
Informatica 19 (1995) 7-24 7 

Supporting the Evolution of Distributed, Non-stop, Mission and 
Safety Critical Systems 

K e y w o r d s : distribution, environments, non-stop, real-time, safety-critical 

Edited by: Marcin Paprzycki and Janusz Zalewski 

Rece ived: February 12, 1994 Rev ised: October 20, 1994 Accepted : January 9, 1995 

Jn coming years embedded systems which are distributed, non-stop and "mission and 
safety critical" (MASC) are likely to assume increasing importance. The construction, 
operation and maintenance of this class of system presents a unique blend of problems 
which many traditional tools and techniques, targeted to just one problem area, can-
not currently address. This paper provides an overview of a promising, model-based 
framework for supporting such systems that has been developed as part of NASA's 
MISSION project. Based on well-established research advances in computing, the MIS­
SION approach provides a domain-specihc, life-cycle support framework encompassing 
three separate environments: host, integration and target. Although the individual ele-
ments ofthe framev/ork are not ali new, their synergistic packaging within the MISSION 
project is believed to be unique. This paper focuses upon the systems-level support for 
applications executing in the target environment. 

Charles W. McKay and Colin Atkinson 
University of Houston - Clear Lake 
2700 Bay Area Boulevard, Houston, TX. 77058. 
Phone: +713 283 3830, Fax: +713 283 3869 
E-mail: mckay@cl.uh.edu 

1 Introduction 

An embedded system is a computer system which 
is constructed to monitor and/or control a set of 
devices and processes constituting some larger en-
gineering system. The term "embedded" is used 
to reflect the fact that such computing systems 
are physically encapsulated by the engineering sy-
stem they monitor/control. An important charac-
teristic of embedded systems is that they are typi-
cally real-time - not only must they produce the 
correct result, but they must do so within a spe-
cihed period of tirne. Because of their monitoring 
and controlling role, the reliable execution of an 
embedded system is often critical to the success of 
the overall mission and to the safety of life, health, 
property or the environment. In such circumstan-
ces the embedded system is termed a mission and 
safety critical (MASC) system. 

As the reliability and efflciency of networking 
technology has increased, and the cost of micro-
processors has plummeted, there has been an in­

creasing trend towards the implementation of em­
bedded svstems as distributed systems made up of 
autonomous, cooperative processors interconnec-
ted by communication channels. Not only does 
such an implementation enable processing power 
to be located physically close to the individual 
devices in the system, but it also opens up the 
possibility of extending, or modifying, parts of 
a system while other parts are stili running. In 
other words, it opens up the possibility of buil-
ding non-stop systems which can be dynamically 
upgraded and reconfigured. 

In coming years there is likely to be an increa­
sing need for embedded systems which exhibit ali 
the properties identified above, namely the pro-
perties of being mission and safety critical, real-
time, distributed and non-stop. Such systems are 
essential in extremely hostile and/or inaccessible 
environments, such as space or the depths of the 
ocean, and are therefore crucial to pending NASA 
projects (e.g., space station, lunar outpost, hu­
man missions to Mars). Such systems are also 

mailto:mckay@cl.uh.edu


8 Informatica 19 (1995) 7-24 C.W. McKay et al. 

likely to be used in large process control appli-
cations such as factory automation, power plant 
control, etc. 

In recent years numerous projects have addres-
sed one or more of the issues mentioned above. 
To meet the real-time requirements of embedded 
systems, for example, advanced scheduling tech-
niques have been developed (e.g., rate monotonic 
scheduling [37] and best effort decision making 
[20]). The requirements of distribution, on the 
other hand, are addressed by new and more po-
werful networking hardware and Communications 
protocols such as the Open Systems Interconnec-
tion Model [33]. Reliability and safety are addres­
sed by advanced software features such as distri-
buted nested transactions [24], while the needs of 
non-stop operation and dynamic upgradeability 
[44, 42] are addressed by modular approaches to 
operating system organization. 

Because of the complex way in which the above 
characteristics are interrelated in embedded sy-
stems, however, it is not always possible to use 
these tools and techniques together in a system 
which exhibits several, if not ali, of these pro-
perties. Often a technique which is very success-
ful at solving one particular problem cannot be 
used with another technique developed to solve 
another problem because of the way they over-
lap and interact. The different techniques, and in 
particular the combination of technologies, have 
the potential to introduce new problems or exa-
cerbate others. This difRculty is compounded by 
the fact tha t systems of this kind are inherently 
complex and typically very large. In fact, some of 
the largest software systems to date fit into this 
category. 

For this reason, rather than tackling individual 
aspects of the problem of supporting the evolu-
tion of non-stop, distributed, real-time, MASC sy-
stems, the MISSION1 project has focused on de-
fining the overall development strategy and infra-
structure into which such solutions will fit. Speci-
fically, this work has two main thrusts . The first 
part is to lay the foundation for a new generation 
of integrated systems softwarefor the target envi-
ronment in which MASC computing applications 
are deployed and operated. The second part is 
to define an accompanying infrastructure which 
is capable of supporting the construction, verih-

MlSsion and Safety crltical SuppOrt ENvironment 

cation, reuse and maintenance of the kind of soft-
ware artifacts required in the target environment. 
The MISSION approach is believed to be unique 
in the integration of these advancements across 
the three environments. 

This paper provides an overview of the MIS­
SION approach for supporting distributed, non-
stop MASC systems with a particular focus upon 
the systems software support for applications exe-
cuting in the target environment. Before descri­
bing the approach itself, however, we first describe 
the main issues that arise in the construction and 
maintenance of this type of system. In addition 
to providing a definition and description of each 
issue, we identify some of the applicable termino-
logy and technologies. The following section then 
describes the MISSION strategy for dealing with 
these issues, first introducing the general context 
in which MASC software is developed, operated 
and maintained, and then describing the target 
architecture. We conclude by describing each of 
the subsystems making up this architecture. 

2 Principal Issues 

Important issues and requirements for MASC 
computing systems operating in hostile enviro­
nments have been discussed in publications such 
as [1, 14, 36, 38]. This section discusses. only five 
of the principal issues: Me cycle approaches; di­
stribution; safety; reliability, security and inte-
grity; and fault tolerance. 

Clearly, the requirements for the project as a 
whole are driven by the target environment. The 
Me cycle requirements for the integration enviro­
nment, which serves as the site from which the 
target is monitored, controlled and updated, are 
principally driven by the need to provide safe 
and affordable support for the target environment 
over its complete Metime. The requirements for 
both the target and integration environments are, 
in turn, the principal drivers of the life cycle re-
quirements of the host environment, which is the 
plače where the initial application development 
and testing takes plače. Since the entire set of Me 
cycle requirements for this class of MASC compu­
ting applications and systems will probably never 
be known in advance, an iterative approach to Me 
cycle support is essential. 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 9 

2.1 Life Cycle Approaches 

As might be expected, one of the major deficien-
cies in the current state of the practice for this 
domain is the lack of predictablv-dependable, in-
tegrated approaches [11, 23, 29]. Such approaches 
should be traceable, controllable, and applied ite-
ratively from the system's initial inception thro-
ugh to its retirement. MISSION's goal of defming 
and verifying such approaches is mirrored in other 
projects such as Spring [11] and the PDCS project 
[29]. 

An important goal of MISSION is to demon-
strate that an object-oriented discipline can be 
used to control the complexity of this MASC tar-
get environment. Related issues include the appli-
cation of the object-oriented discipline to the de­
sign of the generic architecture for the target en­
vironment systems software. Of particular im-
portance is the evolution of a MASC kernel for 
this svstems software [26, 39, 29]. The kernel is 
intended to provide a small but powerful set of 
mechanisms designed especially to support trac-
table, rigorous reasoning about MASC functions 
and systems. Support for such reasoning is cri-
tical for the infrastructure in the integration and 
host environments. In addition, safe and affor-
dable approaches should consider the integrated 
issues of the software, (both applications level 
and systems level), the hardware,,communication 
links and human-machine subsystems as well as 
interactions with the environment in which the 
system is deployed and operated. Techniques cur-
rently addressing these system level issues are not 
well integrated. The Alpha project [26] shares the 
goal of using the object paradigm to develop sy-
stems software tha t supports tractable, rigorous 
reasoning about MASC properties. 

2.2 Distr ibut ion 

Providing support for distributed operations is 
both a problem and an opportunity. Distribution 
should facilitate new and more powerful forms of 
fault tolerance along with opportunities to im-
prove performance for real- time command and 
control systems [30, 41]. Related issues include 
when and how to assign software components to 
phvsical processing sites [5] and what support can 
and should be provided for migrating components 
among processing sites [45]. This support must be 

integrated with the ability to dynamically evolve 
and reconfigure both the applications and the sv­
stems software in the non-stop, distributed target 
environment (DTE). Unfortunatelv, no known sy-
stem currently integrates a full set of acceptable 
solutions to these requirements with the needed 
attention to safetv. 

The need to capture a broad spectrum of in-
formation for system objects is even more crucial 
when real-time decisions are to be made [40]. In 
a distributed system the universal system state 
changes faster than can be communicated thro-
ughout the system [15]. Furthermore it may ne-
ver be possible to "snap-shot" a view of the en-
tire system state at any point in time. Decisions 
therefore must often be made in environments of 
incomplete and sometimes inaccurate da ta [20]. 
The goal of safely supporting dvnamic evolution 
and reconfiguration of non-stop, distributed sy-
stems is shared by the Real Time Mach project 
[43]. 

2.3 Safety 

The following working. defmition of safety is used 
in this project "safety is the probability tha t a 
system, including ali hardware, software, com-
munication links, human-machine subsystems, 
and interactions with the environment, will pro­
vide appropriate protection against the effects of 
faults, errors, and failures which could endanger 
life, health, property, or the environment." Safety 
depends upon related issues such as integritv, re-
hability, security and others to be discussed in 
the following sub.-.ections. Safety cannot be gu-
aranteed, especially not for the class of MASC 
computing applications under discussion in this 
paper. Many important risks, nevertheless, can 
be managed to improve the probability of susta-
ining safety across the life cycle [28, 7]. MISSION 
supports the traditional goal for aerospace appli­
cations that no single point of failure can endan­
ger a mission and no two points of failure can 
endanger safetv. 

Safety is the most important aspect of any di­
stributed MASC computing system. The system 
must guard itself against any event or action, in-
tentional or accidental, tha t compromises its sa-
fety [6]. Safety requirements should be considered 
at each point of the system's life cycle [19, 34]. 

The ultimate aim of the work reported in this 



10 Informatica 19 (1995) 7-24 C.W. McKay et al. 

paper is to define a small but powerful set of 
constructs that can be used to compose MASC 
computing applications and systems. These con­
structs are being deftned to support safety proper-
ties. Systems composed of such constructs should 
facilitate tractable, rigorous reasoning about sa-
fety. The MISSION project is fairly unique in its 
emphasis on evolving and verifying approaches to 
composing safe, non-stop, real tirne, distributed 
systems. 

2.4 Reliability, Security and Integrity 

The safe and affordable support of lives, health, 
property, environment, and mission in the target 
environment depend upon system level reliability, 
security and integrity. System reliability refers to 
the ability of the system to function under stated 
conditions for a stated period of tirne [25], and 
should be maximized for MASC applications and 
systems. This requires more than certihcation of 
correct software components and highly reliable 
hardware components. It also requires systems 
level design for fault tolerance and survivability 
[16, 31]. 

System security refers to the protection of the 
system from accidental or malicious access, use, 
modification, destruction, or disclosure [9]. Dis­
tributed systems which support a diverse group 
of users are particularly vulnerable to problems 
which result from improper access to information 
and other resources. At the minimum, protection 
is necessary for inadvertent access due to program 
or operation error. At the other extreme, delibe-
rate disruption must be prevented. The MISSION 
project seeks to provide security to at least the 
multilevel security class B3 of the DoD stand-ard 
for security [9]. Such security should be suppor-
ted within the target environment and in ali its 
interactions with the integration environment. 

System integrity refers to the ability of the sy-
stem to perform its intended function irrespec-
tive of changes in its operational environment 
[32, 8, 31]. The MISSION approach for ensu-
ring integrity in the target environment builds 
upon research in executable assertions[35]; moni-
tors [18]; checkpointing and recovery schemes [21]; 
and distributed, nested transactions [24]. The 
approach also introduces the concept of the inte­
gration environment. These aspects of the appro­
ach are discussed in more detail in the following 

section. 

2.5 Fault Tolerance and Recovery 

In a perfect world, functionally correct softv/are, 
hardware, communication links, and human ma-
chine subsystems would operate safely and re-
liably in their intended environment. TJnfortu-
nately, in the domain addressed by MISSION, 
faults, errors, and failures will occur which co-
uld be disastrous if not detected and handled pro-
perly. MASC systems are needed which can tole-
rate such problems or, when the problems cannot 
be tolerated, enact survivability policies. 

A failure means that a functional unit can no 
longer satisfy its requirements at run-time, and 
may be caused by a defect in the softv/are design 
or implementation. A fault occurs at run-time 
and may leave errors in some part of the system, 
and may sometimes lead to failures. Detection 
may refer to the detection of either a fault, an 
error or failure [27]. Recovery refers to the process 
of restoring normal operation after the occurrence 
of a fault or failure [21]. 

Classes of faults, errors, failures, and their 
combinations should be identified and prioritized 
according to their probability of occurrence du-
ring execution, and the consequences of not pro-
perly dealing with them [7, 12]. A safe system is 
not only able to monitor its s tatus and detect an 
occurrence of such classes as soon as possible, but 
can also analyze and control the propagation of 
the effects and recover safely. 

The fundamental issue behind MASC softv/are 
support is handling the consequences of faults. 
Two approaches are commonly identified: fault 
tolerance and fault avoidance. Fault avoidance 
depends on ultra-reliable hardv/are, early detec­
tion of low-level faults with redundant processing, 
and the ability to use this redundancy to mask 
faults in the system from its environment. Spe-
cincally, the faults are masked from the system 
state vectors. Avoidance techniques are valuable 
but not sufficient [13, 41]. 

Large, complex systems with intricate dynamic 
interactions severeb/ limit the ability of fault avo­
idance to assure safe and correct performance. 
Even if systems v/ith millions of lines of defect-free 
code could be built (and they currently can not) , 
they would not execute v/ithout faults, errors and 
failures throughout a long, non-stop, operational 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 11 

lifetime. Some combination of hardware failure, 
communication links failure, operator errors, la-
tent software defects or acts of providence will 
cause problems at runtime. Many of these can be 
tolerated if the software is built to do so. Others 
cannot be tolerated but survivability can be maxi-
mized if the software is so designed [26]. 

Fault tolerance is a complementary approach 
to fault avoidance. Fault tolerance is based upon 
the assumption tha t any computation might be-
come defective and result in an erroneous system 
state vector. Either forward or backward reco-
very schemes may be used to restore the system 
to a safe and correct state. Since the possibi-
lity for the introduction of such problems exists 
at ali levels of the software hierarchy, it should 
be considered and addressed at aH levels. In so 
doing, the ability to manage or at least mitigate 
the effects of faults, errors and failures throughout 
large and complex systems may be made possible 
[4, 12, 13, 16, 17, 41]. The MISSION goal to le-
verage combinations of fault avoidance and fault 
tolerance in support of MASC requirements is si-
milar to a goal of the MARS project [17]. 

3 The MISSION Approach 

The previous section has described some of the 
principal issues involved in the construction and 
maintenance of distributed, non-stop MASC sy-
stems. In this section we provide an overview 
of the MISSION approach for tackling the issues, 
and integrating the various separate technologies 
tha t have been developed to date. In particular, 
we describe how the MISSION approach addres-
ses the need for precise (semantic) modeling, three 
computing environments, and a generic architec-
ture for the systems software that executes MASC 
applications. 

3.1 Semantic Model ing 

As depicted in Figure 1, the key requirements ori-
ginate within the distributed target environment 
(DTE) , flow traceably and cumulatively across 
the integration environment to the host enviro­
nment and back. System level modeling is funda-
mental to improved understanding and progress 
toward safe solutions. The need for such mode­
ling extends beyond the final executing system, 

and encompasses also the interrelated processes 
that produce the improved solutions. Such mo­
deling of products and processes has implications 
for aH three environments in the MISSION appro­
ach. 

A key requirement for an integrated solution 
is the capability to model system level com-
ponents and interrelationships among software, 
hardware, communication links, human-machine 
subsystems, and their operational environment. 
The representation of such svstem level compo-
nents and their interrelationships should facilitate 
automated support for tractable, rigorous reaso-
ning about their MASC properties. 

To respond to these needs, the MISSION team 
has adapted an object-oriented modeling appro­
ach developed by Embley, Kurtz and Woodfield 
[10] and augmented the approach with additi-
onal semantics in entity- attribute/relationship-
attribute (EA/RA) form. The approach by Em-
bley et. al. is based upon a formal deflnition 
and depicts object-oriented models in three views. 
Object-relationship models provide the structu-
ral view of the part of the system being mo-
deled. The behavior of each object class that 
appears in the object-relationship models is de­
picted in an object-behavior model. Interacti-
ons among object classes are depicted in object-
interaction models. Although the combination of 
the three modeling views does support a large de-
gree of tractable, rigorous reasoning about the sy-
stems being modeled, the semantics defined in the 
approach do not provide sufficient granularity to 
capture ali details of interest in the MISSION pro­
ject. Examples include redundant objects, bin-
dings between software and hardware, workload 
profiles, reconfiguration of systems resources, 
etc. An entity- at tr ibute/relationship-attr ibute 
(EA/RA) form of representation which has been 
systematically extended to include object classes, 
relationship sets, states, transitions, interactions 
and attributes is a feasible choice for represen-
ting these system level components, interrelati­
onships, and their MASC properties. The IRDS 
standard [3] for this form of semantic representa­
tion has been legally extended by the MISSION 
team to meet these needs. However, a discipline 
is required to systematically address the inherent 
complexity within the problem space. The same 
discipline should also control the associated com-



12 Informatica 19 (1995) 7-24 C.W. McKay et al. 

Host A 

HostB 

Host C 

Advanced Host 
Environments 

Monitor 

. Update 

Monitoring, 
Integration and 

Control 
Environment 

Control f S 

~r>? 
Distributed 

Target 
Environment 

Figure 1: Three Environments 

plexity of the processes of evolving and sustaining 
safe and affordable solutions. 

As a scenario to illustrate the modeling disci­
pline and processes advocated by MISSION, con-
sider a proposal to replace and to add types and 
instances of vehicles in NASA's Space Transpor­
tation System. The MISSION process would be-
gin with domain analysis to determine the num-
ber of product lines needed (types of vehicles in 
this example) and the variations needed among 
instances of each type. Along with attributes such 
as costs, benefits, risks, opportunities, e t c , this 
"business model" would be captured in object-
oriented form and conveved to the client. Ba-
sed upon priorities, constraints, and other busi­
ness and pohtical factors shaping decisions and 
commitments, the business model would be ma-
pped to a scoping model to identify which pro­
duct lines and their variations will be evolved, 
when, and in what order. The object-oriented 
scoping model would then be mapped to a "con-
cept of operations" model for each product line 
and its variations. System requirements mode­
ling for the domain would then proceed by re-
vising the concept models to represent common 
requirements and constraints as-well-as differen-
ces among the product lines and their variations. 
Later, this "domain model" would be mapped to 
a partitioning and allocation of requirements and 
constraints among models of: software, hardware 
and Communications, and human interfaces. This 
stage would be followed by the creation, evalua-
tion and selection of generic architectures appro-
priate for the domain. The domain engineering 
process would continue and would eventually be 
followed by application engineering to create spe-
cific instances of the product lines. 

Some important points to be noted about this 
scenario are as follows. First, ali products of the 
process are represented in an extended object- ori-
ented form (i.e., extended via E A / R A notations) 
whether the products are business models, models 
of svstem requirements and constraints, or models 
of software, hardware and Communications, hu­
man interfaces, and interactions with the enviro­
nment. Second, a complete set of semantic infor-
mation typically requires three views of the object 
models. Third, tools exist to facilitate such mode­
ling and reasoning about the models. Fourth, the 
domain engineering processes and the application 
engineering processes that evolve these products 
are also represented as object models. 

Precise semantic modeling using an object-
oriented discipline provides the foundation for 
constructing system level fault tolerance and avo-
idance. Systems built from such models can also 
be designed and verihed to enforce policies for 
survivability when faults and failures occur that 
cannot be tolerated or avoided. For example, 
to support fault tolerance, classes of faults, er-
rors, and failures can be identified and modeled 
for the software, hardware, communication links, 
human-machine subsystems and operational envi­
ronment that comprise the intended MASC com-
puting system. Assertions can be formulated to 
provide context sensitive detection and responses 
for certain classes of faults, errors, or failures -
namely, those classes that are not only likely to 
occur but which will also produce unacceptable 
behavior and effects if they not properly handled. 
One or more monitors to enforce these assertion 
checks and responses can then be generated to 
accompany the functional software to the target 
environment. 

Of the research projects that focus on domains 
overlapping with that of MISSION, MISSION is 
somewhat unique in its emphasis on process and 
methodologies tha t leverage object modeling as 
a unifying paradigm at the systems level. Alpha 
shares the commitment to software objects and 
Spring shares the commitment to tools and me-
thods for the host and the target environment. 

3.2 Three Environments 

Developers of software for embedded systems have 
traditionally been concerned with two enviro­
nments: the host environment (the computers on 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 13 

which ali software requirements analysis, design, 
implementation, and testing is performed) and 
the target environment (the embedded compu-
ters on which the software is intended to execute). 
However, these two types of environments are in-
sufficient for MASC systems which are developed 
by several different organizations, and which are 
required to execute non-stop. Typically there will 
be many "host" environments, each used to de-
velop a part of the final system. For example, 
different host environments could be responsible 
for different (sub)applications to be added to the 
existing system. To enable the products from the 
various "hosts" to be combined, and to provide an 
interface to the software executing on the target 
environment, MISSION envisions a third enviro­
nment - the monitoring, integration and control 
environment (MICE). The provision of a coherent 
framework for modeling the structure and beha-
vior of MASC systems impacts ali three enviro­
nments throughout the full life-cycle of the sy-
stem. 

The Monitoring, Integration and Control Envi­
ronment (MICE), is intended to mitigate the risk 
in evolving and sustaining remoteb/ distributed, 
non- stop, MASC computing applications and sy-
stems. The MICE serves as an interface between 
the various hosts and the target environment and 
is the environment where software from the hosts 
is integrated. The MICE additionally serves to 
safely upgrade software components in the target 
environment, monitor the performance of the tar­
get environment, and possibly assist the target 
environment in performing major reconfigurati-
ons in response to faults. To properly perform 
these tasks the MICE must have up-to-date mo-
dels of the structure, functionalitv, behavior and 
constraints of the elements of the executing tar­
get environment. The MICE must also present 
an appropriate command interface, and provide 
powerful diagnostic support. 

The MISSION project is believed to be unique 
in its attention to the integration environment wi-
thin a research context, although environments of 
this type have historically been an important part 
of NASA applications (e.g., the Mission Control 
Center for shuttle operations). 

3.3 Generic Architecture 

A generic solution architecture is proposed for the 
domain of MASC computing applications and sy-
stems addressed by the MISSION research. As 
shown in Figure 2, the target environment is a 
distributed system composed of interacting, mul-
tiprocessor clusters. Local area networks (LANs) 
may be configured from these clusters, and wide 
area networks (WANs) may be configured from 
these local area networks. The applications soft-
ware on each cluster is supported by systems soft-
ware providing intra- and inter-cluster communi-
cation and reliable execution in the presence of 
component failures. To limit the damage caused 
by faults, and to increase the feasibility of deve-
loping and sustaining such a system, the software 
on the processor clusters is separated into the fol-
lowing "firewalled" partitions2 -

1. MASC Kernel 

2. Distributed Application Svstem (DAS) 

3. Distributed Monitoring svstem (DMS) 

4. Distributed Policy Svstems (DPS) 

5. Distributed Information System (DIS) 

6. Distributed Communication System (DCS) 

If, for example, a new space vehicle were requi-
red, the number and type of applications and the 
profile of the intended workload can be used to 
determine hov/ many clusters (and with what re-
sources), and what LAN and WAN resources will 
be needed. 

» 
Much of the research and development of dis­

tributed systems has evolved from an assumption 
of single processor nodes interconnected by LANs 
and WANs. Even multiple processor nodes have 
frequently been configured as "N redundant" pro-
cessors to avoid certain types of faults. In effect, 
such processors process a single instruction and 
data stream with a "voting mechanism" to assure 
majority rule (e.g., the primary flight control sy-
stem of NASA's space shuttles). 

As a partial result of the "single processor 
node" mind set, a t tempts to evolve distributed 

2By firewalled, we mean that certain steps have been 
taken to ensure tliat a fault, failure or error in one partition 
does not adverselv affect other partitions. 



14 Informatica 19 (1995) 7-24 C.W. McKay et al. 

rfz 
2 K

ernel 

DAS 

DMS 

DPS 

DIS 

DCS 

K
ernel 

DAS 

DMS 

DPS 

DIS 

DCS 

rfŽ 
> 
2 

^ 

K
ernel 

DAS 

DMS 

DPS 

DIS 

DCS 

K
ernel 

DAS 

DMS 

DPS 

DIS 

DCS 
> 1 > 
2 D C S 2 

Figure 2: Generic Architecture 

systems with tightly constrained, real-time con-
trol functions have not been widely successful. 
Such systems typically experience severe perfor-
mance problems in meeting their functional requi-
rements. At tempts to integrate a software based 
approach to supporting systems level fault tole­
rance tend to exacerbate the overhead problem 
responsible for the poor performance. 

Much of the performance overhead in a single 
processor node is associated with the tirne requi-
red for context switches. Unfortunately, the eli-
mination of context switches can result in the loss 
of opportunities to help prevent faults that occur 
in the execution of one instruction stream from 
corrupting the subsequent execution of other in­
struction streams. A key concept of the MISSION 
approach is to "flatten" the traditional software 
architecture to take advantage of multiprocessing 
clusters as illustrated by the cluster architecture 
in Figure 2. If, for example, such a cluster was 
located at a geographical site with requirements 
for four local, hard constrained, real- tirne con-
trol functions, then as many as four or more pro-
cessors could be assigned to the parallel proces-
sing of these control functions. Even if interaction 
existed among the four functions, parallel proces-

sing may offer benefits over a single processor. In 
the MISSION architecture, the units of functional 
code are intended to execute in parallel with co-
routines on other processors that check for faults, 
errors, or failures. As long as no flaws are de-
tected, only a minimal performance overhead is 
added to the execution of the functional code of 
the applications. Stili another performance bene-
fit may be derived by also allowing parallel exe-
cution of services and resources tha t are shared 
among the applications. For example, persistent 
information and Communications may be organi-
zed in such as way as to maximize parallel proces-
sing among these subsystems and the applications 
as indicated in Figure 2. 

The MISSION goal to exploit parallel proces-
sing capabilities among LANs and WANs of mul­
tiprocessing clusters is also a goal of other pro-
jects such as Alpha, Spring and Real-Time Mach. 
The approach to "fiattening" the architecture to 
achieve the intended throughput improvements is 
particularly evident in Alpha and MISSION. 

3.3.1 T h e Clusters 

MISSION clusters have the following properties. 
Clusters: 

— do not share physical memory, 

— have access to a hierarchy of memory subsy-
stems including stable storage controlled by 
transaction mechanisms, 

— may be connected to any number of LANs 
and WANs, 

— may have predetermined types of hardware 
resources, including processors, added to a 
cluster without changing systems software, 

— may fail completely or partially, 

— may be repaired and returned to full service, 
typically without stopping processing, 

— may be added/removed at any tirne, 

— may have changes to applications and sy-
stems software made without stopping pro­
cessing, and 

— may control access to both physical and vir-
tual svstems resources. 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 15 

3.3.2 T h e Communica t ions Links 

MISSION Communications links must be able to 
tolerate faults, errors and failures which include 
messages which have lost parts , garbled parts, 
out-of- order parts , duplicated parts, or parts 
which are arbitrarily delayed. 

3.3.3 M I S S I O N C o m p u t i n g S y s t e m s 

MISSION computing systems are expected to to­
lerate, to a specified level, combinations of faults, 
errors and failures to include: Communications 
failures, abortion of application and system pro­
gram components, crashes of one or more clusters 
participating in an application, and lock cycles. 

3 . 4 T h e K e r n e l 

The MASC kernel is a critical part of the MIS­
SION approach to improving runtime support for 
the execution and evolution of MASC functions 
and components in the distributed target enviro-
nment (DTE) . It is similar to the"microkernels" 
of other projects such as Alpha, Mars and Spring, 
and provides the foundation on which the firewal-
led subsystems are built. These mechanisms di-
rectly affect the ability of the infrastructure in the 
integration and host environments to support the 
DTE. This is because the integrated approaches 
to semantic modeling are based upon the generic 
architecture of the D T E systems software. 

The kernel is responsible for encapsulating 
hardware and providing mechanisms to support 
the policies, operations, and interactions of the 
other five firewalled partitions. Any communica-
tion entering or leaving a partition is a result of 
invoking the kernel for a message passing service. 
No direct communication among partitions is al-
lowed apart from with the kernel. The five fire-
walled partitions, shown in Figure 2, (DAS, DIS, 
DCS, DPS and DMS) are also referred to as the 
five nrewalled subsystems. Thus, for example a 
DAS component that wishes to request a resource 
from the local DIŠ or from a remote DAS compo­
nent must invoke a message passing service from 
the kernel. This modularity allows rigorous reaso-
ning about the kernel independent of the sources 
or destinations of messages. Since the properties 
of the structure, functionalitv, behavior and con-
straints of the kernel can be assured, the same 

approach to rigorous reasoning can be indepen-
dently extended to each of the five firewalled sub-
systems. 

As in [2], MISSION treats the kernel's message-
passing relationships with the other subsystems 
as explicit, first class semantic entities. Protocols 
are used to describe allowable interactions, their 
constraints, and their responses to constraint vio-
lations, much as in the Mars project. In contrast 
with the Mars approach, however, MISSION does 
not assume a clock that is universally available to 
ali clusters in real tirne. 

3.4.1 Twelve Features of t h e Generic 
Archi tec ture 

The MISSION system architecture embodies 
twelve features which are either not found at ali in 
today's systems software or are not found as an in­
tegrated set. There are at least two important re-
asons why this set of features is used. First, they 
facilitate the provision of runtime support needed 
for the domain of MASC computing applications 
and systems addressed by the project. Second, 
they facilitate precise modeling and the associated 
discipline of rigorous reasoning about the system. 
These twelve features are identified below: 

F l . Model-based reasoning 

F2. Firewalled partitions of applications and 
subsystems 

F3. Tailorable interfaces based on classes, 
objects and messages 

F4. Life cycle unique identification of classes, 
objects and messages at runtime 

F5. Extensible and modifiable sets of classes, 
objects and messages at runtime 

F6. Separation of policies and mechanisms 

F7. Multiple and adjustable levels of security 
and integrity 

F8. Synchronous and asynchronous Communica­
tions mechanisms 

F9. Adaptable policies for scheduling, redun-
dancy management and the management of 
other runtime services and resources 



16 Informatica 19 (1995) 7-24 C.W. McKay et al. 

F10. Stable storage for checkpointing and reco-
very 

F l l . Distributed, nested transactions 

F12. "System" level fault tolerance and surviva-
bility through systems software. 

We elaborate upon these features below. 

F l . Mode l -Based Reasoning 

MISSION engineering processes and products em-
phasize semantically rich, object-oriented models 
to support tractable, rigorous reasoning about 
MASC properties. These models can be partially 
leveraged in the target environment since the ker-
nel contains a finite set of mechanisms designed 
especially to support the interpretation, mainte-
nance and modification of runtime models. For 
example, runtime policies are maintained in the 
DPS as models. In addition, current configura-
tion details are also maintained as on-line models. 
When an overload condition arises at a cluster, in­
terpretation of the overload policy in terms of the 
current configuration will determine the response 
(e.g., load sharing with another cluster or local 
load shedding). 

Although model based reasoning is certainly 
not new, MISSION is believed to be one of the 
flrst projects to investigate its application to non-
stop, distributed, MASC systems. Initial studies 
have focused upon its use in configuration ma-
nagement For example, a resource might initiate 
one particular recovery response under one set of 
conditions, and a different recover response un­
der different conditions. Since most elements of 
the workload and system configuration are well-
defined in the D T E models, context sensitive con-
tingency determinations can often be made in pa-
rallel with workload processing and be available 
for rapid response in the presence of one or more 
anomalies of a predetermined type. 

F2. Firewalled Partit ions 

Firewalled partitions are used in MISSION to 
maximize the opportunities for identification, is-
olation, and selection of recovery capabilities. In 
the host environment, objects are created and as-
signed to one-and-only-one of the five firewalled 

subsystems or to the kernel. As the semantic mo­
dels of the DTE applications and system are evol-
ved, these objects are further allocated to specific 
clusters. This partitioning and allocation infor-
mation is exported to the DTE for use by the ker­
nel and the five subsystems. This means that if, 
for example, an application object executing in a 
cluster's DAS requests information from an object 
in the local DIS, the message is passed from the 
first subsystem to the second by invoking the ker­
nel. Similarly, if an object in the cluster's DAS re-
quests information from a DAS object in a remote 
cluster, the kernel recognizes that a local object is 
requesting information from a remote object and 
invokes the appropriate operation. The message 
is passed to the local DCS where a communication 
object will prepare to effect the remote communi­
cation. 

The result of this organization is to isolate each 
partition of objects by explicit message passing 
through the kernel services. For example, suppose 
a DAS object passes a message to a DIS object 
which accepts the message and then fails. The 
opportunities for tolerating the failure are enhan-
ced since the DAS object was preserved in a heal-
thy state when the message was sent. In much the 
same way, different applications vvithin the DAS, 
different information systems within the DIS, etc. 
are also protected from corruption within their 
own subsystems. 

F3. Tailorable and Extensible 
Interfaces 

Dynamic extensibility and other forms of dyna-
mic reconfiguration are facilitated by this feature. 
Each segment of the generic architecture for the 
DTE systems software interacts with other se-
gments of the local cluster and with peers in re­
mote clusters through carefully defmed interfaces. 
These interfaces are specified in CIFOs (Cata-
logues of Interface Features and Options). The 
interfaces are tailorable in that the given set of 
applications and system requirements for a given 
cluster determine which features and options will 
be selected as CIFO subsets for each cluster. The 
interfaces are extensible in that precisely modeled 
rules exist for extending these CIFOs as needed 
over tirne. As an example of such rules, no device 
driver can be replaced until certain preconditions 
are satisfied such as: "Complete ali input /output 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 17 

operations in progress when the replacement com-
mand arrives until a 'recoverable' state is reached. 
Then effect the replacement." 

F4. Life Cycle Unique Identification 

This feature also supports tractable and rigo-
rous reasoning about the MISSION models. In 
the DTE, classes templates, executable images 
of objects and messages are uniquely identifia-
ble. For example, suppose an object is a part 
of an application that requires about five minu-
tes to complete and that is intended to run every 
hour on the hour. The executable image reta-
ins its unique identification but, in addition, each 
hourly activation receives a different thread-of-
control identifier. Each thread assignment is pro-
vided a unique identification so that the effects of 
each activation are traceable. Similarly, an itera-
tive object structure may complete and send the 
same message structure many times during the 
life span of each object. In the MISSION appro-
ach, the effects of each message are intended to 
be traceable through the unique identifiers of each 
message, source, and destination(s). The element 
of the MISSION approach has been strongly in-
fluenced by the work of Moss [24]. 

F5. Extens ib le and Modifiable 
R u n T i m e Sets 

This feature complements ali the preceding featu-
res, but is particularly germane to: "F3. Tailora-
ble and Extensible Interfaces". The ability to tai-
lor and extend CIFOs in the host and integration 
environment is important, but a corresponding 
capability is needed for objects inside any cluster 
partition of an operational, non-stop DTE. More 
specifically, the interfaces to each segment of a 
cluster architecture should allow existing class de-
finitions internal to the segment to be modified or 
new ones to be added. Once the modified or new 
class definitions are installed, the interfaces sho­
uld encapsulate the ability to create new objects 
and messages of the new and modified classes. In 
addition, the interfaces should support the retire-
ment and replacement of old classes, objects, and 
messages as needed. This mechanism is analogous 
to the polymorphism/dynamic binding mechani-
sms of object-oriented languages 

F6. Separation of Policies and 
Mechanisms 

This feature not only facilitates tractable, rigo-
rous reasoning, but it also facilitates the domain 
and application engineering processes through se­
paration of concerns. The MISSION approach 
partitions and allocates policies to various mem-
bers of the firewalled subsystems. The shared me­
chanisms used to effect these policies are in the 
kernel. For example, the DPS is intended to con-
tain polices for the management of shared services 
and resources within and among clusters. These 
policies are encapsulated within DPS modeling 
objects. The effects are somewhat analogous to 
earlier techniques of operating systems enforcing 
"table driven" policies. The interpretation and 
enforcement of the policies encapsulated by the 
firewalled subsystems is dependent upon the uti-
lization of the kernel mechanisms. This feature is 
also supported in Alpha. 

F7. Multi level Security and Integrity 

Ali threads-of-control are created, assigned, su-
stained and retired via the MASC kernel. A re-
quirement for each active object (i.e., one with 
its own thread-of-control) is to maintain a regi-
stration of its unique identity and its current ca-
pabilities. This is particularly important when 
the active object is about to request a service of 
another object. A unique identity is required for 
the destination object and its services and reso­
urces. In addition, two other points should be 
noted. First, the match of a sender's capabilities 
to a receiver's list of required access rights should 
be enforced for each access. Second, these rights 
may sometimes have to be temporarily sacrificed 
in the cause of higher level policy issues related 
to a system's fault tolerance and survivabilitv. 

F8. Synchronous and Asynchronous 
Communicat ions Mechanisms 

The domain of interest to MISSION researchers 
includes applications requiring telemetry data to 
be broadcast as it becomes available and without 
regard for the status of intended receivers at the 
tirne of the broadcast. The domain also inclu­
des applications such as multidimensional colli-
sion avoidance and proximity operations tha t re-
quire hard constrained, real tirne synchronization 



18 Informatica 19 (1995) 7-24 C.W. McKay et al. 

and control. The literature on communication 
mechanisms to support distributed and concur-
rent processing requirements reveals two distinct 
solutions with certain advantages claimed for each 
[22]. 

The first type of mechanism supports the use 
of asynchronous transmissions and receptions wi-
thout blocking the sending process or the recei-
ving process(es). Instead, transmission is a čase 
of "send when ready and then proceed". Recep-
tion is a čase of "receive when ready, if message 
is available, and then proceed". Variations of this 
type of mechanism have also been studied. 

The second type of mechanism is used for 
two distinct cases of synchronous communication. 
The first čase involves an active object which 
calls for a service from a passive object (a pas-
sive object borrows its thread-of-control). This 
čase is analogous to a local thread-of-control in 
a "main" procedure calling a remote subroutine. 
Tha t is, the thread and its request are passed to 
the environment of the called subroutine. After 
"borrowing" the thread-of- control to execute, the 
passive object returns both the results and the 
thread- of-control to the calling environment. 

The second čase of synchronous Communica­
tions involves a need for synchronization and 
exchange of information among two-or-more co-
operating, active objects. This čase addresses, 
among other things, the issues of the Ada rende-
zvous among two cooperating threads-of-control. 
This support for multiple forms of Communicati­
ons is very different than the approaches taken in 
many other related projects such as Mars which 
only use datagrams. 

F9. Adaptable R u n t i m e Services and 
Resources 

The provision of shared system services and reso-
urces to an evolving collection of applications is 
intended to be based upon well-defined policies, 
configurations and circumstances. Some resour-
ces and services will be replicated to maximize 
availability and fault tolerance. Such redundancy 
will need to be managed at a variety of levels. At 
one extreme, the redundant copies could be ma­
naged as "hot standbys" which are ready to be 
substituted for the primary copy at any tirne. At 
another extreme, the redundant copy can be sub­
stituted for the primary copy only after processing 

is performed to prepare the "cold standby" to take 
over. Depending upon criticality, workload, and 
the status of system resources, the type and amo-
unt of redundancy is intended to vary according 
to adaptable policies. 

Another important aspect of adaptable poli­
cies is scheduling. Some real-time applications 
map naturally to a collection of periodic proces-
ses. Others are interrupt driven and are aperi-
odic. Stili others have sporadic service require-
ments that may be of varying frequency and dura-
tion. An important aspect of the approach, there-
fore, is the use of adaptable scheduling policies to 
maximize support for MAS C functions and com-
ponents under conditions that vary from normal 
to various types of emergencies. A similar feature 
is also found in Real Time Mach. 

F10. Stable Storage 

Fault tolerance among clusters of distributed 
MASC systems benefits from the next feature, 
distributed nested transactions. However, im-
plementation approaches to such transactions re-
quire stable storage. Stable storage has two cha-
racteristics that facilitate check pointing and re-
covery. First, it survives temporary losses of po-
wer. Second, it is always updated in an atomic 
operation. 

F l l . Distr ibuted, N e s t e d Transactions 

Fault tolerance among interactive, distributed 
processing clusters is facilitated by support for 
distributed, nested transactions [24, 26]. This is 
particularly true when a fault, failure or error can 
not be detected in a single state vector, but de-
pends instead upon detection of incorrect sequen-
ces of processing. Transactions bracket a named 
collection of operations between "Begin transac-
tion X" and "End transaction X". The effects 
of the transaction are to make the set of enclo-
sed operations appear to be a single atomic ac-
tion. That is, either ali of the operations complete 
successfully or the system can detect and reco-
ver from the effects of partial completion. Distri­
buted transactions support hierarchies of parallel 
and distributed operations. Nesting allows higher 
level transactions to be composed of sets of enclo-
sed transactions. Transactions of this kind can be 
used to provide fault tolerance and survivability 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 19 

in the DTE, and also facilitate reasoning in the 
host and integration environments. Other related 
projects employing this mechanism include Alpha 
and Mars. 

F12. S y s t e m Level Fault Tolerance and 
Survivability 

The MISSION approach leverages systems soft-
ware to support true systems level fault tolerance 
and survivabilitv. Since object classes and relati-
onship sets are used to model software. hardware 
and Communications, human interfaces, and inte-
ractions with the environment, systems software 
monitors can be used to monitor and control sy-
stems level resources as appropriate. 

An important component of the MISSION 
approach is the concept of coroutines which asso-
ciate monitors in the DPS with functional objects 
elsewhere in the system. The job of the moni­
tors is to detect faults, errors, and failures as soon 
as possible and to then provide support for effec-
ting isolation, analysis, and recovery. Such detec-
tion is based upon assertions that are associated 
with MASC properties. These assertions may be 
about values of state or about sequences of state 
transformations. The Mars project also employs 
kernel-level mechanisms to support system-level 
fault tolerance. 

3.5 Firewalled partit ions 

As mentioned above, and illustrated in Figure 
2, the generic architecture employs five firewal-
led partitions that interact by means of the mes-
sage passing services provided by the kernel. In 
this subsection we outline further the role of each 
subsytem. 

Distr ibuted Applicat ions Sys tem 

The DAS is the firewalled subsystem containing 
MASC applications that are to be executed on 
the MASC computing system. The focus of the 
research in the D T E is on the generic architecture 
of the systems software rather than the DAS. The 
DAS developers are intended to leverage the fea-
tures and options of this generic architecture to 
improve runtime support of MASC functions and 
component s. 

Only two aspects of the DAS are within the 
scope of this research project. The first is the set 
of interfaces to the local cluster and to DAS pe-
ers in remote clusters. The second is the set of 
abstractions made available to applications pro-
gramming teams to improve safety and afforda-
bilitv. However, another important point should 
also be understood about a DAS partition of a 
cluster. Any component within a DAS applica-
tion is nrewalled from the other partitions and 
from other applications within the DAS. That is, 
different applications and partitions have no di-
rect means of communication, but must invoke 
a message service of the kernel. This additional 
firewalling of applications is also supported wi-
thin the other partitions and is used to facilitate 
tractable, rigorous reasoning about the individual 
parts of a partition. 

Distributed Information S y s t e m 

The DIS is responsible for managing shared 
and persistent information services and resour­
ces. Whenever information is shared by more 
than one application, access to the information 
is provided via a virtual interface set by reque-
sting services from the DIS. For example, a DAS 
component could request auni t of shared informa­
tion from the DIS by invoking a message service 
from the kernel. Also, some applications do not 
execute continuously and have requirements for 
persistent information. For example, a program 
that takes five minutes to complete may be sche-
duled to execute once every eight hours. At each 
execution, the program updates some information 
in the DIS that must persist between executions. 
In addition, the DIS manages shared and persi­
stent information on behalf of the systems soft-
ware. Examples include: performance and wor-
kload by cluster, LAN, WAN, and system; health 
and status of ..., etc. As with the other firewalled 
partitions, portions of multiple DISs may reside 
on the same cluster. Each DIS represented on the 
cluster is firewalled from the other DISs also on 
the cluster. 

The class of MASC computing applications and 
systems addressed by MISSION will typically be 
long lived. Many type definitions that will be ne-
eded in the future cannot be known when the sy-
stem is initially developed and deployed. Since 
non-stop operation requirements prohibit brin-



20 Informatica 19 (1995) 7-24 C.W. McKay et al. 

ging the system down to recompile existing code 
in the context of the new type definitions, an al­
ternative is needed to upgrade the system. The 
approach under study is based upon controlled 
inheritance. A set of commands in the Distribu-
ted Command Interpreter is intended to allow the 
MICE to first extend/add the definitions and then 
create instances of the types. The reader should 
note tha t the problem of dynamic type extensibi-
lity is not limited to just the DIS. 

Distr ibuted Communicat ions Sys tem 

The DCS corresponds to the upper three layers 
and a portion of the fourth layer of the seven la-
yer ISO model for Open Systems Interconnection 
[33]. (The lower layers are encapsnlated as device 
drivers within the kernel.) The DCS is responsible 
for managing Communications services and reso­
urces among clusters, LANs and WANs. Within 
a cluster, whenever an applications component or 
a systems software component needs to commu-
nicate with a peer at another cluster, the DCS is 
responsible for effecting this communication. A 
virtual interface set shared with its DCS peers at 
other clusters is used to resolve issues of routing, 
congestion control, relocation, and other services. 
Such resolution is transparent to the applications 
components or to any systems software compo-
nents located outside the DCS partition. 

Distr ibuted Pol icy Sys t em 

The DPS is responsible for the evolution and en-
forcement of policies regarding the sharable servi­
ces and resources of the integrated systems soft-
ware. The DPS contains a library of policies 
which are used in conjunction with the mechani-
sms of the kernel to manage such issues as: con-
tention between local cluster priorities and uni-
versal system priorities, multiparameter schedu-
ling, emergency load shedding, dynamic recon-
figuration and others. An important premise is 
tha t support can be predictably and dependably 
provided for different policies needed by different 
applications if a known set of sufficient resources 
are available and if a known set of universal and 
local policies permit. This is somewhat similar to 
the approaches taken in Alpha and Spring. 

Distr ibuted Monitoring S y s t e m 

One of the most important and unique features 
of the MISSION "smokestack" model is the di­
stributed monitoring system. This contains the 
objects responsible for monitoring the correct exe-
cution of the application objects. In fact, monitor 
objects are also introduced to monitor the correct 
execution of system level objects. 

For any MAS C component or any set of com-
municating MAS C components in any of the other 
firewalled partitions, the engineers in the host en­
vironment are responsible for identifying those 
classes of faults tha t must be tolerated or tha t 
must invoke survival policies. Context sensitive 
assertion checks can then be generated to detect 
such faults at run tirne, and handlers can be pre-
pared to respond to such detections. These as-
sertions and handlers can then be combined into 
monitors. Together with policies in the DPS, they 
are responsible for system level fault tolerance and 
survivability. 

When a work module (i.e. an application or 
system module) is installed in the DAS, or other 
appropriate partition, the corresponding monitors 
are installed in the DMS. The work module and 
associated monitors are scheduled to run concur-
rently on separate processors, although the work 
module is modified to write key information about 
state values and state changes to designated bul-
letin boards as it executes. The monitor is pro-
grammed to read this information for its assertion 
checks, and as long as no violations are detected, 
the work module is allowed to continue. Howe-
ver, if a violation is detected, the corresponding 
policy is consulted and the appropriate handler is 
invoked. If the fault is entirely local to a single 
work object, then the associated monitor may be 
able to insure proper tolerance by itself. Howe-
ver, faults that will cause temporal, spatial, or 
value errors in other objects or faults among co-
operating objects are addressed by monitors tha t 
coordinate the activities of the monitors of the 
affected objects (i.e., monitors that monitor and 
coordinate other monitors). 

Another primary function of the DMS is to be 
the "window" to the target environment for the 
MICE. Under normal operation, the DMS will 
monitor the health and status of the clusters, 
LANs and WANs and report this information (via 
the DCS) to the MICE. Other normal facilities 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 21 

that it will control or monitor include: the intro-
duction or removal of a new object to a cluster; 
the movement of an object from one cluster to 
another; linking, loading and starting new pro-
grams downloaded from the MICE; suspending or 
aborting threads of control; etc. Although other 
projects such as Mars have explored the use of mo-
nitors for fault detection at the cluster level, MIS-
SION is somewhat unique in its use of monitors 
to detect faults and coordinate recovery among 
multiple applications spanning multiple clusters. 

4 The Testbed 

The MISSION testbed ušes Sun workstations for 
the host and integration environments. A version 
of a Verdix Ada (1983) compiler that supports 
post- partitioning and distribution of code has 
been used to generate code for the target envi-
ronment. Although other processor types have 
been successfully used in this target environment 
(e.g., object-oriented processors by Ericsson), the 
major clusters consist of multiprocessing clusters 
of Motorola 68030s. „ 

5 Conclusion 

Distributed, non-stop MASC systems are some of 
the largest and most complex computer systems 
to have been tackled to date. As described in sec-
tion 2, they require many independent technolo-
gies, developed separately for smaller systems, to 
be brought together and integrated into a single 
unified whole. This integration, and the defini-
tion of the environment to support it, presents 
a major technological challenge. This paper has 
outlined some of the major issues which arise in 
the construction and maintenance of this category 
of embedded system, and has provided an outline 
of the MISSION approach to achieving this goal. 
This strategy has two principal components: the 
definition of a generic architecture for the target 
systems software, and the design of a supporting 
infrastructure and processes. 

A key component of the proposed infrastruc­
ture is the monitoring, control and integration 
environment (MICE) which bridges the gap be-
tween the traditional host and target environment 
used today for embedded systems. The MICE 

serves as the location at which new software com­
ponents and (sub)applications from the various 
contractors can be tested, assembled and eventu-
allv downloaded to become part of the executing 
MASC embedded system. To perform this func-
tion the MICE employs a set of precise semantic 
models which describe the current structure, func-
tionality and behavior of the executing system. 
Such semantic modeling pervades ali three enviro­
nments, over the full life-of the system, and forms 
the cornerstone of the MISSION software process 
used to develop and sustain distributed, nonstop, 
MASC systems. Each process is domain-specific 
and leverages the object paradigms for modeling 
ali aspects of the svstems across the life cycle. 

The paper also outlined the nature of the gene­
ric architecture for the multi- processor clusters, 
interconnected by LANs and WANs, which make 
up the distributed target environment. This ar­
chitecture is based on the principal of segregating 
functionally cohesive components into separate, 
firewalled, partitions which can only interact in-
directly via the special MASC kernel. Prelimi-
nary prototypes of these subsystems have demon-
strated the feasibility of the architecture and the 
overall approach, but further work is needed to 
elaborate upon the detailed make up of the sepa­
rate subsystems, and to evaluate the concepts in 
a pilot project. 

Acknowledgments 

The MISSION research has been partially suppor-
ted by NASA. The authors wish to thank: the 
NASA sponsors and monitors; our fellow resear-
chers from the faculty, staff and students at the 
University; our fellow researchers from industry; 
our support staff in RICIS; and the volunteers on 
our Industrial Advisory Committee. 

References 

[1] AIA/SEI (Aerospace Industries Associa-
tion/Software Engineering Insti tute), Wor-
kshop on Research Advances Required for Real 
Time Softivare Systems in the 1990s, Software 
Engineering Institute, 1991. 

[2] Allen, R., D. Garlan, "Formalizing Architec-
tural Connection", Proceedings of the 16th In-



22 Informatica 19 (1995) 7-24 C.W. McKay et al. 

ternational Conference on Softiuare Enginee-
ring, Sorrento, Italy, 1994. 

[3] "American National Standard Information 
Resource Dictionary System", American Na­
tional Standards Institute, Group X3H4, New 
York, 1985. 

[4] Arlat, J., K. Kanoun, J. Laprie, "Dependa-
bility Modeling and Evaluation of Software 
Fault Tolerance: Recovery Blocks, N VeT-
sion Programming, N Self Checking Program-
ming", First Year Report on Predictably De-
pendable Computing Systems, Volume 3 of 3, 
Esprit Project 3092, 1990. 

[5] Atkinson, C , T. Moreton. A. Natali, Ada for 
Distributed Systems, Ada Companion Series, 
Cambridge University Press, 1988. 

[6] Burns, A. and C. McKay, "A Portable 
Common Execution Environment for Ada", 
Ada: The Design Choice - Proceedings of the 
Ada- Europe International Conference, Ma­
drid, 1989, Cambridge Uriiversity Press, 1989. 

[7] Charette, R., Softiuare Engineering Risk Ana-
lysis and Management, McGraw Hill, 1989. 

[8] Deswarte, Y., J. Fabre, J. Laprie, D. Powell, 
"A Saturation Network to Tolerate Faults 
and Intrusion", Proceedings of the 5th Sym-
posium on Reliability in Distributed Softiuare 
and Database Systems, IEEE Computer Sy-
stems Press, 1986. 

[9] DOD (Department of Defense, United States 
of America), "Trusted Computer System Eva­
luation Criteria", DOD 5200.28-STD, 1985. 

[10] Embley, D., B. Kurtz, S. Woodfield, Object-
Oriented Systems Analysis: A Model-Driven 
Approach, Yourdon Press, 1992. 

[11] ESPRIT (European Strategic Program for 
Research and Development in Information Te-
chnology), First Year Report on Predictably 
Dependable Computing Systems, Volumes 1, 
2, 3, ESPRIT, 1990. 

[12] Ezhilchelvan, P. and S. Shrivastava, "Cha-
racterization of Faults in Systems", Procee­
dings of the 5th Symposiurn on Reliability in 
Distributed Softiuare and Database Systems, 
IEEE, 1986. 

[13] Ezhilchelvan, P. and S. Shrivastava, "A Di­
stributed Systems Architecture Supporting 
High Availability and Reliabilitv", Procee­
dings of the 2nd International Working Con­
ference on Dependable Computing For Critical 
Applications, IEEE, February 1991. 

[14] GAO (Government Accounting Office), 
"Space Station: NASA's Software Develop­
ment Approach Increases Safety and Cost Ris-
ks - Report to the Chairman", Committee on 
Science, Space and Technology, House of Rep-
resentatives, GAO, 1992. 

[15] Jensen, E., Chapter 8, Distributed Sy-
stems: Architecture and Irnplementation, (B. 
Lampson, M. Paul and H. Siegert, editors), 
Springer-Verlag, 1981. 

[16] Knight, J. and J. Urquhart , "On the Irnple­
mentation and Use of Ada on Fault-Tolerant 
Distributed Systems", IEEE Transactions on 
Softiuare Engineering, Vol SE-13, No. 5, May 
1987. 

[17] Kopetz, H., A. Damm, C. Koza, M. Mu-
lazzani, W. Schwabi, C. Senft, R. Zainlin-
ger, "Distributed Fault-Tolerant Real-Time 
Systems: The MARS Approach," IEEE Mi­
cro, February 1989. 

[18] LeBlanc, R. and A. Robbins, "Event Driven 
Monitoring of Distributed Programs", Procee­
dings the 5th International Conference on Di­
stributed Computing Sijstems, IEEE 1985. 

[19] Leveson, N., "Building Safe Software", Pro­
ceedings of COMPASS. 1986, IEEE, 1986. 

[20] Locke, D., "Best Effort Decision Making for 
Realtime Scheduling", CMU-CS-86-134, Car-
negie Mellon Universitv, 1986. 

[21] Long, J., W. Fuchs, J. Abraham, "Implemen-
ting Forward Recovery Using Checkpointing 
in Distributed Systems", Proceedings of the 
2nd International Working Conference on De­
pendable Computing For Critical Applications, 
IEEE, February 1991. 

[22] McKay, C. W. and C. Atkinson, Volumes 
I, II and III of the MISSION Concept Docu-
ment, RICIS Report, University of Houston-
Clear Lake, 1992. 



EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 23 

[23] McKay, C , D. Auty, K. Rogers, "A 
Study of System Interface Sets (SIS) For 
the Host, Target, and Integration Enviro-
nments of the Space Station Program (SSP)", 
SERC(UHCL) Report SE. 10, NCC9-16,1987. 

[24] Moss, J., Nested Transactions: An Appro-
ach to Reliable Distributed Computing, 
M I T / L C S / T R 260, Massachusetts Institute of 
Technology, April 1981. 

[25] Musa, J., A. Iannino, K. Okumoto, Software 
Reliability: Measurement, Prediction. Appli­
cation, McGraw Hill, 1987. 

[26] Northcutt , J., Mechanisms for Reliable Dis­
tributed Real- Time Operating Svstems: The 
Alpha Kernel, Academic Press, Boston, 1987. 

[27] Parker, D., G. Popek, A. Rudison, A. Stou-
ghton, B. Walker, E. Walton, J. Chow, D. Ed-
wards, S. Kiser, C. Kline, "Detection of Mu­
tual Inconsistency in Distributed Systems", 
IEEE Transactions on Software Engineering 
Vol. SE-9, No. 3, IEEE, May 1983. 

[28] Pyle, L, Developing Safety Svstems: A Guide 
Using Ada, Prentice Hali, 1991. 

[29] Ramamri tham, K., J. Stankovic, Overvieiv of 
the Spring Project, University of Massachu­
setts Amherst, COINS Technical Report 89-
03, January 1989. 

[30] Randall, C , P. Rogers, C. McKay, "Distri­
buted Ada: Extending the Runtime Enviro-
nment for the Space Station Program", Si-
xth National Conference on Ada Technologv, 
March, 1988. 

[31] Randell, B. and J. Dobson, "Reliability and 
Security Issues in Distributed Computing Sy-
stems", Proceedings of the 5th Svmposium on 
Reliabilitv in Distribute Softviare and Data-
base Svstems, IEEE, 1986. 

[32] Redmill, E. (Editor), Dependabilitv of Criti-
cal Computer Svstems 2, Elsevier Applied Sci­
ence, 1989. 

[33] "Reference Model of Open Systems Intercon-
nection". ISO/TC97/SC16/N227, Internatio­
nal Standards Organization, 1979. 

[34] Rogers, K., M. Bishop, C. McKay, "An 
Overview of the Clear Lake Life Cycle Mo­
del (CLLCM)", Proceedings of the 9th Annual 
Conference on Ada Technologv, ACM, March, 
1991. 

[35] Sankar, S., "Automatic Runtime Consi-
stency Checking and Debugging of For-
mally Specifled Programs", STAN-CS-89-
1282, Stanford University, 1989. 

[36] SATWG (Space Avionics Technology Wor-
king Group), Space Avionics Requirements 
Study, (Integrated by General Dynamics), 
1990. 

[37] Sha, L. and J. Goodenough, "Realtime Sche-
duling Theory and Ada", IEEE Computer, 
April 1990. 

[38] Shankar, K., C. McKay, "Why NASA, Code 
R, Should Sponsor Advanced Research in 
Software Engineering: A White Paper", Pro­
ceedings of the Computing in Aerospace 9 
Conference, American Institute of Aeronau-
tics and Astronautics, San Diego, October 
1992. 

[39] Stankovic, J. and K. Ramamri tham, "The 
Design of the Spring Kernel", Proceedings of 
the Real Time Svstems Svmposium, IEEE, De­
cember 1987. 

[40] Stankovic, J., K. Ramamri tham (editors), 
Tutorial: Hard Real Time Systems, IEEE 
Computer Societv Press, 1988. 

[41] Strigini, L., "Software Fault Tolerance", 
First Year Report on Predictablv Dependable 
Computing Svstems, Volume 2 of 3, Esprit 
Project 3092, 1990. 

[42] Tindell, K., "Dynamic Code Replacement 
and Ada", Ada Letters, Vol. X, No. 7, 1990. 

[43] Tokuda, H., T. Nakajima, P. Rao, "Real-
Time Mach: Towards a Predictable Real-
Time System", Proceedings of the Usenix Ma-
chine Workshop, October 1990. 

[44] Vincente,. B., A. Alonso, J. Amador, "Dyna-
mic Software Replacement Model and It 's Ada' 
Implementation", Proceedings of Tri Ada'91, 
ACM, 1991. 



24 Informatica 19 (1995) 7-24 C.W. McKay et al. 

[45] Zicari, R., "Operating System Support For 
Software Migration in a Distributed System", 
Proceedings of the 5th Symposium on Reliabi-
lity in Distributed Software and Database Sy-
stems, IEEE, 1986. 


