
Electron. Commun. Probab. 24 (2019), no. 5, 1–17.
https://doi.org/10.1214/18-ECP207
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Heat kernel estimates and intrinsic metric for random walks

with general speed measure under degenerate

conductances

Sebastian Andres* Jean-Dominique Deuschel† Martin Slowik †

Abstract

We establish heat kernel upper bounds for a continuous-time random walk under
unbounded conductances satisfying an integrability assumption, where we correct
and extend recent results in [3] to a general class of speed measures. The resulting
heat kernel estimates are governed by the intrinsic metric induced by the speed
measure. We also provide a comparison result of this metric with the usual graph
distance, which is optimal in the context of the random conductance model with
ergodic conductances.
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1 Introduction

Let G = (V,E) be an infinite, connected, locally finite graph with vertex set V and
(non-oriented) edge set E. We will write x ∼ y if {x, y} ∈ E. Consider a family of
positive weights ω = {ω(e) ∈ (0,∞) : e ∈ E} ∈ Ω, where Ω = RE+ is the set of all possible
configurations. We also refer to ω(e) as the conductance of the edge e. With an abuse
of notation, for x, y ∈ V we set ω(x, y) = ω(y, x) = ω({x, y}) if {x, y} ∈ E and ω(x, y) = 0

otherwise. Let us further define measures µω and νω on V by

µω(x) :=
∑
y∼x

ω(x, y) and νω(x) :=
∑
y∼x

1

ω(x, y)
.

Given a speed measure θ : V → (0,∞) we consider a continuous time continuous time
Markov chain, X = {Xt : t ≥ 0}, on V with generator Lωθ acting on bounded functions
f : V → R as (

Lωθ f)(x) =
1

θ(x)

∑
y∼x

ω(x, y)
(
f(y)− f(x)

)
. (1.1)

*University of Cambridge, United Kingdom. E-mail: s.andres@statslab.cam.ac.uk
†Technische Universität Berlin, Germany. E-mail: deuschel@math.tu-berlin.de,slowik@math.tu-berlin.

de

https://doi.org/10.1214/18-ECP207
http://www.imstat.org/ecp/
http://arXiv.org/abs/1711.11119
mailto:s.andres@statslab.cam.ac.uk
mailto:deuschel@math.tu-berlin.de,slowik@math.tu-berlin.de
mailto:deuschel@math.tu-berlin.de,slowik@math.tu-berlin.de


Heat kernel and intrinsic metric for random walks with general speed measure

Then the Markov chain, X, is reversible with respect to the speed measure θ, and
regardless of the particular choice of θ the jump probabilities ofX are given by pω(x, y) :=

ω(x, y)/µω(x), x, y ∈ V , and the various random walks corresponding to different speed
measures will be time-changes of each other. The maybe most natural choice for the
speed measure is θ ≡ θω = µω, for which we obtain the constant speed random walk
(CSRW) that spends i.i.d. Exp(1)-distributed waiting times at all visited vertices. Another
frequently arising choice for θ is the counting measure, i.e. θ(x) = 1 for all x ∈ V , under
which the random walk waits at x an exponential time with mean 1/µω(x). Since the law
of the waiting times does depend on the location, X is also called the variable speed
random walk (VSRW).

For any choice of θ we denote by Pωx the law of the process X starting at the vertex
x ∈ V . For x, y ∈ V and t ≥ 0 let pωθ (t, x, y) be the transition densities of X with respect
to the reversible measure (or the heat kernel associated with Lωθ ), i.e.

pωθ (t, x, y) :=
Pωx
[
Xt = y

]
θ(y)

.

As one of our main results we establish upper bounds on the heat kernel under a certain
integrability condition on the conductances, see Theorem 3.2 below. The resulting
bounds are of Gaussian type apart from an additional factor which may vanish for
specific choices of the speed measure or the conductances (see Remark 3.3 below). It is
well known that Gaussian bounds hold, for instance, for the CSRW on infinite weighted
graphs with bounded vertex degree in the uniformly elliptic case, that is c−1 ≤ ω(e) ≤ c
for all e ∈ E for some c ≥ 1, see [12]. More recently, Folz showed in [17] upper Gaussian
estimates for elliptic random walk for general speed measures that need to be bounded
away from zero, provided on-diagonal upper bounds at two vertices are given. In [3] we
weakened the uniform ellipticity condition and showed heat kernel upper bounds for
the CSRW and VSRW under a similar integrability condition as in Theorem 3.2, while
in the present paper we extend this result to general speed measures. Notice that
some integrability assumption on the conductances is necessary for Gaussian bounds
to hold. In fact, it is well known that due to a trapping phenomenon under random
i.i.d. conductances with sufficiently heavy tails at the zero the subdiffusive heat kernel
decay may occur, see [6, 7] and cf. [8]. For the proof of Theorem 3.2 we use the same
strategy as in [3] which is based on a combination of Davies’ perturbation method (cf. e.g.
[10, 11, 9]) with a Moser iteration following an idea in [21]. We refer to [3, Section 1.2]
for a more detailed outline of the method.

Naturally, the heat kernel upper bounds in Theorem 3.2 are governed by the distance
function dωθ on V × V defined by

dωθ (x, y) := inf
γ∈Γxy

{
lγ−1∑
i=0

(
1 ∧ θ(zi) ∧ θ(zi+1)

ω(zi, zi+1)

)1/2}
, (1.2)

where Γxy is the set of all nearest-neighbor paths γ = (z0, . . . , zlγ ) connecting x and y

(cf. [11, 5, 17, 19, 3]). Note that dωθ is a metric which is adapted to the transition rates
and the speed measure of the random walk. Further, for the CSRW, i.e. θ ≡ θω = µω, the
metric dωθ coincides with the usual graph distance d. In general, dωθ can be identified
with the intrinsic metric generated by the Dirichlet form associated with Lωθ and X, see
Proposition 2.3 below. Further, notice that dωθ (x, y) ≤ d(x, y) for all x, y ∈ V . In fact, the
distance dωθ can become much smaller than the graph distance, see [3, Lemma 1.12] for
an example in the context of a VSRW under random conductances. As our second main
result, stated in Theorem 2.4 below, for any x, y ∈ V sufficiently far apart, we provide
under a suitable integrability condition on ω a lower bound on dωθ (x, y) in terms of a
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Heat kernel and intrinsic metric for random walks with general speed measure

certain power of d(x, y). This lower bound turns out to be optimal within our general
framework up to an arbitrarily small correction in the exponent.

The rest of the paper is organised as follows. In Section 2 we prove a lower bound on
dωθ in terms of the graph distance and we discuss its optimality by providing an example
in the context of the random conductance model on Zd. In Section 3 we show the heat
kernel upper bounds. Throughout the paper we write c to denote a positive constant
which may change on each appearance. Constants denoted Ci will be the same through
each argument.

2 Comparison result for the intrinsic metric and its optimality

2.1 Preliminaries

The graph G is endowed with the counting measure, i.e. the measure of A ⊂ V

is simply the number |A| of elements in A. Further, we denote by B(x, r) the closed
ball with center x and radius r with respect to the natural graph distance d, that is
B(x, r) := {y ∈ V | d(x, y) ≤ r}. Throughout the paper we will make the following
assumption on G.

Assumption 2.1. The graph G satisfies the following conditions.

(i) Uniformly bounded vertex degree, that is there exists Cdeg ∈ [1,∞) such that

|{y : y ∼ x}| ≤ Cdeg, ∀x ∈ V. (2.1)

(ii) Volume regularity of order d for large balls, that is there exist d ≥ 2 and Creg ∈
(0,∞) such that for all x ∈ V there exists N1(x) <∞ with

C−1
reg n

d ≤ |B(x, n)| ≤ Creg n
d, ∀n ≥ N1(x). (2.2)

(iii) Local Sobolev inequality (S1
d′) for large balls, that is there exists d′ ≥ d and

CS1
∈ (0,∞) such that for all x ∈ V the following holds. There exists N2(x) < ∞

such that for all n ≥ N2(x),

( ∑
y∈B(x,n)

|u(y)|
d′
d′−1

)d′−1
d′

≤ CS1
n1− d

d′
∑

y∨z∈B(x,n)
{y,z}∈E

∣∣u(y)− u(z)
∣∣ (2.3)

for all u : V → R with suppu ⊂ B(x, n).

Remark 2.2. The Euclidean lattice, (Zd, Ed), satisfies the Assumption 2.1 with d′ = d

and N1(x) = N2(x) = 1. Further, if Assumption 2.1 holds with N1(x) = N2(x) = 1 for all
x ∈ V , then Gaussian bounds hold on the unweighted graph.

For f : V → R we define the operator ∇ by

∇f : E → R, E 3 e 7−→ ∇f(e) := f(e+)− f(e−),

where for each non-oriented edge e ∈ E we specify one of its two endpoints as its initial
vertex e+ and the other one as its terminal vertex e−. Further, the corresponding adjoint
operator ∇∗F : V → R acting on functions F : E → R is defined in such a way that
〈∇f, F 〉`2(E) = 〈f,∇∗F 〉`2(V ) for all f ∈ `2(V ) and F ∈ `2(E). Notice that in the discrete
setting the product rule reads

∇(fg) = av(f)∇g + av(g)∇f, (2.4)
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where av(f)(e) := 1
2 (f(e+) + f(e−)). On the weighted Hilbert space `2(V, θ) the Dirichlet

form associated with Lωθ is given by

Eω(f, g) :=
〈
f,−Lωg

〉
`2(V,θ)

=
〈
∇f, ω∇g

〉
`2(E)

=
〈
1,dΓω(f, g)

〉
`2(E)

, (2.5)

where dΓω(f, g) := ω∇f∇g and Eω(f) = Eω(f, f).

As a first step, we identify the metric dωθ as the intrinsic metric of the Dirichlet form
Eω on `2(V, θ).

Proposition 2.3. For every x, y ∈ V ,

dωθ (x, y) = sup
{
ψ(y)− ψ(x) : ‖∇ψ‖∞ ≤ 1, dΓω(ψ,ψ)(e) ≤ θ(e+) ∧ θ(e−), e ∈ E

}
.

Proof. We follow the argument in [19, Proposition 10.4]. For any x, y ∈ V set

∆ω
θ (x, y) := sup

{
ψ(y)− ψ(x) : ‖∇ψ‖∞ ≤ 1, dΓω(ψ,ψ)(e) ≤ θ(e+) ∧ θ(e−), e ∈ E

}
.

Then, for any function ψ : V → R with the properties that ‖∇ψ‖∞ ≤ 1 and dΓω(ψ,ψ)(e) ≤
θ(e+) ∧ θ(e−) for all e ∈ E we obtain

∇ψ(e) ≤
(

1 ∧ θ(e
+) ∧ θ(e−)

ω(e)

)1/2
.

Let γ ∈ Γx,y be a nearest neighbour path connecting x and y. By summing over all

consecutive vertices in γ, we get that ψ(y)− ψ(x) =
∑lγ−1
i=0 ψ(zi+1)− ψ(zi). Thus,

∆ω
θ (x, y) ≤ dωθ (x, y).

In order to obtain ∆ω
θ (x, y) ≥ dωθ (x, y), set ψ(z) := dωθ (x, z) for all z ∈ V . Then, for any

edge e ∈ E an application of the triangle inequality and the definition of dωθ yields∣∣∇ψ(e)
∣∣ ≤ ∣∣dωθ (x, e+)− dωθ (x, e−)

∣∣ ≤ dωθ (e+, e−) ≤ 1.

Likewise, it follows that, for any e ∈ E,

dΓω(ψ,ψ)(e) ≤ ω(e) dωθ (e+, e−)2 ≤ θ(e+) ∧ θ(e−).

Thus, ψ satisfies the requirements in the definition of ∆ω
θ (x, y). Since ψ(x) = 0 we finally

have that dωθ (x, y) ≤ ∆ω
θ (x, y).

For some φ : V → [0,∞), p ∈ [1,∞) and any non-empty, finite B ⊂ V , we define
space-averaged weighted `p-norms on functions f : B → R by∥∥f∥∥

p,B,φ
:=

(
1

|B|
∑
x∈B
|f(x)|p φ(x)

)1/p
and

∥∥f∥∥∞,B := max
x∈B
|f(x)|.

If φ ≡ 1, we simply write ‖f‖p,B := ‖f‖p,B,φ.

2.2 Lower bound on dωθ

As our first main result we show that on a large scale the metric dωθ can be bounded
from below by a certain power of the graph distance d.

Theorem 2.4. Let p > (d− 1)/2 and assume that for any x ∈ V ,

mp := lim sup
n→∞

∥∥1 ∨ µω/θ
∥∥
p,B(x,n)

< ∞. (2.6)

Then, there exists c(mp) > 0 such that the following holds. For every x ∈ V there exists
N3(ω, x) <∞ such that for any y ∈ V with d(x, y) ≥ N3(ω, x),

dωθ (x, y) ≥ c(mp) d(x, y)1− d−1
2p . (2.7)
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Proof. In order to simplify notation, set mω
θ (x) := 1 ∨ µω(x)/θ(x) for x ∈ V . Since the

function t 7→ 1/
√
t is convex, an application of the Jensen inequality yields

dωθ (x, y) ≥ inf
γ∈Γx,y

lγ

(
1

lγ

lγ−1∑
i=0

mω
θ (zi) ∨mω

θ (zi+1)

)−1/2

.

Moreover, for any p > (d− 1)/2, an application of Hölder’s inequality yields

1

lγ

lγ−1∑
i=0

mω
θ (zi) ∨mω

θ (zi+1) ≤ 2|B(x, lγ)|
lγ

∥∥1γmω
θ

∥∥
1,B(x,lγ)

≤ 2

(
|B(x, lγ)|
|lγ |

)1/p ∥∥mω
θ

∥∥
p,B(x,lγ)

.

By combining the estimates and using (2.2) there exists c(mp) > 0 and N3(ω, x) < ∞
such that for any y ∈ V with d(x, y) ≥ N3(ω, x),

dωθ (x, y) ≥ c(mp) inf
γ∈Γx,y

(lγ)1− d−1
2p = c(mp) d(x, y)1− d−1

2p ,

where we used in the last step that p > (d− 1)/2.

2.3 Optimality of the bound in Theorem 2.4

In this subsection we provide an example for which the lower bound in Theorem 2.4 is
attained up to an arbitrarily small correction in the exponent. For this purpose, consider
the d-dimensional Euclidean lattice (Zd, Ed) with d ≥ 2, where Ed denotes the set of all
non-oriented nearest neighbour bonds. As pointed out in Remark 2.2, (Zd, Ed) satisfies
the Assumption 2.1. Further, let P be a probability measure on the measurable space
(Ω,F) =

(
REd+ ,B(R+)⊗Ed

)
and write E for the expectation with respect to P. The space

shift by z ∈ Zd is the map τz : Ω→ Ω defined by (τzω)({x, y}) := ω({x+ z, y + z}) for all
{x, y} ∈ Ed. Now assume that P satisfies the following conditions.

(i) P is ergodic with respect to translations of Zd, i.e. P ◦ τ−1
x = P for all x ∈ Zd and

P[A] ∈ {0, 1} for any A ∈ F such that τx(A) = A for all x ∈ Zd.

(ii) There exist p > (d− 1)/2 such that E[ω(e)p] <∞ for any e ∈ Ed.

Then, the spatial ergodic theorem gives that for P-a.e. ω,

lim
n→∞

∥∥µω∥∥p
p,B(n)

= E
[
µω(0)p

]
< ∞.

In particular, by choosing θ ≡ 1, the assumption (2.6) in Theorem 2.4 is fulfilled for P-a.e.
ω and the lower bound on dωθ holds. Nevertheless, for general ergodic environments
we cannot control the size of the random variable N3(x), x ∈ Zd, as this requires
some information on the speed of convergence in the ergodic theorem. However, if
we additionally assume, for instance, that the environment satisfies a concentration
inequality in form of a spectral gap inequality w.r.t. the so-called vertical derivative,
then E[N3(x)n] <∞ provided a stronger moment condition holds (depending on n), see
Assumption 1.3 and Lemma 2.10 in [4].

Theorem 2.5. Consider the VSRW, i.e. θ ≡ 1. For any p > 1 there exists an environment
of ergodic random conductances {ω(e) : e ∈ Ed} on (Zd, Ed) satisfying E[ω(e)p] < ∞
such that for any α > p and P-a.e. ω the following hold.
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(i) Suppose d = 2. There exists L0 = L0(ω) <∞ such that for all L ≥ L0 there exists
x = x(ω) ∈ Zd with d(0, x) = L and

dωθ (0, x) ≤ c d(0, x)1− d−1
2α .

(ii) Suppose d ≥ 2. There exists L0 = L0(ω) < ∞ such that for all L ≥ L0 there exist
x = x(ω), y = y(ω) ∈ [−2L, 2L]d with d(x, y) = L and

dωθ (x, y) ≤ c d(x, y)1− d−1
2α .

Proof. Let {Y (i, y) : i ∈ {1, . . . , d}, y ∈ Zd−1} be a family of non-negative, independent
and identically distributed random variables such that

P
[
Y (i, y) > r

]
= r−α0+o(1) as r →∞

for some α0 > p. For any x ∈ Zd we write x̂i to denote the element of Zd−1 obtained by
removing the i-th component from x. Further, set

ω({x, x± ei}) := Y (i, x̂i), ∀x ∈ Zd, i ∈ {1, . . . , d},

where {e1, . . . , ed} denotes the canonical basis in Rd. Then, note that the conductances
are constant along the lines, but independent between different lines. W.l.o.g. we further
assume that ω(e) ≥ 1 for any e ∈ Ed. We refer to [3, Example 1.11] and [13, Section 2.2]
for a similar but different example for a model with layered random conductances.

(i) Consider the nearest-neighbour path (xn : n ≥ 0) on Nd0 defined by x0 := 0,
xn+1 := xn + ein+1

with

i1 := argmax
i=1,...,d−1

ω({0, ei}), in+1 := argmax
i=1,...,d

ω({xn, xn + ei}), n ≥ 1.

In view of the definition of dωθ in (1.2) it suffices to show that for any α > α0 there exists
L0 = L0(ω) <∞ such that

L∑
n=0

ω({xn, xn+1})−1/2 ≤ cL1− d−1
2α , ∀L ≥ L0. (2.8)

For that purpose, set Mn := max1≤k≤n ω({xk−1, xk}) and un := n1/α for n ≥ 1. Then, by
construction Mn is the maximum of n i.i.d. random variables Z1, . . . , Zn defined by

Z1 := max
i∈{1,...,d−1}

ω({0, ei}), Zk := max
i∈{1,...,d}\{ik−1}

ω({xk, xk + ei}), k ≥ 2.

An elementary computation shows that P[Z1 > uk] ≤ (d − 1)P[ω(e) > uk] → 0, and
kP[Z1 > uk] ≥ kP[ω(e) > uk]→∞ as k →∞ and

∞∑
k=1

P
[
Z1 > uk

]
exp
(
−kP

[
Z1 > uk

])
≤ c

∞∑
k=1

k−
α0
α exp

(
−c k1−α0

α

)
< ∞.

Thus, by [16, Theorem 3.5.2] for P-a.e. ω there exists N0 = N0(ω) <∞ such that

Mn ≥ n1/α, ∀n ≥ N0. (2.9)

Let (lk : k ≥ 0) be the sequence of record times defined by

l0 := 0 and lk+1 := min
{
j > lk : Mj > Mlk

}
.
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and denote by N(L) the number of records in the interval {0, . . . L}. Recall that

lim
k→∞

ln lk
k

= 1, lim
L→∞

N(L)

lnL
= 1, P-a.s. (2.10)

(cf. e.g. [16, Section 5.4]). Set M̂k := Mlk . Using Abel’s summation formula the left-hand
side in (2.8) can be rewritten as

L∑
n=0

ω({xn, xn+1})−1/2 ≤ lN(L) M̂
−1/2
N(L) +

N(L)−1∑
k=1

lk
(
M̂
−1/2
k − M̂−1/2

k+1

)
.

By (2.9) and (2.10) the first term is of order L1− 1
2α . Further, we have that lkM̂

−1/2
k ≤

(lk)1− 1
2α ≤ c e(1− 1

2α )k for sufficiently large k and therefore

N(L)−1∑
k=1

lk
(
M̂
−1/2
k − M̂−1/2

k+1

)
≤

N(L)∑
k=1

lk M̂
−1/2
k ≤ c e(1− 1

2α )N(L) ≤ cL1− 1
2α

for all L larger than some L0 = L0(ω). Thus, (2.8) is proven.
(ii) In order to show the second statement consider

eL := argmax
e∈Ed:e−∈[−L,L]d

ω(e).

Then, by construction ω(eL) is the maximum of order Ld−1 i.i.d. random variables and
again by [16, Theorem 3.5.2] there exists L0 = L0(ω) such that P-a.s.

ω(eL) ≥ cL
d−1
α , ∀L ≥ L0.

For such L set x := e−L and consider the nearest-neighbour path (xn : n ∈ N0) on Zd

defined by x0 := x and xn+1 := xn + ein+1
with

in+1 := argmax
i=1,...,d

ω({xn, xn + ei}), n ≥ 0,

similarly as above in (i). Then, by setting y = xL, we have d(x, y) = L and

ω({xn, xn+1}) ≥ ω(eL) ≥ cL
d−1
α , ∀n = 0, . . . , L− 1.

In particular, (2.8) holds and (ii) follows from the definition of dωθ .

3 Heat kernel upper bounds

We work again in the general setting outlined in Section 2.1 above. Our main
objective is to prove Gaussian-like upper bound on the heat kernel pθ in term of the
intrinsic distance dθ. For that purpose, we impose the following assumption on the
integrability of the conductances.

Assumption 3.1. Let d′ ≥ d ≥ 2. For p, q, r ∈ (1,∞] with

1

r
+

1

p
· r − 1

r
+

1

q
<

2

d′
(3.1)

there exists Cint ∈ [1,∞) such that for all x ∈ V there exists N4(x, ω) <∞ such that for
all n ≥ N4(x, ω),∥∥1 ∨ µω/θ

∥∥
p,B(x,n),θ

·
∥∥1 ∨ νω

∥∥
q,B(x,n)

·
∥∥1 ∨ θ

∥∥
r,B(x,n)

·
∥∥1 ∨ 1/θ

∥∥
q,B(x,n)

≤ Cint. (3.2)
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Similarly as explained at the beginning of Section 2.3 above, in the context of
the random conductance model with ergodic conductances one can use the ergodic
theorem to translate Assumption 3.1 directly into a moment condition, provided the
speed measure θ is random and stationary, i.e. θ(x) = θω(x) = θτxω(0) for all x ∈ Zd.
Theorem 3.2. Suppose that ω ∈ Ω satisfies Assumption 3.1. Then, there exist constants
ci = ci(d, p, q, Cint) and γ = γ(d, p, q, Cint) such that for any given t and x with

√
t ≥

N1(x) ∨N2(x) ∨N4(x, ω) and all y ∈ V the following hold.

(i) If dωθ (x, y) ≤ c1t then

pωθ (t, x, y) ≤ c2 t
−d/2

(
1 +

d(x, y)√
t

)γ
exp

(
−c3

dωθ (x, y)2

t

)
.

(ii) If dωθ (x, y) ≥ c5t then

pωθ (t, x, y) ≤ c2 t
−d/2

(
1 +

d(x, y)√
t

)γ
exp

(
−c4 dωθ (x, y)

(
1 ∨ log

dωθ (x, y)

t

))
.

Remark 3.3. (i) In the case of CSRW or VSRW Theorem 3.2 has been established in [3].
However, the term (1 + d(x, y)/

√
t)γ is erroneously missing in the result for the VSRW in

[3, Theorem 1.10].
(ii) If the distance dωθ and the graph distance d are comparable, the estimates in

Theorem 3.2 turn into Gaussian upper bounds since then the additional term (1 +

d(x, y)/
√
t)γ can be absorbed by the exponential term into a constant. Both distances

are comparable, for instance, for the CSRW, the VSRW under i.i.d. conductances (cf. [5,
Lemma 4.2]) or for random walks on supercritical percolation clusters with long-range
correlations (see [15]). However, if both distances are not comparable, the bounds in
Theorem 3.2 become ineffective in the regime where dωθ (x, y) <

√
t < d(x, y), since in this

case the term (1 + d(x, y)/
√
t)γ may become large while the exponential term does not

provide a decay yet. Nevertheless, a near-diagonal bound of the following form can be
deduced from the parabolic Harnack inequality established in [2]. There exists c ∈ (0,∞)

such that for any x ∈ V and any t > 0 with
√
t ≥ N1(x) ∨N2(x) ∨N4(x, ω) (with a slightly

modified N4) we have for all y ∈ V ,

pωθ (t, x, y) ≤ c t−d/2,

cf. [2, Proposition 4.7].
(iii) The on-diagonal decay t−d/2 corresponds to 1/

∣∣B(x,
√
t)
∣∣. In general we expect

a stronger decay to hold resulting from the volume of a ball with radius
√
t w.r.t. the

distance dωθ under the speed measure θ. For instance, the heat kernel of the random
walk discussed in Section 2.3 admits the on-diagonal decay t−(d+1)/2, see [14].

If x and y are sufficiently far apart, the term (1 + d(x, y)/
√
t)γ can be simplified by

using Theorem 2.4.

Corollary 3.4. Suppose that ω ∈ Ω satisfies Assumption 3.1, and assume that there
exists C ≥ 1 and ε ∈ [0, (d− 1)/(2p− d+ 1)] such that for any x ∈ V and all y ∈ V with
d(x, y) ≥ N3(ω, x)

d(x, y) ≤ C dωθ (x, y)1+ε.

Then, there exist constants ci = ci(d, p, q, Cint) such that for any given t and x with√
t ≥ N1(x) ∨ N2(x) ∨ N3(x, ω) ∨ N4(x, ω) and all y ∈ V with d(x, y) ≥ N3(ω, x) the

following hold.
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(i) If dωθ (x, y) ≤ c1t then

pωθ (t, x, y) ≤ c6 t
−d/2 (1 ∨ dωθ (x, y)

)εγ
exp

(
−c7

dωθ (x, y)2

t

)
.

(ii) If dωθ (x, y) ≥ c5t then

pωθ (t, x, y) ≤ c6 t
−d/2 (1 ∨ dωθ (x, y)

)εγ
exp

(
−c8 dωθ (x, y)

(
1 ∨ log

dωθ (x, y)

t

))
.

Remark 3.5. Note that p > (d − 1)/2 for any p satisfying (3.1). Hence, Theorem 2.4
implies that for any x ∈ V and all y ∈ V with d(x, y) ≥ N3(ω, x),

d(x, y) ≤ c(mp)
−2p/(2p−d+1) dωθ (x, y)1+ε

with ε = (d− 1)/(2p− d+ 1). In particular, ε→ 0 as p→∞.

Proof. This is a direct consequence from Theorem 3.2. Indeed, since(
1 +

d(x, y)√
t

)γ
≤
(

1 +
C dωθ (x, y)1+ε

√
t

)γ
≤
(
1 ∨ dωθ (x, y)

)εγ (
1 + C

dωθ (x, y)√
t

)γ
,

the second term can be absorbed by the exponential term into a constant.

In the remainder of this section we explain how the proof of [3, Theorem 1.6] needs to
be adjusted in order to prove Theorem 3.2, that is to obtain Gaussian-like upper bounds
on the heat kernel for a larger class of speed measures θ. We also take the opportunity
to streamline the arguments in [3] and to correct some technical mistakes leading to the
error mentioned in Remark 3.3.

3.1 Maximal inequality for the perturbed Cauchy problem

Consider the following Cauchy problem{
∂tu− Lωθ u = 0,

u(t = 0, · ) = f,
(3.3)

for some function f : V → R. Recall that for any given y ∈ Zd, the function (t, x) 7→
pωθ (t, x, y) solves the heat equation (3.3) with f = 1{y}/θ(y). For any positive function φ
on V such that φ, φ−1 ∈ `∞(V ) we define the operator Lωθ,φ acting on bounded functions
g : V → R as

(Lωθ,φ g)(x) := φ(x)(Lωθ φ−1g)(x).

As a first step we establish the following a-priori estimate.

Lemma 3.6. Suppose that f ∈ `2(V, θω) and u solves the corresponding Cauchy problem
(3.3). Further, set v(t, x) := φ(x)u(t, x) for a positive function φ on V such that φ, φ−1 ∈
`∞(V ). Then ∥∥v(t, · )

∥∥
`
2
(V,θ)

≤ eh
ω
θ (φ)t

∥∥φf∥∥
`
2
(V,θ)

, (3.4)

where

hωθ (φ) := max
x∈V

1

2θ(x)

∑
y∼x

∣∣dΓω(φ, φ−1)({x, y})
∣∣.
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Proof. This can be shown by the similar arguments as in [3, Lemma 2.1].

Our next aim is to derive a maximal inequality for the function v. For that purpose
we will adapt the arguments given in [2, Section 4] and set up a Moser iteration scheme.
For any finite interval I ⊂ R, finite, connected B ⊂ V and p, p′ ∈ (0,∞), let us introduce
a space-time-averaged norm on functions u : R× V → R by

∥∥u∥∥
p,p′,I×B,θ :=

(
1

|I|

∫
I

∥∥ut∥∥p′p,B,θ dt

)1/p′
and

∥∥u∥∥
p,∞,I×B,θ := sup

t∈I

∥∥ut∥∥p,B,θ,
where ut = u(t, .), t ∈ R.

Lemma 3.7. Suppose that Q = I ×B, where I = [s1, s2] ⊂ R is an interval and B ⊂ V is
finite and connected. For a given φ > 0 with φ, φ−1 ∈ `∞(V ), let vt ≥ 0 be a solution of
∂tv − Lωθ,φv ≤ 0 on Q. Further, let η : V → [0, 1] and ζ : R→ [0, 1] be two cutoff functions
with

supp η ⊂ B and η ≡ 0 on ∂B,

supp ζ ⊂ I and ζ(s1) = 0.

Then, there exists C1 <∞ such that for α ≥ 1 and p, p∗ ∈ (1,∞) with 1/p+ 1/p∗ = 1,

1

|I|
∥∥ζ(ηvα)2

∥∥
1,∞,Q,θ +

1

|I|

∫
I

ζ(t)
Eω(ηvαt )

|B|
dt

≤ C1α
2
(∥∥µω/θ∥∥

p,B,θ

∥∥∇η∥∥2

`
∞

(E)

∥∥v2α
∥∥
p∗,1,Q,θ

+
(∥∥ζ ′∥∥

L∞(I)
+ hωθ (φ)

)∥∥v2α
∥∥

1,1,Q,θ

)
.

(3.5)

Proof. Fix some α ≥ 1. Since v ≥ 0 satisfies ∂tv − Lωθ,φv ≤ 0 on Q, a summation by parts
yields

1

2α
∂t
∥∥ηvαt ∥∥2

`
2
(V,θ)

≤ −
〈
∇(η2φv2α−1

t ), ω∇(φ−1vt)
〉
`2(E)

(3.6)

for any t ∈ I. By applying the product rule (2.4), we obtain〈
∇(η2φv2α−1

t ), ω∇(φ−1vt)
〉
`2(E)

=
〈

av(η2),dΓω(φv2α−1
t , φ−1vt)

〉
`2(E)

+
〈

av(φv2α−1
t ),dΓω(η2, φ−1vt)

〉
`2(E)

=: T1 + T2. (3.7)

Let us first focus on the term T1. Again, an application of the product rule (2.4) to-
gether with the fact that (∇φ)(∇φ−1) ≤ 0 and − av(φ−1)(∇φ) = av(φ)(∇φ−1), yields the
following lower bound

dΓω(φv2α−1
t , φ−1vt) ≥ av(φ) av(φ−1) dΓω(v2α−1

t , vt) + av(v2α
t ) dΓω(φ, φ−1)

+ av(φ)
(

av(vt) dΓω(v2α−1
t , φ−1)− av(v2α−1

t ) dΓω(vt, φ
−1)
)
,

where we used that by Hölder’s inequality, av(vα1
t ) av(vα2

t ) ≤ av(vα1+α2
t ) for any α1, α2 ≥

0. Further, by [3, Lemma B.1], we have that

dΓω(v2α−1
t , vt) ≥

2α− 1

α2
dΓω(vαt , v

α
t ),
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and ∣∣ av(vt)(e)∇v2α−1
t (e)− av(v2α−1

t )(e)∇vt(e)
∣∣

=
∣∣v2α−1
t (e+)vt(e

−)− v2α−1
t (e−)vt(e

+)
∣∣ ≤ 2(α− 1)

α

∣∣ av(vαt )(e)∇vαt (e)
∣∣ (3.8)

for all e ∈ E. Thus, by combining the estimates above and using that

av(φ)
∣∣∇φ−1

∣∣ =
√

av(φ) av(φ−1) ·
√
−(∇φ)(∇φ−1), (3.9)

an application of Young’s inequality, that reads |ab| ≤ 1
2 (εa2 + b2/ε), with ε = 1/(2α)

results in

T1 ≥
3α− 1

2α2

〈
av(η2) av(φ) av(φ−1),dΓω(vαt , v

α
t )
〉
`2(E)

− 2α |B|hωθ (φ)
∥∥v2α
t

∥∥
1,B,θ

.

Let us now address the term T2. Observe that

av(φv2α−1
t ) dΓω(φ−1vt, η

2)

= 2 av(φv2α−1
t ) av(η)

(
av(φ−1) dΓω(vt, η) + av(vt) dΓω(φ−1, η)

)
≥ −4 av(η) av(φ) av(v2α−1

t )
(

av(φ−1)
∣∣dΓω(vt, η)

∣∣ + av(vt)
∣∣dΓω(φ−1, η)

∣∣).
Since av(v2α−1

t ) av(vt) ≤ av(v2α
t ), an application of the Young inequality yields

4 av(η) av(φ) av(v2α
t )
∣∣dΓω(φ−1, η)

∣∣
(3.9)
≤ 8 av(φ) av(φ−1) av(v2α

t ) dΓω(η, η) − 1

2
av(η2) av(v2α

t ) dΓω(φ, φ−1).

On the other hand,∣∣ av(v2α−1
t )(e)(∇vt)(e)

∣∣
≤
∣∣∣ av(vαt )(e)(∇vαt )(e)

∣∣∣ +
1

2

∣∣∣(v2α−1
t (e+)vt(e

−)− v2α−1
t (e−)vt(e

+)
)∣∣∣

(3.8)
≤ 2α− 1

α

∣∣ av(vαt )(e)∇vαt (e)
∣∣.

Thus, by applying again Young’s inequality with ε = 1/(4α), we get

4 av(η) av(φ) av(φ−1) av(v2α−1
t )

∣∣dΓω(vt, η)
∣∣

≤ 4
2α− 1

α
av(φ) av(φ−1) av(η) av(vαt )

∣∣dΓω(vαt , η)
∣∣

≤ av(φ) av(φ−1)

(
2α− 1

2α2
av(η2) dΓω(vαt , v

α
t ) + 8(2α− 1) av(v2α

t ) dΓω(η, η)

)
Hence, the estimates above together with the fact that

av(φ−1) av(φ) = 1− 1

4
(∇φ)(∇φ−1)

give rise to the following lower bound

T2 ≥ −
2α− 1

2α2

〈
av(η2) av(φ) av(φ−1),dΓω(vαt , v

α
t )
〉
`2(E)

− 16α |B|
∥∥µω/θ∥∥

p,B,θ

∥∥∇η∥∥2

`
∞

(E)

∥∥v2α
t

∥∥
p∗,B,θ

− 5αhωθ (φ) |B|
∥∥v2α
t

∥∥
1,B,θ

.

ECP 24 (2019), paper 5.
Page 11/17

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP207
http://www.imstat.org/ecp/


Heat kernel and intrinsic metric for random walks with general speed measure

Since av(φ) av(φ−1) ≥ 1 and

av(η2) dΓω(vαt , v
α
t ) ≥ 1

2
dΓω(ηvαt , ηv

α
t ) − av(v2α

t ) dΓω(η, η),

we obtain that there exists C1 <∞ such that

T1 + T2 ≥
1

4α
Eω(ηvαt )

− C1

4
α |B|

(∥∥µω/θ∥∥
p,B,θ

∥∥∇η∥∥2

`
∞

(E)

∥∥v2α
t

∥∥
p∗,B,θ

+ hωθ (φ)
∥∥v2α
t

∥∥
1,B,θ

)
.

Hence,

2 ∂t
∥∥(ηvαt )2

∥∥
1,B

+
Eωt (ηvαt )

|B|

≤ C1α
2
(∥∥µω/θ∥∥

p,B,θ

∥∥∇η∥∥2

`
∞

(E)

∥∥v2α
t

∥∥
p∗,B,θ

+ hω(φ)
∥∥v2α
t

∥∥
1,B,θ

)
. (3.10)

Finally, since ζ(s1) = 0,∫ s

s1

ζ(t) ∂t
∥∥(ηvαt )2

∥∥
1,B

dt =

∫ s

s1

(
∂t
(
ζ(t)

∥∥(ηvαt )2
∥∥

1,B

)
− ζ ′(t)

∥∥(ηvαt )2
∥∥

1,B

)
dt

≥ ζ(s)

2

∥∥(ηvαs )2
∥∥

1,B
− ‖ζ ′‖L∞(I) |I|

∥∥v2α
∥∥
p∗,1,Q

for any s ∈ (s1, s2]. Thus, by multiplying both sides of (3.10) with ζ(t) and integrating the
resulting inequality over [s1, s] for any s ∈ I, the assertion (3.5) follows by an application
of the Hölder inequality.

For any x0 ∈ V , δ ∈ (0, 1) and n ≥ 1, we write Qδ(n) ≡ [0, δn2] × B(x0, n) to denote
the corresponding space-time cylinder, and we set

Qδ,σ(n) :=
[
(1− σ)s′, (1− σ)s′′ + σδn2

]
×B(x0, σn), σ ∈ (0, 1],

where s′ = εδn2 and s′′ = (1− ε)δn2 for some fixed ε ∈ (0, 1/4).

Proposition 3.8. For x0 ∈ V , δ ∈ (0, 1], ε ∈ (0, 1/4) and n ≥ N1(x0) ∨ N2(x0), let v > 0

be such that ∂tv − Lωθ,φv = 0 on Q(x0, n). Then, for any p, q, r ∈ (1,∞] satisfying (3.1)
there exists C2 ≡ C2(d, p, q, r, ε) <∞ and κ = κ(d′, p, q, r) <∞ such that

max
(t,x)∈Qδ,1/2(n)

v(t, x) ≤ C2

nd/2

(
mω(n)

εδ

)κ
e2(1−ε)h(φ)δn2 ∥∥φf∥∥

`
2
(V,θ)

, (3.11)

where

mω(n) :=
∥∥1 ∨ µ

ω

θ

∥∥
p,B(x0,n),θ

·
∥∥1 ∨ νω

∥∥
q,B(x0,n)

·
∥∥1 ∨ θ

∥∥
r,B(x0,n)

·
∥∥1 ∨ 1

θ

∥∥
q,B(x0,n)

.

Proof. We will follow similar arguments as in the proof of [2, Proposition 4.2]. Fix some
1/2 ≤ σ′ < σ ≤ 1. For p, r ∈ (1,∞), let p∗ := p/(p− 1) and r∗ := r/(r − 1) be the Hölder
conjugate of p and r, respectively. For any k ∈ N0 set αk := αk, where

α := 1 +
1

p∗
− r∗

ρ
and ρ :=

d′

d′ − 2 + d′/q
.

Notice that for any p, q, r ∈ (1,∞) satisfying (3.1) we have α > 1. In particular, r∗/ρ +

1/p < 1. Further, for

σk = σ′ + 2−k(σ − σ′) and τk = 2−k−1(σ − σ′), k ∈ N0,
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we write Ik := [(1 − σk)s′, (1 − σk)s′′ + σkδn
2], Bk := B(x0, σkn) and Qk := Qδ,σk(n)

to lighten notation. Note that |Ik|/|Ik+1| ≤ 2 and |Bk|/|Bk+1| ≤ 2dC2
reg. The constant

c ∈ (0,∞) appearing in the computations below is independent of n but may change from
line to line. First, by using Hölder’s and Young’s inequality,∥∥v2αk

∥∥
αp∗,α,Qk+1,θ

≤
∥∥v2αk

∥∥
1,∞,Qk+1,θ

+
∥∥v2αk

∥∥
ρ/r∗,1,Qk+1,θ

(3.12)

(cf. [18, Lemma 1.1]). Due to the discrete structure of the underlying space Zd, the
discrete balls Bk+1 and Bk may coincide whenever τkn is sufficiently small. For this
reason, we proceed by distinguishing two different cases.

First consider the case τkn ≥ 1. For any k ∈ N0 let ηk be a cut-off functions in space
and ζk ∈ C∞(R) be a cut-off function in time such that supp ηk ⊂ Bk, ηk ≡ 1 on Bk+1,
ηk ≡ 0 on ∂Bk,

∥∥∇ηk∥∥`∞(E)
≤ 1/(τkn) and supp ζk ⊂ Ik, ζk ≡ 1 on Ik+1, ζk((1− σk)s′) = 0

and
∥∥ζ ′k∥∥L∞([0,δn2])

≤ 1/(τkδn
2). Then, from (3.12) we get

∥∥v2αk
∥∥
αp∗,α,Qk+1,θ

≤ c
(∥∥ζk(ηkv

αk)2
∥∥

1,∞,Qk,θ
+
∥∥ζk(ηkv

αk)2
∥∥
ρ/r∗,1,Qk,θ

)
.

Further, by Assumption 2.1(iii) we may apply the Sobolev inequality for functions with
compact support in [1, Equation (28)] to obtain∥∥ζk(ηkv

αk)2
∥∥
ρ/r∗,1,Qk,θ

≤ c n2
∥∥νω∥∥

q,Bk

∥∥θ∥∥r∗/ρ
r,Bk

1

|Ik|

∫
Ik

ζk(t)
Eω(ηkv

αk
t )

|Bk|
dt.

Hence,∥∥ζk(ηkv
αk)2

∥∥
1,∞,Qk,θ

+
∥∥ζk(ηkv

αk)2
∥∥
ρ/r∗,1,Qk,θ

≤ c n2

(
1

|Ik|
∥∥ζk(ηkv

αk)2
∥∥

1,∞,Qk,θ
+

∥∥νω∥∥
q,Bk

∥∥θ∥∥r∗/ρ
r,Bk

|Ik|

∫
Ik

ζk(t)
Eω(ηkv

αk)

|Bk|
dt

)
(3.5)
≤ c α2

k

mω(n)∥∥1 ∨ 1/θ
∥∥

1,Bk

(
1

δτ2
k

+ n2hωθ (φ)

)∥∥v2αk
∥∥
p∗,1,Qk,θ

. (3.13)

Thus, by combining the estimates above, we get∥∥v∥∥
2αk+1p∗,2αk+1,Qk+1,θ

=
∥∥v2αk

∥∥1/(2αk)

αp∗,α,Qk+1,θ

≤
(
c 22kα2

k

(
1 + δn2hωθ (φ)

)
δ(σ − σ′)2

mω(n)∥∥1 ∨ 1/θ
∥∥

1,Bk

)1/(2αk)∥∥v∥∥
2αkp∗,2αk,Qk,θ

. (3.14)

Next we consider the case τkn < 1. Again we shall estimate both terms on the right
hand side of (3.12). Note that for any t ∈ Ik,

∥∥v2αk
t

∥∥
ρ/r∗,Bk+1,θ

≤
(

max
x∈Bk

vt(x)2αk
)1−r∗p∗/ρ ∥∥v2αk

t

∥∥r∗p∗/ρ
p∗,Bk,θ

≤
(
|Bk|(1+1/q)/p∗

∥∥v2αk
t

∥∥
p∗/(1+1/q),Bk

)1−r∗p∗/ρ ∥∥v2αk
t

∥∥r∗p∗/ρ
p∗,Bk,θ

≤ |Bk|(1+1/q)(1/p∗−r∗/ρ)
∥∥1/θ

∥∥1/p∗−r∗/ρ
q,Bk

∥∥v2αk
t

∥∥
p∗,Bk,θ

,

where we have used that by Hölder’s inequality∥∥v2αk
t

∥∥
p∗/(1+1/q),Bk

≤
∥∥v2αk
t θ1/p∗

∥∥
p∗,Bk

∥∥θ−1/p∗
∥∥
p∗q,Bk

≤
∥∥v2αk
t

∥∥
p∗,Bk,θ

∥∥1/θ
∥∥1/p∗

q,Bk
.
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Since d(1 + 1/q)(1/p∗ − r∗/ρ) ≤ 2 and n < 1/τk, we find∥∥v2αk
∥∥
ρ/r∗,1,Qk+1,θ

≤ c
22k

(σ − σ′)2

∥∥1/θ
∥∥1/p∗−r∗/ρ
q,Bk

∥∥v2αk
∥∥
p∗,1,Qk,θ

. (3.15)

In order to estimate the first term on the right hand side of (3.12), recall that vt(x) =

φ(x)ut(x), where

∂tut(x) = (Lωθ ut)(x) ≥ −µ
ω(x)

θ(x)
ut(x).

Hence, ∂tvt(x)θ(x) ≥ −µω(x)vt(x) and therefore

1

2αk
∂t
∥∥v2αk
t

∥∥
1,Bk,θ

≥ −
∥∥v2αk
t

∥∥
1,Bk,µ

ω . (3.16)

Let now ξk ∈ C∞(R) be a cut-off function in time such that supp ξk ⊂ Ik, ξk ≡ 1

on Ik+1, ξk(tk) = 0 and
∥∥ξ′k∥∥L∞([0,δn2])

≤ 1/(ετkδn
2), where we write in short tk :=

(1− σk)s′′ + σkδn
2 for the right endpoint of Ik. We also choose t∗ ∈ Ik+1 such that∥∥v2αk

t∗

∥∥
1,Bk,θ

= max
t∈Ik+1

∥∥v2αk
t

∥∥
1,Bk,θ

.

Then, from (3.16) and product rule we get

∂t

(
ξk(t)

∥∥v2αk
t

∥∥
1,Bk,θ

)
≥ ξ′k(t)

∥∥v2αk
t

∥∥
1,Bk,θ

− 2αk ξk(t)
∥∥v2αk
t

∥∥
1,Bk,µ

ω ,

and an integration over t yields

max
t∈Ik+1

∥∥v2αk
t

∥∥
1,Bk,θ

≤
∫ tk

t∗

(
2αk ξk(t)

∥∥v2αk
t

∥∥
1,Bk,µ

ω − ξ′k(t)
∥∥v2αk
t

∥∥
1,Bk,θ

)
dt,

so that ∥∥v2αk
∥∥

1,∞,Qk+1,θ
≤ 2αk |Ik|

∥∥v2αk
∥∥

1,1,Qk,µ
ω +

1

ετk

∥∥v2αk
∥∥

1,1,Qk,θ

≤ cαk22k

ε(σ − σ′)2

∥∥1 ∨ µ
ω

θ

∥∥
p,Bk,θ

∥∥v2αk
∥∥
p∗,1,Qk,θ

, (3.17)

where we used Jensen’s and Hölder’s inequalities in the last step. Combining (3.12) with
(3.15) and (3.17) we get in the case τkn < 1,∥∥v∥∥

2αk+1p∗,2αk+1,Qk+1,θ
=
∥∥v2αk

∥∥1/(2αk)

αp∗,α,Qk+1,θ

≤
(

c 22kαk
ε(σ − σ′)2

mω(n)

)1/(2αk) ∥∥v∥∥
2αkp∗,2αk,Qk,θ

. (3.18)

By iterating (3.14) and (3.18), respectively, and using the fact that
∑∞
k=0 k/αk < ∞,

there exists c <∞ independent of K such that

∥∥v∥∥
2αKp∗,2αK ,QK ,θ

≤ c

K−1∏
k=0

((
1 + δn2hωθ (φ)

) mω(n)

εδ(σ − σ′)2

)1/(2αk) ∥∥v∥∥
2p∗,2,Qδ,σ(n),θ

.

Setting κ/p∗ := 1
2

∑∞
k=0 1/αk and using that QK ↓ Qδ,1/2(n) we get

max
(t,x)∈Qδ,1/2(n)

v(t, x) = lim
K→∞

∥∥v∥∥
2αKp∗,2αK ,QK ,θ

≤ c

((
1 + δn2hωθ (φ)

) mω(n)

εδ(σ − σ′)2

)κ/p∗ ∥∥v∥∥
2p∗,2,Qδ,σ(n),θ

.
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Finally, by using similar arguments as in [20, Theorem 2.2.3] or [1, Corollary 3.9], there
exists c ≡ c(p, q, r, d′) <∞ such that

max
(t,x)∈Qδ,1/2(n)

v(t, x) ≤ c

((
1 + δn2hωθ (φ)

) mω(n)

εδ

)κ ∥∥v∥∥
2,∞,Qδ(n),θ

(3.4)
≤ cC

1/2
reg

nd/2

((
1 + δn2hωθ (φ)

) mω(n)

εδ

)κ
eh
ω
θ (φ)δn2 ∥∥φf∥∥

`
2
(V,θ)

.

Since for any ε ∈ (0, 1/2) there exists c(ε) <∞ such that for all n ≥ 1 and δ ∈ (0, 1],(
1 + δn2hωθ (φ)

)κ
e−(1−2ε)hωθ (φ)δn2

≤ c(ε) < ∞,

the claim follows.

3.2 Heat kernel bounds

Proposition 3.9. Suppose that Assumption 3.1 hold and let x0 ∈ V be fixed. Then, for
any given x ∈ V and t with

√
t ≥ N1(x0)∨N2(x0)∨N3(x0, ω) the solution u of the Cauchy

problem in (3.3) satisfies

|u(t, x)| ≤ C3 t
−d/2

∑
y∈V

(
1 +

d(x0, x)√
t

)γ(
1 +

d(x0, y)√
t

)γ
φ(y)

φ(x)
e2hωθ (φ)t f(y)

with γ := 2κ− d/2 and C3 = C3(d, p, q, Cint).

Proof. Given (3.11) this follows as in the proof of [3, Proposition 2.7].

Proof of Theorem 3.2. First, notice that the heat kernel (t, x) 7→ pωθ (t, x, y) solves the
Cauchy problem (3.3) with f = 1{y}/θ(y). Further, let x0 ∈ V be arbitrary but fixed and
consider the function φ = eψ with ψ(z) := −λmin

{
dωθ (x, z), dωθ (x, y)

}
for λ > 0. Then, for

sufficiently large t, an application of Proposition 3.9 yields

pωθ (t, x, y) ≤ C3 t
−d/2

(
1 +

d(x0, x)√
t

)γ(
1 +

d(x0, y)√
t

)γ
eψ(y)−ψ(x)+2hωθ (φ)t.

Next we optimise over λ > 0. Since

∣∣∇ψ(e)
∣∣ ≤ λ

∣∣dωθ (x, e+)− dωθ (x, e−)
∣∣ (1.2)
≤ λ

(
1 ∧ θ(e

+) ∧ θ(e−)

ω(e)

)1/2
and a

(
cosh(x)− 1

)
≤ cosh(

√
ax)− 1 for all x ∈ R and any a ≥ 1, we get

hωθ (φ) = max
x∈V

∑
y∼x

ω(x, y)

θ(x)

(
cosh

(
∇ψ({x, y})

)
− 1
)
≤ Cdeg

(
cosh(λ)− 1

)
.

Hence,

exp
(
ψ(y)− ψ(x) + 2hωθ (φ)t

)
≤ exp

(
dωθ (x, y)

(
−λ+

2Cdegt

dωθ (x, y)

(
cosh(λ)− 1

)))
.

By setting

F (s) = inf
λ>0

(
−λ+ s−1

(
cosh(λ)− 1

))
,
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we finally get

pωθ (t, x, y) ≤ C3

td/2

(
1 +

d(x0, x)√
t

)γ(
1 +

d(x0, y)√
t

)γ
exp

(
dωθ (x, y)F

(
dωθ (x, y)

2Cdegt

))
. (3.19)

Further, notice that

F (s) = s−1
(
(1 + ss)1/2 − 1

)
− log

(
s+ (1 + s2)1/2

)
and F (s) ≤ −s/2(1− s2/10) for s > 0 (see [5] and [11, page 70]). Hence, if s ≤ 3, then
F (s) ≤ −s/20 whereas if s ≥ e, then

F (s) ≤ 1− log(2s) = − log(2s/e).

Now, choose x = x0. In view of (3.19) we find suitable constants c1, . . . , c3 such that if
dωθ (x0, y) ≤ c1t then

pωθ (t, x0, y) ≤ c2 t
−d/2

(
1 +

d(x0, y)√
t

)γ
exp
(
−2c3 d

ω
θ (x0, y)2/t

)
.

This finishes the proof of (i). In the case dωθ (x0, y) ≥ c1t statement (ii) can be obtained
from (3.19) by similar arguments.
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