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Abstract

Advancements in wearable technology have the potential to transform the quality

of life, business, and the global economy. Body sensors can be used in human ac-

tivity recognition, which has direct impact on various application domains such as

surveillance systems, healthcare systems, robotics, and other physical and metro-

logical applications.

Human activity recognition can be considered as a problem in both computer

vision and pervasive computing. In this research, we started from a computer vi-

sion problem based on optical flow, and then introduced open issues in respect to

existing techniques. We went on to study the relation between optical flow and

human activity recognition, taking into consideration the effectiveness of using op-

tical flow combined with other wearable sensors. As a result, feasible solutions

have been presented to solve those problems, and then useful insights have been

given for implementing corresponding techniques.

A comprehensive set of experiments and discussions were performed during

the research. Firstly, we suggested an unsupervised optical flow fine-tuning that

overcomes the need for a ground truth for training on the one hand and enhanced

motion boundaries on the other.

Secondly, we provided theoretical justification for optical flow evaluation met-

rics. Moreover, we suggested novel optical flow performance metrics that have

been evaluated alongside current metrics. Our empirical findings examined the

performance of all metrics with regard to their sensitivity to change in motion be-

tween estimated optical flow and the ground truth.

Finally, we investigated methods regarding feature extraction for Inertial Mea-

surement Units (IMUs) and visual data captured from wearable sensors, for in-

stance, statistical features, local visual descriptors, and features extracted from

deep learning. The features generated were tested for human activity recogni-



tion using Support Vector Machines and Recurrent Neural Network as the main

recognition methods.



Zusammenfassung

Fortschritte im Bereich der Wearable Technology können die Lebensqualität und

die globale Wirtschaft verändern. Körpersensoren können bei der Erkennung men-

schlicher Aktivitäten eingesetzt werden, was direkte Auswirkungen auf verschiedene

Anwendungsbereiche wie Überwachungssysteme, Gesundheitssysteme, Robotik

und andere physikalische und messtechnische Anwendungen hat.

Die Erkennung menschlicher Aktivitäten (Human Activity Recognition) kann

als Problem in den Bereichen Computer Vision und Pervasive Computing betra-

chtet werden. In dieser Arbeit erforschen wir zunächst den Einsatz von Computer-

Vision-Methoden in Form von Optical Flow, und gehen auf offene Fragen in Bezug

auf bestehende Techniken ein. Daraufhin untersuchen wir im Kontext der Erken-

nung menschlicher Aktivitäten die Wirksamkeit der Verwendung von Optical Flow

unter Berücksichtigung mehrerer tragbarer Sensoren. Dabei führen wir neuartige

Lösungen und Methoden für die Erkennung menschlicher Aktivitäten ein, und

erörtern für die Implementierung solcher Methoden wichtige Erkenntnisse und

Beobachtungen.

In dieser Arbeit wurden eine umfassende Reihe von Experimenten und Diskus-

sionen durchgeführt. Zunächst wurde eine Methode für das unüberwachte Fine-

Tuning des Optical Flows vorgeschlagen. Diese überwindet auf der einen Seite die

Voraussetzung einer Ground Truth, und verbessert dabei die Motion Boundaries

des Optical Flows.

Zweitens haben wir eine theoretische Rechtfertigung für die Bewertungsmetriken

des Optical Flows erörtert. Darüber hinaus haben wir neue Metriken vorgeschla-

gen, die zusammen mit den aktuellen Metriken empirisch ausgewertet und ver-

glichen wurden. Dabei untersuchen wir die Leistung aller Metriken im Hinblick

auf ihrer Empfindlichkeit gegenüber Bewegungsänderungen zwischen dem geschätzten

Optical Flow und der Ground Truth.



Schließlich untersuchen wir für Inertial Measurement Units (IMUs) und vi-

suelle Daten, die von tragbaren Sensoren erfasst werden, Methoden zur Extraktion

von Features. Diese beinhalten z.B. statistische Merkmale, lokale visuelle Deskrip-

toren und Features welche auf Basis von Deep Learning extrahiert wurden. Die

generierten Features wurden für die Erkennung menschlicher Aktivitäten getestet,

wobei Support Vector Machines und Recurrent Neural Network als Haupterken-

nungsmethoden verwendet wurden.
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CHAPTER1
Introduction

The rapid development of ubiquitous mobile and sensor-rich devices has increased

demand for human activity recognition (HAR). A wide range of applications can

benefit from HAR, including mobile or ambient-assisted living, health support,

human-computer interaction, video surveillance, industrial settings, smart homes,

and rehabilitation. Low-cost wearable devices offering custom preferences in re-

gard to size, weight, low power consumption, etc. are becoming increasingly avail-

able, which in turn is stimulating demand for - and hence the production of - more

mobile wearable devices, in addition to embedded sensing for smart environments.

Many approaches have been adopted in the area of human activity recognition

research, with vision based [140] and sensor based [139] being the most common.

These approaches can be categorized into two main methods based on the design

or technology used. One is machine learning methods, which include (but are not

limited to) k-nearest neighbor (K-NN); decision trees (DT); support vector ma-

chine (SVM), and hidden Markov models (HMM). The other is neural network

methods, which include (but are not limited to) artificial neural networks (ANN);

convolutional neural networks (CNN); and recurrent neural networks (RNN) [66].

Vision-based human activity recognition approaches are based on the use of

visual sensing technologies, such as video cameras, to monitor an actor’s behav-

ior and environmental changes. The sensor data generated takes the form of video

sequences or digitized visual data. The approaches in this category exploit com-

puter vision techniques, including feature extraction, structural modeling, move-

ment segmentation, activity extraction, and movement tracking to analyze visual

observations for pattern recognition [31].

1
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Advancements in image representation and classification methods have also

gained increasing attention. Ordinarily, literature on image representation meth-

ods follows research trajectories based on global and local representations. Early

beginning research studies attempted to model whole images or silhouettes and

represent human activities in a global manner. One approach is approximating the

real physical motion projected onto the image plane. This approximation repre-

sents the obvious motion of each individual pixel on the image plane, which is

called optical flow. The approach in [21] is another example of image descrip-

tors which is considered to be a global representation when space-time shapes are

generated. After that, space-time interest points (STIPs) has been emerged when

[74] proposed to trigger extraordinary attention to the informative interest points to

establish a new local representation. The other method for human representation

is local representation, for instance, visual local descriptors such as histogram of

optical flow (HOF) and histogram of oriented gradients (HOG) are vastly used or

extended to 3D. With camera devices development, depth image-based representa-

tions have been emerged as new research topic and have drawn growing attention

in recent years.

Moving from visual representation of visual data to recognizing human activity,

machine learning methods are developing various classification techniques. Basi-

cally, many classification methods were designed for domains other than HAR. For

example, the first time that hidden Markov model (HMM) and dynamic time warp-

ing (DTW) were used in speech recognition. Another example is using deep learn-

ing method firstly developed for classifying large amount images. In the domain

of human activity recognition, many activity datasets are collected, shaping public

and transparent benchmarks for comparing different classification approaches.

As mentioned above, the second approach used in human activity recognition is

sensor-based HAR, which is based on using sensor network technologies. The data

generated from monitoring systems based on sensor networks is basically time se-

ries, corresponding to the changes of state and/or various parameter measurements

that are usually processed through data fusion, statistical analysis, or probabilistic

methods and knowledge techniques for activity recognition.

In these methods, sensors can be attached to subjects with broad names like

“wearable sensors” or “smartphones”. The term “wearable sensors” usually refers
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to sensors that are placed directly or indirectly on the human body, generating sig-

nals when the wearers perform actions. Consequently, wearable sensors can mon-

itor descriptive features of the subjects’ physiological state or movement. They

can be embedded into eyeglasses, shoes, belts, wristwatches, clothes, mobile de-

vices, or directly positioned on the body. They can collect various types of infor-

mation from subjects, such as position, movement, pulse, temperature, and skin

conductance. For instance, inertial measurement units (IMUs) and radio frequency

identification (RFID) tags are used to collect behavioral information about a sub-

ject. This type of approach is potent in recognizing subjects’ physical movement,

for example, physical exercises. Accelerometer sensors are probably the most fre-

quently used wearable sensor for activity monitoring. They are particularly effec-

tive in monitoring activities that involve repetitive body motions such as walking,

running, sitting, standing, and climbing stairs.

Human movement involves the use of one or more parts of the body [18]

and can be distinguished at different levels of granularity. The terms “action”

and “activity” as components of physical movement are mainly used in activity-

recognition communities. In some scenarios, they are used interchangeably, while

in others, they indicate the complexity of different behaviors and durations.

Simple ambulatory behavior performed by a single subject and typically lasting

for a short duration of time is referred to as “action”. Examples of actions include

opening a bottle, closing a drawer, opening a fridge, putting eggs into a pan, etc. In

contrast, complex behaviors consisting of a sequence of actions and/or interleaving

or overlapping actions are denoted by the term “activities”. These can be performed

by one or more people interacting with each other in a structured manner. Activities

are typically characterized by much longer temporal durations, such as making a

cake or two people washing dishes. As one activity can contain only one action,

there is no cutoff boundary between these two behavior categories. Nevertheless,

this simple categorization provides a basic conceptualization and clarity for the

discussions in this research.

From the aforementioned introduction, it can be seen that computer vision and

pervasive computing domains are broad and interconnected and that the relation

between the two can be complementary [7]. Furthermore, human activity starts

from a movement of one or more parts of the human body, and this physical motion
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can be approximated using optical flow estimation.

With these facts in mind, the current research started from optical flow as a

computer-vision problem. We subsequently introduced some open issues in respect

to existing techniques and optical flow evaluation metrics. Then, the relationship

between optical flow and human activity was examined. In the process, in order to

minimize the number of sensors for human activity recognition, we decided on the

use of only one sensor: a first-person camera.

In the following text, we first provide the motivation for undertaking this re-

search. After this, we define our problem statement and research questions. Next,

we clarify the contribution and the outline of the thesis.

1.1 Motivation

Nowadays, human activity recognition has drawn a lot of attention in the field of

computer science due to the increase demand from many domain applications, for

instance in surveillance systems, healthcare systems, robotics and in other physical

and metrological applications. Motion is considered as an important cue for hu-

man activity recognition. [29, 22, 69, 7] have provided a significant evidences in

their research suggests that visual data can does a vital role in activity recognition.

Among the main realms that deploy sensor data in general and in human activity

recognition in particular are:

• Security and Visual Surveillance: Visual surveillance systems are designed

as - and considered to be - modular systems. They contain functional mod-

ules, such as for motion detection, that estimate depth, track objects, and

analyze objects’ behavior [67]. For instance, optical flow can identify mov-

ing objects, and it is an effective method to subtract foreground and back-

ground [134]. Moreover, optical flow is used extensively for tracking in

visual surveillance [135, 131].

• Activity Recognition: Optical flow is a useful parameter for activity recog-

nition [72], since it is invariant to appearance, even in the lake of temporal

coherence, and its accuracy at boundaries is important for activity recog-
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nition [103]. Some of the most important application domains of human

activity recognition:

– Active and assisted living applications for smart homes: Enhanc-

ing the quality of life for elderly and disabled people is a crucial and

principal objective, and modern technologies offer innovative ways to

achieve this. Activity recognition techniques can be used to assist and

monitor individuals in order to help secure their safety and well-being

[39, 97, 95].

– Healthcare monitoring: The quality of patients’ lives has increased

considerably thanks to the development of medical science and tech-

nology, and activity recognition has become a vital component of health-

care monitoring systems. For example, it can be used in human track-

ing, fall detection, security alarm, and cognitive-assistance systems

[50, 48, 141, 70].

• Robot Navigation: The process of identifying the most suitable path be-

tween a robot’s start and goal locations is considered a type of navigation

[23]. The robot’s speed and direction can be determined by calculating op-

tical flow from image sequences it observes from the surrounding world.

Optical flow can provide the robot with information about the unknown en-

vironment, making it one of the primary techniques used for mapless robotic

navigation [41]. Optical flow is also used for obstacle detection and collision

avoidance.

1.2 Problem Statement

Human activity recognition can be considered a computer vision and pervasive

computing problem, with the intersection between the two based on the experi-

mental setup of the experiments. This setup defines both the wearable sensors (e.g.,

inertial measurement sensors, global positioning system, biosensors, and cameras)

to be used in the experiment and the problem(s) the research question(s) will solve.

In the present research, we started from a computer vision problem based on op-

tical flow and then introduced open issues in respect to existing techniques and
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evaluation metrics. After this, we scrutinized the relation between optical flow and

human activity recognition, taking the effectiveness of using multiple wearable

sensors into consideration. Lastly, we focused on using only one sensor (first-

person camera) for human activity recognition in order to minimize the number of

sensors needed. In this way, the reader gains a clear overview of the state of the art

and the intersection between the two research themes.

1.2.1 Optical Flow

Optical flow is the distribution of apparent velocities of movement of brightness

patterns in an image [54]. Optical flow can emerge from relative motion between

objects and the viewer. Despite the advances in computation, optical flow estima-

tion is still an open and active research area in computer vision. Optical flow can

be considered as a variational optimization problem to find pixel correspondences

between any two consecutive frames [54]. Research paradigms in this field have

evolved from considering optical flow estimation as a classical problem [25], to

more high-level approaches using machine learning, for example, convolutional

neural networks (CNN) as a state-of-the-art method [43, 61, 125, 111].

Training convolutional neural networks (CNN) to predict generic optical flow

requires a massive amount of training data, including ground truth, and involves

considerable computational power, e.g. graphics processing units (GPUs). How-

ever, obtaining ground truth for realistic videos is very hard to achieve [28] and

simply not available in some scenarios. To overcome this problem, unsupervised

learning frameworks have been proposed. In such way, the resources of unlabeled

videos can be utilized [65].

The idea behind unsupervised methods is to avoid including ground truth opti-

cal flow in training convolutional neural network, but to nonetheless use a photo-

metric loss that measures the difference between the target image and the (inverse

/ forward) warped subsequent image based on a generated dense optical flow field

predicted from the convolutional networks. Hence, an end-to-end convolutional

neural network can be trained with any amount of unlabeled image pairs, which

helps in overcoming the need for ground truth optical flow as training input. How-

ever, fully unsupervised approaches are usually harder to train and show weaker
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performance than supervised approaches, despite their having access to the true

data statistics during training.

Researchers have generated many pre-trained optical flow estimation models

in both supervised and unsupervised ways. The amount of effort and training time

required to produce such models is significant. Consequently, benefiting from the

better performance of the existing supervised pre-trained optical flow models to

enhance motion boundaries for specific purpose datasets will help in reducing ef-

fort and time in scenarios in which little to no training data that includes ground

truth is available.

1.2.2 Optical Flow Evaluation

Optical flow estimation methods have evolved dramatically. The most common

evaluation metrics for the estimated optical flow are end point error (EPE) [91]

and angular error (AE) [16], noticing that AE metric is based on prior work of

Fleet and Jepson [46]. Even though EPE and AE metrics are popular, it is unclear

which one is better. Moreover, AE penalizes errors in regions of zero motion more

than motion in smooth non-zero regions. Also, different cases exist in which EPE

gives the same value between various optical flow estimation scenarios. There is

a need to evaluate existing optical flow performance metrics and suggest new ones

to overcome the drawbacks of those in current use.

1.2.3 Human Activity Recognition

Recognizing human activities can be based on different sensor modalities, the most

common ones being visual and inertial sensing. These modalities can be used

simultaneously or independently.

Inertial measurement sensors (IMUs) are devices with capabilities to measure

and report a body’s specific force, angular rate, and orientation. The sensor’s lo-

cal coordinate system contains three main measurements: accelerometers, which

are the instantaneous acceleration for each axis; gyroscopes, which represent the

rotational velocity of the inertial; and magnetometers, which exemplify the instan-

taneous magnetic field measured with corresponding X, Y and Z axes. One of the

drawbacks of using IMUs is the high measurement of uncertainty at slow motion
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and lower relative uncertainty at high velocities. On the other hand, inertial sensors

are able to measure very high velocities and accelerations.

Much research work suggests combining different sensor modalities to improve

human activity recognition [30, 7, 2]. For example, in addition to IMUs, using vi-

sual descriptors extracted from visual sensors can mitigate the high measurement

of uncertainty at slow motion captured by IMUs and can track features very ac-

curately invariant to appearance of the representation at low velocities. However,

for real life scenarios, a realistic and compromised number of modalities should

be used. Previous research has focused on recognizing activities that are distinct

and independent, like lie, sit, walk, cycle, ... etc. [132] or similar ones but with

different visual items such as pour bag, pour oil, stir big bowl, stir egg, ... etc. [79].

Research in recognizing complex activities for the same object (e.g. a drawer) that

are similar but opposite in nature, (e.g. open, close), is limited.

1.3 Research Questions

The research interest in the current endeavor focuses on finding suitable solutions

for the problem statements and research challenges delineated previously, with the

organization of this dissertation corresponding to the arrangement of our research

questions. Consequently, the research questions with respect to optical flow as

a computer vision problem have been notated (I.x), and research questions with

regard to human activity recognition have the prefix (II.x) prefix. This means the

research starts from optical flow as the pattern of apparent motion, continues on

through the intersection between optical flow and human activities, and, lastly,

answers pervasive computing questions related to human activity recognition.

Basically, we are interested in address the following research questions based

on our problem statement and research challenges.

I.1 How is it possible to benefit from existing pre-trained optical flow models

without the existence of ground truth and with a limited training set?

I.2 How can optical flow performance metrics be evaluated with the existence

of ground truth?



CHAPTER 1. INTRODUCTION 9

I.3 How can the best optical flow evaluation metric be determined? What are

the theoretical justifications of using one metric and why?

II.1 How can optical flow influence the use of multi-sensor human activity

recognition?

II.2 What features can be extracted from multi-sensor human activity recog-

nition? And what methods can be used for human activity recognition?

Research questions I.1, I.2 and I.3 are mainly concerned with the computer

vision problem based on optical flow estimation, evaluating and enhancing motion

boundary. Questions II.1, II.2 are related to human activity recognition.

1.4 Contributions

This section points out the scientific contributions of this thesis, which not only

answers research questions, but also enriches the computer vision and pervasive

computing fields.

The following summarizes the main achievements:

1. We took advantage of the existing pre-trained models for optical flow esti-

mation to fine-tune it in an unsupervised way in the absence of ground truth

and when training dataset was limited. We also designed an unsupervised

loss function based on classical variational optical flow estimation methods,

which resulted in training objectives to learn the dataset specific statistics.

Moreover, training time per dataset was reduced immensely. Additionally,

the proposed unsupervised fine-tuning concept for optical flow resulted in

improvement of motion boundaries estimated by gradients in the optical flow

field.

2. We have provided a theoretical justification for using different optical flow

performance metrics and the reasons behind it. Moreover, we have intro-

duced novel optical flow performance metrics and evaluated them alongside

current metrics.
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3. We have developed an activity extraction tool for both visual and IMUs data

based on [137] annotations for the Carnegie Mellon University Multi-Modal

Activity database (CMU-MMAC) [38].

4. We introduced a novel statistical feature extraction method for IMUs data

based on curvature of function graph and tracking the positions of left and

right hands in space.

5. We have investigated complex and similar human activities for the same ob-

ject, for example (close-drawer, open-drawer).

6. We have provided experimental proof of the limitation of IMUs data to dis-

tinguish human activities and suggesting that local visual descriptors can be

complementary to IMUs for activity recognition.

7. We have minimized the number of sensors and used only first person visual

data for activity recognition.

1.5 Published Work

This dissertation is based on previous publications, and a major component of the

effort extends the content of these published works. For instance, Part I and II were

conducted under the supervision and guidance of Prof. Heiner Stuckenschmidt

and Prof. Samir Brahim Belhaouari. The published content can be found in the

following selected publications:

• Alhersh, T. and Stuckenschmidt, H. (2019). Unsupervised fine-tuning of opti-

cal flow for better motion boundary estimation. In Tremeau, A., Proceedings

of the 14th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications : February 25-27, 2019, in

Prague, Czech Republic ; Volume 5: VISAPP (S. 776-783). , SciTePress:

Setúbal, Portugal.

• Alhersh, T. and Stuckenschmidt, H. (2019). On the combination of IMU

and optical flow for action recognition. In , 2019 IEEE International Con-

ference on Pervasive Computing and Communication Workshops (PerCom
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Workshops) : 11-15 March 2019 in Kyoto, Japan (S. 17-21). , IEEE: Piscat-

away, NJ.

• Alhersh, T., Brahim Belhaouari, S. and Stuckenschmidt, H. (2019). Ac-

tion recognition using local visual descriptors and inertial data. In Chatzi-

giannakis, I., Ambient Intelligence : 15th European Conference, AmI 2019,

Rome, Italy, November 13–15, 2019, Proceedings (S. 123-138). Lecture

Notes in Computer Science, Springer International Publishing: Cham.

• Alhersh, T., Belhaouari, S. and Stuckenschmidt, H. (2020). Metrics perfor-

mance analysis of optical flow. In Braz, J., VISIGRAPP 2020 : proceedings

of the 15th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications, Feb 27, 2020 - Feb 29, 2020,

Valetta, Malta (S. 749-758). , SCITEPRESS - Science and Technology Pub-

lications: Setúbal.

1.6 Outline

This section provides the outline of this thesis and summarizes the content of each

provided chapter.

Chapter1: Introduction. This chapter introduces the human activity recogni-

tion approaches used and the intersection between computer vision and pervasive

computing. It also elucidates the motivation behind the research, the problem state-

ment, research questions, the effort’s scientific contributions, and related published

work.

Part I: Foundation

Chapter2: Human Activity Representation. In this chapter, a foundation

of human activity representation in respect to vision-based and sensor-based ap-

proaches has been provided. This foundation is necessary for the reader to un-

derstand later chapters that discuss our approaches for feature extraction in more
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detail.

Chapter3: Human Activity Recognition. This chapter also falls under the

foundation section, and it is important for the reader to understand the recognition

techniques used in this work. We have provided basics of machine- learning ap-

proaches for human activity recognition, including Convolutional Neural Network

(CNN) and Support Vector Machine (SVM).

Part II: Optical Flow Fine-tuning and Evaluation

Chapter4: Unsupervised Optical Flow Fine-tuning. In this chapter, we ex-

ploit a well-performing pre-trained model for optical flow estimation and then fine-

tune it in an unsupervised way where ground truth is not available using a classi-

cal variational optical flow estimation method and training objectives to learn the

dataset specific statistics. Thus, by means of dataset training, time can be reduced

tremendously. Moreover, motion boundaries estimated by gradients in the optical

flow field can be improved using the proposed unsupervised fine-tuning.

Chapter5: Performance Analysis of Optical Flow. We provide theoretical

justification for using optical flow performance metric and the reasons behind this

approach. In practice, design choices are often made based on qualitative unmoti-

vated criteria or by trial and error. In this chapter, novel optical flow performance

metrics are proposed and evaluated alongside current metrics.

Part III: Human Activity Recognition

Chapter6: Learning Human Activities. Here, we focus on the research ques-

tions introduced with respect to human activity recognition. For this reason, we

first introduce an action extraction tool and then explain feature extraction methods

for both IMUs and visual features. After this, we provide recognition techniques

for human activities. Lastly, results of three experiments are reported: IMUs and

optical flow, IMUs and local visual descriptor features, and visual features only.

The chapter concludes with a comprehensive discussion.
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Part IV: Wrap-up

Chapter7: Conclusion and Future Work. This chapter concludes the work

presented in this thesis, highlighting the main research questions and how the re-

search has answered them. Regarding future work, we have outlined promising

future research directions that can be used to extend or enhance this work.



Part I

Foundation
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CHAPTER2
Human Activity Representation

This chapter presents the fundamental knowledge about human activity representa-

tion approaches categorized based on computer-vision and sensor-based paradigms

that are crucial for understanding the subsequent chapters.

Human behavior analysis tasks can be classified according to the following se-

mantic degrees: motion, action, activity, and behavior [90], as shown in Figure 2.1.

Viewed from one perspective, motion is considered the lowest semantic degree and

behavior the highest. Seen in another way, motion requires the shortest period of

time to be performed. To develop a behavior, however, a longer period of mo-

tion capturing is needed. Motion information over time produces action, different

interactions construct an activity, and more complex activities shape a behavior.

It is also useful to distinguish human behaviors at different levels of granularity.

An example is physical behaviors for which the terms “action” and “activity” are

mainly used in activity recognition communities. In some scenarios, these terms

are used interchangeably, whereas in others they are used to denote behaviors of

different complexity and duration. In the latter cases, the term “action” is usually

applied to refer to simple behavior performed by a single person that typically

lasts for a short period of time. Examples of actions include closing a cupboard,

opening a jar, etc. In contrast, the term “activities” in this context is used to refer

to more complex behaviors shaped from a sequence of actions and/or interleaving

or overlapping actions.

15
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Figure 2.1: Human behavior components, starting from motion until shaping a
behavior.

2.1 Vision Based Approaches

Vision-based human activity representation can be categorized based on research

trajectories of global and local representations. In this context, optical flow is con-

sidered to be a global representation of human activity, while histogram of optical

flow (HOF) and histogram of gradients (HOG) represent local descriptors.

2.1.1 Optical Flow

The notion of optical flow refers to the displacements of intensity patterns. The ori-

gin of this definition is based on the description of the physiological phenomenon

when an image is formed on the retina, causing visual perception of the world. In

this context, the relative motion between observer and object is the cause of opti-

cal flow. This motion only represents intensities in the image plane, but does not

necessarily account for the actual 3D motion in the physical scene [120].

In computer vision practice, interest motion refers to the real displacement of

objects. Hence, the projection of image plane in three-dimensional space of motion

is what actually needs to be estimated; it is commonly referred to as the motion

field. Another problem can arise when intensity changes due to changes in light

or light reflection, which is known as scenes flow. The optical flow can only be

extracted from a video frames sequence [116], and its formulation can be denoted
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as described in the following paragraph.

In real world scene, the brightness reflection of a point represents the pixel

intensity I(x, y, t) at location (x, y) at time t in an image plane. The same point

will be positioned in the image plane at location (x+ δx, y + δy) and time t+ δt

after δt time lapse. At a short time interval, it is expected that the intensity of that

point will remain unchanged and can be denoted as:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) (2.1)

The two-dimensional velocity in image plane can be represented by an optical

flow vector (u, v), where, u = δx/δt and v = δy/δt. Hence, Equation 2.1 is

referred to as constant intensity constraint [54] and can be denoted as:

I(x+ uδt, y + vδt, t+ δt) = I(x, y, t) (2.2)

Equation 2.2 refers to the constant intensity constraint that is used for comput-

ing optical flow. From Equation 2.2, if time interval δt is considered very short,

then, the computation of optical flow can be estimated by minimizing 2.3 equation.

The classical work of Horn and Schunck [54] is considered the basis of the first

practical model for optical flow.

d

dt
I(x, y, t) = 0 (2.3)

In the following section, we introduce the research paradigms in optical flow

estimations that have evolved, from considering optical flow as a classical problem

[25], to more high-level approaches using machine learning, an example of which

is convolutional neural networks (CNN), a state-of-the-art method [43, 61, 125,

111].

Classical Approaches

In this section, we introduce optical flow basics for classical approaches that are

not based on machine learning.
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Differential Technique This technique, which uses spatial and temporal deriva-

tives of image brightness to compute velocity, can also refer to gradient-based ap-

proaches. Relying on brightness constancy assumption leads to an aperture prob-

lem: two unknown components (vertical and horizontal displacement pixels) can-

not be determined by one equation of flow field, and this creates an ill-posed prob-

lem.

In order to make the problem well-posed, another constraint needs to be in-

corporated with brightness consistency assumption as encoded priori information

[54, 80]. Prior usually has the shape of spatial coherence exploit by global or local

constraints. These constraint methods vary in their interaction with nearby pixels.

Local methods use nearby pixels’ intensity values as pixel flow constraint, whereas

a global method uses nearby pixels’ flow vectors as pixel flow constraint.

Region-based Technique The core of this technique is based on finding matched

patches between two consecutive images. The highest correlation between two

corresponding patches is defining optical flow, which is the shift of those patches

[16, 10]. This technique is more robust to noise than differential techniques; it also

works well when images are decimated or interlaced [117].

Feature-based Technique In this technique, an attempt is made to link discrimi-

native sparse features for successive images over time [26, 127] in two main steps:

features detection, followed by corresponding matching. The estimated optical

flow ignores areas of ambiguity, and though the generated flow field is sparse, it is

robust. The optical flow can be determined via discriminative features for edges,

corners, and low-contrast features like flat regions [81]. The feature-based tech-

nique has two general drawbacks. Firstly, the estimated optical flow is very sparse

if objects or background contain non-discriminative features. Secondly, selected

features sometimes prove to be unreliable and disappear in subsequent frames.

Frequency-based Technique The frequency-based technique can be referred to

as velocity-tuned filters in which optical flow is calculated using filters in the

Fourier domain such as velocity-tuned filters. One advantage of this technique

is that using mechanisms operating on spatio-temporally oriented energy in the
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Fourier domain [17] makes it possible to estimate motion that cannot be estimated

using matching approaches. For instance, this technique can work with random

dot patterns motion. Frequency-based techniques can be classified into two groups

based on velocity-tuned filters output: energy-based methods and phase-based

methods.

Variational Approaches

Horn and Schunck have suggested minimizing global energy function for comput-

ing the displacement vector of each pixel. This function consists of two terms:

brightness consistency and smoothness. This method plays a vital role in optical

flow computation because almost all top-performing optical flow algorithms rely

on variational techniques.

Variational optical flow techniques have many advantages compared to other

optical flow estimation methods [26, 27, 24]:

• Different assumptions could be integrated into a one minimization frame-

work.

• They produce a dense flow field because it has a filling-in effect, whereas

numerous other methods require interpolation of the sparse flow field as post-

processing step.

• The energy function could be formulated in such a way which is invariant to

rotations in most cases.

• Variational optical flow techniques can be accelerated using bidirectional

multigrid methods to some extent allowing for real-time performance on

standard hardware [27].

The energy function [25] can be structured by combining color, gradient and smooth-

ness terms where I1, I2 : (Ω ⊂ R2) → R3 are any two consecutive frames. Also,

x := (x, y)T are the point in Ω domain, and w := (u, v)T is the optical flow field

as follows:

E(w) = Ecolor + γEgradient + αEsmooth (2.4)
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where the color energy Ecolor is an assumption that the corresponding points

should have the same color:

Ecolor(w) =

∫
Ω

Ψ(|I2(x+ w(x))− I1(x)|2)dx (2.5)

The gradient energyEgradient is a constraint that is invariant to additive bright-

ness changes to deal with the illumination effect:

Egradient(w) =

∫
Ω

Ψ(|∇I2 + w(x))−∇I1|2)dx (2.6)

Adding smoothness constraint Esmooth works as a regularity term for penaliz-

ing the total variation of the flow field generated from 4.2 and 4.3:

Esmooth(w) =

∫
Ω

Ψ(|∇u(x)|2)− |∇v(x)|2)dx (2.7)

Function Ψ(s) allows dealing with non-Gaussian deviations corresponding to

matching criteria and occlusions. It corresponds to a Laplace distribution that has

longer tails than the Gaussian distribution.

Machine Learning Approaches

One of the most popular machine learning algorithms with a vast impact on almost

all disciplines is Neural Networks. It has been applied decisively over time and

outperforms other algorithms in speed and accuracy. Convolutional Neural Net-

works (CNN) is a neural networks variant used mainly in the field of computer

vision. The name convolutional has been derived from hidden layers that shape the

neural network and consist of convolutional layers, pooling layers, normalization

layers, and fully connected layers.

CNN methods learn to extract deep features from input images. Even through

optical flow estimation needs accurate per-pixel localization, it also requires find-

ing correspondences between two consecutive input images. This, in turn, includes

learning image feature representations and learning to match them at different lo-

cations in the two images [43].

This breakthrough achievement encouraged other subsequent optical flow esti-
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mation techniques such as supervised, unsupervised, and semi-supervised. Optical

flow estimation using CNN algorithms provides a promising alternative to varia-

tional methods. Flexibility in using image features for optical flow estimation is

considered the main advantage of using CNN methods. CNN can extract more

abstract, deeper, and multi-scale features using multi-layer and hierarchical archi-

tectures. Moreover, CNN can model complex, non-linear transformations between

the input images and the estimated flow field. Overall, the stochastic minimization

of the loss across an entire training dataset avoids some of the pitfalls of optimizing

a complex energy-function on individual inputs in variational methods [85].

Optical Flow Evaluation

Evaluation procedures for optical flow estimation methods are important for the

quality of the optical flow produced. Two main approaches can be used for evalu-

ating estimated optical flow: qualitative and quantitative.

Figure 2.2: Two types of visualization of the motion field transforming Image1 in
Image2.

Motion fields visualization provides qualitative intuition in regard to the ac-

curacy of the optical flow estimation. Two main visualization techniques are pre-

sented in Figure 2.2. Motion vectors are directly represented by arrow visual-

ization and provides a good intuitive understanding of physical motion. On the
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counterpart, a clear illustration needs motion field under-sampling to prevent over-

lapping of arrows.

The other technique is color coding visualization, in which motion field vectors

are associated with a color hue to indicate direction and a saturation to represent

the magnitude of the vector. It allows for dense visualization of the flow field and

for better visual visual perception of subtle differences between neighbor motion

vectors [47].

The first quantitative evaluation metrics for optical flow were published in 1994

[91, 16] and suggested the use of end point error (EPE) [91], which can be de-

scribed as the Euclidean distance between two vectors; it can be defined as Equa-
tion 5.1:

EPE =
√

(u− uGT )2 + (v − vGT )2. (2.8)

and AE [16], which represents the angle between the two extended vectors

(1, u, v) and (1, uGT , vGT ) and defined in Equation 5.2:

AE = cos−1

(
uuGT + vvGT + 1

√
u2 + v2 + 1

√
u2
GT + v2

GT + 1

)
. (2.9)

2.1.2 Histogram of Optical Flow (HOF)

This method is based on extracting motion features from image sequences using

optical flow [94]. The main advantage of this method is that the overburden of

correctly estimating motion in variable lighting conditions and mess is entirely

limited to optical flow calculation.

Histogram of optical flow does not make any assumptions about the source of

optical flow data; nevertheless, it can be adopted and applied in various ways. The

only implicit assumption is that the sequences of images have the same frame rate

and the same optical flow field dimensions. Moreover, HOF assumes that each

sequence of images contains a single temporal reference, which can be used for

temporal alignment, and that there exists predefined partitioning of the image into

sub-regions exists.

HOF basically computes the primary motion in each of the sub-regions. For
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motion, amplitude and direction are quantized via the use of 2D optical flow his-

tograms, and therefore the dominant motion can be encoded simply by assigning a

symbol to each of the histogram bins. This way, a compact representation of whole

body motion, including gestures, is built. The sets of such symbol sequences are

called HOF descriptors. In a real-world implementation, the descriptors can be

extracted from the flow sequences immediately after the flow is obtained, there-

fore reducing the need for storage of original video sequences or optical flow field

sequences. Observing the maximum in each histogram is an inherently noisy ap-

proach; however, due to the small number of bins, the effects of noise are small.

Likewise, the lowest-velocity bin is discarded to get rid of the low-velocity noise,

which inevitably appears in optical flow vectors.

First, note that the image flow induced by camera rotation (pan, tilt, roll) varies

smoothly across the image irrespective of 3D depth boundaries, and in most ap-

plications it is locally essentially translational because significant camera roll is

rare. Thus, any kind of local differential or difference of flow cancels out most of

the effects of camera rotation. The remaining signal is due to either depth-induced

motion parallax among the camera, subject, and background, or to independent

motion in the scene. Differentials of parallax flows are concentrated essentially

at 3D depth boundaries, while those of independent motions are largest at motion

boundaries [35, 74].

2.1.3 Histogram of Gradients (HOG)

The appearance and shape of local objects inside an image can be characterized

very well by the distribution or histogram of local intensity gradients or edge di-

rections, even without accurate prior knowledge of the corresponding gradient or

edge positions. Histogram of oriented gradients (HOG) is one of feature descrip-

tors used to detect objects in computer vision and image processing. The HOG

descriptor technique counts occurrences of gradient orientation in localized por-

tions of an image-detection window, or region of interest (ROI).

A practical implementation of the HOG descriptor algorithm is described as

follows:

1. Divide the image into small connected regions called cells, and for each cell
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accumulating a local 1-D histogram of gradient directions or edge orienta-

tions is computed for the pixels within the cell.

2. Discretize each cell into angular bins according to the gradient orientation.

3. Each cell’s pixel contributes weighted gradient to its corresponding angular

bin.

4. Groups of adjacent cells are considered as spatial regions called blocks. The

grouping of cells into a block is the basis for grouping and normalization of

histograms.

5. For better invariance to illumination, shadowing, etc., normalization group

of histograms that represent blocks can be performed. The set of these block

histograms represents the descriptor.

Figure 2.3: Demonstration of HOG algorithm and implementation scheme [1].

Figure 2.3 demonstrates the algorithm implementation scheme of HOG. HOG

descriptor computation requires some basic configuration parameters before ap-

plying it; for instance, masks to calculate derivatives and gradients, geometry of

splitting an image into cells and grouping cells into blocks, overlapping of blocks

and normalization parameter [1].
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2.1.4 Motion Boundaries Histogram (MBH)

Another common visual descriptor for videos is Motion Boundary Histogram (MBH),

an approach proposed by [35]. One advantage of this approach is the robustness

to camera and background motions. The basic idea of MBH is to represent the

oriented gradients computed over the vertical and the horizontal optical flow com-

ponents. In this representation, constant camera movements tend to disappear,

and the description focuses on optical flow differences between frames (motions

boundaries).

Motion boundaries histogram represents optical flow vertical and horizontal

components separately using two scalar maps, which can be viewed as gray-scale

images of the motion components. Then, histograms of oriented gradients are com-

puted for each component of the two optical flow images using the same approach

deployed for computing HOG in normal images. It should be taken into consid-

eration that only flow differences represented by information changing in motion

boundaries are kept, and the constant motion information is removed, which can-

cels most camera motion effects [118, 119].

2.2 Sensor Based Approaches

Currently, a vast range of sensors is available in activity monitoring. This includes

sensors based on RFID, audio, accelerometers, and motion detectors to name but a

few. These sensors are different in many ways, varying, for example, in type, pur-

pose, signals generated, underlying theoretical concept, and technical hardware and

infrastructure. However, they can be categorized into two main classes in terms of

how they are deployed in activity recognition applications: wearable sensors and

dense sensors. In this research, we are mainly focused on Inertial Measurement

Units (IMUs) wearable sensors, as they are unobtrusive and considered to be com-

plementary to visual-based sensors. In the following section, sensors considered

for use in this work are only introduced as part of experiments or discussion. The

three main components of IMUs - sensor accelerometer, gyroscope, and magne-

tometer - are introduced in greater detail in the following section.



CHAPTER 2. HUMAN ACTIVITY REPRESENTATION 26

2.2.1 Inertial Measurement Units (IMUs)

An inertial measurement units (IMUs) is a sensor that provides three-axis acceler-

ation, angular turning rate (gyroscope), and magnetometer. The mass of the sensor

has the mechanical freedom to move independently from the outer assembly. The

sensor mass has a plurality of sensing and suspension elements of particular orien-

tation on a selected plane for each axis of detection that face a corresponding set

of sensing and suspension elements on the respective interior surfaces of said outer

assembly [87].

Accelerometer

An accelerometer is an electromechanical sensor that can measure either static

or dynamic forces of acceleration of a body. Static forces include gravity, while

dynamic forces can include vibrations and movement. This reflects the change in

velocity for a certain time duration.

There are many different ways to build an accelerometer. Some use the piezo-

electric effect and have microscopic crystal structures that get stressed by accel-

erative forces, causing a voltage to be generated. Another way to make an ac-

celerometer is via sensing changes in capacitance. For instance, if there are two

microstructures next to each other, they have a certain capacitance between them.

The capacitance change will cause an accelerative force by moving one of the

structures [3].

Gyroscope

A gyroscope measures the angular velocity. This sensor calculates how fast an an-

gle changes around an axle over time. A gyroscope can capture body rotation that

determines the orientation. Different classes of gyroscopes exist, depending on the

physical operating concepts and the technology involved. Gyroscopes can be used

alone or integrated in more complex systems such as a gyrocompass [45]; Inertial

Measurement Units [87], Inertial Navigation System [68] and Attitude Heading

Reference System [3].

The main effect upon which a gyroscope depends is that an isolated spinning

mass shows tendency to maintain its angular position with respect to an inertial
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reference frame. When an external constant torque (or a constant angular speed) is

applied to the mass, its rotation axis undergoes a precession motion at a constant

angular speed (or a constant output torque) in a direction that is normal to the

direction of the applied torque (or to the constant angular speed) [93].

Magnetometer

A magnetometer sensor is an instrument used to measure the direction and strength

of a magnetic field in the vicinity of the instrument. Magnetometer location on

Earth plays a role in the varieties of magnetism because of the differences in the

magnetic field caused by the differing nature of rocks and the interaction between

charged particles from the sun and the magnetosphere of a planet [14].

The two main components of an inertial sensor are accelerometer and gyro-

scope; however, magnetometer can also be considered as part of an inertial mea-

surement units. Nevertheless, stated more precisely, magnetometer is not an in-

ertial sensor [115]. When magnetometer is combined with accelerometer and a

gyroscope, it allows the continual tracking of body orientation for all three dimen-

sions: pitch, yaw, and roll, which are the three dimensions of movement when an

object moves through a medium. In theory, accelerometer and magnetometer are

sufficient to obtain those dimensions, but having a gyroscope will increase pre-

cision. For instance, magnetometer accuracy is poor for fast moving objects; on

the other hand, accuracy is maintained over time. In contrast, gyroscope accuracy

drops significantly over time since it reacts fast and accurately to changes. Fur-

thermore, both accelerometer and the gyroscope need an initial orientation start

because both only react to changes. Consequently, all three sensors excel at differ-

ent levels, and combining them allows quick, accurate positioning and orientation

of objects.



CHAPTER3
Human Activity Recognition

This chapter introduces the fundamentals of human activity recognition in respect

to machine learning. In this context, the chapter’s focus is to introduce a back-

ground for underlying related topics applied in this work.

Due to the availability and accessibility of wearable sensors, human activity

recognition (HAR) has become one of the trendiest and popular research topics in

the last decade. HAR has gained in importance because of wide engagement in

many research areas, including healthcare systems, interactive gaming and sports,

and monitoring systems that seek to improve the quality of life. In HAR, many hu-

man activities are recognized, such as opening a drawer, turning a light on or off,

preparing a meal, walking, sleeping, taking medicine, etc. While diverse methods

can be used to recognize human activity, this research limits it focus to two main

machine learning methods: convolutional neural networks (CNN) and support vec-

tor machines (SVM).

Figure 3.1: HAR generic methodology design workflow, which includes, decide
human activity, define a device to capture this activity, collecting data that includes
pre-processing for data and labeling, training the model and then evaluating it.

Figure 3.1 illustrates the general workflow for designing general human ac-

tivity recognition methodologies [40]. Designing HAR-based application encom-

passes five main steps. In the first, the activity to be recognized is defined. In the

28
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second, the type of device for sensing the designated activity is determined and

data collection started. The third step is to decide what is to be done with the col-

lected data, including data pre-processing and cleaning and annotation. In the next

step, a machine learning model has to be built, which includes training, validating,

and testing the model. In the fifth and final step, the accuracy of the model should

be evaluated in terms of the activity recognition metrics.

3.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) were first introduced by [76] in 1989. They

are considered a special type of neural network for processing data that has a pre-

defined topology. For example, time-series data - which can be represented as a

1-D grid when sampled at a specific time interval - has been taken into consider-

ation. Image data can be also considered as a 2-D grid of pixels. The name CNN

indicates that this type of neural network employs convolution, which is a math-

ematical operation. Convolution is a special type of linear operation and will be

discussed in the following sections. Hence, CNN is a simplified type of neural

network that uses convolution operation instead of general matrix multiplication in

at least one layer of the network.

3.1.1 Convolution Operation

Convolution in general is an operation on two functions of a real-valued argument,

e.g. if we are tracking the location of an object with a laser sensor, and this sensor

provides a single output x(t) that represents the position of this object at time t.

In this case, both x and t are real values, and saying this, the differences in multi-

ple readings from the laser sensor at multiple instant times can be obtained if we

assume that this laser sensor is somehow noisy. To obtain a less noisy estimate

of the object’s position, averaging several measurements can be performed. Rele-

vant measurements are represented by the more recent measurements to obtain a

weighted average that gives more weight to recent measurements. This can be done

via a weighting function w(a), where a is the age of a measurement. If we apply

such a weighted average operation at every moment, we obtain a new function s
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providing a smoothed estimate of the position of the object:

s(t) =

∫
x(a)w(t− a)da. (3.1)

The latter operation is termed a convolution. The convolution operator can be

denoted with an asterisk [51]:

s(t) = (x ∗ w)(t). (3.2)

From the previous example, and based on convolutional network terminology,

the first argument represented by the function x usually represents the input of

the network. The second argument, denoted by the function w, is called the kernel.

The output of the network is sometimes referred to as a feature map. Usually, when

dealing with computer data, time should be discretized, and the sensor mentioned

in the previous example will provide data at regular intervals, for instance once per

second. Index of time t can, after that, take integer values only. Assuming that x

and w are only defined on integer t, the discrete convolution is as follows:

s(t) = (x ∗ w)(t) =

∞∑
a=−∞

x(a)w(t− a). (3.3)

In machine learning applications, the input data as shown in Figure 3.2 is usu-

ally a multidimensional array, and the kernel is usually defined as a multidimen-

sional array of parameters that are adapted by the learning algorithm. Each element

of the input and kernel must be explicitly stored separately, so it’s usually assumed

that these functions are zero everywhere but in the finite set of points for which

values are stored. In other words, the infinite summation can be considered a sum-

mation over a finite number of array elements. Moreover, convolutions can be used

over more than one axis at a time. For example, when using a two-dimensional im-

age I as input, we probably also want to use a two-dimensional kernel K:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (3.4)
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Figure 3.2: In this example, a 2-D convolution has been performed using the input
data (brown outline) with 2 × 2 kernel (blue outline); the output is shown in the
green box.

3.1.2 Layers Used to a Build CNN

A CNN is a sequence of layers; the function of every layer of a CNN transforms

one volume of activations to another through a differentiable function. Three main

types of layers are used to build CNN architectures: the convolutional layer, the

pooling layer, and the fully connected layer. Stacking these layers will form a full

CNN architecture.

Convolutional layer - This layer is counted as the core building block of any

convolutional network. Most of the heavy computational processing is done in this

layer. It computes the output of neurons that are connected to local regions in the

input, each computing a dot product between their weights and a small region they

are connected to in the input volume. The convolutional layer parameters comprise

of a set of learnable filters. Each filter is spatially small; however it extends via the

full depth of the input volume.

Pooling layer - Periodic insertion of a pooling layer is considered a common

practice between successive convolutional layers in network architecture. The
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main goal of this layer is to reduce the number of parameters and overhead com-

putations in the network in order to control overfitting. In other words, this layer

performs a down sampling operation along the spatial dimensions.

Fully connected layer - In this layer, all neurons are fully connected to all activa-

tions in the previous layer, similar to the same concept in regular neural networks.

Hence, their activations can be calculated with a matrix multiplication followed by

a bias offset.

3.1.3 CNN Architecture Overview

Unlike regular neural networks, the layers shaping CNNs consist of neurons ar-

ranged in three dimensions (width, height, and depth), where the depth is referred

to as the third dimension of an activation volume, and not to the depth of a full

CNN. This is the case, for instance, if input images have an input volume of ac-

tivations, and the volume has 32 × 32 × 3 dimensions (width, height, depth, re-

spectively). Consequently, the neurons in a layer will only be connected to a small

region of the layer before it, instead of all of the neurons in a fully connected man-

ner. Moreover, in this example, the final output layer will have 1×1×c dimensions

(where c is the number of classes) because by the end of the CNN, the architecture

full image is reduced into a single vector of class scores, arranged along the depth

dimension as shown in Figure 3.3.

3.2 Support Vector Machine (SVM)

A support vector machine [53] (SVM) is a supervised learning classifier that com-

putes a hyperplane to separate different classes. Accordingly, the purpose of this

classifier is to find a hyperplane that separates data and avoids over-fitting. An

SVM works by representing each data point in an n-dimensional space. Then the

SVM classifier determines a hyperplane that maximizes the margin between differ-

ent classes (see Figure 3.4 ). If the hyperplane fails to separate all data points, the

SVM classifier transforms input data to a higher dimensional space to make them

linearly separable, as shown in Figure 3.5. Transformation of data to a higher di-
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Figure 3.3: A CNN arranges its neurons in three dimensions (width, height, depth),
as visualized in one of the layers. Every layer of a CNN transforms the 3D input
volume to another 3D output volume of neuron activations. In this example, the
brown input layer holds the image, so its width and height would be the dimensions
of the image, and the depth would be 3 (red, green, and blue channels, assuming
that the image is an RGB image).

mensional space is called a kernel trick. This helps in projecting data points with

extra features to get linear classification.

Figure 3.4: A simple example of using an SVM classifier. In this example, the
SVM objective is to find an optimal separation hyperplane between the class blue
circles and the class red triangles. The best hyperplane is shown in green.

Finding the maximum-margin hyperplane for separating data point classes can

be considered an optimization problem. Tuning parameters can be used in SVMs

to enhance the resulting hyperplane - for instance, the type of kernel function used

(e.g. linear, polynomial, or Sigmoid), as well as what is termed the “gamma pa-
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rameter” that affects some kernels. Also, a regularization parameter can be used to

avoid misclassifying the data points. Multiclass classification problems in SVMs

can be solved using one-vs-one or one-vs-the-rest [55].

Figure 3.5: An example in which the hyperplane fails to separate all data points
on the left side. In this case, the SVM classifier transforms input data to a higher
dimensional space, as on the right side, to make them linearly separable.



Part II

Optical Flow Fine-tuning and
Evaluation
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CHAPTER4
Unsupervised Optical Flow

Fine-tuning

The notion of Optical flow refers to the displacements of intensity patterns. The

origin of this definition is based on the description of a physiological phenomenon

when an image is formed on the retina causing what is called visual perception of

the world. In this context, the relative motion between observer and object causes

optical flow in the scene. This motion only represents intensities in the image

plane, but does not necessarily account for the actual 3D motion in the physical

scene [120].

In computer vision practice, interest motion refers to the real displacement of

objects. Hence, the projection of the image plane in the three-dimensional space of

motion is what actually needs to be estimated - and is commonly called the motion

field. Another problem can arise when intensity changes due to a change in light

or light reflection, which is known as scenes flow. The optical flow can only be

extracted from a video frames sequence [116].

One of the most popular machine learning algorithms, and has had vast im-

pact on almost all disciplines, is neural networks. It has been applied significantly

over time and outperforms other algorithms in speed and accuracy. Convolutional

neural networks (CNN) are a variant of neural networks used mainly in the field

of computer vision. The name convolutional has been derived from hidden layers

that shape the neural network and consist of convolutional layers, pooling layers,

normalization layers, and fully connected layers.

CNN methods learn to extract deep features from input images. Estimation of

36
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optical flow requires accurate per-pixel localization, and it also requires that corre-

spondences between two consecutive input images be found. This includes learn-

ing image feature representations and learning to match them at different locations

in the two images [43].

Due to this breakthrough achievement, the development of supervised, unsu-

pervised, and semi-supervised optical flow estimation techniques was subsequently

encouraged. Optical flow estimation using CNN algorithms provides a promising

alternative to the variational method. CNN’s flexibility in using image features

for optical flow estimation - it can extract more abstract, deeper, and multi-scale

features using multi-layer and hierarchical architectures - is considered its main ad-

vantage. Moreover, CNN can model complex, non-linear transformations between

the input images and the estimated flow field. Overall, the stochastic minimization

of the loss across an entire training dataset avoids some of the pitfalls of optimizing

a complex energy-function on individual inputs in variational methods [85]. Re-

cently, CNN-based approaches have proven successful in optical flow estimation in

the supervised, semi-supervised, and unsupervised training paradigms. Supervised

training requires large amounts of training data with task-specific motion statistics.

Usually, synthetic datasets are used for this purpose. For semi-supervised training,

a combination of labeled and unlabeled data is required. Although fully unsuper-

vised approaches have access to the true data statistics during training, they are

usually harder to train and show weaker performance.

In this chapter, we exploit a well-performing pre-trained model and fine-tune

it in an unsupervised way using a classical optical flow estimation method. The

training objectives will help facilitate learning of the dataset-specific statistics, thus

reducing per dataset training time by big margin.

4.1 Related Work

Motivated by the success of deep learning in various computer vision tasks, the

era of optical flow estimation has been shifted from classical energy-based tech-

niques to end-to-end trained models. In this chapter, we focus on these end-to-end

deep learning methods used for optical flow estimation. As mentioned previously,

learning processes for optical flow can be divided into supervised, semi-supervised
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and unsupervised learning. Supervised and semi-supervised learning optical flow

requires ground truth but in different ways (to be discussed in the following sec-

tions), whereas the unsupervised learning approach doesn’t require ground truth.

4.1.1 Supervised Optical Flow Learning

This type of optical flow learning networks is based on end-to-end CNN architec-

tures, in turn based on regression [75], which utilize CNN for the whole pipeline by

acting as an approximation function to effectively learn the relationship between

input images and the desired optical flow output having the labeled training dataset

[59].

Training a network in a supervised way requires a huge number of image pairs,

with their ground truth flow as a training dataset. In real-life scenarios, obtaining

dense optical flow ground truth is challenging. To overcome the lack of appropriate

training data for optical flow, especially ground truth, Dosovitskiy et al. [43] have

created a synthetic dataset named FlyingChairs by layering natural images with

rendered computer-aided design models of chairs. In order to simulate real-life

motion, they have followed a special parameterized affine motion.

Dosovitskiy et al. [43] suggested the first end-to-end CNN, which contains two

CNN networks. The first is FlowNetSimple or (FlowNetS) in which input images

are stacked together and then fed through a generic network to decide how to pro-

cess the image pair to extract the motion information. The second is FlowNetCorr

(FlowNetC), which includes a correlation layer that performs multiplicative patch

comparisons between two feature maps. Their network succeeded in predicting

optical flow at up to ten image pairs per second.

However, due to the substantial differences between synthetic and real-life im-

ages, FlowNet - which was trained on the FlyingChairs dataset - unfortunately

didn’t generalize well to real images. Actually, the accuracy of the estimated op-

tical flow using FlowNet, even after fine-tuning on real-world images, fell behind

the results of classical energy-based models at that time. This opened a ques-

tion as to whether CNN regression models can outperform classical energy-based

methods. Nevertheless, FlowNet has demonstrated the possibility of using an end-

to-end CNN regression model for optical flow estimation. Furthermore, FlowNet
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has opened the door for other researchers to build on top of it by establishing many

standard practices that are used for training optical flow models, such as learning-

rate scheduling, overall network architectures, data augmentation for both image

pair and ground truth flow. The last mentioned includes geometric transformations,

adding Gaussian noise, changing color and brightness and had great influence on

the follow-up research.

By stacking several simple FlowNet models with some modifications and the

introduction of a fusion network, Ilg et al. [61] achieved astonishing results us-

ing FlowNet2. Regardless of the conceptual simplicity of the model, the stack of

multiple FlowNet networks had a powerful impact and significantly improves the

estimated optical flow accuracy by more than 50% over FlowNet.

Not only did Ilg et al. improve accuracy results, but they also provided many

crucial practices for training networks such as using a correlation layer and pre-

training and fine-tuning on synthetic datasets. FlowNet2 has also been trained on

another synthetic dataset, which has 3D motion and photometric effects called Fly-

ingThings3D [83]. They showed that using the proper training dataset can increase

optical flow estimation accuracy by more than 20%.

On the other hand, PWC-Net [111], a network which is 17 times smaller than

FlowNet2, was designed using three main concepts: pyramidal processing, warp-

ing, and the use of a cost volume. In this effort, they adopted DenseNet architecture

named was designed using three main concepts; pyramidal processing, warping,

and the use of a cost volume. Also, they adopted DenseNet architecture [56],

which directly connects each layer to every other layer in a feed forward fashion.

PWC-Net uses coarse-to-fine method in many pyramid levels by constructing fea-

ture pyramid using CNN for optical flow estimation. After that, PWC-Net creates

a cost volume using the feature maps from both the source image and the warped

target image based on the current optical flow. Next, the following CNN layers will

decode optical flow outputs from the cost volume. Their results show the advan-

tage of light weight design of the network and this reflects on shorting the training

time and the fast estimation, while obtaining competitive results compared to other

methods.

Ranjan and Black [96] introduced the Spatial Pyramid Network (SPyNet), in

which they combined classical coarse-to-fine pyramid methods with deep learning



CHAPTER 4. UNSUPERVISED OPTICAL FLOW FINE-TUNING 40

for optical flow estimation. It contains five pyramid levels, each of which consists

of a shallow CNN that estimates optical flow between source and targeted images.

Although SPyNet is outperformed by classical energy-based optical flow estima-

tion methods, it succeeded in integrating classical methods in deep learning.

SPyNet is 96% smaller and faster than FlowNet; hence, less memory is re-

quired, which makes it promising for embedded and mobile applications. SPyNet

learns to predict flow increment at each pyramid level rather than minimizing a

classical objective function.

LiteFlowNet was developed by Hui et al. [57]; it is 30 times smaller than the

model size of FlowNet2 and 1.36 times faster in execution. In the process, they

drilled down the missed architectural details in FlowNet2, which involved intro-

duction of an effective flow inference at each pyramid level through a lightweight

cascaded network to improve optical flow estimation accuracy, permitting seam-

less incorporation of descriptor matching in the network. Moreover, a flow regu-

larization layer was developed to ameliorate the issue of outliers and vague flow

boundaries by using a feature-driven local convolution.

Hur and Roth [58] have proposed an iterative residual refinement (IRR) net-

work, which is based on an iterative estimation scheme using weight sharing. IRR

can be applicable to many backbone architectures to improve the accuracy of opti-

cal flow estimation. The basic concept of IRR is iteratively refining output from a

previous pass through the network as input and using only a single network block

with shared weights, which improves optical flow estimation by residually refining

the previous estimate.

A Hierarchical Discrete Distribution Decomposition, known as HD3 [136],

was proposed by Yin et. al. for dense pixels correspondence optical flow esti-

mation. This concept enables both optical flow estimation and the corresponding

uncertainty. The main architectural design of HD3 is based on PWC-Net, using,

for instance, a multi-scale pyramid, warping, and cost volume. This work defers

from the previously mentioned optical flow estimation methods in that it directly

regresses optical flow with CNN. Their experimental results show clear advan-

tages, including having state-of-the-art accuracy for optical flow estimation on es-

tablished benchmark datasets and uncertainly measures.
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4.1.2 Unsupervised Optical Flow Learning

In supervised methods for optical flow estimation, it is very important to have

ground truth flow as part of the training dataset. In real-life scenarios, obtaining

dense optical flow ground truth is challenging. To overcome the lack of appropriate

training data for optical flow, especially ground truth, another research paradigm

for CNNs adopts an unsupervised learning approach. Self-supervised or unsu-

pervised learning of optical flow depends on proxy loss minimization more than

optical flow estimation and should be close to some ground truth. Hence, design-

ing the correct proxy loss is crucial to the success of unsupervised estimation of

optical flow [59].

Inspired by the classical Horn and Schunck [54] optical flow estimation, Ah-

madi and Patras [4] used a loss function based on the classical equation of optical

flow constraint (brightness constancy assumption) to train CNN. Dealing with this

unsupervised loss function as a minimization problem, the network leaned how to

predict optical flow. By combining coarse-to-fine estimation, they improved opti-

cal flow estimation to be as close as FlowNet.

FlowNet was adopted while equipped with unsupervised Charbonnier loss func-

tion to minimize photometric consistency, which measures the difference between

the first input image and the (inverse) warped subsequent image based on the pre-

dicted optical flow by the network [65, 98]. They have proposed using unsuper-

vised proxy loss inspired by the Markov random field (MRF). This proxy is fol-

lowed by a smoothness term. Their optical flow estimations were competitive to

supervised methods and suggests that unsupervised optical flow estimation meth-

ods have potential when labels are missing for training data.

Zhu et al. [142] argue that using optical flow estimators to generate proxy

ground truth data by means of an off-the-shelf classical energy-based method for

training CNNs could help in learning to estimate motion between image pairs that

is as good as using true ground truth. They demonstrated that the network back-

bone could be enhanced by using DenseNet [56], a dense connectivity network.In

another effort, Long et al. [78] used the interpolation between frames to train

CNNs for optical flow estimation.

In order to handle occlusion, Wang et al. [124] proposed an end-to-end network
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consisting of two copies of FlowNetS with shared parameters. One is to produce

forward optical flow, and the other generates backward warping, which is used

for occlusion mask. Loss function used includes occlusion predicted by motion.

To tackle large motion estimation, they introduced a histogram equalizer and an

occlusion map for the warped frame.

Makansi et al. [82] proposed an assessment network that can learn to predict

the error form generated by a set of optical flow fields with various optical flow

estimation techniques. Then, the assessment network is used as a proxy ground

truth generator to train FlowNet. This effort is the most closely related to our

work, except that we focus on the effectiveness of implementing classical optical

flow optimization objectives in CNN architecture.

Janai et al. [64] learned optical flow and occlusions together via modeling

a temporal relationship for a three-framed window by estimating past and future

optical flow. They used photometric loss function and reason explicitly about oc-

clusions. Their extended unsupervised optical flow learning using a multi-frame

setting was based on PWC-Net architecture. They used three different types of de-

coders: a future frame decoder that estimates optical flow from the reference frame

to the future frame; past optical flow decoder; and an occlusion decoder. The re-

sults obtained by Janai et. al.were competitive to classical energy-based techniques.

In their work, Meister et. al.[85] suggested using a proxy loss function that

takes occlusions into consideration. They demonstrated better accuracy than a su-

pervised backbone such as FlowNet. Moreover, bi-directional optical flow is es-

timated using the same network by means of changing the order of input images

and then detecting occlusions via a bi-directional consistency check. The proxy

loss function is applied to non-occluded regions only since brightness constancy

assumption can’t hold for occluded pixels.

Meister et. al.proposed a higher-order smoothness term in addition to a ternary

census loss [107, 138] to obtain a data term that is robust to brightness changes.

This advanced proxy loss significantly improves the accuracy by halving the error

compared to previous unsupervised learning approaches. SelFlow [77] suggests in-

jecting noise into superpixels to create occlusion, and then letting one model guide

another in order to learn optical flow from occluded pixels. Furthermore, they

demonstrated the use of multi-frame input as an extension to improve optical flow
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estimation accuracy using temporal coherence exploiting. SelFlow was evaluated

on public benchmark datasets.

4.1.3 Semi-supervised Optical Flow Learning

A compromise between supervised and unsupervised learning optical flow estima-

tion, semi-supervised methods based on Generative Adversarial Networks (GANs)

[52] have also recently been proposed. For example, Lai et. al.[73] has proposed an

adversarial loss to learn the structural pattern of the flow warp error, which allows

training the network in a semi-supervised fashion. Their method is based on pro-

ducing optical flow using a generator network from two given input images. They

then calculated a flow warp error map using the difference in image intensity be-

tween the first image and the warped second image (using the flow output). Lastly,

using a discriminator network, they distinguished between whether the warp error

map is created by the generator or it is the ground truth. The purpose of the genera-

tor is to fool the discriminator network by generating optical flow whose warp error

patterns are similar to the ground truth. Training such networks requires a combi-

nation of labeled and unlabeled data. Their experimental results have demonstrated

benefits from supervised and unsupervised methods.

Yang et. al.[133] also proposed a semi-supervised network of optical flow esti-

mation by learning a conditional prior. They argued that current learning-based ap-

proaches for optical flow estimation are not based on any explicit regularizer (this

refers to any prior, model, or assumption that adds any restrictions to the solution

space). Hence the results obtained have a risk of overfitting while training, causing

a mismatch problem when testing. To overcome this issue, Yang et. al.proposed a

network that contains prior information of potential optical flows from input image

and later used this network as a regularizer for training.

First, to learn prior knowledge on potential optical flows of input image, they

trained the conditional prior network in a supervised way. Next, FlowNet was

trained in an unsupervised way using a regularization loss from the trained condi-

tional prior network. Their experimental results showed the importance of using

a conditional prior network to get competitive results with the usual supervised

training, also demonstrating better generalization on a different dataset. This sug-
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gests that semi-supervised optical flow learning can help in domain generalization

by leveraging from other domain ground truth availability when labeled data is

missing.

4.2 Dataset

Three well-known datasets have been used for unsupervised fine-tuning and testing

predicted optical flow: KITTI 2012 [49], KITTI 2015 [86] and Sintel [28]. The

decision against including the Flying Chairs dataset [43] in this work was made

because the FlowNet2-SD model was trained on it and to avoid over fitting while

fine-tuning.

4.2.1 KITTI

KITTI 2012 [49] is a real-world computer vision benchmark that was recorded

using four video cameras with high resolution, a laser scanner, and a localization

system. It contains 389 stereo image pairs and their optical flow; there are 194

training image pairs and 195 image pairs for testing purposes.

KITTI 2015 [86] is another benchmark containing 200 training scenes and 200

test scenes (four color images per scene, saved in lossless png format). Compared

to the KITTI 2012 benchmark, it covers dynamic scenes for which ground truth

was established in a semi-automatic process.

4.2.2 Sintel

Sintel [28] is an open source synthetic dataset extracted from animated film pro-

duced by Ton Roosendaal and the Blender Foundation. It contains 1041 image

pairs for training and 552 image pairs for testing both training and testing. It comes

with clean and final versions that have been used to investigate when optical flow

algorithms break. This means that each frame has been rendered in different pass:

the clean pass, which contains shading, but no image degradations, and the final

pass, which additionally includes motion blur, defocus blur, and atmospheric ef-

fects, and corresponds to the final movie [129].
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Since the Sintel training dataset provides optical flow ground truth, which can

be used for validating our approach, we have divided the training dataset into train-

ing (845 training image pairs) and validation (196 testing image pairs from al-

ley_2, ambush_5, market_2, and sleeping_1 sequences) datasets for validating our

method.

4.3 Methods

Many motion boundary estimation methods depend on optical flow [92, 122, 126,

62]. Philippe Weinzaepfel et al. [126] suggested a learning-based method for

motion boundary detection based on random forests since motion boundaries in

local patch tend to have similar patterns, static appearance and temporal features,

color, optical flow, image warping and backward flow errors. In their work, Li et

al. proposed an unsupervised learning approach for edge detection. This method

utilizes two types of information as input: motion information in the form of noisy

semidense matches between frames, and image gradients as the knowledge for

edges. The performance of motion boundary estimation is limited by several issues,

such as the removal of weak image edges and label noises.

We have adopted FlowNet2-SD architecture, which is implemented in the Caffe

deep learning framework and considered a subnet of Flownet2 [61]. FlowNet2-

SD is a modified, deeper version of FlowNetS to deal with small displacements.

FlowNet2-SD architecture is illustrated in Figure 4.1. We have replaced the fi-

nal and intermediate losses with unsupervised losses described in the following

section.

Figure 4.1: FlowNet2-SD architecture that takes two input images and produces
optical flow (repainted from [61]).
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4.4 Network Architecture

Figure 4.2 shows our proposed unsupervised loss function. Only one stage (res-

olution) is shown from multi-resolution optical flow architecture adopted from

FlowNet2-SD. Stacking both input images together and feeding them to the net-

work allows the network itself to decide how to process the image pair to extract

the motion information. In each stage (resolution), the loss is constructed by cal-

culating three main losses:

• Warp loss is calculated when the second frame is back warped with the op-

tical flow produced and the difference between the generated warped frame

and frame one is calculated.

• Gradient loss is the difference calculated between gradients of warped image

and gradients of frame one.

• Smoothness loss works as a penalizing term through calculating the variation

of generated flow field in the u and v directions.

Figure 4.2: An overview of how unsupervised losses have been constructed. Only
one stage (resolution) of producing flow from FlowNet2-SD is shown.

Cost Functions

The cost function can be structured by combining color, gradient and smoothness

terms where I1, I2 : (Ω ⊂ R2) → R3 are any two consecutive frames. Also,
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x := (x, y)T are the point in Ω domain and w := (u, v)T is the optical flow field

[25] as follows:

E(w) = Ecolor + γEgradient + αEsmooth (4.1)

Where the color energy Ecolor is an assumption that the corresponding points

should have the same color:

Ecolor(w) =

∫
Ω

Ψ(|I2(x+ w(x))− I1(x)|2)dx (4.2)

The gradient energyEgradient is a constraint that is invariant to additive bright-

ness changes to deal with the illumination effect:

Egradient(w) =

∫
Ω

Ψ(|∇I2 + w(x))−∇I1|2)dx (4.3)

Adding the smoothness constraint Esmooth works as a regularity term for pe-

nalizing the total variation of the flow field generated from Equations 4.2 and 4.3:

Esmooth(w) =

∫
Ω

Ψ(|∇u(x)|2)− |∇v(x)|2)dx (4.4)

Ψ(s) represents different metrics as follows:

Ψ(s) =



‖s‖1,

s ∈ [Ecolor(w), Egradient(w), Esmooth(w)]

‖s‖2,

s ∈ [Ecolor(w), Egradient(w), Esmooth(w)]

(4.5)

Where,

‖s‖1 =

n∑
i=1

|yi − f(xi)| (4.6)

and

‖s‖2 =

n∑
i=1

(yi − f(xi))
2 (4.7)

Equation 4.5 shows the non-local functions used in our approach. L1norm Equa-
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Table 4.1: Different combinations of cost function terms from Equation 4.1 and
their references used in this research.

Terms Reference
E‖color‖2 + γE‖gradient‖1 + αE‖smooth‖1 f1

E‖color‖2 + γE‖gradient‖2 + αE‖smooth‖1 f2

E‖color‖1 + γE‖gradient‖1 + αE‖smooth‖1 f3

E‖color‖2 + αE‖smooth‖1 f4

E‖color‖2 f5

γE‖gradient‖1 + αE‖smooth‖1 f6

γE‖gradient‖1 f7

tion 4.6 and L2norm Equation 4.7 were used for different combinations using

color, gradient, or smoothness terms.

4.5 Results and Discussion

4.5.1 Quantitative and Quantitative Results

Visualizations of some generated examples of optical flow are illustrated in Fig-
ure 4.3 for Sintel and in Figure 4.4 for KITTI 2012 and 2015. KITTI here rep-

resents real-world data, while Sintel exemplifies a synthetic scenario. Our method

succeeded in capturing fine structure results around edges, while FlowNet2-SD

shows smooth results as shown in Figure 4.7.

Quantitative results show that FlowNet-SD-unsup achieved good results with

comparison to baseline. We are not in a situation to compete with fine-tuning in

supervised way (ground truth available) and achieve better results, but to find a fast

(in terms of training and execution) and reasonable method to produce competitive

optical flow when ground truth is not given, i.e. real-world scenarios. Runtime for

generating one optical flow file takes only 1.3e−4 seconds.

Evaluation for the validation dataset from Sintel based on different combina-

tions of cost function described in Table 4.1 fine-tuned on Sintel is shown in Table
4.2.

Table 4.2 results show a small variation in the EPE values for different set-

tings. For example, using L2norm for warping and gradient functions combined
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Figure 4.3: Examples of optical flow estimated using different combinations of
cost functions based on Table 4.1 and EPE on different Sintel validation sets. f1−7

are the corresponding cost function line in the mentioned table.

Figure 4.4: Qualitative results: Optical flow estimated on KITTI 2012 upper part,
and KITTI 2015 bottom part using our method FlowNet2-SD-unsup. Right bottom
corner shows optical flow color code used in this manuscript.
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Table 4.2: EPE results for evaluating our method on the validation sets of Sintel
training with comparison to FlowNet2-SD (Baseline).

Method Sintel Sintel
Clean Final

FlowNet2-SD (Baseline) 4.036 4.354
FlowNet2-SD-ft-unsup 4.016 4.354

withL1norm for smoothness achieved the best results for alley_2 clean, ambush_5

clean, market_2 clean, and sleeping_1 clean validation datasets. Baseline has out-

performed our approach in some final validation sets by a small margin, but the av-

erage EPE for final validation sets from both FlowNet2-SD-unsup and FlowNet2-

SD is the same.

4.5.2 Motion Boundary Evaluation

We have compared motion boundary estimations from our method (FlowNet2-SD-

unsup) and the baseline (FlowNet2-SD). Our method outperforms the baseline by

a large margin in Sintel clean, while it was almost the same for Sintel final, Table
4.3. There is also an improvement in quality of qualitative results, which is visible

in Figure 4.5. The variations in motion in different validation sequences have

produced different F-measures in Table 4.3. One observation is that the F-measure

score is correlated with the number and magnitude of produced motion boundaries.

Defining the correct and optimum values of network parameters is crucial to

obtaining good results. Therefore, we have observed that even if EPE results are

minimal, good visualization for optical flow is not always obtained.

Another observation is reported in Table 4.4: while investigating our approach

on the produced optical flow results from Sintel validation dataset, EPE results

is vary among different validation sequences (alley_2, ambush_5, market_2 and

sleeping_1) and in some cases inside the same sequence Figure 4.6.

Figure 4.6 shows two different frames from ambush_5 validation dataset, their

corresponding magnitude maps for ~U and ~V and a histogram of optical flow mag-

nitudes and EPE. The histogram of optical flow magnitudes for the above frame

shows that most values have small magnitudes between -5, and 5 and the majority
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Figure 4.5: Visualization of motion boundaries from some Sintel validation sets.
Our approach succeeds in detecting more fine structures (see green arrows) com-
pared to the baseline.

Table 4.3: F-measure comparison between our motion boundary estimation gen-
erated by our method FlowNet2-SD-ft-unsup using different loss function as de-
scribed in Table 4.1 and the baseline on the Sintel train validation dataset.

f1 f2 f3 f4 f5 f6 f7 Baseline
alley_2 Clean 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Final 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
ambush_5 Clean 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.46

Final 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.49
market_2 Clean 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.67

Final 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.72
sleeping_1 Clean 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.27

Final 0.31 0.31 0.31 0.32 0.32 0.31 0.31 0.19
Average Clean 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.34

Final 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
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Figure 4.6: Two different images from validation sequence ambush_5 and their
corresponding histograms of optical flow magnitudes and visualizations of magni-
tudes in U and V directions. It’s obvious that higher EPE value has higher large
frequencies.

Table 4.4: EPE results for optical flow generated by our method FlowNet2-SD-ft-
unsup using different loss function as described in Table 4.1 and the FlowNet2-SD
(Baseline) on various Sintel validation sequences.

f1 f2 f3 f4 f5 f6 f7 Baseline
alley_2 Clean 0.520 0.517 0.521 0.531 0.521 0.520 0.520 0.518

Final 0.528 0.527 0.528 0.528 0.528 0.527 0.527 0.525
ambush_5 Clean 14.372 14.366 14.373 14.403 14.374 14.372 14.372 14.454

Final 15.612 15.612 15.613 15.612 15.612 15.611 15.611 15.625
market_2 Clean 0.936 0.935 0.936 0.940 0.937 0.937 0.937 0.941

Final 1.030 1.029 1.030 1.029 1.029 1.030 1.030 1.035
sleeping_1 Clean 0.237 0.235 0.238 0.246 0.237 0.237 0.237 0.234

Final 0.250 0.250 0.250 0.249 0.249 0.250 0.250 0.236
Average Clean 4.016 4.013 4.017 4.030 4.017 4.016 4.016 4.037

Final 4.355 4.355 4.355 4.354 4.354 4.355 4.354 4.355

is around zero with EPE 1.09. On the other hand, the distribution of optical flow

magnitudes in the below frame are between -10 and 10 with extended distribution

to 20 with EPE 10.095. This indicates that our method is not able to capture large

displacement in motion represented by high magnitude values.
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Figure 4.7: Qualitative - results: We compare our results in the second row using
FlowNet2-SD-unsup with ground truth in the first row and the baseline generated
from FlowNet2-SD in the third row. Our model produces better flow and captures
fine structures around boundaries.

4.6 Conclusion

To conclude this chapter, we have introduced an unsupervised loss function based

on classical optical flow formula using deep learning. Our approach shows po-

tential to minimize the need of ground truth for both optical flow estimation and

motion boundary detection. Moreover, we benefit from pre-trained models to re-

duce time via fast unsupervised fine-tuning. This work opens the opportunity to
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investigate more on how to enhance the results to compete with state-of-the-art

approaches.



CHAPTER5
Performance Analysis of Optical

Flow

Optical flow computation is considered a fundamental problem in computer vision.

In fact, it originates from the physiological phenomenon of visual perception of the

world through image formation on the retina, which is based upon the displace-

ment of intensity patterns [47]. Thus, optical flow can be defined as the projection

of velocities of 3D surface points onto the imaging plane of visual sensors [17].

However, the relative motion constructed between the observer and objects of an

observed scene only represents motion of intensities in the image plane; it does not

necessarily represent the actual 3D motion in reality [120]. A consequent problem

emerges that intensity changes are not necessarily due to objects’ displacements in

the scene, but can also be caused by other circumstances such as changing light,

reflection or modifications of objects’ properties that affect their light emission

or reflection [47]. Research paradigms in optical flow estimation have advanced

from considering it as a classical problem [54, 25] to a higher-level approaches

using machine learning [125, 111, 8]. For instance, convolutional neural networks

(CNNs) are considered to be a state-of-the-art method for optical flow estimation.

Despite the fact that optical flow estimation methods have evolved dramati-

cally, the most common evaluation methodologies are end point error (EPE) [91]

and angular error (AE) [16], noticing that the AE metric is based on prior work

by Fleet and Jepson [46]. Even though EPE and AE metrics are popular, it is un-

clear which one is better. Moreover, AE penalizes errors in regions of zero motion

more than motion in smooth non-zero regions. Furthermore, different cases exist

55



CHAPTER 5. PERFORMANCE ANALYSIS OF OPTICAL FLOW 56

(Figure 5.1) in which EPE gives the same value between various scenarios, which

will be discussed later in this chapter. The purpose of this research is not to evalu-

ate optical flow estimation methods, but, to evaluate the existing optical flow direct

evaluation metrics and suggest new metrics compensate for drawbacks of existing

ones.

5.1 Related Work

Even though many optical flow estimation algorithms have been proposed, there

are few publications that analyze their performance. Two main approaches can

be used for evaluating optical flow: qualitative and quantitative. Motion fields of

optical flow can be visualized in either arrow or color forms (Figure 2.2), which

provide qualitative insights on the accuracy of the estimation. Arrow visualization

represents motion vectors and provides good intuition about motion. On the other

hand, motion field vectors should be under-sampled to prevent arrows overlapping.

The color code visualization allows for dense representation of the motion field

by associating color hue to the direction and saturation to the magnitude of vectors

[47]. The first direct quantitative evaluation metrics for optical flow were published

in 1994 [91, 16] and suggested using EPE [91], which can be described as the

Euclidean distance between two vectors. It is defined in Equation 5.1:

EPE =
√

(u− uG)2 + (v − vG)2. (5.1)

and AE [16], which represents the angle between the two extended vectors

(1, u, v) and (1, uG, vG); it is defined in Equation 5.2:

AE = cos−1

(
uuG + vvG + 1

√
u2 + v2 + 1

√
u2
G + v2

G + 1

)
. (5.2)

AE is very sensitive to small estimation errors caused by small displacements,

whereas EPE hardly discriminates between close motion vectors [47]. Figure 5.1

illustrates four different cases in which the EPE metric gives same error value be-

tween ground truth (G) and estimated motion vector. This drawback is caused by

the fact that EPE only considers the difference of vectors and ignores the magnitude
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of each one.

McCane et al. [84] have suggested two evaluation metrics. The first, which

is based on the AE metric with motion vectors normalization, is defined in Equa-
tion 5.3, which is based on AE metric with motion vectors normalization. Nev-

ertheless, AE does not take the vector magnitude into consideration and uses only

angles; the normalization step has no actual effect.

EA = cos−1(ĉ · ê), (5.3)

where EA is the error measure, c is G, e is the estimated optical flow, andˆdenotes

vector normalization.

The second metric is the normalized magnitude of the vector difference be-

tween G and estimated optical flow which is defined in Equation 5.4.

EM =



‖c−e‖
‖c‖ if ‖c‖ >= T ,

|‖e‖−TT | if ‖c‖ < T and ‖e‖ >= T ,

0 if ‖c‖ < T and ‖e‖ < T ,

(5.4)

where EM is the error measure.

Baker et al. [15] compared the performance of EPE and AE and argued that

EPE should become the preferred optical flow evaluation metric based on a quali-

tative assessment of an estimated optical flow for Urban sequence.

Despite the fact that optical flow estimation methods have evolved dramati-

cally, the most common evaluation methodologies are end point error (EPE) [91]

and angular error (AE) [16], noting that the AE metric is based on prior work of

Fleet and Jepson [46]. Even though EPE and AE metrics are popular, it is unclear

which one is better. Moreover, AE penalizes errors in regions of zero motion more

than motion in smooth non-zero regions.
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5.2 Dataset

Since this work does not strive to evaluate optical flow estimation algorithms, we

decided to use only the ground truth dataset from Baker et. al.[15]. The number of

available ground truth files is eight, and the data description is shown in Table 5.1.

Three G files have maximum values of more than 109 for a limited number of

pixels: Dimetrodon, Hydrangea and RubberWhale. In order not to have a bias in

the analysis results, a threshold of maximum 107 was set. We created different

modified versions of G based on possible scenario errors with magnitude in the

steps set S = {−30,−20,−10, 10, 20, 30}. For each G file, one of the following

scenarios is applied:

1. Shift G horizontally by s ∈ S and replace shifted pixels by zeros.

2. Shift G vertically by s ∈ S and replace shifted pixels by zeros.

3. Shift G horizontally and vertically by s ∈ S and replace shifted pixels by

zeros.

4. Rotate G by s ∈ S degrees and replace shifted pixels by zeros.

5. Magnify G by multiplying by s ∈ S.

6. Shift G horizontally and vertically and then rotate by s ∈ S and replace

shifted pixels by zeros.

7. ShiftG horizontally and vertically and then rotate and magnify by s ∈ S and

replace shifted pixels by zeros.

This will allow us to have 42 different versions of each G file with total of 336

modified G files.

5.3 Methods

To overcome the drawbacks of the existing evaluation metrics for optical flow,

we proposed five different metrics: ~E is the modified optical flow represented by

(u, v), whereas ~G is the ground truth vector notated by (uG, vG).
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Name Min Max Std
Dimetrodon -4.33E+00 1.67E+09 3.55E+08
Grove2 -3.31E+00 4.01E+00 3.64E+00
Grove3 -4.09E+00 1.43E+01 2.89E+00
Hydrangea -7.02E+00 1.67E+09 4.13E+08
RubberWhale -4.58E+00 1.67E+09 2.09E+08
Urban2 -2.13E+01 8.51E+00 7.96E+00
Urban3 -4.19E+00 1.73E+01 5.15E+00
Venus -9.38E+00 7.00E+00 2.91E+00

Table 5.1: Used G files in our experiment.

Figure 5.1: Different cases where the EPE metric gives the same error value be-
tween G represented by the black vector ~Gi, i ∈ ( ~G1, ~G2, ~G3, ~G4) and other esti-
mated optical flow vectors ~Ej , j ∈ ( ~E1, ~E2, ~E3, ~E4).

5.3.1 2D-Angular Error (2DAE)

Adding a new dimension and forcing it to be equal to 1 will affect the measurement

of the angle. This is an enhancement on AE, where the angle in 2D space between
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(u, v) and (uG, vG) is considered instead of 3D space as shown in Equation 5.5:

2DAE =


cos−1

(
uestuG+vestvG√
u2est+v

2
est

√
u2G+v2G

)
,

if (u2 + v2)(u2
G + v2

G) 6= 0

θ, if (u2 + v2)(u2
G + v2

G) = 0

(5.5)

for example, if we have the following two points (0.1, 0.1) and (3, 3.1), then

AE = 1.2025, but 2DAE = 0.0164.

5.3.2 Generalized Angular Error (GAE)

This is also an enhancement on AE, where the angle in the 3D space between

(α, u, v) and (β, uG, vG) is considered instead of 3D between (1, u, v) and (1, uG, vG)

space. From Cauchy Schwarz’s theory [106], we can prove the following inequal-

ities:

−1 ≤ αβ + (uuG + vvG)
√
α2 + u2 + v2

√
β2 + u2

G + v2
G

≤ 1 (5.6)

The metric GAE can be defined as:

GAE =


cos−1( αβ+(uuG+vvG)√

α2+u2+v2
√
β2+u2G+v2G

),

if (u2 + v2)(u2
G + v2

G) 6= 0

θ, if (u2 + v2)(u2
G + v2

G) = 0

(5.7)

where α and β can be any real numbers, for instance if α = β = 0, then GAE

= 2DAE. On the other hand, if α = β = 1 this will lead to AE in Equation 5.2.

5.3.3 Joint Angular and End Point Error (JAEE)

This metric is a kind of mixture between AE and EPE, where the difference in

magnitude between (u, v) and (uG, vG) is added to the perpendicular distance be-

tween them Figure 5.2. The perpendicular distance between (u, v) and (uG, vG)

is defined as follows:
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max
(
‖proj ~G ~E‖, ‖proj ~E ~G‖

)
(5.8)

where the perpendicular distance is defined as the angular distance between the

two non-null vectors ~E and ~G. Therefore, our metric can be defined as

JAEE =



‖~G− ~E‖+max
(
‖proj ~G ~E‖, ‖proj ~E ~G‖

)
,

if ‖~G~E‖ 6= 0

‖~G− ~E‖+max
(
‖~G‖, ‖ ~E‖

)
,

if ‖~G~E‖ 6= 0

(5.9)

where the projection of vector~b over ~a is given by the following formula:

proj~a~b =
~a~b

|~a|2
~a (5.10)

Figure 5.2: The angular distance between the two non-null vectors ~E and ~G based
on the perpendicular distance between both vectors.
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5.3.4 Normalized End Point Error (NEPE)

EPE metric is takes into consideration the magnitude of the difference between

two vectors and ignores the magnitude of each vectors in the sense that the EPE

metric gives the same value for case 1 and case 2, in which the radius of two circles

is the same (refer to Figure 5.1). The following metric is an enhancement of the

magnitude error EM proposed by [84]:

NEPE =



√
(u−uG)2+(v−vG)2

min
(

(u2+v2),(uG2+vG2)
) ,

if min
(
(u2 + v2), (uG

2 + vG
2)
)
> ε

√
(u−uG)2+(v−vG)2

ε ,

if min
(
(u2 + v2), (uG

2 + vG
2)
)
≤ 0

(5.11)

where, ε is a threshold around 0.01.

5.3.5 Enhanced Normalized End Point Error (ENEPE)

One way to get over EPE drawbacks is to calculate the relative distance between ~E

and ~G vectors and to use different normalization methods as in the following:

ENEPE1 =



√
(‖ ~PG‖)2+τ(‖ ~NG‖)2

min
(

(u2+v2),(uG2+vG2)
) ,

if min
(
(u2 + v2), (uG

2 + vG
2)
)
> ε

√
(‖ ~PG‖)2+τ(‖ ~NG‖)2

ε ,

if min
(
(u2 + v2), (uG

2 + vG
2)
)
≤ 0

(5.12)
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If the normalization is performed by only ~G vector, then

ENEPE2 =



√
(‖ ~PG‖)2+τ(‖ ~NG‖)2√

u2G+v2G
,

if (u2
G + v2

G) 6= 0

√
u2 + v2,

if (u2
G + v2

G) = 0

(5.13)

If the normalization is performed by the average of ~G and ~E vectors, then

ENEPE3 =



2
√

(‖ ~PG‖)2+τ(‖ ~NG‖)2√
u2G+v2G+

√
u2+v2

,

if (u2
G + v2

G) 6= 0

√
u2 + v2,

if (u2
G + v2

G) = 0

(5.14)

If normalization is ignored, then

ENEPE4 =

√
(‖ ~PG‖)2 + τ(‖ ~NG‖)2 (5.15)

where τ is strictly positive value, and it works as steering power for normal com-

ponent ~NG and ~PG and ~NG are defined as

~PG =
(uuG + vvG)

(u2
G + v2

G)
~G− ~G (5.16)

~NG = ~E − (uuG + vvG)

(u2
G + v2

G)
~G (5.17)

5.4 Results and Discussion

Systematic experiments have been conducted to evaluate optical flow performance.

As we are evaluating 10 different metrics, a total number of 3360 experiments were
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Metric Setting
GPRE α = β = 0

NEE ε = 0.01

ENEE1 ε = 0.01, τ = 3

ENEE2 τ = 100

ENEE3 τ = 100

ENEE4 τ = 5

Table 5.2: Metric settings used in all experiments.

performed for each dataset. Behavior and sensitivity of every metric have been

reported for motion variations in horizontal, vertical, rotational and magnification

- or a combination. Parameter settings used in all experiments are summarized in

Table 5.2.

As a rule of thumb, a good metric has to produce an error value proportional to

the absolute values in step sequence S described in the previous section. A general

overview of mean error curves for existing and proposed error metrics in log scale

is illustrated in Figure 5.3. It is obvious that some metrics outperform others, but

it is not yet clear which metrics are more suitable for optical flow performance

measurement. More detailed explanations and results are reported in the following

sections.

5.4.1 Metrics Evaluation of the Baker Dataset

Metrics calculate errors between G and modified G. The most general example of a

modified G is when G values are shifted horizontally and vertically and then rotated

after magnification by a value. For instance, Figure 5.4 shows mean error metric

curves for the Baker dataset. X − axis represents values used to shift, rotate, and

magnify actual G, while Y − axis is the mean error values.

Based on our rule of thumb, Figure 5.4 shows that LPE, ENEE4, and EPE

metrics are more sensitive to motion variation when G is modified with negative

values, while NEE and ENEE1 are more sensitive to motion variation when G is

modified with positive values.

According to the approach used in modifying G, no motion pixels are replaced
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Figure 5.3: Mean error (y − axis) in log scale for all metrics between G and
modified G in different scenarios: (I) when G are shifted horizontally(H) by the
number of pixels in x − axis, (II) G are shifted vertically (V) by the number of
pixels in x − axis, (III) G are magnified (M) by values in x − axis, (IV) G are
shifted horizontally and vertically by the number of pixels in x − axis, (V) G are
rotated (R) by the degree of the degree in x− axis, (VI) G are shifted horizontally
and vertically, then rotated by values of x − axis. This applies to (A) the Sintel
dataset, (B) the Kitti dataset, and (C) the Baker dataset. Note that log(0+) = −∞,
which is represented by the lowest point in the graph.

with zero values when G is rotated; hence, this will increase zero values in modified

G and mean error will be biased. To overcome this issue, the third quartile of the

error can be used instead of mean error. The third quartile is denoted by Q3, which

is the median of the upper half of the data set. This means that about 75% of the

numbers in the data set lie below Q3 and about 25% lie above Q3.

Since it is not clear from mean error which metric is better, Q3 mean error gives

a clearer idea about the best metrics. Figure 5.5 illustrates Q3 mean error for all

metrics. It is obvious that NEE and ENEE1 metrics are outperform other metrics.

The second best are ENEE4, EPE and LPE metrics, and ENEE2 and Em met-

rics are third.

Visualization of optical flow error for the Hydrangea sample, which is part of

Baker dataset, is shown in Figure 5.8 and indicates that NEE and ENEE1 metrics

are compromised metrics between EPE because they greatly penalize errors; AE

penalizes errors less.
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Figure 5.4: Mean error (y − axis) for the Baker dataset for all metric calculations
between G and modified G when they are shifted horizontally and vertically and
then rotated after that magnified by values of x− axis.

5.4.2 Metrics Evaluation on KITTI Dataset

The second evaluation was conducted on the KITTI dataset. The mean error of

existing and proposed metrics are shown in Figure 5.6. It is clear that ENEE1 and

NEE metrics are more sensitive to motion variation than others.

Optical flow error visualization for the sample image of the KITTI dataset is

shown in Figure 5.9. A compromised visualization between EPE and AE metrics

is represented by NEE and ENEE1 metrics.

5.4.3 Metric Evaluation on Sintel Dataset

The last evaluation for metrics was performed on the Sintel dataset. The mean

error of all metrics is plotted in Figure 5.7. Based on our rule of thumb, NEE and

ENEE1 metrics are producing error values more proportional to the absolute value

of motion change. Hence, NEE and ENEE1 metrics are more sensitive to errors

and performing better than other metrics.

Visualization of optical flow error as sample image of Sintel dataset is shown
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Figure 5.5: Third quartile of mean error (y − axis) for the Baker dataset for all
metrics calculating error between G and modified G when motion is shifted hori-
zontally and vertically then rotated magnified by values of x− axis.

in Figure 5.10. This indicates that NEE and ENEE1 metrics are moderate versions

between between EPE which highly penalize errors and AE which less penalize

errors.

5.4.4 Discussion

A qualitative assessment [15] was conducted on two common error metrics, EPE

and AE, and suggested using EPE rather than AE based on only one sample from

the Baker dataset from Urban sequence. However, there is a need for a systematic

evaluation of optical flow performance; thus this experiment was conducted on

three popular datasets using ten different error metrics. A good metric is considered

to be more sensitive to errors, for example, producing error values proportional to

the change of motion between modified-G and G.

Existing metrics such as EPE, AE and EM have sensitivity differ slightly from
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Figure 5.6: Mean error (y − axis) for KITTI dataset for all metric calculations
between G and modified G when they are shifted horizontally and vertically then
rotated after that magnified by values of x− axis.

one dataset to another. For instance, EPE and EM performed well on Baker, while

AE and Em are less sensitive on Kitti and AE is not sensitive on Sintel. The best

EPE sensitivity was on on Kitti. AE sensitivity was the worst among the three

metrics.

A detailed look into metrics behavior related to motion change is illustrated in

Figure 5.11. The following observations have been derived:

• It is observed from Figure 5.11 (A,B, and C) that almost all metrics except

ENEE2 and Em are sensitive to horizontal, vertical, and (horizontal and ver-

tical) motion variation, with some differences in magnitude. ENEE2 and

Em metrics are more sensitive for horizontal variation Figure 5.11(B) and

horizontal and vertical variation Figure 5.11(C).

• All metrics except AE, GPRE, and ENEE3 are sensitive to magnitude of

motion variation. AE, GPRE, and ENEE3 metrics cannot detect variations

in motion magnitude, as shown in Figure 5.11(E).
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Figure 5.7: Mean error (y − axis) for Sintel dataset for all metric calculations
between G and modified G when they are shifted horizontally and vertically then
rotated after that magnified by values of x− axis.

• NEE and ENEE1 metrics are sensitive for angle variation as seen in Figure
5.11 (D, F), while AE, GPRE, and Em are sensitive only for small rotational

variation.

Based on the previous observations, we conclude that all metrics are sensitive

to horizontal, vertical, and (horizontal and vertical) variation. AE, GPRE, NEE

and ENEE1 metrics are sensitive to rotational variations. All metrics except AE

and GPRE are sensitive to magnitude changing in motion. And only NEE and

ENEE1 metrics are sensitive to all horizontal, vertical, rotational, magnitude or a

combination. These results are summarized in Table 5.3.

5.5 Conclusion

In this chapter, a novel performance measure of optical flow has been proposed.

Moreover, a systematic evaluation of optical flow performance has been conducted.

Drawbacks of existing performance metrics have been identified. Among the five
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Figure 5.8: Sample image from Bakers’ (Hydrangea) dataset, the corresponding
ground truth and the visualization of motion error for four different error metrics
(EPE, AE, NEE and ENEE1) between ground truth and modified ground truth
when G pixels are shifted vertically by -50 pixels.

proposed optical flow performance metrics, NEE and ENEE1 error metrics have

outperformed all others, including the existing ones. The sensitivity of NEE and

ENEE1 to motion variation is very significant, indicating that the use of NEE and

ENEE1 error metrics is strongly recommended for measuring the performance of

estimated optical flow with regard to ground truth.
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Figure 5.9: Sample image from KITTIs’ dataset, the corresponding ground truth
and the visualization of motion error for four different error metrics (EPE, AE,
NEE and ENEE1) between ground truth and modified ground truth when G pixels
are shifted vertically by -50 pixels.

V H H+V R M H+V H+V
+R +R+M

EPE X X X X
AE X X X X

GPRE X X X X
LPE X X X X
NEE X X X X X X X

ENEE1 X X X X X X X
ENEE2 X X X X
ENEE3 X X X X
ENEE4 X X X X

Em X X X X

Table 5.3: Summarized results for our rule-of-thumb method to choose best met-
ric based on metric sensitivity to motion variation in horizontal (H), vertical(V),
rotational(R), and magnification (M) or a combination.



CHAPTER 5. PERFORMANCE ANALYSIS OF OPTICAL FLOW 72

Figure 5.10: Sample image from Sintels’ dataset, the corresponding ground truth
and the visualization of motion error for four different error metrics (EPE, AE,
NEE and ENEE1) between ground truth and modified ground truth when G pixels
are shifted vertically by -50 pixels.
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Figure 5.11: All datasets mean error (y−axis) in log scale for all metrics between
G and modified G in different scenarios: (A) when G are shifted horizontally(H)
by number of pixels in x − axis, ; (B) G are shifted vertically (V) by number of
pixels in x−axis; (C) G are magnified (M) by values in x−axis; (D) G are shifted
horizontally and vertically by number of pixels in x − axis; (E) G are rotated (R)
by angle degree in x − axis; (F) G are shifted horizontally and vertically then
rotated by values of x− axis. Note that log(0+) = −∞, which is represented by
the lowest point in the graph.
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CHAPTER6
Learning Human Activities

Human behavior analysis tasks are classified according to the degree of semantic as

follow: motion, action, activity and behavior [90]. From one hand, motion has the

lowest degree of semantic while behavior has the highest one. This is based on the

fact that to move, and to capture the motion, requires the shortest period or time.

To document the behavior of motion, however, a long period of motion capturing

is needed. Motion information over time produces action, different interactions

construct an activity, and more complex activities shape a behavior.

Recognizing human activity can be based on different sensor modalities, the

most common ones are visual and inertial sensing. These modalities can be used

simultaneously or independently. Inertial measurement sensors (IMUs) are devices

with capabilities to measure and report the body’s specific force, angular rate, and

orientation. In the sensor’s local coordinate system, there are three main mea-

surement modalities: accelerometers, which capture instantaneous acceleration for

each axis; gyroscopes, which represent the rotational velocity of the inertial; and

magnetometer, which exemplify the instantaneously measured magnetic field with

corresponding X, Y and Z axes. One of the drawbacks of using IMUs is the high

degree of uncertainty when measuring at slower motion velocities and lower rela-

tive uncertainty at high velocities. On the other hand, inertial sensors are able to

measure very high velocities and accelerations.

Depending on their methodological nature, two main approaches can be ap-

plied on egocentric activity recognition: object and motion-based approaches [19,

90]. Object-based approaches deal with various types of information about objects

and their interaction with hands. A relationship between object, hand, location,

75
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and pose will be instantiated to recognize an activity. However, motion-based ap-

proaches depend on the camera’s location on the subject’s body, i.e., where the

camera is mounted vis-à-vis the subjects’ head, shoulder, or chest.

One of the motion-based approaches is optical flow, which refers to the dis-

placement of intensity patterns [47]. It represents the motion of visual features

such as points, objects, shapes, etc. via continuous view of the environment to

produce a relative motion representation between environment and observer [5].

Optical flow is computed from visual sensing and can be defined as the ap-

parent motion of objects in consecutive frame pairs. It can be subcategorized into

forward optical flow, when the displacement vector for each pixel of the first frame

has been computed, or backward optical flow, when it is estimated from the second

frame. A field of vectors will be generated in u and v directions.

Research paradigms in the optical flow field are divided into two main meth-

ods. The first considers optical flow estimation as a classical problem [25] and

is considered as a variational optimization problem to find pixel correspondences

between any two consecutive frames [54]. The second can be formulated as a

machine learning problem, an example of which is convolutional neural networks

(CNN) [43, 125, 111, 9]. Activity frames can be modeled as 3D volumes in time,

and various local visual descriptors can be extracted such as histograms of ori-

ented gradients (HOG), histograms of optical flow (HOF), and motion boundary

histograms (MBH) [88, 35, 118, 119].

The recognition of human activities can be performed using classifiers trained

by IMUs features alone, visual features alone, or a combination of the different

sensor modalities [30, 7, 2, 42, 6]. In this research, learning human activities was

conducted via two main methods: support vector machines and deep learning using

features extracted from only two IMUs sensors. These were placed at the subject’s

left and right hands, with egocentric vision corresponding to similar, complex, and

opposite human activities.

In this presentation of the sections of the research, the following contributions

of the endeavor are highlighted:

• Developed an action extractor tool for both visual and IMUs data based on

[137] annotations.
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• The use of deep learning for feature extraction and training for visual data.

• The introduction of a novel statistical feature extraction method for IMUs

data based on curvature of function graph and tracking the positions of left

and right hands in space.

• The provision of an experimental proof of the limitation of IMUs data to

distinguish activities and the suggestion that visual features can be comple-

mentary to IMUs in human activities recognition.

• The performance of intermediate fusion between IMUs and visual sensors in

order to recognize actions using SVM classifier.

6.1 Related Work and Contribution

Different sensor modalities can be used for recognizing human activity. Two of

the most common sensing modalities are visual and inertial, which can be used

simultaneously or independently.

Inertial measurement sensors can be used alone for human activity recognition

[132, 20, 63, 12, 112, 89, 13, 37]. IMUs can measure various body signals such

as force, angular rate, and orientation. Measurement by means of IMUs suffers

from a high level of uncertainty at slow motion and lower relative uncertainty at

high velocities. For example, convolutional long short-term memory (LSTM) was

used to solve sequential human activity recognition problems through proposing a

multi-level neural network structure model based on the combination of an incep-

tion neural network and gated recurrent units (GRU) [132]. The best F-measure

score achieved was 94.6% on the Opportunity dataset. Bevilacqua et al. [20] used

convolutional neural networks (CNNs) to classify human activities. They used the

Otago exercise program dataset, which contains 16 activities based on five sensors

placed on subjects: two sensors placed on the distal third of each shank(left and

right), two sensors centered on both left and right feet and one sensor placed on the

lumbar region.

In their work, Jalloul et al. [63] constructed a structural connectivity network

to explore the relations between the sensing modules while performing activities
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based on the correlation between some wearable sensing modules. These were

positioned at different parts of the body and constitute a monitoring system for

four different activities (walking, standing, lying and sitting).

LSTM also was used by [12] to classify seven main activities with different

motion primitives recorded using Apple watch. A hybrid deep framework based

on LSTM and an extreme learning machine (ELM) was proposed by Sun et al.

[112] to overcome the problem of sequential activity recognition. The proposed

framework was composed of convolutional layers, LSTM recurrent layers, and an

ELM classifier, which can automatically learn feature representations and model

the temporal dependencies between features. Their framework has been evaluated

on an Opportunity dataset with 17 different gestures, for which it achieved a 91.8%

F1 score with all classes, including a null class and 90.6% without using a null

class.

Another work, conducted by Rueda et al., deploys CNN using a multi-channel

time series for activity recognition and evaluated their model on Opportunity, Pamap2,

and Order Picking datasets. A data-driven architecture based on an iterative learn-

ing framework was proposed by Davila et al. [37] to classify human locomotion

activities, such as walking, standing, lying, and sitting extracted from the Oppor-

tunity dataset using multi-class SVM classifiers. Their framework produced an

average accuracy of 74.08% while using only 6.94% of the samples in the input

domain for training compared to average accuracy of 81.07% obtained by the su-

pervised method when using 80% of samples for training, and the 20% remaining

samples for testing.

It should be noted that only visual data can be used in activity recognition. For

instance, RGB-D data have been used in deep learning to recognize human activi-

ties [60, 33]. Sudhakaran et al. [109] presented a hierarchical feature lightweight

aggregation scheme that can be plugged into any deep architecture with CNN back-

bone. At each layer, the feature from a CNN block is gated and its residual is

transferred to the adjacent branch. They evaluated their proposed technique on

Something-v1, EPIC-KITCHENS, and HMDB51 datasets. The results obtained

show an improvement of about 24% compared to a Temporal Segment Network

(TSN). To extract more precise object-related features to guide 3D CNN training,

Wang et al. [123] introduced the Baidu-UTS object detection model that consists
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of two parts: the first is a 3D CNN branch that takes sampled video clips as input

and produces a clip feature. The second extracts the object-related features from

the context frames. An EPIC-KITCHENS dataset was used in their research to

predict verbs, nouns, and activities from the vocabulary for each video segment.

Sudhakaran et al. [110] proposed long short-term attention (LSTA), a recurrent

unit that addresses shortcomings of LSTM when the discriminative information in

the input sequence can be spatially localized. Moreover, they deployed LSTA in

a two-stream architecture with cross-modal fusion and evaluated their method on

four datasets: GTEA 61, GTEA 71, EGTEA Gaze+, and EPIC-KITCHENS. Their

network was trained for multi-task classification with verb, noun and activity su-

pervision. Activity classifier activation was used to control the bias of verb and

noun classifiers. Other information extracted from visual data can also be used for

activity recognition applications.

Optical flow can be derived from visual sensing. It represents the apparent mo-

tion of objects in consecutive frame pairs. The displacement vector for each pixel

of the first frame is called optical flow forward and from the second frame back to

the first frame is called backward optical flow, which forms a field of vectors in u

and v directions. The interaction between optical flow and activity recognition has

been discussed in [103].

The success of optical flow in many activity recognition applications [113, 5,

71, 128] is not due to its temporal structure. However, optical flow [113, 5, 71,

128], deep-learned spatial descriptors [105], and dense trajectories based on mo-

tion boundary histograms [121] are considered to be invariant to appearance of the

representation [103].

A significant amount of research work suggests combining different sensor

modalities to improve human activity recognition [30, 7, 2]. However, for real-life

scenarios, realistic and compromised number of modalities should be used. Lu and

Velipasalar [79] deployed LSTM to classify activities using four IMUs sensors cor-

responding 36 components with egocentric video from the CMU Multimodal Ac-

tivity (CMU-MMAC) database [38]. Visual and audio sensors were used by [11]

for activity recognition. [2] has presented a framework for recognizing proprio-

ceptive activities using IMUs egocentric data. They used cross-domain knowledge

transfer with a CNN-LSTM to exploit discriminative characteristics of multimodal
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feature groups provided by stacked spectrograms from the inertial data. Diete and

Stuckenschmidt [42] have used visual features with objects information and inertial

data for human activity recognition.

6.2 Dataset

The Carnegie Mellon University Multi-Modal Activity (CMU-MMAC) [38] main

database has been used to train and test our activity recognition methods. This

database contains human activity measures constructed from multimodal sensors

mounted on subjects while performing tasks related to cooking and food prepa-

ration in Carnegie Mellon’s Motion Capture Lab. More than forty subjects were

involved in the preparation of recipes for five types of food:

• Brownies.

• Pizza.

• Sandwich.

• Salad.

• Scrambled eggs (Eggs).

Various modalities were used to record the following data types:

1. Video:

Three video cameras with high recording resolution (1024 x 768) with

temporal resolution (30 Hertz).

Two video cameras with 60 Hertz temporal resolution and with spatial

resolution equals 640 x 480.

One wearable camera with 30 Hertz temporal resolution. And equipped

with high spatial resolution (800× 600/1024× 768).

2. Audio:

Five microphones.
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3. Motion Capture:

Motion capturing system consists of 12 infrared MX-40 cameras. Each

of which is recording images at four megapixel resolution at 120 Hertz.

4. Internal Measurement Units (IMUs):

Wired IMUs (3DMGX).

Bluetooth IMUs (6DOF).

5. Wearable devices:

BodyMedia.

eWatch.

This dataset was collected using 55 subjects, with each participating in several

subexperiments.

6.2.1 Action Extraction

A Matlab tool has been developed 1 to extract the corresponding actions for both

IMUs and visual data from the CMU Multi-Modal Activity database (CMU-MMAC)

[38] based on [137] annotations. The action extraction tool is illustrated in Fig-
ure 6.1. The user provides IMUs ID, video, and subject in order to extract all

actions based on the annotation file provided for each subject. Data extracted for

both modalities is synchronized using start and end times that are provided. To

facilitate processing extracted files; each extracted file or image name contains a

prefix for subject ID, serial number, and action name.

6.2.2 CMU-MMAC Annotations [137]

The most recent set of annotations for CMU-MMAC dataset has been published

by [137], showing an increased number of labels for different types of scenarios.

In their paper, [137] have explained the approach used for annotating the CMU-

MMAC dataset. Moreover, they have offered semantic annotations that can be

used in experiments related to reasoning. The annotations mainly focus on three
1https://github.com/alhersh/ActionExtractor
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Figure 6.1: Action-extractor tool. User has to identify the following parameters to
be passed to the Action-extractor tool: IDs for IMUs sensor, subject, and video to
extract the corresponding images, and IMUs data for all actions provided based on
an annotation file.

recipes: Brownie, Scrambled eggs (Eggs), and Sandwich, in which they used all

valid subjects related to those recipes. These new annotations are based on ego-

centric vision recorded by the first-person camera.

Activity classes are enumerated as eleven for Brownie, eleven for Eggs, and

eight for Sandwich. A derivative from these activity classes are activities based on

verb-Object1-object2-...-object_n, in which the number of objects differs from one

activity to another, for example close_drawer and shake-butter_spray_can.

6.3 Methods

This section provides information about methods used in this part of the research,

starting from feature extraction methods, then moving through feature fusion, and

finally on to the classification techniques used.
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6.3.1 Feature Extraction

The main purpose of feature extraction is to reduce the dimension of high-dimensional

raw data, hence producing more manageable groups of data for processing that con-

sequently reduce the computational power required. The feature extraction method

can select and /or combine different variables together to shape features, effectively

reducing the data while nonetheless describing the original dataset in an accurate

and complete way. Next, an illustration of the feature extraction methods used in

this research is provided.

Deep learning

GoogLeNet [114] was used to extract features from videos. This network is a

convolutional neural network that is 22 layers deep, counting only the layers with

parameters. In total, about 100 layers were used to construct it. The length of the

feature vector extracted is 1024 for each frame.

The convolutional network of GoogLeNet [114] was used as a feature-extraction

tool by obtaining activations from inputted video frames to the network. Hence,

videos were converted to feature vector sequences, in which feature vectors are

basically the output of the activation function on the last pooling layer ("pool5-

7x7_s1") of the GoogLeNet [114] network, as illustrated in Figure 6.2.

Figure 6.2: Data flow diagram that illustrates obtaining activations.

In this part of the research, we used only the Brownie, Scrambled eggs (Eggs),

and Sandwich recipes. The name and distribution of classes in the Brownie dataset

is shown in Figure 6.3.

IMUs Statistical Features

In this part of the research, we considered nine activities with three opposing pairs

including
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Figure 6.3: Distribution of the number of frames for activities considered from the
CMUMMAC Brownie dataset. The activity name has been derived from the verb
part of the annotated label of activity.

• close-bread-bag/open-bread-bag; close-drawer/open-drawer; and close-fridge/open-

fridge.

• fill-oil-oil-bottle-pan.

• shake-butter-spray-can.

• stir-bowl-fork.

Statistical features for IMUs activities were extracted as shown in Figure 6.4.

These were based on a sliding window of size 25 points, which is equal to 0.2

seconds, and with 40% overlap to produce a feature vector of 504 length as follows

1. Define left and right sensors.

2. For each left and right hand sensor, the positions of the left and right hands

is tracked using [130], and the first derivative of the position for each hand

is calculated.

3. The difference between the various combinations of left and right hands in

three-dimensional space is calculated.
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4. The curvature of (X, Y, Z) acceleration and gyro data was computed using

the following formula:

k =
|y′′|

(1 + y′2)
3
2

(6.1)

5. Normalize previous values using the formula:

f(x) =
x− µ
σ

(6.2)

, where µ is the mean and σ is the variance.

6. Mean, variance, entropy, kurtosis, moment (order 3 and 4), and the number

of local maxima (peaks).

Visual Descriptors

Literally, optical flow refers to the displacement of intensity patterns [47]. The-

oretically, it is the motion of visual features such as points, objects, shapes etc.

through a continuous view of the environment. It represents the motion of the en-

vironment relative to an observer [5]. Optical flow generated can be processed in

many methods for different applications.

This section discusses the approach aligned with this part of the research.

Motion-based features of optical flow can depend on oriented histograms of vari-

ous kinds of local differences or differentials. For example, the histogram of ori-

ented gradients (HOG), histogram of optical flow (HOF), and motion-boundary

histograms (MBH) [88, 35, 118, 119].

The HOG method tiles a detector window with a dense grid of cells, with each

cell containing a local histogram over orientation bins. At each pixel, the image

gradient vector is calculated and converted to an angle, voting into the correspond-

ing orientation bin with a vote weighted by the gradient magnitude. Votes are

accumulated over the pixels of each cell. The cells are grouped into blocks, and

a robust normalization process is run on each block to provide strong illumination

invariance. The normalized histograms of all of the blocks are concatenated to give

the window-level visual descriptor vector for learning [35].

We adopted the method used in [118, 119] method for extracting local visual
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descriptors HOF, HOG, and MBH for each activity in the video, with two main

modifications; the first one is increases block size from 8 pixels to 50. According

to [34, 35], the recommended values for the HOG parameters are:

• Detection-window size of 64× 128

• Block size of 16× 16

Since we are using a video resolution of (300×400), the detection window has

been increased by a ratio of 468.75%× 312.5%, which increases the block size to

50×50 pixels. In the second, descriptors for each activity were aligned with IMUs

features to produce a feature vector with a length of 144 for each activity. Also,

in this part of research, the activities considered are the same as mentioned in the

previous section.

6.3.2 Feature Fusion

A significant amount of research work suggests combining different sensor modal-

ities to improve human activity recognition [30, 7, 2]. However, for real-life sce-

narios, a realistic and compromised number of modalities should be used.

Sensors fusion can be performed in three main levels. The first is low level, in

which raw data from different sources are combined to produce new more infor-

mative data than the inputs. The second is the intermediate level, which combines

various features from different sensors together to build a feature map. The last is

high level, also called the decision level, which combines decisions from several

experts using various methods such as voting, fuzzy logic, and statistical methods

[36, 44].

The advantages provided by combining local visual descriptors and IMUs data

are the complementary characteristics of visual descriptors and inertial sensors. For

instance, IMUs data have large measurement uncertainty at slow motion and lower

relative uncertainty at high velocities. Inertial sensors can measure very high ve-

locities and accelerations. On the other hand, visual descriptors can track features

very accurately invariant to appearance of the representation at low velocities. For

high velocity, tracking is less accurate since the resolution must be reduced to ob-

tain a larger tracking window with the same pixel size and, hence, a higher tracking
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velocity [99].

For the sensor-fusing experiment, we used an intermediate level of sensor fu-

sion since we are fusing features generated from IMUs and visual data to produce

a feature vector with a length of 648 for each activity used in this experiment as

shown in Figure 6.4. Activities used in this part of research are the same used in

the previous two sections.

Figure 6.4: IMUs feature extraction procedure.

6.4 Classification

6.4.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning algorithm which

can be used for both classification or regression problems. It is a discriminative

classifier formally defined by a separating hyperplane. For example, given labeled

training data (supervised learning), the algorithm outputs an optimal hyperplane

that categorizes new examples. In two-dimensional space this hyperplane is a line

dividing a plane in two parts in which each class lies in either side. Nevertheless,

it is mostly used in classification problems [32].
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SVM algorithms use a set of mathematical functions that are defined as ker-

nels. The function of a kernel is to take data as input and transform it into the

required form. Different SVM algorithms use different types of kernel functions,

for example, linear, nonlinear, polynomial, radial basis function (RBF), and sig-

moid. In this work we used the Cubic SVM classifier in our research. Based on the

Matlab 2018b Classification Learner App, the following settings were used for the

classification process:

• Kernel function - cubic polynomial kernel given the following formula:

k(x1, x2) = (xT1 x2 + 1)3 (6.3)

• Kernel scale - automatic

• Box constraint level: 1

• Multiclass method - one-vs-one

• Standardize data - true

Data fetched into the classifiers was split into 80% for training and 20% for

testing. We used five-fold cross validation for training.

6.4.2 Recurrent Neural Networks (RNN)

In recurrent neural networks (RNN), previous information could be used to predict

current or future information, for example, using multiple and sequential video

frames to predict, recognize, or classify the whole chunk of frames.

Bidirectional LSTM (BiLSTM) is considered an extension of RNN [102] in

which the layer learns bidirectionally and there are dependencies between time

steps of a sequence of images, data, or time series. The significance of these de-

pendencies is used when the network is needed to learn from the complete time

series at each time step, as shown in Figure 6.5. For this reason, we used BiL-

STM in our experiment to classify activities that are considered to be a sequence

of images in time. The error backpropagated through time, but layers can be pre-

served in BiLSTM. Maintaining numerous constant errors allows recurrent nets to

continue to learn over many time steps.
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Figure 6.5: BiLSTM architecture based on [102].

An overview of the method used for classifying human activity using only vi-

sual data is shown in Figure 6.6. Input data is activity videos, features are extracted

using GoogLeNet. Activities are extracted and then trained using a Bidirectional

Long short-term memory (BiLSTM) network for human activity recognition.

Figure 6.6: An overview of general human activities classification approach. Input
data is activity videos, and features are extracted using GoogLeNet, producing a
features database that is used for training a recognition model using BiLSTM.
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6.5 Experiments

6.5.1 IMUs and Optical Flow

As an initial experiment, the feasibility of using visual features from optical flow

and IMUs was conducted; four activities were used in this experiment. Figure 6.10

shows the feature vector differences between various sensors for various activities.

It is obvious that the produced features can distinguish between "take-oil", "put-

baking", and ("open-fridge" or "stir-egg") while there is overlapping between ("put-

baking" and "stir-egg"), so we conducted a T-Test to confirm this observation, as

presented in Table 6.2. The results of T-Test confirm our observation that the

feature vectors between "put-baking" and "stir-egg" are not significant and thus

hard to distinguish.

Figure 6.7: Visualization of averaged HOGs for the four activities used in this
experiment.

Results for the averaged HOGs of the activities are illustrated in Figure 6.7.

TThe visualizations of the averaged HOG for each activity show that it is easy to

distinguish activities from each other. This information can be used as a comple-

mentary feature for IMU features to produce more robust feature vectors.

Distances between HOGs for different activities can be used as a quantitative
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measurement to evaluate the similarities between activities. Figure 6.9 shows the

distances in a log scale between all combinations of activities used in this research.

Different metrics were used to calculate the distances between activities HOGs:

(i) Chi Square is a metric that can be used to compare histograms and can be

defined as

d(x, y) =
1

2

n∑
i=1

(xi − yi)2

(xi + yi)
(6.4)

(ii) L1 can be defined as

‖s‖1 =

n∑
i=1

|yi − yi)| (6.5)

(iii) Earth Mover’s Distance (EMD) is a method to evaluate dissimilarity be-

tween two multi-dimensional distributions in some feature space where a

distance measure between single features, which we call the ground distance,

is given [100]. The EMD between histograms x and y is given by

emd(x, y) =
n∑
i=1

|cdx(i)− cdy(i)| (6.6)

where,

cdx(i) =
i∑

j=1

xj (6.7)

and,

cdy(i) =
i∑

j=1

yj (6.8)

(iv) Euclidean

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (6.9)

(v) Squared Euclidean (SQ Euclidean)

d(x, y)2 =
n∑
i=1

(xi − yi)2 (6.10)
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Real value distances for averaged HOGs for pairwise combination of activities

using previously mentioned metrics are shown in Table 6.1. The actual differences

provide more information about measurement differences inside the same metric,

in which Chi Square metric provides the maximum difference among all pairwise

activities as shown in Figure 6.8.

Figure 6.8: Visualization of averaged HOG for the four activities used in this ex-
periment.

Table 6.1: Pairwise distance between averaged HOGs for different activities using
Chi Square, L1, EMD, Euclidean and Squared Euclidean metrics

Activity1 Activity2 Chi Square L1 EMD Euclidean Squared
Euclidean

take-oil put-baking 2.03E+01 1.29E+02 4.46E+04 5.52E+00 3.31E+01
take-oil open-fridge 3.18E+02 9.80E+02 3.72E+05 3.88E+01 1.54E+03
take-oil stir-egg 6.95E+01 2.24E+02 7.77E+04 8.88E+00 8.01E+01

put-baking open-fridge 2.60E+02 8.96E+02 3.34E+05 3.64E+01 1.36E+03
put-baking stir-egg 9.58E+01 2.96E+02 1.16E+05 1.09E+01 1.24E+02
open-fridge stir-egg 5.05E+02 1.18E+03 4.50E+05 4.57E+01 2.12E+03

In this experiment, the preliminary investigations provide insights that combin-

ing optical flow and IMUs data can be complementary to each other and indeed a

promising direction. The next section provides more details and experiments on
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Figure 6.9: Different distance metrics (Chi Square, L1, Earth Mover’s Distance
(EMD), Euclidean and Squared Euclidean (SQ Euclidean)) in Log scale between
different combination of activities feature vectors for HOG.

Table 6.2: P-value for T-Test using pairwise activities form IMU feature vectors
for different sensors

P-Value
Activity1 Activity2 Acc-X Acc-Y Acc-Z Roll Pitch Yaw Mag-X Mag-Y Mag-Z
take-oil put-baking 0.0072 0.0077 0.0066 0.0181 0.0112 0.0112 0.0078 0.0069 0.0096
take-oil open-fridge 0.0034 0.0036 0.0026 0.0013 0.001 0.0011 0.0044 0.002 0.0052
take-oil stir-egg 0.002 0.0014 0.0013 0.0124 0.0024 0.0036 0.002 0.0009 0.0016

put-baking open-fridge 0.1172* 0.1357* 0.099* 0.6825* 0.3141* 0.3219* 0.1321* 0.1207* 0.1947*
put-baking stir-egg 0.2486 0.2425 0.2352 0.3618 0.2702 0.2907 0.2507 0.2234 0.2454
open-fridge stir-egg 0.0001 0.0001 0.0001 0.0017 0.0002 0.0003 0.0001 0 0.0001

* ×1.0e−03

combining IMUs and visual features.

6.5.2 IMUs and Visual Features

As mentioned in the previous chapter, researchers have used many evaluation datasets

for activity recognition. In this experiment, we used the CMU Multi-Modal Activ-

ity database (CMU-MMAC) [38] since it is the only dataset that combines egocen-

tric vision and IMUs sensors positioned on subjects left and right hands.

Based on semantic annotations of CMU-MMAC dataset proposed by [137],
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Figure 6.10: IMU features for all IMU sensors used in various activities for the
experiment.

Figure 6.11: Location of IMUs sensors (3DMGX) on subjects’ right and left hands.

tthree recipes were annotated: Brownie, Eggs and Sandwich. We used data ex-

tracted from the following modalities in our experiment in which a head-mounted

high spatial resolution (800 × 600) camera at low temporal resolution (30 Hertz)

was deployed.

The resolution of egocentric videos was reduced by factor of 0.5 to get a reso-
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lution of (400× 300). Second, two wired IMUs (3DMGX) on right and left hands,

each of which had a triaxial accelerometer, gyro, and magnetometer sensor with

a sampling rate at 125 Hz. The location of the sensors used in this experiment is

plotted in Figure 6.11; the sample signal is shown in Figure 6.12.

In this research, we considered 9 activities with 3 opposite pairs, including

(close-bread-bag, open-bread-bag), (close-drawer,open-drawer), and (close-fridge,open-

fridge), and fill-oil-oil-bottle-pan, shake-butter-spray-can and stir-bowl-fork.

The variability, both between subjects (intersubject variability) and within sub-

jects (intrasubject variability), of the execution time for the same activity is illus-

trated in Figure 6.13. Occurrences on the X-axis represent the repetition of activity

for all subjects performing the same activity, while the Y-axis represents the execu-

tion time of activity in seconds. For instance, activity “clean” can be done in less

than 1 second, and it can be performed in more than 7 seconds. These scenarios

increased the complexity of the problem.

Here, we report the results from Table 6.3. The first part presents classification

results for IMUs alone. The next section shows the results for activity recognition

using visual descriptors only. The third part shows activity recognition results us-

ing fused IMUs features and visual descriptors. The last part is a general discussion

about the results achieved.

Our recognition result achieved 49.89% for activity recognition using only

IMUs data from left and right hands. This result is better than [79] by around 5%,

and consideration should be given to the fact that we recognized 9 activities from

only 2 sensors, while [79]’s method was used to recognize only 6 activities with

4 IMUs sensors. Furthermore, they used LSTM for feature extractions, whereas

we used the statistical feature extraction method. In contrast, [108] achieved 62%

f-measure recognition score by using only accelerometer data captured from IMUs

sensors attached to non-human objects.

Visual activity recognition using VGG16 performed by [104] achieved 58.78%

and 64.93% using CapsNet [101]. HOG and HOF were used by [119] for activity

recognition, with the result that HOF produced better classification results than

HOG. Our visual descriptor results are better than those of [119] and [108] using

HOG and MBH descriptors, but [119] achieved better results than ours using HOF.

The best classification result for recognizing all activities using visual descriptors
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(a) Left hand IMU signal

(b) Right hand IMU signal

Figure 6.12: Sample signal of two opposite activities for two IMUs sensors: close
cupboard and open cupboard for left (a) and right (b) hands for the same subject.
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Figure 6.13: The variation of execution time for the same performed activity. Oc-
currences on the X-axis represent the repetition of activity for all subjects perform-
ing the same activity. While the Y-axis represents the execution time for activity in
seconds.

was 86.88% using our HOG descriptor.

As the literature suggests, combing more than one sensor modality can increase

the recognition accuracy. This has been proved in many previous research efforts.

We worked on enhancing the recognition accuracy, and our approach was able to

achieve this by a big margin compared to other methods. IMUs features are fused

with the best visual descriptor (HOG) features to produce a feature vector of 648

lengths for each activity. Classifiers used in this experiment were trained to recog-

nize 9 activities, with 3 opposite cases. The results achieved 99.61% accuracy. The

confusion matrix is shown in Figure 6.14.

Identifying block size is a major step in local visual descriptors (HOG and

HOF) calculation. As [34, 35] suggested that for a detection window of size 64 ×
128, the recommended block size should be 16×16. [119] used a detection window

of size 320× 240 and block size of 8× 8. And [108] used a detection window size

of 640 × 480 with a block size of 32 × 32. In our settings, we used a detection

window size of 300 × 400 with a block size of 50 × 50; thus our settings are best

aligned with the block size suggestion by [34, 35] in regard to the detection window

size, which explains the differences in activity recognition accuracy.
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Figure 6.14: Confusion matrix for activity recognition results using IMUs and
HOG fusion.

After conducting this experiment and successfully obtaining competitive re-

sults, the next step was to test a bigger dataset; however, for simulating real-life

scenarios, minimizing the number of sensors should be considered [6, 42]. In the

activity described in the following section, we used only and egocentric video sen-

sor.

6.5.3 Only Visual Features

To be able to compare with state-of-the-art results, we considered the annotations

of [137], which comprise a semantic annotation of the CMU-MMAC dataset on

three recipes: Brownie, Eggs, and Sandwich. For human activities recognition, we

used activity classes from Brownie, Eggs, and Sandwich recipes. For example, the

name and distribution of classes for the Brownie recipe is shown in Figure6.3. For

this experiment, we used only visual data with a fixed split of 80% training and

20% testing. In this experiment, we assumed that any 15 frames of the activity

could be used to identify the designated human activity. We split each human
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Method / Modalities Features Classification
Dataset Accuracy

[79] IMUs LSTM 45.06
CMU-MMAC Visual VGG16 58.78

Visual CapsNet 64.93
IMUs + Visual VGG16 + LSTM 65.60
IMUs + Visual CapsNet + LSTM 84.40

[119] Visual HOG 76.50
UCF50 Vision HOF 79.50
[108] Visual HOG 49.00*

50 Salads Visual HOF 47.00*
Visual MBH 53.00*

IMUs** Statistics 62.00*
IMUs** + Visual (HOG + HOF + MBH) + Statistics 71.00*

Our IMUs Statistics 49.89
CMU-MMAC Visual HOF 63.29

Visual HOG 86.88
Visual MBH 71.71

IMUs + Visual Statistics + HOG 99.61
* f-measure score.
** IMUs sensors were attached to objects not humans, and only accelerometer data was used.

Table 6.3: Comparison of recognition results using IMUs data, visual data, and
fusion between IMUs and visual data between our method and three other methods.

activity video into 15 frame videos, which increased the training data on the one

hand and provided the opportunity to examine our assumption that part of activity

can recognize it on the other.

GoogLeNet [114] was used to extract features from videos. It is considered

a convolutional neural network that contains 22 layers (counting only layers with

parameters). The length of the feature vector produced for each frame was 1024.

In this experiment, the features produced were merged into recurrent neural

networks (RNN). Previous information in RNNs could be used to predict current

or future information, for example, using multiple and sequential video frames to

predict, recognize, or classify the whole chunk of frames.

In this experiment, bidirectional LSTM (BiLSTM) was considered, which is

an extension of RNN [102]. The layer learned bidirectionally where dependencies

between time steps of sequence of images/data or time series exist. The signifi-
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cance of these dependencies is used when the network is needed to learn from the

complete time series at each time step, as shown in Figure 6.5. This is why we

used BiLSTM in our experiment to classify activities that are considered to be a

sequence of images in time. The error backpropagated through time and layers can

be preserved in BiLSTM. Maintaining more constant error allows recurrent nets to

continue to learn over many time steps.

The results for human activities recognition are summarized in Table 6.4,

where we compare ours with those of [42], which is considered state of the art.

The averages of precision, recall, and F1 score are reported in Table 6.4, where

our method outperformed the state-of-the-art work of [42], with an F1 score of

more than 4%.

Dataset Method Precision Recall F1 Score
Brownie [42] 0.831 0.604 0.664

Ours 0.701 0.717 0.707
Eggs Ours 0.737 0.729 0.730
Sandwich Ours 0.732 0.697 0.702

Table 6.4: Comparison between our method of classification and state of the art
[42]. In this table averages of precision, recall, and F1 score are reported.

F1 score results of each human activity are shown separately in Table 6.5. The

results achieved by [42] were better than ours: close class = 3%; other class = 1%;

put class = 3%; take class = 3%; and Turn_on class = 1%. On the other hand,

our method outperformed their results in the remaining 6 classes by an average

of around 10%. For example, in the clean class, the difference is 6%, in fill it

is around 10%, in open 3%, in shake 15%, in stir 5% and in walk with 22%

difference.

A comparison of the results shows that ours were close to those of [42] in the

close, other, put, take, and Turn_on classes, even though theirs were slightly better.

However, our results outperformed theirs in the fill, shake and walk classes by a big

margin although they used multi-modality (visual and IMUs) classification, while

we used only visual data.

Table 6.6 and Table 6.7 show precision and recall results respectively com-



CHAPTER 6. LEARNING HUMAN ACTIVITIES 101

Class Ours [42]
Clean 0.634 0.571
Close 0.555 0.589
Fill 0.946 0.844
Open 0.731 0.707
Other 0.702 0.719
Put 0.567 0.595
Shake 0.571 0.426
Stir 0.980 0.939
Take 0.571 0.607
Turn_on 0.892 0.903
Walk 0.627 0.402

Table 6.5: F1 score comparison between our method of classification and state of
the art [42].

Class Ours [42]
Clean 0.591 0.947
Close 0.616 0.764
Fill 0.944 0.748
Open 0.719 0.720
Other 0.700 0.866
Put 0.530 0.665
Shake 0.526 1.000
Stir 0.973 0.904
Take 0.633 0.620
Turn_on 0.839 0.976
Walk 0.642 0.935

Table 6.6: Precision results comparison between our method of classification and
state of the art [42].

pared to [42] for each activity separately.

In this experiment, human activities recognition outperformed state-of-the-art

work by [42] by an increment of more than 4% in the F1 score, even though we

used only visual data features in this experiment. Moreover, in order to generalize
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Class Ours [42]
Clean 0.684 0.409
Close 0.505 0.479
Fill 0.949 0.967
Open 0.744 0.696
Other 0.704 0.615
Put 0.610 0.537
Shake 0.625 0.270
Stir 0.987 0.977
Take 0.520 0.595
Turn_on 0.952 0.840
Walk 0.612 0.256

Table 6.7: Recall results comparison between our method of classification and state
of the art [42].

our method, we further tested our method on another two CMU-MMAC datasets

designated Scrambled eggs (Eggs) and Sandwich.

Activity recognition results for the Eggs dataset is shown in Table 6.8. In this

table, precision, recall, and F1 score are reported. Our averaged F1 score results

also outperformed state-of-the-art results [42] by more than 6%.

Even though the Sandwich dataset has three fewer activity classes, the averaged

F1 score also outperformed the state-of-the-art results of [42] by 4%. Detailed

results for precision, recall, and F1 scores are illustrated in Table 6.9.

6.6 Discussion

The results of the first experiment in Section 6.5.1 provide a clear overview that

using more than one sensor for activity recognition is a promising direction to

follow, even though this experiment considered only 4 activities and there was no

actual sensor fusing or recognition.

Subsequently, another experiment in Section 6.5.2 considered IMUs data fused

with visual descriptors data. Nine activities were chosen, six of which were oppo-

site in nature, such as close_drawer vs. open_drawer, in addition to three other
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Class Precision Recall F1 score
Clean 0.667 0.545 0.600
Close 0.470 0.572 0.516
Fill 0.922 0.926 0.924
Open 0.654 0.671 0.662
Other 0.879 0.781 0.827
Put 0.627 0.485 0.547
Shake 0.776 0.843 0.808
Stir 0.959 0.980 0.970
Take 0.551 0.685 0.611
Turn_on 0.860 0.811 0.835
Walk 0.746 0.716 0.731
Average 0.737 0.729 0.730

Table 6.8: Precision, Recall and F1 score results for activity recognition using Eggs
recipe.

Class Precision Recall F1 score
Clean 0.857 1.0 0.923
Close 0.833 0.613 0.707
Fill 0.935 0.980 0.957
Open 0.869 0.628 0.729
Other 0.662 0.461 0.543
Put 0.470 0.362 0.409
Shake 0.511 0.805 0.625
Stir 0.722 0.722 0.722
Average 0.732 0.697 0.702

Table 6.9: Precision, Recall and F1 score results for activity recognition using
Sandwich recipe.

activities with no opposite nature to somehow generalize the model. Estimating

visual features appears to be a good aspect for consideration with statistical IMUs

features. However, the calculations of visual features consume a lot of time and

computational power [118]. Hence, finding other alternatives for activity recogni-

tion that demand less time and computational power is needed.
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In the third experiment, in Section 6.5.3, only one sensor was deployed, a first-

person camera, and the recognition process was accelerated. In this task, a deep

learning approach was used for feature extraction and recognition, which benefitted

from the speed and accuracy of deep learning. In this experiment, we used all the

annotated activity classes based on [137]. The results outperformed the state-of-

the-art work done by [42] for the Brownie recipe. Moreover, the model was trained

and tested on the Eggs and Sandwich recipes and showed very good results. In

addition, since the classified video is only 15 frames in length - corresponding to

0.5 seconds - this opens the door to near real-time activity recognition.

6.7 Conclusion

In this chapter, we have presented our action extraction tool for the CMU-MMAC

dataset based on [137] annotations. Moreover, we have suggested categorizing

human activities as general human and activities like (close, open) without speci-

fying any object of interaction. This scenario increases the difficulty of recognition

since it needs generalization. The second category is more specific: human activi-

ties like (close-drawer, open-drawer) were able to improve the recognition results;

however, using the same object with opposite movements proved challenging. In

the last category, we tried to simulate a more realistic scenario that can be used in

real-life applications using only two IMUs sensors on the left and right hands with

egocentric vision using opposite activities to make the experiment more realistic.

Our results for general human activities recognition outperformed the state-of-

the- art work by [42] by more than a 4% increment of F1 score, even though we

used only visual data features in this experiment. For more specific human activi-

ties, recognition results show that intermediate fusion between IMUs and egocen-

tric data improves results by a big margin.
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CHAPTER7
Conclusions and Future Work

7.1 Conclusion

Nowadays, wearable technology advances are potentially transforming the quality

of life, business, and the global economy. Wearable devices are electronics that

consumers can wear to collect data from their bodies and the surrounding envi-

ronment. Human activity recognition is one of the important research fields in

wearable technology, as human activity recognition can be considered a computer

vision and/or pervasive computing problem.

In this research we started from a computer vision problem based on optical

flow, subsequently introduced open issues in respect to existing techniques, and

then studied the relation between optical flow and human activity recognition tak-

ing the effectiveness of using multiple wearable sensors into consideration. Finally,

we conducted experiments in activity recognition using different modalities. The

following is a detailed summary to recap our research questions and answers.

I.1 How is it possible to benefit from existing pre-trained optical flow models

without the existence of ground truth and with a limited training set?

In the literature, there are many pre-trained models for optical flow estimation.

Optical flow estimation models can be trained via supervised or unsupervised

training paradigms. Supervised training requires large amounts of training data

with task specific motion statistics. Usually, synthetic datasets are used for this

purpose. Fully unsupervised approaches are usually harder to train and show
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weaker performance, although they have access to the true data statistics during

training. In order to overcome this issue and benefit from pre-trained optical

flow estimation models, we exploited a well-performing pre-trained model and

fine-tuned it in an unsupervised way using classical optical flow training objec-

tives to learn the dataset specific statistics. Thus, per-dataset training time can

be reduced from days to less than one minute. Specifically, motion boundaries

estimated by gradients in the optical flow field can be greatly improved using

the proposed unsupervised fine-tuning.

I.2 How can optical flow performance metrics be evaluated with the existence

of ground truth?

A significant amount of research has been conducted on optical flow estima-

tion in previous decades. However, only a limited amount of research has been

conducted on performance analysis of optical flow. These evaluations have

shortcomings: the most common evaluation methodologies are end-point error

(EPE) [91] and angular error (AE) [16], noting that the AE metric is based on

prior work of Fleet and Jepson [46]. Even though EPE and AE metrics are pop-

ular, it is unclear which one is better. Moreover, AE penalizes errors in regions

of zero motion more than motion in a smooth non-zero region, whereas EPE

hardly discriminates between close motion vectors [47]. In addition, different

cases exist (Figure 5.1) in which EPE gives same value between various sce-

narios. The only existing evaluation was done by Baker et al. [15], in which

they compared the performance of EPE and AE and argued that EPE should

become the preferred optical flow evaluation metric based on a qualitative as-

sessment of an estimated optical flow for Urban sequence.

We have proposed a novel performance evaluation methodology based on us-

ing only optical flow ground truths and a modified version of ground truths in

terms of shifting horizontally and vertically or magnifying by a certain value,

or rotating, or a combination for evaluating performance metrics. The behav-

ior and sensitivity of every metric have been reported for motion variations in

horizontal, vertical, rotational, and magnification or a combination.
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I.3 How can the best optical flow evaluation metric be determined? What are

the theoretical justifications of using one metric and why?

A qualitative assessment [15] has been conducted on two common error met-

rics, EPE and AE, and suggested using EPE rather than using AE based on only

one sample from the Baker dataset from Urban sequence. However, there is a

need for a systematic evaluation of optical flow performance; hence we have

conducted experiments on three popular datasets using ten different error met-

rics. A good metric is considered to be more sensitive to errors, for example,

producing error values proportional to the change of motion between modified

GT and GT. Existing metrics such as EPE, AE, and EM have sensitivity that

differs slightly from one dataset to another. For instance, EPE and EM per-

formed well on Baker, while AE and Em proved to be less sensitive on Kitti,

and AE is not sensitive on Sintel. EPE’s best sensitivity was on Kitti. On the

other hand, AE’s sensitivity was the worst among all three metrics.

As a rule of thumb, a good metric has to produce an error value proportional to

the absolute values of change in optical flow with regard to ground truth. The

general overview of mean error curves for existing and proposed error metrics

gives a clear indication that some metrics outperform others.

Based on our observations, we concluded that all metrics are sensitive to hori-

zontal, vertical, and (horizontal and vertical) variation. AE, GPRE, NEE, and

ENEE1 metrics are sensitive to rotational variations. All metrics except AE

and GPRE are sensitive to magnitude changing in motion. And only NEE and

ENEE1 metrics are sensitive to all horizontal, vertical, rotational, and magni-

tude - or a combination.

II.1 How can optical flow influence the use of multi-sensor human activity

recognition?

Optical flow can track features very accurately invariant to appearance of the

representation at low velocities. For high velocity, tracking is less accurate
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since the resolution must be reduced to obtain a larger tracking window with

the same pixel size and, hence, a higher tracking velocity [99]. So, the advan-

tage of combining optical flow and IMU data is the complementary characteris-

tics of optical flow and inertial sensors since IMU data have large measurement

uncertainty at slow motion and lower relative uncertainty at high velocities. In-

ertial sensors can measure very high velocities and accelerations. Our findings

in IMUs and optical flow experiments provided obvious evidence that using a

histogram of optical flow gradients can distinguish activities from each other.

II.2 What features can be extracted from multi-sensor human activity recog-

nition? And what methods can be used for human activity recognition?

The feature extraction step is necessary to reduce the dimension of high dimen-

sional raw data, toward the goal of producing more manageable groups of data

for processing, and consequently, reducing computational power. The feature

extraction method can select and /or combine different variables together to

shape features, which will reduce data effectively, while describing the origi-

nal dataset in an accurate and complete way. In this research, we have used

three main groups of feature extraction methods; two of them are for visual

data and one is for IMUs data.

First, we used local visual descriptors, such as a histogram of oriented gradients

(HOG), a histogram of optical glow (HOF), and motion boundary histograms

(MBH) [88, 35, 118, 119] as features for visual data. Even though the results

were competitive and achieved high accuracy, it is combined with statistical

features form IMUs, and local visual descriptors feature extraction needs huge

computational power and a significant amount of time. Then, we used an ex-

isting deep learning model, GoogLeNet [114], to extract features from videos.

This method proved faster than local visual descriptors. We used two common

methods for activity recognition: SVM for IMUs and visual descriptors and

RNN, only for visual data extracted using GoogLeNet. Our recognition results

outperformed the work of [42], which is considered state of the art, and we also

tested our recognition method on another two CMU-MMAC recipes (Eggs and
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Sandwich), which produced promising results.

7.2 Future Work

To conclude this thesis, we address several open issues, directions, and extensions

for this research work and are dividing future work into the realms of computer

vision and activity recognition.

7.2.1 Computer Vision

Recently, convolutional neural network (CNN)-based approaches have proven to

be successful in the computer vision domain. They are being used in optical flow

estimation in supervised as well as unsupervised training paradigms.

We have exploited a well-performing pre-trained model and fine-tuned it in an

unsupervised way using classical optical flow in order to reduced training time and

enhance motion boundaries. This work is opening the opportunity to investigate

more on how to enhance estimated optical flow results to compete with state-of-

the-art approaches. One component of future work is handling large displacement,

which tends to be a common drawback in many optical flow estimators and reduces

noise around edges.

In contrast, a significant amount of research was conducted on optical flow es-

timation in previous decades. However, only a limited number of research efforts

have been devoted to performance analysis of optical flow. These evaluations have

shortcomings and a theoretical justification for using one approach and the reasons

for doing it are needed. In practice, design choices are often made based on unmo-

tivated qualitative criteria or by trial and error. To the best of our knowledge, ours

is the first experiment to provide theoretical justification for optical flow evaluation

metrics.

Also, novel optical flow performance metrics have been proposed and evalu-

ated alongside with current metrics. Our empirical findings suggest using two new

optical flow performance metrics, namely Normalized Euclidean Error (NEE) and

Enhanced Normalized Euclidean Error version one (ENEE1) for optical flow per-

formance evaluation with ground truth. One of the open issues is enhancing the
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rule of thumb for choosing the best metric. Moreover, testing the new metrics to

evaluate some estimated optical flow is needed.

7.2.2 Human Activity Recognition

Different body sensors and modalities can be used in human activity recognition,

either separately or simultaneously. Multi-modal data can be used in recognizing

human activity.

Until now, we have proved that human activity recognition can even be im-

proved by using only one sensor such as visual data. Moreover, we have investi-

gated different feature extraction methods for both IMUs and visual data, such as

statistical features for IMUs and local visual descriptors for visual data and feature

extracted from deep learning. However, an open issue remains defining the best

way for feature extraction, one that combines speed and best represents the activity

with a minimum number of features. Exploring different ways of feature extraction

for both IMUs and visual data is also needed. Minimizing the number of sensors

placed on the human body for monitoring purposes is something to be considered

for future smart homes and cities. In this way, human activity recognition can move

from recognizing offline data to becoming a real-time recognition application.

Finally, more investigation is needed when considering opposite activities for

the same object, something that has been abandoned by many research works.

Also, a tradeoff among speed of recognition, accuracy, and the number of sensors

used for human activity has to be considered.
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