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Abstract

With increasing network sizes, mobility, and traffic, it becomes a challenging task
to achieve goals such as continuously delivering a satisfying service quality. Self-
adaptive approaches use feedback loops to adapt a managed resource at runtime
according to changes in the execution context. Adding self-adaptive capabilities
to communication systems—computer networks as well as supporting structures
such as overlays or middleware—is a major research focus. However, making
a communication system self-adaptive is a challenging task for communication
system developers. First, the distributed nature of such systems requires the
collection of monitoring information from multiple hosts and the adaptation of
distributed components. Second, communication systems consist of heterogeneous
components, which are, e.g., developed in different programming languages. Third,
system developers typically lack knowledge about the development of self-adaptive
systems. Hence, this work’s overall goal is to allow system developers to focus on
making a (legacy) communication system adaptive.

Motivated by these observations, this thesis proposes a model-based runtime
environment for adapting communication systems called REACT. In contrast
to self-adaptation frameworks, which offer a standard way to build self-adaptive
applications, we refer to REACT as a runtime environment, i.e., a platform that
is additionally able to plan and execute adaptations based on user-specified adap-
tation behavior. REACT includes the support for decentralized adaptation logics
and distributed systems, multiple programming languages, as well as tool support
and assistance for developers. The developer support is achieved using model-
based techniques for specifying the reconfiguration behavior of the adaptation
logic. Also, this thesis proposes an easy-to-follow development process. As part
of that, it is needed to monitor the reconfiguration behavior of the self-adaptive
system. Hence, this work also presents two dashboard-based visualization ap-
proaches called CoalaViz and EnTrace for providing traceability of self-adaptive
systems for system developers and administrators.

This thesis follows a design science research methodology resulting in the design
and implementation of the final artifacts. By that, this dissertation presents
different REACT Loops, including specific ways to model and plan the adaptive
behavior using satisfiability, mixed-integer linear programming, and constraint
solvers. The prototypes of these approaches, including the two visualization
solutions, are evaluated in multiple use cases. Therefore, this work provides an
end-to-end solution for specifying the adaptive behavior, connecting a managed
resource, deploying the system, as well as debugging and monitoring it.
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board of examiners.

Further, I would like to thank all the people I had the pleasure of working
with throughout the years at the Chair of Information Systems II, namely Dr.
Patricia Arias-Cabarcos, Martin Breitbach, Melanie Brinkschulte, Dr. Janick
Edinger, Kerstin Goldner, Melanie Heck, Benedikt Kirpes, Prof. Dr. Christian
Krupitzer, Dr. Sonja Klingert, Markus Latz, Dr. Jens Naber, Yugo Nakamura,
Dr. Vaskar Raychoudhury, Dr. Felix Maximilian Roth, Dr. Dominik Schäfer,
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Mühlhäuser, Magnus Nigmann, Prof. Dr. Amr Rizk, Dr. Bradley Schmerl, Prof.
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1. Introduction

Trends such as the Internet of Things (IoT) lead to a growing number of networked

devices. According to International Data Corporation (IDC), the number of

connected IoT devices will reach 41.6 billion in 2025 [1]. Looking at the example

of connected cars alone, also, according to IDC, they will reach 76.3 million units

by 2023 with a five-year compound annual growth rate of 16.8 % between 2018

and 2023 [2]. The rising number of networked devices is one of the reasons for

the increasing complexity of the deployed systems. Nevertheless, the expanding

complexity is not only due to the increasing number of devices but also to the high

mobility of the devices and the increasing network traffic [1]. Additionally, the

category of IoT devices represents heterogeneous groups of devices with different

software implementations and requirements for the wireless and wired networks.

Hence, it gets gradually more challenging to achieve goals, such as continuously

delivering a satisfying service quality in the networks.

Self-adaptation enables a system to adapt itself at runtime according to changes

in the execution context for taming this complexity [3, 4]. Self-adaptive systems

(SASs) are able to adjust parameters or change the structure of themselves [5, 6].

From an architectural perspective, a SAS is separated into a system providing a

service, called managed system or resource, and an adaptation logic that plans

and executes adaptations [4, 7]. Taking the field of communication systems into

account, the managed resource can be a hardware device such as a network switch

or a node in an overlay network. Developing a SAS is a complex task that requires

expertise in monitoring sensor data, analyzing this data, planning adaptations,

and executing them [8]. For simplifying the development, SAS frameworks can

help. However, when applying a framework for engineering a SAS, it should not

be a requirement always to build a system from scratch. Also, a developer has to

be able to specify the adaptation behavior in a concise way at design time. The

goal of this thesis is to provide a model-based approach for engineering SASs in

the communication systems domain, addressing the aforementioned problems.
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1.1. Problem Definition

1.1. Problem Definition

As developing SASs is a challenging task, frameworks for engineering SASs can

be used for simplifying the development process and decreasing the development

time [9]. The main goal here is to provide reusable structures that can be

employed for avoiding to build self-adaptive systems from scratch. As seen in [10]

and [11], there are many possibilities for frameworks such as general overarching

component-based systems [12, 13] or approaches only focussing on specific use

cases [14]. In order to address the challenge of adapting communication systems,

a general framework must be able to provide means to support the heterogeneity

and inherent distribution requirement of these systems. Distribution, in this

case, implies that the adaptation logic itself can be deployed distributedly, which

enables decentralized control [15] and that the adaptation logic is able to cope

with distributed managed resources. Additionally, system developers typically lack

knowledge about the development of SASs, which requires them to always work

together with SAS engineers. Enabling system developers in the communication

systems domain to directly plan their systems including adaptivity, or to enhance

existing systems with adaptivity for improving them, can considerably enhance the

domain system’s performance and expand the use of SAS concepts. Furthermore,

as distributed systems, especially in the IoT domain, are dynamic considering

mobility and network churn, a (distributed) SAS deployment must be capable of

being changed due to the changing resources. Accordingly, it must be possible to

alter the deployment of the SAS components as well as the specification of the

adaptation behavior at runtime. Finally, runtime changes of the deployment and

the specification allow self-improvement [16].

In the field of self-adaptive systems, many researchers already tried to improve

the development experience and efficiency. Approaches into this direction include,

for instance, the MAPE-K [4] feedback loop structure or methods for changing

a SAS at runtime using self-improvement [16]. As abstract architectures and

methodologies cannot directly be applied to bring SAS techniques into actual

systems, the goal of this thesis is to provide a novel and applicable development

approach. Even though there already exist frameworks such as Rainbow [17,18]

or FESAS [19–21], they miss the explicit support of communication systems,

assistance for system developers, or do not allow runtime reconfigurations.
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1.2. Research Questions

1.2. Research Questions

Based on the problem definition presented in the previous section, the overall

objective of this thesis is to provide a generic and reusable runtime environment

for adapting communication systems with the possibility to change the deployment

at runtime. Accordingly, this thesis answers the following three research questions.

RQ1: How to engineer a generic and reusable runtime environment targeting

communication systems?

The first research question is concerned with providing the base functionality,

which is needed for adapting communication systems in a generic and reusable

way. Therefore, an answer to this question must include specific system facilities,

which target communication systems and their distributed nature. The question

also raises the problem for a generic and reusable way to specify the behavior of

the SAS.

RQ2: How to support system developers in creating adaptation logics for new or

existing systems without SAS engineering knowledge?

The second research question aims at enabling system developers, who work in

a specific field of communication systems, to build new systems with adaptivity

in mind or to enhance existing systems with adaptive behavior. In this case,

especially the level of abstraction of the used specification approach, as well as

its explicit representation, will be part of the answer. As an example, optimally,

the system developer only has to learn a limited set of higher-level concepts, and

existing knowledge in the domain of software engineering can be reused.

RQ3: How to engineer a runtime environment that enables changes of the

adaptation logic after deployment?

As communication systems are considered distributed, dynamic, and mobile, it

must be possible to change the deployment of a distributed and decentralized SAS

using this thesis’ approach. Changing the deployment includes the possibility to

update the specification of the adaptation behavior. Updating the deployment

can be needed due to different types of uncertainty, such as when specifying the

system’s behavior at design time. The third question examines how the runtime

environment has to be engineered to allow these changes at runtime.
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1.3. Contributions

As the overall objective and research questions imply, this thesis’ contribution is

a generic and reusable runtime environment for adapting communication systems.

As part of [11], we analyzed the landscape of existing frameworks for developing

self-adaptive systems with a focus on the requirements for adapting communication

systems. We show that none of the existing approaches fulfills all requirements,

which will be presented in detail in Chapter 4. Hence, approaches are either

limited to specific use cases, do not provide a ready-to-use decision engine, or in

general, do not support a system developer in any way.

Based on the requirements, a design for the main artifact named REACT (Runtime

Environment for Adapting Communication sysTems) is developed. REACT

consists of reusable core components (REACT Core) as well as a ready-to-use

REACT Loop. REACT Core represents the infrastructure for reusable feedback

loop instances. A feedback loop instance named REACT Loop represents an actual

decision engine planning and executing adaptations. This thesis employs model-

based specifications for the REACT Loops due to the level of abstraction they

provide. Apart from REACT’s design and architecture, the approach suggests

features that allow for extensions and high applicability. REACT Core also

provides an optional context module, which can be used to increase the execution

speed of a REACT Loop for already observed contexts, and for distributing

context information for external software components outside of REACT. As

part of the design, this thesis also proposes a development process. This process

supports system developers in applying REACT, addressing the missing developer

support in related works. Implementation-wise, this thesis contributes with

a prototypical implementation of REACT Core, as well as implementations of

specific REACT Loops using REACT Core.

Each REACT Loop is evaluated in different use cases and in different evaluation

settings. This includes a comparison with the well-known approach Rainbow [17,

18] for determining the strengths and weaknesses of this thesis’ approach. Further,

in a feasibility study, the REACT Loops are compared directly in the same use

case. This study also explores the potentials of combining multiple REACT Loops.

Apart from quantitative measurements, REACT, and the REACT Loops are

discussed qualitatively considering, e.g., capabilities and modeling expressiveness.
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In order to support developers even further and additionally to the development

process, Chapter 8 proposes two approaches named CoalaViz and EnTrace con-

nected to REACT for visualization and making adaptation decisions traceable.

Both approaches support system developers and administrators alike in observing

if the specified adaptation behavior is implemented correctly at runtime.

Hence, this thesis provides an end-to-end solution starting with the specification

of the adaptive behavior, the connection to a managed resource, the deployment

of the SAS, as well as debugging and monitoring the SAS using one of the

visualization approaches.

1.4. Structure

Beginning with Chapter 2, fundamentals in the field of SASs, the concept of

feedback loops, and possibilities for decision-making in SASs are presented. As

this thesis follows a model-based approach using the idea of (context-aware)

feature models originating from Dynamic Software Product Lines, Chapter 2

covers an introduction of the same. Chapter 3 outlines the applied design science

research methodology of this thesis as introduced by Peffers et al. [22]. Chapter 4

introduces requirements that must be fulfilled for a runtime environment aiming

at enhancing communication systems with adaptive behavior. Based on the

requirements, Chapter 5 analyzes related works in the fields of self-adaptive

systems as well as Autonomic Networking. Chapter 6 presents the design and

implementation of REACT Core as a foundation for executing REACT Loops, its

context module, and also includes the presentation of a corresponding development

process. Next, Chapter 7 presents three REACT Loops containing respective

designs and implementations. The prototype implementations are evaluated in

different use cases from the communication systems domain. This chapter also

compares the loops and identifies the potentials of combining multiple loops

as part of a feasibility study. The two visualization modules, CoalaViz and

EnTrace, are presented and evaluated in Chapter 8. Chapter 9 answers the

research questions by discussing the results considering the different functional

and non-functional requirements of Chapter 4. Additionally, this chapter outlines

threats to validity and limitations as well as prospective future mitigation of them.

Finally, Chapter 10 concludes this thesis and gives an outlook on future work.
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2. Fundamentals

The first chapter motivated this thesis, specified the research questions, and briefly

described the contributions of this work. This chapter presents fundamentals as

background for this thesis. Section 2.1 defines the term “self-adaptive system”

and outlines related general concepts and architectures. Next, Section 2.2 presents

the approach of having an (external) adaptation logic deciding to adapt the

managed resource. This includes a description and explanation of the state-of-the-

art MAPE-K control architecture. In order to specify the adaptation behavior,

different decision criteria can be used. Therefore, Section 2.3 presents different

ways of deciding how to adapt a system. Finally, Section 2.4 introduces the idea

of feature modeling following the concept of (Dynamic) Software Product Lines

for specifying the reconfiguration options of a system.

2.1. Self-Adaptive Systems

This section gives an overview of SASs. First, this section introduces the concept

using multiple definitions and descriptions of the term “self-adaptive system”.

Oreizy et al. gave one of the first definitions for self-adaptive systems in 1999 [5, p.

55]:

Self-adaptive software modifies its own behavior in response to

changes in its operating environment. By operating environment,

we mean anything observable by the software system, such as end-user

input, external hardware devices and sensors, or program.

Another definition is given by Laddaga et al. in 2001 [3, p. 1]:

Self-adaptive software evaluates its own behavior and changes behav-

ior when the evaluation indicates that it is not accomplishing what the

software is intended to do, or when better functionality or performance

is possible.
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In comparison, Oreizy et al. explicitly incorporate the context by mentioning the

operating environment, including user input, while the definition of Laddaga et

al. emphasizes the “self-” and evaluation aspect of a self-adaptive system. The

term “self-” in self-adaptive means that the software system decides on its own

(also named autonomously [7]) to adapt its behavior corresponding to a perceived

change of the environment. Laddaga’s definition also mentions the idea to have an

internal evaluation of the adaptation behavior that tries to improve the system’s

performance constantly over time. The improvement of the performance is, e.g.,

possible using a learning-based component [4]. Hence, the definition of Laddaga

et al. is rather related to the concept of self-aware computing systems, which

inherently contains a learning component [23].

There are many more definitions present, such as in [7] or [8]. Recently, Weyns took

multiple definitions into account and combined them into “two basic principles”

determining a self-adaptive system from his point of view [24, p. 402]:

1. External principle: A self-adaptive system is a system that

can handle changes and uncertainties in its environment, the system

itself, and its goals autonomously (i.e. without or with minimal human

interference).

2. Internal principle: A self-adaptive system comprises two

distinct parts: the first part interacts with the environment and is

responsible for the domain concerns (i.e. concerns for which the system

is built); the second part interacts with the first part (and monitors

its environment) and is responsible for the adaptation concerns (i.e.

concerns about the domain concerns).

The first principle specifies the capability to autonomously achieve certain goals

without any or with minimal human intervention. The second principle describes

the separation between adaptation logic managing a connected domain system

providing a service. This thesis follows these two basic principles for defining a

SAS, as they consider the general goal of SASs on the one hand and the (internal)

architecture of them on the other hand. The principles include the ideas of the

first two definitions while omitting the learning aspect. For this thesis, a SAS

does not automatically contain a learning component as present in self-aware [23]

or organic computing [25].
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Finally, considering the terminology, according to Salehie and Tahvildari [26]

many researchers such as Huebscher and McCann [27] use the terms “self-adaptive

system”, “autonomic system”, and “self-managing system” synonymously. When

only comparing the terms, Salehie and Tahvildari consider self-adaptive systems

to be a limited subcategory of Autonomic Computing [26]. Looking at the

layered architecture in [6]—consisting of application(s), middleware, network,

operating systems, and hardware—self-adaptive software can be found mainly on

the application and middleware layer [26]. Opposing to that, the term Autonomic

Computing has been applied on the network layer (see, e.g., [28]) as well as

on the operating system layer (e.g., see the reincarnation server of the Minix

operating system [29]) [26]. Still, even though the terms have been used in different

domains, the underlying concepts can be used interchangeably [26]. Hence, this

thesis follows this statement and does not make a difference between the terms

self-adaptive, Autonomic Computing, or self-managing system.

2.1.1. Self-* Properties

The so-called self-* or self-CHOP (configuration, healing, optimizing, protecting)

properties are defined as fundamental for engineering self-adaptive systems [4,

26, 30]. More detailed, as specified by Salehie and Tahvildari and depicted in

Figure 2.1, self-adaptiveness is built on top of a primitive and major level of

properties [26]. Accordingly, Salehie and Tahvildari consider the primitive and

major levels as the foundation for the concept of self-adaptiveness.

Self-Awareness

Self-Configuring
Self-Optimizing

Self-Healing
Self-Protecting

Context-Awareness

Self-Adaptiveness

Primitive Level

Major Level

General Level

Figure 2.1.: Hierarchy of the self-*/self-CHOP properties [26].

On the primitive level exist two fundamental properties a self-adaptive system must

have: Self-awareness and context-awareness. While the first concept describes

the ability to sense the internal state of a system, the second concept means
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that the surroundings or context of the system can be monitored. Without these

capabilities, a system is not able to monitor the current situation resulting in no

possibility to decide if an adaptation is needed in the first place. The original

definition of self-awareness, meaning a system is aware of its own states and

behaviors, is given by Hinchey and Sterrit [31]. In their case, self-awareness only

results in a system “being aware of its internal state” [31]. This is the definition

followed by Salehie and Tahvildari [26] as well as by this thesis. Although having

the same name, self-aware computing systems inherently contain a reasoning and

learning component [23]. Hence, self-awareness, as defined on the primitive level,

is not directly related to self-aware computing systems.

Looking at the context and context-awareness, both terms are largely coined by

the pervasive computing community [32]. A popular, rather broad definition of

context is given by Dey in 2001 [33, p. 5]:

Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application,

including the user and application themselves.

Context-aware systems have been defined in 1994 by Schilit et al. as systems

that “can examine the computing environment and react to changes to the envi-

ronment” [32]. In the domain of SASs, context-aware systems have been defined

as systems being aware of their operational environment [34]. This definition was

applied by Salehie and Tahvildari, complementing the primitive level.

On the following layer, four self-* capabilities reside on the so-called major level.

These capabilities are also subsumed in the term self-managing system [4]. Self-

managing software results in a system that tries to work all the time without

interruptions. This aspect frees system administrators from low-level tasks. The

major level and self-management consist of the following four self-* capabilities:

self-configuration, self-optimization, self-healing, and self-protection [4]. A self-

configuring system intends to set itself up according to high-level policies of the

overall IT environment. Thus, it embeds itself seamlessly into the existing IT

systems. Self-optimization describes a learning component of the system, which

adjusts the adaptations for better results. This means the system is able to

improve its performance on its own gradually over time. Of course, problems
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can occur in this process or in general while running a system. If a problem

arises, the self-healing mechanism is employed. This mechanism tries to locate,

analyze, and correct problems at runtime. The last capability is self-protection.

It automatically detects and defends against attacks or cascading problems that

could not be solved by the self-healing process. Additionally, it reacts to early

reports based on sensor data to reduce the impact of arising problems. Following

the definition of Kephart and Chess [4], all self-adaptive systems are supposed to

have these properties in common. However, in practice, there exist self-adaptive

systems focussing only on a subset of the self-* capabilities. As self-configuration

is the foundation for executing adaptations, this is considered as present whenever

any of the other self-* properties is fulfilled [30]. There are approaches focussing

on self-healing (e.g., [35]), self-optimizing (e.g., [36]), or self-protection (e.g., [37]).

Additionally, there are approaches targeting multiple self-* properties, such as [38]

aiming at self-healing and self-optimizing. Overall, most approaches target either

self-healing or self-optimization, while self-protection has not been the focus of

the research community until now [39].

2.1.2. Architecture of Self-Adaptive Systems

Considering the possible architectures of a SAS, there are two compositional

approaches to build a self-adaptive system [26]. As shown in Figure 2.2, the

structure of a self-adaptive system can be categorized into the two categories

internal and external [26]. The two compositional approaches define how the

managed resource and the adaptation logic are combined. The adaptable system or

software is also called managed resource [40] or managed element [4], representing

the system actually performing a task. The adaptation engine, also named

autonomic manager [4] or adaptation logic [17], reconfigures the former. This

thesis will use the terms managed resource and adaptation logic in the following.

In the architecture of a SAS, either the adaptation logic is part of and interwoven

with the managed resource (see Figure 2.2 (a)), or the adaptation logic is designed

as an external component (see Figure 2.2 (b)) communicating with the managed

resource. The internal approach is faster to implement and may be an option in

smaller local systems [26]. The maintainability is higher in the external approach.

However, this approach needs communication between the adaptation logic and the
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Self-Adaptive System

Sensing

Effecting

Self-Adaptive System
Sensing Effecting

Adaptation Logic

Managed Resource

(a) (b)

Figure 2.2.: Internal (a) and external (b) adaptation logic architectures [26].

managed resource. The adaptation logic constantly adapts the system according to

the information received from the managed resource, while the managed resource

provides the actual domain functionality of the system. The managed resource

can be a hardware or software component.

The described external architecture is in line with the “Internal Principle” of

Weyns’ definition [24, p. 402]. As the external architecture is more scalable,

exchangeable, and reusable, this is the broadly used method to implement self-

adaptive systems [9,26]. Scalability is achieved, e.g., by having dedicated machines

only for the adaptation logic. The independence of the adaptation logic in

the external approach also makes it easy to use the same adaptation logic for

multiple managed resources or to compare different adaptation logic approaches

by exchanging them. This is not easily possible with the internal approach when

the managed resource is interwoven together with the adaptation logic. Salehie

and Tahvildari have published a survey on self-adaptive systems in which no

system uses the internal approach [26]. More recently, Krupitzer et al. identified

a single system following only the internal approach and two systems supporting

both the external and internal approaches [9]. Thus, most self-adaptive systems

consist of a separated adaptation logic and managed resource [41]. Based on these

observations, the following focuses on external adaptation logics.

The adaptation logic and the managed resource are connected in two ways.

The adaptation logic sends messages containing configuration changes to update

the managed resource, while the managed resource sends data about itself and

its context (cf. self-awareness and context-awareness in Section 2.1.1) to the
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adaptation logic. This data can, e.g., be sensorial or statistical. The adaptation is

accomplished by either changing parameter values or by exchanging components

as part of the managed resource [6,41]. Parameter adaptation changes the system

parameters, while compositional adaptation changes structure, architecture, or

both. A system can be used as managed resource if it is able to provide sensor

information and receive adaptation actions.

The important component that makes a system self-adaptive is the adaptation logic.

The adaptation logic must sense changes, understand them, plan adaptations, and

execute them. Thus, much research has been done on finding effective ways to

design this component. In the last years, a universal architecture for developing

the adaptation logic has emerged, which is presented in the next section.

2.2. Adaptation Logics and MAPE-K

According to Brun et al., the generic way to achieve self-adaptation is to use

feedback loops [7]. A feedback loop consists of four steps: collect, analyze, decide,

and act. This model is an advancement of the sense-plan-act approach [42,43] taken

from the early development of artificial intelligence [7]. The collect component

collects relevant data from the environment. The data can consist of, e.g., sensorial

data or user input. With the data, the adaptation logic is able to determine

the state of the system. The next step is to analyze the selected raw data. The

analyze component structures the data and reasons about it using, e.g., models

or policies. Based on this structured data, the decision component determines

how the system state may be improved. In this step, it may be possible to use

probability theory to determine the best adaptation according to the current

state. The act component executes the adaptation by sending a message with the

planned changes to the managed resource. Then, the managed resource adapts

according to the received plan.

Kephart and Chess have used this generic control loop to specify an adaptation

logic using four functional parts using a shared knowledge base: Monitor, Analyze,

Plan, Execute with Knowledge [4]. The initial letters are the reason to call this

approach the MAPE-K cycle. The MAPE-K cycle is embedded in a component

called autonomic manager that represents the adaptation logic [4]. Figure 2.3
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shows the loop as part of an adaptation logic, which is connected to a managed

resource via a sensor and an effector. The MAPE-K cycle starts with monitoring

the raw data coming from sensors—sometimes also called probes [17]—of the

managed resource(s) [40]. As in a context-aware system, sensors either push data

to the monitors, or they pull data from the sensors [44]. The monitor not only

gathers and monitors the data but—according to Brun et al.—it also filters the

data [7]. Next, the analyzer of the adaptation logic analyzes this prepared raw

data. This includes the identification of constraint violations and their reasons.

The following planning phase determines necessary changes in order to get the best

possible result for the system or to resolve any problem identified in the analysis

phase. Finally, the execute part executes the developed plan using effectors in

the managed resource. This can include the orchestration of the execution or the

decomposition of a plan into specific commands.

Adaptation Logic

M

PA

EK

Sensor Effector

Managed Resource

Figure 2.3.: MAPE-K feedback loop architecture with connected managed re-
source [4].

The MAPE components communicate via direct communication channels. Ad-

ditionally, Kephart and Chess introduced a knowledge component resulting in

the MAPE-K architecture [4]. This knowledge component can, e.g., be used

to store all inputs and outputs of each MAPE component for future reference.

The data enables the use of, e.g., (external) machine learning techniques for

self-improvement [16].

Although the MAPE-K approach is a good guideline for developing self-adaptive

systems, it does not define how a particular MAPE-K-based feedback loop works

specifically. As there are multiple ways to specify how an adaptation logic using the

MAPE-K architecture adapts a managed resource, the following section introduces

different decision-making approaches for SASs.
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2.3. Decision Making in Self-Adaptive Systems

As defined by Lalanda et al., the adaptation behavior of a SAS can be specified

using different approaches, i.e., rules, models, goals, and utilities [30]. While

rules, also named policies, constitute the most simple form of knowledge and

specification, model-, goal-, and utility-based systems enable more complex ways

to specify the behavior of a SAS. Additionally, it is possible to combine multiple

ways for specifying the decision making in a hybrid approach. However, this also

leads to the fact that it is not always possible to clearly distinguish one approach

from another. Hence, there exists also an overlap between some approaches. In

the following, this section introduces the four different approaches as presented

in [30].

2.3.1. Rules/Policies

Rules, also named policies, typically follow the event-condition-action (ECA)

pattern [30]. Accordingly, in the case of an event and if a condition is met,

an action is performed. Rules are easy to specify and understand. This fact

also allows stakeholders, such as end-users, who are not familiar with system

development, to express simple rules. However, it can get hard to manage a large

set of rules resulting in overlapping policies or conflicts [30]. Additionally, rules are

defined and can be verified statically at design time resulting in fixed non-dynamic

behavior [9] without an additional self-improvement [16] layer. Hence, rules are

considered mainly for simpler systems, which do not need a large rule base for

their adaptive behavior [30].

In the simplest case, the evaluation of rules happens only on the foundation of

current sensor information [30]. Then, there is no state that is stored as part of the

rule-based adaptation logic simplifying the evaluation of the rules, as no historical

values are taken into account. This is also the reason to call the behavior of these

kinds of approaches reflex-based [30]. ECA rules directly produce adaptation

plans from the status events, which can be executed. Even though rule-based

adaptation logics are rather simple, it still is possible to combine them with

learning capabilities to update the rule base at runtime [45].
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2.3.2. Models

Models in software systems can be defined as follows [46]:

A model is an abstraction of a (real or language-based) system

allowing predictions or inferences to be made.

In SASs, models can be used to represent context information as well as the

architecture of the managed resource [30]. Accordingly, many different model

types exist [9]: system models, goal models, and environmental models. The system

model category can further be divided into architectural models, feature models,

and behavioral models. Figure 2.4 shows the hierarchy of these models.

Models

System Models Goal Models Environmental Models

Architectural Models Feature Models Behavioral Models

Figure 2.4.: Model types for decision making in self-adaptive systems [9].

Beginning with system models, architectural models represent the architecture of

the managed resource. This representation can be achieved using, e.g., Unified

Modeling Language-based [47] techniques or customized architecture models such

as Acme models [48], which are applied in the Rainbow framework [17]. Feature

models, which are visualized in hierarchical tree representations [49], specify the

configuration options of a software system as part of Software Product Lines

(SPL). This model type is explained in more detail in Section 2.4. Behavioral

models represent the adaptation behavior on a higher abstraction level without

direct links to the managed resource, e.g., using state machines [50]. Going back to

the overall category of models, goal models can be used to specify one or multiple

system goals of a SAS [51]. Goal models are considered more dynamic in pursuing

the goals of a system than rules or system models [30]. This is due to the fact

that rules and system models are statically defined, which can lead to unspecified

situations. Finally, environment or context models are used for capturing the

context of a system [52]. A context model can represent physical context, captured

using physical sensors, as well as software-based and user context. In the same way

that it is possible to combine multiple decision-making strategies, it is possible to
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combine multiple modeling approaches. As an example, Contex-Aware Dynamic

Software Product Lines (DSPL) [53] constitute a combination of feature models

representing the reconfiguration space of the managed resource and an explicit

model of the observed context.

Either way, when using a single representation or a combination of the presented

model representations, a SAS can use problem solvers for reasoning and for

finally planning and executing adaptations (as, e.g., in [54]). This involves the

transformation of the model into a problem domain and the use of problem solvers

such as satisfiability (SAT) (e.g., [55]), mixed-integer linear programming (MILP)

(e.g., [56]), or constraint satisfaction problem (CSP) (e.g., [57]) solvers.

2.3.3. Goals

In the previous section representing the category of models, goal models have

already been introduced. However, goal-based decision making does not only

consist of models. In general, goals do not rely on fixed adaptation rules or models,

but rather a goal-based adaptation logic has to create specific plans fulfilling

the goals [30]. This makes goal-based approaches more dynamic than fixed

rules or models created at design time. As part of a goal-oriented requirements

engineering process, a developer has to specify high-level objectives, including

managed resource-specific constraints [58]. In this process, the high-level goals have

to be decomposed into subgoals [59]. A specific definition considering goal-based

systems has been given by Salehie and Tahvildari as follows [60]:

Given an adaptation goal set G, an adaptation action set AC, and

an attribute set AT from a software system, the problem is how to

build a goal-action-attribute model, and to select the appropriate action

aci at run-time to satisfy goals under different conditions.

Based on this definition, in this specific case, the authors propose the Goal-Action-

Attribute Model (GAAM) as a solution [60]. This approach enables to express

goal hierarchies, attributes, and actions, which influence goals. Additionally, it

allows for prioritizing the goals resulting in multi-objective optimization. This

already shows that models are often used to express goals. Hence, especially for

goal-based approaches, it is not easily possible to distinguish them from, e.g., the

(goal) model decision criterium.
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Still, for the planning process in general, the task is to map the current situation

and the goals to the available adaptation actions [30]. In [61] and [62], Kramer

and Magee’s three layer architecture [51] is used, consisting of a specific layer

responsible for creating plans based on higher-level goals the adaptation logic

can choose from. In the process of the mapping, techniques such as forward

and backward search-based algorithms are often used when planning adaptation

actions [30]. As indicated by the multiple objectives stated as goals, the planning

process typically also includes conflict handling, as goals can contradict each

other [9]. Goal-based approaches enable to monitor the fulfillment of the specified

goals of the system [63,64]. In contrast to rule- or general model-based approaches,

this enables observing the accomplishment of the system’s objectives.

2.3.4. Utilities

The final category for decision making consists of utility-based systems [30]. The

main objective of these approaches is to compare different adaptation options

for choosing the best one in a certain state. For this to work, a utility function

measuring the usefulness of adaptations is needed. A utility can be positive when

the system should pursue some behavior, such as a high performance, or negative

when some behavior should be avoided, such as high costs. Utility functions

typically combine many parameters, representing the different (performance)

attributes of the system status, into a single metric [30]. It is also possible to

have separate utility functions for different non-functional properties, as present

in, e.g., [36]. In general, the specification of utility functions is more complex and

less intuitive compared to rules and models and considered as a hard task [30].

In combination with one of the other categories, utilities can increase the planning

possibilities as an action can also be mapped to benefits and costs. In the

adaptation process, utilities can be used as additional constraints or optimization

objectives for problem solvers. As an example, the performance in a system

should be as high, while the costs should be as low as possible. This shows that

especially utility-based approaches capture a tradeoff between the usefulness of

a non-functional objective and the costs of pursuing it. Tesauro et al. call their

approach goal-based by applying utilities [65]. This again shows the problem of

distinguishing approaches from one another.
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As shown in this section, each decision criterium has certain advantages or

disadvantages. Additionally, it is not possible to clearly distinguish the different

decision criteria from each other. As specific examples, it is also possible to

consider a set of rules as a model, while using a goal model can be regarded as

a model- or goal-driven decision criterium. Nevertheless, considering the four

categories for decision criteria as they are presented in [30], this thesis uses a

model-based approach. Specifically, the approach of this thesis is based on the

concept of feature modeling, which is part of the software product line (SPL)

methodology. Accordingly, the following section introduces SPLs as well as the

extended variant called Dynamic SPLs.

2.4. Software Product Lines

This section presents details of the SPL-based feature modeling approach used

for specifying the configuration space of a software product. Software product

line concepts can also be used for modeling the reconfiguration behavior of SASs,

including the internal and external context of the managed resource. First,

Section 2.4.1 presents SPLs and their static configuration approach. This includes

the introduction of the SPL lifecycles as part of Section 2.4.2. Section 2.4.3

specifically presents the feature diagram methods for modeling the feature models

in a graphical way. Section 2.4.4 shows an extension for supporting dynamic

feature selection at runtime: Dynamic software product lines (DSPLs). Based on

the idea of dynamic reconfiguration in DSPLs, context-aware feature models or,

in short, context feature models used later in this work are introduced.

2.4.1. Introduction to Software Product Lines

According to [66], the idea of SPLs emerged from general economics. Starting with

the development of the conveyor belt by Ford, the concept of economies of scale

arose. Economies of scale “arise in the production of multiple implementations of

a single design”, leading to cost reductions [67, p. 17]. This mass production was

cheaper but did not have many diversification possibilities compared to individual

handcrafted items [68, p. 4]. Based on this concept, the idea of reusing major

parts of similar products that are only distinct in smaller individual parts devel-
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oped. This approach is called Product Line Engineering (PLE), and the goal is

economies of scope. Economies of scope mean “efficiencies wrought by variety, not

volume” [69, p. 142]. The result of applying PLE are mass-produced but individu-

alized products resulting in the concept of mass-customization. Accordingly, Davis

defines this idea of mass-customization as follows: “Mass customisation is the

large-scale production of goods tailored to individual customers’ needs.” [70]. PLE

enables companies to build up a generic platform that can be used as the basis for

all product variants. Reusability is the key here for the resulting cost reductions.

The software development community became aware of this idea, which resulted

in the SPL method [66]. The tradeoff between individual handcrafted items and

mass-produced items can be seen in software engineering as the difference between

individual development and standard software [68, p. 4].

The Software Engineering Institute of the Carnegie Mellon University defines

SPLs as follows [71]:

A software product line (SPL) is a set of software-intensive systems

that share a common, managed set of features satisfying the specific

needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way.

The definition demonstrates the original PLE idea of having a common platform

and developing multiple individual features on top for meeting the needs of one

specific area. This common platform is created using so-called core assets. Hence,

the definition shows an important step in SPL development–defining commonalities

of the whole product line. This step is part of one of the two SPL lifecycles, which

the next section introduces.

2.4.2. SPL Engineering Process

The two parts of the SPL engineering process are domain engineering and appli-

cation engineering. Figure 2.5 depicts the whole SPL process, including the two

cycles [66]. As depicted, both lifecycles consist of multiple steps and require to

already have business planning, product, and requirement information present.

Based on these fundamentals, the following lifecycles aim at identifying product-

specific as well as common features, which apply to the whole product line. In

the following, the two lifecycles are introduced.
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Figure 2.5.: SPL Lifecycles [66].

The main goals of the domain engineering process are to define the commonality

and the variability of the product line [68, p. 21]. Commonality and variability are

defined using a variability model, which defines common and exchangeable system

parts. Additionally, the set of applications of the software product line is defined.

Each step creates reusable artifacts that employ the defined variability. These

domain-specific artifacts, which are shown in yellow in Figure 2.5, compose the

platform the software products rely on. The artifacts are connected by traceability

links to retain consistency avoiding inconsistent artifacts, which may result in

unusable or broken application products.

The domain engineering process begins with the domain analysis. This includes

requirements engineering to define and document the “common and variable

requirements of the product line” [68, p. 25]. The most interesting product of the

domain analysis process for this thesis is also created here—the variability model.

This variability model represents the configuration options of an SPL, and it will

be introduced in detail in Section 2.4.3. Domain design results in a high-level

reference architecture usable for the whole product line. The requirements from

the first step are the input for this step. Then, the domain implementation step

creates specific designs and implementations that are common to the whole SPL

based on the reference architecture. Domain testing is a verification and validation
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step, checking all the steps that happened before. Furthermore, this measure tests

the common artifacts to reduce errors in the common platform right from the

start [68, p. 27].

Application engineering aims to exploit the common platform of the SPL as well

as possible and to relate the software product to the reusable domain-specific

artifacts [68, p. 21]. Additionally, it binds the variability model to the actual

product instance that is to be built. Product analysis is also concerned with

requirements engineering. Here, the focus lies on identifying the differences

between platform and product requirements. Product design uses the reference

architecture created in the domain design step to instantiate an actual product

architecture and configures it to the needs of the product. Product implementation

creates the application as a combination of the common platform implementation

artifacts and product specific modules. This results in the finished application

exploiting as many domain-specific artifacts as possible. The last step, product

testing, runs tests on the finished software product. The outcome is a report with

the test results. This ends the application engineering and results in the finished

product. As seen in Figure 2.5, the products are used as feedback for possible

new business planning requirements.

After the brief introduction of the whole SPL process, the next section focuses on

the models to define variability in the product line.

2.4.3. Variability Models

For specifying variability models, features are used. A feature is a “system

property that is relevant to some stakeholder and is used to capture commonalities

or discriminate between systems” [72, p. 267]. According to Pohl et al., variability

models can be created using standard Unified Modeling Language (UML) modeling

techniques [68, p. 75 f.]. However, since UML is not specifically designed for

facilitating SPL development processes, so-called feature models are the common

way of specifying dependencies between features of an SPL [49].

Features are organized in feature diagrams. They are a tree structure representing

the software system as a whole. The tree consists of a root feature with several

layers of child features. A feature model generally consists of a feature diagram

and additional information such as information on the binding time or priorities.
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Benavides et al. identified three major categories in the domain of feature models:

basic feature models, cardinality-based feature models, and extended feature

models [73]. In the following, they are briefly introduced.

Basic feature models: Based on the literature review of Chen et al., most

basic feature modeling approaches are grounded on the Feature-Oriented Domain

Analysis (FODA) approach by Kang et al. [49, 74]. Kang et al. were the first

who introduced the term feature model and proposed a hierarchical feature tree

structure for specifying all features of an SPL [73]. The original FODA notation

includes the elements shown in Figure 2.6 (a): and as well as xor groups, and

the possibility to define optional features. Also, features can require each other

or can be declared as mutually exclusive. These properties are called cross-tree

constraints. However, these characteristics were not depicted graphically yet. In

the graphical representation, plaintext at the ends of the edges was used for the

features themselves. Later, Kang et al. extended their original approach, e.g., by

representing features as text boxes [75, 76]. Parent features that have multiple

child features are provided by either one or multiple of these child features. In

this case, child features specialize a parent feature. Furthermore, new elements

were introduced to the original FODA notation later [77]. Griss et al. [77] added

an or operator as well as graphical representations for the cross-tree constraints.

These new elements are depicted in Figure 2.6 (b).

and xor oroptional
(a) (b)

X Y

requires
X Y

excludes

Figure 2.6.: Basic feature diagram elements: Original FODA notation (a) [49] and
extended FODA notation (b) [77].

Cardinality-based feature models: Riebisch et al. propose that there are

UML-like multiplicities covered by feature models [78]. In order to improve the

understanding and to formally define them, they introduce an annotation for

representing the multiplicities of feature sets. Later, these cardinalities were

defined more specifically as group type cardinalities [72, 73]. A group type

cardinality defines explicitly when a parent feature is part of the system, how

many child features can be selected in a configuration. As an example, a group
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type cardinality of 0..* means that the child features are all optional. Also, there

are feature instance cardinalities, which denote how many instances of a feature

can exist at runtime [72]. For distinguishing both cardinality types, group type

cardinalities are denoted with angle brackets and feature instance cardinalities

with square brackets (see Figure 2.7 (a)). Analogously to the UML notation, a

cardinality is annotated with a lower and an upper limit. In summary, cardinalities

state in a clear way how to interpret a feature diagram. They enhance the overall

expressiveness and modeling capabilities to state the needed constraints more

specifically.

(b)

Name: n
Domain: d
Value: v

feature attribute

<i,j>

group type cardinality
[i..j] [i..j] [i..j]

feature instance cardinalities
(a)

Figure 2.7.: Extended feature diagram elements: Cardinality-based notation
(a) [72, 78] and feature attributes (b) [79].

Extended feature models: According to Benavides et al., extended feature

models, also called advanced or attributed feature models, are able to express

additional attributes of features [73]. There is no consensus on the information

an attribute should contain. However, most approaches state that an attribute

contains a name, a domain, and a value. Using these attributes, it is possible to,

e.g., describe requirements for a certain feature more specifically. Since there are

multiple approaches for describing attributes, it is also not clear how to depict

them. This thesis uses the notation introduced by Benavides et al. [79]. The

notation can be seen in Figure 2.7 (b). Additionally, it is possible to express

constraints between features and attribute values in the form of Boolean and

arithmetic formulas. This allows expressing conditions between attribute values

and features, e.g., requiring a specific attribute value if a particular feature is

activated.

This section presented the generic and static SPL approach as well as extensions

of the FODA notation for feature diagrams. Based on this introduction, Dynamic

SPLs, as well as context-feature models, are introduced in the following section.
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2.4.4. Dynamic Software Product Lines

Due to the demand of today’s environments, adaptability gets gradually more

important for software systems [66]. Static SPLs do not fulfill this requirement as

the variability defined in feature models gets bound at design time. The difference

between SPL and DSPL binding can be seen in Figure 2.8 (a) and (b). A software

product built using the SPL approach is configured once at design time. The first

step is to apply the feature model for selecting overall valid configurations from all

possible configurations, shown as a hexagon in the figure. Then, a configuration

for the product to be built is selected. Thus, the developer builds such a variant

for a rather static execution environment. Hence, the software might and probably

will perform sufficiently in exactly this environment. With a dynamically changing

context, SPL-based software possibly does not perform well anymore due to the

requirement for adaptation and reconfiguration at runtime [80].

Product
Configuration

Valid Con-
figuration Space

Apply FM Configuration Apply FM Configuration

Reconfiguration

Apply FM Configuration Change
of Context

(a) (b)

(c)

Configuration Space
of Context

Active Product
Configuration

Figure 2.8.: SPL (a), DSPL (b), and context-aware (c) configuration. FM: Feature
Model [81].

Software built using a DSPL is able to adapt itself, e.g., to changing user preferences

or other context changes. This is realized by binding features at the start of the

software and at runtime repeatedly shown in Figure 2.8 (b). Like in the SPL

approach, the feature model is applied for selecting valid configurations. Then,

a valid start configuration is selected at design time. In the DSPL approach,

the valid configurations are connected by arrows building a directed graph. The

product changes its configuration based on this graph defining possible transitions

between all valid configurations. This enables adaptive behavior for the software.

As configuration changes are triggered by the context, it is crucial to monitor

the context while always storing a model of the current system and the state of
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its environment. In fact, in order to plan a good reconfiguration, it is the most

important task for the application to monitor itself and the context and change

the configuration based on the monitoring results [66].

Since the context is essential for reconfigurations (cf. context-awareness in Sec-

tion 2.1), extended feature models have been further enhanced with context

modeling capabilities called context feature models (CFMs) [53,81]. CFMs con-

tain a parallel tree structure in the same way as the (system) features in feature

models for specifying the context. This parallel context tree enables to specify

constraints between context and system features and attributes. When using a

CFM at runtime, the context tree is instantiated, which automatically restricts

the possible ways the system can be reconfigured. Figure 2.8 (c) shows this

process. In a first step, the feature model restricts the set of all configurations to

valid configurations only. After the system is started with an initial configuration,

reconfigurations between product configurations are constrained by the current

context, as indicated with the dashed lines in the figure. As the context of the

system changes, the available possible configurations change as well.

Related to this, the context monitoring and modeling can be divided into the closed

and open (world) approach [82, 83]. The closed approach means that the possible

states of the DSPL get fully defined at design time. In the open approach, the

system is supposed to find new context situations and configurations at runtime.

According to [82] and [83], this is usually tackled with an online learning approach

with an own MAPE-K loop on top of the first MAPE-K loop. This can be seen

as adaptation of the adaptation logic or as self-improvement [16].
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Research methodologies propose a structured way of pursuing a research project.

In the field of information systems, the design science research methodology as

proposed in [84] can be used. It follows the principle of an iterative process for

solving a specific problem. This general principle can be defined more specifically

by proposing a particular process instance others can apply for their research,

such as [22] or [85]. This thesis follows the design science research method process

of Peffers et al. [22], as the proposed steps can easily be mapped to the different

steps of developing software artifacts, and this fits this thesis’ objective to develop

a runtime environment for adapting communication systems.
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Figure 3.1.: Design science research methodology by Peffers et al. [22].

The design science research method of Peffers et al. consists of six steps, shown in

Figure 3.1. The process allows for having different research entry points. There

are problem-centered, objective-centered, design & development centered, and

client/context initiations possible. Either way, after the instantiation, the process

follows the six steps. This thesis begins the process with a problem-centered

approach, as the problem is that it is difficult to make communication systems

adaptive, especially for non-SAS experts.
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In the beginning, the process starts with the Identify Problem & Motivate step.

In this step, the problem that is supposed to be solved is defined. Additionally,

this step shows the relevance of the problem. Ideally, the problem can be divided

into smaller sub-problems for better understanding. In the case of this thesis, the

problem is motivated in Chapter 1, including the proposition of research questions.

Also, the research gap is identified more specifically as part of Chapter 4 outlining

requirements and Chapter 5 presenting related work.

The second step is called Define Objective of a Solution. Based on the problem

definition in the first step, this step specifies the overall objectives of the design

science research process. This includes evaluation criteria so that a comparison

between the new artifact and already existing artifacts is possible. The functional

and non-functional requirements of this thesis’ artifact are presented in Chapter 4.

Step 3 is the core step for all design science research processes–Design & Develop-

ment. This step includes the design and creation of the artifact. Depending on the

problem and the objective, the result of this step can be “constructs, models, meth-

ods, or instantiations” [22, p. 55] or even “new properties of technical, social, or

informational resources” [22, p. 49]. Besides the actual artifact development, this

step includes the specification of the needed functionality and the architecture of

the artifact. The artifact of this thesis is REACT, including different model-based

specification possibilities. REACT is presented as part of Chapters 6 and 7.

The following step is Demonstration. This step demonstrates the use of the

artifact in the problem domain. According to Peffers et al., it may be possible

to, e.g., use experiments, simulations, or case studies in this step. For the

demonstration, the use of the artifact and required knowledge about the problem

domain is needed. The demonstration of the implementations consists of the

application of REACT Core (Chapter 6) in combination with the REACT Loops

(Chapter 7). Additionally, the visualization approaches in connection with REACT

are demonstrated as part of Chapter 8.

After the demonstration of the possibility to use the artifact in the problem

domain, an Evaluation is needed for quantifying its benefits. The evaluation

method depends on the type of the artifact. Ideally, step 2 defines already some

metrics, which can be evaluated here. However, the evaluation step may also

include additional quantifiable metrics. In this step, it is also possible to compare
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existing solutions with the new artifact. As the evaluation determines how well

the artifact performs according to the defined metrics, it is possible to iterate

back to step 2 or 3. Evaluations and feasibility studies are presented as part of

Chapters 7 and 8. This includes a comparison with existing approaches from the

literature. The discussion considering the fulfillment of the different requirements

presented in Chapter 4 takes place in Chapter 9.

The last step is to communicate the results. The step Communication includes a

description of the artifact, its importance, novelty, as well as the effectiveness in

the evaluation. This can be done as part of any publication.

As indicated by the arrows in the process figure, it is possible to iterate back to

either the objective definition or the artifact creation. The communication of the

results is handled with this thesis and as part of the publications related to it.

Figure 3.2 shows the applied methodology as well as the iterations and the

corresponding publications. Beginning with the problem and motivation, as

presented in Chapter 1, it is complex to make communications systems adaptive.

Based on this fact, the objective of a solution is a model-based runtime environment.

Using this objective as foundation, multiple iterations took place. These iterations

consist of the design & development, demonstration, and evaluation of different

adaptation logics, REACT itself, and the two visualization approaches CoalaViz

and EnTrace. Each iteration resulted in a publication, which is identified by its

respective conference name in the communication step. The publications are

ordered by date, with the most recent one at the bottom.
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Figure 3.2.: Iterations following the design science research methodology of Peffers
et al. [22]. Ch.: Chapter.
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Following the methodology of Peffers et al. [22] described in the previous section, as

well as building on the observations, motivation, and research questions presented

in the introduction, this section outlines requirements for the approach of this

thesis. Hence, pursuing the process for requirement engineering proposed in [86],

this section identifies stakeholders and corresponding functional and non-functional

requirements. Parts of this chapter are based on [11]1 and [87].

4.1. Stakeholders

Two scenarios necessitate the introduction of adaptivity to a communication

system. First, an adaptive communication system may be developed from scratch.

In the second case, the objective is to add adaptive capabilities to an existing

communication system for, e.g., improving the system’s performance at runtime.

In both scenarios, a software development process, also known as software de-

velopment life cycle, is followed. There are many different software development

life cycles available [88]. Such a life cycle determines how to conduct the soft-

ware development process. Typically, a software development life cycle provides

a list of consecutive steps a development team should follow when creating or

changing software components. Therefore, this paradigm can be applied to the

two scenarios mentioned above. Accordingly, for the stakeholder analysis of this

thesis, we use the sequence of development stages presented by Rosove, as they

represent the broad steps of a development process [89, 90]. Later, the similar

Waterfall Model has been introduced, which has a comparable structure, either

with or without the possibility of iterations [91]. Rosove’s process is shown in

Figure 4.1 and follows the steps requirements, design, production, installation,

and operations. Additionally, it is possible to have iterations of the process based

1 [11] is joint work with M. Breitbach, C. Krupitzer, M. Weckesser, C. Becker, B. Schmerl,
and A. Schürr.
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on feedback. More modern development processes, such as the various agile

development methodologies, consider similar development steps [92]. Hence, the

general steps presented by Rosove’s process still apply today.

Requirements

Design

Production

Installation

Operations
Feed-
back

Time

Developer, User

Developer, User

Developer

Administrator, Developer

Administrator, User

Figure 4.1.: Development stages as presented by Rosove [89, p. 18] with the
identified stakeholders per stage. The dashed boxes indicate steps,
which are not directly addressed by this thesis’ approach.

Starting with the requirements step, this involves the system developers conducting

the requirements engineering process as well as the (potential) users of a system.

The users are needed in the process of defining the requirements of the (new)

system. Hence, these two groups represent the first stakeholders. Next, according

to Rosove [89, Chapter 4], the design of a system also includes users of the (new)

system for evaluating it as well as developers. As shown by the dashed boxes in

Figure 4.1, these two stages are not directly addressed in this thesis. Subsequently,

the production step represents the actual development of the system. In this case,

the system developers are involved exclusively. Considering the goal of this thesis,

the system developers are supposed to use the artifact of this thesis to either

implement a new adaptive communication system or add adaptive capabilities

to an existing system. Then, there is the installation step, which is executed by

administrators in cooperation with the developers. In this step, the developed

system is deployed on the available computing resources. The artifact of this

thesis should support the administrators and system developers in deploying the

final system distributedly in a simple manner. Finally, the administrators have

to operate and monitor the deployed system at runtime in the operations step.
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In this step, the users are involved as well, as they utilizes the running system.

In the following, each stakeholder group is defined more clearly, focussing on the

development of adaptive communication systems.

System Developers: A system developer builds the communication system

and represents a system developer in the corresponding field. Hence, considering

SAS, the system developers engineer the managed resource, which gets adapted

to changes at runtime. System developers do not necessarily know about SAS

engineering but are experts in their respective fields of communication systems.

These can, e.g., be overlay networks or software-defined networking (SDN). If

system developers want to make their communication system adaptive, they want

to change as little as possible in their system for saving developing effort and,

subsequently, time and money. By using an available framework or runtime

environment, changes are mainly needed for integrating the connection between

the managed resource and the (external) adaptation logic. If the communication

system already exists, system developers want to be able to add adaptive behavior

to the existing system without the need to redevelop everything. As the commu-

nication system can be developed in different programming languages, system

developers require a high compatibility with different programming languages

from a framework supporting them. When thinking about the adaptive behavior,

they need an abstract way of defining how the adaptation logic reconfigures

their system at runtime without the need for building an adaptation logic from

scratch. For conducting this task, it helps them if the technologies for modeling

the adaptive behavior are related as closely as possible to well-known software

engineering methodologies. At development time, they want to make sure that it

is as easy as possible to check the system’s adaptive behavior for correctness and

goal accomplishment.

Users: In general, the users of communication systems demand a working system

with a high performance. In the case of communication systems, the users can be

end-users utilizing a network using their smartphones or service providers using a

network for providing their service. In both cases, the network’s performance can

be characterized using different metrics such as available bandwidth, response

time, or—more general—the quality of service (QoS) or experience.

Administrators: Administrators of a communication system need to deploy and

manage the (running) system together with the system developers. Considering
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deployment, this task should be as easy as possible. This includes a simple way

to specify the deployment of the final system as well as a mostly automatic

procedure to start the distributed components of the adaptive communication

system. Looking at the management possibilities of the running system, the

administrator must be able to observe and understand the behavior of the adaptive

system. In case the adaptive system behaves not as intended, an administrator

must be able to influence or even change the adaptive behavior of the adaptive

communication system at runtime.

4.2. Functional Requirements

Based on the previous observations and the analysis of the stakeholders, this

thesis’ objective is to address the following functional requirements. As a notation,

this thesis uses the abbreviation RF with an index for the functional requirements.

RF1—Support for all Self-* Properties: As described, already in the field

of IoT, the heterogeneity of SAS is high. Additionally, SASs (can) support up

to four self-* properties. Developers should be able to implement either self-*

property in any combination with any kind of managed resource. Accordingly,

the first functional requirement demands the possibility to support possibly

all self-* properties. This generic approach also targets RQ1. Providing this

functional requirement makes it possible to use the final artifact for the entire

self-management capability without limitations.

RF2—Ready-to-Use Decision Engine: Considering RQ1 and RQ2, which

aim at supporting system developers, a solution for adapting communication

systems should provide a ready-to-use decision engine. If no decision engine is

present, a system developer is required to integrate one manually, resulting in

implementation effort and the need for SAS and particularly planning knowledge.

RF3—Multi-Language Support: As legacy systems are heterogeneous and

typically written in many different programming languages, for supporting system

developers (cf. RQ2 ), the runtime environment should functionally support

multiple programming languages. Also, this enables developers to use their

preferred programming languages when developing new systems.
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RF4—Language-Independent Predefined Interfaces: For connecting a

managed resource to an adaptation logic, e.g., predefined interfaces defined in

an Interface Definition Languages (IDLs), can be used. Accordingly, approaches

such as CORBA [93,94] enable to specify interfaces in a programming language-

independent way. Then, specific bindings for programming languages can be

generated. This requirement targets RQ2 and is connected to RF3, as it supports

system developers in using their favorite programming language for engineering a

new system or easily support existing heterogeneous legacy systems.

RF5—Support for Existing Systems: In order to achieve a broad and easy

applicability (cf. RQ1 ) and possibilities to add adaptive behavior to existing

systems, this thesis’ approach should support legacy systems. Hence, it should

not be necessary to write completely new applications or systems. Instead, this

thesis’ approach should support system developers (cf. RQ2 ) in making their

legacy systems adaptive.

RF6—Development Process: Even the best framework or middleware does

not help in making systems adaptive if it is unclear how to use it. Hence, this

constitutes the requirement of a clearly defined development process for system

developers addressing RQ2. By tackling this requirement, the runtime environment

is able to allow developers to follow a process for efficiently using the approach.

RF7—Distributed and Decentralized Feedback Loops: Considering RQ1

and according to the installation step in Figure 4.1, for targeting communication

systems, the framework inherently must support distributed managed resource

deployments. Additionally, the feedback loop itself should be able to run in a

distributed way supporting MAPE-K distribution patterns (as presented in [15]),

which increases scalability and deployment options.

RF8—Runtime Monitoring and Modifications: In order to make sure every-

thing works as specified, the framework should enable to monitor the adaptation

behavior of the system as part of the operations step. Additionally, when the de-

ployed system is in the operations phase, changes in the execution environment or

requirements can also foster the need to influence the goals of the adaptive system

or even change the deployment at runtime. Hence, this functional requirement,

addressing RQ3, targets the ability to monitor and update a system’s objectives

and deployment when it already runs.
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4.3. Non-functional Requirements

Besides outlining functional requirements, the objective of this thesis is to address

the following non-functional requirements. As a notation, this thesis uses the

abbreviation RNF including an index for the non-functional requirements.

RNF1—Generalizability: An approach allowing to make any communication

systems adaptive must provide high generalizability. This induces no use case-

specific architecture or implementation, reusable interfaces, and specification

capabilities. High generalizability leads to broad applicability in many cases.

RNF2—Simple Specification: For targeting system developers in the field of

communication systems, the technique for specifying the adaptation behavior

must be as simple as possible. This means that a universally applicable and

small set of easy-to-use concepts is beneficial for the application of this thesis’

framework. This also includes that system developers should be able to reuse

existing software engineering knowledge for specifying the adaptation behavior.

RNF3—Performance: As with every software, the runtime environment as part

of this thesis should have a high performance. Possibly, the performance should

allow using the approach in systems where fast adaptations are needed. This

helps in delivering every user the desired QoS.

RNF4—Reusability: As a framework should increase the development speed

by providing structures and interfaces, the reusability must be high. If the overall

reusability is low, a framework is not used by developers, which renders it useless.

Thus, the developer should be able to reuse the framework’s facilities as much as

possible, reducing the development effort and increasing the development speed.

RNF5—Flexibility: Other than static software systems, SASs are exposed to

constant change. Hence, the feedback loop itself should be flexible as well, e.g., in

the case of changing requirements. Flexibility is connected with RF8 proposing

runtime modifications and determines the degree of possible modifications such

as moving or replacing MAPE components or changing the knowledge of a SAS.

RNF6—Extensibility: Finally, the extensibility of this thesis’ artifact should

be high. A high extensibility makes sure that system developers can extend the

runtime environment with custom logics or algorithms without the need to adjust

the available structures and services in any way.
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5. Related Work

This section outlines the related work of this thesis. First, Section 5.1 presents

the used classification approach for comparing the subsequent related works.

Then, Section 5.2 gives an overview of related work in the field of frameworks

and implementation approaches for engineering self-adaptive systems. These

approaches are created from the perspective of SAS research without taking

communication systems specifically into account. As this thesis aims at making

communication systems adaptive, Section 5.3 presents the related work in the field

of Autonomic Networking as the second stream of research, which aims at similar

goals as Autonomic Computing in the communication systems domain. Finally,

the last section uses the classification presented in Section 5.1 for discussing the

results and for summarizing the research gap this thesis addresses. This chapter

is based on [11].

5.1. Classification

This section outlines the classification for comparing the related works presented in

the following sections. The categories of the classification depicted in Figure 5.1,

which are based on the previously presented requirements, aim at making it

possible to compare different approaches for engineering networked self-adaptive

systems. Hence, the requirements from Chapter 4 are shown in combination with

the different categories. The top-level categories consist of Adaptation Capabilities,

Development Support, Deployment, and Evaluation Capabilities.

For comparing the adaptation capabilities, the first category determines if an

approach supports all four self-* properties. A generic framework or runtime

environment for developing SAS is able to support all four properties. Only by

supporting all four properties, a complete solution providing self-management

capabilities, as defined in Section 2.1, is possible. This category directly maps

to the functional requirement Support for all Self-* Properties (RF1), as well as
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Classification 
Criteria

Adaptation 
Capabilities

Development 
Support Deployment Evaluation 

Capabilities

All Self-* 
Properties
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Supports 
Existing 
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Use Case-
Independent

Multi-
Language 
Support

Predefined 
Interfaces

Specified 
Development 

Process

Decentralized 
Loop

Runtime 
Modifications

Code 
Available

Comparison 
Available

RF1

RNF1

RF2

RNF4

RF5

RNF4

RNF1

RF3

RNF1 RNF4

RF4

RNF1 RNF4

RF6

RNF2 RNF4

RF7

RF8

RNF5

RF1: Support for all Self-* Properties

RF2: Ready-to-Use Decision Engine

RF3: Multi-Language Support

RF4: Language-Independent Predefined Interfaces

RF5: Support for Existing Systems

RF6: Development Process

RF7: Distributed and Decentralized Feedback Loops

RF8: Runtime Monitoring and Modifications

RNF1: Generalizability

RNF2: Simple Specification

RNF3: Performance

RNF4: Reusability

RNF5: Flexibility

RNF6: Extensibility

RNF6

RNF6

Functional Requirements Non-functional Requirements

RNF3

RNF3

Figure 5.1.: Classification criteria and mapped requirements, presented in [11].

the non-functional requirement RNF1 aiming at generalizability. The following

category, Provides Decision Engine, determines if a ready-to-use decision engine

is provided. If this is not the case, a system developer must implement the logic,

increasing development time and creating the need for SAS expertise. This cate-

gory directly maps to functional requirement RF2 and non-functional requirement

RNF4 involving reusability. Next, the category titled Supports Existing System

checks if an approach can be applied for an existing system or if it is only appli-

cable for integration into newly developed systems. This maps to requirement

RF5 (Support for Legacy Systems). Also, non-functional requirement RNF4,

reusability, can be taken into account. The final category, Use Case-Independent,

checks if an approach can be used independently of a specific use case or managed

resource. This maps to the non-functional requirement RNF1, aiming at general-

izability. Additionally, if the system is extensible, it can be adjusted for new use

cases (RNF6).

The following top-level category handles the development support of an approach.

First, for development support, the category indicates if an approach supports
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multiple programming languages (functional requirement RF3 and non-functional

requirements RNF1 and RNF4, reusability). However, it is not only important that

a framework can be used with multiple programming languages, but it also helps

if it features predefined interfaces, which can be reused (functional requirement

RF4 and non-functional requirements RNF1 and RNF4). Also, this increases the

extensibility (RNF6). Finally, an overall development process a system developer

can follow helps in applying a framework or an approach (functional requirement

RF6 and non-functional requirements RNF2, simple specification and RNF4).

The deployment category contains two subcategories: Decentralized Loop and

Runtime Modifications. The former subcategory determines if the loop instance(s)

of an approach can be executed in a distributed way as well as if it supports

decentralized control. This means that, e.g., the monitor of one feedback loop

instance runs on a different host than the rest of the instance (functional require-

ment RF7). The latter subcategory describes if the deployment, either in terms

of running instances or in terms of the specification of the adaptive behavior, can

be changed at runtime (functional requirement RF8, runtime modifications and

non-functional requirement RNF5, flexibility). By that, it describes the possibility

of self-improvement [16]. Hence, if runtime modifications are possible, it also is au-

tomatically possible to add a higher-level feedback loop for automatically changing

another feedback loop, as described in the hierarchical control pattern [15].

The last top-level category is concerned with capabilities for evaluation. First, for a

direct comparison of different implementations, it is important that the source code

of an approach is available. This makes it possible to, e.g., implement the same

case with multiple approaches for measuring and comparing the performance (non-

functional requirement RNF3). Additionally, this is important when comparing

a new approach to an existing one, e.g., in terms of implementation effort and

techniques. Second, for a quantitative and qualitative comparison between multiple

existing approaches, an already available comparison as part of a research paper

is helpful. Performance, as defined in RNF3, is one dimension for a quantitative

comparison. The dimension allows reusing the same categories for observing

differences and similarities between the existing approaches and a new approach.

After the introduction of the classification, the following section presents related

work in the field of engineering approaches for SASs.
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5.2. Approaches for Engineering Self-Adaptive Systems

Engineering of self-adaptive systems is a prominent research area with a large

body of excellent related work that this thesis can build upon. The research

landscape has been reviewed in [95]. Several related approaches perform adap-

tations based on architectural models (e.g., [5, 96, 97]) or specify architecture

definition languages for self-adaptive systems (e.g., [98–100]). Other model-based

engineering approaches such as [101–104] often use DSPLs [66] with feature dia-

grams. The models@run.time research stream proposes to use runtime models

that represent the system and environment for reasoning [105, 106]. However,

all of the approaches mentioned above do not offer an implementation explicitly

designed to be used by others. Since the goal of this thesis is to design an approach

that aims at high applicability for practitioners and fellow researchers, this thesis

focuses on related work aiming at providing an implementation or a framework in

the remainder of this section.

ActivFORMS (Active FORmal Models for Self-adaptation) is a model-driven and

reusable approach for designing and executing verified adaptation logics [107–110].

It is based on the FORMS modeling approach for specifying formal models

of self-adaptive systems [111, 112]. The overall idea is that the developer can

provide a verifiable model to ActivFORMS, which gives guarantees considering

the correctness of the adaptation behavior beforehand and executes the specified

adaptation logic. For this, ActivFORMS provides generic templates, which can

be used with any verifiable modeling language that is able to be executed as well.

Additionally, the approach continuously verifies at runtime whether the current

instantiation is able to achieve the specified adaptation goals. As verification

approach, timed automata in combination with statistical model checking are

used. One requirement for deployment is that the managed resource is already

completely instrumented with probes and effectors. There is no guidance or

constraint on how the managed resource is connected to the adaptation logic. At

runtime, ActivFORMS supports evolution by using explicit interfaces for updating

the models. This allows for runtime modifications and self-improvement. Based

on ActivFORMS, Weyns et al. created a specific instance named ActivFORMSi,
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which is available for download1 [110]. It uses the UPPAAL [113] tool suite for

specification and verification of the used models. As verification is rather costly,

the authors mention that ActivFORMS is only suitable if the adaptation logic

has enough time for making a decision. This limits the applicability in (very)

dynamic systems. It is a generic approach targeting all self-* capabilities, provides

a decision engine (as part of ActivFORMSi), supports existing systems, which,

however, need to be already instrumented, and is use case-independent. Weyns et

al. specify a development process as part of their publications, and it is possible

to conduct runtime modifications. The source code of a prototype is available.

Cetina et al. aim to adapt pervasive systems using an SPL-based approach [114].

Their approach focuses on the reaction to changes in the managed resource’s

infrastructure and is based on previous work presented in [115]. Changes in

the system resources are limited to adding or removing a resource. Hence, the

approach only supports self-configuration and self-healing. The authors follow

the models@run.time approach [105,106] and use multiple models for separating

the problem and solution space. This is achieved by using feature models and

realization models for the problem, as well as component and structural models

for the solution space. For adaptation, in case a resource gets added, the system

proposes the activation of additional features, which the user has to confirm. If a

resource gets removed, the system automatically adjusts its configuration. The

approach provides a decision engine and is able to be incorporated into existing

pervasive systems. Other than that, it is rather limited and focuses on a subset

of the classification categories.

EUREMA (ExecUtable RuntimE MegAmodels) is a model-driven approach for

specifying and executing feedback loops [116, 117]. It uses the Megamodel ap-

proach [118,119] consisting of multiple models with mappings between them for

relating them as foundation. EUREMA provides a domain-specific modeling

language for defining two types of diagrams, namely feedback loop diagrams

(FLD), and layer diagrams (LD). The FLDs are used for specifying the internal

(runtime) model and data flow of the MAPE activities. LDs are concerned with

the architecture of MAPE loops, which are specified using FDLs. This enables

specifying hierarchies of MAPE loops and defines how loops are connected to each

1https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/, accessed 2020-
12-08
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other as well as to the managed resource. Also, the LD-based models determine

how multiple feedback loops are coordinated. The specified models can be used

by the EUREMA interpreter to be executed directly. Besides the FLDs and LDs,

a developer also has to provide runtime models, adaptation models specifying

the variability space of the managed resource along with evaluation criteria for

determining if an adaptation is needed. Additionally, EUREMA also needs a

so-called causal connection model defining how the managed resource is connected

to the formerly mentioned runtime models. EUREMA can be applied for modeling

all self-* properties, can be used in combination with existing systems without

limitations on the use case, and enables to update the models at runtime. However,

EUREMA only provides high-level modeling capabilities without reusable MAPE

components. These MAPE components have to be provided in the first place for

applying the EUREMA approach.

FESAS (Framework for Engineering Self-Adaptive Systems) is a generic ap-

proach focussing on code reuse and simplified exchange of adaptation logic compo-

nents [19–21]. FESAS uses the MAPE-K feedback loop as a template for providing

an instance of an adaptation logic. The approach defines two stakeholders in the

system at design time. First, the role of a system developer is to write the actual

logic components based on FESAS’ reusable structures provided by its reference

implementation. The finished components are stored inside the FESAS repository.

Second, system designers are able to define the (deployment) configuration using

the previously developed logic components. This includes selecting the logic

components targeting a specific use case and the specification of distribution

patterns. At runtime, the FESAS middleware uses the FESAS repository and the

configuration files for deploying the system. The available Java-based reference

system uses a publish/subscribe system for automatic communication between

the MAPE-K components [20]. FESAS provides an Eclipse-based IDE for the

development of the logic components as well as for designing the deployment

configuration [21]. This simplifies the proposed development process. Summariz-

ing, with this use case-independent framework, FESAS allows to target all self-*

properties and is able to be connected to existing systems. As it only provides

the scaffold for feedback loops, there is no ready-to-use decision engine. This

means the complete development of the feedback loop is the developers’ responsi-

bility. The implementation of FESAS is only available in Java. FESAS provides
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predefined interfaces and specifies a development process. For deployment, it

can be instantiated in a decentralized way, supports self-improvement, and the

development environment is available as public download2.

Genie [120] uses the reflective middleware approach Gridkit [121] in combination

with a domain-specific language for adapting component-based systems . Using

the developed domain-specific languages (DSLs) named OpenCOM DSL [122]

and Transition Diagram DSL, it is possible to specify the structural variability of

components as well as the context variability. The OpenCOM DSL is described as

“Architecture Description Language (ADL) with generative capabilities” [122]. This

DSL is used for the generation of the component instances and configurations.

Reconfigurations are represented using policies, which get evaluated in case of

changes in the context models. These reconfiguration policies are generated by

Genie automatically based on an instance of the Transition Diagram DSL. To

summarize, Genie is generic considering all self-* properties, provides a decision

engine, and also supports existing component-based systems. However, it is not

use case-independent, as it focuses on component-based systems. Also, Genie

does not support multiple languages and does not propose predefined interfaces.

The authors specify the process a developer has to follow, and Genie supports the

introduction of updates at runtime.

GRAF (Graph-based Runtime Adaptation Framework) is another model-based

approach for developing self-adaptive systems [123]. Reflection-based runtime

models are used for representing the managed resource. An adaptation manager

senses changes in the runtime models and adapts the managed resource by changing

them. GRAF uses code injection based on aspect-oriented programming for the

connection between models and managed resources. For specification, GRAF uses

the TGraphs tool [124] for graph-based modeling. The graphs are translated into

rules, which get evaluated by a provided rule engine. GRAF is a generic approach,

which can be used for all self-* properties, supports existing Java-based systems,

and is use case-independent. Additionally, it provides predefined interfaces as well

as a process for connecting a managed resource.

HAFLoop (Highly Adaptive Feedback control Loop) particularly aims at providing

a reusable framework for adapting the elements of a feedback loop itself [125].

2https://fesas.bwl.uni-mannheim.de, accessed 2020-12-08
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According to the authors, adapting the loop elements is, e.g., useful for recon-

figurable monitoring [126]. HAFLoop is based on the FESAS adaptation logic

template [9], which specifies the structure of a MAPE component independent of

an actual implementation. The authors extended the template with capabilities

for explicitly adapting a MAPE component’s parameters and structure, e.g., for

allowing self-improvement. Based on the extended template, the authors im-

plemented a Java-based prototype. The approach is evaluated in a self-driving

car scenario as well as in an IoT wireless network for adapting the monitoring

component by, e.g., enabling or disabling monitoring capabilities in response to

changes in the battery life. Overall, HAFLoop provides a generic framework for

Java-based systems with a focus on the adaptation of the feedback loop. Like

FESAS, it can be used for all self-* properties, supports existing systems, and

is use case-independent. Further, interfaces are predefined, there is a process for

connecting a managed resource to HAFLoop, and its source code is available3.

Kinesthetics Extreme (KX) is a Java-based system using behavioral/architec-

tural models, which focuses on the idea of adding autonomic behavior to legacy

systems [127–131]. The reference architecture of KX contains four components:

sensors, gauges, controllers, and effectors [132]. Publish/subscribe-based event

busses between the different component types of the reference architecture con-

stitute the communication facility inside KX. So-called probes are the managed

resource-specific sensors forwarding their data using a proposed “Smart Events”

XML format to gauges [129]. The gauges can preprocess the sensor data by apply-

ing filtering or aggregation techniques. It is also possible that probes rather send

raw data, which does not follow the proposed XML format. In this case, gauges

also can transform raw data to the XML format using probe- or managed resource-

specific transformation modules [129]. As the authors also consider distributed

managed resources, probes and gauges can also run distributedly. For controlling

a system, the authors proposed a workflow engine called Workflakes [133]. Con-

trollers are connected in a point-to-point fashion to specific effectors. Execution

is achieved by the effectors deploying so-called Worklets, which are Java-based

mobile software agents executed on the managed resource [129]. The agents

run inside a Worklet Virtual Machine, which translates Worklet actions into

managed resource-specific actions. Hence, each managed resource has not only to

3https://github.com/edithzavala/loopa, accessed 2020-12-08
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provide effectors. It also executes the virtual machine providing access to its own

internals [127]. With the generic workflow engine as the decision engine, possibly

all self-* properties can be achieved. KX explicitly targets existing legacy systems

and is use case-independent, as the different evaluations show [129,130,134]. It

supports decentralized loops and the modification of the deployed KX components

at runtime.

Malek et al. propose an architecture-driven framework targeting mobile applica-

tions [135]. Their approach describes a complete development process using a

model-based specification and verification at design time, runtime analysis, and a

middleware-based execution environment. The modeling approach called XTEAM

is used to represent the structure and behavior of a system, to map architectural

elements to actual hosts, and for the analysis capabilities, which are context-aware.

As XTEAM is a meta-modeling approach, it also can be extended with custom

concepts. As the technique for the analysis of the modeled concepts, mixed-integer

linear programming is used. The proposed middleware [136] provides the runtime

environment that can be used for adapting the system that runs inside of it. As

the middleware is available as Java and C++ versions, this approach can be used

with managed resources using these programming languages. However, a managed

resource must be written explicitly for the middleware, which renders the approach

unusable for existing systems. Besides, it supports all self-* capabilities, provides

a ready-to-use decision engine, is use case-independent, provides interfaces and a

development process, and is able to be modified at runtime.

MOSES (MOdel-based SElf-adaptation of SOA systems) is an approach aiming at

adapting service-based systems for achieving certain QoS goals [137]. As MOSES

targets systems using service-oriented architectures (SOA), it composes the avail-

able services and coordinates multiple services providing the same functionality.

A linear programming-based optimization engine is used for planning adaptations,

which combines the current service selection with the specified service-level agree-

ment (SLA) goals for finding valid reconfigurations. Since the approach focuses

on services, only a limited number of context attributes, consisting of response

time, reliability, and cost, are monitored and used for adaptation decisions. A

Java-based prototype of the system running in a centralized manner has been de-

veloped. Considering the comparison categories, MOSES only provides a decision
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engine and can be used with existing systems. Other than that, the approach is

tailored towards its specific use case of service-oriented software systems.

MUSIC is a development approach for engineering ubiquitous adaptive applica-

tions [12,13]. The main goal is to provide developers with means to develop new

applications providing possibilities for parameter and component adaptation in a

component-based way. In order to achieve the adaptation at runtime, a middle-

ware containing a feedback loop following the MAPE-K architecture monitors

the context of the applications and adapts running applications accordingly. As

a unique feature, there exists a master and a slave version of the middleware.

Devices with low computational power, such as handhelds, can execute the slave

version, allowing machines executing the master version to adapt the handheld.

Hence, these low-powered devices are used as sensors and effectors. The variability

of the managed resource is specified using a custom UML-based modeling notation.

This modeling approach is also used for specifying the context, which should be

monitored, as well as the QoS properties MUSIC should achieve. For avoiding

oscillation, MUSIC suspends further adaptations after an adaptation for a short

time [13]. The time delay can be changed at runtime. MUSIC also provides an

Eclipse-based IDE called MUSIC Studio besides a prototype of MUSIC itself,

which runs on top of the OSGi (formerly known as Open Services Gateway initia-

tive) component framework for Java. Unfortunately, although the authors state

that MUSIC has been developed as open source software, the MUSIC Studio

and the source code of MUSIC itself are no longer available. MUSIC provided a

reusable middleware with support for all self-* capabilities and a decision engine.

It is not dependent on a single use case, features predefined interfaces and a

development process, and enables runtime modifications.

Preisler et al. propose a middleware, including a description language-based

approach for adapting new and existing systems [138]. The description language

for coordination of the adaptation logic is based on XML. The authors use a

component-based architecture, which includes the possibility to define depen-

dencies in a service-oriented way. An application using the available distributed

components is coordinated using coordination services consisting of a monitor

interface connected to a component and an executor interface for adapting a

component. As infrastructure and for allowing communication between the dis-

tributed components and coordinators, a service bus is applied. For implementing
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the approach, the Java-based Jadex Active Component framework4 is used. The

approach does not limit its use considering self-* properties, provides a decision

engine for the XML-based coordination language, supports existing systems, and

does not focus on a specific use case. Additionally, the authors specify a set of

development steps needed to use their approach.

Rainbow is a prominent architecture model-based approach [17,18]. The goal of

Rainbow is to provide a reusable framework for all different kinds of managed

resources. The approach uses the Stitch language [99] for specifying the adapta-

tion behavior. For this, the language provides support for specifying strategies

consisting of multiple tactics. The language also provides possibilities for checking

if an adaptation strategy has been executed successfully, including the possibility

to set a time in milliseconds when this check should be performed. The managed

resource is represented using the Acme language [48], which is an ADL. In order

to model an architecture, the AcmeStudio [139] can be used. The architecture

of Rainbow heavily uses the architecture model. Using the connected probes in

the managed resource and gauges, which aggregate and preprocess raw probe

data, Rainbow updates the instance of the architecture model. Then, the model

is evaluated periodically according to the specified constraints, including non-

functional properties. If a problem has been detected, a strategy for improving

the problematic property is selected and executed via effectors. The connection

between the feedback loop and the managed resource is provided using a trans-

lation infrastructure for mapping managed resource specifics to the architecture

model and vice versa. Overall, Rainbow is a sophisticated approach allowing to

target all self-* properties. It provides a model-based decision engine, supports

existing systems, and is use case-independent. Additionally, it provides reusable

interfaces, the code is available5, and it has been compared to Zanshin [140] (see

the following description of the approach) in [141]. The comparison of Rainbow

with REACT as part of [11] is presented in Chapter 7 in this thesis.

REFRACT (REconfiguration-based FailuRe AvoidanCe Technique) is an approach

extending Rainbow with specific components and algorithms aiming at failure

avoidance in software systems [142]. In order to achieve failure avoidance in a

distributed way, REFRACT proposes a MAPE loop on a central server and a

4https://www.activecomponents.org, accessed 2020-12-08
5https://github.com/cmu-able/rainbow, accessed 2020-12-08
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MAPE loop on clients. The clients execute a software, representing the managed

resource. In [142], the Firefox browser is used as managed resource. In case a

failure is detected on a client executing REFRACT, the failing configuration of the

managed resource, represented by a feature model, is sent to the server. The server

tries to reproduce the problem, plans a so-called guard, e.g., limiting a value range

of a parameter for avoiding the failure in the future, and distributes the guard to

all clients. The clients with a problem can either wait for the server response or

try out different configurations for finding a solution locally. Clients without a

problem receive the new guards from the servers and can use them to proactively

avoid failures in the first place. REFRACT only focuses on self-configuration

and self-healing. It provides a decision engine, and it is capable of being added

to existing systems. As the server changes the adaptive behavior on the clients,

REFRACT supports runtime modifications of its feedback loop.

SASSY (Self-Architecting Software SYstems) is another approach dealing with

the reconfiguration of service-oriented architectures [14]. For the specification of

the reconfiguration behavior, a “visual activity-modeling language”, based on the

Business Process Modeling Notation [143], is used [14]. This model can be applied

for automatically generating a so-called System Service Architecture (SSA), which

represents a model@run.time and consists of a structural and behavioral view.

Reconfigurations using the SSA are (re-) compositions of services, which are

executed, e.g., based on QoS goals specified by the user. Accordingly, SASSY uses

services registered in a repository for the composition. At runtime, the approach

also supports changing requirements, which can be modeled for adjusting the

adaptations of the managed resource. Summing up, SASSY is a model-based

approach, which can be used for all self-management properties, provides a

decision engine, supports existing systems, and is not focused on a single use case.

Additionally, the adaptation decisions can be modified at runtime.

StarMX is another Java-based framework for developing self-adaptive systems [144].

Like FESAS, StarMX provides an infrastructure for developing adaptation logics,

which are composed of multiple so-called processes providing MAPE capabilities.

A process can be connected to anchor objects, i.e., sensors, effectors, or helping

objects. By that, the developer of the processes is supported with many different

services providing features such as logging and caching. The adaptation logic

consisting of multiple processes can be triggered either periodically or in response
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to specific events. For the communication and adaptation possibilities, StarMX

uses the Java Management Extensions (JMX) technology. Decision making is

done using rules and by incorporating a rule engine. However, the developer has

to create all processes manually when using StarMX. Overall, StarMX can be

used for all self-* properties, as it is a general framework. It can be connected

to existing JavaEE-based systems and is use case-independent. The approach

provides interfaces for connecting StarMX to a managed resource, specifies a

development process, and the code of StarMX is available6.

Tomforde proposes an Organic Computing-based approach for implementing SAS

in a reusable way [25]. Architecture-wise, the observer-controller pattern is used,

where a so-called system under observation and control (SuOC), referring to the

managed resource, is managed by a layer 1 controller. The layer 1 controller directly

contains a component for self-improvement. For the actual self-improvement

approach, a layer 2 controller changes the layer 1 controller using machine learning

techniques and simulations. Finally, a layer comprising layer 1 and 2 provides

interfaces for monitoring and goal management for users as well as possibilities for

coordination with other adaptation logic instances. Each individual feedback loop,

however, runs always on one machine. As the observer-controller pattern itself also

represents an architectural blueprint like the MAPE-K architecture, no techniques

are specified to use by the pattern itself. In the presented implementation,

reinforcement learning has been used on layer 1 [25]. On layer 2, evolutionary

algorithms have been applied. The presented approach has been evaluated in

many different use cases such as traffic control [145–147] or protocol adaptation of

computer networks [148–150]. Tomforde’s approach supports all self-* properties,

provides a decision engine, supports existing systems, and is use case-independent.

Additionally, interfaces between the different layers are predefined, there is a

development process described, and by directly incorporating learning and a goal

management interface for the user, runtime modifications are possible.

The final approach for engineering SASs presented in this section is Zanshin [140].

It is a control-based approach, which consists of the possibility to specify functional

and non-functional requirements. Zanshin focuses on parameter adaptation, and

its prototype is implemented using the OSGi component framework in Java. The

requirements can be specified in a model-based way, using a meta-model approach

6https://sourceforge.net/projects/starmx/, accessed 2020-12-17
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based on the Eclipse Modeling Framework7. Additionally, ECA rules can be used.

The framework focuses on self-healing in the evaluation. However, there is no

restriction regarding the other self-* properties. Zanshin provides a ready-to-use

decision engine, explicitly supports existing systems, is use case-independent, and

provides specified interfaces and a development process. Finally, the source code

is available8 and it has been compared to Rainbow in [141].

5.3. Autonomic Networking

With the emergence of Autonomic Computing proposed in [4], the idea came up to

use Autonomic Computing principles in so-called Autonomic Communication [151].

As described in the survey of Dobson et al., the Autonomic Computing goals

of combining technology with business objectives for always having functioning

systems with low administrative effort is suitable for addressing challenges of

modern computer networks [151]. Hence, the fundamental goal of Autonomic

Communication is bringing the self-* capabilities of SASs into the networks. More

specifically, Dobson et al. define Autonomic Communication as follows [151]:

Autonomic communications seek to improve the ability of network

and services to cope with unpredicted change, including changes in

topology, load, task, the physical and logical characteristics of the

networks that can be accessed, and so forth.

The need for Autonomic Communication emerges from the high management

complexity of networks, especially when setting up a new network. Accord-

ingly, Autonomic Communication “seeks to simplify the management of complex

communication structures and reduce the need for manual intervention and man-

agement” [151]. Dobson et al. mainly focus on decentralization as the central

foundation for Autonomic Communication. Hence, networks should form so-called

federations without a central instance and without any supervision by a human ad-

ministrator. In Dobson’s survey, for the most part different aspects and challenges

of the state of the art are presented and discussed. This includes decentralized

algorithms, modeling and handling of context, programming approaches, security

and trust, as well as the evaluation of systems.

7https://www.eclipse.org/modeling/emf/, accessed 2020-12-17
8https://github.com/sefms-disi-unitn/Zanshin, accessed 2020-12-08
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Based on the principles of Autonomic Communication, many approaches have

been developed. Broadly, they can be grouped into the architectural categories

hierarchical and flat [28]. These groups denote if there are possibilities of hierar-

chical control or if the Autonomic Networking system consists of nodes with equal

rights cooperating in a peer-to-peer fashion. In the following, multiple approaches

presented in the survey of Movahedi et al. of both categories are outlined [28].

5.3.1. Hierarchic Autonomic Networking Approaches

The Autonomic Internet (AutoI ) project is a hierarchical, layer-based approach [152–

154]. The overall idea of AutoI is to transform the Internet into self-managing

virtual resources working end-to-end in heterogeneous infrastructures [153]. Ap-

plying this approach results in an overlay network with uniform control and

service-based management capabilities. As part of the layered approach, first, all

physical resources get virtualized using a virtualization layer on top of the physical

networks. On this virtualization layer, the network and management services get

instantiated. Next, a management layer is responsible for instantiating the actual

MAPE-K-based decision loops in the network. Administrators control this layer

by providing high-level policies. An ontology-based knowledge plane captures all

knowledge from the other planes and distributes it. Finally, the orchestration

plane handles conflicts and negotiates between multiple network entities. AutoI

supports all self-* properties, provides a decision engine, is use case-independent,

and contributes predefined interfaces. Additionally, it enables the deployment of

decentralized feedback loops with the capability of runtime modifications.

Context-Aware MANETs (CA-MANETs) is the next policy-based approach

focussing on the context-aware self-configuration of MANETs [155–157]. The

hierarchic structure consisting of three tiers contains cluster nodes at the leaves

of the hierarchy, cluster heads, as well as so-called manager nodes. All nodes

have the possibility to enforce policies and to store different context information

in a use case-specific context model [156]. The context information is gathered

hierarchically and passed from the simple cluster nodes via the cluster heads to

the manager nodes. This enables to enforce policies on the cluster as well as

on the network level. CA-MANET is a use case specific approach providing a

decision engine and decentralized feedback loops only.
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DRAMA (Dynamic ReAddressing and Management for the Army) is an agent-

based Autonomic Networking approach focussing on the management of Mobile

Adhoc Networks (MANETs) in the US army [158–161]. DRAMA is a hierarchic

policy-based approach with a global policy agent as well as clusters of nodes

consisting of the cluster head being a domain policy agent. Every other member

of the cluster is in the role of a local policy agent. In DRAMA, there is a focus

on self-configuration of the MANET nodes [28] based on high-level policies set by

the global policy agent, which is a centralized node [159]. A policy can specify

QoS goals or rules for moving services to a different machine in case of bad

performance. Hence, e.g., the routing protocol can be switched, or a DNS server

can be moved from one node to another [159]. The hierarchy of the nodes and

clusters is observed for monitoring as well, resulting in local policy agents reporting

to their cluster head, which aggregates the data forwarding it to the global policy

agent accordingly. DRAMA uses an adaptive middleware as the foundation [162].

It supports all self-* capabilities, provides a decision engine and interfaces, allows

for decentralized feedback loops and runtime modifications.

Unity focuses on the management of cloud-based applications and the underlying

resources in a multi-agent way [65,163,164]. The management possibilities include

self-configuration, self-healing, and self-optimization. In this hierarchic approach,

there are applications running on a server cluster controlled by a so-called resource

arbiter. The resource arbiter allocates resources, i.e., servers, to applications. For

specifying the goals of the system, Unity relies on a policy repository as well as on

SLA goals. Unity has also been used in combination with utility functions [164].

Applications consist of an application manager controlling the allocated resources

and constituting a role similar to a cluster head. All communication between the

different applications for coordination is handled via the application managers.

As shown in experimental evaluations, the central adaptations are the reallocation

of resources as well as healing from breakdowns [163]. Every element of Unity

is an autonomic element as defined in Autonomic Computing [4], meaning that

every server and service manages itself autonomously. The combination of the

provided services is used to achieve the specified SLAs cooperatively. Unity

supports developers with a decision engine, decentralized feedback loops, and the

possibility of runtime modifications.
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5.3.2. Flat Autonomic Networking Approaches

The Autonomous Decentralized Management Architecture (ADMA) is a flat

approach targeting self-configuration of MANETs [165]. Hence, the available

nodes as part of the ADMA-enabled MANET reconfigure themselves in a peer-to-

peer fashion. ADMA also adapts on the foundation of policies in the form of ECA

rules. These rules are provided to at least one node of the MANET directly at the

start of the system by an administrator. Then, ADMA distributes the policies

using a custom-tailored protocol named Distributed Policy Management Protocol

(DPMP) [166, 167]. This also enables setting up joining nodes by providing

the available policies. Additionally, DPMP permits to distribute monitoring

information between the MANET nodes. The nodes adapt themselves based on

the policies and the available local and remote monitoring information stored

in local repositories. Overall, ADMA provides a decision engine as well as

decentralized feedback loops.

The Autonomic Networking Architecture (ANA) is a clean-slate project proposing

a generic network architecture, which inherently provides possibilities for auto-

nomic behavior [168,169]. The ANA approach specifies interfaces and abstract

entities. The most important abstract entities are so-called compartments, which

represent a group of network entities, without defining how the compartment

has to work internally. ANA promotes to arbitrarily chain network services,

named functional blocks, together instead of enforcing a fixed layered architecture

consisting of layers that depend on the others. For that, ANA specifies Informa-

tion Dispatch Points (IDP), which represent address-agnostic connection points

attached to functional blocks. The use of IDPs for connecting Information Chan-

nels, representing the actual connections, enables to transparently reconfigure

the message flows. ANA itself does not provide any reconfiguration mechanism.

ANA is generic and use case-independent and provides predefined interfaces. The

source code is available9.

The In-Network Management (INM ) architecture is another clean slate framework

as part of the 4WARD project for engineering the Internet of the future [170,

171]. The overall idea of the INM approach is to deploy distributed networking

components as well as management capabilities in the network. These components

9https://sourceforge.net/projects/ana/, accessed 2020-12-08
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follow the service-oriented architecture paradigm by providing different interfaces

for management and accessing the service. INM specifies that a component can

either have no integrated management at all, integrated management capabilities,

which are separated from the functional logic, or inherent management, which

is interwoven with the functional logic. For managing components without

integrated or inherent management capabilities, specific management components

only for managing the former can be created [170]. INM provides a runtime

environment for executing the developed components. Multiple components can

be composed for achieving complex behavior. A network operator, who can

be considered as an administrator, can use a global management interface for

providing high-level goals. The INM system provides feedback to the operator

using real-time monitoring capabilities. INM supports all self-* properties and is

use case-independent. Additionally, it features predefined interfaces as well as the

possibility for decentralized feedback loops and runtime modifications.

Cognitive Networks constitute another flat approach for introducing self-* capabil-

ities into networks [172,173]. The term cognitive refers to artificial intelligence

techniques, allowing the system to learn about the best adaptations continu-

ously [172]. Cognitive Networks architecturally follow the idea of the three layers

of Kramer and Magee [51] on the node level by having one layer for providing

the high-level goals, one layer representing the adaptation logic, and the managed

resource titled Software Adaptable Network (SAN). The approach makes sure

that it works with partial global information for optimizing the behavior. For

achieving this, there is a layer collecting and sharing status information between

the available network components. Besides the learning aspect, a specific end-

to-end perspective, including optimization along the complete path, delineates

Cognitive Networking from other approaches. For specifying end-to-end goals, a

Cognitive Specification Language (CSL) is employed. This language maps the

goals to the actual mechanisms, which can be adapted. Cognitive networks are

not limited concerning the self-* properties and are use case-independent. The

approach has predefined interfaces and is able to execute decentralized feedback

loops with support for runtime modifications.
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5.3.3. Standardization of Autonomic Networking

Besides the presented Autonomic Networking approaches introduced in [28], cur-

rently, there is also some effort in standardizing Autonomic Networking principles

in the US [174] and in Europe [175]. The current possibilities of autonomic

behavior in single network protocols and the research gap of providing autonomic

functions network-wide with, e.g., additional coordination and management possi-

bilities are described in [176]. Based on these observations, RFC7575 [174] presents

the summarized view of the Internet Research Task Force (IRTF) incorporating

the insights of existing works such as [151], [177], and [28]. It contains general

definitions and design goals for Autonomic Networking published for informational

purposes. Hence, it is currently not yet an official standard [174,176]. RFC7575

defines an Autonomic Node as a node without the need for any configuration,

which can operate on any layer of the networking stack. As RFC7575 focuses on

node-level autonomy, there is only a minimal dependency on central instances

resulting in decentralization and distribution being fundamental. By that, “if a

problem can be solved in a distributed manner, it should not be centralized” [174].

However, Autonomic Networking aims at coexisting with existing management

capabilities, which might be centralized for administration purposes. Conse-

quently, Autonomic Networking nodes obey their local autonomic default policies

with the lowest priority and higher-level network policies with a medium priority.

Management policies directly configuring the node, such as direct command-line

configurations, simple network management protocol (SNMP), or software-defined

networking (SDN) configurations, have the highest priority. The higher-level

policies should be as abstract as possible, e.g., by not even exposing the version

of the IP protocol used in the network. As feedback for administrators, the

network as a whole should be able to provide aggregated reporting. Considering

the overall infrastructure, there should be a common architecture for executing

autonomic functions. Accordingly, there is the need for an overall control plane for

communication and coordination between autonomic functions operating on the

IP layer. Additionally, a life cycle represented by a state model should be used for

reflecting the (deployment) state of autonomic functions in the network. Finally,

the presented ideas are combined for proposing a reference model [178] for an

autonomic node. A node should contain Autonomic Service Agents implementing

autonomic behavior of specific services or functions. Besides the possibility to
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adapt internally, external feedback loops should be able to influence the node as

well. Next, an autonomic node should contain an internal self-aware knowledge

component and a component for the discovery of other autonomic services and

nodes in the network. The node gets completed with a frontend for administrators

and external applications for monitoring the state of the network as well as the

connection to the Autonomic Control Plane [179] for coordination, discovery,

monitoring, and the communication of the feedback loops.

The European Telecommunications Standards Institute (ETSI) also has a process

for standardizing Autonomic Networking [175,180–182]. Their approach is called

Generic Autonomic Network Architecture (GANA), which constitutes a reference

model as well. GANA shall serve as an architecture for bringing self-management

into networks in the form of a reference architecture. This reference architecture

shall manage all kinds of resources, being “protocols, stacks and mechanisms” [175].

By that, GANA directly includes the concept of self-improvement [16] as learning

should directly be integrated into the so-called decision engine [183]. GANA

provides means for fully decentralized, hierarchical control-based [15], as well as

centralized deployments. This enables for horizontal coordination, e.g., represent-

ing an end-to-end network path and hierarchical coordination. In the case of

decentralized decision-making, the architecture also provides reference points for

negotiation between decision engine instances along a network path. In any case,

administrators should provide their goals using an ontology-based language for

specifying business objectives. However, as GANA only provides a blueprint and

not specific implementation details, it is not described which ontology or language

would be suitable for this. The specified goals are contained in a Knowledge Plane

(KP), which is a distributed system within the network. It provides the Overlay

Network for Information Exchange (ONIX ), enabling auto-discovery capabilities

with possibilities to query the system actively, as well as a publish/subscribe-based

interface. For tackling the heterogeneity of the different network devices, the

KP also contains the Model-Based Translation Service (MBTS ) translating from

and to specific devices to the GANA architecture [175]. ETSI considers four

architectural levels for the integration of autonomic functionality into networks

in ascending order: protocol level, function level, node level, or network level.

The protocol level consists of some of the already available protocols, such as

OSPF [184]. In this case, the protocol itself is considered to provide some auto-
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nomic behavior. GANA rather focuses on the other three levels [183]. A function

such as routing is composed of multiple protocols and is managed by a decision

engine constituting level 2 [175]. On the node level, GANA concentrates on

security, fault management, configuration and discovery, as well as resilience and

survivability [175,183]. These properties are managed in GANA by a node-level

decision engine. Finally, level 4 is the network level with the decision engines

operating on a slower timescale, which corresponds to the idea of hierarchical con-

trol [15]. ONIX and MBTS are functional blocks on the network level themselves.

The GANA developers are currently looking for use cases with ideas for applying

the presented concepts [185]. Additionally, at some point in time, a UML-based

GANA meta-model should be created for specification and deployment [183].

5.4. Discussion and Summary

This section discusses and summarizes the findings of the related work and

the categorization of the approaches. Table 5.1 presents an overview of the

categorization.

In the following, this section begins with the discussion of the SAS engineering

approaches. Summing up the categorization, first, an approach that optimally

assists system developers, supports all self-* properties [4] to be suitable for

various use cases in communication systems. Second, the integration of a ready-

to-use adaptation decision engine, which adapts the communication system based

on rules, models, goals, or utilities (see Section 2.3) makes the approach useful

for system developers without extensive knowledge about self-adaptive systems.

Third, the support for existing systems is essential to integrate self-adaptivity

into legacy systems. Fourth, a use case-independent approach is applicable to

a wide range of communication systems. We observe that multiple approaches

fulfill various of these requirements. Still, not all categories are fulfilled by a

single approach. For example, FESAS [21] and HAFLoop [125] provide excellent

developer support with reusable MAPE components but do not integrate a decision

engine.

The resulting runtime environment of this thesis aims to support the system

developer during the development process. Especially in the heterogeneous com-

munication systems landscape, an approach is easy to use if it supports multiple

57



5.4. Discussion and Summary

Capabilities Dev. Sup. Depl. Eval.

Author / System A
ll

S
e
lf

-*
P

r
o
p

e
r
ti

e
s

P
r
o
v
id

e
s

D
e
c
is

io
n

E
n

g
.

S
u

p
p

o
r
ts

e
x
.

S
y
st

e
m

U
se

C
a
se

-I
n
d

e
p

e
n

d
e
n
t

M
u

lt
i-

L
a
n

g
u

a
g
e

S
u

p
p

o
r
t

P
r
e
d

e
fi

n
e
d

In
te

r
fa

c
e
s

S
p

e
c
ifi

e
d

D
e
v
.

P
r
o
c
e
ss

D
e
c
e
n
tr

a
li

z
e
d

L
o
o
p

R
u

n
ti

m
e

M
o
d

ifi
c
a
ti

o
n

s

C
o
d

e
A

v
a
il

a
b

le

C
o
m

p
a
r
is

o
n

A
v
a
il

a
b

le

S
A

S
E

n
g
in

ee
ri

n
g

ActivFORMS(i) [107–110] • • • • • • •
Cetina [114] • •
EUREMA [116,117] • • • •
FESAS [16] • • • • • • • •
Genie [120] • • • • •
GRAF [123] • • • • • • •
HAFLoop [125] • • • • • • • •
KX [131] • • • • • •
Malek [135] • • • • • • •
MOSES [137] • •
MUSIC [12, 13] • • • • • •
Preisler [138] • • • • •
Rainbow [17, 18] • • • • • • •
REFRACT [142] • • •
SASSY [14] • • • • •
StarMX [144] • • • • • •
Tomforde [25] • • • • • • •
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ANA [169] • • •
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Table 5.1.: Overview of related approaches for engineering SAS and in the field of
Autonomic Networking, partly based on [11] (Depl. = Deployment,
Dev. = Development, Eng. = Engine, Eval. = Evaluation, ex. =
existing, Sup. = Support, • = fulfilled).
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programming languages, such as the approach by Malek et al. [135]. A vast

majority of approaches relies on particular programming languages only, with

Java being the most frequently used language. In addition, predefined interfaces,

as introduced by the prominent Rainbow framework [17], allow connecting the

managed resource easily to the adaptation logic, which is especially important for

legacy systems. Rainbow, however, belongs to the approaches [14,17,114,137,142]

that do not specify an easy-to-follow development process.

This thesis argues that an approach that is suitable for large and heterogeneous

communication systems must support decentralized control with multiple feedback

loops [15]. This typically also encompasses that one feedback loop itself can

be separated into several distinct components that may run distributed. Most

existing approaches are designed for centralized feedback loops only. As a running

system might change over time in an unexpected way, it is helpful to adjust the

behavior manually, apply self-improvement [16], or change the deployment at

runtime. This holds true for communication systems in particular, where, e.g.,

new components or subsystems may join or leave the system at any time. In

several related approaches [17,114,137,138,140,144], the possibility to influence

the system already ends with the deployment.

Ideally, the source code of the implementation is publicly available and well

documented. This helps to foster further research and enables adoption by

system developers in practice. Only a small subset of existing approaches [17,

21,110,125,140,144] provide an available implementation at present. Moreover,

a comparative evaluation with other approaches highlights the merits of the

particular approach and gives users guidance to select the proper approach for

their respective communication system. Here, only Rainbow [17] and Zanshin [140]

have been compared in [141].

Looking at the Autonomic Networking category in the table, we can see that all

approaches require a developer to engineer completely new systems. There is

no way to include existing communication systems in an Autonomic Networking

approach. Also, only a subset of the approaches provide a decision engine or

support all self-* properties. We can also observe that multiple approaches

specifically target single use cases, with MANETs being a popular case.
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Overall, the development support of the reviewed Autonomic Networking ap-

proaches is also rather low. There are some approaches providing predefined

interfaces, but there is no approach supporting multiple programming languages

or specifying a development process. All approaches except for ANA provide the

possibility to execute a feedback loop in a decentralized way. Also, 5 out of 8

Autonomic Networking methods allow for modifying the deployment at runtime.

In the evaluation category, only the code of the ANA approach is available.

In general, many problems of current, rather static networks and communication

systems are planned to be addressed as part of the Autonomic Networking stan-

dardization processes. However, looking at the standardization efforts, currently,

no implementations of the draft specifications are available yet. This leads to the

fact that a classification using the presented categories is not possible.

The analysis of the related work shows that neither the SAS engineering nor the

existing Autonomic Networking approaches provide all capabilities specified in the

categories, which are based on the challenges defined in Chapter 4. Hence, this

identified research gap, together with the motivation to provide a reusable and

model-based runtime environment presented in Chapter 1, constitutes the founda-

tion for the runtime environment presented as part of this thesis. The following

chapter outlines the system design of REACT Core, which is the foundation for

executing ready-to-use REACT Loop instantiations.
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6. REACT Core: The Foundation for a

Model-Based Runtime Environment for

Adapting Communication Systems

The previous chapter presented and compared different approaches for adapting

communication systems in the field of frameworks for engineering SASs and the

Autonomic Networking approaches coming from the networking perspective. The

chapter has shown that no approach fulfills all categories of the taxonomy presented

in Section 5.1. This chapter presents the foundation for REACT, a model-based

Runtime Environment for Adapting Communication sysTems. REACT focuses

on providing all features presented as part of the taxonomy categories and aims at

fulfilling all requirements presented in Chapter 4. In contrast to self-adaptation

frameworks, which offer a standard way to build self-adaptive applications, we

refer to REACT as a runtime environment, i.e., a platform that is additionally

able to plan and execute adaptations based on user-specified adaptation behavior

(see challenges in Chapter 4). Therefore, REACT can directly be applied without

the need for system developers to know about SASs and their development.

Following the design science research methodology outlined in Chapter 3, this chap-

ter presents the design and implementation of the foundation of this thesis’ system,

called REACT Core. REACT Core provides reusables services and structures

for executing ready-to-use model-based feedback loops, called REACT Loops.

The following sections present REACT Core’s main design decisions, reusable

components, and implementation details. Then, the optional context management

module of REACT Core is presented, including its design, implementation, and

a feasibility study. Finally, the last section outlines the development process

for applying one of the REACT Loops using REACT Core for adding adaptive

behavior to a communication system. This chapter is based on [11,186]1.

1 [11] and [186] are joint works with M. Breitbach, C. Krupitzer, M. Weckesser, C. Becker, B.
Schmerl, and A. Schürr.
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6.1. Architecture of REACT Core

This section introduces the foundation of REACT called REACT Core, which

constitutes the infrastructure for the execution of model-based adaptations [11,186].

REACT Core provides multiple facilities for executing model-based adaptations

using different models and planners based on (problem) solvers.

6.1.1. System Model

REACT Core proposes a framework for REACT Loops as well as interfaces for

connecting managed resources. Potential managed resources in the communication

systems domain are overlay networks such as peer-to-peer systems and underlay

networks, e.g., in SDN scenarios. However, REACT Core and a REACT Loop

can possibly be used in other non-network application domains as well. All

REACT Loops follow the MAPE-K architecture. The MAPE components of a

REACT Loop use information stored in the knowledge for reasoning. The loop

receives sensor information from the managed resource as an input and determines

the required adaptations as an output via interfaces.

Figure 6.1 shows the architecture of REACT consisting of REACT Core and

generic MAPE components on top of a communication system using a UML-

like notation. The interfaces, sensor component, and the knowledge service are

generic, internal parts of REACT Core and independent of the use case. The

dashed MAPE components are provided by a specific REACT Loop utilizing the

foundations of REACT Core. All gray parts in Figure 6.1 are encapsulated in a

ready-to-use fashion when applying a feedback loop instance and do not require

any programming effort from the system developer. The white boxes represent

the model knowledge and the effector implementation that have to be provided

by the system developer.

REACT Core aims to be as generic as possible. This increases reusability while

always providing the same generic facilities. Hence, the sensor and MAPE-K

components can be used to instantiate different model-based REACT Loops.

Various instances of the MAPE-K components and the sensor can be distributed

on different machines, as the communication between the components is handled by

REACT Core. Thus, we achieve high scalability and allow distributed deployments
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Figure 6.1.: REACT’s architecture in a UML-like notation. It consists of one or
multiple REACT Loops connected to (an) instance(s) of the knowl-
edge service with model knowledge. The instance of REACT Loop
uses the model knowledge to plan and execute adaptations. The
managed resource connects to REACT via well-defined sensor and
effector interfaces provided by REACT Core. The optional context
manager is omitted here [11].

and decentralized control. Following this design, fully decentralized or hybrid

patterns, as described in [15], are realizable.

At the beginning of the loop, the ready-to-use sensor of REACT Core implements

the ISensor interface and simply forwards the received data to the subsequently

connected monitor. Then, the sensor data is handled depending on the used

REACT Loop. Finally, the result of the loop is handed over to an effector as part

of the managed communication system implementing the IEffector interface.

The knowledge component provides different types of knowledge, which are defined

by the domains of the three provided REACT Loop and the corresponding IDL-

based interfaces, which will be presented in Section 6.1.2. This design allows

developers to easily extend the knowledge by adding new interface methods or

implementing a completely custom knowledge component.

Each sensor and MAPE-K component is deployed and set up using key-value-based

configurations. These configurations include information about which logic should

be loaded, a name, as well as the names of a possible successor and the knowledge
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service that should be used. Each MAPE-K component supports multiple ways

to set up the actual communication between the loop elements. First, there is

the possibility to set up static IP addresses and ports. This capability enables a

fixed setup with the disadvantage of higher configuration effort. When IP address

and port information are omitted, one of the two automatic set up procedures

finds the feedback loop components without additional configuration in the local

network. If the setup over the Internet should be automated, a dedicated registry

has to be specified where each component registers on startup. In the local

network, automatic setup is provided using multicasts. As runtime modification

is a challenge that should be supported, REACT Core enables to change the

key-value-based configuration at runtime. This enables to modify the deployment

of a feedback loop in an easy-to-use and transparent way.

Considering the specification of the adaptive behavior, self-adaptive systems can

use models, rules, goals, utility functions, or combinations of the former as decision

criteria [95]. Regarding rules and policies, they can be interpreted by humans

easily, and an adaptation logic can evaluate them quickly. However, they have

a limited expressiveness, and it is difficult to keep track of many rules in the

case of larger systems. As also presented in Section 2.3, goals on the other end

of the scale are rather abstract. This means there has to be a mapping from

high-level goals to low-level goals as well as actual adaptations. Hence, goal-based

approaches often need multiple layers of specifications for defining the adaptive

behavior (cf. Section 2.3). Utility functions are powerful, as they directly allow

measuring how well a system performs. Again, a mapping to actual adaptations

is needed here, and it is rather difficult to develop a utility function in the first

place. As models provide a sufficient level of expressiveness while being easy

to use for system developers, we select a model-based approach for specifying

the behavior of REACT-based feedback loops. By creating the models at design

time, the system developer tailors the feedback loop to the respective use case.

Thus, the system developer is able to integrate self-adaptivity into the managed

resource by only providing the models used as decision criteria. These models are

then applied by one of the REACT Loop instances. Depending on the required

complexity of the adaptation decisions and the corresponding choice of the applied

REACT Loop, different models can be employed. For the specific different model

types and REACT Loops, see the following Chapter 7.
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6.1.2. Interfaces

For specifying the communication interfaces between REACT components and

with REACT, IDL-based interfaces for the execution of Remote Procedure Calls

(RPCs) are used. This enables to support multiple programming languages

by generating high-level language-specific bindings. As shown in Figure 6.1,

there are three external interfaces, which are usable by system developers. In

order to connect REACT to the underlying communication system, REACT Core

provides sensor and effector interfaces (ISensor and IEffector). For updating

and interacting with the knowledge service, an IKnowledgeSerice interface exists.

Beginning with the former two, they are shown in Listing 6.1. The sensor

receives live context information from different parts of the communication system

and forwards it to the feedback loop. This data is provided in a serializable

format, such as JSON or XML. The system developer must provide the data

periodically by calling the receiveSensorData method. At the other end, the

effector implementing the IEffector interface as part of the managed resource

receives the result of the feedback loop. First, such an effector is able to receive

parameter changes via the sendParameterChanges method, and second, the

sendComponentChanges method allows updating the composition of the managed

resource. In both cases, it is the task of the system developer to execute the

changes provided by the two methods.

1 interface IEffector {

2 void sendParameterChanges(ParameterChange p);

3 void sendComponentChanges(ComponentChange c);

4 }

5 interface ISensor {

6 void receiveSensorData(SensorData s);

7 }

Listing 6.1: IEffector and ISensor interfaces.

Looking at the interface of the knowledge service, the method sendKnowledge,

which is exposed by the IKnowledgeService interface shown in Listing 6.2, can be

used by system developers to set or update the specifications stored in a knowledge

service instance at runtime. Updating knowledge at runtime may be necessary

due to two reasons. First, complexity and uncertainty may lead to situations that
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were not foreseeable at design time [187, 188]. Second, environmental changes

may necessitate model changes. Thus, the IKnowledgeService interface allows,

for instance, REACT to be connected to a self-improvement [16] module that

continuously learns and improves the models used by a feedback loop instance.

For fetching data from the knowledge service, the interface supports different

knowledge types, as indicated with the comments in Listing 6.2. These types

accommodate the three mentioned REACT Loop instances providing SAT, MILP,

and CSP-based knowledge.

1 interface IKnowledgeService {

2 // Update Knowledge

3 void sendKnowledge(Knowledge k);

4

5 // Get Knowledge

6 // Specific getters for REACT Loops looking like this:

7 // Knowledge getKnowledge()

8 [...]

9 }

Listing 6.2: IKnowledgeService interface.

Summing up, the presented architecture provides a reusable structure for different

REACT Loops. This allows the MAPE components to be instantiated with

different model-based logics, while the communication between the components

as well as between the adaptation logic and the managed resource is handled by

REACT Core. In the following, implementation details of REACT Core omitting

the optional context management module, for now, are presented.

6.2. Implementation

This section outlines the implementation details of REACT Core. First, this

section presents how the provided runtime environment itself is implemented.

This runtime environment is used for executing REACT Loops. The second

section presents details about the communication facilities of REACT Core. This

includes the communication inside of REACT as well as the communication

between REACT and a connected managed resource.
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6.2.1. Runtime Environment

One design decision to achieve reusability for the MAPE components is to provide

a wrapper named ALElement. It can be reused for the different parts of a MAPE-

based REACT Loop. Accordingly, this ALElement component wraps the actual

logics, comparable to SAS frameworks such as FESAS [21] or HAFLoop [125].

This wrapper is responsible for the deployment of the logic on a machine and

the communication between itself and a successor component, as well as the

knowledge. By that, we perform a separation of concerns, allowing the ALElement

component to focus on deployment and communication, while the logic can focus

on handling the decision making.

For the internal communication between the MAPE components, an IALElement

interface, shown in Listing 6.3, is used. The ALElement component implements this

interface. The main purpose is to provide the callLogic method, which calls the

logic the ALElement wraps. As a parameter a so-called KnowledgeRecord has to

be provided containing meta-information along with the actual data. Additionally,

besides the possibility to change a successor using the configuration, the interface

supports changing the successor of an ALElement at runtime via an RPC.

1 interface IALElement{

2 void callLogic(KnowledgeRecord knowledgeRecord);

3 void setSuccessor(String successorString);

4 }

Listing 6.3: IALElement interface.

REACT and REACT Core are implemented in Java. As the design of REACT

includes that the deployment is changeable at runtime, the implementation must

support starting and stopping instances of the feedback loop arbitrarily. Thus,

REACT uses OSGi [189,190] in combination with iPOJO (inject Plain Old Java

Objects) [191].

The OSGi standard describes a component and service platform for Java. OSGi

adds the notion of components to the Java Virtual Machine. By that, it follows

a component model and lifecycle aiming at modularity and extensibility. A

component, which is called bundle in the OSGi context, combines multiple Java

classes together like a Java Jar. Additionally, a manifest with meta-information

67



6.2. Implementation

has to be provided for making a Jar a bundle. This meta-information is provided

as part of a MANIFEST.MF file, which specifies information such as a bundle name,

a description, a version, and which class is initially loaded when the bundle is

starting. It can also be specified which packages or classes are provided and

exposed and which other packages or classes are needed to start a bundle. Hence,

OSGi adds the idea of visibility by explicitly exposing classes and importing

other classes forming a system to manage dependencies. In order to provide this

functionality, a bundle has to implement a publicly provided interface, which can

be imported by other bundles. The OSGi runtime then has to make sure that a

bundle importing an interface can only be started if another bundle providing the

interface is available. For this, OSGi uses a bundle life cycle shown in Figure 6.2.

Installed

Resolved

Uninstalled

Starting

Active

Stopping

Sta
rt

Stop

Install

Resolve

Update

Update

Uninstall

Figure 6.2.: OSGi Lifecycle [189, Section 3.2.5].

First, a bundle is Installed in the OSGi runtime environment, which also registers

the bundle in an OSGi-managed service registry. This means that the bundle is

loaded, and the OSGi runtime tries to resolve the needed dependencies. In case

all needed classes are available in the runtime environment, the status changes

to Resolved. Then, a bundle can be started, changing to the state Starting. In

case there is an exception, it is possible that the bundle goes back to the state

Resolved [189, Section 3.2.5]. Otherwise, it implicitly changes to the Active state.

In case the bundle is stopped, a transition via the Stopping state back to Resolved

takes place. If a bundle should be removed from the runtime environment, it

has to go back to the Installed state, and then to Uninstalled2. In case a bundle

instance gets updated at runtime, it has to be in the Installed state to make sure

that potential changes in the required dependencies can be met.

This lifecycle enables to arbitrarily add, remove, start, and stop bundles at

runtime without stopping the underlying Java Virtual Machine. More specifically,

2According to [189, Section 3.2.5], this has changed in version 4.2 of the OSGi specification.
Before that, it was possible to directly transition from Resolved to Uninstalled.
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the Sensor, ALElement, and KnowledgeService classes are bundles in REACT.

Hence, this fulfills the initially mentioned requirement for changing the instances

of a feedback loop at runtime. The OSGi standard also defines many additional

services for, e.g., authentication, configuration management, and more. However,

they are out of the scope of this thesis, as they are not explicitly needed in our

case.

The OSGi Alliance only provides the OSGi standard, which has to be implemented

as part of a specific implementation named OSGi framework. There are different

OSGi frameworks available such as Apache Felix3 or Eclipse Equinox4. In our

case, we use Eclipse Equinox for executing REACT. However, as every runtime

environment implements the same OSGi standard, portability between the different

OSGi frameworks is provided. Hence, REACT can possibly also be executed in

other OSGi frameworks.

For implementing REACT, iPOJO [191] is used. iPOJO provides a service-oriented

platform on the foundation of OSGi. As the name suggests, the general idea is to

inject POJOs with service handlers. These handlers manage the behavior of the

object according to life cycle transitions. Additionally, iPOJO adds a distinction

between a bundle and instances of that bundle. Hence, as with classes and objects,

iPOJO enables to instantiate multiple instances of a bundle. Each instance can

be set up with different properties. This is exactly the functionality that REACT

needs to instantiate, e.g., multiple monitor instances in the same OSGi runtime.

The configuration of the instances is achieved using Apache Felix File Install5.

This OSGi bundle allows observing the contents of a folder for automatically

instantiating bundles based on its content. Each component is represented by

a single key-value-based file setting the available properties of the according

iPOJO component. Hence, the content of the observed folder directly represents

the different bundle instances and their configuration. This enables to deploy

instances of REACT’s components with different configurations easily. As the

OSGi runtime observes the folder also at runtime, this allows on-the-fly changes

of the deployment. Considering REACT, the configurations are used to, e.g.,

specify a component’s successor, which knowledge service should be used, or from

3https://felix.apache.org/, accessed 2020-12-08
4https://www.eclipse.org/equinox/, accessed 2020-12-08
5http://felix.apache.org/documentation/subprojects/apache-felix-file-install.

html, accessed 2020-12-08
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which file a knowledge service should load its specification. The connection to the

successor can be specified manually, or it is specified which technique a component

should use for automatic setup. The next section introduces the implementation

of the communication as well as the different possibilities to set it up.

6.2.2. Communication

As presented in the previous sections, REACT Core provides different interfaces

for the external and internal communication. The main goals concerning com-

munication are supporting distributed deployments, allowing the use of different

programming languages targeting heterogeneity, and having a low setup effort.

Considering the communication goals, this work identified four candidate tech-

nologies, which tackle the problem of the heterogeneity. Accordingly, this section

briefly discusses the Common Object Request Broker Architecture (CORBA) [94],

gRPC6, Remote-OSGI (R-OSGi) [192], as well as ZeroC Ice [193]. Additional

approaches such as Apache Thrift [194] or Jini [195] have been disregarded

due to their early development stage, missing documentation, or the use of a

Service-Object-Oriented-Architecture, which does not enable the use of multiple

programming languages. CORBA represents a settled standard, while gRPC is

rather recent [196]. R-OSGi aims at providing an RPC solution with focus on

the OSGi standard. ZeroC Ice can be considered as the successor of CORBA, as

former CORBA developers started its development [197].

CORBA is a standard defined by the Object Management Group (OMG) without

providing a reference implementation. The CORBA standard defines a specifi-

cation providing distributed objects between different programming languages.

CORBA relies on an IDL for generating programming language bindings. However,

a specific implementation of the CORBA standard does not have to support all

possible language bindings. A developer, who wants to use CORBA, must select a

commercial or open source implementation based on the development requirements.

According to the official CORBA website7, there is no open source implementation

available that supports more than three language bindings. Most approaches

support between one or two languages. Other disadvantages of CORBA are the

6https://grpc.io/, accessed 2020-12-08
7https://www.corba.org/corbadownloads.htm, accessed 2020-12-08
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steep learning curve, complex application programming interfaces (APIs), and

inconsistencies when using different languages [197].

Next, the relatively new gRPC framework also tries to provide a high-performance

and universal open source RPC framework. gRPC was originally developed by

Google in 2015 and uses Protocol Buffers (protobuf) for serialization. Protobuf

provides an IDL as well for describing data structures and interfaces, which

is used by gRPC for generating language-specific interfaces. gRPC does not

allow distributed objects for focussing on microservice architectures. Although

developed by Google, there is no professional support, and the documentation is

rather basic.

R-OSGi uses proxies between multiple OSGi frameworks for transparently pro-

viding distributed objects [192]. The main problems here are that it is not

(professionally) supported, and it has not been further developed since 20098.

Additionally, it is not suitable for non-OSGi software. Since REACT tries to

target as many heterogeneous systems as possible, only supporting OSGi-based

software decreases the broad applicability of the approach.

ZeroC Ice aims at providing an improved version of CORBA. Compared to

CORBA, it is not only a standard but also an open source implementation.

Ice also follows the approach of distributed objects. It provides out-of-the-box

support for a variety of programming languages, has a low learning curve, and fixes

problems of CORBA, such as the API complexity and inconsistencies [197]. These

facts underline that there is a single company behind Ice and not the OMG as a

standardization consortium. Hence, ZeroC provides a stable solution with a lot of

documentation and support, including extensions for IDEs for generating language

bindings from the IDL files. Accordingly, for achieving the aforementioned goals,

REACT’s interfaces are specified using ZeroC Ice’s IDL.

Even though Ice provides the communication facilities themselves, the different

components still have to find and connect to each other. REACT provides three

possibilities, which have been briefly introduced in Section 6.1. First, there

is the possibility to manually set up the communication between the feedback

loop components using key-value properties. This includes fixed IP addresses

and ports. As this option indicates a high setup effort, two other possible

8https://sourceforge.net/projects/r-osgi/files/, accessed 2020-12-08
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ways are included in our approach. Second, for deployments over the Internet,

an instance of the Consul9 registry for automatic setup can be used. In this

case, all feedback loop components register at a central Consul registry for

setting up the communication. Finally, there is the possibility that feedback loop

components find themselves automatically on the local network. This capability is

implemented using Multicast DNS [198] and DNS-Based Service Discovery [199],

also known as their implementation names such as Bonjour10 or Avahi11. REACT

specifically uses JmDNS12 for publishing feedback loop components as services

and searching for them in the local network. Using this technology only requires

the system developer to specify names for the feedback loop chain elements, and

the corresponding components find their successor or applicable knowledge service

automatically in the local network.

The developer can decide which one of the three approaches should be used using

the key-value-based configuration file. If there is no manual specification of the

successor using IP address and port, as well as no specification of a registry

server, a component automatically falls back to the default Multicast DNS-based

approach.

6.3. Context Management Module

After the introduction of the fundamental parts of REACT Core, this section

presents the optional context management module. Until now, the presented

architecture of REACT omitted the context management module. This section

presents REACT’s context management capabilities for storing, exploiting, and

distributing the internal and external context of a connected managed resource.

As presented in the previous sections, the knowledge service itself is only re-

sponsible for providing the model knowledge specifying the adaptation behavior.

The context module aims at providing three additional features: context storage,

reminiscence, and distribution. The storage saves context situations with the cor-

responding adaptation decisions in a database enabling to analyze the adaptation

9https://www.consul.io/, accessed 2020-12-08
10https://developer.apple.com/bonjour/, accessed 2020-12-08
11https://www.avahi.org/, accessed 2020-12-08
12https://github.com/jmdns/jmdns, accessed 2020-12-08
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behavior over time. This storage is directly used by the reminiscence function,

which checks if the current context has been encountered in the past. If this is

the case, the feedback loop is able to omit the complex planning and can directly

implement the previously planned adaptation in the managed resource. Finally,

the distribution feature publishes (new) context situations and planned adapta-

tions via a publish/subscribe system. This enables the integration of REACT

into other systems and the use of the sensed contexts and planned adaptations

in external systems, e.g., for a self-improvement software. Since REACT and

REACT Core aim at being as lightweight as possible and a database is rather

heavyweight and constitutes a central instance, the context module is optional

and has to be enabled manually in the knowledge service configuration.

6.3.1. Architecture

Figure 6.3 shows the extended architecture of REACT, including the Context

Manager. For addressing all requirements to handle context, REACT in combi-

nation with the context manager, supports the phases of the context life cycle

consisting of context acquisition, modeling, reasoning, and distribution [44,200].

REACT supports the acquisition phase by receiving the sensor data from the

managed resource via the ISensor interface.

Storage is the first feature for managing and modeling context information. In

this case, any internal or external context information of the managed resource

sent to the sensor is stored here. In order to reason about the context, the

according adaptation is stored for each context information. This allows not

only to use this information for monitoring the behavior over time, but it also

allows to query the storage for faster adaptation. This is the function of the

Reminiscence module. This module allows the analyzer to check the existing

context-adaptation pairs for the current context. In case the current context has

already been stored, and an according adaptation has been planned and executed,

the MAPE loop can skip the planning step and execute the previously planned

adaptation directly. The Reminiscence enables to also specify a degree of similarity

for numeric values. This allows for specifying, e.g., that the current context values

can be a specific percentage off the already stored values. Hence, this capability

is especially useful in the case of real numbers in the sensor information where
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Figure 6.3.: Architecture REACT including the optional context manager module.
It consists of a storage, reminiscence, and distribution functionality
and is connected to the knowledge service.

even the smallest differences would directly indicate a different context state.

The last module handles the context Distribution. The goal of this module is

to distribute context information as well as corresponding adaptations from the

storage to interested external software components. This functionality enables

these software components to reason and learn about the context and adaptations

over time. Technically a publish/subscribe-based system is used. This enables to

notify interested (external) software components about new context information

immediately. Single explicit queries resulting in a lookup in the storage can also

be triggered via the publish/subscribe system. The looked-up results are then

published via the publish/subscribe system as well.

6.3.2. Implementation

This section outlines the implementation details of the context manager by walking

through its three components.
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Storage: Beginning with the storage component, an SQL-based approach is

applied. Considering performance, there is not a clear winner when comparing

SQL and NoSQL-based databases [201–204]. Since the model-based specifications

as part of the knowledge service already determine a schema, a schema-based

SQL database is used. Hence, the storage module employs the MySQL13 database

management system, which is widely used. The database is divided into two types

of tables. First, there is a context table representing all context attributes used

by the developer as part of the model-based specification. Second, there is a table

representing the according adaptations. Between both table types, context, and

adaptation tables, a foreign key relation is established to map context situations

to (planned) adaptations. The table structures are generated at the startup of

the system based on the model-based specification. Furthermore, the storage

component enables the execution of general operations on the database, such as

inserting data and querying the already existing entries.

Reminiscence: The reminiscence module uses predefined value ranges for speci-

fying how similar context parameters have to be, for mapping it to a previous

context. Hence, the context module allows for exact definitions of how similar

the respective values should be for each context parameter. For specifying the

value ranges, a map structure is used, which can be set up using an additional

method specified in the IDL specifying the IKnowledgeService. The IDL-based

specification enables setting up the used similarity values as part of the reminis-

cence module and updating these values at runtime. As an example, a map entry

[“attributeOne”, “+- 2”] specifies that the attribute with the name attributeOne

is considered similar in a range of +/- 2. This only works for numeric attributes.

In the case of Boolean or string attributes, the reminiscence only supports exact

values. The reminiscence module uses the specified ranges and values at runtime

to check the similarity. If a context is considered similar, the corresponding adap-

tations can directly be forwarded and executed, resulting in skipping planning

and the mapping from adaptation actions to the managed resource as part of the

executing step. In order to support this, the REACT Loops explicitly check the

similarity using the context manager as part of the analyzer and forward a flag,

including the previously planned adaptation as part of its internal communication.

This functionality enables the adaptation logic to skip the rest of the loop.

13https://www.mysql.com, accessed 2020-12-08
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Distribution: For the distribution of context changes and planned adaptations

to external software components, the Message Queuing Telemetry Transport

(MQTT) protocol is used, which provides a lightweight publish/subscribe solution.

The use of MQTT results in a low coupling between the distribution module and

interested external software components. This low coupling minimizes the changes

needed by software developers to use the distributed data and provides a high

degree of freedom in the implementation. Specifically, Eclipse Mosquitto14 is the

used broker, while Eclipse Paho15 is used as the Java library for communicating

with the broker. If the distribution is enabled via methods defined in the IDL-

based interface of the context manager, it connects to an MQTT broker and

publishes events. It is either possible to start a local MQTT broker or to specify an

external one. Publishing the events allows external systems to receive contexts and

adaptations, e.g., for learning new adaptations behavior using machine learning

techniques [44]. REACT Core providing interfaces to access and update the

knowledge of the knowledge component enables possible self-improvement.

6.3.3. Feasibility Study

In order to test the functionality of the context module, a feasibility study has

been conducted. As a use case, an adaptive traffic light scenario is applied. In

the setup, the adaptive traffic light senses the number of waiting cars on each

lane at a crossing, the traffic density, the average speed of the cars, as well as the

time a direction has a green traffic light. REACT adapts the green time of the

different lanes at the crossing in response to the sensor data. Hence, the objective

is to adapt the traffic light to irregular traffic flows, which occur over the time

of a day. The evaluation uses the VSimRTI simulator [205] in combination with

the Simulation of Urban Mobility (SUMO) [206] for specifically simulating the

traffic. SUMO also allows implementing smart traffic lights at an intersection.

The main goal of the context manager is to store past context situations and the

corresponding adaptations to reduce the planning and execution time. Thus, as

part of this feasibility study, the gains considering the reduced execution times are

quantified. The other generic parts of REACT Core are evaluated in combination

with the REACT Loop implementations as part of Chapter 7.

14https://mosquitto.org/, accessed 2020-12-08
15https://www.eclipse.org/paho/, accessed 2020-12-08
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Table 6.1 shows the measured runtimes of the feasibility study. First, the analyzer

has to map the sensor data to the model-based specification. After that, the

context can be checked when applying the context management module. This can

either result in the context being new or already known. If the context is new, it

is added to the context storage, and the loop continues. Otherwise, the rest is

skipped. Looking at the context checking results, they show only a small difference

between the two measurements. The biggest gain in lowering the runtime can be

achieved when the planner can be skipped. This is the case when a previously

planned and stored adaptation can directly be forwarded. In combination with

skipping most part of the executor’s logic, this results in a decrease of around

63 ms in the feasibility study in the adaptive traffic light scenario compared to

not using the context management module. Thus, the context module reduces

the runtime of the used REACT Loop by applying the reminiscence feature and

increases REACT’s extensibility due to the distribution functionality. As the

context module is as generic as possible, we state that it is applicable for all

available REACT Loops.

Analyzer
Planner Executor Total

Map Check Context
Run 5.41 ms 3.26 ms 58.69 ms 2.43 ms 69.79 ms
Skip 5.41 ms 3.64 ms 0.04 ms 0.06ms 9.15 ms

Without CM 5.41 ms 0 ms 58.69 ms 2.43 ms 66.53 ms

Table 6.1.: Results of the feasibility study for evaluating the context manager.
The monitoring component is omitted as it does not utilize the context
manager. CM: context module.

Discussion and Related Work

The feasibility study shows an advantage in the execution time in the case similar

context situations are encountered at runtime. When taking the results of Table 6.1

into account, it is possible to calculate the percentage the application of the context

manager improves the average execution time. It is beneficial to use the context

manager if it is possible to skip the planning and execution in 6 % of the cases.

Specifically in the evaluation, 81 % of the time, the context was already known

resulting in skipping. However, it is noteworthy that the execution frequency

of the loop, beginning with the sensing as well as the context complexity and

specified similarity settings, have a large impact on these results.
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Considering related work in the field of context management, there are many

works in the area of pervasive and context-aware computing, such as Aura [207],

CARISMA [208], Gaia [209], or PROACTIVE [210]. The interested reader is

referred to [211], [212] for an overview of context-aware systems. The mentioned

example approaches follow different methods for storing and using context, reach-

ing from model-based approaches in the case of CARISMA [208] to ontology-based

approaches in the case of Gaia [209]. Looking at other overviews of related

work, [44] and [211] show a shift from rules towards ontology-based approaches

for reasoning. However, as REACT’s goal is to provide an approach that is

applicable in all kinds of different use cases, a fixed ontology explicitly for mod-

eling the context is not suitable. The current implementation of the context

storage on the SQL database’s foundation does not impose limitations on the data

format. Obviously, in this case, the context module has to take care of querying

the database in a suitable way. Overall, the model-based specifications already

provide a structure for generating tables for solving the structural data storage

without an additional schema. Finally, looking at the distribution capabilities,

there exist both explicit query- and subscription-based approaches [44]. In order

to provide a highly flexible solution to developers, the current implementation

of the context module provides both approaches as well. This enables to request

single queries but also to get notified in case context information changes. In

future work, specific reasoning techniques from the high number of related works

could be integrated directly into the context module. Additionally, proactivity

methods, like the ones presented in [210], could improve the adaptation decisions

and, as a consequence, the managed resource’s performance further.

6.4. Development Process

Finally, as mentioned in the introduction of this chapter, we propose a development

process for using REACT as presented in [11]. The process helps system developers

in applying REACT as part of new or existing systems. It is as generic as possible

and can, therefore, be applied with any one of the REACT Loops. An overview

of the development process is depicted in Figure 6.4, consisting of the three

development steps: 1) Modeling, 2) Connecting, and 3) Configuring.

78



6.4. Development Process

1. Modeling 2. Connecting 3. Configuring

2.1 Effector Implementation

2.2 Sensor Implementation

1.1 Problem Space

1.2 Solution Space
3.1 Key-Value-Based 

Configuration Files

Figure 6.4.: Proposed development process for applying REACT using a provided
REACT Loop [11].

In the first step, the system developer creates models specifying the Problem

Space (1.1 ) as well as the Solution Space (1.2 ). This step specifies the adaptation

behavior of the deployed feedback loop instance. Separating the models is largely

inspired by works in the SPL community [213] and models@run.time [105] research,

which distinguishes between problem and solution space. According to [213], the

problem space consists of the “stakeholder needs and desired features”, while

the solution space represents the “architecture and components of the technical

solution”. The separation into problem and solution space allows REACT to reuse

the same problem space specification for different communication systems. For

instance, a shared repository with reusable specifications could offer other system

developers the possibility to readily use an already available specification for their

system. In this case, they could only specify the solution space representing the

managed resource and reuse an existing problem space specification. Depending

on the used REACT Loop, different modeling possibilities are used in this step.

Additionally, it is possible to apply model checking techniques to ensure that the

specifications provide a certain degree of correctness. Depending on the modeling

technique, it is also possible to test the behavior of a specification using example

values at design time.

After the modeling part, system developers connect REACT to the managed

resource as part of the connecting step. First, they implement the effector

interface to the managed resource (2.1 ), which was presented in Section 6.1. As it

is common in the field of self-adaptive systems to have parameter and architectural

adaptation [6], the interface encompasses methods for each adaptation type.

Currently, REACT always sends complete instances of the solution space to the

managed resource instead of only the difference between the current and new

configurations.
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After this step, the system developer implements the sending of sensor informa-

tion from the managed resource to REACT (2.2 ). As shown in Section 6.1, the

ISensor interface specifies the method implemented in REACT’s sensor compo-

nent instances for receiving sensor information. Therefore, the managed resource

calls the sensor function periodically to trigger REACT. After these implementa-

tion steps, the interfaces can be used with REACT and any kind of specification,

i.e., arbitrary problem and solution space specifications. Consequently, they can

be reused if the specification changes.

Finally, the system developer or administrator provides REACT with a mini-

mal set of configuration information (3.1 ). This configuration step enables a

distributed deployment of REACT’s components. One configuration file for each

MAPE component allows configuring the component type, a unique identifier, the

successor component, and the corresponding knowledge component. Additionally,

the context manager can be enabled and configured. REACT then creates and

deploys a respective component for each key/value-based configuration file.
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7. Feedback Loop Instantiations

The previous chapter introduced REACT Core, which provides a reusable frame-

work for REACT Loops. In this chapter, different specific REACT Loop instan-

tiations are presented. Section 7.1 begins with the SAT REACT Loop using

context feature models, which get transformed to Boolean expressions. Section 7.2

presents the MILP REACT Loop, which increases the expressiveness of the used

context feature modeling approach and introduces non-functional goals. The final

REACT Loop in Section 7.3 uses context feature models, which get transformed

into CSPs, and solves these problems using constraint programming (CP). Fi-

nally, Section 7.4 presents a feasibility study comparing and combining different

REACT Loops using a common use case.

Each section that presents a REACT Loop instance introduces the problem do-

main, the modeling approach, as well as an overview of the respective architectures

and implementations. This includes the evaluation of each instance in different

use cases. The use cases consist of examples from distributed and edge computing

systems [214], topology control in wireless sensor networks (WSNs) [215], cloud

server management [216], and (wireless) software-defined networks [217]. Each

section finishes with a presentation of the evaluation results as well as a discussion.

7.1. SAT-Based Feedback Loop

The first REACT Loop is a SAT-based approach presented in [104]1 and [218]. In

the following, this section introduces satisfiability problems and how the approach

transforms context feature models into these problems. Then, this section outlines

the architecture and corresponding implementation as well as the evaluation and

discussion.

1 [104] is joint work with C. Krupitzer, M. Weckesser, and C. Becker.
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7.1.1. Satisfiability Problems

Petke defines (Boolean) satisfiability problems as follows [219, p. 15]:

The problem of deciding whether there is a variable assignment that

satisfies a propositional formula is called the Boolean satisfiability

problem (SAT).

The logical specification of a SAT problem consists of multiple clauses in conjunc-

tive normal form of a formula [220], [221, p. 253 ff.]. Each clause consists of one or

multiple literals, while a literal is a “propositional variable or its negation” [220, p.

124]. Thus, each clause represents some constraints. All clauses, which are dis-

junctions for themselves, are conjunctively connected with each other. If there

is a possible assignment of Boolean values to all literals satisfying all sentences,

there exists a so-called model for this setting. According to Russell and Norvig,

satisfiability of a sentence is defined as follows [221, p. 250]:

A sentence is satisfiable if true in, or satisfied by, some model.

This Boolean satisfiability problem can be solved by SAT solvers. A SAT solver

accepts clauses as input and creates an assignment for the available variables for

this input if there is any [221, p. 271 f.]. A widely used input and output format

for SAT solvers is the DIMACS (Center for Discrete Mathematics and Theoretical

Computer Science) conjunctive normal form (CNF) format [222]. An example in

conjunctive normal form is given in Formula 7.1. In this case, A or B as well as

C have to be assigned to true for the whole formula evaluating to true.

(A ∨B) ∧ C (7.1)

7.1.2. SAT-Based Context-Aware Feature Modeling Approach

This work uses the context feature modeling approach introduced in Section 2.4

for the problem space. The approach augments generic feature model diagrams

with a context branch in addition to the system features. Moreover, the approach

uses feature attributes with support for integer and real values, feature instance

cardinalities, as well as group type cardinalities for specifying constraints in the

model. Cross-tree constraints are used between context features, feature attributes,
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and system features for specifying the reconfiguration behavior. They can either

require or exclude a feature. At runtime, the selection of context feature attributes

represents the current state of the running software.

For finding valid configurations at runtime, the context feature model is mapped

to a Boolean representation that is interpretable by a SAT solver. Each feature

represents a literal, which can either have the value true or false. Non-numeric

cross-tree constraints can also be translated into a Boolean representation. Since

a SAT solver only works with Boolean problem definitions, the feature attribute

value ranges are modeled as enumerations, with the specified ranges either being

true or false. Hence, each attribute with its value range is translated into multiple

so-called feature attribute items (FAI). A FAI represents an enumeration item

characterizing a range of values of the corresponding attribute. The translation

of the complete context feature model results in a respective DIMACS CNF [222]

representation of the model. Due to the restriction to Boolean variables, features

can only be present once or not at all. An explicit model of the solution space is

not part of the SAT-based REACT Loop.

7.1.3. SAT-Based Architecture

The architecture of the SAT-based REACT Loop as part of REACT is depicted

in Figure 7.1. As an example, an entire run through the feedback loop is described

using the data center use case presented in [9]. It describes a self-managing

data center that starts additional servers given a high workload. Accordingly,

it reduces or maintains the number of servers in low workload situations. Also,

it is possible to redistribute virtual machines over all physical servers for better

resource utilization. Figure 7.2 shows the big picture of the data flow through the

MAPE components, including the context feature model of the example, which is

part of the knowledge component. For illustration, the monitor only observes the

workload of the servers in this simplified example. The system features consist

of a startup policy and a keep policy for server management. Additionally, the

VM management possibilities include a redistribution and a stay policy. In this

example, one feedback loop manages three data center areas.

As shown in Figure 7.1, the idea is to augment a MAPE-K cycle-based adaptation

logic with a CFM inside the knowledge component. The knowledge contains
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Figure 7.1.: Architecture of REACT using the SAT-based REACT Loop [104,218].

all elements that are needed for reasoning in the adaptation logic. The context

feature model is only one part of the knowledge besides the (feature attribute)

rules, the priorities, the costs, and the automatically generated mapping. The

complete meta-model of the SAT-based knowledge can be seen in Figure A.1 in

the appendix. Features can be either system or context features. As introduced in

Section 2.4.3, each feature can have two types of cardinalities: a feature instance

cardinality and a group type cardinality. Also, the SAT-based REACT Loop uses

the extended feature model approach presented in the same section, which enables

features to also have attributes.

Rules for relating sensor data to context feature attributes are part of the knowl-

edge as well. Feature attribute rules represent the rules for matching context

sensor values to actual feature attributes and FAIs. A rule specifies the name for

the sensor input for matching it to an attribute. Hence, the rules provide a match-

ing method for determining the attribute item that is represented by some context

value. For the example in Figure 7.2, the attribute workload would have the

rules: (1) (Workload<0.6) mapped to the “<60%” FAI and (2) (Workload>=0.6)

mapped to the “>=60%” FAI.

Additionally, it is possible to specify priorities and costs for each feature of the

feature model. Priorities and costs reside inside the knowledge component as

well, and they are used for conflict resolution as well as for the selection of one
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Figure 7.2.: Data flow between the MAPE components in the SAT-based
REACT Loop. The knowledge component omits the rules, priorities,
and costs in this figure. FAI: Feature Attribute Item, WL: Work-
load. Feature instance cardinalities are denoted with square brackets.
Group type cardinalities are denoted with angle brackets [104,218].

configuration, given multiple configurations are possible. This enables the support

of incomplete or erroneous specifications of system developers to a certain degree.

Priorities and costs should be present for all system features, which are part of a

feature group. A priority is a number stating the importance of a system feature

inside its corresponding feature group. A cost value referring to a system feature

states the estimated cost to activate the respective system feature in comparison

to other system features of the same feature group.

Finally, the SAT mapping is created automatically by the system directly when

it starts. This facilitates the knowledge component to return the corresponding
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(SAT) literal given a feature or feature attribute. In the following, the complete

data flow through the adaptation logic is illustrated by using Figure 7.2.

The monitoring component receives the sensor data, prepares it, and passes it

to the analyzer component. The preparation includes interpretation of serialized

input like an XML or JSON string in order to create plain data objects for working

with the sensor data. The resulting data objects can be used more easily by the

analyzer component than a raw string. The adaptation logic is able to receive and

process partial sensor data until the managed resource sends a message indicating

the end of data. Thus, the monitor gets sensor information not as one package

but in fragments. Mapping this to the data center example, the monitor receives

sensor information about each of the three data center areas’ workload. Then, as

shown in Figure 7.2, this information is followed by a keyword for stating that

the monitor should forward the average of the received values to the analyzer.

Another possibility is to forward the data periodically.

The analyzer selects the corresponding FAI, while one FAI represents the range

feature attribute in the implementation. First, the analyzer creates the average

of all entries in order to create one single sensor value representing the average

system state. Each average system value is used to map its value to context feature

attributes representing the system’s context state. With minor customization,

developers can specify other aggregation functions than the average. In our case,

after the creation of the average values, the rules representing the relationships

of context information, their names, and context feature attributes are used.

Matching the actual values to context feature attributes requires the rules stating

the value range of each context feature attribute. The approach supports partial

knowledge, meaning that not for all context feature attributes data must be

present. Even without full knowledge, the system is capable of finding a valid

configuration. The resulting attributes, which are selected according to the context

information, are passed to the planner component.

The workflow of the planner is shown in Figure 7.3. As this planner uses a

SAT solver, the result of the mapping process at the beginning is a logical

representation of the context information in CNF. The mapper uses the (SAT)

mapping of the knowledge component. These mappings state which feature or

feature attribute is mapped to which literal for representation inside the SAT solver.

Each context feature attribute generated by the analyzer is mapped to its literal
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Figure 7.3.: Internal workflow of the SAT-based planner component utiliz-
ing a Mapper, SAT Solver, a PriorityConflictSolver, and a
CostConfigurationSelector [104,218].

representation resulting in logical clauses in CNF. The result is a DIMACS CNF

representation of the entire context information. The CFM—which is available in

CNF representation as well—is used in conjunction with the CNF representation

of the context information as input for the solver. The solver’s task is to determine

if valid configurations exist and to output all possible configurations. Now, there

are three distinct cases, which are depicted in Figure 7.3. First, if there is only

one valid configuration, the planner is finished as there are no other configuration

options it can choose from. Second, in the case of multiple possible configurations,

the additional cost information residing in the knowledge component is used. The

costs contain a numeric cost value for each system feature as part of a feature

group inside the CFM. Using this, the planner then selects the configuration

with the lowest cost using the CostConfigurationSelector. Third, if no valid

configuration is found, there is a conflict in the combination of the CNF of the

CFM and the context. A conflict occurs if unforeseen context situations arise,

which were not anticipated at design time or in case of an erroneous specification.

The planner tries to solve the conflict for still allowing to plan an adaptation.

Based on the context situation, the conflict can, e.g., result in the need to select

multiple features in the same group, which have an XOR relationship. In this

case, the priority information is used. The PriorityConflictSolver, as part of

the planner, determines the priority of conflicting system features in relation to
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other system features in their respective feature groups. Then, the feature with

the highest priority for each conflicting feature group is selected. This allows

the system to also handle unknown or conflicting context states at runtime to a

certain extend. Finally, the planner’s result is a complete list of system features

the managed resource should (de-)activate. Based on the input representing an

overall high load, in the example of Figure 7.2, the planner selects the startup

policy and the redistribution policy. The selected configuration is sent to the

execution component, which forwards the configuration to the corresponding

managed resource. This ends one complete cycle through the adaptation logic. In

the following, implementation details of all MAPE components with reference to

the example are explained.

7.1.4. Implementation of the SAT-Based Feedback Loop

Monitoring: The monitoring component receives multiple raw strings as sen-

sor input. It converts the raw JSON data to Java objects and adds it to an

array list. In the example in Figure 7.2, three JSON strings are stored in a

List<Map<String,Object>> object. Each string represents the current status of

the workload of one data center. Passing this array list to the analyzing component

triggers the analyzer.

Analyzing: The analyzing component further inspects and handles the values

and entries coming from the monitor. In the current implementation, only the

average of the monitoring values can be created by the analyzer. Referring to

the example in Figure 7.2, the analyzer creates the average workload. This is

done for every variable over all items in the list. The resulting value is mapped

to the actual feature attributes items representing the context situation of these

averaged values. In the example, only the FAI >=60% is selected. Then the

analyzer sends the information about the FAIs to the planning component.

Planning: The planner component uses Sat4J as SAT solver [223]. First, using

the (SAT) mapping, the planner maps context feature attributes to their literal

representation. Next, it checks if there is a model using the given context

information. At this point, the solver already has loaded the CNF of the CFM. If

there is no model, the conflicting features are determined. The conflicting features

are passed to the PriorityConflictSolver class, which identifies the system
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features responsible for the conflict. For each feature group with conflicts, the

feature with the highest priority is selected. Adding the resolved feature selection as

well as the remaining conflict-free context information to the solver ends the conflict

resolution. If the model is directly free of conflicts, the context information is added

to the solver. If multiple models are valid, the CostConfigurationSelector class

uses the costs assigned to the system features. For every feature group, the feature

with the lowest cost is selected. The planner sends a list with all selected system

features to the executor.

Execution: The execution forwards the feature selection towards the managed

resource. As shown in Figure 7.2, the feature selection is a string with the system

feature names separated by a comma. The managed resource maps the system

feature names to actual adaptations.

7.1.5. Evaluation of the SAT-Based Feedback Loop

This section outlines the evaluation of the SAT-based REACT Loop. First, we

present the use case of the evaluation. Second, we pose the evaluation question

and describe the corresponding evaluation scenario. Third, we describe and discuss

the results of the evaluation.

Use Case Description

For the following use case, we look at a distributed computing system. Such a

system consists of computational resources, clients, and resource managers for

scheduling. The goal of the resource managers is to answer resource requests

from clients and to schedule this request to the available resources. This enables

to offload computations from a client to a resource provider. One problem in

distributed computing systems is the changing system context resulting from,

e.g., the network churn. If too many resource providers and clients join, the

resource managers can get overloaded. Also, due to the heterogeneity of the

devices and due to the device context, such as the current network connection,

static scheduling can result in low performance. Hence, in this setting, REACT

using the SAT-based REACT Loop is applied for adapting the number of available

resource managers and their scheduling behavior.

The specific use case of the evaluation is the management of the Tasklet sys-

tem [214]. The goal of the Tasklet system is to provide a middleware for distributed
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computing on heterogeneous devices. Therefore, three entities are available: re-

source providers, resource consumers, and resource brokers. Providing resources

means to offer a Tasklet virtual machine (TVM). Resource consumers send a

Tasklet consisting of code and data to providers for remote execution. Addi-

tionally, local execution is possible. Each resource provider registers at a broker

while brokers themselves form a peer-to-peer overlay network. Consumers send

resource requests to a broker, which then searches for a suitable resource provider.

A consumer may specify different levels of non-functional requirements called

Quality of Computation [214] for a Tasklet, e.g., reliability, speed, or security.

This may limit the set of possible providers. In this evaluation, it is possible for

consumers to require a high-performance provider for a Tasklet. After the request

of the consumer, the broker returns the information for connecting to a provider.

The consumer uses this knowledge to directly send a Tasklet to this provider. The

provider executes the Tasklet in a TVM. When the computation is finished, the

provider directly passes the result to the consumer. Additionally, the consumer

informs the broker about the used provider and the successful computation. If a

computation fails, the consumer also informs the broker about this. The broker

uses this information to calculate reputation values for each provider based on

the successful and unsuccessful computations.

Each entity in the network runs the Tasklet middleware that handles the construc-

tion of Tasklets, their execution, and distribution. An overview of an example

overlay network topology is shown in Figure 7.4. It shows the inner broker overlay

network, the connection between providers (P), consumers (C), and brokers, as

well as the execution of Tasklets. The figure also shows the possibility that an

entity can be provider and consumer at the same time (denoted with P/C ). For

more details on the Tasklet system, the interested reader is referred to [214].

We simulated the Tasklet system using the simulator presented in [224]. Addition-

ally, we added a broker manager entity, which stores a list of all brokers, monitors

them, and adapts their behavior by changing their configurations according to the

results of the adaptation logic. Besides changing the configuration of brokers, it

can start and stop brokers, as well as redistribute entities connected to them. As

the simulator is discrete, we synchronized the simulation with the adaptation logic

through the broker manager. Hence, the broker manager transmits all monitored

data at the end of a simulation step to the adaptation logic and pauses the simula-

90



7.1. SAT-Based Feedback Loop

Broker

Broker

Broker

C

P/C

P

P/C
C P

P

P/C
P/C

P/C

P

P/C

P/C

C

P/C

P/C

P/C

P/C

Tasklet
TVM

Figure 7.4.: Overview of a Tasklet overlay network topology [214]. P: Provider,
C: Consumer, TVM: Tasklet Virtual Machine.

tion. After a run of the REACT Loop, the broker manager adapts the simulated

system to the new system configuration. Afterward, it starts the next simulation

step. In the case of a real system, adaptations would occur continuously. Thus,

the simulated system does not represent this aspect of the real world.

Evaluation Settings

To evaluate the effectiveness of the SAT-based REACT Loop, we define one

evaluation question (EQ):

EQ: Does the adaptation logic improve the system performance, and how does

the number of nodes in the Tasklet network influence it?

The specific evaluation setting is outlined in the following. In order to adapt the

settings of the brokers using the adaptation logic, the next step is to identify

system features for the management system as well as context information that is

needed to plan the selection of the system features. First, the broker manager is

enabled to start new brokers in case the load of the brokers is too high. Next,

in order to minimize the number of provider requests to the brokers, cache lists

are used. These lists are distributed at regular intervals from the brokers to the

consumers, which can use the lists to directly send Tasklets to the providers that

are part of the list. If all providers on the list are offline or do not agree on
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computing another Tasklet, the consumer has to contact the broker. The lists

can be configured at the broker in terms of the distribution interval, the length

meaning the number of providers on the lists, and the order of the lists’ entries.

The cache list interval can be set to slow, standard, or fast. When there is a

high fluctuation in the network, the interval for the distribution of the cache

lists are changed accordingly between these intervals. The cache list length can

be short or long. Thus, when the fluctuation is high, the cache list length is

increased to the long length resulting in more providers being on the list. Hence,

the consumer has more providers for establishing a possible connection before a

request to a broker has to be sent. If the fluctuation is low, the short list length is

activated accordingly. The cache list content can either be generic, location-based,

or specialized. Generic means the list is ordered according to the reputation of

the providers in descending order. The location-based cache list puts providers

that are in the same geographic region as the consumer at the beginning of the

list, minimizing latency. As part of the simulation, there are three regions for

simulating latencies. Each entity is located in one of the three regions. Finally,

the specialized cache list puts high-performance providers at the top of the list.

This results in a faster execution time when the percentage of high-performance

TVM requests is high. For further reference, the complete CFM can be seen in

Figure A.2 in the appendix.

For identifying improvements of the adaptation logic, multiple evaluation scenarios

with and without the adaptation logic are compared. Each entity is randomly

assigned to a distinct geographic region imposing latencies. This evaluation is

executed on an Intel Xeon E5345 with 8 cores, Windows Server 2008 Standard,

and 6 GB RAM using Oracle Java 8 Update 121. Each run has been executed

30 times. In the first setting, 1000 Providers, 500 consumers, and two brokers

are the start configuration. In the following setting, we use 5000 providers, 2500

consumers, and ten brokers. Additionally, the system behavior with different

ratios between providers and consumers is evaluated. Thus, we also evaluate the

1:1 and 1:2 ratios resulting in 5000 providers and consumers in setting 3, and 2500

providers and 5000 consumers in setting 4. The evaluation always stops after

25 000 finished Tasklets.
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Evaluation Results

In the following, the aggregated results of the evaluation are outlined. We

measured two variables in the Tasklet system: the average latency (in milliseconds)

imposed by the entity’s regional positions and the average load of the brokers

in the Tasklet system. The load is quantified using the number of connected

providers and a predefined capacity of each broker. This capacity C is defined as

C = #Providers/#Brokers, which is calculated at the startup of a broker. For

both latency and load, the adaptation logic triggers a system feature adaptation

if they exceed a threshold. We tested different distributions between providers

and consumers, and each setting has been executed 30 times. As a result, the

simulated system using the adaptation logic has, on average, a 43% lower latency,

and the brokers have on average 45% less load than the simulated system without

the adaptation logic.

Table 7.1 shows the aggregated measurements per run. The 2500/5000 setting

was not able to finish without the SAT-based REACT Loop. Every run ended

in an OutOfMemory exception. We also tested it on an r4.2xlarge instance from

Amazon EC2 with 61 GB of RAM. Even on this machine, we were not able to

finish a single run in this configuration without the SAT-based REACT Loop.

One reason is that the overall simulated load in the Tasklet system is high. The

ratio between providers and consumers in this setting increases the load even

further. This results in a high number of steps for finishing the predefined 25 000

Tasklets. The other results are similar in all four settings indicating that the

adaptation logic is always able to fulfill the adaptation goals.

Setting (#P/#C) Av. latency no AL Av. latency AL Av. load no AL Av. load AL

1000/500 18.38 ms 10.67 ms 100 % 54.70 %

5000/2500 18.35 ms 10.52 ms 100 % 55.36 %

5000/5000 19.12 ms 11.65 ms 100 % 55.27 %

2500/5000 - 11.22 ms - 55.29 %

Table 7.1.: Aggregated latency and load on the brokers in the first scenario. P:
Providers, C: Consumers, Av.: average, AL: Adaptation Logic [104,
218].

Table 7.2 shows the needed simulation steps in the different settings for finish-

ing the 25 000 Tasklets. Due to the increasing load imposed by the different

provider/consumer ratios, the number of steps rises with the settings. Again,
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in the 2500/5000 setting simulating without using the SAT-based REACT Loop

ends in an OutOfMemory exception. The results show that the adaptation logic

improves the performance also in this impossible setting. Other than that, it is

noteworthy that the adaptation logic decreases the performance in the 1000/500

setting.

Setting (#P/#C) Steps no AL Steps AL Change

1000/500 967.67 1288.03 +33 %

5000/2500 1599.87 1244.70 -22 %

5000/5000 2205.33 1110.07 -50 %

2500/5000 - 1301.57 -

Table 7.2.: Aggregated results of the average steps needed for the first evaluation
question. P: Providers, C: Consumers, AL: Adaptation Logic [104,218].

7.1.6. Discussion of the SAT-Based Feedback Loop

This section discusses the evaluation presented in the previous section. When

looking at Figure 7.1, the adaptation logic reduces the average latency as well

as the average load of the brokers in all settings. In the first three settings, the

latency could be reduced on average by 41.3 %. Respectively the load could be

reduced by 44.89 % on average. These results show that the modeled behavior

was successfully enforced in the Tasklet system.

The most interesting change is the number of simulation steps needed by the

simulated system in the four settings. Table 7.2 shows them, including the

improvement between the aggregated values of the runs without and with the

SAT-based REACT Loop. Again, there are no comparison values for the last

setting. In the 1000/500 scenario, the overhead of the adaptation logic, including

the broker management system’s policies, results in a worse performance. A reason

for this might be that brokers that get stopped are directly stopped without further

notice. As a single broker has a higher percentage of the total number of providers

in the 1000/500 setting compared to the other ones, a stopping broker triggers

more reconnects to other brokers and increases the number of failing Tasklet

requests. The larger the setting gets, the higher the improvement regarding the

number of saved simulation steps is. The third setting, which is the largest setting
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regarding the number of the entities, even needs 50 % fewer simulation steps

employing the SAT-based REACT Loop.

The SAT-based implementation already shows the potential of REACT. As the

expressiveness of SAT problems is limited to Boolean expressions, the following

section uses a MILP solver. Accordingly, the following section presents the

MILP-based REACT Loop.

7.2. MILP-Based Feedback Loop

This section presents the MILP-based REACT Loop, which is based on [225]2.

Hence, in the following, the MILP problem domain is introduced. Then, the

feature modeling approach as well as the overall architecture and implementation

of the loop are outlined. Finally, the feedback loop is evaluated and discussed.

7.2.1. Mixed-Integer Linear Programming Problems

In this feedback loop, the configuration problem for planning adaptations is

formulated as a mathematical optimization problem [226]. Therefore, optimal

solutions can be found using mathematical solvers. The problem consists of linear

inequalities, as well as a set of decision variables, which can have integer or real

values. Additionally, an objective function stating if a decision variable should be

maximized or minimized is added.

7.2.2. MILP-Based Context-Aware Feature Modeling Approach

For the instantiation of a MILP-based feedback loop, the first change to the SAT-

based approach is the explicit differentiation between problem and solution space,

as introduced in Chapter 6 and presented in, e.g., [177] and the models@run.time

approach [105]. This leads to the separation of two models decoupling the

specification of the reconfiguration behavior from the definition of the managed

resource and its architecture. The separation has the advantage that problem space

specifications can be reused with different managed resources. A disadvantage

2 [225] is joint work with M. Weckesser, R. Speith (né Kluge), M. Matthé, A. Schürr, and C.
Becker.
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besides creating two models instead of one is that this approach needs an additional

mapping between problem and solution space.

A CFM-based specification is used for the problem space. The capabilities of

the modeling approach are the same as for the SAT-based feedback loop. It is

possible to transform the CFM of this approach either to a SAT or to a MILP

problem definition. Hence, either DIMACS CNF or a mathematical problem

formulation is generated from the CFM. In this approach, the system features and

system feature attributes are decision variables. As we target the MILP problem

domain, attributes can have integer and real values without the need for using

enumerations. The structure and consistency properties of the feature model can

also be transformed into mathematical constraints [225]. If the SAT solver is

chosen, this limits the expressiveness again. Accordingly, no integer or real values

can be used directly when employing a SAT solver.

For the solution space, there are different approaches available such as ADLs or

DSLs, which are used in Rainbow [17] or Genie [120], respectively. We selected

UML class diagrams for representing the solution space, as they typically do

not require a developer to learn a new meta-model or DSL. Additionally, UML

diagrams can also be generated from existing source code, which can possibly

reduce the development time when integrating REACT. Hence, a system developer

not only has to provide the CFM representing the solution space but also a UML

class diagram representing the architecture of the managed resource.

Finally, an explicit mapping relating CFM and UML class diagram is needed. In

our approach, this mapping is represented using a text file matching features and

attributes to classes and properties in a line-by-line manner.

7.2.3. MILP-Based Architecture

Figure 7.5 shows an overview of the MILP-based instantiation. The knowledge is

divided into the specification of functional and non-functional constraints. Looking

at the functional constraints first, the knowledge consists of the CFM, a mapping,

as well as a class diagram. This is due to the fact that the problem and solution

space are separated. The functional constraints imposed by these parts can be

used either with a SAT or MILP solver.
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Figure 7.5.: Architecture of REACT using the MILP-based REACT Loop. The
knowledge consists of a CFM representing the problem space, a class
diagram representing the solution space, a mapping between both, and
non-functional (performance) goals and (performance) influences [225].

Supporting non-functional constraints is another advantage over a SAT-only-

based approach. Information about the effect of a feature or attribute on non-

functional metrics are represented by performance-influence models [227] and are

only supported when using a MILP solver. They represent the influence of system

configurations on non-functional properties. In the MILP-based REACT Loop, the

performance-influence models are represented by regression formulas. Each non-

functional property has its own formula. There are two possibilities for providing

information about performance influences. First, an expert can assume certain

influences and build up the formulas by hand. Second, the performance influences

are learned offline at design time. By using the information of performance

influences, it is possible to optimize the planned configuration towards specific

goals. The performance goals are a list of the available non-functional properties

with weights attached to them. This way, it is possible to specify a specific

trade-off, e.g., between performance and costs. Hence, this additional information

optionally provides the possibility to optimize the adaptations further if a MILP

solver is applied.
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Looking at a run of the MAPE components in Figure 7.6, the monitor preprocesses

the context data. This context can, e.g., be JSON or XML. Based on the

preprocessed context, the analyzer, first, creates an instance of the class diagram.

In this instance of the class diagram, a specific environment component contains all

properties representing the context of the managed resource. Using the mapping,

the context subtree of the CFM is instantiated. This results in a partial CFM

configuration where only the context part is instantiated. The planner creates

the mathematical optimization problem or the DIMACS CNF when using a SAT

solver, respectively. This means it transforms the constraints imposed by the

CFM itself as well as the context-based constraints to a MILP or SAT problem.

Then, it uses a MILP or SAT solver for deciding about the system features and

attributes. Hence, the result of the planner is an optimal system configuration.

Finally, the executor maps this full configuration to the class diagram resulting in

a class diagram instance. The class diagram instance represents the architecture

and properties of the managed resource in its adapted state. This model is passed

to the effector, which has to implement the changes in the managed resource.
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Figure 7.6.: MAPE activities in the MILP-based REACT Loop. Preproc.: Pre-
processed [225].

7.2.4. Implementation of the MILP-Based Feedback Loop

This section outlines the implementation details of the MILP-based feedback

loop. It is also implemented using Java. As the approach is able to work with

SAT and MILP solvers, the planner supports MiniSAT [228] as well as IBM’s
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CPLEX Optimizer3. The CFM-based specification is implemented using an

enhanced version of CardyGAn [229]. CardyGAn provides tool support for the

specification and validation of cardinality-based context feature models. The

approach proposes a domain-specific language, which employs Eclipse Xtext [230]

for the implementation. CardyGAn provides an Eclipse plugin for creating CFMs

using a textual editor with syntax highlighting and checking, advanced anomaly

detection, and the possibility to generate sample instances of the model [229]. The

possibility of (multiple) feature instances is omitted. The class diagram is a UML2

class diagram representing the managed resource. REACT parses the UML class

diagram as an XML file complying with the UML 2 Abstract Syntax Metamodel

by the OMG. Due to this standardized format, the system developer can create

the XML file manually or use a graphical editor that offers an export in this

format, such as Papyrus4. For the mapping between problem and solution space,

a Java properties file is employed. This file matches attributes and features in

the problem space to properties and classes in the class diagram. Going from the

functional constraint to the non-functional constraints, the performance goals are

also expressed using a Java property file containing the name of a non-functional

property as key, and the corresponding weight as value. As final element of the

knowledge, there are the performance influences. In order to learn the performance

influences offline, we used the tool SPL Conqueror [231]. SPL Conqueror uses a

CFM in combination with previously generated data containing different CFM

configurations and their corresponding values of the available non-functional

properties. It then uses machine learning techniques for learning the influence of

the different feature and parameter selections on the non-functional properties. It

outputs a performance-influence model in the form of a regression equation for

each metric. REACT directly supports the output files of SPL Conqueror, which

eases the application of the MILP-based REACT Loop in combination with the

learned performance-influence models.

7.2.5. Evaluation of the MILP-Based Feedback Loop

This section presents the result of evaluating the MILP-based approach with

respect to effectiveness, efficiency, and applicability using adaptive WSNs as an

3http://www.ibm.com/analytics/cplex-optimizer, accessed 2020-12-08
4https://www.eclipse.org/papyrus/, accessed 2020-12-08
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evaluation scenario. REACT Core’s context management module has not been

used in this evaluation, as the effectiveness and efficiency of the loop itself are

evaluated. As the context module often skips the loop, it hinders the measurement

of the feedback loop’s actual runtime.

Use Case Description

The goal of the use case is to optimize the latency in a WSN, as low latencies,

e.g., help all nodes to have a consistent, up-to-date view of the network. A WSN

consists of sensor nodes trying to detect specific events, such as high levels of

water in a flood warning system [101]. As each node can reach a certain number

of nodes in the neighborhood, the nodes form a topology. This topology influences

the performance of the network, e.g., in terms of latency and robustness. The

more nodes can be reached by using a higher sending power, the higher the

energy consumption. Using topology control algorithms [232] enables exploiting

these properties by changing the topology balancing energy consumption and

performance goals, such as latency in our case.

In this evaluation, the adaptation logic configures a topology control algorithm in

the WSN. Depending on the current topology as well as on the mobility and the

mode, different algorithms and parameters yield the lowest latency and battery

drain. The complete feature model is shown in Figure 7.7. The system features

include algorithms with and without additional attributes. In total, there are five

algorithm features, five attributes—being either integer- and real-valued—and

two features determining whether UDP or TCP is used [225]. The context of the

WSN is represented by different scenarios. First, there is the possibility that all

WSN nodes send data to a single base station in a many-to-one fashion called

DataCollection scenario. Otherwise, there is one-to-one communication, either

deterministic in a PointToPoint scenario or probabilistic in a Gossip scenario.

Additionally, nodes can be mobile, which is represented by a Mobility Speed

attribute. The context also represents the world size and topology density using

integer attributes. Finally, the WSN can either be in normal or emergency mode.

Depending on the objective of the WSN, the emergency mode is enabled in the

case of flooding or a fire, which indicates the nodes to send messages as fast and

with the highest sending power as possible. The rules stated at the top left of the

figure shows cross-tree constraints of the WSN setting.
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Figure 7.7.: CFM of the wireless sensor network use case [225].

Evaluation Settings

We state the following evaluation questions:

EQ1–Effectiveness: How much does our approach improve the system perfor-

mance with respect to the desired performance goal in terms of non-functional

properties? What is the influence of the performance-influence model size

on the same system performance?

EQ2–Efficiency: How does the size of the performance-influence model affect

the runtime of the planning component?

EQ3–Applicability: Is the approach applicable to communication systems in

general?

In our case, we translated the CardyGAn model into a representation that is

compatible with SPL Conqueror and created data points with configurations

and values of the non-functional properties using a Java WSN simulator based

on the Simonstrator platform [233]. The value ranges of the configurations are

determined by the applied CFM. All measurements were run on a 64-bit Windows 7

workstation, equipped with an Intel i7-2600 CPU (2×3.7 GHz) and 8 GB of RAM,

with 2 GB being assigned to the simulator. For creating the training data, we

executed 6125 simulation runs representing a fixed configuration in terms of system

and context features. Using each configuration, we measured the mean latency

of the network in the simulation. When evaluating the approach, for each run,

100 nodes were distributed randomly onto a square region. Then, either the data

collection node in case of a data collection scenario or a random node is selected
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as the planner node. The planner decision is distributed to all other nodes in case

of a reconfiguration. After a reconfiguration, the simulation proceeds with the

execution of the selected topology control algorithm. The first two evaluation

questions are answered quantitatively, while EQ3 will be discussed qualitatively.

Evaluation Results

This section outlines the evaluation results aiming at answering the first two

quantitative evaluation questions by presenting an overview of the respective

measurements. EQ3 is discussed qualitatively in Section 7.2.6.
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Figure 7.8.: Latency vs. context class for I(0) and I(20) [225].

Looking at EQ1, the main goal is that the system performance using the adaptation

logic is better than a MILP-based baseline system without performance influences

creating random valid configurations. First, we compare the effectiveness, and

then we look at the trade-off between performance and training cost.

Figure 7.8 shows all possible context combinations of the Scenario and the Mobility

Speed attribute on the x-axis named C1 to C9. All boxplots in this thesis follow

the convention that (i) the blue horizontal line indicates the median value, (ii) the

lower and upper caps mark the 25 %- and 75 %-percentile, and (iii) the whiskers

enclose all values within the 1.5 inter-quartile range. The y-axis represents the

measured latency on a logarithmic scale. For each context, the boxplots show

the MILP-based REACT Loop working without performance influences on the
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left (I(0), light green) and the same loop with 20 training iterations on the

right (I(20), dark green). Accordingly, the baseline system I(0) generates valid

configuration. However, in this case, the planner cannot optimize the result

towards non-functional goals. As we can see in the plots, using the trained MILP-

based REACT Loop results in lower median latencies compared to the baseline

system in seven of nine context classes. In the other two context classes as part

of the Gossip scenario, the median latency is lower using the baseline system.

Taking the training cost for achieving this effectiveness into account, Figure 7.9

shows the performance in the representative context class C2 (i.e., DataCollection

and MobilitySpeed = 0.5 m/s) with different numbers of iterations. We can see

that the performance stabilizes after ten iterations, and in the case of 35 iterations,

the performance decreases again.
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Figure 7.9.: Latency vs. training cost for context class C2 [225].

Next, as part of EQ2, this section looks at the scalability of the approach consid-

ering varying sizes of the used performance-influence models. Figure 7.10 presents

an overview of the mean planning duration with a changing number of iterations

resulting in smaller or larger performance-influence models. In this case, we have

two baseline values: M(0) representing a MiniSAT-based measurement as well as

I(0), which, again, is the baseline system without a performance-influence model.

As the first M(0) represents MiniSAT, it cannot handle, e.g., integer or real values.

For this measurement, a test data set with 1215 simulation runs is used to explore

combinations of different context features and attribute values. In this case, each
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one of the nine planner settings shown in the figure is executed in the different

combinations. The 1215 simulation runs correspond to 135 different context

settings times the shown nine planner settings. The use of MiniSAT naturally

results in the shortest planning duration, while the use of performance-influence

models directly increases the planning time compared to I(0).
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Figure 7.10.: Planning duration vs. training cost [225].

7.2.6. Discussion of the MILP-Based Feedback Loop

In this section, we discuss the presented evaluation results. This includes an

analysis of the three evaluation questions and their results, as well as an overall

discussion of the MILP-based REACT Loop.

Considering the evaluation of the effectiveness as part of EQ1 and Figure 7.8, by

looking at the median values, we conclude that the MILP-based feedback loop

using performance-influence models considerably improves the latency in most

contexts. Looking at Figure 7.9, we can see that our approach also overfits the

data in the case of 35 iterations. This means it still must be manually determined

how many learning iterations should be taken into account, as when applying

general machine learning techniques. Additionally, by looking at the other data

points, we observe that the approach is robust in its performance between 10

and 30 iterations. This robustness shows that there exists a larger range for the
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number of iterations in which the results are similarly optimal. Accordingly, this

fact simplifies to find the optimal number of iterations for the system developer.

Considering EQ2, Figure 7.10 shows a dependency between the learned performance-

influence models and the planning duration. Looking at the baseline setups, the

MiniSAT-based planner needs approximately 40 % less time compared to the

MILP solver. As expected, handling real and integer values directly increases

the planning time compared to a SAT solver. If performance-influence models

are used, adding more and increasingly complex constraints to the solver also

increases the planning duration. The results indicate that systems that need faster

adaptations should rely on either a small number of training iterations, omit them,

or use a SAT-based solution. Hence, according to the use case, there is a tradeoff

between planning duration and optimality considering non-functional goals.

Evaluating the applicability as part of EQ3, as the adaptation behavior of the

MILP-based REACT Loop is also completely dependent on the information of the

knowledge component, we state that it is a reusable approach [225]. The learning

method is also generic and can be used with other simulation environments or

real systems. Additionally, updating the learned performance-influence models at

runtime is possible in theory. As we have seen in Chapter 6, REACT Core already

provides the needed facilities to update the knowledge at runtime. Accordingly,

if an external toolchain for online learning using SPL Conqueror is available,

changing the performance-influence models at runtime in an instance of REACT

is enabled with a single API call. However, employing an online learning feedback

loop is out of scope of this work. Finally, the MILP-based REACT Loop is

inherently applicable to more managed resources than the SAT-based REACT

Loop due to the means to plan numeric attributes.

Summing up, one problem of the MILP-based REACT Loop is the missing multi-

instantiation of features defined in the CFM. In general, it is possible to define

that features can occur multiple times in a system configuration. However, the

encoding of the MILP problem presented as part of [225] cannot handle this multi-

instantiation. When performance-influence models should be used, a simulation

for generating data before runtime or enough data from a system at runtime is

needed. Depending on the size of the problem space, this requires many of data

points for SPL Conqueror to work. As a third and final REACT Loop, this thesis

proposes a constraint programming-based REACT Loop in the following section.
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7.3. CP-Based Feedback Loop

The last REACT Loop uses constraint programming (CP) internally for planning

adaptations. This section is based on [11] and [186]5.

7.3.1. Constraint Satisfaction Problems

First, we define the class of CSPs. A CSP consists of a set of variables, a domain

for each variable, as well as a set of constraints restricting the values of the

variables [234,235]. A feasible solution of a CSP is “an assignment of a value from

its domain to every variable, in such a way that every constraint is satisfied” [234].

If there is no such assignment, the problem is unsatisfiable.

Until here, this only describes a problem of satisfiability or feasibility. In order to

optimize the result turning the CSP into an optimization problem, an objective

function must be added [234]. For solving a CSP, including optimization goals

from an objective function, CP is used. In general, there are the possibilities of

finding any solution, or an optimal or near-optimal solution given these additional

objectives. The objective function adds the notion of minimizing or maximizing a

variable given the constraints of the problem. This section describes a CP-based

REACT Loop. For a detailed comparison between mathematical and constraint

programming, the reader is referred to [235].

7.3.2. CP-Based Context-Aware Feature Modeling Approach

Again, the already presented CFM-based modeling is applied here. In this case, the

CFM gets transformed into a CSP. As with the MILP-based approach, attributes

can have integer and real values. It is also possible to employ multi-objective

optimization. As an addition to the MILP-based transformation, it is possible to

have multiple instances of a feature present in a configuration. This allows for

more complex specifications, as the expressiveness of the CFMs is increased.

5 [11] and [186] are joint works with M. Breitbach, C. Krupitzer, M. Weckesser, C. Becker, B.
Schmerl, and A. Schürr.
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7.3.3. CP-Based Architecture

Figure 7.11 presents the architecture of the CP-based approach. The CP-based

REACT Loop requires two models for separating problem and solution space:

1) The adaptation options specification, which is an explicit representation of

valid reconfiguration options. It thus describes the problem space with a structural

modeling language, including constraints.

2) The target system specification models the architecture of the managed

resource, i.e., the solution space. After solving a problem in the problem space,

the CP-based REACT Loop maps the result to the solution space according to

the target system specification.
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Figure 7.11.: Architecture of REACT using the CP-based REACT Loop [11].

The CP-based REACT Loop uses the live sensor data provided by the communica-

tion system together with the adaptation options specification to adapt the system

to the desired target state. The feedback loop instance is reusable since it works

with arbitrary adaptation options specifications and target system specifications.

It enables multiple instances of features and does not need an explicit mapping

model. For the mapping, the CP-based REACT Loop uses an automatic mapping

by feature/class names and by attribute/property names.

Going through the loop, the sensor receives raw input such as JSON or XML. The

monitor preprocesses this data by transforming it into higher-level objects.The
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monitor instance passes the higher-level objects to the analyzer. The analyzer

uses the adaptation options specification for mapping the sensor data to the

specification. Hence, it creates model instances from the sensor data. These

model instances are directly passed to the planner. There, the adaptation options

specification gets combined with the model instances from the analyzer. As

these model instances represent the context state of the managed resource, in

combination with the adaptation options specification, this represents the CP. The

planner now finds a solution using the CP solver. This solution is a (completed)

model instance, which has to be mapped to the target system specification,

which represents the managed resource. Contrary to the MILP case, the CP-

based REACT Loop uses an implicit name-by-name-based mapping following a

convention-over-configuration [236] approach. This mapping is the responsibility

of the executor. The instance of the target system specification is then transferred

to the effector. Finally, it is again the responsibility of the managed resource to

implement the changes.

7.3.4. Implementation of the CP-Based Feedback Loop

This section outlines the implementation details of the CP-based feedback loop.

The section includes a description of the modeling capabilities using the modeling

language Clafer [237] and an outline of the functionality of the feedback loop.

Modeling Capabilities

The essential parts of the CP-based REACT Loop are the used models of the

adaptation behavior (adaptation options specification) and of the managed re-

source (target system specification). The system developer provides these models

at design time and may update them at runtime. The CP-based REACT Loop

uses the models at runtime to adapt the managed resource. Specifically, the

feedback loop supports adaptation options specifications in the structural spec-

ification language Clafer (class, feature, reference) [237]. There are multiple

reasons to use Clafer. First, it is a well-established approach applied in different

domains [237,238], which is available as an open source project and extensively

documented. Second, Clafer provides lightweight modeling capabilities with just

a minimal set of concepts. Thus, Clafer makes modeling accessible to users from

different domains without extensive modeling experience. Third, Clafer provides
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model verification and validation [239]. By using Clafer, the CP-based feedback

loop offers the possibility for advanced analysis as presented in [225]. Thus, the

system developer is enabled to minimize modeling errors in the Clafer specifica-

tions. Clafer specifications not only can be translated into CSPs but also into

SAT and satisfiability modulo theories (SMT) [240] problems [241]. We decided

to use Clafer in combination with its CSP-based backend.

A Clafer-based model is created using a single type of element named Clafer [237].

A Clafer represents a type, an attribute, a relationship, an instance, or a combi-

nation of these. Each Clafer has a name and is either top-level or nested under

other Clafers. Nesting is expressed using indentation. We illustrate Clafer’s basic

modeling capabilities with the following use case from a cloud server management

scenario, where a system developer uses REACT with the CP-based feedback loop

to implement adaptive behavior. Based on the context dimensions (i) number

of running servers, (ii) total number of servers, and (iii) average response time,

REACT launches additional servers adaptively if required. The launch of an

additional server happens if the average response time exceeds a threshold value

(here 75, representing 75 ms) and additional servers are available.

Listing 7.1 shows an exemplary adaptation options specification in Clafer for

this use case. Line 1 contains a (top-level) Clafer named ServerLauncher that

describes that an additional cloud server should be started. Clafers may have

instance cardinalities, while the default instance cardinality is 1. By adding 0..1

to Line 1, we specify that model instances are valid with either none or only one

ServerLauncher Clafer. Clafers may be abstract. An abstract Clafer “aggregates

commonalities” [238] like a class in object-oriented programming. Hence, a Clafer

can inherit from an abstract Clafer and use abstract Clafers like a type. Lines 2-5

describe an abstract entity of type Context with integer attributes. A solution

to this problem space requires to have precisely one instance of this Clafer with

all attributes set. Lines 6 and 7 define the auxiliary Clafers ExtraServers and

HighRT that state whether it is possible to start an additional server and whether

the response time is high. In addition, a Clafer model may contain constraints in

brackets. Lines 8-9 specify constraints that set the auxiliary Clafers ExtraServers

and HighRT according to the context. Line 10 is the adaptation rule stating that

the ServerLauncher Clafer should be present in a model instance if the response

time is high and more servers are available.
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1 ServerLauncher 0..1

2 abstract Context 1

3 servers -> integer 1

4 maxServers -> integer 1

5 responseTime -> integer 1

6 ExtraServers 0..1

7 HighRT 0..1

8 [

9 if Context.servers < Context.maxServers then one ExtraServers else no

ExtraServers

10 if Context.responseTime >= 75 then one HighRT else no HighRT

11 if HighRT && ExtraServers then one ServerLauncher else no ServerLauncher

12 ]

Listing 7.1: Adaptation options specification in Clafer for the self-adaptive cloud
server management case [11].

The CP-based REACT Loop uses separate models for the adaptation behavior,

which is modeled in Clafer, and the managed resource. This induces the need

for a mapping from the problem space to the solution space, which represents

the managed resource. The CP-based REACT Loop uses the target system

specification, which the system developer provides in UML as class diagrams, as

in the case of the MILP-based REACT Loop. As mentioned, in many cases, a

UML model of a managed resource might already exist and could be ready to use

as a target system specification for REACT decreasing the development effort. In

addition, an automated creation of a UML model from source code might also

reduce the time for modeling. In the cloud server management example with its

adaptation options specification in Listing 7.3.4, the simplest UML model only

contains a single class named ServerLauncher. The classes as part of the UML

model indicate if they should be present in the managed resource or not.

Feedback Loop

The previous section described the modeling of the adaptation options specifica-

tion in Clafer and the target system specification in UML. Now, we show how

REACT leverages these use case dependent models to achieve self-adaptivity using

the CP-based REACT Loop. Figure 7.12 shows the behavior of the CP-based

REACT Loop in the aforementioned cloud server management example. The
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feedback loop starts when new sensor information is received via the sensor inter-

face in JSON format. In the example, this sensor data 1 is context information

about the cloud system. The received information is handed over to the monitor.

Knowledge

M

A P

{"Ctx“: { "type": "Context",
  "servers": 2,
  "maxServers": 3,
  "responseTime": 80 }}

Ctx : Context
 [ servers = 2 ]
 [ maxServers = 3]
 [ responseTime = 80]

Map
<String,Object>

abstract Context 1..1
    servers -> integer 1..1
    maxServers -> integer 1..1
    responseTime -> integer 1..1
(…)
ServerLauncher

ExtraServers
HighRT
(…)

Ctx : Context
    [ servers = 2 ]
    [ maxServers = 3 ]
    [ responseTime = 80 ]

{ "classes":
  [ "ServerLauncher":{} ]
}

E

Legend
Data Flow

Used Knowledge

Sent Data

Mapping

1

7
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4

Target System 
Specification
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Effector

ServerLauncher

Adaptation Options Specification
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abstract Context 1..1
 servers -> integer 1..1
 maxServers -> integer 1..1
 responseTime -> integer 1..1

ServerLauncher 0..1
… 3

2

Figure 7.12.: An adaptation cycle of REACT using the CP-based REACT Loop in
the cloud server management example. The analyzer maps the JSON-
based sensor information to the adaptation options specification in
Clafer. The planner evaluates the model and finds a valid instance.
Here, it adds a ServerLauncher Clafer as starting a new server is
desired. The effector maps the plan to the target system specification
in UML and transfers the adaptation to the managed resource [11].

The implementation of the CP-based monitor allows system developers to choose

from multiple monitoring strategies. In the default strategy, the monitor parses

the raw JSON data and hands it to the analyzer as a map 2 . The loop also offers

an aggregation strategy that additionally aggregates information from multiple

sensors and a windowing strategy that applies a sliding window approach to the

sensor values. The IMonitoringStrategy interface shown in Listing 7.2 further

enables to create, share, and integrate custom monitoring strategies.
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1 public interface IMonitoringStrategy {

2 public Map<String, Object> handleSensorJSON(String sensorData);

3 }

Listing 7.2: IMonitoringStrategy interface.

The analyzer fetches the adaptation options specification 3 from the knowledge

service. It uses the abstract Clafers specified in the adaptation options specification

to create concrete Clafers from the monitoring data. To achieve this mapping, the

original sensor data contains type attributes. The CP-based REACT Loop uses

these type attributes to map the monitoring data objects to the correct abstract

Clafers in the adaptation options specification. In the exemplary case, the type

has the value Context and REACT, therefore, maps it to the Context Clafer in

the adaptation options specification 3 . The concrete Clafers are then forwarded

to the planning component 4 .

The planner merges the generated Clafers with the adaptation options specification

to the problem specification. Thus, this specification contains the global constraints

of the adaptation options specification and the current constraints imposed by

the sensor data. Now, the planner solves this CP using the Java-based library

Chocosolver [242]. Hence, the solver finds a model instance 5 that satisfies all

constraints. In the exemplary case, this model instance would either contain or not

contain the ServerLauncher Clafer, which constitutes the adaptation decision.

The planning result in the form of concrete Clafers is then passed to the executor,

which maps the Clafers to the target system specification 6 . Then, the CP-

based REACT Loop maps the Clafers by name to the classes or parameters

of the UML model and creates a UML instance. In the example, the created

ServerLauncher Clafer (note the missing 0..1 cardinality in 5 ) is mapped

to the class ServerLauncher of the target system specification. The executor

transforms this UML instance to a language-independent representation. Finally,

the executor passes this representation via the effector interface 7 to the managed

resource, where adaptations will take place. The CP-based feedback loop works

with arbitrary adaptation options specifications and target system specifications

and is thus applicable to a wide range of scenarios.
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7.3.5. Evaluation of the CP-Based Feedback Loop

This section evaluates the implementation of REACT employing the CP-based

feedback loop. The REACT Core’s context module has not been used as part

of this evaluation for the same reason as in the MILP case. As we want to

measure the effectiveness and efficiency of the loop itself, skipping runs of the

loop when using the context module does not enable us to measure the runtimes

easily. First, we compare the system with Rainbow, a well-known and frequently

applied framework for model-based adaptation. For doing so, we implemented

the simulation-based SEAMS exemplar SWIM (Simulator for Web Infrastructure

and Management) [216], which represents a cloud system. Second, this section

presents the application of REACT using the CP-based REACT Loop in an

emulated communication system in the field of SDN.

In our first experiment, we compare REACT using the CP-based feedback loop

with the well-known Rainbow framework [17] in terms of development effort,

performance, and features. The second experiment aims at the application of

REACT using the CP-based REACT Loop in a real-world SDN use case. We try

to answer the following evaluation questions, while EQ1 -EQ3 are tackled in the

first experiment and EQ4 in the second one.

EQ1–Development Effort: How does REACT using the CP-based REACT Loop

compare to Rainbow in terms of development effort?

EQ2–Performance: How does REACT using the CP-based REACT Loop com-

pare to Rainbow in terms of performance?

EQ3–Capabilities: How does REACT using the CP-based REACT Loop and

Rainbow differ in terms of capabilities?

EQ4–Real-World Effectiveness: Can REACT using the CP-based REACT Loop

be implemented and used effectively in a real-world communication system?

Cloud Server Management

In our first experiment, we compare REACT using the CP-based feedback loop

with the well-known Rainbow framework [17] in terms of development effort,

performance, and capabilities. Accordingly, the following two paragraphs introduce

the Rainbow framework in more detail.
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The Rainbow framework uses software architectures and a reusable infrastructure

to support self-adaptation of software systems, with components implementing

each aspect of the MAPE-K loop. Probes are used to extract information from the

managed resource that update the model via gauges, which abstract and aggregate

low-level information to detect architecture-relevant events and properties. This

separation means that the same code for Rainbow can be used across multiple

deployments of the system by only changing probes (and effectors). Evaluators

check for satisfaction of constraints and properties in the model and trigger

adaptation if any problems are found, (e.g., the response time falls below some

threshold or the cost of deployment becomes too high). The adaptation manager,

on receiving the adaptation trigger, chooses the “best” adaption plan to execute,

and passes it on to the strategy executor, which executes the strategy on the

managed resource via effectors.

The best strategy is chosen on the basis of stakeholder utility preferences and the

current state of the system, as reflected in the models. The underlying decision

making model is based on decision theory and utility [18]; varying the utility

preferences allows the system developer to affect which strategy is selected. Each

strategy, which is written using the Stitch adaptation language [99], is a multi-step

pattern of adaptations in which each step evaluates a set of condition-action

pairs and executes an action, namely a tactic, on the managed resource with

variable execution time. A tactic defines an action, packaged as a sequence of

commands (operators). It specifies conditions of applicability, expected effect and

cost-benefit attributes to relate its impact on the quality dimensions. Operators

are basic commands provided by the managed resource. As a framework, Rainbow

can be customized to support self-adaptation for a wide variety of system types.

Furthermore, the flexibility of the framework has enabled not only the multi-object

trade-off selection of strategies among competing objectives that is embodied in

Stitch, but has also supported research into online adaptation planning [243],

predictive proactive adaptation [244], and human-machine cooperation [245].

In this experiment, REACT using the CP-based REACT Loop and Rainbow

adapt a cloud server deployment providing a web application. This experiment

uses SWIM [216], which offers a reproducible way for evaluating adaptation

logics in a web server environment. It is a simulation environment based on

OMNeT++ [246]. The SWIM exemplar consists of multiple simulated web servers
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connected to a round-robin load balancer. The load balancer distributes simulated

requests, and the corresponding server simulates the execution. Each web server

response may contain optional content (e.g., advertisements), which increases

the response time but also leads to additional revenue for the web site operator.

This optional content is represented using a so-called dimmer value, which states

in percent how many requests contain the optional content. The overall goal of

the system is thus continuously reaching a fixed response time goal, maximizing

the revenue with the optional content, and minimizing the cost for the servers.

Accordingly, there are two ways of adapting the running system: 1) Adding or

removing servers, and 2) controlling the percentage of responses with optional

content. We use the “1998 World Cup Web Site Access Logs” trace provided by

SWIM for the comparison.

In accordance with [18] and [247], we measure the required source lines of code

(SLOC) for implementing the SWIM use case with REACT using the CP-based

feedback loop and Rainbow. The SLOC comprise the specification files and

the interface implementation for connecting the respective approach to SWIM.

Further, we measure the cycle time for executing an adaptation in REACT using

the CP-based REACT Loop and Rainbow as well as the processing time of each

MAPE activity. We conduct ten evaluation runs each for REACT and Rainbow

on a machine equipped with an Intel Core i7-8700k and 32GB of RAM. Both

approaches have been executed in Docker6 containers. For better comparability,

REACT and Rainbow perform similar adaptations, leading to the same response

times and simulated costs for the web site operator in SWIM.

Looking at EQ1 —the development effort—two metrics influence the system

developer’s experience: the lines of code required to achieve self-adaptivity and

the number of different programming languages, tools, and technologies she needs

to be familiar with. Both metrics apply to i) specifying the adaptive behavior

and ii) implementing the interfaces to SWIM. Table 7.3 shows the SLOC for the

specification of the adaptive behavior.

We observe that specifying the adaptive behavior with REACT requires consid-

erably fewer SLOC. The system developer has to write 152 SLOC in 2 files with

clear responsibilities. To achieve the same behavior with Rainbow, the system

developer has to write 593 SLOC in 6 different files using various languages. Next,

6https://www.docker.com/, accessed 2020-12-18
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we assess the development effort for the interface implementation. In Table 7.4,

we observe that REACT requires 200 SLOC and Rainbow requires 204 SLOC.

However, REACT requires fewer (configuration) files for setting up the connection.

In addition, due to its language-independent interfaces, system developers can

use their preferred language.

Rainbow REACT
Artifact SLOC Language Artifact SLOC Language
Strategies
and tactics

113 Stitch Adaptation
options
specification

123 Clafer
Utilities 55 YAML

Architecture
Model

261 YAML
Target
system
specification

38 XML
128 ACME
25 DTD
11 XML

Total 593 Total 152

Table 7.3.: SLOC measurements of the modeling in Rainbow and REACT using
the CP-based REACT Loop [11].

Rainbow REACT
Artifact SLOC Language Artifact SLOC Language

Probes
91 Perl

Interfaces 200 Python
68 YAML

Effectors
9 Bash
25 YAML

Utility Files 11 Bash
Total 204 Total 200

Table 7.4.: SLOC measurements of the interface implementations of Rainbow and
REACT [11].

For answering EQ2 —looking at the performance—Figure 7.13 presents the aver-

age runtimes per MAPE activity as well as their average sum. We observe large

differences in the different phases as well as in the average total time of the feed-

back loop. REACT using the CP-based REACT Loop considerably outperforms

Rainbow in the monitoring and analyzing phase. However, the planning phase of

the CP-based feedback loop needs more time compared to Rainbow. Still, looking

at the total time, the average total runtime of the REACT’s feedback loop using

the CP approach is considerably lower. In total, the average adaptation cycle

execution when using the CP-based REACT Loop requires 84 ms in comparison

to 216 ms in Rainbow.

Finally, EQ3 considering the capabilities is answered qualitatively. Rainbow is

based on architecture models that enable a more in-depth analysis and a less

complex planning phase as a result. In addition, it works utility-based with
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Figure 7.13.: Average run times of the MAPE activities of REACT using the
CP-based REACT Loop and Rainbow [11].

the possibility to weight optimization goals. This enables system developers to

specify precisely how vital a non-functional goal should be. Currently, Rainbow

itself is deployed centrally and requires a higher runtime in comparison with

REACT and the CP-based REACT Loop in the use case. The specification of

the adaptive behavior requires more files in different file formats compared to

REACT using the CP-based REACT Loop. On the other side, REACT offers

runtime modifications, which enables to update the results of the adaptation logic

at runtime. Also, REACT provides means for setting up deployments following

decentralized control, and it directly supports multiple programming languages

due to the used IDL. However, it is not possible to weight goals in the CP-based

REACT Loop.

SDN-Based Wifi Handover

In the second experiment, we show REACT’s focus on communication systems

in a real-world SDN-based use case adding adaptive behavior to an underlay

network. Sensor information from two distributed hosts is pushed to a decentralized

adaptation logic following the regional planning pattern [15].

In this scenario, a car receives a live stream from a streaming server via a wireless

network connection (see Figure 7.14). With each handover between the wireless

network towers along the road, the user in the car experiences packet loss. The

goal is to improve the quality of experience by minimizing the packet loss during

the handover. SDN “is a paradigm where a central software program, called a

controller, dictates the overall network behavior” [248]. The controller manages a

set of controllable switches. These switches deal with incoming packets according
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to flow rules. A flow rule can, for instance, forward a packet to a specific port,

change or add packet headers, or implement firewall functionality by rejecting

a packet. The SDN controller offers an API that allows system developers to

write applications for the controller. In our case, we apply these capabilities by

monitoring and adapting the flow rules with REACT for seamless handovers. A

specific adaptation means that there should be flow rules for the current wireless

tower, as well as flow rules duplicating the streaming traffic to the next tower.

This duplication should only take place when the car is going to leave the radio

range of the first tower soon. Achieving this behavior continuously requires a

recurring adaptation of the flow rules.

SDN Switch Live Stream 
ProviderP3

Sensor

P2

Effector

REACT

P1

Tower 1 Tower 2

Legend
MAPE Flow

Ethernet
Px Port x

SDN Controller

REACT
P K

Sensor

A EMS

Host 3

Host 1 Host 2

Host4

Figure 7.14.: SDN handover setup with two access points in a live streaming
scenario with multiple sensors. The SDN sensor sends topology in-
formation while the car sends its distance to the currently connected
radio tower. REACT creates flow rules for adaptively duplicating
the live stream traffic [11].

REACT receives sensor data from two sources. First, the sensor SDN applica-

tion sends the host location, which contains addressing information as well as

the currently connected network tower, to REACT. An additional sensor in

the car sends the distance to the currently connected access point to REACT

every second to minimize the network traffic duplication. We apply the built-in

aggregation monitoring strategy of the CP-based monitor to combine the data

for reasoning. The MAPE components are distributed according to the regional

planning pattern [15]. Monitor, analyzer, and executor are deployed on a separate
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machine (Host 1). A powerful and stable resource runs the computationally

intensive planner and the knowledge service (Host 2).

We use the ONOS [249] SDN controller in this evaluation, which runs on another

separate machine (Host 3). The network was emulated with Mininet-Wifi [217] on

a fourth machine (Host 4). In a pre-test, we used the VLC player7 for streaming a

4K video. However, for better controllability and reproducibility of the experiment,

we run Iperf8 in UDP mode with 25 Mbit/s, the bandwidth recommendation of

Netflix for 4K video streams9. The ethernet connections have a bandwidth of

100 Mbit/s. We emulated four access points, one moving wireless node as the car,

and a static host representing the live stream provider.

We compare the self-adaptive handover with REACT to ONOS’ reactive forward-

ing application. The reactive forwarding application deploys flow rules on switches

if a host connects to another. In this case, the corresponding switches would

request the controller to decide how the packets should be handled. The reactive

forwarding application subscribes to a corresponding event and deploys flow rules

handling these packets on the switches. We measure the packet loss with REACT

and ONOS’ reactive forwarding in 30 runs each.

As shown in Figure 7.15, self-adaptivity with REACT reduces the packet loss

considerably. The aggregated mean packet loss of the overall simulation time

improves from 4.87 % in the reactive forwarding case to 0.48 % with REACT.
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Figure 7.15.: Average packet loss in % over time. The duplication flows are added
as soon as the access point is about to switch [11].

7https://www.videolan.org/vlc/, accessed 2020-12-18
8https://iperf.fr/, accessed 2020-12-08
9https://help.netflix.com/en/node/306, accessed 2020-12-18
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7.3.6. Discussion of the CP-Based Feedback Loop

This section discusses the evaluation, including the four evaluation questions

presented in the previous section. For this, the structure follows the four evaluation

questions EQ1 to EQ4.

Comparing the development effort in terms of the modeling and interface im-

plementation, Table 7.3 and 7.4 show considerable differences. In case a system

developer wants to minimize the effort to adapt a system, REACT with the CP-

based feedback loop should be chosen. It needs fewer different files for specifying

the adaptation behavior and the interfaces. Another important point is that the

IDL-based interfaces of REACT Core enable the utilization of a large number of

different programming languages.

Next, discussing the performance measurements presented in Figure 7.13, we

can answer EQ2. First, since Rainbow holds an exact architecture model of

the managed resource, it updates the model when new sensor data is available,

periodically checks for problems, including an analysis where the problem is

located in the model, and triggers an adaptation. Thus, this design choice bears

a more complex analysis of the managed resource’s architecture at the cost of

slower adaptation. The total execution time of an adaptation cycle in REACT

using the CP-based REACT Loop is determined to a high degree by the planner

component. This is not surprising, as the planner executes Chocosolver to find a

valid model instance. Clafer itself scales well with increasing problem size even

with models of several thousand Clafers [241, p. 84]. In Rainbow, the complex

problem analysis in the monitoring and analyzing component accelerates planning.

The planner only uses the utility function and expected outcomes for selecting

one of the specified strategies instead of running a solver. Taking the total time

of the feedback loops into account, we argue that REACT using the CP-based

approach is well-applicable in scenarios where fast adaptation is required.

EQ3 has been evaluated qualitatively. As described, REACT using the CP-based

feedback loop and Rainbow show different strengths and weaknesses. Hence,

depending on the use case, a system developer has to choose one of them. A

system developer who has to decide which approach to use has to consider

specific requirements, such as the need for distributed deployments or weighted

performance goals. As a system developer also has to apply the chosen approach,
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the missing development process in Rainbow’s case might be an obstacle when

picking it up. Rainbow has its strengths in more in-depth analysis using its

architecture model and a less complex planning phase as a result. Considering the

timing aspect, not only the time to execute one run of a feedback loop is important,

but also the frequency of adaptations. If the frequency is low and no quick decision

is needed, a slower adaptation logic as in the case of Rainbow does not impose

a drawback. REACT, however, offers runtime modifications of the adaptation

behavior, decentralized control, and multi-language support. Accordingly, if there

is the need for weighted optimization and a central deployment without too

strict timing requirements, Rainbow is a good choice. If there is no need for

weighted optimization and the requirement for decentralized deployments and fast

execution, REACT is a good candidate. Determining these requirements allows

the system developer to make the right choice.

By looking at the results shown in Figure 7.15, we observe that REACT using the

CP-based REACT Loop can be applied effectively in a real-world communication

system (RQ4 ). In addition, REACT makes it possible to efficiently change the

behavior of the SDN controller by changing the adaptation options specification.

It further enables porting the specified behavior to different SDN controllers by

only implementing the effector interface and sending sensor data accordingly.

Thus, we achieve portability of the specified behavior, which is not available in

SDN in general, where each SDN controller needs specific SDN applications with

different interfaces to the controller for applying a particular behavior in the

network.

This finishes the presentation of the third and last ready-to-use REACT Loop

as part of this thesis. Depending on the (modeling) requirements of a system

developer targeting a communication system, one of the presented implementation

has to be selected. In order to help in the decision by looking at the planning du-

rations, in the following, the MILP- and CSP-based REACT Loops are compared

directly against each other in a single use case. Additionally, the next section

briefly examines potential improvements when combining multiple REACT Loops

using different modeling approaches in parallel. For both objectives, a feasibility

study is conducted.
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7.4. Comparison and Combination of Feedback Loops

The previous sections presented different feedback loop instantiations called

REACT Loops. This section presents the results of a feasibility study comparing

and combining the MILP-based with the CP-based REACT Loop. The goal of

this feasibility study is to answer the following evaluation questions:

EQ1–Comparison: What are the differences and similarities between the plan-

ners of the feedback loop instances considering speed, effectiveness, and

expressiveness of the specification?

EQ2–Combination: How effective is the combination of multiple REACT Loops

with different modeling capabilities and planning techniques?

For answering the two evaluation questions, we again chose the SWIM [216]

use case, which we also used in Section 7.3. As solvers, SAT4J [223], IBM

CPLEX10, as well as Chocosolver [242] have been used. In this evaluation, the

MILP-based REACT Loop using CardyGAn [229] presented in Section 7.2 is used

in combination with SAT4J and CPLEX, The CP-based REACT Loop presented

in the previous section is combined with Chocosolver again. The context module

of REACT Core has not been used as part of this comparison as the objective

of this evaluation is to measure the runtimes of the loops themselves. For the

simulations a machine using Windows 10 in combination with an AMD Ryzen

3700X CPU with 16 GB of RAM has been used. SWIM has been executed using

Docker with two CPU cores and 2 GB of memory.

In order to answer the question about planning speed posed in EQ1, a feature

model, which can be solved by a SAT, MILP, and CSP solver is used. This

first approach makes sure that the different possibilities in specifying a problem

do not have an influence on the results. The CFM for this case is depicted in

Figure 7.16. As shown, the response time is separated into multiple enumeration

values. Additionally, there are system features with either one or two servers

as parameters and the dimmer value can be changed using fixed steps. Again,

servers induce costs, and the dimmer value represents the percentage of how many

requests contain advertisements creating revenue and increasing the load on the

servers. The specification enables to use this setting with all loop types.

10http://www.ibm.com/analytics/cplex-optimizer, accessed 2020-12-08
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In the scenario, the 30 minute ClarkNet [250] trace provided with SWIM is used.

Every run has been repeated 20 times, and the context of the system has been

fetched every 10 seconds. We measured the average planning time, the standard

deviation of the planning time, as well as the average utility. The utility is

provided by SWIM. The embedded utility function takes the costs as well as the

response time of the servers into account. Hence, it represents the quality of the

reconfigurations. A C++-based layer implementing REACT’s interfaces is used

for communication between SWIM and REACT.

SWIM

Context 
Features

System 
Features

<<require>>

[1,1]

[1,1] [1,1]

Response Time
Enumeration 

(ms)
<1,1>
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Management
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Figure 7.16.: CFM for the SWIM case used in the comparison for answering EQ1.

Table 7.5 shows the aggregated results of the evaluation runs. By looking at the

planning time in the table, we observe that the planner using SAT4J needs the

lowest amount of time. It is 10 % faster than the MILP-based planner and 73 %

faster than the Chocosolver-based planner. Taking the utility values into account,

the results show that they are close. However, the SAT4J-based runs have a

slightly higher utility on average. The measured standard deviation of the utility

values is 97.6. The utility difference is explainable with the faster adaptations, so

the system reacts more promptly to changes in the load induced by the trace.

Time average (total) Time St.Dev. (total) Utility average (total)

SAT4J 13.53 2.05 2505.30

CPLEX 15.00 4.77 2341.60

Chocosolver 49.45 3.57 2331.50

Table 7.5.: Total average planning time in ms and utility per run using simplified
specifications. St.Dev.: Standard deviation.
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Considering the expressiveness of the three solvers, this used CFM represents

the lowest common denominator. Hence, the MILP- and CP-based solutions are

not able to, e.g., plan attribute values directly. This leads to a larger CFM due

to additional enumerations and duplicate system features differentiating only in

terms of parameters.

For taking the different levels of expressiveness into account, in a second setup,

each solver gets a specification using all solver features. In the SAT case, this

does not change anything. However, the MILP- and CP-baser planners will be

able to directly plan the absolute dimmer value and number of servers to start or

to stop. In this case, factors approximating the revenue are used for particularly

planning the dimmer value more precisely. The complete CardyGAn and Clafer

specifications of the SAT problem, the simplified MILP, and Clafer counterparts,

as well as the full MILP and Clafer specifications, can be found in Appendix B.

Table 7.6 shows the aggregated results of the different planners exploiting the

expressiveness of the solvers. We can see that CPLEX needs considerably more

time compared to the simplified specification used before. Looking at Chocosolver,

it only needs about 5.5 ms more time using the full specification. For a better

overview, Figure 7.17 shows a boxplot with all solvers, including the simplified

runs of CPLEX and Chocosolver. The very first measurement in each run of the

evaluations can be considered as warm-up phase and has been removed as outlier.

The biggest changes can be seen in the average utility value. When using the

full potential of the MILP- and CP-based solvers in terms of expressiveness, the

utility increased considerably. CPLEX and Chocosolver perform similarly when

comparing the utility.

Time average (total) Time St.Dev. (total) Utility average (total)

SAT4J 13.53 2.05 2505.30

CPLEX 33.88 10.35 4059.50

Chocosolver 55.04 5.67 4009.10

Table 7.6.: Total average planning time in ms and utility per run using complex
specifications. St.Dev.: Standard deviation.

Answering EQ1, we conclude that in the SWIM use case the specific planning of the

attributes when using CPLEX or Chocosolver can increase the utility considerably.

However, this is a tradeoff between planning time and utility. In cases where
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Figure 7.17.: Average planning times using different solvers and settings.

fast adaptations are needed, employing SAT4J or a SAT-based specification in

combination with CPLEX is possibly the better choice.

With regard to EQ2 and based on the results of EQ1, one idea is to combine

multiple solvers. So, the approach is to use parallel feedback loops with the SAT

solver directly adapting the system while the second feedback loops using MILP-

or CP-based solvers are still running.

For answering EQ2, we use all three feedback loops in parallel with a coordinator

component in front of and behind the loops. The coordinator starts the cycles at

the same time and collects the results. Apart from the collection, it also handles

conflicts between the different configurations. Hence, it implements a correction

mechanism in case, e.g., the SAT solver had a different plan than the MILP-based

feedback loop. In this feasibility study, the loops get assigned a priority value for

handling conflicts. In this evaluation, the order is ascending from the SAT-based,

over the MILP-based, to the CP-based loop. The same metrics as before are

measured, including the number of corrections. As described in Section 2.1, it

is possible to plan parametric or compositional adaptations. In the SWIM use

case, changing the dimmer attribute in the feature model represents a parametric

change, while changing the number of available servers is compositional. Hence,

for each correction, it is logged, what kind of adaptation had to be corrected.

125



7.4. Comparison and Combination of Feedback Loops

Figure 7.18 shows the measured results in the parallel execution of the feedback

loops. We can see the number of corrections, with information about what type of

correction had been executed and the number of adaptations without corrections.

Additionally, cases where no adaptation was needed are shown. The figure reveals

that 98 corrections have been compositional, while four where parametric. This

shows that if the SAT solver is also planning the number of available servers, it

often gets overruled by the MILP or CP solution. The average utility decreases

from the value of 4059.50, which is the value when using the MILP-based feedback

loop alone, to 2913.05 on average when using the parallel feedback loops.

26.0%
(47)

53.8%
(98)

2.6%
(4)

17.6%
(31)

# No Correction
# Compositional Corrections
# Paramtric Corrections
# No Adaptation

Figure 7.18.: Corrections when applying parallel feedback loops with priorities.

Consequently, as a second approach, the SAT solver only plans the dimmer value

resulting in parametric adaptation, while server changes are planned by the MILP

and CP solvers only. Accordingly, the CFM in Figure 7.16 only increases or

decreases the dimmer value in response to the current response time. This setup

should result in a lower number of total corrections. Figure 7.19 presents the

measured number of corrections. As we can see, there are no compositional

corrections anymore decreasing the overall number of corrections. However, as

the SAT solver is only able to plan the dimmer in this setting, the number of

parameter corrections increases accordingly. Additionally, when running in this

combination, the overall average utility increases to 3907, which is 3.74 % lower

compared to the MILP-based feedback loop. This hints at a problem with this

combination. When two solvers are planning different parts of a system, conflicts
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can easily occur. Solver 1 could increase the dimmer value and additionally start

new servers to handle the additional load, while Solver 2 could do exactly the

opposites. When taking the parametric increase of the dimmer value from the first

solver and the compositional plan to decrease the number of servers, this possibly

leads to bad results in the managed resource. Hence, this aspect is important to

take into account when conducting future research.

64.2%
(117) 0.0%

(0)

34.8%
(63)

1.0%
(1)

# No Correction
# Compositional Corrections
# Paramtric Corrections
# No Adaptation

Figure 7.19.: Corrections when the SAT solver only plans the dimmer value.

Discussing these results considering EQ2, we do not see a performance gain

when combining multiple feedback loops in the SWIM case. Still, the feasibility

study shows the potential when combining multiple feedback loops with different

planning capabilities together. The possibilities of taking these capabilities into

account will be further discussed in Chapter 10, outlining future work.
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8. Visualization of REACT

As described in Section 4.1, where the different stakeholders of a model-based

runtime environment are outlined, administrators and system developers require

a way to monitor and check the behavior of a SAS. For providing a corresponding

solution, this section presents two visualization approaches in combination with

REACT. Section 8.1 presents CoalaViz providing traceability capabilities, which

can increase the understanding of the adaptation behavior at development time

and runtime. This traceability can be used by system developers for debugging

purposes during development as well as by administrators for monitoring the

adaptation behavior. Based on this first approach, Section 8.2 presents EnTrace

providing enhanced traceability incorporating influences from human computer

interaction and explainable artificial intelligence. EnTrace improves CoalaViz

in terms of architecture and capabilities. Both approaches close the loop when

applying REACT after specification, implementation, and deployment for tracing

the behavior of the SAS.

8.1. CoalaViz: Traceability of Adaptation Decisions

In order to provide a first solution for the problem of traceability, the section

presents CoalaViz. This section is based on [251] and [252]1.

When applying REACT using one of the presented feedback loops, the resulting

reconfiguration decisions cannot be traced back to the current system configura-

tion, the contextual parameters, or the system performance, which all contribute

to the reconfiguration decision. Hence, we propose CoalaViz, a novel tool for

demonstrating the reconfiguration behavior of self-adaptive communication sys-

tems [251]. CoalaViz offers the following insights into the reconfiguration decisions:

(i) The current system state can be investigated using a configurable graph-based

1 [251] and [252] are joint works with M. Weckesser, R. Speith (né Kluge), J. Edinger, M.
Luthra, R. Klose, C. Becker and A. Schürr.
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network view (e.g., the overlay and underlay network of a distributed system).

(ii) The entire configuration space and the currently active configuration of the

system can be inspected using a feature-model view. (iii) The current system

performance in terms of non-functional properties is shown as one or more metric

plots. (iv) The priorities of the optionally available performance goals can be

inspected and adjusted at runtime. CoalaViz is designed to be a standalone tool

with clear technical interfaces for each of the described visualization components.

These interfaces simplify the use of CoalaViz in different evaluation scenarios

(e.g., as part of simulations and testbeds) and use cases. When looking at related

works, already available tools are either tailored towards single specific use cases

(e.g., [253–255]) or so generic (e.g., [256]) that they need a lot of work from

potential users.

8.1.1. Use Cases and Challenges

Three pervasive communication systems are used to illustrate the challenges that

lead to the architecture for the new system. These three systems consider the

Tasklet distributed computing system [214], WSNs, as well as complex event

processing (CEP).

An introduction to the Tasklet system has already been provided as part of

Section 7.1.5. In short, the Tasklet system is a context-aware computational

offloading middleware [214]. For the scheduling decision, the broker takes context

information into account, for example, to avoid failures or to meet deadlines of

tasks. To avoid failures, it selects a scheduling algorithm that most accurately

predicts the availability of the providers, which enter and leave the system

dynamically [224]. Accordingly, adaptively changing the scheduling algorithm can

help to improve the system performance.

WSNs and topology control have also been already briefly introduced as part of

Section 7.2.5. In short, a wireless sensor network (WSN) consists of dozens to

hundreds of cheap, battery-powered, resource-constrained sensor devices (called

motes) that collectively serve a particular purpose (e.g., environmental monitor-

ing) [257]. A modern mote provides numerous configuration options to adjust

the WSN to the current system context (e.g., mobility pattern and robustness

requirements). Topology control is a technique to address non-functional system
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goals (e.g., the energy consumption) of a WSN by thinning out the number of

visible neighbors on the link layer. A topology control algorithm presents the

resulting virtual topology, which is a subgraph view of the physical neighborhood,

to the network layer. The sparsity of the virtual topology comes at the cost

of decreased robustness and/or higher latency. Each of the numerous topology

control algorithms that have been proposed in the literature provides a different

trade-off between energy consumption, robustness, and latency. In the context

of IoT, WSNs are used in safety- and security-critical scenarios (e.g., e-health,

intrusion detection). Therefore, reconfiguring the topology control algorithm of

a mote periodically is required to meet the safety, security, and performance

requirements [215].

Complex Event Processing (CEP) deals with processing continuous streams of data

from devices (producers) to derive meaningful events for the end-users (consumers).

Complex events are highly relevant for applications in the context of IoT (e.g.,

weather monitoring using WSNs). A complex event can be expressed as continuous

query that is registered with the CEP engine. The CEP query is composed of

logical units called operators. The CEP system processes the query in a distributed

manner by placing the operators on the devices in the network (e.g., motes in a

WSN). Operator placement is a mechanism that places operators based on the

non-functional requirements posed by the consumers. Therefore, a CEP system

exposes an underlay view, consisting of connected consumers, producers, and

brokers, and an overlay placement view, better known as an operator graph. The

operator placement should be such that it fulfills the non-functional requirements

of the consumers. However, the consumers may have distinct and conflicting

non-functional requirements depending on the current environmental conditions

(context), e.g., when the operators are placed on mobile devices or cloud resources.

In particular, one non-functional requirement of IoT applications is to deliver

complex events in minimum response time, but also at a low cost in terms of

overhead for mobile devices (e.g., measured as the number of messages exchanged).

These distinct conflicting requirements are hard to be fulfilled using one operator

placement mechanism, but requires a runtime reconfiguration of the CEP system

with multiple operator placement mechanisms.
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Resulting from the three described use cases, three challenges are identified for

CoalaViz. These challenges also fit the requirements of the stakeholders as well

as the description of the different specific requirements in Chapter 4.

C1 Traceability: How does the adaptation logic come up with an adaptation

decision based on the current system state? With the assumption that adaptation

decisions depend on the system context, the current system context needs to be

presented in an understandable way. Additionally, for tracing an adaptation from

one state to another, the current system state shall be visualized. As the state

of a communication system can typically be represented by a graph, effects like

entity churn or node movements can comprehensibly be visualized. In doing so,

nodes can form both an overlay and an underlay network, resulting in different

changing topologies, respectively. Besides the context and the system state, also

non-functional requirements, such as execution speed, fairness or response time,

may change during runtime. Hence, non-functional performance metrics shall be

traceable as well. Additionally, as the goals of a system might change at runtime,

CoalaViz must show which goals are pursued at any point in time. Challenge C1

maps to functional requirement RF8 (runtime monitoring and modifications).

C2 Extensibility: While the three presented use cases address important and

well-known challenges, they may still be considered just a problem subset in the

field of adaptive communication systems. Hence, an important challenge is to

develop a tool that exposes clear extension points for supporting new use cases.

In doing so, we also take into account that each use case may well exhibit its

individual non-functional system goals. This ensures that different scenarios and

simulation tools can be combined with it. Challenge C2 also maps to requirement

RNF6 for providing a solution with high extensibility.

C3 Responsiveness: CoalaViz shall address the pictured system’s dynamics by

providing a decent level of responsiveness. We note that communication systems

have several degrees of dynamics at different levels of the communication protocol

stack, e.g., movement or changing communication connections. Nevertheless, the

performance metrics shall be monitored continuously and reliably and with low

delay on all levels. The high responsiveness shall assist system developers in

maintaining a clear and comprehensible picture of the overall system and its

adaptation decisions. Challenge C3 also maps to requirement RNF3 for providing

a solution with a high overall performance.
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8.1.2. Design and Implementation

Figure 8.1 illustrates the architecture of CoalaViz, which consists of its backend

and frontend. The connection between the REACT-based SAS, which should be

monitored, as well as CoalaViz are depicted in Figure 8.2. Backend components

process the events that originate from the SAS and arrive via one or more event

streams A , and notify the corresponding frontend components ( B . . . E ). The

major event types are shown as broad black arrows in Figure 8.2. All information

that is visualized in the frontend components originates from these received events.

This completely event-based workflow enables CoalaViz to replay events even in

the absence of a running system. A JSON- and socket-based interface allows

CoalaViz to receive events independently of the programming language and type

of managed resource (e.g., simulators or actual devices). Each frontend component

can be exchanged individually, e.g., to show a logical expression instead of the

graphical feature modeling view. Figure 8.1 indicates that the backend consists

of components for each view that appropriately translate events for the actual

frontend implementation. The frontend forms a dashboard and consists of a

graph-based network view B , a metric view showing the reported non-functional

property values of the system C , a combined CFM and configuration view B ,

and the performance goals control panel, which shows the weighted performance

goals and enables to update the weights interactively E . CoalaViz interacts

with the managed resource and the feedback loop of the SAS. To establish

compatibility with CoalaViz, we exemplary extended the MILP-based feedback

loop to emit events about (i) available performance goals with default weights

during initialization for the panel E , (ii) the CFM of the adaptation logic for

the view D , and (iii) new system configurations whenever the planner produces

a new reconfiguration decision, which are also visualized by D . Conversely,

CoalaViz informs the adaptation logic, when the user modifies the performance

goal weights.

The managed resource (e.g., a simulation in OMNeT++) sends events about

(i) modifications of the network state, such as node or edge additions, removals,

or property modifications, which are visualized by B , and (ii) new metric values

as triple of metric name, timestamp, and metric value, as visualized by C . The
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Figure 8.1.: Architecture of CoalaViz [251,252].

network view interprets optional node and edge properties as rendering hints (e.g.,

node fill and border color, edge color and stroke, textual node, and edge labels).

Network Component: The network component processes the network model

change events from the managed resource. It supports events for adding and

modifying nodes and edges that represent the network state. The network frontend

view B shows a graph that represents the current state of the network. The

position of each node is communicated by the managed resource. CoalaViz

maintains the graph structure based on the event stream and visualizes it in the

network view. A user of CoalaViz can set the colors of nodes and edges or the

thickness of edges for showing different weights. For example, this provides the

capability that the graph can represent overlay or underlay networks. The color

of a node can represent the different device or connection types.

Metric Component: The metric component processes events with new metric

values. Each such event provides the metric name, a numeric value, and a

timestamp of the data point. The metric view C shows the evolution of one or

more metric values in a combined x-y-plot. The x-axis shows the time (according

to the timestamp values), and the y-axis shows the value per metric.

CFM Component: The CFM component receives events about the model and

the context or system configurations and notifies the CFM view D accordingly.

The model is typically received only once when the system starts. At runtime,

the CFM component gets the system context from the managed resource and the
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Figure 8.2.: Connection of a REACT instance using the MILP-based
REACT Loop to CoalaViz [251,252].

planned system configurations from the AL. The CFM view shows the configuration

options of the system as attributed feature diagram together with the currently

selected features and their attribute values. The view provides an aggregated,

centralized perspective of the system compared to the detailed network view. This

allows monitoring the reconfiguration decisions of the adaptation logic according

to context changes.

Goal Component: The goal component receives the optionally available non-

functional performance goals from the adaptation logic and sends events about

changed weights back to the AL. The corresponding view component is the

performance goal control panel E . It shows the available performance goals

with weights for each goal. In combination with the network, metric, and CFM

views, the goal view allows assessing how well and how quickly the adaptation

of the SAS meets a defined system goal. The user may also adjust the weights

of performance goals at runtime to explore how the SAS reacts. Finally, this

component allows exploring the reconfiguration behavior of an adaptation logic

and the resulting system states under changing performance goals.
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8.1.3. Evaluation

This section evaluates CoalaViz concerning the three identified challenges Trace-

ability (C1), Extensibility (C2), and Responsiveness (C3). Traceability and

responsiveness are evaluated qualitatively given the capabilities and architecture

of CoalaViz. Responsiveness is evaluated quantitatively by running CoalaViz with

a JSON event stream on a laptop with an i5-5257U CPU and 8GB of memory.

C1 Traceability

C1 is concerned with the traceability of different aspects of the inspected self-

adaptive communication system. This includes the system state of the network,

metrics, the reconfiguration space, including the current configuration, and the

performance goals. The system state of the network can be viewed using the

network component and the connected network view B . It shows nodes and

edges and can be styled to show different node or edge types. Thus, a changing

network topology can be tracked visually. The metric view shows the current

value of multiple non-functional metrics as well as the history of each value C .

Concerning the context and the system configuration, CoalaViz is able to show

CFMs, including the current system configuration in its CFM view D . The

performance goal panel shows the non-functional system goals and their weights

and enables to change these weights at runtime E . This allows the assessment

of the influence of the adjusted goal on the adaptation decisions.

In summary, we qualitatively evaluated the traceability of CoalaViz for the three

use cases presented earlier and found that A , B , C , D and E contribute

in analyzing the system and context configuration, especially since adaptations

affect the performance of the system tremendously. For instance, using CoalaViz,

we can monitor how adaptations influence throughput and deadline misses in

Tasklet, energy consumption in WSNs and response time in CEP. Summarizing,

the implemented views of CoalaViz provide continuous insights into different

aspects of a self-adaptive communication system and make adaptation decisions

traceable.

C2 Extensibility

The goal of the second challenge was to make sure that our solution is easily

extensible and changeable. CoalaViz is a web application using the Vaadin
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framework2. This allowed us to implement the backend code in Java, while for the

frontend, standard JavaScript libraries could be used. The JSON-based protocol

makes sure that CoalaViz can easily be made compatible with different adaptation

logics and managed resources. Accordingly, CoalaViz could be applied with all

three use cases although the Tasklet system is simulated using OMNeT++ [246],

the WSN scenario uses Simonstrator [233], and the CEP case uses a custom

implementation [258]. The view components, in particular, are abstractions in

the backend for using different views in the frontend. These components translate

incoming events by calling corresponding JavaScript methods of the frontend.

For the network view, we use VisJS, while the metric view is implemented using

ChartJS2. The CFM view is a customized implementation, while the goal view

consists of standard UI elements of Vaadin. Due to the modular design, views

can easily be exchanged.

C3 Responsiveness

For measuring the responsiveness, we log the timestamps right after the socket

on the sending side is flushed and when the JavaScript code for changing a view

was executed. As a first step, the responsiveness of the network, metric, and

CFM views are evaluated separately with artificial data. In all three cases, we

simulate JSON requests with events for 5 minutes of real-time. For evaluating

the network view, we use a Poisson distribution with an average arrival time of 1

event per second. The Poisson distribution is a commonly used model to describe

inter-arrival times of incoming or departing data entities. By that, we add nodes

and edges randomly to the system. In the case of the metric and CFM view, we

send one event per second, as metrics and context changes typically happen on a

more regular basis. Finally, we send two metric values at once each second and a

random configuration / context, respectively. The results of the three evaluation

runs are depicted in Figure 8.3.

The figure shows that the network and metric views, which are implemented using

standard open source components, perform better than the custom-built CFM

view. In fact, the CFM view is rendered as an image, which makes it slower

compared to the JavaScript views. Additionally, the whole image is (re-) rendered

2https://vaadin.com/, http://visjs.org/, https://www.chartjs.org/, accessed 2020-
12-08
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Figure 8.3.: Responsiveness per view with artificial data [251].

even for small changes. As this is a low load scenario, this shows the best possible

performance for each view.
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Figure 8.4.: Mean of the responsiveness over time in WSN case [251].

Figure 8.4 shows the playback of one hour simulated time in the Simonstrator in

the WSN case. Here, all different events in the three views are measured. The

stream resulted in 2.5 minutes of runtime in CoalaViz. We observe that the first

302 events have a high latency as in this period, initial nodes and edges are added

to the system. After this warmup phase, we end up with a median of 55 ms

for the responsiveness. In UI research, 100 ms are considered as a limit for an

instant reaction [259]. The dashed line in the figure indicates this value. Most

reactions in the UI can be considered responsive. Thus, we consider CoalaViz

to be sufficiently responsive to provide traceability given this condensed event

stream and the hardware the evaluation was executed on.
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CoalaViz provides a modular, web-based, and reusable visualization platform

that enables to trace the reconfiguration behavior of self-adaptive communication

systems while interactively adjusting the system’s optimization goals. In combi-

nation with REACT it helps system developers to check the specified behavior

for debugging purposes. Additionally, administrators can use CoalaViz to moni-

tor and influence the deployed self-adaptive communication system at runtime.

CoalaViz has been evaluated in combination with the MILP-based REACT Loop

presented in Section 7.2. However, CoalaViz is also generic for simplifying the

integration of other REACT Loops.

8.2. EnTrace: Enhanced Traceability of Adaptation

Decisions

By using CoalaViz, as described in the previous section, we gain first experi-

ences with traceability of self-adaptive systems. One shortcoming of CoalaViz

is the missing integration of foundations from artificial intelligence research, as

understanding and tracing the behavior of machine learning techniques is a major

research focus named explainable artificial intelligence. Additionally, we identified

limitations of the Vaadin-based implementation, resulting in problematic perfor-

mance in larger settings as well as complex customization options of the dashboard

items themselves. Accordingly, we build upon the first results, draw inspiration

from artificial intelligence research, as well as aim at using a better-performing

and customizable implementation.

The challenge of understanding black-box algorithms is a focus in many works

referring to the mentioned term explainable artificial intelligence (XAI) [260].

Further, several approaches for visualizing machine learning algorithms with the

goal of making them interactive and explorable (e.g., in [261]) exist. We coin

the term enhanced traceability in self-adaptive systems as an understanding of

traceability that is inspired by knowledge from XAI, data visualization, and

human-computer interaction. This section is based on [262]3.

In the following, we propose EnTrace—a reusable and open source platform

that provides enhanced traceability capabilities for self-adaptive communication

3 [262] is joint work with M. Breitbach, and C. Becker.
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systems. EnTrace is an interactive tool that visualizes the current state of a

self-adaptive communication system, including its network topology and CFM

specification as well as the progression of non-functional goals over time. EnTrace

offers a customizable dashboard with multiple views. We design EnTrace to be

easy to use by developers and administrators without extensive knowledge in SAS

development. Therefore, we ensure that developers and administrators can easily

connect EnTrace to an existing system and customize the visualization according

to their preferences. Since many modern adaptive systems consist of distributed

components and leverage decentralized control [15], EnTrace is able to show

monitoring data from multiple, distributed hosts. In addition, EnTrace provides a

seamless user experience with high responsiveness. We offer EnTrace as an open

source project4 and may thus contribute to the application of adaptive systems in

practice, which is still considered a major challenge [110]. In a quantitative and

qualitative evaluation, we show EnTrace’s benefits and compare it to CoalaViz

presented in the previous section.

8.2.1. Definition of Enhanced Traceability

We define enhanced traceability as techniques, methods, and concepts used to

visualize the states and decisions of a system, as well as making them explainable

in an interactive format. In contrast to software traceability [263], which is

concerned with, e.g., traceability of requirements and test cases, we rather focus

on enhanced traceability from an XAI perspective. The overall goal of a tool

providing enhanced traceability is to allow system designers and administrators to

make informed decisions about its development, deployment, and use by offering

transparency about its inner behavior. In the following, this section briefly

introduces the foundational concepts of XAI, data visualization, and human-

computer interaction that shape our understanding of enhanced traceability.

XAI makes black boxes transparent resulting in white boxes [260]. It is a com-

bination of several topics, including transparency, causality, bias, fairness, and

safety [260]. By approaching XAI, interpretability should be achieved, which is

“the ability to explain or to present in understandable terms to a human” [264].

The authors state that interpretability is required in systems with incompleteness

4Available here: https://github.com/martinpfannemueller/EnTrace
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in domains such as scientific understanding, safety, and ethics. In these domains,

it is difficult to formalize problems resulting in the need for a human in the loop.

Hence, interpretability helps to understand reasoning processes in incomplete

problem spaces [264].

Data visualization is an important part of enhanced traceability. Here, especially

the concept of information overload must be taken into account [265]. The broad

types of visualizations—tables and graphs—should be chosen according to the task.

Tables show data in a symbolic way with precise values, while graphs are better

suited for spatial information [266]. In addition, visualizations should (i) avoid

clutter [267], (ii) tell stories if possible [268], and (iii) be easily understandable

and memorable [269].

Lastly, by combining data visualization techniques and foundations from human-

computer interaction, the human should be supported with possibilities of interac-

tivity [270]. This results in concepts such as zooming, filtering, details-on-demand,

relate, history, and extract for interactively exploring data [271]. Human-computer

interaction research also shows that (simple) animations can help to improve

graphical perception [272]. Dashboards are a common way to present different

kinds of data simultaneously [273]. Dashboards can be categorized into visual dash-

board elements showing static displays of information and functional dashboard

elements, including interactivity.

Looking at related works, the previous approach CoalaViz has several short-

comings. First, it is difficult to apply to self-adaptive systems that do not use

the REACT- and MILP-based adaptation logic. Second, it does not support

developers optimally since it has not been publicly available and requires the

implementation of a central data collection in the managed resource, which may

be cumbersome in distributed self-adaptive systems. Third, it has only limited

usability due to, e.g., low responsiveness under high load.

In addition to our experiences with CoalaViz, we draw inspiration for the design

of EnTrace from artificial intelligence research, where explainability and inter-

pretability are a key focus. Kahng et al. introduce ActiVis—“an interactive

visualization system for interpreting large-scale deep learning models” [261]. It

provides multiple views displaying various graphs and other visualizations in a

dashboard. Users are able to interactively zoom the visualized elements and re-
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trieve additional information from hovers. DeepVID is a “Deep learning approach

to Visually Interpret and Diagnose DNN [deep neural network] models” developed

by Wang et al. [274]. It is applied to visual image classifiers enabling users to

interactively navigate through the feature space of an image classifier. Again, it

follows a dashboard approach showing different graphs and visualizations. There

are multiple other approaches such as GAN Lab [275] for exploring Generative Ad-

versarial Networks in the field of deep learning, RetainVis [276], ReVACNN [277],

and the TensorFlow Graph Visualizer [278] related to general neural networks

and Seq2Seq2-Vis [279] visualizing neural sequence-to-sequence models.

All works except for RetainVis are web-based implementations using JavaScript,

while the GAN Lab authors explicitly mention the cross-platform aspect of using

JavaScript for development. Interactivity is the main focus in all these related

works allowing one to zoom in and explore graphs and visualizations in detail.

Except for GAN Lab and ReVACNN, hovers have been used to show additional

information to the user. All approaches follow a dashboard-style user interface with

multiple views showing graphical representations of major parts of the underlying

system.

Based on the observations so far, we propose EnTrace—a reusable platform

for enhanced traceability in self-adaptive communication systems. First, the

following describes the challenges that shape EnTrace’s features. Second, we

present EnTrace’s design. Third, we briefly give implementation details about the

publicly available tool.

8.2.2. Challenges

Compared to CoalaViz, the first challenge of EnTrace is to increase the monitor-

ing/traceability possibilities. Second, as CoalaViz uses a single socket connection

to the managed resource, which is problematic in the case of distributed deploy-

ments, EnTrace should support distributed and decentralized systems. Third, as

CoalaViz showed an improvable performance in some cases, EnTrace focuses on a

higher performance for monitoring even larger systems. Accordingly, EnTrace’s

design is shaped by the three challenges (i) enhanced traceability, (ii) support for

distributed and decentralized systems, and (iii) responsiveness.
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Enhanced traceability extends the general idea of traceability with explain-

ability, visualization, and interactivity as introduced in the previous section.

Explainability ensures that adaptations are visible, traceable, understandable, and

ultimately explainable. Hence, this leads to trustworthiness and transparency. En-

Trace should help humans to easily understand explanations [260]. Consequently,

the overall complexity should be as low as possible, and only elements increasing

explainability should be incorporated. Second, the ideas from visualization show

that data must be presented in an understandable form. As the visualization of

software and algorithms is one of the most complex categories to visualize [280],

a clean interface without unnecessary information is required [267]. Hence, the

interface should be human-centered [270]. The representation of the data should

be memorable facilitating understanding [268, 269]. Last, as literature shows,

interactivity is needed in addition to visualization concepts. Accordingly, EnTrace

should provide “overview first, zoom and filter, then details on demand” [271].

Additionally, animations and a dashboard approach support interactivity [267,272].

EnTrace should offer support for distributed and decentralized systems.

These systems typically follow distribution patterns, as described in [15]. Accord-

ingly, EnTrace should be able to receive information from different parts of a

system. Without support for distributed data collection, the system developer

faces the additional obstacle to collect all status information within the SAS at

one point, put it together in messages, and manually send it via a socket as in

CoalaViz [251]. Ideally, EnTrace should, therefore, make it possible to easily

connect to different system parts and collect status information from various

sources.

Responsiveness is a challenge, as only a responsive tool can trace system

dynamics correctly in time. As soon as something happens in the monitored system,

EnTrace should show the corresponding change. Conceptually, for achieving

responsiveness, the implemented solution should focus on high performance and

low overhead. EnTrace should be considerably more responsive than CoalaViz,

as also systems with large network topologies and various metrics should be

supported, which led to a bad user experience during peak times in CoalaViz.
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8.2.3. System Design

EnTrace offers a dashboard to provide enhanced traceability to system designers,

developers, and administrators who want to verify and observe the behavior of a

SAS. EnTrace’s dashboard is usable in the production and the operations phase of

the software development process presented in Section 4.1. It has a customizable

two-column grid layout with multiple views. Thus, Users can create a visual

representation according to their preferences. Figure 8.5 shows a screenshot

of EnTrace’s dashboard with the same WSN use case we used in CoalaViz.

Interactivity is realized by incorporating zoom, filter, and drill-down capabilities.

All dashboard elements provide hovers to provide additional information on

demand. EnTrace’s views do not only visualize the managed resource’s state but

also enable users to perform changes in the system configuration or the system

goals and directly observe the impact of these changes. Hence, the user is also

able to interact with the SAS instead of just observing it.

The dashboard contains a network view, a metric view, a configuration view, a

performance view, a state view, and an event view 5. The network view shows

the network topology of the self-adaptive communication system using nodes and

edges. Users of EnTrace are able to customize the view to their needs. Nodes and

edges can be configured with different colors and additional properties such as

weights. In the exemplary WSN use case in Figure 8.5, the network view displays

the network topology of the WSN. The user selected a special color for the sink

node of the WSN to better distinguish it from the sensor nodes. The metric

view plots multiple, configurable non-functional goals of the managed resource,

such as latency or fairness over time. The configuration view depicts the CFM

of the managed resource—if available—including the current configuration and

attribute values representing the system state. In addition to Boolean features, it

is also possible to show available attributes for representing parameter or context

values. The CFM view enables users to set an attribute in the system or “freeze”

a feature so that it remains unchanged by adaptations. Users can thus explore the

behavior of the adaptive system in specific scenarios directly via the dashboard

with this interactive feature. The performance view makes it possible to weight

non-functional goals for influencing the adaptation decisions. This allows putting

5Network, metric, configuration, and performance views were already part of CoalaViz [251],
but in a less customizable and interactive form.
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Figure 8.5.: Screenshot of the EnTrace dashboard in a WSN use case. The
dashboard contains views that illustrate the network topology of the
managed resource, the configuration and context of the managed
resource, the progression of non-functional goals over time, and the
transitions between different system states. Additionally, EnTrace
enables to set non-functional goals via the dashboard and shows an
event history [262].

the human in the loop and observing the influence of goal changes. EnTrace

contains a state view which automatically illustrates system states and transitions

between these states based on the data from the configuration view. With this

view, the user is able to detect loop behavior in the adaptation decisions as the

state view counts how often states are visited and transitions are traversed. It

highlights transitions that occur more frequently. To make this view usable with

continuous attributes in the CFM, EnTrace applies configurable discretization. In

the WSN use case in Figure 8.5, the state view currently highlights state 2, which

was selected by the user to get detailed information about the system and context

configuration in this state. The event view summarizes events of all other views,
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errors, and also important changes in the managed resource. The user is able to

define a threshold that determines which change, i.e., in a metric or attribute

value, triggers such an event that is displayed in the event view.

EnTrace connects to a SAS via MQTT, as depicted in Figure 8.6. This decouples

EnTrace from the SAS and enables to easily collect status information from

different, distributed (sub-) parts of the system. Additionally, several instances of

EnTrace may connect to the same broker to use multiple displays with customized

view setups at the same time. The SAS sends status updates while EnTrace sends

human-in-the-loop actions—such as goal changes—via the MQTT connection.

EnTrace Self-Adaptive 
System

Pub / Sub
Pub / Sub

Human in the loop

Status updates

MQTT
Sub System 1

Sub System 2
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Figure 8.6.: Architecture of EnTrace. It consists of a dashboard and a backend
connected to the SAS via MQTT. EnTrace receives status updates
and publishes human-in-the-loop actions [262].

8.2.4. Implementation

EnTrace is implemented as a stand-alone JavaScript web application. It features

a dashboard-style user interface with six views, which can be freely arranged.

Additionally, each view can be closed if it is not needed by the user. The JavaScript

web application is implemented with the Vue.js framework using Bootstrap for

the UI6. The public repository contains documentation on how to start EnTrace

as well as about all available event types. The provided quick start guide enables

to easily start EnTrace, a JavaScript-based broker, and a replay of the WSN

events used as part of the evaluation. This facilitates to evaluate EnTrace without

setting up a self-adaptive communication system.

6see https://vuejs.org/ and https://getbootstrap.com/, accessed 2020-12-08
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8.2.5. Evaluation

First, we qualitatively evaluate whether EnTrace provides enhanced traceability

in SAS. Second, we qualitatively evaluate whether EnTrace supports distributed

and decentralized adaptive systems. Third, we quantitatively evaluate the respon-

siveness in comparison to CoalaViz.

Enhanced Traceability

We qualitatively evaluate whether EnTrace achieves enhanced traceability by

assessing explainability, visualization, and interactivity.

Explainability : EnTrace helps the user to monitor and trace the system state in

different aspects. The different nodes and edges of a distributed system are shown

using the network view, while the configuration and environment state is shown

in the configuration view. EnTrace also shows changes in the non-functional goals

and if, e.g., the system is oscillating between two states. The event view helps to

provide a storyline showing critical events and changes in the system. In general,

EnTrace provides transparency [281], helps in understanding causality [260], and

fosters trust [264] in the underlying SAS. We thus conclude that EnTrace achieves

explainability.

Visualization: All views are vector-based and support different screen resolutions.

Animations are used if helpful (e.g., for showing changed values in the metric

view). The presentation is as clean as possible, only showing the relevant data

and options. Additional data is shown on demand by using tooltips, e.g., for

showing weights of edges in the network view. In the current approach, no tables

are used for showing the behavior of the system. This supports the dynamics of

the adaptive systems and is easier to follow by the user. Hence, we conclude that

EnTrace’s visualizes the information appropriately.

Interactivity : EnTrace makes considerable use of all the interactivity techniques

proposed by Shneiderman [271]. Mostly, tooltips and hovers are used for showing

“details-on-demand” [271]. Filtering possibilities and options for, e.g., disabling

tooltips can be used for reducing clutter [267]. Automatic zoom when drilling down

or collapsing the CFM fits to the coupled zooming and drilling [282] methodology.

Therefore, we conclude that EnTrace provides a suitable level of interactivity.
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Support for Distributed and Decentralized Systems

EnTrace decouples the connection to the SAS with MQTT for supporting dis-

tributed and decentralized systems as proposed in [15]. MQTT is a widely-used

publish-subscribe standard, which is especially attractive for the IoT due to its

low overhead [283]. This property is used in EnTrace to publish events from

different parts of a SAS, even if the resources of these parts are limited. It further

allows executing multiple instances of EnTrace on multiple systems and displays

simultaneously without additional overhead. By using MQTT, we, therefore,

declare that EnTrace supports distributed and decentralized systems as desired.

Responsiveness

We perform two experiments to investigate EnTrace’s responsiveness. First, we

use artificial system events to assess the scalability of the different views on the

dashboard. Hence, we measure the responsiveness of each view separately. Second,

we use a WSN replay for comparing the overall responsiveness of EnTrace to the

responsiveness of CoalaViz. In both experiments, a response time of below 100 ms

is considered as responsive to the human as defined in [259]. The responsiveness is

measured from the time an event is received via MQTT until it is displayed in the

browser. Hence, the network transmission is omitted here. In general, however,

MQTT is used in many IoT scenarios with low latencies [283]. Each individual

run was executed 30 times on an i7-3615QM CPU.

In the first experiment with artificial events, we study the responsiveness of the

network, metric, configuration, and state views separately. We do not assess

performance view and event view since these views do not respond to incoming

status information from the SAS but provide an input mask for human-in-the-

loop actions and process internal events of EnTrace, respectively. A Poisson

distribution with an average arrival time of 1 per second is used for node and edge

events in the network view. The metric view was tested with two metrics and

random values between 0 and 100 each second. For updating the configuration

view and the state view, random system and context configuration events are sent

every second. One single run consists of 300 seconds.

As shown in Figure 8.7, the mean response time of each view is low. We observe

that the response times of the network view and state view increase over time

as it gets gradually more complex to update the rendering with an increasing
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Figure 8.7.: Mean response times of the dashboard views running separately with
artificial events. All values are well below 100 ms, which demonstrates
the scalability of EnTrace’s dashboard [262].

number of nodes and edges. Metric view and configuration view stay stable, as

they are only updated and not extended with new elements over time. Taking

Table 8.1 into account, even the maximum value of the state view with around

78 ms is well below 100 ms. This demonstrates the scalability of the state view

since—due to the random configuration view values—the state space gets large in

this experiment.

View Mean (ms) Min. (ms) Max. (ms) SD (ms)
Network View 3.34 0.46 15.74 1.43
Metric View 18.72 13.16 61.99 2.37
Configuration View 7.21 4.56 49.94 2.00
State View 11.98 5.78 77.79 3.64

12.02 0.46 77.79 6.60

Table 8.1.: Summary of response time measurements of EnTrace’s dashboard
views under artificial load, SD: standard deviation [262].

Second, we compare EnTrace to CoalaViz by replaying the WSN trace via MQTT

for measuring the responsiveness. Figure 8.8 shows the comparison of the response

time of the dashboard with all views. We observe that EnTrace is much more stable

with response times well below 100 ms and mostly below 50 ms. In comparison,

the average responsiveness of CoalaViz is more unstable. Occasionally, CoalaViz’

response times exceed 100 ms, which leads to a worse user experience. Hence, we

conclude that EnTrace achieves high responsiveness and constitutes a considerable

improvement to CoalaViz in this metric.
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Figure 8.8.: Response times of EnTrace’s dashboard in comparison to CoalaViz in
a WSN use case. EnTrace is more responsive on average and avoids
peaks of response times that are higher than 100 ms, which ensures
smooth user experience. Please note: The x-axis starts at x = 10 to
omit setup time [262].

This section presented EnTrace—a publicly available tool for providing enhanced

traceability capabilities for SASs in a responsive way. EnTrace offers a customizable

dashboard that provides an overview of a SAS to developers and administrators.

Also, it supports distributed and decentralized managed resources in a scalable

way with MQTT. The system helps developers and administrators to monitor the

adaptation behavior at design and runtime.
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9. Discussion

The evaluation of the feedback loop instantiations called REACT Loops presented

in Chapter 7 showed the broad applicability of REACT in different use cases

ranging from simulations to emulations of real systems. We were able to show

that the use case-specific requirements were fulfilled resulting in systems adapting

successfully to changes in the execution environment. Also, compared to the

state-of-the-art approach Rainbow [17], applying REACT in combination with

the CP-based REACT Loop considerably decreases the development effort for

enhancing a system with adaptive behavior. In the following, the fulfillment of

the requirements presented in Chapter 4 is discussed. This section first discusses

the functional requirements and then the non-functional requirements. As each

requirement is based on the research questions specified in the introduction as

well as the insights of the requirements chapter, we answer the three research

questions by discussing all of them. Finally, Section 9.2 discusses possible threats

to validity and future work.

9.1. Fulfillment of the Requirements

This section discusses the fulfillment of functional and non-functional requirements.

Table 9.1 gives an overview while the following sections outline more details.

Functional Requirement E Non-Functional Requirement E
RF 1: Support for all Self-* Properties • RNF 1: Generalizability •
RF 2: Ready-to-Use Decision Engine • RNF 2: Simple Specification ◦
RF 3: Multi-Language Support • RNF 3: Performance ◦
RF 4: Language-Independent Predef. Interfaces • RNF 4: Reusability •
RF 5: Support for Existing Systems • RNF 5: Flexibility •
RF 6: Development Process ◦ RNF 6: Extensibility. ◦
RF 7: Distributed and Dec. Feedback Loops •
RF 8: Runtime Monitoring and Modifications •

Table 9.1.: Overview of the fulfillment of the functional and non-functional require-
ments for REACT. The column E (Evaluation) shows if a requirement
is fulfilled. Dec: Decentralized, •: fulfilled, ◦ partially fulfilled.
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9.1.1. Functional Requirements

This section discusses if the proposed functional requirements are fulfilled by the

prototypical implementation of REACT.

RF1: Support for all Self-* Properties. REACT consisting of REACT Core

and the different REACT Loops does not restrict its use considering the four self-*

properties. Self-configuration is the foundation for the other self-* properties (cf.

Section 2.1.1). Accordingly, REACT handles self-configuration for, e.g., starting

and stopping brokers or setting cache list parameters in the Tasklet use case.

Considering the other self-* properties, the use cases reach from self-healing in the

SWIM use case, when the response times exceed certain thresholds (cf. Section 7.3)

to self-optimization in the WSN use case (cf. Section 7.2). Self-protection has

not been covered explicitly. However, it is easily possible to deploy, e.g., packet

drop flow rules instead of packet duplication rules in the case of the SDN-based

Wifi handover case of Section 7.3. Thus, this would result in an adaptive firewall

functionality for self-protection. Accordingly, we consider RF1 as fulfilled.

RF2: Ready-to-Use Decision Engine. In order to provide a ready-to-use

decision engine, REACT offers different model-based feedback loop instantiations.

The developer has to choose a loop instance and can then use the corresponding

modeling capability. Depending on the requirements, in our case, a system

developer can choose from SAT, MILP, or CSP-based ready-to-use REACT Loops.

This makes it possible to directly apply REACT instead of writing MAPE-K

components from scratch. Hence, this allows building a SAS without explicit

knowledge about building MAPE-K components. Accordingly, REACT provides

ready-to-use engines for making decisions fulfilling requirement RF2.

RF3: Multi-Language Support. One concern of REACT is to support a

wide range of different managed resources. As the heterogeneity of systems

includes different programming languages, REACT can be used with a multitude

of languages. In the evaluations, we used Java in the WSN and SDN evaluations

(cf. Sections 7.2 and 7.3) and Python in the SWIM case (cf. Section 7.3). In

Section 7.4, presenting a comparison of the feedback loop instances, C++ has

been applied. Therefore, REACT fulfills requirement RF3.

RF4: Language-Independent Predefined Interfaces. Connected with the

previous requirement of multi-language support, language-independent predefined
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interfaces are needed. In REACT, the interfaces facilitate the data exchange

between managed resource and the used REACT Loop, as well as the capability

of influencing and changing the deployment at runtime. The system developer

is enabled to use these fixed interfaces for connecting a system to REACT and

changing it. This provides fixed conventions for programmers. REACT uses

the IDL-based RPC framework ZeroC Ice as part of its implementation, which

provides support for many programming languages and assists developers with

IDE plugins. Accordingly, requirement RF4 is fulfilled.

RF5: Support for Existing Systems. Instead of always building SAS by

forcing developers to rebuild their managed resource using a specific approach,

REACT’s goal is to provide the possibility to support legacy systems. This

is achieved by providing an external adaptation logic approach. REACT Core

provides interfaces, which can be used by any existing system, as long as this

system supports monitoring its own and the environment’s state, and is capable of

applying adaptations. As shown in the different evaluations, none of the use cases

had to be rewritten for applying REACT. This results in support for existing

legacy systems fulfilling requirement RF5.

RF6: Development Process. In order to provide system developers a guideline

for applying REACT, the three-step development process specified in Section 6.4

provides a procedure for applying the different feedback loop instantiations. The

three steps differentiate only in the used modeling approach and programming lan-

guage. To further support developers, the two visualization approaches CoalaViz

(cf. Section 8.1) and EnTrace (cf. Section 8.2) support developers at development

time by providing monitoring capabilities. However, for a full development life

cycle, the overall process is too broad and not detailed enough. Additionally,

compared to, e.g., the FESAS [21] approach, only the system developer, who is

comparable to the designer role in the FESAS approach, is considered here. So,

in case a new instance of a REACT-based loop should be created, there is no

process available yet. Also, currently, there is no repository for the model-based

specifications, which could help in applying REACT even further, closing gaps in

the development process. So, we consider requirement RF6 as partly fulfilled.

RF7: Distributed and Decentralized Feedback Loops. REACT Core pro-

vides the necessary foundations for distributed and decentralized feedback loops

as its OSGi-based runtime environment is able to run complete loops or parts
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of it. When specifying the distributed loop structure, REACT Core handles the

communication between the distributed loop elements. In the SDN evaluation (cf.

Section 7.3) we showed the instantiation of the regional planning pattern [15] as

decentralization pattern. In this case, the planner ran on a dedicated and faster

machine compared to the rest of the feedback loop. Additionally, we showed the

use of multiple distributed sensors in this use case. Thus, RF7 is fulfilled.

RF8: Runtime Monitoring and Modifications. REACT has been designed

to directly support runtime monitoring and modifications. The OSGi runtime

used as part of REACT Core enables the reconfiguration of MAPE-K components

on the fly by changing the configuration files. Additionally, OSGi provides

REACT with the possibility to start and stop instances of the different MAPE-K

components at runtime. Besides changing the configuration and distribution

of the MAPE-K components themselves, the knowledge component’s interface

enables the update of specifications at runtime as well. This can be used to

directly influence the adaptation behavior. In combination with the context

module (cf. Section 6.3) these runtime modification possibilities allow developers

to reason on the past contexts and adaptations for applying self-improvement by

changing the MAPE-K deployment or the specifications at runtime. Additionally,

CoalaViz and EnTrace enable to monitor a REACT-based system as well as to

change the weights of non-functional goals at runtime. Still, there are open issues

such as handling state, e.g., when updating the specifications. Also, detecting

quiescence in the adaptation logic before reconfiguring it would help to reconfigure

consistently and without concurrency problems. Accordingly, currently it is

the user’s responsibility to modify an instance of REACT at the right point

in time. Summing up, REACT functionally provides runtime monitoring and

modifications, while there are interesting possibilities for future work. Requirement

RF8 is considered as fulfilled.

9.1.2. Non-Functional Requirements

While the functional requirements provide the core functionalities for a model-

based runtime environment for adapting communication systems, non-functional

requirements measure how well the system provides its functionality. In the follow-

ing, we discuss REACT’s fulfillment of the proposed non-functional requirements.
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RNF1: Generalizability. REACT is as general as possible to enable the

application in different use cases. Design and implementation of REACT, including

REACT Core, as well as the three REACT Loops, are not customized or built

with a specific use case in mind. Rather, all parts can be used in a generalized

fashion. As the different evaluations show, REACT could be applied in various use

cases, using the different REACT Loops. Additionally, even though REACT has

been developed with communication systems in mind, in the feasibility study as

part of Section 6.3, it could also be applied in a smart crossroad scenario adapting

the traffic lights, which is not considered a communication system. Accordingly,

the generalizability is considered as fulfilled.

RNF2: Simple Specification. As the goal of REACT is to offer system

developers the possibility of specifying adaptation behavior without programming

a feedback loop, the simplicity of the used specification approach is crucial. Based

on the four possibilities for decision-making presented in Section 2.3, we decided

to select a model-based approach for REACT. We state that models offer a

good level of abstraction while still providing many possibilities. Models often

can also be tested at design time by providing sample input and by applying

model-checking to verify the model in general. Specifically, the ready-to-use

feedback loops use a custom meta-model, CardyGAn [229], or Clafer [237] for

modeling the reconfiguration or problem space. All approaches follow the feature

modeling approach of DSPLs. In general, the gap between the concept of UML

class diagrams and feature modeling is not high, as presented in [284] and [285],

where UML is used to specify feature models. Instead of a UML-based approach,

in the MILP-based REACT Loop, CardyGAN employs a domain-specific language

for modeling DSPLs and provides an Eclipse-based toolset. This includes a model-

checker and an instance generator. Clafer is a structural modeling language, which

also provides tool support for testing the model with example input and creating

instances of the model. Considering the simplicity of modeling in the case of Clafer,

in [238], a scenario for modeling a room booking system is described. The example

shows that Clafer itself needs a few concepts, which can possibly be used easily by

system developers. The model of the solution space of REACT already uses UML

class diagrams, which does not impose the need to learn new concepts for software

engineers. When taking the comparison between the CP-based REACT Loop and

Rainbow of Section 7.3 into account, we saw that the CP-based REACT Loop
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needed fewer different files for the specification of the same behavior. Additionally,

the SLOC needed for the same behavior was also lower in the case of the CP-based

REACT Loop in this comparison. By that, the focus of REACT on a simple

specification of the problem and solution space helps in applying it for adapting

a communication system. Based on these observations, we conclude that the

design-wise specification of the models is as simple as possible. However, the

complete specification process when applying REACT has not been evaluated

with practitioners and leaves opportunities for future work. As it is not clear how

easy the specification capabilities are in practice, this non-functional requirement

is considered partially fulfilled.

RNF3: Performance. The performance of an adaptation logic as part of a

SAS determines how fast a decision can be made, e.g., reacting to changes in

the execution environment. In Chapter 7, different REACT Loops have been

presented. When we compared the CP-based REACT Loop with Rainbow [17] in

Section 7.3, the measurements reveal that even though REACT performs better,

it still requires approximately 84 ms for executing the entire CP-based feedback

loop, with the planner needing 80 ms on average and thereby the vast majority of

the time. As shown in Section 7.4, comparing the feedback loops reveals different

runtime properties for each of them. Depending on the applied feedback loop

instantiation and corresponding modeling approach, the planner runtimes differ

considerably. Even when using SAT4J, which is the least expressive planner

missing support for integer or real values, the planner component alone needed

approximately 13 ms on average. These results indicate that REACT is more

suitable for managed resources requiring fast changes compared to Rainbow. Still,

especially in the networking domain, this is not sufficient for all use cases as,

e.g., for the extreme use case of deciding on the packet level, how each packet

should individually be treated. Hence, the current prototype of REACT can be

used on higher, more strategic levels, such as in the adaptive SDN use case (cf.

Section 7.3). This results in opportunities for future work and in the fact that

the performance non-functional requirement is considered as partially fulfilled.

RNF4: Reusability. In order to provide an added value for system developers,

a framework or runtime environment should provide a high degree of reusability.

Looking at REACT from the perspective of the system developers, they can

completely reuse the implementation of REACT consisting of REACT Core and
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the implemented REACT Loops. Additionally, in case a system developer created

an intermediate layer connecting a managed resource to REACT, this intermediate

layer can be reused to a large degree, as it contains the RPC-based connection

to REACT. In the best case, such as in the SDN evaluation (cf. Section 7.3),

the sensor and effector implementations are generalized as well. Specifically, in

the SDN use case, the sensor and effector implementations can be reused entirely

for different use cases. In the SDN example, the sensor, as part of the SDN

controller, provides general information about the topology, while the effector can

deploy arbitrary flow rules. Thus, both implementations can possibly be reused

for other adaptation specifications and scenarios. Additionally, REACT Core as a

foundation provides a lot of reusable services and structures for engineering custom

feedback loops consisting, e.g., of the provided interfaces and communication

facilities to the deployment capabilities. All in all, the reusability of REACT is

considered as high leading to the fulfillment of requirement RNF4.

RNF5: Flexibility. When we consider a REACT-based feedback loop as man-

aged resource, as it is done in the hierarchical control pattern [15] as well as in

self-improvement [21], changes are also possible using parameter and composi-

tional adaptation. A high degree of flexibility allows us changing the specification

as well as the actual deployment of the feedback loop itself. Both types of

change are possible with REACT. The provided knowledge interface supports

to change the specifications at runtime while the OSGi-based runtime as part of

REACT Core permits updating the deployment itself. These changes can either

be executed using a separate feedback loop or manually by some administrator or

developer. Based on these observations, REACT is considered as flexible, fulfilling

requirement RNF5.

RNF6: Extensibility. Extensibility requires that the provided solution can be

extended with additional functionality, which is not in place yet. REACT enables

extensibility by providing different interfaces developers can use to extend the

provided functionality. This includes the possibility for developing own monitoring

strategies in the case of the provided feedback loops. In general, REACT Core

provides the capability of writing a custom feedback loop instance using the

provided supporting structures. Accordingly, this leaves possibilities for further

development, such as providing interfaces for custom analyzing strategies without

writing a new analyzer from scratch. The same need for additional interfaces is
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imposed by the planner, which could enable a way of changing the solver to a

custom one or use a solver, which is not used as part of a provided REACT Loop.

Based on these observations, we consider requirement RNF6 as partially fulfilled.

9.2. Threats to Validity and Limitations

This section outlines threats to validity and limitations of this thesis’ approach.

First, this section discusses REACT Core. Second, the REACT Loop instantia-

tions are examined. Finally, this section discusses CoalaViz and EnTrace.

9.2.1. REACT Core

Generally, for identifying the gaps of existing approaches, Chapter 5 examines

related work. However, this related work in the field of self-adaptive systems

focuses on implementation approaches only. Thus, it is possible that software

architectures or (formal) methodologies with similar objectives as REACT and

REACT Core are available. Still, as REACT aims at providing a useable software

artifact, the related work in the implementation approach is considered as justified

for the comparison.

REACT Core itself uses the well-known and broadly used MAPE-K loop as

the architectural abstraction of the feedback loop. There are also other ap-

proaches such as the learning, reasoning, and acting loop using model-based

learning (LRA-M) [23] from the self-aware computing domain as well as the

organic computing-based loop [25]. Although MAPE-K ist the de-facto standard

architecture, (dis-) advantages of the different architectures could lead to changing

results. Thus, in future work, other architectures for abstracting feedback loops

could be investigated as part of REACT.

Considering the current design of REACT Core, each component can only have

a single successor component. Multiple successors could help to deploy more

sophisticated MAPE-K patterns. However, this is mostly a question of engineering.

As REACT’s components do not contain a reference to potential predecessors,

multiple inputs are already possible, as shown in the SDN case with multiple

sensors (cf. Section 7.2).
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REACT Core is implemented using ZeroC Ice [193]. The RPC framework is a

fundamental component of REACT Core determining the communication behav-

ior between REACT’s components as well as the communication between the

adaptation logic and the managed resource. For determining and for quantify-

ing the influence of Ice, other RPC frameworks could be used for comparison.

For the communication, other communication facilities could be interesting as

well. As an example, an MQTT-based solution, which has already been used

in REACT Core’s context module, could further decouple the components from

each other. This would make the behavior even more transparent, as all inputs

and outputs are visible on the broker side. Hence, this could also be used for

engineering an even more advanced solution for traceability in comparison to

EnTrace (cf. Section 8.2).

Also, more (external) interfaces could help to increase the customization possi-

bilities. This includes ways to create custom analyzing and planning techniques.

Currently, the provided analyzers and planners have to be used. This limits the

applicability of custom machine learning techniques of the current implementa-

tion. As of the current implementation, a REACT Loop has to explicitly support

machine learning results or techniques. Such support has been integrated into

the MILP-based REACT Loop, which supports the results of SPL Conqueror for

taking non-functional performance influences into account.

9.2.2. Feedback Loop Instantiations

Looking at the feedback loop instantiations, besides the model- and problem

domain-specific limitations, there are other limitations considering the implemen-

tations themselves.

As part of the REACT Loops, CFM model-based specifications have been applied

for the problem space since they provide a sufficient level of abstraction for system

developers. Accordingly, other modeling approaches for specifying the adaptation

behavior as part of REACT should be investigated. From the perspective of the

developers, the specification of higher-level goals is considered simpler compared

to specifying models. Therefore, using goal-based specifications instead of models

could lead to even better usability but this also imposes new challenges.
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The context module, as part of REACT Core, is mostly not used in the evaluations.

The reason for this is that for measuring the effectiveness and efficiency of a

REACT Loop skipping parts of it hinders to measure the performance of the loop

properly. Hence, for evaluating a REACT Loop integrating the context module

would require to execute more runs to get enough measurements of the loop itself.

The MILP-based REACT Loop needs many measurements in case the non-

functional properties should be taken into account (cf. Section 7.2). These

measurements are used to learn performance-influence models and can also be

taken from a real system. However, as a real system should not run in prob-

lematic situations, it is not easily possible to explore the entire reconfiguration

space. Therefore, for applying the MILP-based REACT Loop in combination with

performance-influence models possibly requires a simulator of the real system.

The CP-based feedback loop currently does not support manually weighted multi-

objective optimization. However, weighting objectives is possible in Rainbow as

well as in the MILP-based feedback loop of REACT. One possible improvement

is to integrate an easy-to-use API for system developers to forward multiple,

weighted optimization goals to the Chocosolver in future work. Also, it could be

possible to model an objective function as Clafer attribute consisting of multiple

objective variables manually. Another drawback of the CP-based REACT Loop

is that although Clafer itself enables to specify real-valued attributes, currently

there is no backend supporting them.

In the evaluation of the CP-based feedback loop, we measure the SLOC and

the number of different languages to show its low development effort for system

developers in comparison with Rainbow. First, there might be simpler ways

to model the adaptation behavior either in REACT or in Rainbow. Hence, the

comparison depends on the experience of the person specifying the models. Second,

even though SLOC are frequently used as a metric (e.g., in [16, 18, 247]), other

metrics such as the modeling or cognitive effort [286, 287] could be taken into

account as well. In the future, it would be beneficial to conduct a study with system

developers who apply REACT in different scenarios for strengthening validity.

This could include more sophisticated measurements instead of only taking the

SLOC into account. Additionally, e.g., by conducting structured interviews or

using the think-aloud methodology [288], problems with our approach could be

identified more precisely.
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As part of this thesis, REACT was only compared to the state-of-the-art approach

Rainbow using the CP-based REACT Loop. Future research may include a com-

parison to other frameworks such as SASSY [14] or StarMX [144] in combination

with additional use cases from the communication systems domain.

Also, the number of use cases of this thesis is limited. Specifically, the evaluations

do not contain measurements of running real-world communication systems.

However, since the SDN evaluation in Section 7.3 is an emulated network, this

is de-facto a real-world communication system sending actual packets. In future

work, REACT could also be evaluated by deploying it in a working system.

Taking scalability into account, it would be interesting to observe the scalability

of our approach as far as (i) large Clafer and UML models and (ii) larger system

sizes are concerned. According to [241], Clafer itself is considered as scalable, as

it is able to find an instance of a model in realistic feature models considerably

fast. However, scalability testing using Clafer with REACT is interesting as well.

As stated in the discussion of RF1, the evaluations did not take self-protection

specifically into account. In fact, this is also the least researched self-* property

so far [39]. Still, as mentioned, the SDN evaluation could easily be changed into a

firewall scenario, where the flow rules discard packets instead of duplicating them.

Finally, there was no end-to-end evaluation of REACT using all capabilities in a

single use case, including the context module, a REACT Loop, and EnTrace.

9.2.3. Visualization of REACT

Examining the visualization approaches CoalaViz and EnTrace, there are also

limitations in place. Besides the (technical) limitations already described as part

of Chapter 8, a limitation is the way of the evaluation. Currently, the functionality

of both approaches has been evaluated qualitatively, while the performance was

evaluated quantitatively. However, this is rather limited when considering the

goals of the systems. To ensure the goal of providing a traceability solution for

system developers and administrators is achieved in both systems, a user study

should be conducted in future work. This user study would need participants

from the described groups when developing or deploying a SAS. Therefore, mainly

professionals have to be incorporated as part of such a study.
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The previous chapters presented REACT, consisting of REACT Core, REACT-

based feedback loop instantiations, as well as CoalaViz and EnTrace. In the

discussion, we examined the fulfillment of the requirements as well as limitations

and possible solutions for them. This chapter closes this thesis with a conclusion,

an outlook, and additional options for future work, which are not based on specific

limitations.

10.1. Conclusion

With the growing number of networked devices, the management effort and

complexity of networks are constantly increasing. These facts induce the need for

adaptive capabilities in communication systems. This thesis presented a runtime

environment for adapting communication systems called REACT. The overall

goal of the thesis is providing a model-based and reusable runtime environment for

adapting communication systems with the possibility to change the deployment at

runtime. For tackling this objective, the thesis follows the design science research

methodology of Peffers et al. [22], beginning with the problem of adding adaptive

behavior to communication systems. Based on a requirements analysis, categories

for comparing existing works are presented. This categorization is used to compare

related works revealing that the specific requirements for adapting (existing)

communication systems are not fulfilled by an existing approach. The main

missing properties in the existing work considering SAS engineering approaches

consist of the support for decentralized feedback loop deployments, predefined

interfaces including multi-language support, as well as a specified development

process. Looking at recent Autonomic Networking approaches, all of them need

to completely rebuild systems from scratch to be applied.

This thesis fills this research gap with REACT. REACT consists of an OSGi-based

core, which is able to execute (predefined) REACT Loops distributedly, following

163



10.2. Outlook

the concept of decentralized control. REACT Core handles the communication

within the adaptation logic and with the managed resource. Additionally, it

supports system developers with a development process they can follow for adding

adaptive behavior to an existing or new system. Based on REACT Core, three

different REACT Loops with different modeling and problem-solving capabilities

have been presented. They have been evaluated in different use cases as well com-

pared against each other. We showed that the modeling effort using the CP-based

REACT Loop is comparably low compared to Rainbow and that the proposed

requirements are in general fulfilled. The visualization approaches for tracing

adaptation decisions additionally support system developers and administrators.

Hence, overall, REACT enables to tame the complexity of networked devices by

providing adaptive behavior to them.

10.2. Outlook

Besides the mentioned limitations, REACT offers various opportunities for further

research. First, currently, REACT’s feedback loops have to be deployed without

taking interdependencies between the adaptive system and other (adaptive) sys-

tems into account. This offers options for coordination between different (sub)

systems, including the idea to add consensus protocols for adapting cooperatively

in a coordinated way. This would allow to, e.g., globally switch from one serializa-

tion method to another without breaking the data flow, in case only parts of the

system adapt while others keep the current method.

Considering the functional aspect of runtime modifications, there are open ques-

tions for handling the current situation of the adaptation logic when the deploy-

ment gets modified. In future work, it would be interesting to explicitly handle

modifications of the specifications and the deployment. This could, e.g., make

sure that no adaptation is running while modifying the adaptation logic. Also,

in future work the context manager needs to be updated in terms of changing

database schemas according to changing specifications. Finally, knowledge as part

of the context manager could get obsolete in the case of changes, which is also an

issue for future work.

Other than that, CFMs possibly could be decomposed into system-specific subtrees

assigned to different parts of an actual system. This enables to specifically model
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constraints between the (sub) systems. Also, each subtree could be used with a

different REACT Loop, depending on the requirements of the system developer.

Additionally, based on the assigned parts, REACT could be enhanced to directly

support automatic deployment. This would lower the administrative effort for the

deployment even more.

As shown in this thesis, feedback loops have different modeling and runtime

properties based on the used modeling technology and solver. In future work,

the combination of feedback loops could lead to new ways of solving different

problems. This combination could be done as part of a self-improvement module,

which uses one loop for the parameters only, while another one is selected for the

compositional adaptation. Additionally, the selection of a feedback loop based on

heuristics or machine learning-based models could improve the performance of the

loop itself and optimize the adaptation decisions considering the different problem

domains. Also, Clafer can be used in combination with other solver backends

besides a CP-based solver [237]. Hence, an adaptive Clafer-based REACT Loop

could automatically detect the employed capabilities and Clafer types to adaptively

select the fastest or most suitable solver backend at runtime.

Looking at the specification options of the REACT Loops, Clafer shows an

adequate level of abstraction. As it represents a solid foundation for future

work, it would be possible to extend Clafer with notions to express (real-)time

aspects when reconfiguring from one feature to another, e.g., when information

has to be collected before a feature can be activated. Also, currently, it is

always possible to adapt to any other (system) configuration without constraints.

Extending the Clafer-based specifications with particular capabilities to model

disallowed switches between features could further increase their expressiveness.

In general, the integration of machine learning techniques into the REACT Loops

is a relevant field for further research. Also, verification and validation methodolo-

gies can directly be integrated into REACT. Finally, REACT could be evaluated

in further use cases. As shown in [289]1, REACT could be applied and evaluated

in car-to-cloud communication scenarios in the future. This not only includes

simulations but also experiments with actual communication devices in a testbed.

1 [289] is joint work with S. Herrnleben, C. Krupitzer, S. Kounev, M. Segata, F. Fastnacht,
and M. Nigmann.
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Tool support for cardinality-based feature models,” in VaMoS. ACM, 2016,

pp. 33–40.

[230] M. Eysholdt and H. Behrens, “Xtext: implement your language faster

than the quick and dirty way,” in Proceedings of the International Confer-

ence Companion on Object-Oriented Programming Systems Languages and

Applications (OOPSLA). ACM, 2010, pp. 307–309.

[231] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and
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A. Appendix to SAT-Based Feedback Loop

This chapter contains additional material of the SAT-based feedback loop instance

presented in Section 7.1.
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B. Appendix to Comparison of Feedback Loops

This chapter contains the full CardyGAn and Clafer specifications, which have

been used in the comparison of the MILP- and CP-based REACT Loops presented

in Section 7.4.

1 1..1 root gt=1..* gi=1..* {

2 1..1 fsSystem gt=xor gi=xor {

3 0..1 DimmerSetter_Plus

4 0..1 DimmerSetter_Minus

5 0..1 ServerStarter_1

6 0..1 ServerRemover_1

7 0..1 ServerStarter_2

8 0..1 ServerRemover_2 }

9 1..1 fcContext gt=1..* gi=1..* {

10 1..1 responseTime gt=xor gi=xor {

11 0..1 rt0_25

12 0..1 rt26_30

13 0..1 rt31_75

14 0..1 rt76_100

15 0..1 rt101_150

16 0..1 rt151 }

17 }

18 }

19 [ 1..1 rt0_25 require 1..1 ServerRemover_2

20 1..1 rt26_30 require 1..1 ServerRemover_1

21 1..1 rt31_75 require 1..1 DimmerSetter_Plus

22 1..1 rt76_100 require 1..1 DimmerSetter_Minus

23 1..1 rt101_150 require 1..1 ServerStarter_1

24 1..1 rt151 require 1..1 ServerStarter_2 ]

Listing B.1: CardygGAn representation of the SAT specification.

1 1..1 root gt=or gi=or {

2 1..1 fsSystem gt=xor gi=xor {

3 0..1 Dimmer gt=or gi=or {
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4 dimmerValue:Integer 0..100

5 }

6 0..1 ServerStarter gt=or gi=or {

7 numberToAdd:Integer 1..3

8 }

9 0..1 ServerRemover gt=or gi=or {

10 numberToRemove:Integer 1..3

11 }

12 }

13 1..1 fcContext gt=or gi=or {

14 currentDimmerValue:Integer 0..100

15 responseTime:Integer 1..10000

16 }

17 }

18 [ ((responseTime <= 15) => numberToRemove = 2) &&

19 (((responseTime > 15) && (responseTime <= 30)) => numberToRemove =

1) &&

20 (((responseTime > 30) && (responseTime <= 75) && (

currentDimmerValue + 25 <= 100)) => dimmerValue =

currentDimmerValue + 25) &&

21 (((responseTime > 30) && (responseTime <= 75) && (

currentDimmerValue + 25 > 100)) => dimmerValue = 100) &&

22 (((responseTime > 75) && (responseTime <= 100) && (

currentDimmerValue + -25 >= 0)) => dimmerValue =

currentDimmerValue + -25) &&

23 (((responseTime > 75) && (responseTime <= 100) && (

currentDimmerValue + -25 < 0)) => dimmerValue = 0) &&

24 (((responseTime > 100) && (responseTime <= 150)) => numberToAdd =

1) &&

25 ((responseTime > 150) => numberToAdd = 2) ]

Listing B.2: CardygGAn representation of the simplified MILP specification.
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1 [if responseTime < 15

2 then RemoveServer.number = 2 && one RemoveServer

3 else

4 if responseTime > 15 && responseTime <= 30

5 then RemoveServer.number = 1 && one RemoveServer

6 else

7 if responseTime > 30 && responseTime <= 75

8 then

9 if dimmer + 25 <= 100

10 then SetDimmer.dimmer = dimmer + 25 && one SetDimmer

11 else

12 SetDimmer.dimmer = 100 && one SetDimmer

13 else

14 if responseTime > 75 && responseTime <= 100

15 then

16 if dimmer - 25 >= 0

17 then SetDimmer.dimmer = dimmer - 25 && one SetDimmer

18 else

19 SetDimmer.dimmer = 0 && one SetDimmer

20 else

21 if responseTime > 100 && responseTime <= 150

22 then AddServer.number = 1 && one AddServer

23 else

24 if responseTime > 150

25 then AddServer.number = 2 && one AddServer

26 else one NoAdaptation

27 ]

28

29 abstract Context 1..1

30 dimmer -> integer 1..1

31 servers -> integer 1..1

32 activeServers -> integer 1..1

33 responseTime -> integer 1..1

34 maxServers -> integer 1..1

35 totalUtilization -> integer 1..1

36

37 AddServer 0..1

38 number -> integer 1..1

39 RemoveServer 0..1

40 number -> integer 1..1

41 SetDimmer 0..1
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42 dimmer -> integer 1..1

43 NoAdaptation 0..1

Listing B.3: Clafer representation of the simplified specification.
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1 1..1 root gt=or gi=or {

2 1..1 fsSystem gt=or gi=or {

3 0..1 SetDimmer gt=or gi=or {

4 dimmerValue:Integer 1..100

5 }

6 0..1 Server gt=xor gi=xor{

7 0..1 AddServer gt=or gi=or {

8 numberToAdd:Integer 1..3

9 }

10 0..1 RemoveServer gt=or gi=or {

11 numberToRemove:Integer 1..3

12 }

13 }

14 0..1 NoAdaptation

15 }

16 1..1 fcContext gt=or gi=or {

17 currentDimmerValue:Integer 0..100

18 servers:Integer 1..3

19 activeServers:Integer 1..3

20 responseTime:Integer 1..100000

21 maxServers:Integer 1..3

22 totalUtilization:Integer 1..10000

23 }

24

25 // Helping variables

26 revenue:Real 0..100

27 revenue2:Real 0..1000

28 nDimmer:Integer 0..100

29 nServers:Integer 1..3

30 capacity:Integer 0..1000

31 rFactor:Real 0..10000

32 }

33 [ fcContext => capacity = (100 * activeServers + (-totalUtilization))

34 (responseTime <= 75) => rFactor = (0.333 * responseTime)

35 (responseTime > 75 && responseTime <= 200) => rFactor = 0.4 *

responseTime

36 (responseTime > 200) => rFactor = 0.11 * responseTime

37 100 + -rFactor > 0 => revenue = 100.0 + -rFactor

38 100 + -rFactor <= 0 => revenue = 0

39 fcContext => revenue2 = 3 * revenue

40 (responseTime <= 30) => nServers = 1
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41 (responseTime > 30 && responseTime <= 75) => nServers = 2

42 (responseTime > 75) => nServers = 3

43

44 revenue2 >= 300 => revenue2 = 299

45 3 * nDimmer > revenue2

46

47 (((responseTime > 75) && !(servers > activeServers) && (servers <

maxServers)) => numberToAdd = 1 && dimmerValue = nDimmer)

48 (((responseTime > 75) && !(!(servers > activeServers) && servers <

maxServers) && (dimmer > 0)) => dimmerValue = nDimmer)

49 (((responseTime > 75) && !(!(servers > activeServers) && servers <

maxServers) && (dimmer <= 0)) => NoAdaptation)

50

51 (((responseTime < 75) && (capacity > 100) && (currentDimmerValue

<= 90)) => dimmerValue = nDimmer)

52 (((responseTime < 75) && (capacity > 130) && (currentDimmerValue >

90) && !(servers > activeServers) && (servers > 1)) =>

numberToRemove = 1 && dimmerValue = nDimmer)

53 (((responseTime < 75) && (capacity > 100) && (currentDimmerValue >

90) && !(!(servers > activeServers) && servers > 1)) =>

NoAdaptation)

54 (((responseTime < 75) && (capacity <= 100)) => dimmerValue =

nDimmer) ]

Listing B.4: CardygGAn representation of the full MILP specification.
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1 [ if (100 - (rFactor * responseTime) / 100) > 0

2 then nDimmer = (100 - (rFactor * responseTime) / 100)

3 else nDimmer = 0 ]

4

5 [ if Context.responseTime.dref > 75

6 then

7 if !(Context.servers.dref > Context.activeServers.dref) && (Context.

servers.dref < Context.maxServers.dref)

8 then AddServer.number = 1 && one AddServer && SetDimmer.dimmer =

Variables.nDimmer.dref && one SetDimmer

9 else

10 if Context.dimmer.dref > 0

11 then SetDimmer.dimmer = nDimmer.dref && one SetDimmer

12 else one NoAdaptation

13 else

14 if responseTime < 75

15 then

16 if capacity > 100

17 then

18 if Context.dimmer.dref > 90

19 then

20 if !(!(Context.servers.dref > Context.activeServers.dref)

&& (Context.servers.dref > 1))

21 then one NoAdaptation

22 else

23 if Variables.capacity.dref > 130

24 then RemoveServer.number.dref = 1 && one RemoveServer &&

SetDimmer.dimmer = Variables.nDimmer.dref && one

SetDimmer

25 else one NoAdaptation

26 else SetDimmer.dimmer = Variables.nDimmer.dref && one SetDimmer

27 else SetDimmer.dimmer = Variables.nDimmer.dref && one SetDimmer

28 else one NoAdaptation ]

29

30 Variables 1..1

31 rFactor -> integer 1..1

32 [ if responseTime <= 75

33 then rFactor = 33

34 else

35 if (responseTime <= 200)

36 then rFactor = 40
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37 else rFactor = 11]

38

39 nDimmer -> integer 1..1

40 [ nDimmer >= 0 && nDimmer <= 100 ]

41

42 capacity -> integer 1..1

43 [ if (activeServers * 100 - totalUtilization) <= 256

44 then capacity = activeServers * 100 - totalUtilization

45 else capacity = 256 ]

46

47 nServer -> integer 1..1

48 [ if responseTime <= 30

49 then nServer = 1

50 else

51 if responseTime <= 75

52 then nServer = 2

53 else nServer = 3 ]

54

55 abstract Context 1..1

56 dimmer -> integer 1..1

57 servers -> integer 1..1

58 activeServers -> integer 1..1

59 responseTime -> integer 1..1

60 maxServers -> integer 1..1

61 totalUtilization -> integer 1..1

62

63 AddServer 0..1

64 number -> integer 1..1

65 RemoveServer 0..1

66 number -> integer 1..1

67 SetDimmer 0..1

68 dimmer -> integer 1..1

69 NoAdaptation 0..1

Listing B.5: Clafer representation of the full specification.
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