
Innovative and Efficient
Communication Methods for

System Area Networks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Dipl. Inf. Markus Fischer

aus Holzminden

Mannheim, 2002

Dekan: Professor Dr. Herbert Popp, Universität Mannheim
Referent: Professor Dr. Ulrich Brüning, Universität Mannheim
Korreferent: Professor Dr. Volker Lindenstruth, Universität Heidelberg

Tag der mündlichen Prüfung: 5. Dezember 2002

Acknowledgments

The results of this thesis have been achieved over the recent years. There are
quite a few people which I have enjoyed working with and therefore I would
like to thank.

I would like to thank the people from the RWCP project, in particular Y.
Ishikawa-san, A. Hori-san and J. Nolte-san.

I also would like to thank the PVM team at ORNL/UTK. Especially Bob
Manchek for his insight into portable software for heterogeneous distributed
environments.

Special thanks go to the people from Myricom for their overall support.

This thesis however would not have been possible without the support and
guidance from my advisor Professor Dr. Ulrich Brüning. He was and still is
a great resource for any kind of technical question and I enjoyed in particular
how easy things looked after listening to his explanations. I also have to be
grateful on his valuable comments while writing this thesis.

Last but not least, I have to thank those who supported and motivated me
over an extended amount of time.

Finally, this can not be a complete list, but whoever reads this but is not
mentioned in particular, will by herself or himself know whether she or he is
missing here ;-)

Abstract

A new trend is emerging to replace massively parallel machines with clusters
built from Commercial Off The Shelf (COTS) components. Clusters typi-
cally consist of standard compute nodes and an interconnection network. In
order to achieve high efficiency, a parallel application is very dependent on
the communication system. Traditional communication interfaces will not
let an application exploit the given resources due to overburdened protocols.
System Area Networks (SAN) have been developed with the main purpose of
supporting user-level communication (ULC) systems. User level communca-
tion bypasses the operating system from the critical communication path.
One aspect, however, still needs to be solved: How applications will benefit
directly from available resources and in which way protocols can be developed
to directly support existing applications.

This is one of the reasons why traditional networks using standard protocol
stacks remain preferred, thus offering upgrade compatibility.

This thesis addresses existing communication principles and provides new
protocols for efficient communication. It also provides message passing pro-
tocols for the new Atomic Low Latency (ATOLL) System Area Network.
This network on a chip solution was analyzed and an extended design was
developed which will enhance the current implementation to enable proto-
col offloading for better resource utilization. Finally, this thesis will present
a new middleware layer, which will enable the replacement of traditional
networks by providing compatible protocols at binary level. This middle-
ware layer will offer the same semantics at much higher performance. As
will be shown, standard existing applications will experience much better
performance with an improvement in the order of a magnitude.

Contents

1 Introduction 1

1.1 Evolution of Networking . 3

1.1.1 Local- and Wide Area Networks 3

1.1.2 System Area Networks 4

1.1.3 Communication Impact of Network Performance using
LogP . 6

1.2 Clusters as a new Platform for Parallel Computing 7

1.2.1 Shared- and Distributed Memory Systems 8

1.2.2 Programming Models for Parallel Applications 10

1.3 Network Interfaces . 13

1.3.1 PCI 2.x and PCI-X as Current Interfaces 14

1.3.2 Future Interfaces . 16

1.4 Goal of this Thesis . 18

1.5 Thesis Organization . 20

2 Impact of Communication on Distributed Computing 23

2.1 Software . 23

2.1.1 System and User Level Modes 23

2.1.2 Implications of User Level Communication 25

2.1.3 User Level Communication Protocols 27

2.2 Design Space for Network Interfaces 33

2.2.1 Intelligent Network Adapter, Hardware and Software
Protocols . 34

1

2

2.2.2 Switches, Scalability and Routing 34

2.2.3 Hardware support for Shared Memory (Coherency)
and NI locations . 35

2.2.4 Performance Issues: Copy Routines and Notification
Mechanisms . 35

2.3 Hardware . 36

2.3.1 Fast- and Gigabit Ethernet 36

2.3.2 Scalable Coherent Interface (SCI) 38

2.3.3 Myrinet . 40

2.3.4 ATOLL . 42

2.3.5 Infiniband . 46

2.4 Performance . 48

2.4.1 System vs User Level Mode Performance 48

2.4.2 Application Performance Enhancements through High
Speed Networks . 49

3 Extending the Parallel Virtual Machine with a System Area
Network Plugin 53

3.1 A Common Interface for a SAN Extension to PVM 55

3.2 Implementations on Different Interconnect Devices 56

3.3 Plugin Implementation Details 57

3.3.1 The PVM-SCI plugin 57

3.3.2 The PVM-GM plugin 59

3.3.3 PM2 Plugin for Myrinet using the SCore Environment 60

3.3.4 Optimized Memcpy Functions 62

3.3.5 Data Pipelining . 63

3.3.6 Memory Registration for Direct Transfers 63

3.4 Performance Comparison for Different Plug Ins 63

3.4.1 PVM-SISCI Performance 64

3.4.2 PVM-GM Performance 65

3.4.3 PVM-PM Performance 66

3

4 Communication Environments for the ATOLL Network 69

4.1 The MPI Environment for the ATOLL Network 69

4.1.1 A MPI Reference Implementation: MPICH 69

4.1.2 MPICH ATOLL Device 70

4.2 The Parallel Virtual Machine using the ATOLL network in-
terface . 76

4.2.1 PVM Concepts . 76

4.2.2 PVM ATOLL Implementation 76

5 Design Issues for an Advanced ATOLL System Area Net-
work 79

5.1 Motivation . 79

5.1.1 Limitations in ATOLL1 81

5.1.2 Protocol off-loading . 82

5.2 Zero Copy Mechanism in General 82

5.2.1 Security . 84

5.2.2 Address Translations 84

5.2.3 Message Transfers with Zero Copy 85

5.2.4 Related Work . 86

5.3 Zero Copy Implementation Alternatives 87

5.4 RDMA Using Message Handlers 88

5.4.1 Software and Hardware Message Handlers 89

5.4.2 A protocol for Zero Copy / One Sided Communication 89

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hard-
ware . 91

5.5.1 The Actual ATOLL Environment 91

5.5.2 Protocol and Descriptor Enhancements Autonomous
RDMA Transactions 93

5.6 Conclusion . 102

4

6 An Efficient Socket Interface Middleware Layer for System
Area Networks 103

6.1 Overview of Sockets Direct for SAN’s 104

6.1.1 Existing Approaches to Enhance the Performance of
Distributed Applications 105

6.1.2 Transparency . 106

6.2 Overview and Analysis of TCP/IP functionality 109

6.2.1 Socket Interface, Protocol and Interface Stack 112

6.2.2 BSD Sockets . 114

6.2.3 Winsock 1.1 . 116

6.2.4 Advanced Mechanisms in Winsock 2 116

6.2.5 Winsock Direct . 121

6.3 Related Work . 122

6.3.1 Streamlined Socket Interfaces 122

6.3.2 Suitability of the Transmission Control Protocol for
System Area Networks 125

6.4 Design Space for Sockets Direct 128

6.4.1 Sockets Direct Portability among Major Operating
Systems . 128

6.5 Sockets Direct Implementation 131

6.5.1 Setup and Connection Management 131

6.5.2 Optimizations through Winsock2 Overlapping Mecha-
nisms . 141

6.5.3 Impact of User Level Mode vs Kernel Handling 142

6.5.4 Process Management, Shared Sockets and Exception
Handling . 142

6.6 Efficiency of RDMA Enabled Data Transfers 147

6.6.1 Motivation . 147

6.6.2 Reducing data relocations for Communication 148

6.6.3 Limitations and Impact of Memory bandwidth 148

6.6.4 Using Remote direct memory access (RDMA) to Gain
Performance Improvements 149

6.7 Optimizations . 150

6.7.1 Analysis and Implementation of a Zero Copy Imple-
mentation . 150

6.7.2 Protocol Threshold values for Efficient Communication 151

6.7.3 Enhancing Data Copies 151

6.7.4 Additional Interception for Data Compression or En-
cryption . 152

6.7.5 Connection Establishment 153

6.8 Performance Analysis . 154

6.8.1 TCP / IP over System Area Networks 154

6.8.2 Performance of Micro Benchmarks 156

6.8.3 Host CPU Utilization Measurements 159

6.9 Sockets Direct Enhancements to Legacy Applications 162

6.9.1 Increasing Transaction Numbers For Databases 163

6.9.2 Distributed Applications 164

6.10 Sockets Direct for the ATOLL Network 165

6.10.1 Mapping of Sockets Direct functions 165

6.10.2 Shared Socket Handling 165

6.11 Conclusion . 166

6

List of Figures

1.1 Overview on Local- and Wide Area Network 4

1.2 The LogP Model[2] . 6

1.3 Message Passing in Distributed Memory Architectures. A typ-
ical scenario for a data exchange using two nodes of a cluster
is depicted. 10

1.4 The PVM Model [119] . 11

1.5 Overview on Microprocessor and I/O Bus Performance[90] . . 14

1.6 HyperTransport and Tunneling Devices [90] 17

1.7 HyperTransport in Cache Coherent SMP Systems [90] 18

2.1 Active Message Model [105] 28

2.2 VIA Architectural Overview 29

2.3 SCI Interfacing PCI Host Systems 39

2.4 SCI Address Mapping . 40

2.5 Myrinet . 41

2.6 ATOLL - ATOmic Low Latency 43

2.7 ATOLL Descriptor Layout . 44

2.8 ATOLL Send Operation [89] 45

2.9 Infiniband System Overview [87] 47

2.10 Infiniband System Overview [87] 48

2.11 Infiniband Layers[87] . 48

2.12 Infiniband in Comparison with Other Specifications[87] 49

2.13 Hypersonice CFD Code Performance with respect to Machine
Architecture and Interconnection Type[117] 49

1

2

2.14 MM5 Speedup in Comparison using Myrinet or Fast Ethernet
as Interconnection Network. [116] 50

3.1 PVM Communication Overview using Ethernet. PVM dae-
mons are connected through the connection less UDP proto-
col to allow for large virtual machines. Tasks are connected to
the daemons through the connection oriented TCP protocol.
Tasks can create direct connections to other tasks, otherwise
the messages are routed through the PVM daemons. 54

3.2 Establishing a direct SAN connection between two Nodes. In
this example,the request and grant protocol is presented for
the SCI network . 56

3.3 Ring buffer implementation for the PVM-SCI plugin. Each
communication partner exports a chunk of memory in which
data can be written. The chunk is separated by a small header
which holds necessary flow control information and a data re-
gion which holds messages. Messages themselves contain an
envelope or header and the corresponding payload. 58

3.4 Overview on Different PM Context Layers 61

3.5 nntime Performance under PVM-SCI. For small messages per-
formance is lost due to PVM’s feature to allow a heterogenous
interconnection network. In this case nodes inside a cluster
can communicate efficiently, but also connection to external
nodes can be established. This is ideal for Grid application
which will make use of fast networks when available, reverting
to the traditional protocol otherwise. 65

3.6 nntime Performance under PVM-GM. 66

3.7 nntime Performance under PVM-PM. The fast Serverworks
LE chipset with a 64bit/33Mhz let PVM reach 100+
MBytes/s. PM internally provides a shared memory interface
as well. Without crossing the PCI interface, the performance
can be further increased. 67

4.1 Overview of the MPICH Channel Interface [124] 70

4.2 Establishing a direct point to point Connection using ATOLL
endpoints . 77

5.1 Bandwidth Improvements using Remote Direct Memory Ac-
cess [125]. 80

3

5.2 Host Utilization Improvements using Remote Direct Memory
Access [125]. Efficient protocols lower host utilization signifi-
cantly. User level protocols deliver the best results. 80

5.3 Upview of Direct Transfers. A message can be directly de-
posited by using either PIO or DMA data transfer mecha-
nisms. PIO involves the CPU during data transfer, while
DMA engines require virtual to physical address translations.
A notification mechanism which signals the end of the data
transfer is needed as well for DMA transactions. Host utiliza-
tion however can be reduced. 83

5.4 Avoiding Message Data Copies 86

5.5 Steps Receiving a Message . 89

5.6 Zero Copy Protocol for ATOLL 90

5.7 The ATOLL device interfacing with User Level- and Kernel
Level Components . 92

5.8 RDMA Components Interaction 96

5.9 Operating System Memory Layout 97

5.10 The Descriptor Layout for the Pet Protocol 97

5.11 The Descriptor Layout for the Get Protocol 99

5.12 PALIST structures referencing a virtual address 100

6.1 Concept of Sockets Direct . 104

6.2 Overview on Interception Techniques 107

6.3 Interception for the Linux OS. 108

6.4 TCP/IP Overhead Breakdown [72]. About 48.4% overhead is
introduced with the TCP/IP protocol. In addition 7.1% of
the total time is spent in the protocol handler invocation. . . . 111

6.5 TCP Header Layout [48] . 112

6.6 IP Header Layout [48] . 112

6.7 Protocol Layers extracted from the Linux Source Code. 113

6.8 TCP/IP Protocol Encapsulation 114

6.9 Overview TCP/IP Socket Send 115

6.10 Overview BSD Send Layer . 116

6.11 Winsock1.1 and Winsock 2 Overview 118

6.12 Winsock Layered Service Provider Overview 119

6.13 Winsock Direct Overview . 121

6.14 TCP/IP Performance Comparison on Myrinet and Syskonnect
using Netpipe . 125

6.15 Performance Comparison of GM over Myrinet and Netpipe
over TCP/IP over Myrinet . 126

6.16 TCP Socket Connection Establishment 133

6.17 Overview Sockets Direct Transfer Exchange Model 135

6.18 Sockets Direct Transfer using Buffering Semantics 136

6.19 Sockets Direct Transfer using Write Zero Copy 137

6.20 Sockets Direct Transfer using Read Zero Copy 138

6.21 Sockets Directs Internal Data Structures 140

6.22 Socket TCP/IP States [48] . 143

6.23 The fork() system call putting sockets in shared mode 144

6.24 Comparison of Netperf Performance and Membench Perfor-
mance using High End SDRAM/DDR-RAM Systems 153

6.25 NTttcp Performance . 157

6.26 IPerf Performance . 158

6.27 Netpipe Streaming Performance 158

6.28 Netpipe Round Trip Performance 159

6.29 UDP Performance . 159

6.30 Netperf Performance Using Blocking, Polling and Rendezvous
Strategies . 160

6.31 Netperf Performance versus CPU load Using Polling Receive . 161

6.32 Netperf Performance versus CPU load Using Blocking Receive 162

6.33 Netperf Performance versus CPU load Using Rendezvous . . . 163

6.34 Database Server, Application Servers and Clients 164

Chapter 1

Introduction

During the past few years, the platform for parallel and high performance
computing has been changing. A major shift from massively parallel systems
to clusters of workstations and Personal Computers (PCs) can be seen. The
latter are built up from commercial off the shelf (COTS) components, which
partly offer high performance known only from supercomputers, however at
a fraction of the cost. This is especially true for the central processing unit
(CPU). Todays standard CPUs offer a price performance ratio which does not
make it attractive to develop a new CPU for high performance computing.

When using standard CPUs, the host system itself offers very limited pos-
sibilities for own extensions. For example the host system bus, the memory
interface, the I/O subsystem are all proprietary developments and do not
offer any chances for compelling research.

However, the communication subsystem which plugs into the I/O sub-
system as a network interface card, for example, offers the possibility for
individual development. Currently the Peripheral Component Interconnect
(PCI) bus is the I/O standard for commodity systems and is supported by
any operating system offering a very portable solution for developing com-
munication systems.

There exist standard Ethernet type network interfaces, which are used to
connect to the Internet. However, communication intensive applications are
hampered by standard networks such as Fast Ethernet with its overburdened
TCP/IP protocol. In particular, the high latency for small messages, which
is in the range of several hundreds of microseconds, as well as the low band-
width for bulk messages, which peaks at about 8-9MBytes/s when using Fast
Ethernet, slow down parallel applications.

1

2 Chapter 1. Introduction

Within a cluster, the distance between nodes is rather small and hardware
error rates are extremely low. Thus, a light weight protocol for message
transfer is more practical.

Since several years, new high speed networking devices exist to build up a
system area network (SAN) , which delivers performance on message trans-
fers in the range of Gigabits/s. Today, popular high speed interconnects are
Myrinet, Quadrics, GigaNet, Scalable Coherent Interface (SCI) and Server-
net, which are all available with an interface into the PCI bus.

Currently a high percentage of existing clusters is still equipped with
standard network devices such as Fast Ethernet. As of today, the TopClus-
ters web site [74] which lists the largest unclassified installations of clusters,
shows that 120 out of 200 (60%) installations are equipped with an Ethernet
network. This is mainly for compatibility reasons since applications based
on the standardized TCP/IP are easily portable. This protocol however is
known to cause too much overhead [34]. Lowering latency is an important
key to achieve good communication performance. A survey on message sizes
shows that protocols and hardware have to be designed to handle short mes-
sages extremely well [118]:

• in seven parallel scientific applications 30% of the messages were be-
tween 16 bytes and a kilobyte

• the median message sizes for TCP and UDP traffic in a departmental
network were 32 and 128 bytes respectively

• 99% of TCP and 86% of the UDP traffic was less than 200 bytes

• on a commercial database all messages were less than 200 bytes

• the average message size ranges between 19 - 230 bytes

Recent research on Gigabit/s interconnects has shown that one key to achieve
low latency and high bandwidth is to bypass the operating system, avoiding
a trap into the operating system: User Level Communication (ULC) gives
the user application full control over the interconnect device. Some of the
initiating projects which focused on lowering the overhead for communication
are for example HPVM, UNET, Active Messages.

In addition to the replacement of proprietary hardware, there exists a
trend to replace proprietary operating systems with standard open source
software: LINUX is an open source operating system under the GNU Public

1.1 Evolution of Networking 3

License (GPL), which has become a very popular platform allowing the devel-
opment of kernel extensions which can be useful when integrating additional
devices. Currently it is used in over 90% of the largest cluster installations
[74].

1.1 Evolution of Networking

This section will describe in which way several network implementations
differ in terms of hardware and software. It will also analyze why clusters
are equipped with a high speed network.

1.1.1 Local- and Wide Area Networks

A short introduction on the functionality of Local- and Wide Area Networks
will be given in this section. Although clusters (or network of workstations
[94]) are preferably equipped with high speed interconnects, a large fraction
still use Fast Ethernet (see listing of clusters in [74] for example). Fast Eth-
ernet however is used to implement Local- (LAN) and Wide Area Networks
(WAN) in which data is transfered through gateways and routers over longer
distances. Figure 1.1 depicts such an environment which forms the Inter-
net with a myriad of installations. Every added system is not joining the
Internet, but is actually becoming a part of it.

Given the widespread use of Fast Ethernet network cards, they practically
come with no additional cost. Being in use over the years, any system process
which is associated with network transactions will use the Ethernet protocol
for communication. This way it is possible to establish wide area connections
as well, since the communicating endpoints will not be able to determine their
distance. Routers and gateways will forward traffic to the final destination
transparently. In order to achieve this, the Ethernet protocol must be very
fault tolerant. Several checksums for data integrity and additional control
flow will implement a reliable protocol. At the physical level a performance
of 100Mbit/s was introduced with Fast Ethernet. 1000Mbit/s Ethernet im-
plementations are available as well, but switches remain expensive and thus
have not yet experienced a high demand.

For parallel computation however, closely coupled systems are in use.
Communication has to be very efficient in order to achieve reduced execution
times. The shift from traditional network protocols to special own purpose
protocols is still ongoing. Several applications can not benefit directly from

4 Chapter 1. Introduction

Figure 1.1: Overview on Local- and Wide Area Network

faster, proprietary networks, but need to be re-programmed or implemented
using techniques such as data decomposition [120].

1.1.2 System Area Networks

System Area Networks (SANs) are a key component for boosting locally clus-
tered distributed applications. Unlike standard, local area networks (LANs)
based on Ethernet, SANs offer reliable communication with a Gigabit per
second performance and latencies less than 10 micro seconds. While LANs
are capable of bridging long distances between two communication endpoints
at low speeds, the damping using high speed media is much higher and only
allows for short distances. For SANs the maximum distance between two
endpoints is about 100 - 200 meters when using fiber, LANs throughput can
only be increased by parallel wires.

A SAN typically also offers multiple access ports. The network inter-
face controller (NIC) exposes individual transport endpoints (ports) and de-
multiplexes incoming packets accordingly. Each endpoint is usually repre-
sented by a set of memory based queues and registers that are shared by

1.1 Evolution of Networking 5

the host processor and the NIC. Many SAN NICs permit these endpoint re-
sources to be mapped directly into the address space of a user mode process.

This reduces the overhead which has been determined to be one of the
most costly factors involved with data exchanges [1], [2]. The communication
takes place at the user level and only involves kernel traps for setting up, or
releasing connections. This avoids unnecessary data copies from user address
space to kernel address space for the delivery and reception of messages.

In order to handle requests directly from user mode applications, SAN
NICs maintain page tables that map virtual addresses into physical addresses.
Most of the current generation of interconnects require applications to regis-
ter transfer buffers with the NICs driver which manages the page table. The
driver pins buffers into physical memory while they are registered. A han-
dle is associated with each registered memory region, and consumers must
supply the handle corresponding to a data buffer in data transfer requests.

SANs offer two modes of data transfer. One is used mainly for small
transfers and the other for large transfers. While the smaller ones are copied
into registered buffers which are reused after transfers, bulk data transfer is
performed through a Remote Direct Memory Access (RDMA) mechanism.

The initiator specifies a buffer on the local system and a buffer on the re-
mote system. Data is then transferred directly between the two locations by
the NICs without CPU involvement at either end. This mechanism typically
requires a short rendezvous protocol in order to exchange address informa-
tion.

In this context, System Area Networks are becoming more and more im-
portant for communication intensive applications but have not yet become an
essential requirement, in part because existing applications can not directly
benefit from the potential performance coming along with SAN.

This is because the current way of increasing application performance is
to parallelize applications by using message passing libraries such as MPI or
PVM. Furthermore, an immediate use of the SAN specific interfaces does not
fit the data exchange model of existing applications. Thus, to gain perfor-
mance, it would be required to re-implement already existing applications.

Providing an TCP/IP stack on top of a SAN is another solution. However,
implementations of the TCP/IP stack on top of SANs [101] have shown that
only 30 per cent of the raw performance can be achieved. This shows that
the TCP/IP protocol, which was designed for unreliable connections in a
WAN environment, is not suitable for achieving high performance in a cluster
environment.

6 Chapter 1. Introduction

1.1.3 Communication Impact of Network Performance
using LogP

The LogP Model [1] was developed as a realistic model for parallel algorithm
design, in which critical performance issues could be addressed without be-
ing reliant on a variety of machine details. The performance of a system is
characterized in terms of four parameters, three describing the time to per-
form an individual point to point message event and the last describing the
number of processors involved, as follows.

• Latency - an upper bound on the time to transmit a message from its
source to destination

• overhead - the time period during which the processor is engaged in
sending or receiving a message

• gap - the minimum time interval between consecutive message trans-
missions or consecutive message receptions at a processor

• Processors - the number of processors.

Another realistic assumption is the finite network capacity. This saturation
can be reached if a processor is sending messages at a rate faster than the
destination processor can receive. In the LogP model a processor which
attempts to send a message that would exceed the finite capacity of the
network stalls until the message can be sent without exceeding the finite
capacity limit. These parameters are illustrated for a generic parallel system
in Figure 1.2.

Figure 1.2: The LogP Model[2]

1.2 Clusters as a new Platform for Parallel Computing 7

The total time for a message to get from the source processor to the
destination is 2o + L. The overhead parameter reflects the time that the
main processor is busy as part of the communication event, whereas the
latency reflects the time during which the processor is able to do other useful
work. The gap indicates the time that the slowest stage, the bottleneck, in
the communication pipeline is occupied with the message. The reciprocal of
the gap gives the effective bandwidth in messages per unit time.

Thus, transferring n small messages in a stream from one processor to
another requires time o + (n-1) g + L + o, where each processor expends
no cycles and the remaining time is available for other work. The same for-
mula holds with many simultaneous transfers, as long as the destinations are
distinct. However, if k processors send to the same destination, the effective
bandwidth of each sender reduces to 1/(k*g). The overhead parameter is
generally determined by the communication software and is strongly influ-
enced by cost of accessing the NI over the memory or I/O bus on which it
is attached. The latency is influenced by the time spent in the NI, the link
bandwidth of the network, and the routing delays through the network. The
gap can be affected by processor overhead, the time spent by the NI in han-
dling a message, and the network link bandwidth. For a very large system,
or for a network with poor scaling, the bottleneck can be the bisection band-
width of the network. However, in practice the network interface is often the
bottleneck for reasonably sized systems [86].

1.2 Clusters as a new Platform for Parallel

Computing

Platforms for parallel computing can vary from massively parallel machines
(Cray T3E, NEC SX), large shared memory processor system to networks of
workstations. Recently cluster computing using standard components off the
shelf (COTS) has become a viable platform for parallel computing. In this
context, clustering means to harness the power of several individual nodes
having the same hardware features. This approach is pursued since standard
hardware components are available at a fraction of the cost but their ag-
gregate performance can easily compete with massively parallel computers.
As a comparison, the Heidelberg Linux Cluster (HELICS) consisting of 256
Dual AMD 1.4Ghz processors offers a sustained throughput of 825 GFLOPS
measured with the High Performance Linpack (HPL) benchmark [134]. This
performance has placed placed the cluster at the 35th position in the 19th
Top500 list of the most powerful computers, which is compiled and published

8 Chapter 1. Introduction

twice a year [76]. The total cost of the cluster including a high speed net-
work were approximately 1.2 Million Dollar, a comparatively small amount
of money which has to be spent usually for achieving such high performance
using proprietary hardware. For example, the 512 processor IBM p630 sys-
tem at position 34 on the same list achieving 826 GFLOPS had the total cost
of 6.4 Million Dollar, the Hewlett-Packard AlphaServer SC ES45 which was
positioned at rank 37 achieving 809GFLOPS had a total cost of 24 Million
Dollar (all systems were installed in 2002) [76], [133].

When building a cluster, single nodes can be equipped with one or more
processing units. Typically a node consisting of two processing units show
the best price performance ratio. In order to solve problems in parallel which
requires communication among participating processes, a network is required
for data exchanges. The type of network is the most crucial part of a cluster
and therefore major aspects on how this network interfaces with a system at
hardware and software level will be covered in section 1.3.

An operational cluster requires some kind of management software. Since
single nodes of the cluster are physically independent, additional software will
provide an abstracting layer of the underlying system. A resource manage-
ment software will then be responsible for placing parallel applications on
the nodes. A cluster can be typically partitioned and an application can
request a subset of totally available nodes, leaving remaining nodes available
for other applications.

These applications have been parallelized by a parallel programming
model. A more detailed overview on available node architectures, as well
as an introduction into available programming models will be presented in
the following.

1.2.1 Shared- and Distributed Memory Systems

Individual nodes of a cluster can have a different physical appearance. A
classification was given by Flynn [93], which identifies the Multiple Instruc-
tion Multiple Data (MIMD) class to be suited for cluster computing. The
complete classification contains the following classes:

• SISD - Single Instruction Single Data
a class of computers which consists of one processor. This processor
has access to only one instruction and one data memory. During a com-
putational step one instruction and its addressed data are fetched and
processed. This architecture describes the von-Neumann computer,
which corresponds to all sequential processing computers.

1.2 Clusters as a new Platform for Parallel Computing 9

• MISD - Multiple Instruction Single Data
a class of computers which has several processing units controlled by
different instructions having only one common access to the data mem-
ory. In order to write data, either a result of one processor has to be
chosen or the results have to combined. Due to that limitation no
computer with such an architecture has ever been built.

• SIMD - Single Instruction Multiple Data
a class of computers, in which all processing units are all controlled by
the same instruction. But these instructions are applied to different
data. Among others, all vector computers belong to this class.

• MIMD - Multiple Instruction Multiple Data
a class of computers which includes all parallel computers having multi-
ple processors. Each processor has its own private instruction and data
memory. This leads to computers, which can process different data in
different ways.

The following section will give an overview on how communication be-
tween several nodes can be achieved for machines belonging to the MIMD
class.

When extending a traditional 1-CPU computer with further CPUs, a
shared memory machine will offer the installed physical memory to any of
these CPUs. This concept is also known as Unified Memory Access (UMA) ,
providing the same cost for each CPU when accessing data. A parallel appli-
cation which is placed on this type of machines consuming several processors
is able to communicate efficiently via IPC using chunks of data which have
been exposed to be shared memory. While keeping a protected address space,
one process can write to a buffer, while another one can read from it. For
concurrent memory accesses, a synchronization mechanism like the MESI
[104] protocol is required. In this situation the UMA architecture fails to
scale well. Cost efficiency is reduced when larger numbers of CPUs per node
are required. Another architecture type which implements shared memory
is that of a of Cache Coherent Non Uniform Memory Access (CC-NUMA).
It comes with varying latencies for memory accesses, including local mem-
ory (caches) for each processor. Depending on the application and its data
structures, the access of nonlocal memory involves a higher cost.

A different concept is implemented as a distributed memory architecture
in which every process has its own memory and the exchange of data has
to be done explicitely via message passing. These data exchanges between
processors require an interconnection network. Dependent on the features of

10 Chapter 1. Introduction

this network, a parallel application can experience more or less performance
improvements.

1.2.2 Programming Models for Parallel Applications

Over the recent years, the development of programming models and their
implementations has been very productive resulting in two major projects.
With Parallel Virtual Machine (PVM) and the Message Passing Interface
(MPI), two portable reference implementations have brought the standard-
ization of programming models. While other models such as OpenMP or
Occam are using compiler directives, PVM and MPI provide mechanisms for
explicit message passing, a model in which messages are sent (by the source)
and being received (by the destination).

Figure 1.3: Message Passing in Distributed Memory Architectures. A typical
scenario for a data exchange using two nodes of a cluster is depicted.

Figure 1.3 depicts an overview on how distributed Memory machines will
exchange data using explicit messages using an interconnection network.

1.2.2.1 PVM

PVM (Parallel Virtual Machine) has been a popular message passing inter-
face. It is an integrated set of software tools and libraries that emulate a
general-purpose, flexible, heterogeneous, and concurrent computing frame-
work on interconnected computers of varied architectures. The overall ob-
jective of the PVM system is to enable such a collection of computers to be

1.2 Clusters as a new Platform for Parallel Computing 11

used cooperatively for concurrent or parallel computation. The PVM system
is composed of two parts. The first part is a daemon, that resides on all
the computers making up the virtual machine. When a user wishes to run a
PVM application, first a virtual machine is created by starting up PVM in
form of controlling daemons on each node. The PVM application can then
be started from a Unix prompt on any of the hosts. Multiple users can con-
figure overlapping virtual machines, and each user can execute several PVM
applications simultaneously. The second part of the system is a library of
PVM interface routines. It contains a set of functions and primitives that are
needed for cooperation between tasks of an application. This library contains
user-callable routines for message passing, spawning processes, coordinating
tasks, and modifying the virtual machine.

The PVM programming model is based on the notion that an application
consists of several tasks. Each task is responsible for a part of the appli-
cation’s computational workload. Sometimes an application is parallelized
along its functions; that is, each task performs a different function, for ex-
ample, input, problem setup, solution, output, and display. This process is
often called functional parallelism. A more common method of parallelizing
an application is called data parallelism. In this method all the tasks are the
same, but each one only knows and solves a small part of the data. This is
also referred to as the SPMD (single-program multiple-data) model of com-
puting. PVM supports either or a mixture of these methods. Depending on
their functions, tasks may execute in parallel and may need to synchronize or
exchange data, although this is not always the case. An exemplary diagram
of the PVM computing model is shown in Figure 1.4.

PVM - Parallel Virtuell Machine

Unix
Workstations

Alpha' sMPP' s
Windows

64/32-bit generation

NT/2000/XP

Figure 1.4: The PVM Model [119]

12 Chapter 1. Introduction

Briefly, the principles upon which PVM is based include the following:

• User-configured host pool: The application’s computational tasks exe-
cute on a set of machines that are selected by the user for a given run
of the PVM program. Both, single-CPU machines and hardware multi-
processors (including shared-memory and distributed-memory comput-
ers), may be part of the host pool. The host pool may be altered by
adding and deleting machines during operation (an important feature
for fault tolerance).

• Transparent access to hardware: Application programs either may view
the hardware environment as an attributeless collection of virtual pro-
cessing elements or may choose to exploit the capabilities of specific
machines in the host pool by positioning certain computational tasks
on the most appropriate computers.

• Process-based computation: The unit of parallelism in PVM is a task
(often but not always a Unix process), an independent sequential thread
of control that alternates between communication and computation.
No process-to-processor mapping is implied or enforced by PVM; in
particular, multiple tasks may execute on a single processor.

• Explicit message-passing model: Collections of computational tasks,
each performing a part of an application’s workload using data-,
functional-, or hybrid decomposition, cooperate by explicitly sending
and receiving messages to one another. Message size is limited only by
the amount of available memory. Heterogeneity support: The PVM
system supports heterogeneity in terms of machines, networks, and ap-
plications. With regard to message passing, PVM permits messages
containing more than one datatype to be exchanged between machines
having different data representations.

• Multiprocessor support: PVM uses the native message-passing facilities
on multiprocessors to take advantage of the underlying hardware. Ven-
dors often supply their own optimized PVM for their systems, which
can still communicate with the public PVM version.

1.2.2.2 Message Passing Interface (MPI)

In 1993, a standard for a message passing environment was defined: MPI.
MPI is a message-passing application programmer interface, together with
protocol and semantic specifications for how its features must behave in any

1.3 Network Interfaces 13

implementation (such as a message buffering and message delivery progress
requirement). MPI includes point-to-point message passing and collective
(global) operations, all scoped to a user-specified group of processes. Further-
more, MPI provides abstractions for processes at two levels. First, processes
are named according to the rank of the group in which the communication
is being performed. Second, virtual topologies allow for graph or Cartesian
naming of processes that help relate the application semantics to the mes-
sage passing semantics in a convenient, efficient way. Communicators, which
house groups and communication context (scoping) information, provide an
important measure of safety that is necessary and useful for building up
library-oriented parallel code.

MPI also provides three additional classes of services: environmental in-
quiry, basic timing information for application performance measurement,
and a profiling interface for external performance monitoring. MPI makes
heterogeneous data conversion a transparent part of its services by requiring
datatype specification for all communication operations. Both built-in and
user-defined data types are provided.

MPI accomplishes its functionality with opaque objects, with well-defined
constructors and destructors, giving MPI an object-based look and feel.
Opaque objects include groups (the fundamental container for processes),
communicators (which contain groups and are used as arguments to commu-
nication calls), and request objects for asynchronous operations. User-defined
and predefined data types allow for heterogeneous communication and ele-
gant description of gather/scatter semantics in send/receive operations as
well as in collective operations.

MPI provides support for both the SPMD and MPMD modes of parallel
programming. Furthermore, MPI can support inter-application computa-
tions through inter-communicator operations, which support communication
between groups rather than within a single group. Dataflow-style compu-
tations also can be constructed from inter-communicators. MPI provides a
thread-safe application programming interface (API), which will be useful in
multi-threaded environments as implementations mature and support thread
safety.

1.3 Network Interfaces

Over the last few decades, the location in which a network interfaces with
the host system has experienced several changes. With the concentration on
standard components, the design space on interfaces has been increasingly

14 Chapter 1. Introduction

restricted. This restriction led to the Peripheral Components Interconnect
(PCI), which is a standardized bus interface used for most kind of I/O. In
former times, the location of the network interface was much more flexible.
Since it is the CPU which is triggering communication, a network device is
more efficient the closer it can be attached to the CPU.

Amdahls law, which observes that the processing performance doubles
every 18 months, is still valid in the 21st century. However, the performance
of the I/O bus architecture has only doubled every 36 months. Hence there
is an increasing gap which is illustrated over the recent years in Figure 1.5.

Figure 1.5: Overview on Microprocessor and I/O Bus Performance[90]

This bottleneck is slowing down system performance and high speed net-
working technologies. System Area Networks and emerging standards like
Infiniband will not experience the performance they need in order to achieve
their performance.

The design space of network interfaces can still be open to new approaches
although the continuous hardware standardization efforts limit actual imple-
mentations. A detailed overview on the design spaces of network interfaces
can be found in [84]. It also serves as a reference to implementations which are
no longer available. Current interfaces do not implement I/O sharing, provide
kernel bypass support, memory protection and other higher level functions
to external fabrics. The following provides an introduction to current and
future interfaces and the impact of this road map on further communication
primitives which are the subject for innovative communication mechanisms.

1.3.1 PCI 2.x and PCI-X as Current Interfaces

The PCI bus was developed in the early 1990s by a group of companies with
the goal to advance the interface allowing OEMs or users to upgrade the

1.3 Network Interfaces 15

I/O (Input-Output) of personal computers. It essentially defines a low level
interface between a host CPU and peripheral devices. The PCI architecture
utilizes PCI to PCI (P2P) bridges to extend the number of devices that can
be supported on the bus. By definition a system built from P2P bridges forms
a hierarchical tree with a primary bus extending to multiple secondary PCI
bus segments. Across all of these PCI bus segments there is a single physical
memory map. A given memory address uniquely specifies an individual bus
segment and device on this segment. This architecture fundamentally defines
a single global view of resources, which works well to build systems based
on a single master (host CPU) sitting at the top of the hierarchy controlling
multiple slaves on peripheral bus segments. In this case master and slave
refer to the initialization and control of the devices in the system rather than
to the capability of an individual slave device to initiate a bus transaction
(i.e. acting as a PCI bus master). The PCI bus has proven a huge success
and has been adopted in almost every PC and Server since. The latest
advancement of the PCI bus is PCI-X. PCI-X is a 64-bit parallel interface
that runs at 133 MHz enabling 1GBytes/s (8Gbits/s) of bandwidth. Though
other advancements are under development, including DDR, for the PCI bus,
they are perceived as falling short. They are too expensive (too many pins in
the 64-bit versions) for the PC industry to implement in mass volume they
fail to offer sufficient bandwidth and advanced feature set required for the
servers of the future. Further information and a detailed description on the
benefits of PCI-X compared to PCI can be found in [85].

With PCI 2.2, increased interface width and frequency can already yield
to improved performance. A 64-bit PCI bus provides higher overall through-
put for high-performance adapters and better system efficiency by providing
the same data in fewer PCI clock cycles. A 66-MHz PCI bus doubles the data
throughput over the same amount of time. The benefits of both 64-bit and
66-MHz PCI implementations are better PCI bus utilization, better overall
PCI bus efficiency, and a substantial increase in PCI bus performance. In
our tests we have however measured a quite large discrepancy among several
boards. It is evident that the implementation of a chipset for a 64bit interface
is not a problem, giving an average sustained performance of 220MBytes/s
for a 33Mhz device (approximately 85% efficiency), but it is the 66Mhz ver-
sion which achieves good performance only on advanced chipsets. The larger
fraction reaches approximately 60% efficiency when running in 66Mhz mode.
Another specification which is currently being discussed is that of PCI-X
266/529. This is touted as a straight forward technology. The specification
uses the same 133MHz clock but simply clocks the data on both rising and
falling edge of the clock to double the effective bandwidth to 266 MHz. PCI-

16 Chapter 1. Introduction

X 266 uses much the same technology as memory and system vendors used
to implement DDR SDRAM. Proponents estimate that this technology can
be implemented in 2002, while others raise questions about how robust the
backwards compatibility will be.

Still, the implications of the PCI model when designing a network inter-
face card are tremendous. PCI does not allow for very efficient communi-
cation performed solely by hardware and therefore it is the software layer
which can serve as a point of investigation.

1.3.2 Future Interfaces

With the dramatic changes over the recent years and an ongoing trend to-
wards components off the shelf (COTS), it is most likely that future interfaces
will keep current limitations.

1.3.2.1 PCI-Express

In August 2001 at the Intel Developers Forum it was announced that PCI-
Express (formerly known as 3GIO) would be developed as a new local bus
(chip-to-chip interface) and used as a way to upgrade the PCI bus. The PCI-
Express architecture is being defined by the Arapahoe Working Group and
upon completion, it will be turned over to the general PCISIG organization
for administration. PCI-Express is defined as serial I/O point-to-point inter-
connect. Basic layer consists of a dual-simplex channel that is implemented
as a transmit pair and a receiver pair. The intent of this serial interconnect is
to establish very high bandwidth communication over a few pins, versus low
bandwidth communication over many pins (as in the 64-bit PCI interface).
It also leverages the PCI programming model to preserve customer invest-
ments and to facilitate industry migration. This allows PCI bandwidth to
be economically upgraded without consuming a great number of pins while
preserving software backwards compatibility. The stated goal of PCI-Express
is to provide:

• A local bus for chip-to-chip interconnects

• A method to upgrade PCI slot performance at lower costs

1.3 Network Interfaces 17

1.3.2.2 HyperTransport

The HyperTransport technology is intended to provide a high-speed, high
performance, point-to-point link for interconnecting integrated circuits on a
board.

Figure 1.6: HyperTransport and Tunneling Devices [90]

With a top signaling rate of 1.6 GHz on each wire pair, a HyperTransport
technology link can support a peak aggregate bandwidth of 12.8 GBytes/s.
The HyperTransport I/O link is a complementary technology for InfiniBand
and 1Gb/10Gb Ethernet solutions. While InfiniBand and high-speed Eth-
ernet interfaces are high-performance networking protocol and box-to-box
solutions, HyperTransport is intended to support in-the-box connectivity.
This however may change in the near future. On June 20th, 2002, the Hy-
perTransport Consortium [90] released a document on network extensions to
HyperTransport to allow for box to box communication.

Figures 1.6 and 1.7 depict a host system which has tunneling devices to
allow for example for interconnecting other networks, but also shows Hyper-
Transport usage for building cache coherent systems.

Still, the HyperTransport specification provides both link- and system-
level power management capabilities optimized for processors and other sys-
tem devices. The Advanced Configuration and Power Interface (ACPI) com-
pliant power management scheme is primarily message-based, reducing pin-
count requirements. HyperTransport technology is targeted at networking,

18 Chapter 1. Introduction

Figure 1.7: HyperTransport in Cache Coherent SMP Systems [90]

computer and high performance embedded applications and any other ap-
plication in which high speed, low latency, and scalability is necessary. For
further and more detailed information which are beyond this introduction,
the white papers and the specifications at [90] are a good reference.

1.3.2.3 Infiniband

InfiniBand [33] is fundamentally different to PCI, as devices are designed to
operate as peers with channels, which are also named queue pairs (QP)s.
These channels may each have their own independent Virtual and Physical
Address spaces. This allows any node to be an initiator to any other node
throughout the fabric. The InfiniBand architecture provides a large QP space
to support up to 16 million channels, and every channel is capable of deliver-
ing a reliable, low latency, transport level connection. Such a channel based
architecture functions ideally as a multi-protocol I/O fabric by providing
fine grained quality of service to each channel which allows application level
optimizations.

1.4 Goal of this Thesis

The solution of large computational problems requires its decomposition onto
multiple resources to achieve an answer in a reasonable amount of time. Typ-

1.4 Goal of this Thesis 19

ically this decomposition requires communication among the processors in-
volved. The result of this parallelization effort ranges from embarrassingly
parallel jobs to fine granular applications which require frequent communi-
cation. The latter serves as a motivation for this thesis. Frequent commu-
nication is required for a large set of applications and the communication
capabilities have the most impact on lowering the execution time. The goal
of this thesis is to improve traditional concepts on networking and to de-
velop new, innovative protocols which will overcome existing bottlenecks.
This work also includes the optimization of mechanisms which can be found
along the communication path.

For this, the optimization can be done at two different levels, the software
and hardware layers. For the software layers, a plugin for the Parallel Virtual
Machine (PVM) will enable the usage of fast networks with no additional
protocol overhead. This will lead to high performance communication on
clustered systems. The plugin will also maintain its usage for heterogeneous
environments in which traditional protocols will be used. Another feature
of this plugin will be its transparency. No modifications are required in
order to experience much faster communication throughput using high speed
networks.

This thesis however also extends the usage of System Area Network (SAN)
to a completely new area. Currently SANs are considered being a special
type of network, requiring special handling. With the introduction of a new
transparent messaging layer, this thesis will map any distributed application
to a SAN transparently. It will even achieve binary compatibility. The most
important features of this innovative layer are that the time for developing
an existing application is saved since the application does not have to be
modified or redesigned and implemented again to use a new programming
library for communication. Moreover, an existing application will experience
an order of magnitude performance improvement. As an example, a set of
benchmarks will be presented that will show a performance improvement
(peak values) from 80MBytes/s to 200MBytes/s. This layer will also lower
communication overhead. One way latency has been reduced from more
than 100 usec to 13 usec. For a real world application the performance
improvements have been demonstrated on a commercial data base. The
installation of this proprietary data base does not offer any source code and
binary compatibility for message layers is an absolute requirement. As a
result, a 35% improvement for the number of transactions for a given amount
of time was achieved by mapping the application to the developed layer.

These software layers require an interconnection network. Based on the
availability of existing and future high speed network this thesis will make

20 Chapter 1. Introduction

clear, that communication protocols are the key for achieving reasonable
throughput. Based on the ATOLL network card hardware [83], which was
introduced in [82], the message passing protocols MPI and PVM were im-
plemented. Based on the given hardware, the ATOLL network was then
extended to provide a network interface which is capable of efficient commu-
nication. It is another subject of this thesis to show the need for direct data
transfers, in which data copies are avoided and the host system is left out
of the transfer of bulk messages. For this a comparison on different transfer
models will be given and compared with developed RDMA supported data
transfers. RDMA capability has been developed for the extended ATOLL
network interface.

1.5 Thesis Organization

This thesis is organized as followed. Chapter 2 will analyze the impact of com-
munication on parallel computing. It will differentiate between traditional
communication primitives involving the host system and new protocols which
bypass the operating system enabling user level communication. It will also
analyze which design space for network interfaces is available in general. A
hardware overview on traditional networks and system area networks follows.
Finally a performance analysis for applications using different hardware and
protocols concludes this chapter. In Chapter 3 a system area plugin for the
Parallel Virtual Machine will be presented. This new work allows PVM for
fast communication while keeping all PVM primitives such as dynamic pro-
cess management for starting and ending processes and heterogeneity. It
will specify a very basic interface in which a new low level API of a SAN
can be developed. The plugin has been provided for todays popular SANs.
Furthermore, a general description on how SANs can be used efficiently will
be presented. A performance analysis of the different plugin’s concludes this
chapter. Chapter 4 will describe the developed communication environments
for the Atomic Low Latency (ATOLL) network. Traditional message pass-
ing environments have been ported to ATOLL. The further development of a
ATOLL API was performed concurrently to allow for an efficient integration
into message passing environments. In Chapter 5 the design for an advanced
ATOLL network will be presented. With this design, a flexible protocol will
be introduced which still can be realized as protocols in hardware. It will
first give a motivation by showing the benefits for an application and a host
system using RDMA capable network hardware. It will then describe how
protocols can be integrated into the existing ATOLL framework. This design

1.5 Thesis Organization 21

is evaluated using different strategies. It will determine that an extension to
ATOLL offers major enhancements in comparison with a software approach.

Finally, Chapter 6 will present a new middleware layer which is capa-
ble of replacing traditional network protocols with compatibility at binary
level. It will provide an analysis of these protocols and explain why a new
approach is required. It will then describe which techniques given todays
operating system features are available in order to achieve this replacement.
This requires a full understanding about the functionality of applications
and operating systems. This new middleware layer is able to let application
fully exploit the available performance. It will offer a performance increase
in the order of a magnitude. This will be verified by several benchmarks.
Moreover, this middleware layer is also beneficial for real world applications.
It will open new uses for system area networks. For this the improvement
of a transaction database will be presented. The test environment consists
of application servers querying a database server. In this scenario, the new
middleware layer will demonstrate its efficiency by increasing the transaction
throughput by 35%.

Chapter 2

Impact of Communication on
Distributed Computing

This chapter will describe how the combination of software layers and the
underlying hardware have an influence on distributed computing. The chap-
ter will consist of a separated software and hardware section. The software
section will deal with communication protocols and their overhead, while the
hardware section will describe existing networks on which different software
stacks will be based.

2.1 Software

Communication requires software stacks which will be talking to the net-
working device. A major shift in the communication paradigm has been seen
in the recent years. This section will give an overview on current state of the
art techniques and their implications. Basically, software stacks, under the
control of the de-multiplexing operating system, are required for traditional
networking concepts.

2.1.1 System and User Level Modes

A computer is nowadays under the control of an operating system (OS) [132].
The OS is based on a set of programs, which will maintain the functionality
of a computer, independent of the actual application. It furthermore controls
hardware resources and provides a hardware abstraction layer (HAL) in order
to hide the complexity of the underlying hardware.

The tasks of an OS are:

23

24 Impact of Communication on Distributed Computing

• Process Scheduling: fair scheduling of multiple processes, which are
running on a computer

• Memory Handling: Allocation and Protection of Main memory among
different processes.

• Hardware management: Avoiding access collisions of different process
to the same hardware as well as file management.

In order to achieve the mentioned tasks, the operating system introduces
different levels. Processes can run in user level or kernel level mode offering
varying levels of protection. Applications typically run as user level processes
and will call a system function which results in a kernel trap. The kernel will
then perform requested tasks of the application such as accessing the network
device for example. This is required since on traditional systems, the network
device can be accessed by multiple processes. Since a multitasking system
allows for several processes to be run at the same time, several of them can
have an open port to the networking device, but only one is granted access
to avoid data corruption but also to maintain security.

Other advantages of concept are for example the improved stability. Oth-
erwise scenarios could be possible in which an application which is accessing
a device experiences a segmentation fault and can not release the device any
more. This way, no other device would be able to get access to the device
again. The disadvantages are that system traps are a costly operation and a
process can be put into wait state when accessing a device which is currently
in use. For this multiple devices would improve this situation so that several
applications could for example communicate at the same time.

This leads to the concept of user-level networking in which several devices
are available and an application can get access to its reserved device for direct
communication. User-level networking schemes expose a lower-level abstrac-
tion of the network device than standard protocols. Applications are given
their own virtual interface that they can manipulate to queue packets for
transmission and reception. Bypassing conventional operating system mech-
anisms in this way allows applications to reduce the latency and per-packet
overhead of using the network. The motivation for much of this work has
been parallel processing on workstation clusters, where minimal round-trip
latency is critical. Where user-level network access is to be offered to applica-
tions in a multi-user, multi-programmed environment, care must be taken to
avoid sacrificing the sharing and system protection previously performed by
the operating system. Along with the protection of memory that applications
use for network transfers, it is also necessary to prevent applications from

2.1 Software 25

snooping messages distinct for other programs, and from spoofing messages
such that they appear to originate from other sources. Existing user-level net-
working efforts have addressed connection-oriented networks such as ATM
[88], [61] and special-purpose System Area Networks (SANs) [56], [9]. Estab-
lishing a virtual circuit between two end-points provides a convenient means
of securely identifying the source and destination applications of transmitted
data. This connection establishment as it is required for example for the
Virtual Interface Architecture (VIA) network or the ATOLL network, comes
with a sequence of connect functions which have to be called by the two
endpoints. Such a connect sequence can then establish routing information,
or provide endpoint specific information, if accepting any endpoint partner.

User-level interfaces then need only ensure that applications are restricted
to sending and receiving on virtual circuits that they own. Connectionless
datagram networks such as Ethernet pose a greater problem. Where user-
level interfaces have previously been developed for connectionless networks
such as Fast Ethernet, they have relied on modified versions of standard
protocols to allow simple de-multiplexing at the receiver, and are thus unable
to inter-operate with other systems.

2.1.2 Implications of User Level Communication

If applications obtain direct access to hardware, the notion of opening a port
is used. In this context, a port is the direct access point to the underlying
hardware. Typically several ports exist per item and the hardware itself can
deal with assigning more than one direct access point. While direct access
is granted for processes to lower the cost for data exchanges, it also requires
thorough handling of operations on the device. Unmeant interference with
other processes must be avoided.

Basically, the concept of direct hardware access goes back to basic operat-
ing systems like DOS. Even in recent Windows (TM) versions like Windows
95, 98 and Me (TM) processes can access the hardware directly. Only their
professional versions introduce a hardware abstraction layer, the process is
required to talk to. The following section discusses the aspects of security,
functionality and stability.

2.1.2.1 Security

First concepts and early user level communication protocols have not pro-
vided security for other processes. This means that direct hardware accesses

26 Impact of Communication on Distributed Computing

did interfere with other with other user processes. This can easily happen
when for example an application experiences a stack overflow and would
write on user level data which describes descriptors to be accessed by the
hardware. For current standard network devices, autonomous DMA engines
operate on physical addresses and no protection can be given by the OS any-
more. This however could lead to unpredictable behavior This however is
now secured by the low level API of a System Area Network together with
additional checks of data regions by the hardware itself.

2.1.2.2 Functionality

Traditional protocols are communicating by calling system functions. They
involve a trap into the operating system and the application is blocked until
the system call has finished. Not only the system trap is rather costly, but
also the actual request may not be scheduled immediately. For example,
a send request will first inserted into operating system data structures and
scheduled for delivery. When direct access to hardware is given, the appli-
cation will use data structures which are in sync with the network device
to interoperate with the device. This way, the overhead will be reduced by
avoiding data copies, but the application will also experience lower latency.

2.1.2.3 Stability

State of the art of user level communication protocols have added additional
efforts to allow for a stable operation of direct access networks. This approach
has resulted in incorporating important tasks into the operating system. For
different Unices like Unix or Linux, low level drivers have been implemented
as modules. For these OS, a module becomes part of the OS by attaching
itself to a operating system dynamically during runtime. As a module, low
level drivers become part of the operating system and could bring a system
down when for example operating incorrectly on internal virtual memory
structures. Modules must be loaded with root permissions and must itself
provide several functions to be manageable by the OS. These restrictions as
well as the concept of a single instance has easened the issue of portability
as well since modern OS like Linux tend to change dramatically over a short
period of time. Moreover, most of the low level SAN drivers are distributed
as Open Source, so that the community can have a look at them or submit
improvements. The SCI network [109] did not gain success because of their
proprietary driver concept. Early driver were buggy and the uptime of a
node was less than a day. One reason for this was the immediate interface

2.1 Software 27

between the SCI network and the host memory system which led to constant
crashes. An open source implementation would have achieved shorter time
for bug fixes.

2.1.3 User Level Communication Protocols

Several user level communication protocols have been introduced over the
recent years. The following sections describe existing implementations to
better understand the concept of user level networking. In upcoming sections,
low level protocols will be used for replacing traditional network protocols.
Therefore a thorough understanding is required.

2.1.3.1 Active Messages

The Active Message (AM) communication layer provides a collection of sim-
ple and versatile communication primitives. It is generally used in libraries
and compilers as a means of constructing higher-level communication op-
erations such as MPI [102], [103]. AM can be seen as a very lightweight
asynchronous remote procedure call, where each operation is a request/reply
pair. In LogP terms, an AM request/reply operation includes two point-
to-point messages, giving an end-to-end round-trip time of 2(os+L+or). A
request message includes the address of a handler function at the destination
node and a fixed number of data words, which are passed as arguments to the
handler. AMs are handled automatically, either as part of the node initiating
its own communication, via an interrupt, or as part of waiting for responses.
Otherwise, a node can also handle messages via an explicit poll. When the
message is received at the destination node it invokes the specified handler,
which can perform a small amount of computation and issue a reply, which
consists of an analogous reply handler function and its arguments. This basic
operation is illustrated in Figure 2.1 by typical remote read transaction.

AM is efficient to implement because messages can be issued directly
into the network from the sender and, since the code that consumes the
data is explicitly identified in the message, processed directly out of the
network without additional buffering and parsing. The handler executes in
the context of a prearranged remote process and a fixed set of primitive data
types are supported, so the argument marshaling and context switching of
a traditional RPC are not required. The sender continues execution as soon
as the message is issued and the invocation of the reply handler provides
notification of completion.

28 Impact of Communication on Distributed Computing

Figure 2.1: Active Message Model [105]

The Active Messages II performance measured on the NOW cluster [94]
was very good [115]. It achieved 43.9 MBytes/s bandwidth for 8 KB mes-
sages, that is about 93% of the 46.8 MBytes/s hardware limit for 8 KB DMA
transfers on the Sbus. The one-way latency for short messages, defined as
the time spent between posting the send operation and message delivery to
destination endpoint, is about 15 micro seconds.

Similar to Active Messages, Remote Queues [12] provided low-overhead
communications, but separated the arrival of messages from the invocation
of handlers.

2.1.3.2 VIA

In this paragraph, an overview of the VI Architecture is presented. VIA
derived from a large body of related work in user-level communication. VIA
borrows its basic operation from U-Net [26]. Virtual interfaces to the network
were introduced by application device channels [22], and remote memory
operations were taken from the Virtual Memory Mapped Communication
(VMMC) [62] model and from Active Messages (AM) [60].

2.1.3.2.1 VIA Overview Figure 2.2 depicts the organization of the Vir-
tual Interface Architecture. In the following, essential information from the
VIA specification is reflected. For further information, it can be downloaded
from [56]. Basically, the VI Architecture is comprised of four basic com-
ponents: Virtual Interfaces (VI), Completion Queues, VI Providers, and VI
Consumers. In VIA, the VI Provider is composed of the VI Network Adapter
and a Kernel Agent device driver. The VI Consumer is composed of an ap-
plication program and a high level communication subsystem such as PVM,

2.1 Software 29

Figure 2.2: VIA Architectural Overview

MPI or sockets. Other applications communicate with the VI Provider API
directly (e.g: Oracle 9i or IBM DB2 Databases). Prior to communication,
a connection setup by the Kernel Agent is required. Using a pair of virtual
channels, all network actions occur without kernel intervention. This re-
sults in significantly lower latencies than network protocols such as TCP/IP.
Traps into kernel mode are only required for creation/destruction of VIs, VI
connection setup and teardown, interrupt processing, registration of system
memory used by the VI NIC, and error handling. VI Consumers access the
Kernel Agent using standard operating system mechanisms.

For each VI one Send- and Receive Queue is created. VI Consumers post
requests for sending or receiving data in form of descriptors to these queues.
Such a descriptor holds all required information that the VI Provider needs
to process the request, including source, destination, message length and
pointers to data buffers. VI Providers asynchronously process the posted
descriptors and mark them when completed. VI Consumers remove com-
pleted descriptors from the Send and Receive Queues and reuse them for
subsequent requests. Both the Send and Receive Queues have an associated
doorbell that is used to notify the VI network adapter that a new descriptor
has been posted to either the Send or Receive Queue. The implementation
of doorbells is not fixed. For efficiency, the doorbell can be directly imple-
mented on the VI Network Adapter and no kernel intervention is required
to perform this signaling. The Completion Queue allows the VI Consumer
to combine the notification of descriptor completions of multiple VIs with-

30 Impact of Communication on Distributed Computing

out requiring an interrupt or kernel call. In order to eliminate the copying
between kernel and user buffers that accounts for a large portion of the side,
overhead associated with traditional network protocol stacks, the VI Archi-
tecture requires the VI Consumer to register all send and receive memory
buffers with the VI Provider. This registration process locks down the ap-
propriate pages in memory, which allows for direct DMA operations into
user memory by the VI hardware, without the possibility of an intervening
page fault. After locking the buffer memory pages in physical memory, the
virtual to physical mapping and an opaque handle for each memory region
registered are provided to the VI Adapter. Memory registration allows the
VI Consumer to reuse registered memory buffers, thereby avoiding duplica-
tion of locking and translation operations. Memory registration also takes
page-locking overhead out of the performance-critical data transfer path.

2.1.3.2.2 Data Transfer Modes The VI Architecture provides two dif-
ferent modes of data transfer: traditional send and receive semantics, and
direct reads and writes to and from the memory of remote machines. Re-
mote data reads and writes provide a mechanism for a process to send data
to another node or retrieve data from another node, without any action on
the part of the remote node (other than VI connection). The send/receive
model of the VI Architecture follows the common approach to transferring
data between two endpoints, except that all send and receive operations com-
plete asynchronously. The VI Consumers on both the sending and receiving
nodes specify the location of the data. On the sending side, the sending
process specifies the memory regions that contain the data to be sent. On
the receiving side, the receiving process specifies the memory regions where
the data will be placed. The VI Consumer at the receiving end must post
a Descriptor to the Receive Queue of a VI before the data is sent. The VI
Consumer at the sending end can then post the message to the corresponding
VI s Send Queue. Remote DMA transfers occur using the same descriptors
used in send/receive style communication, with the memory handle and vir-
tual address of the remote memory specified in a second data segment of
the descriptor. VIA-compliant implementations are required to support re-
mote write, but remote read capability is an optional feature of the VIA
Specification.

2.1.3.2.3 VIA Implementations VIA is available as hardware and
software implementation. Hardware implementations are for example the
GigaNet cLAN GNN1000 network interface card (available through Emulex

2.1 Software 31

with a focus on storage), and Servernet II from Compaq, Software imple-
mentations are available through M-VIA which is abstracting from specific
hardware and even runs on Ethernet cards. More efficient implementations
are also available on top of low level drivers for todays System Area Networks.
It may be also worth noting that the VIA will be the standard interface used
for the upcoming Infiniband technology.

2.1.3.3 U-Net

U-Net is a research project which started in 1994 at Cornell University. The
goal was to define and implement a user-level communication system for com-
modity clusters of workstations. The first experiment was done on 8 SunOS
SPARC-Stations interconnected by the Fore Systems SBA-200 ATM network
[61]. Later, the U-Net architecture was implemented on a 133 MHz Pentium
cluster running Linux using Fast Ethernet DC21140 network interfaces [113].
The U-Net architecture virtualizes the network interface, so that every ap-
plication can think of having its own network device. Before a process can
access the network, it must create one or more endpoints. An endpoint is
composed of a buffer area which holds message data and message queues for
sending, receiving and freeing. These queues contain descriptors for mes-
sages that are to be sent or have been received. The buffer area is pinned
down and virtual addresses are translated into physical addresses to be used
by DMA engines. Message descriptors contain source, destination, message
length and offsets within the buffer area for referring to specific message data.
The free queue contains descriptors to hold pointers to free buffers to be used
for incoming data. Two endpoints communicate through a communication
channel, distinguished by an identifier that the operating system assigns at
channel creation time. Communication channel identifiers are then used to
generate tags for message matching. To send a message, a process puts data
in one or more buffers of the buffer area and inserts the related descriptor
in the send queue. Very small messages can be insert directly in descriptors.
The U-Net layer adds the tag identifying the sending endpoint to the out-
going message. On the receiving side U-Net uses the incoming message tag
to determinate the destination endpoint, moves message data in one or more
free buffers pointed by descriptors of the free queue and put a descriptor
in the process receive queue. Such descriptor contains the pointers to the
just filled buffers. The destination process is allowed to periodically check
the receive queue status, to block until the next message has arrived, or to
register a signal handler with U-Net to be invoked when the receive queue
becomes non-empty. U-Net has been implemented on different platforms and

32 Impact of Communication on Distributed Computing

some of the measured performance will be presented in the following. The
U-Net/ATM performance is very close to that of the raw SBA-200 hardware
(155 Mbit/s). It achieves about 32 micro seconds one-way latency on short
messages and 15 MBytes/s asymptotic bandwidth.

2.1.3.4 Fast Messages

Fast Messages (FM) is a communication system developed at University of
Illinois. It is very similar to Active Messages and was originally implemented
on distributed memory parallel machines, in particular the Cray T3D. Later,
it was ported to a cluster of SPARC-Stations interconnected by the Myrinet
network [114]. In both cases the design goal was to deliver a large frac-
tion of the raw network hardware performance to user applications, paying
particular attention to small messages because these are very common in
communication patterns of several parallel applications [118]. Fast Messages
is targeted to compiler and communication library developers, but applica-
tion programmers can also use it directly. FM provides few basic services
and a simple programming interface. The programming interface consists
of three functions for sending short messages (4-word payload), for sending
larger messages than 4 words and for receiving messages. Like Active Mes-
sages, each message contains a pointer to a sender-specified handler function
that consumes data on the receiving processor. No request-reply mecha-
nism is provided. It is the programmers responsibility to prevent deadlock
situations. Fast Messages provide buffering mechanisms allowing sending
processes to continue computation while their corresponding receivers are
not servicing the network. The receiver calls the FM extract() function to
retain data from a buffered message queue. The function checks for new
messages and executes provided handlers. It is a requirement for the receiver
to periodically call the FM extract() function to ensure the prompt process-
ing of incoming data. However, not doing so will not prevent the network
from making progress. Furthermore, the Fast Messages design assumes that
the network interface has an on board processor with its own local mem-
ory, so that the communication workload can be divided between host and
network processor. Such an assumption allows Fast Messages to efficiently
expose two main services to higher level communication layers, control over
scheduling of communication work and reliable in-order message delivery,
respectively. Reliable in-order message delivery prevents the cost of source
buffering, timeout, retry and reordering in higher level communication lay-
ers, requiring Fast Messages only to resolve issues of flow control and buffer
management, because of the high reliability and deterministic routing of the

2.2 Design Space for Network Interfaces 33

Myrinet network. Fast Messages 2.x was implemented on the High Perfor-
mance Virtual Machine (HPVM) cluster. It consisted of 256-nodes running
the Windows NT operating system, interconnected by Myrinet [9]. Each
node had two 450 MHz Pentium II processors. A 8.8 micro seconds one-way
latency for zero-payload packets and more than 100 MBytes/s asymptotic
bandwidth were measured.

2.2 Design Space for Network Interfaces

In this section we would like to evaluate current network interfaces and char-
acterize the design space for I/O subsystems in general. A first distinction
can be made by dividing I/O subsystem components into hardware and soft-
ware components.

A special purpose processor, additional (staging) memory, support for
overlapping data transfers, PIO and DMA operations and support for shared
memory reflect important hardware features. Partly they are available on-
board of the network interface card.

In addition, switching hardware is needed to build up large scaling clus-
ters.

Data transfer protocols and their implementations are then a central part
of the software component. Support for Remote Direct Memory Access
(RDMA), direct memory management unit (MMU) support, the efficient
detection of message delivery and arrival are key factors for gathering high
performance.

We would like to break down the design space into the following items:

• Concurrency through PIO and DMA Transactions

• MMU Functionality to support RDMA

When sending a message, the low level Application Programming Interface
(API) chooses PIO or DMA modes for data transfer. The preferred mode is
depending on the message size. PIO has the advantage of low start-up costs
to initiate the transfer. However, since the processor is transferring data
directly into the network, it is busy during the entire transaction. To allow
concurrency, the DMA mode must be chosen in which the processor only
assembles a descriptor pointing to the actual message. This descriptor is then
handed to the DMA engine which picks up the information and injects the
message into the network. It is important to know that the DMA engine relies

34 Impact of Communication on Distributed Computing

on pinned down memory since otherwise pages can be swapped out of memory
and the engine can not page on demand by itself. The advantage of using
DMA is to overlap communication and computation. However it has a higher
start-up time than PIO and thus, usually a threshold values determines which
protocol is chosen. Both mechanisms also play an important role when trying
to avoid memory copies.

2.2.1 Intelligent Network Adapter, Hardware and
Software Protocols

The most important feature by having an intelligent network adapter (pro-
cessor and SRAM on board) is to be flexible in programming the message
handling functionality. Protocols for error detection and correction when ex-
changing a message can be programmed in software, but also new techniques
can be applied [56]. Support for concurrency is improved as well. Additional
memory on board lowers congestion and the possibility of deadlocks on the
network. It has the advantage to buffer incoming data, thus emptying the
links on which the message has been transferred. However, the memory size
is usually limited and expensive and the number of data copies increases.
Another disadvantage of this combination is that the speed of an onboard
processor resource can not cope with the main processing unit. Moreover,
the programming of custom network adapter can be a versatile task since
standard software environments are missing.

2.2.2 Switches, Scalability and Routing

A point-to-point micro benchmark typically only shows the best performance
for non-standard situations. Since a parallel application usually consists of
dozens of processes communicating in a more or less fixed pattern, measuring
the bisection bandwidth generates better information of the underlying com-
munication hardware. A cost-effective SAN typically consist of one or more
bidirectional links that allow for concurrent send and receive data transfers.
These links use standard IO cells and throughput between two nodes can be
increased by bonding several links. This technique however requires addi-
tional support to be implemented in the low level API. If data travels over
different links, sequence numbers have to be assigned which describe in which
order data has to be received. A key factor for gaining superior performance
is the scalability. In this situation switches are added to build a multistage
connection network to allow for larger clusters. Another point of interest

2.2 Design Space for Network Interfaces 35

is the connection from NIC to NIC: Data link cables must provide a good
compromise between data path width and transfer speed.

2.2.3 Hardware support for Shared Memory (Co-
herency) and NI locations

Currently a trend can be seen in clustering bigger Shared Memory Processors
(SMPs) nodes with 2, 4 up to 16 processors per node. Within an SMP node
a cache coherency protocol like MESI (Modified, Exclusive, Shared, Invalid),
where each cache line is marked with one of the four states, will determine
when data needs to be synchronized.

Obviously, a cache coherent NIC requires to participate on the cache
coherent protocol, which is only possible by snooping on the system bus.
However, this would involve a special solution and therefore can not be prop-
agated as a commodity solution. With the growing distance between the NI
and the processor the latency of the communication operations raises and,
at the same time, the bandwidth declines. The only position that results in
a wide distribution and, thus, the necessary high quantities for the NIC, is
the standardized PCI bus. This leads to the loss of a number of functions,
like the cache coherent accesses to the main memory of the processor. As
the NI on the PCI card is independent from the used processor (and has to
be), functions like the MMU in the NI cannot be easily synchronized, as they
differ according to which processor is being used. In the NIC the necessary
functions must be realized as efficiently as possible to keep the overhead of
the software low. For this purpose a direct hardware realization of the basic
mechanisms, as in the ATOLL-SAN, or an additional processor on the PCI
card, as implemented in the Myrinet network, can be used.

2.2.4 Performance Issues: Copy Routines and Notifi-
cation Mechanisms

Once a message is ready for sending, the data has to be placed at a location
where the NI can fetch the data. Using standard copy routines however
can result in poor performance. The reason is that the cache of the CPU
spilled with data copies when larger messages have been injected into the
network. Modern CPUs like the Pentium III/IV or Ultrasparc offer special
multi-media extensions (MMX) or Visual Instruction Set (VIS) instructions,
which copy the data without traversing the cache. Another point which can
hamper performance is how the arrival of messages is detected. A polling

36 Impact of Communication on Distributed Computing

method typically wastes a lot of CPU cycles while an interrupt causes too
much overhead. The latter introduces its overhead by high context switching.
Avoiding the interrupt mechanism is very important as each new interrupt
handling leads to a latency of approximately 60 micro seconds [121].

2.3 Hardware

In order to achieve high communication performance results, software stacks
must be implemented as thin layers which hand data to the underlying hard-
ware without introducing additional protocol overhead. By adapting user
level communication to a variety of network interfaces, this effort has be-
come a standard way of implementing efficient communication layers. The
overall performance however, is also very dependent on the underlying hard-
ware with respect to its physical capabilities and limitations. In order to
develop new middleware protocols, it is required to have an understanding
of available network interface implementations and how they differentiate
themselves. The most popular implementations will be presented in the fol-
lowing.

2.3.1 Fast- and Gigabit Ethernet

2.3.1.1 Overview

Gigabit Ethernet, also known as the IEEE Standard 802.3z, is the latest
Ethernet technology. Like Ethernet, Gigabit Ethernet is a media access con-
trol (MAC) and physical-layer (PHY) technology. It offers one gigabit per
second (1 Gbit/s) raw bandwidth which is 10 times faster than Fast Eth-
ernet (FE), by using a modified version of the ANSI X3T11 Fibre Channel
standard physical layer (FC-0). Backward compatibility with existing Eth-
ernet technologies is achieved by using the same IEEE 802.3 Ethernet frame
format, and a compatible full or half duplex carrier sense multiple access/
collision detection (CSMA/CD) scheme scaled to gigabit speeds.

Gigabit Ethernet operates in either half-duplex or full-duplex mode. The
full-duplex mode can be distinguished from half-duplex mode by the creation
of a non shared point-to-point connection. This setup avoids the CSMA/CD
access control mechanism and the transmission in which frames travel in both
directions simultaneously over two channels on the same connection will be
very efficient. Theoretically, this results in an aggregate bandwidth of twice

2.3 Hardware 37

that of half-duplex mode. The half-duplex mode requires CSMA/CD meth-
ods and a channel can only transmit or receive at one time. A collision results
when a frame sent from one end of the network collides with another frame.
This potentially degrades Gigabit Ethernet’s performance when operating in
half-duplex mode.

2.3.1.2 MAC Flow Control

When Gigabit Ethernet operates in full duplex mode, it uses buffers to store
incoming and outgoing data frames until the MAC layer has time to pass
them higher up the legacy protocol stacks. During heavy traffic transmis-
sions, the buffers may fill up with data faster than the MAC layer can process
them. In this situation, flow control prevents the upper layers from sending
until the buffer has room to store more frames. A possible loss of frames
due to insufficient buffer space is therefore prevented. This flow control is
also active when a receiving node is saturated with incoming data. When
receive buffers approach their maximum capacity, a high water mark inter-
rupts the MAC control of the receiving node and sends a control message
to the sending node instructing it to halt packet transmission for a specified
period of time until the buffer can catch up. The sending node stops packet
transmission until the time interval is past or until it receives a new packet
from the receiving node with a time interval of zero. It then resumes packet
transmission. The high water mark ensures that enough buffer capacity re-
mains to give the MAC time to inform the other devices to shut down the
flow of data before the buffer capacity overflows. Similarly, there is a low
water mark to notify the MAC control when there is enough open capacity
in the buffer to restart the flow of incoming data. Full-duplex transmission
can be deployed between ports on two switches, a workstation and a switch
port, or between two workstations. Full-duplex connections cannot be used
for shared-port connections, such as a repeater or hub port that connects
multiple workstations. Thus, Gigabit Ethernet can be an effective intercon-
nection network when running in full-duplex, point-to-point mode where full
bandwidth is dedicated between two end-nodes.

2.3.1.3 Design Features

Gigabit Ethernet will eventually operate over a variety of cabling types. Ini-
tially, the Gigabit Ethernet specification supports multi-mode and single-
mode optical fiber, and short haul copper cabling. Fiber is ideal for connec-
tivity between switches and between a switch and high-speed server because

38 Impact of Communication on Distributed Computing

it can be extended to greater length than copper before signal attenuation
becomes unacceptable and it is also more reliable than copper. These fea-
tures however introduce much higher cost when setting up a large cluster
network in comparison to copper cables. In June 1999, the Gigabit Ether-
net standard was extended to incorporate category 5 unshielded twisted-pair
(UTP) copper media. The first switches and network NICs using category 5
UTP became available at the end of 1999.

2.3.2 Scalable Coherent Interface (SCI)

2.3.2.1 Overview

Scalable Coherent Interface (SCI) [122] is not only a network interface card
for message passing, but offers shared memory programming in a cluster
environment as well. SCI intends to enable a large cache coherent system
with many nodes. Besides its own private cache / memory, each node has an
additional SCI cache for caching remote memory. Unfortunately, the caching
of remote memory is not possible for PCI bus based systems. This is because
transactions on the system bus are not visible on the PCI bus. Therefore an
important feature defined in the SCI standard is not available on standard
clusters and SCI is no longer coherent when relying solely on its hardware.
An overview how SCI interfaces with current systems is given in figure 2.3.
It may be noted, that this interface will look the same for other PCI network
device interfaces.

In the current available SCI implementations, SCI does not offer message
passing primitives. Instead, it exports and maps memory segments between
different processes. The SCI network device will exchange data when the
modification of memory is detect. For this, the memory is mapped according
to figure 2.4.

2.3.2.2 Design Features

One of the key features of SCI is that by exporting and importing memory
chunks, a shared memory programming style is adopted. Remote memory
access (RMA) is directly supported at hardware level (Figure 2.4 depicts an
overview of SCI address translations). By providing a unique handle to the
exported memory (SCI Node ID, Chunk ID and Module ID) a remote host
can import this ’window’ and create a mapping. To exchange messages, data
has to be copied into this region and will be transferred by the SCI card,
which detects data changes automatically.

2.3 Hardware 39

� � � � � � � � � 	 � �
 � � �

 � 	 � � � � �

 � 	 � � � � �

� � �

 � 	 � � � � �

 � 	 � � � � �

� � �

� � � � � � 	 � � �

� � � 	 � � �

� � � � � �

 � 	 � � � � �

 � 	 � � � � �

� � �

 � 	 � � � � �

 � 	 � � � � �

� � �

� � � 	 � �
 � � �

� � � 	 �
 � �

� � � 	 � �
 � � � � � � 	 � �
 � � �

Figure 2.3: SCI Interfacing PCI Host Systems

2.3.2.3 SCI Functionality

Packet sizes of 64 Bytes are sent immediately, otherwise a store barrier has
to be called to force a transaction. In order to notify other nodes when
messages have been sent, they either can implement their own flow control
and poll on data or create an interrupter which will trigger the remote host.
However, the latter has a bad performance with a latency of 36 micro seconds
on a Pentium II450. One major drawback of SCI is that a shared memory
programming style can not easily be achieved because of the PCI bus lacks
the functionality to cache regions of remote memory in the local processor
cache. Furthermore, SCI uses read and write buffers to speed up communi-
cation which brings along a certain amount of inconsistency. Finally, SCI is
not attractive to developers who have to keep in mind the big performance
gap for read and write operations. For a Pentium II 450 the achieved per-
formance was 74MBytes/s for remote write versus 7.5 MBytes/s for remote
reads. When looking at concurrency then the preferred method is to use
the processor to copy data. In this case however, the processor is busy and
can not be used to overlap computation and communication as when DMA
would be used. Using the processor, a remote communication in SCI takes
place as just a part of a simple load or store opcode execution in a processor.
Typically the remote address results in a cache miss, which causes the cache

40 Impact of Communication on Distributed Computing

Figure 2.4: SCI Address Mapping

controller to address remote memory via SCI to get the data, and within the
order of a microsecond the remote data is fetched to cache and the processor
continues execution.

2.3.3 Myrinet

2.3.3.1 Overview

The Myrinet network is a highspeed interconnection technology for cluster
computing. Figure 2.5 depicts the layout of the Myrinet NI. A complete
network consists of three basic components: a switch, one or more Myrinet
cards per host and cables which connect each card to the switch. The switch
transfers variablelength packets concurrently at 2.5 Gbit/s using wormhole
routing through the network. Hardware flow control via backpressure and
inorder delivery is guaranteed. The NI card connects to the PCI bus of
the host and holds three DMA engines, a custom programmable network
controller called LANai and a minimum of 2 MByte of fast SRAM to buffer
data.

2.3.3.2 Design Features

Under the supervision of the RISC, the DMA engines are responsible for
handling data for the following interfaces: host memory/NICs SRAM and
SRAM/network, respectively. In detail, one DMA engine moves data from
host memory to SRAM and vice-versa, the second stores incoming messages
from the network link to the SRAM, and the third injects data from SRAM
into the network.

2.3 Hardware 41

� � � � � � �� 	

� � � � � � � � 	

� � � �

� � � � 	

� � �

� � �

� � �

� 	 � � � �

� � � �

� � � � 	

� � �

� � �

� � � �

� �

� � � � �

� 	 � � � � � 	 � � � �

� � �

� � � � � � � � � �

� � � � 	

� 	 � � � � � 	 � � � � � � � �

! � � 	 � � � � � � � � � "

#

� � � � � � � �

� # � $ � % & ' (� � ') (% & ' * ')

� + (,

� � � � �

Figure 2.5: Myrinet

2.3.3.3 Myrinet Layout and Data Flow

The LANai 9 processor runs at 200 MHz, controls the DMA operations, and
can be programmed individually by a Myrinet Control Program (MCP). The
SRAM serves primarily for staging communication data, but also stores the
code of the MCP. To simplify the software, the NI memory can be mapped
into the host’s virtual address space. [121] showed, that the limited amount of
memory on the NIC is not a bottleneck, but the interaction of DMA engines
and LANai. The Myrinet card retrieves five prioritized data streams into the
SRAM. However, at a cycle of 10ns only 2 of them can be addressed whereas
3 are stalling. This leads to a stalling LANai, which does not get access to
the staging memory. The effect becomes visible using clusters of 32 nodes
or larger. When sending a message with Myrinet, first the user copies data
to a buffer in host memory, which is accessible by the PCI bridge engine.
A next step is to provide the MCP with the (physical) address of the buffer
position. The LANai starts the PCI bridge engine to copy the data from host
memory to NIC memory. Finally the LANai starts up the third DMA engine
to inject the data from NIC memory into the network. On the receiving side,
the procedure is vice versa. First, the LANai starts the receive DMA engine
to copy the data to NIC memory and starts the PCI bridge engine to copy
the data to an address in host memory (which was previously specified via a
rendezvous protocol). Finally, after both copies are performed, the receiver
LANai notifies the polling processor of the message arrival by setting a flag
in host memory.

42 Impact of Communication on Distributed Computing

2.3.3.4 GM - Properties of the Myrinet Driver

Glenn’s messages (GM) is a message-passing system for Myrinet networks.
The GM system includes a driver, the Myrinet-interface control program, a
network mapping program, and the GM API, library, and header files.

For application development at the user level, GM provides functions
to allocate / release temporary buffers, that can be accessed by the DMA
engines. Two types of buffers need to be created in order to exchange data.
When sending smaller messages, the data is copied into send buffers which
can be reused. It is not allowed to modify the content of these buffers until
the message has been sent. GM provides mechanisms which indicate the
successful delivery of messages. For this, GM acknowledges stored messages
by a control message, which is sent back to the sender. The GM system
will deliver this event to the upper software layers. As a consequence using
this notification mechanism, the buffer can be assigned again for further
transactions.

For larger messages, GM provides functions to register data to be acces-
sible by DMA engines. In this case one data copy is avoided.

When receiving, the DMA engines spool incoming data into existing re-
ceive buffers. This has the advantage of clearing the NICs staging memory
and provides the data to the application in user space.

For an application, the GM receive buffers appear as a single receive queue
in which only the head and its payload can be extracted.

GM identifies a destination by a target node id and target port id. It
does not require an explicit setup of a point to point connection. For this,
it is required to have a mapper process evaluate the network. The GM
system provides a total of eight accessible ports where three ports are reserved
for the system itself. Thus, the mapper process is using one of the system
ports to evaluate the network and each MCP will retrieve necessary routing
information.

2.3.4 ATOLL

2.3.4.1 Overview

The ATOLL cluster interface network, is a future communication technology
for building cost-effective and very efficient SANs with standard processing
nodes. Due to an extremely low communication start-up time and very
broad hardware support for processing messages, a much higher performance

2.3 Hardware 43

standard in the communication of parallel programs is achieved. Four links of
the interface network, an 8 x 8 crossbar and four independent host ports allow
for creating diverse network topologies without additional external switches
(’network on a chip’). This architecture especially supports SMP nodes by
assigning multiple processes their dedicated device.

� � �

� � � � �
� 	

� # � $ � % & ' (� � ') (% & ' * ')

� � � � � � � � 	

� � � � 	

� � �

� � �

� � �

� � � �

� �

� � � � �

� � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � 	 � � � 	 �

� � - � �

� 	 � � � �

� � � � � � � � � �

� � � � 	

� 	 � � � � � 	 � � � � � � � �

� 	 � � � � � 	 � � � � � � � . �

! � � � � � � 	 � "

/

�

+

,

� �

� �

� �

� �

� + (,

� � � � �

� � � � � � � � � �

� � � �

 � � � � � � �

� � � � � ! � � � �

 � � � � � � �

� � � � � ! � � � �

 � � � � � � �

� � � � � ! � � � �

 � � � � � � �

� � � � � ! � � � �

 � � � " � � � � � � # � � � � � � � �

� � " � � � � � � � � � � � � � � #

 � � � � � � � � � � �

� � � # � � � � � � � � �

Figure 2.6: ATOLL - ATOmic Low Latency

2.3.4.2 Design Features

A special feature of ATOLL is the availability of multiple independent de-
vices. ATOLL integrates four host and network interfaces an 8x8 crossbar
and 4 link interfaces into one single ASIC. The card has an 64bit/66Mhz
PCI-X interface with a theoretical bandwidth of 528MBytes/s at the PCI
bridge. The crossbar has a fall through latency of 24ns and a capacity of
2GB/s bisection bandwidth. A message is broken down into 64Byte link
packets, protected by CRC and retransmitted upon transmission errors. The
chip itself, with crossbar, host- and network interfaces, is targeted to run at
250 Mhz. With a PLL frequencies can be adjusted.

2.3.4.3 ATOLL Hardware Layout and Data Flow

Standard techniques for the PCI bus such as write-combining and read-
prefetching to increase performance are supported. Sending and receiving

44 Impact of Communication on Distributed Computing

0 � � �0 � � � � � � . � � � �

� � � � � 	 � . � � � �

� � � � . � � � �

� � �

� � � � � 	 � � � � � �

� � � � � � � � �

' , , + , � + , /

1 2 1 	 � � � 	 � � �

3

Figure 2.7: ATOLL Descriptor Layout

of messages can be done simultaneously without involving any additional
controlling instances. The ATOLL API is responsible for direct communi-
cation with each of the network interfaces, giving the user complete control
of ”his” device. Thus supporting the user level communication concept. In
contrast to other SANs, most of data flow control is directly implemented
in hardware. Thus achieving a low communication latency of ¡ 2 micro sec-
onds. ATOLL offers Programmed IO (PIO mode) and Direct Memory Access
(DMA mode), respectively. A threshold value determines which method to
choose. Routing is done via source path routing, identifying sender and re-
ceiver by a system wide unique identifier, the Atoll ID. Routing information
is stored in a status page at the beginning of the pinned DMA memory
space. For starting a transmission in DMA mode, a descriptor is generated
and entered into the job queue of the host interface.

Injecting the message into the network is initiated by raising the de-
scriptor write pointer, which triggers the Atoll card to fetch the message.
Basically, the descriptor contains the following information: The message
length, the destination id, a pointer to the message in DMA memory space
and a message tag.

2.3.4.4 Atoll Hostinterface

The completion of a DMA task is signaled through writing a data word
into main memory, which makes the time consuming interrupt handling by
the processor unnecessary. Figure 5 depicts the three operations of a DMA
send process. First, data is copied into the pinned DMA data space (1).
Next, the descriptor is built and copied into the descriptor memory space (2).
Finally, the write pointer (3) is raised, so that it points to the new descriptor.
DMA data memory space and descriptor memory space are implemented
as ring buffers. When receiving a message, the descriptor for the received
message is assembled by the NI and copied into main memory. There it
can be used cache coherently by the processor. If PIO mode is used for
very short messages, the message is kept in the receive FIFO of the host

2.3 Hardware 45

Space
Descriptor
Table

Host
Interface

Data

receive
message
(head)

DMA Memory ATOLL

device context

descriptor write ptr.

base

Data FIFO

data segment
descriptor

header segment

descriptor read ptr.

mirror read ptr.
to context mem

write header

write data
to memory

generate &
write descriptor

5

4

2

3

1

Figure 2.8: ATOLL Send Operation [89]

interface and the processor is informed of the received message through an
update of the FIFOs entries in main memory. Just like in DMA mode, an
expensive interrupt is avoided. To overcome deadlocks, a time barrier throws
an interrupt forcing the processor to clear the network. In this mode, busy
waiting of the processor on the FIFO entries leads to the extremely short
receive latency. As this value is also mirrored cache-coherently into main
memory the processor does not waste valuable memory or IO bandwidth.

2.3.4.5 Process of a DMA send job

The API creates a point-to-point connection for the communication of two
processes. If two communication partners are within one SMP node, the
ATOLL-API transparently maps the communication to shared memory. Last
but not least, the demand for multi-threaded applications is supported with
an additional special register which can be used as a semaphore ’test-and-
set’. Unfortunately, nowadays processor’s such as the PIII only allow locking
mechanism at superuser level, thus achieving less performance as if the fea-
ture would be available in user mode.

Zero Copy mechanisms try to avoid any unnecessary data copies and are
a focus of recent research projects. Two Copy DMA Basically, if PIO is
available, then this communication mode can be used to directly inject data
from user memory space into the network. On the receiving side, the mes-
sage can again delivered directly. The disadvantage is that the processor will
be involved during the entire transaction and can not be used for computa-
tion during that time. To enable the DMA engine to perform this task, a
virtualtophysical address translation has to be implemented.

The TLB handling is usually performed by the OS. Basically, pages for
translation have to be be pinned down, and virtual addresses now represent
physical ones. The TLB can be placed and managed at the NI memory, the

46 Impact of Communication on Distributed Computing

host memory, or both. Using this method, Zerocopy can be achieved via
remote memory write using the information provided with the TLB. Send
and receive operations carry the physical address of the destination buffer
and the DMA engine copies the data directly to the destination address.
Typically, a rendezvous model is needed before such operation can take place,
since the location at the receiver side is not know a priori. A limitation for
this scheme is to have contiguous data. Also, the NIC has to support this
functionality, being able to touch data which can be pinned down dynamically
during runtime. This method also only makes sense, if the data which has
to be transferred is locked down once and the region can be used. Otherwise
expensive lock and unlock sequences will lower performance since a trap into
the system will occur. Another problem coming along with zero copies is
that of message flow control.

2.3.5 Infiniband

2.3.5.1 Introduction to Infiniband System Architecture

Over the recent years, several efforts were made to specify a new IO device
which should overcome the drawbacks of the current PCI implementation.
Two specifications Next Generation I/O (NGIO) and Future I/O eventu-
ally merged into SIO (08/31/1999) to be named Infiniband [33] afterwards
shortly. The Infiniband Trade Association released the Infiniband Specifica-
tion on 10/24/2000. Since then, Infiniband products have been presented on
several plugfests. Infiniband Architecture (IBA) is a packet-switched Sys-
tem Area Network consisting of one or more IBA subnets interconnected
via routers. In addition, a router may connect one of more IBA subnets to
no-IBA environments such as Ethernet and Internet. Each IBA subnet may
consist of one or more processor nodes (each containing one or more proces-
sors and memory arrays), IO Units (consisting of one or more IO controllers),
IBA switches, and IBA and backplanes.

2.3.5.2 Infiniband Overview

Infiniband aims to become a high volume, industry standard I/O intercon-
nect which extends the role of traditional in the box busses. For example
other interconnects such as HyperTransport or Rapid I/O are currently im-
plemented, but they will be used as an interconnect between processors only.
Infiniband is unique in providing both, an in the box backplane solution and
an external interconnect. In addition to internal interconnects, it provides

2.3 Hardware 47

connectivity in a way previously reserved only for traditional networking
interconnects. Therefore Infiniband introduced the notation of a Host Chan-
nel Adapter (HCA) which aims at interoperability with existing interfaces,
Switches to connect several single host systems, routers to connect several
subnets and Host Target Adapters (HTA), each of them having a Globally
Unique Identifier (GUID), which will enable end systems (for example stor-
age arrays) to be connected via Infiniband. Other characteristics are a 16
bit local id (LID) which is unique for each subnet, which is used to identify
and route a packet to its destination in a subnet. Furthermore an IP ad-
dress which is a globally unique 128 IPv6 Id used to identify an endnode by
applications and to route packets between subnets.

Figure 2.9: Infiniband System Overview [87]

Figure 2.9 depicts the detailed Infiniband Infrastructure ranging from
Host Channel Adapters to Target Channel adapters. However, the Infiniband
architecture is also designed to directly interface with the system bus. The
IBM Summit chipset already has such an Infiniband port.

Figure 2.10 depicts a large Infiniband environment consisting of multi-
ple subnets. The specification [33] determines 3 different rates at which
Infiniband will operate. The 1x Infiniband will consist of 1 port running at
2.5Gbit/s. A 4x implementation will have 10Gbit/s. While 1x and 4x imple-
mentation are available today, the 12x implementation resulting in 30Gbit/s
is expected to be introduced in 2004. Figure 2.12 depicts a comparison of
Infiniband and other emerging specifications.

In which way Infiniband Layers exist and form up a transport protocol is
depicted in Figure 2.11.

48 Impact of Communication on Distributed Computing

Figure 2.10: Infiniband System Overview [87]

Figure 2.11: Infiniband Layers[87]

2.4 Performance

2.4.1 System vs User Level Mode Performance

Traditional Ethernet networks do not only come with a overburdened proto-
col stack, but also require system calls in order to send or receive messages.
With U-Net [61], a paradigm was introduced which bypassed the kernel when
communicating.

2.4 Performance 49

Figure 2.12: Infiniband in Comparison with Other Specifications[87]

2.4.2 Application Performance Enhancements
through High Speed Networks

The replacement of massively parallel computers (MPPs) is an increasing
trend over the recent years. The 19th edition of the Top500 list, a list which
summarizes to 500 fastest systems according to their Linpack performance,
held a fraction of 18% of clusters. For the 20th edition, two large commodity
clusters are expected to be in the Top10 of best Linpack performance. When
replacing an MPP with a cluster the most important topic to be evaluated
is the interconnection network. As of today, two choices for a network exist
in principal.

Figure 2.13: Hypersonice CFD Code Performance with respect to Machine
Architecture and Interconnection Type[117]

One is to use a standard network such as Fast Ethernet, the other is

50 Impact of Communication on Distributed Computing

to use a high speed network or system area network. The latter roughly
double the cost per node. This however only makes sense, if the set of
applications which are going to be run on the machine can benefit from
a fast network. This section will provide insight why a high speed network
indeed does make sense. A large amount of applications is CFD or FEM code.
The following graph shows comparative performance of a production CFD
code (Hypersonic CFD code) developed at the University of Southampton
on a variety of cluster architectures. The code solves the 2D Navier-Stokes
equations for chemically-reacting flow. It uses MPI communications in a
pipeline topology and has been in production on SP2 and Origin 2000 systems
for several years. In this graph the performance on three different Windows
NT cluster configurations is shown, together with comparison with an Origin
2000 dedicated machine with 225MHz R10000 processors. True speedup,
relative to a purely sequential, single processor version is shown.

Figure 2.14: MM5 Speedup in Comparison using Myrinet or Fast Ethernet
as Interconnection Network. [116]

However, a fast network is not always required for parallel applications.
Especially master slave applications for example in which data is only send
forth and back between master and slave but no communication is performed
among the slaves will have a better price performance ratio when using tradi-

2.4 Performance 51

tional networks. Figure 2.14 however is a distributed application which also
achieves good scalability. For this application, a high speed network would
not be required and a traditional network is sufficient.

Chapter 3

Extending the Parallel Virtual
Machine with a System Area
Network Plugin

With the variety of different networking devices and multiple low level API’s
for the same device (GM, PM and BIP for Myrinet for example), it would
be efficient to provide a specified generic API for a higher message passing
environment to allow for an easy integration of existing or new interconnects.

The portable MPI implementation MPICH [103], which provides a
Chameleon device, is an approach to incorporate multiple devices using an
abstract device interface (ADI).

Another message passing environment is the Parallel Virtual Machine
(PVM) [108], which provides more flexibility than current MPI implementa-
tions. Some of its advanced features are dynamic creation of processes and
communication partners, or fault tolerance. But also a collection of very het-
erogeneous machines can be harnessed to form one single entity, transparent
to the application through the PVM message passing library.

The MPICH implementation of MPI provides an abstract device for com-
munication layers and several channel devices have been implemented.

Contrary to MPICH, PVM does not provide an abstracting device in-
terface, but has a mixed code that differentiates between a variety of ar-
chitectures, ranging from MPP nodes to a network of workstations. For
workstations, control is given by additional PVM daemons (PVMd), which
are running on each host of the virtual machine. Another part of the PVM
system is the PVM library (libpvm) to which tasks have to be linked. Tasks in
the PVM system are represented by a unique task identifier (tid). Messages

53

54 Extending PVM with a System Area Network PlugIn

are sent using the tid as destination parameter. Within PVM, two routing
policies are given. Using the default routing, messages are transferred via the
UDP connected daemons which route the message to the final destination.

To improve communication performance a direct connection between two
tasks can be established, leaving the PVMd’s outside the transfer. This
mechanism has been used to extend the PVM communication primitives to
provide an interface for other network devices not using TCP/IP protocols.

Figure 3.1 depicts the logical PVM layout in which PVM daemons and
tasks communicate over a variety of platforms. The goal is to replace the
heavy TCP/IP protocol stack with a low level, reliable system area network
transport.

pvm hoster

group server
pvm

User task

User task

TCP

TCP

TCPTCP

TCP

UDP

UDPUDP

TCP

User task

pvm daemons

connection
User task

Network

Hardware Driver

Protocol Stack (TCP/IP)

PVM Application

Sockets DLL

Network Interface

Figure 3.1: PVM Communication Overview using Ethernet. PVM daemons
are connected through the connection less UDP protocol to allow for large
virtual machines. Tasks are connected to the daemons through the connec-
tion oriented TCP protocol. Tasks can create direct connections to other
tasks, otherwise the messages are routed through the PVM daemons.

This point to point design would also fit most of current system area
network implementations very well.

Other research used ATM as a network [88], still relying on TCP/IP and
not gaining much more performance than using Fast Ethernet. Also, multi
devices which handle several network connections were not supported, but
are addressed within this extension to the standard PVM. Finally, other ports
to SCI are available [107], [106].

3.1 A Common Interface for a SAN Extension to PVM 55

3.1 A Common Interface for a SAN Exten-

sion to PVM

For a message passing environment like PVM, several functions are required
in order to establish a point to point connection between two tasks. One
important feature for a dynamic environment is to allow the establishment of
connections during runtime. Obviously, this feature is also resource friendly
since it does not set up unnecessary connections per se, which are subject of
not being used during execution. In order to allow this, a request for setting
up a direct connection must be transported from one node to another. The
initial request structure typically includes basic SAN specific information.

The delivery of requests is performed using an additional standard net-
work such as Fast Ethernet. The standard PVM provides controlling dae-
mons which will deliver data between tasks until a direct connection between
two nodes using a faster method is made.

To make this scheme universal to several interconnects, this transfer is
split up in a request and a ack/grant phase between two nodes (see figure
3.2 for details).

Host Id, Chunk Id and Module Id need to be exchanged in order to
provide a direct point to point connection. In order to set up a bidirectional
connection, (1) will provide the Sender’s Request via Daemon A and B to task
B. In (2) the Receiver will reply necessary information from the destination.
With (3a) and (3b) two different windows will establish round robin buffers
into which the actual data can be delivered.

This mechanism can be split up in the following phases a

1. Request - a node invokes a new pt2pt connection, passes the request
to the daemon and waits for an acknowledgment after which the con-
nection is finalized through a reply from the remote target.

2. Delivery - a controlling daemon holds the request and the data is passed
via conventional communication mechanisms to the receiver

3. Ack and Grant - a node receives the request when it enters a library
function, performs steps to setup and finalize the connect and returns
a ACK if resources are available

After this exchange of SAN information further communication takes
place only using the fastest interconnect available. Typical content of a
setup message can be a port number, node id, or memory addresses.

56 Extending PVM with a System Area Network PlugIn

4 0 � � 5

0 5 � �

0 5 � �

4 0 � � 5

� � � � � � � ! � "

5 � � 	 � � � � ! � � "

6 � � � � � � 	 � � � �

� � � 7 � � � � � 7 � �

� � � � � � � ! � "

6 � � � � 	 1 � � 0 � 8 � � � $

! � � 9 � . 2 0 5 : ;

2 � � � � � ; �

� � � � � � � � ;

� � � � 7 � � "

0 � � � � � � 	 1 � � 0 � � �
 $

! � � 9 � . 2 � � < ;

2 � � � � � ; �

� � � � � � � � ;

� � � � 7 � � "

! � "

! + "

! , � "

! , - "

Figure 3.2: Establishing a direct SAN connection between two Nodes. In
this example,the request and grant protocol is presented for the SCI network

.

When a direct communication is established, low level calls to the API of
the interconnect can then be used to exchange data. For this, a sender holds
a struct for each communication partner in which the type of connection is
stored. However, for a receiving node, message arrival has to be detected
(and received) from different networking devices.

3.2 Implementations on Different Intercon-

nect Devices

In the following the extensions to PVM are explained which allow the plugin
of different interconnects. To allow a common interface for several intercon-
nects, a plugin has to register its functions in a header file which is included
into the lpvm.c file which implements the setup of new connections as well
as send/recv functions and detects message arrival. As described above,

3.3 Plugin Implementation Details 57

the following functions are prototyped san request(), san ack(), san send(),
san recv() and san poll().

When enabling direct connections, a PlugIn references and calls the regis-
tered functions (e.g: the request and ack, the send/recv and select functions)
from the header file. For them it is required to be autonomous functions not
requiring additional control (for example the request function provides all re-
quired information for the receiver, or a send function does only return when
a (possibly later) message delivery can be guaranteed.) Thus, the extended
PVM does not differentiate between various devices but calls the registered
functions in the same manner. In order to detect a plugin, the extended
PVM tries to load a shared library. If available, function will get registered.

3.3 Plugin Implementation Details

3.3.1 The PVM-SCI plugin

Scalable Coherent Interface (SCI) is the international standard IEEE #1596-
1992 for computer-bus-like services on a ring-based network [109]. It sup-
ports distributed shared memory (DSM) and message passing for loosely
and tightly coupled systems. Optionally cache coherent transactions are
supported to implement CC-NUMA (Cache Coherent Non-Uniform Memory
Access) architectures. However, using the PCI bus as commodity interface
to build a SAN, major key features of SCI, such as the cache coherency,
no longer exist since it is not possible to snoop on the host memory bus.
Thus, for each message transaction, data has to be explicitely memcopy’d
into memory mapped regions.

Another disadvantage is the performance difference for the so called put
or get scenario. Writing to the network is an order of magnitude faster than
reading from the net work (writing to or reading from remote memory. In
our environment these effects compared with 73MBytes/s to 12MBytes/s
respectively. This must be kept in mind by developing and implementing an
efficient message passing plugin for a SCI network.

3.3.1.1 Details on PlugIn functions

When establishing a direct connection, a basic information is the SCI-node
ID, the SCI memory location and the chunk id to map exported memory.
This setup is performed by the initiator and the recipient, both exporting

58 Extending PVM with a System Area Network PlugIn

to (during setup) and mapping from (when finalizing the direct connection)
the communication partner (the remote task). Thus, the initiator receives
necessary information within the ACK/GRANT reply.

• For send functionality, a ring buffer has to be implemented. This is
required since SCI only exports memory but does not offer functions
useful for message passing. Data is transferred by copying data into
exported memory regions. The SCI card will detect these changes and
transport it to the node which has mapped the memory region. The
ring buffer has been implemented as depicted in figure 3.3.

MSG Number Send

Rd Pointer Value

Rd Pointer Value

MSG Number Send

Ring Buffer

Ring Buffer

(for sending)

(for receiving)

Task A Task B

Task Exporting Memory

Task Mapping Memory
(for receiving)

(for sending)

Task Exporting Memory

Task Mapping Memory

SCI Address Space

SCI Address Space

Figure 3.3: Ring buffer implementation for the PVM-SCI plugin. Each com-
munication partner exports a chunk of memory in which data can be written.
The chunk is separated by a small header which holds necessary flow control
information and a data region which holds messages. Messages themselves
contain an envelope or header and the corresponding payload.

The remote side updates a read pointer indicating the last position of
the ring buffer read. This way, a sending process does not overwrite
unread data and flow control is guaranteed. An earlier version of the

3.3 Plugin Implementation Details 59

plugin used SCI’s remote interrupters, however the performance (it
took about 60 micro seconds) was too slow to achieve any performance.
When a sent has been made, the number of messages sent is updated
on the remote side [106].

• For recv functionality, a ring buffer is implemented as well. After re-
ceiving a message the read pointer of the last position on the remote
side is updated. As a consequence, two nodes export memory which is
mapped by the communication partner.

• select/poll functionality is implemented by querying the number of mes-
sages received for each communication partner. A local structure stores
the numbers read so far and if for any communication partner this num-
ber is higher, the function returns with a pointer to the new message.
The plugin also used the SCI interrupter mechanism. This lets a node
raise an interrupt on a remote host. However, the performance using
SCI interrupters was less than using Fast Ethernet. To achieve effi-
ciency, the interrupter method could not be used since context switches
hampered the performance. Also the notification mechanisms had to
keep in mind the enormous performance differences for the put and
get scenario. Thus, for example, the number of messages sent is stored
locally at receiver side, while the read pointer is stored in physical
memory of the sender.

3.3.2 The PVM-GM plugin

Myrinet [9] is a high speed interconnection technology made by Myricom. It
uses source path routing and is capable to transfer variable message lengths
at 2 Gbit/s. The (open source) GM driver including a Myrinet Control
Program comes from Myricom and implements DMA only. GM provides
a connection less protocol in which sender and receiver are identified by
so called host id’s and GM ports. A process gets access to the Myrinet by
opening a GM port. However in order to send or receive data, a process must
provide a pool of receive buffers (of different) sizes which can be accessed by
Myrinet’s DMA engines. First, data is then transfered from host memory to
network memory (SRAM on Myrinet card), then injected into the network.
Obviously incoming data should be transfered to host memory as soon as
possible clearing the network and the limited SRAM memory on the Myrinet
card. Thus the plugin has to provide enough receive buffers so that the DMA
engines always find a slot into which the data from the network can be stored.

60 Extending PVM with a System Area Network PlugIn

3.3.2.1 Details on Plugin functions

When establishing a direct connection, GM port information is exchanged,
but an establishment of a connection is not necessary. The following list will
provide detailed information on how the necessary plugin functions can be
implemented based on the GM API.

• For implementing the send function, the gm send with callback()

mechanisms which are already provided by GM can be used. For a mes-
sage transfer, data is first copied into an appropriate bin. To achieve
better performance, this data is pipelined (see section 3.3.5 for details).
One key feature is the flow control coming with GM. In particular, a
function can be given to the gm send with callback() function which
is called after the send has completed. This is of importance since with
the efficient usability of DMA’s, overlapping of computation and com-
munication can be implemented easily. A bin can then be re-used when
the function has been called, signaling the end of the message transfer.

• Implementing the recv function for the PlugIn is also straight forward
by using the gm receive() function which returns the first entry from
a FIFO queue. Into this queue all incoming messages are inserted
and when finding an entry in the queue message data already has been
DMA’d from network memory to host memory into one of the provided
bins. Further GM functions provide the source of the message to be
identified for higher level message passing systems. That is that every
event is passed to the upper layers as a structure which holds the origins
GM node id and port id. It also contains additional information such
as the message length for example.

• A select/poll mechanism is provided as well through GM. The
gm receive() function returns a NO EVENT tag, if no message has
arrived or directly provides the message. Thus, the function is non
blocking by default.

3.3.3 PM2 Plugin for Myrinet using the SCore Envi-
ronment

PM2 is another low level API for Myrinet. It is developed by the Real
World Computing Partnership (RWCP) Japan [98] and is open source. PM2
can be used as a low level programming API, but is specifically designed
to run under the SCore environment. This environment can be seen as a

3.3 Plugin Implementation Details 61

cluster operating system. Its programming models include a MPICH-PM
device, a tuned Ethernet over PM implementation as well as an OpenMP
implementation. Internally, SCore implements gang scheduling in order to
increase the efficiency of parallel applications. Under the supervision of the
SCore daemons, the PM driver is capable of autonomous checkpoints. The
SCore daemons, being a central instance of control, required additional efforts
for an integration into PVM. The following picture depicts the resulting
control layers.

Figure 3.4: Overview on Different PM Context Layers

Basically, the SCore daemons will start applications passing an optimized
routing table to the parallel application. This routing information is cal-
culated in dependency of other applications. A restriction is that only N
processes can be used within a session. Adding further nodes is not possible
which is a burden for PVM or MPI-2 applications where the programming
model offers support for dynamic process management. As a solution, each
SCore daemon first forks the controlling PVM daemons. These daemons
communicate within their own PM context. The actual application is then
started using a new PM context. As a consequence, a user has to specify the
maximum amount of processes to be used. These additional nodes are then
a resource pool for further tasks to be spawned by PVM.

A program using PM2 must first open the PM device and then open a
context which has to be bound to a channel. Buffers are provided within

62 Extending PVM with a System Area Network PlugIn

PM2 functions.

A process calls the pmGetSelf() function to identify itself in the PM
context. Other nodes may use this information to send messages. A key
feature of PM2 is the availability for different platforms. Not only Myrinet
is supported, but Fast Ethernet and Gigabit Ethernet as well. This way, also
for conventional interconnects, the overburdened TCP/IP protocol has been
replace by using a modified version of UDP with additional flow control. The
resulting performance is much better than when using TCP/IP [99]. More-
over, the problem of limited numbers of file descriptors which would cause
larger Ethernet clusters to fail using TCP/IP has been solved. This feature
allows to run MPICH applications on hundreds of nodes using Ethernet, since
the protocol is connectionless.

3.3.3.1 Details on Plugin functions

When establishing a direct connection, the PM port number information (0,
.. , n-1) is exchanged but like GM, a setup of a connection is not necessary.
The following list reflects the required implementation details when using the
PM as the low level protocol.

• For implementing the send function, the pmSend() function can be
used. It uses only an internal context value as a parameter, which has
been initialized by PM when providing a send buffer which was tagged
with the destination node information.

• The Recv Function can be easily implemented with the pmReceive()

function.

• Select/Poll - Like GM, the behavior within PM2 is the same, the
pmReceive() function is non blocking.

3.3.4 Optimized Memcpy Functions

Recent research focused on zero copy message transfers which avoids un-
necessary copies of data. This often requires a lot of changes to higher level
code, but does not result in dramatic gain of performance (2-5 per cent [100]).
When developing different PlugIn’s for different network interconnects, it be-
came clear, that for each selected host architecture optimized memcpy func-
tions can increase the performance compared to C lib memcpy function calls.
A major gain can be seen when using SCI. Here a bandwidth limiting factor

3.4 Performance Comparison for Different Plug Ins 63

is the performance with which data is copied to exported memory. Using
the standard memcpy call the performance peaked at only 22MBytes/s. the
standard memcpy call the performance peaked at only 22MBytes/s. With
optimized memcpy routines (for example using the FPU‘s 64bit operands)
the peak value achieved on a PII 450 system was 73 MBytes/s, compared to
280MBytes/s when copying data from shared memory to local memory. Thus
the maximal performance for higher level message passing environments such
as PVM or MPI is limited by the put performance of 73MBytes/s. Further
optimizations such as MMX, SSE, SIMD or VIS can be considered as well.

3.3.5 Data Pipelining

When using DMA capable hardware such as the Myrinet network card, a
major performance increase can be made by pipelining / interleaving message
data. In this case, separating larger messages into multiple chunks, which
can be chained by the DMA, increase the performance, since a memcpy of a
shorter message takes less time and a first DMA transaction can already start
while other memcpy’s follow. This simple technique for example increased
the performance for transferring larger amounts of data from 32 MBytes/s
to 79 MBytes/s.

3.3.6 Memory Registration for Direct Transfers

To avoid data copies into an extra buffer some operating systems like LINUX
provide the functionality of registering memory. In this case data is pinned
down and can be accessed by DMA to be injected into the network directly.
This enables an optimization for some operating systems to switch between
different communication patterns depending on the message size. Register-
ing memory however involves a costly kernel trap. In particular, on a PIII
600 with Linux 2.2.14, we measured a break even of only 11KBytes, so that
a memcpy of data performed less than registering memory. Thus, for larger
messages better performance was achieved by switching the message proto-
cols.

3.4 Performance Comparison for Different

Plug Ins

In this section the performance numbers using the nntime program, which
comes with the PVM distribution are presented. The nntime program mea-

64 Extending PVM with a System Area Network PlugIn

sures the round trip performance. A message is sent to the destination, it
is received and consumed and another message is assembled and send back.
The payload for these data transfers is the same. This test is then conducted
for a sample rate which can be specified. For the following tests, a sample
rate of 100 iterations was used. Each measurement is compared with the
raw performance of the used low level API. With raw performance we mean
the potential performance which is available when using the low level API
directly without any further overhead involved. Using a low level API down-
grades portability while using a portable message passing interface like PVM
performance is sacrificed.

3.4.1 PVM-SISCI Performance

Figure 3.5 depicts the nntime benchmark performance using the SCI network.
The plugin uses the SISCI low level API from Dolphin. When developing
the plugin, the code was instrumented to see potential performance losses.
It was immediately visible, that only optimized memcpy routines which copy
the message into the SCI address space are required. Each CPU architecture
has the potential to be tuned without providing portability. Thus a memcpy
routine for a Pentium II would no longer work or be efficient on Pentium III
processors for example. Since this work focused on efficient communication
layers, the investigation into providing efficient copy routines was neglected.
Optimized memcpy routines have been used from the Yasmin project [123].
The tests were conducted on a hpcLine system at the Paderborn Center for
Parallel Computing. When conducting the development and measurements,
the system was equipped with Dual Pentium II 450Mhz nodes using an Intel
440 GX chipset. The system contained 4th generation PCI/SCI adapter cards
(D308 revision D) that have been designed by Scali AS. These cards have an
32bit/33Mhz PCI interface and are based on Dolphin’s CluStar technology
(PCI/SCI card 310).

The performance analysis reveals that especially for small messages most
of the raw performance is lost due to the overhead increased through PVM.
Nevertheless, this plugin provides a much lower latency when compared with
Fast Ethernet. With a peak of 49.2 MBytes/s and a one way latency of 45 mi-
cro seconds the PVM-SCI plugin outperforms Fast Ethernet which provides
a latency of 140 micro seconds and a maximum bandwidth of 8.8MBytes/s.

With an upgraded system (the PII 450 processors were replaced by PIII
850 Mhz processors), a highly optimized MPI implementation from Scali
shows a maximum bandwidth of 85 MBytes/s and a latency of 5.1 micro
seconds. This improved performance is partly due to the new PIII processor

3.4 Performance Comparison for Different Plug Ins 65

PVM-SCI vs Raw SCI (PII 450)

0
10
20
30
40
50
60
70
80

8 32 80 25
6

80
0

20
48

80
00

32
76

8

64
00

0

96
00

0

MSG SIZE (Bytes)

M
B

/s
PVM-SCI-P2P
Raw-SCI-P2P

Figure 3.5: nntime Performance under PVM-SCI. For small messages perfor-
mance is lost due to PVM’s feature to allow a heterogenous interconnection
network. In this case nodes inside a cluster can communicate efficiently, but
also connection to external nodes can be established. This is ideal for Grid
application which will make use of fast networks when available, reverting to
the traditional protocol otherwise.

which is capable of providing higher memcpy bandwidth. Most of the im-
provement however can be found by analyzing the message passing protocol.
PVM remains flexible allowing additional communication to tasks which are
out of the System Area Network. This means that under PVM the library
also checks for requests for establishing new connections or other control mes-
sages through the PVM daemon. This check however involves a system trap
by calling the select function. As a consequence, the latency using multiple
devices including a trap into the system can not be as low as the latency
of a message passing implementation which only uses static communication
patterns. The implementation was also extended by using pthreads to listen
on Ethernet communication. However, a significant performance gain could
not be achieved due to the high cost of thread schedules.

3.4.2 PVM-GM Performance

Figure 3.6 depicts the nntime benchmark performance using the GM low
level protocol running over the Myrinet 2000 network. The setup consisted

66 Extending PVM with a System Area Network PlugIn

of two dual Pentium III 600 Mhz nodes using an Intel LX chipset. The PCI
interface was 32bit/33Mhz. The data transfers are using DMA engines. The
PVM-GM plugin sacrifices performance for smaller messages. It peaks with
72.2 MBytes/s and has a latency of 50.2 micro seconds. These values are
achieved by using the pipelining strategy in which the message is fragmented
to 16KBytes to overlap with DMA operations.

PVM-GM vs GM Raw (PIII 600) / L9.0, 32 Bit, 33 Mhz

0

20

40

60

80

100

120

0 80 40
0

80
0

16
00

40
00

80
00

16
00

0

40
00

0

80
00

0

96
00

0

12
00

00

20
00

00

25
60

00

40
00

00

80
00

00

Message Size in Bytes

M
B

/s

PVM-GM

Raw GM

Figure 3.6: nntime Performance under PVM-GM.

3.4.3 PVM-PM Performance

Figure 3.7 depicts the nntime benchmark performance using the PM driver
over Myrinet 2000. The test was conducted at the SCore III cluster hosted by
the Real World Computation Partnership (RWCP). The system consists of
512 dual PIII 933 Mhz nodes using a Serverworks LE chipset. The Myrinet
2000 network cards were plugged into a PCI 64bit/33Mhz bus. The PM
low level API is an optimistic protocol available for Linux operating systems
only. Some of the notification mechanisms are better implemented than the
GM driver.

This optimistic protocol as well as the doubled PCI bus performance using
64bit allow the PVM plugin to gain further performance. The PM interface
also has a built-in shared memory interface. This means that two processes
communicating on the same node will use shared memory for communication,
still using the PM device. Both performance measurements are presented.

3.4 Performance Comparison for Different Plug Ins 67

SCore/PVM Round Trip Performance

0

50

100

150

200

250

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Message Size in Bytes

M
B

/s

SCore/PVM PT 2 PT
PVM/SCore SHMEM
PM Raw

Figure 3.7: nntime Performance under PVM-PM. The fast Serverworks LE
chipset with a 64bit/33Mhz let PVM reach 100+ MBytes/s. PM internally
provides a shared memory interface as well. Without crossing the PCI inter-
face, the performance can be further increased.

3.4.3.1 Conclusion on Performance Results

The Parallel Virtual Machine has been extended with a plugin which allows
the integration of reliable low level transports. All PVM features are still
provided. This partly limits the plugin to exploit the potential performance
given through the low level API. However, compatibility was the major con-
cern, since some applications do not fully benefit from much faster networks.

Latency sensitive applications will benefit from reduced communication
overhead as for some networks like Myrinet, the DMA engines will transfer
the data out of registered buffers. The application however can continue
processing data.

The nntime benchmark implements a ping pong model in which appli-
cations send out a request and wait for a response. This is different from
the ping ping model in which a sender continuously streams data into the
network. For the latter message, final message as an acknowledgment from
the destination then ends this performance measurements. Values for the
ping ping model are typically much higher since overhead for processing the
message at the receive side is neglected.

Chapter 4

Communication Environments
for the ATOLL Network

The ATOLL network provides a low level API which is designed to support
message passing environments efficiently. This chapter describes the integra-
tion of the ATOLL network into existing environments.

4.1 The MPI Environment for the ATOLL

Network

In this section the adaption of an open source reference implementation of
MPI to run over the ATOLL network is presented.

4.1.1 A MPI Reference Implementation: MPICH

The MPI specification effort started in 1992 and MPICH was an immediate
implementation as the specification evolved. The early MPICH was improved
by providing better performance and support for all required functions speci-
fied by the MPI standard. Furthermore, the Abstract Device Interface (ADI)
architecture was introduced. This attracted individual vendors and other
developer to take advantage of this interface to develop their own highly
specialized implementations of it. As a result, extremely efficient implemen-
tations of MPI exist on a variety of machines. In particular, Convex, Intel,
SGI, and Meiko have produced implementations of the ADI that produce
excellent performance on their own machines, while taking advantage of the

69

70 Communication Environments for the ATOLL Network

Figure 4.1: Overview of the MPICH Channel Interface [124]

portability of the great majority of the code in MPICH above the ADI layer.
Figure 4.1 depicts available ADI implementations.

This approach also has been followed when developing the ATOLL ADI
implementation.

4.1.2 MPICH ATOLL Device

In the following, some implementation details for the ATOLL network in-
tegration into the portable MPI implementation MPICH will be given. It
addresses how a parallel application will be started and how the low level
ATOLL API has been integrated into the abstract device interface.

4.1.2.1 Process Placement

MPICH offers a two methods for application startup. First is to use a central
process which starts remote processes through rsh or ssh. Second is the
process startup through additional daemons which are running under the
root account on every host. Through the setuid command, a fork’ed child
is placed under the actual user account. The daemon method is more efficient
for very large clusters, since the remote procedure calls are more costly. We
have focused on using the traditional startup which works as follows. Using

4.1 The MPI Environment for the ATOLL Network 71

the mpirun script one process starts other processes on remote nodes. These
nodes are specified by a machinefile. Upon process startup, the processes
first enroll into ATOLL and receive their atoll id. This startup mechanism
offers several advantages. One is that a socket is created with the central
instance and messages can be exchanged. This way, the remote processes pass
back their atoll id. Moreover, the central instance will detect applications
experiencing an error (e.g: SEGV) through an EOF on the socket. This way,
all other process on remote nodes can be informed to shut down, which is how
the MPI standard is specified. After receiving all atoll id’s from the remote
processes, it can be guaranteed, that the parallel application is able to use
the ATOLL network for communication. To finalize this setup procedure, the
central instance will distribute a table of matching MPI node id’s ranging
from 0, .., n-1 and their corresponding atoll id’s to all processes involved in
the parallel application. This way, each process can build a connection by
referencing the requested MPI id.

4.1.2.2 Protocol Adaptions

The ATOLL network hardware implementation has been designed very ef-
ficiently. This includes that messages have to be a multiple of 64bit. A
message in MPICH consists of a header to identify a message and a payload.
The header struct is easy to adapt to be a multiple of 64bit, however the
payload has to be padded. This can be done in a brute force manner which
would degrade performance by splitting up or extending the message. We
have chosen to modify the ATOLL low level API to support any message
size. That is the actual message which is not restricted to be a multiple of
64bit will be transferred. If a padding is needed, then only the descriptor is
modified, letting the hardware transfer 1, .., 7 Bytes more than needed. This
solution is therefore much more efficient than the software approach.

4.1.2.3 The ATOLL Channel Interface

The central mechanism for achieving the goals of portability and performance
is a specification which is known as the abstract device interface (ADI) [91].
All MPI functions are implemented in terms of the macros and functions that
make up the ADI. All such code is portable. Hence, MPICH contains many
implementations of the ADI, which provide portability, ease of implemen-
tation, and an incremental approach to trading portability for performance.
One implementation of the ADI is in terms of a lower level (yet still portable)
interface which is called the channel interface [92]. The channel interface can

72 Communication Environments for the ATOLL Network

be extremely small (five functions at minimum) and provides the quickest
way to port MPICH to a new environment. Such a port can then be ex-
panded gradually to include specialized implementation of more of the ADI
functionality. The architectural decisions in MPICH are those that relegate
the implementation of various functions to the channel interface, the ADI,
or the application programmer interface (API), which in our case is MPI.
At the lowest level, what is really needed is just a way to transfer data,
possibly in small amounts, from one process’s address space to another’s.
Although many implementations are possible, the specification can be done
with a small number of definitions. The channel interface, described in more
detail in [92], consists of only five required functions. Three routines send
and receive envelope (or control) information: MPID SendControl,One can
use MPID SendControlBlock instead of or along with MPID SendControl. It
can be more efficient to use the blocking version for implementing blocking
calls. MPID RecvAnyControl, and MPID ControlMsgAvail; two routines
send and receive data: MPID SendChannel and MPID RecvFromChannel.
Others, which might be available in specially optimized implementations, are
defined and used when certain macros are defined that signal that they are
available. These include various forms of blocking and nonblocking opera-
tions for both envelopes and data.

These operations are based on a simple capability to send data from one
process to another process. No more functionality is required than what is
provided by Unix in the select, read, and write operations. The ADI code uses
these simple operations to provide the operations, such as MPID Post recv,
that are used by the MPI implementation. The issue of buffering is a difficult
one. We could have defined an interface that assumed no buffering, requiring
the ADI that calls this interface to perform the necessary buffer management
and flow control. The rationale for not making this choice is that many of
the systems used for implementing the interface defined here do maintain
their own internal buffers and flow controls, and implementing another layer
of buffer management would impose an unnecessary performance penalty.

4.1.2.4 MPICH/ATOLL Protocols

To handle different message lengths, different internal MPICH protocols can
be implemented. Their importance is explained in the following. One impact
of a message length is that of network congestion. Assumed, a message is not
limited in its size by hardware, long data transfers will block paths making it
impossible for other messages to get through. ATOLL, specifically, does not
have such a Maximum Transfer Unit (MTU). Another reason for protocols

4.1 The MPI Environment for the ATOLL Network 73

is the possibility of pipelining fragments of messages and therefore speeding
up the performance because the first chunk of data can be already handled
by the NIC, while other fragments are prepared by the host processor. In
this case, a CPU only spools a fraction of the message into the SEND DMA
region and assembles a descriptor before spooling another fraction of the
message. As a consequence, the ATOLL hardware is triggered and fractions
of the message are already on its way to the destination. This pipelining
strategy has been proven to increase the performance (Reference: PVM-GM
with and without Pipelining).

Therefore, the MPICH/ATOLL device uses three different protocols:
SHORT, EAGER and RENDEZVOUS. Which protocol is chosen depends
on the message size. For every MPI message the user program wants to
send, a header respectively a control block is created. In this control block
the size, the type and further information about the MPI message are in-
cluded. All messages get a tag. The control block always gets the tag ’0’, the
message gets a tag corresponding to the protocol. These tags are important
for the probe and the reception of a message.

4.1.2.4.1 SHORT This protocol is used for messages smaller than 1.024
bytes. MPI header and MPI message are combined to one message. This
message has the tag ’0’.

4.1.2.4.2 EAGER This protocol is chosen for messages, which have a
size between 1.024 bytes and 128.000 bytes. MPI header and MPI message
are sent separately. The message gets a special tag: 1 + MPI Source rank.
Hence, the receiver can recognize the source, which is important for handling
unexpected messages. In both previous mentioned protocols all messages are
sent immediately without waiting for a corresponding receive. This is a fast
method but it could lead to a lack of memory at the receiver side.

4.1.2.4.3 RENDEZVOUS For that protocol the message has to be
larger than 128.000 bytes. It is a handshake protocol. The header is sent
with an acknowledge request (special message type). Then the message is
not sent until the acknowledge arrives. So the receiver has the possibility to
allocate enough memory space before the message arrives. The control mes-
sages have the tag ’0’, the data message the tag ’1024 + number of pending
messages’.

74 Communication Environments for the ATOLL Network

4.1.2.4.4 Message queuing The ADI from MPICH already provides a
message queuing. It checks all control messages (messages with the tag
’0’). If a control block indicates that an unexpected message will arrive,
memory is allocated and the data message is added to a list of unexpected
messages. In this context ’unexpected’ means that no corresponding receive
was posted by the user application. However a further message queuing
inside the private ATOLL functions would be necessary because the order of
control messages does not need to be the one of data messages. But ATOLL
bypasses this problem with its pinned DMA space and the API functions
’Atoll find header’ and ’Atoll recv desc’

4.1.2.5 MPICH/ATOLL Transfer modes

MPI provides two basic transfer methods, blocking and non-blocking. A
blocking send, for example, blocks the user application until the message is
sent. A non-blocking sent returns to the user program even if the sent is not
finished. MPI does not guarantee the completion of this send until a block-
ing ’MPI Wait’ is started. However that MPI provides these two methods
does not mean that every MPI device has to support both methods. With
the definition of the two variables ’PI NO NSEND’ and ’PI NO NRECV’ in
the file ’chdef.h’ every device implementation can signal that only blocking
versions are available. Then the ADI emulates the non-blocking functions
with the help of the blocking ones. This is the way MPICH for ATOLL is
implemented. We provide two blocking point-to-point transfer functions to
the ADI and the non-blocking methods are emulated. The emulation pro-
ceeds as follows. Messages sent within the short and eager protocol are sent
’blocking’ at once. The emulation presumes that messages with that size
never block. Only long data messages within the rendezvous protocol are
handled in another way. The control message is sent at once, but the data
message is not sent respectively there is no attempt to send this message
until the finishing ’MPI Wait’ is called.

4.1.2.6 MPICH/ATOLL Channel Device Functions

The following function were required to implement the channel interface.

• Atoll Init()

• Atoll End()

• Atoll send()

4.1 The MPI Environment for the ATOLL Network 75

• Atoll recv()

• Atoll probe()

• Atoll Clock()

The Atoll Init() function is responsible for the startup sequence as
explained in 4.1.2.1. It starts the right number of processes using a
machinefile, initialize a few important environment variables and estab-
lishes connections to all existing nodes. Using sockets as a communication
transport, vital information can be exchanged.

The first process started by mpirun is the server process. It starts the
remote processes using rsh or ssh and sets up a socket communication to
each process. Every process initializes its local ATOLL hardware device from
which it gets a unique identifier. The server collects all these ATOLL IDs and
creates a table, which maps the MPI ranks to the ATOLL IDs. Eventually
this table is returned to all clients. Now every MPI process knows the total
number of nodes its rank and a reference to lookup MPI id and matching
Atoll Id for communication.

The Atoll End() function terminates the ATOLL communication with
a call to Atoll finish(). An extension to the existing ATOLL API was
made by adding a tag to wait until all descriptors have been consumed.

Using Atoll Send() a message containing MPI headers and possible pay-
load is delivered.

If this message is larger than the ATOLL MTU defined through
ATOLL MAX SEND LENGTH the MPI message is fragmented. Within the MPI
framework, the fragments get different header for the reassembly at the re-
ceiver side. This send mechanism relies on the low level send routines of the
ATOLL network and can be considered to be nonblocking, as the message
is copied into the DMA Send space and scheduled for transfer. The data
delivery is handled by the hardware automatically and the MPI application
can continue immediately since data has been buffered.

On the receiver side, the Atoll recv() function is implemented as a
wrapper of the original non blocking ATOLL receive function. It will block
until a message arrived which provides a matching tag. The function also
blocks until a divided message is completely reassembled. If unexpected
messages arrive, it uses the out-of-order reception from the ATOLL API (see
4.1.2.4.4 for out-of-order reception). This can happen if messages from other
sources arrive or if the messages from one source are unordered. After the
reception of a MPI message two important global variables are set. The

76 Communication Environments for the ATOLL Network

AtollLen variable is set to the size of the received message and AtollFrom

contains the sender Atoll id.

The Atoll probe() function tests if a message with a matching tag ar-
rived. This test could be implemented very efficiently because the ATOLL
API provides non-blocking reception.

For time measurements, the AClock() function returns a timestamp with
a resolution of a nano second.

4.2 The Parallel Virtual Machine using the

ATOLL network interface

This section will describe the integration of the low level API of the ATOLL
network into the Parallel Virtual Machine (PVM) framework. This work is
similar to the work carried out in chapter 3. The integration of the ATOLL
network interface allows applications which have enrolled into the PVM sys-
tem to use the low level ATOLL API directly when establishing direct con-
nections.

4.2.1 PVM Concepts

PVM has been a de facto standard for message passing. It allows a het-
erogeneous collection of machines seen as a single parallel virtual machine,
abstracting from underlying hardware. This abstraction is also true for com-
munication environments. For clusters of workstations the traditional PVM
only supports TCP/IP communications. A detailed introduction into PVM
can be found in section 1.2.2.1.

4.2.2 PVM ATOLL Implementation

The ATOLL network is designed to run on clusters of workstations very
well. For this environment a scalable infrastructure is provided in which
clusters can be enlarged by adding more nodes using an ATOLL interface
card. A central instance will compute routing strings for each hostport.
With each hostport having a unique ATOLL id, data paths from and to
any combination of hostports will be available. Although ATOLL requires a
setup of a connection pair for every two endpoints, there is no limitation in
the number of connections. Moreover, the concept of establishing connections

4.2 The Parallel Virtual Machine using the ATOLL network interface 77

is very dynamic and not depending on a process startup, like for example
in the Quadrics Qs-Net network. For scalability, this mechanism even offers
support for dynamic routing schemes. This could mean that the central
instance which computes the routing information can take current statistics
of data transfers into account and find an optimal routing path.

The idea for using the ATOLL network for point to point communication
in ATOLL is to create a ATOLL connection using Atoll Connect(). This
connection will be established, when a send or receive operation to a target
identifier is called. Then the PVM task will check if it has already enrolled in
ATOLL, obtaining a unique ATOLL id. This Atoll id is then exchanged using
standard communication through the daemons which service this protocol.
Figure 4.2.2 depicts the control messages which exchange the necessary in-
formation. Using this protocol an efficient implementation can be achieved

� � � � � � � ! � "

5 � � 	 � � � � ! � � "

� � . � � � 2 � = � 	 7 � � � � 	 � � � �

� � � 7 � � � � � 7 � �

� � � � � � � ! � "

6 � � � � 	 1 � � 0 � 8 � � � $

! � � 9 � . 2 0 5 : ;

� � . � � � � � "

0 � � � � � � 	 1 � � 0 � � �
 $

! � � 9 � . 2 � � < ;

� � . � � � � � "

6 � � �

0 � � �

6 � � �

0 � � �

Figure 4.2: Establishing a direct point to point Connection using ATOLL
endpoints

not relying on additional startup processes which would have to distribute
the ATOLL id’s in advance. With the described model, the ATOLL network
is only requested by tasks which actually perform direct communication.

78 Communication Environments for the ATOLL Network

For registration into the PVM framework as described in 3, the following
functions have been implemented.

• For implementing the send function, the Atoll Send () function can
be used. The PVM system already includes support for message frag-
mentation, which has been adjusted to a maximum transfer unit in
ATOLL. MTU in the ATOLL network have the effect that messages
are unlikely to block and messages coming to switches can be addressed
in a fair manner.

• Implementing the recv function for the PlugIn is also straight for-
ward by using the Atoll Recv() function. PVM typically reads first
the header of on incoming message. This can be done by using the
Atoll read header() function which has been filled with information
about the message content.

• A select/poll mechanism was implemented by using the Atoll Probe()

function. Like any other function in the ATOLL API, this function is
non blocking and therefore suited to implement a multi channel device.

Chapter 5

Design Issues for an Advanced
ATOLL System Area Network

This section will describe an improvement of the existing Atomic Low La-
tency (ATOLL) design. It will introduce varying descriptors to achieve differ-
ent protocols. These protocols can still be implemented directly in hardware
without involving additional central processing units like for example in the
Myrinet [9] or Quadrics network [49]. Thus, the overall goal of ATOLL which
is to provide a network on a chip remains. The new extensions however, make
ATOLL more flexible and efficient and will offer several enhancements for its
usage.

5.1 Motivation

ATOLL already is an efficient implementation of a system area network. It
is a very cost effective design and its ’network on a chip’ design already
includes typical external components such as a crossbar to build larger net-
works. Some design issues however have been neglected. The most important
aspect is that of efficient host resource utilization. The following figures show
the impact of low host utilization and can serve as a motivating point for
enhancing the current ATOLL design. The overall goal for an enhancement
is to keep ATOLL features, especially from the hardwares point of view. No
rudimentary changes should be required.

Figure 5.1 depicts the performance enhancements for file transfers when
improving traditional protocols. This improvement can be a totally different
approach when using a user level file system like Direct Access File System

79

80 Design Issues for an Advanced ATOLL System Area Network

Figure 5.1: Bandwidth Improvements using Remote Direct Memory Access
[125].

(DAFS) or a modification of existing protocols to use remote direct memory
accesses (RDMA). As a result DAFS already gains high bandwidth for short
block sizes. There is a threshold value for zero copy network file system (NFS)
implementations after which the traditional NFS scheme is outperformed
significantly. Insufficient memory bandwidth has been pointed out to be the
cause of the weak performance of NFS [125].

Figure 5.2: Host Utilization Improvements using Remote Direct Memory
Access [125]. Efficient protocols lower host utilization significantly. User
level protocols deliver the best results.

Moreover, the host utilization can be reduced significantly if the network
interface is capable of RDMA. Both, user level direct file access as well as
zero copy NFS implementations lower host utilization significantly. The very

5.1 Motivation 81

memory intensive NFS protocol require multiple data copies throughout the
protocol stack.

5.1.1 Limitations in ATOLL1

The overview on ATOLL1 given in section 2.3.4 described in which way
messages are transferred. Currently, ATOLL1 uses DMA transactions on
contiguous send and receive buffers for midsize or large messages. When
sending a message, data will be copied by the host processor into the SEND
DMA region which is implemented as a round robin buffer. The ATOLL
hardware will be triggered by incrementing the write pointer of the descriptor
region. The hardware will then read the descriptor and start a DMA engine
which will use an offset in the SEND DMA region to inject messages directly
into the network. On the receiving side, the data will be posted into the
RECV DMA region and a descriptor will be assembled describing the new
message. The host processor will then be used for copying the data to its final
destination. For very small messages, the host processor can inject messages
using Programmed I/O (PIO).

This communication mechanism using DMA engines which take data out
of fixed allocated buffers, is known as a 1 copy or buffering strategy. It has
proven to be very efficient for smaller messages. These buffers can be al-
located dynamically during runtime [9] and can be adaptable in their size.
ATOLL1 manages its buffers itself. When a system starts up, physical mem-
ory can be excluded from the OS. This amount of memory will be used to
be split up for several host interfaces. Since the regions are round robin
buffers, the messages can only be received in chronological order, assum-
ing an efficient ATOLL API implementation. Otherwise the regions can be
fragmented and interrupt handler would be required to rewrite descriptors
after compacting the memory regions. This however should not have a high
impact on higher protocols since they typically provide handling for unex-
pected messages. For larger messages however, a zero copy strategy which
implements a direct application buffer to application buffer message transfer,
would be more efficient. A zero copy strategy would leave the CPU out of
the message transfer. Therefore, the cache which will be dirty when copying
large amounts of data, would not be affected. But also, the process could
perform overlapping computation.

82 Design Issues for an Advanced ATOLL System Area Network

5.1.2 Protocol off-loading

Demand for networking bandwidth and increases in network speeds are grow-
ing faster than the processing power and memory bandwidth of the compute
nodes that ultimately must process the networking traffic. This has become
more important since industry starts migrating to a 10 Gigabit Ethernet in-
frastructure. Protocol off loading as well as Remote Direct Memory Access
(RDMA) in combination will be capable of providing required efficiency.

Several existing server application exist which use the socket interface
when communicating to their clients. The number of transactions is therefore
closely depending on how much time the processor has to spent on serving a
single request. While network speeds have increased, Ethernet does not have
experienced higher efficiency [95]. For Ethernet protocols, a TCP offload en-
gine (TOE) has been developed as a specialized (intelligent) network adapter
that moves much of the TCP/IP protocol processing overhead from the host
CPU/OS to the network adapter. However, while TOE’s can reduce much of
the TCP/IP protocol processing burden from the main CPU, it doesn’t di-
rectly support zero copy of incoming data streams. Contrary, RDMA directly
supports a zero copy model for incoming data to minimize the demands on
host memory bandwidth associated with high-speed networking.

5.2 Zero Copy Mechanism in General

Recent research tries to avoid unnecessary data copies which results in a so
called zero copy mechanism, where data is directly fetched from its position
in application memory and directly deposited in remote application memory.
Using this method, it is expected to decrease latency and increase bandwidth
for data transfer. Basically, if PIO is available, this communication mode can
be used for zero copy. When sending, data is directly injected by the CPU
into the network. On the receiving side, the message can again be delivered
directly with PIO. The disadvantage is that the processor will be involved
during the entire transaction and can not be used for computation during
that time. To enable the DMA engine to perform this task, a virtual-to-
physical address translation must be implemented, which increases hardware
complexity significantly. Sharing the page tables between the OS and the
device is complex and time consuming too. The TLB handling is usually
performed by the OS. Pages for translation have to be pinned down, and
virtual addresses now represent physical ones. The TLB can be placed and
managed at NI memory, the host memory, or both. Using this method,

5.2 Zero Copy Mechanism in General 83

zero-copy can be achieved via remote memory writes using the information
provided with the TLB.

� � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � 	 � � � 	 �

� � - � �

� � � � � � � � � �

� � � � 	

� 	 � � � � � 	 � � � � � � � �

� � �

� � �

� � �

� � � �

	 � � � � � � � �

� � � � � � � � � (� � �

� �

� � � � �

� � � � � � � � 	

� 	 � � � �

� � �

� � �

� � � �

� � � � 	

� � �

� � �

� � �

� � � �

� � � � � � � � 	

� 	 � � � �

� � �

� � �

2 �

2 �

� �

� � � � �

� � � � � � � � � (� � �

	 � � � � � � � �

� � � �

� � � � 	

� 	 � � � � � 	 � � � � � � � .

6 � � � � � � � � � 	 � � � � � 6 � � � �

� 	 � � �

! � � � � � � � � � � � � � � � 	
 "

Figure 5.3: Upview of Direct Transfers. A message can be directly deposited
by using either PIO or DMA data transfer mechanisms. PIO involves the
CPU during data transfer, while DMA engines require virtual to physical
address translations. A notification mechanism which signals the end of
the data transfer is needed as well for DMA transactions. Host utilization
however can be reduced.

Without a virtual to physical address translation, send and receive opera-
tions carry the physical address of the destination buffer and the DMA engine
copies the (contiguous) data directly to the destination address. To add ad-
ditional protection, a combination of a virtual address and a unique identifier
such as the process id is used. Typically, a rendezvous model is needed be-
fore such operation can take place, since the location at the receiver side
is not known a priori. A requirement for the NIC is to access dynamically
pinned down data. This DMA method will show better efficiency, if the pages
containing the data to be transferred is locked down once and the segment
can be re-used. Otherwise expensive lock and unlock sequences will lower
performance making a trap into the system. Typically, a caching strategy
implemented as part of the low level API will hold data structures of already
registered memory pages. Pages are de-registered if the maximum number
of pages are reached or the application terminates. Another problem coming
along with zero copies is that of message flow control. It is not obvious when

84 Design Issues for an Advanced ATOLL System Area Network

a message has been transferred and the space can be used again. On the
other hand, support for remote DMA eases the implementations of one sided
communication.

5.2.1 Security

A direct memory access through a network device can weaken a host system
if the communication protocols and implementations are not adding extra
protection. On a modern multi tasking operating system, each process typi-
cally has its own address space and references to memory pages not belonging
to the same process will result in a segmentation fault (SEGV). When doing
direct data transfers, the network interface hardware will copy data from an
application buffer into the network and deposit it directly on the receiver
side. But also one sided communication like the get() method will fetch data
using direct transfers. When doing so, the host to NIC DMA engine is only
using physical addresses and no further checks by the processor using mem-
ory tables can be done. With current hardware which is using the PCI bus,
the synchronization with data structures in host memory which describe the
virtual memory layout is rather difficult and requires a tremendous amount of
work. This often leads to complicated extension to the kernel and modularity
is reduced. The Qs-Net from Quadrics is such a NIC which is only available
for the proprietary True64 operating system. Thus, standard networks like
Myrinet exchange the virtual addresses prior to sending the actual data.

5.2.2 Address Translations

5.2.2.1 The Memory Management Unit (MMU)

During runtime, an application holds virtual addresses. These addresses
can be the same for multiple applications. Together with the process id,
the virtual address is translated uniquely by the memory management unit
(MMU) to a physical address in main memory. While an application operates
on virtual addresses, and a page fault would be handled by the operating
system, it is required for communication that the data is locked, thus resides
consistently in physical memory. This is required since a NIC has no MMU
functionality to handle virtual addresses but also would not be able to page
memory on demand.

5.2 Zero Copy Mechanism in General 85

5.2.2.2 Memory Registration

With current architectures which are the distinguished research platform for
this thesis, network devices and system busses are physically and logically
separated. For direct transfers this means that it has to be made sure in ad-
vance that message transactions are secure. This means that when exchang-
ing data, the source and destination have to been accessible. One might
distinguish between sending and receiving messages. Typically a message
being send has been touched before recently and the data will be available.
However when receiving, the host system may have placed data into differ-
ent physical pages. Fixing the address translation from virtual to physical
addresses are the main intention of memory registration. Since the network
device is not able to perform a lookup itself, this translation has to be made
available to the network device in a proprietary form. As an alternative,
the network device would need access to the host kernel memory structures
obtaining a pointer to the MMU structure of the host system, the operating
system respectively. These MMU data structures however vary from time
to time. Since a network device should not be bound to a specific operat-
ing system it would have to implement its own MMU in a portable manner.
The ATOLL network approach is to be implemented as a ’Network on a
Chip’, with a very slim design using standard components. Therefore, the
implementation of its own MMU in an ’RDMA enabled ATOLL’ should not
involve to much overhead. Section 5.5.2.3 will provide further detail on how
the design solves this issue.

5.2.3 Message Transfers with Zero Copy

The following figure depicts a message send and receive scenario using a
buffering method and another one bypassing the operating system as well as
intermediate message copies locally.

Typically, the message is copied from application memory into an inter-
mediate buffer, again in application memory (for example to pack multiple
data together and to be able to continue to compute by not modifying mes-
sage data). A send operation then moves the data to the kernel which will
inject the message into the network using a protocol which observes flow con-
trol. This mechanism not only involves additional copies but also slows down
the application by a trap into the system. User level communication prevents
the latter by having direct access to the NIC. By pointing the NIC to the
message in user memory, copies to a reserved data space can be avoided and

86 Design Issues for an Advanced ATOLL System Area Network

NIC 2NIC 1

N
et

w
or

k

Object 1 Object 2

OS StackOS Stack

Process 2Process 1
buffering

zero copy

method

transfer

Figure 5.4: Avoiding Message Data Copies

higher performance can be achieved. The performance is depending on mes-
sage size since additional mechanisms are involved to establish this behavior
(page locking). As described in section 5.2.2 one important requirement for
zero copy is to dynamically load and store message data. Dynamically in
this context means that it is not required to have a fixed space for message
transfer.

5.2.4 Related Work

High speed networks have been popular since several years. Especially the
concept of user level communication has been driving the system area network
research. With direct control over the device the concept of zero copy data
transfers has been made possible to be directly supported by hardware. In
the following related work on zero copy transfers using system area networks
will be presented.

5.2.4.1 Shrimp

The Scalable High-performance Really Inexpensive Multi-Processor (Shrimp)
project was targeted at providing high performance servers using commodity
PCs using an commodity operating system. It consisted out of several ar-
eas. The communication part itself was working on user level and protected
communication and efficient message-passing, In this research their VMMC
[62] protocol was enabling zero copy transfers.

5.3 Zero Copy Implementation Alternatives 87

5.2.4.2 SCore

Another project having gained popularity is the SCore project [98] from the
Real World Computing Partnership. The original goal was to develop a mas-
sively parallel computer for which every component should be implemented
by themselves. The SCore Cluster System Software in the end provides
a high-performance parallel programming environment for workstation and
PC clusters. The main features SCore provides are a Single System Im-
age View, multiple network support, and multiple programming paradigms.
This way SCore users are not aware whether or not a system is a cluster of
single/multi-processor computers or a cluster of clusters. The PM II high
performance communication library is a dedicated communication library
for cluster computing using many types of networks. It allows a program to
communicate on different types of networks such as Myrinet and Ethernet.
This driver comes with true zero copy functionality. Unlike other cluster
software, SCore not only supports the message passing paradigm, but also
supports the shared memory parallel programming paradigm and the multi-
threaded parallel programming paradigm. Finally, fault tolerance has been
increased by providing preemptive checkpoint at driver level. This way, the
checkpointing is totally transparent to the application.

5.3 Zero Copy Implementation Alternatives

Before the extensions on an advanced ATOLL SAN will be presented, a short
overview on available alternatives will be given. This overview will also
provide an analysis justifying the method which was finally implemented.
Basically two choices exist:

• Page Flipping and Copy on Write (COW)

• Direct Data Placement

Using page flipping and copy on write, sending and receiving must be
differentiated. For this method, the interaction of the operating system is
required. When sending, the operating system will put a COW mapping on
each page the application writes to a socket. The data the user program
writes must be page sized and start on a page boundary in order for it to
be run through the zero copy send code. If the application does not write
to the page before it has been sent out on the wire, the page will not be
copied. Otherwise, the COW on write mechanism will detect a reuse of the

88 Design Issues for an Advanced ATOLL System Area Network

buffer and will copy the pages into a buffer pool. This way, a send side zero
copy using COW will only better if the application does not immediately
reuse the buffer. When receiving, the NIC driver receives data into buffers
allocated from a private pool. If the application reads the data, the kernel
page is substituted for the applications page and the applications page is
recycled. This concept is otherwise known as ’page flipping’. This page flip
can only occur if both, the application buffer as well as the kernel buffer
are page aligned, otherwise it must be copied. Another requirement for zero
copy receive is that the chunks of data passed to the network have to be at
least page sized, and be aligned on page boundaries. This requires support
from the NIC to have a MTU of the page size. Thus, this concept comes
with several disadvantages.

When using direct data placement, the NIC uses headers (descriptors)
which describe the origin or destination of a message. It therefore steers
the payload directly into application buffers. A origin or destination can be
described by physical or virtual addresses and this method is independent of
the MTU, the page size of buffer alignment. It can also be implemented in
a low level API and will be therefore compatible with existing applications.
This method however typically requires a short rendezvous protocol which
exchanges the source or destination origin to set up a descriptor. Another
aspect is that of MMU functionality. If virtual addresses are used in combi-
nation with a process id, a translation to a physical address has to be made.
A NIC having a MMU is currently only implemented in the Qs-Net [49],
which is very operating system dependent (True64 in this case). A port to
Linux is marked as work in progress. An example of a implemented direct
data placement strategy are TCP offload Engines (TOE) which steer the
payload, if receive buffers have been pre-posted.

The method of using page flipping and copy on write involves the oper-
ating system and NIC to some degree. A page remap will also require the
shootdown of the TLB for SMP’s. The latter method can be implemented
in a portable fashion and is therefore the better approach.

5.4 RDMA Using Message Handlers

The old approach, moving data through I/O-channel or network-style paths,
requires assembling an appropriate communication packet in software, point-
ing the interface hardware at it, and initiating the I/O operation, usually
by calling a kernel subroutine. When the data arrives at the destination,
hardware stores them in a memory buffer and alerts the processor with an

5.4 RDMA Using Message Handlers 89

interrupt. Software then moves the data to a temporary user buffer before it
is finally copied to its destination. Typically this process results in latencies
that are tens to thousands of times higher than user level communication.
These latencies are the main limitation on the performance of Clusters or
Networks of Workstations.

5.4.1 Software and Hardware Message Handlers

In ATOLL message handlers exist that continuously receive incoming mes-
sages. The implementation of such a message handler is an autonomous
DMA engine which spools incoming data automatically into the provided
location in user space. For independency, a message handler exist for each
host port.

In this context the steps in receiving a message are depicted in the fol-
lowing figure. When a message arrives the message it is first copied to the

Space
Descriptor
Table

Host
Interface

Data

receive
message
(head)

DMA Memory ATOLL

device context

descriptor write ptr.

base

Data FIFO

data segment
descriptor

header segment

descriptor read ptr.

mirror read ptr.
to context mem

write header

write data
to memory

generate &
write descriptor

5

4

2

3

1

Figure 5.5: Steps Receiving a Message

provided DMA receive buffer using the current write pointer. This write
pointer is then increased by the message length and a receive descriptor is
assembled and stored at the current descriptor write pointer. It is obvious,
that the current write pointer has to be modified, pointing to the application
memory to which the data has to be transfered.

5.4.2 A protocol for Zero Copy / One Sided Commu-
nication

To allow for zero copy message transfers, the following requirements are
needed to perform this task. First is an accessible and known location in

90 Design Issues for an Advanced ATOLL System Area Network

Zero Copy
Controlling Process for

Standard Connection for Message Exchange

A
T

O
L

L

PC
I

B
us

0

2

3

1

Data Path for Zero Copy

Zero Copy
Controlling Process for

NETWORK

3

PC
I

B
us

A
T

O
L

L

2

0

1

Figure 5.6: Zero Copy Protocol for ATOLL

application memory to store or fetch the data. Finally the NIC needs to
be programmed to access the data at the desired location. While the first
requirement is mainly a software problem in which application memory is
typically pinned down during the time for transaction and a virtual to physi-
cal translation takes place, the second requirement needs modification of the
hardware settings. Since in ATOLL parameters such as routing table and
other DMA regions are mirrored, the NIC’s behavior can be modified during
runtime.

For this purpose the modification of the write pointer will bring the DMA
engine to spool the message to its final destination, bypassing the ring buffer.
Unfortunately, the hardware of the first version of ATOLL will not be able
to modify the write pointer by itself, if this new location should be encap-
sulated at the beginning of a message for example. However, by reserving
one hostport under the supervision of a controlling process, true zero copy
can be enabled. Figure 5.6 depicts two communication partners and their
standard routing using hostinterface 0 and 1. Choosing hostport 3 to handle
zero copy, hostport 0 and 1 will then send messages to hostports 3 which
will deposit the messages to its final destination under the supervision of a
controlling process.

The following protocol establishes a zero copy protocol for multiple tasks,
a send/recv scenario Task A to Task B is assumed.

• Task A sends a PIO message, containing final destination, to the con-
trolling process/reserved hostport

• The controlling process modifies the DMA data region base information
of the DMA engine in the reserved hostport

• The controlling process acknowledges with a PIO message

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 91

• The message can be send via DMA using the reserved hostport

• The message has been delivered once the hardware assembles a descrip-
tor for the new message

This way it is made sure that an incoming zero copy message has been
pointed to its final destination, but also further messages are held back until
an acknowledgment is being returned from the controlling process. Finally,
the data placement can be monitored by checking on the message descriptor.
This can be used as a DMA-ready checking which is not available using other
NIC’s.

5.5 ATOLL RDMA Using Protocol Exten-

sions in Soft- and Hardware

In this section, the design of an enhanced ATOLL and its implementation
using the current ATOLL software environment will be presented. This ap-
proach of enabling ATOLL for RDMA transactions is based on message han-
dlers implemented in hardware which are triggered upon a special command
byte which will be shipped with the message.

5.5.1 The Actual ATOLL Environment

The ATOLL Environment can be distinguished by user level and kernel level
components. Both, together with the ATOLL NIC or a simulator which
mimics I/O behavior of the ATOLL device, form a ATOLL environment.

5.5.1.1 User Level Components

An application has to be linked with the ATOLL library, which will enable
access to the ATOLL device. In order to use ATOLL, the atoll init ()

function must be the first function to be called. It will return a handle to
one of ATOLL’s hostports. Using send and receive functions like atoll send

() or atoll recv(), messages can be exchanged using the ATOLL device.
In order to do this, the ATOLL library will abstract from the underlying
device and only provide higher level communication routines. Internally, the
ATOLL library will modify descriptors associated with messages, will update
their write and read pointers and will also buffer messages into the DMA Send

92 Design Issues for an Advanced ATOLL System Area Network

space. For this functionality, the ATOLL library maps physically contiguous
data into the applications memory space. This chunk has been initialized
by the ATOLL driver, which is a kernel level component. This concept is
actually different than that of typical network cards. Usually a system trap is
required for sending messages since the device is shared. With ATOLL, each
process owns a dedicated hostport and therefore ATOLL allows direct access
to it. This access also does not involve additional overhead. The ATOLL
library can modify memory directly.

ATOLL will not work before this driver is loaded. Figure 5.7 gives an
overview on how these components have a relation. Since ATOLL requires
physically contiguous chunks, they have to be allocated somehow. One way
is to apply patches to an operating system in order to gain access to large
chunks of contiguous data. This is normally not the case. Linux as primary
platform for ATOLL and the cluster market offers to specify which memory
is available. If less memory is specified as it is physically available, then the
remaining amount of memory can be dedicated to the ATOLL device.

� � � +

� � � ,

� � � � � � � � � �

� � . � � � � � �

� �
 � � � � �

� � � � 	

� � � � 	

� � 	 � . 6

� � . � �

� � � � � �

� � � �

� � � /

� � � � � � � � 	

� � � ,

� � � +

� � � �

� � � /

Figure 5.7: The ATOLL device interfacing with User Level- and Kernel Level
Components

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 93

5.5.1.2 Kernel Level Components

The ATOLL Device Driver is a kernel component which enables the ATOLL
network. It is implemented as a module and will initialize the ATOLL net-
work upon insertion into the operating system. Major steps during the initial-
ization are the mapping of reserved memory for ATOLL. This chunk of data
is then segmented to reflect all available hostports. With user space memory
mapping, Linux allows direct access to the device. There exists however two
functions, which will require the interaction with the kernel components: the
atoll connect() and atoll disconnect() functions. When calling these
functions, the routing information from source to destination is queried
from a central instance and stored in a reserved space. A descriptor will
point to the offset in this region to let the NIC fetch the information. This
is however no real performance loss, since connections are established once
only. The interaction with the kernel is quite obvious. The ATOLL daemons
which are connected to a master daemon will receive the optimal routing
information from the central instance.

5.5.1.3 Kernel Process Mimicking ATOLL Hardware

In order to test the user and kernel level components, a simple simulator is
available which mimics the final ATOLL hardware. This simulator will map
the chunks of data which resemble the hostports. It will then poll on the
descriptor space to see if the ATOLL library called ATOLL’s send or receive
functions. The simulator will then transfer the according to the routing
information. This can be a hostport on the same node or a remote node.
Locally, a memcpy operation will be sufficient to transfer the data, otherwise
socket operations using a standard network are used.

5.5.2 Protocol and Descriptor Enhancements Au-
tonomous RDMA Transactions

Before a detailed description of the adapted protocols and descriptor will be
presented, a short introduction about the final implementation will given.

5.5.2.1 Address Translation using the Locked Memory Manager

The locked memory manager is a software implementation available as a
Linux module [96]. As stated earlier, zero copy transfers using the PCI

94 Design Issues for an Advanced ATOLL System Area Network

interface and the Linux operating system require the locking of memory
pages to prevent them from being paged out. Locking of memory requires
kernel level functionality and will end up in the mlock() function being called.
Therefore, the locking mechanism which actually only sets a bit in the MMU
structures is an easy task to perform. The Locked Memory Manager (LMM)
[96] however provided other advanced features which for example dealt with
the overlapping of segments and their multiple registration. The LMM in
its current version uses a new mechanism called kiobuf (Kernel I/O Buffers),
which was introduced in version 2.4.x of the Linux kernel version. Kiobufs
were originally implemented in conjunction with Raw I/O, which allows data
transfers between disk and user memory without intermediate copies by the
kernel. During data transfers the associated memory pages must be locked.
A kiobuf can be mapped to a part of the user address space. After that the
physical page addresses can be read directly from the kiobuf, and the page
tables don’t have to be touched. The Linux 2.4.x version introduced separate
functions to lock and unlock an already mapped kiobuf.

5.5.2.2 RDMA Protocol Description

Before the final protocol implementation will be described a short analysis
about the implications for ATOLL will be given.

The current ATOLL descriptor consists of 64 bytes, one cache line re-
spectively. For an enhanced ATOLL, which should also be implemented as a
FSM, this descriptor should not be increased in its size. However, depending
on a special tag it should be possible to provide a different layout of the
descriptor. Currently, the descriptor contains an offset to the message in the
DMA Send space. In combination with a length, the ATOLL Device will in-
ject data into the network. This mechanism has been intensively described in
section 2.3.4. In the following additional protocols which extend the original
ATOLL functionality will be presented.

An enhanced ATOLL device should be able to allow one way commu-
nication. That is a direct send will transfer data directly from application
to application buffer without intermediate copying. Thus for the implemen-
tation for an enhanced ATOLL device, the offset which has been used to
point to the actual payload can not be used since it is not available within
the limits of the Hostports. Therefore an absolute addressing scheme is re-
quired. There are two choices for absolute addressing. Both, physical as
well as virtual addresses in combination with a unique identifier can be used.
Using virtual addresses adds some security since a translation from virtual
addresses to physical addresses has to be made. This usually requires a TLB

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 95

which will report errors if a lookup of the virtual address can not be found.
The address translation and lookup mechanism will be explained in further
detail in section 5.5.2.3.

Finally, the direct send will also be delivered directly to its final desti-
nation on the destination node. Therefore, an absolute addressing for the
remote memory space must be required as well. As a consequence for an
advanced ATOLL, the descriptor will use the given Command Byte in order
to distinguish between different protocols. The command byte will then be
able to specify a normal message (N), which uses the buffering mechanism,
a put message (P) which will result in a direct store as described above or a
get operation (G) which will fetch data from a remote host.

The following additional ATOLL API functions allow zero-copy data
transfers.

/* Registration of len bytes starting from va */

int Atoll_register_memory (char *va, size_t len);

/* De Registration of len bytes starting from va */

int Atoll_deregister_memory (char *va, size_t len);

/* Direct Store of len bytes from va_self at dest

address va_dest */

int Atoll_put(atoll_id self, atoll_id dest,

void* va_self, void* va_dest, size_t len);

/* Direct Remote Load of len bytes from va_src at

node src at va_self */

int Atoll_get(atoll_id self, atoll_id src,

void* va_self, void* va_src, size_t len,

uint32 src_rtoff, uint32 src_rtlen);

With the RDMA instances described above, the interaction between user-
and kernel level components becomes slightly more complex. Figure 5.8
depicts its relation.

5.5.2.3 RDMA Address Translation, Lookup and Security in
ATOLL

Given the logical separation of operating system data structures and current
network devices, their synchronization is one crucial task which needs to
accomplished to establish zero copy transfers.

96 Design Issues for an Advanced ATOLL System Area Network

� $ $ � � � � � � � � � 	 � � % & � � � � � � ' � � � (() �

� � � � 9 	 � � � � � 	 9 � � � � 	

! > � ; � � � � "
� � � � ! � 5 � 9 � . � < "

� � � 9 � � � 7 9 � 	 � �

! > � ; � � � � " 	 � � � � � � 7 � � �

= � � � 7 � � - � � �

� � 8 � � � � � � � = � � 	 � �

! ? � � � "

� � � 9 � � 9 � � � � �

	 � � 	 � � � �
 � � � � � �

� � � 	 � � � � �

= 	 � � � � � � � � � � � � � �

� � � � � � � � �

� � 8 � � � � � � � = � � 	 � �

! > � ; � � � � "
	 � � �
 � � � � � � �

 � � � � � $ � � � * � � � � � � � $ � � �

Figure 5.8: RDMA Components Interaction

As mentioned before, the access of memory regions by the network de-
vice can not be observed by the MMU. The network device has to operate
on physical addresses. To guarantee security, the memory pages for direct
transfers have to be locked before. During this operation, the ATOLL li-
brary as well as the network interface will be able to reference a virtual to
physical address translation. The locking is also considered being a memory
registration, however a communication phase is not imitated yet, but is a re-
quirement. When sending a message directly using the put (P) mechanism,
first the ATOLL library will check whether the virtual address va src has been
registered. This can be done by querying the internal LMM structures. It
will deny to initiate a put (P), if a lookup of va src can not be found. Upon
success however, the ATOLL library will assemble a descriptor (specifying a
P Byte) and the ATOLL device will be triggered by incrementing the write
pointer. The ATOLL hardware will first read the Command Byte and detect
a direct message. It will then use a TLB mechanism to lookup the virtual
address to determine a pair of physical addresses and their length. Different
from the current ATOLL implementation, multiple DMA transactions can be
required to deliver a message. This is because for larger messages, the data
to be fetched may not be contiguous. A virtual address is therefore stored as
a set of physical addresses VA = {(Phys(V A)(0), len(0)), ..., (Phys(V A)(n-
1), len(n-1))} having n physical entries. For this set len(1) .. len (n-2) have
value of the page size of the used system while len(0) and len (n-1) have value
1 .. page size. Figure 5.9 shows how a potential setup could look like.

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 97

+ � � � , � � � � - - � � � �	 � � � � � � � � �

/� �� +# # #/, +

$ � � � � � � � � $ � ! �

� � � � - � � = � � 7

- � � � � � � � � � 	

� � � � �

)
�
<
-

�

� � � �
� @ + �

! � � � � � � � � � - � � "

� � � �
�

� � � �
� @ �

� � � �
� @ , �

! � � � � � � � � � - � � "

� � � �
� @)

� � � �
� @ A

� � � � � � � � �

� � 	 � � � � � � � 	 � � � � �

, � � � � � $ � � � � (� (� � � $ � � � � � � � � (� (� � �

Figure 5.9: Operating System Memory Layout

The ATOLL device will inject the messages as one contiguous data stream
into the network. Figure 5.10 depicts the layout of the message header.

0 � � �0 � � � � � � . � � � �

> � 	 � � � � � � � 	 � � �
� 	 �

> � 	 � � � � � � � 	 � � �
� � �

' , , + , � + , /

1 � 1 	 � � � 	 � � �

3

	 � � � 	 � � � � � � � � � � � � � � � �

Figure 5.10: The Descriptor Layout for the Pet Protocol

Eventually, the message will reach the hostport of the remote hostport.
The ATOLL device has been extended to check the transfered command byte.
In this case it will detect a put message and will use the following 64 bits in
order to determine the virtual address (va dest). Like the initiating ATOLL
device it will now lookup and match the given virtual address and translate
it into a set of physical addresses and their corresponding length. Since the
ATOLL message is available as one contiguous stream, there are no problems

98 Design Issues for an Advanced ATOLL System Area Network

for the receiver to dispatch the message according to its memory layout and
the mapping of virtual to physical addresses. A much more complex and
not suitable method would be to inject multiple messages at the sender side
having different message sizes than the physically contiguous memory chunks
at the receiver side.

When remote data is requested using the get (G) mechanism, a descrip-
tor will be assembled which contains the remote virtual address, the local
virtual address and the length of the message. The transaction which will be
performed is to retrieve the remote data into the local buffers. This mech-
anism should not involve any remote host system actions. The reason for
this is quite obvious. For a one way communication using a get mechanism
there is only one communicating instance. The remote host does not know
about the transaction, hence one way communication, and therefore will not
schedule resource for its handling. Otherwise a resource, e.g a polling thread,
would have to check continously for incoming requests. This would however
waste resources. In the RDMA ATOLL design, the initiating host will as-
semble a message which contains the G command byte. On the destination
side, this command will be extracted and the ATOLL device will enter its
routine for handling messages which request the get mechanism. For this,
the remote ATOLL device which receives this request not only has to receive
the message, but it also has to respond to it. To put this into the given FSM
design, the ATOLL device will assemble a descriptor containing the put (P)
command. This mechanism fits the current ATOLL implementation well,
since it already assembles a descriptor autonomously itself, when a message
has been received and has been stored in the provided RECV data space.
For sending a message, the ATOLL device will take all necessary informa-
tion out of the corresponding descriptor. It will therefore require an offset to
the routing bytes for the destination ATOLL id, the virtual address where
this message has to be fetched from, the remote destination virtual address
where this message will be stored and the message length.

Thus, the ATOLL device, when responding to a G command, will take
the next 2 64bit and store the first 64 bit as va src, the next 64 bit will be
va dest. Consequently it will continue to fill the descriptor with the provided
offset and the message length. Figure 5.11 depicts the layout of this incoming
message.

The delivery of this message can now be initiated by incrementing the
descriptors write pointer. In this case the ATOLL device will detect a new
descriptor which specifies the P command byte and will deposit this message
into the remote address space. It may be noted, that the actual message
retrieval is based on the put mechanism explained before. Therefore, it will

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 99

0 �
� 	 �

0 �
� � �

0 � � � � � � . � � � �
� � �

> � 	 � � � � � � � 	 � � �
� 	 �

> � 	 � � � � � � � 	 � � �
� � �

' , , + , � + , /

1 B 1

3

� � � � � � � � � � � � �0 � � � � � � . � � � �
� 	 �

� ,

Figure 5.11: The Descriptor Layout for the Get Protocol

also check the virtual addresses and perform the same address translations
and lookups. Finally, this completes the original get function.

In terms of security, RDMA allows direct memory accesses. With one
way communication functions, this is a potential security whole if data can
be simply taken out of a remote address space using the get mechanism for
example. In order to address this, the RDMA enabled ATOLL will have
additional functionality which will be available in User- as well as Kernel
Level Components. Therefore the RDMA enabled ATOLL will add a device
centric register to allow for RDMA transactions. It will also add hostport
centric registers to let a hostport grant or deny access for RDMA. For this
the kernel level component will overrule any request made by the user level
component. That is, ATOLL can be enabled for RDMA when inserting
the ATOLL driver. It also can be restricted from RDMA features. For an
application, it will use the

int atoll_allow_rdma (atoll_id id, int how);

command to grant or deny RDMA access. The initial setting should be to
not allow RDMA transactions. The implication for the transfers will be that
the ATOLL device will have to check whether

• If the ATOLL device has been initialized with RDMA enabled

• If the corresponding hostport has allowed for RDMA transactions

This will not have a performance impact but will enable security. If one of
the above disallows RDMA transactions, then the ATOLL device will simply
discard the message. In the following an efficient design for a RDMA ATOLL
address translation will be presented. The implementation was done in [126].
The following description reflect the result of this work. Since the address
translation must be visible for the low level API as well as the autonomous

100 Design Issues for an Advanced ATOLL System Area Network

NIC, two extensions were added to the ATOLL environment and have been
replicated for each hostport.

First is a small onboard SRAM which contains a Translation Lookaside
Buffer (TLB). For efficiency, this TLB will be located on the real NI hard-
ware. Second is a memory segment to hold the lists of virtual to physical
addresses, which point to the message buffers. This area is called PALIST
within the ATOLL implementation. It is worth noting that the host MMU
requires not only the virtual address, but also the process identifier for a
correct address lookup. This design relies on the fact that each hostport can
only be accessed by exactly one process. Therefore an outgoing or incoming
address is marked by a hostport and therefore the lookup is limited to a
hostport.

Since this concept is independent from any OS, the data structure for
storing the references can be chosen to fit an efficient lookup and implemen-
tation in hardware.

How virtual addresses are resolved as described in [96]. For each message
buffer only the virtual start address is written to the TLB. All physical ad-
dresses of all pages (its individual physical address list), which are allocated
for the message buffer, are stored in the PALIST. In order to get the individ-
ual physical addresses of a memory area, the LMM function lmm get pages
is used. The TLB entry for each message includes the offset to the PALIST
base pointer and the pointer to the individual address list, respectively.

Figure 5.12: PALIST structures referencing a virtual address

As mentioned above, the implementation is designed in a way, which
should make as least as possible changes necessary to the existing ATOLL

5.5 ATOLL RDMA Using Protocol Extensions in Soft- and Hardware 101

environment. In order to support this strategy the same descriptor mecha-
nism, which has already been introduced for the buffered DMA transfer, is
used for the zero copy functions. Even the size of the descriptors remains un-
changed. These descriptors signal the NI (and the simulation, respectively),
that a new zero copy message has to be sent. The only difference to the
standard, buffered send API functions is, that the message does not need to
be copied to the DMA space any more. In addition, the contents of the new
descriptors have changed. They have to signal, that a zerocopy transfer is
used and they have to provide the virtual addresses. Then the simulation
has to react accordingly, which makes additional routines for the simula-
tion necessary. Figure 2.7 shows the standard descriptor (for buffered DMA
transfers). The new put and get descriptors are depicted in figures 5.10 and
5.11, respectively. The major differences are that the standard descriptor
includes offsets to the pinned DMA space, the zero copy descriptors include
the virtual addresses to the send and receive buffers. The length of zero copy
messages is stored in the tag. In order to distinguish the different descriptors
the command byte is N for normal descriptors, P for put descriptors and G
for get descriptors. Another difference is, that the get descriptor needs two
more values: the routing length and the routing offset of the source node.
The problem emerges through the get - transfer. This transfer is started by
the receiver, which sends a message only containing a get - descriptor. This
message triggers the NI of the sender, which copies the source buffer directly
from user space and sends it back to the receiver via a new created message.
However, the CPU of the sender should not be interrupted at all. Hence,
the NI needs all necessary informations for the new message. The virtual
address, the translation to physical addresses and, moreover, it needs the
routing to the receiver. This information is made available by the routing
offset and the routing length of the source node. In addition, the previously
shown mechanism means, that the receiver has to know the routing offset
and length of the sender. It is not supported by the current ATOLL API,
as each node only has to know one way of the routing. Two solutions are
reasonable. Firstly, the routing informations could be exchanged during a
connect (possibly a parameter signals whether or not zero copy transfers are
supported). Secondly (which describes the current implemented), the ren-
dezvous control messages include the additional informations. Furthermore,
the simulation is changed in order to support the new zero copy transfer
mechanisms. The simulation consists of a new switch statement, which dis-
tinguishes the descriptors. If a put descriptor is found, the virtual address
is read. Afterwards the TLB is searched through for the virtual address. If
it is not found, the simulation returns an error. The hardware would have
to produce an interrupt in such a case. Nevertheless, that case should never

102 Design Issues for an Advanced ATOLL System Area Network

occur. If the correct TLB entry is found, the offset to the address list is read.
Afterwards one physical address after another is read from the PALIST, the
length for a copy transaction to the temporary buffer is calculated and the
copy is performed. Then (as within the standard, buffered transfer) a receive
function of the correct hostport is called. This receive function also distin-
guishes between different descriptors and, if a put descriptor is found, it also
reads the virtual address, translates it and copies the contents of the tem-
porary to the physical addresses. The difference to the standard receive is,
that no receive descriptor is created and no message is copied to the receive
DMA space.

Another aspect is that of a race condition if the hardware assembles a
descriptor to trigger itself for sending out a put message, as a response to an
incoming get request. While the data structures to create a descriptor are
available, it could interfere with the ATOLL library which is also creating a
descriptor itself for sending out a message. In this situation, a race condition
must be prevented. The current ATOLL implementation offers a semaphore
which however comes with a cost penalty. An alternative would be to pro-
vide an device descriptor entry residing on the NIC which would store the
information. In this case, the ATOLL device would be triggered by the write
descriptor and the modification of a local descriptor.

5.6 Conclusion

An extension to the existing ATOLL network has been presented, which
allows for RDMA operations. That is, the ATOLL network is able to trans-
fer data without the involvement of the host CPU. This extension requires
only small modifications to the current ATOLL which was one of the design
choices. Furthermore, a detailed description on how this RDMA enabled
ATOLL can be setup for modern operating systems has been presented.
Costly hardware components like a programmable controller or additional
onboard memory can be avoided by the presented solution.

Chapter 6

An Efficient Socket Interface
Middleware Layer for System
Area Networks

The following chapter describes a new and innovative middleware layer called
Sockets Direct which will effectively map existing distributed applications
using the socket interface to a System Area Network (SAN). One of the
most important features for such a middleware layer is a SAN’s capability
to provide reliable message delivery without additional protocol overhead.
Among others, these features are the basis to overcome overburdened protocol
stacks to let applications fully exploit the available raw performance from
high speed networks.

Modern high speed networks which are considered being a SAN offer
automatic error correction and detection. Thus, the low level API of a SAN
can be implemented very efficiently assuming only a severe error, like a broken
or dead cable can be the only reason for data corruption. An overview on
its capabilities and a detailed description of System Area Networks is given
in section 1.1.2. Based on these features, a new approach can be made to
overcome the drawbacks of existing protocol stacks. The following chapter
explains which interfaces can be enhanced and how existing protocols are
replaced, therefore gaining an improvement in the order of a magnitude with
this new technology.

Especially its compatibility at binary level is one of its key features and
will be explained in the paragraph on transparency in section 6.1.2. Hence,
existing distributed applications do not need to be modified. A new com-
pilation of the source code, or relinking of objects is not required. As a

103

104 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

consequence, legacy applications which could exploit raw performance of a
high speed network, but are currently hampered by overburdened protocols
will benefit from higher throughput.

Moreover, this middleware layer will broaden the areas of use for SAN’s,
which are currently limited to cluster systems where applications are par-
allelized by standard message passing environments such as PVM or MPI.
Now, a new set of applications like transaction servers or databases will be
enhanced with the potential of higher numbers of responded requests. But
also applications build with other middleware layers such as the component
object model (COM), the distributed component object model (DCOM) or
the common object request broker architecture (CORBA) will automatically
experience a performance boost as well, since at the lowest layer, they are
also based on sockets.

6.1 Overview of Sockets Direct for SAN’s

The following figure depicts an architectural overview on how Sockets-Direct
will replace existing protocol stacks. In the traditional model a distributed

Figure 6.1: Concept of Sockets Direct

application which is using the socket interface invokes traps into the system

6.1 Overview of Sockets Direct for SAN’s 105

when calling socket send or recv functions. These traps into the operating
system will block until the operating system has exchanged the data from user
level memory to kernel memory or vice versa. Thus, when sending data the
operating system has made a copy of the data, but it is not yet being deliv-
ered. When handing data to the operating system, the corresponding socket
descriptor queues the data to be delivered later to the network. In order to
provide message and control flow, the actual data is packaged in TCP and
additional IP headers. In addition, several checksums are added and larger
messages are fragmented according to the Maximum Transfer Unit (MTU)
of the network. On the receiving host, the operating system has fetched and
stored the data and will fill the application buffers when a receive operation
becomes active. As a further consequence additional context switches occur
and the performance behavior becomes worse on systems with higher work
load.

When analyzing this current behavior which is the standard for any mod-
ern operating system, it is evident that user level communication using a
reliable network will dramatically decrease the overhead at different levels.

When eliminating the TCP/IP protocol using a direct communication
mechanism to the System Area Network, the Sockets-Direct approach as
depicted in Figure 6.1 is achieved. The main advantage is kernel bypass and
direct communication without additional protocol overhead using buffered
copies or RDMA methods. The anticipated effects of Sockets-Direct will
not only be a much higher performance, but also less CPU load for message
transfers since direct control on messages will reduce the number of copies
when sending and receiving data. Small packets which pass along tokens for
minimal message flow will complete this setup.

6.1.1 Existing Approaches to Enhance the Perfor-
mance of Distributed Applications

Current on going research tries to optimize the overhead of protocol stacks.
One method is known as zero copy TCP/IP in which the operating system
avoids the copying of data between different layers in the OSI model. In this
research [63], a new feature for Solaris is developed that uses virtual mem-
ory remapping combined with checksumming support from the networking
hardware, to eliminate data-touching overhead from the TCP/IP protocol
stack. By implementing page remapping operations at the right level of the
operating system, and caching MMU mappings to take advantage of local-
ity of reference, significant performance gain is attained on certain hardware

106 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

platforms. This approach however requires operating system action to do
the required steps. When using user level communication the operating sys-
tem is no longer involved after initial setups. Similar is the work on Fbufs
[22] where a a new operating system facility for I/O buffer management was
implemented. This facility, called fast buffers [22], combines virtual page
remapping with shared virtual memory, and exploits locality in I/O traffic
to achieve high throughput without compromising protection, security, or
modularity. One major drawback however is the concept itself. If pages
are reused by the application again before the data has been transmitted, a
costly copy on write trap will occur and the OS must prevent unsent data
to be over written. This is the case for many application and no interface
between kernel and application is given to test if or when the data has been
sent. Moreover, this approach is also very operating system centric. It’s
portability on a variety of system is a time consuming effort.

6.1.2 Transparency

The replacement of protocol stacks instead of their optimization is one goal
of Sockets Direct. However, more important are the implications for existing
applications. Will it be required to modify binaries or dynamic link libraries
(DLL’s), or is a new compilation or additional linking required to hook the
bypassed protocol into the appropriate interfaces. The available implemen-
tations of Sockets-Direct offer both features. On the one hand it is possible
to link object files with a library and redefined symbols will automatically
map existing socket functions to new functions with the same input/output
behavior. On the other hand the concept of pre-loading dynamic libraries
offers the possibility of making new functions visible before functions stored
in standard libraries.

Figure 6.2 gives a detailed overview on how the interception interface
looks like for all major operating systems.

Basically, the Sockets-Direct software consist of an entry point witch re-
places the current available interfaces. When overwriting these entry points,
the software avoids system traps but remains full control for the remainder
of the code segments. As depicted, three methods can be considered as entry
points for the Windows operating system. While Winsock Direct (or Sockets
Direct Protocol currently specified by the Infiniband TA) is only available
for server variants of Windows, Windows Advanced Server and Datacenter
server, respectively, the concept of a layered service provider (LSP) or the
binary modification using a research package name Detours [65] are available
for all Windows Platforms. The implementation using an LSP is new and

6.1 Overview of Sockets Direct for SAN’s 107

Figure 6.2: Overview on Interception Techniques

has the potential to outperform the Winsock Direct approach because the
latter is abstracting from individual network interfaces. Under Unices, the
concept of dynamically loading shared libraries offers binary compatibility
as well. Another method which has not been implemented in detail but has
been tested as a very basic prototype is possible by providing a module. The
latter method has the advantage of mapping distributed applications to a
high speed network by simply loading a module. In this case however, a trap
into the operating system is performed. These traps can be handled very effi-
ciently in modern operating systems and the overhead compared with calling
a conventional function is only a few per cent higher [64]. For such a module,
the system functions are re-mapped and the module provides a new function
replacing the old function. The code segment provided in the appendix as
6.1.2 shows how this functionality can be achieved.

108 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
/* this one contains the system call numbers __NR_... */
#include <linux/unistd.h>
/* for struct time* */
#include <linux/time.h>
/* for current macro */
#include <linux/sched.h>

/* these are macros helpfully provided for us. The utility modinfo
 * can be used to examine this stuff.
 * There are also MODULE_PARM() and MODULE_PARM_DESC macros for
 * defining and describing module parameters (there are plenty of
 * simple examples in the kernel source)
 */
MODULE_DESCRIPTION("Intercept SYS_socketcall()");
MODULE_AUTHOR("Markus Fischer, (C) 2002 GPLv2 or later");

/* we hold the old routine address in this function pointer */

static long (*sys_socketcall_saved)(int call, unsigned long *args);

static long my_sys_socketcall(int call, unsigned long *args)
{

long ret;

 MOD_INC_USE_COUNT;

 ret = sys_socketcall_saved (call, args);

 printk("pid %ld called sys_socketcall() with call %d.\n",(long)current−>pid, call);

 MOD_DEC_USE_COUNT;

return ret;
}

int __init init_intercept(void)
{

extern long sys_call_table[];

/* save the old routine address, indexing into the syscall table
 */

 sys_socketcall_saved = (long (*)(int, unsigned long *))(sys_call_table[__N
R_socketcall]);

 sys_call_table[__NR_socketcall] = (long)my_sys_socketcall;

return 0;
}

void __exit exit_intercept(void)
{

extern long sys_call_table[];
sys_call_table[__NR_socketcall] = (unsigned long)sys_socketcall_saved;

}

/* macros to tell module loader our init and exit routines */
module_init(init_intercept);
module_exit(exit_intercept);

Figure 6.3: Interception for the Linux OS.

6.2 Overview and Analysis of TCP/IP functionality 109

When looking at overwriting functions the question on backward com-
patibility should be raised. How operating system specific tasks can be im-
plemented and how information is gathered, which involves the operating
system is another point of concern. As an example one might consider the
returning value when calling the accept() function for establishing point
to point connections between two processes. Here, the argument addr is a
pointer to a sockaddr structure. This structure is filled with the address of
the connecting entity, as known to the communications layer.

In order to achieve this functionality which is immediately related with
the compatibility at binary level, the original functions under Sockets Di-
rect are still available. Thus, for Sockets Direct a so called companion socket
is created at system area network level. Preserving original functions can
be achieved at different levels. When looking a shared libraries for exam-
ple, the dynamic linker keeps a queue of functions with the same interface.
This priority queue is build when loading shared libraries. When providing
a new function which serves as a replacement for existing functions, then the
LD PRELOAD variable can be pointed to this new shared library and is then
loaded first. Thus, the conventional function can be called by pointing to a
next function with a similar interface using the dlsym() call. As a conse-
quence, it is possible to provide new functions like accept() and connect()

which on the one side rely on conventional functions, but which also use
standard send() and recv() functions to exchange necessary information
on the high speed network to allow further communication to use the low
level API of the SAN directly.

6.2 Overview and Analysis of TCP/IP func-

tionality

TCP/IP was first developed in the mid 70’s by the Defense Advanced Re-
search Agency (DARPA) to allow the communication of independent com-
puter systems. TCP which stands for Transmission Control Protocol is a
required TCP/IP standard defined in RFC 793, ”Transmission Control Pro-
tocol (TCP),” that provides a reliable, connection-oriented packet delivery
service. From [48] the following features on the Transmission Control Proto-
col can be distinguished: TCP

• Guarantees delivery of IP datagrams.

• Performs segmentation and reassembly of large blocks of data sent by
programs.

110 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

• Ensures proper sequencing and ordered delivery of segmented data.

• Performs checks on the integrity of transmitted data by using checksum
calculations.

• Sends positive messages depending on whether data was received suc-
cessfully. By using selective acknowledgments, negative acknowledg-
ments for data not received are also sent.

• Offers a preferred method of transport for programs that must use
reliable session-based data transmission, such as client/server database
and e-mail programs.

The further analysis of TCP can be described as follows: TCP is based
on point-to-point communication between two network hosts. TCP receives
data from programs as a stream of bytes which are grouped into segments.
TCP then numbers and sequences these segments for delivery.

Before two TCP hosts can exchange data, they must first establish a
session with each other. A TCP session is initialized through a process known
as a three-way handshake. This process synchronizes sequence numbers and
provides control information that is needed to establish a virtual connection
between both hosts.

Once the initial three-way handshake completes, segments are sent and
acknowledged in a sequential manner between both the sending and receiv-
ing hosts. A similar handshake process is used by TCP before closing a
connection to verify that both hosts are finished sending and receiving all
data.

When designing TCP, the target was wide area networks. In these envi-
ronments, where packages can get lost during transmission and error rates
are high, it is essential to provide mechanisms which guarantee the correct
delivery of a message.

In order to run on an unreliable network with varying latencies, TCP
provides flow control using the concept of sliding windows. Additionally,
TCP uses a congestion avoidance technique known as slow-start. Upon the
start of a session, a small window worth of data is sent. The sender then
waits for a positive acknowledgment from the receiver and sends twice the
window data, then four times, etc. until the network is saturated. This
process to get to a steady state with an optimal window size is complex and
time consuming.

Additional checksums to verify message integrity are added to the differ-
ent layers coming with TCP/IP, also known as the stack.

6.2 Overview and Analysis of TCP/IP functionality 111

Thus, for a System Area Network, the TCP/IP protocol involves a lot
of overhead which reduces the maximal performance. With higher speeds in
the near future, this overhead will become an even more important factor in
terms of performance. The following figure depicts the overhead breakdown
which has been analyzed in detail in [72], section 5.5.2.

Figure 6.4: TCP/IP Overhead Breakdown [72]. About 48.4% overhead is
introduced with the TCP/IP protocol. In addition 7.1% of the total time is
spent in the protocol handler invocation.

Examining the overhead from several layers above the network device, it
is quite evident that the stack is not optimized for a reliable network. For
example, TCP uses an additional checksum for data integrity. This value has
to be computed by the host CPU for every frame and is part of the overhead.
Modern network hardware already have CRC’s in hardware. The in-packet
checksum adds additional load to the CPU because this computation is ex-
pensive. As a consequence, some Gigabit Ethernet cards have moved this
computation back into the NIC.

Additional overhead comes from IP. IP splits up original TCP packages
and assembles additional headers. Figures 6.5 and 6.6 give an overview of
the additional protocol overhead involved with TCP over IP.

When the TCP layer passes a packet to the IP layer, it fragments the
original messages using the size of the MTU. IP additionally includes fields
such as ’Time to Live’ to avoid data to be passed along gateways and routers
continuously. These parameters are only relevant in a local or wide area
network. IP also supports internetwork routing and in-flight packet frag-

112 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.5: TCP Header Layout [48]

Figure 6.6: IP Header Layout [48]

mentation and reassembly, features which are not useful in a system area
environment.

6.2.1 Socket Interface, Protocol and Interface Stack

Standard implementations of the Sockets interface and the TCP/IP protocol
suite separate the protocol and interface stack into multiple layers. The
Sockets interface is usually the topmost layer, sitting above the protocol. The
protocol layer as shown in figure 6.7 may contain sub-layers: for example,
the TCP protocol code sits above the IP protocol code.

Below the protocol layer is the interface layer, which communicates with
the network hardware. The interface layer usually has two portions, the
network programming interface, which prepares outgoing data packets, and
the network device driver, which transfers data to and from the network
interface card (NIC).

This multi-layer organization enables protocol stacks to be built from
many combinations of protocols, programming interfaces, and network de-
vices, but this flexibility comes at the price of performance. Layer transitions
can be costly in time and programming effort. Each layer may use a different

6.2 Overview and Analysis of TCP/IP functionality 113

Figure 6.7: Protocol Layers extracted from the Linux Source Code.

abstraction for data storage and transfer, requiring data transformation at
every layer boundary. Layering also restricts information transfer. Hidden
implementation details of each layer can cause large, unforeseen impacts on
performance [66]. Moreover, the raw data or actual payload is increased in
its size of data actually being delivered. Adding control and header informa-
tion adds several levels of encapsulation which has to be disassembled at the
receiver side. This is depicted in the following figure.

Mechanisms have been proposed to overcome these difficulties when con-
sidering new generation of protocols, but existing work has focused on mes-
sage throughput, rather than protocol latency [8]. With Berkeley Sockets
(BSD) and the System V Transport Layer Interface, two similar program-
ming interfaces are available. Because of their similarity the following refers
to the BSD implementation only. Typically TCP/IP and UDP/IP are in
use as socket protocols. If the number of layers in the communication stack
could be reduced data transfer could be speeded up. This has been proposed
through fbufs [22], a mechanism of avoiding data copies and switching input
and output buffers in different layers. As a consequence only data pointers
are passed.

In this context, figure 6.9 depicts the path through several layers from
the application to the link, passing the transport and Internet layer. It also
shows where data is handed to the operating system and how packets are de-
fragmented into smaller sizes according to the MTU. Moreover, it becomes

114 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

Payload

Payload

Payload

IP - Datagramm

TCP Segment

TCP

IP

Application Data

Network Device

Network

TCP HDR

IP HDR TCP HDR

Application HDR

Application HDR

Application HDR Payload

Figure 6.8: TCP/IP Protocol Encapsulation

clear, that a message does not immediately get written by the device driver
but is scheduled for sending. Finally, the application which has been blocked
so far returns out of the system call to continue with its program thread since
at this point, the buffers can be safely reused.

6.2.2 BSD Sockets

In this paragraph an overview of BSD Sockets is given. Major points of
interest are the socket interface itself and how it is suited to allow for achiev-
ing high performance in communication but also the interface level, that is,
where data moves between different layers.

Depicted is the breakdown for the Linux operating system (figure 6.10).
It was taken from the Linux kernel sources which are typically stored under
/usr/src/linux/. For sending a message, BSD sockets offer three routines
to operate on a socket descriptor, write, send and sendto, respectively.
The latter one is used for communication via UDP, the others are for TCP
connections established with accept and connect functions on server and
client side. When calling these functions a trap into the system is made
visible through sys *() functions in the kernel. These calls end in the
sock sendmsg() function still in the BSD Socket layer before being passed
to the INET socket layer. When analyzing a data exchange between two
endpoints, an observation is that The standard socket model is not suited

6.2 Overview and Analysis of TCP/IP functionality 115

User Level Kernel Level

writes to socket
Application

socket
INET checks socket writes

to protocol

TCP creates
packet buffer

TCP fills in
header

IP gets

socket data

IP fills in
header

packet goes on

send queue

scheduler runs

device driver

device prepares
send packet

packet goes on

medium

Application
continues

Application

socket data
TCP Header

IP Header

Ethernet Header

Transmission Control Program

Internet Protocol

Link Layer

Figure 6.9: Overview TCP/IP Socket Send

for efficient implementations by design. This can be described when break-
ing down the different layers traversed when sending data. The process of
handing data to the OS and its fragmentation into IP frames is depicted in
figure 6.9. Before an application returns from a send operation, it spends
a significant amount of time in a system call before it can continue. This
time increases linearly to the message size. The reason for this is that the
standard socket specification allows a message buffer to be re-used when re-
turning from the send operation. This is very inconvenient when trying to
overlap communication with computation. Since there is no synchroniza-
tion between OS and application, the OS has to preserve the message data.
When returning from the system call, the application can change its mes-
sage buffer immediately. As a consequence, it is not easily possible to tune
the BSD Socket layer for low latency. A requirement would be to make a
copy of the payload immediately into an intermediate buffer before return-
ing. Data copies however are bad when trying to offload the CPU. When
describing Sockets Direct in full detail, the concept of buffered semantics as
well as RDMA semantics using different protocols will be explained. As a
requirement for an efficient streamlined implementation, the socket interface
would require an asynchronous function call in which a handle is returned
which can be used by the application to query the successful delivery of the
data.

116 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.10: Overview BSD Send Layer

6.2.3 Winsock 1.1

The Winsock 1.1 protocol for Windows systems is very similar to the BSD
Socket paradigm. It offers the same socket interface calls. One additional
requirement is to initiate the usage of sockets through the WSAStartup()

function. Socket resources are cleaned up by WSACleanup(). Offering the
same functionality, it also inherits the same limitations. An overview for the
Winsock 1.1 interface is given together with a protocol breakdown of the
advanced Winsock 2 architecture.

6.2.4 Advanced Mechanisms in Winsock 2

The Winsock 2 architecture is a completely new socket interface and over-
comes the major drawbacks of Winsock 1.1. It is also backwards compatible
and an application can choose the protocol by specifying the WSADATA value to
the WSAStartup() function. Depending on the underlying service provider,
this call may be limited to Winsock 1.1 calls if a full Winsock 2 implemen-

6.2 Overview and Analysis of TCP/IP functionality 117

tation is not available. The following subsections summarize the Winsock 2
features as described in [128].

6.2.4.1 Layered Protocols and Protocol Chains

Winsock 2 accommodates the notion of a layered protocol. A layered protocol
is one that implements only higher level communications functions, while
relying on an underlying transport stack for the actual exchange of data with
a remote endpoint. An example of such a layered protocol would be a security
layer that adds protocol to the connection establishment process in order to
perform authentication and to establish a mutually agreed upon encryption
scheme. Such a security protocol would generally require the services of an
underlying reliable transport protocol such as TCP or the sequenced packet
exchange (SPX). The term base protocol refers to a protocol such as TCP or
SPX which is fully capable of performing data communications with a remote
endpoint, and the term layered protocol is used to describe a protocol that
cannot stand alone. A protocol chain is defined as one or more layered
protocols strung together and anchored by a base protocol.

This stringing together of one or more layered protocols and a base pro-
tocol into chains can be accomplished by arranging for the layered protocols
to support the Winsock 2 SPI at both their upper and lower edges. A spe-
cial WSAPROTOCOL INFO struct is created which refers to the protocol chain
as a whole, and which describes the explicit order in which the layered pro-
tocols are joined. This is illustrated in Figure 6.12. Note that since only
base protocols and protocol chains are directly usable by applications, only
these protocols are listed when the installed protocols are enumerated with
WSAEnumProtocols

6.2.4.2 Overlapping

Winsock 2 introduces overlapped I/O and requires that all transport
providers support this capability. Overlapped I/O can be performed
only on sockets that were created via the WSASocket() function with the
WSA FLAG OVERLAPPED flag set, and follows the model established in Win32.
Note that creating a socket with the overlapped attribute has no impact on
whether a socket is currently in the blocking or non-blocking mode. Sockets
created with the overlapped attribute may be used to perform overlapped
I/O, and doing so does not change the blocking mode of a socket. Since
overlapped I/O operations do not block, the blocking mode of a socket is
irrelevant for these operations.

118 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.11: Winsock1.1 and Winsock 2 Overview

For receiving, applications use WSARecv() or WSARecvFrom() to supply
buffers into which data is to be received. Winsock 2 also offers performance
optimizations. If one or more buffers are posted prior to the time when data
has been received by the network, it is possible that data will be placed into
the user’s buffers immediately as it arrives and thereby avoid the copy opera-
tion that would otherwise occur at the time the receive function is invoked. If
data is already present when receive buffers are posted, it is copied immedi-
ately into the user’s buffers. If data arrives when no receive buffers have been
posted by the application, the network resorts to the familiar synchronous
style of operation where the incoming data is buffered internally until such
time as the application issues a receive call and thereby supplies a buffer
into which the data may be copied. An exception to this would be if the
application used setsockopt() to set the size of the receive buffer to zero.
In this instance, reliable protocols would only allow data to be received when
application buffers had been posted, and data on unreliable protocols would
be lost. On the sending side, applications use WSASend() or WSASendTo() to
supply pointers to filled buffers and then agree to not touch the buffers in
any way until the network has consumed the buffer’s contents. Overlapped

6.2 Overview and Analysis of TCP/IP functionality 119

Figure 6.12: Winsock Layered Service Provider Overview

send and receive calls return immediately. A return value of zero indicates
that the I/O operation completed immediately and that the corresponding
completion indication has already occurred. That is, the associated event
object has been signaled, or a completion routine has been queued and will
be executed when the calling thread gets into the alterable wait state. A
return value of SOCKET ERROR coupled with an error code of WSA IO PENDING

is not a socket error, but indicates that the overlapped operation has been
successfully initiated and that a subsequent indication will be provided when
send buffers have been consumed or when a receive operation has been com-
pleted. However, for byte stream style sockets, the completion indication
occurs whenever the incoming data is exhausted, regardless of whether the
buffers are fully filled. Any other error code indicates that the overlapped
operation was not successfully initiated and that no completion indication
will be forthcoming. Both send and receive operations can be overlapped.
The receive functions may be invoked multiple times to post receive buffers
in preparation for incoming data, and the send functions may be invoked
multiple times to queue up multiple buffers to be sent. Note that while the
application can rely upon a series of overlapped send buffers being sent in
the order supplied, the corresponding completion indications may occur in
a different order. Likewise, on the receiving side, buffers will be filled in
the order they are supplied but the completion indications may occur in a
different order.

120 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

6.2.4.3 I/O Completion Ports

Writing a high-performance server application requires implementing an ef-
ficient threading model. Having either too few or too many server threads
to process client requests can lead to performance problems. For example,
if a server creates a single thread to handle all requests clients can become
starved since the server will be tied up processing one request at a time.
Of course, a single thread could simultaneously process multiple requests,
switching from one to another as I/O operations are started, but this ar-
chitecture introduces significant complexity and cannot take advantage of
multiprocessor systems. At the other extreme a server could create a big
pool of threads so that virtually every client request is processed by a ded-
icated thread. This scenario usually leads to thread-thrashing, where lots
of threads wake-up, perform some CPU processing, block waiting for I/O
and then after request processing is completed block again waiting for a new
request. If nothing else, context-switches are caused by the scheduler having
to divide processor time among multiple active threads. The goal of a server
is to incur as few context switches as possible by having its threads avoid
unnecessary blocking, while at the same time maximizing parallelism by us-
ing multiple threads. The ideal implementation is therefore to have a thread
actively servicing a client request on every processor and for those threads
not to block if there are additional requests waiting when they complete a
request. For this to work correctly however, there must be a way for the
application to activate another thread when one processing a client request
blocks on I/O (like when it reads from a file as part of the processing).

Windows NT 3.5 introduced a set of APIs that make this goal relatively
easy to achieve. The APIs are centered on an object called a completion port.
Applications use completion ports as the focal point for the completion of
I/O associated with multiple file handles. Once a file is associated with a
completion port any asynchronous I/O operations that complete on the file
result in a completion packet being queued to the port. A thread can wait
for any outstanding I/Os to complete on multiple files simply by waiting for
a completion packet to be queued on the completion port. The Win32 API
provides similar functionality with the WaitForMultipleObjects API, but the
advantage that completion ports have is that concurrency, or the number of
threads that an application has actively servicing client requests, is controlled
with the aid of the system. When an application creates a completion port
it specifies a concurrency value. This value indicates the maximum number
of threads associated with the port that should be running at any given
point in time. As I stated earlier, the ideal is to have one thread active at
any given point in time for every processor in the system. The concurrency

6.2 Overview and Analysis of TCP/IP functionality 121

value associated with a port is used by NT to control how many threads an
application has active - if the number of active threads associated with a port
equals the concurrency value then a thread that is waiting on the completion
port will not be allowed to run. Instead, it is expected that one of the active
threads will finish processing its current request and check to see if there’s
another packet waiting at the port - if there is then it simply grabs it and
goes off to process it. When this happens there is no context switch, and the
CPUs are utilized to near their full capacity.

6.2.5 Winsock Direct

Windows Sockets Direct (WSD) allows programs written for TCP/IP to
transparently realize the performance advantages of user-level networks such
as VIA. Programs developed to the Winsock2 API do not have to be rewrit-
ten to take advantage of changes in underlying network architecture to a
SAN, nor is recompilation of these programs necessary. This enables legacy
network code to work out of the box and enjoy at least some benefit of the low
message latency associated with SANs. Figure 6.13 depicts a block diagram

� � � � � � � � 	

 � � � � � � �

� � � � � � �

� � � � � � � � � � � � � �

� 	 � � � � � � � � � � � � �

� 	 � � � � �

� � � � � �

� 	 � � � � � � � � � � �

� 	 � � � � � � � � � � �
 � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � �� � � �

� � � � � �

Figure 6.13: Winsock Direct Overview

of the WSD architecture. The key component of the WSD architecture is

122 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

the software switch, which is responsible for routing network operations ini-
tiated by Winsock2 API calls to either the standard TCP/IP protocol stack,
or to the vendor-supplied SAN WS Provider. In addition to providing ac-
cess to both of these pathways to the network on an operation-by-operation
basis, the switch provides several important functions through the use of a
lightweight session executed on top of the SAN provider. This session pro-
vides OOB (out of band) support, flow control, and support for the select
operation. None of these mechanisms are traditionally provided by a typical
SAN architecture. There are several operations that require the support of
the TCP/IP protocol stack (i.e., do not use WSD), including:

• Connections to remote subnets.

• Socket creation.

• Raw sockets and UDP sockets.

Because SANs support connection-oriented reliable communication, all
connectionless and uncontrolled communication must be handled by the
TCP/IP protocol stack. This limits the applicability of WSD to those appli-
cations that (a) use TCP, and (b) do not make use of group communication.

6.3 Related Work

Improving communications performance has been a popular research topic
for a long time. Previous work has focused on protocols, protocol and infras-
tructure implementations, and the underlying network device software. But
also TCP/IP stack implementations have been ported to other networks. In
the following an overview on related work will be presented.

6.3.1 Streamlined Socket Interfaces

Early work [17] analyzed communication overhead and argued that protocol
implementations, rather than protocol designs, were to blame for poor per-
formance. The author stated that an efficient implementation of a general-
purpose protocol would allow for the same performance as a special-purpose
protocol for most applications. The work presented in [67] found that mem-
ory operations and operating system overheads played a dominant role in
the cost of large packets. For small packets, however, protocol costs were

6.3 Related Work 123

significant, amounting for up to 33% of processing time for single-byte mes-
sages. The x-kernel presented in [45] was an OS targeted at high-performance
communications by reducing system call costs. Later work [21] [24] focused
on hardware design issues relating to network communication and the use
of software techniques to exploit hardware features. Key contributions from
this work were the concepts of application device channels (ADC), which
provide protected user-level access to a network device, and fbufs [22], which
provide a mechanism for rapid transfer of data from the network subsystem
to the user application.

The development of a zero-copy TCP stack in Solaris [63] avoided memory
copies when traversing the stack. By using direct memory access and oper-
ating system features such as page re-mapping, and copy-on-write pages to
improve communications performance. A page marked with Copy-on-write
avoided a memory copy if the application did not modify the data before
the data was delivered. When doing so, an interrupt would occur and the
OS would have to make a copy of the page before the application could pro-
ceed. Moreover user applications had to use page-aligned buffers and transfer
sizes larger than a page to gain best efficency with the zero protocol stack.
The resulting system achieved reasonable throughput for large transfers (16K
bytes), however smaller packets that make up the majority of network traffic
did not gain better performance.

An alternative to reducing internal operating system costs is to bypass
the operating system. This results in a user-level library like Sockets Direct.

Earlier work [40] and [54] explored building TCP into a user-level library
linked with existing applications. Both systems, however, attempted only to
match in-kernel performance, rather than its improvement. Further, both
systems utilized in-kernel facilities for message transmission, limiting the
possible performance improvement. Similar work was carried out in [25]. It
was an entirely user-level solution which replicated the organization of the
kernel. The performance however was worse than the in-kernel TCP stack.

[67] showed that interfacing to the network card itself was a major cost
for small packets. Recent work has focused on reducing this portion of the
protocol cost, and on utilizing the message coprocessors that are appearing
on high-performance network controllers such as Myrinet [51].

Other work on implementing a stream sockets layer was conducted in the
SHRIMP project. SHRIMP supports communication via shared memory and
the execution of handler functions on data arrival. The SHRIMP network
had very low hardware latencies. It used a custom-designed network interface
for its memory-mapped communication model. Using sender-based memory

124 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

management, the bandwidth of SHRIMP sockets was only about half the
raw capacity of the network hardware, but it also dealt poorly with non-
word-aligned data. For unmodified applications, this introduced additional
programming complexity to work around.

The U-Net described in 2.1.3.3 was also supported by a TCP implemen-
tation (U-Net TCP). This protocol stack provided full functionality of the
standard TCP stack. With a modification for better performance it suc-
ceeded in delivering the full bandwidth of the underlying network but still
imposed more than 100 microseconds of packet processing overhead relative
to the raw U-Net interface.

Fast Sockets is another implementation of the Sockets API using Active
Messages as a transport mechanism that provides high-performance commu-
nication and inter-operability with existing programs. It was most recently
described in [69]. Interoperability with existing programs is obtained by sup-
porting most of the Sockets API and transparently using existing protocols
for communication with other sockets programs not using Fast Sockets. In
order to let an application use Fast Sockets, applications must be re-linked.
Moreover, Fast Sockets cannot currently be shared between two processes
for example, via a fork() call. An application using exec will lose all Fast
Sockets states as well. This poses problems for traditional Internet server
daemons such as inetd, which issue a call to fork() for each incoming re-
quest.

The Fast Socket implementation also faced problems on process termina-
tion. Gracefully shut downs on sockets could not be handled.

Just recently the efficient implementation of a socket interface has be-
come popular again. The emerging Infiniband standard introduces a set of
new protocols and a socket interface which involves only low host utilization
is under specification. With Sockets over VIA (SOVIA) [70] a new socket
implementation using the VIA interface was presented. This implementation
which is only available for the Linux OS requires source code modification
in order to let an application use the VIA interface directly. Several other
limitations exist in SOVIA. For example, the handling of fork() is not sup-
ported. The lightweight sockets project from Hitachi [71] can also be seen as
a recent investigation on streamlined interfaces. The software is suited for
smaller client server examples. Full semantics are not provided.

6.3 Related Work 125

6.3.2 Suitability of the Transmission Control Protocol
for System Area Networks

When deploying TCP/IP on top of System Area Networks, the complete
protocol stack is implemented. This results in better communication perfor-
mance due to the higher performance of the physical layer. Its round-trip
latency is still poor. However, a comparison with the performance of the
low level API of the SAN shows a large performance gap. The latency of a
current high speed network is less than 10 micro seconds, however the costly
system trap which comes with a stack implementation of TCP/IP will involve
much higher values.

Another factor is less bandwidth when applying a TCP/IP stack on top of
a SAN. This is due to the TCP/IP concept in general and several aspects of
TCP/IP and their impact on performance will be discussed in the following.
A performance chart in Figure 6.14 will give a first look on how the TCP/IP
protocol will degrade available performance.

Netpipe (Streaming, TCP/IP over Myrinet vs SysKonnect) -
Supermicro 370DLE 64/66 PIII 1 Ghz - OS: W2K

0

20

40

60

80

100

120

140

1 6 16 27 45 64 99 18
9

25
6

38
7

76
5

10
24

15
39

30
69

40
96

61
47

12
28

5
16

38
4
24

57
9

49
14

9
65

53
6
98

30
7

19
66

05

26
21

44

39
32

19

78
64

29

10
48

57
6

15
72

86
7

Message Size in Bytes

M
B

/s

TcpWindowSize Windows Default
TcpWindowSize 65K
TcpWindowSize 128K
TcpWindowSize 256K
SysKonnect GigEth 65K

Figure 6.14: TCP/IP Performance Comparison on Myrinet and Syskonnect
using Netpipe

A low level API for Myrinet will typically peak at 247MBytes/s, reaching
this value for 4096 Bytes. Half of this Bandwidth is available using a message
size of 1300 Bytes. The tuned TCP/IP protocol delivers a maximum of

126 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

87MBytes/s for a message size of 9000 Bytes. Half of this bandwidth is
reached for messages with approximately 2000 Bytes. Another discrepancy
is the latency. While GM has a one way latency of 8 micro seconds, the
TCP/IP over GM implementation has a one way latency of 75 micro seconds.

Netpipe (Streaming, TCP/IP over Myrinet) VS GM Raw
(Streaming) - Supermicro 370DLE 64/66 PIII 1 Ghz

0

50

100

150

200

250

300

1 6 16 27 45 64 99 18
9

25
6

38
7

76
5

10
24

15
39

30
69

40
96

61
47

12
28

5

16
38

4

24
57

9

49
14

9

65
53

6

98
30

7

19
66

05

26
21

44

39
32

19

78
64

29

10
48

57
6

15
72

86
7

Message Size in Bytes

M
B

/s

TcpWindowSize Windows
Default
TcpWindowSize 65K

TcpWindowSize 128K

TcpWindowSize 256K

GM Raw (-u -bw)

Figure 6.15: Performance Comparison of GM over Myrinet and Netpipe over
TCP/IP over Myrinet

Figure 6.15 indicates that much of the available performance is lost due
to the overburdened TCP/IP protocol stack. While the SysKonnect Gigabit
Ethernet card achieves 90% of the raw performance, the TCP/IP stack over
Myrinet only achieves 1/3 of the available performance of the low level API
GM.

Since Gigabit Ethernet networks compete with System Area Networks, its
performance is included as well. We have tested a high end Gigabit Ethernet
network card from SysKonnect. The SysKonnect card which supports Jumbo
frames of 9000 Bytes reaches almost wire speed which is 125 MBytes/s. In
comparison to other Ethernet cards operating in Gigabit mode, this is an
outstanding implementation. A large fraction performs rather poor [78].

These results lead to the conclusion that TCP/IP can achieve better
throughput on faster networks, its round-trip latency however remains poor.
Next-generation network technologies like Myrinet do not begin to approach

6.3 Related Work 127

the raw capabilities of these networks [5]. In the following we describe a
number of features and problems of available TCP implementations, and
how these features affect communication performance.

6.3.2.1 Targeting Local-, Wide- and System Area Networks

Following the description on TCP in section 6.2, TCP/IP was originally
designed, and is usually implemented, for wide-area networks. Since several
entries which are useful in error prone environments are no longer needed,
the stack is undergoing several optimization techniques. For example, TCP
uses an in-packet checksum for end-to-end reliability, which can cause high
CPU load and can create a bottleneck when a stream of packets needs to
be handled. Modern system area networks however come with a per-packet
CRC. Other parameters like the Time To Live field in the IP header are not
relevant any more but increase message sizes. IP also supports internetwork
routing and in-flight packet fragmentation and reassembly, features which
are not useful given the new features.

6.3.2.2 Stack Implementation Details

Standard implementations of the Sockets interface and the TCP/IP protocol
suite separate the protocol and interface stack into multiple layers. Accord-
ing to figure 6.10, the sockets interface is the first layer accessed by a socket
application. The protocol stack then contains several sub-layers, which need
to be traversed. Finally, the interface layer communicates with the network
hardware. It is separated by the network programming interface, which pre-
pares outgoing data packets, and the network device driver, which transfers
data to and from the network interface card (NIC). This organization al-
lows flexible combinations but restricts room on efficiency and optimization.
Performance can be degraded since transitions are costly. Different layer
typically do not represent data in the same format and the actual message
is encapsulated or fragmented at different layers. Moreover, memory man-
agement is not visible across different layers. Hence, the data is copied from
layer to layer causing very high CPU load.

Mechanisms have been proposed to overcome these difficulties [6], but ex-
isting work has focused on message throughput, rather than protocol latency
[8]. As a consequence, current TCP/IP implementations required a compli-
cated memory management mechanism. In a multi-layered protocol stack
packet headers are added (or removed) as the packet moves downward (or
upward) through the stack. With the lack of interoperability, this requires

128 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

additional memory copies. Buffer mechanisms inside the operating system
kernel however are limited. To overcome some of the drawbacks, BSD in-
troduced the concept of mbuf. An mbuf can directly hold a small amount
of data, and mbufs can be chained to manage larger data sets. Chaining
makes adding and removing packet headers easy. The mbuf abstraction is
not cheap, however: 15% of the processing time for small TCP packets is
consumed by mbuf management [67]. This technique however does not avoid
memory copies; user data must be copied into and out of mbufs. Using
mbufs, nearly one-quarter of the small-packet processing time in a TCP/IP
stack is spent on memory management issues. As a consequence the over-
head introduced with complicated memory management is therefore a viable
target to improve communications performance. This is the subject for a
direct sockets implementation which will be described in the following.

6.4 Design Space for Sockets Direct

The design space for a Sockets Direct implementation is dependent on the
final goal the middleware layer is aiming at. The complexity varies from
small server client applications each consisting of simple send() and recv

functions to applications which use a set of functions like fork(), dup(),
dup2() and close() on socket descriptors.

Moreover the complexity is defined by supporting legacy applications
which have to work right out of the box, or if application are even allowed to
be modified at source code level. The following will describe available design
spaces and their trade off.

6.4.1 Sockets Direct Portability among Major Operat-
ing Systems

Given the widespread usage of TCP/IP and UDP/IP application, the porta-
bility of Sockets Direct is of importance. In this section platform dependent
interfaces will be examined. Providing portability requires deep knowledge
of operating system specific features. It also requires the understanding of
how applications are build today.

6.4.1.1 Replacing standard libraries

When compiling and linking a program, it can be either statically or dynam-
ically linked. Static linking has the advantage that the code can be easily

6.4 Design Space for Sockets Direct 129

distributed. The program in binary format contains all necessary code seg-
ments to be started. For Sockets Direct this would mean that a standard
library which contains the basic transport provider for the socket interface
must be modified. This would however require to replace current libraries. It
has been proven that any modification to a standard system will most likely
avoid the acceptance of a project in general. This would be true for replac-
ing standard libraries as well as patching an operating system in order to
achieve the aimed functionality. Therefore any project must be designed not
to interfere with the basic system. Thus, only an extension like a module or
a library as an add on to existing libraries are a feasible approach. For static
linking, Sockets Direct offers an additional library. With advanced linker
functions, it has been made possible to remap functions, while preserving
access to original functions as well. The following sequence shows how this
can be done:

ar xv /usr/lib/libc.a send.o recv.o

ld -r -x -defsym SD_TRAMP_send=__send \

-defsym SD_TRAMP_recv=__recv \

recv.o send.o -o libsocketsdirect.o

In this case, the code from the original send and recv routines are preserved
and accessible through calls to SD TRAMP send and SD TRAMP recv, respec-
tively. The Sockets Direct middleware layer can now provide its own send
and recv functions and can rely on the trampoline functions. When linking
an application statically, the linker will remap functions when providing the
libsocketsdirect.o library.

6.4.1.2 Providing shared libraries

Static linking however also has some disadvantages. When linking all re-
quired objects together, executables can become extremely large. Although
memory has become cheap, the executable will take more memory as if a dy-
namic linking would be used. The latter offers the possibility to share code
among processes. The text segment will be accessible (shared) for reading by
multiple processes given their own data segment. This is very efficient since
a large portion of code is similar since high abstraction libraries are used.

g++ -o sockets-direct-unix.so -fPIC -c sockets-direct-unix.cpp

g++ -shared -Wl,-soname,libsockets-direct.so.1 \

-o libsockets-direct.so.1.0 sockets-direct.so *.so

130 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

When building shared libraries, then the -fPIC flag generates position-
independent code (PIC) suitable for use in a shared library, if supported
for the target machine. All constant addresses are stored in a global offset
table. When starting an application, the dynamic loader which is part of the
operating system resolves the entries in the global offset table. It will create
a queue of references to functions with the same interface. When a function
’f’ is called, then its first reference will be executed. Modern operating sys-
tems like Linux or Solaris offer a pre-loading function. Typically, the ldd

program will print the reference list for an application. When using the pre-
loading feature, then the shared library which was specified will be referenced
first. This concept is a viable method to implement Sockets Direct. Shared
libraries can be loaded upon request, their pre load however can be specified
permanently as well (/etc/pre.load). One important feature is to be able
to walk through the reference list of the dynamic linker. The dlsym func-
tion call can provide a pointer to the next reference in the chain. It should
be noted, that the feature of pre loading shared libraries guarantees binary
compatibility, given that full semantics are provided by the favored Sockets
Direct shared library. This will make it possible to map legacy applications
to use Sockets Direct as their communication layer.

6.4.1.3 Binary Instrumentation

Another way for mapping legacy applications to a different protocol is that
of binary instrumentation. Tools like Detours [65] for Windows and SLI [80]
for Solaris enable interposition aside of any object middleware. In Detours,
function calls are dynamically intercepted by re-writing function images in
order to redirect the control flow to different locations. In contrast, SLI
interposition is based on symbol preemption in the resolution mechanism. In
this way, SLI can dynamically introduce profiling and tracing functionality
into dynamically-linked programs without changing the program image.

6.4.1.4 Layered Service Providers

The concept of a layered service provider is a rather new mechanism and
was introduced with the Windows NT 3.51 operating system in 1994. Any
layering technique will require the insertion of new protocols into a chain
which lists all available protocols. This way, additional services like Quality
of Service (QoS) may be installed above a basic transport provider. So far
this technique has not been adopted to any UNIX flavored operating system
such as LINUX or Solaris.

6.5 Sockets Direct Implementation 131

6.4.1.5 Winsock Direct

Microsoft has provided a switch which will map socket functions to use the
System Area Network when available. Winsock Direct abstracts from a SAN
and offers a general interface. Each SAN vendor must provide its own inter-
face for Winsock Direct according to the Service Provider Interface (SPI).
For this, a service provider DLL must be written and registered with the
operating system. In effect, this new protocol fits seamlessly underneath
the Winsock API that serves to integrate server applications into SAN envi-
ronments. Winsock Direct bypasses the kernel networking layers and com-
municates directly with the SAN hardware. Winsock Direct is available for
Server Systems only. It was introduced with Microsoft Windows 2000 Data-
center Server and is now available as well in Windows 2000 Advanced Server
having Service Pack 2 installed. Sockets Direct was not implemented under
Winsock Direct, however its interface would be an alternative method for an
implementation. However, the performance might be less than the available
performance given from low level API’s of the SAN [81]. This is most likely
due to the general approach to serve any SAN.

6.5 Sockets Direct Implementation

In the following details on a Sockets Direct implementation will be presented.
This work was conducted using the GM over Myrinet API as a reference
implementation. No restrictions are given when using other system area
networks. If relevant implementation details according to the GM interface
were used, this will be stated explicitely.

The implementation was done based on providing a shared library in the
Solaris/Linux environment which allows for binary compatibility, a static
library which requires the relinking of object code. For the Windows en-
vironment, the full implementation was performed for binary interception
techniques as well as a layered service provider. The latter one achieves
binary compatibility. Binary interception requires the modification of the
executable using a tool coming with the Detours package [65].

6.5.1 Setup and Connection Management

The sockets interface provides a variety of socket calls. However only 15
per cent of them are related to exchanging data. For the Sockets Direct im-
plementation the setup functions to let further communication use the low

132 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

level API of a System Area Network are expensive. However, this setup pro-
cedure is performed only once, In those setup functions the Sockets Direct
implementation relies on basic TCP/IP behavior. This way, a traditional
connection is created between two endpoints, but also the SAN connection
is set up. This mechanism also offers a flexibility which is required for dif-
ferent SAN types. Some of them require an explicit connection between two
endpoints (like VIA or ATOLL), others are connectionless (like GM over
Myrinet) for example. As stated earlier, the approach of a Sockets Direct
implementation is available for several operating systems, including different
interception levels. The following description will hold for any variant of
Sockets Direct unless stated otherwise. The implementation is explained in
more detail in the following.

6.5.1.1 Companion Socket Initialization in Sockets Direct

The number of ports which are exposed to applications is still limited, even on
popular high speed networks. Therefore the implementation of Sockets Direct
has a very resource conservative approach. It only requests an endpoint to
be mapped into user address space, when the application is actually using
the socket interface. Prior to any communication, two socket endpoints need
to establish a point to point connection. While Windows Sockets require the
WSAStartup() routine to be called prior to calling any other Windows Socket
function, this is not the case for any other socket implementation. Moreover,
a socket application indicates which Winsock version it would like to use,
when calling WSAStartup(). For Sockets Direct, this routine is intercepted
and buffer management and other internal structures are initialized. Pre-
arrangements to be Winsock 1.1 or Winsock 2 compliant can be made through
the argument parameter provided to the WSAStartup call. Since other socket
implementations lack the support of a startup function, the socket() call
has been interfaced. When examining the socket interface API, this is the
basic function which is called to create a socket which can be later on used
in send or receive functions.

6.5.1.2 Establishing Connections

The TCP protocol only supports point to point connections which are estab-
lished through accept and connect calls.

When intercepting these functions, a relation between socket descriptor
and corresponding information of the system area network is stored. This re-
lation is then used when exchanging data. More precisely, when establishing

6.5 Sockets Direct Implementation 133

Figure 6.16: TCP Socket Connection Establishment

connections, a so called companion connection is made. For a server which
calls accept() to serve its clients, the Sockets Direct implementation first lets
the TCP/IP accept call succeed which returns evident information in the
socket structures. With them it is possible to figure out which host(name)
issued the connection. Figure 6.16 depicts a typical connection sequence in
which a server accepts clients to allow for data exchanges based on a point
to point connection.

In the reference implementation, the GM lookup function
gm hostname to id() can be used to determine whether the client is
a potential candidate for a companion socket. If this is the case an
additional hand shake inside of the accept and connect sequence will store a
reference of the socket descriptor with a target node id, a target port id and
crucial for multiple socket connections between the same nodes, a unique
socket identifier. The latter one is determined to be the socket descriptor
itself.

This setup mechanism holds for Winsock 1.1 and Winsock 2, but also
other socket implementations. For the client, the connect call is even simpler

134 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

to handle. The argument in the connect function provides the hostname.

6.5.1.3 Sending and Receiving Messages in Sockets Direct

Two variants for an exchange model which are dependent on the message size
are implemented in Sockets Direct. First is that of buffered copies. When
sending messages, the message gets fragmented and copied into registered
buffers of GM. Finally, the GM send function gm send with callback() is
invoked, which will activate the DMA engines to inject the messages into
the network. With this message handler in hardware, the send functionality
can be easily achieved. On the receiver side, a matching gm receive() will
allow data to be copied from the registered buffers into application buffers.
Earlier, data has been copied into registered buffers by network-to-host DMA
engines.

Using this mechanism, Sockets Direct is compliant with any socket inter-
face. For the Winsock 2 architecture, a posted overlapped receive requires
additional threads which handle incoming messages.

Figure 6.17 depicts an overview of available models in Sockets Direct.
Basically one can distinguish between a buffered model and a zero copy
protocol. While the buffered model allows for very low latency and minimizes
the function call overhead, the zero copy protocol aims at offloading the host
CPU. Using the buffered model, the function call overhead is reduced since
a copy of the message is created. It is the responsibility of underlying SAN
API to guarantee the correct delivery. Since the SAN API will be active
based on intervals (the API is called, or an additional thread watches the
communication ACK’s), it is possible to either retransmit the message or
free the buffer upon successful message delivery.

Figure 6.18 presents the buffered semantic in more detail. The buffered
protocol will provide best performance for small messages, but can be used
for larger messages as well. The latter are fragmented into sizes which fit the
size of the private buffer pool bins. The destination will then concatenate the
message again. When using the buffered model, the overhead of the calling
application when sending a message will be very small. The data will be
copied into the private buffer pool and the original buffer can be used again.
Especially when streaming data from one process to another, this model will
effectively saturate the network since this model reflects a pipelining strategy.
The performance enhancements through pipelining were presented in section
3.3.5. The zero copy protocol using writes which aims at off-loading the CPU
when communication between two processes is requested, can gain efficiency

6.5 Sockets Direct Implementation 135

Figure 6.17: Overview Sockets Direct Transfer Exchange Model

only for larger messages. This is because the exchange of data requires a
short rendezvous prior to sending the payload. The advantage is that the
payload is deposited directly into the application buffer and no additional
copy is required. Thus, the rendezvous provides the virtual address on the
receiver side. In addition to providing the virtual address which can be used
for a remote store, the receiver must achieve a virtual to physical address
translation at the NIC. A more detailed description on this topic can be
found in chapter 5. Another zero copy protocol can be implemented which
reads the data from the origin. This is also called a get method, in which
the sender only provides the location of the payload. If the receiver posts a
receive and detects a message, this message will only provide a description
where to find the data in the address space of the remote process. The
receiver can then get the data into its application buffer. This transaction
is then finalized by informing the sender with a short message to release the
buffer. This protocol must guarantee that the sender does not modify the
data. When looking at the socket interface of BSD or Winsock 1.1 as it

136 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.18: Sockets Direct Transfer using Buffering Semantics

specified today there is no solution to implement this efficiently.

6.5.1.4 De-multiplexing of Incoming Messages in Sockets Direct

The GM API over Myrinet only provides a single receive queue, which can
dequeue only the head of the queue. When operating on sockets, messages
can be received and detected on different file descriptors. Thus, it is not
sufficient to read the head of the queue when receiving on a certain file
descriptor. It could be possible that the following messages in the queue are
destined to reach a different socket descriptor.

Another limitation would be in not supporting overlapped structures un-
der Winsock2 since the GM interface is not designed to autonomously dis-
patch incoming messages to posted structures.

Thus, the de-multiplexing of incoming messages is handled by a Worker
thread which will dispatch incoming messages and insert the messages into
a receive queue for every established point to point connection.

6.5 Sockets Direct Implementation 137

Figure 6.19: Sockets Direct Transfer using Write Zero Copy

To be Winsock2 compliant, two receive queues exist for each socket de-
scriptor. One stores incoming messages, which have not yet received a match-
ing receive call from the application. The other queue stores pending over-
lapped receive operations.

When implementing Sockets Direct, one multi-threaded variant for de-
multiplexing messages was targeted at SMP systems. In this implementa-
tion, one thread would only query internal data structures, while another
worker thread would service the network and move incoming data to the
corresponding queue. This however resulted in very poor performance due
to the required synchronization.

In the standard TCP/IP implementation, the operating system serves as
a dispatching instance and handles incoming data with a system buffer, which
is limited in size. Once the buffer is full, sending further messages will block.
For Sockets Direct, messages are taken from the network and DMA’d into
provided buffers. Once these buffers have been occupied, the MCP will stall
on delivering data. Thus it is required to move data, even if the destination

138 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.20: Sockets Direct Transfer using Read Zero Copy

does not post receive for a while. For this, additional malloc() calls are
required to provide further memory space to the application. This memory
is freed again when the application does a receive.

This strategy however, requires a costly notification through events when
messages come in and the application already waits for data. But also, several
calls to malloc() and free() slow down the performance and an additional
memcpy between worker thread and the data segments of the application is
required. An advanced approach is to avoid notification through events and
additional memcopies.

This can be achieved when performing the receive on GM structures by
the application itself. When invoking the socket recv() function, only one
descriptor is queried. The idea is to take any message out of GM’s message
queue and return when an appropriate message has been found. The reason
for this strategy is that in most applications there are service connections
and connections which are used heavily for data exchanges. Under these
circumstances, the possibility of immediately finding the message waiting for

6.5 Sockets Direct Implementation 139

is high and other incoming messages are enqueued for later usage. To be
compliant to the socket interface in general, one additional thread however
will issue receives itself when the main application did not perform receives
for a while. This guarantees, that messages are taken from the network. It
also does not affect performance, since the application did not request the
data for a while. The sender however can continue its cycle. As a result, this
mechanism also works for overlapping concepts in Winsock 2. In benchmarks,
the second strategy achieved 30 per cent improvement over the worker thread
model.

6.5.1.5 Establishing Full Semantics, Sockets Direct Limitations

One of the challenges in providing a user level socket implementation is that
of being fully functional against the TCP/IP implementation. This also re-
quires the handling of abnormal termination. For example, when a control-
C or SEGV occurs, the communication partner has to be notified. In the
standard TCP/IP implementation the operating system serves as a central
instance of control. Using a user level communication principle, additional
functions have to be implemented in order to achieve the same behavior. The
socket directs implementation achieves full semantics, even for segmentation
faults, as well as immediate kills while keeping high performance for standard
situations. Standard situations are given when a single point to point has
been established. When using function calls like fork(), all sockets of a pro-
cess become shared. This introduces additional control tokens for handling
this situation because current low level APIs of user level networks do not
support shared accesses to a single port. In this situation, the traditional
socket protocol is incompatible with point to point network protocols and
extra software is required to overcome this situation. Typically one process
(the parent) closes sockets which are no longer needed. This way, a direct
point to point connection can be established again and a match for socket
descriptor and recipient is bijective again. Thus, there are no limitations in
Sockets Direct.

The internal data structures can be better understood by providing the

140 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

� � � � � � � � 	

 � � � 	 � � � �

� � � � � � � � �

� � � � � � �

� � � � � � � � �

� � � � 	

 � � � � � � � �

� � � � � � � � � �

� �

� �

� � � � � �

� � �

� � �

� �
 � �

� � � � � � � � ! � � �

� � �
 � � " � � � �

 � # � � � � � � � � � $ � � � � � � � � �

� � � % � % � � & � ' � � � () � � � � � � � ! * � + # � � � , $ � - � � . � � � � # � � * �

� � � % � % � � & � ' � � � () � � � � , $ � � � + � � " � � + * / / � - � � # � � � * ! ! /

0 � � � � �

Figure 6.21: Sockets Directs Internal Data Structures

typedef struct gmsock_con_t_ {

SOCKET s;

int s_close_init;

int msg_id;

// list of descriptors which represent the same socket.

// see dup()

list <int> dupped_list;

queue <queued_message_for_shared_socket_t> qm;

queue <requested_message_for_shared_socket_t> rm;

int remote_s; // partner’s socket descriptor

// variables which will help handling shared socket stati

int sock_blocked; // we can not send data on SAN

// since remote process calls fork

int sock_shared; // when the socked is shared - value > 0,

// do not use SAN as transport

int sock_wait_for_ack;

int connect_req_status;

// socket states

int allow_send; // support for shutdown

int allow_recv; // support for shutdown

int sock_closed; // EOF received

int sock_closed_ack; // waiting for ACK after sending EOF

int sock_failed;

6.5 Sockets Direct Implementation 141

long t_keep_alive_send; // the time we send an alive for/on

// socket s

long t_keep_alive_recv; // the time we received an alive

// for/on socket s

// SAN specific information to determine communication partners

int gmtid;

int gmpid[GMSOCK_MAX_GM_PORT]; // [i] = 1: port i is

// communciation partner

socket_recv_queue grecv_q; // not yet matched messages to

// be received

} gmsock_con_t;

For overlapping operations under Winsock 2, a receive will dequeue pend-
ing messages out of the linked receive queue. Otherwise it will enqueue the
overlapped request and the worker thread will dispatch an incoming message
into the provided overlapped struct and signal its completion.

6.5.2 Optimizations through Winsock2 Overlapping
Mechanisms

The Winsock 2 architecture is the most advanced socket interface imple-
mentation as of today. It is suited very well to write scalable applications,
but leaves many possibilities to be implemented very efficiently. This is also
true for the Sockets Direct implementation. Using overlapping operations
for example, an application can post send or receive operations and query
their status later. In the meantime, an application can perform time con-
suming task but let the data exchanges be handled in the back. Typically
the operating system will handle these requests, but user level communi-
cation must take care of these operation itself. It is therefore of impor-
tance to have active worker threads which service the network, but also
mimics operating system features. This is when the advanced features of
the Winsock 2 architecture also challenge a Sockets Direct implementation.
When handling overlapped operations a worker thread must either progress
on injecting data into or retrieving data from the network. This must be
handled autonomously and efficiently. Moreover the most efficient strategy
which serves the network itself, but relies on a worker thread for compli-
ance must synchronize multiple threads safely. When posting a overlap-
ping receive, the worker thread must fill posted buffers with incoming data

142 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

and signal internal events which are queried from time to time by the ap-
plication itself using WSAGetOverlappedResult(). The problem is worse
than for example in implementing this behavior in MPI, since the call to
WSAGetOverlappedResult() is not accessible by a Sockets Direct implemen-
tation. The same applies when a scalable application uses a Windows centric
concept of I/O completion queues. These queues signal the application if a
operation on a socket is available. This can be for example a pending send
or recv. To allow for very efficient process handling, this is an important fea-
ture. The Sockets Direct implementation is capable of fulfilling this request
by calling WPUCompleteOverlappedResult on assorted queues.

6.5.3 Impact of User Level Mode vs Kernel Handling

The traditional TCP/IP protocol will use system calls to exchange messages.
The operating system kernel will then be responsible for data transmission.
It will also detect operations on a socket which are not data transfers. A
socket therefore describes an interface with the OS. Starting from its creation
through the call to socket(), a socket descriptor has different states. Figure
6.22 depicts these states as defined in [48].

The socket direct implementation has to keep these states in mind. As a
user level implementation, the Sockets Direct implementation has no direct
access to its states, thus is required to keep a copy itself. Some operations
on sockets also do not have an influence on the Sockets Direct behavior. This
would for example be a setting to socket modes or the socket buffers.

6.5.4 Process Management, Shared Sockets and Ex-
ception Handling

The chosen approach in Sockets Direct which uses a companion socket is
ideal for achieving binary compatibility. Companion socket in this context
means the creation of a traditional socket and a connection at SAN level.
First, the traditional establishment using a pair of accept and connects will
allow a using the traditional protocol to be used for exchanging information
to setup a connection. This connection remains established until a call to
close() terminates the endpoint. It also serves as a communication path if
severe errors to the high speed network occur. In case of unmeant process
termination through an illegal instruction, the atexit() function let Sockets
Direct install handlers which are called prior to performing a final exit.

6.5 Sockets Direct Implementation 143

Figure 6.22: Socket TCP/IP States [48]

In the implementation several tokens are passed within a message header
which serve as identifiers for receivers. This token can indicate an end of file
(EOF) when closing a connection but also tokens for a shutdown of a socket
exist. One important token is used for supporting a fork() operation. Since
the call to fork is already a very expensive operation itself, a protocol to
handle this event does not have the requirement to be very efficient. A much
more anticipated task for this protocol is to let applications continue their
operation.

The support of fork is very crucial for process management and many
Internet services make heavy use of it.

In the following the problem coming with fork is described, it is depicted
in figure 6.23.

When providing a sockets implementation which is running in user level
mode, a dispatching instance such as the operating system is outside of the
critical path. The problem arises when receiving data. Using the traditional
TCP/IP stack, the OS was holding data until it was requested by a process

144 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

x

Process KProcess I

s

x

Process I ’

fork () ?

x s

Process KProcess I

HOST BHOST A

HOST A HOST B

Figure 6.23: The fork() system call putting sockets in shared mode

using an assigned socket descriptor. When calling fork, all file descriptors
including socket descriptors are shared between two or more processes. As a
consequence the Sockets Direct implementation would receive data and put
it into an address space in which it should not be copied. This way it is
very hard to implement a solution for this scenario. Especially a platform
independent approach is highly desirable. Some SAN’s also do not support
the shared usage of one port by more than one process. The solution which
Sockets Direct does provide is achieving binary compatibility using the inter-
ception of the fork call itself. The rather complicated strategy uses tokens
to inform communication partners about a fork command to be in action.
These tokens are sent out before the original fork command is called. Fur-
thermore, the initiating process waits for receivers to respond to this token.
Several situations need to be handled.

An pseudo code implementation is presented in the following

6.5 Sockets Direct Implementation 145

pid_t fork(void)

{ // sending FORK_INFORM_SHARED_REQ on all fd’s

list = get_current_fd_using_SAN();

for each socket i in list {

set_wait_for_ack_on_socket (i);

send (i, FORK_INFORM_SHARED_REQ);

// adding sharing for sock i

add_sharing_for_socket (i);

// wait for fd ack so that we know remote process will

// see socket to be shared

waiting_for_shared_ack (list)

}

for each socket i in list {

if (socket i holds message)

send_back_message_to_origin ();

}

for each socket i in list {

send_fork_inform_shared_finish (i);

}

// we have relayed messages back to their

// origin, because we do not know whether

// parent or child is going to receive them

// call original fork function

child_pid = SAN_TRAMP_fork();

if (child_pid == 0) {

// set up the child to get its own port

san_startup_and_init();

// connect to remote fd’s

for each socket i in list

send (i, FORK_CONNECT_REQ);

for each socket i in list

recv (i, FORK_CONNECT_ACK);

} else {

// to prevent race conditions, the

// parent also waits for ACKS

for each i in list

recv (i, FORK_CONNECT_ACK);

}

return child_pid;

}

146 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Prior to calling fork, an endpoint may have sent data to the fork’ing
process. In this case, the data is taken from the network and send back to
its origin. As a portable solution we found that the concept of relying on the
traditional network when sockets are shared is a viable approach. The origin
which is aware of a shared socket will now use the traditional software stack
and the parent and forked child will themselves issue calls to the traditional
software stack. This mechanism however would slow down data exchanges
for the remaining execution time. This behavior however can be reverted if
one of the process is closing the shared socket. Fortunately, this is the case
for most of the applications. As a consequence the communication partners
are informed that a socket has been closed by one communication partner.
A final message with updating tokens will bring the communication back to
using the companion socket. The following pseudo source code will depict the
establishment of a bijective point to point connection, after a shared socket
has been closed by other communication partners:

token = get_msg_token (msg);

src = get_src (msg);

s = get_socket (msg);

switch (token) {

...

CASE SOCK_SEND_EOF:

// if the socket has been shared before,

// a point to point connection can be

// reused

if (sharing has been deleted for s) &&

if (s is no longer shared) &&

if (connection partners for s = 1)

send (SOCK_NO_LONGER_SHARED);

else {

// the socket was in non shared mode

// before and the (only) communication

// has closed the socket

set_socket_to_have_rcvd_EOF (s);

delete s from socket list used by SAN;

// will indicate EOF to upper layers (recv)

return msglen = 0;

}

6.6 Efficiency of RDMA Enabled Data Transfers 147

...

}

6.6 Efficiency of RDMA Enabled Data

Transfers

This section focuses on providing insights on the performance discrepancy of
high speed networks and host CPU and memory bandwidth. While networks
become faster and faster (10 Gbit/s Ethernet implementation are available),
the host CPU and its memory bandwidth experience less performance im-
provements [129]. This leads to starving networks and high host processing
overhead when performing network I/O.

6.6.1 Motivation

The problem mentioned above is often referred to as the ”I/O bottleneck”
[18]. More specifically, the copying of data leads to high host overhead.

While TCP offload engines (TOE) lower the amount of time spent for
checksum computation, the number of data movements is not addressed. Es-
pecially multiprocessor machines and clusters with high bandwidth feeds are
affected from copying overhead. Such machines range from database servers,
storage servers, application servers for transaction processing to clusters in
scientific computing.

Clustered systems however establish only local connections for solving
problems in parallel. Wide area network connections are only requested,
when clusters are merged together to solve GRID applications.

Because of high end-host processing overhead in current implementations,
the TCP/IP protocol stack is not used for high speed transfer. Instead spe-
cial purpose network fabrics, system area networks like VIA [56], Quadrics
[49], SCI and Myrinet [9], using remote direct memory access (RDMA) have
been developed and are widely used. The I/O bottleneck has been an active
field for research over the last years. The problem was addressed when high
speed meant 100 Mbits/s FDDI and Fast Ethernet. With 10 Gbits/s Eth-
ernet becoming available the research on protocol enhancements has gained
popularity again [36], [37]. Moreover, user level protocols are now also used
for file access enhancements [19]. Figures 5.1 and 5.2 present significant
performance enhancements.

148 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

6.6.2 Reducing data relocations for Communication

The performance degradation of high speed networks has been confirmed
in recent work [131], [130], [16]. Earlier work [17] pointed out operating
system costs such as interrupts, context switches, process management, buffer
management and timer management to be one reason for TCP overhead.
Other factors come with processing individual bytes, specifically computing
the checksum and moving data in memory. In this work, bandwidth was
distinct to be the greatest source of limitation in which 64% of the measured
microsecond overheads were caused by data touching operations.

Other work [14] highlighted operations such as data touching, checksum
computation and memory copies to cause the most overhead for messages
longer than 128 Bytes. For smaller sized messages, per packet overheads
dominate [34], [16].

The percentage of overhead due to data-touching operations increases
with packet size, since time spent on per-byte operations scales linearly with
message size [34].

This was examined in detail in [63]. Using memory to memory TCP tests
with varying MTU sizes, the percentage of total software costs attributable
to per-byte operations were:

• 1500 Byte Ethernet 18-25%

• 4352 Byte FDDI 35-50%

• 9180 Byte ATM 55-65%

Although, many studies report results for data-touching operations in-
cluding both checksumming and data movement together, much work has
focused just on copying [14], [13], [55].

6.6.3 Limitations and Impact of Memory bandwidth

A number of studies show that eliminating copies substantially reduces over-
head. For example, results from copy-avoidance in the IO-Lite system [43],
which aimed at improving web server performance, show a throughput in-
crease of 43% over an optimized web server, and 137% improvement over an
Apache server.

There are many other examples where elimination of copying using a
variety of different approaches showed significant improvement in system
performance [15], [22], [26], [35], [55], [57].

6.6 Efficiency of RDMA Enabled Data Transfers 149

Recent work by Chase et al. [16], measuring CPU utilization, shows that
avoiding copies reduces CPU time spent on data access from 24% to 15% at
370 Mbits/s for a 32 KBytes MTU using a Compaq Professional Workstation
and a Myrinet adapter [9]. This is an absolute improvement of 9% due to
copy avoidance.

The total CPU utilization was 35%, with data access accounting for 24%.
Thus the relative importance of reducing copies is 26%. At 370 Mbits/s, the
system is not very heavily loaded. The relative improvement in achievable
bandwidth is 34%.

When removing checksum computation, copy avoidance reduces CPU uti-
lization from 26% to 10%. This is a 16% absolute reduction, a 61% relative
reduction, and a 160% relative improvement in achievable bandwidth. This
checksum computation is nowadays partly handled by high end networking
cards, thus reducing another source of per-byte overhead. Another technique
is to coalesce interrupts to reduce per-packet costs.

As a consequence, copying costs cause larger per centage of CPU utiliza-
tion than before. Reducing data movements therefore is very promising for
gaining increased performance, especially since the performance gap between
host CPU and memory bandwidth is going to increase [129]. Faster CPU’s
also do not help in improving this situation [16].

Last but not least it is the application which will experience better per-
formance for servicing clients for example. If databases can avoid spending
time in network I/O, they will have more time for responding to their clients.

6.6.4 Using Remote direct memory access (RDMA) to
Gain Performance Improvements

In early work, one goal of the software approaches was to show that TCP
could go faster with appropriate OS support [17], [15].

Further investigation and experience showed that specific system opti-
mizations have been complex, fragile, extremely interdependent with other
system parameters in complex ways, and often of only marginal improvement
[15], [16], [63], [21], [43].

For example, the Solaris Zero-Copy TCP work [63], which relies on page
remapping, shows that the results are highly interdependent with other sys-
tems, such as the file system, and that the particular optimizations are spe-
cific for particular architectures, meaning for each variation in architecture
optimizations must be re-crafted [63].

150 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

A number of research projects and industry products have been based
on a memory-to-memory approach to copy avoidance. These include U-Net
[26], SHRIMP [11], Infiniband [33] or Winsock Direct [47].

Several memory-to-memory systems have been widely used and have gen-
erally been found to be robust, to have good performance, and to be rela-
tively simple to implement. These include all major system area networks.
Networks based on these memory-to-memory architectures have been used
widely in scientific applications and in data centers for block storage, file
system access, and transaction processing.

The concept of using RDMA has attracted a large class of applications
which takes advantage of memory to memory capabilities, including all the
major databases, as well as file systems such as DAFS [19].

6.7 Optimizations

6.7.1 Analysis and Implementation of a Zero Copy Im-
plementation

If the application is granted direct control over buffer management at the
network level, it is natural to consider implementing a zero-copy interface to
the protocol code. Unfortunately this optimization is awkward to implement
with the BSD sockets API, since applications specify the area into which
they wish received data to be delivered, requiring a copy to move the data
to this location. Trapeze [58] attempts to improve on this by using page
remapping to get buffers to user level, thus avoiding the copy. However,
this technique has a number of drawbacks: changing page table entries can
be quite expensive, particularly on multiprocessor machines, and there are
security issues associated with receiving data payloads that are not an exact
multiple of a page in size, since applications should be prevented from viewing
old data belonging to others. The benefits of such page flipping to avoid
the copy are often overstated, as the micro-benchmarks used to measure
performance typically do not access the data being transferred. Thus the
beneficial side-effect of the copy bringing the data into the processor’s caches
is not taken into account. In any case, it is generally necessary for the
application to be written so that it uses page-aligned buffers and always issues
reads with a length that is a multiple of the page size. Since most applications
will need to be modified to satisfy these constraints, it may be little more
effort to adapt the application to use a different API designed specifically

6.7 Optimizations 151

to enable zero-copy operation. Zero-copy APIs have been developed by a
number of groups, but as yet no standard has emerged.

6.7.2 Protocol Threshold values for Efficient Commu-
nication

Sockets Direct offers three different protocols. A buffering protocol in which
data is copied into a private buffer pool, thus achieving very low latency at
application level, a zero copy strategy using put semantics and a zero copy
strategy using read semantics.

Typically, two applications can agree on threshold values which are used
to determine a specific protocol. The buffered copy is then used for smaller
messages, while a rendezvous can be used for large messages. This thresh-
old value can not be estimated in advance. Moreover, it is not possible to
determine such a value in general. This value is dependent on the applica-
tion. For micro benchmarks, which are only sending and receiving data, but
do not perform any additional computation, a rendezvous protocol for CPU
offloading only achieves good performance for very large messages. For a
real world application which does additional operations such as file access or
number crunching, the achieved bandwidth is not the most important factor.
It is the reduced CPU load which will improve the overall throughput of the
system.

6.7.3 Enhancing Data Copies

One aspect in terms of enhancements would be the avoidance of data copies
as it was described in [55]. Sockets Direct as a thin independent layer was
designed and implemented to avoid unnecessary data copies under any cir-
cumstances. This is not the case if unexpected messages arrive which are
taken from the network after a timeout value. In this case, the data will be
copied into newly allocated applications memory. When this data is later on
requested, the allocated memory will be freed. It is important to know that
the functions malloc() and free() are optimized in such a way, that the
free() command does not give back allocated memory back to the operating
system but will keep it for a following malloc(). This way, there is only one
penalty in terms of performance when allocating memory for the first time.

Under Sockets Direct, when using a buffered protocol, it is quite clear,
that the communication performance is very much dependent on the memory
performance of the host system. In this case data is copied into a private

152 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

buffer pool, before DMA engines of a NIC will spool data from the host
interface into the network interface.

When designing and implementing Sockets Direct, a request for 64bit
aligned memory chunks will lead to better performance of memcpy operations
since CPU specific and optimized instructions can be used. This performance
is also very dependent on the chipset being used. Performance measurements
were conducted on a variety of systems. These were positioned in the low
cost area. The difference of performance for a micro benchmark which was
simply measuring the memory performance and the consequence for a com-
munication layer, are depicted in Figure 6.24. The results are identifying
that memory bandwidth is the cause for lower bandwidth. Systems having
faster memory interfaces will be able to pass this performance to the com-
munication subsystem. The membench [73] micro benchmark will provide
performance information when copying data from one memory region to an-
other. It will measure the time needed for copying the data and results are
given in MBytes/s. Typically one can distinguish easily the L1, L2, L3 cache
sizes. The achieved bandwidth for very long data transfers will then show the
actual performance of the memory system. On the other hand, the netperf
benchmark will conduct a test in which data is exchanged between two hosts
over a network. It will run as a streaming test in which one host continously
sends data to another.

6.7.4 Additional Interception for Data Compression or
Encryption

The interception technique implemented for Sockets Direct could also be used
to perform other tasks. Currently it routes payload to the destination us-
ing a high speed network. However it could also be applied to modify the
payload being send. One aspect could be data compression, given the very
fast and powerful CPU’s of today. Here, slower networks could experience
higher throughput since the data is compressed at the source and decom-
pressed at the destination. This would result in higher bandwidth since less
data is on the wire. This is similar to the Nagle algorithm implemented in
the TCP stack which accumulates smaller packets. An interception of MPI
calls to transfer a picture between two nodes resulted in higher throughput
using compression. This technique however can not be applied in general,
as other tests for synthetic data introduced additional overhead when using
compression. A different application however is that of data security. A mid-
dleware layer could implement data encryption to transfer sensitive data. An

6.7 Optimizations 153

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000 1e+06 1e+07
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

M
b/

s

M
B

yt
es

/s

Msg Size in Bytes

Netperf: Data Transfer Rates Versus Memory Subsystem Performance

Netperf 370DLE
Netperf E7500

Membench 370DLE
Membench E7500

Figure 6.24: Comparison of Netperf Performance and Membench Perfor-
mance using High End SDRAM/DDR-RAM Systems

alternative to the Secure Sockets Layer (SSL) which requires a source code
modification.

6.7.5 Connection Establishment

The current implementation also offers room for further improvement. As
such the concept on how connections are established can be targeted. When
creating a companion socket, the accept() and connect() function calls
are intercepted and added with new functionality. Still, original functions are
called and the convenience coming with this implementation is that the oper-
ating system will fill in connection information. If an application should only
establish a connection for a very short amount of time than significant over-
head comes with the traditional concept. Moreover, the exchange of required
information about the system area network using standard communication
will have the communication start up costs of TCP. Instead a resource broker
could be implemented as a central instance. This broker could be queried
to gather necessary information about server or clients, respectively. When
avoiding traditional accept/connect pairs, and a subsequent data exchange

154 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

using traditional send and receives, the Sockets Direct approach would be
able to increase the number of very short transactions.

6.8 Performance Analysis

In this section we would like to give a comparison on using existing protocols
and different high speed networks.

6.8.1 TCP / IP over System Area Networks

6.8.1.1 Tuning TCP/IP over System Area Networks

The Transmission Control Protocol contains a vast of parameters. Most
of them can be neglected in terms of improving the communication perfor-
mance. In this section, the parameters are addressed which have the most
influence on performance.

• MTU

• Socket Buffer Sizes

• TcpWindowSize

The TCP receive window size is the amount of receive data (in bytes) that
can be buffered at one time on a connection. The sending host can send
only that amount of data before waiting for an acknowledgment and window
update from the receiving host. In Windows 2000, the TCP/IP stack was
designed to tune itself in most environments and uses larger default window
sizes than earlier versions. Instead of using a hard-coded default receive
window size, TCP adjusts to even increments of the maximum segment size
(MSS) negotiated during connection setup. Matching the receive window
to even increments of the MSS increases the percentage of full-sized TCP
segments used during bulk data transmission. There are two methods for
setting the receive window size to specific values:

The TcpWindowSize registry parameter and the setsockopt Socket func-
tion (on a per-socket basis). To improve performance on high-bandwidth,
high-delay networks, scalable windows support (RFC 1323) has been intro-
duced in Windows 2000. This RFC details a method for supporting scalable
windows by allowing TCP to negotiate a scaling factor for the window size

6.8 Performance Analysis 155

at connection establishment. This allows for an actual receive window of up
to 1 GigaByte (GB). RFC 1323 Section 2.2 provides a good description [29].

Another way for optimizing the TCP/IP performance is the tuning of the
MTU.

Path Maximum Transmission Unit (PMTU) Discovery:
PMTU discovery is described in RFC 1191. When a connection is estab-
lished, the two hosts involved exchange their TCP maximum segment size
(MSS) values. The smaller of the two MSS values is used for the connection.
Historically, the MSS for a host has been the MTU at the link layer minus
40 bytes for the IP and TCP headers. However, support for additional TCP
options, such as time stamps, has increased the typical TCP+IP header to
52 or more bytes.

The PMTU between two hosts can be discovered manually using the ping
command with the -f (don’t fragment) switch, as follows:

ping -f -n <number of pings> -l <size> <destination ip address>

Slow Start Algorithm and Congestion Avoidance:

When a connection is established, TCP starts slowly at first to assess the
bandwidth of the connection, and to avoid overflowing the receiving host or
any other devices or routers in the path. The send window is set to two TCP
segments, and if that is acknowledged, it is incremented to three segments. If
those are acknowledged, it is incremented again, and so on until the amount
of data being sent per burst reaches the size of the receive window on the
remote host. At that point, the slow start algorithm is no longer in use, and
flow control is governed by the receive window. However, congestion could
still occur on a connection at any time during transmission. If this happens
(evidenced by the need to retransmit), a congestion-avoidance algorithm is
used to reduce the send window size temporarily and to grow it back towards
the receive window size. Slow start and congestion avoidance are discussed
further in RFC 1122 and RFC 2581 [30], [31].

Throughput Considerations:

TCP was designed to provide optimum performance over varying link con-
ditions, and Windows 2000 contains improvements such as those supporting
RFC 1323. Actual throughput for a link depends on a number of variables,
but the most important factors are:

156 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

• Link speed (bits-per-second that can be transmitted)

• Propagation delay

• Window size (amount of unacknowledged data that may be outstanding
on a TCP connection)

• Link reliability

• Network and intermediate device congestion

• Path MTU

TCP throughput calculation is discussed in detail in Chapters 20-24 of
’TCP/IP Illustrated’, by W. Richard Stevens [135]. Some key considera-
tions are listed below: The capacity of a pipe is bandwidth multiplied by
round-trip time. This is known as the bandwidth-delay product. If the link
is reliable, for best performance the window size should be greater than or
equal to the capacity of the pipe so that the sending stack can fill it. The
largest window size that can be specified, due to its 16-bit field in the TCP
header, is 65535, but larger windows can be negotiated by using window
scaling as described earlier in this document. Throughput can never exceed
window size divided by round-trip time if the link is unreliable or badly con-
gested and packets are being dropped, using a larger window size may not
improve throughput. Along with scaling windows support, Windows 2000
supports Selective Acknowledgments (SACK; described in RFC 2018) to im-
prove performance in environments that are experiencing packet loss. It also
includes support for timestamps (described in RFC 1323) for improved RTT
estimation.

6.8.2 Performance of Micro Benchmarks

In this section the performance of several well known micro benchmarks
will be presented. Given the eliminated overhead for Sockets Direct, latency
should lower significantly and bandwidth should be improved close to the
available performance from the low level API of the interconnect. For con-
ducting these tests, systems have been used which offer very good PCI per-
formance. As an interconnect Myrinet [9] was chosen. The system consisted
of 2 * PIII 1Ghz plugged into a Supermicro Board using the Serverworks
chipset. The PCI bus performance, having a 64bit/66Mhz interface, was
measured to be 478 MBytes/s bus read and 512MBytes/s bus write. The

6.8 Performance Analysis 157

NTttcp - TCP/IP over SysKonnect 9821 vs Sockets-Direct over
Myrinet2000 (LANai9,B), 64/66, 370DLE, PIII 1Ghz, W2K

0

200

400

600

800

1000

1200

1400

1600

1 10 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
50

00
0

10
00

00

15
00

00

Message Size in Bytes

M
B

its
/s

SocketBufSize 128K
SocketBufSize 64K
SocketBufSize 256K
Sockets-GM

Figure 6.25: NTttcp Performance

low level API performance using GM over Myrinet was 9usec latency and
243MBytes/s for bandwidth.

Figure 6.25 depicts the result when running the NTttcp benchmark. This
benchmark based on the ttcp benchmark has been improved for the Win-
dows Operating System. It offers a comparison for two different interconnect
types, Gigabit Ethernet using a high end network card from Syskonnect and
the Myrinet 2000 network card from Myricom. The tests were run using
a tuned TCP/IP implementation over Syskonnect and a Sockets Direct im-
plementation using GM over Myrinet. It may be noted that the network
interfaces were plugged into the same host system. Thus the tests reflect
a fair comparison since the used hardware components are identical. Only
the operating system has been tuned to maximize the performance. When
looking at the graphs the low latency for Sockets Direct, which have been
measured to be only 2usec higher than the low level API for Myrinet, results
in much better performance beginning with small messages. The graphs also
show the Syskonnect performance using several TcpWindowSizes (see also
section 6.8.1.1). It becomes clear how important the correct TcpWindowSize
for larger messages becomes. If the wrong value is chosen (in this case it was
the default value), the performance degrades significantly (up to 50%).

But also the socket buffer sizes have been adjusted to get optimal per-
formance. As stated before, the Syskonnect Gigabit Ethernet card is a high
end network interface. In a large comparison with other Gigabit Ethernet
cards, it has distinguished itself from other vendors [78].

Another popular benchmark is the Iperf benchmark [79]. It is a modern
tool to measure network performance. Similar to the results above the Sockets

158 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

IPERF - Sockets-Direct vs SysKonnect 9821 [TcpWindowSize
64K], Supermicro 370DLE, 64/66, PIII 1Ghz, L9, W2K

0

200

400

600

800

1000

1200

1400

1600

20
0

50
0

10
00

20
00

50
00

10
00

0
50

00
0

10
00

00

20
00

00

50
00

00
1E

+0
6

2E
+0

6

Message Size in Bytes

M
bi

ts
/s

SocketBufSize 64K
SocketBufSize 64K avg
SocketBufSize 128K
SocketBufSize 128K avg
SocketBufSize 256K
SocketBufSize 256K avg
LSP
LSP avg

Figure 6.26: IPerf Performance

Direct Layer increases the performance and outperforms Gigabit Ethernet
significantly. The following figure depicts the performance result from a
conducted test using netpipe [77]. This time, the performance graphs also
include the results for a TCP/IP over Myrinet layer.

Netpipe (Streaming, Sockets-Direct vs TCP/IP over Myrinet vs
SysKonnect) - Supermicro 370DLE 64/66 PIII 1 Ghz

0

20

40

60

80

100

120

140

160

180

200

1 6 16 27 45 64 99 18
9

25
6

38
7

76
5

10
24

15
39

30
69

40
96

61
47

12
28

5
16

38
4
24

57
9

49
14

9
65

53
6
98

30
7

19
66

05

26
21

44

39
32

19

78
64

29

10
48

57
6

15
72

86
7

Message Size in Bytes

M
B

/s

TcpWindowSize Windows Default
TcpWindowSize 65K
TcpWindowSize 128K
TcpWindowSize 256K
Sockets-GM (LSP)
SysKonnect GigEth 65K

Figure 6.27: Netpipe Streaming Performance

One remarkable aspect is that the TCP/IP stack used for Myrinet is
less efficient than the TCP/IP stack over Syskonnect. Still, the Sockets Di-
rect implementation outperforms any alternative strategy. It offers superior
performance for small messages with twice the performance and scales very
well for larger messages as well. For larger messages, the performance of
Syskonnect Gigabit Ethernet drops significantly. When conducting this test,
the TCP/IP over GM performance peaks at 84MBytes/s, the Syskonnect
Gigabit Ethernet performance peaks at 120MBytes/s, both TCP/IP imple-

6.8 Performance Analysis 159

mentations showing high variances. The Sockets Direct implementation using
GM over Myrinet peaks at 191MBytes/s.

Netpipe (Ping Pong) - Sockets-Direct using GM over Myrinet vs
TCP/IP over Myrinet vs SysKonnect GigEth - Supermicro 370DLE, PCI

64/66, PIII 1Ghz

0

20

40

60

80

100

120

140

1 6 16 27 45 64 99 18
9

25
6

38
7

76
5

10
24

15
39

30
69

40
96

61
47

12
28

5
16

38
4
24

57
9
49

14
9
65

53
6
98

30
7

19
66

05

26
21

44

39
32

19

78
64

29

10
48

57
6

15
72

86
7

Message Size in Bytes

M
B

/s

TcpWindowSize Win Default
TcpWindowSize 65K
TcpWindowSize 128K
TcpWindowSize 256K
Sockets-Direct over GM
SysKonnect TcpWindowSize 65K

Figure 6.28: Netpipe Round Trip Performance

Sockets Direct does not only bypass TCP function calls, but has been
extended to handle UDP operations as well. The following figure depicts
the performance gain using UDP. UDP in general is unreliable. The Sockets
Direct however relies on reliable low level API calls making the UDP protocol
reliable.

UDP - Performance Test (Ping Pong)

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Message Size in Bytes

M
B

yt
es

/s

UDP over Syskonnect (Latency 0 Byte = 101 usec)

UDP over Sockets-GM (Latency 0 Byte = 11 usec)

Figure 6.29: UDP Performance

6.8.3 Host CPU Utilization Measurements

Transferring data with low latency and high bandwidth are one requirement
for increasing applications performance. Another factor with almost the same

160 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

importance is the overhead associated with message transfers. Basically two
methods exist in todays systems. Given that the cluster market is target-
ing low cost systems, the interconnection provider has to rely on available
interfaces. The design space for interconnection networks as described in 2.2
is thus very limited for a practical approach. In principal, message trans-
fer can be performed by using Programmed Input Output (PIO) or DMA
capable network interfaces. PIO is typically used for very small messages

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 1000 10000 100000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
b/

s

Msg Size in Bytes

Netperf: Data transfer Rates using Sockets-GM with Blocking/Polling/Rendezvous

SGM Blocking Recv
SGM Polling Recv

SGM Zero Copy

Figure 6.30: Netperf Performance Using Blocking, Polling and Rendezvous
Strategies

and involves the CPU which directly injects messages into the network. For
larger messages, PIO can also still be used, however, the application will
wait for the CPU to finish the transfer. When using DMA , a descriptor
will be assembled, describing the data to be transfered. This includes the
physical address from which the data can be fetched as well as the data
length. There are still other parameters which need to be addressed. A
more detailed description can be found in chapter 5. However, as a conse-
quence, the CPU is no longer involved in message transfers but can do other
computation. In the following we will present performance results which in
addition of network measurements also analyze the involved CPU overhead.
The test conducted examined the performance of three available strategies
for sending and receiving messages. When using blocking, then the receiving
application will wait to be triggered by the network interface when data is

6.8 Performance Analysis 161

available. Polling will check the message queue and rendezvous will exchange
information for sending direct messages which will be stored directly in the
final message buffer. There are two conclusions to be taken from the figure
above. One remarkable observation is that there is almost no difference when
using blocking or polling receives. Usually interrupts for triggering a process
are considered to be costly. The performance of a rendezvous strategy is
poor for small messages, but becomes better for larger messages. Before
drawing a conclusion, the CPU load involved when using different strategies
is examined. Figure 6.31 depicts the performance of Sockets Direct using

0

200

400

600

800

1000

1200

1400

1600

1800

100 1000 10000 100000
0

20

40

60

80

100

M
b/

s

C
P

U
 lo

ad

Msg Size in Bytes

Netperf: Data transfer Rates vs CPU load - SGM Polling Receive

SGM Performance in Mb/s
Sender CPU load

Receiver CPU load

Figure 6.31: Netperf Performance versus CPU load Using Polling Receive

GM over Myrinet in comparison with the CPU load. The gm receive()

function will poll the message queue until data has arrived. This results
in a CPU load of 99.9%, which can be found in the diagram above to be
matching the 100% line. This will undoubtly have a negative effect on other
applications running on the same system. Figure 6.32 depicts the Sockets
Direct performance in relation with CPU overhead using blocking receive.
gm blocking receive no spin() does not poll the message queue but will
be interrupted by the NIC. Surprisingly, the gained performance is almost
the same, but CPU load is much lower, averaging in a CPU load of 55%.
The Sockets Direct performance using a zero copy strategy offers acceptable
performance for a micro benchmark only for large messages. Beginning with
a message size which is large enough to overcome the overhead issued with
the rendezvous protocol, the Sockets Direct performance however is better

162 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

0

200

400

600

800

1000

1200

1400

1600

1800

100 1000 10000 100000
0

20

40

60

80

100

M
b/

s

C
P

U
 lo

ad

Msg Size in Bytes

Netperf: Data transfer Rates vs CPU load - SGM Blocking Receive

SGM Performance in Mb/s
Sender CPU load

Receiver CPU load

Figure 6.32: Netperf Performance versus CPU load Using Blocking Receive

than buffered copies. One major reason is the performance of the memory
subsystem. Still, transferring data with 1.8Gbit/s with a CPU load of only
3% is remarkable. As explained earlier the effect of these performance results
may vary from application to application.

6.9 Sockets Direct Enhancements to Legacy

Applications

System Area Networks are currently being considered a special type of net-
work which requires special communication layers such as MPI or PVM to
speed up applications. For this, applications need to be redesigned and im-
plemented again. For quite a few applications this is a non feasible approach.
While some applications like a distributed database have added support for
VIA, this interface will no longer be in favor [111]. Instead emerging proto-
cols like the direct access transport (DAT) specification [112] which overcome
several of VIA’s drawbacks will be provided. The socket interface which will
be driving the Internet over the next years however is an existing interface for
distributed applications. Hence, these applications will experience a perfor-
mance gain without involving additional development from the application
developer. Finally, this would broaden the usage of System Area Networks

6.9 Sockets Direct Enhancements to Legacy Applications 163

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 1000 10000 100000
0

20

40

60

80

100

M
b/

s

C
P

U
 lo

ad

Msg Size in Bytes

Netperf: Data transfer Rates vs CPU load - SGM Zero Copy

SGM Performance in Mb/s
Sender CPU load

Receiver CPU load

Figure 6.33: Netperf Performance versus CPU load Using Rendezvous

and open different categories of usage. This would be due to the fact of
binary compatibility level of applications using System Area Networks.

6.9.1 Increasing Transaction Numbers For Databases

One currently growing market is that of e-commerce. B2B and B2C plat-
forms have become more and more important with the Internet boom over the
recent years. The back end of all these platforms are databases. In this sce-
nario, the WWW clients which request their information will access or query
application servers which then query the database server. The following fig-
ure depicts an overview of such a scenario. In this case, the connection from
WWW clients to the application servers can not be improved and is depend-
ing on other traffic from the Internet as well. However, the connection from
application servers to the database server could be improved significantly
given that a Sockets Direct offers an order of magnitude on communication
performance with respect to latency and bandwidth. This improvement is
gained when looking at micro benchmarks like netpipe or netperf which
have been presented above (see section 6.8). However, it is not clear which
performance gain a real world application will have when the communication
performance improves significantly. When looking at the overall performance
using various connection types, for some applications the benefit of a high
speed interconnect is not visible. Thus a large fraction of clusters are still

164 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

Figure 6.34: Database Server, Application Servers and Clients

equipped with Fast Ethernet since it basically comes for free [74]. As of to-
day, a high speed interconnect such as Myrinet or SCI will double the cost
for a compute node, assuming a low cost system. Therefore we have chosen a
real world application which is in intensive usage. In the following we present
the results of a load test which has been conducted between an application
server and a database server according to 6.34. This load test started 50
queries to the database.

Min T. Max T. Avg T. Tot.T. ODBC T. Exec T. Fetch T.

TCP/IP 62 969 92 4531 4624 4189 373

Sockets-GM 62 79 71 3505 3520 3400 152

As a result, the performance improvement is indeed encouraging. The Avg
Time has been improved by 35%. Moreover, the Total Time has been min-
imized by 23%. The Fetch Time has been decreased by 60%. These results
show that the Sockets Direct Protocol is very efficient as well for real world
applications like a database. Using the Total Time for specifying the number
of transactions, then they can be improved by more than 28%.

6.9.2 Distributed Applications

Besides the example of a database which is queried by application servers,
there are several other applications which could benefit from a efficient com-
munication protocol like Sockets Direct. For example, the IBM DB2 is a de-
centralized database which can be seen as a parallel application, the sockets

6.10 Sockets Direct for the ATOLL Network 165

interface is used for communication. Other application are DCOM applica-
tions or Corba applications.

6.10 Sockets Direct for the ATOLL Network

In this section a description will be given in which way, the Sockets Direct
concept which has been fully implemented using the Myrinet network can be
applied to other SANs such as the ATOLL network.

An important requirement is that the low level API of the SAN guarantees
the correct delivery of the message or reports a failure. For this, it is also
assumed, that error detection and correction will be handled either by the
hardware itself, or the low level API. For the ATOLL network, these error
handling is supported by its hardware and thus the network allows for a full
implementation.

6.10.1 Mapping of Sockets Direct functions

The ATOLL API which is using message passing style primitives itself when
exchanging data makes the porting of code easy. Without pre-registered
buffers, which have to be released in order to guarantee safe delivery of
messages and to avoid data corruption by copying data into buffers before
the transmission has ended, some performance will be gained, too.

The Sockets Direct adds a small header of two integers to identify a mes-
sage correctly. This is because a process which holds one port may open
several connections to another process and thus another identifier is needed
to lookup the corresponding remote descriptor. When sending a message,
then the migration is as simple as replacing GM send function calls with
ATOLL send function calls. The lookup for an appropriate buffer under GM
can be avoided. When receiving, the ATOLL API will directly store incom-
ing data into the provided buffer. Thus, a direct mapping can be achieved,
too.

6.10.2 Shared Socket Handling

When sockets are shared, then the ATOLL API experiences the same diffi-
culties like other SANs which operate on a point to point bases.

For this, the Sockets Direct for ATOLL implementation must also in-
tercept the fork() function call which would otherwise allow two or more

166 Chapter 6. An Efficient Socket Interface Middleware Layer for SANs

separate processes access a single ATOLL hostport. This is not supported
and the software to work around this problem would involve high cost.

That way, the new fork() routine will first let the client process set the
ATOLL handle to be invalid. Then, a new ATOLL hostport can be opened.

6.11 Conclusion

This chapter was describing the design and implementation of a new mid-
dleware layer which replaces traditional, overburdened protocols which are
used for almost any distributed application.

This middleware layer achieves binary compatibility which revolutionizes
the usage of system area networks. With this highest level of compatibility,
legacy applications will work right out of the box. Moreover, the usage
of system area networks experiences a much broader diversification. Thus,
system area networks can now be seen as regular networks.

Other very important results are that the raw bandwidth of a system area
network can be given to the application. The throughput of the overall host
system will also be enhanced by using RDMA buffer semantics.

The performance improvements have been verified by a set of objective
micro benchmarks. The results show that a performance improvement in the
order of a magnitude by enabling the middleware layer.

But also the question has been solved, in which way real world application
can benefit from faster networks and efficient middleware layers. For this,
the throughput of a SQL database has been improved by 28%, a result which
motivates further investigations into measuring other database benchmarks.

When looking at the design space, this innovative middleware layer also
addresses its usage and applicability on different operating systems.

The implementation is portable, it is not restricted to a single specific
system area network.

Bibliography

[1] D. Culler et al. LogP: Towards a Realistic Model of Parallel Compu-
tation. In Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPOPP), San Diego,
CA, May 1993.

[2] R. P. Martin, A. M. Vahdat, D. E. Culler and T. E. Anderson. Effects
of Communication Latency, Overhead, and Bandwidth in a Cluster Ar-
chitecture. In Proc. of the 24th Annual International Symposium on
Computer Architecture, pp. 85-97, June 1997.

[3] D. Cheriton and C. Williamson. VMTP: A transport layer for high-
performance distributed computing. In IEEE Communications, pp. 37-
44, June 1989.

[4] R. M. Watson and S. A. Mamrak. Gaining efficiency in transport
services by appropriate design and implementation choices. In ACM
Transactions on Computer Systems, 5(2):97-120, May 1987.

[5] K. Keeton, D. A. Patterson, and T. E. Anderson. LogP quantified:
The case for low-overhead local area networks. In Hot In-terconnects
III, Stanford University, Stanford, CA, August 1995.

[6] D. D. Clark and D. L. Tennenhouse. Architectural considerations for
a new generation of protocols. In Proceedings of SIGCOMM ’90, pp.
200-208, Philadelphia, Pennsylvania, September 1990.

[7] J. Crowcroft, I. Wakeman, Z. Wang, and D. Sirovica. Is layering harm-
ful? IEEE Network, 6(1):20-24, January 1992.

[8] M. B. Abbott and L. L. Peterson. Increasing network throughput by
integrating protocol layers. In IEEE/ACM Transactions on Networking,
1(5):600-610, October 1993.

167

168 Bibliography

[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W. Su. Myrinet - A gigabit-per-second local-area
network. In IEEE Micro, February 1995.

[10] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, J. Wilkes. An
implementation of the Hamlyn send-managed interface architecture. in
Proceedings of the Second Symposium on Operating Systems Design and
Implementation, USENIX Assoc., Oct. 1996.

[11] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki and E. W. Felten.
A virtual memory mapped network interface for the SHRIMP multi-
computer. in Proceedings of the 21st Annual Symposium on Computer
Architecture, April 1994, pp. 142-153.

[12] E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma, and J. D. Ku-
biatowicz. Remote Queues: Exposing message queues for optimization
and atomicity. In Proceedings of SPAA ’95, Santa Barbara, CA, June
1995.

[13] J. C. Brustoloni. Interoperation of copy avoidance in network and file
I/O. In Proceedings of IEEE Infocom, 1999, pp. 534-542.

[14] J. C. Brustoloni, P. Steenkiste. Effects of buffering semantics on I/O
performance. in Proceedings OSDI’96, USENIX, Seattle, WA Oct. 1996,
pp. 277-291.

[15] C-H Chang, D. Flower, J. Forecast, H. Gray, B. Hawe, A. Nadkarni, K.
K. Ramakrishnan, U. Shikarpur, K. Wilde, High-performance TCP/IP
and UDP/IP networking in DEC OSF/1 for Alpha AXP. In Proceedings
of the 3rd IEEE Symposium on High Performance Distributed Comput-
ing, August 1994, pp. 36-42.

[16] J. S. Chase, A. J. Gallatin, and K. G. Yocum. End sys-
tem optimizations for high-speed TCP. In IEEE Communica-
tions Magazine , Volume: 39, Issue: 4, April 2001, pp 68-74.
http://www.cs.duke.edu/ari/publications/end-system.pdf

[17] D. D. Clark, V. Jacobson, J. Romkey, H. Salwe. An analysis of TCP
processing overhead. In IEEE Communications Magazine, Volume: 27,
Issue: 6, June 1989, pp 23-29.

[18] D. D. Clark, D. Tennenhouse. Architectural considerations for a new
generation of protocols. in Proceedings of the ACM SIGCOMM Con-
ference, 1990.

169

[19] Direct Access File System http://www.dafscollaborative.org
http://www.ietf.org/internet-drafts/draft-wittle-dafs-00.txt

[20] S. N. Damianakis, C. Dubnicki, and E. W. Felten. Stream sockets on
SHRIMP. Technical Report TR-513-96, Princeton University, Prince-
ton, NJ, October 1996.

[21] P. Druschel, M. B. Abbott, M. A. Pagels, L. L. Peterson. Network
subsystem design. in IEEE Network, July 1993, pp. 8-17.

[22] P. Druschel, L. L. Peterson. Fbufs: a high-bandwidth cross-domain
transfer facility. in Proceedings of the 14th ACM symposium of Operat-
ing Systems Principles, Dec. 1993.

[23] P. Druschel, M. B. Abbott, M. A. Pagels, and L. L. Peterson. Network
subsystem design: A case for an integrated data path. IEEE Network
(Special Issue on End-System Support for High Speed Networks), 7(4):8-
17, July 1993.

[24] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences with a high-
speed network adapter: A software perspective. In Proceedings of ACM
SIGCOMM ’94, August 1994.

[25] A. Edwards and S. Muir. Experiences in implementing a high perfor-
mance TCP in user-space. In ACM SIGCOMM ’95, Cambridge, MA,
August 1995.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-
level network interface for parallel and distributed computing. in Proc.
of the 15th ACM Symposium on Operating Systems Principles, Copper
Mountain, Colorado, Dec. 3-6, 1995.

[27] E. W. Felten, R. D. Alpert, A. Bilas, M. A. Blumrich, D. W. Clark,
S. N. Damianakis, C. Dubnicki, L. Iftode, and K. Li. Early experience
with message-passing on the SHRIMP multicomputer. In Proceedings
of the 23rd Annual International Symposium on Computer Architecture
(ISCA ’96), pp. 296-307, Philadelphia, PA, May 1996.

[28] R. Fielding, J. Gettys, J. Mogul, F. Frystyk, L. Masinter, P. Leach and
T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616,
June 1999.

[29] V. Jacobson, R. Braden and D. Borman. TCP Extensions for High
Performance. Request for Comments: 1323, May 1992.

170 Bibliography

[30] R. Braden. Requirements for Internet Hosts - Communication Layers.
Request for Comments: 1122, October 1989.

[31] M. Allman, V. Paxson and W. Stevens. TCP Congestion Control.
Request for Comments: 2581, April 1999.

[32] Fibre Channel Standard.
http://www.fibrechannel.com/technology/index.master.html

[33] InfiniBand Architecture Specification, Volumes 1 and 2, Release 1.0.a.
http://www.infinibandta.org

[34] J. Kay, J. Pasquale. Profiling and reducing processing overheads in
TCP/IP. in IEEE/ACM Transactions on Networking, Vol 4, No. 6,
pp.817-828, Dec. 1996.

[35] K. Kleinpaste, P. Steenkiste and B. Zill. Software support for outboard
buffering and checksumming. In SIGCOMM’95.

[36] K. Magoutis. Design and Implementation of a Direct Access File System
(DAFS) Kernel Server for FreeBSD. in Proceedings of USENIX BSDCon
2002 Conference, San Franscisco, CA, February 11-14, 2002.

[37] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer, J. S. Chase, D.
Gallatin, R. Kisley, R. Wickremesinghe and E. Gabber. Structure and
Performance of the Direct Access File System (DAFS). in 2002 USENIX
Annual Technical Conference, Monterey, CA, June 9-14, 2002.

[38] J. D. McCalpin. A Survey of memory bandwidth and machine balance
in current high performance computers. in IEEE TCCA Newsletter,
December 1995.

[39] C. Maeda and B. N. Bershad. Networking performance for microker-
nels. In Proceedings of the Third Workshop on Workstation Operating
Systems, pp. 154-159, 1992.

[40] C. Maeda and B. Bershad. Protocol service decomposition for high-
performance networking. In Proceedings of the Fourteenth Symposium
on Operating Systems Principles , pp. 244-255, Asheville, NC, December
1993.

[41] A. Newman. IDC report paints conflicted picture of
server market circa 2004. In ServerWatch, July 24, 2000.
http://serverwatch.internet.com/news/2000 07 24 a.html

171

[42] M. Pastore. Server shipments for 2000 sur-
pass those in 1999. in ServerWatch, Feb. 7, 2001
http://serverwatch.internet.com/news/2001 02 07 a.html

[43] V. S. Pai, P. Druschel, W. Zwaenepoel. IO-Lite: a unified I/O buffering
and caching system. Proc. of the 3rd Symposium on Operating Systems
Design and Implementation , New Orleans, LA, Feb. 1999.

[44] S. Pakin, M. Lauria, and A. Chien. High-performance messaging on
workstations: Illinois Fast Messages(FM) for Myrinet. In Supercomput-
ing ’95, San Diego, CA, 1995.

[45] L. L. Peterson. Life on the OS/network boundary. in Operating Systems
Review, 27(2):94-98, April 1993.

[46] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas and K. Yelick. A case for intelligient RAM:
IRAM. in IEEE Micro, April 1997.

[47] J. Pinkerton. Winsock Direct: the value of System Area Networks.
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/winsock.asp

[48] Postel, J. Transmission Control Protocol - DARPA Internet Program
Protocol Specification. RFC 793, September 1981.

[49] Quadrix Solutions. http://www.quadrix.com

[50] Sockets Direct Protocol. Infiniband TA, 2002.

[51] C. Seitz. Myrinet: A gigabit-per-second local area network. In Hot
Interconnects II, Stanford University, Stanford, CA, August 1994.

[52] Compaq Servernet. http://nonstop.compaq.com/view.asp?PAGE=ServerNet

[53] The STREAM Benchmark Reference Information,
http://www.cs.virginia.edu/stream/

[54] C. A. Thekkath, T. Nguyen, E. Moy, and E. D. Lazowska. Implement-
ing network protocols at user-level. in IEEE/ACM Transactions on
Networking, pp. 554-565, October 1993.

[55] M. N. Thadani, Y. A. Khalidi. An efficient zero-copy I/O framework
for UNIX. in Technical Report, SMLI TR-95-39, May 1995.

[56] Virtual Interface Architecture Specification Version 1.0.
http://www.viarch.org/html/collateral/san 10.pdf

172 Bibliography

[57] J. R. Walsh. DART: Fast application-level networking via data-copy
avoidance. in IEEE Network, July/August 1997, pp.28-38.

[58] A. Gallatin, J. Chase, and K. Yochum. Trapeze/IP: TCP/IP at near-
gigabit speeds. in Proceedings of the USENIX 99 Technical Conference,
June 1999.

[59] A. Edwards and S. Muir. Experiences implementing a high performance
TCP in user-space. in Proceedings of ACM SIGCOMM 95, September
1995, pp. 196–205.

[60] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Ac-
tive Messages: A mechanism for integrated communication and compu-
tation. In Proceedings of the Nineteenth ISCA, Gold Coast, Australia,
May 1992.

[61] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level
network interface for parallel and distributed computing. In Proceedings
of the Fifteenth SOSP, pp. 40-53, Copper Mountain, CO, December
1995.

[62] C. Dubnicki, A. Bilas, K. Li, and J. Philbin. Design and Implementation
of Virtual Memory-Mapped Communication on Myrinet. In Proceedings
the Proceedings of the International Parallel Processing Symposium, pp.
388-396, 1997.

[63] J. Chu. Zero-copy TCP in Solaris. In Proceedings of the 1996 Usenix
Technical Conference, pages 253–64, San Diego, CA, USA, Jan. 1996

[64] Loic Prylli. Linux OS issues with Myrinet: the good, the bad, and the
ugly. Second Myrinet Users Group Meeting, Vienna, Austria, 2002

[65] G. Hunt and D. Brubacher Detours: Binary Interception of Win32
Functions. In Proceedings of the 3rd USENIX Windows NT Symposium,
July 1999.

[66] D. Clark. Window and acknowledgement strategy in TCP. Internet
RFC 813, July 1982.

[67] J. Kay and J. Pasquale. The Importance of Non-Data Touching Pro-
cessing Overheads in TCP/IP. em In SIGCOMM Annual Technical
Conference ’93, 1993.

[68] C. Maeda and B. Bershad. Service without servers. In Workshop on
Workstation Operating Systems IV, October 1993.

173

[69] S. H. Rodrigues, Th. E. Anderson and D. E. Culler. High-Performance
Local Area Communication With Fast Sockets. In Proceedings of the
USENIX Annual Technical Conference, January 6-10, 1997, Anaheim,
California, USA.

[70] J. Kim, K.Kim, and S. Jung. SOVIA: A User-level Sockets Layer Over
Virtual Interface. In Proceedings of the IEEE Cluster 2001 Conference,
Newport Beach, CA, USA, 2001.

[71] http://oss.hitachi.co.jp/crl/lwsockets-en.html

[72] Shinji Sumimoto. A Study of High Performance Communication for
Parallel Computers Using a Commodity Network. PhD thesis, Keio
University, 2000.

[73] Ch. Kurmann, T. Stricker. Characterizing memory system performance
for local and remote accesses in high end SMPs, low end SMPs and
clusters of SMPs. In 7th Workshop on Scalable Memory Multiprocessors,
held in conjunction with ISCA98, June 27-28 ,1998, Barcelona, Spain.

[74] http://clusters.top500.org

[75] http://www.netperf.org/netperf/NetperfPage.html

[76] J.J. Dongarra, H.W. Meuer and E. Strohmaier. Top500 List.
http://www.top500.org

[77] Q. O. Snell, A. R. Mikler and J. L. Gustafson. NetPIPE: A Network Pro-
tocol Independent Performance Evaluator. In IASTED International
Conference on Intelligent Information Management and Systems, June
1996

[78] A. Betz and P. Gray. Gigabit Over Copper Evaluation.
University of Northern Iowa, Technical Report TR040202-CS.
http://www.cs.uni.edu/ gray/gig-over-copper/

[79] A. Tirumala, F. Qin, J. Dugan and J. Ferguson.
http://dast.nlanr.net/Projects/Iperf/

[80] T. Curry. Profiling and Tracing Dynamic Library Usage Via Interpo-
sition. In Proceedings of the USENIX Summer Technical Conference,
1994.

174 Bibliography

[81] E. Speight, H. Shafi and J. K. Bennett. WSDLite: A Lightweight
Alternative to Windows Sockets Direct Path. In Proceedings of the 4th
USENIX Windows Systems Symposium, Seattle, WA, August 2000.

[82] U. Brüning and L. Schaelicke. Atoll: A High-Performance Communica-
tion Device for Parallel Systems. In Proceedings of the 1997 Conference
on Advances in Parallel and Distributed Computing, IEEE CS Press,
Los Alamitos, Calif., 1997, pp 228-234.

[83] L. Rzymianowicz, U. Brüning, J. Kluge, P. Schulz and M. Waack.
ATOLL: A Network on a Chip. In Cluster Computing Technical Session
(CC-TEA) of the PDPTA’99 conference, June 28 - July 1 1999, in Las
Vegas, NV.

[84] U. Brüning. Lecture Notes Rechnerarchitektur 2. University of
Mannheim, 1996-2002.

[85] Tom Shanley. PCI-X System Architecture. ISBN 0-201-72682-3, Addi-
son Wesley, 2001.

[86] D. E. Culler, L. T. Liu, R. P. Martin and C. Yoshikawa. LogP Per-
formance Assessment of Fast Network Interfaces. In Journal of IEEE
Micro, February, 1996.

[87] Mellanox. Introduction to Infiniband. White Paper, Mellanox,
http://www.mellanox.com

[88] P. Druschel, L. Peterson and B. Davie. Experiences with a high speed
network adaper: A software perspective. In Proceedings of ACM SIG-
COMM ’94, September 1994, pages 2-13.

[89] M. Fischer, U. Brüning, J. Kluge, L. Rzymianowicz, P. Schulz and
M. Waack. Impact of Configurable Network Features in ATOLL. In
APSCC 2000, HPC Asia, May 14-17, 2000, Beijing, P.R. China.

[90] http://www.hypertransport.org

[91] W. Gropp and E. Lusk. An abstract device definition to support the
implementation of a high-level point-to-point message-passing interface.
Preprint MCS-P342-1193, Argonne National Laboratory, 1994.

[92] W. Gropp and E. Lusk. MPICH working note: Creating a new MPICH
device using the channel interface. Technical Report ANL/MCS-TM-
213, Argonne National Laboratory, 1995.

175

[93] M. J. Flynn. Some Computer Organizations and Their Effectiveness. In
IEEE Transactions on Computers C-21(9), pages 938-960, September
1972.

[94] Th. E. Anderson, D. E. Culler, D. A. Patterson. A Case for Networks
of Workstations: NOW. em In IEEE Micro, Feb, 1995.

[95] Ch. Kurmann, M. Muller, F. Rauch and T. Stricker. Improving the
Network Interfaces for Gigabit Ethernet in Clusters of PCs by Protocol
Speculation. Technical Report No.339, Computer Science Department,
ETH Zürich, 2000 (Extended Version of HPDC9 Paper).

[96] F. Seifert and W. Rehm. Reliably Locking System V Shared Memory
for User Level Communication in Linux. In proceedings of the IEEE
International Conference on Cluster Computing CLUSTER2001, Oct.
8-11, 2001, Newport Beach, California, USA.

[97] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis and K. Li. VMMC-2:
Efficient Support for Reliable, Connection-Oriented Communication. In
Hot Interconnects V, August 1997.

[98] http://www.pccluster.org

[99] H. Tezuka, F. O’Carroll, A. Hori, Y. Ishikawa. Pin-down cache: A Vir-
tual Memory Management Technique for Zero-Copy Communication.
In Proceedings of IPPS/SPDP 98, March 98, Orlando, FL.

[100] T. Warschko, J. Blum and W. Tichy. On the Design and Semantics
of User-Space Communication Subsystems. In PDPTA 99, Las Vegas,
Nevada, 1999.

[101] M. Fischer. GMSOCKS - A Direct Socket Implementation on Myrinet.
In Proceedings of the IEEE Cluster 2001, October 08-11, 2001, New Port
Beach, CA, USA.

[102] M. Snir, S. W. Otto, S. Huss-Lederman, D.W. Walker, and J. Don-
garra. MPI - The Complete Reference: Volume 1, The MPI Core, 2nd
edition. MIT Press, Cambridge, MA, 1998.

[103] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI Message-Passing Interface stan-
dard. In Parallel Computing, 22(6):789–828, 1996.

[104] U. Brüning Vorlesung zur Rechnerarchitektur II. Chair of Computer
Architecture, University of Mannheim, 1996-2002.

176 Bibliography

[105] T. von Eicken. Active Messages: an Efficient Communication Architec-
ture for Multiprocessors. In Ph.D. Thesis, November 1993, University
of California at Berkeley.

[106] M. Fischer and J. Simon. Embedding SCI into PVM. In EuroPVM97,
Krakow, Poland, 1997.

[107] I. Zoraja, H. Hellwagner and V. Sunderam. SCIPVM: Parallel dis-
tributed computing on SCI workstation clusters. In Concurrency: Prac-
tice and Experience, Vol. 11, 1999

[108] J. Dongarra et al. PVM: Parallel Virtual Machine. A User’s Guide and
Tutorial for Networked Parallel Computing. MIT Press, Boston, 1994.

[109] IEEE Std for Scalable Coherent Interface (SCI). Inst. of Electrical
and Electronical Eng., Inc., New York, NY 10017, IEEE std 1596-1992,
1993.

[110] H. Tezuka, A. Hori, Y. Ishikawa and M. Sato. PM: A Operating Sys-
tem Coordinated High Performance Communication Library. In High-
Performance Computing and Networking ’97, 1997.

[111] B. Bialek. http://www.db2mag.com/db area/archives/2002/q1/bialek.shtml

[112] Direct Access Transport (DAT) Collaborative.
http://www.datcollaborative.org

[113] A. Basu, T. von Eicken, M. Welsh. Low-Latency Communication over
Fast Ethernet. In Lecture Notes in Computer Science, vol. 1123, 1996.

[114] A. Chien, M. Lauria, S. Pakin. High Performance Messaging on Work-
stations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of the
Technical Program of Supercomputing 1995, December 1995.

[115] D.E. Culler, A.M. Mainwaring. Design Challenges of Virtual Net-
works: Fast, General-Purpose Communication. In Proceedings of the 7
th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 119-130, Atlanta, GA USA, May 1999.

[116] E. Haydes. MM5 on SGI IA32 Clusters. In Program for The Tenth
Penn State/NCAR MM5 Users’ Workshop, June 21-23, 2000.

[117] http://www.windowsclusters.org/real app performance.htm

177

[118] Mukherjee and Hill. The Impact of Data Transfer and Buffering Alter-
natives on Network Interface Design. In Proceedings of HPCA98, Feb.
1998.

[119] M. Fischer and J. Dongarra. PVM for Windows. In Proceedings of
CCC1997, Atlanta, 1997.

[120] I. Foster. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. ISBN 0-201-57594-9, Addison-
Wesley, 1995.

[121] T. Warschko. Efficient Communication in Parallel Computers. PhD
thesis, University of Karlsruhe, 1998.

[122] IEEE 345, 47th Street New York. IEEE Standard for Scalable Coherent
Interface (SCI), 1993.

[123] E. Rehling. SThreads: Multithreading for SCI clusters. In Proceedings
of SCI Europe 1999, Toulouse, France, 1999.

[124] W. Gropp, E. Lusk and A. Skjellum. A High-
Performance, Portable Implementation of the MPI
Message Passing Interface Standard. http://www-
unix.mcs.anl.gov/mpi/mpich/papers/mpicharticle/paper.html

[125] K. Magoutis et al. Structure and Performance of the Direct Access
File System. In Proceedings of the 2002 Usenix Annual Technical Con-
ference, Monterey, CA, USA, 2002.

[126] T. X. Jakob. Multilevel Optimization of Parallel Applications Utilizing
a System Area Network. Master Thesis, University of Mannheim, Chair
of Computer Architecture, 2002.

[127] TecChannel. So funktioniert TCP/IP.
http://www.tecchannel.de/internet/209/9.html

[128] A. Jones and A. Deshpande. Windows Sockets 2.0: Write Scalable
Winsock Apps Using Completion Ports. MSDN Magazin, October 2000.

[129] J. L. Hennessy and D. A. Patterson. Computer Organization and
Design. 2nd Edition, San Francisco: Morgan Kaufmann Publishers,
1997.

178 Bibliography

[130] D. Anderson, J. S. Chase, S. Gadde, A. Gallatin, and K. Yocum.
Cheating the I/O Bottleneck: Network Storage with Trapeze/Myrinet.
In Proc. Usenix Technical Conference, New Orleans, LA, June 1998.

[131] V. Pai, P. Druschel and W. Zwaenepoel. IO-Lite: A Unified I/O
Buring and Caching Scheme. In Proc. of Third USENIX Symposium
on Operating System Design and Implementation, New Orleans, LA,
February 1999

[132] A. Silberschatz and P. B. Galvin. Operating System Concepts.
Addison-Wesley, ISBN 0-201-54262-5, 1998.

[133] IBM Eserver. http://www.ibm.com/servers/eserver/pseries/hardware/entry/sales shee
June 25, 2002.

[134] A. Petitet, R. C. Whaley, J. Dongarra and A. Cleary.
http://www.netlib.org/benchmark/hpl

[135] Stevens W. Richard. TCP/IP Ilustrated I. The protocols. Addison-
Wesley, 1994.

