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Abstract

We develop a novel empirical approach to identify the effectiveness of policies against a

pandemic. The essence of our approach is the insight that epidemic dynamics are best

tracked over stages, rather than over time. We use a normalization procedure that makes

the pre-policy paths of the epidemic identical across regions. The procedure uncovers re-

gional variation in the stage of the epidemic at the time of policy implementation. This

variation delivers clean identification of the policy effect based on the epidemic path of

a leading region that serves as a counterfactual for other regions. We apply our method

to evaluate the effectiveness of the nationwide stay-home policy enacted in Spain against

the Covid-19 pandemic. We find that the policy saved 15.9% of lives relative to the

number of deaths that would have occurred had it not been for the policy intervention.

Its effectiveness evolves with the epidemic and is larger when implemented at earlier stages.
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1 Introduction

In response to the worldwide Covid-19 pandemic many countries enacted a wide range of nonphar-

maceutical public health policies, some of which were also implemented during earlier pandemics.1

These policies aim to reduce interpersonal contact in order to slow down the spread of a virus

and reduce its death toll. Yet, the effectiveness of the implemented measures—e.g., evaluated as

the percentage of lives saved—is an open question.2 The (typical) difficulty for the identification

of the policy effect lies in establishing a counterfactual scenario that is informative about how

the epidemic would have evolved had it not been for the policy intervention. This is particu-

larly challenging when the policy is implemented nationwide at the same time (as, e.g., recently

in response to the first wave of the Covid-19 epidemic in Spain), which implies that there is no

cross-regional variation of the time of policy implementation—which is commonly used to identify

the effects of policy.

We develop a novel empirical method to construct the counterfactual epidemic dynamics that

overcomes this challenge, which builds on the notion that the dynamics of an epidemic are best

tracked over stages, and not over time. The starting point of our method is the observation that

at a given point in time there is potential heterogeneity across regions in terms of how far they

moved along an epidemic path. We illustrate this phenomenon in panel (a) of Figure 1 which

shows a stylized epidemic path in terms of the daily flow of deaths associated with the epidemic.3

Assume that two regions go through that path. If the epidemic starts earlier in region C than in

region T , then at some calendar date t, the epidemic will be more advanced in region C—we refer

to this as a more advanced stage of the epidemic. We use this heterogeneity of region-specific

epidemic stages at the time of policy implementation to identify the effects of policy.

In practice, there is not only heterogeneity in the calendar date at which an epidemic starts,

because regions will not go through an identical path once the regional epidemic is initiated.

Instead, epidemics can differ across regions in several dimensions—in particular, the speed of

1These policies include unprecedented lockdown measures that often implied some kind of stay-home (or
shelter-in-place) orders, school closures, restrictions on business opening hours, enforcement of hygiene protocols
in public spaces etc. For example, during the 1918 influenza pandemic (commonly known as the Spanish flu),
the New York City health commissioner ordered businesses to open and close on staggered shifts to prevent
overcrowding on the public transport.

2For example, if a stay-home policy is implemented before an epidemic starts to spread through the population,
then such a policy is—arguably—drastic but unambiguously effective at saving lives. On the contrary, if the policy
is enacted when the path of infections is complete, then stay-home policies will be unambiguously irrelevant. For
the practical example of stay-home policies enacted against Covid-19, since infections were in course at the time
at which stay-home policies were implemented, the true effectiveness of the these policies against the epidemic is
likely to be in between these two exemplified extremes.

3Our notion of stages is continuous, and can thus also be thought of as an extension of the discrete epidemic
intervals defined by the CDC in its Updated Preparedness and Response Framework for Influenza Pandemics
(CDC, 2014). According to the CDC framework, the stylized epidemic path in Figure 1 can be segmented into
initiation (where the flow takes off), acceleration (up to the peak), and deceleration (after the peak).
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Figure 1: The Evolution of an Epidemic: An Illustration with Two Regions

(a) A Stylized Epidemic Path (b) Before Normalization (c) After Normalization

Notes: Panel (a) shows a stylized epidemic path where sC(t) and sT (t) denote the stage at time t of regions C and

T , respectively; panel (b) shows two different epidemic paths for regions C and T as a function of time t, where

period tp + τ is the time period when a policy implemented in period tp becomes effective with time lag τ ; and

panel (c) shows the same epidemic paths after normalizing the epidemic of region T onto region C. The orange

shaded area in Panel (c) is the overlap interval D(s)—defined over stages of the epidemic—in which region T is

affected by the policy, whereas region C is not.

disease diffusion, and the magnitude (or overall death toll). To illustrate these dimensions, in

panel (b) of Figure 1 we show the time-path of the epidemic of two example regions. The epidemic

starts earlier, evolves faster, and has a larger magnitude in region C than in region T . Importantly,

there is a wide range of factors—some of which might be unobserved—that potentially determine

the differential epidemic paths across regions: among others, differences in the degree of network

connectivity with off-region infected individuals (or clusters) can determine differences in the dates

at which the epidemics start; cultural (or other) differences in the extent of interpersonal physical

contact at work, commuting or socializing, the age composition and health distribution of the

population, and environmental factors such as air pollution can explain the differential speed at

which the epidemic diffuses across populations. Clearly, a warranted assessment of the effects of

policy needs to control for these factors in a comprehensive manner. In an ideal scenario—absent

any differences in the observed and unobserved factors that determine the epidemic—the epidemic

path of any two regions is identical before policy implementation. The empirical method that we

develop achieves this goal without having to single out the forces that drive the epidemic.

Our identification consists of normalizing the time, speed and magnitude of the epidemic paths

across regions. In particular, the normalization ensures that before the policy is implemented all

regions share the same normalized epidemic path. We illustrate this normalization in panel (c) of

Figure 1 where we normalize the epidemic path of region T onto the epidemic path of region C
before policy affects the epidemic. In terms of reducing deaths, a policy implemented in period tp
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becomes effective with time lag τ in both regions and, hence, tp + τ is the effective policy date.4

Then, since region T lags region C, the calendar date tp + τ corresponds to an earlier stage in

region T than in region C—making region C a suitable candidate for a control region and T
for a treatment region. Put differently, our normalization unveils differences in the stage of the

epidemic across regions at the time of policy implementation that we exploit to identify the policy

effect. In particular, there exists an overlap interval D(s)—defined between stages sT (tp + τ)

and sC(tp+ τ)—within which the epidemic path in region T is affected by the policy whereas the

epidemic path of region C continues to evolve without policy intervention. This overlap interval

is illustrated by the orange shaded area in panel (c) of Figure 1. We use the difference between

the normalized paths of the epidemics over this overlap interval to estimate the policy effect.

We apply our method to quantify the effectiveness of the stay-home policy enacted against the

Covid-19 epidemic in Spain. On March 14, 2020, the Spanish government announced a nationwide

stay-home policy—enacted the following day—that locked down all non-essential workers in each

and all regions of Spain. We find that the epidemic in Madrid leads the ones in other regions,

and thus at the time of policy implementation Madrid was at a later epidemiological stage than

the rest of the country. Hence, we use Madrid as our control region that gives the counterfactual

epidemic for the rest of Spain—an artificial region that consists of Spain without Madrid. As

in our above stylized example, we find an overlap interval—of one week—in terms of the stages

of the epidemic during which the rest of Spain was treated with the stay-home policy, whereas

Madrid was not.

Our results imply that during this overlap interval 18.7% of people that would have died had it

not been for the policy were saved in Spain—without Madrid. We refer to this as the percentage

of lives saved. Accordingly, in the first week the stay-home policy became effective about 1,074

lives were saved. We also calculate the implied number of lives saved after the overlap interval

assuming that the percentage difference of daily deaths is the same as on the overlap interval.

This gives an estimate of the total number of lives saved due to implementing the stay-home

policy. Precisely, the stay-home policy that run from March 15 to May 2—i.e. until the first

wave of the epidemic flattened out and the strictest measures were lifted, saved about 19.4% of

lives—or 3,787 lives—in Spain without Madrid.5

4The policy does not necessarily have an immediate effect on the flow of deaths because the process from
infection to death occurs with some lag τ ≥ 0. In the case of Covid-19 it takes on average between twelve to
twenty-three days from infection to death, as reported by the Instituto de Salud Carlos III (ISCIII); see isciii.es.
Therefore, the effective policy date is tp + τ and not the date of policy implementation tp. In our analysis, we
choose a benchmark of τ = 12 corresponding to the lower bound reported by ISCIII. We conduct robustness with
values of τ that are above and below our benchmark choice.

5Our benchmark results are based on the official measurement of Covid-19 deaths in Spain —i.e. deaths that
tested positive for Covid-19 using PCR tests. We also conduct our analysis on excess deaths data, which in
principle also captures additional deaths that are indirectly happening due to Covid-19. We find effects of policy
of similar size to our benchmark results; see our Section 4.3.
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We also explore how the effects of policy differ over the course of the epidemic. To this end,

we split Spanish regions into three subgroups by their epidemic stage at the effective policy date

and then separately estimate the effectiveness of policy. We find that the regions for which the

stay-home policy was implemented at earlier stages show larger policy effectiveness than regions

for which the policy was implemented at later stages: during the overlap interval 33.2% of lives

saved for early implementers and 8.2% for late implementers. This drop in policy effectiveness

occurs rather rapidly—in terms of stages, the early implementers enter policy about one week

earlier than the late implementers. That is, a delay of one week in the introduction of the policy

drops effectiveness by approximately three fourths. Importantly, this is not a purely mechanical

effect due to a longer overlap interval, but also stems from a larger estimated proportion of

lives saved per day. Finally, we extrapolate our estimates to the time series of daily deaths

in Madrid—the latest implementer. By our extrapolation, we attribute 4.1% of lives saved to

the implementation of stay-home policies for the entire first wave of the epidemic. Aggregating

Madrid to the rest of Spain translates into a total of 4,024 lives saved which corresponds to an

effectiveness of 15.9% of lives saved in Spain. Again, this percentage refers to the counterfactual

stock of deaths that would have occurred had it not been for the observed policy intervention.

Our work relates to three stands of literature. First, our normalization of the epidemic relates

to previous work in Iorio and Santaeulàlia-Llopis (2016) that explores the relationship between

education and the probability of being infected with HIV over the course of the epidemic. In that

context, country-specific HIV epidemic paths are normalized to an aggregate path in order to

define stages of the epidemic in a comparable manner across time and space. We depart from

that work in that we use the normalization of the epidemic as base for identifying the effects of

policies that aim to alter the path of the epidemic itself. This implies the normalization of pre-

policy epidemic paths across suitable control and treatment regions. More generally, our notion

of epidemic stages is also analogous to the stylized stages of economic development (e.g., Lucas

2004) and the demographic transition (e.g., Greenwood et al. 2005 and Delventhal et al. 2019).

Second, our work relates to research that empirically assesses the effectiveness of policy

interventions aiming at containing pandemics. Similarly in spirit to our analysis, which is agnostic

about the exact mechanisms driving the epidemic, Dave et al. (2020) use a synthetic control (SC)

group approach developed in Abadie and Gardeazabal (2003) and Abadie et al. (2010).6 In this

context, we view our approach as preferable for our research question for several reasons. First,

the SC assigns weights—based on observable variables—to regions that did not implement the

6One alternative is to model the epidemic, for example by variants of an SEIR (susceptible-exposed-infected-
recovered) model, which is a set of differential equations describing the dynamics of an epidemic. A prominent
example in this spirit is Bootsma and Ferguson (2007), who evaluate policies during the 1918 influenza pan-
demic—and who construct counterfactual dynamics for several US cities that implemented nonpharmaceutical
public health measures by means of such SEIR models.
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policy such that the resulting pre-policy time path of the epidemic of a SC region is similar to the

path of the treatment region. This implies that issues related to time-varying unobservables are

not addressed by the SC approach. Our approach overcomes these issues by generating the exact

same pre-policy time paths for the control and treatment regions regardless of what factors—

including unobservables—drive the epidemic. Second, feasibility. The SC approach relies on some

suitable control regions not experiencing policy treatment at the time of policy implementation.

Hence, SC cannot be used to assess stay-home policies that are implemented nationwide at the

same calendar date. Our approach is also suitable when all regions experience policy treatment

at the same date, such as in our case study for Spain. Third, the SC group approach relies on

the assumption that the epidemic dynamics in the control regions do not change when policy is

introduced in the treatment region. This precludes endogeneity of behavior relevant to the spread

of the virus with respect to policy treatment in another region. Our approach does not require such

assumptions: the studied policy is introduced on the same calendar date, and the counterfactual

dynamics of the control region are based on data from before this date. Fourth, the SC group

approach (implicitly) assumes that control and treatment regions are at the same stage of the

epidemic at the time of policy implementation. However, in practice, we observe that regions differ

in their epidemiological stage at the time of policy implementation. Our approach is explicitly

designed to exploit this variation in epidemic stages across regions to provide identification.

Finally, our work directly relates to the macroeconomic literature on optimal lockdown. An

essential aspect of this literature is the trade-off between economic loss (including social costs)

and lives saved by stay-home policies (e.g., Alvarez et al. 2020, Atkeson 2020, Barro et al. 2020,

Eichenbaum et al. 2020, Farboodi et al. 2020, Fogli et al. 2020, Glover et al. 2020, Kaplan

et al. 2020, Piguillem and Shi 2020, among others). In this context, the measurement of how

many lives are saved by stay-home policies is of first-order importance. Our estimates provide an

empirically grounded measure of the effectiveness of these policies in reducing the death toll of the

epidemic and, for this reason, our results should be informative for the calibration and estimation

of policy parameters in models of the epidemic. Further, note that the empirical nature of our

approach allows us to be agnostic with respect to the driving forces of the epidemic dynamics.7

Hence, our results are informative for any model of the epidemic, independently of the theoretical

mechanisms that generate the epidemic which might differ across models.

The rest of the paper is structured as follows. Section 2 discusses our approach to identifica-

tion of the effectiveness of policy interventions. Section 3 discusses the evolution of the epidemic

and policy timeline in Spain. Section 4 shows the average effects of policy and over the course

7That is, our results do not hinge on any assumptions regarding the deep parameters embedded in epidemic
models—like the contact rate of infected parts of the population with susceptible parts, the probability of infection
during contact, the incubation period, or any heterogeneity of the former across groups of the population.
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of the epidemic in Spain. Section 5 concludes.

2 Identifying the Effectiveness of Policy

In this section, we first discuss the identification of the policy effect in an ideal (hypothetical)

scenario where a (public health) policy is introduced on an epidemic path. We then show how

empirically observed epidemic dynamics can be normalized to resemble this ideal scenario, and

how the policy effect can be identified based on the normalized data.

Policy Effect in an Ideal Scenario. Consider a scenario in which the regional evolution of

the epidemic across time is exactly the same for two regions r ∈ {C, T } before any policy that

potentially affects the epidemic is enacted. That is, these two regions are identical in every aspect

relevant for the dynamics of the epidemic, such that absent any policy intervention the epidemics

in the treatment region T and the control region C evolve identically. Now assume that region T
implements a stay-home policy at some date tp that reduces the number of epidemic deaths after

date tp + τ , while the epidemic dynamics in region C are not affected by the policy implemented

in T . Assume further that region C introduces the same policy at some later date tp+∆—reducing

the flow of deaths after tp + ∆ + τ .

This scenario is ideal for two reasons. First, absent any policy intervention the epidemic

evolves identically in the treatment and control regions, which implies that region C (before it is

treated) can serve as a counterfactual for region T . Second, at any given point in time, the two

regions are at the same stage of the epidemic, which is identical to the calendar time itself, i.e.,

sC(t) = sT (t) = t. Thus, the flow of deaths in region C in the interval [sT (tp+τ), sC(tp+∆+τ)]

gives a counterfactual for the flow of deaths in region T had the policy not (yet) been introduced.

We capture the differential by a distance function w(s; γp) that minimizes

min
γp
‖ ln(ysT )− ln(ysC)− ln(1 + w(s; γp))‖sC(tp+∆+τ)

s=sT (tp+τ) , (1)

where ysr is the flow of deaths at stage s in region r, and ‖ · ‖ is a distance norm. The distance

function w(s; γp) satisfies w(s ≤ sT (tp + τ), γp) = 0, and ∂w(s;γp)
∂γp

< 0 for s > sT (tp + τ) so

that when the policy is effective, a larger value of parameter γp means a stronger reduction in

the number of deaths in the treatment group T . We can then translate w(·) into the number

and percentage of lives saved due to the policy during the interval in which policy is not yet

introduced in the control region, and by extrapolation for the time after that interval.

Normalization of Epidemics. The previous description immediately puts at the center the

challenges that are to overcome before being able to identify the policy effect based on epidemic

dynamics over stages. First, if the regional epidemics in C and T start at different dates, then the

epidemics are at different stages at a given date t. Second, across regions the virus will spread at
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different speed if the regions are not identical in every aspect relevant to the epidemic dynamics

(e.g., the population density, or the distribution of the population over age and health status).

Third, and directly related, the epidemic will be of different magnitude, in the sense that the

peak of the flow of deaths differs.

We overcome all three challenges in two steps. First, we estimate smooth functions of time t

to capture the dynamics of the epidemics by region. Second, we use the estimated functions

to obtain a scaling factor that adjusts for the differences in magnitude, and to find the dates

t at which the epidemics in the two regions are at a given stage s (where one region serves to

normalize), thereby controlling for different starting time and speed. While in the ideal scenario

described above the distinction of stage s and time t is not required, it becomes crucial when

across regions the epidemics evolve differently.

Now consider a scenario in which a policy is introduced at the same date tp in both regions.

Given the lag until the policy treatment shows an effect on the flow of deaths we refer to tp + τ

as the effective policy date. Our normalization procedure can handle a wide range of possible

timings of the (effective) policy. Panels (a) and (b) of Figure 2 show smooth epidemics for two

possible scenarios. Across both scenarios, the epidemic dynamics of each of the two regions are

the same: the epidemic in region C starts earlier, evolves faster, and has a larger magnitude than

the epidemic in region T . In the first scenario, shown in panel (a), the effective policy date is

after the respective peaks of the flows of death of the two regional epidemics. In the second

scenario, panel (b), the effective policy date is before the peaks of the epidemics. In the latter

case, it is possible that the policy affects the peak, and thus the magnitude, of the epidemic.

Our procedure works for both cases, as well as for in-between cases where the epidemic of one

region is beyond its peak, while the other is before its peak at time of policy. It is important to

note that for a given date of actual policy implementation, choosing a different lag parameter τ

implies choosing a different effective policy date. This is relevant for the normalization procedure

insofar as we obtain normalization parameters based on (smoothed) epidemics up to the effective

policy date.

For region r ∈ {C, T } we observe the daily flow of deaths at date t as ytr. Denote by g′(t;βr)

some continuous function fitted to those flows, and by εtr a multiplicative error term, giving

ytr = g′(t;βr)εtr. (2)

In other words, g′(t;βr) is a smooth representation of the epidemic dynamics in region r. Impor-

tantly, the normalization procedure does not hinge on the exact form of g′(t;βr): we simply need a

continuous function estimated to capture the epidemic dynamics. If there was no measurement

error, we could also directly use the observed flow data.
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Figure 2: Normalization of the Epidemics: An Illustration

With Policy After Peak With Policy Before Peak

(a) Epidemics in Control (C) and Treatment (T ) (b) Epidemics in Control (C) and Treatment (T )

(c) Adjusting T for Magnitude (d) Adjusting T for Magnitude

(e) Adjusting T for Magnitude, Time, and Speed (f) Adjusting T for Magnitude, Time, and Speed

Notes: Panel (a) shows smooth epidemic dynamics represented by Generalized Logistic Functions for a control

region C and a treatment region T , where the policy is effective (tp + τ) after the regions reached their epidemic

peaks (in terms of the death toll). Panel (c) applies the magnitude adjustment to region T . Panel (e) additionally

applies the adjustment for time and speed to region T . Panels (b), (d), and (f) illustrate the same for a scenario

where policy is effective before the epidemic peaks.
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We treat region C as the benchmark region and define stages as8

sr(t;ψ1, ψ2) =

{
sT (t;ψ1, ψ2) = ψ1 + ψ2t if r = T

sC = t if r = C
(3)

where ψ1 moves the epidemic forward or backwards in time, and ψ2 adjusts its speed. We pin

those down together with a scaling parameter ψ0 that adjusts for the magnitude.

Given the fitted g′(·) functions, we solve for the ψ = {ψ0, ψ1, ψ2} that minimizes the log

difference of the (smoothed) epidemics on an interval up to the effective policy date:

min
ψ
‖ ln(g′(t = s; β̂C))− ln(ψ0g

′(t = s−1
T (s;ψ1, ψ2); β̂T ))‖s≤sT (tp+τ ;ψ1,ψ2)=ψ1+ψ2(tp+τ).

(4)

We impose two normalization conditions as constraints in the minimization:

sup
s≤sT (tp+τ ;ψ1,ψ2)

ψ0g
′(t = s−1

T (s;ψ1, ψ2); β̂T ) = sup
s≤sT (tp+τ ;ψ1,ψ2)

g′(t = s; β̂C) (5a)

ψ0g
′(t = tp + τ ; β̂T ) = g′(t = sT (tp + τ ;ψ1, ψ2); β̂C). (5b)

The first constraint ensures that the pre-policy peak of daily deaths of the scaled (smoothed)

epidemic in region T corresponds to the pre-policy peak in region C. The second constraint

ensures that the (smoothed) epidemics at the stage of the effective policy date in T are the

same. Note that the first constraint uses the supremum of g′(·), as it is possible that the

maximum is not on the interval—this is the case if the flow of deaths peaks after the effective

policy date. If in at least one of the two regions the policy is effective only after the peak (see

panel (a) of Figure 2), then arg sup g′(t; ·) < tp + τ , and there are two constraints (5a) and (5b)

to the minimization problem. Otherwise, i.e., if both regions are before their peaks (as in panel

(b)), the two constraints collapse to one, because the supremum is reached at the policy date.

Applied to the whole time series, the estimated parameters ψ̂ give a normalized version of

the epidemic in region T . To guide intuition, we continue to look at smooth representations of

the epidemics. Consider first the illustrative scenario where the effective policy date is after the

peak of the epidemic: the estimated parameter ψ̂0 scales up the epidemic in T such that the

magnitude of the epidemic is the same as in region C, as visualized in panel (c) of Figure 2. In

panel (d), we show the adjustment in the alternative scenario, where the effective policy date is

before the peak: the overall magnitude of the normalized epidemic remains lower than in region C,

reflecting that the policy affects the peak of the flow of deaths. In the last two panels (e) and

8Note that there is no “natural choice” for which region is the benchmark. Choosing T as benchmark region
gives identical results for the policy effect.
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Figure 3: Identification of Policy Effect: An Illustration

(a) With Policy After the Peak (b) With Policy Before the Peak

Notes: The figure zooms in on the overlap interval in panel (f) of Figure 2. It shows the GLF for C, the adjusted

GLF for T , together with the data for C and the adjusted (normalized) data for T .

(f) we move to stages s as opposed to time t on the x-axis. For region C nothing changes,

and we still show the same epidemic as before. For region T , we plot the epidemic adjusted for

time and speed (and as before, for magnitude). To see this last step, note that the estimated

parameters ψ̂1 and ψ̂2 assign a stage sT (t; ψ̂1, ψ̂2) to every date t according to Equation (3).

Accordingly, tT (s; ·) = s−1
T (s; ·) gives the date t corresponding to a stage, and thus gives the

adjusted flow of death at stage s as ψ̂0g
′(t = tT (s; ·) = s−1

T (s; ·), β̂T ). With this, the stage is

set to estimate the policy effect, to which we turn next.

Estimation of Policy Effect. If the epidemic in region C leads the one in region T , then there

is an interval D in terms of stages during which the policy is already implemented in T , but not

yet in C, even though the policy is implemented at the same calendar date:

D = [sT (tp + τ ; ψ̂1, ψ̂2), . . . , sC(tp + τ)].

We refer to D as the overlap interval, and show it in panels (e) and (f) of Figure 2. In Figure 3 we

zoom in on that overlap interval and again plot the smooth representations of the epidemic, g′(·).

In the rest of the discussion, we focus on the scenario where the effective policy date is before

the peaks of both regions (i.e., panel (b) of Figure 3), but everything goes through for other

scenarios including the case in which the policy is introduced after the peaks of both regions (i.e.,

panel (a) of Figure 3).

For the estimation of the policy effect we do not rely on smoothed data, and instead directly

apply the estimated normalization parameters to the observed data in the obtained overlap in-
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terval. However, in order to do so, we first need to translate the overlap interval into discrete

steps—as the flow of deaths is observed on discrete calendar dates t. Thus, consider

D̄ = {cl(sC(min{D})), . . . , f l(sC(max{D}))} (6)

= {cl(sT (tp + τ ; ψ̂1, ψ̂2)), . . . , tp + τ}

where fl(·) and cl(·) denote the integer floor or integer ceiling, respectively. Note that the time t

assigned to a stage s ∈ D̄ for region T according to tT (s) = s−1
T (s; ψ̂1, ψ̂2) is not discrete. Thus,

we interpolate between ψ̂0yt=fl(tT (s)),T and ψ̂0yt=cl(tT (s)),T to obtain ψ̂0ŷt=tT (s)),T . The markers

in Figure 3 show the obtained (scaled) data on the overlap interval: blue circles correspond to

region C and red triangles show the corresponding flow of deaths for region T . The distance

function (1) to be minimized becomes

‖ ln(ψ̂0ŷt=tT (s)=s−1
T (s;ψ̂1,ψ̂2),T )− ln(yt=s,C)− ln(1 + w(s; γp))‖s∈D̄. (7)

In order to treat the data observations for both regions symmetrically, we also consider the

following alternative representation of the interval D, which gives discrete dates for the normalized

region T :

D̃ = {cl(s−1
T (min{D}; ψ̂1, ψ̂2)), . . . , f l(s−1

T (max{D}; ψ̂1, ψ̂2))}

= {tp + τ, . . . , f l(s−1
T (tp + τ ; ψ̂1, ψ̂2))}. (8)

For all t̃ ∈ D̃, for region T , the raw data scaled to the epidemic magnitude of region C are

observed on t = t̃: ψ̂0 · yt=t̃,T . In the same fashion as above, we now obtain s(t̃) = sT (t̃; ψ̂1, ψ̂2).

We then interpolate between yt=s=fl(s(t̃)),C and yt=s=cl(s(t̃)),C to obtain ŷt=s=sT (t̃;ψ̂1,ψ̂2),C. The

crosses in Figure 3 show the corresponding data: again in blue and red for regions C and T ,

respectively. The distance function (1) to be minimized then becomes

‖ ln(ψ̂0yt=t̃,T )− ln(ŷt=s=sT (t̃;ψ̂1,ψ̂2),C)− ln(1 + w(s = sT (t̃; ψ̂1, ψ̂2); γp))‖t̃∈D̃ (9)

We then stack (7) and (9) and minimize over γp, which gives our estimate of the policy effect in

region T .

3 Epidemic Dynamics and Policy Timeline in Spain

We now first describe the dynamic behavior of the Covid-19 epidemic in Spain focusing on the

time path of the flow of deaths, and the associated stock—the cumulative number—of deaths.

Then, we describe the timeline of the stay-home policy implementation in Spain.

11



The Epidemic Dynamics. Covid-19 was introduced in Spain through multiple routes (D́ıez-

Fuertes et al., 2020). The first confirmed case of Covid-19 dates to January 31, 2020.9 A

sequence of cases largely related to individuals returning from trips to Lombardy, Italy, rapidly

emerged throughout February. At that point, the country witnessed the diffusion of Covid-19

through several community clusters and, by March 13, cases had been confirmed in all of the fifty

provinces in the country. Deaths followed infections with some lags. The first Covid-19 death

occurred on Feb 13 in Valencia, although it was not until March 3 that the death was linked to

Covid-19 in an autopsy.10 We show the entire path of the daily flow of deaths and its associated

stock for nationwide Spain and some sub-regions in Figure 4.

The nationwide flow of Covid-19 deaths rapidly increased from early to late March, with a

number of daily Covid-19 deaths of 2 on March 1 to 870 on March 31—i.e., an increase from

0.042 to 18.50 daily deaths per one million inhabitants; see panel (a1) of Figure 4. The rapid

increase in the flow of deaths is followed, after reaching its peak, by a slower pace decline; the

number of daily deaths declines from March 31 to April 30 to 206—or to 4.38 per one million

inhabitants. That is, as a function of time, the flow of deaths exhibits an asymmetric bell shape

with a thicker tail to the right of the peak, i.e., right skewness. Further, directly associated with

the behavior of the flow of deaths is that of the stock of deaths. The time path of the stock of

deaths is S-shaped—a sigmoid; see panel (a2) of Figure 4. Then, note the asymmetry in flow of

deaths goes hand in hand with an analogous asymmetry in the stock of deaths. For example, the

accumulated number of Covid-19 deaths that occur during March—i.e. during the thirty days

that precede the peak of the epidemic—is 10,050 whereas the total number of deaths that occur

during April—i.e., during the thirty days that follow the peak of the epidemic—is 15,970, which

speaks to the right skewness of the flow of deaths. As of July 31st, the cumulative number of

deaths kept increasing with a total amount of 28,279 deaths in stock.

Within Spain, we distinguish the behavior of the epidemic in the region of Madrid and the rest

of Spain: an artificial region that consists of Spain without the region of Madrid. In Madrid, the

number of daily Covid-19 deaths reaches a maximum of 327 in March 27, whereas for the rest

of Spain this figure is 655 in March 30. That is, the epidemic reaches its peak earlier in Madrid

than in the rest of Spain. In per capita terms, the peak is also of larger magnitude in Madrid than

in the rest of Spain. Madrid reaches a maximum of 49.23 deaths per one million inhabitants,

9A German tourist tested positive in La Gomera, Canary Islands.
10It is then when distance measures are publicly spoken of by the government for the first time, although not

enforced by any means. Indeed, official La Liga soccer games with average attendance of more than 20,000
are played during the weekend of March 7 and 8 throughout the country, and massive demonstrations are held
for Women’s Day on March 8. During the following week some country- and regional-level officials emphasized
the need to take into account simple but what at that time were understood as key measures such as washing
hands frequently, covering one’s mouth and nose when sneezing with tissues, handkerchiefs, or forearms, avoiding
sharing objects in meetings. Those who show symptoms are also asked to voluntarily stay home.
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Figure 4: Covid-19 Deaths in Spain

(a) Nationwide

(a1) Flow of Deaths, XD,t (a2) Stock of Deaths, Dt
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(b) Madrid and the Rest of Spain

(b1) Flow of Deaths, XD,t (b2) Stock of Deaths, Dt
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Notes: Panel (a) shows the flow of detahs (a1) and stock of deaths (a2) associated with Covid-19 in Spain. In panel

(b) we separately reproduce these results for the autonomous community of Madrid and the rest of Spain—i.e.

an artificial region that consists of Spain without Madrid. All panels are expressed per million inhabitants of each

region, with Spain having 47 million inhabitants and Madrid 6.6 million. Source of data: Instituto de Salud Carlos

III.

whereas for the rest of Spain this figure is 16.22; see panel (b1) of Figure 4. Further, in Madrid,

the accumulated number of deaths is 2,897 during the thirty days before the peak of the epidemic

whereas this figure is 4,488 during the following thirty days. These numbers are, respectively,

4,846 and 12,475, for the rest of Spain, which suggests a larger asymmetry—right-skewness—in

the rest of Spain than in Madrid. This is confirmed with a positive skewness statistic for each of

13



the two regions that is larger for the rest of Spain than for Madrid.11

In order to describe the epidemic dynamics we focus on the flow of deaths. We use the data

on Covid-19 deaths provided by the Ministerio de Sanidad in Spain.12 The criteria imposed by

the Ministerio in order to homogenize the death data separately collected by each region—or au-

tonomous community—is to define as Covid-19 deaths those that were tested positive for Covid-19

using PCR tests. While the measurement of Covid-19 deaths is not free of problems—including

potential measurement error from PCR testing, we regard the flow of deaths as a more accurate

measure compared to official number of new infections (or cases). Our rationale to characterize

the epidemic using deaths—as opposed to infections or other margins of the epidemic—is the

notorious lack of nationally representative serological testing throughout the course of the epi-

demic which implies that the actual dynamics of the infected population that would be required

to conduct our analysis—if we were to focus on infections—is simply unknown. There are limited

exceptions to this. Notably, in the case of Spain, a nationally representative serological study

is currently ongoing. Unfortunately, this study was initiated on April 27, that is, approximately

1.5 months after the stay-home policy was enacted and when the studied wave of the epidemic

was already starting to flat out—e.g. at the time the nationally representative testing was con-

ducted the flow of deaths was already below 5.5 per million inhabitants.13 Altogether, the official

measure of the infected population at a given point in time is subject to large measurement

error that potentially depends not only on the growing availability and quality of PCR tests but

also on the selection of individuals that are tested (i.e., those that show symptoms and seek

for medical help). In addition, it can be shown that the entire epidemic dynamics—including

new infections, recoveries and active infections—can be recovered using the observed number of

deaths by imposing some assumptions on the arrival process of deaths, see Appendix A.

Stay-Home Policy Timeline. On March 14, the President of Spain, Pedro Sánchez, declared

a nationwide State of Alarm, which was enacted on March 15 for an initial duration of 14 days.By

this ruling, all residents were mandated to remain in their habitual residence at all times except

to buy food, purchase medicines and attend work or emergencies. This stay-home policy came

together with a set of economic lockdown restrictions that temporarily closed non-essential shops

and businesses, including bars, restaurants, cafes, cinemas, commercial and retail businesses, etc.

On March 22, shortly after exceeding 1,000 deaths, the government announced the petition to

extend the State of Alarm in the nation until April 11, which the Congress ratified on March

28. On March 29, the Spanish government further banned all non-essential economic activities

11The skewness coefficients for Spain, Madrid, and the rest of Spain are 1.03, 0.74, and 1.05 respectively.
12The data from the Ministerio de Sanidad can be found under the following link: www.mscbs.gob.es
13The Spanish nationally representative serological study consists of several unbalanced waves across time and

space with, arguably, a too small sample size within regions; see Pollan et al. (2020).
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between March 29 and April 11. Starting April 13 some restrictions were lifted: non-essential

workers for whom telework was not feasible were allowed to return to work (e.g. in construction).14

The government began the distribution of millions of face masks in public transportation hubs.

On April 21, the government announced that from April 27 on children under the age of 14 were

able to go out on short walks with their parents or other adults living in the same household.

The stay-home policy ended on May 2. On April 28, the government announced a plan for

easing lockdown restrictions. The plan has four phases, numbered 0 through 3. Phase 0 allowed

people out of their homes for short walks and individual sports from May 2. The transition across

phases could differ by province according to public health indicators such as the number of Covid-

19 cases and the capacity of the healthcare system. The state of alarm expired at midnight of

Sunday June 21, and Spain entered a phase referred to as “new normality” in which the control of

policy restrictions was fully decentralized and passed to the hands of each autonomous community.

4 Lives Saved by the Stay-Home Policy in Spain

4.1 Smooth Epidemic Dynamics

The first step of the application of our method is to fit smooth functions to the (regional)

epidemics on which the normalization is based. We use a generalized logistic function (GLF),

which is able to capture salient features of the observed epidemic dynamics: an asymmetric bell-

shaped time path of the flow of deaths (normalized by population size), and the implied S-shaped

time path of the stock of deaths (normalized by population size).15

The stock of deaths is given as

g(t;β) =
β0

[1 + β3 exp [−β1 (t− β2)]]
1
β3

, (10)

with β = {β0, β1, β2, β3}, and the flow of deaths follows as the first analytical derivative of (10)

with respect to time, giving

g′(t;β) =
∂g(t;β)

∂t
= β1 · g(t;β) · 1

β3 + exp [β1 (t− β2)]
. (11)

14The Ministerio de Sanidad elaborated a guide for good practice at work that included, among others, the use
of masks (in case workers interacted with other individuals), the use of bulkheads or shields (e.g., in offices, restau-
rants and retail cashiers), an encouragement for the use of credit cards as method of payment, a recommended
temperature of twenty-three to twenty-six degrees Celsius at the place of work, and the washing of uniforms on a
daily basis at higher than sixty degrees Celsius. In addition, the Minister of Health, Salvador Illa, emphasized the
importance of keeping physical distance and of frequent washing hands.

15The generalized logistic function—also referred to as Richards growth curve—is also employed by Lee et al.
(2020) for modelling Covid-19 infection trajectories. We are currently exploring alternative smooth functions to
track the epidemic.
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Figure 5: Normalization of the Epidemic: By Regions

(a) Before Normalization (b) After Normalization

Notes: Panel (a) shows the time path of the flow of deaths—as a function of calendar time t—for each region
in Spain. Panel (b) shows the stages s—at the effective policy date for the various regions after applying our
normalization procedure described in Section 2.

Thus, β0 is the maximum value of the stock of deaths for t → ∞, β1 is the average logistic

growth rate of the stock of deaths, β2 is the inflection point in the time path of the stock of

deaths (the maximum of the flow), and β3 > 0 measures the degree of asymmetry in the time

path of the stock of deaths (right skewness in the time path of the flow).16

We fit g′(·) to data starting on February 20, 202017, which in our notation is equal to t = 1.

Period t0(r) is the region specific start period in the estimation, which we determine as the

period in which we observe the first death in the respective region giving t0S = 13, t0M = 13

and t0R = 14.18 Our sample is restricted to be of length T (τ), which is indexed by τ , the lag

parameter at which the policy becomes effective. To determine T (τ) we take the date of the

end of the studied policy intervention (i.e., the lifting of the strict confinement measures), which

is May 2, 2020, period te, and add the policy lag parameter, thus T (τ) = te + τ , reflecting the

assumption that the flow of deaths is affected by the policy change with time lag τ . Finally, we

conduct statistical inference by bootstrapping confidence bands. It is crucial for our normalization

that g′(·) matches the flow of death time series before the effective policy date tp+τ well. Figure 6

16Note that if β3 = 1, then the function (10) is the logistic function, and for β3 approaching 0 from the side
of positive real numbers it approaches the Gompertz growth law.

17We thereby exclude one outlier in the data on the flow of death. As described in Section 3 a first death is
reported in Valencia on February 13 followed by zero death reports in all regions until the second death report in
Madrid on March 3, 2020.

18We clean (very few) observations with zero death reports within the sample period t0r, . . . , T (τ) by linear
interpolation.
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Figure 6: Normalization of the Epidemics: Madrid (C) vs. Rest of Spain (T )

(a) Before Normalization (b) After Normalization

Notes: Panel (a) shows the epidemics in Madrid (C) and the rest of Spain (T )), panel (b) shows the normalized
epidemics. The fitted lines for t < tp+τ show the smooth epidemics pre-policy that are used in the normalization
procedure.

shows that this is the case for our benchmark choice of τ = 12. Appendix B summarizes the

parameter estimates of the GLF and provides details on our bootstrapping procedure.

4.2 Estimates of Lives Saved

Effect During Overlap Interval. In panel (a) of Figure 5, we show the epidemic path in

terms of Covid-19 deaths per one million inhabitants separately for Spanish regions. The region

of Madrid (blue line) shows an epidemic path that precedes all other regions with an earlier rise,

peak and decline than the rest of regions in calendar time.19 Further, normalizing the pre-policy

epidemic path of all regions to Madrid as described in Section 2, we find that at the time of policy

implementation the region of Madrid is at the latest stage of the epidemic across all regions, see

panel (b) of Figure 5. Since the epidemic in Madrid thus leads the other regions it constitutes a

suitable candidate as control region C = M for our analysis.

Next, we create a treatment region T formed by the rest of Spanish regions—i.e., an artificial

region that consists of Spain without Madrid, thus T = R, where R stands in for Rest of

Spain. We show the epidemic paths of the regions Madrid and the rest of Spain before and after

normalization, respectively, in panels (a) and (b) of Figure 6. Before normalization, we find that

the epidemic in Madrid starts earlier, evolves faster, and has a larger magnitude than the rest

of Spain. After normalization, Madrid and the rest of Spain follow the same pre-policy epidemic

path. Notice that the normalization is under an effect of policy that occurs at date tp + τ , where

19Madrid is the region with the second largest peak, 49.23 deaths per million inhabitants, following a peak
of 55.02 deaths per million inhabitants in Castilla y León and preceding a peak of 38.62 deaths per million
inhabitants in Castilla La Mancha.
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Figure 7: Effects of Stay-Home Policy: Madrid (C) vs. Rest of Spain (T )

(a) Overlap Interval (b) Estimated Effect with Different Lags, τ

Notes: Panel (a) shows the epidemic path of control group, Madrid C, and the normalized epidemic path of our

treatment group, the rest of Spain T within the overlap interval D(s). Panel (b) shows the effects of policy in

terms of percentage of lives saved as a function of τ .

we use a benchmark policy lag of τ equal to twelve days, on which we conduct robustness below.

The normalization unveils an overlap interval in terms of stages, in which the region of

Madrid is not yet under the effect of policy whereas the rest of Spain is, i.e., the interval DR =

[sR(tp + τ), sM(tp + τ)], cf. Section 2. The overlap interval is seven days long. We compute the

average effect of policy as the average difference between the deaths in Madrid and the normalized

rest of Spain within the overlap interval applying the methods described in Section 2. Panel (a)

of Figure 7 shows the normalized data on the overlap interval, where the normalized rest of Spain

faces the stay-home policy while the region of Madrid does not. The distance between the time

path of the flow of deaths in Madrid and the time path in the normalized rest of Spain measures

the effects of policy understood as the amount of lives saved.

As distance function ω(t; γ) we choose a simple dummy variable assuming an effect on lives

saved from period tp + τ + 1 onwards

ω(t; γpR) =

0 for t = tp + τ

−γpR for t > tp + τ,
(12)

and thus our estimate γ̂pR captures the average reduction of deaths in the overlap interval. We

next translate this estimate into the number and the percent of lives saved. We denote by ytR the

number of deaths in the rest of Spain for any time period t = t̃ ∈ D̃R = {tp + τ, . . . , f l(s−1
R (tp +

τ)}. Remember from equation (8) in Section 2 that D̃R is the time interval which assigns the
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Table 1: Effect of Stay-Home Policy: Madrid (C) vs. Rest of Spain (T )

Overlap Post-Overlap Overall
(1) (2) (3)

% Lives Saved: 18.7 19.6 19.4
[15.7;35.1] [16.3;36.9] [16.1;36.5]

# Lives Saved: 1,074 2,712 3,787
[888;2,028] [2,311;6,935] [3,248;8,953]

# Days of Overlap: 7 - -

Notes: Estimates of number and percent of lives saved from they stay-home policy for a policy lag of τ = 12

days. Table shows the Bootstrapped 90% confidence bounds in parenthesis.

calendar time of the epidemic in the treatment region to the stages of the overlap interval DR. In

the calculations that follow we base the number of lives saved on the observed flow of death in the

treatment region, and thus we refer explicitly to the interval on which data is observed. Then, the

counterfactual number of deaths in period t, region R follows from equation (1) as 1
1+ω(t,γ̂pR)

ytR

so that the number of lives saved is

l̂tR = − ω(t, γ̂pR)

1 + ω(t, γ̂pR)
ytR.

The estimated total number of lives saved L̂D̃RR and the corresponding total number of deaths Y D̃R
R

is thus

L̂D̃RR =

fl(s−1
R (tp+τ))∑
t=tp+τ

l̂tR, Y D̃R
R =

fl(s−1
R (tp+τ))∑
t=tp+τ

ytR.

Consequently, the percentage of lives saved in each period on time interval D̃R, which relates the

total number of lives saved to the counterfactual deaths on that interval, is

L̂D̃RR

L̂D̃RR + Y D̃R
R

.

Our estimate of the percentage of lives saved due to implementing the policy in the rest of Spain

according to this definition is 18.7%, see column (1) in Table 1. This estimate is significantly

different from zero. The corresponding number of lives saved LD̃RR is about 1,074.
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Role of the Time Lag Until Effectiveness. Our baseline results relate to a policy lag param-

eter of τ equal to twelve. We now investigate the robustness of our main result with respect to

this lag parameter. In panel (b) of Figure 7 we plot the effects of the stay-home policy, i.e., the

percentage of lives saved by the policy on the overlap interval, as function of the lag parameter τ ,

which displays a clear inverse u-shaped pattern. First, the percentage of lives saved monotoni-

cally increases with τ starting from τ = 9 with a point estimate of the percentage of lives saved

of 7.9%. This effect increases until τ = 13, where we reach a maximum effect of a percentage

of 18.9% of lives saved, with a corresponding total number of lives saved of 1, 096 very close to

our main estimates for τ = 12. The effects of the stay-home policy decrease afterwards. Indeed,

the percentage of lives saved become not significantly different from zero for lags larger than τ

equal to eighteen.

Extrapolation to End of Stay-Home Policy. Based on our estimates for τ = 12 we further

calculate the implied number of lives saved after the overlap interval by extrapolating the policy

effect. To this end, we assume that the policy parameter estimate γ̂Rp is the same as the one

estimated on the overlap interval for all periods after the overlap, i.e., for the treatment region,

we use the data observed for all t = t̃ ∈ {fl(s−1
R (tp + τ)) + 1, . . . , T (τ)}. Table 1 separately

shows the results for the post-overlap interval and the overall effects in, respectively, columns

(2) and (3). We compute the number of lives saved each period as l̂tR = − ω(t,γ̂pR)

1+ω(t,γ̂pR)
ytR, the

total number of lives saved as L̂R =
∑T (τ)

t=fl(s−1
R (tp+τ))+1

l̂tR, the total number of deaths on this

time interval as YR =
∑T (τ)

t=fl(s−1
R (tp+τ))+1

ytR, and, finally, the percentage of lives saved as L̂R
L̂R+YR

.

According to our estimate, from the date of confinement until May 2 when the first wave of the

epidemic ends—i.e. the flow of deaths flattens out—and the strict measures were lifted about

19.4% of lives—or 3,787 lives—were saved in Spain without Madrid.

Below we will further extrapolate our estimates to the whole of Spain. To this purpose we

need an estimate of the number of lives saved in the control region, Madrid. We will base this

estimate on an extrapolation of the extent of policy effectiveness by epidemic stages at the time

of policy implementation to which we turn next.

Effectiveness of Policy Over the Course of the Epidemic. How do the effects of the

stay-home policy differ by the stage of the epidemic? To address this question we exploit the

heterogeneity in the stage of the epidemic across regions at the time of policy implementation

as documented above in Figure 5. We split the regions in our benchmark treatment group—

i.e., Spain without Madrid—into three subgroups according to the region-specific stage at which

the nationwide policy was implemented. We label the first, second and last of these subgroups

respectively as early, mid and late stage implementers of the stay-home policy. The treatment

subgroup with early stage implementers of the policy consists of Aragon, Baleares, Cantabria and
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Table 2: Effects of Stay-Home Policy: By Stage of Policy Implementation

(a) Early Stage Implementers:

Overlap Post-Overlap Overall

% Lives Saved: 33.2 33.5 33.3
[27.9;42.8] [28.1;43.22] [28.0;42.9]

# Lives Saved: 432 199 631
[354;549] [168;333] [518;877]

# Days of Overlap: 11 - -

(b) Mid Stage Implementers:

Overlap Post-Overlap Overall

% Lives Saved: 24.1 25.1 24.8
[18.5;38.8] [19.3;40.4] [19.1;40.1]

# Lives Saved: 1,266 2,725 3,991
[978;2,082] [2,178;6,051] [3,149;8,104]

# Days of Overlap: 7 - -

(c) Last Stage Implementers:

Overlap Post-Overlap Overall

% Lives Saved: 8.2 9.5 9.3
[2.6;32.4] [2.9;35.9] [2.8;35.5]

# Lives Saved: 33 214 248
[10;127] [61;1,142] [71;1,270]

# Days of Overlap: 4 - -

Notes: These estimates refer are associated with a lagged effect of τ = 12 Days. Table shows the Bootstrapped
90% confidence bounds in parenthesis.

Murcia, and is associated with a overlap interval of eleven days. The treatment subgroup with

late implementers consists of Andalucia, Canary Islands and Valencia, and is associated with an

overlap interval of four days. The rest of Spanish regions, excluding Madrid, fall into the group

that implements the policy at some mid stages with an overlap interval of seven days long.

We find that regions on which the stay-home policy is implemented in earlier stages of the
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epidemic benefit the most in terms of the percentage of lives saved. For early implementers,

the stay-home policy saves on average 33.2% of lives on the overlap interval. For the mid-stage

implementers, the stay-home policy saves 24.1% of lives. For late implementers, the stay-home

policy saves 8.2% of lives. That is, the effectiveness of policy for the early implementers is

significantly larger—by a factor of four—than that for the late implementers. Our results also

imply a rapid drop in policy effectiveness since, in terms of stages, the early implementers enter

policy approximately one week earlier than the late implementers. That is, the effectiveness of

policy drops by approximately three fourths in a matter of just one week. Extending the estimation

after the overlap interval delivers similar insights, see Table 2.

We further unpack the effects of policy by region. For example, as part of the subgroup of

regions that implemented the policy earlier, Baleares, implemented the policy 11 days earlier—in

terms of stages—than Madrid and shows an effect of percentage of lives saved by the policy

of 46.9; the largest effect across Spanish regions. As part of the subgroup of regions that

implemented the policy in mid stages of the epidemic, La Rioja, implemented the policy 5 days

earlier—in terms of stages—than Madrid and shows an effect of percentage of lives saved by

the policy of 26. Within the regions that implemented the policy at later stages, Valencia, that

implemented the policy 3 days—in terms of stages—before the region of Madrid, saved 4.6 per

cent of lives in the overlap interval. Figure 8 summarizes the effects of policy by region.

Our results imply that the effectiveness of policy relies on the stage of the epidemic at which

the policy is implemented. In regions where the policy was implemented relatively early—in terms

of stages—the policy caught the epidemic at a stage where it reduced the death toll by more

than one-third. However, the effect of policy rapidly more than quartered for regions where the

policy was implemented one week later.

Extrapolation to Spain. Finally, we extrapolate our estimates to compute the number of

lives saved in Spain. To this purpose we first need an estimate for the lives saved in Madrid,

the control region. We first regress the region specific estimates of the policy effects γ̂pr on

the stages sr(tp + τ) at policy implementation in the respective regions20 according to

ln(γr) = α0 + α1sr + εr. (13)

We then use the result of the regression to predict the value of the policy effect in Madrid. Next,

we apply this policy effect estimate to compute the number of lives saved in Madrid following

the same steps outlined above, for all days after policy implementation t = tp + τ + 1, . . . , T (τ).

Summing up, our estimates imply 237 lives saved corresponding to 4.1% of the counterfactual

20The correlation between the policy effect parameters γpr and the stages at policy implementation sr is similar
to the one between stages and percent lives saved shown Figure 8.
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Figure 8: Effects of Stay-Home Policy: By Region

Notes: This figure shows the region-specific effects of policy against the epidemic stage of policy implementation

by region. The effects of policy are defined by the percentage of lives saved in the overlap interval. The list

of regions (yellow circles) is denoted by: Andalucia (AND), Aragon (ARA), Asturias (AST), Baleares (BAL),

Canarias (CAN), Cantabria (CNT), Castilla-La Mancha (CLM), Castilla y Leon (CLL), Catalunya (CAT), Ceuta

(CEU), Valencia (VAL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Melilla (MEL), Murcia (MUR),

Navarra (NAV), Pais Vasco (PVC), La Rioja (RIO). We also plot the three subgroups (grey circles) in Table 2:

Early-stage implementers (G1); Mid-stage implementers (G2); and Late-stage implementers (G3). The size of the

yellow and grey circles is the stock of deaths per thousand inhabitants accumulated during the overlap period.

The number shown for Madrid is computed using the extrapolated policy effect on the overall period; accordingly

the size represents the accumulated stock of deaths per thousand inhabitants between tp + τ + 1 and T (τ).

deaths in Madrid. Finally, we add this to the number of lives saved in the rest of Spain, which

gives a total number of lives saved of 4, 024.21

21An alternative estimate for Madrid, which takes into account the correlation between stage at policy effec-
tiveness and percent of lives by groups of regions and not directly by regions, is to directly base the extrapolation
for Madrid on our point estimate for the late implementers. We accordingly get a total number of lives saved in
Madrid of 544 (or 9.02%), and thus a total number of lives saved in Spain of 4, 331.
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To put these numbers into perspective, note that the total accumulated deaths at period T (τ)

relative to one million of the population in Madrid is 5.7, whereas in the region rest of Spain it

is 4.7. The ratio of these two numbers is 1.21, and thus the total death toll in Madrid exceeds

the total death toll in the rest of Spain by about 21%. The corresponding ratio of lives saved

is 0.06, thus lives saved in Madrid relative to the rest of Spain fall short by roughly 94%. This

exemplifies the key effect of mid-stage versus late-stage implementation.

4.3 Estimating Effectiveness on Excess Mortality

Our benchmark measurement of Covid-19 deaths—defined as those tested positive for Covid-19

using PCR tests—may be mis-measured, because of lack of necessary testing equipment during

the onset of the epidemic or unreliable accuracy of the PCR testing can affect the prevalence of

Covid-19 deaths. Estimates of excess deaths—detrended and deseasonalized—are an alternative

measure that also captures deaths that are indirectly happening due to Covid-19. On the one

hand, ICUs at full capicity might limit access for non-Covid-19 patients and the lockdown policy

may have triggered adverse reactions such that patients with other illnesses did not visit hospitals

for reasons of fear. On the other hand, the deaths toll might have been reduced by fewer

deaths from work- or traffic-related accidents that are not happening due to the stay-home policy

implementation. All in all, the total reduction of excess deaths from the stay-home policy are a

measure of interest by itself.

Table 3 reports our results for excess deaths for the region rest of Spain. As with the directly

attributed Covid-19 deaths we find that the point estimates are inverse-u shaped in the policy

lag parameter τ . In contrast to our previous findings reported in Table 1, confidence bands are

large so that the estimates are insignificant.22 Also, the peak of the policy effect for excess

deaths is at τ = 16 rather than τ = 12. Otherwise, the point estimates in terms of the total

number of lives saved are similar to those reported above for Covid-19 deaths and, according to

the (insignificant) point estimate, the total number of lives saved in the region rest of Spain for

the period since the lockdown became effective exceeds our previous estimate based on Covid-19

deaths; Table 1 reports 3845 deaths whereas the excess mortality data suggest a total number

of lives saved of 4169. The difference is, of course, insignificant.

However, our results based on excess deaths data are still preliminary. The excess mortality

data are computed relative to a base mortality, which we take as given from the predictions of the

Instituto de Salud Carlos III (ISCIII) thus treating it as a black box. If systematic time variation

in these estimates happens in the same time period when we measure the policy effect (in terms

22The reason for the higher confidence bands may be associated with additional noisiness introduced by the
expected mortality. In our bootstrap procedure we do not take the statistical uncertainty of the expected death
into account but directly bootstrap on the difference between observed deaths and expected deaths, which we
take from the Instituto de Salud Carlos III.
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Table 3: Effect of Stay-Home Policy on Total Lives Saved: Madrid (C) vs. Rest of Spain (T )

Overlap Post-Overlap Overall
τ = 16 (1) (2) (3)

% Lives Saved: 14.9 15.9 15.4
[-29.3;21.8] [-31.2;23.2] [-30.3;22.6]

# Lives Saved: 1,521 2,224 3,745
[-2,572;2,196 ] [-3,022;3,824] [-5,500;6,033]

Notes: Estimates of number and percent of lives saved according to the excess mortality data from they stay-home

policy for a policy lag of τ = 16 days. The bootstrapped 90% confidence bounds are reported in parenthesis.

of stages during the overlap interval) then this will bias our estimates.23 For this reason we are

currently seeking access to the ISCIII data on which the baseline estimates are based.

5 Conclusion

We develop a novel empirical approach to estimate the effectiveness of public policies against

a pandemic. Our method consists of normalizing region-specific pre-policy epidemic dynamics

to an exact same epidemic path. This approach uncovers heterogeneity across regions in the

stage of the epidemic at the time of policy intervention. In particular, we find an interval—in

terms of stages—in which the epidemic path of a control region unaffected by policy overlaps

with a treatment region affected by policy. This overlap interval provides the basis for a clean

identification of the effects of policy.

We apply our methodology to Spain, where we find that the regional epidemic in Madrid

leads the ones in other Spanish regions and estimate that during an overlap interval of one week

about 18.7% of lives were saved in the rest of Spain. There is considerable variation in this effect

across disaggregated regions of Spain, and our estimates are larger for those regions that were at

an earlier stage of the epidemic when the policy was implemented. Further, the effectiveness of

policy rapidly declines across epidemic stages—dropping by three fourths in a matter of a week.

Extrapolating the estimated policy effect to Madrid and until the policy was lifted, we find that

the nationwide stay-home policy saved 15.9% of lives during the first wave of the pandemic.

In studies that quantify the trade-off between saving lives and losing economic activity the

effectiveness of stay-home policies on the number of lives saved is a necessary input. Our estimates

both in terms of the average effect as well as its variation across stages will provide useful

information for calibrating these models.

23Estimates based on total mortality itself do not suffer from this problem, but are affected by seasonality.
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A From Deaths to Active Infections

We show that the dynamics of an epidemic (including new and active infections) can be tracked

using the flow of deaths. With some assumptions on the overall fatality rate and on the arrival

process of deaths (and recoveries), the (unobserved) number of new and active infections at any

time can be directly backed out from the flow of deaths.

Consider a scenario in which a virus that infects a flow Xi,t of individuals at time t is expected

to be deadly for a proportion ζ of those individuals, who otherwise recover. Assume that the

death process is known. That is, ζ denotes the fatality rate of the virus. Specifically, assume the

true timing of death for the infected individuals is random and follows a Poisson process. That

is, at the time of infection, the time (and event) of death is uncertain at the individual level, but

the average time from infection to death, τD, is known, say twelve days.24 Then, the expected

total number of deaths in τD = 12 days is

E[XD,t+τD ] = λt

where λt = ζXi,t is a time-varying Poisson parameter and ζ is the fatality rate. In this context,

if the flow of deaths per period follows an observed time series {XD}Tt=12 as depicted in panel

(a) of Figure 9, we can recover the expected number of new infections that occurred twelve days

earlier using the Poisson process. That is, given a fatality rate ζ we can recover the flow of new

infections that deliver the observed flow of deaths by solving for the series Xi,t in

XD,t+τD = ζXi,t. (14)

In panel (c) of Figure 9, we plot the series of new infections {Xi,t}T−τDt=0 associated with the

observed flow of deaths {XD,t}Tt=τD assuming τD = 12 and ζ = 0.00025.25 With the assumed

homogeneous arrival rate of deaths, the time lag between the peaks of the backed out flow of

infections and the given flow of new deaths corresponds to the average time from infection to

death τD.26 The accumulated deaths, Dt, associated with the observed flow of deaths and ac-

cumulated new infections, it, associated with the backed out flow of new infections are shown in

24Recently, the Robert Koch Institute in Germany reported an average of approximately 30 days from infection
to death in the case of Covid-19, see here.

25Although the Covid-19 fatality rate remains relatively unknown even up to this date, its estimates tend to
range between 0.001% and 1.54% (Loannidis, 2020). In our illustration, we choose ζ = 0.025% which implies
a 4.5% seroprevalence rate at t = 84. This is in line with the 4.6% seroprevalence rate (from PCR tests) as
well as with the self-reported Covid-19 symptoms for Spain from data collected 84 days after the country started
reporting active infections (Pollan et al., 2020).

26This would change if the estimated arrival of deaths were to differ over time, e.g., because of systematic
changes in the infected population and heterogeneous death processes across those subgroups, say by age or
health status.
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Figure 9: An Illustration of an Epidemic

Deaths, Dt

(a) Flow: XD,t (b) Stock: Dt

New Infections, it, and Recoveries Rt

(c) Flow: Xi,t and XR,t (d) Stock: it and Rt

Active Infections, It
(e) Flow: XI,t (f) Seroprevalence: It/POPt

Notes: Panel (a) and panel (b) show respectively the ’observed’ flow and stock of deaths for Spain. The
unobserved flows of new infections, recoveries and prevalence are tracked using the population law of motions
defined by equations (14)-(16) in Section A. For our illustration we use a fatality rate of ζ = 0.025% and
τR = τD = 12. All panels on Figure 9 are expressed ×10000, except panel (f) that shows the seroprevalence of
the disease as the percentage of active infections in the population, with the current estimate for the population
of Spain being around 47 million. Smoothed lines are based on predicted values of a generalized logistic function
estimated on the flow of deaths data. Source: Instituto de Salud Carlos III.

panels (b) and (d) of Figure 9, respectively.

Along the same lines, note that given the fatality rate and the backed out flow of new

infections, it is straightforward to further back out the flow of recovered individuals, XR,t, if the
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time between infection and recovery, τR, is known:

XR,t+τR = (1− ζ)Xi,t (15)

In this manner, using an average time of recovery of τR = τD = 12 days, we can use equations

(14) and (15) to find, XR,t = Xi,t−12 − XD,t. Under these assumptions, we plot the flow of

recovered population, XR,t and its associated stock, Rt, respectively, in panel (c) and (d) of

Figure 9.27

Furthermore, note that the flow of the actively infected population at any point in time does

not only need to take into account the flow of new infections but also the outflow from those

individuals that either recover or die. In this manner, we can recover the series of the flow of

active infections in period t, XI,t, as the flow of new infections in that period minus the flow of

recoveries and the flow of deaths in that period as

XI,t = Xi,t − (XR,t +XD,t) . (16)

Given the series XI,t we can recover the associated stock of actively infected individuals, It, in

the population. We show the flow active infections in panel (e) of Figure 9. In panel (f) we show

the percentage of active infections in the population, POPt, which results in a seroprevalence of

4.5% and 0.85% for t = 84 and t = 104 respectively.28

A relevant aspect of our illustration is that in order to estimate the flow of infections we do

not require knowledge on the process through which infections occur. Note that this does not

limit our ability to recover the infection rate either: if the amount of susceptible population to

infection is known (e.g., the entire population is susceptible) then the estimated flow of deaths

pins down the infection rate of the susceptible population understood as the proportion ωt of

susceptible population St that at any given period get infected, i.e., ωt is the only unknown in

Xi,t = ωtSt.

B Estimating the Generalized Logistic Function

B.1 Approach

We find that the GLF prediction smooths the time series data of both the flow of deaths and the

stock of deaths tracking well their main features. This is the case for both the nationwide time

27Those with mild cases of Covid-19 appear to recover within one to two weeks. For severe cases, recovery
may take six weeks or more, see here: Hopkins Medicine. For this illustration we use an average time of recovery
of twenty-one days.

28These numbers are in line with the results presented by Pollan et al. (2020) for Spain.
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Table 4: GLF Estimates

Spain Madrid Rest of Spain
β0 0.56 1.14 0.67

[0.56 , 0.62] [ 1.14 , 1.34] [ 0.68 , 0.78]

β1 0.09 0.11 0.12
[0.08 , 0.09] [ 0.09 , 0.01] [ 0.09 , 0.11]

β2 41.33 37.42 42.50
[ 42.30, 41.69 ] [ 39.54 , 38.50] [ 44.55 , 43.32]

β3 0.07 0.09 0.27
[0.03 , 0.05] [ 0.04 , 0.07] [ 0.11 , 0.18]

Notes: Table shows the Bootstrapped 90% confidence bounds in parenthesis.

series (panel (a) in Figure 4) as well as for Madrid and the rest of Spain (panel (b) in Figure 4).

First, note that our estimation is able to capture the accumulated number of deaths in Spain

as well as the significantly higher death toll (per million inhabitants) in Madrid compared to the

rest of Spain. These results are driven by our estimated value of β0 that is 0.56 nationwide, 1.14

for Madrid and 0.5279 for the rest of Spain. Second, the GLF also captures a significantly faster

average growth (and decline) of the flow of deaths in the rest of Spain than in Madrid as per the

estimates of β1 that are, respectively, 0.14 and 0.10. Third, our parametrization is able to capture

the asymmetry by which the flow of deaths increase at a faster pace compared with the pace at

which it decreases. In particular, Madrid shows an estimated asymmetry that is significantly larger

than the asymmetry in the rest of Spain with estimates of β3 of, respectively, 0.088 and 0.375.

Finally, note that the estimated values of β2 confirm that Madrid reaches the maximum of deaths

earlier than the rest of Spain.

B.2 Bootstrapping

To draw bootstrap samples of standard errors, we first extract standard errors by estimating a

regression on log flows of deaths

min
βd

1

2

T (τ)∑
t=t0r

(ln (ytr)− ln (XD,t(β
a
r )))2

and compute predicted errors from the log difference

ε̂tr = ln (ytr)− ln
(
XD,t(β̂

d
r )
)
.
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We draw bootstrap samples of these predicted residuals to compute bootstrap samples of flows

of deaths, which we sum up to generate bootstrap samples of the stock of deaths. When drawing

the bootstrap samples of error terms we take both cross-sectional dependence and autocorrelated

errors into account by drawing in each bootstrap iteration the same index sequence of error terms

and by a blockwise bootstrap, where we choose a block length of 4.29 We take into account

potential changes in the error structure before and after the policy reform date at tp + τ by

conducting the blockwise bootstrap within the two time blocks [t0(r), . . . , tp + τ − 1] and [tp +

τ, . . . , T (τ)]. Bootstrap samples in bootstrap iteration b of the flow of death are constructed

from the bootstrap errors εbtr as

ln ybtr = ln
(
XD,t(β̂

d
r )
)

+ εbtr

Summing up over time gives an according bootstrap sample for the stock of deaths Y b
tr.

C Predicting Lives Saved in Madrid

Figure 10 shows the log of the policy effect estimate γ̂pr by stage of the epidemic by regions and

the prediction for Madrid, cf. equation (13).

29According to the standard rule of thumb that the blocklength should relate to the overall sample size as n ≈
T

1
3 .
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Figure 10: Policy Effect Estimate γ̂ by Stage of Epidemic [in Logs]

Notes: Log of policy effect estimate ln(γ̂p) by stage of the epidemic and prediction for Madrid.
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