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Summary

Recently, Jekel et al. (2018) proposed the integrated coherence-based decision and
search model (iCodes), which predicts decision-making and information search
in multi-cue decision tasks. This model assumes that decision-makers strive for
coherence-maximization and that this pursuit is represented by an iterative spread
of activation through a network that represents all relevant information of the cur-
rent decision. The goal of my thesis is to evaluate iCodes as a general theory of
decision-making and information search, to test its predictions by employing ex-
perimental methods, computational modeling and process tracing, and finally to
critically discuss its merits in the field of judgment and decision-making research
(JDM) as a whole.

A unique contribution of iCodes compared to other theories in JDM is its pre-
diction that people show a tendency to search for information on the option that
is currently supported by the available evidence, also referred to as the attraction
search effect. In the first manuscript, we could show that the attraction search ef-
fect is a robust finding and generalizes to a variety of different tasks. This finding
supported a broad range of applicability for iCodes’ predictions for information
search. In the second manuscript, we could show that iCodes can account for the
effect of a theoretically motivated moderator of the attraction search effect, namely
that rating the attractiveness of options before search increases the tendency to
search for information on the attractive option. We further validated the assumed,
underlying information-search process by showing that a model-inherent parameter
can account for the effect of attractiveness ratings. The third manuscript showed
that iCodes is not only able to predict behavioral information search but is also
able to predict gaze behavior in decision-making. It further highlighted the role of
coherence for attention allocation in decision tasks. In sum, my thesis contributes
to the theoretical advancement of research in JDM and emphasizes the importance
of formalized theories.
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Manuscripts

The research for this dissertation was conducted in the Center for Doctoral Studies
in Social Sciences (CDSS) of the Graduate School of Economic and Social Sciences
(GESS) at the University of Mannheim. In three manuscripts, I test iCodes’ pre-
dictions for information search to assess its empirical content and to contribute to
theory development in research on Judgment and Decision Making. Of these three
manuscripts, one is published and two are submitted for publication.

I evaluate iCodes’ theoretical properties by testing its generalizability
(Manuscript I), validating its process assumptions (Manuscript II) and testing its
predictions for attention allocation (Manuscript III). The main text of this thesis
provides an overview of the three manuscripts, details on the experimental im-
plementations and statistical analyses can be found in the original manuscripts
appended to this thesis.

Manuscript I

Scharf, S. E., Wiegelmann, M., & Bröder, A. (2019). Information search in everyday
decisions: The generalizability of the attraction search effect. Judgment &
Decision Making, 14 (4), 488-512.

Manuscript II

Scharf, S. E., Jekel, M., & Glöckner, A. (2021). Testing an extension of the iCodes
model to account for situation, person, and task specific variation in the at-
traction search effect. Manuscript submitted for publication.

Manuscript III

Scharf, S. E., Bröder, A., Jekel, M., & Glöckner, A. (2021). Coherence influences
on attention allocation and visual information search in decisions with open
information displays. Manuscript submitted for publication.
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1 Introduction

In psychological research on Judgment and Decision Making (JDM), the main focus
lies on how people integrate information in order to choose a course of action (Hastie,
2001). As this research question is rather broad, it generated a wealth of different
research streams, ranging from normative theories that investigate the rationality
of human decision-making to more descriptive theories that aim to describing the
cognitive processes behind human decision-making (Hastie & Dawes, 2010). Fur-
ther, the field has been historically divided into research on judgments (i.e., how
information is integrated to form beliefs) and research on decisions (i.e., how to
choose between options; cf. Goldstein & Hogarth, 1997; Hastie, 2001). Additionally,
due to the ubiquity of situations that necessitate judgements or decisions, a vari-
ety of other sub-disciplines of psychology have investigated these two processes in
connection to their foci of research (see Goldstein & Hogarth, 1997, for a review).
This variety of JDM research lead to different research traditions that employ dif-
ferent paradigms and methods but at the same time often overlap to some extent
(Goldstein & Hogarth, 1997).

One consequence of the wide spectrum of JDM research is that “the number of
theories that peacefully coexist in the literature is constantly growing” (Glöckner
& Betsch, 2011, p. 711). In their article, Glöckner and Betsch (2011) identified
the lack of well-specified theories as one underlying cause for the accumulation
of weak theories in JDM. Without proper specification, these theories make only
weak predictions about decision behavior and are, therefore, difficult to falsify. Such
theories can often be adjusted to explain anything and, thus, ultimately explain
nothing (Glöckner & Betsch, 2011). The lack of well-specified theories that make
precise statements about their antecedents, predicted consequences, and boundary
conditions impedes the scientific progress in JDM and psychology in general (C. J.
Ferguson & Heene, 2012; Glöckner & Betsch, 2011; Glöckner et al., 2018; Smaldino,
2019). One potential solution suggested by Glöckner and Betsch (2011; and also
Glöckner et al., 2018; Smaldino, 2019) was to propose more formalized theories
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that make precise predictions and are, therefore, easily testable.

With the introduction of the integrated coherence-based decision and search
model (iCodes), Jekel et al. (2018) proposed such a formalized, computational model
that makes precise predictions about information search and decision-making in
multiple-cue judgment tasks. iCodes is an extension of the parallel constraint sat-
isfaction model for decision making (PCS-DM, Glöckner et al., 2014) that applies
its assumed decision-making process to information search and attention allocation.
The underlying assumption of iCodes is that information search and decision-making
can be understood as outcomes of a coherence-maximization process.

In my thesis, I contribute to the theory development in JDM by evaluating
iCodes’ properties as a theory and critically testing its predictions. By specifying
iCodes’ predictions and its scope of application, I provide the foundation for crit-
ically assessing its merit as a general theory of decision-making and search. Yet,
only if iCodes’ predictions are corroborated by empirical evidence, the field of JDM
makes scientific and theoretical progress. The empirical tests of iCodes’ predictions
in my manuscripts enable a critical review of iCodes’ corroboration as a theory. In
its entirety, my thesis aims to evaluate iCodes’ contribution to JDM research and
thereby identifying areas of future theoretical developments for iCodes specifically
and JDM in general.

In the introduction, I present the background on theories in JDM and introduce
iCodes as a new theory of coherence-based decision-making and search. I conclude
this introduction by assessing iCodes’ theoretical properties and its empirical con-
tent, that is, its level of universality as well as the degree of precision of its predic-
tions (cf. Popper, 1935; see also Glöckner & Betsch, 2011). In three manuscripts,
I review the degree to which iCodes’ predictions were supported by experimen-
tal evidence. In Manuscript I, I examined the level of universality by testing one
of iCodes’ core predictions in different decision contexts (Scharf et al., 2019). In
Manuscript II, I assessed the degree of specificity of iCodes by testing a theoreti-
cally motivated moderator of its information-search predictions and validating the
associated, model-inherent parameter. Lastly, I examined iCodes’ scope of appli-
cation in Manuscript III by testing its predictions for attention allocation. In the
discussion, I evaluate the evidence presented in the three manuscripts with regard to
iCodes’ performance as theory of coherence-based decision-making and information
search and compare its properties to other current theoretical accounts in JDM.
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Finally, I discuss implications for the future development of iCodes specifically and
research on information search in general.

With this thesis, I not only advance the current state of the literature on
coherence-based models of decision-making and information search, but also con-
tribute to critically testing, evaluating, and distinguishing theories in JDM. Further,
my thesis contributes to establishing and testing more precise theories in the field
of JDM and identifying the merits of formalized modeling in psychology in general.

1.1 Theories of Judgment and Decision Making

The origin of modern psychological theories in the field of Judgment and Decision
Making (JDM) can be traced back to the 1950s (see Goldstein & Hogarth, 1997).
While older theories were mainly concerned with describing decisions from a nor-
mative perspective (for a review, see Edwards, 1954), the theoretical focus shifted
with the introduction of the concept of bounded rationality (H. Simon, 1955, 1957).
With the growing evidence that human decision-making deviates from normative
models claiming to represent rationality, more theories were proposed that describe
how people integrate information in order to decide on a course of action (Gold-
stein & Hogarth, 1997). These theories investigate a number of different decision
problems, often using specialized experimental tasks to tackle their specific research
question. The subset of proposed decision-making theories, that are introduced here-
after, are all applicable to multiple-cue decision tasks, in which the information of
multiple cues has to be integrated with regard to a subjective or objective decision
criterion in order to decide between two or more options. In the following, I review
three theoretical approaches that differ in their underlying assumptions for decisions
in these tasks. First, I introduce the multi-strategy approach to human decision-
making that is often subsumed in the metaphor of the adaptive toolbox (Gigerenzer
& Gaissmaier, 2011; Gigerenzer & Todd, 1999; see also Payne et al., 1993; H. Simon,
1957). I, then, expand on theoretical approaches that assume a single, underlying
decision-making process that is either based on a process of evidence accumulation
(Busemeyer & Johnson, 2004; Krajbich et al., 2010; Lee & Cummins, 2004) or a
process of coherence maximization (Glöckner & Betsch, 2008a; Holyoak & Simon,
1999; Rumelhart & McClelland, 1986).
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Multi-Strategy Accounts

One of the most influential conceptualizations of human decision-making was the
idea that people cope with high computational demands during decision-making
by utilizing simplifying decision strategies (Gigerenzer & Gaissmaier, 2011; Payne
et al., 1993; H. Simon, 1957). This idea culminated in the proposition that the
human mind can be compared to an adaptive toolbox from which decision-makers
choose different strategies or heuristics to adjust to changing demands of the de-
cision context (Gigerenzer, 2001; Gigerenzer & Gaissmaier, 2011; Gigerenzer &
Todd, 1999). These strategies or heuristics often structure the decision processes
into sub-processes of information search, information integration, and the decision
itself (Gigerenzer, 2001; Gigerenzer & Todd, 1999; Payne et al., 1993). A promi-
nent example of such a strategy is the lexicographic heuristic (Payne et al., 1988,
1993), also known as the take-the-best heuristic (Gigerenzer & Goldstein, 1996).
This decision strategy assumes that information on the options under consideration
is inspected in order of importance. If the most important cue favors one of the
options, information search is stopped and the respective option is chosen. If the
information of the cue does not discriminate between options, additional informa-
tion is searched for, again in order of importance until a decision can be reached.
While such single heuristics can describe decisions well in specific situations, sev-
eral studies have shown that decision-makers may adapt to decision contexts by
using different strategies (Bröder & Schiffer, 2006; Dieckmann & Rieskamp, 2007;
Payne et al., 1988; Rieskamp & Hoffrage, 2008). Therefore, to adequately describe
human decision-making, theories that assume the adaptive use of different deci-
sion strategies must specify a mechanism by which decision-makers choose between
those strategies and under which circumstances which strategy is applied (Glöckner
& Betsch, 2011). To solve this issue, different models have been proposed that trace
adaptive strategy selection back to learning processes (Erev & Barron, 2005; Lieder
& Griffiths, 2017; Rieskamp & Otto, 2006).

While research supported the adaptive change in decision processes, the multi-
strategy approach to decision-making has not been without criticism. In their re-
view, Bröder and Newell (2008) concluded that one of the core assumptions, namely
that integrating all relevant decision information is a cognitively costly and time-
consuming process and, thus, simplifying strategies are needed, was not unanimously
supported by research. Moreover, without a fixed set of specified heuristics with
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clear criteria for their adaptive selection, such multi-strategy accounts are effec-
tively unfalsifiable as each critical result could be resolved by adding new heuristics
or selection criteria (Glöckner & Betsch, 2011; Glöckner et al., 2010; but see also
Marewski, 2010, and Scheibehenne et al., 2013, for a response to this criticism).
Hence, multi-strategy accounts of decision-making have not only been criticized for
their assumptions about cognitive processes but also for their properties as a theory
on the meta-level. Thus, Newell (2005) proposed that a single-mechanism account
would be an alternative and more parsimonious explanation of the adaptivity in
decision behavior (see also Bröder & Newell, 2008).

Evidence-Accumulation Models

One example for such a single-mechanism account is the class of evidence-
accumulation models (EAM, Hausmann & Läge, 2008; Lee & Cummins, 2004; see
also Decision Field Theory, Busemeyer & Johnson, 2004; or Drift Diffusion Models,
Krajbich et al., 2010). These types of models typically assume that evidence for the
options is sampled via a stochastic process (Ratcliff et al., 2016). This process stops
once enough evidence is accumulated, so that a subjective threshold of evidence is
surpassed for one of the options that is subsequently chosen. Such models can adapt
their predicted decision behavior to different contexts by adapting their parameters
(such as the individual evidence thresholds, Lee & Cummins, 2004; Newell, 2005).
EAMs have soon become popular in JDM research as they are more parsimonious
than theories that assume multiple decision strategies (Glöckner & Betsch, 2011;
Newell, 2005). For instance, Newell and Lee (2011) showed that EAMs described
participants’ decision behavior best compared to single heuristics and a basic imple-
mentation of a multi-strategy model. In addition, EAMs allow for making precise
and well-corroborated predictions about process measures, such as response times
(Lee & Cummins, 2004; Trueblood et al., 2014) and attention allocation (Fisher,
2017; Krajbich et al., 2012).

The prediction of additional dependent variables increases the overall empiri-
cal content of EAMs. Yet, these models include free parameters to account for the
adaptability of decision-making behavior, which potentially decreases the precision
of their prediction due to an increases of model flexibility (Glöckner & Betsch,
2011).1 Besides its flexibility, a more substantial concern regarding EAMs is their

1As already stated by Glöckner and Betsch (2011) this criticism is not unique to EAMs but
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prediction of the information-search process. In general, EAMs assume that infor-
mation search is a probabilistic process (Bergert & Nosofsky, 2007; Busemeyer &
Townsend, 1993; Noguchi & Stewart, 2018) or follows a deterministic search order
(Lee & Cummins, 2004; see also Busemeyer et al., 2019). However, evidence from
research utilizing eye tracking showed that, while EAMs predictions for attention
allocation were largely supported, information acquisition was not stochastic and
was influenced by top-down and bottom-up processes (cf. Orquin & Mueller Loose,
2013). In line with that, EAMs cannot inherently explain why top-down influences
of the information’s consistency have been shown to impact the weighting of in-
formation and subsequently choices during the decision process (Glöckner et al.,
2010).

Parallel-Constraint Satisfaction Models

The top-down influence of consistency of information on decision-making is mod-
eled explicitly in parallel constraint satisfaction models (Glöckner & Betsch, 2008a;
Holyoak & Simon, 1999; Read et al., 1997; Rumelhart & McClelland, 1986). These
models assume that decision-makers strive for a coherent representation of the
decision-relevant information, that is that the available information clearly sup-
ports one option and contradicts the others. Thus, the decision process is interpreted
as a coherence-maximization process that stops once a certain level of coherence is
achieved. Coherence-maximization is conceptualized as an iterative spread of activa-
tion through a neural network representing the decision situation. As a consequence
of this coherence-maximization process, parallel constraint satisfaction models pre-
dict coherence shifts during decision-making (Glöckner & Betsch, 2008a; Holyoak
& Simon, 1999; Montgomery, 1989). That is, decision-makers tend to increase the
coherence of a decision situation, for example by overweighting information that is
consistent with the emerging favored option or underweighting inconsistent infor-
mation. Many studies supported the constructive role of coherence during decision-
making in the form of coherence shifts (Glöckner, 2008; Glöckner et al., 2010; D.
Simon et al., 2008; D. Simon et al., 2004; see also Brownstein, 2003, for a review of
biased predecision processing). Parallel constraint satisfaction models additionally
predict that information integration can be quick and exhaustive at the same time,
in case the decision situation under investigation is coherent (Glöckner & Betsch,

applies to any model that includes parameters that need to be fitted to data.
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2008a, 2008b). This prediction is in contrast to multi-strategy accounts that assume
that the more information is processed, the longer a decision takes (Gigerenzer &
Todd, 1999). Yet, the studies by Glöckner and Betsch (2008b) and Glöckner and
Betsch (2012) showed that in coherent decision situations decision-makers were able
to integrate all available information quickly and efficiently.

Despite the success of parallel constraint satisfaction models in accounting for
decision-making behavior, early implementations of these models were criticized for
being underspecified and, thus, too flexible (Marewski, 2010). In response, Glöckner
et al. (2014) introduced a fully formalized parallel constraint satisfaction model of
decision making (PCS-DM) which predicts decisions, decision times, and decision
confidence either in a fixed variant without any free parameters or in a version
that assumes one free parameter for modeling individual differences in decision-
making. From a meta-theoretical perspective, PCS-DM’s properties as a theory are
comparable to those of EAMs as both models are single-mechanism accounts of
decision-making that predict several dependent variables and assume free parame-
ters to explain adaptive decision behavior (Glöckner & Betsch, 2011). In comparison
to EAMs and the assumed decision strategies of the multi-strategy accounts, how-
ever, PCS-DM still lacks the ability to predict information search (Glöckner et al.,
2014; Jekel et al., 2018) and also does not make precise predictions about atten-
tion allocation on the cue-value level (Orquin & Mueller Loose, 2013). Due to the
importance of information search for the prediction of decision-making (Gigerenzer
et al., 2014; Todd & Gigerenzer, 2003), Jekel et al. (2018) extended PCS-DM to the
integrated coherence-based decision and search model (iCodes) by formalizing the
prediction of coherence-based information search.

1.2 A Model for Coherence-Based Decision-Making

and Information Search

With the integrated coherence-based decision and search model (iCodes), Jekel et
al. (2018) extended PCS-DM’s (Glöckner et al., 2014) predictions for choices in
probabilistic-inference tasks to also include information search. In this type of tasks,
decision-makers have to choose the option out of two (or more) that is most likely
to maximize an objective decision criterion based on the given information. The
basis of this choice is the probabilistic information provided by cues that differ
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in their validities. The validity of a cue in this task is the predictive quality of
the information and represents the probability of this cue correctly predicting the
option with a higher criterion value, given that this cue discriminates (cf. Gigerenzer
& Goldstein, 1996). Cues provide information on the likely success of each option
(also referred to as cue values) and this information can be either already available
or still concealed and searchable. For simplicity, the cue values are binary in many
experimental settings, in that they are either positive or negative endorsements of
an option (see Figure 1 for an illustration).

Source

Cue 1

+ −

Cue 2

? ?

Cue 3

? ?

Option 1 Option 2

Option 1 Option 2

Cue 1

.90
+ −

Cue 2

.80
? ?

Cue 3

.70
? ?

Figure 1: iCodes network representing an exemplary decision situation. The information of
the decision task on the left is represented in the network on the right. Nodes represent options,
cues, and cue values. + indicates a positive evaluation of an option, − a negative evaluation, and ?
concealed and searchable information. Cues differ in their respective validities which is represented
by relative line thickness in the links that connect the source node to the cue nodes. Links with an
arrow head are unidirectional in the direction the arrow points to, all other links are bidirectional.
Dotted lines represent inhibitory links that reduce the activation of the associated nodes.

The information of a probabilistic-inference task is the basis for iCodes’ network,
as it represents all the information in the form of nodes and links connecting the
nodes (Jekel et al., 2018). The relevant extension from PCS-DM to iCodes is a layer
of cue-value nodes that has been introduced into the network, in addition to the
nodes representing the options and the cues (see Figure 1). iCodes still assumes
the same iterative spread of activation through the network as PCS-DM as the
underlying decision and search process (cf. Glöckner et al., 2014; Jekel et al., 2018).
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This spread of activation maximizes the coherence of the decision situation while
considering the reciprocal constraints introduced to the network by the decision
task (such as contradicting information or being only able to choose one option).
Once a coherent representation of the decision situation is achieved, this spread of
activation stops and iCodes makes a prediction for choices and information search.
In the following, I provide more details on the underlying spread of activation. I,
then, describe how predictions for dependent variables of decision-making can be
derived from iCodes. Finally, I conclude this chapter by introducing the currently
most prominent prediction for information search by iCodes, the attraction search
effect.

The Iterative Spread of Activation

The iterative spread of activation is initiated by the source node at the bottom of the
network (Jekel et al., 2018, see also Figure 1). From the source node, activation is
spread to the options and back to the cue nodes via the bidirectional links connecting
cue, cue-value, and option nodes. The spread of activation from the source node
to the option nodes and back to the cue nodes constitutes one iteration and is
repeated until the levels of activation at each node do not change substantially
anymore, indicating a coherent representation of the decision situation.2 Only nodes
representing available cue values contribute to the iterative spread of activation as
only these nodes are connected to option and cue nodes via bidirectional links (just
as the links between cue and option nodes in PCS-DM, Glöckner et al., 2014).
Concealed and, therefore, searchable cue values are connected via unidirectional
links that only enable concealed cue-value nodes to receive activation from the
option and cue nodes but do not allow them to spread activation back to the other
nodes, as they do not carry any information on the options and cues yet (Jekel
et al., 2018).

The amount of activation each node receives through the spread of activation
depends on the characteristics of the decision situation. The cue nodes receive acti-
vation from the source node proportionally to their respective validities (Glöckner
et al., 2014; Jekel et al., 2018). The same is true for the activation cue-value nodes
receive from the cue nodes. Thus, nodes representing more valid cues and their cue

2For the formalization of the spreading-activation mechanism, refer to Jekel et al. (2018), pp.
752.
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values receive more activation than nodes representing less valid cues and their cue
values. The translation of validity differences to activation differences at the node
level is modulated by a free parameter P. This parameter represents the individual
sensitivity towards cue-validity differences. High P parameters represent a high sen-
sitivity towards validity differences resulting in more noncompensatory information
integration, such that information of less valid cues cannot override information
of more valid cues (cf. Payne et al., 1993). In contrast, low P parameters lead to
more compensatory information integration, as they represent low sensitivity to-
wards cue-validity differences and thus, information of cues with differing validities
is weighted more equally.

The option nodes receive activation from the cue-value nodes that are currently
available (i.e. not concealed). The amount of activation option nodes receive de-
pends on the valence of the available cue values and their respective validities: The
activation of an option node increases, if the cue values support the respective option
and more so if the supporting cue values are more valid. If the cue values contradict
an option, the activation of the respective option node is reduced - even more so
if the contradicting cue values are highly valid. The option nodes themselves are
connected via an inhibitory link. Due to this inhibitory link, the activation of one
option is automatically reduced if the other option receives activation from the cue
values and vice versa, complying with the demand of the task that only one option
can be chosen.

From the option nodes, activation is spread back to the cue-value nodes. The
more an option is supported by the already available evidence, the more activation
connected cue-value nodes receive. Via the bidirectional links connecting available
cue-value nodes and cues, cue nodes also receive activation from the option nodes.
Due to these bidirectional links, the weight of cues that support the currently pre-
ferred option is increased during the decision process. Both, the inhibitory link be-
tween the option nodes and the bidirectional links between cue, available cue-value,
and option nodes are constraints within the network that implement coherence
principles in the decision process (Glöckner et al., 2014).

The Prediction of Information Search and Decisions

Once the activation levels of the nodes stabilize, that is, once their activation levels
do not change substantially anymore between iterations, the iterative spread of
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activation stops and iCodes’ prediction for the decision situation can be derived.
iCodes predicts that the option whose node received the most activation at the end
of the decision process should be chosen (Glöckner et al., 2014; Jekel et al., 2018).
iCodes also predicts that the higher the difference of option nodes’ activation-levels,
the higher the decision confidence should be. Further, the number of iterations it
takes for the network to stabilize predicts the time it takes to make a decision. For
the prediction of information search, Jekel et al. (2018) applied the same logic as
with the prediction of choices: The concealed cue value, whose node received the
most activation (compared to other concealed cue-value nodes) after the network
stabilized, is predicted to be searched for.

Note, that all predictions made by iCodes are deterministic in principle. In order
to transform iCodes’ deterministic predictions to probabilistic predictions3, Jekel et
al. (2018) utilized a softmax choice rule (see also Glöckner et al., 2014). With this
choice rule, two additional free parameters are introduced into the model, λC and
λS. Both parameters represent the sensitivity towards the differences in activations,
one of the option nodes (λC) and the other of the cue-value nodes (λS). High λ

parameters represent a strong adherence to iCodes’ choice and search prediction,
while λ parameters of zero represent random choices and information search.

The Attraction Search Effect

iCodes predicts information search based on the amount of activation that concealed
cue-value nodes received once the network stabilized. The activation of concealed
cue-value nodes is determined by the sum of activation they receive via the unidirec-
tional links from option and cue nodes. As already described above, the activation
that stems from the cues is proportional to their respective validities and the activa-
tion that stems from the options is proportional to the currently available evidence
that supports the option.

Due to these two sources of activation in the model, the following predictions
for information search can be derived from iCodes: All else being equal, the con-
cealed cue value from the most valid cue should be searched for. At the same time,
and again, all else being equal, the concealed cue value that carries information on

3It has been argued that probabilistic predictions for choice are psychologically more plausible
(i.e., Hilbig & Moshagen, 2014). Further, transforming deterministic to probabilistic predictions
facilitates comparisons of iCodes with other theories that make probabilistic predictions (cf.
Glöckner et al., 2012; Glöckner et al., 2014)
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the currently attractive option (based on the already available evidence) should be
searched for. Thus, iCodes predicts that people should show a tendency to search for
new information on the option that is currently supported by the already available
information. This prediction has been coined as the attraction search effect (ASE)
by Jekel et al. (2018) and is unique in the sense that neither EAMs nor any heuris-
tics from the multi-strategy accounts currently predict that information acquisition
depends on the already available evidence.

Jekel et al. (2018) investigated the ASE and iCodes in three experiments by uti-
lizing a hypothetical stock-market game in which participants had to choose which
of two stocks was going to be more successful based on expert recommendations. The
authors manipulated the attractiveness of the options by designing two versions of
cue-value patterns. These patterns differed in the option that was supported by the
already available evidence. The main focus of the experiments was to find evidence
for the ASE. For this purpose, the authors created an index, the attraction search
score (ASS), that is the difference of the relative frequency of searching information
for one option given that this option is attractive minus the relative frequency of
searching for information on the same option given that this option is unattrac-
tive, ASS = p(searchOpt1|Opt1 attractive) − p(searchOpt1|Opt2 attractive). If the
ASS was positive, participants’ search behavior was in line with the ASE and the
predictions of iCodes.

The experiments provided support for iCodes’ predictions by showing that par-
ticipants’ ASS was positive on average. Thus, participants showed a tendency to
search new information for the option that was currently supported by the evidence.
This tendency persisted when information search was restricted to one additional
piece of information, unrestricted but costly in that participants had to pay for each
information they searched, or unrestricted and free. The type of information search,
however, moderated the size of the ASE, such that the strongest ASE was shown
for restricted search and the ASE was weakest but still significant for free search.
Next to the behavioral results, iCodes performed also well as a computational model
in predicting choice and search behavior compared to selected strategies from the
adaptive toolbox. The modeling results further emphasized the importance for in-
cluding coherence processes in the prediction of information search. Overall, Jekel
et al. (2018) introduced a new and formalized model for coherence-based decision-
making and search and provided initial evidence for the ASE specifically and iCodes
more generally.
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1.3 iCodes as a Theory of Coherence-Based

Decisions and Search

In light of the replication crisis in psychology (Open Science Collaboration, 2015),
there have been calls for more well-specified and ideally formalized theories in psy-
chology (Glöckner & Betsch, 2011; Glöckner et al., 2018; Smaldino, 2019). In their
article, Glöckner and Betsch (2011) suggested assessing the empirical content of the-
ories in JDM in order to advance theory development and facilitate critical testing
of theories. According to Popper (1935), the empirical content of theories represents
their degree of falsifiability or, in other words, the “amount of information [theories]
convey concerning the world” (Glöckner & Betsch, 2011, p.711).4 The higher the
degree of falsifiability of a theory, the more observations its predictions forbid and
the higher its empirical content. To assess the empirical content of theories, Popper
(1935) proposed to evaluate their level of universality and their degree of precision.
A theory’s level of universality is determined by the number of situations to which
its predictions can be applied (Glöckner & Betsch, 2011). If a theory’s predictions
have a large scope of application, such that they apply to many different tasks,
contexts, or individuals, the level of universality of this theory is higher than a
theory with only a few areas of application. On the other hand, a theory’s degree
of precision refers to “how much a theory forbids in the situations to which it can
be applied” (Glöckner & Betsch, 2011, p. 711). That is, the degree of precision of
a theory is higher, if it makes more precise predictions than other theories for the
same situation. For instance, if a theory predicts that either behavior x or behavior
y should occur in a certain situation, its prediction is less precise compared to a
theory that predicts that behavior x and only this behavior should occur in the
same situation. Both, the level of universality and the degree of precision of a the-
ory independently contribute to a theory’s empirical content; if both are high, its
empirical content is high.

The empirical content of a theory enables its evaluation even prior to empirical
testing (Glöckner & Betsch, 2011). If the empirical content of a theory is high,
it makes precise predictions for many different situations, can be tested critically

4In this thesis, I use the notion of theories’ empirical content merely as a tool to evaluate and
compare theories as well as to identify areas for future research. I, therefore, refrain from a
critical discussion of Popper’s philosophical theory of science as a whole or its relation to other
streams in the philosophy of science.
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and be potentially falsified. Due to the higher degree of falsifiability, theories also
contribute more to the advancement of science if their empirical content exceeds
those of other theories. This scientific advantage even holds if a theory outperforms
other theories in only one aspect of empirical content, but only if this aspect is
corroborated empirically (cf. Glöckner & Betsch, 2011). The goal of this thesis is
to evaluate and critically test iCodes’ properties as a theory and its contribution to
the advancement of the field of JDM.

To assess iCodes’ level of universality, one has to examine to which situations
iCodes’ predictions can be applied. iCodes applies to any decision situations in
which one option has to be chosen among others based on the information provided
by attributes of these options. Compared to PCS-DM, iCodes has a higher level
of universality, since it can also be applied to situations in which information has
to be searched for. To date, however, all empirical investigations of iCodes utilized
probabilistic-inference tasks presented as hypothetical stock-market games. It is,
therefore, an open question whether iCodes’ predictions are also applicable to other
types of multiple-cue judgment tasks, for instance preferential choice. The investi-
gation of iCodes’ scope of applicability is an important step for evaluating iCodes’
merit as a theory. If iCodes’ predictions only applied to a specific task or paradigm,
the added value of iCodes would be negligible. My co-authors and I, therefore,
tested iCodes’ level of universality in the first manuscript by assessing whether its
predictions for information search apply, independent of characteristics of the de-
cision task. Specifically, I investigated in three experiments whether the attraction
search effect generalized to different decision contexts. Providing support for the
generalizability of the attraction search effect would bolster iCodes’ relevance for
the field of JDM.

Next to the level of universality, it is also important to assess iCodes’ degree
of precision. As a fully-formalized theory, iCodes already makes very precise pre-
dictions for information search and choices that depend on task characteristics, for
instance the already available evidence or the validity of cues. An additional aspect
of a theory’s precision is the a priori prediction of potential boundary conditions.
Detailing under which circumstances changes in the originally predicted behavior
should be observable, increases the specificity and, thus, the degree of precision
of a theory. One potential, model-inherent boundary condition of iCodes is that
decision-makers might differ in their relative strength of the option-attractiveness
influence on search. In the current formalization of iCodes, the strength of the
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option-attractiveness influence is fixed, representing the assumption that the influ-
ence of validity on information search is ten times stronger than the influence of
option-attractiveness (cf. Jekel et al., 2018). It is, however, reasonable to assume that
this ratio differs between individuals and situations, for example because the aware-
ness of differences in option attractiveness varies. In Manuscript II, my co-authors
and I therefore tested a manipulation that should increase the strength of the option-
attractiveness influence on search and, thus, the size of the attraction search effect.
Showing that a theoretically motivated moderator influences iCodes’ predictions,
would support iCodes as a precise and strong theory of information search. In ad-
dition, by capturing variance in the option-attractiveness influence on search with
a model-inherent parameter, I aim to validate iCodes’ assumed information-search
process.

Another property of theories with high empirical content is the prediction of
multiple dependent variables (Glöckner & Betsch, 2011). On the one hand, multiple
dependent variables increase the level of universality of a theory, as this theory can
make predictions in situations that require different types of dependent variables.
On the other hand, multiple dependent variables can also increase the degree of
precision of a theory, by specifying a pattern of different outcomes and behaviors
that should occur simultaneously. Predicting such a pattern of behaviors increases
the number of observations that would falsify the theory and, therefore, increases
the theory’s degree of precision. Next to information search and process measures
already predicted by PCS-DM, iCodes also predicts attention allocation in multiple-
cue judgment tasks. Specifically, it predicts that the coherence of information should
influence the distribution and the temporal development of fixation behavior. Thus,
iCodes is an answer to Orquin and Mueller Loose (2013) who called for more speci-
fied theories that account for attention allocation during decision-making. Showing
that iCodes’ predictions for information search are also applicable to purely visual
search would widen iCodes’ scope of application to less structured and more natu-
ralistic settings. Therefore, my co-authors and I empirically tested iCodes’ level of
universality by investigating its predictions for attention allocation in decision tasks
with open information displays in Manuscript III. In two experiments, I assessed
the role of coherence for fixation behavior during information search and decision-
making. Providing support for the coherence influence on eye movements in decision
tasks would enhance iCodes’ contribution to research in JDM by underlining the
importance of information consistency in decision-making and information search.
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Each manuscript presented in my thesis investigates one aspect of iCodes as
a theory of coherence-based decision-making and search. Further, each manuscript
sheds light on the importance of coherence of information during search. Therefore,
this thesis not only adds to the theoretical development of iCodes and JDM but also
provides further insights into the underlying cognitive processes during information
search. In the following chapter, I summarize the three manuscripts and present
their core results (the full manuscripts can be found in Appendix D).



17

2 Testing and Validating iCodes

In three manuscripts, we tested the predictions of iCodes for information
search. Specifically, we tested the generalizability of the attraction search effect in
Manuscript I, boundary conditions of the emergence of the attraction search effect
in Manuscript II, and the applicability of iCodes’ predictions to attention allocation
in Manuscript III. By critically investigating iCodes, we evaluated the degree of
precision and level of universality empirically.

2.1 The Generalizability of the Attraction Search

Effect

Scharf, S. E., Wiegelmann, M., & Bröder, A. (2019). Information search in everyday
decisions: The generalizability of the attraction search effect. Judgment &
Decision Making, 14 (4), 488-512.

Following the introduction of iCodes, Jekel et al. (2018) demonstrated with
the attraction search effect (ASE) a new pattern of information-search behavior
that could not be accounted for by other current theories in JDM. As iCodes was
introduced as a general theory of (coherence-based) decision-making and search,
it is important to assess the scope of application of its unique predictions: If the
ASE appeared only in specific experimental designs, iCodes would predict a pattern
of information search only for a specific task. As a consequence, the added value
of iCodes and its predictions would be negligible and iCodes would not bear any
theoretical advantage (Glöckner & Betsch, 2011).

In the first manuscript we, therefore, tested the generalizability of the ASE by
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conducting conceptual replications that systematically vary the characteristics of
the decision task. The benefit of such conceptual replications is that they not only
test the robustness of iCodes’ predictions but also increase the confidence that the
observed behavior is due to the assumed underlying cognitive processes and not a
by-product of task characteristics of the original experiments (Bredenkamp, 1980).

All previous experiments investigating the ASE employed the same probabilistic-
inference task as a hypothetical stock-market game, which was presented in the
same matrix-format, and utilized the same constellations of available and concealed
cue values (also referred to as cue-value patterns; Jekel et al., 2018). All these
experimental-design choices increased the chances to find evidence for the ASE:
The hypothetical stock-market game allowed full experimental control over charac-
teristics of the decision task (such as cue validities; Bröder, 2000, 2003), the matrix
set-up was shown to be conducive for the predictions of parallel constraint sat-
isfaction models (Söllner et al., 2013), and the constellation of already available
information in the cue-value patterns was specifically designed to maximize the
likelihood of finding the ASE (Jekel et al., 2018).

To test the generalizability of the ASE, we varied these three aspects (semantic
context, cue-value patterns, presentation format) of the decision tasks in three ex-
periments. Our main dependent variable of interest was the attraction search score,
an index of information search. As already stated before, this index represents the
difference of the probabilities of showing behavior consistent with the ASE and
behavior inconsistent with the ASE, ASS = p(search consistent with ASE) −
p(search inconsistent with ASE). We considered a replication successful, if the
ASS was on average positive, that is, if participants showed more consistent than
inconsistent search behavior with the ASE.

In the first experiment (N = 303), we changed only the semantic setting of
the information-search task by replacing the hypothetical stock-market game with
six different scenarios, such as choosing a hotel or picking a trip destination based
on a weather forecast. We continued to use a subset of the diagnostic cue-value
patterns from Jekel et al. (2018) and restricted participants’ search to one piece of
information.
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A

B

C

Figure 2: Examples of the experimental displays used by Scharf et al. (2019), all translated
from German. In Experiment 1 (Figure 2 A), participants could search for one additional piece
of information by indicating their search on a scale underneath the task. Information search was
operationalized by clicking in the empty table cells in Experiment 2 (Figure 2 B). In Experiment
3 (Figure 2 C), participants could search for information by clicking on the numbers indicating
the different attributes of the item of clothing.
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In the second, preregistered experiment (N = 297), we extended the six decision
scenarios by six additional, new semantic contexts. In addition, we switched from
diagnostic, half-opened cue-value patterns to a task set-up in which all information
was concealed at the beginning of each trial. To control the attractiveness of options,
we manipulated whether the first opened cue value was positive (making the first
searched-for option attractive) or negative (making the first searched-for option
unattractive), independent of which cue value was opened first. The valence of the
remaining cue values was randomized. Information search in this experiment was
also restricted in that participants could inspect either three, five, or seven pieces
of information per trial.

In the last, preregistered experiment (N = 99), we returned to the original
cue-value patterns from Jekel et al. (2018) but presented them in a semi-realistic
online-shop context (see Figure 2 for the experimental displays of all three experi-
ments). This online-shop scenario avoided the classical matrix presentation of the
previous experiments, which was shown to influence information-search behavior (cf.
Bettman & Kakkar, 1977; Ettlin et al., 2015). Just as in Experiment 1, information
search was restricted to one piece of information.

The results of all three experiments broadly supported the generalizability of the
ASE, in that the average ASS was positive in all three experiments (see Figure 3
for the average ASS of each experiment). Thus, in all experiments, participants
showed a tendency to search for new information for the option that was currently
supported by the available evidence. The size of the ASE varied between experi-
ments: While Experiment 1 and 2 both yielded a Cohen’s d = 0.84, the effect size
in Experiment 2 was notably smaller with a Cohen’s d = 0.41. Analyses using gen-
eralized linear mixed models revealed an increase in the inter-individual variability
of the information-search behavior as a potential explanation for the differences in
effect sizes. One reason for this increase in variability could be the less restrictive
information-search implementation in Experiment 2 compared to Experiment 1 and
3 (cf. effect of restrictions of information search in Jekel et al., 2018). Additionally,
the change from half-open cue-value patterns to completely closed and random cue-
value patterns might have left more room for pre-determined search strategies to
take effect and, thus, increased variance in information search. The effect size of
the ASE was also considerably reduced compared to Jekel et al.’s (2018) original
studies, which illuminated that the previously used, controlled experimental settings
were indeed conducive to finding the ASE (see Figure 3).
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Figure 3: Mean attraction search scores (ASS) per cue-value pattern and overall for the three
experiments reported in Scharf et al. (2019) and the two experiments by Jekel et al. (2018). A
positive ASS represents information-search behavior that is consistent with the attraction search
effect. Error bars represent the standard errors of the mean. The cue patterns on the x-axis
represent the cue patterns as reported in Jekel et al. (2018), Patterns 4, 5, and 7 correspond to
Patterns 1, 2, and 3 in Experiment 1, respectively, and Patterns 5, 6, and 7 to Patterns 1, 2, and 3
in Experiment 3, respectively, reported in Scharf et al. (2019). The numbers above the error bars
for the overall ASS indicate the effect size (Cohen’s d).

The results of Manuscript I emphasized the robustness of the ASE and cor-
roborated the generalizability of iCodes’ predictions. Yet, they also highlighted the
role of task characteristics for the absolute size of the ASE. Specifically, the results
suggested that the ASE is reduced, if information search was less restrictive and
if all information was concealed at the beginning of a trial. Furthermore, the data
revealed the existence of individual variability in the ASE. Thus, while the ASE
was a pervasive phenomenon of information search, the results also highlighted that
there are underlying moderators of attractiveness-biased information search.
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2.2 Situation, Person, and Task-Specific Variation

of the Attraction Search Effect

Scharf, S. E., Jekel, M., & Glöckner, A. (2021). Testing an extension of the iCodes
model to account for situation, person, and task specific variation in the at-
traction search effect. Manuscript submitted for publication.

While the results of the first manuscript strengthened the robustness of iCodes’
core prediction, they also uncovered substantial variation in the individual and sit-
uational variance of the ASE (Scharf et al., 2019). These findings were in line with
the results from Jekel et al. (2018) who also showed variability in the ASE be-
tween subjects. One potential explanation iCodes offers for this variability is that
the strength of the option-attractiveness influence on search differed between sit-
uations and/or individuals, for example due to varying preferences for relying on
cue validities during information search. Within iCodes, the change of the option-
attractiveness influence can be modeled by adjusting the weights of the links con-
necting option and concealed cue-value nodes and, thereby, adjusting the amount
of activation cue-value nodes receive from option nodes. The current manuscript,
therefore, tested a theoretically motivated moderator of the ASE by manipulating
whether participants had to rate option attractiveness before search. We further
examined whether iCodes was able to capture the effect of this moderator with a
model parameter, γ, that represents the relative influence of option attractiveness on
information search. Showing that iCodes makes precise predictions for the bound-
ary conditions of the strength of the ASE, corroborates iCodes’ degree of precision.
Further, the ability to capture the effect of a moderator within the existing model
structure would strengthen the assumed information-search process of iCodes and
validate the model.

To test our assumption that differences in the strength of the ASE are due to
changes in the weighting of option attractiveness, we conducted a pre-registered
experiment (N = 202) using the original tasks from Jekel et al. (2018) with un-
restricted, but costly information search (i.e. participants had to spend a small
amount per information search, cf. Experiment 2 in Jekel et al., 2018). We manipu-
lated between subjects whether participants had to rate option attractiveness before
information search. Asking participants for attractiveness ratings as a manipulation
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was used in past research to increase participants’ tendency to search for information
that supports their currently preferred choice (cf. Fraser-Mackenzie & Dror, 2009).
We assumed that pre-search attractiveness ratings increase participants’ awareness
of option attractiveness and, thus, strengthen its influence on information search.
Therefore, we expected that participants in the attractiveness-rating condition show
information-search behavior more in line with the ASE than participants in the con-
trol condition. Further, we expected that the influence of attractiveness ratings on
search varies between cue-value patterns depending on the coherence of the already
available evidence in these cue-value patterns.

When the influence of option-attractiveness on information search increases, the
nodes representing concealed cue values in iCodes’ network should receive relatively
more activation from the option nodes compared to the activation from the cue
nodes. The amount of activation the nodes receive is determined by the weights of
the links connecting them to other nodes. To test whether attractiveness ratings
change the amount of activation the option nodes spread to concealed cue-value
nodes, we freely estimated the formerly fixed mixture parameter γ. This parame-
ter changes the amount of activation received from option nodes by adjusting the
weight of the links connecting (concealed) cue-value nodes and option nodes.5 In the
original iCodes, γ was fixed such that the validity influence on search was ten times
stronger than the option-attractiveness influence. If attractiveness ratings increase
the influence of option attractiveness on search, we would expect that the individu-
ally fitted γ parameters in the condition with attractiveness ratings are larger than
in the control condition.

The results showed that rating option attractiveness before search increased the
size of the ASE such that participants were more likely to search for information
on the attractive option. Hence, iCodes’ prediction was corroborated. This effect
of attractiveness ratings was also mirrored in the size of the individual γ param-
eters that were on average larger in the condition with ratings compared to the
control condition. Nonetheless, the influence of option attractiveness on search was
approximately ten times weaker than the influence of cue validity.

5We introduced the γ parameter as mixture parameter that adjusts the weights of option-cue-
value links relative to cue-cue-value links. Specifically, the weight of links connecting options
and concealed cue values is determined by the product of the weight of links connecting cues
and concealed cue values and the odds of γ, wOptCV = wCueCV ∗ γ

1−γ . We fixed γ to a maximum
value of 0.5, implying that the influence of option attractiveness could only be equally strong
as the cue-validity influence and never stronger.
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Figure 4: Individual Pearson correlations of predicted and observed search probabilities for
each condition (dark grey points = attractiveness ratings; light grey triangles = no attractiveness
ratings) based on different model parameters. The black dots and triangles are the mean correla-
tion, error bars denote the standard errors of the mean. The model on the left based its predictions
on γ = 0 and fixed P (= 1.66) and λS (= 20.18) parameters, thus, removing the option attractive-
ness influence on concealed cue-value nodes. The model in the middle fitted a global γ parameter
for each condition based on the information-search behavior of all participants in each condition.
Finally, the model on the right estimated all parameters for each participant individually.

We compared the predictive performance of different versions of iCodes to fur-
ther assess the relevance of option-attractiveness influences during search and its
role in explaining individual variability of information-search behavior. Specifically,
we compared a model with no option-attractiveness influence on search (i.e., γ = 0)
to a model with an influence of the option-attractiveness on search (i.e., γ ̸= 0)
which assumed this influence was equal between participants (i.e., one γ parameter
fitted per condition). In a second step, we compared these models with a model
that allowed for inter-individual differences in the option-attractiveness influence
on search (i.e., individual γ parameters). To evaluate the predictive performance of
each version of iCodes, we predicted the search probabilities for the concealed cue
values and correlated them with the observed search frequencies of the respective
cue values. We compared their respective model fit using likelihood-ratio tests. The
results of this analysis showed that accounting for an option-attractiveness influ-
ence on search as well as accounting for inter-individual differences in this influence
improved model fit and predictive performance of iCodes (see Figure 4). In ad-
dition to the inter-individual variance in information-search behavior, the results
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also supported that attractiveness ratings affected cue-value patterns differently,
highlighting the role of the already available evidence for the prediction of search.
(Supplemental) modeling results further supported the validity of underlying pro-
cess assumptions of iCodes by showing that the experimental manipulation did not
affect the individual P and λS parameters.

Overall, this manuscript showed that iCodes can predict the effect of a theoret-
ically motivated moderator and capture its effect with an already existing model
parameter. It further highlighted the importance of option attractiveness in pre-
dicting information search. These results emphasized the high degree of precision of
iCodes and validated its assumed information-search process as well as the role of
coherence in information search.

2.3 Predicting Coherence-Based Attention

Allocation During Information Search

Scharf, S. E., Bröder, A., Jekel, M., & Glöckner, A. (2021). Coherence influences
on attention allocation and visual information search in decisions with open
information displays. Manuscript submitted for publication.

The results of Manuscripts I and II provided support for iCodes’ level of uni-
versality and its degree of precision. Another aspect of theories with high empirical
content is the prediction of multiple dependent variables (Glöckner & Betsch, 2011).
With the extension of a network layer that represents cue values, iCodes is not only
able to predict information search but also makes predictions for gaze behavior on
the cue-value level. The underlying assumption behind the prediction of gaze behav-
ior is that the activation of the cue-value nodes can be translated into the relative
frequency of fixating the respective cue values. This allows iCodes to achieve a high
resolution in its predictions for gaze behavior. Thus, iCodes provides an answer to
the call of Orquin and Mueller Loose (2013) for more formalized theories in JDM
that can account for attention allocation during decision-making. Further, the pre-
diction of attention allocation widens the scope of application of iCodes, since its
predictions for information search can now be applied to situations without active
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(behavioral) search.6 Therefore, by deriving and testing iCodes’ predictions for vi-
sual information search, we empirically evaluated iCodes’ level of universality as
well as the role of coherence in gaze behavior during decision-making.

Assuming that the activation of cue-value nodes translates to relative fixation
frequencies of these cue values, the following qualitative predictions for attention
allocation can be derived from iCodes: First of all, just as iCodes predicts that
information should be searched for first on the attractive option, it also predicts
that new information on the attractive option should be fixated first. We coined
this prediction the attraction attention effect. Further, iCodes predicts that coher-
ent information should be fixated more than incoherent information, a prediction
we coined the coherence attention effect. This prediction stems from the influence
of option attractiveness on cue-value node activations, as cue values supporting
the attractive option should receive more activation from the option nodes than
contradicting cue values.

Looking more closely at the temporal development of the iterative spread of
activation, we deduced that the fixation pattern should change over the course
of a trial: As the validity of information is the first influence on cue-value nodes
activation, we expect that, at the beginning of a trial, fixations should be mainly
determined by cue validity. Thus, we would expect that more valid cues are fixated
more at the beginning of a trial compared to less valid cues. As the influence of
option attractiveness on cue-value node activations occurs later during the spread
of activation, we expect the influence of coherence on fixation behavior to take effect
only later in a trial. At the same time, we expect the strength of the validity influence
on fixation behavior to decrease towards the end of a trial. Taken together, we
expect that in the beginning of a trial fixation behavior is mainly influenced by the
validity of information while towards the end of a trial the coherence of information
becomes a more important determinant. We subsumed these time-course predictions
of iCodes for fixations under the name late coherence effect. Finally, iCodes also
predicts that information on the subsequently chosen option should be fixated more
towards the end of a trial - corresponding to the gaze cascade effect that is also
predicted by evidence accumulation models (first introduced by Shimojo et al.,
2003; Krajbich et al., 2010; Krajbich et al., 2012).

6Note, that it also increases the precision, since iCodes simultaneously predicts several dependent
variables such as active information search, gaze behavior, information search times, and de-
cisions. As we solely tested iCodes’ predictions for visual search in open information displays,
however, the main focus in this manuscript is the level of universality of iCodes’ predictions.
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To test iCodes’ predictions for attention allocation, we ran two experiments
using hypothetical stock-market games. In the first experiment (N = 57), we fo-
cused on testing whether new information was fixated first when it described the
favored option by implementing a two-stage experimental design: In the first stage,
participants were presented with decision situations in which the information of
one cue was still concealed. In this stage, they had to rate which option was more
attractive based on the already available information. The first stage was intro-
duced to increase the effects of option attractiveness on search. The information
of the concealed cue was then revealed in the second stage of the experiment, in
which participants had to choose the stock they deemed more successful. The results
showed strong support for the prediction that participants fixated new information
on the currently attractive option first and, thus, replicated the findings for behav-
ioral information search with gaze patterns. Further, participants in general were
more likely to fixate coherent information than incoherent information. To assess
the temporal development of gaze behavior, we binned the fixations in each trial
into two bins of equal duration. With regard to the prediction of the change in fix-
ation behavior over the course of a trial, the results supported a stronger influence
of cue validity on fixation behavior in the beginning of a trial than towards the end
of a trial. Yet, there was no support that the coherence influence on fixation behav-
ior indeed increased over time in Experiment 1 when comparing the first and the
second half of the trial (see Figure 5 for a visualization of the coherence-influence
on fixations across a trial in both experiments). The tendency to fixate information
on the subsequently chosen option, however, increased over the course of a trial,
replicating the aforementioned gaze-cascade effect.

While the design of Experiment 1 increased the chances of finding an ASE for
fixations, it introduced confounds to the fixation behavior: With the two-stage de-
sign, we artificially split the information-integration process, which complicated for
which stage the prediction of the temporal development of fixation behavior should
be applied. Further, the display of the information in the decision task confounded
the interpretation of the validity influence on fixation behavior, as the cues were
ordered by validities and not equi-distant from the inter-trial fixation cross. To more
closely investigate the temporal development of fixations within a trial, we ran Ex-
periment 2 (N = 50), which dropped the rating phase and explicitly manipulated
the coherence of two cues. Again, we binned fixations into two bins of equal dura-
tion. In this experiment, we varied the order of cues and presented the cue values
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Figure 5: Individual and mean coherence preference scores (CPS) per time bin and experiment
(dots and solid lines represent Experiment 1, triangles and dotted lines Experiment 2). Error bars
represent the standard error of the mean. The CPS is calculated as the difference of the relative
frequency of fixating coherent information and the expected random probability of fixating coher-
ent information, CPS = p(fixcoherent)− ncoherentCV s

total nCV s
. If the CPS is larger than zero, participants

were more likely to fixate coherent information than chance level. According to iCodes the CPS
should be larger than zero overall (= coherence attention effect) and increase from the first bin
(first half of a trial) to the second bin (second half of a trial).

on a circle around the inter-trial fixation cross.

The results of Experiment 2 also showed strong support for the predictions that
participants fixated new information on the currently attractive option first and
were in general more likely to fixate coherent information than incoherent informa-
tion. In Experiment 2, there was only weak support that the coherence influence
on fixation behavior increased over time. Just as in Experiment 1, Experiment 2
also replicated the gaze-cascade effect. (Supplemental) modeling results for both
experiments further showed that the relative frequency of fixating cue values was
positively correlated with the activation-levels at the cue-value nodes, which sup-
ported the assumption that these levels of activation can be used as a proxy for the
relative number of fixations per cue value.

In summary, the results supported the role of coherence for attention allocation
and information search: Participants’ fixations were guided by the coherence of in-
formation, both for newly revealed information and across all displayed information.
While the prediction for the time-course of the coherence influence on fixations was
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not fully supported, they highlighted the benefits of formalized models of decision-
making: iCodes allowed for testing these fine-grained predictions of fixation behavior
and thereby enabled the identification of new patterns of attention allocation. Fur-
ther, in showing that coherence influences fixation behavior, the results emphasized
that iCodes provides a unique contribution to the JDM literature.
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3 General Discussion

In my thesis, I evaluate iCodes as a theory of coherence-based decision-making and
search. I thereby aim to advance iCodes as a theory, by specifying its predictions
and assessing whether they are corroborated by data. In addition, I hope to add
to the development of theories in JDM in general by demonstrating the impor-
tance of coherence for decision and information-search processes and emphasizing
the advantages of formalized models of decision-making. With three manuscripts
that employed conceptual replications, computational modeling, and process-tracing
measures, I critically tested the theoretical properties of iCodes.

In Manuscript I, my co-authors and I showed that iCodes’ seminal prediction
of the attraction search effect generalized to decision tasks with different cue-value
patterns, different semantic contexts, and different presentation formats. The results
also validated the underlying process assumptions of iCodes by showing that the
tendency to search for information regarding the currently attractive option was not
a by-product of specific task characteristics. As a whole, Manuscript I supported
the universality of iCodes’ information search predictions by demonstrating the
robustness of the attraction search effect.

The second manuscript presented evidence that the attraction search effect
was stronger when participants rated option attractiveness before search. The ef-
fect of attractiveness ratings on search was theoretically motivated within iCodes
by postulating that the awareness of option attractiveness increased its weight
in the information-search process. This proposed underlying mechanism was sup-
ported by the evidence that the model-inherent γ parameter was sensitive to the
attractiveness-rating manipulation. The results of Manuscript II emphasized the
precision of iCodes’ predictions by providing support for a theoretically motivated
moderator. Additionally, the results validated the role of the option-attractiveness
influence on information search.

Finally, in Manuscript III, we tested iCodes’ predictions concerning an additional
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dependent variable, namely attention allocation. The experiments in Manuscript III
showed that there was a preference for fixating coherent information, however, there
was only weak support for the predicted change in this preference over the course of
a trial. The results, firstly, underlined the importance of accounting for coherence
when predicting fixation behavior specifically, and predicting information search in
general. They also showed that formalized theories allow for precise tests of the
underlying processes of information search and can uncover previously unnoticed
details about the information-search process. The manuscript further provided evi-
dence for the scope of application of iCodes by showing that its information-search
predictions can also be applied to visual search in open information displays.

Taken together, the evidence presented in the manuscripts supported iCodes’
predictions to a large extent. To derive conclusions regarding the merits of iCodes
as a theory, one has to integrate the results and evaluate them and their relation to
other theories in JDM. In the following, I assess the theoretical properties of iCodes
based on the results presented in the manuscripts and in comparison to the multi-
strategy accounts and evidence-accumulation models in JDM. For this analysis, I
again utilize the criteria for evaluating the empirical content of theories proposed
by Popper (1935).

3.1 Evaluation of iCodes’ Theoretical Properties

When new theories are introduced, it is important to explore their contribution
to the theoretical landscape of the field. The formulation of precise and, therefore,
falsifiable theories is an important step for the progress of research in psychology
(Glöckner & Betsch, 2011; Glöckner et al., 2018). In addition, a theory also has
to withstand empirical tests to be regarded as advantageous for the field (Popper,
1935). In the following, I first evaluate iCodes’ level of universality based on the
evidence put forward in Manuscript I and III and in comparison to other theories
in JDM. In a second step, I repeat this evaluation for iCodes’ degree of precision
based on the evidence put forward in Manuscript II.
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The Level of Universality of iCodes

A theory’s level of universality refers to its scope of application: To how many sit-
uations are its predictions applicable (Glöckner & Betsch, 2011; Popper, 1935)?
The more situations a theory can be applied to, the higher its level of universality.
To assess iCodes’ level of universality, one, therefore, has to compare its scope of
application with other theories in JDM. iCodes’ predictions can generally be ap-
plied to multi-cue decision tasks, that is, to any tasks in which a decision has to be
made between options based on information provided by (binary) cues of varying
diagnosticity. While the previous evidence presented for iCodes was fairly restricted
in the task design (cf. Jekel et al., 2018), Manuscript I tested different variants of
multi-cue decision tasks. The results supported iCodes’ predictions independent of
the employed task design. In comparison to earlier versions of parallel-constraint
satisfaction models, iCodes’ level of universality increased as the ability to pre-
dict information search allowed its application to decision tasks with completely
or partially concealed information. Manuscript III further supported iCodes’ level
of universality by showing that its predictions for information search can also be
applied to multi-cue judgment tasks with open information displays that require vi-
sual search. Therefore, with the extension to predict information search in terms of
visual and behavioral search, iCodes’ level of universality matches that of EAMs as
well as multi-strategy accounts of multi-cue judgment tasks, since both theoretical
approaches also predict visual and behavioral search for this type of task.

However, many different types of decisions are investigated in JDM (cf. Goldstein
& Hogarth, 1997). A universal theory of decision-making should ideally be applicable
to any situation in which a decision is made, regardless of the specifics of the task
at hand. For example, in sequential decision-making participants have to sample an
option, evaluate its value regarding the choice criterion, and subsequently decide
whether they want to continue sampling (T. S. Ferguson, 1989; Seale & Rapoport,
1997). EAMs can be easily adapted to account for this type of task by assuming
that the threshold represents the decision to stop sampling options (cf. Busemeyer
& Townsend, 1993, for an implementation). The same applies to multi-strategy
accounts of decision-making that can include strategies for the sequential decision-
making paradigm (cf. Pitz et al., 1969; Saad & Russo, 1996; see Todd & Gigerenzer,
2003, for an overview). For instance, a simple heuristic for this type of task is the
cut-off rule that predicts that decision-makers sample n options, and then select
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the next option that is better than all previously sampled alternatives (cf. Seale
& Rapoport, 1997). In its current implementation, iCodes cannot be applied to
these tasks without introducing additional assumptions in order to predict when
information sampling stops. Similarly, further assumptions are necessary to use
iCodes for predicting decisions from experience, a sub-paradigm of risky choice in
which information about gambles is sampled freely (Hertwig et al., 2004). Again,
both EAMs and heuristics have been applied to this type of decision (for an example
of EAMs, see Leuker et al., 2019; for heuristics, see Hau et al., 2008).

Taken together, this analysis suggests that the level of universality of iCodes
is reduced compared to that of EAMs and multi-strategy accounts. Both theoreti-
cal accounts can be applied to a broader variety of decision tasks than iCodes.7 It
is important to note, however, that the above analysis of the level of universality
compared a single, new theory to broadly developed theoretical accounts. Future
developments of iCodes, therefore, have the potential to increase its level of univer-
sality.

The Degree of Precision of iCodes

A theory’s degree of precision refers to the specificity of its predictions (Glöckner
& Betsch, 2011; Popper, 1935): The more behavior a theory forbids in a given situ-
ation, the more precise are its predictions and the higher is its degree of precision.
For instance, a theory makes more precise predictions compared to other theories, if
it predicts more dependent variables simultaneously in one given situation (Glöck-
ner & Betsch, 2011). Next to information search and attention allocation, iCodes
predicts several dependent variables such as choices, decision times, and choice-
confidence judgments. These dependent variables are also predicted by PCS-DM
(Glöckner et al., 2014), EAMs (Busemeyer & Diederich, 2002; Hausmann & Läge,
2008), and multi-strategy accounts (Glöckner, 2009). A unique property of iCodes
is that the prediction for decision confidence and decision times can be translated
to information search, such that iCodes predicts information-search times as well as

7To (at least) some extent, the universality of multi-strategy accounts stems from features that
bear the risk of simultaneously reducing their precision: If the applicability to various tasks and
contexts stems solely from adding ad-hoc decision strategies (i.e., the strategy sprawl problem;
Scheibehenne et al., 2013) or is a result of underspecified selection criteria between the included
strategies, the degree of precision of multi-strategy accounts may decrease drastically (Glöckner
& Betsch, 2011; Marewski et al., 2018).
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information-search confidence. None of the current implementations of EAMs and
the multi-strategy accounts predict these dependent variables. Therefore, iCodes
predicts more dependent variables simultaneously for a given decision situation com-
pared to both theoretical approaches and, thus, makes more precise predictions.

A unique contribution of iCodes lies in the predicted influence of option attrac-
tiveness on information search that can also be extended to the aforementioned
dependent variables. By postulating that option attractiveness influences search
in addition to cue validity, iCodes makes more precise predictions for information
search than theories that assume that cue-validity alone influences search. The re-
sults of Manuscript II further supported iCodes’ degree of precision by showing
that iCodes not only predicts that option attractiveness influences search but also
under which circumstances this influence should de- or increase. Both EAMs and
multi-strategy accounts would currently require additional assumptions to be able
to predict top-down coherence effects on information search. While these theories
cannot account for the option-attractiveness influence on search, Jekel et al. (2018)
were not the first to describe this pattern of information search: DeKay et al. (2011)
and DeKay et al. (2014), for example, showed similar search behavior in risky and
preferential choice. While this stream of research also identified striving for consis-
tency as a relevant driver of this information-search behavior (Russo et al., 2008) and
suggested that connectionist models might explain it (DeKay, 2015), these findings
and theoretical considerations have not yet been embedded in a larger, specified the-
oretical framework. Thus, iCodes still holds a unique advantage as a fully-formalized
model that makes precise predictions about the antecedents, boundary conditions,
and extent of the attractiveness influence on search.

Thus, iCodes’ predictions for information search are more precise than those of
other theoretical accounts. In addition, it makes new predictions about the coherence
influence on search that other theories cannot account for, which further increases
its degree of precision as a theory (Glöckner & Betsch, 2011). Therefore, the overall
degree of precision of iCodes is higher than that of comparable theories in JDM.

3.2 Open Questions and Future Directions

Taken together, while iCodes’ level of universality for decision tasks is reduced
compared to other theories in JDM, it is superior in its degree of precision due



36 3 General Discussion

to its novel predictions for information search, its prediction for unique dependent
variables, and the high degree of formalization of the model as a whole. Thus, iCodes
has unique empirical content and, if corroborated by empirical testing, constitutes
scientific advantage (Glöckner & Betsch, 2011). The manuscripts presented in this
thesis supported iCodes’ predictions to a great extent and, therefore, showed its
merit as a starting point for the development of theories in JDM. In the following,
I discuss remaining open questions and opportunities for further improvement of
iCodes.

Extending iCodes

The analysis of iCodes’ empirical content revealed, that, while iCodes’ predictions
are precise, there is room for improvement regarding their scope of application. One
caveat that limits iCodes’ applicability is the missing mechanism to predict stopping
of search. That is, in tasks that require sequential search for information, iCodes
currently cannot predict when information search should be stopped. Therefore, ex-
periments investigating iCodes have often used only the first information search to
test its predictions. Stopping of search, however, is an integral part of the decision
process. Thus, as a first step for future theory development, a formalized stopping
process has to be introduced into iCodes. One way to achieve this would be to intro-
duce a desired level-of-confidence threshold into the information-search process (cf.
Hausmann & Läge, 2008). As confidence judgments are derived from the difference
in activations of option nodes, one possibility would be to add a threshold parame-
ter for this activation difference: Once the difference is large enough to surpass the
threshold, that is, once a certain level of confidence in the decision is achieved, in-
formation search is stopped and a decision is made. An alternative approach would
be to assume that information search is stopped once the expected gain that can be
derived from additional information for the final choice drops below a threshold (cf.
Busemeyer & Rapoport, 1988; Kahan et al., 1967; Rapoport & Burkheimer, 1971).
For this stopping mechanism, one could add a threshold parameter that is compared
to the sum of activation of all concealed cue-value nodes and assume that, once this
sum falls below a threshold, information search is stopped. Both implementations
could account for variance in the amount of information searched by adjusting the
threshold parameter. To choose one implementation as iCodes’ stopping mechanism,
extensive simulations are warranted to compare both mechanisms and potentially
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identify diagnostic conditions that permit an empirical test between them.

In addition to stopping of information search, several possible extensions of
iCodes would increase its scope of applicability. To be able to account for additional
criteria of information search such as discrimination rate (Newell et al., 2004) or
cue-value salience (Platzer & Bröder, 2012), iCodes could, for example, be extended
by an additional source node that also spreads activation to cues but proportional
to differences of the aforementioned cue characteristics. Such extensions would in-
crease the generalizability of iCodes, and the empirical tests would provide informa-
tion about the underlying processes: For instance, Bröder, Scharf, Jekel, Glöckner,
and Franke (2021) investigated the influence of salience on information search and
the respective variant of iCodes. Their studies showed that while salience influenced
information search, the observed search patterns did not qualitatively fit the pro-
posed model extension that assumed that the cue-salience influence is comparable
to the cue-validity influence on search. Rather, an implementation that connects
an additional source node directly to the option nodes would be more adequate,
such that activation of options that carry salient information is increased. Finally,
iCodes’ network structure could be extended to account for ordinal or continuous
cue values, for example by introducing several links per cue value or adjusting the
weights of the links. Being able to incorporate cue values that are not dichotomous
would increase iCodes applicability further and, for example, allow the prediction
of risky choices which often entail continuous cues.

Theories of Related Search Phenomena

While the prediction of attractiveness-influenced search is a unique feature of iCodes
compared to other theories of multi-cue decision tasks, other theories in the domain
of hypothesis testing (e.g., Doherty et al., 1979) or of motivated reasoning (e.g.,
P. Fischer et al., 2011) predict similar information-search behavior. Research on
pseudodiagnosticity (also referred to as positive hypothesis testing, Klayman & Ha,
1987, 1989; Navarro & Perfors, 2011) investigates the integration of information
concerning base rates and conjunctive probabilities when testing hypotheses. This
research revealed that participants were more likely to request new information
pertaining to the hypothesis under investigation instead of following Bayes’ rule
and requesting information about the alternative hypothesis. One explanation for
this type of search behavior is that humans are not able to test two hypotheses at
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the same time and, therefore, focus on one hypothesis only (Mynatt et al., 1993).
Research investigating motivated reasoning (often known as selective exposure, P.
Fischer & Greitemeyer, 2010; P. Fischer et al., 2011; or confirmation bias, Klayman,
1995; for a review, see Nickerson, 1998) assumes that decision-makers are motivated
to search for information that confirms their currently preferred option and, thus,
bolsters their conviction about this option. Therefore, participants in studies in-
vestigating these phenomena are often already aware of the valence of information
before they acquire it.

While the behavioral manifestations of both streams of research are similar to
the search predictions of iCodes, there are substantial differences in the assumptions
about the underlying processes and tasks to which the predictions are applied. Thus,
a task for future research is to clarify the relationship of these phenomena with
iCodes, that is, how motivational and cognitive processes interact and whether
iCodes can provide a starting point for an integrative model. A first proposal to
reconcile different streams of research on pre-decisional information distortions was
put forward by Fraser-Mackenzie and Dror (2009) (for an alternative, see also P.
Fischer et al., 2011). In their dual-process account they included both motivational
aspects and an inherent striving for consistency. To benefit from the high degree of
precision of iCodes, such a dual-process account could be implemented by extending
iCodes to include motivational processes (cf. Shultz & Lepper, 1996).

Moderators and Process Measures

In addition to adapting and extending iCodes, future research should also test fur-
ther boundary conditions of iCodes’ predictions. It is reasonable to assume that the
influence of option attractiveness on information search varies between individuals
and situations. For example, research has shown that older adults differ in their
decision-making behavior from younger adults (cf. Mata et al., 2015). Building on
findings that these changes also affect information-search behavior (Mata & von
Helversen, 2015) and older adults exhibit a preference for positive over negative
stimuli (Reed & Carstensen, 2012), Scharf, Fischer, et al. (2021) tested and found
support for the hypothesis that older adults show a stronger attraction search ef-
fect. A potential situational moderator of the influence of option attractiveness on
search could be the framing of decisions, as it was shown that option-attractiveness
influences are stronger in a gain compared to a loss frame (P. Fischer et al., 2008;
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Sepulveda et al., 2020).

Besides identifying moderators of iCodes’ predictions, it would be fruitful to
test iCodes’ predictions for additional dependent variables. A unique contribution
of iCodes is that it predicts the time it takes decision-makers to choose which in-
formation to search for next. In a re-analysis of the experiments in Jekel et al.
(2018) and in an additional, new experiment, Scharf, Jekel, et al. (2021) showed
that iCodes could adequately predict information-search times and that the coher-
ence of information as well as whether the decision task was set in a compensatory
or non-compensatory environment were vital influences on the speed of information
search. Next to predicting response times, one could investigate iCodes’ assumed
information-search process through mouse tracking (cf. Kieslich et al., 2019). Move-
ments of the computer mouse have been shown to reflect cognitive conflict (Stillman
et al., 2018) and could, thus, be used to directly assess whether the (in)coherence
of information results in cognitive conflict during information search. In addition,
the investigation of the temporal and spatial development of mouse trajectories
would allow further tests of iCodes’ predictions for the temporal development of
the coherence influence on search. Going beyond behavioral process measures such
as response times and mouse tracking, another avenue for future research of iCodes
would be to investigate the neural underpinnings of coherence-based information
search. For the class of EAMs, first steps have been made to map brain areas to
decision processes in multi-attribute, multi-alternative choice (cf. Busemeyer et al.,
2019). In future research, one could investigate neural correlates of the coherence
influence on decision-making and search.

3.3 Conclusion

The recent developments in the reproducibility crisis have resulted in increas-
ingly vocal calls for better theorizing in psychology (Glöckner et al., 2018;
Smaldino, 2019), condensed in the slogan that “useful models produce better science”
(Smaldino, 2019, p. 9). Jekel et al. (2018) introduced iCodes as a new, formalized
theory of coherence-based decision-making and information search. The contribu-
tion of this thesis was to evaluate iCodes’ theoretical properties, empirically test its
predictions, and validate its underlying process assumptions. The three manuscripts
presented in this thesis supported iCodes’ predictions and underlined the importance



40 3 General Discussion

of accounting for coherence-based influences in decision-making and search. With
my thesis, I have provided a starting point for continued theorizing and hoped to
have shown that iCodes is indeed a useful model in the field of JDM.
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Information search in everyday decisions: The generalizability of the
attraction search effect

Sophie E. Scharf∗† Monika Wiegelmann‡ Arndt Bröder‡

Abstract

The recently proposed integrated coherence-based decisions and search model (iCodes) makes predictions for search
behavior in multi-attribute decision tasks beyond those of classic decision-making heuristics. More precisely, it predicts the
Attraction Search Effect that describes a tendency to search for information for the option that is already attractive given the
available evidence. To date, the Attraction Search Effect has been successfully tested using a hypothetical stock-market game
that was highly stylized and specifically designed to be highly diagnostic. In three experiments, we tested whether the Attraction
Search Effect generalizes to different semantic contexts, different cue-value patterns, and a different presentation format than
the classic matrix format. Across all experiments, we find evidence for information-search behavior that matches iCodes’s
information-search prediction. Therefore, our results corroborate not only the generalizability of the Attraction Search Effect
in various contexts but also the inherent process assumptions of iCodes.
Keywords: attraction search effect, information search, generalizability

1 Introduction
When faced with a decision, we often have to search for
information that enables us to weigh the advantages and
disadvantages of each option against each other. Informa-
tion search is especially important, if the decision at hand
has non-trivial consequences, such as when buying a car,
deciding on a job offer, or taking out insurance. Despite
the importance of information search for decision making,
psychological decision-making models have usually focused
more on the processes of integrating information rather than
the processes behind searching for information (Gigerenzer
et al., 2014).

Aware of this lack of specified information-search process
models, Jekel et al. (2018) recently extended the parallel
constraint satisfaction model for decision making (PCS-DM;
Glöckner et al., 2014) to include information search in multi-
attribute decision tasks. The new integrated coherence-
based decision and search model (iCodes) makes detailed
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predictions for the information-search process in multi-
attribute decisions (Jekel et al., 2018). One core prediction
of iCodes is the Attraction Search Effect, which states that
people tend to search for information about the option that is
currently supported by the already available evidence. The
Attraction Search Effect and iCodes itself have received ini-
tial support from three experiments and the reanalyses of five
already published experiments (Jekel et al., 2018).

The original experiments by Jekel et al. (2018) used
a probabilistic-inference task presented as a hypothetical
stock-market game with cue-value patterns that were specif-
ically designed to be highly diagnostic for the Attraction
Search Effect. In our view, it is essential to demonstrate that
the support for the Attraction Search Effect found by Jekel
et al. (2018) was not due to arbitrary design choices in their
studies. The goal of the present work is to test the general-
izability of the Attraction Search Effect to different settings.
With data from three online experiments, we test whether the
Attraction Search Effect replicates in different, more diverse
semantic context settings. As a next step, we investigate
whether the Attraction Search Effect can be found with ran-
domized cue-value patterns as well. Finally, we evaluate
whether the Attraction Search Effect also emerges when in-
formation is not presented in a classic mouselab-type setting
(first introduced by Johnson et al., 1989, referred to as mouse-
lab in the following) but in a more realistic, simulated online
shop. Since iCodes is a new model, demonstrating that its
core prediction generalizes to different settings strengthens
the relevance and reach of the model.

In the following paragraphs, we will first take a closer look
at iCodes’s prediction of information search in general and
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the Attraction Search Effect specifically. After presenting al-
ready existing evidence for iCodes’s core prediction, we will
argue why generalizability is an important issue and present
data from three experiments that test exactly this generaliz-
ability of the Attraction Search Effect. In these three studies,
we gradually move away from the original study setup by (a)
demonstrating the Attraction Search Effect in other semantic
domains, (b) extending the range of domains and relaxing
the cue-value patterns, and (c) moving away from the matrix
format in a simulated online-shop setting.

2 The integrated, coherence-based
decision and search model

The original PCS-DM is a network model that successfully
predicts choices, decision times, and decision confidence
for multi-attribute decisions in different contexts (Glöckner
et al., 2012, 2014; Glöckner & Betsch, 2012; Glöckner &
Hodges, 2010; Glöckner et al., 2010). However, one short-
coming of PCS-DM is that it models information integration
only and is thus applicable only to decision situations that
do not require information search (Marewski, 2010). There-
fore, Jekel et al. (2018) have recently extended PCS-DM
to include information-search processes. This new model
shares in principle the same basic network structure and the
same assumptions regarding the underlying decision pro-
cess with its predecessor PCS-DM. The crucial extension is
an additional layer of nodes that is included in the network
structure. This layer represents the cue values present in
the decision situation. In the following paragraphs, we will
introduce how iCodes specifies the information-search pro-
cess and how it predicts the Attraction Search Effect. For
the exact model specification and formalization, please refer
to Jekel et al. (2018).

2.1 The prediction of information search in
iCodes

In a multi-attribute decision task, the decision maker is pre-
sented with at least two options for which information is
provided in the form of attributes or cues (Harte & Koele,
2001). Depending on the specific task, the goal of the de-
cision maker is to either choose the option that maximizes
an objective criterion value (Glöckner et al., 2010), such as
buying the most successful stock, or to choose the option that
maximizes a subjective criterion value (Payne et al., 1993),
such as buying the preferred sweater. The cues provide in-
formation about the options in form of cue values that can
be positive evaluations of the respective option, often repre-
sented by a "+", or negative evaluations, often represented
by a "−". In probabilistic-inference tasks, the cues usually
differ in their validity, that is, they differ in how often they
correctly evaluate an option as better than the other option(s)

on the objective criterion (Gigerenzer & Goldstein, 1996).
Besides positive and negative evaluations, cue values can
also be hidden and have to be searched for, which is repre-
sented by a "?". An example trial of such a multi-attribute
decision task with two options and two cues is shown in
Figure 1.

The information in such a multi-attribute decision task
is represented in iCodes as a network (Jekel et al., 2018).
There are nodes for the options, cues, and cue values that are
connected via links as depicted in Figure 1. The information-
search process of iCodes is modeled as a spread of activation
through this network that is initiated by the source node at the
bottom of the network. Activation is spread between nodes
via the connecting links. The spread of activation continues
until the activation of each node has stabilized and, therefore,
does not change substantially anymore. At this point, the
network as a whole is stable and the model predicts that the
concealed cue value whose node received the most activation
during this process is opened next. The activation, that con-
cealed cue-value nodes receive, stems from two sources in
the network (Jekel et al., 2018). These sources are the option
and cue nodes that are connected to searchable cue values
via unidirectional links. Thus, nodes of concealed cue val-
ues receive activation only but do not continue the spread of
activation further. These links are unidirectional to represent
that concealed cue values do not carry any information with
regard to the options or cues. Note that once a concealed
cue value is opened the unidirectional links become bidirec-
tional indicating that the information of this cue value is now
available. The amount of activation that nodes of searchable
cue values receive from cue nodes is proportional to their re-
spective validities. Thus, the higher the validity of a cue, the
more activation the corresponding cue-value nodes receive.
The activation received from the option nodes depends on
the current evidence for the options. Thus, the more the
current evidence favors one option over another, the more
activation the corresponding cue-value nodes receive - via
the links between cue-value nodes and options. Both sources
of activation are assumed to influence search in an additive
manner. Therefore, both the respective cue’s validity and
the respective option’s evidence determine iCodes’s search
prediction for a concealed cue value.

2.1.1 The Attraction Search Effect

Formal models that predict information search in multi-
attribute decision tasks often assume that information is
searched for cue-wise or option-wise and most often fol-
lowing the order of cues’ validities (Payne et al., 1988;
Lee & Cummins, 2004; Gigerenzer & Goldstein, 1996).
These search directions are assumed to be independent of
the already available evidence. In the example trial in Fig-
ure 1, in which one cue value is already available, these
models would therefore predict that the valence of this cue



Judgment and Decision Making, Vol. 14, No. 4, July, 2019 Generalizability of the attraction search effect 490

Figure 1: The translation of a probabilistic-inference task into the network structure of iCodes. In this example task, the first
cue, which is more valid than the second cue, makes a positive statement regarding Option A and all other information is still
hidden. The options are represented by the option nodes in the top layer of the network and are connected by an inhibitory,
bidirectional link (dashed line). The cue values are included in the next layer of nodes where the white node represents the
already available information and the gray nodes represent still concealed information. Below the layer of cue-value nodes
is the layer of cue nodes. The source node on the bottom of the network initializes the spread of activation. The activation
the cue nodes receive is proportional to their respective validities, as indicated here by the thickness of the link. The black
arrows in the network represent bidirectional links, whereas gray arrows represent unidirectional links. Adapted from "A new
and unique prediction for cue-search in a parallel-constraint satisfaction network model: The attraction search effect," by M.
Jekel, A. Glöckner, and A. Bröder, 2018, Psychological Review, 125, p. 746. Copyright 2018 by the American Psychological
Association.

value would not matter for whether information is searched
cue-wise or option-wise. ICodes, however, predicts that
the already available evidence influences information search
(Jekel et al., 2018). This is due to the fact that iCodes as-
sumes a joint influence of the cues’ validities and the options’
current attractiveness on information search. The influence
of the cues’ validities leads to iCodes’s prediction that, all
things being equal, cue values from highly valid cues are
more likely to be searched for than cue values from less
valid cues. The influence of the current evidence on infor-
mation search in the formalized iCodes model also leads to
an additional qualitative search prediction: Cue values with
information on the currently preferred option are more likely
to be searched for than cue values with information on the
less attractive option. This prediction has been coined as the
Attraction Search Effect by Jekel et al. (2018).

Searching information on the currently attractive option
has also been shown in information-search paradigms out-
side the realm of probabilistic-inference tasks. One common
observation is information-search behavior consistent with
selective exposure (Frey, 1986; Hart et al., 2009; Fischer
& Greitemeyer, 2010). Selective exposure is the tendency
to search for information that supports the currently pre-
ferred option. In the literature, this pattern of information

search is often considered to mainly stem from the moti-
vation to defend one’s prior beliefs or prior position (Hart
et al., 2009; Fischer & Greitemeyer, 2010).1 In the standard
paradigm of selective exposure subjects, therefore, know the
valence of the searchable information a priori (Fischer et al.,
2011). This a priori knowledge constitutes the key differ-
ence of selective exposure and the Attraction Search Effect.
The Attraction Search Effect cannot be driven merely by the
motivation to defend one’s preferred option since this would
require knowing beforehand whether the concealed informa-
tion supports or contradicts the currently attractive option.
Rather, the mechanism of information search in iCodes is to
find information that potentially increases the coherence of
the decision situation.2

Two other phenomena that have been described in the liter-
ature predict search behavior similar to the Attraction Search
Effect: pseudodiagnostic search in hypothesis testing (Do-

1Both, Hart et al. (2009) and Fischer & Greitemeyer (2010) also dis-
cuss the role of accuracy motivation for selective exposure in their articles.
Accuracy motivation is defined as the goal to search for information that
leads to the objectively best choice. As the effect of accuracy motivation
on selective exposure is at least somewhat inconsistent, Fischer & Greite-
meyer (2010) put forward an integrative model that explains the combined
influence of accuracy and defense motivation on selective exposure.

2The role of coherence for selective exposure has also been investigated
by Fraser-Mackenzie & Dror (2009).
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herty et al., 1979; Mynatt et al., 1993) and leader-focused
search (Carlson & Guha, 2011). Pseudodiagnostic search de-
scribes that individuals tend to search for information about
their current hypothesis only and fail to test the alternative
hypothesis. This behavior is particularly observed when the
first piece of found information supports the currently tested
hypothesis (Mynatt et al., 1993). The aforementioned failure
to test alternative hypotheses is problematic as a cue is only
diagnostic for a hypothesis test when its values are known
for both hypotheses.

In the case of leader-focused search, information-search
behavior is also characterized as searching for information
on the currently preferred option (the leader) independently
of the expected valence of this information (Carlson & Guha,
2011). Carlson & Guha (2011) could show that this prefer-
ence for information on the leader is so strong that subjects
preferred negative information on the leader compared to
negative information on the trailer (the currently less pre-
ferred option).

Similar cognitive explanations have been proposed for
both pseudodiagnostic and leader-focused search. Evans
et al. (2002) proposed that pseudodiagnostic search results
from a habitual focus on one hypothesis only and individuals
tend to ignore other, alternative hypotheses. Similarly, Carl-
son & Guha (2011) refer to focalism (Wilson et al., 2000) as a
possible underlying mechanism for leader-focused search in
that individuals focus on the current leader and subsequently
ignore other options. Thus, besides different theoretical
underpinnings, the only difference between leader-focused
search and the Attraction Search Effect is that for the for-
mer effect subjects are asked which option is more attractive
whereas for the latter effect the attractiveness of the options
is manipulated via cue-value patterns. Both phenomena,
pseudo-diagnostic and leader-focused search, are similar to
the search pattern predicted by iCodes but lack an explicit
theoretical model formalizing the underlying processes of
this type of search behavior. With iCodes, there is now a
computational, formal model that allows precise predictions
of when and how strong the information search direction
should be biased towards the currently more attractive op-
tion. Hence, our explanation does not contradict the theories
mentioned above, but the observed focalism may be the result
of an underlying coherence-maximizing mechanism.

When focusing on probabilistic-inference tasks, different
models have been proposed that predict information search,
such as heuristics as part of the adaptive toolbox (e.g.,
Gigerenzer & Todd, 1999; Payne et al., 1988) and models of
the class of evidence accumulation models (e.g., Hausmann
& Läge, 2008; Lee & Cummins, 2004). However, the pre-
diction of the Attraction Search Effect is unique compared to
these formalized models as they base only their prediction of
the stopping of information search on the available informa-
tion. The predicted direction of information search, however,
in these types of models relies solely on external criteria such

as the cues’ validities. Yet, in iCodes, the information-search
prediction depends on the additive effects of validity-driven
cue-node activations and attractiveness-driven option-node
activations on the activations of concealed cue-value nodes
(Jekel et al., 2018). Thus, the Attraction Search Effect fol-
lows from the joint effects of validity and the current attrac-
tiveness of the options.

2.1.2 Evidence for the Attraction Search Effect

The Attraction Search Effect was tested by Jekel et al.
(2018) in two experiments. In both experiments, they used
an artificial stock-market game in which subjects had to
choose the more successful of two stocks based on expert
judgments that differed in their respective validities. For
this stock-market game, the authors specifically designed
half-open cue-value patterns that were highly diagnostic
for the Attraction Search Effect. The diagnosticity of the
patterns was achieved by creating two versions of each
cue-value pattern such that in the first version (Version a)
the Option A is more attractive than Option B and that
in the second version (Version b) the Option B is more
attractive than Option A. The change of attractiveness
between the two versions was achieved by changing one
or two cue values. With these two pattern versions, it
was possible to calculate a qualitative Attraction Search
Score that represents the difference of probabilities of
behavior consistent with the Attraction Search Effect and
behavior inconsistent with the Attraction Search Effect.
Behavior was consistent with the Attraction Search Effect
when subjects searched for the attractive Option A in
Version a and behavior was inconsistent when subjects
searched for the unattractive Option A in Version b of
the cue-value patterns; �CCA02C8>= (40A2ℎ (2>A4 =
?((40A2ℎ8=6 5 >A $?C8>= � | +4AB8>= 0) −
?((40A2ℎ8=6 5 >A $?C8>= � | +4AB8>= 1). Thus, the
Attraction Search Score is positive if subjects followed
iCodes’s predictions for information search and zero if
subjects did not change their direction of search depending
on the attractiveness of the options.

In the first experiment, Jekel et al. (2018) presented the
half-open cue-value patterns to subjects and restricted in-
formation search to one piece of information. In the sec-
ond experiment, Jekel et al. (2018) did not restrict infor-
mation search but manipulated whether information search
was costly or free. Both experiments show strong sup-
port for the Attraction Search Effect; though, the effect
was less pronounced when information search was free.
These initial results received further support in a reanaly-
ses of five published experiments that also used a hypothet-
ical stock-market game but were not specifically designed
to test for the Attraction Search Effect. In addition, iCodes
fit the observed information-search behavior quantitatively
well and this fit depended on the influence of options’ at-
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tractiveness in the model. Thus, there is initial support
for iCodes’s information-search predictions in probabilistic-
inference tasks in the semantic context of an abstract and
stylized hypothetical stock-market game.

3 The importance of model generaliz-
ability

With the recent extension of PCS-DM to iCodes and the
presented empirical support for one of iCodes’s core pre-
dictions, iCodes can be considered as a general theory for
the decision process that incorporates information search,
information integration, and decisions. As a general the-
ory of decision making and information search, iCodes’s
predictions should be applicable to a broad range of differ-
ent (multi-attribute) decision situations. A strict test of the
applicability of a theory can be achieved by conducting a
conceptual replication that varies experimental variables of
the original studies (Makel et al., 2012). Conceptual repli-
cations ensure that the original results are not due to task or
situational characteristics of the previous operationalizations
but can be attributed with greater confidence to the processes
specified by the theory (Bredenkamp, 1980). In our concep-
tual replications, we want to test whether iCodes’s prediction
for information-search behavior generalizes to different con-
texts.

In the previous studies testing iCodes, several aspects of
the decision task have been kept constant that should be
varied in a conceptual replication. One of these aspects is
the semantic setting of the decision task. All experiments
conducted and reanalyzed by Jekel et al. (2018) have used a
probabilistic-inference task semantically set in a hypothetical
stock-market scenario. The hypothetical stock-market game
is a commonly used multi-attribute decision task (Bröder,
2003, 2000; Newell et al., 2003) that allows explicit control
over different decision parameters, such as validities, and
allows observation of information-search and decision be-
havior relatively unbiased by previous knowledge. Yet, at
the same time and somewhat due to the high level of control,
the hypothetical stock-market game is a highly artificial set-
ting that lacks ties to the actual daily experiences of subjects.
Further, a decision between stocks is only one instance of all
possible decisions and such a neglect of stimulus sampling
in an experiment is not only problematic with regard to the
generalizability of results but also might dilute the validity of
the causal inference (Wells & Windschitl, 1999). ICodes’s
predictions should, therefore, apply to a range of different
and possibly more realistic semantic contexts. Testing dif-
ferent semantic contexts is especially relevant as prior work
on leader-focused and pseudodiagnostic search has used a
wide range of different decision contexts (Evans et al., 2002;
Mynatt et al., 1993; Carlson & Guha, 2011). Thus, it is im-

portant to show that the Attraction Search Effect generalizes
to different content domains as well.

Second, the cue-value patterns used to elicit the Attraction
Search Effect have been kept constant between experiments.
These patterns were specifically designed to be highly diag-
nostic for the Attraction Search Effect. However, as a general
theory of decision making, iCodes’s predictions should not
be confined to a specific set of cue-value patterns but should
be applicable in other cue-value constellations as well. The
cue-value patterns have already been varied to some extent in
the reanalyses of previously run studies in Jekel et al. (2018).
These reanalyses have, however, all used the same context
settings, namely a stock-market game.

A third aspect that was not varied between experiments is
the way the information for the current decision task was pre-
sented. In all experiments, the cue values were presented in
the matrix format of a typical mouselab task. Presenting in-
formation this way makes the relevant information highly ac-
cessible, facilitates information search itself, and might even
influence the subsequent processing of information (Söll-
ner et al., 2013). Yet, in many real-life decision tasks, the
necessary information is often presented in a more complex
fashion than in a matrix arranged according to cue validity.
Thus, in order to claim that iCodes is general theory of de-
cision making, it is important to show that the Attraction
Search Effect still emerges when information is structured
differently.

The current experiments successively relaxed the restric-
tions inherent in Jekel et al. (2018) demonstrations of the At-
traction Search Effect. First, we extended the semantic con-
texts to various decision domains beyond the stock-market
game in all three experiments, using 13 different decision
contexts altogether. Second, we also used cue-value patterns
different from the original ones (Experiment 2). Finally, we
disposed of the commonly used restrictive matrix format of
information presentation that is prevalent in many studies
investigating information search in decision making (Exper-
iment 3). By relaxing many of the restrictions inherent in
Jekel et al.’s (2018) original experiments, we aim to replicate
the Attraction Search Effect in different decision contexts and
thus test the limits of its generalizability.

4 Experiment 1: Extension to differ-
ent decision domains

The first experiment used cue-value patterns from the exper-
iments by Jekel et al. (2018) but in a selection of six different
semantic contexts. As we are interested in whether iCodes
can predict information search in different contexts, we will
concentrate solely on information search as the dependent
variable in this and the following experiments. Thus, we
will not analyze subjects’ choices.
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4.1 Method
4.1.1 Materials

Content scenarios. We constructed six different content
scenarios for the decision task that represented mainly pref-
erential decisions. These scenarios ranged from choosing a
hotel to deciding which weather forecast to trust when plan-
ning a trip. One of the scenarios is the task to choose which
of two cities is larger, commonly known as city size task, and
was added to relate to earlier research (e.g., Gigerenzer &
Todd, 1999). For every scenario, we chose four cues relevant
to this decision. As the validity of these cues is mostly sub-
jective, cues were ordered by our assumed importance for
each scenario. To validate our assumptions, subjects were
asked after the task for their subjective rating of importance
of the cues. The content scenarios and the respective cues are
displayed in Table A1 in Appendix 7.2. To make the decision
task less abstract, we further changed the format of the cue
values from "+" and "−" to different pictoral formats, such
as a five- vs. two-star ratings, thumbs-up vs. thumbs-done
icons, or "yes" vs. "no" icons for the city size scenario.3

Cue patterns. In this experiment, we used a subset of
the original cue-value patterns from Jekel et al. (2018). Jekel
et al. (2018) designed their cue-value patterns in pairs such
that two versions of the same pattern differed in one or two
cue values, so that either Option A or Option B was more
attractive (see Table 1). For the present experiment, we se-
lected three cue patterns from Jekel et al.’s (2018) studies.
Pattern 3 was selected because it illicited the strongest At-
traction Search Effect in Jekel et al.’s (2018) studies, with
an Cohen’s d ranging from 0.81 to 2.66. Patterns 1 and
2 showed the third and fourth strongest Attraction Search
Effect, respectively, in the original studies, with Cohen’s d
ranging from 0.22 to 1.15 and from 0.61 to 0.92, respec-
tively. These cue-value patterns were chosen to increase
our chances to find an Attraction Search Effect under more
relaxed experimental conditions.

4.1.2 Measures

Subjective importance of cues. To assess the subjec-
tive importance of the cues, subjects were asked to rate each
cue on how important they thought the cue was for their
decision on a scale from 0 to 100, with zero representing
not important at all and 100 representing extremely impor-
tant. The purpose of this measure was to check whether
the assumed validity ordering corresponded to the actual
importance ordering by subjects.

3All instructions and decision scenarios can be found in the supplemen-
tary materials.

Table 1: Version a and Version b of cue patterns used in
Experiment 1.

Pattern 1 Pattern 2 Pattern 3

A B A B A B
Cue 1 ? −(+) +(−) ? +(−) −(+)
Cue 2 − ? +(−) ? ? ?
Cue 3 + − ? ? + −
Cue 4 − + ? ? − ?

Note. + = positive cue value, − = negative cue value, ?
= hidden, searchable cue value; Version a of patterns is
displayed, cue values in parentheses are from Version b.
Patterns 1, 2, and 3 correspond to Patterns 4, 5, and 7,
respectively, in Jekel et al. (2018).

Attraction search score. Just as in the study by Jekel
et al. (2018), we computed the individual Attraction Search
Scores as the difference of the probability of searching
for Option A in Version a vs. in Version b across the
three cue-value patterns, �CCA02C8>= (40A2ℎ (2>A4 =
?((40A2ℎ8=6 $?C8>= �|+4AB8>= 0) −
?((40A2ℎ8=6 $?C8>= �|+4AB8>= 1).4 As mentioned above,
the first probability represents the probability of behavior
consistent with the Attraction Search Effect, whereas the
second probability represents the probability of behavior
inconsistent with the Attraction Search Effect. Thus, if the
Attraction Search Score is larger than zero, subjects show
more behavior in line with the Attraction Search Effect.

4.1.3 Design and procedure

Each subject was presented with each of six content sce-
narios and with each of the six patterns (three patterns in
two versions each). To avoid large trial numbers which are
suboptimal for online studies, the variable Scenario with six
levels and the variable Pattern with six levels (three pattern
with two versions each) were balanced using a latin square
design which resulted in six experimental groups. There-
fore, each experimental group was exposed to every pattern
and every content scenario. After opening the online study
and agreeing to an informed consent, subjects provided de-
mographic information before working on the actual task.
In each of the six trials subjects were familiarized with the
decision context and could then search for one piece of addi-
tional information. A picture of the task setup can be found
in Figure 2. After seeing the additional piece of information,
subjects had to choose one of the options. When the deci-
sion task was completed, subjects filled out the subjective
importance measure for each of the scenario’s cues.

4As we presented each cue-pattern in both versions once, there are three
observations of Version a and three observations of Version b for each
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Figure 2: A translated (from German) screenshot of the decision task in Experiment 1. The current cue-value pattern is
Pattern 1 in Version a. Subjects could search for information by selecting the radio button for the corresponding piece of
information in the matrix. On the next screen, the searched-for information appeared in the decision matrix and subjects
could choose one of the options.

4.1.4 Subjects

The online experiment was conducted with the program Uni-
park (Questback, 2016). Subjects were recruited online via
the registration system of the University of Mannheim and
via online platforms such as Facebook research groups. The
data collection yielded a sample of 303 subjects (201 female,
47.5 % university students, "064 = 33.7, (�064 = 15.5, age
range 17–70). Subjects could decide whether they partici-
pated for course credit or entered a lottery to win a 15€
online-shop gift certificate.

4.2 Results
All following analyses were conducted with R (R Core Team,
2019). All plots were created by using the ggplot2 package
(Wickham, 2016), mixed model analyses were run with the
packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova
et al., 2017).

To test for the Attraction Search Effect, we tested whether
the Attraction Search Score was significantly larger than
zero. The mean Attraction Search Score of subjects
was "�(( = 0.32 and was significantly larger than zero,
C (302) = 14.55, ? < .001, 3 = 0.84 (see Figure 3 for
the distribution of individual Attraction Search Scores in
all experiments). We also looked at the Attraction Search
Scores per cue-value pattern.5 The Attraction Search Score
was also significantly larger than zero when looking at the
three patterns separately, "%0CC4A=1 = 0.25, C (302) = 6.06,
3 = 0.35, "%0CC4A=2 = 0.26, C (302) = 8.29, 3 = 0.48, and
"%0CC4A=3 = 0.46, C (302) = 13.62, 3 = 0.78, all ?B < .001.

subject.
5As every subject saw each version of every cue-value pattern only once,

this analysis rested on only one trial of Version a and one trial of Version b
for each pattern and each subject.

Note, however, that comparing the Attraction Search Scores
of the separate patterns required comparing across different
scenarios. To account for this, we also calculated the At-
traction Search Scores for each scenario across subjects.6
As shown in Figure 4, all scenario-wise Attraction Search
Scores were above zero; however, there was substantial het-
erogeneity in the sizes of the scenario-wise Attraction Search
Scores.

One explanation for the heterogeneity of the Attraction
Search Scores on the scenario level might be that our as-
sumed subjective importance of cues did not match subjects’
subjective importance. Looking at the subjective importance
ratings, our assumed ordering of cues was mostly matched
by the importance ratings of subjects. Subjects’ mean sub-
jective importance ratings can be found in Table A1 in the
Appendix 7.2. Substantial differences occurred in the Hotel
scenario, in which subjects considered the last cue as most
important. Further, in the Job and in the City Size scenarios,
subjects considered the second cue as more important than
the first, more so for the City Size scenario.

As the Attraction Search Score aggregated over subjects
and content scenarios, we also ran a generalized linear mixed
model analysis to investigate the variation across these vari-
ables. In this model, the dependent variable was whether
subjects searched for Option A in any given trial. The effect-
coded predictor in this model was whether Option A was
attractive in this trial (Version a; +1) or not (Version b; −1).
A significant, positive regression weight for the predictor
version would indicate an information-search pattern con-
sistent with the Attraction Search Effect. To account for

6As there were no within-subjects repetitions of scenarios, this method
resulted in one Attraction Search Score per scenario only and therefore
did not allow any statistical inferences about whether the Attraction Search
Score for each scenario was larger than zero.
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Figure 3: Distribution of individual Attraction Search Scores in all three experiments. The violet points represent the mean
Attraction Search Score in each experiment and error bars the standard errors of those means. Attraction Search Scores
of zero indicate information search that is independent of the currently available evidence. Thus, every data point above
zero indicates that an individual showed a tendency to search for information on the currently attractive option. Yellow points
indicate individuals showing a significant (? < .050) score at the individual level according to a one-tailed binomial test. The
number of trials required for significance is 6 out of 6, 12 out of 14, and 14 out of 18 in Experiments 1–3, respectively.

variation in the data, we implemented a maximum random
effects structure with random intercepts for subjects and con-
tent scenarios, as well as random slopes for version.

The results of this generalized linear mixed model showed
that subjects were in general more likely to search for infor-
mation on Option A given that this option was attractive,
V = 0.75, (� = 0.11, I = 6.77, ? < .001 (see Table B1
and Table B2 for all model estimates). More precisely, the
probability of searching information for Option A increased
from 21.7% in Version b to 55.5% in Version a of the pat-
terns. The effect of pattern version varied across subjects
as well as content scenarios (see Figure 6). Specifically, the
heterogeneity of the content scenarios matched the one we
observed in the aggregated results.

To check whether we could explain some of the hetero-
geneity when accounting for differences due to cue-value
patterns, we added a Helmert-coded cue pattern predictor
to the mixed model7 as well as the interaction of cue pat-

7With the Helmert-coding, two predictors were added to the model: one,
comparing Pattern 3 (+2) against Pattern 1 (−1) and 2 (−1), and therefore
comparing the cue-value pattern with the strongest effect against the other
two cue-value patterns. The other predictor compared Pattern 2 (+1) against

tern and version. The effect of version remained positive
and significant, V = 0.88, (� = 0.13, I = 6.84, ? < .001.
Additionally, there was a significant effect that subjects were
less likely to search for Option A when faced with Pattern
2 than when faced with Pattern 1, V = −0.80, (� = 0.07,
I = −10.75, ? < .001. Further, the effect of version on
information search depended on cue pattern, such that the
version effect was the most pronounced for Pattern 3 when
comparing it to the other two cue-value patterns, V = 0.15,
(� = 0.04, I = 3.72, ? < .001. There also was a larger effect
for Pattern 1 compared to Pattern 2, V = 0.16, (� = 0.07,
I = 2.14, ? = .032.

4.3 Discussion
The first experiment shows strong support for the Attraction
Search Effect in semantic contexts different from the hypo-
thetical stock-market game originally used by Jekel et al.
(2018). Subjects tended to search for information about the
more attractive option in all of the three cue-value patterns as

Pattern 1 (−1).
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Figure 4: Distribution of Attraction Search Scores for each decision context in all three experiments. The lines represent
the mean Attraction Search Scores across subjects and scenarios in the respective experiments.

well as in every content scenario. The effect sizes as well as
the absolute Attraction Search Scores overall and for the sep-
arate cue-value patterns mirror those from Jekel et al. (2018)
in their study without information search costs (for the At-
traction Search Scores in Jekel et al. (2018) experiments see
Figure 5).

Our mixed model analyses reveals that the strength of the
Attraction Search Effect differs between individuals as well
as semantic contexts. The differences in effect size for the
semantic contexts might be due to the fact that our assumed
subjective importance ordering did not always match those of
subjects. This assumption is supported by the fact that among
the weakest predicted effects for decision context are the City
and the Hotel Scenario.8 Both semantic contexts showed on
average a different ordering in subjects’ importance ratings.
In sum, we replicated the results from Jekel et al. (2018) in
a more diverse setting, however, while still using the cue-
value patterns that were specifically designed to elicit the
Attraction Search Effect. Therefore, it is an important next
step to show that the Attraction Search Effect can be found
with different cue-value patterns.

8A mixed logistic regression directly investigating the effect of subjec-
tive importance orderings on the Attraction Search Effect is reported in
Appendix 7.2. It includes the individual rank correlations of the intended
and the individually rated cue order per scenario and hints at a moderating
effect of the ordering of importance ratings on the Attraction Search Effect.
However, see also Appendix 7.2 for a caveat of this analysis.

5 Experiment 2: Extension to differ-
ent cue patterns

In the second experiment, we extended the results from the
first experiment by testing whether the Attraction Search
Effect can be found in more diverse semantic contexts and
even without using specifically designed, highly diagnostic
cue patterns. Therefore, we did not present any informa-
tion before search and manipulated only the valence of the
first cue value subjects searched for while randomizing the
valence of the remaining cue values. This experiment and
the respective hypothesis were preregistered (Open Science
Framework; Scharf et al., 2017, osf.io/j7vg4).

5.1 Method
5.1.1 Materials

In addition to the six decision scenarios used in the first exper-
iment, we developed six further decision contents, ranging
from renting a new apartment to deciding on a new gym or to
buying a new computer (all scenarios and cues can be found
in Table 2).

We presented a completely closed mouselab matrix to our
subjects. In this matrix, the valences for all but the first
opened cue values were randomly assigned. The valence
of the first searched-for cue value was counterbalanced, to
achieve an experimental manipulation of the attractiveness
of options. This manipulation thus ensures that in six of the
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twelve trials the first searched-for cue value yielded posi-
tive information (and thus made the first searched-for option
attractive) whereas in the other six trials the first searched-
for cue value yielded negative information (and thus made
the first searched-for option unattractive). It is important to
note that it did not matter which specific piece of information
subjects searched for first for this manipulation to take effect.

To control whether subjects complied with instructions
and read the decision scenarios, we included a decision sce-
nario recognition test. After subjects completed the decision
trials, they were asked to identify on which topics they had
just decided. For this purpose, they were shown six out of the
twelve original decision scenarios and six distractor scenar-
ios. If they answered more than two scenarios incorrectly,
subjects were excluded from analysis.

5.1.2 Measures

As we did not use the cue-value patterns from the original
study by Jekel et al. (2018), we computed the individual At-
traction Search Scores as the difference of the probability of
switching options between the first and the second informa-
tion search across subjects and scenarios when the initial ev-
idence was negative vs. positive; Attraction Search Score =
?(switching options|initial negative information) −

?(switching options|initial positive information).9 Switch-
ing options when the initially found evidence is negative is
consistent with the Attraction Search Effect, while switching
options when the initially found evidence is positive is
inconsistent search behavior. Therefore, as in the first
experiment, if the Attraction Search Score is larger than
zero, subjects show more behavior in line with the Attraction
Search Effect.

5.1.3 Design and procedure

We manipulated the valence of the first clicked-on cue value
(positive vs. negative) within-subjects. As Jekel et al. (2018)
showed that the Attraction Search Effect is stronger when
information search is costly, we additionally tried to induce
a sense of search costs by restricting the number of possi-
ble searches per trial (either three, five, or seven searches).
We opted for restricting information search instead of im-
plementing explicit search costs, as implementing monetary
search costs is difficult in preferential decision tasks, espe-
cially with hypothetical tasks conducted online. Since the
Attraction Search Effect requires available information to

9The probabilities were calculated based on six trials with initial positive
information and six trials with initial negative information for each subject.
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Figure 6: Predicted probabilities of searching for Option A (Experiment 1 and 3) or of searching for the same option
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take effect, restricting search to one piece of information
as in the original experiments by Jekel et al. (2018) is not
possible in a completely closed matrix. In order to restrict
information search and at the same time to avoid subjects im-
mediately opening the fixed amount of information granted
to them, we opted for restricting information search variably
from trial to trial without subjects knowing beforehand how
much information they could open in this specific trial. This
way, every piece of information subjects chose to open dur-
ing a trial should rationally be the most informative piece
of information they could choose, as it could be their last
piece of information. Therefore, subjects were not informed
about the restriction of search before starting a trial but were
only informed whenever they opened the maximal number
of possible information for the trial. It is important to note

that information search was restricted only in the sense that
subjects could not open more information — they were free
to search for less information than the allowed amount per
trial given they opened at least one cue value.

The order of trials and thus the valence of the first cue
value and the amount of search was randomized for each
subject. After following the link to the online study, subjects
first gave their consent for participating in the study. Fol-
lowing a practice task, subjects started working on the actual
decision trials. Before each trial, subjects were presented
with a brief introduction into the ensuing content scenario.
Subjects had to open one piece of information in every trial.
They could then search for either two, four, or six additional
pieces of information; however, they did not know how many
pieces of information they could search for in a specific trial.
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Table 2: Additional content scenarios and cues in Experi-
ment 2.

Granola Gym
Amount of Dietary Fiber Monthly Pay
Number of Calories Offered Courses
Proportion Organic Ingredients Equipment
Proportion Fairtrade Ingredients Opening Hours
Computer Apartment
Price Proximity to City Center
Speed Sufficient Lighting
Design Square Footage
Loudness Friendliness of Neighbors
Insurance Company Cell Contract
Coverage Monthly Pay
Monthly Pay Network Reception
Accessibility in Case of Damage Number of Free Minutes
Customer Friendliness Data Volume

Note. Scenario names are printed in bold font, the four cue
names are printed underneath the respective scenario name.

When subjects reached the limit of searchable information in
a trial, they were informed that they could no longer search
for additional information and that they had to decide now
(for an example trial of the decision task see Figure 7). After
completing all 12 trials, subjects had to work on the recog-
nition task, in which they had to identify six of the original
content scenarios among a list with additional six distrac-
tor scenarios.10 After finishing this task, subjects went on
to provide some demographic details about themselves and
then could decide whether they wanted to receive course
credit; participate in the lottery, in which they could win one
of ten 10€-online shop gift certificates; or neither of these
two options. Finally, subjects were debriefed and thanked
for their participation.

5.1.4 Subjects

An a-priori power analysis assuming U = V = .05 for a one-
tailed one sample t test and a small Attraction Search Effect
with a Cohen’s 3 = 0.20 yielded a sample size of 272 subjects
(Faul et al., 2007). Due to expected dropout, a sample of
300 subjects was aspired to collect. The stopping rule was
to either stop data collection after two months or when 300
subjects were collected. The study was programmed with

10Due to an error in the programming of the experimental software, some
subjects were presented with only five distractors and seven targets instead of
six of each. As there is no difference in performance in the recognition task
between subjects who saw seven targets and subjects who saw six targets,
we still used the recognition test data for exclusion, "2>AA42C,6C0A64CB =
0.96, "2>AA42C,7C0A64CB = 0.95, C (284.41) = 0.73, ? = .464

Figure 7: A translated screenshot of the decision task in Ex-
periment 2. In the current trial, the valence of the first opened
information was negative (2 of 5 dumbbells). Subjects could
search for information by clicking on the empty boxes in the
matrix. Then the respective cue value would appear. After-
wards, they chose one of the options by clicking on the button
around the options.

lab.js (Henninger et al., in press) in conjunction with the
Multi-Attribute Decision Builder (Shevchenko, 2019). The
original sample included 305 completed data sets. From
these 305 subjects, eight subjects were excluded because
data were not saved for all of the twelve decision trials. Thus,
the complete sample included a sample of 297 subjects (230
female, 1 other, "064 = 22.9, (�064 = 5.6). Seventeen
subjects were excluded because they answered more than two
questions incorrectly in the recognition test. After exclusion,
a total of 280 subjects remained in the final sample (217
female, 1 other, 84.6% university students). The mean age
of the sample was "064 = 22.8 ((�064 = 5.6, range 18–63).

5.2 Results
5.2.1 Preregistered analyses

To test whether the Attraction Search Effect emerged in a
preferential decision task without specifically designed pat-
terns, we calculated the Attraction Search Score for each
subject over all trials. As predicted, the Attraction Search
Score was significantly larger than zero "�(( = 0.12,
C (279) = 6.82, ? < .001, Cohen’s 3 = 0.41. Thus, we
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found evidence for the Attraction Search Effect in different
semantic contexts and closed cue-value patterns.

5.2.2 Additional exploratory analyses

To compare the heterogeneity between decision scenarios
to the first experiment, we also calculated the Attraction
Search Scores for each scenario across subjects. As shown
in Figure 4, all scenario-wise Attraction Search Scores were
above zero and there was less heterogeneity between scenar-
ios compared to Experiment 1.

To account for the multi-level structure of the data and
to explore the heterogeneity between scenarios further, we
also ran a generalized linear mixed model analysis compa-
rable to that in Experiment 1. In this model, the dependent
variable was whether subjects continued to search for the
same option as in their first search in any given trial. The
predictor was whether the valence of the first opened cue
value was positive or negative. Again, a significant, positive
regression weight for the predictor valence would indicate
an information-search pattern consistent with the Attraction
Search Effect. To account for variation in the data, we im-
plemented a model with random intercepts for subjects and
content scenarios as well as a random slope for valence for
subjects.11

The results of this generalized linear mixed model showed
that subjects were in general more likely to stay with the
searched-for option when the first opened cue value was
positive, V = 0.38, (� = 0.11, I = 3.58, ? < .001 (see
Table B1 and Table B2 for all model estimates). Specifi-
cally, the probability of staying with the searched-for option
increased on average from 6.5%, when the first opened cue
value was negative, to 12.9%, when the first cue value was
positive. The results for the random effects showed consid-
erable variance of the effect of valence between subjects (see
Figure 6).

Looking at the distribution of the Attraction Search Score
values in Figure 3 and the heterogeneity of the individual
effects in the mixed model, it was apparent that there is a
large proportion of subjects that did not show the Attraction
Search effect. In fact, the median of the overall Attraction
Search Score distribution was "3�(( = 0. One difference
between subjects with an Attraction Search Score of zero
and subjects with a non-zero Attraction Search Score was the
amount of searched cue values. Subjects with an Attraction
Search Score of zero tended to search for more cue values,
"�((=0 = 4.72, than subjects with a non-zero Attraction
Search Score, "�((≠0 = 4.57, C (277.09) = −2.61, ? = .010,
Hedge’s 6 = −0.31. Additionally, we found that subjects
with higher individual Attraction Search Scores tended to

11The maximum random model structure did not converge. This ran-
dom effects structure was achieved by starting with the maximum random
structure, then to first exclude correlations between random effects and then
to remove the random slope(s) with the smallest variance until the model
converged.

take longer to open the first cue value, A (278) = .341, ? <
.001.

To further investigate subjects who had an Attraction
Search Score of zero, we hypothesized that some subjects
used predetermined, fixed search strategies. To test this as-
sumption, we formulated three different search strategies:
strictly cue-wise, lenient cue-wise, and strictly option-wise
information search.12 The strictly cue-wise search was de-
fined as subjects starting to search for information on one
option’s side, continuing their search on the same cue on the
other option’s side, and then returning to the first option’s
side for the ensuing search and so on. The lenient cue-wise
search also was defined as always searching for two pieces
of information from the same cue consecutively but did not
require to always start the search on the same option. The
strictly option-wise search was defined as searching infor-
mation on one option until all information for this option
was acquired and then switching to the other option. On
average, subjects used a strictly cue-wise search strategy in
39.1% ((� = 25.0), a lenient cue-wise search strategy in
23.7% ((� = 17.9), and an option-wise search strategy in
7.1% ((� = 14.2) of trials. In 30.1% ((� = 23.4) of trials,
subjects’ information-search pattern could not be classified
as belonging to one of the aforementioned strategies. Thus,
in over half of all trials some kind of fixed cue-wise search
strategy was used.

In order to test whether the occurrence of Attraction
Search Scores of zero could be explained by subjects using
predetermined search strategies, we correlated the individual
Attraction Search Scores with the number of trials of each
subject belonging to one of formulated search strategies. In-
deed, the correlation of individual Attraction Search Scores
and the number of trials in which subjects searched strictly
cue-wise was negative, A = −.31, = = 280, ? < .001; in-
dicating that subjects who searched for information strictly
cue-wise in more trials had lower Attraction Search Scores.
The results were similar for the lenient cue-wise strategy
for which the correlation was negative as well, A = −.16,
= = 280, ? = .008. For the number of trials searched follow-
ing an option-wise strategy, we found a positive correlation,
A = .28, = = 280, ? < .001. The correlation between the
number of unclassified trials per subject and the individual
Attraction Search Scores was also positive, A = .28, = = 280,
? < .001. Therefore, subjects with a low Attraction Search
Score had a stronger tendency to search for information con-
sistent with a pre-determined, cue-wise search strategy.

To analyze the influence of strategies on the trial level, we
ran the same mixed logistic regression as described above
and added the count of trials following any of the above-

12We did not calculate the often used Payne Index (Payne, 1976), as this
index is biased if the number of options is not equal to the number of cues
(Böckenholt & Hynan, 2006).
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mentioned strategies as a predictor.13 In this model, the
probability of searching for the same option was 12.6%
when finding initial positive evidence compared to 6.2%
when finding initial negative evidence, V = 0.38, (� = 0.11,
I = 3.63, ? < .001 (see Table B1 and Table B2 for all model
estimates). Additionally, the more trials in which a subject
showed information-search behavior that followed a specific
strategy the less likely she was to continue to search for the
same option, V = −0.41, (� = 0.04, I = −9.99, ? < .001.
The number of trials following a search strategy also influ-
enced the strength of the effect of the first opened cue value,
V = −0.09, (� = 0.03, I = −2.71, ? = .007. This interac-
tion took the effect that if no strategy was used in any trial,
the predicted probability of searching for the same option
when the initial information was positive was 90.4% com-
pared to 51.0% when the initial information was negative.
On the other hand, when an information search strategy was
used in every trial, the predicted probability of searching for
the same option was 2.3% when the initial information was
positive and 2.0% when the initial information was nega-
tive. Note that the overall effect of searching with a strategy
was negative because cue-wise search strategies, which had
a negative effect on the Attraction Search Score, were much
more common (in total 62.8% of trials) than option-wise
search strategies (7.1% of trials), which had a positive effect
on the Attraction Search Score.

5.3 Discussion
In the second experiment, we took a step further away from
the original setup of Jekel et al. (2018) by extending the
range of semantic contexts and using closed cue-value pat-
terns with randomized cue values. The results show that
the Attraction Search Effect emerges under these conditions
as well and, thus, does not appear only when using highly
diagnostic cue-value patterns. Further, in contrast to the first
experiment, the effect of the valence manipulation did not
differ between decision contexts and there were systematic
differences only in how likely subjects were to continue to
search for the same option in different contexts. The sys-
tematic differences in the valence effect between different
scenarios might be absent because in this experiment the
prediction of the Attraction Search Effect did not require the
subjects to have the correct subjective importance ordering.
Rather, we assumed that the first opened cue is likely to be
the most valid cue.

We did observe a considerable drop in effect size in the
second experiment compared to the first. This drop is due
to a large number of subjects who had an Attraction Search
Score of zero. This finding is also supported by the large
variability due to subjects in the mixed model analysis. The
heterogeneity can partly be explained by looking at subjects’

13The individual count was mean-centered across subjects for this anal-
ysis.

Table 3: Version a and Version b of cue patterns used in
Experiment 3.

Pattern 1 Pattern 2 Pattern 3
A B A B A B

Cue 1 +(−) ? +(−) −(+) +(−) −(+)
Cue 2 +(−) ? ? ? ? ?
Cue 3 ? ? + − + −
Cue 4 ? ? − + − ?

Note. + = positive cue value, − = negative cue
value, ? = hidden, searchable cue value; Version a
of patterns is displayed, cue values in parentheses
are from Version b. Patterns 1, 2, and 3 correspond
to Patterns 5, 6, and 7, respectively, in Jekel et al.
(2018).

search behavior: Subjects with Attraction Search Scores of
zero tended to search for more information. Additionally,
subjects with lower Attraction Search Scores tended to open
the first cue value faster and searched for information in a
cue-wise fashion in more trials. The results of the mixed
logistic regression corroborate these findings by showing
that the Attraction Search Effect is weakened the more sub-
jects followed specific information search strategies on the
trial level. Taken together, these exploratory results show
similarities to Jekel et al.’s (2018) results in the condition
without search costs. Jekel et al. (2018) showed that sub-
jects searched for more information faster and that individual
Attraction Search Scores were considerably reduced when no
information search costs were implemented. Thus, the re-
sults of Experiment 2 indicate that the restriction of search
might not have been strong enough to induce a sense of
search costs.

Besides the aforementioned limitations, we still found a
medium-sized Attraction Search Effect in an experiment that
did not rely on a specific semantic context or specifically
designed cue-value patterns. Thus, the results of this exper-
iment emphasize the overall robustness of the effect and the
range of applicability of iCodes.

6 Experiment 3
Experiment 3 varied another aspect of the decision task that
has been kept constant in Jekel et al.’s (2018) studies and
in our studies so far: the way in which information is pre-
sented. Until now, every experiment testing the predictions
of iCodes has used the matrix presentation of the classic
mouselab task. It has been shown that the way information is
presented influences information-search behavior (Bettman
& Kakkar, 1977; Ettlin et al., 2015). Presenting informa-
tion in a matrix organizes the information for the decision
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maker and this organization in turn influences search behav-
ior (Schkade & Kleinmuntz, 1994). Thus, in this experiment
we test whether the Attraction Search Effect still emerges in
a quasi-realistic online shop setting. The subjects’ task in
this experiment was to imagine being a buyer for an online
clothing shop and to buy clothes online. In addition, as the
two previous experiments were both run in German and with
German samples, we decided to collect data from a different,
non-German subject pool via the platform Prolific (Palan &
Schitter, 2018). This experiment and our hypothesis were
preregistered (Open Science Framework; Scharf et al., 2018,
osf.io/nfruq).

6.1 Method
6.1.1 Materials

Cue patterns. As in Experiment 1, we again used a sub-
set of the original cue-value patterns from Jekel et al. (2018).
As described above, each pattern has two versions that differ
in which option is currently more attractive. For this ex-
periment, we selected three from the original eight patterns,
displayed Table 3. Pattern 2 and Pattern 3 were chosen be-
cause they elicited the strongest and the second strongest
Attraction Search Effect in the original studies. Pattern 1,
which elicited the fourth strongest Attraction Search Effect
in the original studies, was chosen to include a pattern that
showed a strong effect but at the same time has more than
three searchable cue values. Thus, the addition of Pattern
1 was supposed to increase the variability between patterns.
Each pattern in both versions was presented three times,
leading to a total number of 18 trials per subject.

Shop items. We used images of 18 different items of
clothing for this experiment. These articles of clothing were
each described by customer ratings on four attributes. Sub-
jects were told that these attributes differed in their relative
importance for the online shop they are shopping for. The
attributes in the order of their importance were the fit of the
clothes, the comfort of the fabric, the availability of sizes, and
the ease of care. The customer ratings were dichotomized,
such that a negative overall rating of one of the attributes
was described by two stars and a positive overall rating was
described by five stars. To increase the realism of the on-
line shop, each item was assigned a fictional brand name
(four-letter pseudowords adapted from Stark & McClelland,
2000) and a fictional brand logo. In each trial, subjects had
to decide between the same article of clothing that differed
in their brands and the customer ratings of their attributes
only. An example trial is displayed in Figure 8.

6.1.2 Measures

Just as in Experiment 1, we computed the individ-
ual Attraction Search Scores as the difference of

Figure 8: A screenshot of the decision task in Experiment 3.
The current cue-value pattern is Pattern 3 in Version b. Sub-
jects could search for information by clicking on the number
under the cue name. The number indicated the importance
of the cue for the decision, with "1" representing the most
important attribute and "4" representing the least important
attribute. Then the respective cue value would appear. After-
wards, they chose one of the options by clicking on its "Add
to cart" button.

the probability of searching for Option A in the
nine trials of Version a vs. of Version b across
articles of clothing, �CCA02C8>= (40A2ℎ (2>A4 =
?((40A2ℎ8=6 $?C8>= � | +4AB8>= 0) −
?((40A2ℎ8=6 $?C8>= � | +4AB8>= 1).14

6.1.3 Design and procedure

All subjects were presented with all cue-value patterns in
both versions and all shop items in a total of 18 trials (3
cue-value patterns x 2 pattern versions x 3 repetitions). Note
that the cue patterns were repeated but not the items of
clothing. The order of trials as well as the combination
of cue-value patterns, shop items, logos, and brand names
were randomized for each subject. We further balanced
presentation of the cue-value patterns for the repetitions,
such that Option A of each pattern was once on the left side,
once on the right side, and assigned to a side randomly for
the third repetition. The online experiment was programmed
in lab.js (Henninger et al., in press) and run via the platform
Prolific (Palan & Schitter, 2018). Subjects received £1.10
for their participation. Before working on the actual task,
subjects agreed to an informed consent form and read the
instructions for the task.

Subjects were asked to imagine that they work as a buyer
for an online clothing shop and that their task was to choose

14Due to the three repetitions of each cue pattern, Version a and Version
b were each presented nine times.
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18 different articles of clothing in order to restock their em-
ployer’s warehouse. We included three questions about the
instructions that had to be answered correctly before the
subjects could continue with the actual task. The number of
repetitions it took to answer these questions correctly were
used as an exclusion criterion, such that when subjects had
to repeat these questions more then once they were excluded
from analysis. During the task, subjects were allowed to
search one additional piece of information, after which they
had to decide which article of clothing they wanted to buy.
Before finishing the study, subjects were asked to provide
some demographic information and were then thanked for
their participation.

6.1.4 Subjects

In a student project conducted to pretest the materials, we
found an Attraction Search Effect with an effect size of Co-
hen’s 3 = 1.34 with # = 312. As the current experiment was
run in a non-German and likely more diverse sample, we de-
cided to be rather conservative for our sample-size rationale.
A sensitivity analysis revealed that we could find an effect of
Cohen’s 3 = 0.33 for a one-sided one-sample t-test with an
U = V = .05 and a sample of # = 100 subjects. As we ex-
pected some experimental mortality due to the fact that this
experiment was run online, we aimed to collect 10% more
than the needed sample, which resulted in a total sample size
of 110 subjects. We collected data of # = 110 subjects, from
which # = 99 were complete data sets (48 female, 1 other,
"064 = 31.3, (�064 = 10.0). Ten subjects were excluded
because they had to repeat the instruction check two or more
times which resulted in a final sample of # = 89 (44 female,
1 other, 16.9% university students). The mean age of the
sample was "064 = 31.3 ((�064 = 10.0, Range 18–60).
All but one subject indicated that they were native English
speakers.

6.2 Results
6.2.1 Preregistered analyses

Just as in the first and the second experiment, we hypothe-
sized that the average Attraction Search Score is significantly
larger than zero. In order to test this hypothesis, we calcu-
lated the individual Attraction Search Scores for all sub-
jects. The mean Attraction Search Score was "�(( = 0.30,
C (88) = 7.92, ? < .001, Cohen’s 3 = 0.84. Therefore,
we found evidence for subjects’ search behavior being con-
sistent with iCodes’s predictions even when the cue-value
information was not presented in a matrix.

6.2.2 Exploratory analyses

As a first exploratory analysis, we tested whether we could
find an Attraction Search Score larger than zero when

looking at the three patterns separately.15 Each pattern
yielded a significantly positive Attraction Search Score,
"%0CC4A=1 = 0.18, C (88) = 5.47, 3 = 0.58, "%0CC4A=2 =
0.39, C (88) = 6.87, 3 = 0.73, and "%0CC4A=3 = 0.33,
C (88) = 6.23, 3 = 0.66, all ? < .001. We also calculated the
Attraction Search Scores for each article of clothing, which
can be found in Figure 4. The heterogeneity between items
of clothing seemed to be more pronounced than in Experi-
ment 2 but somewhat less pronounced than in Experiment
1.

We also ran a generalized linear mixed model for Experi-
ment 3. Just as in Experiment 1, the dependent variable was
whether subjects searched for Option A in any given trial
and the effect-coded predictor was whether Option A was
attractive in that trial (Version a; +1) or not (Version b; −1).
To account for variation in the data, we added random inter-
cepts for subjects and content scenarios as well as a random
slope for version for subjects.16

The results showed that subjects were on average more
likely to search for information on Option A given that this
option was attractive, V = 0.76, (� = 0.10, I = 7.18,
? < .001 (see Table B1 and Table B2 for all model esti-
mates). Specifically, the probability of searching informa-
tion for Option A increased from 18.5% in Version b of the
pattern to 51.0% in Version a of the pattern. At the same
time, the effect of pattern version varied across subjects sys-
tematically, as shown in Figure 6.

To try to explain some of the inter-individual variance in
the effect, we added the Helmert-coded cue pattern predic-
tor17 to the model. The effect of version was still signifi-
cantly positive in this model, V = 0.91, (� = 0.14, I = 6.60,
? < .001, indicating that the probability of searching for
Option A increased from 14.3% in Version b to 50.8% in
Version a. There were also significant effects for both pat-
tern predictors, indicating that subjects were more likely to
search for Option A in Pattern 2 compared to Pattern 1,
V = 1.36, (� = 0.11, I = 12.96, ? < .001, as well as in
Pattern 3 compared to Pattern 1 and 2, V = 0.18, (� = 0.05,
I = 3.81, ? < .001. However, there was no significant in-
teraction between the cue pattern and the version predictors,
?B > .100.

15This analyses included three observations of Version a and three obser-
vations of Version b for each subject and each cue-value pattern.

16The maximum random model structure did not converge with a random
slope for version for decision scenarios. Just as in Experiment 2, this random
effects structure was achieved by starting with the maximum random struc-
ture and then excluding correlations between random effects and random
slopes with the least variance successively until the model converged.

17Due to the Helmert coding, two predictors were added to the model:
the first compared Pattern 3 (+2) against Pattern 1 (−1) and 2 (−1); the
second compared Pattern 2 (+1) against Pattern 1 (−1).
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6.3 Discussion
The results of Experiment 3 show that the Attraction Search
Effect is not restricted to a matrix presentation format but
can also be found in a more realistic, less restrictive setting.
The effect sizes of the separate cue patterns as well as the
absolute Attraction Search Scores are comparable to those of
Jekel et al. (2018) in the condition without search costs (see
Figure 5), as all three patterns show a medium to large effect.
The results plotted in Figure 3 further show that, albeit not
restricted to the original cue-value patterns, the effect is more
pronounced with the original cue-value patterns, when com-
paring the results of Experiment 2 with Experiment 3. We
do not find the same level of heterogeneity between decision
contexts in Experiment 3 compared to the first experiment
(see Figure 4). This might be explained by the fact that
the decision content is more homogeneous in Experiment 3
compared to Experiment 1 because all decisions were made
between articles of clothing. There is also no evidence in
the results of Experiment 3 for the same interaction of the
cue patterns and the cue pattern version that was found in
Experiment 1. The absent interaction is probably due to two
reasons: first, the original effect sizes in Jekel et al. (2018)
of the cue patterns used in Experiment 3 were more homoge-
nous from the start when compared to the cue patterns from
Experiment 1. Second, the interaction between subjective
importance of cues and option attractiveness was reduced in
Experiment 3 as the ordering of the cues’ importance was
given at the start of the experiment.

7 General discussion
The Attraction Search Effect is the core prediction by iCodes
that states that information search is influenced not only by
the validity of the information but also by the attractiveness
of the options. Jekel et al. (2018) provided first evidence for
this prediction in three experiments that all shared the same
task characteristics and the same semantic content. The goal
of the current project was to test the range of applicability of
iCodes’s search predictions. For this purpose, we ran three
conceptual replications of the original studies that varied as-
pects that were kept constant in the original experiments. In
the first experiment, we showed that the Attraction Search
Effect is not restricted to the probabilistic-inference tasks in
Jekel et al.’s (2018) experiments but also emerges in prefer-
ential decision tasks in six every-day content domains. The
results of the second experiment, which was preregistered,
illustrate that the Attraction Search Effect generalizes to a
wider range of different semantic contexts and further show
that the Attraction Search Effect also emerges without specif-
ically designed and diagnostic cue-value patterns, albeit with
a somewhat reduced effect size. In the last experiment, also
preregistered, we found evidence that the Attraction Search
Effect is also present when one moves away from the classic

matrix format of information presentation to a more realistic
simulated online-shop setting. Thus, we found evidence for
iCodes’s information-search prediction in three experiments
with in total 627 subjects. These results show that the in-
fluence of the already available information on information-
search direction is a robust phenomenon that can be found
in different variants of the classic multi-attribute decision
task. They further strengthen iCodes as a general theory of
decision making and information search.

7.1 Limitations and future directions
The results of Experiment 2 show that there are boundary
conditions for the generalizability of the Attraction Search
Effect. As the second experiment was the only experiment
that did not use the cue-value patterns from Jekel et al. (2018)
and did not restrict information search to one piece of infor-
mation, it is likely that the reduced effect size in Experiment 2
was at least partially caused by the change in the experimen-
tal setup. The change from specifically designed, diagnostic
cue-value patterns to randomized cue-value patterns natu-
rally weakens the effect of the experimental manipulation,
as the reduced experimental control due to the randomization
of cue values may have increased the noise in the data. The
second aspect that was different in Experiment 2 compared
to the two other experiments was that search was less restric-
tive. The original results by Jekel et al. (2018) showed that
costly or restricted search is relevant for the strength of the
Attraction Search Effect. It is possible that the restriction of
search, that varies from trial to trial, we used to implement
search costs was not strong enough to elicit a reliable Attrac-
tion Search Effect for many subjects who instead opted for
a heuristic search strategy. This assumption is supported by
the fact that subjects that showed no Attraction Search Ef-
fect tended to search for more information and did so faster
than subjects that did show the Attraction Search Effect in
this experiment, just like subjects in the condition without
search costs in Jekel et al. (2018). In fact, individual Attrac-
tion Search Scores tended to be lower for subjects that used
cue-wise search strategies more often and higher for subjects
whose search behavior could not be classified as belonging
to one search strategy.

The results of Experiment 2 show that we observed larger
interindividual heterogeneity in the Attraction Search Effect
than in Experiments 1 and 3 in this paper (see Figure 3).
This larger heterogeneity in Experiment 2 was also revealed
by the mixed model analyses of all three experiments. The
fact that the most variance in individual Attraction Search
Effects was found in Experiment 2 hints that the diagnostic
cue-value patterns as well as the restricted information search
are relevant for the homogeneity and strength of the effect.
Future research should tease apart the effects underlying the
heterogeneity of the Attraction Search Effect.
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The variability of individual Attraction Search Effects in
Experiment 2 also points to hidden moderators determining
the individual strength of the effect. Jekel et al. (2018) al-
ready identified search costs as a moderator of the Attraction
Search Effect and the results of Experiment 2 corroborate
this finding. A still unanswered question is what happens
to the information-search process when information-search
costs are introduced. One explanation for the effect of search
costs might be that costs increase the deliberation about the
search decision (Jekel et al., 2018). This assumption is cor-
roborated by the fact that subjects with a higher Attraction
Search Score tend to take slightly longer to search for the
first piece of information. A promising avenue for future
research is to investigate the role of deliberation in the At-
traction Search Effect more closely, for example by employ-
ing dual-task (Schulze & Newell, 2016) or time-pressure
manipulations (Rieskamp & Hoffrage, 2008; Payne et al.,
1988). Further, the emergence of the Attraction Search Ef-
fect might be moderated by different individual characteris-
tics. One may assume, for example, that subjects differ in
their tendency to focus on the more attractive option (Mather
& Carstensen, 2005; Noguchi et al., 2006). When investi-
gating potential moderators of the effect, one should keep
in mind that using the original cue-value patterns decreases
heterogeneity of the Attraction Search Effect and thus might
mask interinidvidual differences.

While finding substantial interindividual differences in the
Attraction Search Effect, we find only a little evidence for
differences in Attraction Search Effect between content sce-
narios. Only in Experiment 1 do we find support for dif-
ferences between decision contexts from the mixed model
analyses. This might be due to the fact that in that exper-
iment only the order of subjective importance for the cues
was implied rather than explicitly stated (Experiment 3) or
inferred from subjects’ behavior (Experiment 2). This expla-
nation is further supported by the fact that the same decision
scenarios that differed in effect size in Experiment 1 were
also included in Experiment 2 and did not show the same
variability in that experiment. The findings with regard to de-
cision contexts emphasize the role of cues’ importance in the
information-search process and, thus, reveals an important
variable to control in future investigations of the Attraction
Search Effect.

When comparing our results to those from Jekel et al.
(2018), we find that the overall Attraction Search Score re-
sults from Experiments 1 and 3 are similar to those of the
experiments with restricted and costly information search by
Jekel et al. (2018), whereas the results from Experiment 2
are comparable to Jekel et al.’s experiment without infor-
mation search costs (see Figure 5). The effect sizes in our
three experiments are considerably reduced compared to the
original results, but they are still medium (Experiment 2)
to large (Experiment 1 and 3). Next to reducing the level
of experimental control in our replications, this decrease is

probably also due to the reduced number of trials in our
studies, which reduces the reliability of the estimation per
individual. Nonetheless, the fact that we are still able to find
the Attraction Search Effect with fewer trials opens up the
possibility to investigate even more diverse contexts.

One of iCodes’ advantages is that it is a fully formalized
model that gives process descriptions of a well-documented
phenomenon of information search (Doherty et al., 1979;
Mynatt et al., 1993; Hart et al., 2009). The formalization
of iCodes allows researchers to determine the fit of the ob-
served behavior with model predictions and to compare this
fit with the search predictions of other models for informa-
tion search (Jekel et al., 2018). One prerequisite for fitting
iCodes, however, is knowing the exact cue validities, as they
heavily influence iCodes predictions. In case of preferential
tasks, the importance of cues is difficult to determine due to
the subjective nature of the relative importance of the cues.
Further, we do not know the relationship between ratings of
importance and perceptions of cue validities. In the current
experiments, we opted to test iCodes’s qualitative predictions
for information search only. In order to fit iCodes to search
behavior in preferential tasks, one might utilize methods such
as conjoint analysis (as, for example, done in Meißner et al.,
2015) in order to deduce the individual importance weights.

In this project, we varied the semantic content, the cue-
value patterns, and the way of information was presented
to test whether the Attraction Search Effect generalizes to
various decision settings. However, there are still multiple
aspects of the decision situation that have been kept constant
between the experiments in this project and the experiments
by Jekel et al. (2018). A next step might be to change the
way information is presented more radically, for example by
randomizing the position of the information on the screen
between trials, as has been done for instance in Söllner et al.
(2013), so that subjects can not memorize the positions on
screen. In addition, it might be interesting to refrain from
using variants of the classic decision board altogether by uti-
lizing a procedure in which subjects can naturally search for
information by asking questions (Huber et al., 2011). An-
other characteristic all studies shared was that information
search was tracked in a mouselab-type setting via recording
mouse clicks on a computer screen. As using the mouse-
lab setup for process tracing might influence information
search (Glöckner & Betsch, 2008; Lohse & Johnson, 1996),
a fruitful avenue for future research might be to investigate
information search with other process-tracing measures such
as eye-tracking. Utilizing eye-tracking as a process-tracing
method for information search would further allow one to
observe information-search behavior in naturalistic settings,
such as an actual online shop.

With showing that the Attraction Search Effect appears in
diverse settings, we take a step closer to connecting iCodes’s
predictions to the already existing literature on biased in-
formation search. Selective exposure, pseudo-diagnostic
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search, and leader-focused search have all been investigated
in various semantic settings and paradigms (Mynatt et al.,
1993; Fraser-Mackenzie & Dror, 2009; Carlson & Guha,
2011). In this project, we could show that the Attraction
Search Effect also generalizes to diverse contextual settings.
In future research, the iCodes model could be extended in
such a way that it can be applied to data from different re-
search paradigms for biased information search. Doing so
would allow a bridge to prior research and extend the ap-
plicability of iCodes. It would also allow researchers to
test which parameters in the iCodes model are affected by
manipulations that have been known to influence biased in-
formation search (see Hart et al., 2009, for an overview of
potential moderators of selective exposure).

7.2 Conclusion
We showed that the Attraction Search Effect, an important
prediction of the new iCodes model, is a robust finding that is
not restricted to specific decision task settings. The results
of the three experiments further highlight that the already
available information about choice options is highly relevant
for information search and that the direction of information
search is not necessarily subject to strict rules but rather is
influenced by coherence as well.

References
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015).

Fitting Linear Mixed-Effects Models Using lme4. Jour-
nal of Statistical Software, 67(1), 1–48, https://doi.org/10.
18637/jss.v067.i01.

Bettman, J. R. & Kakkar, P. (1977). Effects of information
presentation format on consumer information acquisition
strategies. Journal of Consumer Research, 3(4), 233–240,
https://doi.org/10.1086/208672.

Bredenkamp, J. (1980). Theorie und Planung Psychologis-
cher Experimente. Heidelberg: Steinkopff-Verlag.

Bröder, A. (2000). Assessing the empirical validity of the
"take-the-best" heuristic as a model of human probabilistic
inference. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 26(5), 1332–1346, https://
doi.org/10.1037/0278-7393.26.5.1332.

Bröder, A. (2003). Decision making with the "adaptive tool-
box": Influence of environmental structure, intelligence,
and working memory load. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 29(4), 611–
625, https://doi.org/10.1037/0278-7393.29.4.611.

Böckenholt, U. & Hynan, L. S. (2006). Caveats on a process-
tracing measure and a remedy. Journal of Behavioral
Decision Making, 7(2), 103–117, https://doi.org/10.1002/
bdm.3960070203.

Carlson, K. A. & Guha, A. (2011). Leader-focused search:
The impact of an emerging preference on information
search. Organizational Behavior and Human Decision
Processes, 115(1), 133–141, https://doi.org/10.1016/j.
obhdp.2010.12.002.

Doherty, M. E., Mynatt, C. R., Tweney, R. D., & Schi-
avo, M. D. (1979). Pseudodiagnosticity. Acta Psy-
chologica, 43(2), 111–121, https://doi.org/10.1016/0001-
6918(79)90017-9.

Ettlin, F., Bröder, A., & Henninger, M. (2015). A new
task format for investigating information search and or-
ganization in multiattribute decisions. Behavior Re-
search Methods, 47(2), 506–518, https://doi.org/10.3758/
s13428-014-0482-y.

Evans, J. S. B. T., Venn, S., & Feeney, A. (2002). Implicit
and explicit processes in a hypothesis testing task. British
Journal of Psychology, 93(1), 31–46, https://doi.org/10.
1348/000712602162436.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007).
G*Power 3: A flexible statistical power analysis program
for the social, behavioral, and biomedical sciences. Be-
havior Research Methods, 39(2), 175–191, https://doi.org/
10.3758/BF03193146.

Fischer, P. & Greitemeyer, T. (2010). A New Look at
Selective-Exposure Effects: An Integrative Model. Cur-
rent Directions in Psychological Science, 19(6), 384–389,
https://doi.org/10.1177/0963721410391246.

Fischer, P., Lea, S., Kastenmüller, A., Greitemeyer, T., Fis-
cher, J., & Frey, D. (2011). The process of selective
exposure: Why confirmatory information search weakens
over time. Organizational Behavior and Human Deci-
sion Processes, 114(1), 37–48, https://doi.org/10.1016/j.
obhdp.2010.09.001.

Fraser-Mackenzie, P. A. F. & Dror, I. E. (2009). Selective
information sampling: Cognitive coherence in evaluation
of a novel item. Judgment and Decision Making, 4(4),
307–316.

Frey, D. (1986). Recent Research on Selective Exposure
to Information. In L. Berkowitz (Ed.), Advances in Ex-
perimental Social Psychology, volume 19 (pp. 41–80).
Academic Press.

Gigerenzer, G., Dieckmann, A., & Gaissmaier, W. (2014).
Efficient cognition through limited search. In P. M. Todd,
G. Gigerenzer, & T. A. R. Group (Eds.), Ecological Ratio-
nality: Intelligence in the World. Cary: Oxford University
Press.

Gigerenzer, G. & Goldstein, D. G. (1996). Reasoning the fast
and frugal way: Models of bounded rationality. Psycho-
logical Review, 103(4), 650–669, https://doi.org/10.1037/
0033-295X.103.4.650.

Gigerenzer, G. & Todd, P. M. (1999). Fast and frugal heuris-
tics: The adaptive toolbox. In Simple heuristics that make
us smart, Evolution and cognition. (pp. 3–34). New York:
Oxford University Press.



Judgment and Decision Making, Vol. 14, No. 4, July, 2019 Generalizability of the attraction search effect 507

Glöckner, A. & Betsch, T. (2008). Multiple-reason deci-
sion making based on automatic processing. Journal of
Experimental Psychology: Learning, Memory, and Cog-
nition, 34(5), 1055–1075, https://doi.org/10.1037/0278-
7393.34.5.1055.

Glöckner, A. & Betsch, T. (2012). Decisions beyond bound-
aries: When more information is processed faster than
less. Acta Psychologica, 139(3), 532–542, https://doi.org/
10.1016/j.actpsy.2012.01.009.

Glöckner, A., Betsch, T., & Schindler, N. (2010). Coherence
shifts in probabilistic inference tasks. Journal of Behav-
ioral Decision Making, 23(5), 439–462, https://doi.org/
10.1002/bdm.668.

Glöckner, A., Heinen, T., Johnson, J. G., & Raab, M. (2012).
Network approaches for expert decisions in sports. Hu-
man Movement Science, 31(2), 318–333, https://doi.org/
10.1016/j.humov.2010.11.002.

Glöckner, A., Hilbig, B. E., & Jekel, M. (2014). What
is adaptive about adaptive decision making? A parallel
constraint satisfaction account. Cognition, 133(3), 641–
666, https://doi.org/10.1016/j.cognition.2014.08.017.

Glöckner, A. & Hodges, S. D. (2010). Parallel constraint sat-
isfaction in memory-based decisions. Experimental Psy-
chology, 58(3), 180–195, https://doi.org/10.1027/1618-
3169/a000084.

Hart, W., Albarracín, D., Eagly, A. H., Brechan, I., Lindberg,
M. J., & Merrill, L. (2009). Feeling validated versus
being correct: A meta-analysis of selective exposure to
information. Psychological Bulletin, 135(4), 555–588,
https://doi.org/10.1037/a0015701.

Harte, J. M. & Koele, P. (2001). Modelling and describing
human judgement processes: The multiattribute evalua-
tion case. Thinking & Reasoning, 7(1), 29–49, https://doi.
org/10.1080/13546780042000028.

Hausmann, D. & Läge, D. (2008). Sequential evidence ac-
cumulation in decision making: The individual desired
level of confidence can explain the extent of information
acquisition. Judgment and Decision Making, 3(3), 229–
243.

Henninger, F., Shevchenko, Y., Mertens, U. K., & Hilbig,
B. E. (in press). lab.js: A free, open, online study
builder. Behavior Research Methods, https://doi.org/10.
5281/zenodo.597045.

Huber, O., Huber, O. W., & Schulte-Mecklenbeck, M.
(2011). Determining the information that participants
need: Methods of active information search. In M.
Schulte-Mecklenbeck, A. Kühberger, & R. Ranyard
(Eds.), A Handbook of Process Tracing Methods for Deci-
sion Research: A Critical Review and User’s Guide (pp.
65–85). New York: Psychology Press.

Jekel, M., Glöckner, A., & Bröder, A. (2018). A new and
unique prediction for cue-search in a parallel-constraint
satisfaction network model: The attraction search effect.

Psychological Review, 125(5), 744–768, https://doi.org/
10.1037/rev0000107.

Johnson, E. J., Payne, J. W., Bettman, J. R., & Schkade,
D. A. (1989). Monitoring information processing and
decisions: The mouselab system. Technical report, Duke
University, Durham, NC, Center For Decision Studies.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
(2017). lmerTest Package: Tests in Linear Mixed Effects
Models. Journal of Statistical Software, 82(13), 1–26,
https://doi.org/10.18637/jss.v082.i13.

Lee, M. D. & Cummins, T. D. R. (2004). Evidence accumu-
lation in decision making: Unifying the “take the best” and
the “rational” models. Psychonomic Bulletin & Review,
11(2), 343–352, https://doi.org/10.3758/BF03196581.

Lohse, G. L. & Johnson, E. J. (1996). A comparison of two
process tracing methods for choice tasks. Organizational
Behavior and Human Decision Processes, 68(1), 28–43,
https://doi.org/10.1006/obhd.1996.0087.

Makel, M. C., Plucker, J. A., & Hegarty, B. (2012). Repli-
cations in psychology research: How often do they really
occur? Perspectives on Psychological Science, 7(6), 537–
542, https://doi.org/10.1177/1745691612460688.

Marewski, J. N. (2010). On the theoretical precision and
strategy selection problem of a single-strategy approach:
A comment on Glöckner, Betsch, and Schindler (2010).
Journal of Behavioral Decision Making, 23(5), 463–467,
https://doi.org/10.1002/bdm.680.

Mather, M. & Carstensen, L. L. (2005). Aging and motivated
cognition: the positivity effect in attention and memory.
Trends in Cognitive Sciences, 9(10), 496–502, https://doi.
org/10.1016/j.tics.2005.08.005.

Meißner, M., Musalem, A., & Huber, J. (2015). Eye tracking
reveals processes that enable conjoint choices to become
increasingly efficient with practice. Journal of Market-
ing Research, 53(1), 1–17, https://doi.org/10.1509/jmr.13.
0467.

Mynatt, C. R., Doherty, M. E., & Dragan, W. (1993). Infor-
mation relevance, working memory, and the consideration
of alternatives. The Quarterly Journal of Experimental
Psychology Section A, 46(4), 759–778, https://doi.org/10.
1080/14640749308401038.

Newell, B. R., Weston, N. J., & Shanks, D. R. (2003).
Empirical tests of a fast-and-frugal heuristic: Not every-
one “takes-the-best”. Organizational Behavior and Hu-
man Decision Processes, 91(1), 82–96, https://doi.org/10.
1016/S0749-5978(02)00525-3.

Noguchi, K., Gohm, C. L., & Dalsky, D. J. (2006). Cognitive
tendencies of focusing on positive and negative informa-
tion. Journal of Research in Personality, 40(6), 891–910,
https://doi.org/10.1016/j.jrp.2005.09.008.

Palan, S. & Schitter, C. (2018). Prolific.ac—A subject pool
for online experiments. Journal of Behavioral and Ex-
perimental Finance, 17, 22–27, https://doi.org/10.1016/j.
jbef.2017.12.004.



Judgment and Decision Making, Vol. 14, No. 4, July, 2019 Generalizability of the attraction search effect 508

Payne, J. W. (1976). Task complexity and contingent pro-
cessing in decision making: An information search and
protocol analysis. Organizational Behavior and Human
Performance, 16(2), 366–387, https://doi.org/10.1016/
0030-5073(76)90022-2.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adap-
tive strategy selection in decision making. Journal of Ex-
perimental Psychology: Learning, Memory, and Cogni-
tion, 14(3), 534–552, https://doi.org/10.1037/0278-7393.
14.3.534.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The
adaptive decision maker. Cambridge: University Press.

Questback (2016). Unipark EFS Survey (Version 10.9).
R Core Team (2019). R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.

Rieskamp, J. & Hoffrage, U. (2008). Inferences under time
pressure: How opportunity costs affect strategy selection.
Acta Psychologica, 127(2), 258–276, https://doi.org/10.
1016/j.actpsy.2007.05.004.

Scharf, S., Wiegelmann, M., & Bröder, A. (2017). General-
izability of the attraction search effect. (Preregistration.)
https://osf.io/j7vg4/.

Scharf, S., Wiegelmann, M., & Bröder, A. (2018). General-
izability of the attraction search effect. (Preregistration).
https://osf.io/nfruq/.

Schkade, D. A. & Kleinmuntz, D. N. (1994). Information
displays and choice processes: Differential effects of or-
ganization, form, and sequence. Organizational Behavior
and Human Decision Processes, 57(3), 319–337, https://
doi.org/10.1006/obhd.1994.1018.

Schulze, C. & Newell, B. R. (2016). Taking the easy way
out? Increasing implementation effort reduces probabil-
ity maximizing under cognitive load. Memory & Cog-
nition, 44(5), 806–818, https://doi.org/10.3758/s13421-
016-0595-x.

Shevchenko, Y. (2019). Multi-attribute task builder. Journal
of Open Source Software, 38(4), 1409, https://doi.org/10.
21105/joss.01409.

Stark, C. E. L. & McClelland, J. L. (2000). Repetition
priming of words, pseudowords, and nonwords. Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 26(4), 945–972, https://doi.org/10.1037/0278-
7393.26.4.945.

Söllner, A., Bröder, A., & Hilbig, B. E. (2013). Deliberation
versus automaticity in decision making: Which presenta-
tion format features facilitate automatic decision making?
Judgment and Decision Making, 8(3), 278–298.

Wells, G. L. & Windschitl, P. D. (1999). Stimulus Sam-
pling and Social Psychological Experimentation. Person-
ality and Social Psychology Bulletin, 25(9), 1115–1125,
https://doi.org/10.1177/01461672992512005.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data
Analysis. New York: Springer-Verlag.

Wilson, T. D., Wheatley, T., Meyers, J. M., Gilbert, D. T., &
Axsom, D. (2000). Focalism: A source of durability bias
in affective forecasting. Journal of Personality and So-
cial Psychology, 78(5), 821–836, https://doi.org/10.1037/
0022-3514.78.5.821.



Judgment and Decision Making, Vol. 14, No. 4, July, 2019 Generalizability of the attraction search effect 509

Appendix A: Results for importance ratings in Experiment 1
These are the results of the cue ratings made by subjects in Experiment 1. Subjects had to answer the question "How
important were these dimensions for you when deciding between (decision scenario)?".

Table A1: Mean importance ratings and respective standard deviations of scenarios’ cues in Experiment 1.

City Size Scenario Hair Salon Scenario
Cue "'0C8=6 (SD) Cue "'0C8=6 (SD)
State Capital 57.47 (32.66) Competency 85.16 (22.04)
International Airport 68.05 (29.81) Price 58.02 (26.02)
University 47.36 (28.24) Proximity to Home 37.59 (26.62)
Opera 36.99 (29.95) Scheduling Appointments 36.31 (26.68)

Hotel Scenario Job Scenario
Cue "'0C8=6 (SD) Cue "'0C8=6 (SD)
Proximity to Beach 59.07 (29.51) Pay 72.41 (23.32)
Price 64.70 (24.84) Working Conditions 73.52 (27.33)
Proximity to City Center 37.67 (26.01) Colleagues 64.64 (28.43)
Cleanliness 76.33 (27.15) Proximity to Home 44.95 (27.35)

Pizza Service Scenario Weather Forecast Scenario
Cue "'0C8=6 (SD) Cue "'0C8=6 (SD)
Quality 89.16 (18.21) German Weather Service 82.68 (24.89)
Price 55.12 (26.32) "ZDF" Weather Forecast 63.22 (30.12)
Timeliness 47.25 (28.04) "BILD" Weather Forecast 23.69 (24.09)
Friendliness 33.33 (27.04) Horoscope 5.17 (12.54)

Note. Ratings were made on a scale from 0 to 100; the displayed order of the cues in
the tables represents the displayed order, and therefore the assumed ranking, of the cues
in the experiment.
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Appendix B: Results of mixed logistic regressions of all three experiments

Table B1. Variances and correlations of random effects in mixed logistic regressions for Experiment 1–3.

Model 1 Model 2
Random Effects Variance Correlation Variance Correlation
Experiment 1

Subject
Intercept 0.04 0.16
Pattern Version 0.06 0.18
Intercept, Pattern Version −.42 −.35

Decision Scenarios
Intercept 0.07 0.08
Pattern Version 0.05 0.07
Intercept, Pattern Version .00 −.02

Experiment 2
Subjects

Intercept 3.12 1.96
Valence of First Search 0.60 0.59
Intercept, Valence of First Search 0.40 0.26

Decision Scenarios
Intercept 0.01 0.01

Experiment 3
Subjects

Intercept 0.11 0.31
Pattern Version 0.63 1.11
Intercept, Pattern Version 0.67 0.71

Shop Item
Intercept 0.05 0.07

Note. Model 1 represents the mixed logistic regression with only one predictor: pattern
version in Experiment 1 and 3 and the valence of the first searched-for cue value in Experi-
ment 2. Model 2 includes the cue pattern predictor for Experiment 1 and 3 and the strategy
count predictor for Experiment 2.
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Table B2. Fixed effects estimates of mixed logistic regressions for Experiment 1–3.

Model 1 Model 2

Fixed Effects B SE z p B SE z p

Experiment 1
Intercept −0.53 0.12 −4.40 <.001 −0.64 0.14 −4.67 <.001
Version a 0.75 0.11 6.77 <.001 0.88 0.13 6.84 <.001
Pattern 1 vs. Pattern 2 −0.80 0.07 −10.75 <.001
Patterns 1 & 2 vs. Pattern 3 0.02 0.04 0.58 .563
Version a * Pattern 1 vs. Pattern 2 0.16 0.07 2.14 .032
Version a * Patterns 1 & 2 vs. Pattern 3 0.15 0.04 3.73 <.001

Experiment 2
Intercept −2.29 0.15 −15.42 <.001 −2.32 0.13 −17.52 <.001
Valence positive 0.38 0.11 3.58 <.001 0.38 0.11 3.63 <.001
Strategy Count −0.41 0.04 −9.99 <.001
Valence positive * Strategy Count −0.09 0.03 −2.71 .007

Experiment 3
Intercept −0.72 0.09 −8.09 <.001 −0.88 0.12 −7.38 <.001
Version a 0.76 0.11 7.18 <.001 0.91 0.14 6.60 <.001
Pattern 1 vs. Pattern 2 1.36 0.11 12.96 <.001
Patterns 1 & 2 vs. Pattern 3 0.18 0.05 3.81 <.001
Version a * Pattern 1 vs. Pattern 2 0.17 0.10 1.64 .100
Version a * Patterns 1 & 2 vs. Pattern 3 −0.01 0.05 −0.22 .828

Note. Predictors valence and version were both effect coded in all analyses, such that Version a/positive valence was coded with +1 and Version
b/negative valence with −1. The predictor pattern in Experiment 1 and 3 was Helmert-coded, always comparing the cue pattern with the strongest
effect in Jekel et al. (2018) with the remaining cue patterns. Thus, Pattern 3 (+2) was compared to Patterns 1 and 2 (both −1) and Pattern 2 (+1) was
compared with Pattern 1 (−1) in both experiments. The predictor strategy count was mean centered across subjects.

Appendix C: The effect of (mis-)match in importance ratings on the attraction
search effect
We ran a generalized linear mixed model with the data from Experiment 1, including the individual (rank) correlations of
the intended ordering of the cues and the ordering of the cues following subjects’ ratings for each scenario. Thus, a high,
positive correlation represents very similar orderings, whereas a zero correlation represents no association of the intended
and the rated cue ordering. Just as with the other mixed logistic regressions, the dependent variable was whether subjects
searched for Option A in any given trial and the effect-coded predictor whether Option A was attractive in this trial (Version
a; +1) or not (Version b; −1). To account for systematic variation in the data, we added random intercepts for subjects and
content scenarios as well as a random slopes for version for both subjects and content scenarios. We additionally included
the (as described above) Helmert-coded cue pattern predictor as well as the individual rank correlations in the model.

The effect of interest here is the interaction of version and rank correlation, V = 0.26, (� = 0.14, I = 1.91, ? = .056.
Although the interaction is not significant, the predicted probabilities for searching for Option A depict the expected pattern:
The probability to search for Option A increases from 21.0% in trials with Version b to 42.3% in trials with Version a,
when the correlation of subjective cue order and intended cue order is −1. When the subjective cue order and intended cue
order are not correlated at all, the probability to search for Option A increases from 18.8% in trials with Version b to 52.1%
in trials with Version a. Finally, when the cue orderings are perfectly (positively) correlated, the probability of searching
for Option A in Version b is 16.9% and in Version a 61.8%. Thus, the effect of version on search behavior increases
with an increasing correlation between the intended and the rated cue ordering. The remaining results from this analyses
can be found in Tables C1 and C2. One thing to note is that compared to the analyses of Model 2 from Experiment 1
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(see Tables C1 and C2), the variance of the Decision Scenarios random slope slightly increased when including the rank
correlation predictor (from 0.07 in Model 2 of Experiment 1 to 0.08 in the Model with rank correlations as predictor). Thus,
it is not entirely clear whether including the rank correlations actually explained variation in the effect of pattern version
between Decision Scenarios.

Table C1. Variances and correlations of random effects in mixed logistic regressions for Experiment 1 including rank correla-
tions.

Random Effects Variance Correlation
Subjects

Intercept 0.16
Pattern Version 0.15 −.23

Scenarios
Intercept 0.04
Pattern Version 0.08 −.10

Table C2. Fixed effects estimates of mixed logistic regressions for Experiment 1 including rank correlations.

Fixed Effects Estimate SE z p

Intercept −0.69 0.13 −5.21 <.001
Version a 0.77 0.15 5.05 <.001
Pattern 1 vs. Pattern 2 −0.07 0.10 −0.73 .465
Patterns 1 & 2 vs. Pattern 3 0.01 0.06 0.16 .870
Rank Correlations 0.13 0.14 0.92 .359
Version a * Pattern 1 vs. Pattern 2 0.26 0.10 2.58 .010
Version a * Patterns 1 & 2 vs. Pattern 3 0.12 0.06 2.09 .037
Version a * Rank Correlation 0.26 0.14 1.91 .056
Pattern 1 vs. Pattern 2 * Rank Correlation −1.42 0.15 −9.76 <.001
Patterns 1 & 2 vs. Pattern 3 * Rank Correlation 0.02 0.08 0.28 .783
Version a * Pattern 1 vs. Pattern 2 * Rank Correlation −0.20 0.15 −1.40 .162
Version a * Patterns 1 & 2 vs. Pattern 3 * Rank Correlation 0.01 0.08 0.18 .860

Note. Predictor version was effect coded, such that Version a was coded with +1 and Version b with −1. The
predictor pattern was Helmert-coded, comparing the cue pattern with the strongest effect in Jekel et al. (2018)
with the remaining cue patterns. Thus, Pattern 3 (+2) was compared to Patterns 1 and 2 (both −1) and Pattern
2 (+1) was compared with Pattern 1 (−1) in both experiments.
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Abstract

Previous research has shown that the tendency to search information for an option

increases with option attractiveness. This attraction search effect (ASE) can be

explained by the integrated coherence-based decision and search (iCodes) model. In a

pre-registered study (N = 202), we investigated whether the ASE is moderated by

explicit awareness of the attractiveness of an option. Persons made repeated choices

between options in a task in which information was only partially accessible in a first

stage. More information could be actively searched in a second stage. In the

experimental condition, participants rated options’ attractiveness after the first stage,

while the control group did not. The manipulation increased the magnitude of the ASE

as hypothesized and led to increased search for the emerging favored option. An

extended iCodes model that includes a mixture parameter γ could account for the

moderating situational effect. The extended model also captured reliable interindividual

differences concerning the ASE and predicted the magnitude of the effect for different

cue patterns. The results of this project provide further evidence for the validity of

iCodes which not only predicts the effect of attractiveness ratings but also maps the

effect on the theoretically adequate parameter. Implications for further theory

development and theory integration are discussed.

Keywords: Information Search; Coherence; Parallel Constraint Satisfaction

Network Model; Attraction Search Effect; Parameter Validation
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Testing an extension of the iCodes model to account for situation, person, and task

specific variation in the attraction search effect

Many prominent models in decision making predict that information search

follows a fixed search rule. In a decision between two products individuals might, for

example, apply a lexicographic strategy (e.g., Payne et al., 1988; see also take-the-best

heuristic, Gigerenzer & Goldstein, 1996), and search information along attributes or

cues starting with the subjectively most important or valid one. In these classic models,

search is driven by decision strategies only and should be independent of factors such as

the content of the information and the emerging attractiveness of an option. Yet, recent

research has shown that individuals tend to search information for options that appear

to be more attractive according to previously searched information (Jekel et al., 2018).

This attraction search effect (ASE) has been shown to be robust across various

conditions (Jekel et al., 2018), observable for various kinds of decision tasks (e.g.,

probabilistic inferences, Jekel et al., 2018; preferential choice, Scharf et al., 2019), and of

considerable magnitude (average d = 1.10; Jekel et al., 2018). The integrated

coherence-based decision and search model (iCodes; Jekel et al., 2018) can account for

influences of options’ attractiveness on information search as well as various other

findings (e.g., Glöckner et al., 2014; Söllner et al., 2014). ICodes is based on a neural

network (details below) and predicts that both, more valid information and information

for the more attractive option, are more likely to be searched for.

Previous studies showed substantial variations in the magnitude of the ASE, i.e. it

was stronger when search was limited or costly and smaller for situations with unlimited

and free search (Jekel et al., 2018). Participants also reliably showed differences in the

strength of the ASE over repeated trials, indicating some degree of interindividual

differences (Jekel et al., 2018; Scharf et al., 2019).

In the current paper, we test whether the strength of the ASE increases with

participants’ awareness of option attractiveness. We manipulate this awareness

between-subjects by asking participants to rate the attractiveness of the options before

active information search while the control condition did not give a rating. Based on
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iCodes, highlighting the attractiveness of options should lead to an increased weighting

of option-attractiveness influences on search and, thus, to an increased ASE.

To account for shifts in the relative influence of effects of option attractiveness as

compared to cue validity, we extend iCodes by including a mixture parameter γ. We

examine whether accounting for situational and interindividual variance in search by

including γ in iCodes improves the model’s ability to predict search behavior.

Coherence-Based Decision Making and Search

Coherence-based models for decision making assume that individuals strive for

coherent interpretations of the available information (Glöckner & Betsch, 2008; Holyoak

& Simon, 1999; Thagard & Millgram, 1997; Thagard, 1989, see also, Montgomery,

1989; Pennington & Hastie, 1986; Svenson, 1992). In this process, initial advantages of

one option over the others are accentuated and the emerging favored option is chosen.

In contrast to classic models of decision making such as the adaptive decision maker

(Payne et al., 1988) or the adaptive toolbox (Gigerenzer, 2001; Gigerenzer & Todd,

1999), no serial-stepwise processing of information is assumed. Information integration

is modelled using neural networks that have been adapted from perception (McClelland

& Rumelhart, 1981) and are commonly used in many areas of psychology (for

overviews, see McClelland et al., 2014; Read et al., 1997).

With iCodes, coherence-based decision making has been extended to not only

simulate choice but also active information search (Jekel et al., 2018; Scharf et al.,

2019). ICodes generalizes the coherence principle to information search by assuming

that the attractiveness of an option and the validity of a cue jointly influence which

information is searched next. The relative impact of attractiveness during information

search is modulated by the parameter γ in iCodes (see Figure 1). γ represents the

relative influence of attractiveness in the information-search process. A γ = 0.5 would

indicate that the influences of option attractiveness and cue validity are equally strong

during information search. In the original specification of iCodes (Jekel et al., 2018),

γ = 0.09 was used as fixed parameter, indicating that the impact of information validity
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is ten times higher than option attractiveness on search. Importantly, according to

iCodes, the magnitude of the attraction search effect increases with mixture parameter

γ, since the ASE directly results from the influence of option attractiveness.

Potential Moderators of the Attraction Search Effect (ASE)

From a theoretical perspective, it is plausible to assume that the relative

importance of options’ attractiveness and cue validity, and consequently also the ASE,

are influenced by situational and personal factors. Persons might differ in their general

tendency to focus on validities or rather on option attractiveness. Context factors such

as time pressure or distraction might also reduce an individual’s tendencies to form

attractiveness impressions, which are required for attraction effects to appear.

Previous studies showed that search costs and restricted search lead to larger ASE

as compared to situations of free search (Jekel et al., 2018; Scharf et al., 2019).

Arguably, both manipulations entail more situational pressure to form

option-attractiveness impressions early in the search process than free search.

Adaptations of the mixture parameter γ iCodes might be required to account for these

differences. In the current study, we aim to test this assumption by asking half of the

participants to give option-attractiveness ratings before search.

The inclusion of attractiveness ratings in Fraser-Mackenzie and Dror (2009)

increased selective-exposure effects, in that information that supported the favored

option was more likely searched.1 We expect the inclusion of attractiveness ratings to

increase the strength of the ASE as well as the size of γ in our experiment by increasing

the awareness of options’ attractiveness. Further, we expect the effect of the

attractiveness-rating manipulation to depend on the coherence of the already available

evidence in a trial and, therefore, systematically differ between different search trials.

That is, more coherent decision situations (e.g., almost all information speaks for an

1 Note, that the ASE and selective exposure differ conceptually, since the latter requires a priori

information concerning whether a piece of information will support the currently favored option,

whereas ASE does not.
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option) lead to a clearer preference for one of the options and are, therefore, predicted

to also lead to a stronger impact of attractiveness during search.

Methods

This experiment was preregistered with a pre-data report

(https://osf.io/qrwmz/). The materials, instructions and analyses can be found at

https://osf.io/4khmq/?view_only=22284fc9536b4590b918585f4627f365.

Hypotheses

We assume that our experimental manipulation affects search behavior by

increasing the weight of the attractiveness influence in the search process. We,

therefore, tested the following hypotheses:

1. The Attraction Search Score is higher in the experimental as compared to the

control group.

2. In an a priori simulation study, we predicted the first opened cue value and its

respective search probability for all 16 cue-value patterns (eight cue patterns in

two versions) in both experimental conditions.2 We, then, ranked the predicted

search probabilities for these 16 cue-value patterns, separately for each condition.

2 In the simulation, we tested how well the mixture parameter γ representing the relative influence of

attractiveness on information search can be implemented in the model. This simulation revealed that

changing γ influenced the search predictions for the single cue-value patterns to a varying extent. To

test whether we can predict (cue) pattern-level effects in our experimental data, we simulated the

conditions with and without attractiveness ratings with fixed parameters P = 1.9 and λ = 18.9. We

assumed two extreme γ values for both conditions: In the condition with attractiveness ratings, we

assumed that the attractiveness influence on information search would be just as strong as the validity

influence (γ = 0.5) while in the condition without attractiveness ratings the validity influence would be

20 times stronger than the attractiveness influence (γ = 0.05). As we had not yet fitted γ to

experimental data, these values were estimates based on the good fit of γ = 0.09 in Jekel et al. (2018)’s

studies. The simulation and its results are accessible at

https://osf.io/4khmq/?view_only=22284fc9536b4590b918585f4627f365, further details can be found in

the online supplement.
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We expect a positive correlation of these predicted rankings with search

probability rankings based on the observed information search. The observed

rankings are derived from the relative search frequencies for the cue values that

have been predicted to be opened first based on the a priori model simulation.

3. The individually fitted γ parameters are on average larger in the experimental

group than in the control group. Larger γ values indicate a relatively stronger

attractiveness influence on information search. We will also explore whether

fitting individual γ parameters improves model fit compared to fitting one γ

parameter for all participants.

Participants and Design

Data were collected via the Hagen Decision Lab participant pool. We expected an

effect size of Cohen’s d = 0.50 for the effect of attractiveness ratings on the Attraction

Search Score, based on an exploratory comparison of previous studies. Targeting at an

α = β = .05, the required sample to find a medium-sized effect with a one-sided,

two-sample t test with equal group sizes is N = 176. After ending data collection, we

collected complete data sets from Nfinal = 202 (125 female, 7 unclassified, Mage = 35.73,

range : 18− 78) with NWithRating = 87 in the group with attractiveness ratings and

NNoRating = 115 in the control group.3 With this sample size, the achieved power to find

a Cohen’s d = 0.50 is 1− β = .969.

We manipulated between-subjects whether participants had to rate vs. not rate

the attractiveness of options before search. Participants were randomly assigned to one

of the two conditions. The attractiveness of options was manipulated within-subjects

via the cue-value pattern (Version A vs. Version B). Cue-value patterns in each

condition were repeated 8 times in each version, resulting in a total of 128 trials per

participant. We further counterbalanced on which side Option A was presented (left vs.

right) within-subjects across the repeated cue-value patterns. The order of trials as well

3 The sample sizes in each condition were unequal due to experimental dropout. For more information,

see the online supplemental materials.
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as the names of stocks and experts were randomized for each participant.

Materials

We used the same hypothetical stock market game, cue validities, and cue-value

patterns as described in Jekel et al. (2018). The cue-value patterns were designed in

such a way that there were two versions of each pattern, one in which Option A and one

in which Option B was more attractive according to iCodes (Version A and B,

respectively, see Table 1). This change in attractiveness was achieved by changing the

valence or availability of one or two cue values in each pattern.

Attraction Search Score. As our main interest in this experiment was

participants’ information-search behavior, we measured which concealed cue values were

opened in each trial. To represent the manipulation of attractiveness, we calculated the

Attraction Search Score as dependent variable. The score is the difference between the

probabilities of showing search behavior consistent vs. inconsistent with the ASE and,

thus, reflects how well participants’ behavior matches the predictions of iCodes for the

cue value opened first. A positive Attraction Search Score indicates that participants

searched information more often for the currently attractive option. An Attraction

Search Score of zero, however, indicates that participants’ search was not influenced by

the already available information. As the pattern version was the indicator of option

attractiveness, the Attraction Search Score in this experiment was calculated with the

following formula: Attraction Search Score =

p(Searching For Option A | V ersion A)− p(Searching for Option A | V ersion B).

γ parameter. ICodes predicts that both, information’s predictive strength (i.e.,

validity) and options’ attractiveness, influence information search additively. The role of

the γ parameter in iCodes is to moderate the share of the attractiveness influence

during the information search. Specifically, γ represents the percentage of the

attractiveness influence during information search, while the percentage of the validity

influence is represented by the counter-percentage 1− γ. Within the network structure

of iCodes, the relative impact of attractiveness and validity on information search is
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moderated by the weight of the links connecting concealed cue-value nodes with option

and cue nodes, respectively. As the relative influence of validity on information search

(i.e., the weight of the links connecting cue and concealed cue-value nodes) is fixed, one

can calculate the weight of the links connecting option and concealed cue-value nodes

(i.e., the attractiveness top-down influence) by multiplying the weight with the

respective odds of γ, wtop−down = wbottom−up × γ
1−γ .

Procedure

The experiment was conducted in accordance with the ethical standards of the

American Psychological Association (APA) and with the 1964 Helsinki declaration and

its later amendments. The experiment was run online using lab.js (Henninger et al.,

2019) and oTree (Chen et al., 2016). Participants first gave their consent and then

continued to read the instructions of the task. Next, they worked on the decision task.

In the group with attractiveness ratings, the first task in each trial was to rate the

options’ attractiveness. For this purpose, participants moved a continuous slider

towards the option name they thought to be more attractive. The rating could take on

values between -50 and 50 with a value of 0 representing that both options were equally

attractive. A value of -50 meant that the option presented on the left side of the screen

was more attractive, while a value of 50 meant that the option presented on the right

side of the screen was more attractive.

After the rating, the procedure did not differ between experimental and control:

Participants were asked to search for information and finally to decide between the two

options. In each trial, they had to open at least one piece of concealed information.

After their first information acquisition, participants could continue to search for

information with each additional piece of information costing 0.25 Cents. The total

costs for information search were deducted from the final payout of each participant.

Once participants finished searching for information, they had to decide between the

two options by clicking on a button below the options’ names. Participants’ decisions

were incentivized with 2.5 Cents per correct decision as determined by a naïve Bayes’
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rule based on the complete cue pattern (for the naïve Bayes implementation, see Lee &

Cummins, 2004). After finishing the decision task, participants were debriefed,

informed about their payout, and thanked for their participation.

Results

All analyses were conducted with the statistics software R (R Core Team, 2020).

Data and analyses scripts can be found at

https://osf.io/4khmq/?view_only=22284fc9536b4590b918585f4627f365.

The effect of attractiveness ratings on the Attraction Search Score (H1)

In line with H1, the Attraction Search Score was higher in the condition with

rating (MWithRating = 0.39, SE = 0.02), as compared to the condition without

(MNoRating = 0.28, SE = 0.02), t(187.24) = 4.03, p < .001, tested one-sidedly, Cohen’s

d = 0.57.4 Similar to previous findings (Jekel et al., 2018), we observed a strong

Attraction Search Effect aggregated across conditions, MASS = 0.33, t(201) = 22.51,

p < .001, tested one-sidedly, Cohen’s d = 1.58. To check the robustness of these results,

we ran a generalized mixed model on the trial level, which led to the same conclusions

(see online supplement for detailed results).

The effect of attractiveness ratings on search probabilities (H2)

According to H2, we expected that predicted search probabilities were positively

rank-correlated with the ordering of observed search probabilities per cue pattern in

both conditions.5

4 Due to the unequal sample sizes in the two experimental groups, we used the Welch corrected degrees

of freedom.

5 There was a mistake in the predicted ranking displayed in the preregistration, as one cue-value

pattern was not correct in the a priori simulation. Corrected rankings of search-probabilities used in

the article can be found in the online supplemental materials, Figure 1. For other deviations from the

pre-data report, see also online supplement.
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The observed rank ordering of search-probabilities showed a significant positive

correlation with the predicted rank ordering in the control condition, rNoRating = .93,

S = 46, p < .001, tested one-sidedly. Yet, in the condition with attractiveness ratings

predicted and observed search-probability rank orderings showed a positive but

non-significant correlation, rWithRating = .28, S = 490, p = .147, tested one-sidedly. The

overall correlation was r = .54, S = 2518, p = .002 (two-sided test).

To test whether our a priori γ estimates were inaccurate, we re-created the

predicted rankings by fitting a single γ parameter based on participants’

information-search behavior for each condition (fixed P = 1.66 and λ = 20.18, for more

details, see Jekel et al., 2018). In the experimental condition, the fitted γ parameter

was γ = 0.11 indicating an attractiveness share during the information-search process

around 11%, while in the control condition γ = 0.07, indicating a 7% share of

attractiveness, much lower than the initial assumption.

Based on fitted γ parameters, the rank correlation of observed and predicted

search probabilities was rWithRating = .69, S = 214, p = .004 in the experimental

condition and rNoRating = .91, S = 58, p < .001 in the control condition (see online

supplement Figure 2). Thus, with proper γ values, the rank orderings of predicted and

observed search probabilities are positively correlated in both conditions.

The effect of attractiveness ratings on the γ parameter (H3)

We hypothesized that individually-fitted γ parameters should on average be larger

in the experimental than in the control condition, reflecting a stronger attractiveness

influence on information search in the former condition.

To test this hypothesis, we fitted individual γ parameters based on participants’

search behavior. In addition to γ, there are two parameters in iCodes that influence

information search: The P parameter and the λ parameter. The P parameter

represents the individual sensitivity towards cue validity differences (Glöckner et al.,

2014; Jekel et al., 2018). The λ parameter represents the individual sensitivity towards

differences between activations of cue values in the model. A λ of zero would indicate
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that a person randomly picks which cue value to search for next. We fitted all three

parameters to the data (for details of the fitting procedure, see Jekel et al., 2018).

The mean γ parameter in the experimental group was γWithRating = 0.09

(SE = 0.008), while in the group with no ratings the mean γ was γNoRating = 0.06

(SE = 0.005), t(159.54) = 3.42, p < .001, tested one-sidedly, Cohen’s d = 0.50. Thus, in

line with H3, rating option attractiveness increased its influence in the

information-search process by about 50% relative to the control condition.6

Comparison of different Model Specifications

We argued that effects of option attractiveness are a relevant factor in information

search and responsible for the observed variance in the attraction search effect. To test

both assumptions more directly, we fitted and compared five different versions of iCodes

that varied concerning how option attractiveness influences were implemented (see

Table 2). Model 5 is the model we used for conducting the analyses of Hypothesis 3.

To compare the nested models, we calculated likelihood-ratio tests. The

comparison of Model 1 and 2 indicated that including the option-attractiveness

influence improves model fit, χ2(1) = 3148.66, p < .001. Fitting two separate γ

parameters for each condition further improved model fit (Model 2 vs. Model 3),

χ2(1) = 159.99, p < .001, indicating that γ actually captured the effect of pre-search

attractiveness ratings. Additionally, accounting for individual differences beyond the

experimental manipulation in the attractiveness influence further improved model fit

(Model 2 vs. Model 4), χ2(201) = 2056.60, p < .001. Finally, the model accounting for

individual differences in all three parameters, P, λ, and γ (Model 5), fitted the data

better than the model with individual γ parameters and fixed P and λ parameters

(Model 4), χ2(404) = 6110.66, p < .001. The difference in the respective model fits

translated to the prediction performance when looking at the individual correlations of

predicted and observed search probabilities (see Figure 2).

6 Support for the validity of our model fitting was provided in the online supplement.
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General Discussion

In a comprehensive study, we replicated a strong attraction search effect (ASE) in

both conditions. In line with the predictions of iCodes, the likelihood to search a piece

of information increases with the perceived attractiveness of this option. We also

identified an important moderator for the ASE. The magnitude of the effect increases if

participants have a clearer impression of option attractiveness, which we induced by

asking for attractiveness ratings based on partial information before active information

search. Participants were more likely to search information for the preferred option

when they rated the options’ attractiveness before search. A mixture parameter γ that

modulates the relative strength of the attractiveness influence as compared to influences

of cue validity in iCodes, was shown to be sensitive to the manipulation. Including γ

improved the predictive accuracy of the model. We identified reliable differences in the

magnitude of the ASE between participants, which can be mapped with γ. Taking

individual parameter values into account increased the prediction accuracy of iCodes in

comparison to model versions with a fixed γ-parameter as proposed by Jekel et al.

(2018) or a fitted global γ-parameter value for all participants. Finally, the extended

iCodes model with proper γ-parameters allowed predicting differences concerning the

magnitude of the ASE between different cue-value patterns, as indicated by strong

correlations of predicted and observed search probabilities.

The γ parameters found in the current study indicate that information search is

mainly driven by cue validity and that influences of option attractiveness are weaker by

roughly factor 10. Still, there is a reliable influence of option attractiveness on

information search, with around 6% in the condition without and around 9% in the

condition with attractiveness ratings. The results of the model comparisons substantiate

the importance of option-attractiveness influences for predicting information search.

Related search phenomena

Various information-search phenomena such as selective exposure and positive

hypothesis testing show similarities to the ASE, but it is important to note relevant
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differences. Selective exposure or confirmation bias require a priori knowledge of the

valence of information before search (Fischer & Greitemeyer, 2010), which is not

required for the ASE to appear. Pseudodiagnosticity and positive hypothesis testing are

investigated in the context of hypothesis-testing paradigms (e.g. Doherty et al., 1981)

and are therefore closely related to the ASE. The question remains, whether these

phenomena are just different instances of the same or fundamentally similar processes.

A potential answer has been offered by both, Fischer and Greitemeyer (2010) and

Fraser-Mackenzie and Dror (2009), who proposed dual-process accounts for

attractiveness-biased information search, hinting at motivational aspects of information

search (Fischer & Greitemeyer, 2010) and influences of a basic need for coherence

(Fraser-Mackenzie & Dror, 2009). ICodes may add to this literature by formalizing the

latter coherence-based processes during information search.

An advantage over more verbal theories of attraction-based search is that iCodes

is a quantitative model. It not only predicts the existence of an effect but also makes

precise, interval-scaled predictions regarding the magnitude of the attractiveness

influence on search. This increases the empirical content of the model (Glöckner &

Betsch, 2011; Popper, 2005) and allows for more rigorous investigation of different types

of attractiveness influences on information search. Furthermore, by validating the γ

parameter, our results open the possibility to measure the extent of the attractiveness

influence on search and, thus, possibly aid in teasing apart different explanations for

attractiveness phenomena in search. One goal for future research could be to

distinguish motivational and cognitive influences on attractiveness-biased search

further, to identify boundary conditions for both, and to extend iCodes to be able to

capture motivational processes (cf., Shultz & Lepper, 1996).

Cognitive and Motivational Influences

The exact mechanism behind the influence of option attractiveness on information

search is not yet fully known. One possible mechanism could be that participants’

cognitive resources are limited and they, thus, tend to focus on their preferred option
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(Evans et al., 2002; Mynatt et al., 1993). Thus, making preferences more salient to

participants leads to more attractiveness-based search of information. An alternative

motivational explanation would be that participants made a pre-commitment to the

option and, thus, were motivated to look for (positive) information on this option

(similar to the motivated reasoning described in the selective exposure literature,

Fischer & Greitemeyer, 2010; Fraser-Mackenzie & Dror, 2009). A straightforward

argument against this explanation is that, in our paradigm, participants do not know

the valence of concealed cue values and cannot be sure that their search will confirm

their current belief. Nonetheless, one could argue that participants still expect to find

positive information on the attractive option due to the already available evidence

pointing to this. In future research, one could try to differentiate between these two

explanations and foster an integration of cognitive and motivational theories of

reasoning and search.

Conclusion

The validity of cues as well as the emerging attractiveness of options jointly

influence information search. People differ in the extent to which they rely on both

processes when searching for information and situational manipulations that let

individuals form clear impressions of options’ attractiveness can further increase

influences of option attractiveness as would be theoretically expected. We proposed and

validated an extended iCodes model by adding a new mixture parameter γ that

captures the relative importance of both influence factors on search. Extending iCodes

in this way allows for a multitude of investigations of individual and situational

moderators of the processes during information search. It also provides a model that

allows taking into account top-down (i.e. validity/strategy driven) and bottom-up (e.g.

effects of saliency, option priming) processes in search that has been called for in recent

reviews (Orquin & Mueller Loose, 2013).
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Table 1

Eight pairs of cue patterns with four cues and two options from Jekel et al. (2018). +

represents positive cue values, − negative cue values, ? represents concealed but

searchable cue value, X concealed and unsearchable cue value. Version A of patterns is

displayed, cue values in parentheses represent Version B.

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Option A Option B Option A Option B Option A Option B Option A Option B

+ − + (−) ? X − ? − (+)

+ (X) + ? ? X − (+) − ?

? + ? ? ? + + −

− ? ? ? − ? − +

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Option A Option B Option A Option B Option A Option B Option A Option B

+ (−) ? + (−) − (+) + (−) − (+) − +

+ (−) ? ? ? ? ? + −

? ? + − + − ? ?

? ? − + − ? + (?) ?
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Table 2

Description of five fitted models. Models differ in whether parameters P , λ, and γ are

fixed, fitted globally across participants, or fitted individually per person.

Fitting Type

P λ γ

Model 1 fixed at P = 1.66 fixed at λ = 20.18 fixed at γ = 0

Model 2 fixed at P = 1.66 fixed at λ = 20.18 fitted globally and across conditions

Model 3 fixed at P = 1.66 fixed at λ = 20.18 fitted globally and one for each condition

Model 4 fixed at P = 1.66 fixed at λ = 20.18 fitted individually

Model 5 fitted individually fitted individually fitted individually
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Figure 1

Representation of the Option Attractiveness and Cue Validity Influences in iCodes

Note. The parameter γ covers the relative strength of both influences. The default

value of γ = 0.09 implies that the influence of cue validities is ten times stronger than

the influence of option attractiveness.
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Figure 2

Individual Pearson correlations of Fitted and Observed Search Probabilities

Note. For each fitting type (see text for model descriptions), the individual correlations are reported

separately for the condition with attractiveness ratings (dark grey points) and without attractiveness

ratings (light grey rectangles). The black circles and triangles represent the mean correlation, error

bars represent the standard error of the mean.
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Supplemental Materials

Testing an extension of the iCodes model to account for situation, person and task

specific variation in the attraction search effect

Analysis of selective drop-out

More participants dropped out of the condition with attractiveness ratings than

the condition without attractiveness ratings which led to unbalanced sample sizes

(NWithRating = 87 and NNoRating = 115). Our participants provided demographic

information and personality scores when registering in the Hagen Decision Lab. We

could, therefore, investigate whether participants between conditions differed on those

measures to assess whether selective drop-out was an issue during our study. We

analyzed whether the participants differed on demographic or personality characteristics

between the two conditions and whether the participants who dropped out of the

condition with attractiveness ratings differ from participants who finished the

experiment in the condition with attractiveness ratings.

Measures

As this analysis was exploratory in nature, we concentrated only on personality

facets of the HEXACO-100 Personality Inventory scores (including altruism items, Lee

& Ashton, 2018) and participants’ score on the 3- and 7-item cognitive reflection test

(CRT, Toplak et al., 2014). Further, we included participants’ age and gender in the

analyses.

Results

In a first step, we compared the participants between the experimental conditions

that completed the experiment by running two sample t tests, with Welch corrected

degrees of freedom. Neither the CRT scores nor the HEXACO personality scores

differed significantly between the two conditions, all ts < |1.44|, all ps > .149.

Additionally, the distribution of gender was not significantly different in the two
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conditions, χ2(1, N = 195) = 0.004, and participants did not differ in their age,

t(156.35) = 0.93, p = .356.

Secondly, we tested whether participants who dropped out of the

attractiveness-rating condition differed in their personality characteristics from

participants who finished the experiment in the same condition. Just as before,

participants did not differ significantly from each other on their CRT scores or their

HEXACO scores, all ts < |1.16|, all ps > .250. The same was true for participants’ age,

t(98.62) = −1.15, p = .253, and gender distribution, , χ2(1, N = 128) = 0.40, p = .526.

Discussion

We did not find substantive differences on personality and demographic

characteristics between participants in both conditions of our data set. In addition, we

did not find any differences between participants who dropped out of the condition with

attractiveness ratings and participants who completed the experiment in the

attractiveness-rating condition.
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Results of Generalized Mixed Model (H1)

To substantiate the results of our first hypothesis, we also ran a generalized mixed

model to analyze search behavior on the trial versus aggregate level. The dependent

variable was whether participants searched for Option A or Option B in any given trial.

As predictors we included the cue-pattern version and the experimental condition. Both

predictors were effect-coded: Version A received the weight +1, Version B the weight

−1; the condition with attractiveness ratings received the weight +1, the condition

without attractiveness ratings −1. Random intercepts for participants were included to

account for inter-individual variance. Multilevel analyses were run using the lme4

package (Bates et al., 2015), significance tests for multilevel models were conducted

using the lmerTest package (Kuznetsova et al., 2017). The results of this mixed model

showed a statistically significant main effect of version, b = 0.70, z = 51.93, p < .001,

such that participants were more likely to search for Option A in Version A in which

Option A was more attractive than in Version B in which Option B was more

attractive. Specifically, the probability to search for Option A in Version A is predicted

to be 68.2% in comparison to 34.6% in Version B. Further, there was a main effect of

condition, b = −0.04, z = −2.55, p = .011, such that participants were more likely to

search for Option A in the condition without attractiveness ratings before search

(predicted probability of 52.6%) than in the condition with attractiveness ratings

(predicted probability of 50.5%). Lastly, there was a significant interaction of the two

factors version and condition, b = 0.13, z = 9.47, p < .001. This interaction indicated

that participants were more likely to search for Option A in Version A if they rated

options’ attractiveness before search than if they did not rate options’ attractiveness.

Specifically, the probability of searching for Option A increased in the experimental

group by 39.1% while the increase in the control group was 27.8%. Thus, the results of

the generalized linear mixed model supported the preregistered results.
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Deviations from pre-data report: Changes in modelling information-search

behavior

This project was pre-registered with a pre-data report at https://osf.io/qrwmz/

(Scharf et al., 2018). In this pre-data report, we report a small a priori simulation study

to derive predictions based on the γ parameter—referred to as rho parameter in the

pre-registration (see

https://osf.io/4khmq/?view_only=22284fc9536b4590b918585f4627f365)—for the cue

patterns used in the study.

When fitting γ based on participants’ search behavior after data collection was

completed, we changed how γ was parameterized. Our initial approach was to fit γ as

the factor of how much more weight the predictive strength of the information, i.e.,

validity, receives during the search process compared to the options’ attractiveness.

This factor changes the weight of the links between option and concealed cue-value

nodes and was fixed to 10 in Jekel et al. (2018)’s studies, indicating that these links

were 10 times weaker than the link between cue and cue-value nodes (0.1 and 0.01

respectively, for more details on the exact model implementation, see Jekel et al., 2018).

This parameterization, however, entailed the problem that possible values range from 1

(the weight of the option-to-cue-value node link is equal to the cue-to-cue-value link) to

infinity, making the attractiveness influence on information search infinitesimally small.

This characteristic led to issues with fitting the model when the individual

attractiveness influence was virtually non-existent and, thus, γ parameters became very

high.

Due to these technical issues, we re-parameterized γ to represent the relative share

of the attractiveness influence compared to the validity influence on information search.

With this parameterization, equal validity and attractiveness influences would be

represented by γ = 0.5 (or odds of 1:1). The default γ parameter that represents a ten

times stronger validity influence than attractiveness influence would be γ = 0.09,

representing around 9% of attractiveness influence (or odds of 1:10).

Another aspect changed in the fitting procedure compared to the pre-data report:
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In the pre-data report we stated that we would only fit γ and P parameters and use a

fixed λsearch. For this paper, however, we fitted λsearch to capture individual differences

in search behavior.The reason behind this change was that it was commented during a

conference that it is possible that the three parameters may not be entirely independent

from each other and that consistently not fitting one of the parameters might distort

the results. We, therefore, decided to either fix both, P and λ, or fit both parameters.
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Illustration of Results for Hypothesis 2

The predicted search-probability ranking as derived from a simulation of the

model did not correlate significantly with the observed search probabilities in the

condition with attractiveness ratings (see Figure 1). To test whether the differences of

parameter values between conditions were set at too extreme values in the a priori

simulations, we replicated this analysis with predicted rankings based on fitted

parameters. Specifically, we fixed the P and λ parameters to the average values

reported in Jekel et al. (2018), P = 1.66 and λ = 20.18 and fitted one γ parameter per

condition. The γ parameters were γWithRating = 0.11 and γNoRating = 0.07. With the

fitted parameters, the correlation of predicted and observed search-probability rankings

was significant and positive in both conditions (see Figure 2).



SUPPLEMENTAL MATERIALS 8

Figure 1

Comparison of Predicted and Observed Search Probabilities per Cue-Value Pattern

Note. Pattern IDs on the x axis represent the eight cue-value patterns in two versions, with Pattern 1

in Version A represented as 1, Pattern 1 in Version B represented as 2, Pattern 2 in Version A

represented as 3, and so on. Dark grey points represent predicted search probabilities based on γ = 0.5

in the attractiveness-rating condition (upper panel) and on γ = 0.05 in the condition without

attractiveness ratings (lower panel). Light grey triangles represent the observed search probabilities in

both conditions.
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Figure 2

Comparison of Fitted and Observed Search Probabilities per Cue-Value Pattern

Note.Pattern IDs on the x axis represent the eight cue-value patterns in two versions, with Pattern 1 in

Version A represented as 1, Pattern 1 in Version B represented as 2, Pattern 2 in Version A represented

as 3, and so on. Dark grey points represent predicted search probabilities based on a fitted

γW ithRating = 0.11 in the attractiveness-rating condition (upper panel) and on a fitted γNoRating = 0.07

in the condition without attractiveness ratings (lower panel). Light grey triangles represent the

observed search probabilities in both conditions.



SUPPLEMENTAL MATERIALS 10

Validity of Model Fitting Procedure

The attractiveness ratings should only affect the influence of option attractiveness

during information search but not the P and λ parameters. Indeed, both parameters

did not show an effect of the experimental manipulation, MP NoRating = 1.47,

MP WithRating = 1.42, t(191.00) = −0.43, p = .668, BF = 0.17 and Mλ NoRating = 67.74,

Mλ WithRating = 74.73, t(149.24) = −0.43, p = .667, BF = 0.17, tested two-sidedly,

providing further support for the validity of the fitting procedure.

We further ran a split-half cross prediction to test the validity of our model fitting

and to detect potential overfitting. We split the experimental data set in a training and

a test set of equal size. From the 128 trials of each participant, we selected 64 trials by

choosing four of the eight repetitions of each pattern in each version randomly. With

this procedure both, the training and test set, contain the same cue patterns. We then

fitted the individual γ, P, and λ parameters with the training data set and used these

parameters to predict information-search frequencies in the test set. The predicted

information-search frequencies correlated positively with the observed

information-search frequencies in both conditions, rWithRating = .92, 95%CI [.87, .94],

and rNoRating = .86, 95%CI [.81.90], indicating that our estimation procedure was

robust and did not involve overfitting.
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Abstract

The integrated coherence-based decision and search model (iCodes; Jekel et al., 2018)

predicts that both the validity of information and the coherence of the information with

the emerging preferred option influence attention allocation in decision making. In two

pre-registered experiments (total N = 107), we tested qualitative predictions of iCodes

by analyzing participants eye movements while repeatedly deciding in a hypothetical

stock-market game. The results show that the previously observed attraction search

effect generalizes from active, deliberate information search to automatic attention

allocation in visual search. We observe a strong and robust attraction attention effect,

in that the fixation likelihood of new information increases with the attractiveness of

the respective option. The general effect of coherence on attention allocation in the

decision task predicted by iCodes could be confirmed as well. Solely the predicted late

coherence effect was not supported, as we did not observe an increase of the coherence

influence on attention allocation over the course of a trial. The results overall highlight

the importance of coherence for attention allocation during decision making and provide

support for coherence-based models of decision making such as iCodes.

Keywords: Coherence; Attention Allocation; Parallel Constraint Satisfaction

Network Model; Attraction Search Effect; Eye Tracking
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Coherence influences on attention allocation and visual information search in decisions

with open information displays

Past research has demonstrated that the coherence of information, that is, the

consistency of information with the currently attractive choice option, influences

decision-making processes (Glöckner & Betsch, 2008a; Holyoak & Simon, 1999;

Thagard, 2000). Specifically, it has been demonstrated that participants integrate

coherent information more quickly (Glöckner & Betsch, 2012), overweight coherent and

underweight incoherent information to support the favored option (Glöckner et al.,

2010), and use even irrelevant information if it changes the coherence of the decision

situation (Söllner et al., 2014). With the parallel constraint satisfaction model of

decision making (PCS-DM), Glöckner et al. (2014) introduced a formalized

computational model that can account for this information distortion and additionally

makes precise predictions with regard to choices, decision times, and confidence

judgments. Yet, PCS-DM and its predecessors (Glöckner & Betsch, 2008a) have been

criticized for not including a fully specified model for information-search processes and

attention (Marewski, 2010). Thus, the model’s ability to make precise and dynamic

process predictions for attention allocation in decision tasks is limited (Orquin &

Mueller Loose, 2013).

Jekel et al. (2018) addressed these criticisms by proposing an extension of

PCS-DM, the integrated coherence-based decision and search model (iCodes). By

extending the coherence-based decision process to also include information search, they

could demonstrate that the coherence of information also plays a role in active

information search. In their studies, participants were more likely to search for

information for the currently attractive option in probabilistic-inference tasks. This

attraction search effect for active information search (i.e., collecting information by

using the mouse pointer) was strong in magnitude, robust over various paradigms, and

replicated in later studies (Scharf et al., 2019). It, however, remained unclear, whether

the attraction search effect is limited to arguably more deliberate acts of active

information search or also generalizes to probably more automatic patterns of visual
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attention in paradigms in which all information is instantly available, resulting in an

attraction attention effect (details below). The goal of this article is to test iCodes’s

ability to also predict patterns of visual search for information (i.e. attention) as

measured via eye-tracking in the same probabilistic-inference tasks. We specifically aim

at testing whether an attraction attention effect exists as well as testing iCodes’s

predictions about the coherence influence on attention allocation and its predicted time

dynamics in general. We do so by analyzing participants’ gaze direction in relation to

the coherence of the information presented. In the following, we first present a short

overview of the current state of research on attention during decision making and

search. We, then, introduce iCodes and derive its predictions for attention allocation.

Attention allocation during decision making and search

Visual attention plays an important role during decision making not only as a

process of passive information uptake but also as active part in the construction of the

mental representation of decisions (Orquin & Mueller Loose, 2013). In their

comprehensive review, Orquin and Mueller Loose (2013) elaborated on different aspects

of the interplay of attention and decision making and search. On the one hand,

attention is influenced due to bottom-up processes during decision making (Orquin

et al., 2013), that is, due to automatic attention driven by characteristics of the stimuli

(cf. Theeuwes, 2010). Several studies measuring eye movements showed this

stimulus-driven attention allocation, such that visually salient alternatives (Lohse, 1997;

Milosavljevic et al., 2012) as well as visually salient attributes (Bialkova & van Trijp,

2011) were fixated more often over the course of a decision. On the other hand,

attention is also guided by top-down processes (Orquin et al., 2013), that is, it is guided

toward task- and goal-relevant stimuli. For instance, studies showed that information of

high importance or high utility to a decision was attended to preferentially (Glöckner &

Herbold, 2011; Glöckner et al., 2014; Meißner & Decker, 2010; Orquin et al., 2013;

Reisen et al., 2008). Additionally, there are down-stream effects of attention on

decision-making such as, for instance, described in the gaze cascade effect (Shimojo
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et al., 2003). This effect describes a pattern of gaze behavior such that the number of

fixations on the chosen alternative increases over time in the decision-making process

(e.g., Atalay et al., 2012; Fiedler & Glöckner, 2012; Glaholt & Reingold, 2009).

In light of the importance of attention during decision-making processes, several

decision-making models have been evaluated with regard to their predictions for

attentional patterns during decision making (Orquin & Mueller Loose, 2013). The most

prominent class of models in the decision-making literature that have been successful in

predicting choices based on attention and aspects of attention allocation are evidence

accumulation models (Busemeyer & Johnson, 2004; Krajbich et al., 2010; Thomas

et al., 2019; but see also Hausmann & Läge, 2008; Lee & Cummins, 2004, for evidence

accumulation models outside the realm of eye tracking). Among the evidence

accumulation models, the attentional drift diffusion model (aDDM, Krajbich et al.,

2010; Krajbich & Rangel, 2011) is the most prominent for predicting attention

allocation. These models assume that, when decision makers fixate one of the options

under consideration, they accumulate evidence for it and choose an option, once the

accumulated evidence for it reaches an individual decision threshold. The speed of this

evidence-accumulation process for each option is assumed to be a function of the

option’s relative value. A core prediction of aDDM that follows from its proposed

decision process is that the last fixation will be on the subsequently chosen option

which is well in line with the findings on the gaze-cascade effect (Shimojo et al., 2003).

With regard to information search, the original aDDM assumes that information is

fixated stochastically and that the fixation pattern does not change over the course of a

decision (Krajbich et al., 2010; Krajbich & Smith, 2015).

While evidence accumulation models generally fared well in predicting attention

allocation during decision-making overall (cf. Fisher, 2017; Krajbich et al., 2012;

Krajbich & Rangel, 2011; Smith & Krajbich, 2019; Tavares et al., 2017), their

predictions of the (visual) information-search process as mainly stochastic within a trial

appear to be too simplistic to be an accurate description of attention allocation during

decision making (cf. Orquin & Mueller Loose, 2013). For example, studies have shown
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that fixations can be categorized into attention phases over the course of a decision

(e.g., Glaholt & Reingold, 2011; Reutskaja et al., 2011; see also Krajbich et al., 2010;

Krajbich et al., 2012). Further, aDDM currently does not make fine-grained predictions

about top-down and bottom-up influences on attention on the attribute-level during

information search (cf. Krajbich et al., 2012; Orquin & Mueller Loose, 2013). As a

response, more recent extensions of the aDDM have, therefore, incorporated a

value-based prediction of attention, in that the probability of fixating an option

increases with its accumulated value already early in the decision process (Gluth et al.,

2020). In addition, alternative evidence accumulation models, such as Decision Field

Theory (DFT, Busemeyer & Johnson, 2004) assume that more important information is

fixated with a higher likelihood. Taken together, while evidence accumulation models

have been successful in predicting attention allocation during decision making, they lack

in their precision for predictions for (visual) information search and its interplay with

top-down and bottom-up processes.

Coherence-based information search

Another model class discussed in the decision-making literature are parallel

constraint satisfaction models (e.g., Glöckner & Betsch, 2008a; Holyoak & Simon, 1999;

Read et al., 1997; Thagard & Millgram, 1997). However, as already stated above, these

models and even the fully specified PCS-DM model (Glöckner et al., 2014), do not

explicitly model attention allocation on information in decision tasks and, similar to

evidence accumulation models, do not make fine-grained predictions for attention

allocation during information acquisition (Orquin & Mueller Loose, 2013).

Addressing the lack of formalized information-search predictions, Jekel et al.

(2018) proposed the integrated coherence-based decision and search model (iCodes) as

an extension of the PCS-DM model (Glöckner et al., 2014). Just as the PCS-DM

model, the underlying idea of iCodes is that information search and decision making are

best represented by a coherence-maximization process that increases the coherence of

the decision situation. Once a certain level of coherence is achieved, new information is
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searched or a choice is made. The basis of this coherence-maximization process is a

network that represents the information of a probabilistic-inference task. In these tasks,

decision makers have to choose between two or more options based on the information

(or cue values) given by cues that differ in their predictive quality (or validity, see also

Gigerenzer & Goldstein, 1996, for a definition of cue validity) with regard to the

decision criterion. The cue values can either be already available or still concealed and

searchable. In iCodes’s network, options, cues, and cue values are represented as nodes

that are connected via links (see Figure 1 A).

The dynamic allocation of attention on cue values is represented as an iterative

spread of activation across the links, initiated by the source node on the bottom of the

network. From the source node, activation spreads to the cue nodes and from there to

the cue-value nodes, each time proportionally to their respective validities. As only

already available cue values carry information about the options, the spread of

activation continues to the options only from nodes representing open cue values, while

nodes of concealed cue values only receive activation via unidirectional links.1 If the

already available information in a decision task supports an option, the activation of the

respective option node increases. Due to an inhibitory link between the option nodes,

the increase in activation of one option node automatically leads to a decrease of

activation in the other option node(s) representing a forced choice between the options.

The spread of activation continues from the option nodes back to the cue-value nodes

which increases the activation of nodes that represent cue values with information on

the currently preferred option and decreases the activation of cue-value nodes of the

currently non-preferred option. Again, as nodes of concealed cue values are only

connected via unidirectional links, the spread of activation continues back only from the

open cue-value nodes to the cue nodes and finally to the source node, which concludes

one model iteration. This spread of activation continues until the activation levels at

1 Similar to PCS-DM, except for links connecting to concealed cue-value nodes, all other links are

bidirectional.
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the nodes stabilize (i.e., do not change substantially).2

iCodes predicts just as PCS-DM that, after the network settled into a stable state,

the option which received the most activation after this process will be chosen (Jekel

et al., 2018). Information search is predicted in a similar way in that iCodes predicts

that the concealed cue value (node) that received the most activation will be searched

for. Importantly, nodes that represent concealed cue values are connected to cue and

option nodes via unidirectional links, therefore, their final net input for those nodes is

the sum of the activation they receive from cues and from options. As already detailed

above, the activation cue-value nodes receive from cues is proportional to the respective

cue’s validity such that nodes representing cue values that stem from more valid cues

receive more activation than nodes that stem from less valid cues. Thus, all else being

equal, the more valid concealed information should be searched for according to iCodes.

The activation cue-value nodes receive from the options on the other hand is mainly

determined by the already available evidence for the options such that cue values that

have information on the currently favored option receive more activation than those

that have information on the currently unfavored option. Thus, iCodes predicts that,

again all else being equal, cue values that have information on the currently more

attractive option are more likely to be searched for.

iCodes also predicts process measures, such as decision- and information-search

times by the number of iterations it takes the network to stabilize. With regard to

attention allocation, the underlying assumption is that the activation at the cue-value

node level can be translated behaviorally to the probability of attending to the

respective cue values. Thus, iCodes predicts that the spread of activation through the

network representing the decision task mirrors the distribution of attention in said task.

Therefore, relative differences in activation levels between open cue-value nodes should

map onto relative differences in the number of fixations on open cue values. This

assumption was supported already for active information search (cf. the attraction

2 For the full formalization of the coherence-maximization process and the iterative spread of

activation, please refer to Jekel et al. (2018).
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search effect, Jekel et al., 2018) but has yet to be shown for eye movements as indicator

of search.

Jekel et al. (2018) tested iCodes’s prediction for active information search, that

they coined the attraction search effect, in a mouse-lab setting and found that

participants preferentially searched for new information describing the attractive option

in three experiments and the data of five re-analyzed studies. Additionally, conceptual

replications showed tha the attraction search effect generalized to different semantic

contexts, cue-value constellations, and presentation formats (Scharf et al., 2019).

Further, situational and interindividual differences in the strength of the attraction

search effect could be captured with a model-inherent parameter that modulates the

relative strength of the attractiveness influence compared to the validity influence on

information search (Scharf et al., 2021).

iCodes predictions for attention allocation

As stated above, the underlying assumption behind predicting gaze behavior

during decision making with iCodes is that the differences in activation of the cue-value

nodes can be translated to differences in attention allocation on the cue values. More

specifically, cue values whose nodes retained high activation levels should be fixated

preferentially compared to cue values whose nodes did not retain high activation levels.

A straight-forward transfer of iCodes predictions to attention allocation is possible

with the already established attraction search effect (Jekel et al., 2018). As iCodes

predicts a tendency to search for new information describing the currently attractive

option first, there should also be a tendency to fixate newly revealed information

describing the currently attractive option first. We coined this prediction the attraction

attention effect (see Figure 1 B for a visualization of the prediction). Following the

predictions of the attraction search effect and the attraction attention effect, our first

hypothesis is as follows:

(H1) Newly revealed cue values that describe the more attractive option

should have a higher probability to be fixated first than newly revealed cue
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values describing the less attractive option.

In addition, iCodes predicts that the nodes of cue values that contain information

supporting the currently preferred option should receive additional activation from the

option nodes compared to nodes of cue values describing the currently non-preferred

option. Thus, information that is coherent with the attractive option, i.e. supports the

attractive option or opposes the unattractive option, should receive more activation

than incoherent information and should be fixated more often. We call this prediction

the coherence attention effect (see Figure 1 B for a visualization of the prediction) and

our second hypothesis is the following:

(H2) Cue values that support the attractive option (= coherent) receive

more attention than cue values that do not support the attractive option (=

incoherent).

A special case of the coherence attention effect applies to newly revealed

information of a cue that does not discriminate between the options.

Non-discriminating cue values from the same cue share the same valence and validity,

thus, they either both support or contradict their respective option. These cue values

are, therefore, uninformative for the decision and should be ignored from a rational

perspective. The only difference between the two indiscriminatory cue values is that one

is a feature of the currently attractive option and the other is not. Thus, even though

these cue values share the same valence and validity, one cue value is coherent and the

other one is not. Due to the activation that stems from the options, iCodes predicts

that the coherent cue value of a non-discriminating cue (+ on the attractive option, −

on the unattractive option) should be fixated more often than the incoherent cue value,

as it receives more activation from the currently preferred option. This prediction is

reflected in the following hypothesis:

(H2a) The cue value from a non-discriminatory cue-value pair that has

positive information describing the attractive option (+) or negative

information describing the non-attractive option (−) should receive more
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attention than the cue value that supports the non-attractive option (+) or

does not support the attractive option (−).

iCodes also makes predictions about the changes of attention allocation over the

course of a trial. Due to the model structure, cue-value nodes receive activation from

the cue nodes first during the iterative spread of activation. Thus, the validity of cues is

the first influence on the relative differences in cue-value nodes’ activation levels and

should therefore be the main influence on fixation patterns in the beginning of the trial

before backward activation from the options kick in. Which option is favored by the

currently available evidence only takes shape later in the information-search process,

when the network has started to integrate the information. Therefore, the coherence

influence on gaze patterns is predicted to appear towards the end of the trial as then

the cue-value nodes receive more activation from the option nodes resulting in the

prediction that the probability of fixating coherent cue values should increase. We coin

this prediction the late coherence effect (see Figure 1 C for a visualization of the

prediction) as formulated the following hypothesis:

(H3) In the beginning of a decision trial, attention is mainly allocated to

cues corresponding to their respective validities (= cue values of more valid

cues receive more attention). Towards the end of a decision trial, attention

is focused on information that is coherent with the favored option (= cue

values supporting the preferred option receive more attention).

Last but not least, iCodes also predicts the gaze cascade effect (Shimojo et al.,

2003). During the iterative spread of activation, the option node that is predicted to be

chosen receives more and more activation, just as the cue-value nodes supporting this

option. Therefore, the cue values of the finally chosen option should be fixated with an

increasing probability over the course of a trial.3 Hence, the final hypothesis we test is

as follows:

3 Note, that this prediction is conditional on the coherence of information. Only if the option, that is

subsequently predicted to be chosen, is also described by more coherent (and more valid) information

than the alternative option, iCodes actually predicts the gaze cascade effect. Thus, iCodes predicts an
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(H4) Over the course of a decision trial, attention is allocated with

increasing probability to the subsequently chosen option.

Taken together, iCodes makes precise predictions about attention allocation, its

determinants, and its temporal dynamics. No other model that we are aware of predicts

that the coherence of information influences attention allocation and information search

(without auxiliary assumptions). To test iCodes’s predictions for visual search, we

conducted two experiments utilizing eye tracking to measure participants’ gaze behavior.

Experiment 1

In the first experiment, we focused on testing the attraction attention effect

(AAE) as the attentional equivalent to the attraction search effect (H1). We, thus, were

interested in whether participants showed a tendency to fixate information describing

the currently attractive option first. For this purpose, we utilized a hypothetical

stock-market game (cf. Jekel et al., 2018) in which experts (i.e. cues) with different

validities provide dichotomous recommendations (i.e. cue values: good vs. bad) about

stocks (i.e. options). The cue-value pattern, that is, the constellation of expert

recommendations, were adapted from Bröder et al. (2021, see also Table 1) and trials

were constructed such that one stock was always more attractive than the other given

the initially available evidence. We also adapted the two-stage experimental design from

Experiment 2 by Bröder et al. (2021) that consisted of a rating phase during which

participants rated which option was currently more attractive and a decision phase

during which participants decided for one of the options. In the rating phase, the cue

values of one cue were still concealed and were subsequently opened and available to the

participants in the decision phase. Using this two-stage design allowed us to observe

whether the first fixation was on new information describing the currently preferred

interaction of the gaze cascade effect with the coherence of information. In the following, we restricted

our analyses to the prediction of the (main) gaze cascade effect, as we did not manipulate the amount

of coherent information per option. For tentative results regarding the predicted interaction effect in

the two reported experiments, see the online supplement.
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option, as participants already developed a preference for one of the options during the

rating phase. It also allowed us to observe participants’ fixations without distortions of

the gaze-behavior due to, for example, reading direction, as participants were already

familiar with the decision situation and the location of the to be revealed cue values.4

Thus, our main goal in Experiment 1 was to test whether participants fixated the newly

revealed cue value on the attractive option first during the decision phase. While not

the main focus of this experiment, we also tested whether participants attended to

coherent information preferentially (coherence attention effect, H2 & H2a), whether the

coherence influenced on attention changed over the course of a trial (late coherence

effect, H3), and whether the probability to attend to the subsequently chosen option

increased over the course of a trial (gaze cascade effect, H4). The experiment was

preregistered and a pre-data report detailing the hypotheses, methods, and planned

analyses for this experiment is available at:

https://osf.io/j7v9a/?view_only=509578b5215e4115a46cf923cf2b7f40.

Methods

Design and Participants. In this experiment, we manipulated the valence of

the revealed cue values during the decision phase in that they were either both positive,

both negative, and one negative for the left option and one positive for the right option

or vice versa. Thus, we had four different levels of the newly revealed cue values during

the decision phase. Our design was, therefore, a one factorial within-subjects design

(non-discriminating both positive vs. non-discriminating both negative vs.

discriminating and supporting attractive option vs. discriminating and supporting

unattractive option).

We ran a pilot experiment with N = 12 participants to test the setup of the eye

tracker and to estimate effect sizes for determining the required sample size. The pilot

4 In addition, the rating phase should boost the effect of option attractiveness on information search

(cf. Bröder et al., 2021; Scharf et al., 2021), increasing our chances of finding support for the attraction

attention effect.
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revealed large effects for the attraction attention effect (H1, Cohen’s dAAE = 2.21) and

the coherence attention effect (H2, Cohen’s dCAE = 2.21) as well as a medium-sized

effect for the coherence attention effect for non-discriminating, newly revealed cue

values (H2a, Cohen’s dCAEindscrim = 0.44). We used the latter effect size to

conservatively determine the required sample size for Experiment 1. To be able to

detect a medium effect of Cohen’s d = 0.44 with a one-sided, one-sample t test and

assuming α = β = .05, the required sample size is N = 58 (according to G*Power, Faul

et al., 2007).

We collected complete data-sets from 60 participants. We discarded the data from

two participants, as they moved away from the head-rest during the experiment without

the possibility to re-calibrate them afterwards, and from one participant, as they later

indicated that they were underaged. Thus, our final sample consisted of 57 participants

(41 female, 1 non-binary, Mage = 24.53, range: 18-34). Participants received a

base-payment of 5 Euro for participating in the study and could earn extra money

depending on their choices. For every correct decision, participants received 8 Cents,

thus, they were able to earn up to 10.24 Euro additionally to the show-up fee (average

total payoff Mpayoff = 14.38 Euros, approx. USD 17.46, range: 12.00− 15.10 Euros).5

Materials. For this experiment, we used the cue-value patterns from Bröder et

al. (2021, see also Table 1).6 The validities of the cues were .90, .80, .70, and .60, and

cues were always presented from top to bottom in order of their validity. The patterns

were constructed such that Option A was more attractive than Option B. We

counterbalanced whether Option A or B was presented on the left side or on the right

side of the screen. For our experiment, the cue values of one cue were concealed during

the rating phase and were revealed during the decision phase. The valence of the

revealed cue values was manipulated such that they were either both positive (+ +),

5 Correct decisions were determined according to the naïve Bayes rule (cf. Lee & Cummins, 2004). Pay

offs were rounded up to 10 Cents.

6 There was a mistake in the table of patterns reported in the pre-data report, as the options for

Pattern 1, 6, and 8 were switched. The table presented here is the correct table.
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both negative (− −), or they discriminated between options such that they supported

either the attractive or the unattractive option (+ − vs. − +). Each pattern was

presented twice such that Option A was presented equally often on the left and the

right side of the screen. We pseudo-randomized the order of cue-value patterns, such

that at least four trials were presented between pattern repetitions. Over the course of

the experiment, participants worked on a total of 128 trials (8 cue patterns x 4 versions

of opened cue values x 2 counterbalancing of option side x 2 repetitions of each

combination).

Measures. During the rating phase of the experiment, we measured which

option participants rated as the more attractive option. Participants gave their rating

on a 6-point scale ranging from "1 - the left option is much more attractive." to "6 - the

right option is much more attractive". In the subsequent decision phase, we recorded

which option participants chose and whether this option was correct.7

Eye-movement data were collected with a Tobii T120 for both eyes with a sample

rate of 119 Hz and an accuracy of about 0.5° using a screen with a resolution of 1280 x

1024 pixels (size: 33.8 x 27.1 cm). We defined eight non-overlapping areas of interest

(AOI) around the cue values on each screen (± 75 pixels from the cue-value center).

Our main eye-tracking variable of interest was which AOIs participants fixated over the

course of the decision trial.

We calculated two indices of participants’ fixation behavior to test our hypotheses

(cf. Jekel et al., 2018). For testing the attraction attention effect (H1), we defined the

attraction attention score (AAS) that represents the difference in the probabilities of

fixating newly revealed information in the decision phase on the attractive vs. the

unattractive option first, similar to the attraction search score in Jekel et al. (2018). We

determined which option was attractive based on iCodes’s prediction for choice with

fixed parameters (i.e., P = 1.9, cf. Glöckner et al., 2014). As this score pertains to

fixations on newly revealed information, we calculated it based on fixation data from

7 The correct choice was determined according to the naive Bayes formula (see Jekel et al., 2012; Lee &

Cummins, 2004).
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the decision phase of the experiment. The AAS was calculated as follows:

AAS = p(first fixation on new information|attractive option)−

p(first fixation on new information|unattractive option).8 Positive AAS scores

represent fixation behavior that is consistent with the prediction of the attraction

attention effect.

For testing the coherence attention effect (H2), we formulated the coherence

attention score (CAS) that represents the difference of the relative frequency of fixating

coherent information and the relative frequency of fixating incoherent information

during a trial. Information is coherent if it supports the attractive option as predicted

by iCodes (+ on attractive option, − on unattractive option, again based on a fixed

P = 1.9). We calculated this score based on fixation data from the decision phase. As

the number of coherent vs. incoherent cue values differed between patterns, we

normalized the relative fixation frequency with the total number of coherent vs.

incoherent cue values in this cue pattern. Thus, the CAS represents the difference of the

mean relative frequencies of fixating a coherent vs. an incoherent cue value,

CAS = f(fix coherent cue value)
ncoherentCV s

− f(fix incoherent cue value)
nincoherentCV s

. CAS values larger than zero

indicate that participants were on average more likely to fixate coherent than incoherent

cue values and are in line with the predictions of the coherence attention effect. A CAS

value of 1 implied perfect prediction, while negative values imply hypothesis

incongruent allocation of attention.

Procedure. The experiment was conducted in accordance with the ethical

standards of the American Psychological Association (APA). In the experiment,

participants were instructed to imagine playing a hypothetical stock-market game. In

this game, they had to decide which stock was going to be more successful in the future.

Participants were tested in single sessions. After arriving in the lab, participants gave

their informed consent, generated an individual pseudonymization code, and answered

8 For the calculation of the AAS, only trials were included in which the first fixation in the decision

phase was on a formerly concealed cue value. This was the case in 56.1% of all trials.
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questions about their handedness.9 Participants were given paper instructions for the

experiment describing the details of the stock-market game.10 Specifically, their task in

each trial was as follows (see also Figure 2): After a fixation cross was presented, they

had the opportunity to familiarize themselves with the current cue pattern with still

concealed cue values. Participants then rated option attractiveness in a self-paced

manner. After giving their ratings, another fixation cross was presented followed by the

cue pattern with now revealed cue values. Participants’ task was to decide between the

stocks in a self-paced manner.

After reading the (paper) instructions, participants were placed in front of the eye

tracker. The chair and the head rest were adjusted to be comfortable for the

participant. Following a short introduction and practice trials, the position of the eyes

was controlled and the eye tracker was calibrated. Then, the experiment, which was

programmed using OpenSesame (Mathôt et al., 2012), was started. After half of the

trials (64 trials), participants could take a break during which they received feedback on

how much money they had earned so far. The feedback was implemented to keep

participants motivated for the task. After the break, the eye tracker was calibrated one

more time before continuing with the second half of the experiment.

After the task, participants indicated the validities of the experts in the

stock-market game to assure that they remembered them correctly during the task.

They further answered demographic questions, particularly about their eye sight

(whether they wore glasses/contacts, what their diopters were, the color of their eyes).

After the demographic questionnaire, subjects worked on a further experiment that is

unrelated to our research question. Afterwards, participants were debriefed and thanked

for their participation.

9 Participants’ handedness was collected for a subsequent experiment for which data were collected

following our study.

10 All instructions and experimental files are uploaded to OSF,

https://osf.io/j7v9a/?view_only=509578b5215e4115a46cf923cf2b7f40
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Results

The data and analyses scripts of this experiment can be found on OSF,

https://osf.io/j7v9a/?view_only=509578b5215e4115a46cf923cf2b7f40. Supplemental,

exploratory analyses are reported in the online supplement.11

Attraction Attention Effect (H1). We hypothesized that the attraction

search effect generalizes to attention. Hence, participants should be more likely to fixate

newly revealed information for the currently attractive option than for the currently

unattractive option as determined by iCodes. To test this attraction attention effect

(H1), we ran a one-sample t test against zero with the attraction attention score (AAS)

as dependent variable based on the fixations in the decision phase of the experiment. A

positive AAS was in line with the predicted attraction attention effect. The AAS was

on average larger than 0, M = 0.32 (SE = 0.03), t(56) = 12.40, p < .001, tested

one-sidedly, Cohen’s d = 1.64.12 Therefore, participants showed a strong tendency to

fixate information on the attractive option first.

Coherence Attention Effect (H2). One of the core predictions of iCodes is

that coherent information in the decision phase should be fixated more often than

incoherent information. To test this coherence attention effect (H2), we calculated the

coherence attention score (CAS) based on the fixations on all revealed cues in the

decision phase of the experiment. An on average positive CAS would indicate that

participants were more likely to attend to coherent information. Indeed, the average

CAS was significantly larger than zero, M = 0.03 (SE = 0.002), t(56) = 14.89, p < .001,

tested one-sidedly, Cohen’s d = 1.97, supporting Hypothesis 2.

In a follow-up analysis, we analyzed only trials in which the newly revealed cue

11 In both experiments, we deviated from some of the planned analyses reported in the pre-data

reports, partly due to methodological concerns, partly for improving the overall comprehensibility. For

a detailed account of and explanations for the deviations, see the online supplement.

12 For this analysis, we included only trials in which the newly revealed information was fixated first.

An analysis calculating the attraction attention score on all trials, replicated the result, M = 0.36

(SE = 0.02), t(56) = 16.18, p < .001, Cohen’s d = 2.14. Thus, in the decision phase participants were

more likely to fixate any information describing the previously attractive option in the rating phase.
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values in the decision phase made the same prediction (i.e., both positive or both

negative). In these trials, cues do not discriminate between options and, therefore, can

be ignored according to most decision strategies. According to iCodes, the coherent cue

value should be fixated more than the incoherent cue value (e.g., the “+” for an

attractive option should be fixated more than the “+” for the less attractive option,

although both come from the same cue). We tested this coherence attention effect for

non-discriminating cue values (H2a) by calculating the CAS for fixations on the newly

revealed, non-discriminating cue values only. According to a one-sample t test against

zero, participants were more likely to fixate the coherent, indiscriminatory cue value

than the incoherent, as indicated by a positive CAS, M = 0.02 (SE = 0.007),

t(56) = 3.27, p = .001, tested one-sidedly, Cohen’s d = 0.43.

Late Coherence Effect (H3). The prediction of the late coherence effect

entails that the coherence of information influences fixation behavior more towards the

end of a trial, while in the beginning of a trial cues’ validities are more predictive of

which information will be fixated (H3). To test this predictions, we conducted two

analyses of the gaze data from the rating phase of the experiment.As in the rating

phase the cue values from one cue were still concealed and concealed cue values are

neither coherent nor incoherent, we did not include fixations on the concealed cue

values in the following analysis. In the first analysis, we tested whether the tendency to

fixate coherent information increased over the course of a trial. As a dependent variable

for this analysis, we calculated a coherence preference score (CPS).13 This score

represents the relative frequency of fixating coherent information minus the expected

probability of fixating coherent information in each trial if fixations would be equally

distributed between cue values (i.e., random), CPS = f(fixcoherent)− ncoherentCV s

total nCV s
. If

participants tended to fixate coherent information more frequently than incoherent

information, the average CPS should be positive. We tested the effect of time in each

13 The analyses for the late coherence effect deviate from those pre-registered in the pre-data report.

For a detailed account and explanations for deviations from the pre-data report, see the online

supplement.
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trial on the CPS by binning the fixations into the first half and the second half of the

rating phase and running a paired t test. If the tendency to fixate coherent information

increased over the course of the rating phase, we would expect a higher CPS in the

second time bin than in the first time bin. There was no significant effect of time bin on

the CPS, MF irstBin = 0.02 (SE = 0.006), MSecondBin = 0.01 (SE = 0.004), t(56) = 1.58,

p = 0.120, tested two-sidedly, Cohen’s d = 0.21, that is, the data did not support the

predicted change in the probability of fixating coherent information between the first

and the second half of a trial (H3). The average coherence preference score, however,

was significantly larger than zero across time bins, MCP S = 0.02 (SE = 0.004),

t(56) = 4.68, p < .001, tested two-sidedly, Cohen’s d = 0.62, pointing to an overall

preference to fixate coherent information (in line with the results for the coherence

attention effect reported above for H2).

In a second step, we tested whether the validity influence on fixations decreased

over the course of a trial (H3). We again analyzed fixations from the rating phase of the

experiment but, in contrast to the analysis from above, we also included fixations on

concealed cue values. For this purpose, we calculated an additional index that

represents the difference of the frequency of fixating a specific cue in the first bin minus

the frequency of fixating this cue in the second bin in each trial (fixation difference

score, FDS), FDS = p(fixcue|first bin)− p(fixcue|second bin). Thus, when a cue is

fixated more in the first half of a trial than in the second half of the trial, this index is

positive while it is negative when a cue is fixated less often in the first than in the

second half of a trial. To analyze whether participants were more likely to fixate valid

information compared to invalid information in the beginning of a trial, we ran a

within-subjects ANOVA with the validity of a cue (.60 vs. .70 vs. .80 vs. .90) as

predictor and the calculated index as dependent variable and Greenhouse-Geisser

corrected degrees of freedom.14 If the late coherence effect provides an adequate

description of the fixation behavior, we would expect linearly increasing FDS from the

14 Note, as coherence was not explicitly manipulated in this experiment, validity and coherence were

potentially confounded in this index.
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least valid to the most valid cues. The results revealed a main effect of cue validity,

F (2.26, 126.81) = 116.82, p < .001, generalized η2 = .676. We ran post-hoc polynomial

contrasts to test whether the expected linear trend was supported. The results revealed

a significant linear trend in the FDS, b = 0.99, t(168) = 17.86, p < .001 and a significant

cubic trend, b = −0.30, t(168) = −5.32, p < .001 (see Figure 3 for a visualization of the

interaction pattern). The results therefore supported the prediction of iCodes that

validity influenced fixation behavior more in the beginning of a trial than towards the

end of trial and that the frequency of fixating cues increased linearly with their validity.

Gaze Cascade Effect (H4). To investigate whether participants attended to

the subsequently chosen option more towards the end of a trial (H4), we ran a mixed

Logistic regression with the probability of fixating the left option as dependent variable

(1 = fixated left option, 0 = fixated right option). We included the chosen option (left

= +1 vs. right = −1, effect-coded) and time bins (first half = +1 vs. second half = −1,

effect-coded) as predictors. Additionally, we added the z-standardized trial number as

predictor to account for changes in the fixation behavior across the experiment and

random intercepts for participants to account for inter-individual variability.

The results of this mixed model showed a significant effect of bins, OR = 1.06,

z = 5.24, p = .001, indicating that participants were more likely to fixate the left option

in the first than in the second half of a trial. There was also a main effect of the

subsequently chosen option, OR = 1.57, z = 41.83, p < .001, indicating that overall

participants were more likely to fixate the left option given the left option was chosen

later on. Most importantly, there was a significant interaction of bins and the chosen

option, OR = 0.97, z = −3.14, p = .002, supporting the main prediction of the gaze

cascade effect, namely that participants were more likely to fixate their chosen option

towards the end of trial (see also Figure 4).

Discussion

The results of Experiment 1 showed that the attraction search effect also

generalizes to potentially more automatic visual search: Participants were more likely to
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fixate newly revealed information describing the attractive option first (H1). This

finding supported the role of option attractiveness in information search and

substantiated that iCodes information-search predictions are not limited to more

deliberate and active information search as implemented for example in standard

information-board paradigms (e.g., Payne et al., 1988). In addition, participants were

more likely to fixate coherent compared to incoherent information during the decision

phase of the experiment (H2), and this pattern also held up for the non-discriminating -

and, therefore, irrelevant - newly revealed cue values (H2a).

There was also support for the change in the fixation patterns based on the

validity of cues, in that participants’ fixations were more influenced by cues’ validities in

the beginning of the trial than in the end of the trial. The polynomial post-hoc

contrasts revealed a cubic trend of the fixations in addition to the predicted linear

trend. The cubic trend was likely due to the tabular design of the screen in which cues

with validities of .70 and .80 were presented closer to the center of the screen and the

fixation cross than the cues with validities of .60 and .90. As participants were

presented with a fixation cross before each trial, it is plausible that the cubic trend was

an artifact of the proximity of the two mid-valid cues to the fixation cross. We did not

observe an increase in the probability of fixating coherent information over the course of

a trial (H3). The influence of coherence on attention allocation seemed to be constant

across the trial and there was no indication for a late coherence effect. An explanation

for the lack of evidence for the late coherence effect could lie in the experimental design:

We chose the two-stage design that asked for option-attractiveness ratings in the first

stage and revealed new cue values in the second stage to increase the chances to observe

an attraction attention effect. Yet, this two-stage design might have decreased the

chances to find evidence for the late coherence effect. For example, it could be that the

role of option attractiveness in the information-integration process is different

depending on if the task was to rate option attractiveness rather than to decide for one

of the options. Further, as we based our analyses on the rating phase of the experiment,

we had to exclude fixations on the AOIs of concealed cue values as these could not be
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defined as coherent or incoherent resulting in a loss of information and, thus, reduced

power to find the predicted effect.

The gaze pattern predicted by the gaze cascade effect was supported by the data

(H4). Yet, the effect of the gaze cascade effect was relatively small and there was also a

strong main effect of preferentially fixating the subsequently chosen option irrespective

of the time point during the experiment. Similar to the late coherence effect, the gaze

cascade effect might have been disrupted due to the two stage design as most of the

information has already been integrated before the fixations occurred in the decision

phase which we analyzed for the gaze cascade effect. Thus, the main goal for

Experiment 2 was to adequately investigate the time course of the coherence influence

on attention allocation by utilizing a one-stage experimental design. Further, we strove

to eliminate distance-based and reading-direction artefacts by optimizing the visual

display of the information.

Experiment 2

Experiment 1 supported the prediction that participants preferentially searched

for new information describing the attractive option first (H1). In Experiment 2, we

aimed to investigate the coherence attention effect (H2) as well as the late coherence

effect (H3) and the gaze cascade effect (H4) in more detail using a modified design. The

coherence attention effect states that participants should be more likely to attend to

coherent compared to incoherent information. The late coherence effect states further

that this tendency should increase towards the end of the trial, while, in the beginning

of a trial, attention allocation should be mainly influenced by the validity of

information. According to the gaze cascade effect, participants should increasingly

fixate the option they subsequently choose over the course of a trial.

Although the coherence attention effect was already supported in the first

experiment, there was no clear support for the late coherence effect. While validity

influenced fixations mainly in the beginning of a trial (in line with the late coherence

effect), the predicted increase of the coherence influence on fixation towards the end of a
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trial was not supported by the results. One reason for not finding the predicted effect

might have been the two-stage design of the first experiment, as it split the decision

process artificially in two. Therefore, it was difficult to derive for which phase the

time-course predictions of iCodes should apply. Another reason could have been the

presentation of the decision task in a table: As cue information was ordered and not

equidistant from the screen, confounds due to cue position and reading direction could

have affected fixation behavior. Thus, in the second experiment we utilized a circular

presentation of the information (cf. Fiedler & Glöckner, 2012), varied the order of the

cues between trials, and presented all the information openly at once. With these

changes, we aimed to prevent confounds of the presentation format and reading

direction. Furthermore, we aimed to record fixations during the entire

information-integration and decision process by presenting all information at once.

In Experiment 2, we additionally designed new cue-value patterns that

manipulated the coherence of the presented information. For this purpose, we

constructed two versions of each cue pattern. The difference between the two versions

was that two out of four cues changed which option they supported. In Version a, these

two changing cues supported Option A and in Version b, the same cues supported

Option B (see the cues with a white background in Table 2). The remaining two cues

did not differ between the versions: One of these unchanging (i.e., constant) cues always

supported Option A, while the other always supported Option B (see the cues with a

grey background in Table 2). Due to the two changing cues, however, the relative

coherence of the two constant cues was manipulated: The constant cue that supports

Option A is coherent in Version a of the cue patterns, as the changing cues also support

Option A. The constant cue that supports Option B is coherent in Version b, as the

changing cues also support Option B. As iCodes predicts that coherent cues are fixated

relatively more often than incoherent cues, it predicts that the relative frequency of

fixations on the constant cues should differ between the pattern versions, as the

coherence of these cues differs.

Note, that this manipulation of coherence is not independent of the cues’ validity.
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As iCodes predicts that not only cues’ coherence but also their validity is a determinant

of attention allocation during the decision process, we only expect a relative change of

the number of fixations on the constant cues between versions. Specifically, if

participants’ behavior was in line with the late coherence effect, we would expect that

in the beginning of a trial the probability of fixating the constant cues does not differ

between the two cue-pattern versions in that in both versions the more valid, constant

cue is fixated more than the less valid constant cue. Towards the end of a trial, we

expect to find an effect of the cue-pattern versions such that the constant cue

supporting Option B should be fixated relatively more in Version b in which Option B

is more attractive. On the other hand, the constant cue supporting Option A should be

fixated relatively more in Version a than in Version b in the second half of the trial. In

addition to testing the late coherence effect (H3) based on the newly designed cue-value

patterns, we also tested the coherence attention effect (H2) and the gaze cascade effect

(H4) in Experiment 2. Finally, we also tested the attraction attention effect (H1),

adapted to a one-stage experimental design without concealed cue values. Just as for

Experiment 1, the study was pre-registered and a pre-data report detailing the

hypotheses, methods, and planned analyses for this experiment is available at:

https://osf.io/ykjqr/?view_only=c3c25c7809ae4638aa8d5a9702ad2dcf.

Methods

Design and Participants. We manipulated the coherence of cues

within-subjects (more valid, constant cue coherent - Version b vs. incoherent - Version

a). Further, we compared the fixation behavior in the first half to the second half of the

trial (time bin: first vs. second half), resulting in a 2x2 within-subjects design.

In Experiment 2, we changed the task design compared to the pilot experiment

and Experiment 1. With these changes, we expected to find at least a medium-sized

interaction effect of f = 0.25 for the interaction of time bins and cue-pattern version in

a 2x2-within-subjects repeated measures ANOVA. With α = β = 0.05,

rbetweenMeasures = .5, Nonsphericity correction ε = 1, the resulting sample size was
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N = 54 (cf. Faul et al., 2007).

We collected data of N = 50 participants (34 female, Mage = 25.46, range:

18-35).15 Just as in Experiment 1, participants received a 5 Euro show-up fee and were

able to earn extra money depending on their choices. For every correct decision,

participants received 6 Cents allowing a maximum total of 8.64 Euro on top of the

show-up fee (average total payoff Mpayoff = 13.22 Euros, approx. USD 16.03,

SDpayoff = 0.54, range: 11.50− 13.70 Euros).

Materials. We created two versions of six cue-value patterns for a hypothetical

stock-market game that explicitly manipulated the coherence of cue values for

Experiment 2. The validities of the cues in these patterns were .70, .68, .62, and .60.

The cue-values of two cues always remained the same between the two versions and

always discriminated between options (the grey cells in Table 2). In Patterns 1 - 3,

Cues 3 and 4 were held constant, while in Patterns 4 - 6, Cues 1 and 2 were held

constant. The experimental manipulation via the cue-pattern versions changes the

coherence of the constant cue values: In Version a, the bottom, constant cue was

coherent as it supported Option A, while in Version b, the top, constant cue was

coherent as it supported Option B. Thus, we expected relatively more fixations for the

constant cues (grey cells in Table 2), that is, Cues 2 and 4 in Pattern Version a and

Cues 1 and 3 in Pattern Version b.

The cue patterns were shown on a circular display such that all cue values were

equidistant to the center of the screen (see Figure 5). In contrast to Experiment 1, we

also changed the ordering of cues. The cues were ascending in their validities for one

option and descending for the other option. This presentation format was used to avoid

confounding cue validity with reading direction (i.e., the most valid cue is always shown

in the top-left of the screen). To make the validity information even more accessible and

to facilitate cue-wise comparisons, we assigned colors to each cue and each validity. We

15 Data collection was cut short, as experimental labs at the University of Cologne were closed due to

the Covid-19 pandemic. With a sample of N = 50, the power to find a medium sized interaction effect

of f = 0.25 was 1− β = 0.93.
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selected four colors from the HSL colorspace (cf. Ibraheem et al., 2012) with luminance

and saturation of 50% and equidistant hues. Which option was presented with

ascending/descending cue values was counter-balanced across the experiment.

Additionally, we counterbalanced whether Option A was displayed on the left or on the

right side of the screen. The order of trials was pseudo-randomized, such that the same

combination of cue-value patterns and counter-balanced factors was not repeated before

not at least three different patterns were shown in between. In total, each participant

made decisions in 144 trials (6 patterns x 2 versions x 2 validity orders x 2 screen sides

x 3 repetitions).

Measures. As in Experiment 1, we measured which option subjects chose and

whether their choice was correct. Data on eye movements were collected with the same

system as in Experiment 1. As we were again interested in what information

participants fixated, we defined eight AOIs around the location of the cue values on the

screen (± 75 pixels from the cue value center). Our main dependent variables were

which AOIs were fixated and how often specific AOIs were fixated.

We again calculated eye-tracking indices for each subject to test our hypotheses.

Most notably, we calculated an attention difference score (ADS) with the purpose to

capture changes in fixation behavior due to the change of cues’ coherence. The ADS

represents the difference between the relative frequencies of fixations on the constant

cues (i.e., Cue 3 and 4 in Pattern 1-3 and Cue 1 and 2 in Pattern 4-6);

ADS = f(fixating Cue 1 or 3)− f(fixating Cue 2 or 4). Positive ADS values in

Version a indicated that the incoherent, constant cue was fixated more, while in Version

b positive ADS values indicated that the coherent, constant cue was fixated more. With

regard to the late coherence effect, we would expect that, in the beginning of a trial, the

ADS scores are positive independent of pattern version, as the top, constant cue (Cue 1

or 3) should be fixated more than the bottom, constant cue (Cue 2 or 4) irrespective of

its coherence. Towards the end of a trial, we expect the ADS to be larger in Version b

than in Version a, as the coherent, constant cue should be fixated more (Cue1 or 3 in

Pattern Version a, Cue 2 or 4 in Pattern Version b).
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In addition to the ADS, we also calculated the attraction attention score (AAS)

similar to the one in Experiment 1. Due to the change in experimental design, the AAS

in Experiment 2 relied on the first two fixations in each trial and was calculated as

follows: AAS = p(switch option second fixation|first fixation on −)−

p(switch option second fixation|first fixation on +). Positive AAS values were again

in line with iCodes’s predictions. Lastly, we also calculated the same coherence

attention score (CAS) in Experiment 2 as in Experiment 1.

Procedure. The experiment was conducted in accordance with the ethical

standards of the American Psychological Association (APA). The general task and

procedure was the same as in Experiment 1, except for the following differences.

Instead of a two-stage design, all information was presented to the participants at once

and they had to directly decide between the two stocks. To ensure that participants

were aware of the order of validities in the current trial and to avoid the need to scan

the whole screen, the order of the validities in the subsequent trial was shown in the

center around the fixation cross 200 ms after the fixation cross was initially displayed.

After a total of 1700 ms the decision task was presented and participants indicate which

stock they wanted to buy by pressing keys on the keyboard in a self-paced manner (see

Figure 5). Again, after half of the trials (72 trials), participants could take a short

break and received feedback on their current earnings. After finishing the experiment,

participants again started a second, unrelated eye-tracking experiment.

Results

The data and analysis scripts of this experiment can be found on OSF,

https://osf.io/ykjqr/?view_only=c3c25c7809ae4638aa8d5a9702ad2dcf. Supplemental,

exploratory analyses mentioned in the pre-data report can be found in the online

supplement.

Attraction Attention Effect (H1). In a first step, we analyzed whether

participants tended to continue their search on the currently attractive option given the

first information they looked at was positive (H1). For this purpose, we calculated the
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attraction attention score (AAS) across trials. We ran a one sample t test against zero

with the AAS as dependent variable that indicated that the AAS was on average larger

than zero, M = 0.08 (SE = 0.02), t(49) = 4.90, p < .001, tested one-sidedly, Cohen’s

d = 0.69. Thus, participants’ second fixations were more likely to be on the same option

as the first, if the first fixated AOI contained a positive cue value as compared to a

negative cue value, which was in line with the attraction attention effect.

Coherence Attention Effect (H2). We also tested whether the attention

difference score (ADS) was higher in Version b of the cue pattern than in Version a. A

higher ADS in Version b would indicate that participants were overall more likely to

fixate the coherent, constant cue in line with the coherence attention effect (H2). We

ran a paired t test with the ADS as dependent variable and pattern version as

independent variable. As predicted, the average ADS is higher in Pattern Version b

than in Pattern Version a, Ma = 0.06 (SE = 0.02), Mb = 0.09 (SE = 0.02),

t(49) = 2.75, p = .004, tested one-sidedly, Cohen’s d = 0.39, and both average ADS are

above 0 (ts > 3.68, ps < .002). Thus, participants generally fixated more valid constant

cues and also preferentially fixated the more coherent cue.

In a second analysis, we replicated the analysis reported for Experiment 1 by

calculating the coherence attention score (CAS) across all cue patterns. In a one-sample

t test with the CAS as dependent variable, we found support that the CAS on average

was larger than zero, M = 0.01 (SE = 0.002), t(49) = 7.70, p < .001, tested one-sidedly,

Cohen’s d = 1.09. This again supported the hypothesis that participants fixated

coherent information more than incoherent information.

Late Coherence Effect (H3). The late coherence effect states that in the

beginning of the trial the validity of a cue should be the main determinant of fixation

behavior, while towards the end of a trial the coherence of a cue value should gain more

influence on fixation behavior (H3). To test this hypothesis in Experiment 2, we ran a

2x2 within-subjects ANOVA with the predictors bins (first vs. second) and pattern

version (a vs. b) and the attention difference score (ADS) as dependent variable. We

would expect that the ADS does not differ between pattern versions in the first bin, as
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the difference in coherence of the constant cues should not yet influence fixation

behavior. In the second half of the trial on the other hand we would expect an effect of

pattern version. Specifically, we expected that the ADS is larger in Version b than in

Version a, indicating that the coherent cue was fixated relatively more often in both

versions. The results of the ANOVA showed no main effect of bins, F (1, 49) = 0.13,

p = .720, generalized η2 < .001, but a main effect of pattern version, F (1, 49) = 5.54,

p = .023, generalized η2 = .007, indicating that the mean ADS was larger in Version b

(Mb = 0.08) than in Version a (Ma = 0.06). This main effect of pattern version was in

line with the results reported for the coherence attention effect (H2). Yet, the predicted

interaction was not significant, F (1, 49) = 2.37, p = .130, generalized η2 = .006. When

plotting the results, it appeared, nonetheless, that there was a larger difference of the

ADS in the second time bin (see Figure 6). Analyzing the simple main effects of pattern

version, the version effect was not significant in the first bin, t(90.6) = −0.17, p = .864,

but significant and in the predicted direction in the second bin, t(90.6) = −2.64,

p = .010.

Gaze Cascade Effect (H4). We again analyzed whether participants

increasingly fixated the option they subsequently chose across a trial (H4). For this

purpose, we ran a mixed Logistic regression with two time bins (first = +1 vs. second

= −1, effect-coded) and whether participants chose the left (= +1) vs. right (= −1)

option (effect-coded) as predictors. The dependent variable was whether participants

fixated the left option (1) or the right option (0). To account for changes in fixation

behavior over the experiment, we included the z-standardized trial number as predictor

and we included random intercepts for participants to account for inter-individual

variability. The results showed that participants tended to fixate the left option more in

the first half of the trial than the second half of the trial, OR = 1.07, z = 9.99, p < .001,

as well as that they tended to fixate the left option more often if they chose it

subsequently, OR = 1.23, z = 28.82, p < .001. The Gaze Cascade Effect prediction was

supported by a significant interaction of time bins and the chosen option, OR = 0.92,

z = −11.45, p < .001 that showed an increase of fixations on the chosen option (see
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Figure 7).

Discussion

In Experiment 2, we replicated the attraction attention effect from the previous

study (H1). Participants preferentially fixated information for the same option if they

fixated a positive cue value for this option first. The effect size of the attraction

attention effect was considerably smaller in Experiment 2 compared to Experiment 1. A

difference between the two experiments was that the measurement of the attraction

attention effect was much cleaner in Experiment 1 than in Experiment 2: In Experiment

1, we only considered the first fixations on the two newly revealed and equally valid cue

values. Thus, there was no interference from validity or an initial scanning of the

presented information. In Experiment 2, on the other hand, attention allocation was

less guided by the experimental design which might explain the reduced effect size. This

explanation would be in line with findings that the size of the attraction search effect

decreased in less structured decision tasks (cf. Scharf et al., 2019).

There was also support for the prediction that participants fixated coherent

information more than incoherent information (coherence attention effect, H2). This

preference for coherent information was found for the constant, coherent cue values as a

result of the experimental manipulation as well as for all cue values in a trial,

replicating the results from Experiment 1. The coherence attention effect due to pattern

version was a substantially smaller effect than the coherence attention effect across the

whole cue pattern. One explanation for this difference lies in the nature of the

coherence manipulation: In Version a, the coherent cue is less valid than the coherent

cue in Version b. This difference in validity was still reflected in the attention difference

score, our main dependent variable, as it is the difference of the relative frequency of

fixations on the more and the less valid cue. Yet, the coherence attention score

aggregated the fixations on coherent cue values across differing validities. As people

generally show a stronger validity influence on their information search, which is also

incorporated into the model (cf. Jekel et al., 2018), it is unsurprising that the analysis
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aggregating across validities shows a larger effect of coherent on participants’ fixation

behavior. Finding evidence for a coherence influence on attention even when explicitly

accounting for validity differences, however, further supports the importance of

coherence in the information-search process beyond the validity influence.

The main focus of this experiment was to test the late coherence effect (H3).

While there was a main effect of pattern version in line with the results of the coherence

attention effect and the results of Experiment1, the predicted interaction with time was

not significant. Yet, post-hoc simple main effects showed the predicted pattern: The

attention difference score (ADS) was positive and did not differ between pattern

versions in the first half of a trial. In the second half of a trial, the difference of the ADS

between the pattern versions was significant, in that the ADS was higher for Pattern

Version b than for Pattern Version a. These results complied with the prediction of the

LCE descriptively such that participants preferentially fixated coherent information

towards the end of the trial. Nonetheless, this result should be, if at all, interpreted

only with caution, as the predicted interaction in the ANOVA was non-significant.

Thus, we replicated the main effect of the coherence influence from Experiment 1 but

did not find (strong) support for the time component of this coherence influence.

Last but not least, we again found support for the prediction of the gaze cascade

effect in that participants’ probability to fixate their subsequently chosen option

increased over the course of a trial. Compared to the results of Experiment 1, the gaze

cascade effect was larger in the second experiment. This difference in effect size is likely

due to observing the gaze cascade effect in a one-stage experimental design in

Experiment 2 compared to the two-stage experimental design in Experiment 1: Most of

the information integration in Experiment 1 likely already took place during the rating

phase and, thus, the predicted pattern of fixations might have been diluted in the

decision phase, for which we analyzed the gaze cascade effect. In Experiment 2, on the

other hand, all information was presented at once and, thus, we could observe the whole

information-integration process leading up to the decision.
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General Discussion

In this article, we derived and tested predictions for attention allocation by

iCodes, a new, coherence-based model for decision making and information search

(Jekel et al., 2018). Specifically, we tested whether participants would (visually) search

for new information describing the attractive option first (attraction attention effect,

H1), whether they preferentially fixated coherent information (coherence attention

effect, H2), whether this preference for coherent information increased over the course of

a trial (late coherence effect, H3), and whether they fixated the option they

subsequently chose with increasing probability over a trial (gaze cascade effect, H4). For

this purpose, we ran two experiments utilizing a hypothetical stock-market game while

measuring participants’ attention allocation. In the first experiment, we focused on

finding support for the attraction attention effect by utilizing a two-stage experimental

design: In the first stage, participants were presented with a decision situation with one

concealed cue, that was then revealed in the second stage allowing us to observe which

new information participants attended to first. In the second experiment we focused on

finding support for the late coherence effect by explicitly manipulating the coherence of

information in a one-stage hypothetical stock-market game.

The results of both experiments supported the prediction that participants

preferentially fixated new information describing the attractive option first, replicating

the findings for active information search by Jekel et al. (2018). Further, both

experiments showed that participants indeed fixated coherent information more than

incoherent information, supporting the most central prediction of iCodes. Participants’

tendency to fixate their subsequently chosen option increased over the course of a trial

in Experiment 1 as well as in Experiment 2, providing support for the gaze cascade

effect. There was, however, no strong support for the prediction that the influence of

coherence on fixation behavior increases over the course of the trial in both

experiments. While the results of both experiments supported a stronger validity

influence on fixations in the beginning of the trial, both did not strongly support a

change in the coherence influence over the trial.
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iCodes as a theory of coherence-based attention allocation

The results from our two experiments support the notion that the coherence of

information is a relevant top-down influence factor for attention allocation and (more)

automatic visual search. By predicting this coherence influence, iCodes establishes itself

as a noteworthy contender for describing the relation between attention, information

search and choice. We are not aware of other models in decision making that predict

the influence of coherence on attention (without making auxiliary assumptions). In

addition, iCodes makes precise predictions about the sequence of fixations with the

attraction attention effect (H1) such that participants should fixate information that

describes the attractive option first. The attraction attention effect was shown in

Experiment 1 that utilized a two-stage design to cleanly observe participants’ attention

to new information but also in Experiment 2 which did not guide participants’

information search explicitly. A recent extension of the attentional drift diffusion model

(aDDM, Krajbich et al., 2010) predicts that options with higher subjective values are

fixated more often (Gluth et al., 2020), a gaze pattern that is similar to the prediction

of the attraction attention effect. Yet, the extended aDDM makes this prediction only

on the option level, while iCodes inherently predicts fixations on the cue-value level. In

addition to the precise and a priori prediction about fixation sequences, iCodes is at a

theoretical advantage compared to the aDDM that generally assumes a stochastic

fixation process and uses the empirically observed fixation pattern in modelling.

One caveat is the lack of clear support for the time-course prediction of the late

coherence effect (H3). While participants were influenced more by information’s validity

in the beginning rather than the end of a trial, we did not observe a clear increase in

the coherence influence on attention towards the end of a trial. Even though it is too

early to conclude that this lack of support invalidates the assumed information-search

process, it gives reason to reevaluate the time-course prediction and the strength of the

coherence influence overall.

Showing that participants increasingly fixated the option they finally chose, did

not only support iCodes and its prediction of the gaze cascade effect (Shimojo et al.,
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2003) but also the evidence-accumulation models that also predict this gaze pattern

(Busemeyer & Johnson, 2004; Krajbich et al., 2010), at least for the very last fixation.

The generality of the gaze cascade effect has been recently challenged by Sepulveda

et al. (2020) who showed that changing the framing of a decision task from choosing to

rejecting an option reversed the gaze pattern such that the subsequently rejected option

was fixated more towards the end of a trial. While this result cannot be reconciled with

the current implementation of iCodes, the model can be easily adapted to capture this

pattern: Currently, the option nodes are thought to represent an untransformed

representation of the options at hand. Yet, the option nodes could also be thought of as

representing the current hypothesis about an option that is being tested (such as

"Option A is the better/worse option" and "Option B is the better/worse option", cf.

Holyoak & Simon, 1999). This re-conceptualization of the option nodes would make the

inferior option the preferred option under a rejection frame. Interestingly, this would

also lead to the prediction that participants should fixate new information on the

currently inferior option first, a prediction that can be easily tested and, thus, be used

to evaluate the suggested re-conceptualization of the option nodes.

Limitations and Future Directions

Our experiments did not manage to provide convincing evidence for an increase of

the coherence influence over the course of a decision trial. The results of the second

experiment give reason to believe that the late coherence effect (H3) might be much

smaller than a priori expected and, thus, our achieved power was insufficient to find the

predicted interaction effect. Given the small effect, more extensive simulations might be

necessary to identify conditions under which the LCE should be more or less

pronounced. On basis of such simulations, future research could investigate the

boundary conditions of the LCE.

As our experiments were the first to investigate coherence-based information

search by utilizing eye tracking, we aimed at keeping our analyses as simple as possible

by aggregating across manipulations and trials. In addition, to best communicate our
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core results, we focused on the analyses of our main hypotheses instead of additionally

testing potential moderators. However, other ways of data analysis, such as multilevel

modeling of single trials or the assessment of potential moderators might be an

interesting route for future research. For example, iCodes predicts that the gaze cascade

effect should be moderated by the amount of coherent information on the chosen

option. One could design an experiment that investigates this predicted interaction of

the coherence of cue values, choice, and the temporal dynamics of fixation behavior by

explicitly manipulating the number of coherent cue values describing the attractive

option. To gain preliminary insights into the influence of potential moderators in our

data, we conducted some exploratory analyses that are presented in the online

supplement. These results may serve as a guidance to design future experiments.

Following the same reasoning as above, we did not fit the free parameters in

iCodes to the eye-tracking data of the two experiments.16 In future research, one could

benefit from the full potential of iCodes by explicitly modelling its predictions for

attention allocation. For example, one could compare aDDM (Krajbich et al., 2010) and

iCodes directly by creating a paradigm that allows to fit both models to the same data

and compare the respective model fits. Further, it would be interesting to test whether

the γ parameter that models individual differences in the relative strength of the

coherence influence on information search within iCodes (cf. Scharf et al., 2021) could

explain differences in fixation behavior as well.

One strength of iCodes is that it allows to model the influence of bottom-up

influences on attention, such as visual salience on information search. Bröder et al.

(2021) showed in an information-board setting that, for example, salient, concealed cue

values were more likely to be opened and that any salient information on an option

increased the probability to search for more information on said option. In the current

experiments, we did not manipulate visual salience of information. In future research,

one should test whether the behavioral findings for the interplay of coherence and

16 We conducted some preliminary analyses based on fixed parameters that are reported in the online

supplement.
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salience generalize to gaze data and whether an extension of iCodes that explicitly

models the influence of cue salience is able to adequately describe these data.

Our results highlight the benefits of investigating gaze behavior when evaluating

decision-making theories. Doing so allowed more detailed testing of iCodes’s predictions

and provided important insights concerning the underlying information-search process

that takes place during a decision. One important advantage of utilizing eye tracking is

the possibility to observe information acquisition in an unobtrusive way without the

need for information boards, that have been shown to change the way information was

integrated (Glöckner & Betsch, 2008b). Thus, eye tracking allows the investigation of

information search in less constrained and more naturalistic settings. An interesting

direction for future research would, therefore, be to utilize eye tracking for evaluating

the information-search predictions by different decision-making models across

paradigms.

Conclusion

In previous work (e.g., Orquin & Mueller Loose, 2013), the importance to develop

and test integrative models for decision making, attention, and information search has

been highlighted. With this article, we contribute to closing this gap in the research

literature by providing a detailed test of predictions derived from the integrated model

for coherence based decision making and search (iCodes). The results show that

information-search processes are more complex than usually assumed such that

coherence plays an important role in determining search. We show that the attraction

search effect originally observed in tasks for active and deliberate information search

generalizes to more automatic and visual search and attention allocation. Furthermore,

a more general influence of coherence on attention allocation could be confirmed in the

analyses. The presented findings provide a starting point for theory development and

critical model comparisons of models that describe various aspects of the decision

process and take into account the complex interplay of attention, information search,

and information integration in decision making.
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Table 1

Cue-value patterns, adapted from Bröder et al. (2021), that were used in Experiment 1.

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Option A Option B Option A Option B Option A Option B Option A Option B

Cue 1 ? ? + − + + − −

Cue 2 + + − − ? ? + −

Cue 3 − − + + + − ? ?

Cue 4 + − ? ? − − + +

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Option A Option B Option A Option B Option A Option B Option A Option B

Cue 1 + − + − ? ? − +

Cue 2 − + ? ? + − + −

Cue 3 ? ? + + − + + −

Cue 4 + − − + + + ? ?
Note. + represented positive cue values, − negative cue values, ? represented concealed cue values,

that were revealed in the decision phase of the experiment.
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Table 2

Cue-value patterns that were used in Experiment 2.

Pattern 1 Pattern 2

Version a Version b Version a Version b

Option A Option B Option A Option B Option A Option B Option A Option B

Cue 1 + − − + + − − +

Cue 2 + − − + + + + +

Cue 3 − + − + − + − +

Cue 4 + − + − + − + −

Pattern 3 Pattern 4

Version a Version b Version a Version b

Option A Option B Option A Option B Option A Option B Option A Option B

Cue 1 − − − − − + − +

Cue 2 + − − + + − + −

Cue 3 − + − + + − − +

Cue 4 + − + − + − − +

Pattern 5 Pattern 6

Version a Version b Version a Version b

Option A Option B Option A Option B Option A Option B Option A Option B

Cue 1 − + − + − + − +

Cue 2 + − + − + − + −

Cue 3 + − − + − − − −

Cue 4 + + + + + − − +
Note. + = positive information, i.e. the recommendation to buy this stock; − = negative information,

i.e. the recommendation to not buy this stock; two cue values were always reversed between Versions a

and b and two cue values were kept constant (grey background): for Patterns 1 - 3 Cue 3 and 4 were

constant, whereas for Patterns 4 - 6 Cue 1 and 2 were constant.
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Figure 1 .

iCodes network and visualization of H1 - H3
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Note. A: Black lines represent bidirectional links, grey lines unidirectional links. Continuous lines

represent excitatory links, dashed lines inhibitory links. Nodes C1, C2, C3, C4 represent Cue 1, 2, 3,

and 4, nodes O1 and O2 Option 1 and Option 2 from the task depicted in B and C. B: Visualization of

H1 and H2. H1 (attraction attention effect) predicts that once the concealed information (indicated by

"?") is opened, the cue value of Cue 2 for Option 1 (i.e., surrounded by a dashed frame) should be

fixated first. H2 (coherence attention effect) predicts that the cue values in the continuous frame should

be fixated with a higher probability as they are coherent with the more attractive option Option 1. C:

Visualization of H3. H3 (late coherence effect) predicts that in the beginning of the trial (left side)

fixations on the cues should be proportional to their respective validities, i.e. more valid cues should be

fixated more often than less valid cues (represented by the color gradient from darker to lighter grey).

Towards the end of a trial, coherent information (cue values in the light grey frames) should be fixated

more often than incoherent cue values while the validity influence on fixation behavior should decrease.
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Figure 2 .

Procedure and reproduced screen displays used in Experiment 1

Note. After the presentation of a fixation cross, participants rated option attractiveness in a self-paced

manner. Once they gave their rating, another fixation cross was presented, and participants

subsequently made their decision between the options. Participants could respond via the keyboard.

Original text was in German. The font size in this display was increased compared to the original for

better legibility. Illustration inspired by Fiedler and Glöckner (2012).
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Figure 3 .

Individual and mean fixation difference scores in Experiment 1

Note. The fixation difference score (FDS) is the difference of the relative fixation frequencies per cue

between the first and the second half of a trial. A positive FDS indicates that a cue was fixated more

often in the first than in the second half of a trial while a negative FDS indicates the reversed pattern.

In the figure, black dots represent mean scores, grey dots individual scores. Error bars represent the

within-subjects standard errors.
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Figure 4 .
Mean probability of fixating the left option as a function of time in trial and the subsequently chosen

option in Experiment 1

Note. Black dots represent the mean fixation probability, grey dots individual fixation probabilities.

Error bars represent the model-based standard errors.
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Figure 5 .

Reproduced screen display of Experiment 1

Note. Fixation cross with validity primer on the left, decision phase on the right. Font size is increased

for better legibility.
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Figure 6 .

Individual and mean attention difference scores in Experiment 2

Note. The attention difference score (ADS) is the difference of the relative fixation frequencies of the

constant cues. A positive ADS in Version a indicates that the incoherent, constant cue was fixated

more often, while a positive ADS in Version b indicates that the coherent, constant cue was fixated

more. In the figure, black dots represent mean scores, grey dots individual scores. Error bars represent

the within-subjects standard errors.
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Figure 7 . Mean probability of fixating the left option as a function of time in trial and

the subsequently chosen option in Experiment 2

Note. Black dots represent the mean fixation probability, grey dots individual fixation probabilities.

Error bars represent the model-based standard errors.
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Supplemental Materials

Coherence influences on attention allocation and visual information search in decisions

with open information displays

Deviations from pre-data reports

The experiments of this article were pre-registered with pre-data report on OSF:

https://osf.io/j7v9a/ (Experiment 1), https://osf.io/ykjqr/ (Experiment 2). In these

pre-data reports, we reported the hypotheses, sample size rationales, experimental

designs, and planned analyses. In the following, we detail in which aspects the article

deviates from the pre-data reports and why.

In the pre-data report for the first experiment, there was a mistake in the

cue-pattern table: the options were switched in Pattern 1, 6, and 8, such that in these

patterns Option B was attractive. The mistake was corrected in the article. In the

pre-data report for the second experiment, we did not specify the hypothesis of the gaze

cascade effect, as the goal of this experiment was to focus more on the predictions that

are specific to iCodes. For consistency reasons, we also tested and reported the gaze

cascade effect for Experiment 2 in the current article.

For both experiments, there were deviations from the pre-registered analyses. For

instance, we planned to conduct mixed Poisson regressions with the number of fixations

per AOI as dependent variable for exploratory analyses for the coherence attention

effect (Experiment 1 and 2) and the analysis of the decrease of the validity influence

over the course of a trial (Experiment 1). Similarily, to assess the late coherence effect

over all cues, we planned to analyze the relative number of fixations per AOI as

dependent variable. However, we realized that there was a dependency between the

number of fixations per AOI and, thus, that both types of regression models were not

appropriate for this way of analyzing AOI-level data. As the design of the experiments

and the analyses of gaze data in general were already relatively complex, we opted to

refrain from alternative ways of modelling this type of data (such as seemingly

unrelated regressions, Srivastava & Dwivedi, 1979; or Markov chain modelling, Button

et al., 2011) and put the focus on the simpler aggregate analyses. Alternative linear
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mixed models that also incorporated the validity and valence of cue values as predictors

can be found in the uploaded analyses on OSF.

We also preregistered mixed models for the analyses regarding the late coherence

effect in both experiments that we did not report in the main text of the article. For

the hypothesized increase of the coherence influence within a trial in Experiment 1, we

decided again to report simpler aggregate analyses, as these analyses, in our opinion

increased the comprehensibility and their results corresponded to the pre-registered

mixed model. This analysis as well as the analysis of the validity of cue values as

additional predictor can be found in the uploaded analyses script. Due to the same goal

of increased comprehensibility, we decided to only report the preregistered ANOVA for

the late coherence effect in Experiment 2: the alternative mixed models did not show

the same pattern of results 1 as the preregistered ANOVA. To keep the result section of

the article as simple as possible as well as to stay conservative when reporting results,

we decided to report only the pre-registered ANOVA.

For the analyses of the late coherence and the gaze cascade effect in Experiment 1,

we planned to split the time in each trial into ten equal bins and to bin fixations

accordingly. As the average number of fixations per trial was 9.40 in the rating phase

and 6.57 in the decision phase of the experiment, we decided against using ten time

bins. We opted to report the analyses for two time bins, as this streamlined the results

with the analyses of Experiment 2 and in our view increased the clarity of the results.

The reported results did not change substantially when binning fixations into four or

ten time bins. The same was true for the analyses of the late coherence and gaze

cascade effect in Experiment 2.

1 The mixed model did not show the main effect of pattern version, but did show a small, albeit

significant interaction effect of pattern version and time bins. The mixed model based on all cue values

on the other hand showed a strong interaction effect as well as a main effect of coherence, yet

confounded validity and coherence in its analysis.
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Supplemental Analyses

Interaction of gaze cascade effect with coherence

As stated in the article, iCodes predicts that the strength of the gaze cascade

effect is moderated by the number of coherent cue values on the subsequently chosen

option, such that that the gaze cascade effect should be more pronounced the more

coherent information describes the chosen option. As we did not control or manipulate

the number of coherent cues per option, we analyzed this prediction exploratorily.

We ran mixed Logistic regressions with whether the left option was fixated (=1)

or not (=0) as dependent variable. As predictors we added whether the left option was

subsequently chosen (yes = +1, no = −1, effect-coded) and whether there were more,

equal, or less coherent cue values on the left option (effect-coded, equal number of cue

values as reference group). Further, we added time bins as predictor to the model (first

= +1 vs. second = −1 half of the trial). Just as in the original gaze cascade effect

model, we also added the z-standardized trial number as predictor and random

intercepts for participants. If the amount of coherence on an option moderates the gaze

cascade effect, we would expect a significant three-way interaction of the time bins, the

chosen option and the amount of coherent information.

In Experiment 1, there were no significant three-way interactions of the relative

amount of coherent cues on the left option, the subsequently chosen option, and the

time bins. To exploratorily investigate whether the type of bins changes the result, we

also ran the same mixed model with four time bins instead of two (Helmert-coded, with

the first bin as reference category). This analysis showed three-way interactions, that is

that whether there was more coherent information on the left option change the

probability of fixating any information on the left option between the first and second

time bin, OR = 1.13, z = 3.23, p = .001 (for a visualization of the results, see Figure 1).

There was no three-way interaction when binning fixations into ten bins.

In Experiment 2, the number of coherent cue values per option differed for each

pattern, such that the predictor of the number of coherent cue values on the left option

had only two levels (more coherent cue values left = +1, less coherent cue values left =
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Figure 1

Mean probability of fixating the left option as a function of time in trial, the subsequently chosen

option, and the amount of coherent information on the left option in Experiment 1

Note. Black dots represent the mean fixation probability, grey dots individual fixation probabilities.

Error bars represent the model-based standard errors.

−1, effect-coded). The results of the mixed Logistic regression in Experiment 2

indicated that the predicted three-way interaction of time bins, the subsequently chosen

option, and whether there was more coherent information on the left option, was

significant, OR = 0.96, z = −6.41, p < .001. The interaction pattern was further in the

predicted direction, such that the increase in fixating the subsequently chosen option

was more pronounced when there was more coherent information on the chosen option

(for a visualization see Figure 1).

Taken together, there was some evidence in our experiments that the amount of

coherent information moderated the strength of the gaze cascade effect, as predicted by

iCodes. Yet, as the pattern of results was not consistent between Experiment 1 and 2
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Figure 2

Mean probability of fixating the left option as a function of time in trial, the subsequently chosen

option, and the amount of coherent information on the left option in Experiment 2

Note. Black dots represent the mean fixation probability, grey dots individual fixation probabilities.

Error bars represent the model-based standard errors.

and we did not manipulate the amount of coherent information on the more attractive

option in both experiments, no definite conclusions can be drawn from these results.

Further, more detailed investigations of this prediction of iCodes are warranted.

Correlation of cue-value activations with fixation frequencies

The main assumption behind iCodes’s predictions of attention allocation is that

the distribution of cue-value node activations can be translated to the distributions of

fixations on the cue values. Thus, the activation levels at the cue-value nodes should

correlate with the relative frequency of fixations on the cue values. To test this

prediction in a first step, we simulated the cue-value node activation for each cue-value
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pattern with iCodes based on fixed parameters (P = 1.9, cf. Glöckner et al., 2014).

We, then, aggregated the mean fixation frequencies per cue-value for each cue-value

pattern. We would expect a positive correlation between the aggregated fixation

frequencies and cue-value node activations.

In Experiment 1, cue-value node activations and fixation frequencies were

positively correlated, r = .485, t(62) = 4.37, p < .001. Cue-value node activations and

fixation frequencies were also positively correlated in Experiment 2, r = .445,

t(94) = 4.81, p < .001.

Taken together, these results show that, even without fitting individual

parameters, cue-value node activations were linked to fixation frequencies. However, it

is unclear how much of this correlation can be attributed to validity differences of cue

values and the extent to which option attractiveness plays a role in this correlation.

Although these results were only preliminary, they highlight the importance of further

investigating quantitative model predictions of iCodes. A fruitful avenue for future

research could be to create cue-value patterns with distinct activation patterns based on

simulations of iCodes and test, whether fixation patterns match these activation

patterns.
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