (θ
(j)
n+1)Jj=1 in order to get closer to the minimizer of the Tikhonov functional, i.e. into

direction of Rκn+1(y
(j)
n+1). In the linear setting we have chosen κn+1 minimizing the dif-

ference of the Tikhonov regularized solution to the particles itself. Using an empirical
approximation we aim to choose κn+1 minimizing the difference

vn+1(κ) =
1

J

J∑
j=1

1

2
‖Rκ(y

(j)
n+1)− θ(j)

n ‖2.

We will use the updated ensemble (θ
(j)
n+1)Jj=1 to approximate the minimizer of the Tikhonov

functional (θ
(j)
n+1(κn))Jj=1. If our update step becomes closer to be stationary, this approxi-
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mation will get more accurate, since the Tikhonov functional is strictly convex. This leads
to choosing κn+1 by minimizing

gn+1(κ) :=
1

J

J∑
j=1

1

2
‖θ(j)
n − θ

(j)
n+1‖

2 =
1

J

J∑
j=1

1

2
‖Bθp

n

(
Bpp
n + Σ(κ)

)−1
(z − z(j)

n+1)‖2,

where we have defined z
(j)
n+1 =

(
y

(j)
n+1

θ
(j)
n

)
and

Σ(κ) =

[
Γ 0
0 κ−1C0

]
,

to emphasize the dependence of Σ from κ. To update κ we will use again a gradient

descent step in each iteration. Therefore, we will compute the derivative of g
(j)
n+1(κ) :=

1
2‖θ

(j)
n − θ(j)

n+1‖2 by

(g
(j)
n+1)′(κ) = (z − z(j)

n+1)>(Bpp
n + Σ(κ))−1Bpθ

n B
θp
n

d(Bpp
n + Σ(κ))−1

dκ
(z − z(j)

n+1).

Defining Ĉ0 =

(
0 0
0 C0

)
gives

(g
(j)
n+1)′(κ) =

1

κ2
(z − z(j)

n+1)>(Bpp
n + Σ(κ))−1Bpθ

n B
θp
n (Bpp

n + Σ(κ))−1Ĉ0(Bpp
n + Σ(κ))−1

· (z − z(j)
n+1),

and we conclude with the update step

κn+1 = κn − γn · g′n+1(κn),

where g′n+1(κ) = 1
J

J∑
j=1

(g
(j)
n+1)′(κ) and γn denotes a step size. To simplify the derivation

described above we present in algorithmic form the TEKI with adaptive regularization in
general nonlinear setting through Algorithm 8. We again consider pertubation only in the
observation y described by the choice of Σ′ defined in (5.6).

5.3.3 MAP formulation

We describe another way to find the parameter, which is based on a Hierarchical Bayesian
framework. Given some initial guess on κ which we can define through a prior of the form
κ ∼ U [κl, κu], we define the parameter estimation as MAP estimate

arg max
θ∈RI ,κ∈[κl,κu]

1√
det(2πΓ)

exp(−1

2
‖H(θ)− y‖2Γ)

1√
det(2πκ−1C0)

exp(−1

2
‖θ‖2κ−1C0

).

Or alternatively by taking the logarithm and ignoring the constants

arg min
θ∈RI ,κ∈[κl,κu]

1

2
‖H(θ)− y‖2Γ +

κ

2
‖θ‖2C0

− dθ
2

log κ,
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Algorithm 8: Nonlinear TEKI: adaptive learning regularization

Input: initial ensemble (θ
(j)
0 )Jj=1, κ0 = 1

Output: θ̄N
for n = 0, . . . , N − 1 do

Learning step:
Construct training data by

y
(j)
n+1 = H(θ(j)

n ) + ξ
(j)
n+1

and adaptively learn κn by updating

κn+1 = κn − γn · g′n+1(κn),

Update step:
Update the ensemble of particle by using the TEKI update formula (5.2)

θ
(j)
n+1 = θ(j)

n +Bθp
n

(
Bpp
n + Σ(κn+1)

)−1
(
q −

(
y

(j)
n+1

θ
(j)
n

))
.

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N .

where dθ denotes the dimension of θ. Notice that when θ is given, the minimizer of κ is
explicitly found using critical point

κ∗ =

(
1

dθ
‖θ‖2C0

)−1

.

Viewing each update step of the Tikhonov EKI as step into direction of the MAP estimator,
leads to the following update

κn+1 =

(
1

dθ
‖θ̄n‖2C0

)−1

, or κn+1 =

 1

Jdθ

J∑
j=1

‖θ(j)
n ‖2C0

−1

.

5.4 Numerical results

In this section, we numerically test and implement the adaptive strategies discussed in
Section 5.3. As our analysis for fixed regularization parameter is based on the linear case,
we will test our algorithms on the linear PDE introduced in subsection 2.1.15 in equation
(2.11). We also test our algorithms on two nonlinear problems, the first one will be an
analogous version of PDE based nonlinear example introduced in subsection 4.4.2 with
one-dimensional domain and the second nonlinear example will be based on training a
DNN, as introduced in example 2.1.16.
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Algorithm 9: TEKI: adaptive learning regularization using the MAP

Input: initial ensemble (θ
(j)
0 )Jj=1, κ0 = 1

Output: θ̄N
for n = 0, . . . , N − 1 do

Learning step:
Compute

κn+1 =

 1

Jdθ

J∑
j=1

‖θ(j)
n ‖2C0

−1

.

Update step:
Update the ensemble of particle by using the TEKI update formula (5.2)

θ
(j)
n+1 = θ(j)

n +Bθp
n

(
Bpp
n + Σ(κn+1)

)−1
(
q −

(
y

(j)
n+1

θ
(j)
n

))
.

Estimate: θ̄N = 1
J

J∑
j=1

θ
(j)
N .

5.4.1 Linear PDE

In this section, we run numerical experiments to highlight the effect of Tikhonov regular-
ization within EKI with noisy observations. Our motivation again to emphasize will be
to see if the overfitting of data can be prevented, and also to see the effect of the learned
regularization parameter κ. Our first set of experiments is to show, with the help of inverse
elliptic PDE, that overfitting can be reduced in the noisy SDE case given through (5.9).
Throughout our experiments we are interested in assessing the performance of the TEKI
in the noisy case through:

1. Ensemble spread: E
[

1
J

∑J
j=1 |e(j)|22

]
.

2. Data misfit: E
[

1
J

J∑
j=1
|Lθ(j) − y|2Γ

]
.

3. Tikhonov loss function: E
[

1
J

J∑
j=1

Tκ(θ(j))
]
.

4. Residual: E
[

1
J

J∑
j=1
|r̃(j)|2

]
.

For the continuum limit (5.7) of the algorithm with Σ′ defined in (5.6), we will use (5.2) as
discretization method, where we only perturb y through (5.3). Here we have incorporated
a stepsize by setting Σ 7→ h−1Σ and Σ′ 7→ h−1Σ′ respectively. In both cases we use an
ensemble size of J = 15. Our forward model will be the linear 1D elliptic PDE introduced
in (2.11), where we set a mesh size h = 2−4 and K = 23−1 equispaced observation points.
We specify the covariance of the noise as Γ = γ2 · I where γ = 0.1 and consider the prior
assumption

θ0 ∼ N (0, C0),
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where C0 := κ† · 10 · (− d2

dx2 )−0.5. For our numerical examples we will consider the true
unknown parameter

θ† ∼ N (0, (κ†)−1 · C0),

such that our aim will be to find regularization parameters close to κ†. For the variance
inflation in all of our numerical results we choose the inflation factor to be α = 1/2
and R = 1. In our linear numerical example since we can compute the difference of the
Tikhonov minimizer θκ(y) to the known θ†, we will compare all the results to the best
possible approximation to be expected by

κbest = arg min
κ

‖θκ(y)− θ†‖2.

For the fixed regularization comparison, we will choose κ = 1, i.e. in this case we “trust”
the prior assumption. For each regularization algorithm we test two different examples
which correspond to different values of κ†. These will be chosen as κ† = 50, 0.04. We
will keep the number of paths and particles consistent for each example and algorithm,
specified as Q = 1000 and J = 15.

Example 1:

We set κ† = 50 and run Q = 1000 paths and J = 15 particles.

Figure 5.3: (T)EKI estimation for the different presented algorithms. J = 15 Particles
and Q = 1000 paths has been simulated.

Figure 5.4: Spread of the particles and residuals for the different presented algorithms.
J = 15 Particles and Q = 1000 paths has been simulated.

Our first results from the numerics constitute to the example where we take κ† = 50.
The reconstruction of each algorithm compared to fixed and no regularization is shown
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Figure 5.5: Data misfit and Tikhonov regularized loss for the different presented algo-
rithms. J = 15 Particles and Q = 1000 paths has been simulated.

Figure 5.6: Learned regularization parameter for the different presented algorithms. J=15
Particles and Q = 1000 paths has been simulated.

Figure 5.7: Plotted the difference of the Tikhonov minimizer θκ(y) to the ”known” un-
known true parameter θ†.

in Figure 5.3. As we can see EKI with no regularization performs the worst with most
variation followed by fixed. As expected the 3 algorithms based on adaptively learning the
regularization parameter seem to perform similarly. However when we analyze Figures 5.4
- 5.6, we start to see a further discrepancies. With respect to the ensemble spread and
the residuals we see Algorithm 9 perform betters. For the data misfit and regularized loss
function we observe all adaptive algorithms do not overfit the data and perform better
than using fixed regularization.
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Example 2:

We set κ† = 0.04 and run Q = 1000 paths and J = 15 particles.

Figure 5.8: (T)EKI estimation for the different presented algorithms. J = 15 Particles
and Q = 1000 paths has been simulated.

Figure 5.9: Spread of the particles and residuals for the different presented algorithms.
J = 15 Particles and Q = 1000 paths has been simulated.

Figure 5.10: Data misfit and Tikhonov regularized loss for the different presented algo-
rithms. J = 15 Particles and Q = 1000 paths has been simulated.

For the second example we modify the true regularization parameter to κ† = 0.04. We
interestingly observe a different trend which is that Algorithm 8 outperforms TEKI with
fixed regularization and Algorithms 7 and 9. This is seen through the reconstruction in
Figure 5.8, and is verified further through Figures 5.9 - 5.11.
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Figure 5.11: Learned regularization parameter (right: zoomed) for the different presented
algorithms. J = 15 Particles and Q = 1000 paths has been simulated.

5.4.2 Darcy flow

As second model problem to test our regularization schemes we choose Darcys flow, which
has already been considered in subsection 4.4.2. Given a source term f and permeability
a = exp(θ) ∈ L∞(D), then the forward problems is to solve the PDE

−∇ · (a∇p) = f, x ∈ D = (0, 1),

p = 0, x ∈ ∂D

for p ∈ H1
0 (D) which is subject to zero Dirichlet boundary conditions. We choose a prior

to θ ∼ N (0, C0) where we define

C0 := κ†σ2(I −∆)−ν ,

where σ2 is a scaling constant, ν > 1/2 is the smoothness of the prior and ∆ is the Laplace
operator in 1D and we will again simulate our prior through a KL expansion. We set
κ† = 5, σ = 2, ν = 0.5 and run Q = 1000 paths of the TEKI with J = 100 particles. The
measurements noise is set to N(0, 0.01 · I) with K = 16 observation points. The physical
domain D = [0, 1] has been discretizised by the equidistant grid { i

25 , i = 0, . . . , 25}. As
before for the fixed regularization we choose κ = 1.
To incorporate variance inflation in a nonlinear setting we use the technique introduced
in (3.15). We approximate the mixed sample covariance Bθp(θ) by

Bθp(θ) ≈ 1

J

J∑
j=1

(θ(j) − θ̄)(θ(j) − θ̄)>DG(θ̄)> = C(θ)DG(θ̄)>,

where G(θ(j))−G(θ̄) ≈ DG(θ̄)(θ(j)− θ̄) with denoting the derivative of G with respect to
θ by DG(θ). The variance inflation now becomes

Bθp(θt) ≈ C(θt)DG(θ̄t)
> 7→ (C(θt) + ϑ(t)C0)DG(θ̄t)

>, t ≥ 0

such that we will write the SDE resulting from the TEKI update formula as

dθ(j) =

(
Bθp(θ)− 1

tα + 1
C0DG(θ̄)>

)
Σ−1(q −G(θ(j)))dt− Cθp(u)Γ−1/2dW

(j)
t ,

where α > 0 is a free parameter to choose for the variance inflation which scales the
reduction of the variance inflation in time. For our numerical results we have set α = 0.5.
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Figure 5.12: (T)EKI estimation for the different presented algorithms. J = 100 Particles
and Q = 1000 paths has been simulated.

Figure 5.13: Spread of the particles and residuals for the different presented algorithms.
J = 100 Particles and Q = 1000 paths has been simulated.

Figure 5.14: Data misfit and tikhonov regularized loss for the different presented algo-
rithms. J = 100 Particles and Q = 1000 paths has been simulated.

5.4.3 Training of neural networks

Our final model problem will be motivated from machine learning where we consider a
DNN. With the help of the NN we will try to learn the function f : [−1, 1]→ R defined as

f(x) = 5 · exp(−x2)− 0.3,

given the training data set {xk, f(xk)}Kk=1, see Example 2.1.16 for more details. By training
the DNN with respect to the training data {xk, yk = θ(xk)}Kk=1, we aim to solve the
minimization problem (2.12) with the help of TEKI, where our training data is perturbed
by some noise, i.e.

yk = f(xk) + ξk, ξk ∼ N (0,Γ).
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5 Tikhonov regularization for ensemble Kalman inversion

Figure 5.15: Learned regularization parameter for the different presented algorithms. J =
100 Particles and Q = 1000 paths has been simulated.

We will define our NN to approximate the function f(x) with L = 2 hidden layers with
N1 = 10, N2 = 5 hidden nodes and N3 = 1 output node. Our choice of the activation
function will be

σ(x) =
1

1 + e−x
,

which is the standard logistic function. To train our NN we will use the EKI to solve
the inverse problem (2.13) to minimize (2.12) without regularization. In comparison to
this we will use TEKI with fixed regularization and adaptively chosen regularization with
C0 = 5·I, where I denotes the Nθ×Nθ identity matrix. The measurement noise covariance
has been chosen to be Γ = 0.01 · IdK with K = 16 observation points, while the true
observation has been perturbed with noise ξ ∼ N(0, IdK). To measure the accuracy of
our NN we will consider the quantity

r(θ) =
1

Kthin

Kthin∑
i=1

‖pθ(xi)− f(xi)‖2,

with xi chosen from a finer grid of [−1, 1] with size Kthin = 210. For our numerical
results we have set the parameter for variance inflation for α = 0.75. Finally the fixed
regularization parameter is again chosen as κ = 1.

Figure 5.16: (T)EKI estimation for the different presented algorithms. J = 100 Particles
and Q = 1000 paths has been simulated.
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5.4 Numerical results

Figure 5.17: Spread of the particles and residuals for the different presented algorithms.
J = 100 Particles and Q = 1000 paths has been simulated.

Figure 5.18: Data misfit and tikhonov regularized loss for the different presented algo-
rithms. J = 100 Particles and Q = 1000 paths has been simulated.

Figure 5.19: Learned regularization parameter for the different presented algorithms. J =
100 Particles and Q = 1000 paths has been simulated.

By analyzing both sets of nonlinear experiments, we see consistent results which show that
Algorithm 8 slightly outperforms Algorithm 9, despite both working well. For the Darcy
flow experiments we see the ensemble spread in Figure 5.13 is similar for both adaptive
algorithms. However from Figures 5.14 - 5.15 we see that the Algorithm 8 correctly
recovers the true regularization parameter and has a higher data misfit. From the NN
experiments, we have no true regularization parameter κ† but from Figures 5.17 - 5.18
we see as before that both algorithms perform well, with Algorithm 8 performing slightly
better. Again as expected working adaptively overall achieves a better level of accuracy
than fixed regularization.
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6 Computational aspects for particle based
sampling methods

While in the previous chapters the ensemble Kalman inversion as particle based optimiza-
tion method for inverse problems delivered a point estimate, we will now consider different
particle based sampling methods in order to solve the Bayesian inverse problem introduced
in section 2.2. The presented ideas are closely related to the ideas of coupling of measures
[62, 184, 160]. In particular, we will introduce 4 different particle based method, which
are linked in the sense that all of the methods are seeking to convert a sample from the
prior distribution into a sample from the posterior distribution.

• Langevin dynamic: Based on SDEs and their underlying Fokker–Planck equation,
the idea is to find an equation such that the posterior is invariant under the driving
stochastic process. In particular, Brownian dynamics can be viewed as a gradient
flow in the space of probability measures [116], which minimises the Kullback–Leibler
divergence between the current distribution of the underlying stochastic process and
the posterior distribution. We will give a brief introduction to MCMC methods
based on Langevin dynamics in Section 6.1.

• Ensemble Kalman sampler: The key idea of this approach is to run an interacting
particles system through a preconditioned Langevin dynamics driven by Brownian
motions, where the mean field limit corresponds to an SDE whose invariant distribu-
tion of the underlying Fokker–Planck equation is given by the posterior distribution.
From an alternative perspective, this method can also be seen as a modification of
the EKI method, where the noise arising in the particle system is shifted from per-
tubation of the observation to a pertubation of the particles itself. We will briefly
discuss the approach introduced in [83] in Section 6.2.

• Gaussian approximation: In Section 6.3, we consider a particle system describing the
mean and covariance of a Gaussian approximation to the posterior distribution. The
evolution of the particle system can be found by minimizing the Kullback-Leibler
divergence between the Gaussian approximation and the posterior distribution.

• Fokker–Planck particle systems: In this approach, we approximate the Fokker–
Planck equation which arises from a Langevin dynamic in a reproducing Kernel
Hilbert space. The key idea is again to minimize the Kullback–Leibler divergence
between the underlying distribution of the dynamics and the posterior distribution.
This time, the Kullback–Leibler divergence will be regularized in a reproducing Ker-
nel Hilbert space and the distribution described by the Fokker–Planck equation
will be approximated by the empirical measure of a particle system. The parti-
cles dynamic evolves in order to minimize the Kullback–Leibler divergence in the
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6 Computational aspects for particle based sampling methods

reproducing Kernel Hilbert space. This approach will be discussed in Section 6.4.

We will identify these methods in a gradient flow structure and extend them in order to
avoid the computation of the derivative of the forward model. This will lead to derivative-
free sampling methods similar to the EKI as derivative-free optimization method.
Throughout this section, we assume that the posterior distribution Q∗y defined in (2.16)
can be represented by a probability density function ρ∗ w.r.t. the Lebesgue measure on
the finite-dimensional parameter space X = RI , i.e. we can write

Q∗y(dθ) = ρ∗(θ) dθ.

The aim of the methods presented in the following part will be to construct a time-

dependent interacting particle system (θ
(j)
t )j∈{1,...,J}, initialized by the prior distribution,

with the property that this particle system approximates ρ∗ as t → ∞. We collect the
particle system in one matrix Zt ∈ Z = RJ×I , i.e.

Zt =
(

(θ
(1)
t )>, . . . , (θ

(J)
t )>

)>
(6.1)

and consider the gradient-based evolution equations of the form

dZt = A(Zt)∇zV(Zt) dt+ Σ(Zt) dWt, (6.2)

for some positive semi-definit matrix-valued preconditioner A(z) ∈ L(Z,Z) and Σ(z) ∈
L(Z,Z), z ∈ Z. By W we denote a Brownian motion on Z and V denotes a potential we
are aiming to minimize in order to ensure the posterior approximation. The preconditioner
A can be chosen in a way, such that the particles of the ensemble are interacting with
each other. A common choice, which we have considered in the context of EKI, is a
preconditioning with the sample covariance of the particle system. The potential V is
chosen in a way to push the particle system into the ”right” direction. For the Langevin
dynamic, V will be a crucial part of the stationary distribution of the underlying SDE.
For the Gaussian approximation or the Fokker–Planck particle system the potential V is
designed such that the resulting flow aims to minimize a loss function, which is described
through the Kullback–Leibler divergence. We will specify V for our presented algorithms.
We start the discussion by introducing the 4 different particle based sampling methods in
Section 6.1-6.4, and provide various numerical experiments in Section 6.6.

6.1 Langevin dynamics: A Markov chain Monte Carlo method

In this section, we introduce a Markov chain Monte Carlo method based on the Fokker-
Planck equation. This method is based on the first-order Langevin dynamics (also called
Brownian dynamics) defined as the following RI -valued SDE

dΘt = −∇xV(Θt) dt+
√

2β−1 dWt, (6.3)

where Wt denotes a RI -dimensional Brownian motion, i.e Z = RI and V(θ) := 1
2‖θ‖

2

denotes the underlying potential, where the choice of V will be clear from equation (6.9).
Following [177], we will introduce the MCMC method based on (6.3).
The generator of the process (Θt) driven by (6.3) is given by

L = −∇θV(θ) · ∇+ β−1∆. (6.4)
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6.1 Langevin dynamics: A Markov chain Monte Carlo method

Further, we can compute the time dependent probability density function ρt of Θt by the
Fokker–Planck equation

∂ρt
∂t

= ∇ · (∇Vρt) + β−1∆ρt (6.5)

initialized by the probability density function ρ0 of Θ0. The Fokker–Planck equation (6.5)
in this particular form is often refered to Smoluchowski equation.

Remark 6.1.1. In general the Fokker–Planck equation can formally be derived through
the Kolmogorov equation. In the following we briefly discuss the connection between SDEs
and PDEs, for more details we refer to [130]. We consider a SDE of general form

dXt = b(Xt) dt+ σ(Xt) dWt, (6.6)

where X takes values in Rd, W is Brownian motion in RK , b : Rd → Rd, and σ : Rd →
Rd×K . The generator L of the SDE is defined by

Lf(x) = (b · ∇f)(x) +
1

2
trace(σ>D2fσ)(x), f ∈ C2.

Under certain assumptions we obtain by Itô’s formula

d

dt
E[f(Xt)] = E[Lf(Xt)]

for f ∈ C2
b , which is also known as the Kolmogorov forward equation. If we assume that

the distribution of Xt can be described by a probability density ρ(t, ·), t ≥ 0, we compute

d

dt

∫
Rd
f(x)ρ(t, x) dx =

∫
Rd
Lf(x)ρ(t, x) dx =

∫
Rd
f(x)L∗ρ(t, x) dx,

where L∗ is the adjoint operator of L. Note that we can compute

L∗f(x) = −∇(f · b)(x) + trace(σ>D2fσ)(x).

From this computation we formally obtain the Fokker–Planck equation as

∂tρ(t, x) = L∗ρ(t, x), ρ(0, x) = ρ0(x). (6.7)

With the help of the Fokker–Planck equation, one can solve the SDE (6.6) by solving the
PDE described by the Fokker–Planck equation (6.7). It is also possible to extend this idea
by solving a PDE through solving a SDE, where the connection is based on the Kolmogorov
backward equation. We define u(t, x) = Ex[ϕ(Xt)], where Ex denotes the expected value
under X0 = x a.s. and formulate the corresponding PDE for u. Under certain assumptions
by the Markov property and application of Itô’s formula it holds true that

u(t+ h, x) = Ex[Ex[f(Xt+h) | Fh]] = E[u(t,Xh)] = Ex[u(t,X0) +

∫ h

0
Lu(t,Xs) ds],

where F = (Ft)t≥0 denotes the filtration introduced by the SDE (6.6). Taking the limit
h→ 0 formally leads to the Kolmogorov backward equation

∂tu(t, x) = Lu(t, x), u(0, x) = f(x). (6.8)

Hence, instead of solving the PDE (6.8) one can also solve the SDE (6.6) and compute
u(t, x) := Ex[ϕ(Xt)]. This connection between SDEs and PDEs will be the basic for the
following particle based sampling methods.
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6 Computational aspects for particle based sampling methods

We want to apply the Fokker–Planck equation in order to produce samples of the posterior
distribution in the Bayesian setting for inverse problems. The following Proposition states,
that under suitable assumptions on V it is possible to use the invariant distribution of the
process following the dynamics (6.3) to construct samples of probability densities of the
form

ρβ(θ) =
1

Z
exp(−βV(θ)), (6.9)

where Z =
∫
RI exp(−βV(θ)) dθ is a normalization constant.

Proposition 6.1.2 ([177, Proposition 4.6]). Assume that exp(−βV(·)) is integrable for all
β > 0. Then the Markov process with generator (6.4) is ergodic and the unique invariant
distribution is given by ρβ.

Further, under sufficient conditions on V the solution of the Fokker–Planck equation (6.5)
converges exponentially fast to its equilibrium.

Theorem 6.1.3 ([177, Theorem 4.9]). Suppose that V ∈ C2(RI) with

lim
‖θ‖→+∞

(
‖∇V(θ)‖2

2
−∆V(θ)

)
= +∞ (6.10)

and let ρt denote the solution of the Fokker–Planck equation (6.5) with ρ0 ∈ L2(RI ; ρ−1
β ).

Then there exists λ > 0 such that ρt converges exponentially fast to ρβ defined in (6.9),
i.e.

‖ρt − ρβ‖2L2(RI ;ρ−1
β )
≤ exp(−λβ−1t)‖ρ0 − ρβ‖2L2(RI ;ρ−1

β )
.

We note that the property (6.10) is a sufficient condition to ensure that ρβ satisfies the
Poincaré inequality with constant λ > 0, which is

λ‖f‖2L2(RI ;ρβ) ≤ ‖∇f‖
2
L2(RI ;ρβ) (6.11)

for all f ∈ C1(RI) ∩ L2(RI ; ρβ) with
∫
fρβ dθ = 0, which is a necessary assumption in

the original stated Theorem 4.9 in[177], see Theorem 4.8 in[177]. It turns out that the
socalled Bakry–Emery criterion states that a convexity condition on V

D2V ≥ λI

ensures that ρβ satisfies the Poincaré inequality (6.11).
We will choose V in order to use (6.3) to construct an MC estimate for some quantity of
interest

Qint =

∫
RI
F (θ)ρ∗(θ) dθ,

which will be an MCMC method. The idea is to find a drift b and diffusion Σ of the SDE

dΘt = b(Θt) dt+ Σ(Θt) dWt,

such that the resulting invariant distribution is given by ρ∗, i.e. ρ∗ is a stationary point
of the Fokker–Planck equation, this is

∇ ·
(
−bρ∗ +

1

2
∇ · (Σρ∗)

)
= 0. (6.12)
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6.1 Langevin dynamics: A Markov chain Monte Carlo method

We can reduce this problem of finding b and Σ to the sufficient conditon

−bρ∗ +
1

2
∇ · (Σρ∗) = 0. (6.13)

We can set the diffusion to Σ = 2I and the drift term to

b = (ρ∗)−1∇ρ∗ = ∇ log ρ∗,

such that (6.13) hold. We note that b and Σ are not uniquely determined in order to ensure
the stationary condition (6.12). However, our choice for b and Σ leads to the Langevin
dynamics

dΘt = ∇ log ρ∗(Θt) dt+
√

2 dWt,

whose stationary distribution can be used to construct approximation of Qint thanks to
the ergodic theorem for Markov chains, which states that

lim
T→∞

∫ T

0
f(Θt) dt =

∫
RI
f(θ)ρ∗(θ) dθ.

Provided that the potential V(θ) = − log ρ∗ satisfies the Poincaré inequality (6.11), The-
orem 6.1.3 ensures exponential convergence to the target density ρ∗. If we set the target
distribution to be the posterior density function ρ∗ defined in (2.23) with Gaussian prior
N (m0, C0) this means we have to ensure that

D2ΦR ≥ λI,

for some λ > 0, where we have defined ΦR(θ, y) = Φ(θ, y)+R(θ) with R(θ) = 1
2‖m0−θ‖2C0

.
In order to view this method as particle based sampling method in the form of (6.2), we
will modify the dynamics in the following way

dθ(j) = −C∇θΦR(θ(j), y) dt+
√

2C dW
(j)
t , j = 1, . . . , J, (6.14)

where W (j) are independent Brownian motions on RI and C ∈ L(RI ,RI) is a constant
symmetric positive-definite matrix. We note that combined with an acceptance/rejection
step this method is also known as metropolis adjusted langevin algorithm [190].
Equation (6.14) leads to the particle system of the form (6.2) with A = kron(IdJ , C)
and Σ =

√
2kron(IdJ ,

√
C), where kron denotes the Kronecker product of two matrices.

Further the potential V is given by

V(z) =
1

J

J∑
j=1

ΦR(θ(j), y).

The corresponding probability density function ρ
(j)
t of each particle θ(j) of (6.14), j =

1, . . . , J satisfies the Fokker–Planck equation

∂tρt = ∇θ ·
(
ρtC∇θ

δKL(ρt | ρ∗)
δρt

)
(6.15)

with ρt = ρit and the Kullback–Leibler divergence defined by

KL(ρ | ρ∗) =
〈
ρ, log

(
ρ

ρ∗

)〉
.
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6 Computational aspects for particle based sampling methods

Note that its variational derivative is given by

δKL(ρ | ρ∗)
δρ

= log

(
ρ

ρ∗

)
.

We will provide more details on the computation in the proof of Lemma 6.4.1. This is
the starting point of the recently introduced interacting Langevin dynamics, where the
basic idea is to choose a preconditioner C depending on time as sample covariance of the
current particle system, which leads to an interaction between the different particles in
the dynamical system.
We note that the Fokker–Planck equation (6.15) can be formally viewed as the Liouville
equation corresponding to the mean-field ordinary differential equation (ODE)

d

dt
Θt = F(Θt, ρt) = −C∇θ log

(
ρt
ρ∗

)
(Θt). (6.16)

This reformulation provides the starting point for the deterministic interacting particle
formulations proposed in [185, 175] for BIPs and for the blob method for diffusion in [38].
We will discuss these formulations in Section 6.4 in more details.

6.2 Interacting Langevin dynamics: Ensemble Kalman sam-
pler

In [83], based on the dynamics (6.14) the authors propose the interacting Langevin dy-
namics

dθ
(j)
t = −C(θt)∇θΦR(θ

(j)
t ) dt+

√
2C(θt) dW

(j)
t , j = 1, . . . , J, (6.17)

where W (j) denote independent RI -dimensional Brownian motions. Taking J →∞ leads
formally to the mean-field equation

dΘt = −C(ρt)∇θΦR(Θt) +
√

2C(ρt) dWt,

with C(ρt) defined as

C(ρt) = E
[
(Θt − Θ̄t)(Θt − Θ̄t)

>
]
, Θ̄t = E [Θt] ,

where the corresponding marginal densities ρt, t ≥ 0, evolve according to the nonlinear
Fokker–Planck equation

∂tρt = ∇θ ·
(
ρtC(ρt)∇θ

δKL(ρt | ρ∗)
δρt

)
. (6.18)

In [83] the authors have studied the mathematical properties of (6.18). In particular, it
is possible to extend Theorem 6.1.3 to the Fokker–Planck equation in form of (6.18), see
Proposition 2 in [83].
Furthermore, in [170], the authors propose a corrected finite-size particle system in order to
obtain the correct long-time behaviour even under finite ensemble sizes. More specifically,
the corrected particle system evolves according to the system of SDEs

dθ
(j)
t = −C(θt)∇θΦR(θ

(j)
t ) dt+

I + 1

J
(θ

(j)
t − θ̄t) dt+

√
2C(θt) dW j

t , j = 1, . . . , J, (6.19)
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6.3 Gaussian approximation

where the gradient descent direction in the drift term has been corrected through the
expression

∇θ(j) · C(θ) =
I + 1

J
(θ

(j)
t − θ̄t) ∈ RI . (6.20)

This correction term helps the particle system to stay spread in time in order to cover the
support of the underlying target distribution. This effect will also be seen in the numerical
example in Section 6.6.4. We note that (6.19) fits within the general framework of (6.2)
with preconditioning A(Zt) = kron(IdJ , C(θt)), diffusion Σ(Zt) =

√
2 kron(IdJ ,

√
C(θt))

and potential

V(Zt) =
J∑
j=1

ΦR(θ
(j)
t , y)− I + 1

2
log |C(θt)|.

Here, we have assumed that C(θt) has full rank, i.e. J > I, and used that

∂

∂(C(θt))ij
log |C(θt)| =

(
(C(θt))

−1
)
ij
,

and, hence,
1

2
∇θ(j) log |C(θt)| =

1

J
(C(θt))

−1(θ
(j)
t − θ̄t).

Note that for generalizations on J ≤ I one has to consider the dynamic of (6.17) in
the underyling subspace spanned by the initial ensemble. In particular, also in the case
J > I it is not clear whether C(θ) has full rank, which is a crucial assumptions in the
theoretical results. From computational aspects, a possibility to avoid this issue might be
incorporation of variance inflation as it has been discussed in Section 3.2.2.
As demonstrated in [170], the corrected dynamic (6.19) leads to the Fokker–Planck equa-
tion

∂tϕt = ∇z ·
(
ϕtA∇z

δKL(ϕt | ϕ∗)
δϕt

)
,

for the marginal PDF ϕt(z) in the state variable (6.1) and the asymptotic behaviour

lim
t→∞

ϕt = ϕ∗

follows under appropriate conditions on the potential ΦR. Here we consider the product
density ϕ∗(z) :=

∏J
j=1 ρ

∗(θ(j)). Hence, formulation (6.19) leads to an generalisation of
(6.3) under the state-dependent diffusion matrix Σ(Zt) and finite ensemble sizes J . While
the original method proposed in [83] needed to be considered in the large data limit
to produce suitable samples for the posterior distribution, in the corrected method the
particle system can be viewed as a sample of the posterior distribution itself.
A detailed theoretical analysis of this method, including its affine invariance, of the for-
mulation (6.19) as well as efficient numerical implementations in order to avoid the com-
putation of

√
C(θt) can be found in [113].

6.3 Gaussian approximation

In this section, we present a particle based sampling method coming from a Gaussian
approximation. Suppose we have given an initial ensemble of J particles θj0 ∈ RI drawn
from the prior distribution ρ0 given by a Gaussian measure N (m0, C0) with mean m0 ∈ RI
and covariance matrix C0 ∈ RI×I . Further, we need the assumption that the ensemble size
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6 Computational aspects for particle based sampling methods

is larger than the space, i.e. J ≥ I + 1, as we have to compute the inverse of the sample
covariance C(θ) in the derivation. However, if we precondition the resulting gradient flow
by the sample covariance itself, it is possible to drop this assumption.
We employ a Gaussian approximation for the time-evolved distributions ρt based on the
particle induced mean θ̄t and sample covariance matrix C(θt), i.e. we approximate ρt ≈
N (θ̄t, C(θt)). We still need to define evolution equations for the particle locations θjt .
Therefore, we will make use of the Kullback–Leibler divergence between ρt and posterior
distribution ρ∗ which is given by

KL(ρt | ρ∗) =

∫
RI
ρt(θ) log ρt(θ) dθ −

∫
RI
ρt(θ) log ρ∗(θ) dθ

= −1

2
log(2πe |C(θt)|)−

∫
RI
ρt(θ) log ρ∗(θ) dθ,

where we have used, that the entropy of a Gaussian with covariance Σ is given by
1
2 log(2πe |Σ|).
We can approximate the Kullback–Leibler divergence empirically as follows

V({θj}) =
1

J

J∑
j=1

− log ρ∗(θ(j))− 1

2
log |C(θt)|.

where we suppress constants. Here we have used the empirical approximation of the
Gaussian measure ρ̃t by the particles {θ(j)}Jj=1 defined by

ρ̂t(θ) =
1

J

J∑
j=1

δθ(j)(x).

The gradient of the potential V is given by

∇θ(j)V({θ(l)}) =
1

J

(
−∇θ(j) log ρ∗(θ(j))− (C(θ))−1(θ(j) − θ̄t)

)
and the deterministic particle dynamics by

d

dt
θ

(j)
t = −J∇θ(j)V({θ(l)

t })

= ∇θ(j) log ρ∗(θ
(j)
t ) + (C(θt))

−1(θ
(j)
t − θ̄t).

Preconditioning by the sample covariance gives the preconditioned particle dynamics

d

dt
θ

(j)
t = −JC(θt)∇θ(j)V({θ(l)

t })

= C(θ)∇θ(j) log ρ∗(θ
(j)
t ) + θ

(j)
t − θ̄t,

where we avoid the computation of the inverse of the sample covariance. Note, that we
have used that

∇P log |P | = P−1

for symmetric matrices P and, hence,

1

2
∇θ(j) log |C(θt)| =

1

J
(C(θt))

−1(θ
(j)
t − θ̄t).
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6.4 Fokker–Planck based particle systems

We plug in the definition of ρ∗ under a Gaussian prior assumption and consider the the
deterministic interacting particle system

d

dt
θ

(j)
t = −∇θΦR(θ

(j)
t , y) + (C(θ))−1 (θ

(j)
t − θ̄t). (6.21)

Assume that the posterior distribution is Gaussian N (m∗, C∗), i.e. we assume that the
forward model H(·) = L· for some L ∈ L(RI ,RI). If one choses the initial particle positions
Xi

0 such that the associated empirical covariance matrix C(θ0) is non-singular, then the
particle system (6.21) satisfies

lim
t→∞

θ̄t = m∗, lim
t→∞

C(θt) = C∗, (6.22)

where

ΦR(θ, y) =
1

2
‖θ −m∗‖C∗ .

Indeed, it is easily verified that (6.21) implies

d

dt
θ̄t = −(C∗)−1(θ̄t −m∗)

as well as
d

dt
C(θt) = −(C∗)−1C(θt)− C(θt)(C

∗)−1 + 2 Id
I
.

Also note that (6.21) fits into the framework (6.2) with A = IdJ ·I , Σ = 0J ·I , and potential

V(Zt) =

J∑
i=1

ΦR(θ
(i)
t , y)− J

2
log |C(θt)|. (6.23)

Alternatively, one could set A = J IdJ ·I and scale the potential (6.23) by J−1. This
formulation has the advantage that the resulting potential can be interpreted as an ap-
proximation to an expectation value. However, we will stick to unnormalised potentials
of the form (6.23).

6.4 Fokker–Planck based particle systems

In this section, we introduce a particle based approximation of the Fokker–Planck equation
(6.15). To do so, we will work in a reproducing kernel Hilbert space (RKHS) and follow
the approach presented in [175]. We refer the reader to [176] for a detailed introduction
to RKHS.

The basic idea is to consider the Kullback–Leibler divergence between to pdf ρ and the
target distribution ρ∗ and to regularize this divergence in a RKHS. In combination with
the resulting kernelized Fokker–Planck equation it is possible to construct a particle ap-
proximation which follows a gradient flow structure (6.2).

For simplicity, we start with the case C = IdI . Given a RKHS H with symmetric ker-
nel function k(θ, θ′) and inner product 〈g, f〉H we consider the RKHS Kullback–Leibler
divergence

KLH(ρ | ρ∗) :=
〈
ρ̃, log

(
ρ̃

ρ∗

)〉
H
, (6.24)

133



6 Computational aspects for particle based sampling methods

with RKHS PDF

ρ̃(θ) =

∫
RI
k(θ, θ′)ρ(θ′) dθ′ = 〈k(θ, ·), ρ(·)〉.

Here, we have assumed that the kernel satisfies for each θ′ ∈ RI∫
RI
k(θ, θ′)dθ = 1. (6.25)

In the variational derivative of (6.24) any normalisation constant vanishes and it turns out
that one can work with unnormalised kernel functions. Hence, w.l.o.g. we drop condition
(6.25) in the following.
The associated RKHS Fokker–Planck equation in ρt is now defined by

∂tρt = −∇θ · (ρtF) (6.26)

with the vector field F given by

F(θ, ρt) = −∇θ
δKLH(ρt | ρ∗)

δρt
(θ). (6.27)

Lemma 6.4.1. Assuming that log ρ∗ ∈ H, the variational derivative of the RKHS Kullback–
Leibler divergence is given by

δKLH(ρt | ρ∗)
δρt

= log ρ̃t − log ρ∗ +

∫
RI
k(·, θ′)ρt(θ

′)

ρ̃t(θ′)
dθ′. (6.28)

Proof. We first note that the reproducing kernel property f(θ′) = 〈f(·), k(·, θ′)〉H implies
that

KLH(ρ | ρ∗) =
〈
ρ, log

(
ρ̃

ρ∗

)〉
. (6.29)

This can be seen as follows

KLH(ρ | ρ∗) =
〈
ρ̃, log

(
ρ̃

ρ∗

)〉
H

=
〈∫

RI
k(θ′, ·)ρ(θ′) dθ′, log

(
ρ̃

ρ∗

)〉
H

=

∫
RI
ρ(θ′)

〈
k(θ′, ·), log

(
ρ̃

ρ∗

)〉
H

dθ′

=

∫
RI
ρ(θ′) log

(
ρ̃

ρ∗

)
(θ′) dθ′

=
〈
ρ, log

(
ρ̃

ρ∗

)〉
.

The assertion follows from the definition of the variational derivative〈δKLH(ρ | ρ∗)
δρ

, h
〉

= lim
ε→0

KLH(ρ+ εh | ρ∗)−KLH(ρ | ρ∗)
ε

for h ∈ H. We have that

KLH(ρ+ εh | ρ∗) =
〈
ρ̃+ εh, log

(
ρ̃+ εh

ρ∗

)〉
H

= 〈ρ̃, log(ρ̃+ ε̃h)〉H − 〈ρ̃, log ρ∗〉H + 〈ε̃h, log(ρ̃+ ε̃h)〉H − 〈ε̃h, log ρ∗〉H,
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and in particular, we can write

KLH(ρ+ εh | ρ∗)−KLH(ρ | ρ∗)
ε

=
1

ε

〈
ρ, log

∫
RI k(·, θ′)(ρ(θ′) + εh(θ′))dθ′∫

RI k(·, θ′)ρ(θ′)dθ′

〉
H

+〈ε̃h, log ρ̃〉 − 〈ε̃h, log ρ∗〉.

Hence, using a similar argument as in equation (6.29), the assertion follows from the
computation

lim
ε→0

1

ε

〈
ρ, log

∫
RI k(·, θ′)(ρ(θ′) + εh(θ′))dθ′∫

RI k(·, θ′)ρ(θ′)dθ′

〉
=
〈ρ
ρ̃
,

∫
RI
k(·, θ′)h(θ′)dθ′

〉
=
〈∫

RI
k(·, θ′)ρ(θ′)

ρ̃(θ′)
dθ′, h

〉
.

Remark 6.4.2. We note that for a choice k(θ, θ′) = δ(θ − θ′) the proposed approach
leads formally back to the standard definition of the Kullback–Leibler divergence, where
the second term in (6.28) vanishes.

Furthermore, we note that the blob method proposed in [38], which relies on a regularised
Kullback–Leibler divergence

KLε(ρ | ρ∗) =
〈
ρ, log

(
ρε
ρ∗

)〉
with mollified PDF

ρε(θ) =

∫
RI
φε(θ − θ′)ρ(θ)dθ,

and the regularisation parameter ε > 0 becomes identical to (6.26) for mollification und
kernel functions satisfying φε(θ − θ′) = k(θ, θ′). This follows from the equivalence of
(6.24) and (6.29). We note that the Gaussian kernel (6.37) satisfies this property while
the data-driven kernel (6.38) does not.

Using (6.26) and (6.27) we can ensure a decreasing Kullback–Leibler divergence in time

d

dt
KLH(ρt | ρ∗) =

〈δKLH(ρt | ρ∗)
δρt

, ∂tρt

〉
= −

∫
RI

∥∥∥∇θ δKLH(ρt | ρ∗)
δρt

∥∥∥2
ρtdθ = −

∫
RI

∥∥F∥∥2
ρtdθ

≤ 0

and, according to (6.28), we can quantify critical points ρc of KLH by

0 = log ρ̃c − log ρ∗ +

∫
RI
k(·, θ′)ρc(θ

′)

ρ̃c(θ′)
dθ′ + c,

where c is a normalisation constant. This means it holds true that

ρ∗(x) ∝ ρ̃c(x)el(x) (6.30)
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with log-likelihood function

l(θ) :=

∫
RI
k(·, θ′)ρc(θ

′)

ρ̃c(θ′)
dθ′,

which means that samples θ
(j)
c , j = 1, . . . , J , from ρ̃c can be used to approximate expec-

tation values with respect to the target measure ρ∗ by assigning them importance weights

W (j)
c ∝ el(θ

(j)
c ).

The idea is that these weights are more uniform than the importance weights arising from

the prior particles θ
(j)
0 , j = 1, . . . , J , and the log-likelihood function ΦR.

We construct a discrete Fokker–Planck particle dynamics by replacing ρt with the empirical
measure

ρt(x) =
1

J

J∑
j=1

δ(θ − θ(j)
t ),

which leads from (6.26) to
d

dt
θ

(j)
t = Ft(θ

(j)
t ) (6.31)

with drift term Ft(θ) given by

Ft(θ) = −∇θ

{
log

(
1

J

J∑
i=1

k(θ, θ
(i)
t )

)
− log ρ∗(θ) +

J∑
i=1

k(θ, θ
(i)
t )∑J

l=1 k(θ
(l)
t , θ

(i)
t )

}
. (6.32)

The resulting particle dynamics is equivalent to the one derived in [185, 175] starting from
a discrete approximation of the regularised Kullback–Leibler divergence. These equations
are of gradient flow structure (6.2) with potential

V(z) =

J∑
j=1

{
log

(
1

J

J∑
i=1

k(θ(j), θ(i))

)
− log ρ∗(θ(j))

}
, (6.33)

A = IdJ ·I , and Γ ≡ 0J ·I , that is, Ft(θ
(j)
t ) = −∇θ(j)V(Zt). Also we recall that the log-

likelihood function is given by

− log ρ∗(x) = ΦR(x) + C.

with appropriate normalisation constant C > 0 which is irrelevant for the particle dynam-
ics (6.31).

Remark 6.4.3. We note that we have assumed log ρ∗ ∈ H for the computation of the
variational derivative in Lemma 6.4.1. In general this assumption might be strong, such
that one has to generalize the presented computation, where the posterior should also be
described as element of the RKHS through log ρ̃. This would lead to the variational deriva-
tive

δKLH(ρt | ρ∗)
δρt

= log ρ̃t − log ρ̃∗ +

∫
RI
k(·, θ′)ρt(θ

′)

ρ̃t(θ′)
dθ′
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and the generalization of the drift term (6.32) in form of

Ft(θ) = −∇θ
{

log

(
1

J

J∑
i=1

k(θ, θ
(i)
t )

)

− 1

M

J∑
i=1

k(θ, θ(i)) log ρ∗(θ(i)) +

J∑
i=1

k(θ, θ
(i)
t )∑J

l=1 k(θ
(l)
t , θ

(i)
t )

}
,

(6.34)

which is of a similar form as the gradient flow resulting from the Stein variational gradient
descent method [153]. While the particles are pushed into the direction of the data with

the same drift in form of 1
M

J∑
i=1

k(θ, θ(i)) log ρ∗(θ(i)), the spreading of the particles in (6.34)

are in a different form as the ones from Stein variational gradient descent. We also note
that the resulting gradient flow with (6.34) is not in particular of the form (6.2), as the
drift for each particle into the direction of the posterior is averaged over the whole particle
system. We refer to [74] for a detailed analysis of the Stein variational gradient descent
method as a gradient flow in a space of probability measures.

Remark 6.4.4. For the number of particles J approaching infinity, one can expect (6.31)
converging to the associated RKHS Fokker–Planck dynamics (6.26). In [38] the authors
present a rigorous theoretical analysis of the closely related blob method for diffusion. See
also [195] and [66] for earlier work on deterministic numerical methods for approximating
diffusion processes. Furthermore, in [217] a diffusion map approach has been suggested
to approximate ∇θ log ρt in the Fokker–Planck equation (6.16) without using an explicit
kernel density estimate for ρt. While this method is computationally attractive, it is not
clear whether such an approximation leads to a particle system fitting the gradient flow
structure (6.2).

Equation (6.30) suggests that a particle system in the equilibrium

Zc = {θ(j)
c }Jj=1 = arg inf

z∈RJ·I
V(z)

can be used to approximate expected values with respect to ρ∗ for J sufficiently large
using the approximation

ρ̂∗(θ) ∝

 1

J

J∑
j=1

k(θ, θ(j)
c )

 exp


J∑
i=1

k(θ, θ
(i)
c )

J∑
l=1

k(θ
(l)
c , θ

(i)
c )

 . (6.35)

More specifically, one first collects a desired number of realisations θ(j),k, k = 1, . . . ,K,

from each of the PDFs k(·, θ(j)
c ), j = 1, . . . , J . These N = J · K realisations are then

assigned with importance weights

W (j),k ∝ exp


J∑
i=1

k(θ(i),k, θ
(i)
c )

J∑
l=1

k(θ
(l)
c , θ

(i)
c )

 .
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The choice of the kernel functions k(θ, θ′) constitutes an important aspect for the compu-
tational implementation of (6.31). We have already mentioned the Gaussian kernel (6.37)
which requires the specification of an appropriate covariance matrix B. Given J samples

θ
(j)
0 , j = 1, . . . , J , from the prior PDF ρ0 with corresponding empirical covariance matrix
C(θ0), we set

B = αC(θ0) (6.36)

for α > 0 appropriately chosen. The choice of the bandwidth α is itself a difficult task

arising in general in kernel density estimation. We also use the θ
(j)
0 ’s as initial conditions

for (6.31) in our numerical experiments. Alternatively, the data-driven kernel (6.38) can

be implemented with θ(j) = θ
(j)
0 and B given by (6.36).

Remark 6.4.5. In our numerical examples we mainly choose the class of kernel functions
which are provided by the Gaussian kernels

k(θ, θ′) = ψ(‖θ − θ′‖2B) (6.37)

where ψ(r) = exp(−r2/2) for some appropriate symmetric positive-definite matrix B ∈
RI×I . We will see that the choice of B is a crucial task in order to tune the approximation
results for the posterior distribution. In particular, the choice of the bandwidth of the
underlying kernel will be the key for tuning this method.

One may also consider data-driven kernel functions such as

k(θ, θ′) =
ψ(‖θ − θ′‖2B)√∑J

j=1 ψ(‖θ(j) − θ′‖2B)
√∑J

j=1 ψ(‖x− θ(j)‖2B)
, (6.38)

which arise from a diffusion map approximation to the semigroup generated by a reversible
diffusion process with invariant measure ρ provided that θ(j) ∼ ρ and B = 2ε IdI for ε > 0
sufficiently small [96, 218].

Remark 6.4.6. In high dimensional setting the statistical curse of dimensionality arises,
see for example [226]. If the parameters have dimension I, then we need an ensemble
size J growing exponentially fast with I. The kernel density estimator approximates the
target distribution in a local neighbourhood of the members in our particle system of size
J and in high dimensions those particle locations will be sparse in the parameter space.
This problem can be counteracted partially by adaptive kernel functions. Adaptive choices
of the kernel functions such as

B = αC(θt) (6.39)

in the Gaussian kernel (6.37) can, for examples, be considered in the definition of the
potential (6.33)) and can help to capture the structure of the target distribution. However,

the computation of the corresponding drift Ft(θ
(j)
t ) = −∇θ(j)V(Zt) becomes, more involved.

Therefore, in our high dimensional numerical example we will consider the adaptive choice
(6.39) but for simplicity suppress the dependence of B on θ in the computation of the drift
(6.32). We note, that this method will no longer be of gradient flow structure (6.2), but
still leads to an effective improvement of the numerical results.
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6.5 Derivative free modification - preconditioning and localisation

6.5 Derivative free modification - preconditioning and local-
isation

We have introduced most of the methods from the previous section with a trivial choice of
preconditioning matrix. We now move to the evolution equations (6.2) with a non-trivial
choice of the matrix A(z) and Σ(z) = 0Nz . More specifically, we choose

A(Zt) = IdJ ⊗ C(θt). (6.40)

which is motivated by the gradient flow structure of the EnKF [140] and ensemble Kalman–
Bucy filter [15]. Further, we refer to [175] for a more general discussion of preconditioned
gradient flows in the context of BIPs. The same preconditioning has recently been consid-
ered for stochastic interacting particle systems with Σ(Zt) =

√
2A(Zt)

1/2 in [83], which we
have discussed in section 6.2. We also note that related ideas have previously appeared in
the Markov chain Monte Carlo literature. See, for example, [150] and references therein.
Application of (6.40) to the Fokker–Planck particle dynamics (6.31) introduced in Sec-
tion 6.4, leads to

d

dt
θ

(j)
t = C(θt)Ft(θ

(j)
t ). (6.41)

Example 6.5.1. We consider the Gaussian approximation (6.21) introduced in Section
6.3 and transform this particle system into the form of (6.41), i.e. we replace (6.21) by

d

dt
θ

(j)
t = −C(θt)∇θΦR(θ

(j)
t ) + θ

(j)
t − θ̄t

= −C(θt)(C
∗)−1(θ

(j)
t − θ̄∗) + θ

(j)
t − θ̄t.

From (6.22), we obtain

C(θt)(C
∗)−1(θ

(j)
t − θ̄∗) ≈ θ

(j)
t − θ̄∗

and, hence,
d

dt
θ

(j)
t ≈ −(θ̄t − θ̄∗)

for t� 1 sufficiently large. This suggests that the preconditioning (6.40) is asymptotically
optimal for linear BIPs, that is, all directions of state space RI and all particles are treated
equally as t→∞.

6.5.1 Localisation

While (6.41) is asymptotically optimal for Gaussian posterior PDFs ρ∗, this is not nec-
essarily the case for multimodal posterior PDFs. In this case, one may use a localised
covariance matrix, as first considered in [150]. In particular, we first define distance-
dependent weights

wjit =
exp

(
− 1

2γ ‖θ
(j)
t − θ

(i)
t ‖2D

)
∑J

l=1 exp
(
− 1

2γ ‖θ
(j)
t − θ

(l)
t ‖2D

) , (6.42)

where γ > 0 is an appropriate scaling parameter and D ∈ RI×I an appropriate symmetric

positive-definite matrix. Each particle θ
(j)
t is assigned the weighted covariance matrix

C(θ
(j)
t ) =

J∑
i=1

wjit

(
θ

(i)
t − θ̄

(j)
t

)(
θ

(i)
t − θ̄

(j)
t

)>
=

J∑
i=1

wjit θ
(i)
t

(
θ

(i)
t

)>
− θ̄(j)

t

(
θ̄

(j)
t

)>
(6.43)
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with localised mean

θ̄
(j)
t =

J∑
i=1

wjit θ
(i)
t . (6.44)

Finally, we replace the evolution equations (6.41) by

d

dt
θ

(j)
t = C(θ

(j)
t )Ft(θ

(j)
t ) (6.45)

for j = 1, . . . , J . We note that (6.45) also fits into the framework of (6.2), where A(Zt) ∈
L(RJ ·I ,RJ ·I) is block-diagonal with its j-th block entry given by C(θ

(j)
t ). Furthermore, it

holds true that
d

dt
V(Zt) ≤ 0

along solutions of (6.45). Finally, we mention that considering γ →∞ leads to wijt = 1/J
in (6.42) and the covariance matrix C(θt) is recovered from (6.43). In the sequel we always
assume that

D = C(θ0). (6.46)

6.5.2 Invariance under affine transformations

We now demonstrate that both of the preconditioned formulations (6.41) and (6.45) are
invariant under affine transformations. For the importance of affine invariant sampling
methods for BIP, we refer [88]. In the context of the general framework (6.2) we define
affine invariance as follows.

Definition 6.5.2. We call an SDE (6.2) invariant under an affine transformation

Zt = MVt + c,

M ∈ L(RJ ·I ,RJ ·I) invertible, if the associated equations of Vt are of the form

dVt = −A(Vt)∇vU(Vt) + Γ(Vt) dWt

with the potential U defined by

U(Vt) = V(MVt + c). (6.47)

We consider only affine transformations defined component-wise, i.e.

θ
(j)
t = Av

(j)
t + b, Vt =

(
(v

(1)
t )>, . . . , (v

(J)
t )>

)>
, (6.48)

with A ∈ RI×I being invertible.

Lemma 6.5.3. The preconditioned formulations (6.41) and (6.45), respectively, are in-
variant under affine transformations of the form (6.48).

Proof. First, we note that (6.46) implies that the weights (6.42) are invariant under (6.48).
Furthermore, we obtain

C(θ
(j)
t ) = C(Av

(j)
t + b) = AC(v

(j)
t )A>
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and

∇v(i)U(Vt) = A>∇θ(j)V(Zt)

with U defined by (6.47). The invariance property follows now from

A
d

dt
v

(j)
t =

d

dt
θ

(j)
t = −C(θ

(j)
t )∇θ(i)V(Zt) = −A

(
C(v

(j)
t )∇v(j)U(Vt)

)
and thus,

d

dt
Vt = A(Vt)∇U(Vt).

Remark 6.5.4. Choosing (6.36) for the Gaussian kernels (6.37) leads to the transformed
potential (6.47) given by

U(v) =
J∑
j=1

{
log

(
1

J

J∑
i=1

k(v(j), v(i))

)
− log ρ∗(Av(j) + b)

}
.

6.5.3 Derivative free formulation

As we have seen in Subsection 3.2.1, one of the attractive features of the EnKF is its
gradientfree formulation. In order to extend this approach to our preconditioned gradient
flow formulations, we recall that

C(θt)∇θ log ρ∗(θ
(j)
t ) = −C(θt)∇θΦR(θ

(j)
t )

= −C(θt)DH(θ)>Γ−1(H(θ
(j)
t )− y)− C(θt)C

−1
0 (θ

(j)
t − θ̄0)).

The key idea of the gradientfree formulations discussed in Subsection 3.2.1 is to replace
C(θt)DH(θ)> with the covariance matrix

Cθp(θt) =
1

J

J∑
i=1

(θ
(i)
t − θ̄t)(H(θ

(i)
t )− H̄t)

>, Ht =
1

J

J∑
i=1

H(θ
(i)
t ).

Recall that

C(θt)DH(θ)> = Cθp(θt) (6.49)

for linear forward maps H. For nonlinear forward maps H this approximation will get
more accurate if the particles are close to each other. Since the particles are representing a
distribution, a localised version of the covariance matrix suggests to improve the accuracy
of the derivative free formulation. Increasing the ensemble size will also improve the
accuracy of the derivative free formulation, and in particular in the localised formulation.

Following the corresponding continuous-time formulations of the ensemble Kalman–Bucy
filter [17, 175], we obtain the following derivative free reformulation of (6.41):

d

dt
θ

(j)
t = −C(θt)∇θ(j)

{
log

(
1

J

J∑
i=1

k(θ
(j)
t , θ

(i)
t )

)
+

J∑
i=1

k(θ
(j)
t , θ

(i)
t )∑J

l=1 k(θ
(l)
t , θ

(i)
t )

}
−
{
Cθp(θt)Γ

−1(H(θ
(j)
t )− y) + C(θt)C

−1
0 (θ

(j)
t −m0)

}
.

(6.50)
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While the derivative free formulation is no longer of gradient flow structure (6.2), the
potential (6.33) still allows us to monitor the behaviour of (6.50) in the large time limit.

We note that (6.49) also holds for our localised covariance matrices C(θ
(j)
t ) with Cθp(θ

(j)
t )

defined by

Cθp(θ
(j)
t ) =

J∑
i=1

wjit (θ
(i)
t − θ̄

(j)
t )(H(θ

(i)
t )− H̄(j)

t )>, H̄
(j)
t =

J∑
i=1

wjit H(θ
(i)
t ).

Hence, the localised formulation (6.45) gives rise to the derivative free formulation

d

dt
θ

(j)
t = −C(θ

(j)
t )∇θ(j)

{
log

(
1

J

J∑
i=1

k(θ
(j)
t , θ

(i)
t )

)
+

J∑
i=1

k(θ
(j)
t , θ

(i)
t )∑J

l=1 k(θ
(l)
t , θ

(i)
t )

}
−
{
Cθp(θ

(j)
t )Γ−1(H(θ

(j)
t )− y) + C(θ

(j)
t )C−1

0 (θ
(j)
t −m0)

}
.

(6.51)

We will demonstrate in Section 6.6 that the localised formulation (6.51) is beneficial in
case of multimodal posterior PDFs ρ∗.

Remark 6.5.5. We emphasise that the localisation strategy proposed here is different
from standard B-localisation employed for ensemble Kalman filters, where the empirical
covariance matrix C(θt) is tempered by a second matrix C such that the preconditioning
matrix becomes C ◦ C(θt) where ◦ denotes the Schur product of two matrices. See, for
example, [80, 186]. Furthermore, the proposed localised strategy can also be applied in the
context of EKI discussed in Chapter 3.

6.5.4 Localised interacting Langevin dynamics

We now derive a correction term for the particle evolution with C(θt) in (6.17) replaced
by the localised empirical covariance matrix (6.43). Following [170], the correction term

is given by ∇θ(j) · C(θ
(j)
t ) and an explicit expression is provided in the following lemma.

Lemma 6.5.6. It holds that

∇θ(j) · C(θ
(j)
t ) = wjjt (I + 1)(θ

(j)
t − θ̄

(j)
t ) +

J∑
i=1

θ
(i)
t

(
θ

(i)
t

)>
∇θ(j)w

ji
t

−
J∑
i=1

θ̄
(j)
t

(
θ

(i)
t

)>
∇θ(j)w

ji
t −

J∑
i=1

θ
(i)
t

(
θ̄

(j)
t

)>
∇θ(j)w

ji
t ,

(6.52)

where θ̄
(j)
t ∈ RI denotes the localised mean defined in (6.44) and wjit ∈ [0, 1] denote the

localisation weights (6.42).

Proof. In order to prove the expression of the correction term, we will make use of the
following identities for vectors (x(j))j=1,...,J in RI :

∇x(j) · (wjjt x(j)(x(j))>) = wjjt (I + 1)x(j) + x(j)(x(j))>∇x(j)w
jj
t

∇x(j) · (wjit x(j)(x(i))>) = wjit x
(i) + x(j)(x(i))>∇x(j)w

ji
t

∇x(j) · (wjit x(i)(x(j))>) = wjit Ix
(i) + x(i)(x(j))>∇x(j)w

ji
t

∇x(j) · (wjit x(i)(x(i))>) = x(i)(x(i))>∇x(j)w
ji
t ,
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where we assume that j 6= i. We apply these identities to the localised covariance matrix
(6.43) yielding

∇θ(j) ·

(
J∑
i=1

wjit θ
(i)
t

(
θ

(i)
t

)>)
= wjjt (I + 1)θ

(j)
t +

J∑
i=1

θ
(i)
t

(
θ

(i)
t

)>
∇x(j)w

ji
t

as well as

∇x(j) ·
(
θ̄

(j)
t

(
θ̄

(j)
t

)>)
= wjjt (I + 1)θ̄

(j)
t +

J∑
i=1

{
θ̄

(j)
t

(
θ

(i)
t

)>
+ θ

(i)
t

(
θ̄

(j)
t

)>}
∇x(j)w

ji
t ,

which implies (6.52).

In order to compute the correction term (6.52) we have to compute∇θ(j)w
ji
t for the weights

given by (6.42):

∇x(j)w
ji
t =

wjit
γ
D−1

−(θ
(j)
t − θ

(i)
t ) +

∑J
l=1 exp

(
− 1

2γ ‖θ
(j)
t − θ

(l)
t ‖2D

)
(θ

(j)
t − θ

(l)
t )∑J

l=1 exp
(
− 1

2γ ‖θ
(j)
t − θ

(l)
t ‖2D

)


=
wjit
γ
D−1

{
−(θ

(j)
t − θ

(i)
t ) +

J∑
l=1

wjlt (θ
(j)
t − θ

(l)
t )

}

=
wjit
γ
D−1

{
θ

(i)
t − θ̄

(j)
t

}
.

We are now ready to formulate corrected evolution system for the interacting Langevin

diffusion model with localised covariance matrix by adding the drift ∇θ(j) · C(θ
(j)
t )

dθ
(j)
t = −C(θ

(j)
t )∇ΦR(θ

(j)
t ) dt+∇θ(j) · C(θ

(j)
t ) dt+

√
2C(θ

(j)
t ) dW

(j)
t . (6.53)

Similar as for the particle system (6.19), one can derive the joint density of the particle
system evolving through (6.53), see [170]

Lemma 6.5.7. The joint density corresponding to the particle system evolving by (6.53)
satisfies the Fokker–Planck equation given by

∂tϕt = ∇z ·
(
ϕtA∇z

δKL(ϕt | ϕ∗)
δϕt

)
with A ∈ L(Z,Z) a block diagonal matrix with its j-th block entry given by C(θ

(j)
t ) and

ϕ∗(z) :=
∏J
j=1 ρ

∗(θ(j)).

Hence by the Kalman–Wasserstein gradient flow structure [83, 170] in the joint distribution
ϕt, the finite-size particle system (6.53) can be used in the long-time limit to approximate
i.i.d. samples from ρ∗.
We can further formulate derivative free variants of both formulations (6.19) and (6.53),

respectively, by straightforward replacement of C(θt)DH(θ
(j)
t )> by Cθp(θt), see [83], or

Cθp(θ
(j)
t ) respectively. We obtain the following derivative free formulation

dθ
(j)
t = −

{
Cθp(θt)Γ

−1(H(θ
(j)
t )− y) + C(θt)C

−1
0 (θ

(j)
t −m0)

}
dt

+ ∇θ(j) · C(θt) dt+
√

2C(θt) dW
(j)
t .

(6.54)
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and in its localised formulation

dθ
(j)
t = −

{
Cθp(θ

(j)
t )Γ−1(H(θ

(j)
t )− y) + C(θ

(j)
t )C−1

0 (θ
(j)
t −m0)

}
dt

+ ∇θ(j) · C(θ
(j)
t ) dt+

√
2C(θ

(j)
t ) dW

(j)
t .

(6.55)

We note that the presented derivative free and localised formulations are only based on
heuristic derivations and we did not provide any theoretical verification.

6.6 Numerical results

We will apply the proposed methods to a sequence of numerical examples with increasing
challenge ranging from low to high dimensional and unimodal to multimodal examples.

6.6.1 2-dimensional unimodal example

Our first example is nearly Gaussian, which was originally presented in [79] and later also
used in [83, 99].

More specifically, we consider the following one-dimensional elliptic boundary-value prob-
lem

− d

ds

(
exp(θ1)

d

ds
p(s)

)
= 1, s ∈ [0, 1],

with boundary condition p(0) = 0 and p(1) = θ2. An explicit solution of this boundary-
value problem in the parameters θ = (θ1, θ2)T ∈ R2 is given by

p(s, θ) = θ2s+ exp(−θ1)

(
−s

2

2
+
s

2

)
and we define the forward map in (2.2) by

H(θ) = (p(s1, θ), p(s2, θ))
>,

this means, we assume that noisy measurements of p(·, θ) are given at locations s1 = 0.25
and s2 = 0.75.

Furthermore, we assume Gaussian measurement errors Ξ ∼ N (0,Γ) with Γ = 0.01 · Id2,
Id2 ∈ R2×2 the identity matrix, and a Gaussian prior ρ0 = N (0, C0) with C0 = 100·Id2. We
draw a reference parameter θ† ∼ ρ0 in order to construct the data and set the observation
to y = H(θ†) + ξ†, where ξ† is a realisation of the measurement error. Our numerical
results are based on the realisations θ† = (0.0865,−0.8157)> and y = (−0.0173,−0.573)>.

To solve the ODE representing the deterministic Fokker–Planck dynamics (6.50) we apply
the MATLAB solver ode45 and we have implemented an Euler–Maruyama scheme with
step-size ∆t = 0.0001 for the interacting Langevin sampler (6.55). The preconditioned
Fokker–Planck dynamics is implemented using Gaussian kernels (6.37) with B = αC0 and
α = 0.05.

In Figure 6.1 we show the posterior approximation through the resulting particle sys-
tems with J = 200 particles, which were generated from the deterministic Fokker–Planck
dynamics as well as the interacting Langevin sampler. One finds that both methods ap-
proximate the posterior distribution well.

144



6.6 Numerical results

(a) exact
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Figure 6.1: Approximations to the posterior PDF from interacting Fokker–Planck dynam-
ics: b) kernel density estimate from deterministic Fokker–Planck dynamics, c)
particle system from interacting Langevin sampler. The exact posterior PDF
is displayed in panel a).

Kernel density estimates for the target distribution for different choices of α are displayed
in Figure 6.2 from which it can be seen that the performance of the deterministic Fokker–
Planck dynamics depends crucially on the kernel parameter α in (6.36). The effect of the
different choices of α is also demonstrated in the time evolution of the potential V from
(6.33), which can be found in Figure 6.3. For too small choices of α the resulting density
underestimates the spread, whereas too large α lead to an overestimated spread. Overall,
the choice of the scaling parameter α is crucial and quite sensitive, which is a general
challenge in kernel density estimation.
We conclude that both the deterministic and stochastic interacting particle formulations
work well for this simple 2-dimensional example. While the interacting Langevin dynamics
is easier to implement, the Fokker–Planck dynamics immediately results in a kernel density
estimate for the posterior distribution and its performance can be monitored through the
time evolution of the potential energy (6.33).

6.6.2 2-dimensional bimodal example

To numerically test the effect of the localisation introduced in Subsection 6.5.1, we next
consider a 2-dimensional bimodal example resulting from the nonlinear forward map

H : R2 → R, H(θ) = (θ1 − θ2)2.

We assume a Gaussian prior with mean zero and covariance C0 = Id2 ∈ R2×2 and Gaus-
sian measurements errors Ξ ∼ N (0,Γ) with Γ = Id2. We again draw a reference pa-
rameter θ† ∼ ρ0 and construct observation y = H(θ†) + ξ†, where ξ† is a realisation of
the random measurement errors Ξ. Our numerical results are based on the realisation
θ† = (−1.5621,−0.0021)> and y = 4.2297.
We implement the preconditioned version of the Fokker–Planck based particle system
(6.31). Furthermore, we also consider its derivative free formulation (6.50) as well as
the localised formulation (6.51). We compare the results to those from the corresponding
interacting Langevin sampler (6.19), its derivative free formulation (6.54), and its localised
formulation (6.55), respectively.
We again use the MATLAB solver ode45 to time-step the deterministic Fokker–Planck dy-
namics (6.50) and the Euler–Maruyama scheme with step-size ∆t = 0.0001 for the inter-

145



6 Computational aspects for particle based sampling methods
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Figure 6.2: Approximations to the posterior PDF from deterministic Fokker–Planck dy-
namics for different values of the kernel parameter α: a) α = 0.0005, b)
α = 0.005, c) α = 0.05, d) α = 0.5.
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Figure 6.3: Time evolution of the potential function V for different choices of α.

acting Langevin sampler (6.55). We set our Gaussian kernel (6.37) with B = αP0 and
α = 0.01 for the preconditioned Fokker–Planck dynamics. The weights for the localised
formulation (6.42) are computed with γ = 0.5 and D = C0 ∈ R2×2. All simulations use
J = 200 particles.

In Figure 6.4 we present the kernel density estimates resulting from the preconditioned
Fokker–Planck dynamics, which demonstrates that the particle system is representing the
target density. While the derivative free formulation (6.50) is getting pushed to one of the
peaks, the localised formulation (6.51) leads to an effectively improved approximation of
the posterior density. The time evolution of the potential (6.33) along the three different
interacting particle approximations is displayed in Figure 6.5.

Further, we present the variational derivative of the RKHS Kullback–Leibler divergence
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Figure 6.4: Approximations to the posterior PDF from interacting Fokker–Planck dynam-
ics: a) exact posterior PDF, b) fitted PDF from preconditioned dynamics using
exact gradients, c) fitted PDF from preconditioned gradient-free dynamics, d)
fitted PDF from localised gradient-free dynamics.

Figure 6.5: Time evolution of potential function V for different implementations of Fokker–
Planck particle dynamics: (blue) preconditioned dynamics using exact gradi-
ents, (red) preconditioned gradient-free dynamics, (green) localised gradient-
free dynamics.

(6.28) resulting from the equilibrium particle positions {Xi
c} as well as the weight function

W (θ) = exp


J∑
i=1

k(θ, θ
(i)
c )

J∑
l=1

k(θ
(l)
c , θ

(i)
c )
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(compare (6.35)) corresponding to the equilibrium particle positions in Figure 6.6. We find
that both the exact gradient method as well as the localised derivative free formulation
are leading to a variational derivative, which is nearly constant in the region of state space

covered by the equilibrium particle positions {θ(j)
c }.

Figure 6.6: Variational derivative (left) and implied weights (right) of the RKHS Kullback–
Leibler divergence for different implementations of Fokker–Planck particle dy-
namics: (a)-(b) preconditioned dynamics using exact gradients, (c)-(d) pre-
conditioned gradient-free dynamics, (e)-(f) localised gradient-free dynamics.

We obtain results, which are qualitatively similar, from the corresponding implementations
of the interacting Langevin dynamics. The estimate can be seen in Figure 6.7. We find
again a focus of the derivative free formulation into the direction of one of the peaks.
However, the localisation highly improves the approximation of the posterior distribution.
In Figure 6.8 we present the kernel density estimate resulting from the localised determin-
istic Fokker–Planck dynamics (6.51), where we consider different choices of the localisation
scaling γ > 0. For small choices of γ we can see a too strong effect of the localisation
such that the particles are moving slowly, as the particles do not find nearby particles to
interact with. On the other hand, for too large scaling parameter γ, the particles start
to concentrating on one of the two peaks, as the localisation effect is too weak and the
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Figure 6.7: Approximations to the posterior PDF from interacting Langevin dynamics: a)
exact posterior PDF, b) particle system from preconditioned dynamics using
exact gradients, c) particle system from preconditioned gradient-free dynamics,
d) particle system from localised gradient-free dynamics.

gradient approximation of the forward model is inaccurate.
We compare the time evolution of the potential (6.33) for different scaling localisation
parameter γ in Figure 6.9, where we can see that estimate for γ = 10 is leading to a lower
value of the potential compared to the estimate for γ = 0.1 with γ = 1 being optimal. The
reason for this is that while the estimate for γ = 10 represents one of the peaks nearly
perfectly, but ignoring the second peak, the two other estimates approximates both peaks
fairly well.
To conclude, we have seen the effectiveness of the localised derivative free formulations of
both the deterministic and the stochastic methods. However, one has to choose carefully
the parameter γ as smaller values of γ require larger ensemble sizes J in order to provide
faithful gradient approximations.

6.6.3 Scalability in high dimensions

In the following we consider a simple linear Gaussian toy example in order to study the
behavior of the deterministic Fokker–Planck particle system (6.50) based on the RKHS
approach. To do so, we consider a Gaussian process GP (0, (−∆)τ ) represented by the KL
expansion

u(s, x) =
∞∑
k=1

θkϕk(s), (6.56)

where ∆ denotes the Laplacian operator over D = [0, 1] equipped with Dirichlet boundary
conditions, θ = (θk)k∈N is a sequence of independent Gaussian distributed random vari-
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Figure 6.8: Approximations to the posterior PDF from interacting Fokker–Planck dynam-
ics: a) γ = 0.1, b) γ = 1, c) γ = 4, d) γ = 10.

Figure 6.9: Time evolution of the potential function V for different choices of γ.

ablesN (0, νk) with νk = k−2τ and ϕk(s) =
√

2π sin(2πs), see Section 2.2.4 for more details.
We consider the inverse problem of recovering the coefficients θ = (θ1, . . . , θI)

> ∈ RI of one
observed sampled path of the Gaussian process. The KL expansion will be truncated at
index I, and the state space of the Gaussian process will be discretized on a uniform grid
Dl ⊂ [0, 1] with mesh size h = 2−l. We will analyze the performance of the deterministic
Fokker–Planck dynamics (6.50) for increasing the dimension in both I and l. We set a prior
to X0 ∼ N (0, C0) with C0 ∈ RI×I being a diagonal matrix with entries νk, k = 1, . . . , I
and τ = 1. For fixed I and fixed l, we can write the problem as linear inverse problem
in the form of (2.2) where the forward model is defined by h(·) = L·, where the k − th
column of L = LI,l ∈ R2l×I consists of (ϕk(s1), . . . , ϕ(s2l)

>, si = i · h, i = 1, . . . 2l. The

reference data y will be constructed by drawing θ†k ∼ N (0, νk) and computing yI,l = LI,lθ
†
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with θ† = (θ†1, . . . , θ
†
I)
>. We consider two settings:

• In the first setting we keep the truncation of the KL expansion fixed to I = 4 and
increase the discretization of the state by choosing l ∈ {4, 6, 8}.

• In the second setting we increase the truncation of the KL expansion by choosing
the index I ∈ {4, 6, 8} and keeping the discretization of the state fixed to l = 6.

In our numerical results, we initialize the particle system by an i.i.d. sample of N(0, C0)
and solve

d

dt
θ

(i)
t = Pt · Ft(θ(i)

t )

for F defined by (6.32), where we consider Gaussian kernels (6.37) with different choices
of B. In particular, we will choose B such that it scales with the dimension I and the
ensemble size J in order to obtain good approximation results, i.e. we test

B1 =
cδ
Jδ

diag((C0)ii), B2 =
cδ
Jδ

diag((C∗)ii) and B3 =
cδ
M δ

diag((C(θt))ii),

where we define

δ =
1

I + 4
and cδ =

(
4

I + 2

)δ
. (6.57)

These choices of kernels correspond to the product of univariate kernels in each dimensions
with optimal bandwidth for gaussian kernels minimizing the asymptotic mean integrated
squared error [208, Section 6.3.1]. While in the choice of B2 we assume to have access
to the theoretical variance σ2

i = (C∗)ii of each component, we are using approximation
σ̂2
i = (C0)2

ii for the choice B1 and σ̂2
i = (C(θt)

xx)ii.
Testing these choices of kernels, we observe that for B1 the approximation results are
getting worse if the prior covariance C0 is far away from the target covariance C∗ as
σ̂2
i = (C0)2

ii is overestimating the variance of the posterior. For the choice B2 we obtain
high accurate approximation results, however, in practical situations it is an infeasible
choice as the true covariance is typically unknown. The third choice B3 corresponds to
the adaptive kernel choice introduced in Remark 6.4.6. This choice helps by approximating
C∗ through the particle system and updating the underlying RKHS adaptively. In our
numerical results, we observe for increasing dimension I but fixed l that the variance σi
in each component gets underestimated as the particle system collapses, such that the
resulting approximation fails for increasing I. To encounter this problem, we introduce a
time-depending variance inflation for B3, i.e. we consider

Bt
3 =

dδ
Jδ

diag((C(θt))ii +
1

1 + t
· (C0)ii).

In the limit for t approaching infinity, we obtain again the optimal bandwidth for the
product kernel, but we also obtain a better approximation result of σ̂i. However, we still
observe, that we have to increase the ensemble size J as I increases.
To illustrate our numerical results, we have created for both settings a table where we
compare the trace of the estimated covariance for the posterior distribution. In Table 6.1
we keep I = 4 fixed and increase l from 4 to 8, whereas in Table 6.2 we keep l = 6 fixed
and increase I from 4 to 8. The covariances for the Tables 6.1-6.2 have been estimated
by solving (6.50) up to a fixed time of T = 1000 and producing samples according to
(6.35) using the final particle system. The ODE has been solved again with the MATLAB
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l \ J 50 100 200 theoretical

4 0.754 0.707 0.668 0.396
6 B1 0.703 0.653 0.606 0.151
8 0.728 0.657 0.605 0.046

4 0.3873 0.404 0.399 0.396
6 B2 0.151 0.152 0.151 0.151
8 0.046 0.046 0.046 0.046

4 0.333 0.371 0.386 0.396
6 Bt

3 0.130 0.142 0.148 0.151
8 0.041 0.045 0.045 0.046

Table 6.1: Trace of the estimated covariance in comparison for the three different choices
of B ∈ {B1, B2, B

t
3} and l ∈ {4, 6, 8} and fixed I = 4.

I \ J 50 100 200 theoretical

4 0.723 0.658 0.604 0.151
6 B1 0.869 0.795 0.750 0.191
8 0.994 0.931 0.873 0.217

4 0.151 0.151 0.152 0.151
6 B2 0.180 0.186 0.188 0.191
8 0.206 0.207 0.210 0.217

4 0.143 0.154 0.156 0.151
6 Bt

3 0.093 0.126 0.156 0.191
8 0.078 0.086 0.099 0.217

Table 6.2: Trace of the estimated covariance in comparison for the three different choices
of B ∈ {B1, B2, B

t
3}, I ∈ {4, 6, 8} and fixed l = 6.
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Figure 6.10: Approximations to the unknown parameter from the deterministic Fokker–
Planck dynamics with B = B2 for different choices of l ∈ {4, 6, 8}, J ∈
{50, 100, 200} and fixed I = 4.

solver ode45. For keeping the size I of the parameter fixed, we observe, that we estimate
the trace of the posterior covariance closely exact for B2 and Bt

3 independently of the
choices of l ∈ {4, 6, 8}, while B1 overestimates for each choice. In contrast, we find that
for fixed discretization h = 2−l, l = 6 the choice of Bt

3 needs to include a larger ensemble
size for increasing parameter dimension in order to estimate the trace of the posterior
covariance correctly. The choice B2 performs again very well, whereas the choice B1

fails. These results can also be observed in Figure 6.10-Figure 6.11 for the scaling in l
and in Figure 6.12-Figure 6.13 for the scaling in I, where we compare the evaluation of
the KL expansion (6.56) of the kernel based methods to the evaluation of the posterior
distribution. We can see again that for the choice Bt

3, the sample size has to be increased
for increaing I, while for fixed I and increasing l the obtained approximation results are
stable.

In summary, we observe that the deterministic Fokker–Planck particle system is a promis-
ing method as long as it is possible to choose RKHS representing the posterior distribution
well. If there is no information available about the covariance structure of the posterior,
it is a challenging task to choose a satisfying kernel.
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Figure 6.11: Approximations to the unknown parameter from the deterministic Fokker–
Planck dynamics with B = Bt

3 for different choices of l ∈ {4, 6, 8}, J ∈
{50, 100, 200} and fixed I = 4.

6.6.4 High dimensional example

We again consider the one-dimensional elliptic boundary-value problem from Subection
4.4.2 and 5.4.2, which is

−∇ · (exp(u)∇p) = f, x ∈ D = (0, 1),

p = 0, x ∈ ∂D
(6.58)

for given source term f = 1 and unknown permeability a = exp(u) ∈ L∞(D). Recall that
p ∈ H1

0 (D) subjected to zero Dirichlet boundary conditions. Inspired by [83] we infer the
coefficients of KL expansion of u, where we assume a Gaussian prior N (0, (−∆)−τ ). Thus,
we can write u ∼ N (0, (−∆)−τ ) a.s. through the KL expansion (6.56)

where θ = (θk)k∈N is again a sequence of independent Gaussian distributed random vari-
ables N (0, νk) with νk = k−2τ and ϕk(s) =

√
2π sin(kπs).

The inverse problem is to recover the coefficients (θk)k∈N corresponding to the KL ex-
pansion (6.56) given discrete noisy observations y of (6.58), y = (O ◦ S)(u(s, θ)) + ξ,
where S : L∞([0, 1]) → H1

0 ([0, 1];R) denotes the solution operator of (6.58) and O :
H1

0 ([0, 1];R) → RK denotes the observation operator, z(·) ∈ H1
0 ([0, 1];R) 7→ O(z(·)) =

(z(s1), . . . , z(sK))>, si = i
K , i = 1, . . . ,K.

We will truncate the KL expansion (6.56) at index I = 32, such that the unknown param-
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Figure 6.12: Approximations to the unknown parameter from the deterministic Fokker–
Planck dynamics with B = B2 for different choices of I ∈ {4, 6, 8}, J ∈
{50, 100, 200} and fixed l = 6.

eters are given by θ = (θ1, . . . , θI)
> ∈ RI and we define the forward map H by

H : RI → RK , with θ 7→ u(·, θ) 7→ (O ◦ S)(u(·, θ)).

For our numerical results we replace S by an numerical solution operator for (6.58) on
the grid D ⊂ [0, 1] with mesh size h = 2−8 and restrict u(·, θ) to the computational grid
sl = l h, l = 1, . . . , 28 − 1.
We set the prior to Θ0 ∼ N (0, C0), with C0 ∈ RI×I being a diagonal matrix with entries
νk, k = 1, . . . , I and τ = 1.5. We assume the measurement errors to be zero Gaussian,
Ξ ∼ N (0,Γ) with Γ = 0.0001 · IdK and the resulting inverse problem is of the form (2.2).

The reference data y has been constructed by drawing θ†k ∼ N (0, νk) for k ≤ 4 and set

θ†k = 0 for k > 4 and realized measurement error ξ† ∼ N (0,Γ) in order to compute
y = H(θ†) + ξ†. In our numerical experiments, we truncate the KL expansion (6.56) at
I = 32 and take K = 16 equidistant observation points of the solution p(s) of (6.58).
We again use the MATLAB solver ode45 to solve the deterministic Fokker–Planck dynamics
(6.50) and implement a Euler–Maruyama scheme this time with an adaptive step-size
∆tk ≤ 0.1/βk for the interacting Langevin sampler (6.55). Here, βk is chosen such that

βk = max{‖P xhtk R
−1(h(X

(i)
tk

)− y) + P xxtk P
−1
0 (X

(i)
tk
− x̄0)‖, i = 1, . . . ,M}.
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Figure 6.13: Approximations to the unknown parameter from the deterministic Fokker–
Planck dynamics with B = Bt

3 for different choices of I ∈ {4, 6, 8}, J ∈
{50, 100, 200} and fixed l = 6.

The Gaussian kernel (6.37) now depends on the current empirical covariance matrix, that
is, Bt = cδ/J

δ diag((C(θt)
xx)ii + 1

1+t(C0)ii), with δ and cδ defined in (6.57), for the pre-
conditioned Fokker–Planck dynamics. We again inflate the Bt of order 1/t.
We will consider similar summary statistics to the high dimensional example in [83], as
our setup is quite similar.
We run both the deterministic Fokker–Planck dynamics (6.50) as well as the interacting
Langevin dynamic (6.54) up to a fixed time of T = 100 and construct an empirical approx-
imation to the posterior X | y by a sample of size 512 for both methods, in order to analyse
the numerical results. We use the particle system of the deterministic Fokker–Planck dy-
namics at final time and produce samples according to (6.35). For the Langevin sampler,
we collect the required total number samples using the temporal evolution paths of the
particles. Therefore, we add the current ensemble of particles every 1000 time steps to the
already collected samples once the dynamics can be considered as equilibrated. As com-
parison we approximate the posterior by a Random Walk Metropolis Hastings algorithm
with pCN proposal [54], i.e. we propose for given state θk

θ̂k+1 ∼ N (
√

1− s2θk, s
2C0),

where s is a step size parameter. We set the step size to s = 0.07, which results in an
acceptance rate of approximately 25% as discussed in Subsection 2.2.5.
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As additional experiment we test a sequential Monte Carlo method (SMC) [129], which
we combine with the interacting Langevin dynamic (6.54). In particular, we initialize by

J particles (θ
(i)
0 ) drawn from ρ0, compute weights W

(i)
0 = 1/J, i = 1, . . . , J and proceed

as follows for n = 1, . . . , N :

• Importance weights: update weights by W
(i)
n ∝ W

(i)
n−1 · ρn, with

J∑
i=1

W
(i)
n = 1 and

ρn(x) = n
N ‖y −H(x)‖2Γ.

• If the effective sample size (
J∑
i=1

(W
(i)
n )2)−1 < Jtol, we resample according to the

weights (W
(i)
n ).

• we update the particles θ
(i)
n−1 7→ θ

(i)
n by running the interacting Langevin dynamic

with scaled drift into direction of the data initialized by θ
(i)
n−1 and up to time tn:

dθ
(j)
t = −

{ n
N
Cθp(θt)Γ

−1(H(θ
(j)
t )− y) + C(θt)C

−1
0 (θ

(j)
t −m0)

}
dt

+ ∇θ(j) · C(θt) dt+
√

2C(θt) dW
(j)
t .

We compare the SMC with the interacting Langevin dynamic (6.54) by running both
methods up to a final time T = 0.5 with J = 512 particles. The SMC method will be
simulated for N = 250, with tn = 0.002, n = 1, . . . , N and Jtol = 256, such that it runs
up to final time T = 0.5, too.
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Figure 6.14: Time evolution of the potential function V for different choices of M (a).

Figure 6.14 shows the time evolution of the potential function (6.33) for different choices
of ensemble sizes J . There is no crucial sensitivity on those parameters detectable as
all parameter choices result in quite a similar behaviour. In contrast to the temporal
behaviour of the potential, we can see significant differences in the particle distributions
by viewing scatter plots.
Figure 6.15 shows samples resulting from different choices of ensemble size J , which shows
that a large ensemble size is necessary to produce good approximations to the posterior
distribution.
For the Langevin sampler we can see the effect of the introduced correction term (6.20) for
small ensemble sizes M . Without correction term the resulting sample without correction
concentrates in a small area, which can be seen from Figure 6.16, whereas Figure 6.17 shows
that the resulting sample with corrected dynamics approximates the posterior distribution
quite well already for an ensemble size M = 16.
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Figure 6.15: Approximations to two different marginals of the posterior PDF from deter-
ministic Fokker–Planck dynamics for different values of the ensemble size J :
a) - b) J = 128, c) - d) J = 256, e) - f) J = 512.

This difference also occurs in the time evolution of the spread of the ensemble

et :=
1

M

J∑
j=1

|θ(j)
t − θ̄t|2,

which can be seen in Figure 6.18. The particles of the ensemble stay spread for different
choices of ensemble sizes under the corrected dynamics, while we can see again the con-
centration effect for the uncorrected case. Further, we compare the resulting parameter
estimation for both the deterministic as well as the stochastic method. The plot on the
left in Figure 6.19 shows the resulting estimate for the deterministic version, that is, the
evaluation of the truncated KL expansion (6.56)

u(j) = u(·, θ(j)) =

I∑
k=1

θ
(j)
k ϕk(·).

Similarly, we can see the estimates resulting from the stochastic method in the plot on
the right. While the stochastic method fits the mean corresponding to the Random Walk
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Metropolis Hastings algorithms fairly well, the deterministic method seems to need a
higher ensemble size to find the posterior distribution.
We close the discussion by analyzing the effect of the incorporation of the SMC method
in the interacting Langevin dynamics. We find that the inclusion of the resampling can
accelerate the convergence to the posterior distribution. This can firstly be seen in the
spread over time, Figure 6.20, where we see that the occuring resampling is shifting the
particle system into direction of the posterior distribution. In Figure 6.21 we see that
already after final time T = 0.5 the SMC method produces very good approximations of
the posterior distribution, while the interacting Langevin dynamics still spreads too much.
This result can also be seen in the parameter estimation in Figure 6.22.
We conclude by a summary of the numerical experiment. For the deterministic Fokker–
Planck dynamics we have seen the crucial dependency of the choice of the kernel. Here
it turned out that it is beneficial to introduce a timedependent kernel Bt, while in the
low dimensional examples it was enough to tune the parameter α for the initial kernel
covariance B = αC(θ0). Further, we have demonstrated the improvement of the interact-
ing Langevin dynamics through the correction term (6.20). While it is enough to chose
a small ensemble size for the corrected sampler, we have to increase the ensemble size to
J � I in the method without correction.
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Figure 6.16: Approximations to two different marginals of the posterior PDF from in-
teracting Langevin dynamics without correction for different values of the
ensemble size J : a) - b) J = 16, c) - d) J = 64.
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Figure 6.17: Approximations to two different marginals of the posterior PDF from inter-
acting Langevin dynamics with correction for different values of the ensemble
size J : a) - b) J = 16, c) - d) J = 64.
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Figure 6.18: Comparison of the spread of the ensemble from interacting Langevin dynam-
ics with and without correction over time: a) without correction, b) with
correction.

Figure 6.19: Approximations to the unknown parameter from: a) deterministic Fokker–
Planck dynamics, b) interacting Langevin dynamics.
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Figure 6.20: Comparison of the spread of the ensemble from the sequential Monte Carlo
method and the interacting Langevin dynamics.
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Figure 6.21: Approximations to two different marginals of the posterior PDF from se-
quential Monte Carlo method fixed ensemble size J = 512: a)-b) interacting
Langevin dynamics, c)-d) sequential Monte Carlo method

Figure 6.22: Approximations to the unknown parameter from: a) interacting Langevin
dynamics, b) sequential Monte Carlo method.
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7 Machine learning application in inverse
problems

In this chapter, we consider different applications of machine learning in inverse prob-
lems. The first application presented in Section 7.1 is about a regularization parameter
choice based on data-driven learning. The basic idea is to consider a bilevel optimization
problem, where the upper-level problem is given by a risk measure between the unknown
parameter and the regularized solution, whereas the lower-level problem is the correspond-
ing regularized optimization problem for a given regularization parameter. We formulate
the method as an empirical risk minimization problem and provide both offline and online
consistency results for the large training data limit. In the second Section 7.2, we incor-
porate neural networks into the setting of inverse problems. The complex forward model
will be replaced by a neural network surrogate model, which will be informed through
the underlying physics in the model. We then train the neural network and the unknown
parameter in an one-shot fashion. Furthermore, we provide the connection to the Bayesian
approach for inverse problems and are able to apply the EKI method.

7.1 Data driven regularization

This section is devoted to provide some theoretical verification for the introduced data-
driven regularization within EKI in Section 5.3.1. We formulate the task of finding the best
possible regularization parameter for general inverse problems of the form (2.2) as empirical
risk minimization problem which we analyze in the large data behavior. We provide
both offline and online consistency results for increasing size of training data. In the
offline setting we analyze the empirical risk minimization problem itself and quantify the
accuracy of the corresponding optimal solution, while in the online setting we formulate the
stochastic gradient descent (SGD) method in order to reduce the associated computational
costs. In both settings, we firstly provide an abstract but general consistency result,
which can be applied to general nonlinear inverse problems with general regularization
function, and secondly we verify the presented results for linear problems under Tikhonov
regularization.

We recall, that for general inverse problems of the form (2.2), following Definition 2.1.4
we aim to minimize the Tikhonov regularized loss function

Tκ(θ) =
1

2
‖H(θ)− y‖2 + ϕκ(θ),

where κ > 0 is the regularization parameter and ϕκ : X → R+ is the regularization
function. While our general results, can be extended to general regularization function
ϕκ, we provide verification of the presented results for Tikhonov regularization.
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As we have seen in the discussion in Section 2.1 and in Chapter 5, the choice of the
regularization parameter κ > 0 crucially effects the resulting solution of the underlying
inverse problem. In order to choose the regularization parameter within inverse problems,
a recently proposed method relies on bilevel optimization [36, 47, 68, 63, 104].

It seeks to learn the regularization parameter in a variational manner, and it can be
viewed as a data-driven regularization [10]. To formulate this approach, we view unknown
parameter Θ ∈ X and the data Y ∈ Y in the model (2.2) as a jointly distributed random
variable with distribution Q(Θ,Y ). To find the best possible regularization parameter of
the model (2.2), the bilevel minimization seeks to solve

κ∗ ∈ arg min
κ>0

F (κ), F (κ) = EQ(Θ,Y )
[LX (θκ(Y ),Θ)], (upper level)

θκ(Y ) := arg min
θ∈X

LY(H(θ), Y ) + ϕκ(θ), (lower level)
(7.1)

where LX : X ×X → R+ is some metric in the parameter space X and LY : Y ×Y → R+

some metric in the observation space. The upper level problem seeks to minimize the
distance between the unknown parameter Θ and the regularized solution corresponding
to its data Y , which is computed through θκ(Y ) in the lower level problem. We have
assumed here, that for the lower level problem there exists unique solutions. To solve
this (stochastic) bilevel optimization problem, we assume that we have access to training
data, given through samples of (Θi, Yi) ∼ µ(Θ,Y ), and the function F in (7.1) can be
approximated by its empirical Monte–Carlo approximation.

Holler et. al [104] consider bilevel optimization for PDE based inverse problems with
Tikhonov regularization. They provide theory which suggests existence of solutions and
formulate their problem as an optimal control problem. Learning of regularization param-
eters of Tikhonov regularization have also been discussed in [47, 214]. The work of De
los Reyes, Schönlieb [36, 68, 155, 63] and coauthors considered the application of bilevel
optimization to denoising and deblurring, where non-smooth regularization is used such as
total variation and Bregman regularization. The latter forms of regularization are useful
in imaging as they preserve non-smooth features, such as edges and straight lines.

We start our discussion in Section 7.1.1 by formulating the empirical risk minimization
problem and provide offline consistency results for recovery of the regularization parame-
ter. In section 7.1.2 we formulate the stochastic gradient descent method for the bilevel
optimization approach in order to quantify the regularization parameter online. The dis-
cussion on bilevel learning will be closed with several numerical examples in Section 7.1.3.

7.1.1 Regularization parameter offline recovery

In this section, we discuss how to use offline bilevel optimization to recover regularization
parameters. We also show the solution is statistically consistent under suitable conditions.

Offline bilevel optimization

As stated before, in regularization parameter learning by bilevel optimization we view
the unknown parameter Θ and the data Y as a jointly distributed random variable with
distribution Q(Θ,Y ), see e.g. [10] for more details. Recall the bilevel optimization problem
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is given by

κ∗ = arg min
κ∈Λ

F (κ), F (κ) = EQ(Θ,Y )
[LX (θκ(Y ),Θ)], (upper level)

θκ(Y ) := arg min
θ∈X

Ψ(κ, θ, Y ), Ψ(κ, θ, y) := LY(H(θ), y) + ϕκ(θ), (lower level)

where LX denotes a discrepancy function in the parameter space X := RI and LY denotes
a discrepancy function in the observation space Y := RK . The function ϕκ(θ) represents
the regularization with parameter κ ∈ Λ. Here, Λ represents the range of regularization
parameters which often come from physical constraints. For simplicity, we assume all
the functions here are continuous and integrable, and so are their first and second order
derivatives with respect to κ.
In general, we do not know the exact distribution Q in the upper level of (7.1). However,
we assume to have access to training data (θ(j), y(j))nj=1, arising as i.i.d. samples from
Q(Θ,Y ). Using these data, we approximate F in (7.1) by its empirical average:

F̂n =
1

n

n∑
j=1

LX (θκ(y(j)), θ(j)). (7.2)

Solving this problem leads to a data-driven estimator of the regularization parameter,

κ̂n = arg min
κ∈Λ

F̂n,

θκ(y(j)) = arg min
θ∈X

LY(H(θ), y(j)) + ϕκ(θ).
(7.3)

This method of estimation is often known as empirical risk minimization in machine learn-
ing [210]. We refer to this is as ”offline” since minimizing F̂n involves all n data points at
each algorithmic iteration. With κ̂n being formulated, it is of natural interest to investi-
gate its convergence to the true parameter κ∗, when the sample size increases. Consistency
analysis is of central interest in the study of statistics. In particular, if κ̂n is the global
minimum of F̂n, we formulate the following theorem 5.2.3 [23] from Bickel and Doksum in
our notation

Theorem 7.1.1. Suppose for any ε > 0

P(sup{κ ∈ Λ, |F̂n(κ)− F (κ)|} > ε)→ 0,

as n → ∞, κ̂n is the global minimizer of F̂n, and κ∗ is the unique minimizer of F , then
κ̂n is a consistent estimator.

In more practical scenarios, the finding of κ̂n relies on the choice of optimization algo-
rithms. If we are using gradient based algorithms, such as gradient descent, κ̂n can be
the global minimum of F̂n if F̂n is convex. More generally, we can only assume κ̂n to be
a stationary point of F̂n, i.e. ∇F̂n(κ̂n) = 0. In such situations, we provide the following
alternative tool replacing Theorem 7.1.1:

Proposition 7.1.2. Suppose F is C2, κ∗ is a local minimum of F , and κ̂n is a local
minimum of F̂n. Let D be an open convex neighborhood of κ∗ in the parameter space and
c0 be a positive constant. We denote An as the event

An = {κ̂n ∈ D,∇2
κF̂n(κ) � c0 Id for all κ ∈ D}.
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When An takes place, the following holds:

‖κ̂n − κ∗‖ ≤
‖∇κF̂n(κ∗)−∇κF (κ∗)‖

c0
.

In particular, we have

E1An‖κ̂n − κ∗‖ ≤
√

trace(Var(∇κf(κ∗,Θ, Y )))

c0
√
n

.

Proof. We denote the data couple (θ, y) by z and denote the data loss function by

f(κ, z) = LX (θκ(y), θ).

in order to simplify notation.

When κ̂n ∈ D, we apply the fundamental theorem of calculus on ∇κF̂n, and find

∇κF̂n(κ∗) = ∇κF̂n(κ̂n) +

∫ 1

0
∇2
κF̂n(sκ∗ + (1− s)κ̂n)(κ∗ − κ̂n)ds = AF (κ̂n − κ∗),

where

AF :=

∫ 1

0
∇2
κF̂n((1− s)κ̂n + sκ∗)ds � c0 Id .

We note that

0 = ∇κF (κ∗) = ∇κF (κ∗)−∇κF̂n(κ∗) +∇κF̂n(κ∗)

= AF (κ̂n − κ∗) +∇κF (κ∗)−∇κF̂n(κ∗).

Hence,

−
(
∇κF̂n(κ∗)−∇κF (κ∗)

)
= AF (κ̂n − κ∗),

which implies a formula for the error κ∗ − κ̂n

‖κ∗ − κ̂n‖ =
∥∥∥A−1

F

(
∇κF̂n(κ∗)−∇κF (κ∗)

)∥∥∥ ≤ c−1
0

∥∥∥∇κF̂n(κ∗)−∇κF (κ∗)
∥∥∥ .

We use ∇κEf(κ, Z) = E∇κf(κ, Z), see [199, Theorem 12.5], and obtain

∇κF̂n(κ∗)−∇κF (κ∗) =
1

n

n∑
i=1

∇κf(κ∗, zi)− E∇κf(κ∗, Z).

It follows

E‖∇κF̂n(κ∗)−∇κF (κ∗)‖2 =
1

n
trace(Var(∇κf(κ∗, Z))).

by Cauchy-Schwarz we imply the second assertion

E1An‖∇κF̂n(κ∗)−∇κF (κ∗)‖ ≤
√
E‖∇κF̂n(κ∗)−∇κF (κ∗)‖2.
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The stated Proposition 7.1.2 provides two claims: The first claim suggests, that we can
have more accurate estimates on large or medium deviations. And secondly, we can see
that κn converges to κ∗ with rate of 1/

√
n. While we did not specify assumptions on

the forward model, the regularization function or the underlying distribution of (Θ, Y ),
we are going to show how to apply this result to linear forward models with Tikhonov
regularization.
Furthermore, for Proposition 7.1.2 we need to assume that F̂n is locally Lipschitz in a
domain where κ̂n and κ∗ are in it. This is cruicial as there might be multiple local
minimums, and we will have issues to distinguish different local minimums.
In order to apply Proposition 7.1.2, one needs to find D and bound the probability of
outlier cases A{

n. This procedure can be nontrivial, and requires some advanced tools
from probability. We demonstrate how to do so for the linear inverse problem.

Offline consistency analysis with linear observation models

In this section, we demonstrate how to apply Proposition 7.1.2 for linear forward models
with Tikhonov regularization. In particular, we assume θ ∈ Rd and the data y is observed
through a matrix L ∈ RK×I

y = Lθ + ξ,

with Gaussian prior information θ ∼ N (0, 1
κ∗
C0) and Gaussian noise ξ ∼ N (0,Γ). The

common choice of discrepancy functions in the lower level are the corresponding negative
log-likelihoods

LY(H(θ), y) =
1

2
‖Lθ − y‖2Γ, ϕκ(θ) =

κ

2
‖θ‖2C0

.

Since both of these functions are quadratic in θ, the lower level optimization problem has
an explicit solution

θκ(y) = (L>Γ−1L+ κC0)−1L>Γ−1yi,

see Theorem 2.1.6. If we use the root-mean-square error in the upper level to learn κ, the
discrepancy function is given by

f(κ, θ, y) = ‖θκ(y)− θ‖2.

and the empirical loss function is defined by

F̂n(κ) =
1

n

n∑
i=1

‖θκ(yi)− θi‖2.

It is worth mentioning that F (κ) is not convex on the real line despite that H is linear.
The detailed calculation can be found in Remark 7.1.7. Hence, in Proposition 7.1.2 it is
necessary to introduce the local region D such that F is convex inside.
Since the formulation of θκ involves the inversion of matrix L>Γ−1L + κC0, such an
operation may be unstable for κ approaching ∞. When κ approaches ∞, the gradient of
F̂n approaches zero, so ∞ can be a stationary point that an optimization algorithm tries
to converge to. To avoid these issues, we assume that there are lower and upper bounds
such that

0 < κl <
1

2
κ∗ <

3

2
κ∗ < κu,

where κl can be chosen as a very small number and κu can be very large. Their values
often can be obtained from physical restrictions from the underlying inverse problem. By
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7 Machine learning application in inverse problems

assuming their existence, we can restrict κ̂n to be in the interval Λ = (κl, κu). We are now
ready to formulate our main result in the offline recovery setting. In particular, we show
κ̂n converges to κ∗ with high probability.

Theorem 7.1.3. Suppose κ̂n ∈ (κl, κu) is a local minimum of F̂n. Then there exist
constants C∗, c∗ > 0 such that for any ε ∈ (0, 1) and n ∈ N,

P(|κ̂n − κ∗| > ε, κl < κ̂n < κu) ≤ C∗ exp(−c∗nmin(ε, ε2)).

The values of C∗, c∗ > 0 depend on κl, κu, κ∗, C0 but not on n.

Since we can obtain consistency assuming that κ̂n is a local minimum, we do not demon-
strate how to implement Theorem 7.1.1 for the more restrictive scenario where κ̂n is a
global minimum.

Remark 7.1.4. We note that in the Gaussian setting with Tikhonov regularization one
can also estimate κ∗ empirically by using the maximum likelihood estimator

κ̂n = I ·

 1

n

n∑
j=1

(θ(j))>C−1
0 θ(j)

−1

,

where I denotes the dimension of RI . However, only in the Gaussian setting with Tikhonov
regularization the estimate will lead to the optimal solution of (7.1). When considering al-
ternative regularization, or dropping the Gaussian assumption on θ, it is not clear whether
this approach still leads to a good estimate of κ∗.

Before presenting the proof of Theorem 7.1.3, in the following we will formulate var-

ious auxiliary results. We denote D := C
1/2
0 L>Γ−1/2,Ω0 = C−1

0 , vi = Ω
1/2
0 θi, and

ξi = −Γ−1/2(Lθi − yi) ∼ N (0, Id) and we note that

(L>Γ−1L+ κC−1
0 )−1L>Γ−1yi − θi = (L>Γ−1L+ κC−1

0 )−1L>Γ−1(Lθi + ξi)− θi
= (L>Γ−1L+ κC−1

0 )−1(κC−1
0 θi + L>Γ−1/2ξi)

= C
1/2
0 (C

1/2
0 L>Γ−1LC

1/2
0 + κ Id)−1C

1/2
0 (κC−1

0 θi + L>Γ−1/2ξi)

= C
1/2
0 (DD> + κ Id)−1(κvi +Dξi).

Therefore we define

Qκ = (DD> + κ Id)−1,

and we can express f by the introduced notation

f(κ, z) = trace(QκC0Qκ(κv +Dξ)(κv +Dξ)>)

= trace(QκC0Qκ(κ2vv> + 2κDξv> +Dξξ>D>)).

We further introduce the following notation

P1 = QκC0Qκ, P2 =
∂P1

∂κ
= −(Q2

κC0Qκ +QκC0Q
2
κ),

P3 =
∂P2

∂κ
= 2(Q3

κC0Qκ +Q2
κC0Q

2
κ +QκC0Q

3
κ),
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7.1 Data driven regularization

P4 =
∂P3

∂κ
= −6(Q4

κC0Qκ +Q3
κC0Q

2
κ +Q2

κC0Q
3
κ +QκC0Q

4
κ).

Note that ‖Qκ‖ ≤ κ−1 and it follows

| trace(QkκC0Q
j
κ)| = | trace(C0Q

j+k
κ )| ≤ 1

κj+k
trace(C0),

‖QkκC0Q
j
κ‖ ≤ ‖Qκ‖j+k‖C0‖ ≤

1

κj+k
‖C0‖,

‖QkκC0Q
j
κ‖F ≤ ‖Qkκ‖‖C0Q

j
κ‖F ≤ ‖Qκ‖j+k‖C0‖F ≤

1

κj+k
‖C0‖F .

Finally, for any choice of T being T (A) = | trace(A)| or T (A) = ‖A‖ or T (A) = ‖A‖F , we
all have

T (Pk) ≤ (
2

κ
)k+1T (C0).

Using these notations, we can compute derivatives of f

∂κf(κ, z) = trace

(
P2(κ2vv> + 2κDξv> +Dξξ>D>) + P1(2κvv> + 2Dξv>)

)
,

∂2
κf(κ, z) = trace

(
P3(κ2vv> + 2κDξv> +Dξξ>D>) + 4P2(κvv> +Dξv>) + 2P1vv

>
)
,

∂3
κf(κ, z) = trace

(
P4(κ2vv> + 2κDξv> +Dξξ>D>) + 6P3(κvv> +Dξv>) + 6P2vv

>
)
.

Pointwise consistency analysis In order to apply Proposition 7.1.2, we have to show
that the gradient of F̂n(κ) is a good approximation of ∇F (κ) at κ = κ∗ with high proba-
bility. This is actually true for general κ. We start by proving consistency of the sample
covariance.

Lemma 7.1.5. Let X(i) ∈ Rd and Y (i) ∈ Rdy be i.i.d. N (0, Idd) and N (0, Iddy) respec-
tively, i ∈ N, and let Σ ∈ Rd×d be fixed. There exists a universal constant c > 0, such that
for any n and

Cn =
1

n

n∑
i=1

X(i)(X(i))>, Bn =
1

n

n∑
i=1

X(i)(Y (i))>,

the following holds for all t > 0

P(| trace(ΣCn)− trace(Σ)| > t) ≤ 2 exp

(
−cnmin

(
t2

‖Σ‖2F
,
t

‖Σ‖

))
,

P(| trace(ΣBn)| > t) ≤ 2 exp

(
−cnmin

(
t2

‖Σ‖2F
,
t

‖Σ‖

))
.

Proof. We first write

trace(ΣX(i)(X(i))>) = (X(i))>ΣX(i),

and we define the block-diagonal matrix DΣ ∈ Rnd×nd consisting of n blocks of Σ, and
Z = [X(1);X(2); · · · ;X(n)] ∈ Rnd. Note that

trace(ΣCX) = Z>(
1

n
DΣ)Z.
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7 Machine learning application in inverse problems

By application of the Hanson–Wright inequality [193, Theorem 1.1], we obtain for some
constants c0 and K0,

P(| trace(ΣCX)− trace(Σ)| > t) ≤ 2 exp

(
− c0 min

(
t2

K4
0‖ 1

nDΣ‖2F
,

t

K2
0‖ 1

nDΣ‖

))
.

Note that

‖ 1

n
DΣ‖2F =

1

n2
‖DΣ‖2F =

1

n
‖Σ‖2F ,

‖ 1

n
DΣ‖ =

1

n
‖DΣ‖ =

1

n
‖Σ‖,

which implies the first assertion. For the second claim we first note that

trace(ΣY (i)(X(i))>) = (X(i))>ΣY (i) =
[
(X(i))>, (Y (i))>

]
Q

[
X(i)

Y (i)

]
,

Q =

[
0 Σ
0 0

]
∈ R(d+dy)×(d+dy).

We then consider a block-diagonal matrix DQ ∈ Rn(d+dy)×n(d+dy) consisting of n blocks of
Q, and Z = [X(1);Y (1);X(2);Y (2); · · · ;X(n);Y (n)] ∈ Rn(d+dy). Then we can verify that

trace(ΣB) = Z>( 1
nDQ)Z.

Application of the Hanson–Wright inequality [193, Theorem 1.1] leads to

P(| trace(ΣB)| > t) ≤ 2 exp

(
− cmin

(
t2

K4
0‖ 1

nDQ‖2F
,

t

K2
0‖ 1

nDQ‖

))
.

We note again that

‖ 1

n
DQ‖2F =

1

n2
‖DQ‖2F =

1

n
‖Σ‖2F ,

‖ 1

n
DQ‖ =

1

n
‖DQ‖ =

1

n
‖Q‖.

and finally end up with

P(| trace(ΣB)| > t) ≤ 2 exp

(
−cnmin

(
t2

K4
0‖Σ‖2F

,
t

K2
0‖Σ‖

))
.

By the previous consistency result we obtain the following convergence results.

Lemma 7.1.6. The empirical loss function F̂n is C3 in κ, and for any κ ∈ (κl, κr), there
exist constants C, c > 0 such that for all ε > 0

P(|∂κF̂n(κ)− (κ/κ∗ − 1) trace(P2DD
>)| > ε) ≤ C exp(−ncmin{ε, ε2}),

and

P(|∂2
κF̂n(κ)− trace

(
(
κ2

κ∗
− κ)P3 + (

4κ

κ∗
− 3κ)P2 +

2

κ∗
P1

)
| > ε) ≤ C exp(−cnmin{ε, ε2}).
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Proof. Since F̂n(κ) = 1
n

∑n
i=1 f(κ, zi), if we let

Cθ =
1

n

n∑
i=1

θiθ
>
i , B =

1

n

n∑
i=1

ξiθ
>
i , Cξ =

1

n

n∑
i=1

ξiξ
>
i ,

then

∂κF̂n(κ) = trace

(
P2(κ2Cv + 2κDB +DCξD

>) + P1(2κCv + 2DB)

)
(7.4)

= trace

(
(P2κ

2 + 2κP1)Cv + (2P1 + 2κP2)DB +D>P2DCξ

)
.

We note that

E∂κF̂n(κ) = trace

(
P2(κ2/κ∗ Id +DD>) + 2κP1/κ∗

)
= trace

(
− (Q2

κC0Qκ +QκC0Q
2
κ)(

κ2

κ∗
I +DD>) + 2

κ

κ∗
QκC0Qκ

)
= trace

(
(
κ

κ∗
− 1)P2DD

>
)
.

Moreover, in (7.4), ∂κF̂n can be written as sum of trace(Σ1Cv), trace(Σ2B) and trace(Σ3Cξ)
for certain matrices Σ such as

Σ1 = (P2κ
2 + 2κP1), Σ2 = (2P1 + 2κP2)D, Σ3 = D>P2D.

Note that for any random variables Ak

P

(
|
m∑
k=1

(Ak − EAk)| > ε

)
≤

m∑
k=1

P(|Ak − EAk| > ε/m).

Therefore we can apply Lemma 7.1.5 at each trace term, and bound its probability of
deviating from its mean. Therefore, we can find constants C1, c such that

P(|∂κF̂n(κ)− (κ/κ∗ − 1) trace(P2DD
>)| > ε) ≤ C1 exp

(
−cnmin(ε2, ε)

)
.

For the second claim,

∂2
κf(κ, z) = trace

(
P3(κ2vv> + 2κDξv> +Dξξ>D>) + 4P2(κvv> +Dξv>) + 2P1vv

>
)
.

and

∂2
κF̂n(κ) = trace

(
(κ2P3 + 4κP2 + 2P1)Cv + (2κP3 + 4P2)DB +D>P3DCξ

)
. (7.5)

Therefore,

E∂2
κF̂n(κ) = trace

(
(κ2P3 + 4κP2 + 2P1)/κ∗ +DD>P3

)
.

The deviation probability can also be obtained by analyzing matrices

Σ′1 = (κ2P3 + 4κP2 + 2P1), Σ′2 = (2κP3 + 4P2)D, Σ′3 = D>P3D.
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Note that

trace(Q−1
κ P3) = trace(2Q2

κC0Qκ +Q2
κC0Qκ +QκC0Q

2
κ + 2QκC0Q

2
κ) = −3P2.

trace(κP2 +2P1) = trace((Q−1
κ −κI)Q2

κC0Qκ+QκC0Q
2
κ(Q−1

κ −κ Id)) = − trace(DD>P2).

Thus, the average can also be written as

E∂2
κF̂n(κ) = trace

(
(κ(κ Id +DD>)P3 + 4κP2 + 2P1)/κ∗ + (1− κ/κ∗)DD>P3

)
= trace

(
(−3κP2 + 4κP2 + 2P1)/κ∗ + (1− κ/κ∗)DD>P3

)
= trace

(
−DD>P2/κ∗ + (1− κ/κ∗)DD>P3

)
= trace

(
DD>((1− κ/κ∗)P3 − P2/κ∗)

)
.

Similar, we can obtain

∂3
κF̂n(κ) = trace

(
(κ2P4 + 6κP3 + 6P2)Cv + (2κP4 + 6P2)DB +D>P4DCξ

)
(7.6)

and

∂3
κF̂n(κ) = trace

(
(κ2P4 + 6κP3 + 6P2)/κ∗ +D>P4D

)
.

Remark 7.1.7. It is worthwhile to note that

∂2
κF (κ) = E∂2

κF̂n(κ) = trace
(
DD>((1− κ/κ∗)P3 − P2/κ∗)

)
,

is not always positive, and it can be negative if κ is very large. In other words, F is not
convex on the real line. Therefore, it is necessary to introduce a local parameter domain
where F is convex inside.

Remark 7.1.8. We note that through the definition of f , we can ensure that

E[∂κf(κ, z)] = ∂κE[f(κ, z)].

This can be seen, by the following computation of E[f(κ, z)]. We can write

E[f(κ, z)] = trace
(

Cov[C
1/2
0 Qκ(κv +Dξ), C

1/2
0 Qκ(κv +Dξ)]

)
,

and with
C

1/2
0 Qκ(κv +Dξ) ∼ N (0, C

1/2
0 Qκ(κ2 Id +DD>)QκC

1/2
0 )

we obtain

E[f(κ, z)] = trace(C
1/2
0 Qκ(κ2 Id +DD>)QκC

1/2
0 )

= trace(P1(κ2 Id +DD>)).

Hence, we imply

∂κE[f(κ, z)] = trace((
κ

κ∗
− 1)P2DD

>) = E[∂κf(κ, z)].

172



7.1 Data driven regularization

Consistency analysis within an interval In order to apply Proposition 7.1.2, we also have
to show that there exists a local region/interval in which F̂n(κ) is strongly convex. To do
so, we use a chaining argument.
First, we show that the empirical loss function has bounded derivatives with high proba-
bility.

Lemma 7.1.9. There exists an S > 0 such that the following holds true

P
(

max
κl≤κ≤κu

|∂kκF̂n(κ)| > S, k = 1, 2, 3

)
≤ 6 exp(−nc).

Proof. Recall that ‖Qκ‖ ≤ 1
κl

and the formulae (7.4), (7.5) and (7.6).
We have

P( max
κl≤κ≤κu

|∂kκF̂n(κ)− EF̂n(κ)| > t) ≤ 2 exp

(
−cnmin

(
t2

‖Σk‖2F
,

t

‖Σk‖

))
,

for each k = 1, 2, 3. Here each Σk consists of matrices of form PjS or SPj where j =
1, 2, 3, 4 and S = Id, D or DD>. It follows

‖PjS‖ ≤ ‖Pj‖‖S‖ ≤
‖C0‖‖S‖
κj+1
l

, ‖PjS‖F ≤
‖C0‖F‖S‖
κj+1
l

.

We see that c can depend on ‖C0‖ ≤ trace(C0), ‖C0‖F and ‖D‖. Furthermore, E∂kκF̂n is
a linear sum of some trace(Pj) and

| trace(Pj)| ≤ (
2

κl
)j+1 trace(C0).

Hence, L can also be taken as a constant that depends only on trace(C0), ‖C0‖F and ‖D‖.
This concludes our proof.

The next result states, that if a function is bounded at each fixed point with high proba-
bility, it implies to be bounded on a fixed intervall with high probability if the function is
Lipschitz.

Lemma 7.1.10. Let fn(κ) be function of κ and assume that the following is true for some
interval [κl, κu]

P(fn(κ) > a) ≤ C exp(−nca) ∀κl ≤ κ ≤ κu.

Then

P
(

max
κ∈[κl,κu]

fn(κ) > 2a, max
κ∈[κl,κu]

|∂fn(κ)| ≤M
)
≤ a−1|κu − κl|MC exp(−nca).

Let fn(κ) be function of κ and the following is true for some interval [κl, κu]

P(fn(κ) < a) ≤ exp(−nca) ∀κl ≤ κ ≤ κu.

Then

P
(

min
κ∈[κl,κu]

fn(κ) < a/2, max
κ∈[κl,κu]

|∂fn(κ)| ≤M
)
≤ 2a−1|κu − κl|MC exp(−nca).
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Proof. We pick κi = κl + 2a
|M | i for i = 0, . . . , b |κu−κl|M2a c, such that κl ≤ κi ≤ κu, and

for any κl ≤ κ ≤ κu, |κ − κi| ≤ a
M for some κi. We note that for |∂fn(κ)| ≤ M , and

fn(κi) ≤ a, for all i, it follows for any κl ≤ κ ≤ κu,

fn(κ) ≤ fn(κi) + (κi − κ)∂κfn(κ) ≤ a+
a

M
M = 2a.

Consequentially, by union bound we obtain

P
(

min
κ∈[κl,κu]

fn(κ) > 2a, max
κ∈[κl,κu]

|∂fn(κ)| ≤M
)
≤ P

(
fn(κi) > a for some i

)
≤ a−1|κu − κl|MC exp(−nca).

The same argument can be applied to show the second claim, except that we choose
κi = c+ a

|M | .

By the next lemma, we indicate that the loss function is strongly convex within D with
high probability.

Lemma 7.1.11. Assume that the largest eigenvalue of DD> is κD and let κ ∈ D :=
[5
6κ∗,

7
6κ∗]. Then for some constants c, C > 0,

P(min
κ∈D

∂2
κF̂n(κ) < H∗/4) ≤ C

min{H∗, 1}
exp

(
− cnmin(H2

∗ , H∗, 1)

)
,

with

H∗ = H∗(κD, κ∗) =
κ2
D

(κD + 2κ∗)2κ∗‖L>Γ−1L‖
> 0.

Proof. We denote

A = DD>((1− κ/κ∗)P3 − P2/κ∗),

and let vi be the eigenvector of DD> corresponds to eigenvalue σi. Note that vi is also
the eigenvector Qκ with eigenvalue (σi + κ)−1, then

v>i Avi =

(
6(1− κ/κ∗)

(σi + κ)3
+

2

(σi + κ)2κ∗

)
σiv
>
i C0vi.

When κ ∈ D, if 7/6κ∗ ≥ κ > κ∗, we have that

6(1− κ/κ∗)
(σi + κ)3

+
2

(σi + κ)2κ∗
≥ − 1

(σi + κ)2κ
+

2

(σi + κ)2κ∗
≥ 1

(σi + κ)2κ∗
.

If κ ≤ κ∗, the same relation also holds. Then note that if vi are all the eigenvectors of
DD> with eigenvalues σi, assuming that σi are decreasing,

traceA =

d∑
i=1

v>i Avi ≥
d∑
i=1

σiv
>
i C0vi

(σi + 2κ∗)2κ∗
=

σ1v
>
1 C0v1

(σ1 + 2κ∗)2κ∗
.

Finally, note that

κD = σ1 = v>1 DD
>v1 = v>1 C

1/2
0 L>Γ−1LC

1/2
0 v1 ≤ ‖L>Γ−1L‖‖C1/2

0 v1‖2.
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It follows

traceA ≥
κ2
D

(κD + 2κ∗)2κ∗‖L>Γ−1L‖
= H∗

for κ ∈ D and we set ε = H∗/2 > 0 to apply Corollary 7.1.6. We obtain some C1, c

C1 exp
(
−cnmin(H2

∗ , H∗)
)

≥ P

(
|∂2
κF̂n(κ)− 2

κ∗
trace

(
(3κ∗ Id−2κ Id +DD>)DD>Q4

κ

)
| > H∗/2

)

≥ P

(
∂2
κF̂n(κ) <

2

κ∗
trace

(
(3κ∗I − 2κ Id +DD>)DD>Q4

κ

)
−H∗/2

)
≥ P(∂2

κF̂n(κ) < H∗/2).

By Lemma 7.1.9 there exists an L > 0 and c1 such that

P
(

max
κ∈D
|∂3
κF̂n(κ)| > L

)
≤ 6 exp(−nc1),

and by Lemma 7.1.10 it holds true that

C2

min(H∗, 1)
exp

(
− cnmin(H2

∗ , H∗, 1)

)
≥ P

(
min
κ∈D

∂2
κF̂n(κ) < H∗/4,max

κ∈D
|∂3
κF̂n(κ)| ≤M

)
,

for some C2 > 0. We define the sets An := {minκ∈D ∂
2
κF̂n(κ) < H∗/4} and Bn :=

{maxκ∈D |∂3
κF̂n(κ)| ≤ L}, and we obtain

P(min
κ∈D

∂2
κF̂n(κ) < H∗/4) = P(An | Bn)P(Bn) + P(An | B{

n)P(B{
n)

≤ P(An ∩Bn) + P(B{
n)

≤ C

min(H∗, 1)
exp

(
− cnmin(H2

∗ , H∗, 1)
)
.

We state the last lemma before proving Theorem 7.1.3, which indicates that the empirical
loss function is unlikely to have local minimums outside [2

3κ∗,
4
3κ∗].

Lemma 7.1.12. Let κD be the largest eigenvalue of DD> and let

S∗ =
2κ2

D

3(κD + κu)3‖L>Γ−1L‖
.

Then there exist constants c, C > 0 such that

P

(
min

κu≥κ> 4
3
κ∗
∂κF̂n(κ) < S∗/4

)
≤ C

min{S∗, 1}
exp

(
−cnmin

(
S2
∗ , S∗, 1

))
,

and

P

(
min

2
3
κ∗≥κ>κl

∂κF̂n(κ) > −S∗/4

)
≤ C

min{S∗, 1}
exp

(
−cnmin

(
S2
∗ , S∗, 1

))
.
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Proof. Let v be again the leading eigenvector of DD>, i.e. we have

− trace(P2DD
>) ≥ v>(Q2

κC0Qκ +QκC0Q
2
κ)v ≥ 2κD

v>C0v

(κD + κu)3

≥
2κ2

D

(κD + κu)3‖L>Γ−1L‖
=: 3S∗.

For κ > 4
3κ∗ we have

(1− κ/κ∗) trace(P2DD
>) ≥ S∗.

We set ε = S∗/2 and apply Lemma 7.1.6 to obtain

C exp
(
−ncmin(S2

∗ , S∗)
)
≥ P(|∂κF̂n(κ)− (1− κ/κ∗) trace(Q3

κ)| > S∗/2)

≥ P(∂κF̂n(κ) < (1− κ/κ∗) trace(Q3
κ)− S∗/2)

≥ P(∂κF̂n(κ) < L∗/2).

Similarly as in Lemma 7.1.11, we apply Lemma 7.1.9 and Lemma 7.1.10 to obtain the first
assertion. The second assertion follows by using

(1− κ/κ∗) trace(P2DD
>) ≤ −L∗ < 0,

for κ < 2
3κ∗.

Final step We are now ready to prove Theorem 7.1.3.

Proof of Theorem 7.1.3. We denote D = [2
3κ∗,

4
3κ∗], H∗ =

κ2
D

(κD+2κ∗)2κ∗‖L>Γ−1L‖ > 0 and

define the events

B = {κl < κ̂n < κu}, An = {κ̂n ∈ D, ∂2
κF̂n(κ) ≥ 1

4
H∗ for all κ ∈ D}.

First, we decompose

P(|κ̂n − κ∗| > ε,B) = P(|κ̂n − κ∗| > ε,B | An) · P(An)

+ P(|κ̂n − κ∗| > ε,B | A{
n) · P(A{

n)

≤ P(|κ̂n − κ∗| > ε,B | An) + P(B ∩ A{
n).

In the last step we have used P(κ̂n ≤ κu) = 1. By Proposition 7.1.2

P(|κ̂n − κ∗| > ε,B | An) ≤ P
(
|∂κF̂n(κ∗)− ∂κF (κ∗)| >

1

4
H∗ε, B

)
= P

(
|∂κF̂n(κ∗)| >

1

4
H∗ε, B

)
,

which we can bound by Lemma 7.1.6 and Lemma 7.1.10

P(|κ̂n − κ∗| > ε | An) ≤ C1 exp(−nc1 min{ε, ε2}),

for some C1, c1 > 0.
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We bound the probability P(A{
n) by

P(B ∩ A{
n) ≤ P(B, κ̂n /∈ D) + P({∂2

κF̂n(κ) ≥ H∗/4 for all κ ∈ D}{),

and study both terms separately. We first note, by Lemma 7.1.12, for some constants
C2, c2 > 0 the following holds

P(B, κ̂n /∈ D) ≤ P(∂κF̂n(κ) = 0 for some κ ∈ (κl, κu) \ D)

≤ C2 exp (−c2n) .

Second, by Lemma 7.1.11, we imply that for some constants C3, c3 > 0 we obtain

P({∂2
κF̂n(κ) ≥ H∗/4 for all κ ∈ D}{) ≤ C3 exp (− c3n) .

Finally, we conclude that there exist some constants C∗, c∗ > 0 such that

P(|κ̂n − κ∗| > ε) ≤ C∗ exp(−c∗nmin(ε, ε2)).

7.1.2 Regularization parameter online recovery

In this part, we consider the implementation of the stochastic gradient descent (SGD)
method in order to solve the bilevel optimization online. We formulate the SGD method for
general nonlinear inverse problems and state certain assumptions on the forward model and
the corresponding regularization function to ensure convergence of the proposed method.

Bilevel stochastic gradient descent method

Solving the bilevel optimization probelm (7.3) online one needs to compute the empirical
loss function F̂n and its gradient in (7.2). To do so, one has to solve the lower level
problem for each training data point (θ(j), y(j)), j = 1, . . . , n. For very large n this can be
computationally very demanding. One promising way to alleviate this is the application
of the SGD method. In the context of traditional bilevel optimization various convergence
results has been shown [57]. As a result this has been applied to problems in machine
learning, most notably support vector machines [55, 56], but also in a more general context
without the use of SGD [82, 115]. In our setting, we propose a SGD method to solve the
bilevel optimization problem (7.1) online.

We first note that the general gradient descent method for a function F (κ) generates
iterates κk+1 based on the following update rules

κk+1 = κk − βk∇κF (κk),

where βk is a sequence of stepsizes.

As mentioned above, the population gradient ∇κF is often computationally inaccessible,
and its empirical approximation ∇κF̂n is often expensive to compute. One general solution
to this issue is using a stochastic approximation of ∇κF . Here we choose ∇κf(κk, Z

(k)),
as it is an unbiased estimator of ∇κF :

∇κF (κk) = EZ∇κf(κk, Z).
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The identity above holds by Fubini’s theorem, since we assume f and its second order
derivatives are all continuous and differentiable. Comparing with ∇κF̂n, ∇κf involves
only one data point Z(k), so it has a significantly smaller computation cost. We refer
to this method as ”online”, since it does not require all n data points available at each
algorithmic iteration.

In the following we formulate the stochastic gradient descent method to solve (7.1) as
Algorithm 10.

Algorithm 10: Bilevel Stochastic Gradient Descent

Input: κ0, m, β = (βk)
n
k=1, βk > 0, i.i.d. sample (Z(k))k∈{1,...,n} ∼ µ(Θ,Y ).

for k = 0, . . . , n− 1 do

κk+1 = χ(κk − βk∇κf(κk, Z
(k))), (7.7)

Output: the average κ̄n = 1
m

∑n
k=n−m+1 κk

In Algorithm 10, the step size βk is a sequence which decreases to zero, but not too fast,
such that the Robbins–Monro conditions [189] apply:

∞∑
k=1

βk =∞,
∞∑
k=1

β2
k <∞. (7.8)

One standard choice is to take a decreasing step size βk = β0k
−α with α ∈ (1/2, 1]. We

note that the output of our bilevel SGD method is given by the average over the last
iterations κ̄n, which has been shown to accelerate the scheme for standard SGD methods,
see [179]. The projection map χ ([210], Section 14.4.1) is defined as

χ(κ) = arg min
x∈Λ
{‖x− κ‖}.

This means, the projection maps κ to itself in case κ ∈ Λ, and otherwise it outputs
the closest point in Λ to κ. This projection ensures that κk+1 stays in the range of the
regularization parameter if Λ is closed. This operation in general only shorten the distance
between κk+1 and κ∗ when Λ is convex, as the following Lemma states.

Lemma 7.1.13 (Lemma 14.9 of [210]). If Λ is convex, then for any κ

‖χ(κ)− κ∗‖ ≤ ‖κ− κ∗‖.

In particular, the stochastic gradient ∇κf(κk, Z
(k)) is given by the following lemma, which

states sufficient conditions on Ψ to ensure both θκ and f are continuously differentiable
w.r.t. κ.

Lemma 7.1.14. Suppose the lower level loss function Ψ(κ, θ, y) is C2 and strictly convex
for (θ, κ) in a neighborhood of (θκ0 , κ0), then the function κ 7→ θκ(y) is continuously
differentiable w.r.t. κ near κ0 and the derivative is given by

∇κθκ(y) = −
(
∇2
θ [Ψ(κ, θκ(y), y)]

)−1∇2
κθ [Ψ(κ, θκ(y), y)]

and

∇κf(κ, y, θ) = ∇wLX (θκ(y), θ)>∇κθκ(y). (7.9)
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Proof. The proof of this statement is based on the implicit function theorem. For fixed
y ∈ RK , we define the function

ϕ(κ, θ) := ∇θΨ(κ, θ, y).

Since (κ, θ) 7→ Ψ(κ, θ, y) is strictly convex, we have that for all (κ, θ) near (κ0, θκ0) the
Jacobian of ϕ w.r.t. θ is invertible, i.e.

Dθϕ(κ, θ) = ∇2
θΨ(κ, θ, y) > 0.

Set κ̄ ∈ Rd arbitrary, then for θ̄ = θκ̄(y) it holds true that

ϕ(κ̄, θ̄) = 0

and by the implicit function theorem there exists an open neighborhood D ⊂ Rd of κ0 with
κ̄ ∈ D such that there exists a unique continuously differentiable function Θ̄ : D → Rd
with Θ̄(κ̄) = θ̄ and

ϕ(κ, Θ̄(κ)) = 0,

for all κ ∈ Λ, i.e. Θ̄ maps all κ ∈ Λ to the corresponding regularized solution Θ̄(κ) = θκ(y).
Further, the partial derivatives of Θ̄ are given by

∂Θ̄

∂κi
(κ) = −

[
Dθϕ(κ, Θ̄(κ))

]−1
[
∂ϕ

∂κi
(κ, Θ̄(κ))

]
.

Since the choice of κ̄ ∈ Rd is arbitrary, it follows that κ 7→ θκ(y) is continuously differen-
tiable with derivative given by

∇κθκ(y) = −
(
∇2
θ [Ψ(κ, θκ(y), y)]

)−1∇2
κθ [Ψ(κ, θκ(y), y)] .

The computation of ∇κf can be obtained by the chain rule.

Approximate stochastic gradient method

For the implementation of Algorithm 10, it is necessary to evaluate the gradient ∇κf .
While Lemma 7.1.14 provides a formula to compute the gradient, its evaluation can be
expensive for complicated PDE forward models. In these scenarios, it is more reasonable
to implement approximate SGD.
We consider the approximate gradient by central finite difference schemes. This involves
perturbing certain coordinates in opposite direction, and use the value difference to ap-
proximate the gradient:

(∇̃κf(κk, z))i ≈
f(κk + hkei, z)− f(κk − hkei, z)

2hk
, (7.10)

where ei is the i-th Euclidean basis vector and hk is a step size. hk can either be fixed as
a small constant, or it can be decaying as k increases, so that higher accuracy gradients
are used when the iterates are converging.
In many cases, the higher level optimization uses a L2 loss function

LX (y, θ) = ‖y − θ‖2.
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In this case, the exact SGD update step (7.7) can be written as

κk+1 = κk − βk∇κ‖θκk(y(k))− θ(k)‖2

= κk − βk
(
∇κθκk(y(k))

)>
(θκk(y(k))− θ(k)).

In this case, it makes more sense to apply central difference scheme only on the ∇θκ part:

(∇κθκ(y(k)))i =
∂θκ(y(k))

∂κi
≈ θκ+hkei(y

(k))− θκ−hkei(y(k))

2hk
=: (∇̃κθκ(y(k)))i, (7.11)

where (ei)i=1,...,d denote the i–th unit vectors in Rd. Using this approximation, we formu-
late the approximate SGD method in the following algorithm, where we replace the exact
gradient ∇κθκ(y(k)) by the numerical approximation ∇̃κθκ(y(k)) defined in (7.11).

Here we have defined the numerical approximation of ∇κf by

∇̃κf(κ, (y, θ)) :=
(
∇̃κθκ(y)

)>
(θκ(y)− θ). (7.12)

In most finite difference approximation schemes, the approximation error involved is often
controlled by hk. In particular, we assume the centred forward difference scheme used in
either (7.10) or (7.12) yields an error of order

‖E∇̃κ(f(κ, Y,Θ))−∇κF (κ)‖ =: αk = O(h2
k).

Replacing the stochastic gradient in Algorithm 10 with its approximation, we obtain the
algorithm below:

Algorithm 11: Approximate Bilevel Stochastic Gradient Descent

Input: κ0, m, β = (βk)
n
k=1, βk > 0, i.i.d. sample (Z(k))k∈{1,...,n} ∼ µ(Θ,Y ).

for k = 0, . . . , n− 1 do

κk+1 = χ(κk − βk∇̃κf(κk, Z
(k))),

Output: the average κ̄n = 1
m

∑n
k=n−m+1 κk

Consistency analysis for online estimators

In the following part we present sufficient conditions which ensure that κk converges in L2

to the optimal solution κ∗ of (7.1).

Proposition 7.1.15. Suppose that there is a convex region D ⊂ Λ and a constant c > 0
such that

inf
κ∈D

(κ− κ∗)>∇κF (κ) > c‖κ− κ∗‖2. (7.13)

and there are constants a, b > 0 such that for all κ ∈ D it holds true that

E[|∇̃κf(κ, Z)|2] < a+ b‖κ− κ∗‖2. (7.14)

Also the bias in the approximated SGD is bounded by

‖E∇̃κf(κk, Zk)−∇κF (κk)‖2 ≤ αk. (7.15)
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Let Ak be the event that κk ∈ D. Suppose β0 ≤ c
b . Then if the approximation error is

bounded by a small constant αk ≤ α0, there is a constant Cn such that

E1An‖κn − κ∗‖2 ≤

EQ0 + 2a
∞∑
j=1

β2
j

Cn +
α0

c2
.

Here

Cn = min
k≤n

max


n∏

j=k+1

(1− cβj), aβk/c


is a sequence converging to zero.
If the approximation error is decaying so that αk ≤ Dβk, then we have the estimation
error

E1An‖κn − κ∗‖2 ≤

EQ0 + 2(a+D/c)
∞∑
j=1

β2
j

Cn.

Remark 7.1.16. We note that the above result also leads to similar convergence of the
average estimator κ̄n since by Jensen’s inequality

‖κ̄n − κ∗‖2 ≤
1

m

n∑
k=n−m+1

‖κk − κ∗‖2.

Further, for standard SGD methods the averaging step has been shown to lead to the
highest possible convergence rate under suitable assumptions. We refer interested readers
to [179] for more details.

Proof of Proposition 7.1.15. We note that

∆k+1 = χ(κk − βk∇̃κf(κk, Zk))− κ∗,

and apply Lemma 7.1.13

‖∆k+1‖2 = ‖χ
(
κk − βk∇̃κf(κk, Zk)

)
− κ∗‖2 ≤ ‖κk − βk∇̃κf(κk, Zk)− κ∗‖2

= ‖∆k − βk∇̃κf(κk, Zk)‖2

= ‖∆k − βk∇κF (κk, Zk)− βkδk − βkξk‖2,

where we have defined the bias and noise in the stochastic gradient by

δk = Ek∇̃f(κk, Z)−∇F (κk), ξk = ∇̃κf(κk, Zk)− Ek∇̃κf(κk, Z).

Further, we denote the expectation conditioned on information available at step k as Ek
and define the first exit time of D by with τ = inf{k ≥ 0 | κk ∈ D}. Next, we note that

Ek‖∇f(κk, Zk)‖2 = ‖∇κF (κk) + δk‖2 + Ek‖ξk‖2.

So, conditioned on τ ≥ k, we have

Ek‖∆k+1‖2 ≤ ‖∆k‖2 − 2βk∆
T
k (∇κF (κk) + δk) + β2

k‖∇κF (κk) + δk‖2 + Ek‖ξk‖2

≤ ‖∆k‖2 − 2βk∆
T
k∇κF (κk) + 2βk‖∆k‖‖δk‖+ β2

k(a+ b‖∆k‖2)
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≤ ‖∆k‖2 − 2cβk‖∆k‖2 +
1

2
cβk‖∆k‖2 +

2

c
βk‖δk‖2 + β2

ka+ bβ2
k‖∆k‖2

≤ (1− 1.5cβk + bβ2
k)‖∆k‖2 + (aβk + 2αk/c)βk.

Since βk < c/2b, we have

Ek1τ≥k+1‖∆k+1‖2 ≤ Ek1τ≥k‖∆k+1‖2 ≤ 1τ≥k(1− cβk)‖∆k‖2 + (aβk + 2αk/c)βk.

Let Qk = 1τk≥k‖∆k‖2, then we have just derived that

EQk+1 ≤ (1− cβk)EQk + (aβk + 2αk/c)βk.

Therefore by application of Gronwall’s inequality

EQn ≤ a
n∑
k=1

 n∏
j=k+1

(1− cβj)β2
k

+
2

c

n∑
k=1

 n∏
j=k+1

(1− cβj)βkαk


+ exp

−c n∑
j=1

βj

EQ0.

(7.16)

Next we look at the 2nd term of (7.16). Note that when αk ≤ α0, then

2

c

n∑
k=1

n∏
j=k+1

(1− cβj)βkαk ≤
α0

c2

n∑
k=1

n∏
j=k+1

(1− cβj)cβk

≤ α0

c2

n∑
k=1

 n∏
j=k+1

(1− cβj)−
n∏
j=k

(1− cβj)

 ≤ α0

c2
.

In this case, (7.16) becomes

EQn ≤ a
n∑
k=1

 n∏
j=k+1

(1− cβj)β2
k

+
α0

c2
+ exp

−c n∑
j=1

βj

EQ0.

And if αk ≤ Dβk, then (7.16) can be simplified as

EQn ≤ (a+D/c)

n∑
k=1

 n∏
j=k+1

(1− cβj)β2
k

+ exp

−c n∑
j=1

βj

EQ0.

In both cases, to show our claim, we just need to show

n∑
k=1

 n∏
j=k+1

(1− cβj)β2
k

 ≤ 2Cn, exp

−c n∑
j=1

βj

 ≤ Cn.
Let k0 be the minimizer of

k0 = arg min
k≤n

max{
n∏

j=k+1

(1− cβj), aβk/c}
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Then note that,

k0∑
k=1

n∏
j=k+1

(1− cβj)β2
k ≤

k0∑
k=1

n∏
j=k0+1

(1− cβj)β2
k ≤

n∏
j=k0+1

(1− cβj)
∞∑
k=1

β2
k ≤ Cn.

and also

n∑
k=k0+1

n∏
j=k+1

(1− cβj)β2
k ≤

1

c
βk0

k0∑
k=1

n∏
j=k+1

(1− cβj)cβk

≤ 1

c
βk0

k0∑
k=1

 n∏
j=k+1

(1− cβj)−
n∏
j=k

(1− cβj)


≤ 1

c
βk0 = Cn.

The sum of the previous two inequalities leads to

n∑
k=1

 n∏
j=k+1

(1− cβj)β2
k

 ≤ 2Cn.

Finally, we obtain

exp(−c
n∑
j=1

βj)EQ0 ≤ exp(−c
n∑

j=k0+1

βj)EQ0 ≤ Cn.

To see that Cn converges to zero, simply let

kn = max
k


k∏
j=1

(1− cβj) >

√√√√ n∏
j=1

(1− cβj)


Because

∏n
j=1(1 − cβj) decays to zero when n → ∞, so kn will increases to ∞, and βkn

will decay to zero. Meanwhile,

Cn ≤ min


n∏

j=k+1

(1− cβj), βkn

 ≤ min


√√√√ n∏

j=1

(1− cβj), βkn

 ,

which will decay to zero when n→∞.

Consistency analysis with linear inverse problem

We consider again the linear inverse problem from Section 7.1.1

y = Lθ + ξ,

with Gaussian prior information θ ∼ N (0, 1
κ∗
C0) and Gaussian noise ξ ∼ N (0,Γ), and the

corresponding bilevel optimization with least squares data misfit and Tikhonov regular-
ization, i.e.

LY(Lθ, y) =
1

2
‖Lθ − y‖2Γ, κϕ(θ) =

κ

2
‖θ‖2C0

.
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Theorem 7.1.17. Let β = (βk)k∈N be a sequence of step sizes with βk > 0,
∞∑
k=1

βk = ∞,

and
∞∑
k=1

β2
k < ∞. Then for some constant B and a sequence Cn converging to zero, the

following hold

1. the iterates generated from the exact SGD, Algorithm 10, converge to κ∗ in the sense

E‖κn − κ∗‖2 ≤ BCn,

2. the iterates generated from the aproximate SGD, Algorithm 11 with formula (7.12)
and hk = h, converge to κ∗ up to an error of order O(h4), i.e.

E‖κn − κ∗‖2 ≤ B(Cn + h4).

If we use decaying finite difference stepsize hk ≤ hβ
1/4
k , then the error can be further

bounded by

E‖κn − κ∗‖2 ≤ BCn.

Remark 7.1.18. While in the offline setting the proof of the consistency result for the
linear Gaussian setting was heavily relying on the Gaussian assumption on θ and ξ, in
the online setting we are able to extend the result to non Gaussian distributions of θ
and ξ. For our proof of Theorem 7.1.17 we only need to assume that E[|θ|4] < ∞ and
E[|L>Γ−1ξ|4] <∞. Hence, it can also be applied to general linear inverse problems without
Gaussian assumption on the unknown parameter or Gaussian assumption on the noise.

Proof of Theorem 7.1.17. We denote D = Λ = [κl, κu] and observe that, because χ always
bring κk back into D, the event A always happen.
Recall that

∂κf(κ, z) = trace

(
P2(κ2vv> + 2κDξv> +Dξξ>D>) + P1(2κvv> + 2Dξv>)

)
.

∂2
κf(κ, z) = trace

(
P3(κ2vv> + 2κDξv> +Dξξ>D>) + 4P2(κvv> +Dξv>) + 2P1vv

>
)
.

∂3
κf(κ, z) = trace

(
P4(κ2vv> + 2κDξv> +Dξξ>D>) + 6P3(κvv> +Dξv>) + 6P2vv

>
)
.

We observed in the proof of Lemma 7.1.12, that

−∇κF (κ) = (κ/κ∗ − 1) trace(P2DD
>).

Next, we multiply with (κ− κ∗), which gives

−(κ− κ∗)∂κF (κ) = (κ− κ∗)2 trace(P2D
TD/κ∗).

For v being the eigenvector of DD> with maximum eigenvalue κD we have that

trace(P2DD
>/κ∗) ≥ v>P2DD

>v/κ∗ =
κDv

>C0v

κ∗(κD + κ)3
≥

κ2
D

κ∗(κD + κu)3‖L>Γ−1L‖
.
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So we define c by

c =
2κ2

D

κ∗(κD + κu)3‖L>Γ−1L‖
,

and (7.13) is verified.
By Taylor’s theorem, there are some wk, w

′
k between κk − hk and κk + hk such that

|∂̃κf(κk, Z)− ∂κf(κk, Z)| = 1

6
h2
k|∂3

κ3f(wk, Z) + ∂3
κ3f(w′k, Z)|.

Taking the expectation gives

E|∂̃κf(κk, Z)− ∂κf(κk, Z)|2 =
1

18
h4
k(E|∂3

κ3f(wk, Z)|2 + E|∂3
κ3f(w′k, Z)|2).

We show that there is a constant Bκ that may depend on κ such that

E|∂3
κ3f(wk, Z)|2 ≤ Bκ, and E|∂3

κ3f(w′k, Z)|2 ≤ Bκ. (7.17)

This comes from the fact that each component of ∂3
κ3f(wk, Z) can be written as trace(ΣCv)

or trace(ΨB) or trace(ΣCξ), with some Σ and Ψ. Here, we introduce

Cv = vv>, B = ξv>, Cξ = ξξ>.

We apply Lemma 7.1.10 with n = 1, which shows that for some universal constant C

E(ΣCv) ≤ 2| trace(Σ)|2 + C(‖Σ‖3F + ‖Σ‖3).

E(ΣCξ) ≤ 2| trace(Σ)|2 + C(‖Σ‖3F + ‖Σ‖3).

E(ΨB) ≤ C(‖Ψ‖3F + ‖Ψ‖3).

The matrices Σ in ∂3
κ3f(wk, Z) are of form Pj or D>PjD, which we have seen to have

bounded operator, trace and Frobenius norms. This comes from the proof of Proposition
7.1.15. Furthermore, the matrix Ψ is of form PjD and we have ‖PjD‖F ≤ ‖Pj‖F‖D‖, ‖PjD‖ ≤
‖Pj‖‖D‖. We can conclude that there is a constant B, such that (7.17) holds.
Further, we verify (7.15) by Jensen’s inequality

|E∂̃κf(κk, Z)− ∂κF (κk)|2 = |E∂̃κf(κk, Z)− E∂κf(κk, Z)|2

≤ E|∂̃κf(κk, Z)− ∂κf(κk, Z)|2 ≤ 1

9
h4
kBκ.

Finally, because κ ∈ [κl, κu], so Bκ can be bounded as well.
In order to prove that (7.14) is satisfied, we note that by Young’s inequality

E|∂̃κf(κk, Z)|2 ≤ 2E|∂̃κf(κk, Z)− ∂κf(κk, Z)|2 + 2E|∂κf(κk, Z)|2.

As we can bound E|∂̃κf(κk, Z)− ∂κf(κk, Z)|2, it is sufficient to bound E|∂κf(κk, Z)|2 by
a constant Aκ. Again each component of ∂κf(wk, Z) can be written as trace(ΣCv) or
trace(ΨB) or trace(ΣCξ), with some Σ and Ψ. We apply Lemma 7.1.10 again with n = 1
to show that for some universal constant C

E(ΣCv) ≤ 2| trace(Σ)|2 + C(‖Σ‖3F + ‖Σ‖3).

E(ΣCξ) ≤ 2| trace(Σ)|2 + C(‖Σ‖3F + ‖Σ‖3).

E(ΨB) ≤ C(‖Ψ‖3F + ‖Ψ‖3).

Similar as before, we can conclude that there is a dimension free constant Aκ, such that
E|∂κf(κk, Z)|2 ≤ Aκ. Finally, we conclude the proof as κ ∈ [κl, κu].
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7 Machine learning application in inverse problems

7.1.3 Numerical results

In the following part we will test the presented theoretical results in numerical examples.
We consider various inverse problems which can be formulated in the form of (7.1) in order
to learn the regularization parameter. These example will be based on partial differential
equations, both linear and nonlinear which includes again a linear 2D Laplace equation,
a 2D Darcy flow from geophysical sciences and in addition a 2D eikonal equation which
arises in wave propagation. As a final numerical experiment we test our theory on an
image denoising problem.

For the linear example, we have access to the exact derivative of the Tikhonov solution for
the bilevel optimization. In particular, we can implement both offline and online bilevel
optimization methodologies. In contrast, finding the exact derivatives for nonlinear inverse
problems is difficult both in derivation and computation, so we will only use online methods
with approximated gradient. For online methods, we implement the following variants:

• bSGD: Application of the bilevel SGD, Algorithm 10 with exact derivative (7.9).

• bSGDa: Application of the bilevel SGD, Algorithm 11 with derivative approximation
(7.12) for fixed hk = h0 in (7.11).

For our first model we have tested both bSGD and bSGDa, while for the nonlinear models
we have used bSGDa. It is worth mentioning that we have also tested, as a side experiment,
using the adaptive derivative hk = h0/k

1/4. For these experiments it was shown that
the adaptive derivative scheme does not show any major difference to the case of fixed
hk = h0. In fact, Theorem 7.1.17 has already implied this, since the difference between
the two scheme is of order h−4

0 , which is often smaller than the error from the numerical
forward map solver or the use of κ̄n. For this reason, we do not present this scheme in
our numerics.

Linear example: 2D Laplace equation

As first example, we consider the following forward model{
−∆p(x) = θ(x), x ∈ D := [0, 1]2,

p(x) = 0, x ∈ ∂D,
(7.18)

with Lipschitz domain D and consider the corresponding inverse problem of recovering
the unknown θ† from observation of (7.18), which are described through

y = O(p) + ξ,

where ξ ∼ N (0,Γ) is measurements noise and p solves (7.18). The PDE has been solved
in weak form, where we denote the solution operator for (7.18) by L−1 : X → V, with
X = L∞(D) and V = H1

0 (D)∩H2(D), andO : V → RK denotes again the observation map
taking measurements at K randomly chosen points in D, i.e. O(p) = (p(x1), . . . , p(xK))>,
for p ∈ V, x1, . . . , xK ∈ D. In our experiments we observe K = 250 points, which are
illustrated in Figure 7.1. We can express this problem as a linear inverse problem in the
reduced form (2.2) by

y† = Lθ† + η ∈ RK ,
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7.1 Data driven regularization

where L = O◦L−1 is the forward operator taking measurements of (7.18). We again solve
the forward model (7.18) numerically on a uniform mesh with 1024 grid points in D by a
finite element method with continuous, piecewise linear finite element basis functions.

Our unknown parameter θ† is assumed to be Gaussian distributed N (0, 1
κ∗
C0), where the

covariance is defined as

C0 = β · (τ2 · Id−∆)−α, (7.19)

with Laplacian operator ∆ equipped with Dirichlet boundary conditions, known β, τ > 0,
α > 1 and unknown κ∗ > 0. To sample from the Gaussian distribution, we consider the
truncated KL expansion, see section 2.2.4, which is a series representation for θ ∼ N (0, C0),
i.e.

θ(x) =

∞∑
i=1

ζi

√
1

κ∗
νiϕi(x), (7.20)

where (νi, ϕi)i∈N are the eigenvalues and eigenfunction of the covariance operator C0 and
ζ = (ζi)i∈N is an i.i.d. sequence with ζ1 ∼ N (0, 1) i.i.d. . Here, we have sampled from
the KL expansion for the discretized C0 on the uniform mesh. Furthermore, we assume
to have access to training data (θ(j), y(j) = Lθ(j) + ξ(j))j=1,...,n, n ∈ N, which we will use
to learn the unknown scaling parameter κ∗ before solving the inverse problem. For the
numerical experiment we set β = 100, τ = 0.1, α = 2 and κ∗ = 0.1. After learning the
regularization parameter, we will compare the estimated parameter through the different
results of the Tikhonov minimum

θκi(y
†) = (L>Γ−1L+ κi · C0)−1L>y†,

for κ1 = κ̂ learned from the training data, κ2 = κ∗ and fixed κ3 = 1. We have used the
MATLAB function fmincon to recover the the regularization parameter offline by solving
the empirical optimization problem

κ̂n ∈ arg min
κ>0

1

n

n∑
j=1

|θκ(y(j))− θ(j)|2.

We use M = 1000 samples of the training data to construct Monte–Carlo estimates of
E[|κ̂n − κ†|2]. Further, we also compare the results to the proposed online recovery in
form of the SGD method in order to learn the regularization parameter κ. Here, we
run Algorithm 10 with chosen step size βk = 200/k, range of regularization parameter
Λ = [0.0001, 10] and initial value κ0 = 1. The resulting iterate κk can be seen in Figure
7.2 on the right side.

Summarizing the numerical experiments for the linear example, we observe that the nu-
merics match our derived theory. For the offline recovery setting, we compare the MSE
with theoretical rate, see Figure 7.2 on the left side, which decay at the same rate. In
the same Figure we see on the right side the convergence of the online recovery towards
κ∗ as iteration progress. Further, we show the result of the approximate bSGD method
Algorithm 11 for fixed chosen hk = 0.01 in (7.11). As the derivative approximation (7.11)
is closely exact, we see very similar good performance of the approximate bSGD method.

Finally, we show the recovery of the underlying unknown through different choices of κ in
Figure 7.3. We verify that the adaptive choice of κ outperforms that of fixed choice of the
regularization parameter κ = 1.
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7 Machine learning application in inverse problems

Figure 7.1: Reference PDE solution for the Laplace equation of the underlying un-
known parameter θ†, and the corresponding randomized observation points
x1, . . . , xK ∈ D.
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Figure 7.2: MSE (left) resulting from the offline recovery depending on training data size.
Learned regularization parameter κk (right) resulting from the online recovery,
Algorithm 10 for the Laplace equation.

Nonlinear example: 2D Darcy flow

We now consider again the elliptic PDE introduced in Section 4.4.2. The forward model is
again concerned using the log-permeability log θ ∈ L∞(D) =: X to solve for the pressure
p ∈ H1

0 (D) ∩H2(D) =: V from{
−∇ · (exp(u(x))∇p(x)) = f(x), x ∈ D := [0, 1]2

p(x) = 0, x ∈ ∂D

with known scalar field f ∈ R, see also (4.14). The corresponding inverse problem is the
recovery of the unknown parameter θ† from noisy observation of (4.14), described through

y = O(p) + ξ,

whereO : V → RK denotes the linear observation map, which takes again measurements at
K randomly chosen points in D, i.e. O(p) = (p(x1), . . . , p(xK))>, for p ∈ V, x1, . . . , xK ∈
D. For our numerical setting we choose K = 125 observational points, which can again
be seen in Figure 7.4. The measurements noise is denoted by ξ ∈ N (0,Γ), for Γ ∈ RK×K
symmetric and positive definite.
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7.1 Data driven regularization

Figure 7.3: Comparison of different Tikhonov solutions for choices of regularization pa-
rameter κi. The learned Tikhonov regularized solution corresponds to the
resulting one of the SGD method Algorithm 10 for the Laplace equation.

To apply the presented methods, we formulate the inverse problem through

y† = H(θ†) + ξ,

with H = O◦S, where S : X → V denotes the solution operator of (4.14), solving the PDE
(4.14) in weak form. The forward problem (4.14) has been solved again by a second-order
centered finite difference method on a uniform mesh with 256 grid points.

We assume that θ† follows the Gaussian distributionN (0, 1
κ∗
C0) with a covariance operator

(7.19) prescribed with Neumann boundary condition. Similar as before, β, τ > 0 and α > 1
are known, while κ∗ > 0 is unknown. We again apply the KL expansion and this time, we
do estimation of the coefficients ζ, see Section 6.6.4 for more details. Therefore, we truncate
(7.20) up to I and consider the nonlinear map H : RI → RK , with H(ζ) = O ◦ S(θζ(·))
and

θζ(·) =
d∑
i=1

ζi

√
1

κ∗
νiϕi(·).

Hence, our unknown parameter is given by ζ ∈ RI and we set a Gaussian prior on ζ with
N (0, 1

κ∗
Id), where κ∗ > 0 is unknown.

Furthermore, we again assume to have access to training data (ζ(j), y(j))j=1,...,n, n ∈ N,
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7 Machine learning application in inverse problems

where ζ(j) ∼ Z ∼ N (0, 1
κ∗

Id) and we aim to solve the original bilevel optimization problem

κ̂ ∈ arg min
κ>0

E[‖θκ(Y )− Z‖2], θκ(Y ) = arg min
ζ∈RI

1

2
‖H(ζ)− Y ‖2Γ +

κ

2
‖ζ‖2Id.

The corresponding empirical optimization problem is given by

κ̂n ∈ arg min
κ>0

1

n

n∑
j=1

‖θκ(y(j))− ζ(j)‖2, θκ(y(j)) = arg min
ζ∈RI

1

2
‖H(ζ)− y(j)‖2Γ +

κ

2
‖ζ‖2Id,

(7.21)
for a given size of the training data n. We are now not able to compute the Tikhonov
minimum analytically for each observation y(j), and it requires more computational power
to solve (7.21). Hence, we solve (7.21) online by application of Algorithm 11, where we
approximate the derivative of the forward model by centered different method (7.11). We
keep the accuracy of the numerical approximation fixed to hk = 0.01.
For our numerical results we choose I = 25 coefficients in the KL expansion and the noise
covariance Γ = γ2 Id with γ = 0.001. For the prior model set β = 10, α = 2, τ = 3 and
the true scaling parameter κ∗ = 0.1.
For the SGD method we have chosen a step size βk = 0.001k−1.We observe that the learned
parameter moves fast into direction of the true scaling parameter κ∗, where it oscillates
around this value. The variance reduces with the iterations, as seen in Figure 7.6.
Finally, Figure 7.5 highlights again the importance and improvements of choosing the right
regularization parameters.

Figure 7.4: Reference PDE solution for Darcy flow of the underlying unknown parameter
θ† and the corresponding randomized observation points x1, . . . , xK ∈ D.

Nonlinear example: Eikonal equation

As third example we seek to test our theory on the eikonal equation, which concerns with
wave propagation. Given a slowness or inverse velocity function s(x) ∈ C0(D̄) =: X ,
characterizing the medium, and a source location x0 ∈ D, the forward eikonal equation is
to solve for travel time T (x) ∈ C0(D̄) =: V satisfying

|∇T (x)| = s(x), x ∈ D \ {x0},
T (x0) = 0,

∇T (x) · τ(x) ≥ 0, x ∈ ∂D.
(7.22)
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7.1 Data driven regularization

Figure 7.5: Comparison of different Tikhonov solutions for choices of the regularization
parameter κ. The learned Tikhonov regularized solution corresponds to the
resulting one of the SGD method Algorithm 11 for Darcy flow.
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Figure 7.6: Learned regularization parameter κk, for Darcy flow, resulting from the ap-
proximate bilevel SGD method Algorithm 11 with fixed derivative accuracy
h = h0 and the corresponding mean over the last 50 iterations κ̄n. We obtain
an error |κ∗ − κ̄n|2 = 3.3640e−05.

The forward solution T (x) represents the shortest travel time from x0 to a point in the
domain D. The Soner boundary condition imposes that the wave propagates along the
unit outward normal τ(x) on the boundary of the domain.

We formulate the inverse problem for (7.22) as the recovery of the speed function s =
exp(θ(x)) from measurements of the shortest travel time T (x). The data is assumed to
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7 Machine learning application in inverse problems

take the form

y = O(T ) + ξ,

where O : V → RK denotes again the linear observation map, taking measurements at
K = 125 randomly chosen grid points in D, i.e. O(p) = (T (x1), . . . , T (xK))>, for T ∈ V,
x1, . . . , xK ∈ D. The observed points can be seen in Figure 7.7. The measurements noise
is again denoted by ξ ∈ N (0,Γ), for Γ ∈ RK×K symmetric and positive definite. We
formulate the inverse problem through

y† = H(θ†) + ξ,

with H = O ◦ S, where S : X → V denotes the solution operator of (7.22). The unknown
parameter θ† is again assumed to be distributed according to a Gaussian measure with
mean zero and covariance structure (7.19). We set β = 1, τ = 0.1, α = 2 and κ∗ = 0.1 and
truncate the KL expansion such that the unknown parameters ζ ∈ RI with I = 25. We
apply a similar approach as in the previous example, that is we apply the SGD described
through Algorithm 11. We choose an adaptive step size

βk = min

(
0.002,

κ0

|∇κf(κk, Z(k))|

)
k−1.

Here, the chosen step size βk provides a bound on the maximal moved step in each SGD
step, i.e.

|βk · ∇κf(κk, Z
(k))| ≤ κ0/k.

This helps to avoid instability arising through the high variance of the stochastic gradient,
but the step size will be mainly of order 0.002/k. However, from theoretical side it is not
clear whether assumption of (7.8) is still satisfied. Therefore, we will also show the resulting∑n

k=1 βk and the realisation of the stochastic gradient ∇f(κk, Z
(k)) in Figure 7.10.

Our setting for the parameter choices of our prior and for the bilevel-optimization problem
remain the same. To discretize (7.22) on a uniform mesh with 256 grid points we use a
fast marching method, described by the work of Sethian [65, 209].

We highlight in Figure 7.8 that using the learned κn provides almost identical recoveries
to that of using the true scaling κ∗. As we have expected for both cases we see an
improvement over the case κ = 1. The convergence of the online recovery is verified
through Figure 7.9, where we again see oscillations of the learned κk around the true
scaling κ∗. Finally from Figure 7.10 we see that the summation of our choice βk diverges,
but not as quickly as the summation of the deterministic step size 0.002/k does, which is
the implication of the introduced adaptive upper bound based on the size of the stochastic
gradient ∇κf(κk, Z

(k)). Figure 7.10 also shows the histrogram of the stochastic gradient
and its rare realized large values.

Signal denoising example

The next example is devoted to implement our methods on a image denoising example.
We are interested in denoising a 1D compound Poisson process of the form

Θt =

Nt∑
i=1

Xi, (7.23)
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Figure 7.7: Reference PDE solution for the eikonal equation of the underlying unknown pa-
rameter θ†, and the corresponding randomized observation points x1, . . . , xK ∈
D.

Figure 7.8: Comparison of different Tikhonov solutions for choices of the regularization
parameter κ. The learned Tikhonov regularized solution corresponds to the
resulting one of the SGD method Algorithm 11 for the eikonal equation.

where (Nt)t∈[0,T ] is a Poisson process, with rate r > 0 and (Xi)i∈N are i.i.d. random
variables representing the jump size. Here, we have chosen X1 ∼ N (0, 1).

We consider the inverse problem of recovering a perturbed signal of the form (7.23). The
aim is to solve this problem through Tikhonov regularization with different choices of
regularization parameter κ. In particular, the observed signal θ = (θt1 , . . . , θtI )

> ∈ RI is
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Figure 7.9: Learned regularization parameter κk, for the eikonal equation, resulting from
the approximate bilevel SGD method Algorithm 11 with fixed derivative ac-
curacy h = h0 and the corresponding mean over the last 50 iterations κ̄n. We
obtain an error |κ∗ − κ̄n|2 = 1.9360e−05.
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Figure 7.10: Summation of the realized adaptive step size (left) and the realized stochastic
gradient ∇f(κk, Z

(k)) (right) resulting from the online recovery, Algorithm 10
for the eikonal equation.

perturbed by white noise
yti = θti + ξti , (7.24)

where ti ∈ {1/I · T, 2/I · T, . . . , T} and ξti ∼ N (0, σ2) are i.i.d. random variables, and the
Tikhonov estimate corresponding to the lower level problem of (7.1) for given regularization
parameter κ > 0 is defined by

θκ(y) = (Γ−1 + κR−1)−1Γ−1y, (7.25)

with given regularization matrix R ∈ RI×I and y = (y1, . . . , yI)
> ∈ RI . We assume to have

access to training data (θ(j), y(j))nj=1 of (7.24) and choose the regularization parameter κ̂
according to Algorithm 10. Further, we compare the resulting estimate of the signal

yobs = θ† + ξ,

to fixed choices of κ ∈ {0.01, 0.00001} and to the best possible choice κ∗ = arg minκ ‖θκ(yobs)−
θ†‖2.
For the experiment we set the rate of jumps r = 10 and consider the signal observed up to
time T = 1 at I = 1000 observation points. For Algorithm 10, we use a training data set of
size n = 500, we set an initial value κ0 = 0.001 and step size βk = 0.001k−1. The Tikhonov
solution (7.25) has been computed with a second-order regularization matrix R = ∆−1.
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7.2 Incorporation of neural networks approximation within inverse problems

κ 1e− 02 1e− 05 κn κ∗
error 0.0378 0.0134 0.0077 0.0073

Table 7.1: MSE over time of the reconstruction for different choices of the regularization
parameter for signal denoising example.

As we can see from our results the value of κ = 0.01 oversmoothens the estimate in
comparison with κ = 0.00001. This is shown in Figure 7.11. However, comparing fixed
κ with the learned κ in Figure 7.12 we see an improvement, closer to the best possible
κ, which is verified further through Table 7.1, where we can see the MSE over the time
intervall. Both Figure 7.11 and Figure 7.12 show on the right hand side the pointwise
squared error over time.
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Figure 7.11: Comparison of different Tikhonov solutions for fixed choices of the regular-
ization parameter κ for the signal denoising example.

7.2 Incorporation of neural networks approximation within
inverse problems

In this part of the work, we will mainly focus on PDE-constraint inverse problems. The
aim is to avoid the computation of the complex forward model by replacing it through a
neural network as surrogate model. The surrogate model will be physically informed by
the underlying model equation. To solve the inverse problem, we train the neural net-
work and the unknown parameter in a one-shot fashion. By connection to the Bayesian
approach to inverse problems we provide the application of the EKI method as optimizer
for the training task. The formulation of the neural network based one-shot inversion
will be provided in Section 7.2.1 and the application of EKI will be formulated in Sec-
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Figure 7.12: Comparison of the learned to best possible Tikhonov solutions for choices of
the regularization parameter κ. The learned Tikhonov regularized solution
corresponds to the resulting one of the SGD method Algorithm 10 for the
signal denoising example.

tion 7.2.2. In Section 7.2.3 we briefly describe the connection to the recently invented
physics-informed neural networks. The discussion will be closed in Section 7.2.4 with two
numerical examples.
The corresponding constraint optimization problem is given by

min
u,p
‖O(p)− y‖2Γobs

s.t. M(θ, p) = 0 ,
(7.26)

where we aim to recover the unknown parameter θ ∈ X from the PDE solution p ∈ V,
which is typically defined on a domain D ⊂ Rd and will be observed at finitely many
points given by

O(p) = y ∈ RK .

This observation might also be perturbed by noise and the data misfit in (7.26) will be
scaled by a suitable symmetric, positive defnite matrix Γobs ∈ RK×K . The PDE (or ODE)
model is described in M : X × V → W. We restrict the discussion to finite dimensional
spaces X = RI , V = Rv and W = Rw.
As we have already discussed in Section 2.1, these kind of problems are typically ill-posed
and we incorporate regularization, i.e. we consider the regularized optimization problem

min
u,p
‖O(p)− y‖2Γobs + κ1ϕ1(θ)

s.t. M(θ, p) = 0 ,
(7.27)

where the regularization is denoted by ϕ1 : X → R and the positive scalar κ1 > 0 is usually
chosen according to prior knowledge on the unknown parameter θ. See Subsection 2.1.2
for more details on regularization of inverse problems.
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7.2 Incorporation of neural networks approximation within inverse problems

We first introduce the so-called reduced problem of (7.26) and (7.27), resepectively. The
forward model M(θ, p) = 0 is typically a well-posed problem, in the sense that for each pa-
rameter θ ∈ X , there exists a unique state p ∈ V such that M(θ, p) = 0 inW. Introducing
the solution operator S : X → V s.t. M(θ, S(θ)) = 0, we can reformulate the optimization
problem (7.26) as an unconstrained optimization problem in form of (2.5) and (2.6)-(2.7),
which is

min
θ∈X

‖O(S(θ))− y‖2Γobs , (7.28)

and
min
θ∈X

‖O(S(θ))− y‖2Γobs + κ1ϕ1(θ) , (7.29)

respectively. We refer to (7.28) and (7.29) as reduced formulation of the inverse problem.
Note that in the reduced formulation we can now formulate again the Bayesian approach,
this means we can compute the posterior distribution following (2.16) and the correspond-
ing MAP estimator (2.25) for Gaussian prior assumption Q0 = N (m0, C0), which coincides
with the choice ϕ1(θ) = ‖m0 − θ‖2C0

.
In the following we will introduce the one-shot formulation, or sometimes also called
all-at-once formulation, for inverse problems in order to incorporate neural networ ap-
proximation.

7.2.1 Neural networks based one-shot inversion

While the reduced formulation (7.28) assumes that the forward problem can be solved
exactly in each iteration, we will follow a different approach, which simultaneously solves
the forward and optimization problem. Various names for the simultaneous solution of the
design and state equation exist: one-shot method, all-at-once, piggy-back iterations etc..
We refer the reader to [27] and the references therein for more details. For a theoretical
analysis of one-shot methods in the context of inverse problems we refer to [127, 123].
Following the one-shot ideas, we seek to solve the problem

F (θ, p) =

(
M(θ, p)
O(p)

)
=

(
0
y

)
=: ỹ ,

Due to the noise in the observations, we rather consider

y = O(p) + ξobs

with normally distributed noise ξobs ∼ N (0,Γobs), Γobs ∈ RK×K symmetric and positive
definite. Similarly, we assume that

0 = M(u, p) + ξmodel ,

i.e. we assume that there could occur uncertainty in the model through an error described
by ξmodel ∼ N (0,Γmodel), Γmodel ∈ Rw×w symmetric and positive definite. This leads to
the problem

ỹ = F (θ, p) +

(
ξmodel
ξobs

)
.

Following the Bayesian approach the MAP estimate is then computed by the solution of
the following minimization problem

min
θ,p

1

2
‖F (θ, p)− ỹ‖2Γ + κ1ϕ1(θ) + κ2ϕ2(p),
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where ϕ1 : X → R and ϕ2 : V → R are regularization functions of the parameter θ ∈ X

and the state p ∈ V, κ1, κ2 > 0 and Γ =

(
Γmodel 0

0 Γobs

)
∈ R(w+K)×(w+K).

Vanishing noise and penalty methods

In order to force the forward model to be exact, i.e. the forward equation is supposed to
be satisfied exactly with M(θ, p) = 0, we view vanishing noise in the Bayesian setting. To
do so, we consider a parametrized noise covariance model Γmodel = γΓ̂model for γ ∈ R+

and given symmetric positive definite matrix Γ̂model. Taking the limit γ → 0 corresponds
to the vanishing noise setting, which can be interpret as reducing the uncertainty in our
model. The MAP estimate in the one-shot formulation changes to

min
θ,p

1

2
‖O(p)− y‖2Γobs +

λ

2
‖M(u, p)‖2

Γ̂model
+ κ1R1(u) + κ2R2(p) (7.30)

with λ = 1/γ. We mention the close connection to penalty methods, which aim to solve
constrained problems such as (7.26) by solving unconstrained optimization problems of the
form (7.30) sequentially for monotonically decreasing penalty parameters λ. To make this
idea rigorous, we cite the following well-known regarding the convergence of the resulting
algorithm.

Proposition 7.2.1 ([20]). Let the observation operator O, the forward model M and the
regularization functions ϕ1, ϕ2 be continuous and the feasible set {(θ, p)|M(θ, p) = 0} be
nonempty. For k = 0, 1, . . . let (θk, pk) denote a global minimizer of

min
θ,p

1

2
‖O(p)− y‖2Γobs +

λk
2
‖M(θ, p)‖2

Γ̂model
+ κ1ϕ1(u) + κ2ϕ2(p)

with (λk)k∈N ⊂ R+ strictly monotonically increasing and λk →∞ for k →∞. Then every
accumulation point of the sequence (θk, pk) is a global minimizer of

min
θ,p

1

2
‖O(p)− y‖2Γobs + κ1ϕ1(θ) + κ2ϕ2(p)

s.t. M(θ, p) = 0 .

This classic convergence result ensures the feasibility of the estimates, i.e. the proposed
approach is able to incorporate and exactly satisfy physical constraints in the limit. We
mention also the possibility to consider exact penalty terms in the objective, corresponding
to different noise models in the Bayesian setting.

This setting will be the starting point of the incorporation of neural networks into the
problem. Starting from this setting, we will incorporate neural networks into the problem
in the following way: We replace the state p by an approximate solution by a neural
network pΥ, where Υ ∈ RnΥ denote the parameters of the neural network which have to
be learned within this framework. We consider the following minimization problem

min
θ,Υ

1

2
‖F (θ, pΥ)− ỹ‖2Γ + κ1ϕ1(θ) + κ2ϕ2(pΥ,Υ) , (7.31)

which will be refered to neural network based one-shot formulation.

198



7.2 Incorporation of neural networks approximation within inverse problems

Neural networks

From a mathematical perspective, we interpret neural networks as parametrized functions
which will be used to approximate general functions. In our setting, we will focus on the
class of deep neural networks (DNNs) which are defined as a function pΥ : Rd → R, where
the input is defined as x ∈ Rd. The number of hidden layers in the NN will be given by
L and Nl will denote the corresponding amount of nodes in each layer l ∈ {1, . . . , L}. We
define the DNN recursively: The first hidden layer is set to

z1 = σ∗(W 1x+ b1), (7.32)

where W 1 ∈ RN1×d, b1 ∈ RN1 represent the weights and the bias, the parameters of the
DNN, and z1 ∈ RN1 denotes the output. From (7.32) we denote σ∗ as the component-wise
operation of the activation function σ : R→ R. In the remaining hidden layers, we define
the corresponding output by

zl+1 = σ∗(W l+1zl + bl+1), l ∈ {1, . . . , L− 1},

where, as before, W l+1 ∈ RNl+1×Nl , bl+1 ∈ RNl+1 denote the input parameters and zl+1 ∈
RNl+1 represents the output of the hidden layer l + 1. Finally, the output layer is defined
by

pΥ(x) = WL+1zL + bL+1, WL+1 ∈ RNL+1×NL , bL+1 ∈ RNL+1 ,

where we collect all of the parameters by Υ = {W l, bl}l=1,...,L+1. In Figure 7.13 we
illustrate the structure of DNNs.

pΥ(x)x

σ

σ

σ

σ σ

σ

σ

σ σ

σ

σ

σ σ

σ

σ

σ

input layer

hidden layer hidden layer

output layer

Figure 7.13: Structure of a deep neural network.

For more details on neural networks and its wide range of application, we refer the inter-
ested reader to [81, 101].

In mathematical science, neural networks have been applied in various research areas such
as partial differential equations or inverse problems. For example, in [10] the authors
present an overview of neural networks applied as regularization function in inverse prob-
lems. In the context of parametric PDEs, the neural network is applied to mimik the
map from parameter to the PDE solution, resulting in significantly faster compution of
PDE solutions [138, 196, 142]. Based on the approximation results of polynomials by
feed-forward DNNs [229], the authors in [207] derive bounds on the expression rate for
multivariate, real-valued functions depending holomorphically on a sequence z = (zj)j∈N
of parameters. More specifically, the authors consider functions that admit sparse Taylor
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generalized polynomial chaos (gpc) expansions, i.e. s-summable Taylor gpc coefficients.
Such functions arise as response surfaces of parametric PDEs, or in a more general setting
from parametric operator equations, see e.g. [205] and the references therein. Their main
results is that these functions can be expressed with arbitrary accuracy δ > 0 (uniform
w.r. to z) by DNNs of size bounded by Cδ−s/(1−s) with a constant C > 0 independent of
the dimension of the input data z. Similar results for parametric PDEs can be found in
[142].
The methods in [207] motivated the work of [98] in which the authors show holomorphy
of the data-to-QoI map y 7→ Eµ∗ [QoI] for additive, centered Gaussian observation noise
in Bayesian inverse problems. Using the fact that holomorphy implies fast convergence
of Taylor expansions, the authors derived an exponential expression rate bound in terms
of the overall network size. Our approach of how to incorporate neural networs into
PDE based inverse problems differs from these results, and is closely connected to so
called physics-informed neural networks. See Subsection 7.2.3 for more details on this
connection.

7.2.2 Application of the ensemble Kalman inversion

In the following we are going to introduce the application of EKI in order to solve the neural
network based one-shot formulation (7.31). By approximating the state of the underlying
PDE by a neural network, we seek to optimize the unknown parameter θ and on the
other side the parameters of the neural network Υ. To do so, we define H := X × RnΥ ,
G : H → Rw+K , G(v) = G(θ,Υ) = F (θ, pΥ), v = (θ,Υ)> ∈ X × RnΥ , q = ỹ ∈ Rw+K ,

ζ =

(
ξmodel
ξobs

)
and apply Algorithm 5.

This leads to the empirical summary statistics

(θ,Υ)n =
1

J

J∑
j=1

(θ(j)
n ,Υ(j)

n ), Ḡn =
1

J

J∑
j=1

G(θ(j)
n ,Υ(j)

n ),

C(θ,Υ)ỹ
n =

1

J

J∑
j=1

(
(θ(j)
n ,Υ(j)

n )> − (θ,Υ)
>
n

)
⊗ (G

(
θ(j)
n ,Υ(j)

n )− Ḡn
)
,

C ỹỹn =
1

J

J∑
j=1

(
G(θ(j)

n ,Υ(j)
n )− Ḡn

)
⊗
(
G(θ(j)

n ,Υ(j)
n )− Ḡn

)
,

and following (3.4) the EKI update

(θ
(j)
n+1,Υ

(j)
n+1)> = (θ(j)

n ,Υ(j)
n )> + C(θ,Υ)ỹ

n

(
C ỹỹn + h−1Γ

)−1(
ỹ

(j)
n+1 −G(θ(j)

n ,Υ(j)
n )
)
, (7.33)

where the perturbed observation are computed as before in (3.5)

ỹ
(j)
n+1 = ỹ + ξ

(j)
n+1, ξ

(j)
n+1 ∼ N (0, h−1Γ),

with

ỹ =

(
0
y

)
, Γ :=

(
Γmodel 0

0 Γobs

)
.

Figure 7.14 illustrates the basic idea of the application of the EKI to solve the neural
network based one-shot formulation.
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(θ
(j)
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(j)
n+1)
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(j)
n ,Υ

(j)
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n (Cy,y
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Γ)−1(ỹ
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(j)
n ,Υ

(j)
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Observations:

(ỹ
(j)
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Figure 7.14: Description of the EKI applied to solve the neural network based one-shot
formulation.

The EKI (7.33) will be used as a derivative free optimizer of the data misfit ‖F (θ, pΥ)−ỹ‖2Γ .
The analysis presented in Chapter 3 showed that the EKI in its continuous form is able
to recover the data with a finite number of particles in the limit t → ∞ under suitable
assumptions on the forward problem and the set of particles. In particular, the analysis
assumed a linear forward problem. The limit t→∞ corresponds to the noise-free setting,
as the inverse noise covariance scales with n/N = nh in (3.6). As seen in Chapter 5, the
application of the EKI in the inverse setting therefore often requires additional techniques
such as adaptive stopping or additional regularization to overcome the ill-posedness of the
minimization problem. To control the regularization of the data misfit and neural network
individually, similar to (5.1) we consider the following extended system

F (θ, pΥ) +

(
ξmodel
ξobs

)
= ỹ(

θ
Υ

)
+

(
ξparam
ξNN

)
= 0

with ξmodel ∼ N (0, 1/λ Γ̂model), ξobs ∼ N (0,Γobs), θ ∼ N (θ0, 1/κ1C) and Υ ∼ N (0, 1/κ2 Id).
The loss function for the augmented system is therefore given by

1

2
‖O(pΥ)− y‖2Γobs +

λ

2
‖M(θ, pΥ)‖2

Γ̂model
+
κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2 . (7.34)

Assuming that the resulting forward operator

G(θ,Υ) =

F (θ, pΥ)
θ
Υ

 (7.35)

is linear, the EKI will converge to the minimum of the regularized loss function (7.34). To
ensure the feasibility of the EKI estimate (w.r. to the underlying forward problem), we
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7 Machine learning application in inverse problems

propose the following algorithm using the ideas discussed in Section 7.2.1.

Algorithm 12: Penalty ensemble Kalman inversion for neural network based
one-shot inversion

Input: initial ensemble v
(j)
0 = (θ

(j)
0 ,Υ

(j)
0 )> ∈ X × RnΥ , j = 1, . . . J, λ0.

Output: vN = (θN ,ΥN )>

for k = 0, 1, 2, . . . , N do
• Compute an approximation of the minimizer (θk,Υk)

> of

min
θ,Υ

1

2
‖O(pΥ)− y‖2Γobs +

λk
2
‖M(θ, pΥ)‖2

Γ̂model
+
κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2 .

by solving

dv(j)

dt
= Cvy(v)Γ−1(ŷ −G(v(j))) + Cvy(v(j))Γ−1

√
Γ

dW (j)

dt

with v(j)(0) = v
(j)
0 for the system (7.35), ŷ = (0, y, 0, 0)> and

Γ =

(
1/λk Γmodel 0

0 Γobs

)
.

• Set vk = (θk,Υk)
> = v̄(T ) for T →∞.

• Increase λk.

• Draw J ensemble members v
(j)
0 from N (vk,

(
C 0
0 I

)
).

Theorem 7.2.2. Assume that the forward operator G : X ×RnΥ → RnG, nG := w+K +
I + nΥ,

G(θ,Υ) =

F (θ, pΥ)
θ
Υ


is linear, i.e. F (θ, pΥ) = L

(
θ
Υ

)
with L ∈ L(X × RnΥ ,Rw+K). Let (λk)k∈N ⊂ R+ be

strictly monotonically increasing and λk →∞ for k →∞. Further, assume that the initial
ensemble members are chosen so that span{(θ(j)(0),Υ(j)(0))>, j = 1, . . . , J} = X × RnΥ.
Then, Algorithm 12 generates a sequence of estimates (θ̄k, Ῡk)k∈N, where θ̄k, Ῡk minimizes
the loss function for the augmented system given by

1

2
‖O(pΥ)− y‖2Γobs +

λk
2
‖M(θ, pΥ)‖2

Γ̂model
+
κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2

with given κ1, κ2 > 0. Furthermore, every accumulation point of (θ̄k, Ῡk)k∈N is the (unique,
global) minimizer of

min
θ,Υ

1

2
‖O(pΥ)− y‖2Γobs +

κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2

s.t. M(θ, pΥ) = 0

Proof. Under the assumption of a linear forward model, the penalty function

1

2
‖O(pΥ)− y‖2Γobs +

λk
2
‖M(θ, pΥ)‖2

Γ̂model
+
κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2
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is strictly convex for all k ∈ N, i.e. there exists a unique minimizer of the penalized problem.
Choosing the initial ensemble such that span{(θ(j)(0),Υ(j)(0))>, j = 1, . . . , J} = X ×RnΥ

ensures the convergence of the EKI estimate to the global minimizer, see [41, Theorem
3.13] and [200, Theorem 4]. The convergence of Algorithm 12 to the minimzer of the
constrained problem then follows from Proposition 7.2.1.

Remark 7.2.3. We note that the presented convergence result is based on an assumption
on the size of ensemble, which ensures the convergence to the (global) minimizer in each
iteration. This is due to the well-known subspace property of the EKI, see Lemma 3.1.2.
This assumption is usually not satisfied in practice , for example for large or possibly
infiite-dimensional parameter / state space. However, techniques such as variance infla-
tion, localization and adaptive ensemble choice are able to overcome the subspace property
and might lead to more efficient algorithms from a computational perspective.

Furthermore, we stress the fact that the convergence result presented above requires the lin-
earity of the forward and observation operator (w.r. to the optimization variables), i.e. the
assumption is not fulfilled when considering neural networks with a nonlinear activation
function as approximation of the forward problem. However, we will demonstrate in the
numerical experiments that the EKI shows promising results even in the nonlinear setting.
The generalization of the theory to the nonlinear case will be subject to future work.

To accelerate the computation of the minimizer, we suggest the following variant of Algo-
rithm 12, which increases the penalty parameter λ adaptively.

Algorithm 13: Simultaneous penalty ensemble Kalman inversion for neural
network based one-shot inversion

Input: initial ensemble v
(j)
0 = (θ

(j)
0 ,Υ

(j)
0 )> ∈ X × RnΥ , j = 1, . . . J, λ0 > 0,

f : R≥0 → R+.
Output: vT = (θ̄T , ῩT )>

Compute an approximation of the minimizer of

min
θ,Υ

1

2
‖O(pΥ)− y‖2Γobs +

κ1

2
‖θ − θ0‖2C +

κ2

2
‖Υ‖2

s.t. M(θ, pΥ) = 0

by solving the following system

dv(j)

dt
=Cvy(v)Γ−1(ŷ −G(v(j))) + Cvy(v(j))Γ−1

√
Γ

dW (j)

dt
dλ

dt
=f(λ)

with v(j)(0) = v
(j)
0 for the system (7.35), λ(0) = λ0, ŷ = (0, y, 0, 0)> and

Γ =

(
1/λΓmodel 0

0 Γobs

)
.

We note that the function f has to be chosen in a way, such that the scaling parameter
λ is monotonically increasing. In our numerical examples, we have chosen as an example
dλ
dt = 1/λ, i.e. f(λ) = 1/λ.
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7.2.3 Connection to physics-informed neural networks

In combination with a one-shot approach for the training of the neural network parameters,
our method is closely related to the physics-informed neural networks (PINNs). In [181,
182] the authors consider PDEs of the form

f(t, x) := pt +N(p, λ) = 0, t ∈ [0, T ], x ∈ D ,

where N is a nonlinear differential operator parametrized by λ. The authors replace p by
a neural network pΥ and use automatic differentiation to construct the function fΥ(t, x).
The neural network parameters are then obtained by minimizing MSE = MSEp + MSEf ,
where

MSEp :=
1

Np

Np∑
i=1

|p(tip, xip)− pi|2 , MSEf :=
1

Nf

Nf∑
i=1

|f(tif , x
i
f )|2 ,

where Np is the number of training data points (tip, x
i
p, p

i) for the PDE solution p(t, x) and
Nf the number of collocation points (tif , x

i
f ) for f(t, x) respectively. For the minimiza-

tion a L-BFGS method is used. The parameters λ of the differential operator turn into
parameters of the neural network fθ and can be learned by minimizing the MSE.

In [228] the authors consider so called Bayesian neural networks (BNNs), where the neu-
ral network parameters are updated according to Bayes’ theorem. Hereby the initial
distribution on the network parameters serves as prior distribution. The likelihood re-
quires the PDE solution, which is obtained by concatenating the Bayesian neural network
with a physics-informed neural network, which they call Bayesian physics-informed neu-
ral networks (B-PINNs). For the estimation of the posterior distributions they use the
Hamiltonian Monte Carlo method and variational inference. In contrast to the PINNs,
the Bayesian framework allows them to quantify the aleatoric uncertainty associated with
noisy data. In addition to that, their numerical experiments indicate that B-PINNs beat
PINNs in case of large noise levels on the observations. In contrast to that, our proposed
method is based on the MAP estimate and remains exact in the small noise limit. We have
propose a derivative free optimization method, the EKI, which shows promising results
(also compared to quasi-Newton methods) without requiring derivatives w.r. to the weights
and design parameters. More details on this can be found in the following subsection.

7.2.4 Numerical results

We present two numerical experiments in order to illustrate the introduced one-shot formu-
lation. In the first example we consider the linear one-dimensional example introduced in
Example 2.1.15. We compare a black-box method, quasi-Newton method for the one-shot
formulation and EKI for the one-shot formulation. Further, we also consider the quasi-
Newton and EKI for the neural network based one-shot inversion. We numerically explore
the convergence behavior of the EKI for the neural networks based one-shot inversion
(Algorithm 13) also for a nonlinear forward model.

The second experiment is concerned with a linear two-dimensional problem which investi-
gates the potential of the EKI for neural network based inversion in the higher-dimensional
setting.
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7.2 Incorporation of neural networks approximation within inverse problems

One-dimensional example

We consider the problem presented in Example 2.1.15, which is devoted to recover the
unknown data θ† from noisy observations

y = O(p†) + η†,

where p† = L−1(θ†) is the solution of the one-dimensional elliptic equation{
− d2p

dx2 (x) + p(x) = θ†(x), x ∈ D := (0, π),

p(x) = 0, x ∈ ∂D,

with operator O observing the dynamical system at K = 23 − 1 equispaced observation
points xi = i

24 · π, i = 1, . . . ,K and mesh size h = 2−6.

We again assume that the unknown parameter θ is Gaussian with θ ∼ N (0, C0), where

C0 = β(− d2

dx2 )−ν for β = 5, ν = 1.5. Further, we assume a observational noise covariance

Γobs = 0.1 · Iny , a model error covariance Γ̂model = 100 · Inu and we set a regularization
parameter κ1 = 0.002, while we turn off the regularization on p, i.e. we set κ2 = 0. The
feed-forward DNN has L = 3 hidden layers with N1 = N2 = 10 size of hidden layers
and N0 = NL = 1 size of the input and output layer. We set the sigmoid function
σ∗(x) = 1

1+e−x as activation function.

The EKI method is based on the deterministic formulation (3.13), which will be solved
with the MATLAB function ode45 up to time T = 1010. We initialize the ensemble of

particles (θ(j)), (θ(j), p(j)) and (θ(j),Υ(j)) respectively, as i.i.d. samples with θ
(j)
0 drawn

from the prior distribution N (0, C0), p
(j)
0 drawn from N (0, 5 Idv) and the DNN weights

drawn from N (0, IdnΥ). These samples are all independent from each other.

We compare the results to a classical gradient-based method, which will be a quasi-Newton
method with BFGS updates, as implemented by MATLAB.

To summarize the considered method we introduce the following abbreviations:

1. reduced formulation: explicit solution (redTik).

2. one-shot formulation: we compare the performance of the EKI with Algorithm 12
(osEKI 1), the EKI with Algorithm 13 (osEKI 2) and the quasi-Newton method
with Algorithm 12 (osQN 1).

3. neural network based one-shot formulation: we compare the performance of the EKI
with Algorithm 13 (nnosEKI 2) and the quasi-Newton method with Algorithm 12
(nnosQN 1).

Figure 7.15 shows the increasing sequence of λ used for Algorithm 12 and the quasi-Newton
method and Algorithm 13 (over time).

One-shot inversion We compare the one-shot inversion based on the FEM approximation
of the forward model in our 1d example. The following results illustrate the convergence
of the EKI and numerically investigate the performance of Algorithm 13.

In Figure 7.16 we see the difference of the estimates given by EKI with Algorithm 12
(osEKI 1), the EKI with Algorithm 13 (osEKI 2) and the quasi-Newton method with
Algorithm 12 (osQN 1) compared to the Tikhonov solution and the truth (on the left-hand
side) and in the observation space (on the right-hand side). All of the three methods result
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Figure 7.15: Scaling parameter λ depending on time for Algorithm 1, λk = k3 for k =
1, 2, . . . , 50, and Algorithm 2, dλ/dt = 1/λ.

in an excellent approximation of the Tikhonov solution. As the forward model is linear,
we expect the quasi-Newton method as well as the EKI with Algorithm 12 to converge to
the regularized solution. Similarly the EKI with Algorithm 13 shows good performance
while reducing the computational effort significantly compared to Algorithm 12.
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Figure 7.16: Comparison of parameter estimation given by EKI with Algorithm 12 (os-
EKI 1), the EKI with Algorithm 13 (osEKI 2) and the quasi-Newton method
with Algorithm 12 (osQN 1) compared to the Tikhonov solution and the truth
(on the left hand side) and in the observation space (on the right hand side).
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Figure 7.17: Comparison of the data misfit given by EKI with Algorithm 12 (osEKI 1),
the EKI with Algorithm 13 (osEKI 2) and the quasi-Newton method with
Algorithm 12 (osQN 1) (on the left hand side) and residual of the forward
problem (on the right hand side), both w.r. to κ.

By comparing the data misfit and the residuals of the forward problem, which are shown
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in Figure 7.17, we illustrate the very good performance of the EKI (for both algorithms)
with feasibility of the estimate (w.r.t. the forward problem) in the range of 10−10.

One-shot method with neural network approximation In our next experiment we re-
place the forward problem by a neural network approximation in the one-shot setting.
Our focus will be on Algorithm 13, as it has shown promising results in the previous
experiment.

While the EKI for the neural network based one-shot inversion leads to very good ap-
proximation results of the regularized solution, cp. Figure 7.18, the quasi-Newton method
performs slightly worse, which might be attributed to the nonlinearity introduced by the
neural network approximation.
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Figure 7.18: Comparison of parameter estimation given by the EKI with Algorithmn 13
(nnosEKI 2) and the quasi-Newton method with Algorithm 12 (nnosQN 1)
for the neural network based one-shot inversion compared to the Tikhonov
solution and the truth (on the left hand side) and in the observation space
(on the right hand side).
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Figure 7.19: Comparison of the data misfit given by the EKI with Algorithm 13
(nnosEKI 2) and the quasi-Newton method with Algorithm 12 (nnosQN 1)
for the neural network based one-shot inversion compared to EKI with Algo-
rithm 13 (osEKI 2) from the previous experiment (on the left hand side) and
residual of the forward problem (on the right hand side), both w.r. to λ.

We compare the data misfit and residual of the forward problem in Figure 7.19, which
show an excellent convergence behaviour of the EKI for the neural network based one-shot
optimization, while the quasi-Newton method does not converge to a feasible estimate.
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7 Machine learning application in inverse problems

Nonlinear forward model We consider in the following a nonlinear forward model of the
form {

−∇ · (exp(θ†) · ∇p) = 10, x ∈ D := (0, π),

p = 0, x ∈ ∂D,

Note that the mapping from the unknown parameter function to the state is nonlinear. We
use the same discretization as in the linear problem. The unknown parameter θ† is assumed
to be Gaussian with zero mean and C0 = β(− d2

dx2 )−ν where we choose β = 1, ν = 2.

Further, we set Γobs = 0.0001 · IdK , Γ̂model = 10 · IdI , κ1 = 2 and κ2 = 0. Furthermore,
the structure of the feed-forward DNN remains the same as in the linear case.

We compare the one-shot method with neural network approximation resulting from the
EKI with Algorithm 13 with the Tikhonov solution of the reduced formulation, which has
been approximated by a quasi-Newton method. We determine the scaling parameter λ in
Algorithm 13 by the ODE dλ/dt = 1, i.e. the scaling parameter grows linearly. Similarly
to the linear case, we find that the one-shot method with neural network approximation
leads to a good approximation of the Tikhonov solution for the reduced model, cp. Figure
7.20.
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Figure 7.20: Comparison of parameter estimation given by the EKI with Algorithm 13 (os-
EKI 2) and the Tikhonov solution (on the left hand side) and corresponding
PDE solution (on the right hand side).

In Figure 7.21, we observe that the penalty parameter λ drives the estimate towards
feasibilty, i.e. towards the solution of the constrained optimization problem.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 7.21: Data misfit given by the EKI with Algorithm 13 (osEKI 2) for the neural net-
work based one-shot inversion compared (on the left hand side) and residual
of the forward problem (on the right hand side), both w.r. to λ.
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7.2 Incorporation of neural networks approximation within inverse problems

Two-dimensional example

In the second example we consider the two-dimensional Poisson equation{
−∆p = θ†, x ∈ D := (0, 1)2,

p = 0, x ∈ ∂D,
(7.36)

for which we consider again the problem of recovering the unknown source term θ† from
noisy observations

y = O(p†) + η†,

where p† denotes the solution of (7.36). Our observation operator O observes K = 50
randomly picked observation points xi, i = 1, . . . ,K, which can be seen in Figure 7.22.
The forward model (7.36) has been approximated numerically with continuous, piecewise
linear finite element basis functions on a mesh with 95 grid points in the interior of D and
40 grid points on ∂Dusing the MATLAB Partial Differential Equation Toolbox. The
approximated solution operator is again denoted by S ∈ RI×I , with I = 95. The unknown
parameter θ is again modelled as Gaussian random field with (discretized) covariance
operator

C0 = β · (τ2 · Id−∆)−α

for β = 100, α = 2 and τ = 1. We assume the observational noise covariance to be
Γobs = 0.01 ·IdK and the model covariance Γ̂model = 0.1 ·IdI . The regularization parameter
has been set to κ1 = 0.002 and again κ2 = 0. We build up the feed-forward DNN with
L = 3 layers, N1 = N2 = 10 hidden neurons, N0 = 2 input neurons and NL = 1
output neuron, and sigmoid activation function. The EKI method is again based on the
deterministic formulation (3.13) and initialized with J = 300 particles drawn i.i.d. from
the prior.
We display the truth and the corresponding PDE solution in Figure 7.22.
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Figure 7.22: Ground truth (left hand side) and the corresponding PDE solution (right
hand side).

We compare the neural network based one-shot formulation solved by the EKI with Al-
gorithm 13 to the explicit Tikhonov solution of the reduced formulation of the corre-
sponding inverse problem. We determine the scaling parameter λ in Algorithm 13 by the
ODE dλ/dt = 1/λ2. We demonstrate in Figure 7.23 that the EKI leads to a comparable
solution.
Figure 7.24 shows that the proposed approach leads to a feasible solution w.r.t. the forward
problem

209



7 Machine learning application in inverse problems
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and corresponding PDE solution (on the right hand side).
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8 Conclusion and outlook

We close this thesis by summarizing the discussed methods and giving a brief overview on
interesting future work.

Chapter 3

We have started our discussion in Chapter 3 with the introduction of the ensemble Kalman
filter applied to inverse problem and its perspective as derivativefree optimization method.
We have shown well-posedness of the method by providing existence of unique strong solu-
tions of the underyling system of stochastic differential equations. Under the assumption
of linear forward maps, we have quantified the ensemble collapse and the accuracy of the
method.

There are mainly two open points which should be considered for future work. The
first point is to verifying the continuous-time limit (3.9). This can be done by providing
convergence results of the discrete method (3.8) to the system of SDEs in a weak or strong
sense. The second point is the extension of the provided convergence theory from linear
to nonlinear forward maps.

Chapter 4

We have focused on the incorporation of box-constraints into ensemble Kalman inversion.
The ideas were based on the projected gradient descent methods and its continuous-time
limit. We have formulated a transformed method leading to a descent direction of the
method.

A natural extension of this method could be the incorporation of nonlinear constraints, as
well as an extension to nonlinear forward maps. Furthermore, the proposed methods can
be applied to a hierarchical version of the ensemble Kalman inversion [40].

Chapter 5

In Chapter 5 we have extended the theoretical results for the ensemble Kalman inver-
sion to the case of noisy observations in the inverse problem. We have formulated the
Tikhonov regularized ensemble Kalman inversion and provided well-posedness and con-
vergence results for linear forward maps and fixed regularization parameter. Furthermore,
we have presented a row of ideas of how to adapt the regularization parameter including
data-driven regularization and the MAP formulation of the Bayesian inverse problem.

Again a natural question to ask is could the theory be extended to a nonlinear setting.
Since the theoretical results were based on fixed regularization parameters, similar con-
vergence results might be proven for the adaptive regularization choice. Another direction
would be to introduce other common forms of regularization, such as L1 regularization.

211



8 Conclusion and outlook

Chapter 6

In this Chapter, we have discussed various particle based sampling methods. These
methods included deterministic and stochastic interacting particle approximations to the
Fokker–Planck formulation of overdamped Langevin dynamics. By preconditioning with
the empirical covariance, we were able to formulate derivative free variants. Furthermore,
we have proposed a localised preconditioning approach in order to make the resulting
posterior approximation more accurate.
The presented methods of both the deterministic and stochastic interacting particle formu-
lations can be combined with stochastic gradient descent methods [28] as well as stochastic
gradient Langevin dynamics methods [227].

Chapter 7

We have provided two example of machine learning approaches for inverse problems

In the first part, we have applied bilevel optimization in order to choose the regularization
parameter by learning from the data. This approach has been applied to minimization
based inverse problems. We have provided bot offline and online consistency results for
the empirical risk minimization problem. While we have analysed the empirical loss in the
offline setting, we have formulated the stochastic gradient descent method for solving the
problem online.
One possible extension might be the consideration of a Bayesian approach of the under-
lying bilevel optimization problem. In particular, this could be related to hierarchical
learning [174]. Another potential direction is to understand statistical consistency from
other choices of regularization, such as L1 or total variation. Moreover, one could apply
alternative optimizers, as for example the ensemble Kalman inversion as derivative free
optimization method, to solve the bilevel optimization problem. Finally, a very interesting
direction to go is the small noise limit, i.e. proving convergence of the regularized solution
to the underlying minimizing norm solution in some sense.

Furthermore, we have considered the neural network based one-shot formulation for inverse
problems. The neural network has been applied as surrogate model of the underlying
complex forward model. We have applied the ensemble Kalman inversion in order to train
the neural network and the unknown parameter in a one-shot fashion.
Several questions for future work arise. For example, a promising direction to go is to
provide theoretical analysis of the neural network based one-shot inversion applying recent
expressivity results for neural networks in PDE based problems. Moreover, a comparison
to state-of-the-art optimization methods in the machine learning community should be
discussed.
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