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A B S T R A C T

Activity recognition deals with the task of figuring out a person’s
current activity based on the reading of sensors. Many downstream
applications can utilize this information to aid potential users. Fit-
ness tracking devices, for instance, try to determine the timespan a
user was running or riding a bike to aid workout goals. Other appli-
cations can be found in the health sector, where activity recognition
can be used to gain insights about patients that have cognitive disabil-
ities and may forget important daily activities like food or medicine
consumption. It can also aid logistics by streamlining processes, e.g.
in order picking scenarios for warehouses. For many of these appli-
cations, either one or multiple sensors are utilized. In this work, we
look at multimodal activity recognition, meaning we consider mul-
tiple sensors of different types. We believe that the combination of
different modalities can improve the overall accuracy of current meth-
ods. Since sensors are becoming cheaper and smaller, practical imple-
mentation of multi-sensor systems become more feasible. Specifically,
we use video and inertial information for our methods. With this set-
ting in mind, our contribution is spread throughout the whole activ-
ity recognition pipeline. We create datasets, develop new annotation
methods, and evaluate new types of features and models for activity
recognition in both industrial and personal use.
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Z U S A M M E N FA S S U N G

Aktivitätserkennung ist ein Feld in der Informatik, dass sich mit
dem Erkennen von Aktivitäten von Personen anhand von verschiede-
nen Sensordaten beschäftigt. Dabei gibt es verschiedenen Applika-
tionen, die von dieser Art von Informationen Gebrauch machen. Fit-
tnesstracker können zum Beispiel benutzt werden, um zu bestimmen
wann eine Person läuft oder mit dem Fahrrad fährt. Auch im Medi-
zinsektor beziehungsweise in der Pflege kann Aktivitätserkennung
helfen. Patienten mit kognitiven Einschränkungen könnte beispiel-
sweise geholfen werden, wenn erkannt wurde, dass sie ihre tägliche
Medizin nicht eingenommen haben. Weiterhin können Unternehmen
mit Aktivitätserkennung Prozesse in der Logistik optimieren, etwa im
Warenhausbetrieb. Dabei werden oft ein oder mehrere Sensoren für
die Erkennung genutzt. Diese Arbeit beschäftigt sich mit dem Thema
der multimodalen Aktivitätserkennung. Das heißt, dass wir mehrere
Sensoren verschiedener Art für unsere Modelle nutzen. Dabei ist un-
sere Annahme, dass verschiedenen Modalitäten die Gesamtgenauigkeit
von Modellen erhöhen. Da Sensoren in den letzten Jahren im Preis
gesunken und gleichzeitig auch kleiner geworden sind, können mul-
timodale Systeme auch leichter in der Praxis angewendet werden.
In dieser Arbeit beschäftigen wir uns im Speziellen mit Video- und
Beschleunigungssensoren. Hierbei haben wir Beiträge für jeden Schritt
in einer typischen Aktivitätserkennungspipeline geleistet. Dazu gehört
das Erstellen von neuen Datensätzen, die Entwicklung vereinfachter
Annotationsmethoden und das Erarbeiten und Evaluieren von neuen
Methoden für Aktivitätserkennung sowohl im Industriekontext als
auch für persönliche Nutzung.
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The question of whether machines man think is about as relevant as the
question of whether submarines can swim.

— Edsger Wybe Dijkstra
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P R E L I M I N A R I E S
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1
I N T R O D U C T I O N

1.1 problem setting

The recognition of human activities is a broad task that may over-
lap with many other fields. Behavioral science, medicine, and logis-
tics are just a few examples where an automatic detection of human
activities can be very beneficial. In this thesis, we explore different
methods for detecting human activities based on different input infor-
mation. Recent years have shown a great increase in sensor devices,
may they be personal like smartphones, or ubiquitous sensors in our
environments like cameras or motion detectors. With the increase in
sensor availability, new possibilities for detecting human activities are
opening up for researchers and companies. Use cases can be divided
into different levels. To get an overview we try to describe the most
common applications in the following subsections.

1.1.1 Health sector

For the health sector, activity recognition may be useful when con-
sidering care for patients [64] [93]. Given the fact that many nations
are experiencing an aging society [14][68], personal care for elderly
people for instance may not be feasible. A recognition system may
be helpful here, as it enables care givers to validate whether a person
is still able to perform everyday tasks by themselves. For this pur-
pose, scholars in the field of medicine have defined so-called activities
of daily living [53]. With these activities in mind, researchers have a
way to test their methods in a meaningful way [80][8]. In many cases,
health care approaches rely on smart home environments to detect ac-
tivities. One important reason is the privacy concern for the patient.
Especially in the health sector, lost data due to a user interfering is
very problematic. Personal hygiene for example is part of the activ-
ities in ADL where patients may feel uncomfortable using personal
sensors and therefore are likely to put them away. Smart environ-
ments can be built fairly non-intrusively if sensors like cameras are
used sparsely.

1.1.2 Industry

In industrial settings, activity recognition may help to streamline pro-
cesses for human workers [33][39]. One example is order picking in
warehouse scenarios. Workers often have to pick items from huge
rows of shelves and drop them off in carts. With devices like smart-
glasses being more broadly available, new possibilities to streamline
this process emerge. Especially when combining activity recogni-

3
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4 introduction

tion with the emerging field of augmented reality and smart environ-
ments, tasks like finding the right shelf or scanning picked products
can be improved for the worker [55][37].

1.1.3 Personal use

Often, people use smart devices like their phones or watches to track
their own activities. A typical use case is sports tracking. Big mar-
kets have been created for fitness trackers that are able to recognize
how long and where a person is running, how many flights of stairs
they climbed, and similar activities. Users nowadays have multiple
methods to track vital information about their life without investing
heavily in custom hardware. For these kinds of use cases, devices
often use a combination of sensors to achieve high precision results.
One of the most prominent examples is the fusion of acceleration, gy-
ration, and GPS data for determining position and locomotion of a
user [97]. From this data, fairly accurate life log information can be
inferred. In fact, inertial-based navigation is even used in other fields
like ships, aircraft, and autonomous robots. GPS information for in-
stance is used to infer the position of a person at a given time, while
the inertial data gives programs notion about the mode of transporta-
tion (i.e. walking, running, driving a car). The same sensors can also
be fused to then decide if a person is currently moving by foot or if
they use another form of transportation like a bike or a car. Here, the
GPS data can give broad information about a user’s speed with finer
details inferred from inertial data.

1.2 approaches

As briefly mentioned above, approaches in activity recognition can be
divided into two categories. One approach uses sensors in a user’s
environment to infer an activity. The other utilizes sensors that a
person carries with them to do the same. In the next subsection, we
try to distinguish both categories and show their unique properties.

1.2.1 Personal sensors

Utilizing sensors on a user as means to detect activities has gained a
lot of traction in recent years [7]. Devices like smartphones include
many sensors that can be used to infer an activity. A big focus is
put on inertial measurement units that often contain acceleration, gy-
ration, and magnetic field sensors on one side, and GPS sensors on
the other side. It is not uncommon to combine both of these sen-
sors to get better results overall, especially in consumer applications
like point-to-point navigation or fitness tracking which often try to es-
tablish the mode of transportation on top of locomotion information.
Typical properties of personal sensor-based activities include:
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constant streaming

Most approaches that utilize personal sensors are based on con-
stant streams of sensor data. Given a fixed sampling rate, meth-
ods in this area try to learn patterns from these streams. Trying
to detect a user walking for instance can be realized by isolat-
ing the typical walking pattern that can be seen in acceleration
data streams. With each step, the accelerometer may detect the
motion of the user first lifting their foot, then moving forward,
and finally stepping on the floor.

lack of context

Typically, approaches that utilize inertial measurement units do
so without having any notion about a user’s context. Appli-
cations thus offer predictions on lower levels e.g. running and
walking but yield little information about why a user performed
these activities.

comparably low cost

With an increasing trend towards smart devices [11][5], the cost
for activity recognition systems may also shrink, as sensors be-
come more available for a greater set of users. Additionally,
custom built solutions (e.g. smart bracelets) are also cheaper to
design, as sensors and microcontrollers are more widely avail-
able and easier to use (e.g. with the Arduino platform [59]) in
addition to easier access to 3D-printing hardware.

We can see that personal sensors have their advantages when used
for activity recognition. However, we also have to consider the limita-
tions of this approach which include:

need for processing

For many use cases, the raw acceleration data is not feasible for
activity recognition tasks. It can contain gravity information for
example, which may influence classification results and there-
fore often needs to be subtracted from the data. Other pop-
ular methods utilize a windowing approach to abstract from
single measurements and rather look at fixed time spans to
recognize patterns. Overall, this leads to a certain amount of
pre-processing for personal sensor data that has to occur before
meaningful results can be achieved.

noise in data

Little movements (e.g. when the sensor is loosely attached to
a person) can already influence the returned measurements of
sensors and add noise to the data. Especially with increased
amounts of activities to be predicted, this noise can easily lead
to wrong classification results. It is therefore an important part
of any activity recognition pipeline to filter out or find another
way to deal with any noise. Filtering noise can be done while
collecting the data or after the fact e.g. with a threshold for cap-
tured data. However, this live filtering could theoretically im-
pact the complexity of the collection process negatively, leading
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to a lower sampling rate or missed data. Alternatively, feature
extraction from the raw sensor data may also be able to deal
with noise. Sliding windows would be an example of that.

drift

Over time, measurements of inertial data can drift, meaning
that values are becoming less precise the longer data is collected.
Drift can occur due to aging electronic components within the
sensor or outer influence like temperature or extreme vibrations.
Another way this effect manifests is at a processing stage when
the data is integrated (e.g to calculate positional information)
and small errors accumulate over time. Regular calibration and
sensor fusion are two methods that may help to minimize the
drift effect.

positional dependency

Human activities involve movements of different parts of a user’s
body. Depending on which activity is supposed to be recog-
nized, the placement of the sensor can be very crucial. Recogniz-
ing a person’s steps, for example, might be easier with a sensor
placed on the foot or shoe of a user compared to a wrist-worn
sensor. This can lead to misclassification that users often expe-
rience in fitness trackers where independent arm movement is
often classified as walking or running.

These limitations pose a set of challenges for researchers and may
influence the feasible applications for personal sensor-based activity
recognition.

1.2.2 Smart environments

Smart environments are another way how researchers approach activ-
ity recognition. The basic idea of smart environments (which can also
be seen as part of the bigger community of ubiquitous computing) is
to augment certain objects that surround a user with sensors in order
to register interactions or usage. A popular example is the concept
of a smart home, where rooms may be enhanced with presence sen-
sors, electrical devices that measure current energy consumption, and
sanitary installations that measure water usage to name a few. From
all these interactions researchers may create a timeline of events that
enables the inference of activities that a person has performed.

Let us consider the simple example in Figure 1. From the sequence
of events, a human observer may easily conclude that the person was
cooking food that they most likely took from the fridge. Even more
so it is also likely that the dish being cooked needs boiling water as
the water tap has been used before the stove has been turned on. We
can see that given sufficient sensor coverage in an environment, many
activities may be inferred just from simple events. From the example
we can deduce some traits that smart environments possess:
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1. Fridge registers being opened

2. Cupboard with pans registers being opened

3. Water tap in the kitchen has been used for 30 seconds

4. Stove top registers that one of its burners has been

turned on

5. The air filter over the stove top has been turned on

Figure 1: A toy example of sensor events in a smart home

stationary

Typically, sensors in a smart environment are stationary, which
means that they do not change their location. This in turn
makes it easier to reason about readings of the sensor, as its
location and orientation are fixed in such a setting. Addition-
ally, these types of information can make reasoning easier for
specific information need. If we consider a stationary camera
and compare it to a wearable one, we can clearly see that any
type of movement captured in the frame is caused by a change
in the environment and not by egomotion (unless external force
is applied to the camera). On top of that, stationary sensors (e.g.
presence sensors) guarantee that their readings are bound to the
location of the sensor. Especially in multi-room scenarios, this
background knowledge is very useful as it removes a certain
level of uncertainty that personal sensors may contain.

multi-sensor

To get reasonable coverage of an environment, multiple sensors
have to be deployed. This is aided by the fact that sensors in
smart environments often serve only one specific purpose (e.g.
a sensor that detects if a fridge was opened). Wearable sensors
on the other hand may be used to infer multiple activities.

event driven

Typically, activity recognition systems based on smart environ-
ments are event-driven. As many sensors are mostly putting
out streams of data, minor amounts of processing of the data are
needed before models can be applied. An example of this could
be a presence detector that uses an ultrasonic sensor. Here, it
would make sense to only output an event when something
blocks the sensor’s path below a certain threshold (and when
the sensor readings are back above the threshold after some
time).

domain specific

Setups for smart homes have to be adapted to the environment
where they are to be deployed most of the time. Since room
layouts, home appliances, dimensions, and other parameters
of peoples’ living environments vary greatly between different
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users, activity recognition systems may have to be adapted on
a case-by-case basis. To give an example, we can consider a
motion detection sensor that is used to track the location of a
person by registering when they move from one room to an-
other (e.g. by using light barriers in doorframes). In the easiest
scenario, only the background knowledge about how each of
the rooms is connected and where each specific doorframe is
located has to be changed. But scenarios can get more complex,
i.e. by considering houses that have a shared living room and
kitchen area. Therefore, smart home systems for activity recog-
nition often have to be custom tailored to the specific living
environment.

Smart environments can offer good recognition rates for specific
scenarios. But they also may have some drawbacks which are de-
scribed below.

multi-user

Recognizing activities of a single person living in such an en-
vironment may yield good results. However, when more peo-
ple are living in the same space, the task may get significantly
harder. A system then has to determine for each event who
caused it, in order to still contain a cohesive sequence of ac-
tivities for each user. In the worst-case scenario, a system at-
tributes the events in such a manner that the behavior of one
person may seem erratic and atypical. Since such systems may
often be targeted for elderly care uses, such misclassifications
are problematic. Having a unique way to identify a person (e.g.
using an RFID tag) could help to mitigate the problem but leads
to other issues (limited range, some sensors not working with
tags, adding another point of failure). Another way to address
these issues would be to increase the number of sensors, thus
having a higher density of events and making it easier to at-
tribute events to single users. This, however, leads to another
downside of smart environments.

higher cost

While it is true that common sensors are readily available and
cheap, the fact that smart environments are often very domain-
specific makes them more expensive than personal sensors. We
can estimate that most of the cost would be in the configura-
tion and installation of such a system, especially when sensors
should be non-intrusive, thus hidden from view. On top of that,
maintenance could be another issue as sensors may fail over
time and have to be repaired or replaced. Looking at the soft-
ware, updates in the model may have to be adapted for each
environment individually while personal sensor models could
ship updates independently.

privacy

Security and privacy in the field of activity recognition is a gen-
eral issue that researchers have to address (see Chapter 2). In
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smart environments, this is especially prominent. With personal
sensors, users may have the feeling they can put away the device
and are thus no longer being monitored. Smart environments,
on the other hand, are permanently attached to the surround-
ings of a user. Thus, even if the system is easy to shut down,
the physical presence of sensors could still be a big concern for
many users. This is especially true when these environments
use cameras as sensors.

It can be seen that the field of activity recognition is fairly big and
contains multiple sub-fields that have unique properties and features.
In this work, our focus is on activity recognition with personal sen-
sors. We want to look at combinations of sensors, typically in smart
devices, that are carried by a user in order to predict activities.

With this work, we contributed in multiple ways to the field of activ-
ity recognition. For the first few steps of typical activity recognition
pipelines, we created a new multimodal dataset. Multimodal datasets
do exist, but often miss the crucial sensors or deal with unrelated sce-
narios for our use case. We wanted to analyze activities that are hard
to distinguish based on their motion alone (e.g. food consumption
versus medicine intake). Thus, our dataset contains a subset of a
typical ADL scenario with the subjects performing very similar ac-
tivities in different human body poses. Then, we created and tested
a new method to speed up annotation processes. The annotation of
multimodal data can be fairly time-consuming, especially when the
annotator does not know when activities occur and has to watch the
entire video. Therefore, we want to make use of the multimodality
of the data to speed up the process. By utilizing already labeled data,
we can make labeling recommendations for the annotator, speeding
up the whole annotation process. After data collection and annota-
tion we can look at the core problem which is the correct recognition
of activities. We looked at two problems: activity recognition in an
industrial setting, specifically warehouse logistics, and scenarios that
target everyday life like cooking or activities of daily living. For both
scenarios, we considered egocentric vision and inertial information as
our input data, whereby we utilized HoG, object detection, and slid-
ing windows as our feature generation methods. We developed two
approaches and evaluated them, being able to show improvements
over existing solutions.
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2
F O U N D AT I O N S

2.1 activity recognition

In this chapter, we explore the definitions of activity recognition and
give an introduction to the main sensors used in our work. First, we
define different granularity levels for activities in order to have better
categories for our algorithms in the later chapters. Afterward, we
consider two types of activities in more detail: cyclic and complex
activities. We then take a closer look at the features of multimodality.
Finally, we examine inertial sensors in more detail as they are one of
the main component in our work.

2.1.1 Granularity

When we talk about human activities, levels of granularity are impor-
tant [16][52]. Without such a distinction we would group together
long activities that are semantically rich with small movements of a
person that are hard to place into context. Therefore, a separation
into three classes has been proposed, which can be seen in Figure 2.
We can further describe the different levels as follows:

gesture

Gestures are the smallest unit to define an activity. In extreme
cases, they can be static poses of a human, for instance when
showing a hand sign. Gestures are often used to interact with
software systems to quickly access functionality. One example
is camera applications on phones that take pictures if a person
shows a specific gesture (e.g. thumbs-up sign).

Gestures Actions Activities

- Hand gestures like thumbs
up, OK-symbol etc.

- Signs in sign language

- Lifting things
- Single steps in GAIT 

sequences
- Short interactions with

environment (e.g. opening
cupboard)

- Walking, running 
- Other types of active sports
- But also broad activities in 

everyday life like personal 
hygiene, cooking etc.

Figure 2: Different levels of granularity that researchers try to detect.

11
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action

Actions can be made up of multiple gestures. They are small
movements that usually do not contain too much information
about the whole activity a person is performing. Since they are
positioned at a medium granularity, they are used for a broad
range of applications. Similar to gestures, they can be used to
interact with applications. Smartwatches or bracelets can, for
instance, detect the arm and wrist rotation of its wearer to turn
on the display and show the time.

activity

Activities can be made up of multiple actions and are the most
semantically rich of the three. In most cases, this is the level
of granularity that we want to predict in this work. Examples
of activities that are often targeted are locomotive activities like
walking and running or everyday tasks that people perform in
their homes like eating, sleeping, and watching TV.

While the definition makes big distinctions among the three levels
of granularity, in practice it is often difficult to assign them to a given
sequence. Let us consider the example of a person opening a cup-
board. The whole sequence is semantically clear and can therefore be
seen as an activity. On the motion side of things, however, opening a
cupboard only consists of raising one’s arm, grabbing a handle, and
pulling. Therefore one could argue that this is an action rather than
an activity.

2.1.2 Cyclic Activities

Many activities that are being researched can be considered cyclic in
nature. This means that they are typically repeating themselves for
longer periods of time. Examples for cyclic activities include walking,
running, or climbing stairs. These specific activities also contain the
Gait cycle, which describes the different single motions of a person’s
feet when taking one step.

2.1.3 Complex Activities

In this work we consider complex activities to be the main focus of
our research. We define complex activities to be made up of a set of
actions that are also dependent on context. Typical examples we use
in this work come from the cooking domain. To cook a recipe, a set of
steps is needed and activities performed in this case can depend on
the context. Opening different packaged items of food, for example,
can involve different actions depending on the food’s packaging.
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2.2 multimodality

For many of the activities we want to consider, using only one type
of sensor may not be feasible. We can distinguish between two main
ways in which different sensors are used in a multimodal setting.

additive sensors

In this case, we may take into account different sensors to give
us information about the same mode we are interested in. To
give an example we can consider movement detection with two
sensors. One of them is a first-person video feed, the other an
inertial sensor. Both sensors can be used to detect the move-
ment of the person wearing them. However, by combining
the readings we may get more robust results. Video in this in-
stance may have trouble dealing with movement that occurred
in the wearer’s environment, leading to misclassification. Iner-
tial sensors on the other hand may pick up small movements
(e.g. swinging an arm) that do not belong to the target class.
The combination of both sensors may reduce these ambiguities.

complementary modalities

Another approach is using complementary modalities to make
predictions. This can often be the case when activities occur in
different modalities. For another example, we can once again
consider both a video and an inertial sensor. Inertial data gives
us information about the movement of a person. With a certain
error rate we can therefore register distinct actions. Video in
this context, however, may give us information about the envi-
ronment. One such piece of information is the objects that a
person is using or interacting with. With the joint data, we may
have an overall notion about what activities (especially ones that
involve objects) a person performs.

Often, one can argue that a hybrid approach between the additive
and the complementary approach is useful. In the context of the
aforementioned example, video, and inertial data can on one side be
considered both for movement and object information respectively
while on the other side video data can enhance the detection of move-
ment (e.g. when arm movement is also visible in the video frame).

2.2.1 Alignment

Data from sensors that measure with a fixed frequency has a set sam-
pling rate and thus runs on its own clock. This poses a problem when
we want to examine occurrences at a certain point in time among a set
of disconnected sensors. Different sensors typically run on separate
clocks and with different sampling rates, thus having few or no data
points occurring at the exact same time. Therefore, we face an issue
where we do not have a notion about temporal relations between dif-
ferent sensor readings. This problem can be addressed either while
recording the data or afterward as part of the pre-processing step
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in our activity recognition pipeline. When we try to solve the issue
while recording, one typical method is using a central recording node
e.g. a computer that is connected with all the sensors. This node may
be running on its own clock as well as getting timestamp information
from all other sensors to build a mapping between the sensor’s clock
and the central clock of the recording node. With the mapping in
place, incoming data can be buffered and then resampled to fit one
time series. Here we would use methods like down- and upsampling
as well as interpolation to solve the issue.

When data is recorded independently, alignment can be more diffi-
cult. One big problem that arises, in that case, is the lack of knowl-
edge about the time difference between multiple sensors. This is often
solved with an action that is captured on all sensors and that can be
identified easily. An example would be to record a zeroline (a phase
where no action occurs) and then have a subject perform a sudden
movement that is easily observable in every sensor. Another solution
would be to start the recording of all sensors at the exact same time
which is often unfeasible without a more complicated sensor network
architecture (e.g. like the aforementioned central recording node).

2.2.2 Fusion

Fusion is the step in the activity recognition pipeline where we have
to combine the data from different sensors to get an overall classifi-
cation result. Generally, we can differentiate between early and late
fusion methods. With early fusion, we take the data (usually after
feature generation) and fuse it before we classify the results. Late fu-
sion, on the other hand, is treating each sensor (or group of sensors)
independently, classifying them on their own. Afterward, the results
are fused for one final result. We may also see that fusion methods
can be dependent on the sensor types and whether they are additive
or complementary modalities. Additive sensors are a good candidate
for early fusion since they are concerned with capturing the same
type of information. Thus, a model may profit from having all data
about one mode available at the same time to make a unified deci-
sion. Complementary sensors, on the other hand, can arguably be a
suitable use case for late fusion. We can assume that separate mod-
els are learned independently for each mode that has been captured
without getting confused about the other modes. The combination of
both models can then be seen as a good indicator for the activity that
has been performed.

2.2.3 Security and Privacy

Activity recognition in general faces the challenge of privacy as briefly
mentioned in the Introduction. Users are often concerned with the
amount and type of data that is collected about them. Wearable de-
vices like smart bracelets, for example, may collect a lot of data that
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can be deemed sensitive as it relates to the health of the user. This
may include the heart rate, steps per day, or even oxygen levels in
the bloodstream. While this information is vital for the intended pur-
pose of measuring fitness, a sudden leak of this information could
have dire consequences for users. In the scenarios we consider, this
problem is even more pronounced as we also utilize the modality
of video. Here, users are especially attentive regarding their privacy
since video sensors are typically easier understood than other devices.
Additionally, they may be an even bigger risk as they can gather in-
formation about the surroundings of a user without the consent of
others.

We can see that privacy is a big concern when considering activity
recognition. To deal with this issue, we can look at two principles
that can be applied to activity recognition to preserve privacy. One
principle is to minimize the amount of data that is collected on a
person. If a system is able to work sufficiently with only one sensor,
then this should be the only one used. An overabundance of collected
information may lead to information leakage which breaches the pri-
vacy of a user. The other big principle is building data processing
pipelines that work offline. When the user can be assured that the
activity recognition works only on their device and never leaves it,
then they have (to an extent) physical ownership of their data. Thus,
they can be sure that their information stays only with them.

2.3 sensors

Since this work mainly deals with inertial data, we have to define the
single components within these sensors. We also briefly touch upon
typical types of sensors that are combined within inertial sensors.

2.3.1 Inertial sensors

A major point of this work is the usage of inertial sensors. We espe-
cially look at accelerometer data as an indicator for activities. In this
part, we define what inertial sensors are and give details about the
typical modalities built into them.

When we work with inertial sensors, we typically talk about inertial
measurement units (IMU). These IMUs consist of accelerometers and
gyroscopes with many of them also containing magnetometers. Of-
ten, sensors are labeled with a certain amount of degrees of freedom
(DOF). This number represents how many independent readings a
sensor can provide. So an IMU with an accelerometer and a gyro-
scope may have six degrees of freedom as each sensor provides three
independent measurements per reading. Figure 3 shows a MEMS in-
ertial sensor that provides acceleration, gyration and magnetic field
data. Such sensors are cheaply available and way smaller versions
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Figure 3: A 9-DOF inertial measurement unit for DIY electronics. These
types of sensors have become cheap and readily available for hob-
byists allowing for widespread usage in different projects.

are built into many consumer electronics like smartphones and smart-
watches.

2.3.2 Accelerometer

Accelerometers are sensors that can measure acceleration. The infor-
mation is usually given with three values, each representing acceler-
ation for one separate axis. Insight about acceleration can only be
provided relative to the sensor’s position and orientation. This, in
turn, makes the sensor’s placement an important aspect for activity
recognition, as we do have to consider the sensor’s information based
on its current location and orientation.

Internally, there are multiple ways accelerometers can measure ac-
celeration. A very common type is the piezoelectric accelerometer.
This works with a small crystal that can move freely in an enclosure.
When force is applied to the sensor, the crystal hits the wall of its
enclosure. This in turn induces a small current that can be measured
and then converted to acceleration values. Figure 4 shows an exam-
ple plot of raw acceleration data. Here we can also see the effect of
gravity regarding the measured values. The acceleration along the
y-axis is always around 10m/s2 which roughly corresponds to the
earth’s gravity.

2.3.3 Gyroscope

From the information about acceleration, we can already deduce a cer-
tain amount of information. However, we run into issues when we
consider typical human movements. These are almost exclusively not
rigid motions along the three relative axes of the sensor. Rather, hu-
man motion often also involves rotational movements. This is where
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Figure 4: Raw acceleration data, taken from a smartphone with a sampling
rate of 50Hz.

the gyroscope gives us vital information.

A gyroscope typically measures the relative angular velocity of the
sensor, typically in degrees per second. Vibrating structure gyro-
scopes are often used in consumer electronics as they are typically
cheap to produce. They work via a constantly vibrating structure
within the sensor that is contained in one plane. If a rotational force
is applied to the sensor, the Coriolis effect occurs and affects the struc-
ture. This way, the structure is putting pressure on its frame, thus
inducing a current which is measured and translated to rotational an-
gle. In order to get all three degrees of freedom, multiple vibrating
structures are often used in a gyroscope.

When using gyroscopes, especially for locomotion purposes, we have
to consider the bias of the sensor. Intuitively, this is defined as the
output the sensor produces when no rotation occurs. If this value
is not considered in calculations, the error of the bias is propagated
to subsequent calculations and accumulates very quickly. In order
to accommodate for the bias, a recording of the output of the sensor
over a longer period of time is made. From this output, an average
can be calculated to estimate the bias. This average can be subtracted
for each reading to get more precise results. However, the bias can
change over time, so frequent recalibration has to be considered as
well.

2.3.4 Magnetometer

One final modality that is often built into IMUs is a magnetometer.
This sensor can provide information about magnetic fields. The sim-
plest implementation of such a sensor would be a compass. Magnetic
field data is useful, as it provides a method to relate the sensor’s ori-
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Figure 5: Three axes in three-dimensional space. Rotational movement is
often given via yaw, pitch, and roll values. Typically, only pitch
and roll can be calculated with accelerometer and gyroscope data.

entation to its environment.

In phones, the magnetic field information is typically measured via
linear Hall sensors. It works with a strip of metal that has a current
applied to it. When a magnetic field is applied, electrons in the strip
are deflected to one side as they are affected by the Lorentz force.
With the electrons distributed over two sides of the strip, a current
can be read between both ends. Using multiple of these strips in dif-
ferent orientations, the location of the earth’s magnetic field can be
determined.

Magnetometers have issues working properly in indoor environments.
They pick up on other objects made from metal in their surroundings,
which adds errors to their readings. Additionally, the measurable
strength of the earth’s magnetic field is dependent on the location of
the sensor on the planet. Thus, some information derived from the
sensor can only be used in conjunction with GPS sensors.

2.3.5 Calculating meaningful features

We have seen that inertial measurement units can measure accelera-
tion, angular velocity, and even magnetic field information. A typical
use case for these types of information is calculating the orientation
and position of the sensor [97]. With data from the accelerometer and
the gyroscope, relative position and orientation (called yaw, pitch, and
roll, see Figure 5) can be inferred, though yaw can only be estimated
given an assumed initial value. Intuitively, we first assume (or get
to know via user input) the initial position of the sensor. Over time
the acceleration and angular velocity are measured. If we integrate
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the values, we can infer the position and orientation of the sensor. In
practice, more elaborate sensor fusion methods are used to get more
precise values as sensors suffer from noise and drift which results in
less accurate readings. Here, the disadvantages of both sensors can
be negated by the corresponding other sensor. A gyroscope may be
more prone to drift while the accelerometer may be affected more by
noise. Fusing both values e.g. by first using high-pass and low-pass
filters to remove the noise and drift could provide us more stable re-
sults. Magnetic field information can give us even more insight. From
its values yaw can be calculated, yielding even more details. This is
due to the fact that we have both a notion about the earth’s magnetic
field and it’s gravity, both relative to the sensor.

The previously mentioned features are typically used for tasks like
tracking in different fields. In the case of activity recognition, other
features may also be used for better detection. Oftentimes, these are
less intuitive than the orientation of the sensor and are based on win-
dows of data. Windows allow us to consider a small subset of values
at a time and calculate features that represent the whole subset. In
this work, we can distinguish between features in the time and in
the frequency domain. Raw data is given in the time domain with a
fixed sampling rate for the values. To transform it into the frequency
domain we use Fourier transformation (typically Fast Fourier Trans-
formation - FFT).
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C O N T R I B U T I O N S
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3
A N N O TAT I O N O F A C T I V I T Y D ATA

3.1 introduction

For a huge set of tasks, especially in activity recognition, researchers
need labeled data. A special case is the field of multimodality (e.g.
the combination of inertial data and egocentric vision [24]), as anno-
tations are usually carried over to other modalities. Proper annota-
tion of data can be time-consuming due to the amount of data and,
in some cases, because of the need for knowledge of domain experts.
What usually takes up most of the time is watching the full length of
video sequences as it may be the case that annotators do not have pre-
vious knowledge about the activities performed in the data. Without
such knowledge, it is necessary to watch the videos in their entirety or
otherwise risk missing activities. An automated annotation approach
is thus favorable and recent developments in wearable devices [77]
may just enable such solutions. Every additional device that records
data offers more opportunities for annotation tools to make their pre-
dictions.

Since most machine learning algorithms rely on training examples
to learn their predictions, manual annotation is still a factor in these
scenarios.

Therefore, for models that assist users in annotating data to be use-
ful, we are bound to annotate data without any aid until a satisfactory
prediction rate of the algorithms is achieved. Other approaches for
annotating data as presented in [36, 48] rely on visual support to help
annotators in their efforts. While this is a huge help, automatic label
recommendations would be more beneficial, as these would speed up
the process even more. Visual feedback, however, may enable annota-
tors to see patterns in the data, for example how specific movements
are represented in inertial data when plotted. Based on these pat-
terns, annotators may jump within the timeline to quickly label big
subsets of the data. We can see that annotators somehow learn the
patterns which is a process we try to mirror in our machine learning
approaches.

To tackle the task of annotating multi-sensor data, specifically in the
field of activity recognition, we developed an application that can
start to aid annotators after it has been fed a relatively small amount
of labeled examples. The tool will then provide annotation sugges-
tions that the user can confirm, reject, or modify, thus speeding up
the whole annotation process within a dataset containing similar ac-
tivities. In this research, we focus on the method and its performance
in terms of correct annotation suggestions rather than on usability of
the software or overall efficiency of the implementation. We focus
on finding as many activities as possible at the cost of precision of

23
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our predictions since we believe that it is easier to discard or adjust a
label that was assigned a few seconds off the correct position instead
of finding missing annotations. On top of that, annotation of data in
itself can be very user-dependent, as agreement on the start and end
of activities varies among different annotators. Thus, it is sensible to
offer more annotations in order to make the work easier for as many
annotators as possible. Initially, we developed a web-based applica-
tion that provides support concerning the alignment, analysis, and
labeling of inertial and video data. This web application plots accel-
eration data and shows the video of the recording at the same time.
After alignment has been set by the user, both the plot and the video
are synchronized bi-directionally, such that interaction with one of
them (i.e. scrubbing in the timeline) updates the other visualization
and vise versa. Then the user can annotate data within the web-
site. However, web technologies are not flexible enough to offer the
amount of control we need over video feeds, thus not allowing us to
be as precise as we want. We, therefore, rewrote the tool to a native
application using OpenCV [15] and python TK which also allows us
to implement our label suggestion method. With the visualization
and recommendations, the task of labeling may also be assigned to
non-domain experts.

We test our system on different datasets with different activities,
ranging from simple actions like grabbing items from a shelf to com-
plex activities like preparing a whole meal. For the short and simple
activities, we look at an industry dataset that is concerned with order
picking in warehouses (henceforth called Picking). To clarify: pick-
ing in this context means the selection of items from boxes in shelves
of warehouses that make up an order, e.g. for a customer.

Data was gathered with different devices: we use a custom wrist-
band and smartglasses which collect inertial data and egocentric video
respectively. Of the inertial data we collected with the band, we focus
on acceleration in our experiments.

For a more complex scenario, we try to recognize Activities of
Daily Living from a dataset we created ourselves. It again con-
tains egocentric video from smartglasses and inertial data collected
by smartwatches on both wrists. The focus of the dataset is the recog-
nition of hard to distinguish activities. These we define as activities
that consist of similar motions with the arms. Specifically, in our
dataset, these revolve around consuming things like water, food, or
medicine. As our method exploits characteristics of motions, we try
to recognize all activities at once without differentiating between the
specific motion. Furthermore, we focus on the subset of activities that
were performed while lying down. This allows us to further broaden
our experiments, as the other activities in the different datasets were
all performed while standing up. Henceforth this dataset is called
ADL.

Finally, we look at complex activities involving multiple movements
that form an activity. Here we show that our method is able to cluster
similar activities based on their motion. We use the CMU-MMAC [24]
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dataset (Carnegie Mellon University Multimodal Activity) for our
analysis as the cooking activities present are full of multiple move-
ments per activity. In the following parts, we call this dataset Kitchen.

In this part of the work, we explore the matching of acceleration
data to automatically annotate datasets, specifically in multimodal
scenarios. For that purpose, we focus on template matching in the
form of dynamic time warping as preceding works already presented
promising results [61]. We are focusing on the question of how well a
template matching based approach can be used to recommend labels
and an analysis on which methods work well for different datasets.
Our contribution is the application of dynamic time warping for rec-
ognizing activities among a broad spectrum of data with a focus on
supporting manual annotation of data while also supplying an in-
depth analysis of factors that influence the results.

This chapter reflects the content of our previous publications [30][31].

3.2 related work

Annotation of activities and the quality of the labels is very much de-
pendent on the tools used to annotate data. This was investigated by
Szewcyzk et al. [86] who were able to show that with increasing assis-
tance (in the form of visualization and predefined activities) annota-
tors perform a labeling task with higher accuracy and in less time.
Therefore different methods of annotating data (especially videos)
have been researched [26, 27, 58]. Clustering of video information
and subsequent visual representation in form of a multi-color naviga-
tion was shown to improve the annotation task [27] while methods
of browsing videos non-sequentially and in parallel let users grasp
the content of a video faster [26]. In many respects though, especially
the automatic annotation of video data is challenging [45]. Therefore
many different approaches in automatic annotation have been pro-
posed in previous publications. These are either purely vision-based
or based on sensor data.

A pure, vision-based approach was presented by D’Orazio et al. [20]
who were able to improve video annotation for soccer games by first
applying a pre-trained model to recognize soccer players and after-
ward having the annotators correct the misclassified positions. This
approach is hard to apply to our scenario though, as the scenarios
we consider are located in a more open-world setting. For this ap-
proach to be feasible, we would need classifiers for a lot of different
objects and backgrounds. This might still not cover all activities, as
egocentric video often has the issue of activities only being partially
in frame. In addition, our activities are not defined by object occur-
rence in a frame but rather by the interaction of the user with objects
or their environment in general. For that purpose, we focus on the
feasibility of transferring automatically recognized labels of acceler-
ation sensor data to corresponding video recordings. Therefore, we

[ May 24, 2021 at 9:42 – classicthesis version 4.2 ]



26 annotation of activity data

focus on template extraction and matching of certain motions.

Such a template-based approach was suggested similarly by Margar-
ito et al. [61] who already showed how templates that are extracted
from a wrist-worn accelerometer sensor are able to recognize certain
sports activities across different people. Furthermore, they pointed
out that combining different template-matching metrics in the con-
text of statistical classifiers could also be promising. Similarly, Martin-
dale et al. [62] used Hidden Markov Models to find annotations and
showed good performances for cyclic activities. While the results of
these works are promising, the activities that were considered were
all cyclic in nature, like walking, cycling, and squatting. In contrast,
we try to find few, mostly very short activities in recordings with a
similar length where we cannot rely on the cyclic property of the ac-
tivities.

Besides template matching, Spriggs et al. [84] investigated a multi-
modal based classification approach considering inertial sensors but
also adding first-person video data. They focused on daily kitchen
activities and performed a frame-based classification by relying on
features that were extracted from the inertial sensor and video data.
However, they clearly state that their approach does not generalize
well across people.

Relying only on inertial and force sensors, Morganti et al. [65] stated
that inconsistencies as minor as different wrist shapes and muscle
configurations across people can affect the recognition procedure. Fur-
thermore, they point out that especially the force sensors they used
in their custom wristband enable recognition of specific gestures that
could not reliably be recognized by inertial sensors. While their ap-
proach is promising, the experiments they presented were in a pre-
liminary state. Moreover, the types of sensors used in the approach
are as of yet uncommon in off-the-shelf hardware and thus do not
integrate with our scenarios.

Focusing on sensor data annotation tools, several researchers already
presented powerful and promising approaches. But only a few of
them provide support concerning labeling recommendations or au-
tomated labeling. Palotai et al. [72] presented a labeling framework
that relies on common machine learning approaches, but was only
designed for domain experts. In addition, it is unclear how their ap-
proach performs concerning different levels of activity types or how
different sensors are supported with respect to their introduced learn-
ing approach (e.g. feature extraction). Indeed, Barz et al. [10] high-
lighted that most data acquisition and annotation tools are mostly
limited to a particular sensor. This can be attributed to the fact that it
seems to be necessary to consider different techniques or feature sets
for different kinds of sensors. Especially the combination of multiple
learned models in the context of automated labeling seems to be chal-
lenging.
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It can be seen that for many scenarios, methods for annotating data
are differing greatly. Some of them use image features, while others
rely on inertial sensors. We, therefore, analyze one base method and
adapt it for different datasets to see if we can achieve consistent per-
formance among them. Since the datasets cover different scenarios,
the adaption of the method is necessary as we even have slightly dif-
ferent tasks per dataset (e.g. finding a single label, finding multiple
labels, etc.). For this purpose, we use dynamic time warping as it has
shown to work on different types of sensor data [17, 61, 66].

To show an overview, we compare our presented approach to simi-
lar solutions and point out the differences:

our approach

Main idea: Suggest labels based on a small subset of annota-
tions. An in-depth analysis of different pre-processing methods
and variants of dynamic time warping is provided.
Method: The main focus is the analysis of different variants of
dynamic time warping used for label- and clustering-suggestions.
The methods were applied to wrist-worn sensors mostly. Evalu-
ation metrics used here were the time offset with respect to the
correct label and the recall of the method.
Pros and cons: An in-depth analysis among different datasets
with different configurations is given. Currently, the tool itself
is just a prototype and therefore the usability of the tool is not
tested.

label movie [72]
Main idea: Designing a complete multimedia annotation tool
with automatic annotation and crowd-sourcing capabilities.
Method: Used dynamic time warping and SVM time series pre-
diction with a focus on usability of the application. Classifica-
tion results are shown in a Gram matrix to the user. Focused
on crowd-sourcing capabilities with the combination of domain
experts and technical expert’s knowledge.
Pros and cons: The tool is fully developed with a lot of func-
tionality, especially the capability for crowd-sourcing. On the
downside, the evaluation of the tool is lacking in detail and it is
not publicly available.

multimodal multisensor activity annotation tool [10]

Main idea: A multimodal annotation tool that is able to handle
multiple sensor types like video, depth, and body-worn sensors.
Method: The focus is put on capturing many different types of
sensors and displaying them in a useful fashion. In contrast to
the other methods, this tool is able to capture sensors live and
synchronize them. Capabilities for automated annotation are
present, but not implemented yet.
Pros and cons: Live capturing of different types of sensors is in-
tegrated and the tool seems to be designed very concisely. But
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as of yet automatic annotations are not integrated though the
architecture allows for that.

smart video browsing [27]
Main idea: Using clustering methods, automatically segment
videos into different parts to improve navigation within a video.
Method: For clustering, the tool uses color and motion features
to distinguish different parts of the video. These can be browsed
by the user to navigate the video faster.
Pros and cons: The tool does not rely on pre-trained methods
and can thus easily be used. It does not, however, provide auto-
matic labeling functionality.

3.3 dataset

In order to test our approach on a broad spectrum of activities, we
consider three different datasets which deal with different scenarios
but use similar sensors. This allows for a broader analysis of our tool,
as we are not limited to one specific kind of motion. The first dataset
contains activities in the field of logistics (picking scenario). Here
we analyze picking activities [23] that are used to collect items for an
order in a warehouse. Each sequence contains one grabbing activity
which is always performed while standing in front of a shelf. For the
second dataset, we consider activities of daily living [53] and record
a subset of these that specifically focus on activities with similar mo-
tions. Each sequence contains multiple activities and all of them were
performed while lying down. The last dataset we use is the publicly
available CMU-MMAC dataset [24] (kitchen dataset). This dataset is
the most complex one as it involves a variety of activities with differ-
ent motions that span longer periods of time.

3.3.1 Picking scenario

The data recording followed a predefined protocol that contains a se-
quence of activities, i.e., walking to shelf, locating the correct box, and
grabbing from the box. In this context, several scenarios were recorded
including picking from various boxes on different rows and from dif-
ferent shelves. These sequences represent an average picking job that
a warehouse worker may have to perform in their daily work life.

The test environment consists of two shelves located next to each
other where each shelf has three rows of boxes with three to five
boxes per row. Additionally, the boxes were placed on different
heights and were spread horizontally among two shelves (see Fig-
ure 6a). The test environment is set up based on real warehouses and
tries to show a cutout of typical rows of shelves. A problem with
recognizing grabbing motions is the variation of that activity, thus, a
grabbing motion can produce highly different sensor outputs depend-
ing on the location of the object to be grabbed. In contrast, activities
like walking or running typically do not have this degree of variation
as movement patterns are often very regular in nature. Therefore, our
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dataset contains multiple different cases of grabbing within the shelf
to cover a bigger part of the space of different motions.

(a) Schematic of the shelves in our
test environment

(b) Angle features from the wristband
used for matching

Figure 6

The required data for our dataset was collected using smartglasses1

and a custom wristband that consists of a 3D printed case with a
wirelessly enabled inertial measurement unit and a battery. Both de-
vices recorded acceleration, gyration, and magnetic field data while
the smartglasses also recorded video information of their front cam-
era. While the three inertial data modalities can be sampled syn-
chronously on the wristband, the smartglasses are not able to do that.
This is due to an android specific system design where sensor data
is not queried by an application but rather pushed by the system
which in turn gives no guarantee in regards to the specific sampling
frequency. Further, as the wristband and the smartglasses are not con-
nected with each other, the recorded timestamp of the data has to be
synchronized in a processing step after recording. For that purpose,
the subjects were instructed to stand idle for a some time before and
after the performance of the activities to have a reference for align-
ment (see Method section). Data on the wristband was collected at
40Hz for all the sensors while the smartglasses recorded the sensors
at 50Hz and 25 fps respectively. These values were chosen to give
us the highest frequency possible without encountering performance
issues, especially in the smartglasses. For better interpretation, each
recording session was also filmed from a third-person perspective
(see Figure 7). We use a depth-enabled camera on an Android tablet,
which allows us to collect depth information of the recorded images
in the form of point clouds.

For the recording, we relied on a self-developed application. Here,
we enhanced an Android application of a previous work [87], where
we specifically added the support for video and tuned the application
for the use with smartglasses. The recorded data by the smartglasses
is stored locally on the device. However, the custom wristband does
not have enough storage to store the data locally; hence, we had to
send the recorded data directly over Wi-Fi to a server.

1 Vuzix M100, Android 4.0
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(a) Picking scenario. Participants
walking towards and away
from shelves.

(b) ADL scenario. A glass of water and
pillbox on the table.

Figure 7: Photos from the recording processes of our datasets.

3.3.2 Activities of daily living scenario

We also recorded an additional dataset that contains activities of daily
living. In total, we collected data of two participants who performed
multiple activities per recording. Each one lasts between one and
three minutes with a maximum of four activities per recording. This
dataset focuses on activities that can be hard to distinguish due to
similar motions. Specifically, we looked at food, water, and medicine
consumption. All these activities include motions of reaching to-
wards an item and then consuming it orally thus making them hard
to distinguish just based on the inertial data. The data was collected
similarly to the previous example but instead of using the custom
wristband, we used a smartwatch (and a corresponding smartphone
that was located in the test subject’s pants pocket). In addition, we
added another watch on the non-dominant hand, enabling us to cap-
ture motions from both wrists of the test subject. Also, we used the
aforementioned tablet as a chest-mounted camera recording another
perspective of egocentric video without collecting depth information.
In total, we collected data from six devices: IMU from both phones,
both watches, the tablet, and the smartglasses as well as video from
the smartglasses and the tablet. We also recorded the whole test sce-
nario from a third-person perspective to make annotating the data
easier. For this work we looked at three different activities: eating
prepared food from a plate, taking medicine, and drinking water.

3.3.3 Kitchen scenario

To add more types of activities, we also considered the CMU-MMAC
dataset which was published and described in great detail by F. Torre
et al. [24]. In contrast to our own datasets, this one is far more com-
plex in multiple ways. It contains more different arm motions, e.g.
getting a cup from a shelf includes opening the shelf and grabbing
the cup. The setting of a kitchen leads to many different arm move-
ments for retrieving objects. In consequence, the motions themselves
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Figure 8: Basic approach for finding matches in a dataset. Blue boxes repre-
sent data, white boxes the processing of data.

in this dataset are not as homogeneous as they are in ours. Like in
our activities of daily living scenario, they also recorded the move-
ment of both arms instead of just one. But here we could not assume
which hand was the dominant one for each participant confidently.

In our experiments, we consider both cases, i.e. simple and com-
plex, to clarify the feasibility and performance of our approach. In
this context, we consider a subset of the CMU-MMAC dataset. In
particular, we only looked at one recipe, i.e. the brownie recipe, for
a subset of all the participants because it was the only one that was
completely labeled at that point in time.

3.4 method

The method section is divided into three parts, each dealing with one
of the aforementioned datasets. Since the datasets are differing in
the type of activities, we are presenting separate methods for each
dataset. We start with the picking dataset as this is the first scenario
we considered, then move on to the ADL dataset. Here, we extend
the methods to deal with the increase in devices and differing setup.s
At the end, we present methods for the CMU-MMAC dataset which
differ from the previous two approaches as they are more concerned
with finding similarities among complex activities. All methods are
dealing with our goal of offering label suggestions towards the user
and do not contain aspects of usability within the annotation tool
itself.

Figure 8 shows the basic approach used to find matches in a dataset.
We label a subset of data and use these labels to create templates that
are used for matching in the rest of the dataset. The approach for
each dataset will be described in the following subsections. As we de-
scribed in Section 3.2, methods for matching may have to be adapted
when considering different data. Therefore, in an application, the
specific method has to be chosen based on the data that has to be an-
notated. Regarding our own dataset, we also used similar approaches
to align our data which was recorded with non-synchronized devices.
Both datasets were recorded with a third-person camera for labeling
purposes and contain distinct points in time that enable the align-
ment of the data. To align the data we first annotate the distinct
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motion in the third-person video and, for the evaluation later, the la-
bels we want to find. Then, we plot the acceleration data we want
to analyze and find the same distinct motion in our data. Once both
points in time are found, we can then map the labels from the video
to the acceleration data and validate its position in time. For this pur-
pose, we display the labels in time as an overlay of the acceleration
plot and therefore can see if the labels are correct. As our datasets do
not contain individual recordings that are longer than five minutes
and sampling rates of sensors are stable, the drift of time and delay
in transmission are negligible.

3.4.1 Picking dataset

As a first step, we align our picking data with respect to the times-
tamp. Here, we consider zerolines (a period of no movement) at the
beginning of each recording, which allow us to pinpoint the starting
time of one specific activity. More precisely, we use the first peaks of
walking motions after the zerolines that are visible in accelerometer
plots to align the data as those are easily identifiable as the first activ-
ity. This is in line with the process described in the introduction of
this section, with walking being the distinct motion for alignment. We
were considering an alignment pipeline for the tool but since align-
ment methods may vary among datasets, alignment information has
to be created externally. After this step, we have consistent time in-
formation among all modalities. Subsequently, we label a grabbing
activity, analyzing the acceleration sensor data that represents the mo-
tion and crosschecking against the video data that describes the same
time period. This allows us to label all sensor recordings simultane-
ously. Once the boundaries of an activity are defined, the application
replays the corresponding part of the video that was recorded with
the smartglasses. After the confirmation of the correctness, the corre-
sponding acceleration sensor data is extracted for creating a template
of this activity where a template is represented by a start and end
timestamp, the corresponding acceleration data, and a label.

(a) Old web application (b) New desktop application

Figure 9: Developed labeling tools. First version running in a browser, sec-
ond version as a standalone application.
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For now, we focus on the acceleration data because preliminary ex-
periments have shown, that the angles relative to the three axes (Sec-
tion 3.3, Figure 6) are promising in regards to the characterization of
the grabbing motion in the context of a wristband. After a certain
number of templates of the same activity is generated, we apply dy-
namic time warping [12] to identify possible matches. We assume
that the same motions produce similar outputs which only differ in
respect of their length due to the varying speed the activity was per-
formed. Thus we choose dynamic time warping as it allows us to
match time series of different lengths. Dynamic time warping works
by finding a path between two time series that have the smallest dis-
tance. The minimal distance is found by first initializing the distance
from every point in series A to the first point in series B to infinity
and vice versa. Afterward, the algorithm iterates over the combina-
tion of all points in both series and calculates their distance by using
a cost function (in our case Euclidean distance). The function com-
pares single points and the cost of the path leading to the previous
points (recursive):

d(i, j) = cost(i, j) +min(d(i, j− 1),d(i− 1, j),d(i− 1, j− 1))

By considering three preceding options that lead to i, j, the algo-
rithm can cope with different lengths of series. The extracted tem-
plates slide over an unlabeled dataset to detect the time when an
activity occurs. In this context, we try to find the position of the
template with the smallest deviation while assuming that at least one
activity occurs in the unseen data. This is our base method which
will be adapted in the following methods and made more complex.

3.4.2 Activities of daily living dataset

For our activity of daily living dataset, we focus on a small subset
of activities where the test subject is lying. By only considering the
human body pose of lying, we expand the variation in our experi-
ments thus looking at a wider range of use cases. For the alignment
of the data we once again use zerolines in the acceleration data. We
consider the moment the participant starts their first activity as we
do not have long walking distances which can be used to align peaks.
After alignment, the plot of the data with markers for labels is consis-
tent and shows labels at the correct point in time. In contrast to the
picking scenario, the dataset of our ADL scenario has multiple activi-
ties per run. Therefore, we cannot pick the best match but rather try
to find a set of best matches, which changes the specific implementa-
tion of dynamic time warping we need to use. Due to the similarity
of the activities, we were not trying to match the activities themselves
but rather the sub-activity of raising an arm and reaching towards
a glass of water, a plate, or a pill bottle. This motion is similar to
the picking motion but contains more variation as the environment is
more dynamic. To get the full activity, we would need to consider the
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visual aspects of the data as well. Afterward, in the annotation phase,
a person labeling the dataset can manually distinguish which activity
to assign to the template matching results. By applying this trade-off,
we minimize the amount of pre-labeling for the user as we do not
have to have templates for each activity. Methods used in the picking
dataset were extended and new ways of transforming the data as well
as evaluating were added. Figure 10 shows the configurations which
we tested with our new methods. They can broadly be classified into
parameters that influence the input data format for our algorithms
and different settings for selecting candidates for our final results.

Figure 10: ADL experiment settings. Each parameter is set for a specific
configuration of the matching algorithm.

For the pre-processing of the acceleration data, we consider two
parameters that we can alter to change the representation of the data.
One parameter is the type of acceleration is used (linear, gravity, or
raw data), the other parameter is an option to reduce the three axes
of acceleration data into one.

acceleration data type We distinguish between two ways of
transforming the acceleration data we collected. One option
is to either use the linear acceleration or gravity of the data by
applying a low-pass filter. We also test the raw data collected
by our Android application to match the activity.

reducing dimensions This option specifies whether the accelera-
tion in the x, y, and z dimensions should be reduced to a sin-
gle value. In preliminary tests for the data, we could often see
that matching templates with only one dimension of data yields
better results. One reason for these improved results may be
the loss of orientation information when reducing dimensions
which may yield a more generic model. We reduced the dimen-
sions by interpreting the x, y, z acceleration values as a vector
and calculating its vector length.

Once the data has been transformed, we apply dynamic time warp-
ing and then select topk candidates that we consider as our possible
labels. Therefore, our method also has two configurations for the can-
didate selection: the k-value in our topk selection and the method of
selecting the candidates.
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values for k As we are considering a sequence of activities per
recording, we retrieve the topk best matches. For the evaluation,
we tested values for k ranging from 5 to 20.

selecting candidates We apply two different methods for pick-
ing the best matches as choosing only the points in time with
the lowest distance does not yield the best results. Each method
is described in more detail below.

After deciding on the parameters, we match the data with the dy-
namic time warping algorithm. In this case, we use the subsequence
matching variant of dynamic time warping as described in [67]. To
get candidates for our labels, we first match the template against the
data. Then we explore two variants of picking potential matches for
our activity. In the first method, we additionally match a zeroline tem-
plate against the data. This is used for the sequences of data that do
not contain any of the activities we try to find. We assume that the dis-
tance of a zeroline template match to these sequences is smaller than
the distance of the templates for our target activities. This way we re-
duce the number of candidates we have to consider when matching
our correct templates, as we now have a notion about the potentially
non-relevant parts of the data. For all matching candidates with the
activity templates, we take the topk matches with the smallest dis-
tance and return them to the program. In our second method of
finding candidates, we use another simple assumption. When con-
sidering candidates, we look at the current selection we made. A
candidate for a match is only added to the list of topk candidates if
it is not within a distance δ of any currently selected topk candidate.
We set δ to two seconds as our activities are not performed within a
shorter period of time. Both methods for selecting candidates can be
seen in Algorithm 1 and Algorithm 2.
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Data: InputData, Template, Zeroline, Options, K
Result: Distances
template_distances = dtw_subsequence(InputData,
Template);

zeroline_distances = dtw_subsequence(InputData, Zeroline);
candidates = List();
foreach dist_template, dist_zeroline in template_distances,
zeroline_distances do

if dist_template < dist_zeroline then
candidates.append(dist_template);

end
end
return topk(candidates, K);

Algorithm 1: Method based on zeroline for selecting candidates

Data: InputData, Template, Options, K
Result: Distances
template_distances = dtw_subsequence(InputData,
Template);

candidates = List();
foreach dist_template in template_distances do

if dist_template not within range of candidates then
candidates.append(dist_template);

end
end
return topk(candidates, K);

Algorithm 2: Method based on distance for selecting candidates
Once the candidates are determined, we evaluate them based on

the distance to the actual labels.

3.4.3 Kitchen dataset

Focusing on the CMU-MMAC dataset, due to its complexity, we have
to consider different steps. In contrast to the picking and our ADL ex-
ample, people switch between the left and right hand in this dataset,
which means that it is also necessary to identify which hand was
used for the current activity. In our ADL dataset we also had the
case of using both hands for activities, but we could mitigate that
uncertainty by additionally annotating the hand which performed
the activity and then matching the activities separately. We do not
have this information in the annotations of the kitchen dataset. This
dataset already provides aligned data making the process easier for
us. Therefore, we unify the data of the same sensor type of both
hands so that the current activity is represented by a single vector.
Considering the corresponding labels, it stands out that the described
activities cover several motions, e.g., grabbing is only a sub-activity.
Therefore, still focusing on acceleration data and considering the cor-
responding ground truth to extract the templates, we segment the
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data of a template into small windows to compute features that have
a stronger expression concerning more complex activities. This in-
cludes the used energy (Fourier transform) and median absolute de-
viation. Due to these high-level labels, several different activities may
cover common sub-activities, e.g. taking a pot or turning on the stove
includes grabbing. Therefore, we also investigate if the extracted tem-
plates have a label independent correlation. We assume that the ex-
tracted templates could be grouped into activities that are specific in
their motion and not in their semantic. For that purpose, we apply
agglomerative clustering to group the templates where the distances
between the clusters are the result of the dynamic time warping. De-
tecting the motion similarity between certain activities may not only
enable us to generalize activity labels. It also facilitates the construc-
tion of more robust templates due to the varying executions which in
turn helps us to avoid overfitting.

For the experiments, we perform leave-one-out cross-validation. Thus,
we extract templates from n-1 datasets, and apply them on the re-
maining one.

3.5 experiments

In this section, we focus on the performance of our labeling support
tool to see if it is a feasible approach to be used on a greater scale.
This involves an evaluation against ground truth data to establish
how well the tool is able to find labels. Since we established different
methods for our datasets, we also evaluate them differently. We eval-
uate our approaches mainly in regards to how close our estimated
label is located relative to the correct label. A value that describes
how close the estimate is towards the correct label (in our case called
delta) is more in line with the task. To give readers an intuition of
the results, we still added measures for recall for appropriate experi-
ments.

3.5.1 Picking dataset

In our first experiments, we only focused on the grabbing activity in
context of the acceleration sensor data that correspond to the wrist-
band. Thus, we want to investigate the feasibility to apply template
matching across different people to identify certain activities, where
in turn, the result should be used to provide recommendations con-
cerning the labeling of the video recordings.

For that purpose, we first apply our introduced method on our pick-
ing dataset. We extract the grabbing motion templates from all ex-
cept one dataset, with each set covering one complete picking process
(which may contain a double pick). Then we measure the temporal
overlap of the estimated and the actual grabbing motions. For the av-
erage overlap per dataset, we take the best match (i.e. the match with
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Dataset 1 2 3 4 5 6 7

Overlap 0.43 0.67 0.78 0.52 0.72 0.74 0.99

Motion [s] 5.02

2.49

2.55 4.23 2.86

2.43 2.04

2.22 4.11 2.60

∆ Start [s] 1.41

1.89

0.91 0.86 0.71

2.88 0.65

1.81 2.61 2.91

∆ Duration [s] 1.65

0.74

1.40 1.46 0.63

0.68 1.99

0.68 1.52 1.43

Table 1: Recognition performance of template matching for picking dataset.
The overlap (avg. 69%) is excluding outliers and represents only the
best match within a dataset. Cases 2, 6, and 7 contain two grabbing
activities.

the least distance) for each template. Afterward, we select the most
promising subsets of matches and use them to calculate the average
overlap for each test dataset. The most promising subset of matches
is determined by evaluating all the subsets of the matching results
with k elements and then selecting the one with the greatest overlap
among itself. Empirical results show that a value of k=6 yields the
best results on our dataset. Table 1 summarizes the results and re-
flects that we are able to detect nearly all grabbing motions, but have
an issue concerning the accuracy of the start and stop boundaries.
Indeed, inspecting the individual results shows that our assumption,
that the searched activity has to have the same length as the consid-
ered template, leads to inaccuracy.

(a) Result Start (b) Result End

Figure 11: Overall estimate of grabbing start (a) and end (b) point for pick-
ing dataset. Cases 2, 6, and 7 contain two activities and therefore
also two crosses in the plot.

Figure 11 describes in detail the recognition and distribution re-
sults for all start and stop times. We want to emphasize that the x-
axis does not represent the recognition rate but the relative duration
of the whole process. Hence, the box plot represents the time inter-
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Acceleration Reduce dim. Approach Subject 1 Subject 2

Raw

Yes
Zeroline

[
0s - 28.9s

]
x̃ = 14.7s

[
0s - 39.3s

]
x̃ = 7.9s

Delta
[
0.2s - 5.1s

]
x̃ = 0.6s

[
0s - 1.4s

]
x̃ = 0.5s

No
Zeroline ∅ ∅
Delta

[
0.1s - 14.5s

]
x̃ = 2.2s

[
0s - 39.3s

]
x̃ = 7.7s

Gravity

Yes
Zeroline

[
0s - 20.1s

]
x̃ = 10.2s

[
0s - 39.3s

]
x̃ = 11.1s

Delta
[
0s - 1.5s

]
x̃ = 0.27s

[
0s - 12.5s

]
x̃ = 0.8s

No
Zeroline ∅ ∅
Delta

[
0.2s - 10.9s

]
x̃ = 1.6s

[
0.2s - 41.3s

]
x̃ = 3s

Linear

Yes
Zeroline

[
1.2s - 82s

]
x̃ = 24.2s

[
0s - 48.4s

]
x̃ = 8.2s

Delta
[
0.1s - 1.5s

]
x̃ = 0.8s

[
0s - 1.4s

]
x̃ = 0.5s

No
Zeroline ∅ ∅
Delta

[
0.4s - 9.6s

]
x̃ = 2.2s

[
0s - 21s

]
x̃ = 3s

Table 2: Results for matching activities of daily living. For each case, we
report min and max distance to activities and median distance. The
bold values show the best results.

val where we assume the start point and respectively the stop point,
for the activity that should be recognized. Every box represents the
best match for the templates where the x markers show the actual
point in time of the grabbing motion. As there can be two grabbing
motions in a dataset we plotted both positions. The boxes provide an
interesting insight concerning the reliability, i.e., most of the extracted
templates were able to identify the correct area of a certain activity
across different recordings of the same process.

3.5.2 Activities of daily living dataset

For our activities of daily living scenario, we evaluate different set-
tings of the algorithm. We first consider the topk best matching re-
sults with k = 10. After finding the best pre-processing settings, we
further test different values for k. We compare different methods of
pre-processing the data as well as ways of choosing the best matching
candidates. Data can either be used unchanged or be transformed to
get linear acceleration or gravity information. For each of these types,
we also compare the performance of using all three axes of the data as
well as reducing it to one dimension. Finally, we pick best matches by
considering one of two options. One option looks at all the matches
that have a smaller matching distance value than the zeroline tem-
plate at the same point in time. Of those matches, the k smallest
values are chosen. The other option is picking lowest matching dis-
tance values that do not lie within two seconds of each other (see
Section 3.4 and Algorithms 1 and 2). All distance values are calcu-
lated using the matching results with ten different templates and then
summing up the distances. The results can be seen in Table 2. We can
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Figure 12: Results of matching activities of daily living with different num-
bers of templates used for matching and different values for k.
The color shows the average distance (in ms) of a match to a la-
bel.

see that the best performing combination of settings is the usage of
linear acceleration with the dimensions reduced to one and using a
delta-based topk approach. This yields a median error of 0.8s and
0.5s for both subjects. One additional finding is that the approach of
using the zeroline for choosing possible matches is not performing as
well as the delta-rules-based approach. It does not even return values
for some of the use cases, namely the cases that do not reduce the
values to one dimension. A possible explanation is that a zeroline
returns a smaller distance over all the datasets. Further analysis of
the approach will be done just on the best performing setting, which
is using linear data with the dimensions reduced to one and using a
delta-rules-based candidate selection.

Figure 12 shows the results of different evaluation parameters us-
ing the previously mentioned best-performing methods of data trans-
formation and candidate selection. It can be seen that the amount
of templates used to find matches is not affecting the results signif-
icantly. Instead, the chosen k is more important to get a reasonable
result. It can be seen that just using two templates and then picking
the top10 matches is sufficient to find activities within a reasonable
margin of error.

To further evaluate the performance of our method and provide an-
other form of intuition, we also show recall and ROC curves for the
results. The performance is split up for each hand separately in this
scenario, to show the differences in the results.

The plot in Figure 13 shows how the recall for each separate hand
is changing with different values for k. It can be seen that recall for
the left-hand is behaving differently than the right-hand evaluation.
The ROC curve in Figure 14 also reflects this fact. This is most likely
due to the fact that the primary hand of the subjects is the right hand.
Therefore, the motion of the left hand is not as consistent as the mo-
tion of the primary hand. Overall we can conclude that with appro-
priate values for k, the method yields acceptable results for labeling
purposes.
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Figure 13: Recall of the results of both hands depending on the value of k
that was used for candidate selection. Overlap with the ground
truth labels is counted as a True Positive.

Figure 14: ROC curve for both hands. Without the candidate selection, this
plot shows the overall performance of the Dynamic Time Warp-
ing algorithm. Again it can be seen that the performance for the
left-hand data is not as consistent as the performance of the right-
hand data.
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3.5.3 Kitchen dataset

Considering the CMU-MMAC dataset, our first results were insuf-
ficient because different activities covered similar arm movements.
For instance, the extracted templates of the activity take oil are also
wrongly recognized as put oil into cupboard. Thus, we tried to clus-
ter the activities based on their similarity to get an insight regarding
their meaning. Figure 15 illustrates the clustering results of one sam-
ple set. It is striking that some activities that use items within a simi-
lar location are ending up in the same cluster fairly consistently. For
instance, we can observe that motions like taking the big and small
measuring cup are very similar. In contrast, the fork and the scissors
for instance are both located in a drawer but end up in the same clus-
ter fairly late. We believe that this is most likely due to the fact that
the activities are more variable in length than they are in our own
datasets. Even though dynamic time warping is able to handle dif-
ferent lengths of time series, it is still very likely that the distances of
short templates are generally smaller and thus end up faster in clus-
ters than the longer activities. This is for instance the case for taking
the baking pan from the oven.

Figure 15: Dendrogram of the clustering of the templates in the kitchen
dataset. Marked boxes are activities using the same item.

3.6 conclusion and future work

In this chapter, we investigated the first step of a typical HAR pipeline:
annotation of data. We explored the possibility of a smart data anno-
tation tool that provides labeling recommendations based on the al-
ready labeled acceleration sensor data. These recommendations can
be used to speed up the annotation of video and acceleration data by
finding possible activities in the dataset and showing these guesses
to the user. She or he then only has to look at the recommendations
and does not have to look through the whole dataset to find the activ-
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ities. For that purpose, we performed experiments to investigate the
feasibility of applying template matching in context of dynamic time
warping to recognize certain activities across different processes and
people. In this context, we focused on the acceleration data of a wrist-
band and smartwatches to recognize certain activities. It has emerged
that it depends on the granularity of the considered activity labels
which recognition technique is promising. Hence, activities that actu-
ally consist of several sub-activities may have to be labeled separately
at the beginning. To further investigate this, we adapted the experi-
ments to another dataset, containing activities of daily living. Here,
we looked at activities that involve eating, water consumption, and
medicine intake. We can show that these activities, which all involve
similar movements, could be recognize fairly consistently by apply-
ing template matching and only taking into account the initial arm
movement part of the activity. In this context, we also showed that
clustering existing templates from a labeled dataset allows inferring
similarities in motion from semantically different activities. This can
be considered as a starting point to construct more robust templates.
The clustering results also yield more information for a specific mo-
tion, which in turn reduces the need to perform a certain activity
more frequently to get enough characterizing information. In con-
trast to other approaches [45, 84], we need significantly less data to
guess the correct time frame of a specific activity. Another aspect we
looked at in this work is the ability of acceleration data to help anno-
tating video information. Here we could see that acceleration data on
its own is not capable to find all types of activities. Especially for the
ADL dataset we could see that scenarios exist where movements are
too similar to fully distinguish different types of activities.

In our future work, we want to focus on the problems which came
up during our investigations. This includes the recognition quality
of the boundaries of activities due to the limitation of a predefined
template length. In addition, the fact that we considered only accel-
eration data so far is another possible source for inaccurate results.
Thus, considering further sensors may also increase the recognition
accuracy. For that purpose, we want to enhance our own dataset con-
cerning the number of instances but also regarding the considered
activities since it turned out that the considered activity level is es-
sential. Another important step in future work is a user study with
a group of annotators that measures annotation time as well as the
agreement for a set of labeling tasks with and without the recommen-
dations of our proposed solution. Results from such a study could
also point us to other improvements of our method that we have not
considered yet.
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4
S E G M E N TAT I O N O F S I N G L E A C T I V I T I E S

In the previous chapter, we have looked at methods that enable a
faster annotation process for activity recognition pipelines. As we
have seen, activities usually vary in the amount of time they span.
This poses researchers with the challenge of finding segments in one
recording of activities.

4.1 introduction

In the field of activity recognition, multiple methods for recognizing
the sequence of activities can be applied. One could try to transform
the sequence of raw data into equal units, e.g. with a sliding win-
dow approach, first. Then, each window is classified independently,
giving the end result. Another approach could try to first segment
the data into separate sequences which do not need to have the same
size. It can be seen that especially scenarios which involve activities
with a huge variety can lead to a big range of durations. This chapter
deals with exploring methods for automatically segmenting data in
the context of activity recognition.

We can first try to establish the different challenges that impact the
segmentation:

interleaved activities

In many scenarios activities are performed in short succession.
They overlap, making it very difficult to distinguish them from
one another, even for human annotators. We can assume an
example from the CMU-MMAC dataset that deals with food
preparation:
Right after mixing brownie batter, a test subject puts away the
spoon they used. The single activities they performed were
the mixing and the put_away activity. However, the motion of
mixing batter and then putting away the spoon can be seamless.
This makes it difficult to establish the point in time when one
activity ends and another starts.

semantically ambiguous activities

Often, datasets can be made up of annotations that are not
atomic. Specifically each label can share meaning with other
labels in the dataset. Labels can be defined with specific rules
in mind which theoretically allows for models to predict a wider
range of activities than initially learned. In the case of the CMU-
MMAC dataset, activities are made up of a verb, a subject, and,
optionally, a preposition and an object (e.g. put_cup_on_table).
It can be sensible to learn single parts of the activities inde-
pendently. However, we run into one issue when we consider

45
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activities that use the same verb but involve different motions
or even slightly different meaning. An example would be the
motions for open_fridge and open_browniemix as both denote the
opening of the corresponding subject but with a very different
meaning regarding the actual motion. The activities open_fridge
and close_fridge however, use different verbs but have a very sim-
ilar motion. In segmentation, this can cause issues when we try
to utilize the similarity in motion to find the start and the end of
an activity. Here, we may not be able to rely on the label name
but rather on domain knowledge.

sensor placement

Different publications have already explored the importance of
sensor location for detecting specific activities [87]. In the case
of the CMU-MMAC dataset, we can choose from a variety of
sensor positions as the dataset provides inertial data from up to
nine different positions (including torso, forearms, and shins).
However, often researchers may want to use a minimal amount
of sensors for their models (e.g. when a system is supposed to
run on consumer hardware where only one sensor is provided).
This causes issues for some activities that can be difficult to de-
tect with wrong sensor placement. Short walking sequences, for
instance, can be detected more easily with sensors on the legs
while wrist-worn sensors may miss the short motions entirely
or disregard it as noise. When trying to pick only one sensor
placement, we have to consider the most promising candidates
for predicting the biggest set of activities.

This work explores different methods for segmentation, specifically
for the CMU-MMAC dataset. We want to evaluate if common meth-
ods for segmentation are applicable for this fairly difficult dataset.
Specifically, we look at inertial data-based segmentation as we do be-
lieve that changes in movement are an important factor for detecting
activity change.

This work has not been published in previous publications.

4.2 related work

Segmentation of time series data is a topic that can be applied in mul-
tiple fields. Human activity recognition specifically needs methods
for segmentation in order to reconstruct a series of activities that oc-
curred. To get an overview, we look at specific methods to segment
activities, specifically using inertial data as this is one of our main
modalities within the datasets we consider. Many methods are evalu-
ated on segmenting gait cycles. Since single steps are often used for
traditional human activity recognition, gait cycles are a useful unit
for segmentation and therefore can be seen as a significant part of the
pipeline.

Agostini et al. [2] show one such approach, where foot switch sig-
nals have been used to identify different parts in a walking cycle. By
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measuring contacts made with the floor of different parts of a human
foot they are able to properly identify parts of the cycle. This shows,
that especially cyclic activities may contain distinct features that can
be utilized for segmentation of activities. It still needs to be seen how
this relates to more complex activities. The researchers went on [3]
to extend their research by switching to magneto-inertial sensors and
analyzing different test subjects.

Some researchers [16, 38] consider energy spikes as a good indica-
tor for change in activity. Broadly speaking the assumption is, that
change in activities is associated with a certain amount of movement
that a person has to perform in order to change activities. When the
energy from raw inertial data is calculated, it enables the researcher
to quantify the level of movement. This approach works in the pre-
sented work where the authors consider simple locomototive activi-
ties. In our work, we want to test this approach on the more complex
CMU-MMAC scenario while also building on top of it.

Other work [81] uses Hidden Markov Models to properly segment
activities. A focus was put on locomotive activities like walking,
standing, lying, and climbing stairs. For that purpose the system
is able to perform decently, thus we test a simple HMM approach as
well.

Dynamic time warping, as seen in the previous chapters, was also
proposed for sequence segmentation [9]. Here, the specific task was
geared towards segmenting strides of human walking cycles. By an-
notating and extracting templates from a controlled data gathering
setup (i.e. walking in a straight line for a given distance), multi-
dimensional dynamic time warping can be applied to recognize strides
in human movement. This work also shows the influence of different
types of inertial sensors (namely accelerometer and gyroscope) as it
compares the results of each sensor on its own with the combination
of both sensors.

4.3 methods

For this problem, we consider multiple approaches that may be appli-
cable to our scenarios. In this subsection, we elaborate on the broad
ideas for each approach we test, and details for each method. These
methods will later be evaluated in the Experiments section. Figure 16

shows a sample plot of energy values (using the three axes of gyra-
tion and acceleration respectively) and the actual starting and ending
points of activities. It can be seen, that some spikes co-occur with the
borders of activities. Therefore, we try to use energy values for our
segmentation methods.

4.3.1 Hidden Markov Models

Typically Hidden Markov Models (HMMs) are used to model the
change of hidden states by examining a dependent observable vari-
able. To illustrate how HMMs work, we can look at one typical use
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Figure 16: Illustration of energy values and corresponding segments

case: speech recognition. Here, programs receive audio waves as an
input and try to estimate the underlying syllables that lead to these
sounds. Hidden Markov Models may model the syllables of a phrase
as the hidden state and the sounds that are emitted as the dependent
and observable variable. In this way, the syllable that the algorithm
wants to estimate depends on the previous hidden state and the cur-
rent observation.

We try to map this approach to our problem. Here, we look at
this challenge in two ways: In both cases, we consider the inertial
data as our observable variable. Then, we can either decide to model
each type of activity as a separate hidden state or we model the se-
quence with two states: in_activity and change_activity. The difference
between the approaches is the amount of information that we assume
to be extractable from the underlying data.

4.3.2 Machine Learning Approaches

Another fairly intuitive method would utilize machine learning for
the segmentation task. In that case, we assume that we can find a fea-
ture representation that allows us to distinguish the classes in_activity
and change_activity. For the representation, we choose a sliding win-
dow approach where we calculate sets of features from the raw data.
Then we use a typical learning algorithm like a Random Forest to clas-
sify the windows. This approach allows us to leverage our previous
expertise in feature engineering for activity recognition.

4.4 experiments

We test all our approaches on the CMU-MMAC dataset. To evaluate
the methods we calculate recall, precision and F1-score. We are only
interested in the inertial information to segment our data. Based on
the findings of [38], we want to use energy values for our methods
as well. To calculate the energy values, we create sliding windows
from the inertial data. The window size is set to 200ms and con-

[ May 24, 2021 at 9:42 – classicthesis version 4.2 ]



4.4 experiments 49

secutive windows have an overlap of 90%. This way we have an
effective sampling rate of 50Hz. To create the new annotations that
distinguish between in_activity and change_activity, we looked at all
ending-timestamps of the given activity labels. Since the activities in
the CMU dataset are consecutive and do not contain holes, we have
to manually assign a length to the change class. We chose 200ms,
which is the window size we consider for the energy calculations.

Initially, we analyze how energy values can be used with a sim-
ple Hidden Markov Model approach. In Figure 16 we can see some
regularity of the segment change and the energy values. Based on
this, we apply the HMM algorithm as a first experiment. We consider
the subset of all Brownie recipes and test two approaches: one of
them uses two states where we differentiate between in_activity and
change_activity. For the other approach, we only look at the verb part
of the label and use theses as the states for our HMM.

In the training phase, we take a subset of all scenarios (in this case
25 of the Brownie scenarios). Out of these, we train on the first 24

scenarios and evaluate on the last one.

Type Precision Recall F1-score

in_activity 0.94 0.87 0.90

change_activity 0.06 0.14 0.09

Table 3: Confusion matrix for the Hidden Markov Model

The results as seen in Table 3 are not satisfactory. We then take
a closer look at the results by examining a sequence diagram of the
actual state compared to the prediction of the model.

Figure 17: State sequence for a subset of the whole test scenario.

Figure 17 shows the predicted and the actual states for a subset
of the whole test scenario. We can see some interesting findings in
the predictions. The model sometimes predicts longer sequences of
changing states. This is of course not intended in our scenario and
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Type Precision Recall F1-score

in_activity 0.98 0.62 0.76

change_activity 0.02 0.39 0.04

Table 4: Confusion matrix for the Hidden Markov Model using verb labels

could be fixed with post-processing e.g. by choosing the center or the
start of each sequence as the changing state time. Another finding is
that the model overall predicts fewer changes than the actual amount
present in the data. If we count the total number of predicted changes
and compare it with the ground truth we get a ratio of 1 to roughly
2.2. This means, our model predicts a change more than twice as of-
ten as it is the case. However, we can also see that there are instances
where the prediction overlaps fairly precisely with the actual change.
On the same note, the long sequence without a change roughly in the
center of Figure 17 is mirrored in the prediction of our model.

For our second approach with HMMs, we adapt the scenario by
replacing the states we proposed initially with the verb-part of the
annotation. Thus, the model now has ten different states it can pre-
dict. To evaluate the results, we transform the predicted sequence to
the format used beforehand, as we are only interested in the change
of state.

Table 4 shows the results of our second HMM approach. Here, we
can see that the numbers drop compared to our first HMM approach.
Apparently, using the verb part of the label does not improve our
overall prediction but rather worsens it.

Finally, we examine the machine learning approach. We test out a
few classifiers like a Random Forest, a Support Vector Machine and
others. For this approach, we evaluate different types of features.
Like before, we used only energy values in the first run. At a later
stage, we instead use sliding window features to see if the results im-
prove.

For the training, we first split the data into train and test sets with
a ratio of 80 to 20. Since the change class is very rare, we up-sample
these examples in the training set. This should prevent our algorithm
from always predicting the majority class.

Table 5 shows the results for the different settings we tested. It is
important to note, that the numbers shown are the weighted averages.
Even though the results look good at first glance, the precision for the
change class is very low. Replacing the energy values with the win-
dow features does not yield much of a difference. Interestingly, the
Random Forest benefits from the energy values, while the other algo-
rithms return very similar numbers. Throughout all the algorithms it
is not possible to determine a good segmentation of the data just by
applying machine learning.

There may be multiple reasons for the poor results we get. One
main reason is that the activities are performed in a very fluid way,
making it harder to detect when one activity starts and another one
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Algorithm Precision Recall F1-score

Random Forest (energy) 0.96 0.72 0.81

Random Forest (raw) 0.95 0.64 0.75

Naive Bayes (energy) 0.94 0.84 0.89

Naive Bayes (raw) 0.94 0.71 0.80

SVM (energy) 0.94 0.69 0.79

SVM (raw) 0.94 0.67 0.77

Decision Tree (energy) 0.95 0.55 0.68

Decision Tree (raw) 0.95 0.58 0.71

Table 5: Performance for different algorithms and settings, as a weighted
average. This table is a good example, why weighted numbers are
not necessarily the best representation for results, as they can mask
problems.

Algorithm Precision Recall F1-score

Random Forest (energy) 0.08 0.81 0.15

Random Forest (raw) 0.05 0.65 0.10

Naive Bayes (energy) 0.04 0.18 0.06

Naive Bayes (raw) 0.04 0.37 0.07

SVM (energy) 0.04 0.39 0.07

SVM 0.04 0.42 0.07

Decision Tree (energy) 0.04 0.56 0.07

Decision Tree (raw) 0.05 0.62 0.08

Table 6: Performance for different algorithms and settings for the change
class. Here, the actual issues of the segmentation method is visible.

ends. Another explanation could be that some activities involve move-
ment that is not captured via the wrist-worn sensors, e.g. walking.
Thus, among the given sensors, no particular change is visible.

4.5 conclusion

We could see that segmentation in activity recognition is a non-trivial
task, specifically when looking at complex datasets like the CMU-
MMAC dataset. Our results show, that traditional methods for seg-
mentation may not work that well in complex settings.

However, it can be worthwhile to consider different approaches in
future experiments. While out of scope in this work, the addition of
visual features for the segmentation may aid our task. Examples for
visual features could be the appearance and disappearance of objects
in a frame or the interaction of the test subject with objects in their
environment. Here however, it would make sense to first analyze
the activity change in a qualitative way. This way we can determine
how well video as a modality suites the task, e.g. if specific objects
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are a good indicator for activity change. Also, for object-based seg-
mentation, overfitting to the recording environment may be a bigger
challenge compared to the inertial data.

Our initial core idea for segmentation of the data is to aid the clas-
sification of the activities. But we could also redefine the order of
operations within the pipeline to achieve our goal by leaving out the
segmentation. Let us assume that we divide the data in sufficiently
small windows. If we first generate features from our dataset that al-
low us to classify activities reliably and independently of the length
of the activity, segmentation could be replaced with a post-processing
step. In practice, we would build sufficiently sized windows from our
dataset (ideally not longer in duration than our shortest activity). Af-
terwards, we can classify each window independently, assuming we
do not need the previous windows’ information. From this series of
predictions, we could create the most likely sequence of activities for
each single run. Using smoothing and other similar methods, we may
utilize the predictions to additionally estimate start and end of an ac-
tivity. For this approach to work, we have to evaluate if classifying
windows in itself is feasible with a certain margin of error.
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5
M U LT I M O D A L P R E D I C T I O N I N A N I N D U S T RY
S E T T I N G

For this work, we take a look at activity recognition in a setting typical
for industry use. We emulate a warehouse picking scenario and try
to detect picking motions as this is a typical use case for warehouse
management systems.

5.1 introduction

In the field of modern warehouses, a lot of attention is put on im-
proving the process of order picking regarding accuracy and time in
order to save on costs[23][42][89]. Order picking denotes the process
of fetching items that are contained in a customer’s order for retail
or parts that are needed for further assembly in a factory. Since pick-
ing items is often one of the first parts in a longer business process,
errors in this stage may only be detected in a later stage, leading to
high costs for a fairly minor error. Modern wearable technologies
like smartglasses, smartbands, and smartwatches can aid the picker
in their task, helping to reduce errors made in the process. We can
see two main ideas here: the wearable device can on the one side be
retroactive by notifying the worker if they picked the wrong item. Ad-
ditionally, it can also work proactively by helping the picker to find
the correct shelf in a potentially huge warehouse, therefore reducing
the time a worker has to spend localizing the item (though skilled
workers usually are so experienced that the system works more like
a sanity check). On the other side, wearable devices can free up the
workers’ hands when compared to traditional scanners. This is es-
pecially useful for training new employees who have yet to learn ev-
ery single step in the picking process. We can identify two types of
approaches to improve the picking process in a warehouse scenario:
One type aims to equip the pickers with tools to speed up their work-
load. In an ideal setting, it could even remove some of the work,
e.g. by automatically scanning the picked item as it is lifted from the
shelf. This could be done by equipping pickers with voice control
systems[63] or by giving the worker wearable devices that directly
scan the item [96]. On the other end of the spectrum, the warehouse
itself could be augmented to help with the localization and accuracy
of picked items. An example for this would be the highlighting of
shelves that contain the correct item and additionally create projec-
tions of the needed amount [37]. Similarly, depth-sensing cameras
could be added to shelves to detect picking for each specific item
location [55]. This work is following the approach of the former cat-
egory. We base our choice on the assumption that a solution which
equips the worker can easily be adapted to other warehouses without
the need for possibly costly hardware installations on-site.

53
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This work explores a wearable-aided picking detection that could
potentially be used in a warehouse environment. Specifically, we
consider smartglasses in combination with a smartwatch as our main
source of data. From these devices, we extract inertial data (i.e. mainly
acceleration in addition to gyration and magnetic field) as well as first-
person video information. With both modalities present at the same
time, we try to handle each shortcoming. For video data, we have
to consider the fact that a lot of the relevant action is not captured,
which is a problem that is especially emphasized by the limited field
of view of the camera built into most smartglasses. In the case of
inertial data, we may have to deal with the issue that simple arm
movements (e.g. while walking) can be classified as a picking motion.
Additionally, we are mostly interested in finding the correct start of
the picking motion since this would give a potential warehouse sys-
tem the most time and information to do further checks regarding
the correctness of the item. For these purposes, we pose two research
questions:

rq1 : Can the combination of inertial and video data be used to clas-
sify grabbing actions?

rq2 : If so, what subset of features is best suitable for that task?

To answer these questions, we created a dataset for a typical pick-
ing scenario. It includes multiple participants performing different
picking tasks in a simulated warehouse environment. Afterwards,
we analyze whether we can learn to distinguish grabbing from non-
grabbing actions within this dataset. In this case, the simple act of
picking an item would be more in line with an action instead of an
activity hence we use the term action in this part of the work.

We structure this analysis as follows: In Section 5.2, we describe ex-
isting work in the field of multi-sensor fusion and feature selection
in the context of activity and action recognition. Afterwards, we de-
scribe our dataset in Section 5.3. Section 5.4 covers our methodology
with a focus on the features we select for our experiments, which are
described in Section 5.5. Then we conclude the results in Section 5.6
and give an outline for future work.

This chapter reflects the content of our previous publication [33].

5.2 related work

Modern warehouses often rely on RFID and/or QR codes to validate
orders[23]. While these approaches are very precise, the validation
happens at a late stage. By using wearables, we aim to register the
picking action earlier. This allows us to notify the picker about a cor-
rect item position or even recognize a pick from a wrong shelf before
it fully occurred. In this work, we are dealing with action recognition
on multi-sensor data and the influence of different extracted features
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for recognizing the action. For that reason, we focus on related work
of activity recognition but also multimodality as feature selection, ex-
traction, and fusion are commonly covered by these fields.

Researchers already showed that using acceleration data with a slid-
ing window approach works for human activity recognition[51][74][81].
Typically, this targets the recognition of activities like walking, jog-
ging and climbing stairs. A special focus is put on the position of the
sensors and how it influences the classification results[74]. Sensors
are often placed on the legs, the arms, and the torso of subjects and
then evaluated either separately or in combination. Commonly, the
considered features correspond to the time and frequency domain
and have been shown to work for these activities. These features
are then classified with machine learning algorithms like Decision
Trees[51], Hidden Markov Models[81], and kNN[74]. Recently, Or-
dóñez et al.[71] also used Neural Networks for human activity recog-
nition. Indeed, they are able to show that by adding a new modality
(e.g. adding gyration data to acceleration data) to a network, new
features can be extracted from it without any need for pre-processing.
Many of the features considered in previous work are extracted from
a long timespan (typically 1-3 seconds). As we are considering ac-
tions instead of activities, which span a much shorter time, we keep
the window size small and chose a bigger overlap of consecutive win-
dows. Therefore, we apply similar approaches to smaller data to test
if these experiments still hold for our grabbing scenario.

Analyzing inertial data for activity recognition only covers half of
our analysis. We also want to consider the video sensor for our classi-
fication experiments. Combining different kinds of sensors to create
a multimodal dataset has been the focus of various previous stud-
ies[88][19][83]. These focus on activities like cooking[88], sport activ-
ities[19], and office work[83]. Using these datasets, researchers fused
both modalities to recognize activities[84]. Problems that arise in this
context are combining sensors with different sampling rates to create
one time sequence. Solutions for this problem include downsampling
inertial sensor data to fit the frame rate of the video[84]. This ap-
proach does not work with features extracted from windows which
we use for our inertial data. Recently, Song et al.[83] published their
egocentric multimodal dataset recorded with smartglasses which con-
tain egocentric video and inertial sensor data. In their work, they also
showed their approach for recognizing life-logging activities. By uti-
lizing Fisher Kernels they combine video and sensor features and
reach high accuracy values. For our work, this approach may not
suffice as it does not capture arm movement when it is out of frame.
For the sake of completeness, we should mention that sensor fusion
is also investigated in the field of robotics. But as it is mostly used
for navigation and similar tasks, we do not consider work from that
field.
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5.3 dataset

For this work, we created a dataset that covers order picking pro-
cesses in a warehouse setting. In our previous work[30] (Section 3),
we analyzed the impact of inertial data from a wrist-worn sensor on
action detection. As this dataset puts less focus on the egocentric
video, we created a new dataset that improves on that aspect. Ini-
tially, we have to define what actions make up a picking process in
our dataset: Order picking consists of first looking at the shelf num-
ber, then walking up to the shelf, finding the correct box, picking an
item from the box, looking at the item to simulate scanning it, and
finally dropping it off at the start. In a real-world setting, these ac-
tions may vary slightly, depending on what existing technology is
already in use. We recorded picking actions from four (three male
and one female) participants, each performing 20 picking actions in
two different settings. The following four cases were performed and
recorded:

picking with the arm activity fully in focus :
In this scenario, the participants are focusing their view on the
shelf while grabbing from a set of boxes. Half of the orders are
from a shelf with boxes, the other half from an open shelf.

picking without arm activity in frame :
Here, the participants were asked to specifically not focus on
the shelf and instead look at something else. We had the par-
ticipants look at the smartphone they are provided to emulate
reading from an order list. Such scenarios are also likely to oc-
cur in a real warehouse environment, as experienced pickers
often only glimpse at the shelf when working.

no activity with the participants looking at the shelf

and boxes :
Participants were asked to walk to the shelf with the intent of
picking an item but without actually performing the grabbing
action. We added this scenario as a negative example for our
experiments.

no activity with the participants looking at the shelf

and moving their arm :
This scenario serves a similar purpose as the previous one. But
it adds arm movement (in the form of tacking out the smart-
phone from the pocket) as an additional action.

We recorded first-person view and inertial data with smartglasses and
inertial data from a smartphone and a smartwatch. Additionally, all
scenarios were filmed from a third-person perspective for improved
labeling and easier validation of the actions. Figure 18 shows one
participant with the devices and their on-body positions. The tablet
was used to record depth data which may be used in future work. All
inertial data was recorded using a mobile application from previous
work[87]. Each inertial sensor was recording at a sampling rate of
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50Hz. First-person video was collected at a resolution of 1920x1080

pixel with 24 frames per second. The smartwatch was worn on the
right wrist, while the connected smartphone was kept in the pocket
of the participants while recording. Our test environment consists of
one shelf with multiple compartments. Each box or, in the case of
open shelf picking, compartment has a unique QR code identifying
the items. QR codes are ignored in this work but will be part of future
analysis.

As the data was recorded with multiple devices, we first had to
synchronize it. For this purpose, we introduced an alignment motion
at the beginning of each recording. This motion produces a distinc-
tive curve in the plot of the gyroscope data which we then used to
calculate the time difference for each recording. We validate the dif-
ference by plotting inertial data of the watch and checking if the video
timestamp overlaps correctly (see Figure 19).

Figure 18: Participant wearing all devices for data gathering.

Figure 19: Plot of the alignment motion of the smartwatch with an overlay
of the adjusted timestamp of the egocentric video.
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After recording, the data was annotated two-folds: the first-person
video and the third-person video were both labeled with the BORIS
software[36]. The first-person video annotation includes the exact
end of the alignment action, the timespan in which the hand is in
frame while grabbing, and the timespan during scanning of an item.
In the third-person video we also labeled the end of the alignment
action and the whole grabbing process if present in the scenario. We
plan to publish the data *.

5.4 methodology

Time Frequency

Mean, Variance, Correlation coef-
ficient (Pearson), Gravity (pitch,
roll), Standard Deviation, Median,
Mean absolute deviation, Entropy
(Shannon), Kurtosis, Interquartile
Range (type R-5)

Energy (Fourier, Parseval), En-
tropy (Fourier), DC Mean

Color Texture

HSV-Histogram, Mean of each
channel, Standard Deviation of
each channel

Histogram of oriented Gadients

Table 7: Features extracted from different modalities. Above the inertial fea-
tures, below the image features. The recorded data was segmented
into windows to compute inertial features where image features are
computed on a per frame basis.

Our essential idea for learning grabbing actions is to leverage the
combination of extracted features from inertial and video data. We
consider features in the frequency and the time domain for inertial
data as well as color and image descriptor features for the video data.
Figure 20 shows the process of feature extraction and merging. For
the frames, we extract histograms of the HSV color channels and his-
tograms of oriented gradients (HoG[21]) (Figure 20, Step 1.1, 1.2, and
1.3). The histograms of the HSV channel are extracted without bin-
ning, enabling us to bin the data later. We also add the mean and
standard deviation of each channel. The HoG features are gener-
ated with 25 patches per frame as a trade of between amounts of
detail captured and feature size. All image features are extracted on
a scaled-down version of the original frame. In total, this results in
(256+ 2) · 3+ 25 · 9 = 999 features per frame.

For inertial data, we consider the acceleration data from the smart-
watch. In a real-world scenario, we try to use the least amount of
energy with the wearables, thus only acceleration was used. Inertial
features are generated using a sliding window approach. This means,
we consider a fixed timespan and calculate features on acceleration

* http://sensor.informatik.uni-mannheim.de
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data within that span. Afterward, the window is moved to the next
point in time, in the end resulting in a set of windows (Figure 20,
Step 2.1, 2.2, and 2.3). Our features are calculated for a window size
of 1000 milliseconds. This is a balance between too coarse window
sizes for actions and windows without enough information in them.
Consecutive windows overlap, allowing us to determine the start of
a grab more precisely. We choose an overlap of 70%, resulting in
300 milliseconds between windows. This way, we can deal with the
short actions we classify. Table 7 shows the features we calculated
from the acceleration data of the smartwatch. These can broadly be
classified into two groups: time-based features and frequency-based
features. Furthermore, features can be sub-categorized on what prop-
erty they are based on including distributions, shapes, and averages.
Said properties will be used later to analyze subgroups within the
feature sets. All inertial features are calculated on each of the axes of
the acceleration data yielding 3 · 14 = 42 features for each window.

Since image features are calculated on a per frame basis and iner-
tial features on windows, we have to combine them (Figure 20, Step
3.2). First, we have to align both feature sets with the alignment infor-
mation we determined beforehand (Figure 20, Step 3.1). To merge the
inertial and image features, we have to adapt the features extracted
from the frames to fit the windows we calculated before. After we de-
termined which windows a frame belongs to, we calculate the mean
of each feature of all frames in every window, creating an average
frame. As we store the labels of our dataset with the frames, we have
to add that information to the windows. A window is thus labeled
with the grabbing class if it contains at least one frame that also has
this class. The combined windows are then stored per participant and
scenario to enable different scenario combinations in our experiments
(Figure 20, Step 3.2 and 3.3). By creating these combined windows,
the evaluation of our experiments is more concise. Leaving either sen-
sor out leaves us with the same windows, thus making a comparison
between experiments easier. In the following, we are going to use
machine learning algorithms on the combined dataset to see if our
feature generation methods yield good results.

5.5 experiments

In the following, we present our experiments and their results in line
with the research questions. First, we describe our experimental setup
and subsequently conduct our experiments grouped by the research
question.

5.5.1 Experimental setup

All experiments we conducted were tested with three classification al-
gorithms: Support Vector Machine (SVM), Random Forest (RF), and
Artificial Neural Networks (ANN). These algorithms were shown to
work in similar settings in previous work[87][100][47]. Precision, Re-
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Figure 20: Process of feature extraction and combination. Steps 1.x and 2.x
are happening simultaneously as they are independent of each
other.

call and F1-Measure of the classification are shown for each class sep-
arately with the measures for classifying the grabbing action being
the focus in this work. Our whole dataset has a total of 8585 windows
for non-grabbing actions and 1396 windows for grabbing actions. The
classifiers used the following settings: A RF with a maximum of 100

trees and a depth of 10, a SVM-C with a polynomial kernel function,
and a Multi-layer Perceptron with a maximal number of 500 itera-
tions.

5.5.2 Experiments

To answer RQ1, we first apply the algorithms on the whole dataset
with all features kept in place. We use 5-fold cross-validation with
stratified sampling for the evaluation. Each algorithm is run 100 times
with different folds to check if the results are stable. These results are
shown in Table 8. It can be seen that the RF yields a high precision at
the cost of recall while the SVM balances these values out. The ANN
yields slightly worse results than the other two algorithms. This trend
continues in subsequent experiments throughout this work. The re-
sults show that the combination of both modalities is very promising
for recognizing the grabbing actions, with all numbers having a low
standard deviation (SD). Still, we need to analyze how the classifiers
perform within the timespan of a picking action. Our goal is to rec-
ognize a grabbing motion as early as possible, therefore we examine
how well the start of an action is found. For this purpose, we look
at the accuracy of the prediction in the first 100%, 75%, 50%, 25%,
and 12.5% of all the windows of grabbing actions. Table 9 shows the
results for our four participants. It can be seen that the results vary
among the classifiers and participants. This is due to the fact that all
the participants are grabbing at different speeds and also look at the
shelf at different angles. We can also see that the low recall of the RF
in Table 8 is reflected in the accuracy of the grabbing windows.
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Method Class Precision Recall F1-score ± SD

SV
M

None 0.977 0.974 0.976 ± 0.003

Grabbing 0.845 0.862 0.853 ± 0.017

Average 0.959 0.958 0.959 ± 0.005
R

F

None 0.956 0.995 0.975 ± 0.002

Grabbing 0.956 0.720 0.821 ± 0.019

Average 0.956 0.956 0.953 ± 0.005

A
N

N

None 0.962 0.956 0.958 ± 0.015

Grabbing 0.775 0.761 0.751 ± 0.054

Average 0.936 0.929 0.929 ± 0.019

Table 8: RQ1: Recognition quality of the actions grabbing vs. non-grabbing.
All features are tested with 5-fold cross-validation and 100 runs on
all data.

Generally, we have the highest accuracy in the first 75% of the grab-
bing windows. This is most likely due to the fact that participants
are looking downwards at the end of a motion, not focusing on the
shelf which removes prominent image descriptors. Accuracy in the
first 12.5% of the relevant windows drops to the lowest value. Since
grabbing motions start when the arm moves towards the shelf, and
participants are likely to not focus on the shelf yet, determining the
correct start is hard. In addition, the varying speed of the partici-
pants’ grabbing actions poses a problem. Fast grabbing actions result
in short sequences of grabbing windows. Thus, one misclassified win-
dow in the 12.5% subset has a greater impact on the accuracy value.
This could be addressed by having a classifier consider the class of
the previous window for its guess. For further analysis, we focus in
the next experiments on feature subsets to explore their influence on
classification results.

To answer RQ2, we analyze the influence of different features on
the recognition rate. First, we split up the image and inertial fea-
tures and evaluate them separately. The results are shown in Table
10. For the inertial data, it can be seen that among all algorithms pre-
cision and recall are dropping significantly. Results for image features
though are much in line with the results of all features, though the
recall drops for the SVM and the RF. From these results, we conclude
that image features make up a significant part of the recognition. Still,
the results of the combination of inertial and image features (Table 9)
yields overall better numbers. We further analyze feature subgroups
from the inertial data to find out if there are subsets of features that
give us similar results to all inertial features. For this purpose, we
create five feature subsets which can be seen in Table 11. Groups are
created based on their domain, what they are representing, and on
preliminary experiments. Table 11 shows the results of our feature
subgroup analysis. We see that gravity by itself yields very good re-
sults. This is due to the fact that gravity consists of pitch and roll,
thus it contains the relative position of the smartwatch. With partici-
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Method Participant 100% 75% 50% 25% 12.5%

SV
M

P1 0.851 0.883 0.845 0.744 0.574

P2 0.858 0.887 0.857 0.776 0.625

P3 0.875 0.900 0.869 0.792 0.607

P4 0.852 0.874 0.864 0.820 0.627

R
F

P1 0.640 0.643 0.589 0.473 0.314

P2 0.593 0.696 0.647 0.551 0.378

P3 0.797 0.880 0.892 0.793 0.586

P4 0.695 0.713 0.681 0.551 0.357

A
N

N

P1 0.681 0.706 0.662 0.564 0.405

P2 0.761 0.803 0.759 0.687 0.548

P3 0.803 0.839 0.798 0.658 0.450

P4 0.753 0.773 0.725 0.632 0.533

Table 9: RQ1: Accuracy of all grabbing actions per participant in the first
100%, 75%, 50%, 25% and 12.5% of each set of grabbing windows.

pants grabbing from the same shelves, the position of the smartwatch
can be used to register the arm’s movement towards the height of
the shelf. Since shelves in warehouses are rarely located on differ-
ent heights (to minimize unergonomic movement) gravity can be a
good indicator for a grabbing action. Drawbacks in this approach are
varying heights of people, and arm movements that are similar to a
grabbing motion. While height variation can be compensated with a
bigger dataset, similar arm movement has to be recognized by other
features. Features from the time domain are performing similarly to
the gravity feature. As gravity is part of the time domain features, the
good performance may be attributed to it. Still, the precision of all
classification results improves when the whole domain is considered.
The rest of our features perform worse, especially regarding the recall.
It can therefore be seen that features from the time domain yield the
best results for the task of grabbing recognition. This is due to the fact
that our window size is smaller than the usual window size used for
activity recognition. Since each participant performs the grabbing at
different speeds and with different movements, the acceleration data
by itself may not be sufficient for recognizing the action. Adding gy-
roscope and magnetic field information may improve the results.
In addition, we also analyze the image features (Table 10). Image
features yield results close to the combination of all features. To rule
out an overfitting of the data towards the QR code for instance, we
analyze how the classifiers behaves in non grabbing scenarios. We
evaluated how often the algorithms classified non-grabbing windows
as grabbing windows in these negative scenarios. We found out that
on average 2.1% of the windows in non-grabbing scenarios are la-
beled as grabbing actions. In a standard scenario grabbing actions
make up roughly 10% of the windows. Therefore we can rule out
overfitting on the QR codes.
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Method Features Class Precision Recall F1-score ± SD

SV
M

In
er

ti
al None 0.902 0.983 0.941 ± 0.002

Grabbing 0.765 0.342 0.472 ± 0.023

Average 0.883 0.893 0.875 ± 0.005

Im
ag

e None 0.949 0.994 0.971 ± 0.002

Grabbing 0.947 0.673 0.787 ± 0.018

Average 0.949 0.949 0.945 ± 0.004

R
F

In
er

ti
al None 0.923 0.978 0.950 ± 0.003

Grabbing 0.785 0.501 0.611 ± 0.025

Average 0.904 0.911 0.902 ± 0.006

Im
ag

e None 0.943 0.992 0.967 ± 0.002

Grabbing 0.992 0.629 0.750 ± 0.019

Average 0.941 0.942 0.937 ± 0.004

A
N

N In
er

ti
al None 0.913 0.935 0.923 ± 0.010

Grabbing 0.549 0.448 0.478 ± 0.055

Average 0.862 0.867 0.861 ± 0.009

Im
ag

e None 0.957 0.959 0.957 ± 0.016

Grabbing 0.779 0.732 0.737 ± 0.061

Average 0.932 0.927 0.926 ± 0.020

Table 10: RQ2: Separate analysis of inertial and image feature sets concern-
ing the recognition quality. The experiments are conducted in con-
text of 5-fold cross-validation and 100 runs.

After the feature subgroup analysis, we further evaluate the perfor-
mance of the classifiers for the start of the action. For this purpose, we
again evaluate the accuracy of the algorithms for the first 100%, 75%,
%25, and 12.5% of windows of all grabbing windows. Table 12 shows
the results of this experiment. While the overall performance is in
line with the feature experiments in Table 10, the performance for the
different percentages differs greatly. It can be seen, that the accuracy
varies stronger for the different participants when compared to the
results in Table 9. This fact can be explained with arm movements
having greater variation compared to the frames of the participants.
In addition, the acceleration sensor is worn on the wrist, therefore it
is prone to noise. The arm of the participant is always moving while
recording and even slight motions while walking pose a challenge to
the classification algorithms.

Overall, we can see that a combination of inertial and video data
can return fairly good results for grabbing classification. Image in-
formation is much more valuable for a precise classification, but can
be enhanced with inertial data for better recall. Inertial data by itself
though, when only measured at one position, is too noisy to easily
identify a grabbing action. This is due to the fact that the watch
moves on the participants’ wrist.
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Method Features Precision Recall F1-score ± SD

SV
M

Mean, SD, Var 0.697 0.099 0.173 ± 0.022

Gravity 0.625 0.264 0.369 ± 0.033

MAD, IQR, SD, Var 0.626 0.029 0.054 ± 0.014

Time 0.739 0.302 0.429 ± 0.024

Frequency 0.647 0.077 0.134 ± 0.021

R
F

Mean, SD, Var 0.594 0.258 0.359 ± 0.022

Gravity 0.652 0.474 0.548 ± 0.021

MAD, IQR, SD, Var 0.506 0.134 0.211 ± 0.024

Time 0.765 0.444 0.562 ± 0.022

Frequency 0.607 0.251 0.354 ± 0.025

A
N

N

Mean, SD, Var 0.640 0.222 0.328 ± 0.037

Gravity 0.639 0.344 0.445 ± 0.038

MAD, IQR, SD, Var 0.586 0.076 0.132 ± 0.041

Time 0.701 0.530 0.599 ± 0.037

Frequency 0.476 0.291 0.338 ± 0.078

Table 11: RQ2: Different subsets of inertial-based features, analyzed in con-
text of the action grabbing. The experiments are conducted in
context of 5-fold cross-validation and 100 runs.

5.6 conclusion

We could see in our experiments that the combination of both modal-
ities outperforms every single modality when trying to detect grab-
bing actions. For RQ1 we are able to show that combining the sen-
sors to balance out the drawbacks of each one yields an F1-Measure
of 85.3%. However, finding the correct start of an action can still
be challenging and would need to be further investigated in future
work. Improvements could be done by weighting the start of an ac-
tion greater than the rest of the actions, therefore creating a classifier
focused on finding action starts. In addition, data from the gyroscope
could also be used to get a more robust classifier that may be more
precise in its prediction. Since the start of the grabbing action often
includes rotations of the wrist, this approach could lead to greater
results in finding the start of the action.

The feature analysis in RQ2 shows that the combination of both sen-
sors led to the most promising results. It also can be seen that for
short actions inertial features from the time domain work better than
features from the frequency domain. Future work will focus on two
main topics: First, we want to explore the usage of more inertial data.
Currently only the inertial data from the smartwatch is analyzed in
our approach. By also considering inertial data from the smartphone,
we can get a better notion of the subjects’ movements. This way we
may leverage the fact that a person is standing still while grabbing
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Method Participant 100% 75% 50% 25% 12.5%

SV
M

P1 0.383 0.433 0.323 0.170 0.214

P2 0.281 0.335 0.380 0.323 0.290

P3 0.473 0.513 0.522 0.530 0.440

P4 0.237 0.246 0.174 0.087 0.088

R
F

P1 0.488 0.510 0.423 0.236 0.198

P2 0.378 0.434 0.463 0.452 0.437

P3 0.620 0.672 0.696 0.655 0.581

P4 0.280 0.247 0.149 0.094 0.070

A
N

N

P1 0.507 0.511 0.486 0.423 0.380

P2 0.433 0.479 0.487 0.529 0.516

P3 0.572 0.597 0.591 0.597 0.613

P4 0.334 0.307 0.264 0.211 0.255

Table 12: Accuracy of all grabbing actions per participant in the first 100%,
75%, 50%, 25% and 12.5% of each set of grabbing windows for
inertial features.

from a shelf. The second topic we want to explore is a better merging
of inertial and video data in addition to more elaborate video fea-
tures. On top of calculating an average frame for each window, more
complex methods like object detection with neural networks could be
used for an overall more robust approach. From these features, we
may explore different fusion approaches, e.g. early versus late fusion.
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6
P R E D I C T I N G K I T C H E N A C T I V I T I E S I N
M U LT I M O D A L S E T T I N G S

In the previous chapters, we have seen how data for Human Activity
Recognition can be annotated easily and the challenges researchers
face when they try to segment data into sequences of activities. Now,
we try a multimodal approach of recognizing activities on the afore-
mentioned CMU-MMAC dataset.

6.1 introduction

In the field of pervasive computing, many researchers suggested so-
lutions for the task of human activity recognition [1, 70, 82, 87]. One
popular task of this field is the recognition of so-called activities of
daily living [53]. As the cost for care increases [4, 41, 94], many fields
in the area of health care and nursing could benefit from computer-
aided solutions that support caregivers. One computer-aided solu-
tion that is often suggested is the use of smart home environments.
Here, activities of the patients or the people in need of care are in-
ferred from sensors that are installed in the living area. However,
these approaches can be very costly, as they often have to be adapted
to each environment separately and may require a relatively big in-
frastructure to work properly. Additionally, the task of recognizing in-
dividual activities gets harder if a person is sharing their living space,
as sensor events can be attributed to multiple people, making dis-
tinguishing the events difficult. In recent years, the market for smart
devices has grown significantly with devices such as smartphones, fit-
ness trackers, smartglasses, and more becoming more easily available
for consumers. Hence, researchers now have a great pool of possible
sensors to use in a multi-sensor system. We propose the usage of such
off-the-shelf smartdevices to recognize the aforementioned activities,
where we rely on inertial sensors and an egocentric camera for our
prediction.

Several studies already investigate activity recognition, be it low-
level [69, 87, 92] or high-level activities [73, 78, 82]. Usually, the for-
mer consist of actions like standing or walking, whereas the latter refer
to context-enriched actions such as preparing food. To recognize the
latter, researchers propose the use of head-mounted cameras built
into devices like smartglasses. Their results show that object-based
activity recognition is one of the most promising vision-based ap-
proaches [13]. However, the object recognition itself is error-prone
and at the same time crucial in respect to the recognition quality [73]
therefore making it a vital part of the whole pipeline. Smartphones
and smartwatches that are equipped with accelerometers, gyroscopes,
and magnetometers are another popular choice. In contrast, inertial-
based high-level activity recognition approaches usually perform less
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accurate but are a reliable option for low-level activities. This also
includes the tracking of the user’s arm [92] which we need for our
approach. Therefore, many researchers started to adapt the approach
of fusing multiple sensors to get a better overall result. Approaches
for fusing inertial and vision sensors have been made by other re-
searchers already [84]. However, most of the work focuses on the fu-
sion of sensor streams that belong to the same on-body position [82,
95] and rarely looks at different body positions. Complex activities
have often been detected using smart environments with sensors at-
tached to objects and location to recognize interactions. Such ap-
proaches can give exact results regarding the interaction with an ob-
ject but are expensive to deploy in real-world scenarios given the high
amount of variation in home environments.

This chapter reflects the content of our previous publications [34][32][29].

6.2 related work

There are several methods and publications from the domains of im-
age and video processing that target subproblems of our research
question. Similarly, using inertial data for activity recognition has
also been researched in depth. The approaches in both of these fields
have shown to perform well in their respective applications. In the
following, we summarize methods that can be used to support mul-
timodal activity recognition. Namely, we first look at separate meth-
ods for vision and inertial data. Afterwards, we consider research for
combining both of them.

6.2.1 Image Object Detection

In recent years, there have been advances in deep and neural network
based object detection. One prominent example is the TensorFlow Ob-
ject Detection API1, that integrates many popular architectures in one
easy to use API. The API offers deep learning based approaches for
object detection that rely on pre-trained models which were initially
evaluated on the Microsoft COCO object detection challenge [43, 57].
Given an image, the TensorFlow model generates bounding boxes for
potential objects and annotates them with object classes. Each anno-
tation is associated with a confidence value, allowing users to work
in-depth with the data. Thus, we decided to use this framework for
our methods. Many different neural network architectures are offered
and have their separate advantages. One typical trade-off is between
performance and run-time. A currently well-performing network is
NASNet with a Faster-RCNN [103] which yields an mAP score of
43.1%. In our case, we rely on a ResNet FPN model as described
in [56], as the reported performance of 35% mAP is still among the
best offered. However, it offers the advantage of a run-time that is sig-
nificantly lower than the state of the art network (1833ms vs. 76ms).

1 https://github.com/tensorflow/models/tree/master/object_detection
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Using these object information, we can work towards recognizing ac-
tivities.

6.2.2 Activity Recognition Based on Objects

Using object information for activity recognition, especially when
looking at complex activities like cooking for example, has been ex-
plored by many researchers [22, 50, 88]. For this purpose, the occur-
rence of objects and possibly also the interaction with said objects is
used to recognize an activity. Wu et al. [99] already showed good
results by detecting changes in objects positions, using an RFID sen-
sor as a way to validate the interaction. In this case, the camera was
stationary, pointing towards the location of the actions, thus making
the detection of change a feasible approach. Similarly, Lei et al. [54]
build their system on a RGB-D camera system, detecting activities in
a kitchen environment. Here, the focus was put on the recognition of
actions and objects, utilizing tracking methods, and object detection.
Adding a camera to a wrist-worn sensor is another approach for de-
tecting activities and was analyzed by Lei et al. [60]. A wrist-worn
camera has the added benefit of having interactions with objects al-
ways in frame. Also, the hand movement is synchronized with the
camera movement, making reasoning about egomotion vs. outside
movement easier. Recently, Kumar et al. [50] used off-the-shelf object
detection network and transfer learning to find correlations between
predicted object labels and ground truth data of activities. This ap-
proach is very promising, as it explores the transfer of deep learning
models in vision to models for activity recognition. One problem
image-based recognition models face in practice is a limited field of
view of the camera. When an activity occurs that is not fully cap-
tured within the field of view, the information is lost to a system.
Systems that use stationary cameras may not suffer too much from
this issue but involve an initial setup of a smart environment and are
less flexible in their usage. Therefore, we additionally look at iner-
tial data which also has been used by many researchers to detect and
recognize human activities.

6.2.3 Activity Recognition Based on Inertial Data

One main reason for the increased focus on inertial data for activ-
ity recognition is the rise in popularity of smartdevices that often
have a series of sensors (including inertial sensors) built into them.
In this context, inertial data typically refers to acceleration, gyration
and magnetic field data. Sliding windows in combination with accel-
eration data are a typical method to predict activities and have been
analyzed by many researchers before [51, 74, 81]. Especially activities
like walking, jogging, and climbing stairs have been predicted suc-
cessfully. Hereby, the position of the acceleration sensor is one impor-
tant factor that has been considered for the prediction [74]. Sensors
are often placed on the legs, the arms, and the torso of subjects and
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then evaluated either separately or in combination. Features that are
calculated from these windows are often from the time and frequency
domain and may consist of measures like mean and variance but also
more computationally expensive and complicated features like en-
ergy [87]. Apart from cyclic activities, researchers also use inertial
data to detect short activities or events. A common use case for short
activities is the detection of accidents like falls [28, 49, 91]. As our
scenario also involves many short activities, these methods are inter-
esting to our problem setting. Falling, however, is an activity with a
unique motion that is hard to mix up with other activities of everyday
living. Therefore, we cannot fully utilize the methods presented there
and have to adapt them to our needs. Algorithms that are commonly
used for classification in this field are Decision Trees[51], Hidden
Markov Models[81], and kNN[74]. But recently, Ordóñez et al.[71]
also employed neural networks for similar tasks. Here, it has been
shown that by adding new modalities (for example gyration data on
top of acceleration data) to a network, features can be extracted auto-
matically without the need for manual pre-processing. By using con-
volutional layers in their network architecture, every added modality
was adapted properly without the need for manual feature engineer-
ing. In our work, we rely on a sliding window approach, similar
to [87]. But in contrast to low-level activities, where the window size
can be fairly long, thus capturing abstract characteristics of an activ-
ity and better dealing with noise, we rely on short windows with a
high overlap between consecutive windows. This way we aim to cap-
ture the short nature of our activities within the windows while also
allowing for an easier fusion later. We looked at the separate meth-
ods for activity recognition using video and inertial data and are now
examining methods for fusing them.

6.2.4 Multimodal Activity Recognition

Previous work presents multiple methods to combine sensors and
to create and analyze multimodal datasets [19, 83, 88]. Scenarios
recorded in the datasets vary greatly and involve activities such as
office work [83], sport activities [19], and cooking [88]. Using these
datasets, researchers developed and evaluated different methods to
recognize activities. Some datasets [18] use a multimodal approach
that combines ambient and wearable sensors. Spriggs et al. [84] for
instance, fused vision and inertial data to recognize cooking activi-
ties. One problem that is central in dealing with multimodal datasets
is the fusion of sensors with different sampling rates. Inertial data
is usually sampled at a higher rate than video data, especially when
using off-the-shelf sensors. Spriggs et al. [84] solved this problem by
downsampling the inertial data to the capture rate of the video, thus
having a one-to-one mapping of frames to single inertial measure-
ments. When dealing with windowed feature, some of these prob-
lems can be mitigated. By defining windows via start and end time
rather than number of instances, one central timeline for data from
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different sources can be used. This allows for an easier merging of
the different modalities. Once a valid temporal mapping is available,
the problem of fusion methods can be addressed. Song et al.[83] pub-
lished their egocentric multimodal dataset which contains video and
inertial data from smartglasses. To recognize life-logging activities,
they developed and presented a fusion method for inertial and video
data. They combine the modalities with Fisher Kernels and could
reach a high level of accuracy. Other methods of fusing multiple
modalities often rely on Kalman Filters [6, 46], where the results are
often used in the fields of robotics. In these scenarios, however, the
camera and the inertial sensors are located at the same place. Thus,
both sensors capture the same motion. Our scenario has the inertial
measurement unit capture the movement of the arm, while the cam-
era is located on the subjects head, thus such fusion techniques may
not be easily applicable.

Multimodal activity recognition can also involve the combination
of stationary and wearable sensors. De et al. [25] has shown such an
approach for the healthcare sector. Here, both multipositional per-
sonal sensors and the combination of ambient and wearable sensors
have been utilized. For multipositional approaches, results use classi-
fication outputs of each sensor separately and yield an improvement
over single sensor usage. Combining ambient and wearable sensors
allowed for better classification in regards to location-dependent ac-
tivities e.g. opening a fridge or lying in bed. For complete stationary
sensors, one recent example was authored by Zou et al. [104] who
utilized stationary cameras and WiFi signals to recognize locomotive
activities. Using late fusion, deep learning models are learned for
each modality separately and finally combined with different ensem-
ble methods.

Radu et al. [75] explored deep learning for multimodal activity
recognition. Specifically, a RBM architecture has been applied, out-
performing shallow classifiers. For modalities, they used a public
dataset [85] that compares different sensors in smartphones and smart-
watches. Similarly, Guo et al. [40] utilized sensor ensembles for mul-
timodal activity recognition based on a neural network architecture.
The method combines heart rate signals with data from IMUs, with
a focus on ensemble learning. Similar to our approach, the models
are learned for each modality separately and finally combined with
a meta-learner. Combining vision and inertial data on a feature level
has also been proposed by Ehatisham-Ul-Haq et al. [35]. Here, HoG
features are used for RGB-D data and time domain based features
for inertial data. Features are fused early and used to train kNN and
SVM classifiers. Roitberg et al. [79] showed a multimodal approach
with multiple depth-enabled cameras for industrial manufacturing.
To calculate meaningful features, they captured skeleton information
from the sensors as well as the motion of specific joints. As the cam-
eras capture similar information, PCA was applied to reduce the fea-
ture space. Depth and RGB data was also combined by Wu et al. [98]
for gesture segmentation and recognition using neural networks. A
comparison of early and intermediate fusion was made based on the
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layer within the network the data was combined. Late fusion outper-
forms the results of earlier concatenation of the data. Radu et al. [76]
presented a deep multimodal approach that works for different types
of sensors, e.g. multiple inertial or multiple EEG sensors. For that
approach, they tested against shallow learning methods and could
show good results in most scenarios with their CNN and DNN based
methods. This shows, that similar architectures can work for different
modalities. In this work, we rely on a windowing approach for both
of our modalities. By aligning them and then using windows defined
by a timespan, our data can be merged and we can evaluate late and
early fusion approaches for our task.

Especially with goods like food, placing such sensors may not be
feasible on a bigger scale. This can be seen in practice in the currently
tested retail shops created by Amazon [44] where good results are
achieved but the amount of sensors needed is very high. In addition,
an interaction with an object that was registered via a sensor may not
translate to a properly performed activity (for example if a pill box
was touched by a user but no medicine was consumed).

We present our work on a multimodal egocentric activity recogni-
tion approach that relies on smartwatches and smartglasses to rec-
ognize high-level activities like activities of daily living. For that
purpose, we combine inertial and video information and try to take
advantage of each of their strengths. Particularly, we consider the in-
ertial data of our smartwatch to classify the movement pattern of the
forearm. The video data provides object information from the smart-
glasses. We aim to investigate to what extend vision information can
improve the recognition of activities that are hard to recognize purely
through motion sensing. This is especially the case when motions are
short or very similar (e.g., eating vs. taking medicine). We present
the results of our multimodal activity recognition approach based on
manually annotated video data. In addition, we test our approach on
a public dataset that contains data from similar sensors but set in an-
other scenario. Specifically, we look at the CMU-MMAC dataset [88]
that contains recordings of people cooking different recipes. Our con-
tributions in this work are:

1. We collected a new dataset with two subjects performing a set
of activities in two different environments with a focus on activ-
ities that are hard to distinguish as they involve similar motions
(e.g. eating and drinking) and are often interleaved. Each sub-
ject performed the activities in different human body positions
and at different speeds. Currently there are few datasets that
cover these scenarios thus other researchers in the field can test
their approaches on this dataset.

2. We present a new method and a baseline comparison for mul-
timodal activity recognition, utilizing deep learning models for
object detection and evaluating this method on our presented
dataset, achieving an F1-measure of 79.6%. We also apply our
method to the CMU-MMAC [88] dataset and can show that we
outperform previous work on the same dataset. Additionally,
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we test our method with a greater subset of the CMU-MMAC
dataset, as a recent publication offers more annotations [101].

6.3 dataset

In this work, we look at two separate datasets to test and evaluate
our developed methods. The first dataset was collected by us and
deals with a subset of activities of daily living. It focuses on activities
that are hard to distinguish just based on the inertial data, as they
involve very similar motions. The second dataset we looked at is
the CMU-MMAC dataset which contains a wider variety of activities
with more test subjects. Namely, the dataset has recordings of people
preparing different recipes in a test kitchen environment. In the next
two subsections, both our dataset and the CMU-MMAC dataset are
described in regards to content, size, and target classes. We also de-
scribe a new set of annotations for the CMU-MMAC dataset that has
been published recently. For our own dataset, we also go into detail
about the recording process of the data.

6.3.1 ADL Dataset

For this dataset, we recorded two test subjects performing different
activities in a typical home environment. All the recordings have
been done in an experimental setting and the test subjects consented
to have the data recorded and published. Furthermore, we remove
the audio track from all video recordings and cut away all video data
that was not part of the scenario. The egocentric video was obtained
from two angles: via smartglasses and a chest-mounted tablet. Ad-
ditionally, we recorded the test subject from a third-person view and
used the video for the annotation of activities. The subjects were
also equipped with smartwatches and smartphones to capture the
movement of their arms and thighs. Here, we recorded acceleration,
gyration, and magnetic field data for all sensors simultaneously. This
way, we only focus on the scenario and leave out any conversations
or other interactions of the subjects within the test environment. The
subjects performed common and interleaved activities which include
drinking (A1), eating (A2), taking medicine (A3), preparing meal (A4),
taking snack (A5), and wiping mouth (A6).

The procedure of the recording sessions was predefined, as the
whole dataset is not too big in size and variation would make proper
classification unfeasible. Hence, the subjects executed two certain se-
quences (A5, A3, A1, A5, A6 and A4, A2, A3, A1, A2, A6) where each
sequence was performed two times. Once, it was done in a natural
fashion and the other time with short interruptions between the in-
dividual activities. This way, we have scenarios where the activities
are easy to separate and others where they are slightly overlapping.
As these activities can be performed in several different postures, i.e.,
standing, sitting, and partly also lying, we recorded several sessions
for each posture separately. To add more complexity, the home envi-
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Figure 21: Distribution of classes per test subject using logarithmic scale as
the majority of class labels belong to the none class. It can be seen
that the majority class (excluding the none class) changes for each
subject.

ronment of the recordings switches between two different locations,
adding different backgrounds to the video. Overall, we recorded six
sessions per subject which results in 30 minutes of activities. Fig-
ure 21 shows the distribution of classes among the subjects in the
subset of sitting activities. The difference in distribution can be at-
tributed to differences in performing an activity, where subject1 for
example was taking more time to butter their bread than subject2.

The required data was collected using different smart devices2 (see
Figure 23) which were attached to the head (P1), the left (P2) and
the right (P3) wrist, the chest (P4), and also to the left (P5) and right
(P6) thigh. Video and inertial data was recorded with a resolution of
1920x1080 (25fps) and 50Hz, respectively. In this context, the param-
eters were chosen with reference to related studies [51, 70]. Data was
collected via an app that we developed(see Figure 22). Each device
was running an instance of the app and stores the data it receives in a
local SQLite database. Different sensors like temperature, audio level,
and others can also be captured via the application presuming the
device has said sensors built into it. The binary and the source code3

for the recording application are publicly available.
After the recording, we manually annotated the collected data on

an activity level defined via start and stop time and the performed
activity. Annotations are based on the third-person recording of the
data as this view fully captures the motion of the test subject. Egocen-

2 “Vuzix M100” (Glasses), “LG G Watch R” (Watch), “Tango” (Tablet), “Samsung
Galaxy S4” (Phone)

3 https://sensor.informatik.uni-mannheim.de/#collector
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Figure 22: Sensor data collector application. The application is able to
record a big set of sensors in Android devices including inertial
data, temperature, and audio for example.

Figure 23: Sensor placement. The subject wears the wearable devices on the
head, chest, forearm, and thigh (top-down).

tric vision can often leave out the proper start and end of an activity,
as the field of view of the camera does not allow to fully capture
all the movement. For labeling the activities we used the Behavioral
Observation Research Interactive Software [36]. On an object level, we
drew the required bounding boxes around the visible objects within
the egocentric video of the smartglasses. In this context, we marked
14 objects including bread, napkin, glass, knife, pillbox, and both hands.
Figure 24 shows an example of the bounding boxes and also high-
lights that most objects are usually blurred or partly out of frame.
Labeling of bounding boxes was done with vatic [90].

Data that was recorded on the same device (i.e. the smartwatch
paired to the smartphone) uses the same clock (namely the internal
clock of the android phone) and thus does not to be aligned. But
to further work with the data, we had to align all sources of data
to be able to work within one consistent time-space. To be able to
align the data easily, the test subjects started the recording with a
period of no movement. This way, we could pinpoint the start of
the movement for each sensor and therefore could calculate the time
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Figure 24: Example bounding boxes. It depicts a usual frame that was cap-
tured by our smartglasses. We draw the bounding box for each
object, even if it was only partly visible. The boxes were tagged
concerning the visibility state of the object.

difference among them. We annotated the start of the motion with
the boris annotation software for both the egocentric and third-person
video. Simultaneously, we mark the same point in time in the plot
of the acceleration data and store the resulting timestamp. Using
the alignment points, the activity labels can be mapped to any of the
collected sensor data. This means we can assign each frame of a video
a timestamp that is consistent with the timestamps of the acceleration
data.

Our labeled dataset is publicly available, including a detailed de-
scription and images of each subject and the environment4. In this
work, we rely only on the smartglasses and the smartwatches. With
such a setup, we try to maximize the recognition performance but
still use a fairly small amount of sensors.

6.3.2 CMU-MMAC - Quality of Life Dataset

The Quality of Life dataset [88] was created by the Carnegie Mellon
University and contains a large set of test subjects, cooking a total
of five different recipes. Modalities that were recorded include first-
person overhead video, inertial measurement units that record accel-
eration, gyration, and magnetic field data on different body positions,
audio from five different microphones, and in some cases even mo-
tion capturing data. With the recording of so many different sensors,
synchronization becomes an issue. The authors have used two dif-
ferent methods to address this challenge. First, the recordings of
the sensors we consider in our experiment (video and inertial data)
have been done centrally on one laptop that the subject is carrying
with them. This way, single frames and readings of the inertial data
are synchronized on one device, as they use the time of the laptop.
For the rest of the data, synchronization among the devices has been

4 https://sensor.informatik.uni-mannheim.de/#dataset_egocentric
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achieved by synchronizing the clocks on all computers with the NTP
protocol.

For our main analysis, we focus on a subset of recipes, the brownie
recipe, as labels for these recordings are provided by the original
authors. We use this dataset to analyze different challenges and ques-
tions that cannot be addressed in our own dataset. One question is
the behavior of our model when trained on a larger dataset. As we
only have two test subjects in our recordings, we want to use the CMU
dataset to test our method on a bigger dataset. The subset of the Qual-
ity of Life dataset contains thirteen different test subjects compared
to our two different test subjects. This yields more variation, as more
subjects are performing the activities and in total also more data is
available to train and evaluate our model. Another challenge is the
complexity of the labels which is already obvious due to the more
complex scenario of cooking. Annotations are given in the form of
verb-object1-preposition-object2. Here, the brownie recipe consists of 17

different verbs, 34 different objects and 6 different prepositions. Over-
all we counted 43 different labels in the subset we considered. With so
many classes, and some of them only having few instances, a learned
model would overfit to these instances resulting in biased numbers.
Additionally, the combinations of verbs, objects, and prepositions can
become very big (when all combinations are considered as a possible
target class) and our proposed method targets a closed set of activ-
ities (e.g. taking medicine in the ADL scenario). Thus, we decided
to group the labels in some form to be able to create a meaningful
model. To achieve this, we only look at the verb part of the activity
as our target class. While vision information is needed to determine
the objects used in the activity, only the verb part really benefits from
both inertial and vision data. Our assumption is that some activi-
ties with the same verb share common movement patterns but only
in combination with the vision information we can distinguish some
classes. This reduces the number of classes to 14 and also allows us
to compare our method to previous methods like [102] who also used
only the verb part of the activities. Figure 25 shows the distribution
of the different classes in the dataset that we consider in our work.

In total we looked at 13 different subjects, only considering the
overhead camera frames and the acceleration data on both arms in
our analysis. Data was aligned and trimmed with the provided syn-
chronization files, and afterwards cut to the length of the sequence of
activities.

6.3.3 CMU-MMAC - New Annotations

Recently, a new set of annotations for the CMU-MMAC dataset was
released that vastly increased the number of labeled scenarios. In
[101], the authors showed their approach for annotating the data
while also offering semantic annotations that can be used in other
experiments, e.g. when utilizing reasoning. Overall, they added an-
notations for three recipes and for all subjects, with the exception of
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Figure 25: Distribution of the classes we consider from the CMU-MMAC
dataset. The class label is derived from the verb part of the origi-
nal label.

Figure 26: Distribution of the classes we consider from the CMU-MMAC
dataset using the annotations from [101]. The class label is de-
rived from the verb part of the original label.

cases where the video files were broken and could not be used. An-
notations are mostly based on the first-person view, thus making it
easy to use with our previous approach.

To make learning activities feasible, we were only considering one
recipe: baking brownies. This way, we alleviate an issue with the
annotations and our problem description. Labels are given in a sim-
ilar fashion as they are on the official CMU-MMAC dataset website.
Namely, they use the form verb-object1-object2-...-object_n to properly
specify the activities, where the number of objects can vary depend-
ing on the scenario. An example would be the class (open drawer) vs.
(fill oil oil_bottle pan). However, this once again yields a huge number
of different labels (in the subset of brownie recipe, there is a total of
165 different annotations) which in turn makes learning each one of
them unfeasible especially since 59 of these labels have less than 10 in-
stances in the dataset. Instead, we are also only considering the verb
part of these annotations. When we look at all recipes, however, there
are a lot of cases where a verb is used with objects that are unique
for each recipe. This in turn makes the group of activities with the
same verb very heterogeneous, thus making it difficult to learn the
specifics of an activity. Therefore, to make the learning feasible and
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Figure 27: Windowing of inertial data. Windows have a length of 1s and an
overlap of 50% or 75%.

also compare the results to the original annotations, we only look at
the complete set of recordings for the brownie recipe. Similar to fig-
ure 25, figure 26 shows the class distribution of the verb labels in all
the sequences for the brownie recipes.

6.4 methods

6.4.1 Acceleration Data

Time domain Frequency domain

Mean, Median, Standard
Deviation, Variance, Inter
Quantil Range, MAD, Kurto-
sis, Correlation Coefficient,
Gravity, Orientation, Entropy
(Time)

Energy, Entropy (Frequency),
MeanDC

Table 13: Set of features from acceleration data. Features are in the time and
frequency domain.

To keep the number of used sensors minimal, we only consider ac-
celeration data from the smartwatches. Activities we aim to recognize
are mostly performed with the hands, allowing us to only consider
said wrist-worn sensors. Other inertial data that may be interesting
for activity recognition in our scenario is the data collected by the
smartglasses. One example for using the inertial data of smartglasses
may be to give a better understanding of when a subject is moving
their head to take a sip from a cup. Initially, we planned to only
consider data from the dominant hand of the test subjects, but as ac-
tivities were often performed with a mix of both hands, we decided
to use both. For our features, we use a sliding window approach.
Figure 27 visualizes the windowing of inertial data. To generate the
windows we use a framework we developed that is publicly avail-
able5. Here, the framework first takes all data for one modality and

5 https://sensor.informatik.uni-mannheim.de/
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calculates temporal windows based on a set of parameters it receives.
Thus, we transform the time series into a set of discrete windows
which allows us to analyze them separately. Temporal windows
also have the advantage that they can contain different amounts of
data points per window in contrast to typical windowing approaches
which are defined by the number of points they contain. Defining
the window size via a timespan makes the approach more robust
in potential real-world settings, as sensors may drop single readings
which would result in a shifting of the windows. After the windows
are defined, data points are added to the windows and each win-
dow calculates a set of features (described in Table 13). Some of the
features are in the time domain, others in the frequency domain. Gen-
erally, the prediction power of features can vary as we showed in a
related work [33], but in this scenario, we kept all features and let
the learning algorithm decide which ones to use. For the parameters
of the framework, we set the length of the windows to 1000ms and
overlaps of 50% or 75% (see Figure 27). We base our settings for the
window size on previous works in the field [87] as well as adapting it
to the scenario. Longer window sizes than 1000ms would not be fea-
sible, as the activities we consider are too short and windows would
contain multiple activities. Shorter window lengths, however, would
not capture enough specifics about the movement to properly distin-
guish the activities. The overlap allows us to look at the dataset with
a finer resolution which, given the short nature of some of the activ-
ities, can be very useful. For motions like raising an arm towards
a glass or picking up items, inertial data may be sufficient. But to
properly detect the different activities, we also have to consider the
visual information. This is because acceleration information may not
be able to differentiate between objects, e.g. in the cases when food
or medicine is picked up.

6.4.2 Video

Video features in our model are based on object information within
the frames. To recognize the objects, we use a pre-trained object de-
tection neural network and transform its results into feature vectors.
As described in Section 6.2, we use bounding boxes of a ResNet FPN
network. Masks of the objects were also considered initially. But
the added benefits of more details are outweighed by the signifi-
cantly longer run times for detection and the comparison with our
ground truth, which is present in bounding box format, not being
ideal. When looking at the activities from the first-person view, we
can see that a main component of the activity is the interaction of
the test subject with different objects. We assume that interactions
with different objects are a good indicator for an activity and pre-
liminary experiments verified this assumption. In these experiments,
labeling the interaction with a video annotation tool, and using these
interactions as a feature vector, we could show a very high perfor-
mance of the model (close to 100% accuracy). It thus can be seen that
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Figure 28: Pipeline for the image feature generation

recognizing interactions of a person with their environment should
be one main goal of our approach. Our estimation of an interaction
works by looking at the overlap of bounding boxes from a detected
hand and any other type of object. Therefore, we first pre-filter the
frames and only consider those that contain a positive detection for
a hand (which is labeled as a person within the target-classes of our
neural network). In these frames, we then calculate the overlap of
each detected object’s bounding box with the hand’s bounding box.
This results in a vector with the length equal to the number of ob-
ject classes that can be detected by the neural network not counting
the person class (as an overlap of the hand with itself does not add
any information). The rest of the frames are assigned to a vector of
the same dimension filled with negative ones as values for each in-
teraction. For each frame, we thus get a feature vector that describes
which objects are present in a frame and how much they overlap with
the detected hand.

To further work with the generated image features (and especially
combine them with the inertial data), we apply another windowing
approach to them. Here, we consider a window of frames where we
calculate the average overlap of each object with the hand within the
window. For the window size, we choose a value of ten frames with
a stride of five. We use windows, as within the video a hand often
hovers over different objects when performing an activity. Therefore,
overlaps are often calculated even though no interaction with any
objects occurred.

We assume that interactions with objects yield a longer span of
time where the detected hand overlaps with the object. Thus, the
mean overlap within a window is greater for interactions than an
overlap of the hand when only passing an object. The whole process
of extracting vision features is described in Figure 28.

To evaluate the approach further, we run the experiments on the
learned image features as well as on object annotation ground truth
data. This way, we can analyze the reliability of the vision features
without dealing with wrong or missing classifications from our ob-
ject detection network. As we do not have object annotations for
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Figure 29: Pipeline for the fusion of the modalities. The top pipeline shows
our early fusion method, the bottom one our late fusion ap-
proach.

the CMU-MMAC dataset, this step could only be done on our own
dataset.

6.4.3 Combining Both Modalities

Given the two modalities, we now try to estimate the activities that
the subjects perform. For that purpose, we have to define a method
to combine both features to be used in one machine learning model.
Before we combine the data, we first have to align both modalities
which we described in Section 6.3. Since the data may start at differ-
ent times, we consider the biggest temporal overlap of the data. Here,
we consider the latest starting point and the earliest ending point
among all modalities for each scenario. Points of data that are earlier
or later than the respective starting and endpoints are not considered
for the experiments and are discarded. The resulting data will later
be used for training and testing. From the trimmed data we calcu-
late our features as described before. As our windows have temporal
information, we can map the windows to each other and have one
consistent dataset. Consider as an example a video window wvid

with start and endpoints ts and te. When windows are of the same
length for both inertial and video data, we can map them one to one.
Otherwise, we can find all matching inertial windows wimu by filter-
ing for start and end time and requiring them to be in the range of ts
– te. The first approach we test is early fusion, where we concatenate
the feature vectors of all three modalities and learn one model. This
way, all information is immediately present in the model and classi-
fiers can choose what features to use. For the scenarios where the
window size varies, we order the matching inertial windows by time
and concatenate them in that order. Figure 29 shows a simplified
flow diagram of the fusion approach (seen at the top). For simplicity,
the inertial data is shown as one flow, though we use two sensors
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there. Another approach is late fusion learning, seen at the bottom
of Figure 29. Here, we first concatenate both inertial windows and
learn a model for this subset of features. Simultaneously, we learn
a model for the image windows. For both modalities, we return the
class probabilities and append them to the feature vectors. Finally,
we concatenate both feature vectors with the added probabilities to
one big feature vector. Using these combined features, we once again
learn a model to predict the activities. This approach separates the
modalities first, thus giving each model the chance to learn specifics
for each modality. Furthermore, we can leverage different machine
learning algorithms for each sensor type. As the features for each
modality represent different aspects of the activity, using separate al-
gorithms could be beneficial for the overall results.

To gain more insights about each modality, we report the perfor-
mance of each sensor separately in addition to the final performance.
This way, we can also see if the different sensors work best with differ-
ent learning algorithms. The next section describes the experiments
in greater detail and presents the results.

6.5 experiments

6.5.1 ADL Dataset

For the experiments, we consider each subject separately and test our
model with a cross-validation. A cross-subject setting could be used
with a bigger dataset, but since this dataset includes two subjects it
is not feasible to learn a model this way. To test for stability in the
smaller datasets, we run each cross-validation 100 times with differ-
ent folds and check for similar results. As we want to have a deeper
insight into the influence of each modality in combination with dif-
ferent classifiers, we test different combinations of classifiers for the
multimodal settings. Configuration parameters include the classifier
that is used for the late fusion learning, which modalities are used,
and whether ground truth or the neural network bounding boxes are
used. For classification, we use Random Forest and Logistic Regres-
sion algorithms. We also tested other classifiers like SVM, but the
results were most promising with the algorithms mentioned above.
When we consider all modalities, the classifiers used for the separate
sensors are Random Forest for acceleration data and Logistic Regres-
sion for vision data. This way we keep the single modalities fixed
and only change the fusion learning algorithm, reporting its perfor-
mance at the end. We also tested early fusion, but this yielded an
overall performance loss for the classification in our cross-validation
evaluation.

Using a sliding window approach with overlap poses a problem:
two consecutive windows may end up in the training and the testing
set respectively. Since windows are overlapping, theoretically these
overlapping parts of the data are part of windows in both training
and testing. To avoid this, we sampled our data depending on which
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modalities we evaluate, making sure that no data is present in train-
ing and testing simultaneously. In both the vision and combined
approach, the windows are based on the vision windows. As it has
an overlap of 50%, we consider every other window and, in the case
of the combined approach, the respective IMU window. When con-
sidering only acceleration data, the overlap of windows is 75%, thus
we consider every fourth data point in the experiments. In this spe-
cific case, the amount of data available can be fairly small for some
of the very short activities, resulting in folds with very few instances
for some classes. Therefore, we use a five-fold validation in these sce-
narios instead of a 10-fold cross-validation. The results are reported
as an average of both test subjects.

Config Precision Recall F1-score

RF_IMU 0.673 0.556 0.609

LR_IMU 0.516 0.392 0.446

RF_VIS_GT 0.872 0.622 0.726

LR_VIS_GT 0.855 0.590 0.698

RF_VIS_LEARN 0.506 0.367 0.425

LR_VIS_LEARN 0.721 0.337 0.460

RF_ALL_GT 0.843 0.754 0.796

LR_ALL_GT 0.897 0.753 0.819

RF_ALL_LEARN 0.816 0.709 0.758

LR_ALL_LEARN 0.880 0.722 0.793

Table 14: Different configurations for our learning method. Values are re-
ported as an average over each class and for both subjects. RF =
Random Forest, LR = Logistic Regression, ALL = both modalities
were used, VIS = only vision features, IMU = only acceleration
features, GT = ground truth vision, LEARN = vision features that
have been detected by our neural network.

Table 14 shows that the best configuration uses all modalities and
Logistic Regression as the fusion learning algorithm, yielding a F1-
measure of 79.3% (leaving out the ground truth vision scenarios). As
expected, the results for using only vision features are far higher
when assuming perfect vision. The gap in performance can most
likely be attributed to the object detection algorithms that we use. Es-
pecially with our scenarios including different environments and a
camera sensor of lower quality, pre-trained object detection can still
classify many objects wrongly. With a bigger dataset, a custom model
could be trained that may yield an improvement for the vision results.
Considering the results of the inertial data classification, a great dif-
ference in performance among the learning algorithms is visible. This
is in line with the analysis of related work that shows that Random
Forest classification works well with inertial windows [87]. The com-
bination of the sensors, however, is helping the results overall. Espe-
cially given the fact that these results are achieved with a pre-trained
object detection model. Overall, the results of the classification tend
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to prefer a high precision at the cost of recall which is beneficial in
our scenario, as a sequence of correctly classified activities with some
windows not assigned at all can still be used to reconstruct the cor-
rect order of activities. In the next step, we take a closer look at the
separate classes and their performance using the best configuration
from the previous experiment.

Class Precision Recall F1-score

none 0.928 0.986 0.956

drink_water 0.886 0.62 0.729

eat_banana 0.868 0.511 0.643

eat_bread 0.867 0.749 0.804

prepare_bread 0.891 0.929 0.909

take_meds 0.894 0.676 0.769

wipe_mouth 0.837 0.585 0.688

Table 15: A closer look at the results for our best configuration for each ac-
tivity separately. Both vision and acceleration features are used in
combination with Logistic Regression.

Table 15 shows the results for all classes, broken down for each
class separately. At first glance it can be seen that the performance
varies among the different activities. A great performance can be
achieved for the bread preparation class, with an F1-measure of 90.9%.
One possible explanation for the good performance is the uniqueness
of the features for both modalities we use. In the case of inertial data,
the motion of buttering a piece of bread is distinctively different from
the other activities which all involve some sort of grabbing or lifting
motion. For the video data, this scenario also offers unique views,
as the test subjects were looking down on their plate and focusing
on it and the bread. Most of the other classes are performed with an
overlook of the table, thus resulting in a similar scenery. Additionally,
this activity, in combination with eating bread, was performed the
longest by the subjects, yielding more instances for training.

Eating a piece of banana and wiping the mouth after eating are the
worst-performing activities, yielding F1-measures of 64.3% and 68.8%
respectively. There are separate reasons for both classes. In the case
of eating a piece of banana, the shortness of the activity is the main
problem. Test subjects were eating just one piece of fruit which is
readily available on the table. Thus, the activity is very short, only
offering few unique aspects to be learned. Wiping the mouth has
the issue of hard to detect objects. The napkin is often only partially
visible, parts of it hidden underneath a plate. This makes it difficult
for the object detection algorithm to detect the object.

6.5.2 CMU-MMAC Dataset

For the experiment on the CMU-MMAC dataset with the original an-
notations, we evaluate the whole dataset among all subjects. Another
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approach would be to learn classifiers for each subject individually,
but this is not feasible with the amount of data available. Here we
also run the experiment 100 times and calculate the average precision,
recall, and the resulting average F1-measure.

Config Precision Recall F1-score

RF_ALL 0.748 0.436 0.551

LR_ALL 0.738 0.482 0.584

RF_IMU 0.727 0.440 0.548

LR_IMU 0.230 0.115 0.153

RF_VIS 0.400 0.269 0.321

LR_VIS 0.395 0.236 0.295

Table 16: Results for CMU-MMAC dataset. Here we use the same method
as above for our experiment. As we do not have bounding-box
ground truth data, we can only learn on the output of our neural
network.

Given the harder task of the CMU-MMAC dataset, we achieve a
lower F1-score of 58.4% (see Table 16). This is not surprising, given
the setting of the dataset, where a larger amount of subjects perform
a greater set of activities, both adding more variation to the dataset.
The bad performance using the vision features is also striking, with
the performance going down to 32.1%. One explanation for this score
is the reduction of the annotations to just the verb part. Annotations
for the dataset are provided in the form of verb-object1-preposition-
object2. As this results in a very huge set of labels with small amounts
of instances per label, we reduce the annotations to just the verb.
Thus, activities like open-brownie_box and open-cupboard_top_left are
assigned the same label, even though they are performed on very
different objects and in different situations. Vision features in this
context are relying on the objects visible in the frame and thus have
issues to properly differentiate the various activities. What is also
striking is the fact that on this dataset the vision features perform
better with a Random Forest instead of the Logistic Regression as it
was the case in the ADL dataset. When looking at the acceleration
data though, the results are fairly good. This is in line with results
in [31] (Chapter 3) where it was shown that hierarchical clustering of
the activities tends to favor activities with the same verb. Therefore,
acceleration data is able to represent similar activities in a similar
fashion. However, in the context of this dataset, Logistic Regression
does not seem to be able to properly learn a model for the inertial
data. We could already see that Logistic Regression performs worse
on our dataset when applied to acceleration data. This effect is even
stronger in the CMU-MMAC dataset, most likely because of the big-
ger set of labels that have to be recognized. Random Forest behaves
similar in both cases and yields good results which is in line with
previous research [87]. As object annotations for the videos are not
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present in the CMU-MMAC dataset, we cannot run experiments on
perfect vision.

To look deeper into the classification results, we consider the IMU
classification results on their own and show the performance for each
class.

Class Precision Recall F1-score

close 0.516 0.062 0.111

crack 0.757 0.389 0.514

none 0.674 0.783 0.724

open 0.690 0.481 0.567

pour 0.601 0.613 0.607

put 0.752 0.460 0.571

read 0.834 0.551 0.664

spray 0.890 0.726 0.800

stir 0.744 0.811 0.776

switch_on 0.859 0.630 0.727

take 0.708 0.648 0.677

twist_off 0.824 0.188 0.306

twist_on 0.793 0.196 0.314

walk 0.695 0.215 0.328

Table 17: A closer look at our best performing configuration for the classes
in the CMU-MMAC dataset. The model was learned in a 10-fold
cross-validation among all subjects.

Table 17 shows our findings. Good performance can be seen in
classes like spraying and stirring with a F1-score of 80% and 77%
respectively, while generic classes like walking or closing are not rec-
ognized very well. This seems to be in line with our assumption that
the acceleration data is able to distinguish specific activities (i.e. stir-
ring involves a motion that is very unusual compared to the others)
and has problems distinguishing verbs that are very generic.

To compare our results, we evaluate against a previous approach [102]
that uses the same scenario for their dataset (i.e. the brownie recipe of
the CMU-MMAC dataset) and also the same approach for reducing
the labels. They use a novel classification approach on SIFT features
from the video frames of the dataset. To fit the evaluation of the work,
we modify our training to use the first eight of the test subjects for
training and the last four for testing. In this scenario, we also used re-
sampling of the data to simulate an even class distribution. We report
the results in the form of the F1-measure for each class. It can be seen
that with the exception of the pour and the none class, our approach
outperforms previous results. Overall, this evaluation setting shows
a performance drop, as we consider a fixed split that only allows for
a small training set. This way, we are also encountering the difficult
problem of cross-subject learning, which we did not consider in the
previous experiments. What can be seen though, is that some classes
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Class Baseline* SSVM* PR-SSVM* Our approach

close 0.0 0.006 0.01 0.045

crack 0.065 0.035 0.053 0.124

none 0.075 0.195 0.251 0.198

open 0.098 0.124 0.152 0.181

pour 0.140 0.266 0.276 0.126

put 0.087 0.079 0.121 0.247

read 0.0 0.008 0.037 0.039

spray 0.016 0.013 0.016 0.074

stir 0.352 0.148 0.294 0.587

switch_on 0.038 0.043 0.042 0.098

take 0.075 0.195 0.139 0.234

twist_off 0.0 0.024 0.036 0.055

twist_on 0.0 0.02 0.025 0.047

walk 0.0 0.0 0.083 0.094

Table 18: Comparison against state-of-the-art approach. Values marked with
a * are directly taken from [102]. Here the model is learned on 8

subjects and tested on the remaining 4.

like stirring, putting and taking can be learned across subjects given
enough training-data. Evidently, these are also among the classes that
occurred the most in the dataset (see Section 6.3, Figure 25).

We can see that the combination of inertial and video data yields a
better result than each sensor on its own. Depending on the activity
that should be recognized, modalities perform differently as they are
relying on the variation within the data. Inertial data, for example,
may not be as expressive when the activities that are to be distin-
guished are very similar in motion. Thus, it makes sense to consider
the combination of both modalities to predict high-level activities.

6.5.3 CMU-MMAC - New Annotations

Next, we consider the new annotations provided by [101] to learn
on an even bigger set of activities for the CMU-MMAC dataset. As
done with the original annotations, we test early and late fusion
approaches in this scenario. For our experiments, we consider the
annotations for the Brownie scenario with 28 different test subjects.
With the increased dataset, however, it was also feasible to run a grid-
search on the dataset to properly tune the classifier. Here, we use a
fixed split for training and test data, with a split of 80% for training
and 20% for testing. Then we run a grid-search with a 5 fold cross-
validation on the training data for each classifier, finally evaluating
on the test dataset. For the random forest we tune these parameters:

• Number of estimators

• Maximal depth of trees
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• Min samples per leaf and per split

• The number of features to consider when splitting (all, or
√
n_features)

For the logistic regression we consider:

• Number of iterations

• Optimizer type (newton, simple)

• Distance C

Config Precision Recall F1-score

LR_EARLY 0.430 0.326 0.337

LR_LATE 0.378 0.323 0.329

RF_EARLY 0.831 0.604 0.664

RF_LATE 0.572 0.626 0.574

Table 19: Overall performance of different classifiers using early and late
fusion. Late fusion dropped in this scenario.

Results on the new dataset improve, with the new best model im-
proving the F1-measure by 8%. After running all experiments, we
can see that the performance for logistic regression is worse than the
random forest. These results differ from the previous experiments. It
suggests, that the logistic regression cannot fully abstract on a bigger
dataset and thus the random forest is the overall better choice. Fully
comparing the results is difficult, however, as the annotations for the
dataset are similar to the original, but not the same. For the next step,
we again look at the performance of the single classes to see if similar
patterns can be seen.

Class Precision Recall F1-score

clean 0.947 0.409 0.571

close 0.764 0.479 0.589

fill 0.748 0.967 0.844

open 0.720 0.696 0.707

other 0.866 0.615 0.719

put 0.665 0.537 0.595

shake 1.000 0.270 0.426

stir 0.904 0.977 0.939

take 0.620 0.595 0.607

turn_on 0.976 0.840 0.903

walk 0.935 0.256 0.402

Table 20: Detailed evaluation for classes in the bigger CMU subset with the
best configuration which is a random forest with early fusion.

Table 20 shows the results of our run on the greater subset of the
CMU dataset for each activity separately. Overall the results are very
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promising and show an improvement to the previous experiments.
This makes sense, as the dataset size is increased greatly. Some trends
that could be seen in the previous experiments are also present in the
results of this experiment. Stirring, a class with a very unique motion
and long sequences of data, can be recognized fairly well. Classes
like walking though, are still hard to classify as they do not contain
enough inertial cues in the wrist-worn sensor. Considering a sensor
that is attached to the legs may yield better results, but would increase
the overall amount of sensors which is why we left it out. A direct
comparison to the original data is difficult though, as the annotations
are not done by the same annotators and also use different classes. It
can be seen though, that even the classes that were very difficult to
classify with the original annotations (e.g. walking and closing) have
improved with the bigger dataset. Overall, using a fused approach
with a multimodal setting seems to be promising to classify human
activities.

6.6 discussion

The results of the experiments show, that combining vision and in-
ertial data is a promising approach for classifying human activities.
It is helpful especially in those cases, where either of the modalities
is not capable of capturing specific aspects of an activity. An exam-
ple would be the consumption of a snack compared to the intake of
medicine where an inertial sensor may have problems distinguishing
the activity, as it relies to some extent on the objects used. However,
the approach can still be extended. Estimating interactions with ob-
jects is one important aspect. Using the overlap of a hand with an ob-
ject can yield good results, but especially in frames with many objects,
a lot of overlap can exist. In these cases, motion tracking information
of objects could help, as it may be used to detect the movement of
objects. However, motion tracking is especially difficult in a scenario,
where an egomotion of the camera is present which is the case in the
datasets we consider. Furthermore, as there is no depth information
present in the data, an overlap cannot fully represent the interaction.

Another aspect to consider in this work is the issue of privacy. Sys-
tems that recognize activities always bear the challenge of privacy
concerns, especially when video cameras are used in the process.
When a video camera is recording a user or from a user’s perspective
for a long period of time, it may capture activities that are deemed
sensitive. We believe that smart devices can help to mitigate the pri-
vacy concerns that arise when using cameras. For one, processing
and calculation of the data can be done offline within the home envi-
ronment where such a system is in use. Additionally, when on-the-fly
classification becomes feasible, video data may not even be stored but
just processed as a stream, in the end only using object information.
In this context, if the set of objects that can be detected is kept to a
minimum, the amount of sensitive information processed can be re-
duced greatly. This way, potentially no data is leaked to the outside
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which may help to mitigate possible concerns. Another aspect could
be the utilization of the smart device to recognize the context of a
user. The camera could for example be turned off when a user is in
a certain room or at a certain time where their privacy concerns are
very strong (e.g. in the context of personal hygiene).

We also considered using other sensors for the recognition, like
depth or infrared cameras that may seem less intrusive at a first
glance. The obvious downside of these devices is their relative low
availability in smart devices, making it difficult to easily use them
with current technology. Depth cameras, for instance, have become
more common in consumer hardware in recent years, but still are not
as prevalent as standard cameras. Additionally, the amount of sensi-
tive information collected by these types of cameras is comparable to
that of a standard camera and in some cases even higher, making the
privacy concerns an even harder problem to solve. Infrared cameras
for instance can relay much more information about a person that is
recorded just by the temperature data it collects. On top of that, there
are also practical issues in our scenario. Depth cameras, for exam-
ple, are bound to a minimum and maximum distance they are able
to capture. With a person wearing such a camera for an egomotion
recording, many interactions close to the user may not be captured
by the camera. Overall, the usage of cameras can be challenging in
a live system, but we believe that considering the added information
gain of the modalities and using a proper and privacy-aware imple-
mentation, such challenges may be overcome.

6.7 conclusion and future work

In this work, we presented a new multimodal dataset that includes
activities of daily living. It poses the challenge of similar activities,
namely food and water consumption, and medicine intake. All ac-
tivities in the dataset were performed by two subjects at two differ-
ent locations. The collected data includes acceleration, gyration and
magnetic field data from 6 different body positions and videos from
three different angles, two of which are egocentric. Based on this
dataset we present a method for recognizing activities, using win-
dow features with fused video and acceleration data. Here, we use
time and frequency domain features for the acceleration data and ob-
ject information, encoding hand interactions, for the vision data. For
the recognition of objects in a frame, we utilize a pre-trained neural
network where we use the overlap of the subject’s hand with objects
in a frame as a feature. After learning a model for each modality
separately, we fuse them together and learn an overall model using
Random Forest and Logistic Regression classifiers. This way, we were
able to achieve an F1 measure of 79.6% on our presented dataset and
58.4% on the CMU-MMAC dataset (66.4% for the bigger subset). We
also show that we beat a state of the art activity recognition approach
for the CMU-MMAC dataset. Both scenarios (ADL and cooking) pose
different challenges for our approach. For our dataset, the similarity
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of the activities is challenging when considering acceleration data, as
the difference of the actions is mostly rooted in the interaction with
different objects. The CMU-MMAC dataset contains a wider variety
of activities by a greater number of subjects, thus including more vari-
ation in the data. We can show that our approach is promising for the
recognition of activities in a multimodal setting, including the usage
of off-the-shelf sensors build into smart devices. Especially when uti-
lizing the new bigger set of annotations for the CMU-MMAC dataset,
we could see that results improve when more data is available.
In future work, some aspects of the method could be adapted. For the
features, parts like the object detection network could be exchanged.
If we are able to get bigger sets of object annotations also for the CMU
dataset, transfer-learning a model may be a feasible approach to get
better object information. We could also re-evaluate the selection of
modalities. So far, we focus on a relatively small subset of modalities
to analyze, as we want to utilize as few devices as possible. Still, it
may be interesting to evaluate different and greater sets of modalities
for our goal, keeping in mind not to over-fit the approach. Gyration
and magnetic field data are obvious candidates, as they are recorded
alongside the same sensors already. Fusion techniques could also be
changed, where for example different lengths of windows are used
for each modality. Between this bigger set of overlapping windows,
boosting or voting mechanism could learn the best fusion strategy.
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7
C O N C L U S I O N

In this work, we analyze the process of activity recognition from the
labeling effort up to the classification task. We could see that activity
recognition has multiple applications in the real world, making it an
interesting and viable topic of research, even for the future. Specifi-
cally, the multimodality of our approaches yields interesting results
and a contribution to the research field.

Compared to many other fields, data gathering and annotation take
a significant amount of time for relative small dataset sizes. There are
multiple reasons for that. Activities can be partially occluded or over-
lapping which makes identifying the start and the end of the specific
activity difficult. Additionally, since we are working in a multimodal
setting, annotations are typically made on one modality and then
mapped to the others. As this is often done on video data, decisions
about the start and the end of single activities can vary greatly among
different annotators, especially when the activities are strongly inter-
leaved. On top of that, the granularity of the target-activities can
have another huge impact on the annotation time. Here, annotating
activities top down (i.e. first activities, then actions) can speed up the
process and make the annotations more consistent. We could show
that using templates of activities, we can make labeling suggestions
that are very close to the actual activity. This was evaluated by mea-
suring the temporal distance of the suggestion to an actual activity
in our datasets. The method was evaluated on two different datasets,
both dealing with arm movement activities. Overall, a need for more
intuitive and fast annotation tools is still present in the field. Thus
more research can be conducted here.

We then looked at different methods for the segmentation of raw sen-
sor data. Activity recognition often includes the detection of activities
of various lengths. Therefore, we wanted to investigate if it is possible
to separate them before we classify the segments. For this purpose,
we tested a set of methods to see how well we can split up the raw
data only based on inertial information. We could see, that the results
are not satisfactory with the methods we evaluated. This is due to the
fact that the dataset we considered has a lot of interleaved activities
as well as ambiguous motions with different labels. Therefore, typical
indicators like energy values going up due to the start of a movement
may not work properly in this scenario. Our work shows that activ-
ities in scenarios with more complexity are way harder to segment
when compared with typical locomotive activities.

For the final part of our work, we examined two use cases for activ-
ity recognition and evaluated how multimodal approaches influence

95

[ May 24, 2021 at 9:42 – classicthesis version 4.2 ]



96 conclusion

Data gathering

• Plan 
scenarios

• Record 
modalities

• Align 
sensors*

Data annotation

• Define label 
granularity

• Align 
sensors*

• Create 
annotations

Pre-processing

• Segmentation 
of data

• Feature 
generation

Learning

• Learning 
models

• Tune 
parameters

• Evaluate

* Sensors can be aligned while gathering data or as a pre-processing step before annotation 

Figure 30: Typical pipeline for activity recognition

the results. When we consider the industry case in the form of our
picking dataset, we could see promising results in the form of detect-
ing picking motions. Here, the multimodal aspect of our approach
could be helpful, as results were improving greatly when the combi-
nation of sensors was used. With the addition of barcode scanning,
such systems could run in the near future, making hands-free oper-
ations more feasible in warehouses. In the second case, we looked
at different fusion and classification methods for multimodal activity
recognition in different scenarios. Namely cooking activities and ac-
tivities of daily living. For these scenarios, we looked at early and
late fusion methods to classify movements of test subjects and also
compared the impact of the different modalities on the classification
results. It could be seen that the combination of the modalities works
well together, giving the overall best results. Vision on its own is giv-
ing great precision while inertial data yields better recall. Our vision
features based on pre-trained neural networks for object detection
could improve the results compared to earlier work in the field. In
so far, our experiments were indicating a promising trend for multi-
modal activity recognition.

If we consider Figure 30, we can see that our work touched upon
every aspect of the activity recognition pipeline. We have provided
a new dataset for ADL activities that are performed in different hu-
man body poses, with a focus on hard to distinguish target classes
involving the consumption of food and medicine. Then, based on
data for warehouse picking and our ADL dataset, we developed a
method for labeling support that allows us to speed up the process.
Segmentation was explored by us, though we could not find a rea-
sonable method for our use cases as we consider fairly complex activ-
ities. Finally, in our work, we have contributed to the field of activity
recognition with multiple publications that explore new methods for
feature generation in both industry and personal settings. In general,
we can see that the whole field of activity recognition offers a lot of
directions researchers can examine, with many sub-tasks being avail-
able for exploration. We analyzed a small part of multimodal activ-
ity recognition, leaving out bigger fields like event-based approaches
and multi-user scenarios among other topics. As the trend for more
smart devices and also smart sensors continues (as can be seen with
the trend in IoT), new possibilities for better recognition systems open
up. Up to this point one of the main applications of activity recogni-
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tion in the personal sector is for sports activities and personal health
as well as navigation to some extend. However, activity recognition
is currently lacking when it comes to the interaction of a person with
their environment in the digital space. Some environments start to
be digitized, but the different devices are usually considered inde-
pendently. In this sense, activity recognition could benefit from ap-
proaches that are present in the field of augmented reality. For more
sophisticated ubiquitous computing solutions, the interoperability of
different devices has to be ensured. Ideally, it would be possible to
have ad-hoc systems that can adapt easily to the environment that
they are used in.
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F U T U R E W O R K

While we did work on the full pipeline of activity recognition, many
things are left to be explored in this field of research that we could not
consider at this point in time. We take a look at each subtask of the
pipeline to identify possible extensions and new directions research
can take to extend the field. In the first step, we have to consider
data collection. Right now the community does not have a lot of
adequately sized datasets to develop and evaluate their methods, as
collecting them for multimodal scenarios is very time-consuming. Er-
rors while recording are often difficult to fix and with an increased
number of sensors, the amount of points of failures grows as well.
What we do find, however, are many vision-based datasets that un-
fortunately do not contain inertial data information since the focus
is mostly on purely vision-based solutions. Here, a huge effort has
to be undertaken to close the gap and make more sophisticated ap-
proaches viable. An idea could be to crowdsource the collection of
the data. In recent years, the amount of people streaming their lives
online has increased significantly, with many people streaming parts
of their everyday life like cooking, playing music, or other hobbies.
Researchers could try to build tools that make it easy for volunteers
to collect data during their stream, e.g. by collecting video feeds in
addition to smartwatches worn by the streamer.

For the step of data annotation, the main focus should be ease of
annotation. Assuming larger datasets can be gathered sufficiently,
the labeling of such datasets should be made easier to accommodate
for the amount of data. With our contribution, we showed a method
for faster labeling tools by utilizing templates for actions based on
inertial data. What was left unexplored is the usage of video data
for faster annotation. If labels are backed by some form of knowl-
edge, we may be able to associate objects with activities. By detecting
said objects, the task of finding activities could be sped up even more.
Combining this approach with a well-made crowdsourcing solution
(similar to the implementation in [90]) would enable the community
to build datasets more easily.

The next step in the pipeline is the segmentation of the data. Our anal-
ysis in this part was rather rudimentary and many more approaches
could be tested. As already mentioned in the labeling step, consider-
ing the video information could be a big part of future work. While
it is true that a limited field of view may not capture the exact change
of activity, cameras are constantly improving, with better viewing an-
gles and higher resolutions becoming more common over time. This,
in addition to background knowledge about activities and objects,
could make a segmentation based on video data possible and maybe
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even lead to more unified approaches of segmentation and classifica-
tion of activities.

Lastly, we consider the feature engineering and the classification of
the activities. One direction could be the usage of elaborate deep
learning approaches. It has been shown in recent years that neural
networks can cope well with multimodal input data, even from dif-
ferent types of sensors [71]. The advantage here would be that less or
even no manual feature generation has to be done, as the network ex-
plores the data on its own, finding correlations between different sen-
sors independently and even creating its own representations. Such
a unified approach would have to be compared to traditional sensor
fusion methods to see how much improvement can be made. In other
fields, like computer vision, it already has been shown that an end to
end approach using neural networks matches and outperforms man-
ual feature generation. It would be interesting to see how well this
phenomenon translates to activity recognition.

Furthermore, exploring the usage of transfer learning to make mod-
ern neural network methods easily applicable for activity recognition
would be in a similar category. Here, researchers would have to first
identify which networks contain sufficiently similar knowledge such
that it is feasible to transfer it to the activity recognition scenario. One
such candidate could be the active research field of object detecting
neural networks. It would be interesting to see, if an object detect-
ing network could easily be adapted to an activity recognition net-
work. Potential challenges are maybe posed by activities that share
a similar view in single frames but that involve very different move-
ments. Here, the addition of inertial data to the network input could
be beneficial. Considering short video sequences as an input instead
of single frames could be another approach. At this point, it still has
to be shown that the transfer of a pre-trained model with so many
alterations to the network is yielding positive results.

Alternatively, a reasoning based approach could be another viable
solution for a more complex activity recognition system. Assuming
that single parts of activities can be detected reliably, the results of
those models may be collected into one cohesive sequence of activ-
ities and/or actions. Using some sort of ontology that captures the
activities that are to be recognized, reasoning solutions may construct
higher levels of activities they derived from the more fine-grained in-
put sequences. In this case, it would be especially interesting to ana-
lyze how fine-grained the target-classes of the initial models are set
and respectively how much engineering effort has to be put into de-
signing the ontology. If we assume that different modalities are best
captured by different machine learning approaches (which our work
in Chapter 6 indicates), then reasoning based solutions gain a signif-
icant advantage as they are not bound to have one unified model for
all modalities. They could also be used to extend existing smart home
activity recognition systems. On top of adding new activities that the
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system recognizes, existing detections may be improved with the new
input source of personal sensors.

With the increasing digitization of everyday life, activity recognition
starts playing a bigger role in many peoples lives. In addition to more
methods and algorithms being proposed by researchers, we can also
see other areas of research influencing activity recognition and even
touching upon similar topics. Virtual and augmented reality often
deal with challenges similar to personal sensor-based activity recogni-
tion, while the trend of IoT could be especially useful in event-based
activity recognition. These trends show that some of the ideas of
ubiquitous computing are getting realized in recent years, opening
up new challenges for the research community. Finally, the impact
of such systems on a user’s everyday life should also be considered.
Concerns about privacy and strong reliance on systems (potentially
to the extent of creating a single point of failure) are just a few exam-
ples of activity recognition having an impact on everyday life. Thus,
studies ideally should always keep these impacts in mind.
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