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Abstract

We consider random walks among random conductances on Z2 and establish precise
asymptotics for the associated potential kernel and the Green’s function of the walk
killed upon exiting balls. The result is proven for random walks on i.i.d. supercritical
percolation clusters among ergodic degenerate conductances satisfying a moment
condition. We also provide a similar result for the time-dynamic random conductance
model. As an application we present a scaling limit for the variances in the Ginzburg-
Landau ∇φ-interface model.
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1 Introduction

We consider the Euclidean lattice (Zd, Ed) with d ≥ 2. The edge set, Ed, of this graph
is given by the set of all non-oriented nearest neighbour bonds, that is Ed := {{x, y} :

x, y ∈ Zd, |x − y| = 1}. We will also write x ∼ y if {x, y} ∈ Ed. Consider a family of
non-negative weights ω = {ω(e) ∈ [0,∞) : e ∈ Ed} ∈ Ω, where Ω = [0,∞)Ed is the set of
all possible configurations. We also refer to ω(e) as the conductance of the edge e. We
call an edge e ∈ Ed open if ω(e) > 0 and denote by O(ω) the set of open edges. Let us
further define the measure µω on Zd by µω(x) :=

∑
y∼x ω({x, y}), and for any z ∈ Zd we

denote by τz : Ω→ Ω the space shift by z defined by

(τz ω)({x, y}) := ω({x+ z, y + z}), ∀ {x, y} ∈ Ed.

We equip Ω with a σ-algebra F . Further, we will denote by P a probability measure on
(Ω,F), and we write E for the expectation with respect to P.

Throughout the paper we assume that P is ergodic and that P-a.s. there exists a
unique infinite cluster C∞ of open edges and P[0 ∈ C∞] > 0. For instance, in the case
of i.i.d. conductances this is fulfilled if P[ω(e) > 0] > pc, where pc = pc(d) denotes the
critical probability for bond percolation on Zd. Write P0[ · ] := P[· | 0 ∈ C∞].

We now introduce the random conductance model (RCM). Consider a continuous-
time Markov chain, X ≡

(
Xt : t ≥ 0

)
, on C∞(ω) with generator Lω acting on bounded
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Green kernel asymptotics for two-dimensional random walks

functions f : C∞(ω)→ R as(
Lωf)(x) =

1

µω(x)

∑
y∼x

ω({x, y})
(
f(y)− f(x)

)
. (1.1)

Then, the Markov chain, X, is reversible with respect to the speed measure µω, and
the jump probabilities of X are given by pω(x, y) := ω({x, y})/µω(x), x, y ∈ C∞(ω). This
walk spends i.i.d. Exp(1)-distributed waiting times at all visited vertices and is therefore
often called the constant speed random walk (CSRW). We denote by Pωx the law of the
process X starting at the vertex x ∈ C∞(ω). For x, y ∈ C∞(ω) and t ≥ 0 let pωt (x, y) be
the transition densities of X with respect to the reversible measure (or the heat kernel
associated with Lω), i.e.

pωt (x, y) :=
Pωx
[
Xt = y

]
µω(y)

.

The heat kernel has been object of very active research in recent years, see [24, 11, 15,
13, 12, 27, 18, 8, 9] and references therein.

In dimension d ≥ 3 the behaviour of the Green’s function of X, defined by

gω(x, y) :=

∫ ∞
0

pωt (x, y) dt, x, y ∈ C∞(ω), (1.2)

is already quite well understood. We refer to [3, Theorem 1.2] for precise estimates and
asymptotics in case of general non-negative i.i.d. conductances and to [7, Theorem 1.14]
for a local limit theorem for gω in the case of ergodic conductances satisfying a moment
condition (cf. also [30, Theorem 5.2]). Recall that, for every y ∈ C∞(ω), the function
x 7→ gω(x, y) is a fundamental solution of Lωu = −1{y}/µω(y).

In the present paper we study the case d = 2, which is genuinely different and
requires separate consideration. This is mainly due to the fact that, under suitable
conditions, the random walk, X, is recurrent in d = 2, so the Green kernel gω(x, y) as in
(1.2) is ill-defined. Instead, on {0 ∈ C∞}, we consider the potential kernel

aω(x, y) := lim
T→∞

∫ T

0

(
pωt (0, 0)− pωt (x, y)

)
dt, x, y ∈ C∞(ω), (1.3)

whenever the limit exists (cf. Theorem 1.2 and Remark 1.4-(i) below). Note that aω(x, y) =

aω(y, x) for all x, y ∈ C∞(ω), and for every y ∈ C∞(ω) the function x 7→ aω(x, y) is a
fundamental solution of Lωu = 1{y}/µ

ω(y). The potential kernel plays a crucial role in
the potential theory of recurrent Markov processes, cf. [33, Chapter 9], [41, 39]. Further,
for any d ≥ 2, the Green’s function of the random walk killed upon exiting a finite set
A ⊂ Zd is given by

gωA(x, y) := Eωx

[ ∫ τA

0

1{Xt=y}

µω(y)
dt

]
=

∫ ∞
0

Pωx
[
Xt = y; t < τA

]
µω(y)

dt,

where τA := inf{t > 0 : Xt 6∈ A}. In d = 2, P0-a.s., for any finite A ⊂ Z2 we have the
following relation between the killed Green kernel and the potential kernel,

gωA(x, y) = Eωx
[
aω(XτA , y)

]
− aω(x, y), x, y ∈ A ∩ C∞(ω), (1.4)

and a similar formula holds for infinite sets A (see Lemma 2.2 below). In particular,
P0-a.s., for the choice A = (Z2 ∩ C∞(ω)) \ {0} those relations yield gωA(x, y) = aω(0, y)−
aω(x, y) + aω(x, 0), from which it can be deduced that P0-a.s.

lim
|y|→∞, y∈C∞(ω)

gωA(x, y) = aω(0, x), x ∈ A,
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Green kernel asymptotics for two-dimensional random walks

see Corollary 2.3 below. This provides another interpretation of aω(0, x) as the expected
time the random walk, starting from infinity, spends at x before hitting 0. Similar
statements hold for two-dimensional Brownian motion, cf. [37, Lemmas 3.36 and 8.32].
As our first main result we obtain precise asymptotics of the potential kernel and the
killed Green kernel under the following assumption.

Assumption 1.1. (i) P is ergodic, i.e. P ◦ τ−1x = P for all x ∈ Zd and P(A) ∈
{0, 1} for any A ∈ F such that τx(A) = A for all x ∈ Zd.

(ii) Suppose (1{ω(e)=0} : e ∈ Ed) are i.i.d. and P[ω(e) > 0] > pc.

(iii) There exist p, q ∈ (1,∞) satisfying 1/p+ 1/q < 2/d such that

E
[
ω(e)p

]
< ∞ and E

[
ω(e)−q1{e∈O}

]
< ∞, ∀ e ∈ Ed, (1.5)

where we used the convention that 0/0 = 0.

Trivially, if P[ω(e) > 0] = 1 then, P-a.s., C∞ ≡ Zd and therefore P0 = P. Under
Assumption 1.1 the local limit theorem in [5, Section 5] gives that, P0-a.s.,

lim
n→∞

n2pωn2(0, 0) =
1

2π
√

det Σ2E
[
µω(0)1{0∈C∞(ω)}

] =:
ḡ

2
,

where Σ2 denotes the covariance matrix of the Brownian motion appearing as the limit
process in the quenched invariance principle for X (see [26]). There is vast further
literature on invariance principles for the RCM beyond uniform ellipticity, an incomplete
list includes [19, 36, 12, 3, 6, 4, 20, 14], see also the surveys [17, 34]. Note that, in
general, the matrix Σ2 is not diagonal.

For x ∈ Zd we denote by B(x, r) := {y ∈ Zd : |x−y| < r} balls in Zd centered at x with
respect to the graph distance. We also write ∂B(x, r) := {y ∈ Zd : |x− y| = r}. For any
x ∈ C∞(ω) let Cn(x, ω) ⊂ B(x, n)∩ C∞(ω) be the connected component of B(x, n)∩ C∞(ω)

that contains x. Further, we choose a function λn : Rd → C∞(ω) such that λn(x) is a
closest point in C∞(ω) to nx in the | · |-norm.

Theorem 1.2. Let d = 2 and suppose that Assumption 1.1 is satisfied. Then, for P0-a.e.
ω, aω is well-defined, i.e. the limit in (1.3) exists for all x, y ∈ C∞(ω), and for any annulus
K = {x ∈ R2 : |x| ∈ [k1, k2]} with 0 < k1 < k2 <∞,

lim
n→∞

sup
x∈K

∣∣∣ 1

lnn
aω
(
0, λn(x)

)
− ḡ

∣∣∣ = 0. (1.6)

Using relation (1.4) we can deduce from Theorem 1.2 the following asymptotics for
the killed Green kernel.

Theorem 1.3. Let d = 2 and suppose that Assumption 1.1 is satisfied.

(i) P0-a.s., for any z ∈ C∞(ω), δ ∈ (0, 1) and x ∈ C(1−δ)n(z, ω),

lim
n→∞

1

lnn
gωB(z,n)(x, x) = ḡ. (1.7)

(ii) P0-a.s., for any z ∈ C∞(ω), n ∈ N, δ ∈ (0, 1) and all x, y ∈ C(1−δ)n(z, ω) with x 6= y,∣∣∣gωB(z,n)(x, y)− ḡ ln
n

|x− y|

∣∣∣ ≤ Rωx,y(n) + Rωx,y
(
|x− y|

)
, (1.8)

for some function Rωx,y(·) =R(τxω, τyω, ·) : N→ [0,∞) which satisfies Rωx,y(n)/ lnn→
0 as n→∞ for P0-a.e. ω.
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Remark 1.4. (i) Classical random walks. For classical (space homogeneous) random
walks on Z2 with a transition kernel p(x, y) = p(0, y − x) such that∑

x∈Z2
x p(0, x) = 0 and

∑
x∈Z2

|x|2+δ p(0, x) < ∞

for some δ > 0, the existence of the potential kernel, a, has been shown in [41, Proposi-
tion 12.1] along with the following precise asymptotics

lim
|x|→∞

(
a(0, x)− ḡ ln |x|

)
= C,

for some explicit constant C by means of Fourier analysis, cf. [41, Proposition 12.3].
(ii) Independence of speed measures. Let θω : Zd → [0,∞) be a speed measure

with θω(x) > 0 for all x ∈ C∞(ω) such that θω is stationary, i.e. θω(x) = θτxω(0) for all
x ∈ C∞(ω), and E0[θω(0)] <∞. Consider the random walk with generator(

Lωθ f)(x) =
1

θω(x)

∑
y∼x

ω({x, y})
(
f(y)− f(x)

)
.

A frequently arising choice for θω is the counting measure, i.e. θω(x) = 1 for all x ∈ Zd,
associated with the variable speed random walk (VSRW). The various random walks
corresponding to different speed measures are time-changes of each other. Then the
Green kernel and the potential kernel aω do not depend on the speed measure θω. In
view of (1.4) the same applies to the killed Green kernel gωA. Thus, the constant ḡ does
not depend on θω. As a consequence, under Assumption 1.1, Theorems 1.2 and 1.3
also hold for all such speed measures. In this sense, Theorems 1.2 and 1.3 are stable
under time-changes whenever E0[θω(0)] <∞. This is in contrast to the dynamic RCM
considered in Section 3 below.

(iii) In the proof of Theorem 1.2, Assumption 1.1 is only needed to ensure that upper
Gaussian heat kernel bounds, a local limit theorem and Hölder regularity of the heat
kernel hold, see (2.3)–(2.5) below. Thus, Theorem 1.2 is valid for random walks on any
graph and under any field of conductances for which (2.3)–(2.5) hold. While in d = 2 an
invariance principle holds under the weaker moment condition p = q = 1 in (1.5) (see
[17]), for the local limit theorem and the Gaussian upper bound the stronger condition
in Assumption 1.1 is necessary in the general ergodic case (see [7, Section 5] for an
example). The condition can be relaxed in special cases, e.g. for i.i.d. conductances
bounded from above where q = 1/4 suffices (see [7, Section 6] and [21]).

(iv) RCM on random graphs. Although Assumption 1.1 reduces C∞(ω) to be a super-
critical i.i.d. percolation cluster, the proofs of Theorems 1.2 and 1.3 below can also be
extended to a more general class of random graphs under a slightly modified moment
condition, cf. [5, Section 5] and [26, 40].

(v) The upper bound in Theorem 1.3-(ii) constitutes a near diagonal estimate as
it only becomes effective in the regime |x − y| = nα+o(1) for α ∈ (0, 1) in which case
limn ln(n/|x − y|)/ lnn = 1 − α > 0. In the regime |x − y| = no(1), (1.8) corresponds to
the on-diagonal behaviour in (1.7). If |x− y| ≥ δn for some δ > 0, then (1.8) only gives
limn g

ω
B(z,n)(x, y)/ lnn = 0, and we expect a more precise statement to follow from a local

limit theorem for the killed Green’s function, which in turn can be deduced from an
invariance principle and an elliptic Harnack inequality.

(vi) From the elliptic Harnack inequality in [7] one can derive a Liouville principle
for sublinear harmonic functions (cf. [16]), which together with Theorem 1.2 allows to
characterize the potential kernel aω(0, ·) as the unique solution of Lωu = 1{0}/µ

ω(0) with
logarithmic growth.

(vii) Annealed Green kernel estimates. A careful analysis of the proofs of Theorems 1.2
and 1.3 shows that if we assume in addition E0

[
µω(0)−1N1

]
<∞ and E0[ln(N1∨N2)] <∞,
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where N1 and N2 are the random constants in the proof of Theorem 1.2 below, then the
convergence in (1.6) and (1.7) also holds in L1(P0) and the function Rω in Theorem 1.3
(ii) also satisfies Rω(n)/ lnn→ 0 in L1(P0).

In the i.i.d. case similar asymptotics on the killed Green kernel as in Theorem 1.3
have been an important ingredient in the proof that the scaling limit of a two-dimensional
RCM under heavy-tailed conductances is the fractional kinetics process, see [22, Propo-
sition 3.1]. Moreover, it is expected that Theorem 1.3 is of importance in the study of
the discrete Gaussian free field (DGFF) subject to Dirichlet boundary conditions on a
two-dimensional supercritical percolation cluster1. In [1] it has been shown that the
irregular structure of C∞ affects the growth of the effective resistances which in turn
influences the extremal behaviour of the DGFF.

In Section 3 we state the corresponding asymptotics for the quenched and annealed
potential kernel under time-dynamic conductances (see Theorems 3.3 and 3.4 below).
The latter is relevant in the context of the Ginzburg-Landau model for stochastic inter-
faces (see [28]). In fact, by the Helffer-Sjöstrand representation (cf. [28, 31, 25]) the
variance of the difference of the interface can be expressed in terms of the annealed
potential kernel for a particular choice of random dynamic conductances linked to the
potential function of the interface, see Section 3.2. Then, Theorem 3.4 allows to deduce
scaling limits for such variances, see Theorem 3.5.

The rest of the paper is organised as follows. In Section 2 we prove Theorems 1.2 and
1.3. In Section 3 we discuss the corresponding results for the dynamic RCM. Throughout
the paper we write c to denote a positive constant which may change on each appearance.
Constants denoted ci will be the same through the paper.

2 Green kernel asymptotics in the two-dimensional static RCM

2.1 Proof of Theorem 1.2

We write dω(x, y) for the graph metric on C∞(ω) and Bω(0, r) := {y ∈ C∞(ω) :

dω(0, y) < r} for balls centred at zero with respect to dω. We first recall that the
sizes of the holes in a percolation cluster can be controlled.

Lemma 2.1. For P0-a.e. ω and any annulus K = {x ∈ R2 : |x| ∈ [k1, k2]} with 0 < k1 <

k2 < ∞, there exist ci > 0 and N0 ≡ N0(ω, k1, k2) < ∞ such that any for n ≥ N0 and
x ∈ K,

c1n ≤ |λn(x)| ≤ c2n, (2.1)

c3n ≤ dω
(
0, λn(x)

)
≤ c4n. (2.2)

Proof. For every r ≥ 1, let hω(r) be the size of the biggest ‘hole’ in B(0, r) ∩ C∞(ω), i.e.
hω(r) := sup{r′ > 0 : ∃ y ∈ Q(0, r) s.th. Q(y, r′) ∩ C∞(ω) = ∅}, where Q(x, y) := {y ∈
R2 : |x − y| ≤ r}. Then, by [13, Lemma 5.4] (those results are stated for ‘holes’ and
balls w.r.t. the maximum norm rather than the equivalent | · |-norm used in the present
paper), we conclude that, P0-a.s., limr→∞ hω(r)/r = 0. Hence, for any δ > 0 there exists
N = N(ω, k2, δ) such that |nx− λn(x)| ≤ hω(k2n) ≤ δn for all n ≥ N and x ∈ K. Thus, for
δ = k1/2 the triangle inequality implies (2.1).

Further, by [13, Lemma 5.3], which is based on arguments in [11], for each r > 0 and
P0-a.e. ω, there exist c > 0 and N(ω, r) < ∞ such that, for n ≥ N(ω, r), dω(0, λn(x)) ≤
c|λn(x)| for all x ∈ Q(0, r). Therefore, since trivially |λn(x)| ≤ dω(0, λn(x)) by the
definition of dω, statement (2.2) follows now from (2.1).

Proof of Theorem 1.2. We first recall that under Assumption 1.1 the following three key
ingredients for the proof have been established.

1private discussion between S.A. and Nathanael Berestycki
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(i) Upper Gaussian heat kernel bounds (see [8, Theorem 1.6]). For P0-a.e. ω, there
exist N1(ω) and constants ci such that for any t ≥ N1(ω) and all y ∈ C∞(ω),

pωt (0, y) ≤ c6 t
−1

{
exp
(
− c7 dω(0, y)2/t

)
, if c5dω(0, y) ≤ t,

exp
(
− c8 dω(0, y)

(
1 ∨ log(dω(0, y)/t)

))
, if c5dω(0, y) ≥ t.

(2.3)

(ii) Local limit theorem. For P0-a.e. ω,

lim
n→∞

n2pωn2(0, 0) =
ḡ

2
. (2.4)

(iii) Hölder regularity in space. For P0-a.e. ω, there exist N2(ω) and positive constants c9
and % such that for R ≥ N2(ω) and

√
T ≥ R the following holds. Setting T0 := T + 1

and R2
0 := T0 we have for any x1, x2 ∈ Bω(0, R),∣∣pωT (0, x1)− pωT (0, x2)

∣∣ ≤ c9

(
R√
T

)%
max

(s,y)∈[3T0/4,T0]×Bω(R0/2)
pωs (0, y). (2.5)

In the case P[ω(e) > 0] = 1 statements (ii) and (iii) have been established in [7, The-
orem 1.11 and Proposition 4.8]. For variable speed random walks on a general class
of random graphs including i.i.d. percolation, we refer to [5, Sections 2.2 and 5]. The
results can be easily transferred to the CSRW (see [10] for corresponding results on Zd

for a general class of speed measures). Note that for i.i.d. percolation the parameter
θ ∈ (0, 1) appearing in the moment condition in [5, Section 5] can be chosen arbitrarily,
so that the moment condition there coincides with (1.5).

The Hölder-regularity is classically deduced from a parabolic Harnack inequality
(cf. e.g. [24, 13, 7]) or a weaker oscillation inequality as in [5, 10]. In conjunction with
the near-diagonal heat kernel estimate included in (2.3), it ensures the existence of the
potential kernel aω, cf. [31, Proof of Lemma 5.2]. We now turn to the proof of (1.6) which
we divide into several steps.

Step 1. Let α ∈ (0, 1) be arbitrary. For t < N1(ω), using the symmetry of the heat
kernel, we have the trivial bound∣∣pωt (0, 0)− pωt (0, λn(x))

∣∣ ≤ pωt (0, 0) + pωt (λn(x), 0) ≤ 2µω(0)−1,

and for t ≥ N1(ω) we use the on-diagonal part of the estimate in (2.3) to obtain∫ nα

0

∣∣pωt (0, 0)− pωt (0, λn(x))
∣∣dt ≤ 2µω(0)−1N1(ω) +

∫ nα

N1(ω)

(
pωt (0, 0)− pωt (0, λn(x))

)
dt

≤ 2µω(0)−1N1(ω) + c9 α lnn. (2.6)

Step 2. Let n ≥ N0(ω) ∨N2(ω) so that dω(0, λn(x)) ≤ c4n for all x ∈ K by Lemma 2.1,
and let

√
t > N := c4 ∨N1(ω) ∨N2(ω). Then, we use the Hölder regularity in (2.5) with

the choice T = n2t, R = c4n, x1 = 0, x2 = λn(x) and again by the on-diagonal part of
(2.3) to obtain

n2
∣∣pωn2t(0, 0)− pωn2t(0, λn(x))

∣∣ ≤ cn2

t%/2
max

(s,y)∈[ 34T0,T0]×Bω(0,R0/2)
pωs (0, y) ≤ c

t1+%/2
, (2.7)

so that ∫ ∞
Nn2

∣∣pωt (0, 0)− pωt (0, λn(x))
∣∣ dt =

∫ ∞
N

n2
∣∣pωn2t(0, 0)− pωn2t(0, λn(x))

∣∣dt
≤ c

∫ ∞
N

1

t1+%/2
dt < ∞. (2.8)
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Step 3. In this step we will show that P0-a.s.

lim sup
n→∞

sup
x∈K

∣∣∣∣∣ 1

lnn

∫ Nn2

nα

(
pωt (0, 0)− pωt (0, λn(x))

)
dt − ḡ

∣∣∣∣∣ ≤ ḡ

2
α. (2.9)

The integral can be decomposed into∫ Nn2

nα

(
pωt (0, 0)− pωt (0, λn(x))

)
dt (2.10)

=

∫ N

nα−2

t−1
(
n2t pωn2t(0, 0)− ḡ

2

)
dt +

ḡ

2

∫ N

nα−2

t−1 dt −
∫ Nn2

nα
pωt (0, λn(x)) dt.

By the local limit theorem in (2.4), for any δ > 0 there exists N3(ω) = N3(ω, δ) such that
|s pωs (0, 0)− ḡ/2| ≤ δ for all s ≥ N3(ω). Hence, for n such that nα > N3(ω),∫ N

nα−2

t−1
∣∣∣∣n2t pωn2t(0, 0)− ḡ

2

∣∣∣∣dt ≤ δ

∫ N

nα−2

t−1 dt = δ
(

lnN + (2− α) lnn
)
. (2.11)

Moreover,

lim
n→∞

∣∣∣∣ 1

lnn

ḡ

2

∫ N

nα−2

t−1 dt − ḡ

∣∣∣∣ =
ḡ

2
α. (2.12)

Let now β ∈ (α, 2) be arbitrary. Then, for the last term in (2.10) we get∫ Nn2

nα
pωt (0, λn(x)) dt =

∫ nβ

nα
pωt (0, λn(x)) dt +

∫ Nn2

nβ
pωt (0, λn(x)) dt

≤
∫ nβ

nα
pωt (0, λn(x)) dt + c6

(
lnN + (2− β) lnn

)
, (2.13)

where we used again the on-diagonal part of (2.3) in the last step. By Lemma 2.1,
dω(0, λn(x)) ≥ c3n for any x ∈ K if n ≥ N0, so for such n and t ∈ (nα, nβ),

pωt
(
0, λn(x)

)
≤ c

{
n−1e−cn

2−β
if t ∈

[
c5 d

ω(0, λn(x)), nβ
]
,

n−αe−cn if t ∈
[
nα, c5 d

ω(0, λn(x))
]
.

In view of (2.2) these bounds immediately imply

lim
n→∞

sup
x∈K

1

lnn

∫ nβ

nα
pωt
(
0, λn(x)

)
dt = 0, (2.14)

and in combination with (2.13) this yields

lim sup
n→∞

sup
x∈K

1

lnn

∫ Nn2

nα
pωt (0, λn(x)) dt ≤ c6 (2− β). (2.15)

Now we combine (2.10) with (2.11), (2.12) and (2.15) to obtain

lim sup
n→∞

sup
x∈K

∣∣∣∣∣ 1

lnn

∫ Nn2

nα

(
pωt (0, 0)− pωt (0, λn(x))

)
dt − ḡ

∣∣∣∣∣ ≤ δ(2− α) +
ḡ

2
α+ c6(2− β),

and by taking the limits δ ↓ 0 and β ↑ 2 we get (2.9).
Step 4. To conclude, note that the combination of (2.6), (2.8) and (2.9) yields

lim sup
n→∞

sup
x∈K

∣∣∣∣∣ 1

lnn

∫ ∞
0

(
pωt (0, 0)− pωt (0, λn(x))

)
dt − ḡ

∣∣∣∣∣ ≤ c9α+
ḡ

2
α,

and by taking α ↓ 0 we get (1.6).
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2.2 Proof of Theorem 1.3

Let d = 2. The result will follow from Theorem 1.2 and the following relations between
the potential kernel and the Green’s function of the random walk killed upon exiting a
set A (cf. [35, Proposition 4.6.2(b) and Proposition 4.6.3] for the case of a simple random
walk in discrete time).

Lemma 2.2. (i) P0-a.s., for any finite set A ⊂ Z2 we have for all x, y ∈ C∞(ω),

gωA(x, y) = Eωx
[
aω(XτA , y)

]
− aω(x, y). (2.16)

(ii) Suppose that Assumption 1.1 is satisfied. Then, P0-a.s., for any set A ( C∞(ω) and
all x, y ∈ C∞(ω),

gωA(x, y) = Eωx
[
aω(XτA , y)

]
− aω(x, y) + fωA(x), (2.17)

where fωA(x) := limn→∞ ḡ Pωx
[
τB(0,n) < τA

]
lnn.

Proof. (i) Recall that, for any y ∈ C∞(ω) fixed, h(z) = aω(z, y) is a fundamental solution
of Lωu = 1{y}/µ

ω(y) on C∞(ω), and, under Pωx , the process (Mt : t ≥ 0) defined by

Mt := h(Xt)−
∫ t

0

Lωh(Xs) ds = h(Xt)−
∫ t

0

1{Xs=y}

µω(y)
ds

is a local martingale. In particular,

aω(x, y) = Eωx
[
M0

]
= Eωx

[
Mt∧τA

]
= Eωx

[
aω(Xt∧τA , y)

]
− Eωx

[ ∫ t∧τA

0

1{Xs=y}

µω(y)
ds

]
.

Since A is finite, by the dominated convergence theorem

lim
t→∞

Eωx
[
aω(Xt∧τA , y)

]
= Eωx

[
aω(XτA , y)

]
and by the monotone convergence theorem

lim
t→∞

Eωx

[ ∫ t∧τA

0

1{Xs=y}

µω(y)
ds

]
= Eωx

[ ∫ τA

0

1{Xs=y}

µω(y)
ds

]
= gωA(x, y),

which finishes the proof of (i). Statement (ii) follows from Theorem 1.2 by the same
arguments as [35, Proposition 4.6.3].

Corollary 2.3. Suppose that Assumption 1.1 is satisfied. Set A := (Z2 ∩ C∞(ω)) \ {0}.
Then, P0-a.s., for all x, y ∈ C∞(ω),

fωA(x) = aω(x, 0), gωA(x, y) = aω(0, y) − aω(x, y) + aω(x, 0), (2.18)

in particular, gωA(x, x) = 2aω(0, x)− aω(x, x). Moreover, P0-a.s., for all x ∈ C∞(ω),

lim
|y|→∞, y∈C∞(ω)

gωA(x, y) = aω(x, 0). (2.19)

Remark 2.4. Corollary 2.3 extends the formula gZ2\{0}(x, x) = 2a(0, x) being valid in the
setting of a space-homogeneous random walk on (Z2, E2), where a(x, x) = a(0, 0) = 0,
see [35, Equation (4.31)].

Proof. In view of (2.17) we have

gωA(x, y) = aω(0, y)− aω(x, y) + fωA(x).
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In particular, for y = 0, noting that gωA(x, 0) = 0 by its definition, we get fωA(x) = aω(x, 0).
Hence, (2.18) follows directly from (2.17). By applying (2.18) with x = y and using the
symmetry of aω we get gωA(x, x) = 2aω(0, x) − aω(x, x). Finally, to see (2.19) note that
limy p

ω
t (z, y) = 0 for any z ∈ C∞(ω) and all t > 0, so that

lim
y

(
aω(0, y)− aω(x, y)

)
= lim

y

∫ ∞
0

(
pωt (0, y)− pωt (x, y)

)
dt = 0

as |y| → ∞ with y ∈ C∞(ω) by an application of the dominated convergence theorem,
which can be justified by using again the Hölder-regularity in conjunction with the
near-diagonal heat kernel estimate.

Proof of Theorem 1.3. For any x, y, z ∈ C∞(ω) such that x + z, y + z ∈ C∞(ω) we have
gτzωB(0,n)(x, y) = gωB(z,n)(x+z, y+z). Hence, it suffices to consider the case z = 0, otherwise
we may replace ω by τzω.

(i) We first show (1.7) in the case x = 0, that is,

lim
n→∞

1

lnn
gωB(0,n)(0, 0) = ḡ. (2.20)

Note that aω(0, 0) = 0 and by (2.16),

gωB(0,n)(0, 0) = Eω0
[
aω(0, XτB(0,n)

)
]

= Eω0

[ ∫ ∞
0

(
pωt (0, 0)− pωt (0, XτB(0,n)

)
)

dt

]
.

Further, notice that, for every n, XτB(0,n)
= nyn = λn(yn) for some yn contained in the

annulus K = {u ∈ R2 : 1
2 ≤ |u| ≤ 2}. Hence,∣∣∣ 1

lnn
gωB(0,n)(0, 0) − ḡ

∣∣∣ ≤ sup
u∈K

∣∣∣∣ 1

lnn

∫ ∞
0

(
pωt (0, 0)− pωt (0, λn(u))

)
dt − ḡ

∣∣∣∣,
and (2.20) follows from Theorem 1.2. Now, for any δ ∈ (0, 1) and x ∈ C(1−δ)n(0, ω),

gωB(x,δn/2)(x, x) ≤ gωB(0,n)(x, x) ≤ gωB(x,2n)(x, x)

for n sufficiently large. Thus, (1.7) can be derived from (2.20).
(ii) Again by (2.16),

gωB(0,n)(x, y) = Eωx
[
aω(y,XτB(0,n)

)
]
− aω(y, x)

=
∑

x′∈∂B(0,n)∩C∞(ω)

Pωx
[
XτB(0,n)

= x′
]
aω(y, x′) − aω(y, x)

=
∑

x′∈∂B(0,n)∩C∞(ω)

Pωx
[
XτB(0,n)

= x′
]
aτyω(0, x′ − y) − aτyω(0, x− y).

Recall that y ∈ B(0, (1− δ)n) ∩ C∞(ω). Note that, for any x′ ∈ ∂B(0, n) ∩ C∞(ω), x′ − y ∈
C∞(τyω) and thus x′ − y = λn(yn) for some yn ∈ K := {u ∈ R2 : |u| ∈ [δ, 2]}. Hence,

sup
x′∈∂B(0,n)∩C∞(ω)

aτyω(0, x′ − y) ≤ ḡ lnn + R
τyω
0 (n),

where Rω0 : N→ [0,∞) is defined as

Rω0 (n) := sup
u∈K

∣∣∣aω(0, λn(u)
)
− ḡ lnn

∣∣∣.
Note that Rω0 (n)/ lnn→ 0 as n→∞ for P0-a.e. ω by Theorem 1.2.
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Similarly, setting Nxy := |x − y|, we may write x − y ∈ C∞(τyω) as x − y = Nxy(x −
y)/|x− y| = λNxy (v) with v = (x− y)/|x− y| ∈ K. Thus,

aτyω(0, x− y) = aτyω
(
0, λNxy (v)

)
≥ ḡ ln

(
|x− y|

)
−Rτyω0 (|x− y|).

The combination of the above estimates gives

gωB(0,n)(x, y) ≤ ḡ ln
( n

|x− y|

)
+ R

τyω
0 (n) + R

τyω
0

(
|x− y|

)
.

Using a symmetry argument we can replace R
τyω
0 by Rωx,y := 1

2 (Rτxω0 + R
τyω
0 ). The

corresponding lower bound follows by the same arguments.

3 Potential kernel asymptotics for the dynamic RCM

3.1 Setting and results

In this section we consider the dynamic random conductance model. Let now Ω be
the set of measurable functions from R to (0,∞)E2 equipped with a σ-algebra F and
let P be a probability measure on (Ω,F). We will refer to ωt(e) as the time-dependent
conductance of the edge e ∈ E2 at time t ∈ R. A space-time shift by (s, z) ∈ R × Z2 is
the map τ : Ω→ Ω,

(τs,z ω)t({x, y}) := ωt+s({x+ z, y + z}), t ∈ R, {x, y} ∈ E2.

The set {τt,x : (t, x) ∈ R × Z2} together with the operation τt,x ◦ τs,y = τt+s,x+y defines
the group of space-time shifts. Throughout this section we assume that P is space-time
ergodic. For any fixed realization ω ∈ Ω, consider a time-inhomogeneous Markov chain,
X = (Xt : t ≥ 0), on Z2 with time-dependent generator acting on bounded functions
f : Z2 → R as (

Lωt f
)
(x) =

∑
y∼x

ωt({x, y})
(
f(y)− f(x)

)
. (3.1)

Note that, in contrast to (1.1), the total jump rate out of any lattice site is not normalised,
and the law of the sojourn time of X depends on its time-space position, i.e. X is the
variable speed random walk (VSRW) with the counting measure as a time-independent
invariant measure. The results in this section, as many results on the dynamic RCM,
are restricted to this specific speed measure. We denote by Pωs,x the law of the process
starting in x ∈ Z2 at time s ≥ 0 and by pωs,t(x, y) := Pωs,x

[
Xt = y

]
for x, y ∈ Z2 and

t > s ≥ 0 the heat kernel.

Assumption 3.1. (i) P is space-time ergodic, i.e. P ◦ τ−1t,x = P for all x ∈ Z2, t ∈ R,
and P[A] ∈ {0, 1} for any A ∈ F such that P[A4τt,x(A)] = 0 for all x ∈ Z2, t ∈ R.

(ii) For every A ∈ F the mapping (ω, t, x) 7→ 1A(τt,xω) is jointly measurable with respect
to the σ-algebra F ⊗ B(R)⊗ P(Z2).

(iii) There exist p, q ∈ (1,∞] satisfying 1/(p − 1) + 1/((p − 1)q) + 1/q < 2/d such that
E
[
ωt(e)

p
]
<∞ and E

[
ωt(e)

−q] <∞ for any e ∈ E2 and t ∈ R.

(iv) Upper Gaussian heat kernel bounds. For P-a.e. ω, there exist N4(ω) and constants
ci such that for any given t with t ≥ N4(ω) and all y ∈ Zd,

pω0,t(0, y) ≤ c11 t
−1

{
exp
(
− c12 |y|2/t

)
, if c10|y| ≤ t,

exp
(
− c13 |y|

(
1 ∨ log(|y|/t)

))
, if c10|y| ≥ t.

ECP 25 (2020), paper 58.
Page 10/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP337
http://www.imstat.org/ecp/


Green kernel asymptotics for two-dimensional random walks

Under Assumption 3.1-(i)–(iii) a quenched invariance principle has been shown in [4]
(cf. also [20]). Hölder regularity, near diagonal upper bounds and a local limit theorem
have been shown in [5]. The latter implies that limn n

2pωn2(0, 0) = (2π
√

det Σ2)−1, P-a.s.,
where Σ2 is the covariance matrix of the Brownian motion in the invariance principle.

The stronger bounds in Assumption 3.1-(iv) will only be used to control the heat kernel
in an intermediate time regime (cf. the proof of (2.14) above). Such bounds are known
in the uniformly elliptic case, see [25, Proposition 4.2]. For unbounded conductances,
despite some partial result on the heat kernel decay (see [38, 32]), the derivation of
full Gaussian upper bounds is a subtle open challenge. One reason is that the dynamic
model is restricted to the VSRW. For a constant speed version not even the invariance
principle is known as no time change argument is available. Even in the static RCM the
heat kernel bounds for the VSRW in [9] are not sufficient since in the degenerate case,
in contrast to the CSRW, the intrinsic distance of the VSRW is not comparable to the
Euclidean distance in general. However, in the special case of conductances bounded
from above, both distances are comparable which leads to the following example.

Example 3.2. Set ω∗(e) := supt ωt(e), e ∈ E2. If supe ω
∗(e) < ∞ (i.e. p = ∞ in As-

sumption 3.1-(iii)) and E
[
ωt(e)

−q] < ∞ for q > 1, then the heat kernel bounds in
Assumption 3.1-(iv) follow from the arguments in [9].

Theorem 3.3. Suppose that Assumption 3.1 holds. Then, the potential kernel

aω(x, y) :=

∫ ∞
0

(
pω0,t(0, 0)− pω0,t(x, y)

)
dt, x, y ∈ Z2,

is well-defined, and for any K = {x ∈ R2 : |x| ∈ [k1, k2]} with 0 < k1 < k2 <∞,

lim
n→∞

sup
x∈K

∣∣∣ 1

lnn
aω
(
0, λn(x)

)
− 1

π
√

det Σ2

∣∣∣ = 0, P-a.s.

Proof. This follows by similar arguments as in the proof of Theorem 1.2 above. A local
limit theorem and Hölder-regularity have been established in [5]. The required heat
kernel decay is stated in Assumption 3.1-(iv).

We shall also state a corresponding annealed result. For abbreviation we write
p̄t(x, y) := E

[
pω0,t(x, y)

]
for the averaged transition density.

Theorem 3.4. Suppose that P
[
c−1 < ωt(e) < c

]
= 1 for some c ∈ [1,∞). Then, the

annealed potential kernel

ā(x, y) :=

∫ ∞
0

(
p̄t(0, 0)− p̄t(x, y)

)
dt, x, y ∈ Z2,

is well-defined, and for any K = {x ∈ R2 : |x| ∈ [k1, k2]} with 0 < k1 < k2 <∞,

lim
n→∞

sup
x∈K

∣∣∣∣ 1

lnn
ā
(
0, λn(x)

)
− 1

π
√

det Σ2

∣∣∣∣ = 0. (3.2)

Proof. Again this follows along the lines of the proof of Theorem 1.2. As mentioned
above, Gaussian bounds have been shown in [25] and an annealed local limit theorem has
been stated in [2, Theorem 1.6], which has been extended to degenerate conductances
in [10, Theorem 1.11]. Further, an annealed gradient estimate on the heat kernel of the
form ∣∣p̄t(0, x)− p̄t(0, y)

∣∣ ≤ c t−3/2, ∀t > 0, {x, y} ∈ E2,
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has been established in [23, Theorem 1.6] or [25, Theorem 1.1]. Hence, for x ∈ K we
have by the triangle inequality∣∣p̄t(0, 0)− p̄t(0, λn(x))

∣∣ ≤ c n t−3/2,

so that for any N ,∫ ∞
Nn2

∣∣p̄t(0, 0)− p̄t(0, λn(x))
∣∣dt = c n

∫ ∞
Nn2

t−3/2 dt ≤ cN−1/2 < ∞, (3.3)

which may serve as a replacement for (2.8) and the Hölder regularity estimate.

3.2 Application to stochastic interface models

We briefly outline an application of Theorem 3.4 in the context of the Ginzburg-Landau
∇φ interface model, see [28]. The interface is described by a field of height variables
{φt(x) : x ∈ Zd, t ≥ 0}, whose stochastic dynamics are governed by the following infinite
system of stochastic differential equations involving nearest neighbour interaction:

φt(x) = φ(x) −
∫ t

0

∑
y:|x−y|=1

V ′(φs(x)− φs(y)) ds +
√

2wt(x), x ∈ Zd.

Here φ is the height of the interface at time t = 0, {w(x) : x ∈ Zd} is a collection of
independent Brownian motions and the potential V ∈ C2(R,R+) is even and strictly
convex, i.e. c− ≤ V ′′ ≤ c+ for some 0 < c− < c+ < ∞. Then the formal equilibrium
measure for the dynamic is given by the Gibbs measure Z−1 exp(−H(φ))

∏
x dφ(x) on

RZ
d

with formal Hamiltonian given by H(φ) = 1
2

∑
x∼y V (φ(x)−φ(y)). In dimension d ≥ 3

this can be made rigorous by taking the thermodynamical limit. In any lattice dimension
d ≥ 1 one considers the gradient process (∇eφt, : e ∈ Ed, t ≥ 0) instead. Then, for every
u ∈ Rd describing the tilt of the interface, the gradient process admits a unique shift
invariant ergodic ∇φ-Gibbs measure mu, see [29].

By the so-called Helffer-Sjöstrand representation (cf. [25, 31, 28]) the variances in
the ∇φ model can be written in terms of the annealed potential kernel of a random walk
among dynamic random conductances. More precisely, for any x ∈ Zd,

varmu
[
φ0(x)− φ0(0)

]
= 2 āu(0, x), (3.4)

where āu denotes the annealed potential kernel (with expectations taken w.r.t. mu)
associated with the dynamic RCM with conductances given by

ωt(x, y) := V ′′
(
φt(y)− φt(x)

)
, {x, y} ∈ Ed, t ≥ 0. (3.5)

As an immediate consequence from Theorem 3.4 we get the following scaling limit.

Theorem 3.5. Let d = 2. Then, for any ergodic Gibbs measure mu and any annulus
K = {x ∈ R2 : |x| ∈ [k1, k2]} with 0 < k1 < k2 <∞,

lim
n→∞

sup
x∈K

1

lnn
varmu

[
φ0
(
λn(x))− φ0(0)

]
=

2

π
√

det Σ2
u

.

Here Σ2
u denotes the covariance matrix in the invariance principle for the random walk

under the dynamic random conductances defined in (3.5).

Proof. The conductances in (3.5) are stationary ergodic under any Gibbs measure µ, and
they are uniformly elliptic since the potential function V is assumed to be strictly convex.
Hence, Theorem 3.4 applies and implies the result by (3.4).
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Remark 3.6. In d ≥ 3 the results in [4, 5] can be used to show a scaling limit for the
space-time covariances for a class of potentials where the uniform upper bound on the
conductances in (3.5) is replaced by a moment condition (see [10]). However, relaxing
the lower bound is more challenging as it is required in the existence proof of the Gibbs
measure which is based on a Brascamp-Lieb inequality.
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