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GPU-accelerated simulation of a non-local conservation law
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The model under consideration is a non-local conservation law in two space dimensions that might be used to model material
or pedestrian flow. We accelerate the simulation of the non-local model using parallelization of the non-local terms in the
programming language Haskell. The implementation allows for the computation of the solution to the conservation law with
a finite volume method at reasonable computational cost even for large domains and fine discretizations.

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Material flow model

A possible application for a non-local conservation law might be material flow on a conveyor belt [1]. The model is of non-
local nature, i.e. the movement of material is determined by the conditions in the neighbourhood of its position. Given initial
conditions ρ0, the evolution of the density ρ = ρ(x, t), x ∈ R2 is given by

∂tρ+∇ · (ρ(vdyn(ρ) + vstat(x)) = 0, ρ(x, 0) = ρ0(x). (1)

The velocity component vstat describes a time independent velocity field where the geometry of the belt, i.e. obstacles and
walls which influence the material movement, are included. The dynamic velocity field vdyn depends on the non-local density
conditions in the sorrounding and is modelled as follows

vdyn(ρ) = H(ρ− ρmax) · I(ρ), I(ρ) = −ε ∇(η ∗ ρ)√
1 + ‖∇(η ∗ ρ)‖

. (2)

At a position x, the dynamic velocity vstat(x) is determined by averaging the density conditions with the spatial convolution
η ∗ ρ of the kernel η with the density ρ(·, t). The collision operator I(ρ) represents repulsion and is activated whenever the
local density exceeds the maximum density ρmax and leads to movement of the material from congested regions into the
direction of decreasing material gradient. The parameter ε > 0 weights the collision impact and H(u) = 1(u>0) denotes the
Heaviside function.

1.1 Numerical treatment

To compute the solution to the conservation law (1), we use a finite volume scheme based on a modified Roe flux [1]. While
its approximate solutions converge to the solution of the conservation law, the applied Roe scheme with dimensional splitting
is known to give less diffusive solutions than other schemes [2]. We discretize the domain Ω ⊂ R2 in rectangular cells
with step sizes ∆x1,∆x2 and discretize the time with step size ∆t. Let x1,i = i∆x1, i = 1, . . . Nx1

, x2,j = j∆x2, j =
1, . . . Nx2

, tk = k∆t, k = 1, . . . Nt. We compute the piecewise constant solution

ρ(x, t) = ρki,j (x, t) ∈ [x1,i−1/2, x1,i+1/2)× [x2,j−1/2, x2,j+1/2)× [tk, tk+1), (3)

where we use xl,i±1/2 = (i ± 1
2 )∆xl, l = 1, 2. For details on the computation to obtain the discretized solution (3), we

refer to the algorithm macro_solver [1]. In each iteration k, the collision operator I(ρk) has to be evaluated to compute
the solution ρ(·, tk+1), see routine compute_velocityfield [1]. We remark that the computation of the gradient of the
convolution∇(η ∗ ρk) is extremely expensive when the domain is large and/or the discretization is fine.

2 GPU-accelerated implementation

We implement the Roe scheme in the programming language Haskell and use the accelerate library, a mini-language em-
bedded in Haskell [3], that enables on-the-fly compilation of programs for GPU and CPU backends via the LLVM compiler
framework. With accelerate it is possible to benefit from the expressive type system of the Haskell language, the auto-
mated memory management and the parallelisation across multiple CPU or GPU threads. The Roe scheme is implemented in
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2 of 2 Section 18: Numerical methods of differential equations

Table 1: Time to compute one step (ms) - with and without
GPU acceleration.

Grid size F4s_v21 F8s_v22 NC123 NC64 NC125

(Nx1 ·Nx2 ) (CPU) (CPU) (CPU) (GPU) (GPU)
2200 8.55 7.24 5.12 - 6 2.61
8800 27.15 18.02 14.79 2.90 2.61

35200 96.06 54.53 27.92 5.05 2.55
97778 258.50 146.70 68.66 13.33 2.66

220000 576.30 296.20 142.00 31.54 2.96
880000 2241.00 1150.00 538.00 120.9 10.44

1 4 vCPUs 3.4Ghz, 8GB RAM 2 8 vCPUs 3.4 Ghz, 16GB RAM
3 12 vCPUs 2.6Ghz, 224GB RAM
4 1 NVidia Tesla K80 GPU, 56GB RAM, 12GB GPU memory
5 2 NVidia Tesla V100 GPUs, 224 GB RAM, 32GB GPU memory
6 not available
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Fig. 1: Visualisation of execution times

the Haskell environment to allow for parallel computation of the convolution∇(η ∗ρ). With matrices η and ρ stored in arrays.
Since we are interested in large grid sizes Nx1 · Nx2 , the resulting matrices become very large, cf. Table 1. For these array
sizes, the convolution is not predefined in Haskell. Therefore, we propose the following: The convolution of two matrices
A ∈ Ra1×a2 , B ∈ Rb1×b2 is defined as (A∗B)i,j =

∑
p,q Ap,q ·Bi−p,j−q which links the entries with indices i, j in the target

array to entries in the source arrays with valid indices p, q and i− p, j − q. In our implementation, we first compute the cross
product of the input arrays A and B, a four-dimensional array Z(p, q, r, s) = A(p, q) ·B(r, s). We use the accelerate function
generate to fill each cell (p, q, r, s) and store the result to the array productArray of size Pshape = (a1, a2, b1, b2).
To compute the convolution, we apply an index transformation function f : (p, q, r, s) → (p, q) and map each cell from the
four-dimensional source array to a cell of the two-dimensional target array. If multiple source cells are mapped to the same
target cell, their values are added. To compute the summation, we use the accelerate function permute. A sketch of the
implementation is given below

-- Array with cross product
productArray =

let item (p, q, r, s) = kernel ! (p, q) * density ! (r, s)
in A.generate PShape item

-- Index transformation function
f :: (Int, Int, Int, Int) -> (Int, Int)
f (p, q, r, s) = (r + p - 1, s + q - 1)

-- Array of the target shape filled with zeros
initialTarget :: Acc (Array DIM2 Double)

-- Array containing the convolution
result = A.permute (+) initialTarget f productArray

accelerate compiles the array code for two target architectures, CPU (host) and GPU (client). Compilation happens at
runtime of the Haskell program. accelerate generates bytecode for the target architecture. A scheduler moves data back
and forth between client and host, allocating and freeing memory as required, see [3] for details. Table 1 and Figure 1 show
the execution time to compute the density ρ(·, tk) from ρ(·, tk−1) with one iteration of the Roe scheme on different sized
virtual machines in the Microsoft Azure cloud, for a number of grid sizes and illustrate the speed up using GPU architectures.
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