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Abstract

We describe a new mechanism - what we call a booster draft - for allocating multiple, indivisible

objects among a group of individuals. The mechanism’s appeal lies in its strategy-proofness and

simplicity: Individuals take turns drawing objects from different sets - called boosters - and simply

need to identify their favorite object when it’s their turn to choose. Following a market design

approach, we examine how to tailor the booster draft mechanism to specific multi-object assignment

problems. As an illustrative example, we consider the assignment of teaching positions to graduate

students. We show that, through the right design of the boosters, not only is the mechanism

strategy-proof, but the resulting allocations are fair and efficient. In fact, in the described domain,

under some additional mild axioms, any strategy-proof mechanism is some variation of a booster

draft. Finally, using data on graduate students preferences, we demonstrate that the booster draft

is useful and easy to implement in practice.
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1 Introduction

In this paper, we study the multi-object assignment problem. That is, m×n indivisible objects have to be

distributed among n individuals, without the use of monetary transfers. Examples include the assignment

of shifts to interchangeable workers, players to sport teams, courses to students, and teaching assignments

to graduate students. We introduce a new mechanism, which stands out in terms of simplicity and

strategy-proofness, that is, it will be always optimal for individuals to reveal their true preferences. The

mechanism is inspired by the following multi-object assignment process used in Magic: The Gathering,

a competitive trading card game:1

In a booster draft, players each receive three booster packs of 15 cards.

After being seated around a table, each player simultaneously opens one

booster pack, selects a single card, and then passes the rest over to the

next player. After all players have drafted fifteen cards, they each open

their second pack, and drafting continues, sometimes in reverse order during

the second pack (MTGWiki, 2019).

We formalize an algorithm that captures the essential elements of the mechanism described above.

As input, individuals report rankings over the available objects. In a first step, the objects are arbitrarily

divided into m sets of size n, and a separate priority order for each set determines the sequence in which

objects are picked. In line with the motivation, we refer to these sets as “boosters.” Following his/her

reported ranking, the individual whose turn it is to select from a given booster adds the best available

object to his/her collection. Once all objects are distributed, a final allocation is reached. Fixing the

objects within each booster as well ass the corresponding priority orders the algorithm induces a function

from rankings to allocations, which we refer to as a booster draft (BD) mechanism. More precisely, we

introduce a class of mechanisms, as every design of boosters and priorities yields a distinct BD mechanism.

We start by analyzing how well BD mechanism perform if used for a general multi-object assignment

problem. Postponing the details to a later part of the introduction, we show that any BD mechanism is

strategy-proof in the “responsive” preference domain.2 To ensure that individuals cannot benefit from

manipulation, we need them to pick at most once from every booster, therefore we restrict the sets to be

of size n. Moreover, responsiveness ensures that an individual does not want to change its earlier picked

objects, based on the objects received later on. Furthermore, we show that any “balanced” booster

drafts satisfies a reasonable notion of fairness.3 It is well known that in the multi-object environment,

1Magic: The Gathering (MTG) was the first commercially successful trading card game, developed by Richard Garfield
and published in 1993 by Wizards of the Coast (https://company.wizards.com/). Analogous to a sports drafts, MTG
introduced a play mode in which players draft cards from a common pool. Afterwards every player builds a deck using
a subset of the drafted cards. Only then do players compete against each other with their constructed decks. There are
countless other online/offline trading card games featuring a booster draft-inspired play-mode.

2Responsiveness requires that an individual will always prefer a higher ranked object to a lower ranked one regardless
of any other items in his/her possession.

3Balanced BD mechanisms place the following restriction on the priority orders: For any pair of individuals i and j, i
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there does not exist any mechanism simultaneously satisfying strategy-proofness, efficiency, and fairness.

Therefore, we cannot ensure that the outcomes of the BD mechanisms will be efficient.

Following these observations, in the second part of the paper, we take a market design perspective,

exploiting additional restrictions on preferences and allocations for specific markets, in order to improve

the outcome of the BD mechanism. Paying attention to detail, we ask how to design the underlying

boosters and priority orders. We focus our attention on the assignment of teaching positions to graduate

students, in which a restriction is placed on the set of feasible allocations. Specifically, at the economics

department under consideration, graduate students are supposed to work as a teaching assistant for

exactly one fall and one spring semester course.4 Here, the optimal way of creating boosters is to

group up all spring teaching assignments in one booster and all fall semester assignments in the other.

In this case, the balanced booster draft is not only strategy-proof, but also (weakly) efficient and fair.

More generally, we describe the partition-restricted assignment domain, i.e., any multi-object assignment

problem for which there exists an exogenous partition of objects, such that any two objects within the

same set cannot be obtained by the same individual. As before, the creation of boosters for running the

BD algorithm is no longer arbitrary, but naturally follows the exogenously given partition. In theorem 1,

we characterize the set of all “partition-consistent” BD mechanism for this domain. In particular, given

the standard requirements of non-bossiness and neutrality any strategy-proof mechanism must fall into

the category of booster draft mechanisms.5 We conclude that in any partition-restricted multi-object

assignment problem, the balanced BD mechanism arises as a natural candidate to be employed. How to

create boosters for other multi-object assignment problems remains an open question.

In the third part of the paper, we take a closer look at the assigning of graduate students to

teaching positions. We use 2018 data on the preferences of graduate students, at a particular economics

department, to simulate assignments under the balanced BD mechanism. That is, at the end of the

academic year, students separately rank all the fall and spring semester tasks. Before the start of the

new academic year, an assignment is created based on the submitted rankings. For the simulation,

students are randomly ordered and pick their preferred fall semester assignments one after another.

Then the initial random order is reversed and students pick their spring semester assignments in the

same fashion. The BD mechanism outperforms the actual assignment in that year, both in terms of

efficiency and fairness. Moreover, simulating the outcome of serial dictatorship as an alternative, we

show that the BD mechanism reaches comparable outcomes in terms of efficiency, while achieving higher

has lower priority than j in at most half of the available boosters, rounded down if there is an odd number of boosters, i.e.,
dm

2
e.
4One relevant rational for the requirement is the following: As many graduate students in the economics department are

international students, their visa status (F1) allows them to work up to 20 hours per week, preventing them from fulfilling
the work-requirement for two positions in the same semester, without violating their visa regulations.

5Non-Bossiness requires that no individual can influence the allocation of another individual without affecting its own
allocation, while neutrality states that the mechanism should be immune to a relabeling of the object.
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fairness.6 This discussion concludes the main part of the paper. We belief that an additional strength of

the booster draft lies in its simplicity. Therefore, in the remainder, we evaluate in which sense the BD

rule’s non-manipulability is simple to grasp, following the concept of obvious strategy-proofness.7 We

now will discuss some of the previously omitted definitions and ideas in more detail.

Running the BD mechanism, every individual reports a simple order/ranking over the available

objects.8 As strategy-proofness, efficiency, and fairness are all formulated in terms of individuals pref-

erences, we first need to establish a link between the reported order over objects and the underlying

preferences. In particular, consider the following partial order, which we refer to as a dominance rela-

tion: Given a simple order over objects, for any two (same size) sets A and B, A dominates B if for

every object in B there is a concomitant object in A that is (weakly) preferred to the one in B. In lemma

1, we show that if A is preferred to B by set-wise domination, then the same holds true for the actual

preferences. This connection allows us to analyze which properties the BD mechanism satisfies.

A mechanism is strategy-poof if an individual cannot obtain a better outcome by submitting a

untruthful ranking over objects. The BD mechanism is strategy-proof, as the final allocation is (weakly)

set-wise dominating any other outcome obtainable by submitting an different ranking. The idea behind

the fairness concept is as follows: Pick a final allocation and suppose individual i prefers individual

j’s bundle to his/hers. Let us sequentially remove the best object from j’s and the worst object from

i’s assignment, following i’s simple order. At some point, i (weakly) prefers her reduced bundle to j’s

reduced bundle. A mechanism is k envy-free, if the maximum number of pairs of objects that have to

be removed to eliminate envy for any individual i over the bundle of any j, at any possible allocation, is

equal to k. The larger k is, the higher the envy of an individual. The maximum envy under the balanced

BD mechanism is equal to half of the obtained objects rounded up.

Efficiency requires that for any final allocation, no other allocation of objects makes everyone weakly

and at least one individual strictly better off. We relax efficiency to dominance efficiency, ruling out that

all individuals can be made better off in terms of set-wise dominance. In proposition 4 we show that

an allocation is dominance efficient if and only if there does not exist any “exchange-cycles” between a

subset of individuals, s.t. everyone gives and receives exactly a single object, and everyone is better off

after the trade takes place. However, our weakened efficiency criteria does not rule out that swapping

a combination of objects, some deemed better and some worse than the ones exchanged, can lead to

a more desired allocation for all involved parties. The BD mechanism violates dominance efficiency in

6Under a serial dictatorship, for any two students A and B, one of them is going to choose all his/her objects before the
other. The mechanism is simple to implement, efficient, and strategy-proof and has therefore often been used in practice.
An important shortcoming is that serial dicatorships lead to very unfair allocations, especially if individuals value similar
objects.

7In practice strategy-proofness is not always strong enough. People sometimes will try to manipulate a mechanism,
failing to recognize its strategy-proofness. Li (2017) introduces the strengthening of strategy-proofness called obvious
strategy-proofness that addresses the issue.

8For any preference relation, we refer to the ranking of singleton sets as the “underlying simple order.”
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the standard responsive domain. We also show that in the standard responsive preference domain no

mechanism can simultaneously satisfy envy-freeness for half of the objects, dominance strategy-proofness,

and dominance efficiency.9 As discussed previously, we can avoid the impossibility result by incorporating

market specific restrictions. For instance, we show that in the partition-restricted assignment domain

the BD mechanism satisfies dominance efficiency on top of strategy-proofness and envy freeness for half

of the objects.

Finally, we ask whether the BD mechanism is implementable via an extensive form game in an

obviously strategy-proof (OSP) way. A mechanism is OSP implementable if there exists an extensive

form game that yields the same outcome as the proposed mechanism with the added restriction that,

at any information set in which an individual is called to play, the best outcome under truthful play is

weakly preferred to any possible history reachable from the same information set. The BD mechanism is

not OSP implementable. We introduce a weakening of OSP called dominance obvious strategy-proofness

(DOSP), that limits the attention to outcome pairs comparable by set-wise domination. Unlike the

standard responsive domain, the BD mechanism is DOSP implementable in the partition-restricted

domain, providing additional evidence that the BD mechanism is a strongly viable candidate for the

restricted multi-object assignment problems. We continue by discussing the relevant literature.

2 Related Literature

A series of impossibility results have pointed out that any efficient and strategy-proof mechanism is a

serial dictatorship (Pápai, 2001; Klaus and Miyagawa, 2002; Ehlers and Klaus, 2003). We add a new

impossiblity result to the literature, showing that even weaker versions of fairness, strategy-proofness,

and efficiency cannot be simultaneously satisfied by a mechanism.

Initially, we are interested in strategy-proof mechanisms that are also fair. Related to this, Moulin

(2019) provides a comprehensive survey of the long-standing literature on fair division problems. Our

definition of envy-freeness is adapted from Budish (2011), although we modify their definition to account

for the possibility of distributing bads, as well extending it, allowing for the removal of an arbitrary

number of objects.10 For practicality, we let individuals report simple orders over objects. We then have

to establish a link between the reports of individuals and their preferences across sets of objects. This

approach relates to Brams and Fishburn (2000), Brams et al. (2003), and Edelman and Fishburn (2001).

9Dominance strategy-poofness is a weakening of strategy-proofness, requiring that no individual can manipulate the
mechanism, s.t. his/her assignment (strictly) improves under the dominance relation. Hence, this notion allows for some
manipulations to take place.

10Suppose for example that only non-disposable bads are distributed. Hence removing a bad from the bundle of individual
j will only increase the envy of individual i. In this case one should remove the worst object from i’s bundle instead. We
take care of both cases by always removing the best object from j and the worst object from i simultaneously. Aziz
et al. (2018) have a similar definition based on removing a single good on each side. Moreover, instead of considering 1
envy-freeness, we allow for an arbitrary k.
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In the second part of the paper, we take a market design perspective. We exploit the additional

structure specific markets impose on preferences and or final allocations, to adjust our mechanism to the

problem at hand. This has been done before for multi-unit assignment problems, in the context of course

allocation at business schools (Sönmez and Ünver, 2010; Budish, 2011; Budish and Cantillon, 2012).11

Budish (2011) provides a solution to the more general combinatorial assignment problem, introducing the

approximate competitive equilibrium from equal incomes (ACEEI) mechanism. Efficiency and strategy-

proofness of the ACEEI mechanism rely on the market being large enough such that people become

price takers. Unfortunately, ACEEI cannot be obtained in a constructive way (Othman et al., 2010;

Budish et al., 2016). This might cause legitimacy issues (Bo and Li, 2019), as its not possible to publicly

implement the outcome of ACEEI. Related to this, Li (2017) points out that if a mechanism is hard

to understand in practice, some individuals will employ dominated strategies, even if the mechanism is

strategy-proof. An additional appeal of the BD mechanism lies in its simplicity. The discussion of the

dominance obviously strategy-proofness, relates to the small body of literature on obviously strategy-

proofness (Li, 2017; Zhang and Levin, 2017; Ashlagi and Gonczarowski, 2018; Pycia and Troyan, 2018;

Troyan, 2016).

In general, our research relates to the larger field of matching theory started by Gale and Shapley

(1962). In particular, the characterization result draws from Svensson (1999) and Hatfield (2009), while

the responsiveness preference assumption is based on Roth (1985). Finally, the assignment of graduate

students to teaching assignments falls into the category of applied matching problems (Abdulkadiroglu

and Sönmez, 2003; Sönmez and Switzer, 2013; Delacrétaz et al., 2019). We are not aware that this

particular application has been discussed in any previous literature.

3 Model

A multi-object assignment problem is a triple 〈I,O,%〉, where

1. I is a finite set of |I| = n individuals,

2. O is a finite set of |O| = m× n objects with m ≥ 2, and

3. %= (%i)i∈I a list of preferences over sets of objects 2O.

We want to distribute all the available objects among the individuals. An allocation A = (Ai)i∈I

gives every individual i ∈ I a subset of objects Ai ∈ 2O. An allocation is feasible if for any two

distinct individuals i, j ∈ I with i 6= j, their assignments do not overlap Ai ∩ Aj = ∅, and all objects

are distributed
⋃
i∈I Ai = O. Let A denote the set of all feasible allocations. Every individual has a

11The multi-unit assignment problem is a slight variation to on the multi-object assignment problem, in which several
units of the same object are available, e.g., representing the number of available seats for each course. None of the results
we present depend on the absence of multiple copies of objects. We ignore it to reduce the notation, as it does not give
any additional insight.
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preference relation %i over sets of objects.12 Slightly abusing notation %i denotes preferences over sets

of objects as well as allocations, such that A %i A′ if and only if Ai %i A′i. The underlying assumption

is that individuals only care about their own assignment.

From individual i’s perspective, an object o is a good if receiving the object is preferred to not

receiving it, i.e., {o} �i ∅. The empty-set, ∅, represents an empty assignment. Conversely, an object

is a bad if not receiving it is preferred to receiving it, i.e., ∅ �i {o}. For simplicity, we focus on the

case where everyone agrees whether objects are good or bad. Formally, we have {o} %i ∅ if and only

if {o} %j ∅ for all j ∈ I and hence ∅ �i {o} if and only if ∅ �j {o} for all j ∈ I. Preferences over

objects are responsive. The idea is that if an individual prefers object o to another object o′ then we

can infer, no matter what other objects O′ ⊂ O the individual possesses, that {o} ∪ O′ is preferred to

{o′} ∪ O′. I.e., for any o, o′ ∈ O and O′ ⊂ O \ {o, o′} we have that O′ ∪ {o} %i O′ ∪ {o′} if and only if

{o} %i {o′}. Likewise, a good is always desirable, while a bad makes an individual always worse off, i.e.,

for any o ∈ O and O′ ⊂ O \ {o} we have O′ ∪ {o} �i O′ if and only if {o′} �i ∅. Finally, we restrict our

attention to preferences that strictly rank any pair of singletons. That is for any o, o′ ∈ O with o 6= o′

either {o} �i {o′} or {o′} �i {o}.

3.1 Submitted Rankings and the Booster Draft Mechanism

As it is impractical to ask individuals for their full preference relation over all sets of objects, throughout

the analysis, we let each individual report a strict simple order Pi over the available objects O, with

the associated simple order Ri.
13 The set of possible rankings for any i ∈ I is denoted as Pi, and

represents all possible ways one can order the available objects O. P = (Pi)i∈I denotes a list of simple

orders for every individual i ∈ I with P representing the set of all possible lists. For a given preference

relation �i over 2O we say Pi is the associated simple order over O if for all o, o′ ∈ O we have that

o Pi o
′ if and only if {o} �i {o′}. That is, the associate simple order ranks all the objects in the same

way as the underlying preference relation.14

Even though it is not possible to infer the whole preference relation %i over 2O from the associated

simple order Pi over O, the responsiveness assumption lets us compare some sets by element-wise dom-

inance. To express this relationship, we define a partial order ≥i over 2O based on a simple order Pi.

We will refer to the partial order ≥i as the dominance relation. The idea is that two sets of objects

12For any O′, O′′ ∈ 2O with O′ % O′′ but O′′ 6% O′ we write O′ �i O
′′, similarly for any O′, O′′ ∈ 2O with O′ % O′′ but

O′′ % O′ I write O′ ∼i O
′′.

13The strict simple order Pi is transitive, asymmetric, and complete. The associated simple order Ri is transitive,
antisymmetric and strongly complete. Strong completeness implies reflexiveness and is therefore not listed under the
properties of a simple order. Simply put, unlike Pi which is asymmetric, Ri also compares any object with itself. Otherwise
both relations ranks every pair in the same way. See Roberts (1985) for an excellent overview on binary relations and their
properties. Finally as every person agrees whether an object is a good or a bad, together with requiring every object to be
assigned to someone, it is sufficient to let individuals rank O as opposed to O ∪ {∅}.

14Note that Pi is a strict simple order (transitive, asymmetric, and complete) as �i strictly ranks all pairs of singleton
sets in a transitive way. Moreover, the associated simple order Pi is uniquely determined for each preference relation �i,
while multiple (responsive) preference relations �i are consistent with any given simple order Pi.
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are comparable if for every object in one set we can find a weakly preferred concomitant object in the

other set. Formally, let o′i,l = {o ∈ O′ : |{o′ ∈ O′ : o′ Ri o}| = l} be the lth best object in subset O′ ∈ 2O

following simple order Pi. Then, for any two subsets O′, O′′ ∈ 2O of equal size |O′| = |O′′| = m′, we

have O′ ≥i O′′ if and only if o′i,l Ri o
′′
i,l for all l ∈ {1, . . . ,m′}.15 In the following we show that if the

dominance relation ≥i based on Pi rank two sets of objects, then it does so in the same way as the

responsive preference relation with the same associated simple order Pi.

Lemma 1. Let %i be any responsive preference relation over 2O with associated simple order Pi, and

≥i the corresponding dominance relation. For any O′, O′′ ∈ 2O if O′ ≥i O′′ then O′ %i O′′.

Proof. Suppose we have O′, O′′ ∈ 2O with O′ = {o′i,1, . . . , o′i,m′} ≥i O′′ = {o′′i,1, . . . , o′′i,m′}. As O′ ≥i O′′

we have o′i,1 R1 o
′′
i,1 as well as {o′i,1} %i {o′′i,1}. Using responsiveness for {o′′i,2, . . . , o′′i,m′} ⊆ O \{o′i,1, o′′i,1}

and {o′i,1} %i {o′′i,1} we get {o′i,1, o′′i,2, . . . , o′′i,m′} %i O′′ = {o′′i,1, o′′i,2, . . . , o′′i,m′}. Replacing one-by-one

o′′i,k by o′i,k for all k ∈ {2, . . . ,m′} and invoking responsiveness we get O′ = {o′i,1, o′i,2, . . . , o′i,m′} %i

. . . %i {o′i,1, o′′i,2, . . . , o′′i,m′} %i {o′′i,1, o′′i,2, . . . , o′′i,m′} = O′′. By transitivity of %i we reach the conclusion

that O′ %i O′′.

We now go back to the question of how to distribute the available objects. That is, we are interested

in finding a simple mechanism ψ : P → A that selects an allocation A ∈ A for any reported list of

orderings P ∈ P.

Booster Draft (BD) Algorithm

Step 000.

Let the set of objects O be arbitrarily partitioned into m boosters of equal size {O1, . . . , Om} with

|Ok| = n for all k ∈ {1, . . . ,m}. Moreover construct m different priority for every booster {f1, . . . , fm}.16

Step 1 ≤ t ≤ n+ 11 ≤ t ≤ n+ 11 ≤ t ≤ n+ 1.

For k ∈ {1, . . . ,m} following the priority orders let any person i ∈ I claim her most preferred object

according to Pi among remaining ones in any booster Ok where her priority is fk(i) = t.

In each of the m buckets there are (n−t) objects left. If there are no objects left the algorithm terminates

and every person gets assigned her claimed objects.

For those interested we next discuss a short example, illustrating our mechanism.

Example 1. Family Heirloom Assignment Problem

Let the set of n = 3 individuals, respectively siblings, be I = {i, j, k}. The available objects are

15A partial order is a reflexive, antisymmetric, and transitive binary relation (Roberts, 1985). We use O′ >i O′′ to
denote that O′ ≥i O′′ but O′′ 6≥i O′′. Similarly we use O′ =i O′′ whenever O′ ≥i O′′ and O′′ ≥i O′′, where given our
assumptions on preferences in this case the two sets O′ and O′′ must be identical. For any i ∈ I and any ranking Pi ∈ Pi

respectively P̂i ∈ Pi we will use %i respectively %̂i to denote any responsive preference consistent with order Pi respectively

P̂i and ≥i respectively ≥̂i for the dominance relation based on Pi respectively P̂i. To reduce notation, we only define the
dominance relation for of equal size, which will be sufficient for our purpose.
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O = {Armchair, Bagpipe, Clock, Diamond-ring, Earings, Fine wine} with n × m = 2 × 3. Moreover,

individual i reports Pi : D - B - A - C - F - E, individual j Pj : B - A - C - E - F - D, while individual

k reports Pk : B - D - E - F - A - C. Figure 1 illustrates the functioning of the described booster

draft algorithm, with boosters O1 = {A,B,C}, O2 = {D,E, F}, and priority orders f1 : i − j − k,

f2 : k − j − i. Even though we have not yet formally introduced the definition, this example portrays

a balanced booster draft. It can be easily verified that the final allocation in this case is Ai = {B,E},

Aj = {A,E}, and Ak = {C,D}.

3.2 Properties of the Booster Draft mechanism

We evaluate mechanisms along three dimensions, whether they are manipulable by submitting untruthful

rankings, the efficiency of their outcome, and how fair their assignment is ex post. We start by defining

the requirement that individuals should not be able to get a better outcome by misrepresenting their

true preferences. A simple mechanism ψ is strategy-proof if for all i ∈ I,Pi, P̂i ∈ Pi, and P−i ∈ P−i

we have ψi(P ) %i ψi(P̂i, P−i). Intuitively, we can think of Pi as the truthful report and P̂i as a possible

lie. Strategy-proofness requires that the outcome under a truthful report must be (weakly) preferred to

any possible outcome associated with a lie. In order to show that the BD mechanism is strategy-proof

we proof the following stronger property: A mechanism ψ is strongly strategy proof if for all i ∈ I,

Pi, P̂i ∈ Pi, and P−i ∈ P−i we have ψi(P ) ≥i ψi(P̂i, P−i). The logic is the same as before, but we

require that the outcome is (weakly) preferred under the associated dominance relation ≥i. Together

with lemma 1, strong strategy-proofness implies strategy-proofness.

Proposition 1. The BD mechanism is strongly strategy proof.

Proof. Suppose by contradiction that there exist ψi(P ) 6≥i ψi(P ′i , P−i). Then there exists at least one

bucket k ∈ {1, . . . ,m} such that ψki (P ′i , P−1) Pi ψ
k
i (P ). But as P−i is fixed all individuals with higher

priority will pick identical items in bucket k independent of i reporting Pi or P ′i , so i gets to choose from

the same set of remaining objects. Hence we have that the obtained item under Pi is weakly preferred to

any item obtained by reporting another simple order, i.e. ψki (P ) Ri ψ
k
i (P ′i , P−i) for all k ∈ {1, . . . ,m}

contradicting the initial statement.

Corollary 1. The BD mechanism is strategy proof.

We move on, defining the (ex post) fairness of an outcome. For j 6= i and an outcome of a mechanism

ψ(P ) ∈ A let ψ(P )kj,i = {o ∈ ψ(P )j : |{o′ ∈ ψ(P )j : o′ Ri o}| ≤ k} denote the set of objects obtained from

ψ(P )j by removing the best k objects according to Pi. Similarly let ψ(P )ki,i = {o ∈ ψ(P )i : |{o′ ∈ ψ(P )i :

o′ Ri o}| ≥ m − k + 1} denote the set obtained by removing the worst k objects from ψ(P )i following

the ranking Pi. We say that mechanism ψ is kkk-envy free if for all P ∈ P and for all i, j ∈ I we have
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Figure 1: Booster Draft Mechanism
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ψ(P )ki,i %i ψ(P )kj,i. That is, for any individual i that prefers her bundle to another persons bundle j, we

can always remove the best k objects from j’s bundle and the k worst objects from i’s bundle to eliminate

i’s envy. Note that if both bundles contain only goods, it would be sufficient to remove only k object

from j’s bundle to eliminate envy of i. Likewise if both bundles only contain bads we could only remove

k objects from i’s bundle. By removing both simultaneously we do not need to pay attention whether we

remove goods or bads. Naturally, envy-freeness is more demanding the smaller the chosen k. We restrict

our attention to a subset of BD mechanism that equalize the priorities across individual as much as

possible across the available buckets. That is, for any two individuals i, j ∈ I, we have that i has higher

priority than j is at most half of the boosters - rounded up. Formally, a BD mechanism is a balanced

booster draft mechanism if for all i, j ∈ I we have |k ∈ {1, . . . ,m} : fk(i) < fk(j)}| ≥ bm2 c. Let us

next state the trivial observation that the set of balanced booster drafts is always non-empty, followed

by proposition 3, stating that balanced booster drafts are dm2 e envy-free.

Proposition 2. The set of balanced BD rules is non-empty.

Proof. We simply show this by construction for any m boosters. Fix any priority order f1. For all i ∈ I

let f2(i) = n+1−f1(i), i.e. f2 reverses the order of priority of f1. For all odd k ∈ {1, 3, . . . } let fk = f1

and for all even k ∈ {2, 4, . . . } let fk = f2. For any i, j ∈ I if i has a lower priority in all odd (even)

priorities than j, i has higher priority than j in all even (odd) priorities, hence it directly follows that

|k ∈ {1, . . . ,m} : fk(i) < fk(j)}| ≥ bm2 c.

Proposition 3. The balanced BD mechanism is dm2 e envy-free.

Proof. Consider the outcome of any balanced booster draft mechanism ψ(P ) where some i envies j. Let

Ki = {k ∈ {1, . . . ,m} : fk(i) < fk(j)} denote the set of all bucket where i has higher priority than j.

Note that every object obtained by i in these buckets must be weakly preferred to any object obtained

by j, and hence we have:

⋃
k∈Ki

Ok ∩ ψ(P )i ≥i
⋃
k∈Ki

Ok ∩ ψ(P )j

Moreover, following Pi, the set obtained by removing the m − |Ki| worst objects from ψ(P )i, denoted

by ψ(P )
m−|Ki|
i,i , must weakly dominate the set

⋃
k∈Ki

Ok ∩ ψ(P )i. Similarly, the set obtained from

removing the best m− |Ki|, denoted by ψ(P )
m−|Ki|
j,i , objects form ψ(P )i must be weakly dominated by⋃

k∈Ki
Ok ∩ ψ(P )j , and hence:

ψ(P )
m−|Ki|
i,i ≥i ψ(P )

m−|Ki|
j,i

Note that balancedness implies that |Ki| ≥ bm2 c, i.e. for all i, j ∈ I we have |k ∈ {1, . . . ,m} : fk(i) <
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fk(j)}| ≥ bm2 c. From this it follows directly that the lower bound on envy for each individual i is

m− |Ki| = m− bm2 c = dm2 e. By lemma 1 we have ψ(P )
m−|Ki|
i,i ≥i ψ(P )

m−|Ki|
j,i implying ψ(P )

m−|Ki|
i,i %i

ψ(P )
m−|Ki|
j,i , which concludes the proof.

The last criteria concerns efficiency. We say that a simple mechanism ψ is Pareto efficient if for

each preference profile P ∈ P there does not exist a different allocation A ∈ A s.t. everyone prefers

the allocation to the outcome under the mechanism, i.e., Ai %i ψ(P )i for all i ∈ I and Ai �i ψ(P )i

for at least some i ∈ I. Following the same logic, we introduce a weaker notion of efficiency, requiring

that no allocation can make everyone better off under the dominance relation. A mechanism rule ψ is

dominance efficient if for each P ∈ P there does not exist an allocation A ∈ A s.t. Ai ≥i ψ(P )i for

all i ∈ I and Ai >i ψ(P )i for at least some i ∈ I.

We show that dominance efficiency rules out that any number of individuals can trade single objects

with each other and all benefit from the exchange. A (feasible) single object trade, under allocation

A, is a sequence of individual-object pair (i1, o1), (i2, o2), . . . , (ik, ok) with o1 ∈ Ai1 , . . . , ok ∈ Aik such

that i2 receives o1, i3 receives o2, so on and so forth, until i1 receives ok. An efficient single object

trade requires that all individual are strictly better off after the trade takes place, i.e., Ai1∪{ok}\{o1} �i1

Ai1 , . . . , Aik ∪ {ok−1} \ {ok} �ik Aik . We show the following characterization result.

Proposition 4. Under responsive preferences, an allocation A is dominance efficient if and only if there

are no efficient single object trades at A.

Unfortunately, the increased fairness of the BD rule comes at the cost of loosing efficiency, even in

its weaker form.

Proposition 5. The BD mechanism is not dominance efficient.

Proof. We proceed by counterexample. Let I = {1, 2} and O = {o1, o2, o3, o4}. Let ψ be the draft

mechanism with O1 = {o2, o3}, O2 = {o1, o4} and priority order f1 : 1, 2 and f2 : 2, 1, where we

list individuals in order of assigned priority. Suppose the reported ranking is P1 : o1, o2, o3, o4 and for

individual 1 and P2 : o2, o1, o4, o3 for individual 2. It can easily be checked that the draft mechanism

assigns ψ(P )1 = {o2, o4} for individual 1 respectively ψ(P )2 = {o1, o3} for individual 2. Consider the

outcome A obtained by both individuals switching their assignments, i.e. A1 = ψ(P )2 and A2 = ψ(P )1.

As A1 >1 ψ(P )1 and A1 >ψ (P )2 the draft mechanism is not dominance efficient.

As a final remark, we show an impossibility result via counterexample, illustrating that no mecha-

nism can fulfill weak versions of efficiency, fairness and strategy-proofness. We define our weakening of

strategy-proofness, allowing only manipulations in which an individual gets at least one object that is

strictly better. A mechanism ψ is dominance strategy proof if there does not exist P−i ∈ P−i and
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Pi, P̂i ∈ Pi s.t. ψi(P̂i, P−i) ≥i ψi(P ).

Proposition 6. In the responsive preference domain, there does not exist a simple mechanism that is

dominance strategy-proof, dominance efficient, and dm2 e envy-free.

In the appendix, we point out two mechanisms from the literature, one 1-envy free and dominance

efficient but manipulable (Harvard business school mechanism) and the other efficient and strategy-proof

but k envy-free (serial dictatorship).

4 Partition-Restricted Assignment Domain - Characterization

Intuitively, the arbitrary creation of boosters for the booster draft, leads to a lack of efficiency. Likewise,

ex-post fairness suffers from the same problem to a lesser degree. But, if additional information about the

specific features of the underlying multi-object assignment problem, is incorporated into the construction

of boosters, these issues can be mitigated or even avoided. Of course that only works if there is additional

structure to be exploited. Going back to our illustrative family heirloom example, suppose that we

have n siblings and 3 × n family heirlooms, consisting of n expensive, n medium priced, and n cheap

objects. Moreover, everyone prefers the expensive objects to medium priced, and these to cheap ones,

but individuals potentially have different valuations within the three categories. In that case, we get a

dominance efficient outcome if the objects are grouped together according to their value, and the outcome

of the booster draft is 1-envy free. In this simple example we use additional structure on preferences to

build boosters.

For this section, our motivation is based on the assignment of graduate students to teaching posi-

tions. Here, students are required to work for exactly one course in each semester, placing a restriction

on the allowed allocations. More general, we are given an exogenous partition of objects, in which every

individual can be assigned at most one object from every set of the partition.

The partition-restricted multi-object assignment domain is a multi object assignment prob-

lem 〈I,O,�〉 subject to the constraint that every person can be assigned at most one object from every

set Ok for a exogenous give partition (Ok)k∈{1,... ,m}. For example, we can think of {1, . . . ,m} as differ-

ent time periods for m sets of tasks that have to be carried out, but individuals are not able to work on

simultaneously on tasks within the same period. Here, �= (�i)i∈I is a list of preferences over schedules

S = {O′ ∈ 2O : |Ok ∩O′| ≤ 1 for every k ∈ {1, . . . ,m}}. A feasible, restricted allocation A = (Ai)i∈I

is a feasible allocation A ∈ A s.t. Ai ∈ S for all i ∈ I. Let B denote the set of restricted allocations,

clearly B ⊂ A. Hence, we refer to this as the partition-restricted assignment domain. For the partition

consistent booster draft, the m booster are simply (Ok)k∈{1,... ,m}. Similarly to before, preferences

are responsive if for all k ∈ {1, . . . ,m}, and o, o′ ∈ Ok, as well as O′ ∈ S such that O′ ∩Ok = ∅ we have
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{o} ∪O′ �i {o′} ∪O′ if and only if {o} �i {o′}.

Given the restriction, individuals no longer need to indicate their preferences across different sets.

Therefore, we require every individual i ∈ I to submit a list of m rankings Pi = (P 1
i , . . . , P

m
i ) where

P ki is a simple order over Ok. For individual i ∈ I, the set of possible messages is Pi. P = (Pi)i∈I is a

list of orders for every individual, with the set of all such message profiles being P. We slightly adjust

the definition of the dominance relation, i.e. the partial order connecting the reported rankings with

the preferences. We say P ki is the underlying ranking over Ok if for all o, o′ ∈ Ok we have that o P ki o
′

if and only if {o} �i {o′}. Let o′k = O′ ∩ Ok be the best object simultaneously in subset O′ ∈ S and

Ok. For any two subsets O′, O′′ ∈ S with |O′| = |O′′| = m, we have O′ ≥i O′′ if and only if o′k Ri o
′′
k

for all k ∈ {1, . . . ,m}. The relation between the original preferences %i of an individual i ∈ I and the

dominance relation ≥i based on the submitted order Pi remains unchanged. For those interested we

moved the exact statement to the appendix.

In the restricted multi-object assignment domain the draft mechanism is dominance efficient. More-

over, we characterize the set of booster draft mechanism as the set of strongly strategy-proof, non-bossy

and neutral mechanisms. Formally non-bossiness and neutrality are defined as follows. First, a simple

mechanism ψ is non-bossy if ψi(P ) = ψi(P̂i, P−i) then ψ(P ) = ψ(P̂i, P−i). Secondly, let π : O → O be

a permutations s.t. for all o ∈ Ok we have π(o) ∈ Ok. We permute a list of simple orders P , denoted by

πP , as follows: For all k ∈ {1, . . . ,m} and o, o ∈ Ok we have o π[P ki ] o′ if and only if π−1[o] P ki π
−1[o′].

We say a choice rules ψ is neutral if for all k ∈ {1, . . .m}, for all i ∈ I, and for all possible permu-

tations we have π[ψ(P )ki ] = ψ(πP )ki . Lemma 2 is adapted from Svensson (1999), but we need strong

strategy-proofness for the result to go through.

Lemma 2. Let ψ be a non-bossy and strongly strategy-proof mechanism. Consider Pi, P̂i ∈ Pi and

P−i ∈ Pi. Suppose for all Ai ∈ Ai s.t. ψi(P ) ≥i Ai we have ψi(P )≥̂iAi. Then ψ(P ) = ψ(P̂i, P−i).

Proof. By strong strategy-proofness we have ψi(P ) ≥i ψi(P ′i , Pi) .

By the assumption of the lemma we have ψi(P )≥̂iψi(P ′i , Pi)

Using strong strategy-proofness again we get ψi(P̂i, Pi)≥̂iψi(P ).

Combining the second and third line we get ψi(P̂i, Pi) = ψi(P ) as this is the only indifference case under

the dominance relation ψi(P̂i, Pi)=̂iψi(P ).

By non-bossiness it directly follows that ψ(P ) = ψ(P̂i, P−i).

The set of all identical preference profiles is defined as I = {P ∈ P : P kj = P ki for all i, j ∈

I and for all k ∈ {1, . . . ,m}}. Considering only identical preference profiles, we show that neutrality

strongly restricts the way in which individuals can be assigned objects.

Lemma 3. Let ψ be a neutral mechanism. For every identical preference profile P ∈ I, k ∈ {1, . . . ,m},
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and l ∈ {1, . . . , n} the same individual ikl ∈ I is assigned the lth best choice in Ok according to preference

P .

Proof. Consider the outcome of a neutral mechanism ψ for any two identical preference profile P ∈ I

and P̂ ∈ I. Let us define the lth best choice in Ok under the identical preference profile P as well as P̂ :

For all l ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, let okl denote o ∈ Ok s.t. |{o′ ∈ Ok : o′ Rk o}| = l respectively

ôkl denote o ∈ Ok s.t. |{o′ ∈ Ok : o′ R̂
k
o}| = l. Consider the individual ikl that is assigned okl under

P , i.e. ψ(P )k
ikl

= okl . We want to show that the same individual gets the lth best choice in Ok under

any other identical preference profile ψ(P̂ )k
ikt

= ôkl . Consider the following permutation π̂ defined for all

k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} as π̂(okl ) = ôkt . For this particular permutation the following holds

true:

Claim 1. We have that π̂(P k) = P̂ k for all k ∈ {1, . . . ,m}.

Suppose not, then for some l′ < l there exists ôkl′ P̂
k ôkl such that ôkl π[P k] ôkl′ . Note that the permuted

preference ôkl π[P k] ôkl′ is equivalent to the original preference over permuted outcomes π̂−1[ôkl ] P k

π̂−1[ôkl′ ]. But using our defined permutation, this implies okl P
k okl′ for l′ < l leading to a contradiction.

By neutrality and claim 1 we get π̂[ψ(P )k
ikl

] = ψ((π̂[P ]))k
ikt

= ψ(P̂ )k
ikt

. Moreover by the definition

of the permutation π̂ we have π̂[ψ(P )k
ikl

] = π̂[okl ] = ôkl . Combining both leads the desired conclusion

that the same individual gets the lth best object in set Ok for any two identical preference profiles

ψ(P̂ )k
ikt

= ôkl .

Lemma 3 shows that for identical preference profiles any neutral mechanism can be obtained through

a BD mechanism. Note that, in the partition-restricted domain the standard serial dictatorship mech-

anism is a booster draft where the same individual has the highest priority everywhere, followed by an

individual having the second highest priority everywhere and so on and so forth. It remains to be shown,

what happens for arbitrary preference profile. We will invoke lemma 2 to show that for any P ∈ P \ I

there exists an identical preference profile P ∈ I leading the same outcome.

Theorem 1. In the partition-restricted assignment domain with responsive preferences a simple mecha-

nism ψ is strongly strategy proof, non-bossy, and neutral if an only if ψ is a BD choice rule. The outcome

of the BD choice rule is dominance efficient.

Proof. It is obvious that the BD mechanism is strongly-strategy proof (see proposition 1), neutral and

non-bossy.

We now show that any strongly strategy proof, non-bossy, and neutral simple mechanism ψ is

booster draft. Apply ψ to the subset of identical preference profiles I. By lemma 3 for each k ∈

{1, . . . ,m} and l ∈ {1, . . . , n} we can uniquely identify an individual ikl ∈ I that is assigned her t-th
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choice in Ok according to preference P . Formally the outcome of the BD mechanism is defined for

all k ∈ {1, . . . ,m} recursively from highest to lowest priority individuals as ψki (P ) = {o ∈ Ok : o Ri

o′ for all o′ ∈ Ok \
⋃
j∈{j∈I:fk(j)<fk(i)} ψ

k
j (P )}. Indeed assigning the individuals priorities in the same

order they obtain the objects from each booster we get that ψki (P ) = okt for all l ∈ {1, . . . , n} and

k ∈ {1, . . . ,m}. Therefore for each identical preference profile I the outcome of any neutral mechanism

ψ is obtained by a booster draft mechanism.

It remains to be shown for any other preference profile that is not identical across agents. Consider a

preference profile P̂ ∈ P \ I and construct an identical preference profile P ((̂P )) ∈ I from it as follows:

For any Ok with k ∈ {1, . . .m} the preference P k order ranks individual i11’s first choice highest, and

individuals it1 first choice among the remaining objects in Ok as t-th highest for t ∈ {2, . . . , n}.

By lemma 2 we can move all agents preferences one-by-one from the constructed identical preference

profile P ((̂P )) back to the initial preference profile P̂ without changing the outcome of the mecha-

nism. Hence for any preference profile the outcome of any neutral, strongly strategy-poof and non-bossy

mechanism is a booster draft mechanism.

Finally we show that the outcome of the booster draft mechanism in this domain dominance efficient.

Suppose by contradiction there exists Ai ≥i ψ(P )i for all i ∈ I holding strictly for at least one individual.

Ai ≥i ψ(P )i means that Aki R
k
i ψ(P )i for all k ∈ {1, . . . ,m} and for all i ∈ I holding stickily for at least

some k and i. If there are multiple, pick the first basket k and the first agents that gets a strictly better

object in k. As all agents with higher priority in Ok get the same items as before Aki is still available

and therefore we have ψ(P )ki R
k
i A

k
i contradicting Aki P

k
i ψ(P )i.

The subset of balanced booster draft mechanism is m
2 envy-free. As a robustness check for the

theorem, note that the result no longer holds in the unrestricted multi-object assignment problem.

As mentioned, in the partition-restricted assignment domain the serial dictatorship mechanism is

a special case of the (non-balanced) BD mechanism, which is not true for the responsive domain. So

the result doesn’t go through for the unrestricted problem, as there exists a mechanism that is strongly

strategy-proof, non-bossy and neutral outside the set of BD mechanism.

5 Teaching Assignments for Graduate Students

In this section, we take a closer look at the teaching assignment problem, which is an example of

the previously described partition-restricted assignment domain. The data consists of the rankings

submitted by graduate students in economics at Boston College for the academic year 2018, as well as
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the final assignment made for that year. Analogous to our theoretical part, everyone separately ranked

the available positions for each semester and was assigned a single teaching position for both the fall

and spring semester.17 We simulate the outcome of the balanced booster draft (BD) as well as the

serial dictatorship (SD) for 10000 different priority orders, while the actual assignment (AA) remains

unchanged. As in the theoretical part we want to analyze the different assignments in terms of efficiency

and fairness.

For fairness, we care about the percentage of students envying at least one other student, who

was given a strictly better assignment in both semesters (2 Envy). For completeness, we also show the

percentage of remaining students envying at least on student for his or her assignment in one semester

(1 Envy), and the percentage of students getting their two top choices (Envy 0). Figure 2 shows that

the balanced booster draft mechanism avoids “2 Envy” altogether, and therefore outperforms serial

dictatorship where “2 Envy” is roughly 15%, as well as the actual assignment where “2 Envy” reaches

almost 30%.
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Figure 2: Envy

For efficiency figure 3 depict the percentage of individuals that get at least one strictly better and

one weakly better assignment in both semesters under one outcome relative to another. The actual

assignment in that year is unsatisfactory in terms of efficiency compared to the two alternatives. On the

other hand there is no noticeable difference between serial dictatorship and the balanced booster draft

mechanism.

Finally, following Budish and Cantillon (2012), we consider the average rank, i.e., a simple measure

of welfare to compare the tree alternatives. For example, if a graduate student is assigned her first choice

in one semester and her third choice in the other, her rank is four. We then simply average across all

17For each semester, graduate students give their preferences over ta (teaching assistant) principles, ta statistics, ta
econometrics, lab (laboratory) stats, lab econometrics, tf (teaching fellow) principles, and tf statistics. In our data 5 out
of 37 students made special arrangements with a specific professor or got a fellowship that freed them of work for one
semester. In those cases, we always assigned them their pre-arragned positions before assigning positions to the remaining
students based on their reported rankings. As the was a new person in charge of the assignment for 2018 and it was
unknown how reported rankings would translate into the final assignment, it is reasonable to expect that graduate students
reported their rankings truthfully.
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Figure 3: Efficiency

students for a given final allocation. Again the results are consistent with the previous analysis in that

both serial dictatorship and the booster draft have an average rank of 3.21, while the average rank for

the actual assignment is 4.72. Moreover, the balanced booster draft leads to a lower dispersion in terms

of rank compared the serial dictatorship.
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Figure 4: Distribution Average Rank

We conclude that if individuals are mildly risk-avers their will prefer the (random) balanced booster

draft to the (random) serial dictatorship.

6 Dominance Obvious S-P

Following the idea of obviously strategy-proofness introduced by Li (2017), we give some insight in which

sense the BD mechanism can be implemented as a extensive form game that is easy to understand. In

other words, we think an additional strength of the booster draft lies the mechanisms simplicity. This

turns out to be important in practice, as mentioned in the literature review.

As in the previously, I is the set of individuals, A is the set feasible allocations, and each individual

i has a preference relation %i over the outcomes, which we will sometimes refer to as the type of an

agent. Preferences are responsive, and assignments are either made in the partition-restricted or the

unrestricted domain. A type profile %= (%i)i∈I specifies a preference relation for each person, and the

set of all type profiles is denoted by %I .
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Consider an extensive game form where each terminal history z results in some outcome g(z) ∈ A.

For ease of presentation we focus on the special case of deterministic games with finite preference, finite

outcomes sets, and complete information.18 G denotes the set of all such game forms, with representative

element G. Table 1 depicts useful notation.

Name Notation Representative Element
histories H h
initial history h∅
terminal histories Z z
outcome resulting from z g(z)
individual called to play at h i(h)
information sets for agent i Ii Ii
actions available at Ii A(Ii) a(Ii)

Table 1: Notation Extensive Form Games

A strategy Si for agent i chooses an action Si(Ii) ∈ A(Ii) at every information set. A strategy

profile S = (Si)i∈I specifies a strategy for each agent, and S denotes the set of all strategy profiles.

A type-strategy profile function T :%I→ S specifies a strategy profile for every type profile. Any

persons type-strategy depends only on her own type. T (%i) ∈ Si refers to the strategy assigned to type

%i. Let zG(h, S) be the terminal histories that results in game form G when starting from h and play

proceeding according to S.

For a given extensive form game G and a particular type %i, strategy Si is weakly dominant

if ∀S′i and ∀S−i we have g(zG(h∅, Si, S−i)) %i g(zG(h∅, Si, S−i)). Similarly we can define the stronger

requirement of an obviously strategy-proof strategy profile. For this we first need to introduce some

additional notation. For two distinct strategies Si and S′i, an information set is in the set of earliest

points of departure Ii ∈ α(Si, S
′
i) if it is on the path of play under both Si and S′i, and both strategies

choose the same action at all earlier information sets but select a different action at Ii. Furthermore let

ZG(Ii, Si) denote the set of reachable terminal histories by playing strategy Si when starting from

information set Ii in game G. Given G and %i, Si is obviously dominant if ∀S′i and ∀Ii ∈ α(Si, S
′
i)

there does not exist z′ ∈ ZG(Ii, S
′
i) and z ∈ ZG(Ii, Si) such that g(z′) %i g(z).19

A mechanism is a function ψ :%I→ A from type profiles to assignments. A solution concept

C(·) maps any game G into a subset of strategy profiles C(G) ⊆ S satisfying the solution concept C.

An extensive form game together with a type strategy profile function (G,T ) is said to C-implement

a mechanism ψ if ∀ %∈%I we have T (%) ∈ C(G) as well as ψ(%) = g(zG(h∅, T (%))). Similarly ψ is

C-implementable if there exist (G,T ) that satisfy the above requirements. In particular a type-strategy

profile T (%) ∈ SP (G) is in the set of strategy proof (SP) profiles if for all i ∈ I, T (%i) is weakly

dominant. A type-strategy profile T (%) ∈ OSP (G) is in the set of obviously strategy-proof (OSP)

18In a complete information games every information set is a singleton.
19Unlike the original definition, our version of obvious dominance is slightly modified, allowing to consider preferences

that do not compare all available options in A.
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profiles if for all i ∈ I, T (%i) is obviously dominant. Unfortunately the booster draft mechanism is not

implementable in a obvious strategy-proof way.

Proposition 7. In the restricted and unrestricted assignment domain with m ≥ 2, n ≥ 2 the balanced

BD mechanism is not OSP implementable.

We weaken the concept of obvious strategy-proofness, by specifying a subset of pairwise comparisons

between outcomes, an individual “pays attention to”. The more comparisons can be made, the closer

the definition is to standard OSP. Here we focus on our dominance relation, though we provide a more

general definition, for an arbitrary partial order, in the appendix. Given G and (%i, ≥), Si is dominance

obviously dominant if ∀S′i and ∀Ii ∈ α(Si, S
′
i) there does not exist z′ ∈ ZG(Ii, S

′
i) and z ∈ ZG(Ii, Si)

such that g(z′) >i g(z). A type-strategy profile T (%) ∈ DOSP (G) is in the set of dominance obviously

strategy-proof (DOSP) profiles if for all i ∈ I, T (%i) is dominance obviously dominant.

Proposition 8. In the unrestricted domain BD is not DOSP implementable. In the partition-restricted

assignment domian the balanced BD mechanism is DOSP implementable.

Returning to our original motivation, we note that the extensive form game specified by the card

version of the booster draft mechanism actually obviously dominance strategy-proof implements the BD

mechanism. In other words it provides us with an additional explanation why drafting rules might be

easy to understand pointing to their prevalence in practice.

7 Conclusion

We have introduced the booster draft mechanism, a new allocation scheme for the multi-object assign-

ment problem, inspired by existing drafting procedures in competitive card games. In the responsive

preference domain, the BD mechanism is strategy-proof and envy-free equal to half of the objects, but

it is neither dominant efficient nor dominance obvious strategy-proof implementable. In the partition-

restricted assignment domain, any neutral, non-bossy, and strongly strategy-proof simple mechanism is

a BD mechanism. Moreover, the subset of balanced BD is dominance efficient, strategy-proof, envy-free

equal to half of the object, and dominance obvious strategy-proof implementable. We discuss a practical

application in the partition-restricted assignment domain, the assignment of graduate students to teach-

ing assistant positions. The simulated assignments support the claims made in the theoretical argument

of the paper.
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A Mathematical Appendix

A.1 Section 3

A.1.1 Proposition 4: Characterization Dominance Efficiency

Proof. We start with the if-statement. Suppose that it does not hold, then the allocation A is dominance

efficient, but there exists a efficient single object trade. One can easily confirm that, under responsive

preferences a single object trade (i1, o1), (i2, o2), . . . , (ik, ok) makes every individual involved {ii, . . . , ik}

better off under the dominance relation, i.e., Ai1 ∪ {ok} \ {o1} >i1 Ai1 , . . . , Aik ∪ {ok−1} \ {ok} >ik Aik .

Hence carrying out the trade makes all individual in the trade strictly better of under the dominance

relation while everyone else is indifferent, contradicting that A is dominance efficient.

Next consider the only-if-statement. Suppose it is does not hold, then there exists no efficient single

object trade at A, but A is not dominance efficient. Let A′ be an allocation that is dominant efficient

relative to A and consider the following argument.

Step 0. Pick any individual i for which A′ >i A and call it ik. Pick the best object o ∈ A′ik \ Aik and call

it ok−1. This object must have been assigned to a different person under A. Call that person ik−1

and go to the next step.

Step t. Consider individual ik−t. Pick the best object o ∈ A′ik−t
\ Aik−t

and call it ok−t−1. This object

must have been assigned to a different person under A. If the individual is in {ik−t+1, . . . , ik} we

found a efficient single object trade, starting from the original distribution A, and hence reach a

contradiction. Otherwise call that person ik−t−1 and go to the next step.

As the set of individuals is finite we reach a contradiction after a finite number of steps. Every person

in the circle get his/her best object among new ones.

A.1.2 Proposition 6: Impossibility Result

Counterexample. Let I = {i, j} and O = {o1, o2, o3, o4}. Suppose ψ is a dominance strategy-proof,

dominance efficient and dm2 e = 1 envy-free mechanism. We abbreviate rankings Pi as 1234i to represent

o1 Pi o2 Pi o3 Pi o4. Similarly for an allocation A with Ai = {1, 2} and Aj = {3, 4} we simply write

(12, 34).

Case 1: ψ(1234i, 1234j) = (12, 34)

This outcome violates dm2 e = 1 pick envy freeness. We have that j envies i’s assignment as {12} >j {34}

and even after removing the best object from i and the worst form j the envy prevails as {1, 2} \ {1} >j

{3, 4} \ {4}, respectively {2} >j {3}.

Case 2: ψ(1234i, 1234j) = (34, 12)
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The reasoning is symmetric to the one in case 1.

Case 3: ψ(1234i, 1234j) = (24, 13)

Observation 1: ψ(1234i, 3214j) = (14, 23). Individual j can always change her preference from 3214j to

1234j and get {1, 3}. This leaves us already with only two possible outcomes of the mechanism either

(24, 13) or (14, 23). Given dominance efficiency we must have ψ(1234i, 3214j) = (14, 23) as {1, 4} ≥i

{2, 4} and {2, 3} ≥j {1, 3}.

Observation 2: ψ(1234i, 2341j) = (14, 23). By observation 1, any other outcome would violate dominance

strategy proofness as j can switch back to 3214j and enforce her best outcome {2, 3}.

Observation 3: ψ(2314i, 1234j) 6= (34, 12). This follows by dominance strategy profness at otherwise i

would be better of under preferences consistent with 2314i to report 1234i instead and get {2, 4} instead

of {3, 4}.

Observation 4: ψ(2314i, 2341j) has no outcome is consistent with the required criteria.

- Naturally (14, 23) and (23, 14) are both violating 1 envy freeness, as i respectively j get their worst

two objects.

- By dominance strategy proofness we can rule out (34, 12). For this we need to note that by

observation 3 we have ψ(2314i, 1234j) 6= (34, 12), and therefore fixing i’s ranking no other preference

of j can ever give her the outcome {1, 2}.

- Using observation 2 and the same logic we can rule out (12, 34) and (13, 24) as ψ(1234i, 2341j) =

(14, 23), fixing j’s ranking we can never have that i gets {1, 3} or {1, 2}.

- This leaves us with ψ(2314a, 2341b) = (24, 13). Consider (12, 34) which can be reached by letting

i and j trade o1 and o4 making both strictly better off and hence violating dominance efficiency.

This leads to the conclusion that no dominance strategy-proof, dominance efficient, and 1 pick envy free

can every assign ψ(1234a, 1234b) = (24, 13).

Case 4: ψ(1234i, 1234j) = (13, 24)

We can symmetrically follow the previous reasoning of case 3.

Case 5: ψ(1234a, 1234b) = (23, 14)

Observation 1: ψ(2341a, 1234b) = (23, 14). This simply follows from dominance strategy proofness as

under 2341a we have (23, 14) = ψ(1234a, 1234b) >a ψ(2341a, 1234b) 6= (23, 14).

Observation 2: ψ(2341a, 2314b) has no outcome is consistent with the required criteria.

- Outcomes (14, 23) and (23, 14) are both violating 1 envy freeness.
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- Outcome (12, 34) is dominated by (24, 13) similarly (13, 24) is dominated by (34, 12), hence both

would violate dominance efficiency.

- The last two possible outcomes violate dominance strategy proofness as under 1234j we have

(34, 12) or (24, 13) = ψ(2341a, 2314b) >j ψ(2341a, 1234b) = (23, 14).

This leads to the conclusion that no dominance strategy-proof, dominance efficient, and dm2 e = 1 envy

free mechanism can every assign ψ(1234a, 1234b) = (23, 14).

Case 6: ψ(1234a, 1234b) = (14, 23)

We can symmetrically follow the previous reasoning of case 5.

Case 1-6 together conclude the proof as regardless of what we assign ψ(1234a, 1234b) we find a contra-

diction with at least one required property.

A.1.3 Serial Dictatorship and Harvard Business School Mechanism

Fixing a single priority order serial dictatorship algorithm is formally defined by the following algorithm:

SD Algorithm

Step 1 ≥ t ≤ n.

There are m × n −m × (t − 1) objects left. Following the priority orders let person i ∈ I with priority

f−1(i) = t pick her k most preferred objects among the remaining objects.

Similarly we can define the Harvard Business School mechanism via the following algorithm. This

algorithm is based on two priority orders fodd and feven that have reverse priority, i.e. fodd(i) =

n− feven(i).

HBS Algorithm

Step 1 ≥ t ≤ n×m.

There are m × n − (t − 1) objects left. The priority order used is changed all n steps from fodd to

feven and back. Following the appropriate priority order f ∈ {fodd, feven} let person i ∈ I with priority

f−1(i) = t pick her most preferred object among the remaining objects.

It is well know that serial dictatorship is efficient and strategy-proof, but is unsatisfactory in terms

of ex-post fairness. The HBS algorithm on the other hand is 1 envy-freeness and dominance efficiency

but fails even the weaker notion of dominance strategy proofness. We summarize these results for the

responsive preference domain in the following propositions.
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A.1.4 Proposition 9: Efficiency

Proposition 9. HBS is dominance efficient. SD is pareto efficient (among all outcomes giving each

individual exactly m objects) and hence dominance efficient. BD is not dominance efficient.

Proof. HBS is dominance efficient. Let ψ(P ) be the outcome of the HBS mechanism. Suppose to the

contrary that there exists an assignment A s.t. Ai ≥i ψi(P ) for all i ∈ I and Ai >i ψi(P ) for at least

some i ∈ I, It is obvious that when ordering the objects in ψi(P ) following Pi we get that the object in

lth place ψli = {o ∈ ψi(P ) : |{o′ ∈ ψi(P ) : o′ Ri o}| = l} for l ∈ {1, . . . , k} is the lth object picked under

the HBS mechanism. As Ai ≥i ψi(P ) for every object ψli assigned at each step of the HBS mechanism

there exists an object oli Ri ψ
l
i with oli = {o ∈ Ai : |{o′ ∈ Ai : o′ Ri o}| = l}. Consider the first step of

the HBS mechanism where oli Pi ψ
l
i. Note that as P is a simple order, all previous objects must have

been identical oli = ψli. This leads to a contradiction as the object ψli assigned under the HBS mechanism

must be the best available object following Pi but there exists oli Pi ψ
l
i.

HBS is not pareto efficient. Let I = {1, 2} and O = {o1, o2, o3, o4}. Suppose the reported rank-

ing is Pi : o1, o2, o3, o4 for i = 1, 2. Under fodd : 1, 2 and feven : 2, 1, the outcome under the HBS

mechanism is ψ1(P ) = {o1, o4} and ψ2(P ) = {o2, o3}. Note that preferences %1: {o2, o3}, {o1, o4} and

%2: {o1, o4}, {o2, o3} are both consistent with the reported order P1 respectively P2 as the relative ranking

between the two bundles cannot be inferred from the reported simple order under responsive preferences.

Therefore assignment A with A1 = {o2, o3} and A2 = {o1, o4} pareto dominates the outcome ψ(P ).

SD is pareto efficient. It is well known that serial dictatorship is efficient and therefore dominance

efficient. Note that the highest priority person i1 with f−1(i1) = 1 gets her m best objects. Under

responsiveness of Pi1 the bundle containing the best m objects is the best set in {O′ ∈ 2O : |O′| = m}.

Conditional on this the second highest priority person i2 with f−1(i2) = 2 gets her best m objects

among the remaining object. As we can never change i1’s assignment to another assignment containing

m objects without making her worse off we can never changes i2’s assignment as well. Following this

argument for the remaining individual we can conclude that there cannot exist an allocation assigning

every person weakly better bundle of size m.

SD is not pareto efficient under any assignment. Let I = {1, 2} and O = {o1, o2, o3, o4}. Suppose the

reported ranking is Pi : o1, o2, o3, o4 for i = 1, 2. Suppose that for 1 we have that {o2, o3, o4} �1 {o1, o2}

while for 2 we have {o1} �2 {o2, o3, o4}.

For example u1 and u2 are additive utility functions of individual 1 and 2 where u1 : 100, 99, 98, 88 and u2 :

100, 3, 2, 1. Where u1({o2, o3, o4}) = 285 > u1({o1, o2}) = 199 and u2({o1}) = 100 > u1({o2, o3, o4}) = 6.

Under priority order f : 1, 2 the outcome of m-serial dictatorship is ψ(P ) with ψ(P )1 = {o1, o2} with

ψ(P )2 = {o3, o4} which is Pareto dominated by A with A1 = {o2, o3, o4} with A2 = {o1}.
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A.1.5 Proposition 10: Envy Freeness

Proposition 10. HBS is 1 envy-free. BD is dm2 e envy-free. And SD is m-pick envy free.

Proof. HBS. 1 envy freeness follows directly from the algorithm. Consider any pair of individuals i, j ∈ I.

Under the reported preference profile Pi person i always prefers her first picked item to person j’s second

picked item, her second picked item to person j’s third picked item, and so on and so forth. Hence under

any allocation of the draft mechanism we get that that oki Pi o
k+1
j for l ∈ {1, . . . ,m− 1} which implies

1 envy-free.

SD. Let ψ denote the serial dictatorship mechanism. We have that |ψi(P )| = |ψ(P )j | = m for any two

assignments. Consider two individual with identical simple orders. It follows that the one with lower

priority will have m objects all worse that the higher priority individual. Hence by removing m items

from any two sets we end up with ∅ ≥i ∅.

A.1.6 Proposition 11: Strategy Proofness

Proposition 11. BD and SD are both strongly strategy-proof. The HBS mechanism is not dominance

strategy proof.

Proof. HBS. Let I = {1, 2} and O = {o1, o2, o3, o4}. Suppose true preference are P1 : o1, o2, o3, o4

for individual 1 respectively P2 : o2, o3, o4, o1 for individual 2. Take priority orders fodd : 1, 2 and

feven : 2, 1, then under the HBS mechanism ψ and true rankings we get ψ1(P1, P2) = {o2, o3} and

ψ2(P1, P2) = {o1, o4}. But there is a profitable manipulation for 1 by picking the more popular object

first P̂1 : o2, o1, o3, o4 leading ψ1(P̂1, P2) = {o1, o2} and ψ2(P̂1, P2) = {o3, o4}. Its easy to check that

ψ1(P̂1, P2) >1 ψ1(P̂1, P2) and hence violating even dominance strategy proofness.

SD is strategy-proof. Let φ denote the serial dictatorship mechanism. Is is well known that the serial

dictatorship mechanism is strategy proof. The highest priority agent i1 ∈ I with f−1(i1) = 1 obtains the

best m objects. Under responsiveness of Pi1 the bundle containing the best m objects is the best set in

{O′ ∈ 2O : |O′| = m}. As any outcome for i1 under the serial dictatorship is in the set {O′ ∈ 2O : |O′| =

m} we have ψ(P )i1 %i ψ(Pi1 , P
′
i1

)i1 for all Pi1 , P
′
i1
∈ Pi1 . The second highest priority agent i2 ∈ I with

f−1(i2) = 2 obtains the best m object among the remaining ones and hence can never be better off by

misrepresenting using an analogous argument Following this argument step by step for every individual

leads us to the desired conclusion.

A.2 Section 4

The following is a restatement of lemma 1, adjusted to the partition-responsive domain.
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Lemma 4. Let %i be any responsive preference relation over 2O with underlying ranking Pi, and ≥i the

corresponding dominance relation. For any O′, O′′ ∈ S if O′ ≥i O′′ then O′ %i O′′.

Proof. Suppose we have O′, O′′ ∈ S with O′ = {o′1, . . . , o′m} ≥i O′′ = {o′′1 , . . . , o′′m}. As O′ ≥i O′′

we have o′1 R1 o
′′
1 as well as {o′1} %i {o′′1}. Using responsiveness for {o′′2 , . . . , o′′m} ∩ {o′1, o′′1} = ∅ and

{o′1} %i {o′′1} we get {o′1, o′′2 , . . . , o′′m} ≥i O′′ = {o′′1 , o′′2 . . . , o′′m′}. Replacing one-by-one o′′k by o′k for all

k ∈ {2, . . . ,m} and invoking responsiveness we get O′ = {o′1, o′2, . . . , o′m} %i . . . %i {o′1, o′′2 , . . . , o′′m′} %i

{o′′1 , o′′2 , . . . , o′′m′} = O′′. By transitivity of %i we reach the conclusion that O′ %i O′′.

A.3 Section 7

A.3.1 Proposition 7: Not OSP

Proof. Following proposition 2 (pruning principle) in Li (2017), we can restrict attention to “minimal”

extensive form games, where no histories are off the path of play. It is also sufficient to show that a

sub-function ψ is not OSP-implementable. Take agents {1, 2} ⊆ I and objects {a, b, c, d} ⊆ O with

{a, b} ⊆ O1 and {c, d} ⊆ O2 with priority orders f1(1) < f1(2) and f2(2) < f2(1). Consider the

following subset %{1,2}⊂%N for the partition-restricted assignment domain.

%1: {a, c} �1 {b, c} �1 {a, d} �1 {b, d} (1)

%2: {a, c} �2 {a, d} �2 {b, c} �2 {b, d} (2)

Take any G pruned with respect to the truthful strategy profiles, such that G OSP-implements ψ for

domain %{1,2}. Consider some history h at which i(h) = 1 with a non-singleton action set. If OSP

holds this cannot come before any non-singleton action history with i(h) = 2. Suppose not, then if 1

chooses an action corresponding to a Pa b her worst payoff is {a, d} while her best payoff under an action

corresponding to b Pa a is {b, c} �1 {a, d}. Similarly consider some history h at which i(h) = 2 with a

non-singleton action set. This cannot come before any such history with i(h) = 1. Suppose not, then

if 2 chooses an action corresponding to c Pa d her worst payoff is {b, c} while her best payoff under an

action corresponding to d Pa d is {a, d} �2 {b, c}. So all action sets of 1 and 2 must be singletons and

G does not OSP-implement the BD rule.

A.3.2 Partial Order SP, OSP, WGSP

Slightly abusing notation, a partial order function D :%I→ DI is a consistent way to assign a subset

of pairwise comparisons D(%i) ⊆%i to each type. Given G and (%i, D), Si is partial order obviously

dominant with respect to D if ∀S′i and ∀Ii ∈ α(Si, S
′
i) there does not exist z′ ∈ ZG(Ii, S

′
i) and

z ∈ ZG(Ii, Si) such that g(z′) B(%i) g(z). A type-strategy profile T (%) ∈ OSPD(G) is in the set of
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partial order obviously strategy-proof (PoOSP) profiles if for all i ∈ I, T (%i) is partial order

obviously dominant with respect to D.

Similarly we can define the standard concepts of strategy proofness and weak group strategy

proofness for a particular partial order. For the partial order profile ≥= (≥i)i∈I a type-strategy

profile T (%) ∈ SPD(G) is in the set of partial order strategy-proof (PoSP) profiles if

there does not exists an %∈%I , individual i ∈ I with deviation strategy Ŝi 6= T (%i) such that

g(zG(h∅, Ŝi, T (%) \ T (%i))) B(%i) g(zG(h∅, T (%))). For the partial order profile ≥= (≥i)i∈I

a type-strategy profile T (%) ∈ WGSPD(G) is in the set of partial order weakly group-

strategy-proof (PoWGSP) profiles if there does not exists a coalition I ′ ⊆ I, type profile %∈%I ,

deviating strategies Ŝ = (Ŝi)i∈I′ , non coalition strategies T (%) \ Ŝ such that for all i ∈ I ′ we have

g(zG(h∅, Ŝ, T (%) \ Ŝ)) B(%i) g(zG(h∅, T (%))).

Proposition 12. If T (%) ∈ OSPD(G) with respect to D then T (%) ∈ WGSPD′(G) with respect to the

same partial order D′ = D.

Proof. Suppose T (%) 6∈WGSPD(G). Then there exists coalition I ′ with types (%i)i∈I′ that can deviate

to strategy Ŝ = (Ŝi)i∈I′ where all i ∈ I are strictly better off following the partial order ≥. Along

the resulting terminal history, there is a first agent i ∈ I ′ in the coalition to deviate from T (%i) to

Ŝi. That first deviation happens at some information set Ii ∈ α(T (%i), Ŝi). We have for h ∈ Ii and

S′−i = (T (%) \ Ŝ) ∪ (Ŝ \ {Ŝi}) that

g(zG(h, Ŝi, S
′
−i)) B(%i) g(zG(h, T (%)))

We reach a contradiction as T (%) 6∈ OSPD(G) as there exists an earliest point of departure at which a

preferred history following the partial order is reachable.

A.3.3 Proposition 8: DOSP

We fist show that in the standard domain the balanced BD mechanism is not DOSP implementable.

We show that the mechanism is not DWGSP(G) implementable, and hence by proposition 12, in the

previous appendix subsection, not DOSP implementable.

Proposition 13. In the responsive preference domian for m ≥ 2 the balanced BD mechanism is not

DWGSP(G) implementable.

Proof. Let I = {1, 2} and O = {o1, o2, o3, o4} without loss of generality let the partition of objects into

packages be O1 = {o1, o2} and O2 = {o3, o4} as well as f1(1) > f1(2) and f1(2) > f1(1). Suppose agent
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1’s type %1 produces the following simple order preference P1 : o3, o1, o2, o4 respectively agent 2’s type

the simple order P2 : o1, o3, o4, o2.

The BD mechanism leads A1 = {o1, o4} for individual 1 and A2 = {o2, o3} for individual 2.

Now consider the manipulation corresponding to P̂1 :: o3, o2, o1, o4 and P̂3 :: o4, o1, o2, o3. The BD

mechanism leads A1 = {o2, o3} for individual 1 and A2 = {o1, o4} for individual 2. This is strictly better

for both 1 and 2 following the dominance relation as for individual 1 we have o3 P1 o1, o2 P1 o4 and

while for individual 2 we have o1 P2 o3, o4 P2 o2.

Corollary 2. In the responsive preference domain, if ψ is a balanced BD mechanism and m ≥ 2, then

there does not exist G ∈ G that DOSP-implements ψ.

We now show the second part, i.e. that in the restricted domain the Balanced BD is DOSP

implementable.

Note that the BD rule is a simple mechanism that treats all types with the same underlying simple

order as identical. We will think of the problem as having a mechanism from ψ : P → A and specifying

a type-strategy profile function T : P → S.

Proof. Define the extensive form game G as follows. Take the buckets {O1, . . . , Om} and the corre-

sponding priority orders {f1, . . . , fm}. The set of players is I. The set of actions at each information

set A(Ii) is to claim a single available object. For histories of length |h| ∈ [1, n − 1] the player at each

node is identified by the priority order f1. Similarly for any history of length |h| ∈ [kn, (k+ 1)n− 1] the

player P (h) is defined by the priority order fk. The terminal histories give every agents the set of object

the person claimed at each step of the path leading to z.

Define the type strategy T (Pi) for each type �i corresponds to a simple order Pi over individual objects.

In particular T (Pi) is simply to take the best object available at each information set where a agent is

called to play following the simple order Pi. Its straight forward to see that ψ(P ) = g(zG(h∅, T (P )))

where ψ is the outcome of the BD mechanism.

We want to show that T ∈ DOSP (G) for all i and for all %i, Ti(%i) is obviously dominance relation

dominant. Suppose to the contrary that there exists i ∈ I such that for some S′i and Ii ∈ α(Si, S
′
i) there

exists z′ ∈ ZG(Ii, S
′
i) and z ∈ ZG(Ii, Si) with g(z′) ≥ (Pi) g(z). So for all k ∈ {1, . . .m} we have that

g(z′)i ∩ Ok Ri g(z)i ∩ Ok. This implies that at Ii the object obtained under the two strategies differs

Si(Ii) 6= S′i(Ii) where S′i(Ii), S
′
i(Ii) ∈ Ok′ ⊆ Ok for some k ∈ {1, . . .m}. But we know that under the

type strategy Si(Ii) Ri S
′
i(Ii) holding strictly as Si(Ii) 6= S′i(Ii), i.e. Si(Ii) Pi S

′
i(Ii) contradicting that

the assignment under S′i dominates the assignment under Si as g(z)i ∩Ok Pi g(z)i ∩Ok.
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B Illustration Algorithms

We schematically depict the described algorithms for eight object and four individual. In line with the

original inspiration, the objects are represented by cards. Moreover, we invite the observer to interpret

the depicted square as a tabletop with the individual 1,2,3, and 4 sitting around that table.

1 2
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1 2
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Figure 5: Schematic Depiction Serial Dictatorship
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Figure 6: Schematic Depiction Harvard Business School Mechanism
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Figure 7: Schematic Depiction Booster Draft Mechanism
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