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Preface

Econometric methods serve to estimate functional relationships between economic variables.
Classic, parametric techniques rely on modeling the observed data using a specification
that is known up to a finite number of estimable parameters. Such procedures perform very
well if the selected model is correctly specified, but they can lead to false conclusions under
misspecification. Nonparametric methods, in contrast, allow researchers to model the
relationships of interest in a flexible way, without imposing any functional form assumptions,
subject only to smoothness conditions. For example, the local linear estimator of the
conditional expectation of an outcome variable given covariates is based on the linear
regression using observations in a small neighborhood of the covariate value of interest. If
the neighborhood shrinks at an appropriate rate, under regularity conditions, the local
linear estimator can estimate well any curve with bounded second-order derivative.

Owing to their flexibility, nonparametric methods have become popular in various
areas of economics. Prominent examples include randomized experiments and regression
discontinuity designs. In a randomized experiment, a treatment, e.g. social assistance
or job training, is assigned to randomly selected units. To estimate the treatment effect
conditional on covariates, one can employ nonparametric methods to flexibly estimate the
conditional expectations in the treatment and control groups. In a regression discontinuity
design, in turn, units are assigned a treatment if and only if their running variable, e.g.
a poverty score, exceeds a fixed cutoff value. Under standard assumptions, a local average
treatment effect can be identified by comparing units just to the left and just to the right
of the cutoff. The corresponding conditional expectations are typically estimated using
local linear methods.

There exists an extensive literature on estimation in the canonical settings for ran-
domized experiments and regression discontinuity designs, and various refinements and
robustifications have been developed. This dissertation provides two, practically relevant
contributions to this literature. First, it revisits settings where the comparability of units in
the treatment and control group breaks down due to some sample selection mechanism, in
which case treatment effects are only partially identified. A novel method for estimation of
bounds on conditional treatment effects is proposed for such settings. Second, it develops
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a procedure that efficiently incorporates covariates into an analysis of standard regression
discontinuity designs.

On the technical side, the unifying theme of the proposed methods is two-stage
estimation that is robust with respect to the first-stage estimation error. In the considered
settings, the object to be estimated is a scalar parameter, but it involves an unknown,
nuisance function that has to be estimated in the first stage. In general, the first-stage
estimation may affect the properties of the final estimator in a potentially complicated
manner. In order to avoid this issue, the proposed estimators are constructed in a way that
renders them very insensitive to estimation of the nuisance function. This property has
attractive theoretical and practical implications. The asymptotic results are valid under
weak requirements on the first-stage estimator, and standard methods for conducting
statistical inference can be easily adapted to the considered settings.

This dissertation consists of three chapters. Chapters 1 and 3 are self-contained.
Chapter 2 builds on the estimation method developed in Chapter 1, but it can also be
read independently of Chapter 1.

Chapter 1 concerns nonparametric estimation of truncated conditional expectation
functions. Such functions are objects of interest in a wide range of economic applications,
including income inequality measurement, financial risk management, and impact eval-
uation. They typically involve truncating the outcome variable above or below certain
quantiles of its conditional distribution. In this estimation problem, the conditional quan-
tile function is a nuisance parameter, which has to be estimated in the first stage. I propose
an estimator that is immunized against the first-stage estimation error owing to the use of
a Neyman-orthogonal moment in the second stage. This construction ensures that the
proposed estimator has favorable bias properties and that inference methods developed
for the standard nonparametric regression can be readily adapted to conduct inference on
truncated conditional expectation functions. As an extension, I consider estimation with
an estimated truncation quantile level. The proposed estimator is applied in two empirical
settings: sharp regression discontinuity designs with a manipulated running variable and
program evaluation with sample selection.

Chapter 2 is joint work with Christoph Rothe. We consider estimation and inference
in fuzzy regression discontinuity designs with a manipulated running variable. In the
manipulation framework proposed by Gerard, Rokkanen, and Rothe (2020), we derive
alternative bounds on the treatment effect of interest. The proposed bounds are not sharp,
but they take a simple form, and they can be estimated using the estimator of truncated
conditional expectation functions developed in Chapter 1. We propose a method for
constructing confidence sets for the partially identified treatment effect using test inversion
in the spirit of Anderson-Rubin confidence sets.
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Chapter 3 is joint work with Claudia Noack and Christoph Rothe. We propose a novel
class of covariate-adjusted regression discontinuity estimators that can have a smaller
variance than the estimators used in the literature. Our procedure accommodates a wide
range of covariate adjustments under mild conditions. We consider classic parametric and
nonparametric, as well as machine learning methods, so that suitable estimators can be
chosen for any given type of covariates. We allow for discrete and continuous covariates
in low- and high-dimensional settings. The proposed estimators are easily applicable
because the tuning parameters, both in the first and second stage, can be selected and
confidence intervals can be constructed following standard methods used in the literature.
We characterize the covariate adjustments that lead to the smallest variance in this class
of regression discontinuity estimators.
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CHAPTER 1

Nonparametric Estimation of Truncated Conditional
Expectation Functions

1.1. INTRODUCTION

A truncated sample mean is the mean calculated after discarding some of the highest
and/or lowest values in a sample. Such quantities, which estimate the corresponding
truncated expectations, are used in a wide range of economic applications. In studies
of inequality, income dispersion can be summarized by reporting the mean income in
different quintiles of its distribution, i.e., the mean income of the 20% of households with
the lowest income, followed by the mean income of households between the 20th and
40th percentile of the income distribution, etc. (e.g. Semega et al., 2020). In finance, the
expected shortfall denotes the expected value of a certain proportion, e.g. 5%, of top losses.
It is a widely-used risk measure informing about the performance of a portfolio of assets
in the worst-case scenarios (e.g. Chen, 2008). Truncated means are also used in settings
with contaminated data, where the sharp bounds on the true expected outcome take the
form of truncated expectations (Horowitz and Manski, 1995). The partial identification
approach underlying this result has been adapted to several impact evaluation settings to
address sample selection problems; see, e.g., Zhang and Rubin (2003); Lee (2009); Chen
and Flores (2015).

In all the above examples, the analysis can be enriched by incorporating covariates. First,
the anatomy of income inequality can be better understood when analyzed conditionally
on characteristics such as age or work experience. Second, an estimator of the expected
shortfall can be more informative if it takes into account covariates. Third, in impact
evaluation, the heterogeneity of treatment effects can be explored based on individuals’
characteristics. Furthermore, Gerard et al. (2020) apply the trimming approach of Horowitz
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and Manski (1995) to regression discontinuity designs with a manipulated running variable,
which necessarily involve conditioning on a covariate.

In this paper, I propose a novel, nonparametric estimator of truncated expectations
defined conditionally on covariates. As in the above examples, I consider setups where
the outcome variable needs to be truncated above or below certain quantiles of its
conditional distribution. For ease of exposition, I focus on one-sided truncation. I consider
a nonparametric setting with a continuous outcome variable, denoted by Y , and a vector
of continuous covariates, denoted by X.1 For a quantile level η ∈ (0, 1) and x in the
support of X, let Q(η, x) be the conditional η-quantile of Y given X = x. My aim is to
nonparametrically estimate the following function:

m(η, x) = E[Y |Y ≤ Q(η,X), X = x]. (1.1.1)

I refer to η in the above definition as the truncation quantile level. It might be chosen by
the analyst, in which case it is a fixed, known number, but in some applications it has to
be estimated from the data. My setting is nonparametric, meaning that I do not impose
any parametric restrictions on the joint distribution of (X, Y ). In particular, the functions
m(η, x) and Q(η, x) can be of any form, subject only to smoothness restrictions.

In this estimation problem, the functionQ(η, · ) is a nuisance parameter. If it was known,
then based on a sample {(Xi, Yi)}n

i=1 from the distribution of (X, Y ), one could estimate
m(η, x) using standard nonparametric regression techniques, e.g., kernel estimators, applied
to the sample restricted to observations with Yi ≤ Q(η,Xi). Alternatively, motivated by
the equivalent representation of the estimand as:

m(η, x) = 1
η
E[Y 1(Y ≤ Q(η,X))|X = x], (1.1.2)

one could run a nonparametric regression with 1
η
Yi1(Yi ≤ Q(η,Xi)) as the outcome variable.

Feasible versions of these two estimators, however, require estimating the function Q(η, · )
in the first stage. This additional estimation step affects the properties of the resulting
estimators in a potentially complicated manner.

In order to avoid the transmission of the first-stage estimation error to the final
estimator, I propose a modification of the latter approach, which utilizes a conditional
moment that is Neyman-orthogonal to the nuisance function Q(η, · ). Specifically, my
estimation approach is based on the following representation of the estimand:

m(η, x) = 1
η
E[Y 1(Y ≤ Q(η,X)) −Q(η,X)(1(Y ≤ Q(η,X)) − η)|X = x]. (1.1.3)

1If the covariates take on only a small number of distinct values, then the truncated conditional
expectation function can be estimated using sample truncated means binned by covariate values.
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Compared to (1.1.2), the conditional moment in (1.1.3) contains an additional term, which,
however, is mean-zero conditional on X.2 Its inclusion renders the conditional moment in
(1.1.3) insensitive to small perturbations of Q(η, · ) in the following sense. For the quantile
level η and q ∈ R, let

ψ(η, q) = 1
η

[
Y 1(Y ≤ q) − q(1(Y ≤ q) − η)

]
. (1.1.4)

Equation (1.1.3) can be expressed as m(η, x) = E[ψ(η,Q(η,X))|X = x]. This expression
is insensitive to small perturbations of the conditional quantile function because the
derivative of E[ψ(η, q)|X = x] with respect to q evaluated at the true conditional quantile
Q(η, x) is zero,

∂

∂q
E[ψ(η, q)|X]|q=Q(η,X) = 0, a.s. (1.1.5)

Such orthogonal, or immunized, conditional moments feature prominently in the modern
literature in setups where a nuisance parameter has to be estimated in the first stage (e.g.
Belloni et al., 2017; Chernozhukov et al., 2018). In this literature, it is well understood
that the orthogonality property immunizes the estimator against the first-stage estimation
error.

Based on the orthogonal conditional moment in equation (1.1.3), my proposed estimator
is constructed in two steps using local linear methods (Fan and Gijbels, 1996). In the first
stage, I estimate the local linear approximation of the function Q(η, · ). In the second stage,
I run a local linear regression with a generated outcome variable corresponding to the
expression under the conditional expectation in (1.1.3). The estimator is computationally
easy to implement, and I show that the tuning parameters (bandwidths in the two local
linear regressions) can be selected as in the standard nonparametric regression.

This paper contains two main theoretical results. First, I show that my estimator is
asymptotically equivalent to the corresponding oracle estimator using the true function
Q(η, · ). Given this result, the asymptotic distribution follows from the standard theory
of local linear estimation. The proposed estimator has good bias properties, and it is
straightforward to adapt existing inference methods to do inference on truncated conditional
expectation functions. Second, I study the asymptotic properties of my estimator when
the truncation quantile level is estimated from the data. Under a high-level assumption on
η̂, I derive an expansion of the estimator of the truncated conditional expectation function
evaluated at η̂ about the estimator evaluated at the true value η. This expansion can
be used on a case-by-case basis to derive the asymptotic distribution of the estimator
evaluated at η̂ for specific estimators of the truncation quantile level.

2The conditional moment in (1.1.3) is the quantity of interest when the outcome variable has mass
points, but, I show in this paper that there are reasons to consider this formula even with a continuous
outcome variable.
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I apply the proposed estimator in two empirical settings. First, I estimate bounds on
the local average treatment effect in regression discontinuity designs with a manipulated
running variable (Gerard et al., 2020). Second, I estimate bounds on the conditional wage
effect of a job training program (Lee, 2009). These bounds involve truncated conditional
expectation functions with truncation quantile levels that need to be estimated from the
data.

Related Literature. The proposed two-stage procedure is similar to that of Linton and
Xiao (2013). In the first stage, they estimate Q(η,Xi) in a local polynomial quantile
regression at Xi. In the second stage, they apply the Nadaraya-Watson estimator to
the data with a generated outcome variable corresponding to the conditional moment
in (1.1.3). My analysis, however, is different in three aspects. First, I employ a local
linear estimator in the second stage, which is well-known to have favorable bias properties
compared to the Nadaraya-Watson estimator.3 Second, I estimate the function Q(η, · )
based on a single local linear quantile regression. If one is interested in m(η, x) for a specific
covariate value, my approach is much simpler to implement than using a separate local
polynomial quantile regression for each data point included in the second-stage regression.
Third, and most importantly, the analysis of Linton and Xiao (2013) applies specifically
to setups where the conditional variance of the outcome variable is infinite. While the
presence of an infinite variance generally complicates the derivation of the asymptotic
distribution, which is a non-normal, stable law, it makes some aspects of the analysis
easier. Specifically, Linton and Xiao (2013) exploit the fact that under their assumptions
the first-stage local polynomial quantile estimator converges faster than the respective
oracle estimator. Their proof does not directly apply to models with finite variance of the
outcome variable considered in this paper, where the first-stage and the oracle estimators
have the same rates of convergence.

Other nonparametric estimators of truncated conditional expectation functions have
been developed by Scaillet (2005), Cai and Wang (2008), and Kato (2012), who construct
their estimators based on first-stage estimators of the conditional cumulative distribution
function (c.d.f.) of the outcome variable. This estimation strategy, however, is not well-
suited for estimation at boundary points of the support of the conditioning variables.
The Nadaraya-Watson estimator of the conditional c.d.f.,4 employed by Scaillet (2005),
exhibits the so-called boundary effects in that its bias is of larger order at the boundary
than in the interior. The bias properties of the Nadaraya-Watson can be improved upon
using the local linear estimator, but it is not guaranteed to produce a proper c.d.f., as

3Linton and Xiao (2013) mention the possibility of using a local polynomial regression with a generated
outcome variable 1

η Yi1(Yi ≤ Q̂(η, Xi)), but they did not investigate it further.
4Estimation of a conditional c.d.f. can be cast as a regression problem with 1(Yi ≤ y) as the outcome

variable.
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the resulting function can be nonmonotone and is not restricted to lie between zero and
one. For that reason, Cai and Wang (2008) and Kato (2012) use the weighted Nadaraya-
Watson estimator, which, for interior points, is asymptotically equivalent to the local linear
estimator, but it yields a proper c.d.f. The weighted Nadaraya-Watson estimator, however,
is not defined for boundary points.

Various ways of estimating truncated conditional expectation functions have also
been proposed in parametric settings. In early work, Koenker and Bassett Jr (1978),
Ruppert and Carroll (1980), and Jurečková (1984) consider generalizations of truncated
means to linear models. In the first stage, they estimate quantile regressions, and in the
second stage they run a regression on a sample truncated according to the first-stage
estimates. Conceptually related to my paper is the work of Barendse (2020), who also
runs a regression with a generated outcome variable based on the orthogonal moment.
He additionally considers efficient weighting, analogous to, possibly nonlinear, weighted
least squares. Dimitriadis et al. (2019) develop a joint quantile and expected shortfall
estimation framework and find estimators that can be more efficient than the simple
two-stage procedure described above. The efficiency gains of Dimitriadis et al. (2019) and
Barendse (2020), however, are specific to parametric models, and they do not carry over
to the nonparametric setting.

The cited papers—developed for the conditional expected shortfall estimation or robust
estimation—assume that the truncation quantile level is chosen by the analyst. A setting
with estimated conditional truncation quantile levels and possibly continuous covariates
is studied by Semenova (2020). She exploits a moment that is similar to (1.1.3), but it
includes additional terms, which render the expression orthogonal also to the truncation
quantile level.5 Her focus, however, is on integrated truncated conditional expectations,
and she does not provide conditional estimates.6 Estimated trimming proportions have
also been studied in the unconditional setting, e.g., by Shorack et al. (1974) and Lee
(2009).

Outline of the Paper. The remainder of this paper is structured as follows. In Section 1.2,
I formally introduce the proposed estimator. I study its asymptotic properties in Section 1.3.
In Section 1.4, I discuss inference, estimation with an estimated truncation quantile level,
and related approaches. I present a Monte Carlo study in Section 1.5. In Section 1.6,
I consider two empirical applications: (i) sharp regression discontinuity designs with a
manipulated running variable and (ii) estimation of the conditional wage effect of a job
training program. Section 1.7 concludes.

5This property is achieved using a specific conditional moment defining the truncation quantile level.
6Semenova (2020) considers a setting with many covariates, which requires regularization in the first

step. I do not consider such aspects.
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1.2. ESTIMATOR

In this section, I formally introduce my proposed estimator. To simplify the exposition,
in the main text, I consider a univariate X. A natural extension for the multivariate
case is presented in Appendix 1.A.1. Throughout the paper, I consider estimation of the
truncated conditional expectation function at a selected covariate value x0.

In the first stage, I estimate the conditional η-quantile function Q(η, · ). For the
second-stage estimator it suffices if Q(η, · ) is estimated well for covariate values close
to x0. The level and slope of the function Q(η, · ) at x0 are estimated in a local linear
quantile regression as

(q̂0(η, x0; a), q̂1(η, x0; a))⊤ = arg min
(β0,β1)

n∑
i=1

ka(Xi − x0)ρη(Yi − β0 − β1(Xi − x0)),

where ρη(v) = v(η − 1(v ≤ 0)) is the ‘check’ function, k(·) is a kernel function, a is
a bandwidth, and ka(v) = k(v/a)/a. Using these estimates, I estimate Q(η, x) as

Q̂ll(η, x;x0, a) = q̂0(η, x0; a) + q̂1(η, x0; a)(x− x0).

For a given η, Q̂ll(η, x;x0, a) is a linear (random) function in x indexed by x0 and a.
In the second stage, I run a local linear regression with ψi(η, Q̂ll(η,Xi;x0, a)) as the

outcome variable, where

ψi(η, q) = 1
η

[
Yi1(Yi ≤ q) − q(1(Yi ≤ q) − η)

]
.

The final estimator is given by

m̂(η, x0; a, h) = e⊤
1 arg min

(β0,β1)

n∑
i=1

kh(Xi − x0)
(
ψi(η, Q̂ll(η,Xi;x0, a)) − β0 − β1(Xi − x0)

)2
,

where h is another bandwidth, which can be different from the first-stage bandwidth.

1.3. ASYMPTOTIC PROPERTIES

In this section, I introduce the assumptions and study the asymptotic properties of the
proposed estimator. I use the following notation. I put ∂k

xm(η, x0) = ∂k

∂xkm(η, x)|x=x0

and ∂k
xQ(η, x0) = ∂k

∂xkQ(η, x)|x=x0 . For positive sequences bn and cn, I write bn ≺ cn if
bn/cn → 0, and bn ≍ cn if C1bn ≤ cn ≤ C2bn for some positive constants C1 and C2.

1.3.1. Assumptions. As the canonical case, I consider estimation based on independent
and identically distributed (i.i.d.) data. This modeling assumption is appropriate for
microeconometric applications. The asymptotic analysis could be extended to allow for
dependent data satisfying an α-mixing condition under restrictions on the rates of the
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mixing coefficients similarly Masry and Fan (1997).

Assumption 1.1. (a) {(Xi, Yi)}n
i=1 are continuous i.i.d. random variables; (b) η ∈ (0, 1).

I follow the classic literature on local polynomial modeling methods and assume that
the covariate is continuous. The density of X is denoted by fX(x), and its support is
denoted by X . The conditional distribution function of Y given X is denoted by FY |X(y|x),
and the corresponding conditional density by fY |X(y|x).

Subsequent assumptions involve smoothness requirements for the functions Q(η, · )
and m(η, · ). I adopt the following convention. For a point on the left (right) boundary of
X , I define the derivative with respect to the covariate value as the right (left) derivative
at that point.

Assumption 1.2. (a) ∂2
xQ(η, x) is continuous in x on X ; (b) X is a bounded interval

and fX(x) is continuous and positive on X ; (c) fY |X(y|x) is continuous in x and y on
{(x, y) : x ∈ X , y ∈ [Q(η, x) ± ϵ]} for some ϵ > 0. Moreover, fY |X(Q(η, x)|x) > 0.

Assumption 1.2 comprises standard conditions for the asymptotic analysis of the local
linear quantile estimator. A continuous second-order derivative of Q(η, x) with respect
to x is required to control the bias introduced by approximating the possibly nonlinear
function Q(η, · ) with its first-order Taylor expansion. The restrictions on the density
fX(x) ensure that there are observations around the estimation point. The restrictions on
the conditional density fY |X(y|x) ensure that the conditional η-quantile function can be
precisely estimated.

Assumption 1.3. (a) ∂2
xm(η, x) is continuous in x on X ; (b) Var(Y |X = x, Y ≤ Q(η, x))

is finite, positive, and continuous in x on X ; (c) E[|Y |2+ξ1(Y ≤ Q(η,X))|X = x] is
bounded uniformly over x in X for some ξ > 0.

Assumption 1.3 is a natural adaptation of the standard conditions for the local linear
estimator in the nonparametric mean regression to the problem of estimating truncated
conditional expectation functions. Even if the function Q(η, · ) was known, a continuous
second-order derivative of m(η, x) with respect to x would be required to control the bias
introduced by approximating the function m(η, · ) with its first-order Taylor expansion.
Parts (b) and (c) are needed to obtain asymptotic normality.

Assumption 1.4. (a) The kernel k is a bounded and symmetric density function with
compact support, say [−1, 1]; (b) As n → ∞, h → 0, a → 0, nh → ∞, and na → ∞.

The restrictions on the kernel are standard. The requirements on the bandwidths are
necessary for ensuring consistency.
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1.3.2. Asymptotic Distribution. In this section, I analyze the asymptotic properties of
my estimator. The key result is that the feasible estimator m̂ is asymptotically equivalent
to the oracle estimator employing the true function Q(η, · ), which is given by

m̃(η, x0;h) = e⊤
1 arg min

(β0,β1)

n∑
i=1

kh(Xi − x0)(ψi(η,Q(η,Xi)) − β0 − β1(Xi − x0))2.

This asymptotic equivalence result is stated in Theorem 1.1.

Theorem 1.1. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then

R(η, x0; a, h) ≡ m̂(η, x0; a, h) − m̃(η, x0;h) = Op(wn(nh)−1/2 + w2
n),

where wn = a2 + h2 + (a + h)(a3n)−1/2. In particular, if a ≍ h, then R(η, x0; a, h) =
Op(h4 + (nh)−1).

The remainder R(η, x0; a, h) is driven by the estimation error from the first stage on the
interval X (x0, h) ≡ [x0 − h, x0 + h] ∩ X , which is relevant for the second-stage estimator.
There are two sources of this estimation error. First, the function Q(η, · ) is replaced
with its local linear approximation, which results in an error of order O(h2). Second, the
intercept and slope of this approximation are estimated at rates Op(a2 + (an)−1/2) and
Op(a+ (a3n)−1/2), respectively.7 As a result, the estimated conditional quantile function
satisfies

sup
x∈X (x0,h)

|Q̂ll(η, x;x0, a) −Q(η, x)| = Op(wn). (1.3.1)

If h(nh)−1/3 ≺ a, then wn → 0, and R(η, x0; a, h) is of order smaller than Op(wn). This
low sensitivity to the first-stage estimation error is obtained by construction, owing to the
use of an orthogonal moment.

Theorem 1.1 holds regardless of whether the variance of the outcome variable is finite or
infinite. If Assumption 1.3 holds in addition to the assumptions of Theorem 1.1, then the
asymptotic normal distribution follows from the standard theory of local linear estimation
(e.g. Masry and Fan, 1997). If the variance of the outcome variable is infinite, then the
asymptotic distribution can be obtained under alternative assumptions following the steps
of Linton and Xiao (2013). I focus on the former case.

The asymptotic distribution is presented in Corollary 1.1. It involves typical kernel
constants, which differ depending on whether x0 lies in the interior or on the boundary of
the support of X, but I leave this dependence implicit in the notation. If x0 lies in the
interior of X , I define µ =

∫
v2k(v)dv and κ =

∫
k(v)2dv. If x0 lies on the boundary of X ,

I define µ = (µ̄2
2 − µ̄1µ̄3)/(µ̄2µ̄0 − µ̄2

1) and κ =
∫∞

0 (k(v)(µ̄1v− µ̄2))2dv/(µ̄2µ̄0 − µ̄2
1)2, where

µ̄j =
∫∞

0 vjk(v)dv.
7In fact, these are the only properties of the first-stage estimator required in the proof of Theorem 1.1.
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Corollary 1.1. Suppose that Assumptions 1.1–1.4 hold, and h(nh)−1/6 ≺ a ≺
√
h, e.g.,

a = h. Then
√
nh
(
m̂(η, x0; a, h) −m(η, x0) − B(η, x0, h)

)
d−→ N (0, V (η, x0)),

where

B(η, x0, h) = 1
2µ ∂

2
xm(η, x0)h2 + op(h2),

V (η, x0) = κ

ηfX(x0)
(
Var(Y |Y ≤ Q(η, x0), X = x0) + (1 − η)

(
Q(η, x0) −m(η, x0)

)2) .
The additional conditions imposed on the bandwidths ensure that the remainder

R(η, x0; a, h) is of order op(h2 + (nh)−1/2), and as such, it does not affect the first-order
asymptotic distribution of m̂. These conditions admit certain degrees of both under- and
oversmoothing in the first stage relative to the second stage. For example, if h ≍ n−1/5,
then I require that n−1/3 ≺ a ≺ n−1/10. Subject to these restrictions, the choice of the
first-stage bandwidth does not affect the first-order asymptotic distribution. In practice,
the two bandwidths can be set equal.

As in the standard nonparametric regression, the leading bias is proportional to the
second derivative of the function that is being estimated. The variance is fully analogous
to the variance of the unconditional truncated mean.

1.4. DISCUSSION

In this section, I discuss statistical inference based on the asymptotic result in Corollary 1.1,
estimation with an estimated quantile level, and related approaches.

1.4.1. Inference. The asymptotic distribution obtained in Corollary 1.1 forms the basis for
conducting statistical inference. As in the standard nonparametric regression, constructing
a confidence interval (CI) requires estimating the variance and accounting for the bias. The
asymptotic variance V (η, x0) can be consistently estimated using the Eicker-Huber-White
(EHW) estimator based on the residuals from the second stage. Let ŝe(h) denote the
resulting estimate of the standard error. The asymptotic bias can be handled in any of
the three following ways adapted from the nonparametric regression literature.

The first, classic approach is called undersmoothing (US). It relies on choosing a ‘small’
bandwidth, which ensures that the bias is negligible. If h ≺ n−1/5, or equivalently nh5 → 0,
then the bias is of smaller order than the standard error. As a result, an asymptotically
valid 1 − α CI can be formed as

CIUS
α = [m̂(η, x0;h, h) ± z1−α/2 · ŝe(h)], (1.4.1)
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where zu is the u-quantile of the standard normal distribution. The two further approaches
allow for bandwidths of order n−1/5. This case is relevant as it covers, i.a., the bandwidth
optimal in terms of the asymptotic mean squared error.

The second approach is analogous to the robust bias corrections proposed by Calonico
et al. (2014). It involves subtracting an estimate of the leading bias term and accounting
for the additional variation in the bias-corrected estimator when forming a CI. The
bias correction term can be constructed using the estimator of ∂2

xm(η, x0) proposed in
Section 1.A.2. The CI takes the form as in (1.4.1), except that a bias-corrected estimator
and an adjusted standard error are used.

The third approach follows Armstrong and Kolesár (2020), who propose ‘honest’ CIs
that account for the largest possible bias under restrictions on the smoothness of the
function that is being estimated. Suppose that |∂2

xm(η, x0)| is bounded by some known
constant M . Then the leading bias term is bounded in absolute value by 1

2 |µ|Mh2. It
follows from Armstrong and Kolesár (2020) that an asymptotically valid 1 − α confidence
interval can be formed as

CIα = [m̂(η, x0;h, h) ± cv1−α(r̂(h)) · ŝe(h)], (1.4.2)

where r̂(h) = 1
2 |µ|Mh2/ŝe(h) and cv1−α(t) is the 1 − α quantile of the folded normal

distribution |N (t, 1)|.8 One can also account for the maximal bias of the oracle estimator
conditional on the realizations of the covariate. The bandwidth can be chosen so as to
minimize the worst-case mean squared error or the length of the CI. Implementation
of bandwidth selectors and of the CIs requires imposing a bound on ∂2

xm(η, x0). See
Armstrong and Kolesár (2020) and Noack and Rothe (2021) for discussions of the choice
of the smoothness constant in the standard nonparametric regression.

1.4.2. Estimated Truncation Quantile Level. In some applications, the truncation
quantile level of interest has to be estimated from the data. In this section, I study the
properties of my estimator evaluated at an estimated truncation quantile level. Specifically,
under a high-level assumption on the estimator η̂ of η, I provide an expansion of the
estimator m̂(η̂, x0) about the estimator m̂(η, x0). This result can be used on a case-by-case
basis to derive the asymptotic distribution of m̂(η̂, x0) for specific estimators η̂. I analyze
two such examples in Section 1.6.

To keep the exposition transparent, I restrict the analysis to bandwidths such that
a ≍ h. In comparison to Theorem 1.1, I impose two further assumptions. First, I require
that the estimator η̂ converges at a rate not slower than the estimator m̂(η, x0; a, h) does.

8I do not discuss coverage properties uniform in the data generating processes, which would require
ensuring that the remainder in Theorem 1.1 is uniformly small.
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Assumption 1.5. There exists a deterministic sequence ηn such that ηn − η = O(h2) and
η̂ − ηn = Op

(
(nh)−1/2

)
.

Second, I slightly strengthen Assumption 1.2(a), which is needed to control the bias of
the first-stage local linear quantile estimator for quantile levels close to η.

Assumption 1.6. ∂2
xQ(u, x) is continuous in u and x on [η− ϵ, η+ ϵ] × X for some ϵ > 0.

Theorem 1.2 provides an expansion of the estimator with an estimated truncation
quantile level about the estimator using the true quantile level.

Theorem 1.2. Suppose that Assumptions 1.1–1.6 hold and a ≍ h. Then

m̂(η̂, x0; a, h) = m̃(η, x0;h) + C(η, x0)(η̂ − η) +Op(h4 + (nh)−1),

where C(η, x0) = ∂ηm(η, x0) = 1
η
(Q(η, x0) −m(η, x0)).

The coefficient on (η̂ − η) in the above expansion is equal to the derivative of m(η, x0)
with respect to the truncation quantile level, which is in line with Lemma 1 of Shorack
et al. (1974) and Proposition 3 of Lee (2009), who study the unconditional truncated mean
with random trimming proportions. In Theorem, 1.2 it is essential that η < 1, assumed in
Assumption 1.1(b). Otherwise, if Y has unbounded support, the derivative ∂ηm(η, x0) is
infinite, and the expansion in Theorem 1.2 is not valid.

1.4.3. Related Approaches. Local linear methods can be used to construct two further
estimators, which have not been formally studied in the literature so far. I discuss them
briefly in this section, and I provide a detailed asymptotic analysis in Appendix 1.B.
I argue that the first one has an undesirable property in that it is not translation invariant.
The second one has good asymptotic properties only in one special case, when the same
bandwidth is used in both stages.

The non-orthogonal conditional moment (NM) in (1.1.2) motivates running a local
linear regression without the second term included in the generated outcome variable
based on the orthogonal moment. Let

m̂NM(η, x0; a, h)

= e⊤
1 arg min

(β0,β1)

n∑
i=1

kh(Xi − x0)
(

1
η
Yi1(Yi ≤ Q̂ll(η,Xi;x0, a)) − β0 − β1(Xi − x0)

)2

.

Under assumptions, this estimator is consistent and asymptotically normal. However, it
has one unappealing property—it is not translation invariant. Adding a constant to all
outcomes and subtracting it from the result can yield a different estimate than applying
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the estimator to the original data.9 The estimator m̂ is free of this deficiency.
Another estimator, motivated by the definition of the estimand in (1.1.1), can be

obtained by running a local linear regression on a truncated sample (TS) restricted to
observations that fall below the estimated conditional η-quantile function.10 Let

m̂T S(η, x0; a, h)

= e⊤
1 arg min

(β0,β1)

n∑
i=1

kh(Xi − x0)
(
Yi − β0 − β1(Xi − x0)

)2
1(Yi ≤ Q̂ll(η,Xi;x0, a)).

This estimator is translation invariant. Unlike in the case of m̂, the asymptotic distribution
of m̂T S explicitly depends on the first-stage bandwidth, and in general it involves more
complicated bias and variance formulas than those in Corollary 1.1. Only in the special case
when the bandwidths in both stages are equal, is m̂T S asymptotically equivalent to the oracle
estimator m̃, and hence it has the asymptotic distribution given in Corollary 1.1. However,
for boundary points, the remainder in the Bahadur representation of m̂T S(η, x0;h, h) is
in general of larger order than Op(h4 + (nh)−1) obtained in Theorem 1.1 for bandwidths
converging at the same rates.

The estimator based on the truncated sample with equal bandwidths corresponds most
closely to the unconditional truncated mean, where the same (full) sample is used to first
estimate the quantile and then to calculate the truncated mean. However, I advocate using
the estimator m̂, as it makes the parallel between estimation of conditional expectation
functions and truncated conditional expectation functions explicit.11 The very small
remainder in Theorem 1.1 provides a strong theoretical justification for conducting inference
as if the oracle estimator was available.

I remark that the two-stage procedure yielding m̂T S with equal bandwidths provides
an intuitive decomposition of the asymptotic variance V (η, x0) defined in Corollary 1.1.
The asymptotic variance of the infeasible local linear estimator using observations with
Yi ≤ Q(η,Xi) equals κ

ηfX(x0)Var(Y |Y ≤ Q(η, x0), X = x0), which is the first component
of V (η, x0). The second, strictly positive, component of V (η, x0) is due to the first-step
estimation.12

9This difference is asymptotically very small in the case when the same bandwidth is used in both
stages, but even then, the estimator is not numerically translation invariant.

10This approach has been proposed in a working paper by Gerard et al. (2016), but they do not derive
its asymptotic distribution.

11Standard inference methods cannot be simply applied to the truncated sample.
12An analogous decomposition holds for the unconditional truncated mean. A similar point is also made

by Dimitriadis et al. (2019, Remark 2.9) in a parametric model.
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1.5. MONTE CARLO STUDY

In this section, I present simulation evidence for two claims. First, I show that the feasible
estimator m̂ is close to the oracle estimator m̃ in terms of the mean squared difference.
Second, I show that inference based on m̂ performs almost identically as inference based
on the oracle estimator m̃. In this simulation study, I use the third approach discussed
in Section 1.4.1, which exploits a bound on ∂2

xm(η, x).13 The qualitative conclusions
about the very similar performance of the feasible and oracle estimators are the same for
undersmoothing and robust bias corrections.

I generate data from a location-scale model of the form

Y = m(X) + sd(X)ε, (1.5.1)

where X is uniformly distributed on [−1, 1] and ε ∼ N (0, 1). I consider three specifications
for the conditional expectation function, which were used by Armstrong and Kolesár (2020)
in their Monte Carlo study comparing different inference methods. Let

m1(x) = x2 − 2s(|x| − 0.25),

m2(x) = x2 − 2s(|x| − 0.2) + 2s(|x| − 0.5) − 2s(|x| − 0.65),

m3(x) = (x+ 1)2 − 2s(x+ 0.2) + 2s(x− 0.2) − 2s(x− 0.4) + 2s(x− 0.7) − 0.92,

where s(x) = max{x, 0}2 is the square of the plus function. These functions are depicted
in Figure 1.1. Their second derivatives are bounded in absolute value by M = 2. I consider
homoskedastic and hetersokedastic residuals, induced by functions sd1(x) = 0.5 and
sd2(x) = 0.5 + x, respectively.

Design 1
Design 2

Design 3

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 1.5
x

mj(x)

Figure 1.1: Conditional expectation functions mj(x).
13In simulations, I account for the exact worst-case bias of the oracle estimator conditional on the

realizations of the covariate, rather than only for the leading bias term.
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Due to normality of the residuals, the truncated conditional expectation functions have
a simple, closed-form expression. It holds that

m(η, x) = m(x) − ϕ(qη)
η

sd(x), (1.5.2)

where ϕ(·) is the density and qη is the η-quantile of the standard normal distribution,
respectively. With homoskedastic residuals, the truncated conditional expectation functions
have the same shape as the respective conditional expectation functions, but they are
shifted downwards. With heteroskedastic residuals, the slopes change as well, but this
type of heteroskedasticity does not affect the curvature. Figure 1.2 illustrates that for
η = 0.8 and m(x) = m1(x). Other cases are analogous.

m(x)
m(η, x)

Q(η, x)

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 1.5
x

(a) Homoskedastic case, sd(x) = 0.5.

m(x)

m(η, x)

Q(η, x)

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 1.5
x

(b) Hetersokedastic case, sd(x) = 0.5 · (1 + x).

Figure 1.2: Truncated conditional expectation functions for m(x) = m1(x) and η = 0.8.

In all simulations, the sample size is n = 1, 000, and the number of replications is
S = 10, 000. I estimate truncated conditional expectation functions for x0 = 0 and three
quantile levels, η ∈ {0.2, 0.5, 0.8}. I use the triangular kernel and the EHW variance
estimator.

In Table 1.1, I report the root mean squared error (RMSE) of the oracle estimator m̃
and the feasible estimator m̂, as well as the root mean squared error difference between
the two. The estimators are evaluated with the RMSE-optimal bandwidth chosen for the
oracle estimator using the bandwidth selector of Armstrong and Kolesár (2020) employing
the true smoothness constant (M = 2). In all cases, the difference between the oracle and
feasible estimators is small compared to their mean squared errors.14 Moreover, the results
are very similar in the homoskedastic and heteroskedastic settings, which shows that the
estimator adapts to different slopes of the conditional quantile and truncated expectation
functions very well.

14This qualitative conclusion remains the same when using the true bound multiplied or divided by two.
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Table 1.1: RMSE and root mean squared distance to the oracle.
RMSE Dist. to the oracle

Design for mj: 1 2 3 1 2 3
Homoskedastic errors

η = 0.2 Oracle m̃ 5.044 5.002 5.146 - - -
Feasible m̂ 5.273 5.222 4.965 0.563 0.569 0.575

η = 0.5 Oracle m̃ 4.094 4.068 4.134 - - -
Feasible m̂ 4.202 4.174 4.041 0.277 0.280 0.282

η = 0.8 Oracle m̃ 3.742 3.721 3.759 - - -
Feasible m̂ 3.804 3.782 3.707 0.164 0.165 0.166

Heteroskedastic errors

η = 0.2 Oracle m̃ 5.095 5.032 5.177 - - -
Feasible m̂ 5.306 5.236 5.006 0.548 0.551 0.556

η = 0.5 Oracle m̃ 4.126 4.091 4.157 - - -
Feasible m̂ 4.230 4.192 4.070 0.271 0.271 0.273

η = 0.8 Oracle m̃ 3.766 3.742 3.782 - - -
Feasible m̂ 3.825 3.800 3.731 0.161 0.160 0.161

Notes: All values are multiplied by 100. The estimators are evaluated with the
RMSE-optimal bandwidth for the oracle estimator based on the true smoothness
constant. The sample size is n = 1, 000, and the number of simulations is
S = 10, 000.

In Table 1.2, I present results regarding the bandwidth choice as well as empirical
coverage and length of 95% confidence intervals. Here, I also use the true smoothness
constant (M = 2). The bandwidth selector for the feasible estimator chooses virtually the
same bandwidth as would be chosen for the oracle estimator, and the coverage is nearly
identical. I note that even for the oracle estimator, the CI based on the true smoothness
constant can have coverage below the nominal confidence level despite correctly accounting
for maximal bias. The reason for that is that although Y is conditionally normally
distributed, the outcome variable ψ(η,Q(η,X)) is not. The non-normality is more severe
for lower truncation quantile levels. In Appendix 1.D, I discuss a rule of thumb for choosing
the smoothness constant, which performs well in this simulation setting.

1.6. APPLICATIONS

I discuss two empirical settings in which my estimator can be applied: (i) sharp regression
discontinuity designs with a manipulated running variable and (ii) program evaluation
under sample selection. They involve estimated truncation quantile levels.

1.6.1. Sharp Regression Discontinuity Designs with Manipulation. Gerard et al.
(2020) study regression discontinuity (RD) designs with a manipulated running variable.
They develop a complex estimation approach applicable to fuzzy RD designs, which
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Table 1.2: Coverage, average bandwidth, and average length of the 95% CI.
Coverage Bandwidth CI length

Design for mj: 1 2 3 1 2 3 1 2 3
Homoskedastic errors

η = 0.2 Oracle m̃ 92.1 92.4 96.1 0.373 0.372 0.369 0.099 0.099 0.099
Feasible m̂ 92.1 92.3 96.1 0.366 0.368 0.374 0.100 0.100 0.098

η = 0.5 Oracle m̃ 93.5 93.7 96.0 0.334 0.334 0.333 0.080 0.080 0.080
Feasible m̂ 93.6 93.8 95.9 0.331 0.332 0.335 0.081 0.081 0.080

η = 0.8 Oracle m̃ 94.4 94.6 95.7 0.319 0.319 0.318 0.073 0.073 0.073
Feasible m̂ 94.4 94.5 95.9 0.318 0.318 0.320 0.074 0.074 0.073

Heteroskedastic errors

η = 0.2 Oracle m̃ 92.1 92.7 96.3 0.382 0.384 0.379 0.100 0.100 0.100
Feasible m̂ 92.5 93.0 96.1 0.375 0.380 0.385 0.101 0.101 0.099

η = 0.5 Oracle m̃ 93.4 93.8 96.2 0.341 0.344 0.341 0.081 0.081 0.081
Feasible m̂ 93.6 94.0 96.0 0.337 0.342 0.344 0.081 0.081 0.080

η = 0.8 Oracle m̃ 94.4 94.6 95.8 0.325 0.328 0.326 0.074 0.074 0.074
Feasible m̂ 94.4 94.6 95.8 0.323 0.327 0.328 0.074 0.074 0.074

Notes: The estimators are evaluated with their respective RMSE-optimal bandwidths based on
the true smoothness constant. The sample size is n = 1, 000, and the number of simulations is
S = 10, 000.

encompass sharp RD designs as a special case. Their inference is based on a bootstrap
procedure. I study a simpler approach tailored specifically to sharp RD designs, which
allows me to derive the asymptotic distribution of the estimator of the bounds.

Partial Identification under Manipulation. In a sharp RD design, the treatment is assigned
and taken up if and only if a special covariate, the running variable, exceeds a fixed
cutoff value. If the distribution of units’ potential outcomes varies smoothly with the
running variable around the cutoff, then the (local to the cutoff) average treatment effect
is identified by the difference in average outcomes of the treated and untreated units whose
realization of the running variable is just to the right or just to the left of the cutoff,
respectively. The key identifying assumption, however, is often questionable if the running
variable is not exogenously determined.

To allow for violations of the smoothness assumption, Gerard et al. (2020) develop a
framework where there are two unobservable types of units: always-assigned units, for
which the realization of the running variable is always to the right of the cutoff, and
hence they are assigned the treatment; and potentially-assigned units, whose density of
the running variable is smooth around the cutoff, and hence they satisfy the standard
assumptions of an RD design. Gerard et al. (2020) show that the average treatment effect
for the subpopulation of potentially-assigned units at the cutoff, denoted by Γ, is partially
identified. Under their behavioral model, the share of always-assigned units just to the
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right of the cutoff, denoted by τ , is identified by the discontinuity in the density of the
running variable at the cutoff as

τ = 1 − f(x−
0 )

f(x+
0 ) ,

where x0 is the cutoff value.15 Given τ , the sharp bounds on Γ are obtained by considering
the ‘extreme’ scenarios in which the always-assigned units constitute the proportion τ of
the units with the lowest or the highest outcomes among the treated. The resulting lower
and upper bound are given by:

ΓL = E[Y |X = x+
0 , Y ≤ Q(1 − τ, x+

0 )] − E[Y |X = x−
0 ],

ΓU = E[Y |X = x+
0 , Y ≥ Q(τ, x+

0 )] − E[Y |X = x−
0 ].

Estimation and Inference. I discuss the main ingredients of the bounds estimator and
its asymptotic properties. The details are given in Appendix 1.C.1. The bounds ΓL

and ΓU involve truncated conditional expectation functions, which I estimate using the
estimator m̂ developed in this paper.16 Since τ is the proportion of truncated data, the
quantile level η in the previous sections corresponds to 1 − τ , i.e. η is the proportion of
potentially-assigned units just to the right of the cutoff. The first step is to estimate τ .
The density limits can be estimated using estimators such as the linear smoother of the
histogram (Cheng, 1997; McCrary, 2008), the linear smoother of the empirical density
function (Jones, 1993; Lejeune and Sarda, 1992), or the local quadratic smoother of the
empirical distribution function of (Cattaneo et al., 2020).

Under regularity conditions, the resulting estimator of the truncation quantile level,
η̂ = 1 − τ̂ , satisfies the high-level assumption of Theorem 1.2. Moreover, since η̂ depends
only on the running variable, it is conditionally uncorrelated with the estimators of the
truncated conditional expectations with known η, which simplifies the asymptotic variance
formula. The conditional expectation just to the left of the cutoff, E[Y |X = x−

0 ], can be
estimated using a standard local linear estimator. The estimators of the bounds have an
asymptotically normal distribution, which can be used to form confidence intervals.

Empirical Application. I evaluate the procedure that I propose by implementing it for the
empirical application of Gerard et al. (2020).17 They investigate the effect of unemployment
insurance (UI) benefits on the formal reemployment in Brazil. They exploit the rule that
a worker involuntarily laid off from a private-sector firm is eligible for the UI benefit only
if there was at least 16 months between the date of her layoff and the date of the last

15For a generic function g(·), I put g(x+
0 ) = limx→x+

0
g(x) and g(x−

0 ) = limx→x−
0

g(x).
16Estimation with truncation from below can be performed using the procedure developed for estimation

with truncation from above by taking the negative of the estimator applied to the data {Xi, −Yi}n
i=1.

17The authors kindly implemented my procedure on their restricted-use data for comparison purposes.
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layoff after which she applied for and drew UI benefits. This rule creates a discontinuity in
the eligibility for UI benefits, which is reflected in a 70pp increase in the actual take-up of
UI benefits. In the following, I focus on an intention-to-treat analysis, where the eligibility
for UI benefits is the treatment, and the outcome of interest is the duration without a
formal job after the layoff.

(a) Frequency. (b) Duration without a formal job.

Figure 1.3: Graphical evidence for the intention-to-treat analysis.
Notes: The dots represent the frequency (left panel) and the average duration of unemployment censored
at 24 months (right panel) by day. The figure is based on 169,575 observations. Source: Gerard et al.
(2020).

Despite the 16-month rule being rather arbitrary, Gerard et al. (2020) point out the
following ways in which violations of the standard RD assumptions may arise in this
setup. Some workers may provoke their layoffs or ask their employers to report their
quit as involuntary once they become eligible for a UI benefit. Other workers may have
managed to delay their layoff to a date when they were eligible for the UI benefit. All
theses workers are always-assigned units in the manipulation framework outlined in the
previous subsection.

Figure 1.3 reproduces the graphical evidence for this RD design. The running variable
is the difference in days between the layoff date and the eligibility date, so that the cutoff
is at 0. In the left panel, I present the density of the running variable. The share of
always-assigned units is estimated to be 6.4%, which is relatively well separated from
zero. This is essential for the good quality of the normal approximation of the asymptotic
distribution of τ̂ . In the right panel, the dots represent the average outcome by day (of all
observations). There is a marked jump in the mean duration without a formal job at the
cutoff. I note that a substantial share, about 12–14%, of duration outcomes is censored at
24 months. This, however, does not require any adjustment in my estimation and inference
procedure.

Following Gerard et al. (2020), I conduct two types of analysis. First, I estimate
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bounds on Γ using an estimated proportion of the always-assigned units to the right of the
cutoff. Second, I conduct a sensitivity analysis, where I report bounds for different levels
of potential manipulation. I report my results along with the original estimates of Gerard
et al. (2020). Their estimator is based on a local linear estimator of the conditional c.d.f.,
and they conduct inference via bootstrap. All estimators use a 30-day bandwidth, and the
confidence intervals are formally justified by undersmoothing.

In Table 1.3, I present estimates of the bounds and the 95% confidence intervals for
Γ with estimated τ . As a reference point, the point estimate ignoring the possibility
of manipulation indicates that the eligibility for UI benefits increases the duration of
unemployment by about 62 days. When accounting for manipulation, however, the
estimated identified set spans the range from 31 to 81 days. In the second part of the
analysis, I do inference presuming a certain hypothetical, fixed degree of manipulation
in the data. The results are presented in Figure 1.4. The vertical black line marks the
estimated proportion of always-assigned units just to the right of the cutoff.

Table 1.3: Estimated effects of UI benefits on the duration without a formal job in days.
Results of Gerard et al. (2020) My results
Estimate 95% CI Estimate 95% CI

Share of always-assigned units 0.064 [0.038; 0.089]
LATE: Ignoring manipulation 61.9 [55.7; 68.1] 61.9 [55.5; 68.3]
LATE: Bounds for Γ [31.4; 80.9] [18.9; 89.6] [31.4; 80.9] [19.4; 89.5]

Note: There are 102,791 observations in the 30-day estimation window.
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(a) Procedure of Gerard et al. (2020).
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(b) Estimation with m̂.

Figure 1.4: Fixed-manipulation inference.
Notes: The horizontal axis displays the hypothetical proportion of potentially-assigned workers. The solid
lines present the estimates of the bounds and the dashed lines mark 95% confidence intervals. The figures
are based on 102,791 observations.
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The results are nearly identical when using the procedure of Gerard et al. (2020) and
mine. This similarity, however, is specific to this dataset, where the conditional quantile
functions at the truncation quantile levels are flat. I show in Appendix 1.B.3 that compared
to my estimator, approaches based on first-stage estimates of the conditional c.d.f. have
an additional bias term when the conditional quantile function has a nonzero slope.

1.6.2. Conditional Lee Bounds. Lee (2009) studies the effect of a job training program
on wage rates. In this analysis, he uses conditional estimates to narrow down the bounds
on the unconditional effect (see also Semenova, 2020). The conditional treatment effects,
however, may be of interest in their own right.

Partial Identification of the Wage Effect. Evaluation of the wage effect of a job training
program is complicated by the fact that job training affects not only the wage rates but also
the employment status. As a result, individuals in the treatment and control groups are
not comparable conditional on being employed even if the treatment was random assigned.
Lee (2009) derives bounds on the wage effect for the subpopulation of always-observed
individuals, i.e. those who would work regardless of whether they obtained the treatment.
In the first step, he identifies the proportion of individuals whose employment status is
affected by the treatment status. By random assignment to the program, this proportion
is given by the difference in the employment rates in the treatment and control group.
If the training program weakly encourages to work, then the bounds on the wage rates
of the always-observed in the treatment group are obtained by considering the extreme
scenarios in which the always-observed individuals have the highest or the lowest wage
rates among the employed.18 This reasoning holds unconditionally as well as conditionally
on covariates.

To state these bounds formally, let D be the treatment indicator and S the employment
indicator. Further, let X be some additional covariate. The conditional proportion of
individuals among the employed in the treatment group who are employed if and only if
they are treated is identified as

p(x) = 1 − P(S = 1|D = 0, X = x)
P(S = 1|D = 1, X = x) .

The lower and upper bounds on the local average treatment effect on wage rates are given
by (Lee, 2009, Proposition 1b)

∆L(x) = E[Y |D = 1, S = 1, Y ≤ QDS(1 − p(x), x), X = x] − E[Y |D = 0, S = 1, X = x],

∆U(x) = E[Y |D = 1, S = 1, Y ≥ QDS(p(x), x), X = x] − E[Y |D = 0, S = 1, X = x],
18If the treatment discourages from working, then the control group would need to be truncated.

24



where QDS(u, x) denotes the u-quantile of Y conditional on D = 1, S = 1, and X = x.
Note that p(x) is the proportion of data to be truncated conditional on X = x, so that
η = 1 − p(x) in the notation from Section 1.2.

Lee (2009) conducts an intention-to-treat analysis, where the assignment to the training
program is the treatment itself. Chen and Flores (2015) derive bounds on the treatment
effect for the subpopulation of always-employed compliers, i.e. the individuals who comply
with their treatment assignment and would be employed whether or not they obtained the
treatment. Their bounds also involve truncated expectations. My estimator could be also
applied to estimate the conditional versions of these bounds.

Estimation and Inference. I discuss the main ingredients of the bounds estimator. The
details are given in Appendix 1.C.2. The conditional probabilities P(S = 1|D = d,X = x)
can be estimated using a local linear estimator with Si as the outcome and Xi as a regressor,
run on the sample restricted to observations with Di = d for d ∈ {0, 1},. Under regularity
conditions, the resulting estimator η̂ = 1 − p̂(x0) satisfies the high-level assumption of
Theorem 1.2. The truncated conditional expectations in the definition of ∆L(x) and
∆U(x) can be estimated using the estimator proposed in this paper and the conditional
expectation function in the control group can be estimated using the standard local linear
estimator. Restricting the samples based on the values of indicators Si and Di does not
cause any complications in the asymptotic analysis. The estimators of the bounds have an
asymptotically normal distribution, which can be used to form confidence intervals.

0.0
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Usual weekly earnings at baseline

p(x)

(a) The proportion of the employed induced to
work by the treatment.

-0.2

0.0

0.2
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Usual weekly earnings at baseline

LATE

(b) Bounds on the LATE for the always
observed (log wages).

Figure 1.5: Conditional Lee bounds for the Job Corps program.
Notes: The solid lines present the estimates of the bounds on the average treatment effect conditional on
usual weekly earnings at baseline. The dashed lines mark pointwise 95% confidence intervals.
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Empirical Application. I evaluate the effect of the job training offered under the Job Corps
program in the United States. I use data from the National Job Corps Study conducted
in mid 90s. I follow Lee (2009) closely in terms of the sample definition. The individuals
who applied to the program were followed for four years after random assignment. There
are 3599 individuals in the control group and 5546 in the treatment group, giving a total
of 9145 observations. I investigate the effect on wage rates four years after the random
assignment, conditioning on the usual weekly earnings at the most recent job reported at
the baseline.

The results are presented in Figure 1.5. The bandwidth is selected based on smoothness
constants calibrated through the procedure described in Appendix 1.D. The point estimates
indicate that the treatment encourages taking up employment. The bounds on the
treatment effect on wage rates are relatively flat for low weakly earnings at the baseline,
where they are very similar to the unconditional estimates of Lee (2009). I note that there
is a mass point in the distribution of the covariate at zero, but this does not invalidate the
results.

1.7. CONCLUSIONS

I propose a nonparametric estimator of truncated conditional expectation functions based
on an orthogonal conditional moment and local linear methods. When the truncation
quantile level is known, I show that the feasible estimator is asymptotically equivalent
to the oracle estimator, which uses the true conditional quantile function, and I find its
asymptotic distribution. I also consider estimation with an estimated truncation quantile
level. I considered estimation in two empirical settings: (i) sharp regression discontinuity
designs with a manipulated running variable and (ii) program evaluation with sample
selection.

26



Appendix

1.A. EXTENSIONS

In the main text, I consider local linear procedures with one covariate. It is straightforward
to generalize the results to allow for a vector of covariates, and to use an arbitrary
order of polynomials. I provide extensions in these two directions separately to avoid
cumbersome notation, and to highlight different orders of the remainder term in the
respective asymptotic equivalence results.

1.A.1. Multivariate Case. Let d be the dimension of X, and let a = (a1, ..., ad) and
h = (h1, ..., hd) be vectors of bandwidths. Let k(v) = ∏d

j=1 K(vj) be a d-dimensional
product kernel built from the univariate kernel function K(·). I put |h| = ∏d

j=1 hj and
kh(v) = ∏d

j=1 K(vj/hj)/hj, and similarly for a.
In the first step, I run a multivariate local linear quantile regression,q̂0(η, x0; a)

q̂1(η, x0; a)

 = arg min
β0,β1

n∑
i=1

ρη(Yi − β0 − β⊤
1 (Xi − x0))ka(Xi − x0).

Further,
Q̂ll(η, x;x0, a) = q̂0(η, x0; a) + q̂1(η, x0; a)⊤(x− x0).

Finally,

m̂(η, x0; a, h) = e⊤
1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)(ψi(η, Q̂ll(η,Xi;x0, a)) − β0 − β⊤
1 (Xi − x0))2,

where e1 = (1, 0, ..., 0)⊤ is a (d + 1)-dimensional vector. Likewise, the oracle estimator
m̃(η, x0;h) is defined as above but with ψi(η,Q(η,Xi)) as the outcome variable.

I maintain the smoothness assumptions on Q(η, · ) with the understanding that for
boundary points the derivatives exist in the directions in which x can be perturbed within
X . The assumptions on the kernel and the bandwidths are as follows.

Assumption 1.4*. (a) Kernel: K is a bounded, symmetric density function with compact
support, say [−1, 1]; (b) As n → ∞, maxj hj → 0, maxj aj → 0, n|h| → ∞, and n|a| → ∞.
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Theorem 1.A.1 is the multivariate version of Theorem 1.1.

Theorem 1.A.1 (General d). Suppose that Assumptions 1.1, 1.2, and 1.4* hold, hj ≍ aj

for j ∈ {1, ..., d}, and that X is a convex set. Then

m̂(η, x0; a, h) = m̃(η, x0;h) +Op

(∑
j

h4
j + (n|h|)−1

)
.

For d > 1 the variance component of the remainder in Theorem 1.A.1 is of larger order
than it is in Theorem 1.1. However, this result can still be used to obtain asymptotic
normality because the oracle estimator has a bias of order Op(∑h2

j) and variance of order
O((n|h|)−1/2), which are smaller than the remainder in Theorem 1.A.1.

1.A.2. Higher-Order Polynomials and Derivatives. I introduce notation analogous
to that in Section 1.2, making the dependence on p explicit. The local polynomial quantile
estimates are given by

q̂⊤(η, x0; a, p) = arg min
(β0,...,βp)⊤

n∑
i=1

kh(Xi − x0)ρη

(
Yi −

p∑
j=0

1
j!βj(Xi − x0)j

)
.

I define the estimated p-th order approximation of Q(η, · ) as

Q̂(η, x;x0, a, p) =
p∑

j=0

1
j! q̂j(η, x0; a, p)(x− x0)j.

The estimator of the r-th derivative of m(η, x) with respect to x at x0, ∂r
xm(η, x0), is

defined as

m̂r(η, x0; a, h, p)

= e⊤
r+1 arg min

β

n∑
i=1

kh(Xi − x0)
(
ψi(η, Q̂(η,Xi;x0, a, p)) −

p∑
j=0

1
j!βj(Xi − x0)j

)2
,

where er+1 is a (p+ 1)-dimensional vector with 1 at the (r+ 1)-th position and 0 otherwise.
Likewise, the oracle estimator m̃r(η, x0;h, p) is defined as above but with ψi(η,Q(η,Xi))
as the outcome variable.

In order to prove an analog of Theorem 1.1, I require one natural modification of
Assumption 1.2. I assume that the function Q(η, x) is p+1 times continuously differentiable
with respect to x (instead of twice).

Assumption 1.2*. ∂p+1
x Q(η, x) is continuous in x, and Assumptions 2(b) and 2(c) hold.

Theorem 1.A.2. Suppose that Assumptions 1.1, 1.2*, and 1.4 hold, and that h ≍ a.
Then

m̂r(η, x0; a, h, p) = m̃r(η, x0;h, p) +Op(h−r(h2(p+1) + (nh)−1)).

28



With this result, under modified Assumption 1.3, asymptotic normality follows e.g.
from the results of Hong (2003). The stochastic part of hr(m̃r(η, x0;h, p) − ∂r

xm(η, x0)) is
of order Op((nh)−1/2), and its leading bias is of order Op(hp+1) or Op(hp+2). Theorem 1.A.2
allows to characterize the leading bias for all orders p and derivatives r ≤ p, both for
interior and boundary points, except for the local constant estimator for interior points.
Its leading bias is of order Op(h2), which is the same as the order of the remainder in the
above theorem. This case is discussed by Kato (2012).

1.B. ALTERNATIVE APPROACHES

I discuss in detail the two alternative approaches introduced in Section 1.4.3. As reference
points, I also present the asymptotic distributions of the corresponding oracle estimators
employing the true conditional quantile function. Next, for interior points, I contrast my
approach from Section 1.2 with the weighted Nadaraya-Watson estimator of Kato (2012).

1.B.1. Local Linear Estimator Based on a Non-Orthogonal Moment. First, I show
that in the special case when the same bandwidth is used in both stages, the estimator
m̂NM(η, x0;h, h) is asymptotically equivalent to the oracle estimator m̃(η, x0;h), and I give
the exact rate of the remainder. Second, I derive the asymptotic distribution in the general
case allowing for different bandwidths.

Proposition 1.B.1. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then

RNM(η, x0;h) ≡ m̂NM(η, x0;h, h) − m̃(η, x0;h) = Op((h+ (nh)−1/2)(h2 + (nh)−1/2)).

Suppose additionally that f(x) is continuously differentiable and x0 is an interior point,
or that ∂1

xQ(η, x0) = 0. Then RNM(η, x0;h) = Op(h4 + (nh)−1).

Let m̃NM(x0, η;h) be the oracle estimator corresponding to m̂NM(x0, η; a, h), i.e. a local
linear estimator with 1

η
Yi1(Yi ≤ Q(η,Xi)) as the outcome variable.

Proposition 1.B.2. Suppose that Assumptions 1.1–1.4 hold, and h/a → ρ ∈ (0,∞).
Then

(i)
√
nh
(
m̃NM(x0, η;h) −m(η, x0) − B̃NM(η, x0, h)

)
d−→ N (0, Ṽ NM(η, x0)),

where

B̃NM(η, x0, h) = 1
2µ∂

2
xm(η, x0)h2 + op(h2),

Ṽ NM(η, x0) = κ

ηfX(x0)
(
Var(Y |Y ≤ Q(η, x0), X = x0) + (1 − η)m(η, x0)2

)
.

(ii)
√
nh
(
m̂NM(x0, η; a, h) −m(η, x0) − BNM(η, x0, a, h)

)
d−→ N (0, V NM(η, x0, ρ)),
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where

BNM(η, x0, a, h) = 1
2µ

(
∂2

xm(η, x0)h2 + CNM(η, x0)∂2
xQ(η, x0)(a2 − h2)

)
+ op(h2),

V NM(η, x0, ρ) = κ

ηfX(x0)
Var(Y |Y ≤ Q(η, x0), X = x0) + 1 − η

ηf(x0)(µ0µ2 − µ2
1)2

×
∫

D

(
k(v)(µ2 − µ1v)1

η
m(η, x0) + ρk(vρ)(µ2 − µ1vρ)

1
η
Q(η, x0)

)2

dv

with CNM(η, x0) = 1
η
fY |X(Q(η, x0)|x0)Q(η, x0), D = [−1, 1] if x0 lies in the interior of X ,

D = [0, 1] if x0 lies on the boundary of X , and µj =
∫

D k(v)vjdv.

Both bandwidths appear in the bias formula and the ratio ρ appears in the asymptotic
variance. When ρ is small, i.e. a is large relative to h, then the variance of the feasible esti-
mator is close to the variance of the oracle estimator because V NM(η, x0, 0) = Ṽ NM(η, x0).

In the proof, I give an expansion of the feasible estimator m̂NM about the infeasible
m̃NM . The bias BNM(η, x0, a, h) differs from the oracle bias due to the fact that, first,
Q(η, · ) is replaced by its local linear approximation, and, second, this approximation is
estimated. The factor CNM(η, x0) equals the derivative of 1

η
E[Y 1(Y ≤ y)|X = x0] with

respect to y evaluated at Q(η, x0),

CNM(η, x0) = d

dy
E
[1
η
Y 1(Y ≤ y)|X = x0

]∣∣∣∣
y=Q(η,x0)

.

1.B.2. Local Linear Estimator on a Truncated Sample. First, I show that in the
special case when the same bandwidth is used in both stages, the estimator m̂T S(η, x0;h, h)
is asymptotically equivalent to the oracle estimator m̃(η, x0;h), and I give the exact rate
of the remainder. Second, I derive the asymptotic distribution in the general case allowing
for different bandwidths.

Proposition 1.B.3. Suppose that Assumptions 1.1–1.4 hold. Then

RT S(η, x0;h) ≡ m̂T S(η, x0;h, h) − m̃(η, x0;h) = Op((h+ (nh)−1/2)(h2 + (nh)−1/2)).

Suppose additionally that f(x) is continuously differentiable and x0 is an interior point,
or that ∂1

xQ(η, x0) = ∂1
xm(η, x0). Then RT S(η, x0;h) = Op(h4 + (nh)−1).

Let m̃T S(x0, η;h) be the oracle estimator corresponding to the estimator m̂T S(x0, η; a, h),
i.e. a local linear estimator using observations with Yi ≤ Q(η,Xi).

Proposition 1.B.4. Suppose that Assumptions 1.1–1.4 hold, and h/a → ρ ∈ (0,∞).
Then
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(i)
√
nh(m̃T S(η, x0;h) −m(η, x0) − B̃T S(η, x0, h)

)
d−→ N (0, Ṽ T S(η, x0)), where

B̃T S(η, x0, h) = 1
2µ∂

2
xm(η, x0)h2 + op(h2),

Ṽ T S(η, x0) = κ

ηfX(x0)
Var(Y |Y ≤ Q(η, x0), X = x0).

(ii)
√
nh(m̂T S(η, x0; a, h) −m(η, x0) − BT S(η, x0, a, h)

)
d−→ N (0, V T S(η, x0, ρ)), where

BT S(η, x0, a, h) = 1
2µ

(
∂2

xm(η, x0)h2 − CT S(η, x0)∂2
xQ(η, x0)(h2 − a2)

)
+ op(h2),

V T S(η, x0, ρ) = κ

ηfX(x0)

(
Var(Y |Y ≤ Q(η, x0), X = x0) + ρ(1 − η)

(
Q(η, x0) −m(η, x0)

)2 )

with CT S(η, x0) = 1
η
fY |X(Q(η, x0)|x0)(Q(η, x0) −m(η, x0)).

As in the case of the estimator using a non-orthogonal moment, both bandwidths
appear in the bias formula, and the ratio ρ appears in the asymptotic variance. When ρ is
small, i.e. a is large relative to h, then the variance of the feasible estimator is close to the
variance of the oracle estimator because V T S(η, x0, 0) = Ṽ T S(η, x0).

The factor CT S(η, x0) equals the derivative of E[Y |X = x0, Y ≤ y] with respect to y
evaluated at Q(η, x0),

CT S(η, x0) = d

dy
E[Y |X = x0, Y ≤ y]

∣∣∣
y=Q(η,x0)

.

1.B.3. Weighted Nadaraya-Watson Estimation for Interior Points. I contrast my
estimator m̂ with the estimator of Kato (2012) based on the weighted Nadaraya-Watson
(WNW) estimator of the conditional c.d.f. For interior points, the WNW estimator is
asymptotically equivalent to the local linear estimator. Additionally, the WNW estimator
of FY |X(y|x0), i.e. applied to the data with 1(Yi ≤ y) as the outcome variable, is monotone
in y, and it lies between 0 and 1. Both these properties are not shared by the local linear
estimator.19 I emphasize that the WNW estimator is not defined for boundary points, but
for interior points the estimator of Kato (2012) bears some similarity with the approaches
developed in this paper.

In the first step, Kato (2012) estimates the conditional c.d.f. as

F̂W NW

Y |X (y|x0;h) =
∑n

i=1 pi(x0)kh(Xi − x0)1(Yi ≤ y)∑n
i=1 pi(x0)kh(Xi − x0)

, (1.B.1)

where pi(x0) ≥ 0 are the empirical likelihood weights, which maximize ∑n
i=1 log(pi(x0))

19Nevertheless, the asymptotic properties remain the same when the weighted Nadaraya-Watson
estimator is replaced with the local linear estimator.
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subject to the constraints ∑n
i=1 pi(x0) = 1 and ∑n

i=1 pi(x0)(Xi − x0)kh(Xi − x0) = 0.20 He
estimates Q(η, x0) as Q̂W NW (η, x0;h) = inf{y : η ≤ F̂W NW

Y |X (y|x0;h)}, and m(η, x0) as

m̂W NW (η, x0;h) =
∑n

i=1 pi(x0)kh(Xi − x0)Yi1(Yi ≤ Q̂W NW (η, x0;h))∑n
i=1 pi(x0)kh(Xi − x0)1(Yi ≤ Q̂W NW (η, x0;h))

,

which is essentially the WNW estimator with 1
η
Yi1(Yi ≤ Q̂W NW (η, x0;h)) as the outcome

variable. Kato (2012) shows that, under suitable assumptions, the estimator m̂W NW is
asymptotically equivalent to the WNW estimator (and hence to the local linear estimator)
with ψi(η,Q(η, x0)) as the outcome variable. In consequence, it is asymptotically normal
with asymptotic variance V (η, x0) defined in Corollary 1.1,21 and its leading bias is given
by

BW NW (η, x0, h) = 1
2µ

d2

dx2E[ψ(η,Q(η, x0)|X = x)]|x=x0h
2.

The difference between the WNW approach and my approach, for interior points, results
from the fact that they estimate different curves which coincide only at the evaluation
point x0. The two approaches have the same asymptotic variance but their biases are
different, as shown in Proposition 1.B.5.

Proposition 1.B.5. Suppose that FY |X(y|x) is twice continuously differentiable. Then

BW NW (η, x0, h) = B(η, x0, h) − 1
2ηµfY |X(Q(η, x0)|x0)(∂xQ(η, x0))2h2.

The second term of the difference on the right-hand side is always non-negative, so
that BW NW (η, x0, h) ≤ B(η, x0, h). However, which of the two biases is larger in absolute
value, depends on the specific data generating process. For example, it is possible that
BW NW (η, x0, h) = 0 and B(η, x0, h) > 0, or that BW NW (η, x0, h) < 0 and B(η, x0, h) = 0.

However, I remark that in a simple location-scale model with a linear conditional
expectation function and homoskedastic residuals, my estimator has no bias, whereas
|BW NW (η, x0, h)| can be arbitrarily large.

1.C. APPLICATIONS: ESTIMATION AND INFERENCE DETAILS

I formally introduce the estimators of the bounds in RD designs with a manipulated
running variable discussed in Section 1.6.1 and of the conditional Lee bounds discussed in
Section 1.6.2. Their asymptotic distributions follow easily from Theorems 1.1 and 1.2, and
hence are stated without proofs.

20When x0 lies on the boundary, so that all Xi − x0 have the same sign, it is not possible to find
non-negative weights satisfying the last constraint.

21Kato (2012) considers time series data, but the asymptotic variance of his estimator is the same as for
i.i.d. data because of the localization effect (see his discussion following Theorem 1).
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1.C.1. Estimation in RD Designs with Manipulation. I normalize the cutoff to zero.
Let µ̄ = (µ̄2

2 − µ̄1µ̄3)/(µ̄2µ̄0 − µ2
1) and κ̄ =

∫∞
0 (k(v)(µ̄1v − µ̄2))2dv/(µ̄2µ̄0 − µ̄2

1)2, where
µ̄j =

∫∞
0 vjk(v)dv. Further, I define k−

h (v) = 1(v < 0)kh(v) and k+
h (v) = 1(v ≥ 0)kh(v).

The share of always-assigned units among all units just to the right of the cutoff is
estimated as:

τ̂ = max
{
1 − f̂−/f̂+, 0

}
,

where f̂− and f̂+ are estimators of fX(0−) and fX(0+), respectively. In the notation from
the main text, η̂ = 1 − τ̂ = min{f̂−/f̂+, 1}. The density limits can be estimated using,
e.g., the ‘linear’ boundary kernel (Jones, 1993) as

f̂+ = 1
n

n∑
i=1

k+
b (Xi)

µ̄2 − µ̄1|Xi/b|
µ̄2µ̄0 − µ̄2

1
and f̂− = 1

n

n∑
i=1

k−
b (Xi)

µ̄2 − µ̄1|Xi/b|
µ̄2µ̄0 − µ̄2

1
. (1.C.1)

To analyze this estimator, I impose smoothness assumptions on the density.

Assumption 1.7. There exists ϵ > 0 such that f(·) is twice continuously differentiable
on (−ϵ, 0) ∪ (0, ϵ). Moreover, for the limits ∂j

xfX(0+) and ∂j
xfX(0−) exist for j ∈ {0, 1, 2},

and fX(0+), fX(0−) > 0.

Lemma 1.C.1 yields an asymptotical linear representation of η̂.

Lemma 1.C.1. Suppose that Assumptions 1.1, 1.4(a), and 1.7 hold. Moreover, b → 0
and nb → ∞. Then

1
η

(
η̂ − η

)
= f̂− − fX(0−)

fX(0−) − f̂+ − fX(0+)
fX(0+) + o(b2) + op((nb)−1/2).

I note that the asymptotic bias and variance of 1
η

(
η̂ − η

)
are given by

Aη = 1
2 µ̄

(
f ′′

X(0−)
fX(0−) − f ′′

X(0+)
fX(0+)

)
b2 + o(b2) and Wη = κ̄

(
1

fX(0+) + 1
fX(0−)

)
.

These quantities appear in the asymptotic distribution of the bounds. The lemma implies
that for bandwidths b ≍ h this estimator satisfies Assumption 1.5.

Let m(x) = E[Y |X = x], mL(η, x) = E[Y |X = x, Y ≤ Q(η, x)], and mU(η, x) =
E[Y |X = x, Y ≥ Q(1 − η, x)]. The truncated conditional expectations mL(η, 0+) and
mU(η, 0+) are estimated as

m̂L
+(η̂) = e⊤

1 arg min
β0,β1

n∑
i=1

k+
h (Xi)(ψL

i (η̂, Q̂ll,+(η̂, Xi;h)) − β0 − β1Xi)2,

m̂U
+(η̂) = e⊤

1 arg min
β0,β1

n∑
i=1

k+
h (Xi)(ψU

i (η̂, Q̂ll,+(1 − η̂, Xi;h)) − β0 − β1Xi)2,
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where ψL
i (u, q) = ψi(u, q) and ψU

i (u, q) = 1
u
Yi1(q ≤ Yi)− 1

u
q(1(q ≤ Yi)−u). The estimated

quantile function Q̂ll,+ is defined as in Section 1.2, except that it uses only observations to
the right of the cutoff.

The conditional expectation m(x−
0 ) is estimated as

m̂− = e⊤
1 arg min

β0,β1

n∑
i=1

k−
h (Xi)(Yi − β0 − β1Xi)2.

The final estimators of the bounds on Γ are defined as

Γ̂L = m̂L
+(η̂) − m̂− and Γ̂U = m̂U

+(η̂) − m̂−.

The asymptotic analysis requires some natural modifications of Assumptions 1.2 and 1.3
to analyze m̂+

L(η̂) and m̂+
U (η̂). Additionally, I impose standard assumption for the analysis

of m̂−.

Assumption 1.8. For some ϵ > 0 the following hold on (−ϵ, 0). (a) m(x) is twice
continuously differentiable in x, and m(0−), m′(0−) and m′′(0−) exist; (b) Var(Y |X = x)
is continuous and Var(Y |X = x−) exists; (c) There exists ξ > 0 s.t E

[
|Y |2+ξ

∣∣∣X = x
]

is
uniformly bounded.

Proposition 1.C.1 establishes joint convergence of the bounds estimators.

Proposition 1.C.1. Suppose that the Assumptions 1.1–1.4 and 1.6 hold, mutatis mutandis.
Furthermore, Assumptions 1.7 and 1.8 hold, and h/b → ν. Then

√
nh

 Γ̂L − ΓL − (BL
+(η) −B−)

Γ̂U − ΓU − (BU
+(η) −B−)

 d−→ N

0,
 V L

+ (η) + V− Cov+(η) + V−

Cov+(η) + V− V U
+ (η) + V−


 ,

where for ∗ ∈ {L,U}

B∗
+(η) = 1

2 µ̄∂
2
xm

∗(η, 0+)h2 + op(h2) +D∗
+Aη, B− = 1

2 µ̄∂
2
xm(0−)h2 + op(h2),

V ∗
+(η) = κ̄

fX(0+)Var(ψ∗|X = 0+) + ν(D∗
+)2Wη, V− = κ̄

fX(0−)Var(Y |X = 0−),

Cov+(η) = κ̄

fX(0+)Cov(ψL, ψU |X = 0+) + νD+
LD

+
UWη,

with ψL ≡ ψL(η,Q(η,X)), ψU ≡ ψU(η,Q(1 − η,X)), DL
+ ≡ Q(η, 0+) − mL(η, 0+), and

DU
+ ≡ Q(1 − η, 0+) −mU(η, 0+).

Since η̂ is obtained based only on realizations of the covariate, there is no asymptotic
covariance between η̂ and the estimators of the three conditional expectations. The
component in the asymptotic covariance due to estimation of η is negative since DL

+(η) > 0
and DU

−(η) < 0.
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1.C.2. Estimation of Conditional Lee Bounds. The derivation follows the same steps
as for regression discontinuity designs with a manipulated running variable. For d ∈ {0, 1},
let sd(x) = P(S = 1|D = d,X = x). The probability sd(x0) can be estimated using the
standard local linear estimator with the sample restricted to observations with Di = d,

ŝd(x0) = e⊤
1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)(Si − β0 − β1(Xi − x0))21(Di = d). (1.C.2)

Let
η̂(x0) = ŝ0(x0)

ŝ1(x0)
.

To analyze the above estimator, I impose the following assumption.

Assumption 1.9. (a) sd(x) is twice continuously differentiable for d ∈ {0, 1}; (b) E[D|X = x]
is continuous in x.

Lemma 1.C.2. Suppose that Assumptions 1.1, 1.4(a), and 1.9 hold. Moreover, b → 0
and nb → ∞. Then

1
η

(
η̂(x0) − η(x0)

)
= ŝ0(x0) − s0(x0)

s0(x0)
− ŝ1(x0) − s1(x0)

s1(x0)
+ op(b2 + (nb)−1/2).

I note that the asymptotic bias and variance of 1
η

(
η̂ − η

)
are given by

ALee
η = 1

2µ
{
s′′

0(x0)
s0(x0)

− s′′
1(x0)
s1(x0)

}
b2 + op(b2)

WLee
η = κ

fX(x0)

{
s0(x0)(1 − s0(x0))

P(D = 0|X = x0)s0(x0)2 + s1(x0)(1 − s1(x0))
P(D = 1|X = x0)s1(x0)2

}
.

These quantities appear in the asymptotic distribution of the bounds.
Recall that QDS(u, x) denotes the u-quantile of Y conditional on D = 1, S = 1, and

X = x. Further, let mL
Lee(η, x) = E[Y |X = x, Y ≤ QDS(η, x), D = 1, S = 1], mU

Lee(η, x) =
E[Y |X = x, Y ≥ QDS(1 − η, x), D = 1, S = 1], and mLee(x) = E[Y |X = x,D = 0, S = 1].

The truncated conditional expectations mLee
L (η, x+

0 ) and mLee
U (η, x+

0 ) are estimated as

m̂L
Lee(x0)

= e⊤
1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)SiDi(ψL
i (η̂(x0), Q̂ll

DS(η̂(x0), Xi;x0, h)) − β0 − β1(Xi − x0))2,

m̂U
Lee(x0)

= e⊤
1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)SiDi(ψU
i (η̂(x0), Q̂ll

DS(1 − η̂(x0), Xi;x0, h)) − β0 − β1(Xi − x0))2,

where ψL
i (u, q) = ψi(u, q) and ψU

i (u, q) = 1
u
Yi1(q ≤ Yi) − 1

u
q(1(q ≤ Yi) − u).
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The conditional expectation mLee(x0) is estimated as

m̂Lee(x0) = e⊤
1 arg min

β0,β1

n∑
i=1

kh(Xi − x0)Si(1 −Di)(Yi − β0 − β1(Xi − x0))2.

The final estimators of the bounds on the conditional average treatment effect are defined
as

∆̂L(x0) = m̂L
Lee(x0) − m̂Lee(x0),

∆̂U(x0) = m̂U
Lee(x0) − m̂Lee(x0).

I impose standard assumptions for the analysis of m̂Lee(x0).

Assumption 1.10. (a) ∂2
xmLee(x) is continuous in x; (b) Var(Y |X = x,D = 0, S = 1) is

continuous in x; (c) E
[
|Y |2+ξ|X = x, S = 1, D = 0

]
is bounded uniformly over x ∈ X for

some ξ > 0.

Proposition 1.C.2 establishes joint convergence of the bounds estimators. The depen-
dence on x0 is dropped to ease the notation.

Proposition 1.C.2. Suppose that the Assumptions 1.1–1.4 and 1.6 hold, mutatis mutandis.
Furthermore, Assumptions 1.9 and 1.10 hold, h = O(n−1/5), and h/b → ν. Then

√
nh

∆̂L − ∆L − (BL
Lee −BLee)

∆̂U − ∆U − (BU
Lee −BLee)

 d−→ N

0,
 V L

Lee + VLee CovLee + VLee

CovLee + VLee V U
Lee + VLee


 ,

where for ∗ ∈ {L,U}

B∗
Lee = 1

2µ∂
2
xm

∗
Lee(η(x0), x0)h2 +D∗

LeeA
Lee
η ,

V ∗
Lee = κ

fX(x0)E[SD|X = x0]
Var(ψ∗|X = x0, S = 1, D = 1) + ν(D∗

Lee)2WLee
η ,

CovLee = κ

fX(x0)E[SD|X = x0]
Cov(ψL, ψU |X = x0, S = 1, D = 1) + νDL

LeeD
U
LeeW

Lee
η ,

BLee = 1
2µ∂

2
xm

Lee(x)h2 + op(h2),

VLee = κ

fX(x0)E[S(1 −D)|X = x0]
Var(Y |X = x0, S = 1, D = 0)

with ψL ≡ ψL(η(X), QDS(η(X), X)), ψU ≡ ψU(η(X), QDS(1 − η(X), X)),
DL

Lee ≡ QDS(η(x0), x0)−mL
Lee(η(x0), x0), and DU

Lee ≡ QDS(1−η(x0), x0)−mU
Lee(η(x0), x0).

1.D. RULE OF THUMB FOR THE SMOOTHNESS CONSTANT

Armstrong and Kolesár (2020) propose a rule of thumb to calibrate the bound on the
second derivative of the conditional expectation function. They run a quartic, global
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Table 1.D.1: Coverage, average bandwidth, and average length of the 95% CI.
Coverage Bandwidth CI length

Design for mj: 1 2 3 1 2 3 1 2 3
Homoskedastic errors

η = 0.2 Oracle m̃ 93.6 92.1 95.4 0.231 0.310 0.257 0.128 0.113 0.120
Feasible m̂ 93.4 92.2 95.7 0.227 0.307 0.260 0.128 0.113 0.119

η = 0.5 Oracle m̃ 95.0 93.1 96.0 0.207 0.279 0.231 0.104 0.091 0.098
Feasible m̂ 94.9 93.3 96.1 0.204 0.277 0.233 0.104 0.092 0.098

η = 0.8 Oracle m̃ 95.7 94.0 96.2 0.197 0.266 0.222 0.095 0.083 0.089
Feasible m̂ 95.7 94.0 96.4 0.196 0.265 0.222 0.095 0.084 0.089

Heteroskedastic errors

η = 0.2 Oracle m̃ 93.4 92.6 95.6 0.239 0.310 0.250 0.129 0.115 0.123
Feasible m̂ 93.5 92.9 95.8 0.235 0.307 0.254 0.129 0.116 0.122

η = 0.5 Oracle m̃ 95.0 93.6 96.5 0.213 0.277 0.225 0.104 0.093 0.100
Feasible m̂ 95.1 93.7 96.5 0.210 0.276 0.227 0.105 0.094 0.100

η = 0.8 Oracle m̃ 95.7 94.3 96.6 0.202 0.264 0.215 0.095 0.085 0.091
Feasible m̂ 95.7 94.3 96.7 0.201 0.263 0.216 0.096 0.085 0.092

Notes: Estimators evaluated with their respective RMSE-optimal bandwidths. The sample size
is n = 1, 000, and the number of simulations is S = 10, 000. The smoothness constant is selected
using the rule of thumb discussed in Section 1.D.

regression, and estimate the maximal second derivative based on it. I adapt this approach
to calibrate the bound on ∂2

xm(η, x). In the first stage, I run a global, quartic quantile
regression. I denote the resulting estimator as Q̂glob(η,Xi). In the second stage, I run a
global quartic regression with ψi(η, Q̂glob(η,Xi)) as the outcome variable.

I investigate the performance of this procedure in the setting from Section 1.5. The
results are presented in Table 1.D.1. In this example, the rule of thumb leads to CIs with
good coverage properties. This is consistent with the findings of Armstrong and Kolesár
(2020).

1.E. PROOFS OF THE RESULTS IN THE MAIN TEXT

I define additional, shorthand notation. Let q0(η) = Q(η, x0), q1(η) = ∂1
xQ(η, x0), q̂0(η; a) =

q̂0(η, x0; a), q̂1(η; a) = q̂1(η, x0; a), Q̂(η, x; a) = Q̂ll(η, x;x0, a), kh,i = kh(Xi − x0), Xh,i =
(Xi − x0)/h, X̃h,i = (1, Xh,i)⊤, Q∗(η, x) = q0(η) + q1(η)(x− x0), Li(b) = b0 + b1(Xi − x0),
Y ′

i (b) = Yi − Li(b), and Xh = X (x0, h). I put Cf ≡ sup{|fY |X(y, x)| : x ∈ X and y ∈
[Q(η, x) ± ϵ]} < ∞, where ϵ is as in Assumption 1.2. Two-dimensional vectors are indexed
starting with zero, so that, e.g., b = (b0, b1), q(η) = (q0(η), q1(η)).

1.E.1. Basic lemmas. I state some auxiliary results which are used throughout the proofs.

Lemma 1.E.1. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then for j ∈ N it holds
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that
Sn,j ≡ 1

n

n∑
i=1

kh,iX
j
h,i = µjfX(x0) + op(1).

If additionally x0 is an interior point, fX(x) is continuously differentiable, and j is odd,
then Sn,j = Op(h+ (nh)−1/2).

Proof. Standard kernel calculations.

Lemma 1.E.2. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then for j ∈ N it holds
that

1
n

n∑
i=1

kh,iX
j
h,i{1(Yi ≤ Q(η,Xi)) − η} = Op((nh)−1/2).

Proof. Standard kernel calculations.

Lemma 1.E.3. Suppose that Assumptions 1.1–1.4 hold. Then for j ∈ N it holds that

1
n

n∑
i=1

kh,iX
j
h,i(Yi −m(η,Xi))1(Yi ≤ Q(η,Xi)) = Op((nh)−1/2).

Proof. Standard kernel calculations.

Lemma 1.E.4. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then aj(q̂j(η; a) −
qj(η)) = Op(a2 + (an)−1/2) for j ∈ {0, 1}.

Proof. The lemma follows, e.g., from Theorem 2 of Fan et al. (1994). It also follows
from the proof of Lemma 1.E.10, where I allow for the truncation quantile level to be
estimated.

Lemma 1.E.5. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then

sup
x∈Xh

|Q̂(η, x; a) −Q(η, x)| = Op(wn),

where wn = a2 + h2 + (a+ h)(a3n)−1/2, as defined in Theorem 1.1.

Proof. Using a second-order Taylor expansion of Q(η, x) in x with a mean-value form of
the remainder and the triangle inequality, I obtain that

sup
x∈Xh

|Q̂(η, x; a) −Q(η, x)|

≤ |q̂0(η; a) − q0(η)| + sup
x∈Xh

|(q̂1(η; a) − q1(η))(x− x0)| + sup
x,x̃∈Xh

|12∂
2
xQ(η, x̃)(x− x0)2|

= Op(a2 + (an)−1/2 + h(a+ (a3n)−1/2) + h2).
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Lemma 1.E.6. Suppose that Assumptions 1.1, 1.2, and 1.4 hold, and Q̃ is a, possibly
random, function such that supx∈Xh

|Q̃(η, x) −Q(η, x)| = Op(wn). For j ∈ N it holds that:

(i) 1
n

n∑
i=1

kh,iX
j
h,i(Yi −Q(η,Xi)){1(Yi ≤ Q̃(η,Xi)) − 1(Yi ≤ Q(η,Xi))} = Op

(
w2

n

)
,

(ii) 1
n

n∑
i=1

kh,iX
j
h,i(Q̃(η,Xi) −Q(η,Xi)){1(Yi ≤ Q̃(η,Xi)) − 1(Yi ≤ Q(η,Xi))} = Op

(
w2

n

)
,

(iii) 1
n

n∑
i=1

kh,iX
j
h,i(1(Yi ≤ Q(η,Xi)) − 1(Yi ≤ Q̃(η,Xi))) = Op(wn).

Proof. I prove only part (i). Parts (ii) and (iii) follow analogously. The proof is similar to
the proof of Lemma A.3 of Kato (2012). For l > 0 let

Mn(l) = {g : X → R s.t. sup
x∈Xh

|g(x) −Q(η, x)| ≤ lwn}.

For a function g : X → R, let

Un(g) ≡
∣∣∣∣∣ 1n

n∑
i=1

kh,iX
j
h,i(Yi −Q(η,Xi))

{
1(Yi ≤ g(Xi)) − 1(Yi ≤ Q(η,Xi))

}∣∣∣∣∣.
It suffices to show that for each fixed l > 0

sup
g∈Mn(l)

Un(g) = Op(w2
n). (1.E.1)

It holds that

Un(g) ≤ 1
n

n∑
i=1

kh,i|Xj
h,i|(Yi −Q(η,Xi))1(Q(η,Xi) < Yi ≤ g(Xi))

+ 1
n

n∑
i=1

kh,i|Xj
h,i|(Q(η,Xi) − Yi)1(g(Xi) < Yi ≤ Q(η,Xi)).

Let Un,1(g) and Un,2(g) denote the first and the second element in the above sum, respec-
tively. They are both nonnegative. It holds that

sup
g∈Mn(l)

Un,1(g) = 1
n

n∑
i=1

kh,i|Xj
h,i|(Yi −Q(η,Xi))1(Q(η,Xi) < Yi ≤ Q(η,Xi) + lwn) ≡ Ūn,1.

Further,

E
[
Ūn,1

]
≤ E

[
kh(X − x0)|Xj

h|lwn1(Q(η,X) < Y ≤ Q(η,X) + lwn)
]

≤ Cf l
2w2

n

∫
kh(x− x0)f(x)dx = O(w2

n).

Since Ūn,1 is nonnegative, it follows from Markov’s inequality that Ūn,1 = Op(w2
n). Applying

the same reasoning to Un,2(g) yields (1.E.1).
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1.E.2. Proofs of Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1. It holds that

m̂(η, x0; a, h) = Sn,2Ψn,0(a) − Sn,1Ψn,1(a)
Sn,2Sn,0 − S2

n,1
and m̃(η, x0;h) = Sn,2Ψ̃n,0 − Sn,1Ψ̃n,1

Sn,2Sn,0 − S2
n,1

,

where Ψn,j(a) = 1
n

∑n
i=1 kh,iX

j
h,iψi(η, Q̂(η,Xi; a)), Ψ̃n,j = 1

n

∑n
i=1 kh,iX

j
h,iψi(η,Q(η,Xi)),

and Sn,j is defined in Lemma 1.E.1. Hence,

m̂(η, x0; a, h) − m̃(η, x0;h) = Sn,2(Ψn,0(a) − Ψ̃n,0) − Sn,1(Ψn,1(a) − Ψ̃n,1)
Sn,2Sn,0 − S2

n,1
.

The denominator converges to a positive number. I consider the numerator. For
j ∈ {0, 1}, it holds that

Ψn,j(a) − Ψ̃n,j = 1
n

n∑
i=1

kh,iX
j
h,i

{1
η
Yi{1(Yi ≤ Q̂(η,Xi; a)) − 1(Yi ≤ Q(η,Xi))}

− 1
η
Q̂(η,Xi; a)1(Yi ≤ Q̂(η,Xi; a)) + 1

η
Q(η,Xi)1(Yi ≤ Q(η,Xi))

± 1
η
Q̂(η,Xi; a)1(Yi ≤ Q(η,Xi)) − (Q(η,Xi) − Q̂(η,Xi; a))

}
= 1
n

n∑
i=1

kh,iX
j
h,i

{1
η

(Q(η,Xi) − Q̂(η,Xi; a)){1(Yi ≤ Q(η,Xi)) − η}
}

+Op(w2
n),

where the last equality follows from Lemma 1.E.6. Further,

1
n

n∑
i=1
kh,iX

j
h,i

{1
η

(Q(η,Xi) − Q̂(η,Xi; a)){1(Yi ≤ Q(η,Xi)) − η}
}

= 1
η

(q0(η) − q̂0(η; a)) 1
n

n∑
i=1

kh,iX
j
h,i{1(Yi ≤ Q(η,Xi)) − η}

+ 1
η
h(q1(η) − q̂1(η; a)) 1

n

n∑
i=1

kh,iX
j+1
h,i {1(Yi ≤ Q(η,Xi)) − η}

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Q(η,Xi) − q0(η) − q1(η)(Xi − x0)){1(Yi ≤ Q(η,Xi)) − η}.

Let L1, L2, and L3 denote the three terms above. By Lemmas 1.E.2 and 1.E.4, it holds
that L1 = Op(a2 + (na)−1/2)Op((nh)−1/2) and L2 = h/aOp(a2 + (na)−1/2)Op((nh)−1/2).
Moreover, E[L3|Xn] = 0 and Var(L3|Xn) = Op(h4(nh)−1), which implies that L3 =
Op(h2(nh)−1/2). In total,

Ψn,j(a) − Ψ̃n,j = Op(a2 + (na)−1/2 + h(a+ (a3n)−1/2) + h2)Op((nh)−1/2) +Op(w2
n)

= Op(wn(nh)−1/2 + w2
n),
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which concludes the proof.

Remark 1.1. In the proof of Theorem 1.1, I do not explicitly use the orthogonality
condition, as stated in equation (1.1.5). However, this property is the reason why the
terms with q̂0(η; a) and q̂1(η; a) are negligible in the expansion of Ψn,j(a) − Ψ̃n,j . Note that

d

dg
E[Y 1(Y ≤ g) − g(1(Y ≤ g) − η)|X = x0] = −E[1(Y ≤ g) − η|X = x0],

which evaluated at g = Q(η, x0) is zero.

Proof of Corollary 1.1. First, I show that under the assumptions made on the bandwidths,
the remainder in Theorem 1.1 is of order op(h2 + (nh)−1/2). Recall that wn = a2 + h2 +
(a+ h)(a3n)−1/2. By Assumption 1.4(b), it holds that

Op(wn(nh)−1/2 + w2
n) = Op

(
wn(nh)−1/2 + a4 + h4 + (a2 + h2)(a3n)−1

)
= Op

(
h(a3n)−1/2(nh)−1/2 + a4 + (an)−1 + h2(a3n)−1

)
+ op(h2 + (nh)−1/2).

The following equivalence statements hold

h2/(a3n) → 0 ⇐⇒ (nh)−1h ≺ a,

(nh)1/2/(an) → 0 ⇐⇒ (nh)−1/2h ≺ a,

a4/h2 → 0 ⇐⇒ a ≺
√
h,

(nh)1/2h2/(a3n) → 0 ⇐⇒ (nh)−1/6h ≺ a.

The conditions on the right-hand sides hold under the assumptions made.
The lemma follows from standard theory applied to the infeasible estimator m̃(η, x0;h).

The variance is derived as follows

Var(ψ(η,Q(η,X))|X = x0) = E
[(
ψ(η,Q(η,X)) −m(η, x0)

)2 |X = x0
]

= E

(1
η

(Y −m(η,X))1(Y ≤ Q(η,X))

− 1
η

(Q(η,X) −m(η,X))(η − 1(Y ≤ Q(η,X)))
)2 ∣∣∣∣X = x0


= 1
η

Var(Y |Y ≤ Q(η,X), X = x0) + (1 − η)
η

(Q(η, x0) −m(η, x0))2.

1.E.3. Proof of Theorem 1.2. The main burden of the proof lies in studying the
properties of the local linear quantile estimator with estimated quantile level, q̂(η̂;h). In
Lemmas 1.E.7 and 1.E.10, I show that, under the assumptions made, it has the same rate
of convergence as the local linear quantile estimator with a known quantile level.

In the proof, I use the bandwidth-dependent estimand of the local linear quantile
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estimator defined as:

(q∗
0(u;h), q∗

1(u;h))⊤ = arg min
(b0,b1)∈R2

E
[
ρu(Yi − b0 − b1(X − x0))k(Xh)

]
. (1.E.2)

Further, I put Q∗(u, x;h) = q∗
0(u;h) + q∗

1(u;h)(x− x0).

Lemma 1.E.7. Suppose that the assumptions of Theorem 1.2 hold. Then for j ∈ {0, 1},

(i)hj(q∗
j (η;h) − qj(η)) = O(h2) and (ii)hj(q∗

j (η̂;h) − q∗
j (η;h)) = O(h2) +Op(vn).

Proof. This lemma follows from derivations of Guerre and Sabbah (2012).22 I outline only
the main steps. It follows from the proof of their Theorem 1 that hj(q∗

j (u;h)−qj(u)) = O(h2)
uniformly in u over some sufficiently small neighborhood of η. Part (i) follows.

Further, the first-order condition of the population minimization problem in 1.E.2 is

E
[
kh(X − x0)X̃h{1(Y ≤ Q∗(u,X;h)) − u}

]
= 0.

Using the implicit function theorem and continuity of fY |X(y|x), it follows that hjq∗
j (u;h)

is continuously differentiable with ∂1
uq

∗
0(u;h)

h∂1
uq

∗
1(u;h)

 = E
[
kh(X − x0)fY |X(Q∗(u,X;h)|X)X̃hX̃

⊤
h

]−1
E
[
kh(X − x0)X̃h

]
,

which is bounded uniformly over u in a sufficiently small neighborhood of η. Hence,
part (ii) follows using the mean value theorem.

Next, I prove two equicontinuity results, which are then used to show convergence of
the criterion function of the local linear quantile estimator with an estimated quantile level.
I introduce the following additional notation. Let vn = (nh)−1/2, Mn(q, l) = {b : |b0 −q0| ≤
l0vn and h|b1 − q1| ≤ l1vn}. For a vector l = (l0, l1)⊤, I put |l| ≡ ||l||1 = |l0| + |l1|.

Lemma 1.E.8. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Let Ai,n = vnX̃
⊤
h,iθ for

some θ and

T (b) =
n∑

i=1
k(Xh,i)(Y ′

i (b) − Ai,n){1(Y ′
i (b) ≤ Ai,n) − 1(Y ′

i (b) ≤ 0)},

T̄ (b) = T (b) − E[T (b)].

For any sequence qn → q(η) and constant M > 0 it holds that

sup
b∈Mn(qn,M)

|T̄ (b)| = op(1).

22Their derivations are more involved as they provide convergence results uniform in the evaluation
point, bandwidth, and quantile level. In my setting, x0 is fixed, and h is a fixed sequence.
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Proof. I will show that (i) T̄ (qn) = op(1) and (ii) supb∈Mn(qn,M) |T̄ (b) − T̄ (qn)| = op(1).
Part (i). Note that

T (b) =
n∑

i=1
k(Xh,i)(Y ′

i (b) − Ai,n){1(0 < Y ′
i (b) ≤ Ai,n) − 1(Ai,n < Y ′

i (b) ≤ 0)}.

Using the fact that fY |X(y|x) is bounded over (x, y) in a sufficiently small neighborhood
of (x0, Q(η, x0)), I obtain that

Var(T (qn)) ≤
n∑

i=1
E
[
k(Xh,i)2A2

i,n1(−|Ai,n| < Y ′
i (qn) ≤ |Ai,n|)

]
= O(nhv3

n) = o(1).

Hence, T̄ (qn) = op(1).
Part (ii). I follow the lines of the proof of Lemma 4.1 of Bickel (1975). A similar claim has
been shown by Ruppert and Carroll (1978, Lemma A.4). Let ∆i(q, b) ≡ Y ′

i (q) − Y ′
i (b) =

Li(b− q). It holds that

T (q) − T (b) =
n∑

i=1
k(Xh,i)

[
(Y ′

i (q) − Y ′
i (b)){1(0 < Y ′

i (q) ≤ Ai,n) − 1(Ai,n < Y ′
i (q) ≤ 0)}

+ (Y ′
i (b) − Ai,n){1(Y ′

i (q) ≤ Ai,n) − 1(Y ′
i (q) ≤ 0) − 1(Y ′

i (b) ≤ Ai,n) + 1(Y ′
i (b) ≤ 0)}

]
=

n∑
i=1

k(Xh,i)
[
∆i(q, b){1(0 < Y ′

i (q) ≤ Ai,n) − 1(Ai,n < Y ′
i (q) ≤ 0)}

+ (Y ′
i (q) − Ai,n − ∆i(q, b))

× {1(∆i(q, b) < Y ′
i (q) − Ai,n ≤ 0) − 1(0 < Y ′

i (q) − Ai,n ≤ ∆i(q, b))}

+ (Y ′
i (q) − Ai,n − ∆i(q, b)){1(0 < Y ′

i (q) ≤ ∆i(q, b)) − 1(∆i(q, b) < Y ′
i (q) ≤ 0)}

]
.

For l = (l0, l1), let bn,0(l) = qn,0 + l0vn and bn,1(l) = qn,1 + l1vn/h. Note that for Xi ∈ Xh,
it holds that |∆i(qn, bn(l))| ≤ vn|l|. Therefore,

Var(T (bn(l)) − T (qn)) ≤3
n∑

i=1
E
[
k(Xh,i)2(vn|l|)21(−|Ai,n| < Y ′

i (qn) ≤ |Ai,n|)

+ k(Xh,i)2(vn|l|)21(−vn|l| < Y ′
i (qn) − Ai,n ≤ vn|l|)

+ k(Xh,i)2(vn|l| + |Ai,n|)21(−vn|l| < Y ′
i (qn) ≤ vn|l|)

]
=O(nhv3

n).

Hence, for any fixed l,
T̄ (bn(l)) − T̄ (qn) = op(1). (1.E.3)

For a fixed δ > 0 decompose Mn(qn,M) as the union of cubes with vertices on the grid
Jn(δ) = {qn + δMvn(j0, j1/h)⊤ : ji ∈ {0,±1, ...,±⌈1/δ⌉} for i = 0, 1}, where ⌈·⌉ is the
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ceiling function. For b ∈ Mn(qn,M), let Vn(b) be the lowest vertex of the cube containing b.
The result in (1.E.3) implies that

max
{
|T̄ (Vn(b)) − T̄ (qn)| : b ∈ Mn(qn,M)

}
= op(1).

Next, I consider the behavior on a cube. Note that for Xi ∈ Xh, it holds that

sup{|∆i(Vn(b), b)| : b ∈ Mn(Vn(b), δM)} = 2δMvn.

Further,

|T (Vn(b)) − T (b)| ≤
n∑

i=1
k(Xh,i){2δMvn1(−|Ai,n| < Y ′

i (Vn(b)) ≤ |Ai,n|)

+ 2δMvn{1(−2δMvn ≤ Y ′
i (Vn(b)) − Ai,n ≤ 2δMvn)

+ (2δMvn + |Ai,n|)1(−2δMvn ≤ Y ′
i (Vn(b)) ≤ 2δMvn)}

≡ T̃ (Vn(b), δ).

The reasoning leading to (1.E.3) yields also that

max
b∈Jn(δ)

|T̃ (b, δ) − E[T̃ (b, δ)]| = op(1).

Moreover,
max

b∈Jn(δ)
E[T̃ (b, δ)] ≤ δO(1).

uniformly in δ ∈ (0, 1), which concludes the proof.

Lemma 1.E.9. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Let

S(b) = 1√
nh

n∑
i=1

k(Xh,i)Xj
h,i1(Y ′

i (b) ≤ 0),

S̄(b) = S(b) − E[S(b)].

For any sequence qn → q(η) and constant M > 0 it holds that

sup
b∈Mn(qn,M)

|S̄(b) − S̄(qn)| = op(1) and |S̄(qn) − S̄(q(η))| = op(1).

Proof. The proof is similar to the proof of Lemma 1.E.8. I am using the notation defined
therein. I note that

S(q) − S(b) = 1√
nh

n∑
i=1

k(Xh,i)Xj
h,i{1(Y ′

i (q) ≤ ∆i(q, b)) − 1(Y ′
i (q) ≤ 0)}.

It holds that Var(S(qn) − S(q(η))) = o(1). Hence, the second claim follows.
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For any fixed l it holds that

Var(S(bn(l)) − S(qn)) = Op(vn) = op(1).

Hence,
max

{
|S̄(Vn(b)) − S̄(qn)| : b ∈ Mn(qn,M)

}
= op(1).

Moreover,

|S(Vn(b)) − S(b)| ≤ 1√
nh

n∑
i=1

k(Xh,i)|Xh,i|1(−2δMvn ≤ Y ′
i (Vn(b)) ≤ 2δMvn)

≡ S̃(Vn(b), δ)

It holds
max
b∈J(δ)

|S̃(b, δ) − E[S̃(b, δ)]| = Op(vn) = op(1).

Finally,
max
b∈J(δ)

E[S̃(b, δ)] ≤ δOp(1).

uniformly in δ, which concludes the proof.

Lemma 1.E.10. Suppose that the assumptions of Theorem 1.2 hold. Then for j ∈ {0, 1},
it holds that hj(q̂j(η̂;h) − qj(η̂;h)) = Op((nh)−1/2).

Proof. Recall that ρu(v) = v(u− 1(v ≤ 0)) and

q̂(u;h) = arg min
(b0,b1)∈R2

n∑
i=1

ρu(Yi − b0 − b1(Xi − x0))k(Xh,i).

Let θ̂n(u) =
√
nh(q̂0(u;h) − q∗

0(u;h), h(q̂1(u;h) − q∗
1(u;h)))⊤. For a given u, the vector

θ̂n(u) minimizes the function

Gn(u, θ) =
n∑

i=1

[
ρu(Y ∗

i (u;h) − vnθ
⊤X̃h,i) − ρu(Y ∗

i (u;h))
]
k(Xh,i),

where Y ∗
i (u;h) = Yi −Q∗(u,Xi;h). Let

Wn(u) = vn

n∑
i=1

k(Xh,i)X̃h,i{u− 1(Y ∗
i (u;h) ≤ 0)},

Tn(u, θ) = −
n∑

i=1
k(Xh,i)(Y ∗

i (u;h) − vnθ
⊤X̃h,i)

×
{
1(Y ∗

i (u;h) − vnθ
⊤X̃h,i < 0) − 1(Y ∗

i (u;h) < 0)
}
.
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It holds that Gn(u, θ) = Tn(u, θ) − θ⊤Wn(u). Further,

E[Tn(u, θ)|X1, ..., Xn] = −
n∑

i=1
k(Xh,i)

∫ vnθ⊤X̃h,i

0

(
y − vnθ

⊤X̃h,i

)
fY ∗(u)|X(y|Xi)dy

= 1
2

n∑
i=1

k(Xh,i)fY ∗(u;h)|X(z̃i(u)|Xi)(vnθ
⊤X̃h,i)2

= 1
2n

n∑
i=1

kh,i(θ⊤X̃h,i)2(fY |X(q0(u)|x0) + ξi,n),

where z̃i(u) lies between 0 and vnθ
⊤X̃h,i, and ξi,n = o(1) uniformly in i ∈ {1, ..., n} and u

in a sufficiently small neighborhood of η. Hence, it follows from Lemma 1.E.8 that

Tn(η̂, θ) = θ⊤Sθ + op(1),

where

S = fY |X(q0(η)|x0)fX(x0)
µ0 µ1

µ1 µ2

 .
The convex, random function T̂n(θ) ≡ Tn(η̂, θ) converges pointwise in θ to the convex
function θ⊤Sθ. By the convexity lemma (Pollard, 1991), this convergence is uniform on
any compact set. The function 1

2θ
⊤Sθ − θ⊤Wn(η̂) is minimized at S−1Wn(η̂). Since by

construction E[Wn(u)] = 0, Lemma 1.E.9 implies that

Wn(η̂) = Wn(η) + op(1) = Op(1).

Using convexity again, the consistency argument of Pollard (1991) implies that θ̂n(η̂) =
S−1Wn(η̂) + op(1), which concludes the proof.

Proof of Theorem 1.2. Since a ≍ h, wn = h2+(nh)−1/2 ≡ rn. By Lemmas 1.E.7 and 1.E.10,
q̂(η̂; a) has the same rate of convergence as q̂(η; a) has. Hence, the proof of Theorem 1.1
immediately implies that

1
n

n∑
i=1

kh,iX
j
h,iψi(η, Q̂(η̂, Xi; a)) − 1

n

n∑
i=1

kh,iX
j
h,iψi(η,Q(η,Xi)) = Op(r2

n)

for j ∈ {0, 1}. Moreover,

1
n

n∑
i=1

kh,iX
j
h,iψi(η̂, Q̂(η̂, Xi; a)) − 1

n

n∑
i=1

kh,iX
j
h,iψi(η, Q̂(η̂, Xi; a))

= 1
n

n∑
i=1

kh,iX
j
h,i(Yi − Q̂(η̂, Xi; a))1(Yi ≤ Q̂(η̂, Xi; a))

(
1
η̂

− 1
η

)

=
 1
n

n∑
i=1

kh,iX
j
h,i(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)) +Op(rn)

(1
η̂

− 1
η

)
,
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where the second equality follows from Lemma 1.E.6 and the convergence rate of q̂(η̂; a).
Further, using the convergence rate of the local linear estimator, it follows that

m̂(η̂, x0; a, h) = m̃(η, x0;h) + η(m(η, x0) −Q(η, x0) +Op(rn))
(

1
η̂

− 1
η

)
.

The proof is concluded by noting that(1
η̂

− 1
η

)
= − 1

η2 (η̂ − η) +Op(r2
n).

1.F. PROOFS OF THE RESULTS IN THE APPENDIX

1.F.1. Proofs of Theorems 1.A.1 and 1.A.2. These proofs are very similar to the
proof of Theorem 1.1 and are therefore omitted.

1.F.2. Proofs of Propositions 1.B.1 and 1.B.3. Under the assumptions of these
propositions, a = h, and hence wn = h2 + (nh)−1/2 ≡ rn.

An essential result used to prove these two propositions, not required for the proof
of Theorem 1.1, are the following approximate first-order conditions of the local linear
quantile estimator.

Lemma 1.F.1. Suppose that Assumptions 1.1 and 1.4 hold. Then for j ∈ {0, 1} it holds
that

1
n

n∑
i=1

kh,iX
j
h,i(η − 1(Yi ≤ Q̂(η,Xi;h))) = Op((nh)−1).

Proof. Similar claims have been proven by Koenker and Bassett Jr (1978, Theorem 3.3)
and Ruppert and Carroll (1980, Theorem 1). Let

Gn(b) = 1
n

n∑
i=1

kh,iρη(Y ′
i (b)),

where ρη(v) = v[η − 1(v ≤ 0)]. It holds that ∂+
v ρη(v) = η − 1(v < 0) and ∂−

v ρη(v) =
η − 1(v ≤ 0). Therefore, also the left and right derivatives of the criterion function exist.
For j ∈ {0, 1} it holds that

∂+
bj
Gn(b) = h

n

n∑
i=1

kh,iX
j
h,i

(
(1(Y ′

i (b) < 0) − η)1(Xj
h,i < 0) + (1(Y ′

i (b) ≤ 0) − η)1(0 < Xj
h,i)
)
,

∂−
bj
Gn(b) = h

n

n∑
i=1

kh,iX
j
h,i

(
(1(Y ′

i (b) ≤ 0) − η)1(Xj
h,i < 0) + (1(Yi(b) < 0) − η)1(0 < Xj

h,i)
)
.

At the minimum, it holds that ∂−
bj
Gn(q̂(η)) ≤ 0 ≤ ∂+

bj
Gn(q̂(η)). Using these inequalities,
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I obtain the following bounds on the expression of interest:

0 ≤ h

n

n∑
i=1

kh,iX
j
h,i

{
1(Yi ≤ Q̂(η,Xi;h)) − η − 1(Yi = Q̂(η,Xi;h))1(Xj

h,i < 0)
}

≤ ∂+
bj
Gn(q̂(η)) − ∂−

bj
Gn(q̂(η))

= h

n

n∑
i=1

kh,iX
j
h,i

{
1(Yi = Q̂(η,Xi;h))1(0 ≤ Xj

h,i) − 1(Yi = Q̂(η,Xi;h))1(Xj
h,i < 0)

}
.

The lemma follows from the facts that k is bounded with bounded support and
n∑

i=1
1(Yi = Q̂(η,Xi;h)) ≤ 2 w.p. 1

because the probability of having three collinear points in a sample is equal zero.

Proof of Proposition 1.B.1. It holds that

m̂NM(η, x0;h, h) − m̂(η, x0;h, h) = Sn,2(Tn,0 − Ψn,0(h)) − Sn,1(Tn,1 − Ψn,1(h))
Sn,2Sn,0 − S2

n,1

where Tn,j = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
Yi1(Yi ≤ Q̂(η,Xi;h)), and Ψn,j(h) is defined in the proof of

Theorem 1.1. From Lemma 1.F.1 it immediately follows that

Tn,0 − Ψn,0(h) = Op((nh)−1),

Tn,1 − Ψn,1(h) = 1
η
q̂1(η;h)h

n

n∑
i=1

kh,iX
2
h,i(1(Yi ≤ Q̂(η,Xi;h)) − η) +Op((nh)−1)

= 1
η
q1(η)h

n

n∑
i=1

kh,iX
2
h,i(1(Yi ≤ Q̂(η,Xi;h)) − η) +Op(r2

n).

Hence,
m̂NM(η, x0;h, h) − m̂(η, x0;h, h) = hSn,1q1(η)Op(rn) +Op(r2

n),

which, combined with Lemma 1.E.1, concludes the proof.

Proof of Proposition 1.B.3. It holds that

m̂T S(η, x0;h, h) = Ŝn,2Tn,0 − Ŝn,1Tn,1

Ŝn,2Ŝn,0 − Ŝ2
n,1

,

where Ŝn,j = 1
ηn

∑n
i=1 kh,iX

j
h,i1(Yi ≤ Q̂(η,Xi;h)), and Tn,j is defined in the proof of

Proposition 1.B.1. It holds that

Ŝn,2Ŝn,0 − Ŝ2
n,1 = Sn,2Sn,0 − S2

n,1 +Op(rn).

Let m∗(η, x) = m(η, x0) + ∂1
xm(η, x0)(x − x0). By plugging in the expression Yi =
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m∗(η,Xi) + (Yi −m∗(η,Xi)) in the definition of m̂T S(η, x0;h, h), it follows that

m̂T S(η, x0;h, h) = m(η, x0) + Ŝn,2Un,0 − Ŝn,1Un,1

Ŝn,2Ŝn,0 − Ŝ2
n,1

,

where Un,j = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
(Yi −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)).

Lemma 1.E.6 yields that for j ∈ {0, 1}

Un,j = 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)),

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Q(η,Xi) −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)) +Op(r2
n).

Moreover, by Lemma 1.F.1 and a minor modification of Lemma 1.E.6 to handle
Q(η,Xi) −Q∗(η,Xi) it holds that

1
n

n∑
i=1

kh,i
1
η

(Q(η,Xi) −m∗(η,Xi)){1(Yi ≤ Q̂(η,Xi;h)) − η} = Op(r2
n),

1
n

n∑
i=1

kh,iXh,i
1
η

(Q(η,Xi) −m∗(η,Xi)){1(Yi ≤ Q̂(η,Xi;h)) − η}

= 1
η
h(∂1

xQ(η, x0) − ∂1
xm(η, x0))

1
n

n∑
i=1

kh,iX
2
h,i{1(Yi ≤ Q̂(η,Xi;h)) − η} +Op(r2

n)

= h(∂1
xQ(η, x0) − ∂1

xm(η, x0))Op(rn) +Op(r2
n).

Hence,

Un,0 = 1
n

n∑
i=1

kh,i
1
η

(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)) +Q(η,Xi) −m∗(η,Xi) +Op(r2
n),

Un,1 = 1
n

n∑
i=1

kh,iXh,i
1
η

(Yi −Q(η,Xi))1(Yi ≤ Q(η,Xi)) +Q(η,Xi) −m∗(η,Xi)

+ h(∂1
xQ(η, x0) − ∂1

xm(η, x0))Op(rn) +Op(r2
n).

In particular, Un,j = Op(rn), and hence

m̂T S(η, x0;h, h) = m(η, x0) + Sn,2Un,0 − Sn,1Un,1

Sn,2Sn,0 − S2
n,1

= m̃(η, x0;h) + hSn,1(∂1
xQ(η, x0) − ∂1

xm(η, x0))Op(rn) +Op(r2
n),

which, combined with Lemma 1.E.1, concludes the proof.

1.F.3. Proofs of Propositions 1.B.2 and 1.B.4. To prove these propositions, I need
an explicit expansion of the estimators in the coefficients defining the trimming function.
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Lemma 1.F.2. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then

q̂0(η; a) − q0(η) = 1
2µ∂

2
xQ(η, x0)a2 +

1
n

∑n
i=1 ka,i(µ2 − µ1Xa,i)[η − 1(Yi ≤ Q(η,Xi))]

fY |X(q0(η)|x0)f(x0)(µ2µ0 − µ2
1)

+ o(a2) + op((na−1/2)).

Proof. This representation follows from the proof of Theorem 2 of Fan et al. (1994).

Lemma 1.F.3. Suppose that Assumptions 1.1, 1.2, and 1.4 hold. Then for j ∈ N it holds
that

1
n

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q̂(η,Xi; a)) = 1

n

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,ifY |X(Q(η, x0)|x0){q̂0(η; a) − q0(η) + (q̂1(η; a) − q1(η))(Xi − x0)} + op(rn).

Proof. A conditional version of Lemma 1.E.9 implies that

1
n

n∑
i=1

kh,iX
j
h,i

{
1(Yi ≤ Q̂(η,Xi)) − E[1(Y ≤ Li(b)|X = Xi]

∣∣∣
b=q̂(η)

}

= 1
n

n∑
i=1

kh,iX
j
h,i

{
1(Yi ≤ Q∗(η,Xi)) − E[1(Y ≤ Q∗(η,X))|X = Xi]

}
+ op(rn)

The result follows by a Taylor expansion using continuity of fY |X(y|x).

Proof of Proposition 1.B.2. Part (i). The result is an application of standard asymptotic
theory for local linear estimation, using the fact that

E

(1
η
Y 1(Y ≤ Q(η,X)) −m(η,X)

)2

|X = x0


= E

(1
η

(Y −m(η,X))1(Y ≤ Q(η,X)) − 1
η
m(η,X)(η − 1(Y ≤ Q(η,X)))

)2

|X = x0


= 1
η

Var(Y |Y ≤ Q(η,X), X = x0) + (1 − η)
η

m(η, x0)2.

Part (ii). It holds that

m̂NM(η, x0; a, h) = Sn,2Tn,0(a) − Sn,1Tn,1(a)
Sn,2Sn,0 − S2

n,1

where Tn,j(a) = 1
n

∑n
i=1 kh,iX

j
h,i

1
η
Yi1(Yi ≤ Q̂(η,Xi; a)). I consider the numerator. First,
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note that:

Tn,j(a) = 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η
Q∗(η,Xi)1(Yi ≤ Q̂(η,Xi; a)) +Op(r2

n)

Further, using Lemma 1.E.9,

Tn,j(a) = 1
n

n∑
i=1

kh,iX
j
h,i

1
η
Yi1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,ifY |X(q0(η)|x0)

1
η
q0(η){q̂0(η; a) − q0(η) + (q̂1(η; a) − q1(η))(Xi − x0)}

+ 1
n

n∑
i=1

kh,iX
j
h,ifY |X(q0(η)|x0)

1
η
q1(η)(Xi − x0)

× {q̂0(η; a) − q0(η) + (q̂1(η; a) − q1(η))(Xi − x0)} + op(rn).

The last term is of order Op(rnh). Let u∗
i (η) = 1

η
Yi1(Yi ≤ Q∗(η,Xi)) −m∗(η,Xi), e∗

i (η) =
1
η
{η − 1(Yi ≤ Q∗(η,Xi))}, and

En,j(a, h) = 1
n

n∑
i=1

kh,iX
j
h,iu

∗
i (η) + 1

n

n∑
i=1

ka,iX
j
a,i

1
η
q0(η)e∗

i (η).

It follows that

m̂NM(η, x0; a, h) = m(η, x0) + µ2En,0(a, h) − µ1En,1(a, h)
(µ2µ0 − µ2

1)f(x0)
+ op(rn).

Asymptotic normality follows from standard results. The bias expression follows from:

d2

dx2E[u∗(η)|X = x]|x=x0 = ∂2
xm(η, x0) − 1

η
fY |X(q0(η)|x0)q0(η)∂2

xQ(η, x0),

d2

dx2E[e∗(η)|X = x]|x=x0 = 1
η
fY |X(q0(η)|x0)q0(η)∂2

xQ(η, x0).

The variance is calculated as follows. Recall that h/a → ρ. It holds that

Var(u∗(η)|X = x0) = 1
η

Var(Y |Y ≤ Q(η,X), X = x0) + 1 − η

η
m(η, x0)2,

Var(e∗(η)|X = x0) = 1 − η

η
.
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where the first line is derived in part (i) above. Furthermore,

Var
(
kh(Xh)(µ2 − µ1Xh)1

η
m(η, x0)e∗(η) + ka(Xa)(µ2 − µ1Xa)1

η
Q(η, x0)e∗(η)

)

=
∫ [1

h
k
(
x− x0

h

)(
µ2 − µ1

x− x0

h

)1
η
m(η, x0) + 1

a
k
(
x− x0

a

)(
µ2 − µ1

x− x0

a

)1
η
Q(η, x0)

]2

× Var(e∗(η)|X = x)fX(x)dx

= 1
h

∫
D

[
k(v)(µ2 − µ1v)1

η
m(η, x0) + ρk(vρ)(µ2 − µ1vρ)

1
η
Q(η, x0)

]2
dv

× Var(e∗(η)|X = x0)fX(x0)(1 + o(1)),

which concludes the proof.

Proof of Proposition 1.B.4. Part (i). It holds that

m̃T S(η, x0;h) = m(η, x0) + S̃n,2Ũn,0 − S̃n,1Ũn,1

S̃n,2S̃n,0 − S̃2
n,1

,

where

Ũn,j ≡ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −m∗(η,Xi))1(Yi ≤ Q(η,Xi)) = Op(rn),

S̃n,j ≡ 1
ηn

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q(η,Xi)) = µjfX(x0) + op(1).

The result follows from standard theory of local linear estimation.
Part (ii). It holds that

m̂T S(η, x0;h, h) = m(η, x0) + Ŝn,2Un,0(a, h) − Ŝn,1Un,1(a, h)
Ŝn,2Ŝn,0 − Ŝ2

n,1
,

where

Un,j(a, h) = 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi; a)),

Ŝn,j(a) = 1
ηn

n∑
i=1

kh,iX
j
h,i1(Yi ≤ Q̂(η,Xi; a)) = µjfX(x0) + op(1).

Lemma 1.E.6 yields that

Un,j(a, h) = 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Q∗(η,Xi) −m∗(η,Xi))1(Yi ≤ Q̂(η,Xi;h)) +Op(r2
n).
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Furthermore,

Un,j(a, h) = 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Yi −Q∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Q∗(η,Xi) −m∗(η,Xi))1(Yi ≤ Q∗(η,Xi))

+ 1
n

n∑
i=1

kh,iX
j
h,i

1
η

(Q∗(η,Xi) −m∗(η,Xi))fY |X(Q(η, x0)|x0)

× {q̂0(η; a) − q0(η) + (q̂1(η; a) − q1(η))(Xi − x0)} + op(rn).

It follows that

m̂T S(η, x0;h, h) = m(η, x0) +
Ŝn,2U

∗
n,0(a, h) − Ŝn,1U

∗
n,1(a, h)

Ŝn,2Ŝn,0 − Ŝ2
n,1

+ 1
η

(Q∗(η, x0) −m∗(η, x0))fY |X(Q(η, x0)|x0)(q̂0(η; a) − q0(η)),

where U∗
n,j(h) = 1

n

∑n
i=1 kh,iX

j
h,iu

∗∗
i (η) with u∗∗

i (η) = 1
η
(Yi −m∗(η,Xi))1(Yi ≤ Q∗(η,Xi)).

The variance expression follows from the calculations in the proof of Proposition 1.B.2,
and the bias from the fact that

d2

dx2E[u∗∗(η)|X = x]|x=x0 = ∂2
xm(η, x0) − 1

η
fY |X(q0(η)|x0)(q0(η) −m(η, x0))∂2

xQ(η, x0).

1.F.4. Proof of Proposition 1.B.5.

Proof. Note that

l(x) ≡ E[ψ(η,Q(η,X)) − ψ(η,Q(η, x0))|X = x] = 1
η

∫ Q(η,x)

Q(η,x0)
(y −Q(η, x0))fY |X(y|x)dy.

By the Leibniz integral rule, it holds that

l′(x) = 1
η
∂1

xQ(η, x)(Q(η, x) −Q(η, x0))fY |X(Q(η, x)|x)

+ 1
η

∫ Q(η,x)

Q(η,x0)
(y −Q(η, x0))∂xfY |X(y|x)dy.

Furthermore,

l′′(x0) = 1
η

(
∂1

xQ(η, x0)
)2
fY |X(Q(η, x0)|x0),

which concludes the proof.
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CHAPTER 2

Simple Inference in Fuzzy Regression Discontinuity
Designs with a Manipulated Running Variable

Joint work with Christoph Rothe.

2.1. INTRODUCTION

In a regression discontinuity (RD) design, units are assigned a treatment if and only if their
running variable exceeds a fixed cutoff value. If units fully comply with their treatment
assignment, the design is called sharp. Otherwise, the design is called fuzzy. The standard
identification argument in RD designs relies on the assumption that units just to the left
and just to the right of the cutoff are very similar in all aspects except for the treatment
assignment status. This assumption, however, is often questionable if the running variable
is not exogenously determined. For example, suppose that some units can misreport the
value of their running variable and ensure that it falls above the cutoff. In that case, then
the units observed on different sides of the cutoff are no longer be comparable.

To analyze settings where the standard RD assumptions fail, Gerard, Rokkanen, and
Rothe (2020), henceforth GRR, develop a framework where there are two unobservable
types of units: always-assigned units, for which the realization of the running variable is
always to the right of the cutoff, and hence they are assigned the treatment; and potentially-
assigned units, whose density of the running variable is smooth around the cutoff, and
hence they satisfy the standard assumptions of an RD design. GRR show that the average
treatment effect for the potentially-assigned units at the cutoff is partially identified under
this model. In fuzzy RD designs, however, the sharp bounds take a complicated form,
which makes it very difficult to derive the asymptotic distribution of the plug-in estimator
proposed by GRR. In consequence, GRR employ a computationally-intensive bootstrap
procedure to conduct inference.
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In this paper, we consider the manipulation framework of GRR and derive alternative
bounds on the treatment effect of interest. The proposed bounds are not sharp, but they
take a very simple form. We develop an estimator of these bounds and construct confidence
sets for the partially identified parameter. Our procedure can be easily combined with
inference methods available in the nonparametric literature, such as robust bias corrections
(Calonico et al., 2014) or bias-aware inference (Armstrong and Kolesár, 2020).

Our point of departure is the Wald-ratio representation of the local average treatment
effect for the potentially-assigned units. It is given by the ratio of the jumps in the
conditional expectation of the outcome variable and conditional treatment probability at
the cutoff, both of which are calculated for the subpopulation of potentially-assigned units.
In the considered model, the proportion of the always-assigned units among all units just
to the right of the cutoff is identified by the jump in the density of the running variable at
the cutoff. This information can be used to bound the denominator and numerator of the
Wald ratio by considering the extreme scenarios in which the always-assigned units have
the highest or the lowest outcomes among the units just to the right of the cutoff and that
they are all treated or all untreated. Given the identified sets for the denominator and the
numerator, we obtain the set of possible values for the treatment effect. This derivation
resembles the construction of Anderson-Rubin confidence sets, where the null hypothesis
is reformulated in such a way that it does not involve a ratio (Anderson et al., 1949); see
also Noack and Rothe (2021) for an application of Anderson-Rubin-type confidence sets
to fuzzy RD designs. Confidence sets are then constructed by test inversion, where we
test the null hypothesis that a candidate parameter value belongs to the identified set.
The definition of the identified set involves truncated conditional expectations, which we
estimate using the estimator proposed in Chapter 1 of this thesis.

The remainder of this chapter is organized as follows. In Section 2.2, we outline the
manipulation framework of GRR. In Section 2.3, we present a partial identification result.
In Section 2.4, we propose an estimator of the bounds. Confidence sets are proposed in
Section 2.5. In Section 2.6, we presents a simulation study. Section 2.7 concludes.

Throughout the chapter, we use the following notation. For a generic function f(x),
we write f(0+) = limx↓0 f(x) and f(0−) = limx↑0 f(x) for the right and left limit of the
function f(x) at zero, respectively. We also implicitly assume that whenever we take a
limit or an expectation, it exists and is finite.

2.2. MODEL AND OBJECT OF INTEREST

In this section, we briefly outline the manipulation framework of GRR and introduce
the parameter of interest. In the original paper, GRR provide an extensive discussion of
applicability of their model, which we do not repeat here for the sake of brevity.
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We consider a fuzzy RD design, where a unit is assigned the treatment if and only if
their running variable, denoted by Xi, exceeds a fixed cutoff value, which we normalize
to zero. Each unit belongs to one of two groups with the membership indicated by an
unobservable dummy variable Mi ∈ {0, 1}. Units with Mi = 0, called potentially-assigned,
satisfy the assumptions of a valid RD design; see Assumption 2.1 for the precise statement
of these conditions. Units with Mi = 1, called always-assigned, have realization of the
running variable to the right of the cutoff, and hence they are assigned the treatment.

Potentially-assigned units have potential outcomes in the absence and in the presence
of treatment, denoted by Yi(d) for d ∈ {0, 1}, and potential treatment statuses, denoted by
Di(x) for x in the support of Xi. We put D+

i = Di(0+) and D−
i = Di(0−). The observed

treatment status is denoted by the indicator Di, and Yi is the observed outcome variable.
In Assumption 2.1, we restate the assumptions of the model developed by GRR; cf. their
Assumptions 1–3. We drop only the first condition in part (iii) of their Assumption 1, as
it is not relevant for our analysis.

Assumption 2.1. (i) P[Di = 1|Xi = 0+,Mi = 0] > P[Di = 1|Xi = 0−,Mi = 0];
(ii) P[D+

i ≥ D−
i |Xi = 0,Mi = 0] = 1; (iii) E[Yi(d)|D+

i = d1, D−
i = d0, Xi = x,Mi = 0]

and P[D+
i = d1, D−

i = d0|Xi = x,Mi = 0] are continuous in x at 0 for d, d0, d1 ∈ {0, 1};
(iv) FX|M=0(x) is continuously differentiable in x at 0, and the derivative is strictly positive;
(v) P[Xi ≥ 0|Mi = 1] = 1; (vi) FX|M=1(x) is right-differentiable in x at 0.

Parts (i)–(iv) impose standard RD assumptions for the subpopulation of potentially-
assigned units. We assume that treatment assignment has a weakly positive effect on
the treatment take-up for all units, and there are at least some units that take up the
treatment if they are assigned, and not otherwise. We further assume that the distributions
of potential outcomes and potential treatment statuses evolve continuously through the
cutoff. Lastly, the running variable is continuously distributed at the cutoff with positive
and continuous density. Parts (v) and (vi) concern the always-assigned units. Their
running variable takes on values only to the right of the cutoff, which is the defining
feature of this subpopulation. Moreover, it does not have a mass point at the cutoff. If
that was the case, these observations could be simply removed from the dataset. Hence,
this assumption is not restrictive. Under Assumption 2.1, the running variable in the
whole population is continuously distributed, but its density, which we denote by fX , can
be discontinuous at the cutoff.

Following GRR, we focus on the local average treatment effect among the potentially-
assigned compliers at the cutoff. These are the units who would be treated if their running
variable was just to the right of the cutoff and would not be treated if it was just to the
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left of the cutoff. Formally, the object of interest is defined as:

Γ = E[Yi(1) − Yi(0)|Xi = 0, D+
i > D−

i ,Mi = 0]. (2.2.1)

This quantity is analogous to the standard estimand in fuzzy RD designs, where the average
treatment effect is identified only for the subpopulation of compliers. The non-standard
feature of the above definition is, however, that it involves conditioning on the unobserved
indicator Mi. For that reason, Γ is not point-identified.

2.3. PARTIAL IDENTIFICATION

In this section, we develop a partial identification result for Γ. We first present a preliminary
analysis of the Wald-ratio-type representation of the estimand and then characterize a
(non-sharp) identified set. We conclude by discussing the relation to the sharp bounds
obtained by GRR.

2.3.1. Preliminaries. Potentially-assigned units satisfy the assumptions of the classic
fuzzy RD framework. We can therefore use standard derivations to represent the estimand
as the ratio of the jump in the conditional expectation of the outcome variable and the
change in the conditional treatment probability among the potentially-assigned units at
the cutoff (see, e.g., Lee and Lemieux, 2010):1

Γ = ∆
Ψ , (2.3.1)

where

∆ = E[Yi|Xi = 0+,Mi = 0] − E[Yi|Xi = 0−], (2.3.2)

Ψ = E[Di|Xi = 0+,Mi = 0] − E[Di|Xi = 0−]. (2.3.3)

In the above definitions, we do not condition on Mi = 0 when the running variable
falls to the left of the cutoff because, by definition, there are only potentially-assigned
units on this side of the cutoff. The conditional expectations E[Yi|Xi = 0+,Mi = 0] and
E[Di|Xi = 0+,Mi = 0] are not point identified because the indicator Mi is not observed,
but they can be bounded.

The first step in our partial identification analysis is to note that the proportion of
always-assigned units among all units just to the right of the cutoff is identified from the
size of the discontinuity in the observed density fX at the cutoff. Specifically, under the

1GRR use this representation in a working-paper version of their article (Gerard et al., 2016).
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model outlined in Section 2.2, GRR show that

τ ≡ P[Mi = 1|Xi = 0+] = 1 − fX(0−)
fX(0+) . (2.3.4)

For any given extent of manipulation, measured by τ , the numerator and denominator
of the ratio in (2.3.1) can be bounded using the trimming approach that GRR apply to
analyze sharp RD designs. The bounds on ∆ are obtained by considering the extreme
scenarios in which the always-assigned units have the highest or the lowest τ · 100%
outcomes among the units just to the right of the cutoff. If the conditional distribution of
the outcome variable just to the right of the cutoff is continuous, then ∆ is bounded from
below and from above, respectively, by

∆L = ∆L(τ) = E[Yi|Xi = 0+, Yi ≤ QY |X=0+(1 − τ)] − E[Yi|Xi = 0−],

∆U = ∆U(τ) = E[Yi|Xi = 0+, Yi ≥ QY |X=0+(τ)] − E[Yi|Xi = 0−].

Similarly, the bounds on Ψ can be obtained by considering the scenarios in which the
always-assigned units are either all treated or all untreated. In some cases, these extreme
scenarios might be inconsistent with the observed treatment probabilities, but Ψ is always
bounded from below and from above, respectively, by

ΨL = ΨL(τ) = E[Di|Xi = 0+] − τ

1 − τ
− E[Di|Xi = 0−],

ΨU = ΨU(τ) = E[Di|Xi = 0+]
1 − τ

− E[Di|Xi = 0−].

2.3.2. Identified Set. Based on the identity Γ = ∆/Ψ, the bounds on ∆ and Ψ translate
into bounds on Γ, which are given in Table 2.1. These bounds, however, involve multiple
case distinctions, which generally poses a problem for conducting inference. This issue,
however, can be circumvented by using an equivalent formulation of the parameter Γ.
Specifically, we exploit the following identity:

∆ − ΓΨ = 0. (2.3.5)

This reformulation is in the spirit of ‘identification-robust’ Anderson-Rubin test in the
weak instrumental variables literature.

The relation in (2.3.5) and the bounds on ∆ and Ψ yield two conditional moment
inequalities that the true value of the parameter Γ satisfies. They are obtained by
considering the lowest and the highest value that the expression ∆ − ΓΨ can take given
that ∆ ∈ [∆L,∆U ] and Ψ ∈ [ΨL,ΨU ]. Their form differs slightly depending on whether Γ

59



is positive or negative. If Γ ≥ 0, then

∆L − ΓΨU ≤ 0 ≤ ∆U − ΓΨL. (2.3.6)

If Γ < 0, then
∆L − ΓΨL ≤ 0 ≤ ∆U − ΓΨU . (2.3.7)

We will now consider the set of candidate values γ for Γ that are consistent with the above
inequalities. To express this set concisely, we define the following combinations of the
bounds on ∆ and Ψ. For k1, k2 ∈ {L,U}, we put

gk1k2(τ, γ) = ∆k1(τ) − γΨk2(τ), (2.3.8)

where we emphasize the dependence on τ for consistency of notation with the corresponding
estimators introduced in the next section. Theorem 2.1 states a partial identification
result, which is based on the restrictions implied by inequalities (2.3.6) and (2.3.7).

Theorem 2.1. Suppose that Assumption 2.1 holds and FY |X=0+(y) is continuous in y.
Then

Γ ∈ ΓI(τ) ≡
{
γ ≥ 0 : gLU(τ, γ) ≤ 0 ≤ gUL(τ, γ)

}
∪
{
γ < 0 : gLL(τ, γ) ≤ 0 ≤ gUU(τ, γ)

}
.

The inequalities in Theorem 2.1 can be explicitly solved for c. In general, ΓI(τ) can be
either a finite interval, the whole real line, a half-line, or the sum of two half-lines. We
present this case distinction in Table 2.1. The finite ends are expressed as ratios of bounds
on the numerator and the denominator. The particular form depends on the signs of the
bounds on ∆ and Ψ. This case distinction as well as the possibility of ΨL and ΨU being
close to zero, would complicate inference based on this representation of the identified set.
The possible shapes of the identified sets are analogous to Anderson-Rubin confidence
sets in the weak instrumental variables literature.2 In practice, the proposed form of the
identified set ΓI(τ) is best suited for settings in which ΨL > 0, which is equivalent to

τ <
E[Di|Xi = 0+] − E[Di|Xi = 0−]

1 − E[Di|Xi = 0−] .

The above condition holds if τ is smaller than the observed jump in the treatment
probability at the cutoff. This should be the case in most empirical scenarios in which the
eligibility has a strong effect on the treatment take-up rate, and one considers manipulation
as a small deviation from a valid RD design.

2Anderson-Rubin confidence sets in instrumental variables models can theoretically take the forms as
in the second row of Table 2.2, but this event happens with probability zero.
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Table 2.1: Identified set ΓI(τ).
0 < ∆L ∆L ≤ 0 ≤ ∆U ∆U < 0

0 < ΨL

[
∆L

ΨU
,
∆U

ΨL

] [
∆L

ΨL
,
∆U

ΨL

] [
∆L

ΨL
,
∆U

ΨU

]

ΨL = 0
[

∆L

ΨU
,∞

)
(−∞,∞)

(
−∞,

∆U

ΨU

]

ΨL < 0
(

−∞,
∆U

ΨL

]
∪
[

∆L

ΨU
,∞

)
(−∞,∞)

(
−∞,

∆U

ΨU

]
∪
[

∆L

ΨL
,∞

)

Note: In the last row, we use that fact that 0 < ΨU by assumption.

2.3.3. Discussion. The proposed bounds are not sharp for a number of reasons. In some
cases, we could infer that the extreme scenarios of location of always-assigned units are
not consistent with the data. For example, using the fact that the outcome distribution
of the potentially-assigned always-takers at the cutoff is identified, we could exclude
the appropriate portion of the observed outcome distribution just to the right of the
cutoff before considering the extreme scenarios of location of the always-assigned units.
Moreover, in our procedure, different units can be trimmed when constructing bounds on
the numerator and the denominator of Γ, which indicates that these extreme scenarios are
not empirically feasible. Nevertheless, the proposed bounds are valid, and they can be
used as a basis for constructing confidence sets.

2.4. ESTIMATION

In this section, we introduce estimators of the conditional moment functions g∗(τ, γ)
appearing in the definition of the identified set ΓI(τ) in Theorem 2.1 and discuss their
asymptotic properties. These results form the key input for constructing confidence sets
in Section 2.5.

Throughout this section, we use the following shorthand notation. For a generic
random variable Wi, we write mW (x) = E[Wi|Xi = x]. Further, mL

Y (τ, x) = E[Yi|Xi = x,

Yi ≤ QY |X=x(1 − τ)] and mU
Y (τ, x) = E[Yi|Xi = x, Yi ≥ QY |X=x(τ)]. One-sided limits at

the cutoff are denoted by: mW − = mW (0−), mW + = mW (0+), mL
Y +(τ) = mL

Y (τ, 0+),
mU

Y +(τ) = mU
Y (τ, 0+), and QY +(u) = QY |X=0+(u) for u ∈ (0, 1).

2.4.1. Estimators. We propose estimators of the moment functions g∗(τ, γ) based on
kernel methods. Let k( · ) be a kernel function and h a bandwidth, which governs the size
of the estimation window. For ease of exposition, we use the same bandwidth in all the
estimation steps, but it is straightforward to allow for different bandwidths in different
steps. We define kh(v) = k(v/h)/h, k−

h (v) = kh(v)1(v < 0), and k+
h (v) = kh(v)1(v ≥ 0).
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Proportion of Always-Assigned Units. We estimate the one-sided limits of the density of
the running variable at the cutoff using ‘linear’ boundary kernels (Jones, 1993). Let

f̂− = 1
n

n∑
i=1

k−
h (Xi)

µ̄2 − µ̄1|Xi/h|
µ̄2µ̄0 − µ̄2

1
and f̂+ = 1

n

n∑
i=1

k+
h (Xi)

µ̄2 − µ̄1|Xi/h|
µ̄2µ̄0 − µ̄2

1
, (2.4.1)

where µ̄j =
∫∞

0 vjk(v)dv. The proportion τ of always-assigned units among all the units
just to the right of the cutoff is estimated as:

τ̂ = max
{
1 − f̂−/f̂+, 0

}
.

Conditional Expectations. The conditional expectations mD−, mD+, and mY − are estimated
using the local linear estimator. For a generic outcome variable Wi, we estimate mW + and
mW − by:

m̂W + = Ê[Wi|Xi = 0+] ≡ e⊤
1 arg min

β0,β1

n∑
i=1

k+
h (Xi)(Wi − β0 − β1Xi)2,

m̂W − = Ê[Wi|Xi = 0−] ≡ e⊤
1 arg min

β0,β1

n∑
i=1

k−
h (Xi)(Wi − β0 − β1Xi)2.

Truncated Conditional Expectations. The truncated conditional expectations of the out-
come variable, mL

Y +(τ) and mU
Y +(τ), are estimated using the two-stage, local-linear-type

estimator proposed in Chapter 1. In the first stage, we run a local linear quantile regression.
The intercept and slope of the conditional u-quantile function just to the right of the
cutoff, QY |X=0+(u) and ∂1

xQY |X=x(u)|x=0+ , are estimated as:

(q̂0(u), q̂1(u))⊤ = arg min
β0,β1

n∑
i=1

k+
h (Xi)ρu(Yi − β0 − β1Xi),

where ρu(v) = v(u− 1(v ≤ 0)) is the ‘check’ function. For x ≥ 0, we put

Q̂Y |X=x(u) = q̂0(u) + q̂1(u)x.

In the second stage, we run local linear regressions with generated outcome variables. For
a function q : (0, 1) × supp(Xi) → R, we define

ψL
i (τ, q) = 1

1 − τ
Yi1(Yi ≤ q(τ,Xi)) − 1

1 − τ
q(τ,Xi)(1(Yi ≤ q(τ,Xi)) − (1 − τ)),

ψU
i (τ, q) = 1

1 − τ
Yi1(q(1−τ,Xi) ≤ Yi) − 1

1 − τ
q(1−τ,Xi)(1(q(1−τ,Xi) ≤ Yi) − (1 − τ)).
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We estimate mL
Y +(τ) and mU

Y +(τ) using local linear estimators with generated outcome
variables ψL

i (τ, Q̂Y |X) and ψU
i (τ, Q̂Y |X), respectively:

m̂L
Y +(τ) = Ê

[
ψL

i

(
τ, Q̂Y |X

)∣∣∣Xi = 0+
]

and m̂U
Y +(τ) = Ê

[
ψU

i

(
τ, Q̂Y |X

)∣∣∣Xi = 0+
]
.

Final Estimators. By linearity of the local linear estimator, the estimators of the (truncated)
conditional expectations can be combined into one estimator on each side of the cutoff.
For ∗ ∈ {LU,UL,LL, UU}, g∗(τ, γ) is estimated by

ĝ ∗(τ, γ) = Ê
[
G∗

+,i

(
τ, Q̂Y |X , γ

)∣∣∣Xi = 0+
]

− Ê[G−,i(γ)|Xi = 0−]. (2.4.2)

where G−,i(γ) = Yi − γDi and

GLU
+,i(τ, q, γ) = ψL

i (τ, q) − γ
Di

1 − τ
, GUL

+,i(τ, q, γ) = ψU
i (τ, q) − γ

Di − τ

1 − τ
,

GLL
+,i(τ, q, γ) = ψL

i (τ, q) − γ
Di − τ

1 − τ
, GUU

+,i (τ, q, γ) = ψU
i (τ, q) − γ

Di

1 − τ
.

2.4.2. Asymptotic Results. We analyze the asymptotic distribution of the estimators of
g∗(τ, γ) in two versions. The first one concerns analysis where the trimming proportion τ
is fixed, and the second one allows for an estimated τ̂ .

To state the assumptions for our asymptotic analysis, we introduce some additional
notation. For ϵ > 0, let X ϵ = (−ϵ, ϵ), X ϵ

− = (−ϵ, 0), and X ϵ
+ = [0, ϵ). For an interval I, let

Cj(I) denote the class of functions whose jth derivative is continuous on the interior of I
(with j = 0 corresponding to continuous functions). Further, let Cj

+(I) denote the class of
functions that belong to Cj(I) and are bounded away from zero on I. Throughout the rest
of the paper, we implicitly assume that if a function is continuous on an open interval I,
then also its limits at the boundary points of I exist and are finite.

Assumption 2.2. There exists ϵ > 0 such that the following conditions hold. (i) The data
{(Yi, Xi, Di)n

i=1} are an i.i.d. sample from a fixed population; (ii) fX( · ) ∈ C2
+(X ϵ

−)∩C2
+(X ϵ

+);
(iii) fY |X=x(y) is continuous in x and y on X ϵ

+ × R; (iv) mY ( · ),mD( · ) ∈ C2(X ϵ
−);

(v) mL
Y (u, · ), mU

Y (u, · ), QY |X= · (u),mD( · ) ∈ C2(X ϵ
+) for all u ∈ [0, 1); (vi) ∂2

xQY |X=x(u)
is continuous in u for x ∈ X ϵ

+; (vii) V[G∗
+,i(γ,QY |X , τ)|Xi = · ] ∈ C0

+(X ϵ
+) for all

γ ∈ R and ∗ ∈ {LU,UL,LL, UU}; (viii) V[G−,i(γ)|X = · ] ∈ C0
+(X ϵ

−) for every γ ∈ R;
(ix) E[Y 2+δ

i |Xi = · ] is bounded on X for some δ > 0; (x) The kernel k is a bounded and
symmetric density function with compact support; (xi) As n → ∞, h → 0 and nh → 0.

Assumption 2.2 contains standard assumption for local-linear-type estimation of the
density and conditional expectations, as well as the conditions for estimation of truncated
conditional expectations developed in Chapter 1. In each case, the respective curve to be
estimated has to be twice continuously differentiable to the left and to the right of the
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cutoff, but not necessarily at the cutoff. This requirement applies also to the conditional
quantile function, which is a nuisance function when estimating the truncated conditional
expectations. These smoothness conditions are complemented with standard moment
conditions. The restrictions on the kernel and bandwidth are standard.

To present the asymptotic distribution, we define the following kernel constants:

µ̄ = (µ̄2
2 − µ̄1µ̄3)/(µ̄2µ̄0 − µ̄2

1) and κ̄ =
∫ ∞

0
(k(v)(µ̄1v − µ̄2))2dv/(µ̄2µ̄0 − µ̄2

1)2,

where, as defined after (2.4.1), µ̄j =
∫∞

0 vjk(v)dv. Theorem 2.1 states the asymptotic
distribution of ĝ ∗(τ, γ) and ĝ ∗(τ̂ , γ).

Theorem 2.2. Suppose that Assumptions 1 and 2 hold. For all γ ∈ R and ∗ ∈
{LU,UL,LL, UU}, it holds that:

(i) If τ ∈ [0, 1), then
√
nh
(
ĝ ∗(τ, γ) − g∗(τ, γ) −B∗(τ, γ)h2

)
d−→ N (0, V ∗(τ, γ)),

where

B∗(τ, γ) = 1
2 µ̄

(
∂2

xE[G∗
+,i(τ,QY |X , γ)|Xi = x]|x=0+ − ∂2

xE[G−,i(γ)|Xi = x]|x=0−

)
+ op(1),

V ∗(τ, γ) = κ̄

fX(0+)V[G∗
+,i(τ,QY |X , γ)|Xi = 0+] + κ̄

fX(0−)V[G−,i(γ)|Xi = 0−].

Moreover, the pairs
(
ĝ LU(τ, γ), ĝ UL(τ, γ)

)
and

(
ĝ LL(τ, γ), ĝ UU(τ, γ)

)
are jointly asymp-

totically normally distributed if τ ∈ (0, 1).

(ii) If τ ∈ (0, 1), then
√
nh
(
ĝ ∗(τ̂ , γ) − g∗(τ, γ) −

(
B∗(τ, γ) + C∗(τ, γ)Bτ

)
h2
)

d−→ N (0, V ∗(τ, γ) + (C∗(τ, γ))2Vτ ),

where

C∗(τ, γ) = ∂τE[G∗
+,i(τ,QY |X , γ)|Xi = 0+],

Bτ = 1
2 µ̄ (1 − τ)

(
f ′′

X(0+)/fX(0+) − f ′′
X(0−)/fX(0−)

)
+ op(1),

Vτ = κ̄(1 − τ)2
(
1/fX(0+) + 1/fX(0−)

)
.

Moreover, the pairs
(
ĝLU(τ̂ , γ), ĝUL(τ̂ , γ)

)
and

(
ĝLL(τ̂ , γ), ĝUU(τ̂ , γ)

)
are jointly asymptot-

ically normally distributed.

The asymptotic distribution in part (i) resembles the standard results for local linear
estimation. The key step to obtain it, is to show that the estimator using the estimated
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function Q̂Y |X is asymptotically equivalent to the estimator employing the true conditional
quantile function QY |X . This point is discussed extensively in Chapter 1. The bias
expressions can be derived in a closed form. For k ∈ {L,U}, it holds that

∂2
xE[GLk

+,i(τ,QY |X , γ)|Xi = x]|x=0+ = ∂2
xm

L
Y (τ, 0+) − γ

1 − τ
∂2

xmD(0+),

∂2
xE[GUk

+,i(τ,QY |X , γ)|Xi = x]|x=0+ = ∂2
xm

U
Y (τ, 0+) − γ

1 − τ
∂2

xmD(0+).

Moreover,
∂2

xE[G−,i(γ)|Xi = x]|x=0+ = ∂2
xmY (τ, 0+) − γ∂2

xmD(0−).

The simple form of these bias expressions makes it possible to account for the smoothing
bias when conducting inference using standard methods available in the literature.

In part (ii), the additional bias and variance terms are due to estimation of the trimming
proportion τ . Bτ and Vτ represent the leading bias term and the asymptotic variance of τ̂ ,
respectively. These quantities appear in the asymptotic distribution of ĝ ∗(γ, τ̂) scaled by
the derivative of the estimand with respect to the trimming proportion. These derivatives
take the following form:

CLU(τ, γ) = 1
1 − τ

(
mL

Y +(τ) −QY +(1 − τ)
)

− γ

(1 − τ)2mD+,

CUL(τ, γ) = 1
1 − τ

(
mU

Y +(τ) −QY +(τ)
)

− γ

(1 − τ)2 (mD+ − 1),

CLL(τ, γ) = 1
1 − τ

(
mL

Y +(τ) −QY +(1 − τ)
)

− γ

(1 − τ)2 (mD+ − 1),

CUU(τ, γ) = 1
1 − τ

(
mU

Y +(τ) −QY +(τ)
)

− γ

(1 − τ)2mD+.

2.5. CONFIDENCE SETS

In this section, we construct confidence sets (CSs) by inverting a test of the hypothesis that
a candidate value γ belongs to the identified set ΓI(τ). We discuss separately inference
with a fixed and estimated manipulation level τ .

2.5.1. Fixed Manipulation Level. Suppose that the researcher presumes a certain
proportion manipulation in the data. We construct a CS via test inversion, based on the
following test statistics:

t∗(τ, γ) = ĝ ∗(τ, γ)
ŝe(ĝ ∗(τ, γ)) ,

where ∗ ∈ {LU,UL,LL, UU} and ŝe(ĝ ∗(τ, γ)) is some consistent standard error, which
can be constructed based on the residuals from the local linear regressions in (2.4.2) under
additional assumptions. We consider two ways of accounting for the asymptotic bias:
undersmoothing and the bias-aware approach.
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Undersmoothing. Suppose that the bias is asymptotically negligible in the sense that
nh5 → 0, then

t∗(τ, γ) → N (0, 1). (2.5.1)

Moreover, the pairs (tLU (τ, γ), tUL(τ, γ)) and (tLL(τ, γ), tUU (τ, γ)) are jointly asymptotically
normal. Critical values for this testing problem are motivated by the derivations of Imbens
and Manski (2004) and Stoye (2009). Let

D̂(τ, γ) = ∆̂U(τ) − ∆̂L(τ) + |γ| τ

1 − τ
. (2.5.2)

D̂(τ, γ) represents the difference between the moment functions used in the definition of
ΓI(τ); see Appendix 2.A.3. In the analysis of coverage of CSs for the partially identified
parameter Γ, D̂(τ, γ) plays the role of the length of the identified set in the derivations of
Imbens and Manski (2004) and Stoye (2009).3

For γ ≥ 0, we define cα(τ, γ) as the solution to the following equation:

Φ
cα(τ, γ) + D̂(τ, γ)

max{ŝe(ĝ LU(τ, γ)), ŝe(ĝ UL(τ, γ))}

− Φ
(
−cα(τ, γ)

)
= 1 − α. (2.5.3)

For γ < 0, we define cα(τ, γ) as the solution to the following equation:

Φ
cα(τ, γ) + D̂(τ, γ)

max{ŝe(ĝ LL(τ, γ)), ŝe(ĝ UU(τ, γ))}

− Φ
(
−cα(τ, γ)

)
= 1 − α. (2.5.4)

We build our CS by collecting the values γ for which the hypothesis H0 : γ ∈ ΓI(τ) is
not rejected:

CSα(τ) ={γ ≥ 0 : −cα(τ, γ) ≤ tUL(τ, γ), tLU(τ, γ) ≤ cα(τ, γ)}

∪{γ < 0 : −cα(τ, γ) ≤ tUU(τ, γ), tLL(τ, γ) ≤ cα(τ, γ)}. (2.5.5)

If D̂(τ, γ) is large relative to the standard errors, then cα(τ, γ) is approximately the
1 − α quantile of the standard normal distribution, as in one-sided confidence intervals. If
D̂(τ, γ) = 0, then cα(γ) equals the 1 − α/2 quantile of the standard normal distribution,
as in two-sided confidence intervals.

Analogous CSs can be constructed using robust bias corrections of Calonico et al. (2014,
2018) because they also rely on the fact that the test statistic follows the standard normal
distribution.

3In this paper, we do not provide any formal coverage guarantees uniformly in the data generating
processes, but given the robustness properties of the CIs of Imbens and Manski (2004) and Stoye (2009),
the proposed CIs can be expected to perform well in finite samples.
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Bias-Aware Inference. Suppose that the second derivatives of the (truncated) conditional
expectations involved in the definition of ΓI(τ) are bounded by some known constants.
Specifically, suppose that |∂2

xmY (0−)| ≤ B̄Y −, |∂2
xm

L
Y (τ, 0+)| ≤ B̄L

Y +(τ), |∂2
xm

U
Y (τ, 0+)| ≤

B̄U
Y +(τ), |∂2

xmD(0−)| ≤ B̄D−, and |∂2
xmD(0+)| ≤ B̄D+. Based on the expressions given

after Theorem 2.1, the leading bias terms of the estimators ĝ ∗(τ, γ) can bounded using
these constants. For example,

∣∣∣BLU(τ, γ)h2
∣∣∣ ≤ 1

2 µ̄
(
B̄L

Y +(τ) + c

1 − τ
B̄D + B̄Y − + cB̄D−

)
h2 ≡ b̄LU(τ, γ).

Following this reasoning, for ∗ ∈ {LL,UU,LU, UL}, we obtain b̄∗(τ, γ) such that |B∗(τ, γ)| ≤
b̄∗(τ, γ). Let r̂ ∗(τ, γ) = b̄∗(τ, γ)/ŝe

(
ĝ ∗(τ, γ)

)
be the maximal value of the ratio of the leading

asymptotic bias to the standard error of ĝ ∗(τ, γ).
For γ ≥ 0, we define critical values cBA

α (τ, γ) as the solution to the following equation:

Φ
cBA

α (τ, γ) + D̂(τ, γ)
max{ŝe(ĝ LU(τ, γ)), ŝe(ĝ UL(τ, γ))} + max

{
r̂ UL(τ, γ), r̂ LU(τ, γ)

}
−Φ

(
−cBA

α (τ, γ) + max
{
r̂ UL(τ, γ), r̂ LU(τ, γ)

})
= 1 − α.

For γ < 0, we define cα(τ, γ) as the solution to the following equation:

Φ
cBA

α (τ, γ) + D̂(τ, γ)
max{ŝe(ĝ LL(τ, γ)), ŝe(ĝ UU(τ, γ))} + max

{
r̂ LL(τ, γ), r̂ UU(τ, γ)

}
−Φ

(
−cBA

α (τ, γ) + max
{
r̂ LL(τ, γ), r̂ UU(τ, γ)

})
= 1 − α.

As in the case of undersmoothing, we build our CS by collecting the values γ for which
the hypothesis H0 : γ ∈ ΓI(τ) is not rejected:

CSBA
α (τ) ={γ ≥ 0 : −cBA

α (τ, γ) ≤ tUL(τ, γ), tLU(τ, γ) ≤ cBA
α (τ, γ)}

∪{γ < 0 : −cBA
α (τ, γ) ≤ tUU(τ, γ), tLL(τ, γ) ≤ cBA

α (τ, γ)}. (2.5.6)

If D̂(τ, γ) is large relative to the standard errors, then cBA
α (τ, γ) is approximately the

1 − α quantile of N (max
{
r̂UL(τ, γ), r̂LU(τ, γ)

}
, 1) for γ ≥ 0, and similarly for γ < 0.

This definition is similar to critical values for one-sided, bias-aware CIs of Armstrong and
Kolesár (2020). If D̂(τ, γ) = 0, then cBA

α (γ) equals the 1 − α/2 quantile of the folded
normal distribution |N (max

{
r̂UL(τ, γ), r̂LU(τ, γ)

}
, 1)| for γ ≥ 0, and similarly for γ < 0.

This definition is similar to critical values for two-sided CIs of Armstrong and Kolesár
(2020).
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2.5.2. Estimated Manipulation Level. In settings where sizable manipulation clearly
occurs in the data, we conduct inference with an estimated manipulation level analogously
to the previous subsection, based on test statistics of the form:

t∗est(γ) = ĝ ∗(τ̂ , γ)
ŝe(ĝ ∗(τ̂ , γ)) .

With undersmoothing, critical values can be obtained as in (2.5.3)–(2.5.4) using the
standard error ŝe(ĝ ∗(τ̂ , γ)). For bias-aware inference, the maximal bias-to-standard-error
ratio has to take into account the additional bias C∗(τ)Bτh

2 due to estimation of τ , which
can be bounded if |f ′′

X(0+)| and |f ′′
X(0−)| are bounded by some known constants.

The asymptotic, normal approximation of the distribution of the estimator ĝ ∗(τ̂ , γ),
presented in Theorem 2.2, is reliable if τ is well separated from zero. Following the moment
inequality literature (e.g. Andrews and Soares, 2010), we can establish whether this is
the case by conducting a conservative test of the hypothesis of no manipulation with
significance level slowly converging to zero as the sample size grows. If the manipulation is
not clearly detectable in the data, one could design a conservative procedure in the spirit
of the bootstrap procedure proposed by GRR by ‘tilting’ the estimator τ̂ away from zero.
We leave this for future research.

2.6. SIMULATIONS

In this section, we investigate the performance of the testing procedure used to construct
our proposed CSs in a simulation study. We consider two settings: estimation with an
estimated manipulation level when the true manipulation level is sizable and a sensitivity
analysis for any level of manipulation.

The data is generated from a model with the two-group structure discussed in Section 2.2.
Among the potentially assigned units, there is 10% of always-takers, who are treated
regardless of the value of their running variable, 10% of never-takers, who are never treated,
and 80% of compliers, who receive the treatment if and only if their running variable is
above the cutoff. In each of these three groups, the running variable Xi is distributed
uniformly on [−1, 1]. The running variable of always-assigned units is distributed uniformly
on [0, 1], and these units are always treated. The outcome variable Yi is generated as
follows:

Yi = µTi
+Xi1(0 ≤ Xi) −Xi1(Xi < 0) + q

2(X2
i 1(0 ≤ Xi) −X2

i 1(Xi < 0)) + εi,

where εi ∼ Unif([−1, 1]) and Ti ∈ {AA,AT,NT,CO} denotes the unit type, which
corresponds to always-assigned (AA) units and potentially-assigned: always-takers (AT),
never-takers (NT), and compliers (CO). We set µNT = −1, µAT = 1, and µCO = 0. The
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compliers have the same outcome in the presence and in the absence of treatment, so
that there is no treatment effect. The value of µAA varies across simulation settings. The
model residuals are homoskedastic, so that the second derivative of truncated conditional
expectation functions equals q · sgn(Xi) for all truncation quantile levels.

In the setting with a known manipulation level, we consider five different manipulation
levels, τ ∈ {0, 0.01, 0.1, 0.2, 0.3}, and the sample size is n = 10, 000. In the setting with an
estimated manipulation level, τ ∈ {0.1, 0.2, 0.3} and n = 50, 000, which ensures that τ is
sufficiently bounded away from zero to rely on the asymptotic results from Section 2.4.
The same bandwidth h = 0.5 is used in all steps.

Table 2.2: Simulation results.
Coverage Critical values

τ : 0 0.01 0.1 0.2 0.3 0 0.01 0.1 0.2 0.3
A) Known manipulation level, q = 0

µAA

-4 94.9 94.5 94.7 95.0 94.9 1.96 1.67 1.64 1.64 1.64
-2 95.4 95.3 96.8 97.8 97.5 1.96 1.69 1.64 1.64 1.64
0 95.5 96.5 100.0 100.0 100.0 1.96 1.70 1.64 1.64 1.64
2 95.2 94.9 97.1 97.7 97.8 1.96 1.69 1.64 1.64 1.64
4 95.3 94.5 95.8 95.3 94.6 1.96 1.67 1.64 1.64 1.64

B) Estimated manipulation level, q = 0

µAA

-4 - - 96.5 95.6 95.4 - - 1.65 1.64 1.64
-2 - - 98.1 98.4 98.6 - - 1.65 1.64 1.64
0 - - 100.0 100.0 100.0 - - 1.65 1.64 1.64
2 - - 98.3 98.2 98.3 - - 1.64 1.64 1.64
4 - - 96.4 95.6 94.9 - - 1.65 1.64 1.64

C) Known manipulation level, q = 1

µAA

-4 94.4 94.5 94.7 95.0 94.9 2.23 2.18 2.07 2.01 1.96
-2 94.7 95.3 96.8 97.8 97.4 2.23 2.19 2.14 2.11 2.07
0 95.1 98.1 100.0 100.0 100.0 2.22 2.20 2.20 2.19 2.18
2 94.7 98.9 99.7 99.7 99.8 2.23 2.19 2.14 2.11 2.08
4 94.8 99.2 99.5 99.1 98.5 2.23 2.18 2.07 2.01 1.96

D) Estimated manipulation level, q = 1

µAA

-4 - - 98.3 96.7 95.9 - - 2.13 2.06 2.03
-2 - - 98.8 98.6 98.6 - - 2.22 2.19 2.20
0 - - 100.0 100.0 100.0 - - 2.33 2.38 2.43
2 - - 100.0 100.0 100.0 - - 2.22 2.19 2.20
4 - - 99.5 99.0 98.5 - - 2.13 2.06 2.03

Notes: The results are based on S = 5, 000 simulations. The sample size equals
n = 10, 000 in Panels A and C, and n = 50, 000 in Panels B and D.

We consider five different level shifts of the outcome distribution of the always-assigned
units, µAA ∈ {−4,−2, 0, 2, 4}. The value of µAA determines whether one of the extreme
scenarios considered when bounding ∆ corresponds to the true location of the always-
assigned units. The outcomes of always-assigned units are ‘separated’ from the outcomes
of the potentially-assigned units if µAA ∈ {−4, 4}. In these scenarios, the true treatment
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effect, which equals zero, lies on the boundary of the identified set ΓI(τ).
In Table 2.2, we report the proportion of draws in which the true null hypothesis is

not rejected, i.e. the coverage of the proposed CSs, and the associated critical values. In
Panel A, the coverage is close to 95% if µ ∈ {−4, 4}. If zero is well in the interior of
the identified set, then the test never rejects. The critical values adapt to the length of
the identified set, which changes with the true manipulation level τ . If τ = 0, then the
critical values correspond to a two-sided test. If τ ≥ 0.1, they correspond to a one-sided
test. The construction used ensures that they change smoothly between 1.64 and 1.96 as
τ approaches zero. In Panel C, the critical values are inflated due to accounting for the
smoothing bias. For τ = 0, the coverage is maintained at 95%. For positive values of τ ,
the coverage is no longer symmetric in τ because the worst-case bias realizes only for one
of the bounds. The results with an estimated manipulation level in Panels B and D exhibit
similar patterns to the corresponding results in Panels A and C in terms of coverage. The
critical values in Panel D are smaller than in Panel C because the ratio of the worst-case
bias to the standard error is smaller in the former setting.4

2.7. CONCLUSIONS

In this paper, we propose a method of conducting inference on a meaningful local average
treatment effect in fuzzy RD designs with a manipulated running variable. It combines sim-
ple bounds on the numerator and the denominator of the Wald ratio for the subpopulation
of interest with Anderson-Rubin-type confidence sets.

4In this particular simulation setting, estimation of the density limits does not produce any additional
bias, but it increases the variance despite the larger sample size.
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Appendix

2.A. PROOFS

2.A.1. Proof of Theorem 2.1. The theorem follows directly from inequalities (2.3.6)
and (2.3.7).

2.A.2. Proof of Theorem 2.2. Let vn = h2 + (nh)−1/2.
Part (i). It follows from Theorem 1.1 in Chapter 1 that

Ê
[
G∗

+,i

(
τ, Q̂Y |X , γ

)∣∣∣Xi = 0+
]

= Ê
[
G∗

+,i

(
τ,QY |X , γ

)∣∣∣Xi = 0+
]

+ op(vn).

Asymptotic normality then follows from standard theory of local linear estimation.
Part (ii). Under the assumptions made, it holds that τ̂ = τ +Op(vn). By Theorem 1.2 in
Chapter 1, for k ∈ {L,U} it holds that

Ê
[
ψk

i

(
τ, Q̂Y |X

)∣∣∣Xi = 0+
]

= Ê
[
ψk

i

(
τ,QY |X

)∣∣∣Xi = 0+
]

+ ∂τm
k
Y +(τ)(τ̂ − τ) + op(vn).

Moreover, we have that

1
1 − τ̂

− 1
1 − τ

= τ̂ − τ

(1 − τ)2 + op(vn) and τ̂

1 − τ̂
− τ

1 − τ
= τ̂ − τ

(1 − τ)2 + op(vn).

Hence, using linearity of the local linear estimator, we obtain that:

Ê
[
Di − τ̂

1 − τ̂

∣∣∣∣Xi = 0+
]

= Ê
[
Di − τ

1 − τ

∣∣∣∣Xi = 0+
]

+ mD+ − 1
(1 − τ)2 (τ̂ − τ) + op(vn),

Ê
[
Di

1 − τ̂

∣∣∣∣Xi = 0+
]

= Ê
[
Di

1 − τ

∣∣∣∣Xi = 0+
]

+ mD+

(1 − τ)2 (τ̂ − τ) + op(vn),

which concludes the proof.

2.A.3. Validity of CSs. We consider bias-aware CSs. Undersmoothing is obtained as a
special case when r̂ ∗(τ, γ) = 0. First, note that:

(i) For γ ≥ 0, ĝ UL(τ, γ) − ĝ LU(τ, γ) = ∆̂U(τ) − ∆̂L(τ) + γ τ
1−τ

= D̂(τ, c),

(ii) For γ < 0, ĝ UU(τ, γ) − ĝ LL(τ, γ) = ∆̂U(τ) − ∆̂L(τ) − γ τ
1−τ

= D̂(τ, c).
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where D̂(τ, c) = ∆̂U(τ) − ∆̂L(τ) + |γ| τ
1−τ

, as defined in Section 2.5.
Suppose that γ ≥ 0 and gUL(τ, γ) = 0. For any a > 0, it holds that

P
(

− a ≤ tUL(τ, γ), tLU(τ, γ) ≤ a
)

= P

− a ≤ ĝ UL(τ, γ) − gUL(τ, γ)
ŝe(ĝ UL(τ, γ)) ,

ĝ UL(τ, γ) − gUL(τ, γ)
ŝe(ĝ LU(τ, γ)) ≤ a+ ĝ UL(τ, γ) − ĝ LU(τ, γ)

ŝe(ĝ LU(τ, γ))


= P

− a ≤ Z + BUL(τ, γ)
ŝe(ĝ UL(τ, γ)) ≤ a+ D̂(τ, γ)

ŝe(ĝ LU(τ, γ))

,
where Z ∼ N (0, 1) and |BUL(γ)|/ŝe(ĝ UL(γ)) ≤ r̂ UL(γ). The last expression is the smallest
when the normal distribution is “shifted” maximally to the left, so that

P(−a ≤ tUL(τ, γ), tLU(τ, γ) ≤ a)

≥ P

−a+ r̂ UL(τ, γ) ≤ Z ≤ a+ D̂(τ, γ)
ŝe(ĝ LU(τ, γ)) + r̂ UL(τ, γ)

+ o(1).

Similarly, if γ ≥ 0 and gLU(τ, γ) = 0, then for any a > 0, it holds that

P(−a ≤ tUL(τ, γ), tLU(τ, γ) ≤ a)

≥ P

−a+ r̂ LU(τ, γ) ≤ Z ≤ a+ D̂(τ, γ)
ŝe(ĝ UL(τ, γ)) + r̂ LU(τ, γ)

+ o(1).

In our pointwise asymptotics, D̂(τ, γ)/ŝe(ĝ ∗(τ, γ)) is either zero (if τ = 0), or it diverges
to infinity. The ratios r̂ ∗(τ, γ) converge to a finite constant or diverge to infinity. With
the definition of the critical values in the main text, the test is asymptotically valid. If
gLU(τ, γ) < 0 < gUL(τ, γ), then the nonrejection probability converges to one. The same
reasoning applies when γ < 0.
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CHAPTER 3

Flexible Covariate Adjustments in Regression
Discontinuity Designs

Joint work with Claudia Noack and Christoph Rothe.

3.1. INTRODUCTION

Regression discontinuity (RD) designs are widely used for estimating causal treatment
effects from observational data in economics and other social sciences. In a sharp RD
design, the treatment status is determined by whether the running variable exceeds a fixed
cutoff value. Under standard assumptions, the average treatment effect at the cutoff is
identified by the size of the jump in the conditional expectation of the outcome variable
given the running variable at the cutoff. This parameter is typically estimated using
local linear regression methods, and various inference procedures have been proposed in
the literature; see, e.g., Imbens and Kalyanaraman (2012), Calonico et al. (2014), and
Armstrong and Kolesár (2020).

The standard estimator of the average treatment effect in sharp RD designs is based
solely on the outcome variable and the running variable, but in many empirical applications,
researchers include additional, pretreatment covariates linearly in the RD regression to
reduce the variance of the estimates (see Calonico et al., 2019). However, linear adjustments
in general do not fully exploit the information contained in the covariates. The goal of
this paper is to improve upon these methods.

We propose a novel class of covariate-adjusted RD estimators. They are constructed in
two stages. In the first stage, we obtain adjustment terms, which aim at capturing the
variation in the outcome variable near the cutoff that can be explained by the additional
covariates. The adjustment terms are estimated using cross-fitting, which allows us to
use a wide range of methods in the first stage under weak conditions. We generate our
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covariate-adjusted outcome variable by subtracting the adjustment terms from the original
outcomes. In the second stage, we estimate the RD parameter in a local linear regression
with our generated outcome variable.

Our proposed approach is based on the premise that in a valid RD design, the
conditional distribution of the additional covariates given the running variable should
evolve continuously through the cutoff. Such a condition is inherently related to the
standard, behavioral identification arguments in RD designs, which postulate that the
units just to the left and just to the right of the cutoff are very similar in all pretreatment
characteristics.1 Based on this feature, we can adjust our outcome variable by subtracting
from it essentially any function of the additional covariates without changing the RD
estimand. We can further choose the adjustment function that leads to the smallest
variance of the RD estimator in the considered class of estimators. We find that the
optimal adjustment function is given by the average of the conditional expectations of the
outcome variable just to the left and just to the right of the cutoff given the additional
covariates. This function is not known, and therefore we estimate it in the first stage.

An important feature of our proposed RD estimator is that it is very insensitive to the
first-stage estimation error, which has the following important, practical and theoretical
implications. First, we only require that the first-stage estimator concentrates, possibly
very slowly, in a mean-squared-error-type sense around some deterministic sequence of
functions. This condition is satisfied for a wide range of estimators, including parametric
estimators, classic nonparametric methods, such as local linear and sieve estimators (Fan
and Gijbels, 1996; Newey, 1997), as well as modern machine learning methods, such as
lasso (Tibshirani, 1996), random forests (Breiman, 2001; Wager and Athey, 2018), and
deep neural networks (Farrell et al., 2021). Importantly, our RD estimator is not very
sensitive to the specific choice of the tuning parameters that are required for some of the
above methods.

Second, in our asymptotic analysis, we can ignore the fact that the adjustment terms
are estimated in the first stage. Our proposed RD estimator is asymptotically equivalent to
an estimator employing the deterministic function around which the first-stage estimator
concentrates. As a result, existing procedures for inference and bandwidth choice can be
directly applied to the second-stage regression. Specifically, we obtain the standard error
using the nearest-neighbors method. We also argue that one can choose the bandwidth and
construct confidence intervals following the robust bias corrections approach of Calonico
et al. (2014) or the bias-aware procedure of Armstrong and Kolesár (2020).

We further show that if the first-stage estimator consistently estimates the targeted
1Indeed, in empirical applications, testing continuity of the distribution of baseline covariates at the

cutoff has become a standard way of assessing the validity of an RD design (Cattaneo et al., 2019).
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conditional expectations, then our estimator is efficient in the considered class, but our
asymptotic results remain valid whether or not this condition is satisfied. Our proposed
covariate adjustments asymptotically lead to variance reductions compared to the standard
RD estimator whenever the covariates have explanatory power for the outcome variable in
a neighborhood of the cutoff.

Our proposed procedure is related to covariate adjustments used in randomized exper-
iments to improve efficiency of the average treatment effect estimator (see, e.g., Wager
et al., 2016). This analogy occurs because RD designs are similar in nature to randomized
experiments. In randomized experiments, comparability of the treated and untreated units
is ensured by random assignment, whereas in RD designs, it is ensured for units close to
the cutoff by continuity of potential outcomes’ distributions. Our proposed RD estimator
has a very similar structure as the augmented inverse probability weighted estimator,
which is widely used in randomized experiments. Accordingly, the minimal variance that
our estimator can achieve resembles the efficiency bound for estimation of the average
treatment effect under unconfoundedness (Hahn, 1998).

Literature. There exists an extensive literature on estimation in RD designs; see, e.g.,
Imbens and Lemieux (2008) and Cattaneo et al. (2019) for a textbook treatment. In
general, existing methods do not require covariate information, but it is standard practice
to incorporate covariates in order to reduce the variance of the estimates (see, e.g., Lee
and Lemieux, 2010, Section 3.2.3). We contrast our approach with two papers that are
most closely related to our approach.

Calonico et al. (2019) employ a local linear regression in the running variable with
additional covariates included in a linear fashion. We allow for linear adjustments as a
special case, but we cover a wide range of other, more flexible adjustments that improve
efficiency compared to simple linear adjustments. We discuss the relation of our approach
to that of Calonico et al. (2019) in more detail in Section 3.6.1.

Frölich and Huber (2019) propose a procedure using first-stage nonparametric predic-
tions of the treatment effect conditional on the additional covariates at the cutoff, which
achieves approximately the same variance as our estimator in some settings. However,
their results rely on strong assumptions about the number of covariates and/or smoothness
of the conditional expectation of the outcome variable given the covariates, which are not
needed for our method.2

Our paper is also related to the literature on two-stage estimation with nuisance
parameters (Andrews, 1994; Newey, 1994). The combination of locally-robust moment

2For example, Frölich and Huber (2019) allow for at most three continuous additional covariates and
require that the bandwidth converges at a specific rate if the local linear estimator with a second-order
kernel is used in the first stage.
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conditions and cross-fitting has been used, e.g., by Belloni et al. (2017); Chernozhukov
et al. (2018). Estimation of conditional treatment effects with orthogonal moments have
been studied, e.g., by Kennedy et al. (2017); Kennedy (2020); Fan et al. (2020).

Plan of the Paper. The remainder of this paper is organized as follows. In Section 3.2,
we introduce the setup. In Section 3.3, we present our proposed covariate-adjusted
estimator. In Section 3.4, we present our main theoretical results under general conditions
on the covariate adjustments used. We discuss implementation details in Section 3.5.
In Section 3.6, we consider specific examples of covariate adjustments. We present a
simulation study in Section 3.7. Section 3.8 concludes.

Notation. Throughout the paper, we use the following notation. For a generic func-
tion f(x), we write f(0+) = limx↓0 f(x) and f(0−) = limx↑0 f(x) for the right and left limit
of the function f(x) at zero, respectively.

3.2. SETUP

In this section, we introduce the model and parameter of interest. Furthermore, we discuss
estimation of the RD parameter based on local linear regression methods.

3.2.1. Model and Parameter of Interest. We consider a sharp RD design, in which the
researcher investigates the causal effect of a binary treatment on some outcome variable
of interest. The data (Wi)i∈{1,...,n} are an i.i.d. sample of size n from the distribution of
Wi = (Yi, Xi, Zi). Here, Yi ∈ R is the outcome variable, Xi ∈ R is the running variable,
and Zi ∈ Rd is a vector of additional covariates. Units receive the treatment if and only if
the running variable exceeds some known threshold, which we normalize to zero without
loss of generality. We denote the treatment indicator by Ti, so that Ti = 1{Xi ≥ 0}.

Throughout the paper, we assume that the distribution of the running variable Xi is
fixed, but we consider a sequence of conditional distributions of (Yi, Zi) given Xi that can
change with n. In particular, we allow the dimension of Zi to grow with n. For ease of
notation, we leave the dependence on n implicit.

We denote the support of Zi by Z, and we let X be an open neighborhood of the
cutoff that is contained in the support of the running variable. The density of the running
variable is denoted by fX , the conditional cumulative distribution function of Zi given
Xi = x is denoted by FZ|X(z|x). If the corresponding conditional density exists, we denote
it by fZ|X(z|x). Under standard assumptions (see, e.g., Lee and Lemieux, 2010) the average
treatment effect at the cutoff is identified by the height of the jump in the conditional
expectation of the observed outcome variable given the running variable at zero:

τ = E[Yi|Xi = 0+] − E[Yi|Xi = 0−]. (3.2.1)
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We take this identification result as given and consider estimation of τ as defined above.

3.2.2. Standard RD Estimator. In RD designs, the parameter of interest is typically
estimated using local linear regression (see, e.g., Fan and Gijbels, 1996). The standard
estimator is given by:

τ̂(h) = e⊤
1 arg min

β∈R4

n∑
i=1

K(Xi/h)(Yi − β⊤(Ti, Xi, TiXi, 1))2,

where K(·) is a kernel function with support [−1, 1], h > 0 is a bandwidth, and e1 =
(1, 0, 0, 0)⊤ is the first unit vector. Using simple algebra, this estimator can be expressed
as a weighted sum of the outcome variable:

τ̂(h) =
n∑

i=1
wi(h)Yi,

where the weights wi(h) depend only on the realizations of the running variable. We give
the explicit expressions for the weights in Appendix 3.C.1.

Under standard assumptions, the estimator τ̂(h) is asymptotically normally distributed.
Its leading bias term is proportional to ∂2

xE[Yi|Xi = x]|x=0+ − ∂2
xE[Yi|Xi = x]|x=0− , and it

is of order h2. The bias results from approximating the possibly non-linear conditional
expectation function with a linear function. Its magnitude is determined by the degree
of nonlinearity, measured by the value of the second derivative. The variance is of order
(nh)−1, and it is approximately proportional to V[Yi|Xi = 0+] + V[Yi|Xi = 0−].

3.3. COVARIATE ADJUSTMENTS

In this section, we motivate our proposed estimation procedure, and we formally define
the proposed covariate-adjusted RD estimator.

3.3.1. Covariate-Adjusted Outcome Variable. We now introduce the key object of
this paper. We consider a modified outcome variable of the following form:

Mi(µ) = Yi − µ(Zi), (3.3.1)

where µ is a real-valued function of the additional covariates, which we refer to as the
adjustment function.

For the further analysis, we impose a regularity condition on the admissible adjustment
functions and require that µ(Zi) is square integrable conditional on the running variable.
We define the set of such functions as:

Mn =
{
µ : Z → R s.t. sup

x∈X
E[µ(Zi)2|Xi = x] < ∞

}
.
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The central premise for our proposed approach is that the conditional distribution
of the additional covariates given the running variable evolves continuously through the
cutoff.

Assumption 3.1. For all n ∈ N and µ ∈ Mn, E
[
µ(Zi)|Xi = x

]
is continuous in x on X .

Assumption 3.1 requires that the conditional distribution of Zi given Xi = x converges
weakly to the distribution of Zi given Xi = 0, as x converges to 0.3 Under this assumption,
we can replace the outcome variable Yi in the definition of τ in (3.2.1) with Mi(µ) without
affecting the value of the estimand, that is:

τ = E[Mi(µ)|Xi = 0+] − E[Mi(µ)|Xi = 0−] (3.3.2)

for all µ ∈ Mn.
Motivated by the above representation, for any fixed µ ∈ Mn, the RD parameter τ

could be estimated using the local linear RD estimator with Mi(µ) as the outcome variable,
which we denote by:

τ̂(h;µ) =
n∑

i=1
wi(h)Mi(µ). (3.3.3)

In practice, the adjustment function might be estimated from the data. However, in
a sense made precise in the next sections, we can replace the deterministic adjustment
function with its estimate without affecting the first-order asymptotic properties of the
final estimator of the RD parameter. We therefore first determine the adjustment function
that minimizes the variance of the RD estimator τ̂(h;µ).

3.3.2. Optimal Adjustment Function. The RD estimator τ̂(h;µ) has variance that is
approximately proportional to V[Mi(µ)|Xi = 0+] + V[Mi(µ)|Xi = 0−]. We find that the
adjustment function that minimizes this expression is given by

µn(z) = 1
2
(
µ+

n (z) + µ−
n (z)

)
, (3.3.4)

where µ+
n (z) = E[Yi|Xi = 0+, Zi = z] and µ−

n (z) = E[Yi|Xi = 0−, Zi = z]. This result
follows from simple derivations, which we outline below to present the intuition behind
this result.

Under Assumption 3.1, if µ−
n , µ+

n , µ ∈ Mn, then

V[Mi(µ)|Xi = 0+]+V[Mi(µ)|Xi = 0−] = V[Mi(µ+
n )|Xi = 0+]+V[Mi(µ−

n )|Xi = 0−]+V(µ),

where the first two terms on the right-hand side do not depend on µ, and

V(µ) = V[µ+
n (Zi) − µ(Zi)|Xi = 0] + V[µ−

n (Zi) − µ(Zi)|Xi = 0].
3This condition holds if FZ|X(z|x) → FZ|X(z|0), as x → 0, for all continuity points of FZ|X(z|0).
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Our goal is therefore to minimize V(µ). Each component of V(µ) could be set to zero
separately if µ was chosen as µ+

n or µ−
n , respectively. It turns out that the whole expression

V(µ) is minimized by the function µn, which can be seen by noting that:

V(µ) = V(µn) + 2V[µn(Zi) − µ(Zi)|Xi = 0] ≥ V(µn).

This reasoning shows that indeed the expression V[Mi(µ)|Xi = 0+]+V[Mi(µ)|Xi = 0−]
achieves the smallest value if µ = µn. The function µn is essentially a unique minimizer
up to shifts by a constant.

3.3.3. Estimator. We estimate τ in a two-stage procedure. In the first stage, we estimate
the function µn defined in (3.3.4), which involves estimating the limits of the conditional
expectation of the outcome variable given the additional covariates as the running variable
approaches the cutoff from the left and from the right.

Conditional expectations at boundary points are often estimated using local linear
methods because of their good bias properties. However, for our purposes, essentially any
procedure can be adapted to estimate these limits by restricting the data to observations
with the running variable close to the cutoff.4 For example, we can use parametric
estimators, classic nonparametric methods such as series and spline estimators (Masry,
1996; Newey, 1997), as well as modern machine learning methods including the lasso
(Tibshirani, 1996), random forests (Breiman, 2001; Wager and Athey, 2018), and deep
neural networks (Farrell et al., 2021).

In order to allow for a variety of, possibly highly complex, first-stage estimators, we
use cross-fitting (see, e.g., Chernozhukov et al., 2018).5 We split the data randomly into S
disjoint folds denoted Is for s ∈ [S] = {1, ..., S}, where all folds have the same number
of observations to the left of the cutoff, and similarly to the right of the cutoff.6 For
s ∈ [S], we define the complement of fold Is as Ic

s = [n] \ Is. Further, let s(i) denote the
index of the fold containing observation i, so that i ∈ s(i). Given a selected estimation
procedure, we define µ̂n,s(z) = µ̂n(z; (Wi)i∈Ic

s
), which is an estimator of µn(z) that uses all

observations except for the sth fold of the data.
In the second stage, we estimate the RD parameter using our covariate-adjusted

outcome variable. For each observation, we generate the outcome using the first-stage
4In our asymptotic analysis, we require only that the first-stage estimator concentrates around some

deterministic sequence.
5For simple first-stage estimators, such as linear adjustments, cross-fitting is not required, but it offers

a unifying approach that is suitable for all considered types of adjustments.
6In simulations, we choose S to be a moderate number, e.g. 5. We assume that the number of

observations both to the left and to the right of the cutoff is divisible by S to simplify the notation.
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estimate based on data from other folds. The final estimator is defined as:

τ̂CF (h; µ̂n) =
n∑

i=1
wi(h)Mi(µ̂n,s(i)), (3.3.5)

where the subscript CF refers to cross-fitting.

3.4. THEORETICAL RESULTS

In this section, we formally study the properties of the estimator τ̂CF (h; µ̂n) under high-level
conditions on the first-stage estimator. We also propose a method to estimate its variance.

3.4.1. Assumptions. The conditions we impose in this section consist of standard assump-
tions in RD designs without covariates as well as high-level assumptions on the first-stage
estimator µ̂n. Low-level conditions, tailored to specific types of covariate adjustments, are
discussed in Section 3.6. Throughout the paper, we implicitly assume that if a real-valued
function f is continuous on X \ {0}, then also the limits f(0−) and f(0+) exist and are
finite.

Assumption 3.2. (i) Xi is continuously distributed with density fX , which is continuous
and bounded away from zero uniformly over x ∈ X ; (ii) The kernel function K is a bounded
and symmetric density function that is continuous on its support and equals zero outside
some compact set, say [−1, 1]; (iii) As n → ∞, h → 0 and nh → ∞.

Assumption 3.2 contains basic conditions for our asymptotic analysis. The assumptions
on the density of the running variable, kernel, and bandwidth are standard in the literature.

The next two assumptions concern the first-stage estimator. By construction, its
properties are relevant only for observations that are used in the second-stage local
linear regression, i.e. the observations with |Xi| ≤ h. We define Xh = X ∩ [−h, h] and
Zh = supp(Zi|Xi ∈ Xh).

Assumption 3.3. For all n ∈ N, there exist a set Tn ⊂ Mn and a function µ̄n ∈ Tn such
that: (i) µ̂n,s belongs to Tn with probability approaching 1 for all s ∈ [S]; (ii) It holds that:

sup
µ∈Tn

sup
x∈Xh

E
[
(µ(Zi) − µ̄n(Zi))2|Xi = x

]
= o(1).

Assumption 3.3 specifies the required mode of convergence for the first-stage estimator.
We require that it belongs with high probability to some realization set Tn ⊂ Mn, which
contracts around a deterministic sequence of functions (µ̄n)n∈N in a mean-squared-error-
type sense. This assumption is weak, as µ̄n can be any function, not necessarily the
targeted, true function µn, and we do not require any specific rate at which Tn shrinks. In
particular, we allow for µ̂n to be based on a misspecified parametric model for the function
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µn, or to have an arbitrarily slowly vanishing bias, as long as the estimator concentrates
around some deterministic sequence.

Assumption 3.3 can be ensured in various ways. If the adjustment function is linear,
then it follows from convergence of the estimated coefficients if the additional covariates
have bounded conditional second moments. Assumption 3.3 is also satisfied if the difference
µ̂n,s − µ̄n converges to zero in the supremum norm on Zh. Such results are available for
example for classic nonparametric estimators in settings with a fixed dimension of the
additional covariates. Assumption 3.3 follows also from the unconditional convergence
in mean square under mild conditions on the conditional distribution of the additional
covariates given the running variable, which can be used to verify this assumption for
machine learning methods; see Section 3.6.4 and Appendix 3.A.1.

Assumption 3.4. For all n ∈ N, it holds that:

(i) E
[
µ(Zi)|Xi = x

]
is twice continuously differentiable in x on X \ {0} for all µ ∈ Mn;

(ii) sup
µ∈Tn

sup
x∈Xh\{0}

∣∣∣∂1
xE
[
µ(Zi) − µ̄n(Zi)|Xi = x

]∣∣∣ = o(1/h);

(iii) sup
µ∈Tn

sup
x∈Xh\{0}

∣∣∣∂2
xE
[
µ(Zi) − µ̄n(Zi)|Xi = x

]∣∣∣ = o(1).

Part (i) strengthens Assumption 3.1 and requires that E[µ(Zi)|Xi = x] is twice
continuously differentiable to the left and to the right of the cutoff. We emphasize that
we do not require continuity of the derivatives of E[µ(Zi)|Xi = x] at the cutoff. This
assumption is analogous to the assumptions of Calonico et al. (2019), who assume that
E[Zi|Xi = x] is (thrice in their case) continuously differentiable to the left and to the
right of the cutoff but not necessarily at the cutoff.7 If, however, ∂2

xE[µ(Zi)|Xi = x] is
continuous at the cutoff, we can exploit this assumption to simplify our asymptotic results;
see Corollary 3.1. Parts (ii) and (iii) impose high-level requirements on derivatives of
E
[
µ(Zi) − µ̄n(Zi)|Xi = x

]
for µ ∈ Tn.

Assumption 3.4 follows from Assumption 3.3 under regularity conditions on the con-
ditional distribution of the additional covariates given the running variable. Specific
conditions may depend on the estimator used. If the adjustment function is linear, then it
follows if each component of E[Zi|Xi = x] is twice continuously differentiable on X \ {0}.
Assumption 3.4 also follows whenever the conditional density fZ|X(z|x) is bounded away
from zero on its support and the partial derivatives ∂j

xfZ|X(z|x) are L-Lipschitz continuous
in x for all z and j ∈ {0, 1}. We discuss further, technical sufficient conditions for this
assumption in Appendix 3.A.2.

7In their main analysis, Calonico et al. (2019) assume only that E[Zi|Xi = x] is continuous also at the
cutoff, which ensures consistency of the RD estimator. The higher-order smoothness assumptions ensure
that standard theory of local linear estimation can be applied to their RD estimator.
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Assumption 3.5. There exist constants B and L such that the following conditions hold
for all n ∈ N. (i) E[Mi(µ̄n)|Xi = x] is twice continuously differentiable on X \ {0} with
L-Lipschitz continuous second derivative bounded by B; (ii) For all x ∈ X and some q > 2
E[(Mi(µ̄n) − E[Mi(µ̄n)|Xi])q|Xi = x] exists and is bounded by B; (iii) V[Mi(µ̄n)|Xi = x]
is L-Lipschitz continuous and bounded from below by 1/B for all x ∈ X \ {0}.

Assumption 3.5 is a translation of standard RD assumptions to the setting with Mi(µ̄n)
as the outcome variable. We employ these conditions to show asymptotic normality of our
proposed RD estimator and to characterize its bias. Part (i) requires that the conditional
expectation of the outcome variable is twice continuously differentiable to the left and to
the right of the cutoff. Parts (ii) and (iii) impose standard assumptions on conditional
moments of the outcome variable.

3.4.2. Main Asymptotic Results. In this section, we study the asymptotic properties
of our estimator. We define the following kernel constants: ν̄ = (ν̄2

2 − ν̄1ν̄3)/(ν̄2ν̄0 − ν̄2
1)

and κ̄ =
∫∞

0 (k(v)(ν̄1v − ν̄2))2dv/(ν̄2ν̄0 − ν̄2
1)2, where ν̄j =

∫∞
0 vjk(v)dv.

Theorem 3.1. Suppose that Assumptions 3.1–3.4 hold.

(i) It holds that
τ̂CF (h; µ̂n) = τ̂(h; µ̄n) + op(h2 + (nh)−1/2).

Suppose additionally that Assumption 3.5 holds.

(ii) It holds that
√
nhV (µ̄n)−1/2

(
τ̂CF (h; µ̂n) − τ −B(µ̄n)h2

)
→ N (0, 1),

where for µ ∈ Mn

B(µ) = 1
2 ν̄
(
∂2

xE[Mi(µ)|Xi = x]
∣∣∣
x=0+

− ∂2
xE[Mi(µ)|Xi = x]

∣∣∣
x=0−

)
+ oP (1),

V (µ) = κ̄

fX(0)
(
V[Mi(µ)|Xi = 0+] + V[Mi(µ)|Xi = 0−]

)
.

(iii) For all functions µ ∈ Mn, it holds that

V (µ) ≥ V (µn) = κ̄

fX(0)

(
E
[
V[Yi|Zi, Xi]|Xi = 0+

]
+ E

[
V[Yi|Zi, Xi]|Xi = 0−

]
+1

2V
[
µ+

n (Zi) − µ−
n (Zi)|Xi = 0

])
.

Part (i) states the key technical result. It shows that the proposed estimator is
asymptotically equivalent to its infeasible analog with the estimator µ̂n replaced with the
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deterministic sequence µ̄n. We emphasize that this equivalence holds even though the
first-stage estimator can converge arbitrarily slowly. This high insensitivity is only possible
because for all k ∈ N

∂k
µ

(
E[Mi(µ)|Xi = 0+] − E[Mi(µ)|Xi = 0−]

)
|µ=µn = 0 (3.4.1)

where ∂k
µ is the k-th functional derivative with respect to the function µ. This property

is in the spirit of Neyman orthogonality with respect to the adjustment function µ. We
discuss it further in Appendix 3.B.3.

Based on the asymptotic equivalence result in part (i), the asymptotic normality shown
in part (ii) follows from standard theory of local linear estimation. The approximate
variance depends on the sequence µ̄n around which the first-stage estimator concentrates. If
µ̄n = µn, then the variance expression is similar to the efficiency bound for estimation of the
average treatment effect under unconfoundedness with a constant conditional probability
of treatment equal to one half (Hahn, 1998). We discuss the analogy between the covariate
adjustments used for randomized experiments and our approach in Appendix 3.B.2.

The proposed covariate adjustments lead to efficiency gains compared to the standard
RD estimator in a very wide range of settings, even if µ̄n ̸= µn. We show in Appendix 3.D
that V (µ̄n) < V (0) if and only if V[µn(Zi) − µ̄n(Zi)|Xi = 0] < V[µn(Zi)|Xi = 0], i.e.
whenever µ̄n(Zi) has some explanatory power for µn(Zi). This condition is satisfied for
example if µ̄n(Zi) represents some nontrivial projection of Yi on Zi based on the data in a
neighborhood of the cutoff.

The bias expression simplifies under an additional smoothness assumption. If the
smoothness condition in Assumption 3.4(i) holds also at the cutoff, then the leading bias
does not depend on the function µ̄n. The simplified bias expression is convenient for
conducting statistical inference on based the bias-aware approach; see Section 3.5.2.

Corollary 3.1. Suppose that Assumptions 3.1–3.5 hold and ∂2
xE[µ̄n(Zi)|Xi = x] is contin-

uous at the cutoff for all n ∈ N. Then

B(µ̄n) = 1
2 ν̄
(
∂2

xE[Yi|Xi = x]|x=0+ − ∂2
xE[Yi|Xi = x]|x=0−

)
+ oP (1).

Remark 3.1. It follows from the proof of Theorem 3.1 that our proposed estimator is
asymptotically equivalent to the average of RD estimators run on different folds of the
data.8 We prefer our version because existing estimation and inference routines as well as
bandwidth selectors can be readily applied to the modified data (Mi(µ̂n,s(i)), Xi)i∈[n]; see
Section 3.5.

8A similar point is made by Chernozhukov et al. (2018) in the context of the (unconditional) average
treatment effect estimation; cf. their methods DML1 and DML2. Fan et al. (2020) average local linear
estimators run on different folds of the data in a conditional average treatment effect estimation problem.
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3.4.3. Standard Error. To estimate the variance of our estimator, we use a standard
error of the form

ŝe2
CF (h; µ̂n) =

n∑
i=1

w2
i (h)σ̂2

i (µ̂n,s(i)),

where σ̂2
i (µ̂n,s(i)) is an estimator of the variance σ2

i (µ̄n) = V[Mi(µ̄n)|Xi]. Following Noack
and Rothe (2021), we consider a version of the nearest neighbor variance estimator of
Abadie et al. (2014).9 We choose some R, say R = 5, which determines the number of
neighbors to be used in the variance estimation. Based on the realized running variable,
for each unit i, we determine its R nearest neighbors that are on the same side of the
cutoff and within the same fold as unit i. Our estimator σ̂2

i (µ̂n,s(i)) is proportional to
the squared difference between Mi(µ̂n,s(i)) and its best linear predictor given the running
variable based on its R nearest neighbors. We give a formal definition of this estimator in
Appendix 3.C.4.

Proposition 3.4.1. Suppose that Assumptions 3.1–3.5 hold and that for all x ∈ X and
n ∈ N, supµ∈Tn

E[(Mi(µ) − E[Mi(µ)|Xi])4|Xi = x] is bounded by B. Then

nh ŝ2
CF (h; µ̂n) − V (µ̄n) = oP (1).

The additional assumption imposed in Proposition 3.4.1 strengthens Assumption 3.5(ii).
Existence of conditional fourth moments of the outcome variable is often used for showing
consistency of standard errors.

3.5. IMPLEMENTATION DETAILS

In this section, we address point estimation and inference. We also discuss how to
incorporate different bandwidths on different sides of the cutoff in the second stage.

3.5.1. Bandwidth Choice. One of the key steps to implement our estimation procedure is
to choose the bandwidth h for the local linear regression in the second stage. We consider
two approaches used in the RD literature.

First, we can select the bandwidth that minimizes the asymptotic mean squared error
(AMSE), which is defined as:

AMSEn(h) = B(µ̄n)2h4 + 1
nh
V (µ̄n).

The optimal bandwidth is then given by hopt =
(
V (µ̄n)/(4B(µ̄n)2)

)1/5
n−1/5. It can be

estimated following the procedures proposed by Imbens and Kalyanaraman (2012) and
9Alternatively, one can use the Eicker-Huber-White (EHW) standard error, but it might be conservative

in finite samples; see the discussion by Abadie et al. (2014) in the standard nonparametric regression
context.

84



Calonico et al. (2014). These procedures require estimating ∂2
xE[Mi(µ̄n)|Xi = x] to the

left and to the right of the cutoff, which can be done using our generated outcome variable
under additional smoothness assumptions.

Second, we can adapt the ‘bias-aware’ approach of Armstrong and Kolesár (2020).
They select the bandwidth that minimizes the worst-case mean squared error over a
function class formed by imposing a bound on the second derivatives of the considered
function. Suppose that |∂2

xE[Mi(µ̄n)|Xi = x]| is bounded by constants BM− and BM+

to the left and to the right of the cutoff, respectively, and let BM = BM− + BM+. The
leading bias term of our estimator is then bounded in absolute value by 1

2 |ν̄|BMh
2. The

bandwidth minimizing the corresponding worst-case asymptotic mean squared error is given
by hBA

opt =
(
V (µ̄n)/(ν̄BM)2

)1/5
n−1/5. Implementation of this bandwidth selector requires

choosing the smoothness constants BM− and BM+. See Armstrong and Kolesár (2020)
and Noack and Rothe (2021) for discussions of the choice of smoothness constants. We
note that under the smoothness assumption in Corollary 3.1, it suffices if the smoothness
constants BM− and BM+ are chosen so as to bound |∂2

xE[Yi|Xi = x]| to the left and to the
right of the cutoff, respectively.

3.5.2. Confidence Intervals. We construct confidence intervals (CIs) for τ based on the
asymptotic distribution obtained in part (ii) of Theorem 3.1. The variance Vn(µ̄n) can
be estimated using the standard error ŝCF (h; µ̂n) proposed in Section 3.4.3. To account
for the asymptotic bias, we can adapt standard methods available in the nonparametric
literature.

First, we consider undersmoothing (US), which relies on selecting a bandwidth of order
smaller than n−1/5. In this case, the bias is asymptotically negligible, and an asymptotically
valid 1 − α CI can be formed as:

CIUS
α = [τ̂CF (h; µ̂n) ± z1−α/2 · ŝCF (h; µ̂n)], (3.5.1)

where zu is the u-quantile of the standard normal distribution. The two further approaches
allow for the optimal bandwidths discussed in the previous section, which are of order
n−1/5.

Second, the robust bias corrections (RBC) proposed by Calonico et al. (2014) can be
easily adapted to our setting. In this approach, we subtract an estimate of the leading bias
term and account for the additional variation in the bias-corrected estimator when forming
a CI. These additional steps can be conducted using our generated outcome variable
Mi(µ̂n,s(i)) instead of the original outcome Yi under further regularity conditions. Let
τ̂RBC

CF (h; µ̂n) be the bias-corrected estimator and ŝRBC
CF (h; µ̂n) the corresponding standard
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error. The proposed CI is given by:

CIRBC
α = [τ̂RBC

CF (h; µ̂n) ± z1−α/2 · ŝRBC
CF (h; µ̂n)], (3.5.2)

The third approach adapts the ‘bias-aware’ approach of Armstrong and Kolesár (2020).
Under the assumption of bounded second derivatives discussed in the previous section, it
follows that an asymptotically valid 1 − α confidence interval can be formed as:

CIBA
α = [τ̂CF (h; µ̂n) ± cv1−α(r̂(h)) · ŝCF (h; µ̂n)],

where r̂(h) = 1
2 |ν̄|BMh

2/ŝCF (h) and cv1−α(t) is the 1 − α quantile of the folded normal
distribution |N (t, 1)|. One can also account for the maximal bias of the infeasible estimator
τ̂(h; µ̄n) conditional on Xn instead of bounding only the leading bias term.

3.5.3. Different Bandwidths. Our estimation procedure introduced in Section 3.3.3
employs a single bandwidth in the second-stage local linear regression. In some empirical
settings, however, it might be desirable to run two separate local linear regressions using
different bandwidths on different sides of the cutoff. The reason for that might be, for
example, that the curvature of the conditional expectation of the outcome variable or its
conditional variance are different to the left and to the right of the cutoff. Another reason
for choosing different bandwidths might be that the density of the running variable is
very steep at the cutoff, so that the numbers of observations with the running variable in
(−hopt, 0) and (0, hopt) are substantially different.

It is straightforward to account for different bandwidths in the asymptotic distribution
of our estimator, but the adjustment term based on µn is no longer optimal in such a
case. We therefore generalize the optimality result in part (iii) of Theorem 3.1. When
bandwidths h− and h+ are used to the left and to the right of the cutoff, respectively, then
the variance of our estimator in large samples is approximately equal to:

Ṽ (µ̄n) = ω+V[Mi(µ̄n)|Xi = 0+] + ω−V[Mi(µ̄n)|Xi = 0−],

where ω− = ∑n
i=1 wi,−(h−)2 and ω+ = ∑n

i=1 wi,+(h+)2 and the weights wi,− and wi,+

correspond to the local linear estimators run using the data to the left and to the right
of the cutoff, respectively. The explicit expressions are given in Appendix 3.C.1.10 The
weights ω− and ω+ capture the inverse of the effective sample size to the left and to the
right of the cutoff, respectively.

10Apart from allowing for different bandwidths, Ṽ (µ) differs from V (µ) in Theorem 3.1 in that it does
not rely on kernel-weighted sums of Xi to converge to their limits. As such, Ṽ(µ̄n) may capture the
finite-sample variance of our estimator more accurately. Still, this expression remains valid only asymptotic
as we use V[Mi(µ)|Xi = x] evaluated to the left and to the right of the cutoff, rather than for each Xi

separately.
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We show in Appendix 3.D that Ṽ (µ) is minimized by the function

µ∗
n(z) = ω−

ω− + ω+
µ−

n (z) + ω+

ω− + ω+
µ+

n (z) (3.5.3)

in the sense that Ṽ (µ∗
n) ≤ Ṽ (µ) for all µ ∈ Mn. This result is consistent with Theorem 3.1

because ω−/(ω− + ω+) → 1/2 under our assumptions if h− = h+.
We remark that for any given bandwidths the above weighting scheme puts more weight

to the side of the cutoff where the effective sample size is smaller. The reason for that is
apparent in the proof given in Appendix 3.D, where we show that minimization of Ṽ (µ)
is equivalent to minimization of Ṽ(µ) = ω+V[µ+

n (Zi) − µ(Zi)|Xi = 0] + ω−V[µ−
n (Zi) −

µ(Zi)|Xi = 0]. If, for example, ω+ is large compared to ω−, then choosing µ so as to make
V[µ+

n (Zi) − µ(Zi)|Xi = 0] small is relatively more important than decreasing the value of
V[µ−

n (Zi) − µ(Zi)|Xi = 0]. Accordingly, µ+
n receives a higher weight in (3.5.3) in such a

case.

3.6. EXAMPLES OF COVARIATE ADJUSTMENTS

In this section, we give primitive conditions for our high-level Assumptions 3.3 and
3.4, which concern the properties of the first-stage estimator. We consider in turn:
linear, non-linear parametric, local linear, and generic machine learning adjustments. In
Sections 3.6.1–3.6.3, where we consider methods suitable for settings with a low-dimensional
covariate, we assume that the distribution of Wi does not change with n.

3.6.1. Linear Adjustments. We define a linear estimator using observations close to the
cutoff:

β̂s = arg min
β

∑
s∈Ic

s

K(Xi/h)(Yi − β⊤(Z⊤
i Ti, Z

⊤
i (1 − Ti), Xi, TiXi, Ti, 1)⊤)2. (3.6.1)

Let β̂+
s,Z denote the first d components of β̂s and let β̂−

s,Z be the next d components of
β̂s. We define µ̂n,s(z) = z⊤β̂s,Z , where β̂s,Z = 1

2(β̂+
s,Z + β̂−

s,Z).11 Let Z̄i = (1, Z⊤
i , Xi/h1)⊤.

Assumptions 3.3 and 3.4 hold if we can ensure that the estimated slope coefficients
concentrate around some deterministic sequence and the conditional expectation E[Zi|Xi =
x] is sufficiently smooth.

Assumption 3.6. (i) Each component of E[Zi|Xi = x] is twice differentiable on X \ {0}
with L-Lipschitz continuous second derivative for some constant L; (ii) The limit as
n → ∞ of E[Kh1(Xi)Z̄iZ̄

⊤
i ] is non-singular; (iii) E[Z⊤

i Zi|Xi = x] is bounded uniformly
over x ∈ X .

11As discussed in Section 3.3.2, it suffices to estimate µn up to a constant.
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Proposition 3.6.1. Suppose that Assumption 3.6 holds and either (i) h1 → 0 and
nh1 → ∞ or (ii) h1 → c > 0. Then Assumptions 3.3 and 3.4 are satisfied.

This type of adjustments bears resemblance to the procedure of Calonico et al. (2019).
Specifically, they obtain their estimator from a regression as in (3.6.1) but with two
main differences. First, they using the whole sample. With these simple adjustments,
cross-fitting is not necessary in our procedure, but it does not have any adverse effects.
Second, they impose the restriction that β̂+

Z = β̂−
Z . Doing so, implies by standard OLS

algebra that µ̂n(z) puts more weight to the side of the cutoff with the larger effective
sample size. As can be seen in Section 3.5.3, this type of weighting is not optimal.12

3.6.2. Non-linear Parametric Adjustments. Suppose that the researcher uses some
parametric specification mβ(z) = 1

2(m−
β (z) + m+

β (z)) for the function µn, which can be
based, e.g., on the logit or probit model. This specification might be correct or incorrect.
The function mβ is known up to a finite-dimensional parameter β ∈ B ⊂ Rdβ . We
assume that there is an estimator β̂ converging to some nonrandom probability limit β̄.
Classic conditions for consistency in M-estimation problems are given, e.g., by Newey and
McFadden (1994).

Assumption 3.7. (i) For some β̄ and rn → 0, ∥β̂− β̄∥∞ = Op(rn); (ii) For all β1, β2 ∈ B,
z ∈ Z, and some constant G, |mβ1(z) −mβ2(z)| ≤ G||β1 − β2||∞.

Assumption 3.7 guarantees that the first-stages estimator converges in the supremum
norm to some limiting function. With this mode of convergence, Assumption 3.3 follows
trivially, and Assumption 3.4 also holds under regularity conditions on the conditional
distribution of the additional covariates given the running variable. For concreteness, we
assume that Zi is continuously distributed given Xi, but analogous results can be derived
if the additional covariates have a discrete distribution.

Proposition 3.6.2. Suppose that Assumptions 3.1, 3.2, and 3.7 hold. Moreover, Zi has
bounded support and ∂j

xfZ|X(z|x) is L-Lipschitz continuous in x for all z and j ∈ {0, 1}.
Then Assumptions 3.3 and 3.4 are satisfied.

3.6.3. Nonparametric Adjustments. We consider covariate adjustments based on classic
nonparametric methods, which are suitable if the number of additional covariates is not
too large. To fix ideas, we focus on local linear estimation (Fan and Gijbels, 1996), but
similar results can be obtained for example for sieve estimation (Newey, 1997).

For z ∈ Rd, we define the multivariate kernel as the product of univariate kernels,
Kh(z) = ∏d

i=1 Kh(zi), where Kh(v) = 1
h
K(v/h).13 We define estimators of µ+

n (z) and µ−
n (z)

12A similar point is made by Negi and Wooldridge (2020) in the context of randomized experiments.
13The kernel chosen for the local linear first-stage estimator can be also different from the kernel used

in the second stage.
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using data in the complement of the sth fold as:

µ̂+
n,s(z) = e⊤

1 arg min
β

∑
i∈Ic

s

TiKhX
(Xi)KhZ

(Zi − z)(Yi − β⊤(1, (Zi − z)⊤, Xi))2,

µ̂−
n,s(z) = e⊤

1 arg min
β

∑
i∈Ic

s

(1 − Ti)KhX
(Xi)KhZ

(Zi − z)(Yi − β⊤(1, (Zi − z)⊤, Xi))2.

In Assumption 3.8 in Appendix 3.C.6, we impose standard assumptions on the data
generating process for the local linear estimator.

Proposition 3.6.3. Suppose that Assumptions 3.1, 3.2, and 3.8 hold. Further, assume
that hX → 0, hZ → 0, log(n)/(nhXh

d
Z) → 0, and ∂2

xfZ|X(z|x) is L-Lipschitz continuous
in x for all z. Then Assumptions 3.3 and 3.4 are satisfied.

Under Assumption 3.8 and the bandwidth conditions of Proposition 3.6.3, Masry (1996)
shows that the local linear estimator is uniformly consistent. Using this result, Assump-
tion 3.1 follows trivially. Assumption 3.4 also follows under the additional smoothness
conditions; see the discussion in Appendix 3.A.2.

We emphasize that the bandwidth conditions are very mild, and they can be chosen,
e.g., via cross-validation under further, standard regularity conditions. With a moderate
number of covariates, it is optimal to choose a relatively large bandwidth, but this is
allowed as long as they converge to zero. In general, with our method is advisable to
oversmooth, rather than undersmooth when choosing the bandwidths in order to guarantee
that the estimator is not too volatile. Oversmoothing comes at the cost of a possible
increase in the variance of the final estimator, but it renders the normal approximation of
the asymptotic distribution more reliable in finite samples.

3.6.4. Adjustments Based on Machine Learning Methods. We outline a general
approach to ensuring that our high-level assumptions hold for many machine learning
methods. Results about estimation of conditional expectations using machine learning
methods typically concern convergence in mean square. We can make use of these results
by estimating the functions µ−

n and µ+
n based on narrow, fixed ‘slices’ of the data to the

left and to the right of the cutoff, respectively.14 Specifically, for any fixed h1, we can
readily obtain the result that the selected estimator belongs to some realization set Tn

with probability approaching one, and

sup
µ∈Tn

E
[
(µ(Zi) − µ̄n(Zi))2|Xi ∈ Xh1

]
= o(1), (3.6.2)

14Restricting the sample corresponds to weighting the observations based on a uniform kernel. Our
reasoning applies also to any other kernel weighting scheme, e.g. using the triangular kernel.
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where µ̄n(z) = 1
2(µ̄+

n (z) + µ̄−
n (z)) with µ̄+

n (z) = E[Yi|Zi = z,Xi ∈ (0, h1)] and µ̄−
n (z) =

E[Yi|Zi = z,Xi ∈ (−h1, 0)]. If the conditional distribution of the additional covariates
given the running variable is sufficiently smooth on the interval (−h1, h1), then the above
property implies that Assumptions 3.3 and 3.4 hold; see Appendix 3.A for more details.

Primitive conditions for (3.6.2) are available for a variety of machine learning techniques,
e.g. post-lasso (Belloni et al., 2012), random forests (Breiman, 2001; Wager and Athey,
2018), and deep neural networks (Farrell et al., 2021). Hence, we can flexibly choose a
method that is best-suited for a given dataset under the assumptions imposed.

With fixed h1, µ̄n might be different from µn. Our theory allows for that, but this
procedure in general does not achieve the optimal variance V (µn). In the previous section,
we show that for the local linear estimator, the optimal variance can be achieved by
choosing h1 that converges to zero. It would be interesting to formally study the setting
with h1 → 0 for other methods. We leave this for future research.

3.7. SIMULATIONS

We compare the finite sample performance of our proposed estimator for different first-stage
estimation methods in a Monte Carlo study.

3.7.1. Setup. We consider four models, which differ in the number of covariates entering the
outcome equation, which we denote by L ∈ {0, 4, 10, 25}. The running variable Xi follows
the uniform distribution over [−1, 1]. There are four independent, baseline covariates,
denoted by Zb

i , which are distributed uniformly over [−1 + x2, 1 + x2]4 conditional on
Xi = x. We generate further covariates based on the baseline covariates using Hermit
polynomials. Let bl(Zb

i ) denote the l-th covariate. The outcome is generated according to
the following model:

Yi = Di + µL(Xi, Zi) + εi,

where εi ∼ N (0, 0.25) and

µL(Xi, Zi) = sign(Xi) · (Xi +X2
i − 2 (Xi − 0.1)2

+) + ῑL(ρ)
L∑

l=1
bl(Zb

i ).

For positive L and ρ, we chose the coefficient ῑL(ρ) so that V[µL(0, Zi)|Xi = 0] = ρ2V[εi].
In this definition, ρ represents the signal to noise ratio at the cutoff given the treatment
status. It determines the scope for improvements from using covariates, but it does not
affect the relative performance of different covariate adjustments. For concreteness, in
the main text, we consider ρ = 3. We report simulation results for further values of ρ in
Appendix 3.E. The results are based on 5, 000 simulation draws. The sample size is 2, 000
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for the main results.
We consider in total seven implementations of the first-stage estimator: (i) the standard

RD estimator with no covariate adjustments; (ii) the infeasible, optimal RD estimator with
covariate adjustments based on the true conditional expectation function; (iii) the infeasible
RD estimator with adjustments based on the best linear prediction on the population
level of the true conditional expectation function given the four baseline covariates.15 We
consider four feasible adjustment functions based on:16 (iv) a linear regression given the
four baseline covariates; (v) a local linear regression given the four baseline covariates;
(vi) a post-lasso regression given 200 covariates; and (vii) a random forest with the four
baseline covariates.

To keep the exposition simple, in the main text, we consider only the bias-aware
approach for the implementation of the second stage. Our procedure is based on the true
bound on the second derivative of the conditional expectation of the outcome variable.
The bandwidth is chosen to be optimal in terms of the estimated worst-case mean squared
error. The main qualitative conclusions of our simulation study hold also for robust bias
corrections and undersmoothing. We present these results in Appendix 3.E. There we also
compare our estimators to the linear covariates adjustment method proposed by Calonico
et al. (2019).17

3.7.2. Simulations Results. Table 3.1 reports estimation and inference results for different
types of adjustments. The CIs for all estimators have simulated coverage rates close to
their nominal ones.18 First, we compare the standard RD estimator and the infeasible
estimators. In Model 1, these estimators are numerically equal. In Models 2–4, where the
covariates have some explanatory power for the outcome, the infeasible estimators have
a substantially lower standard deviation than the standard estimator has. If the linear
model is misspecified, the standard deviation of the optimal infeasible estimator is much
smaller than that of the infeasible estimator with linear adjustments. We now turn to
the feasible covariate-adjusted RD estimators. As predicted by Theorem 3.1, their mean
standard deviations are close to those of their respective infeasible estimator, with only a
slight increase due to the first-stage estimation.

15We obtain the population projection coefficients based on 107 draws with Xi = 0 and εi = 0. We fix
this estimate through all simulations for each data generating process.

16In the first-stage, the observations are weighted using kernel weights with the bandwidth selected for
the standard RD estimator.

17All computations are carried out with the statistical software R. The Hermit-polynomials are computed
using the package calculus. To implement the first-stage estimators, we use the following packages: np
for local polynomial regressions; glmnet for lasso regressions; grf for random forests, where predictions
are based on 200 trees. In the second stage, a triangular kernel is used and EHW standard errors are
computed. The bias-aware approach is based on the package RDHonest, and the other two approaches are
implemented using the package rdrobust.

18In the considered models, the maximal bias is not achieved, so that the bias-aware CIs are conservative.
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Table 3.1: Simulation results.
Cov Bias SD CI h Cov Bias SD CI h

Model 1: L=0 Model 2: L=4

Standard 97.0 -1.4 7.4 32.4 43.2 96.1 -7.1 18.6 81.8 68.8
Optimal Inf 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2
Linear Inf 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2

Linear 97.0 -1.4 7.4 32.7 43.3 96.7 -1.5 7.5 32.6 43.3
Local Linear 97.0 -1.4 7.4 32.7 43.3 96.8 -1.4 7.5 32.7 43.3
Lasso 96.7 -1.4 7.6 33.1 43.6 96.6 -2.1 8.8 38.3 46.6
Forest 96.8 -1.5 7.6 33.1 43.6 96.7 -2.1 8.7 37.9 46.5

Model 3: L=10 Model 4: L=25

Standard 96.4 -9.5 19.1 87.6 79.3 95.9 -6.3 18.5 81.0 68.5
Optimal Inf 96.5 -1.3 7.6 32.5 43.2 96.9 -1.3 7.4 32.4 43.2
Linear Inf 96.7 -4.8 12.7 56.2 61.8 96.8 -4.3 10.3 47.2 59.0

Linear 95.9 -4.0 13.7 59.1 59.7 96.5 -4.3 10.8 49.2 58.8
Local Linear 96.3 -1.6 8.3 35.6 45.2 96.8 -1.6 8.2 35.9 45.6
Lasso 96.2 -2.0 9.2 39.1 46.7 96.8 -1.4 7.7 34.0 44.3
Forest 96.6 -1.9 8.5 37.2 46.9 97.1 -2.2 9.3 41.3 49.0

Notes: Results based on 5,000 Monte Carlo draws for the bias-aware approach. All numbers are
multiplied by 100. Columns show results for simulated coverage for a nominal confidence level
of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence
interval length (CI); and the mean bandwidth (h).

In Figures 3.1 and 3.2, we compare the difference between the optimal infeasible RD
estimator and two feasible ones: with adjustments based on local linear regression and
post-lasso regression for several choices of the tuning parameters. In each simulation draw,
we find the MSE-optimal tuning parameters via cross-validation, and then scale it down
or up by different factors.19 We consider two sample sizes, n = 2, 000 and n = 10, 000. We
normalize the difference by the standard error of the optimal infeasible RD estimator.

19To facilitate comparisons of different covariate adjustments, in each simulation draw, we use the
bandwidth selected for the standard RD estimator in the second stage across all different methods.
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(a) Sample size n = 2, 000.
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(b) Sample size n = 10, 000.

Figure 3.1: Normalized difference of RD estimates with local linear adjustments.
Notes: Difference between optimal infeasible and feasible RD estimate normalized by standard deviation
of infeasible estimator. We consider various scaling factors for the cross-validated MSE-optimal first-stage
bandwidth. Simulations are based on Model 3. Panel (a) shows simulation results for n = 2, 000, and
Panel (b) for n = 10, 000.
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(a) Sample size n = 2, 000.
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(b) Sample size n = 10, 000.

Figure 3.2: Normalized difference of RD estimates with post-lasso regression adjustments.
Notes: Difference between optimal infeasible and feasible RD estimate normalized by standard deviation
of infeasible estimator. We consider various scaling factors for the cross-validated MSE-optimal first-stage
penalty parameter. Simulations are based on Model 3. Panel (a) shows simulation results for n = 2, 000,
and Panel (b) for n = 10, 000.
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In Figure 3.1, we observe that the normalized difference between the estimators is
relatively small for a wide range of bandwidths around the optimal one. By comparing
panels (a) and (b), we can see that these normalized differences become smaller as the
sample size increases, which illustrates the asymptotic equivalence result in part (i) of
Theorem 3.1. For a given sample size, the average absolute value of the normalized
differences is U-shaped as a function of the bandwidth. If the bandwidth chosen in the
first stage is too small, then the local linear estimator is very unstable. In this case, the
property in Assumption 3.3 is not a good description of its finite-sample behavior, and
the equivalence result in Theorem 3.1 fails. If the bandwidth is chosen to be too large,
the local linear estimator has a relatively small variance, but it might be heavily biased,
and it is effectively very similar to the linear estimator. In this case, the equivalence to
an infeasible estimator holds with a different limiting sequence (µ̄n)n∈N. We expect the
estimator to be less efficient, but we emphasize that our inference procedure remain valid
in this case.

Figure 3.2 shows a very similar pattern as Figure 3.1. If the penalty parameter in the
lasso regression is chosen to be too small, effectively all covariates are classified as relevant,
and the first-stage estimator has a high variance. In contrast, if the penalty parameter
is chosen to be too large, very few covariates are classified as relevant. In this case, the
covariate-adjusted RD estimator behaves similarly to the standard RD estimator.

3.8. CONCLUSIONS

Linear covariate adjustments are commonly used in RD designs to improve efficiency of
the standard RD estimator. In this paper, we propose a class of RD estimators that
allow for nonparametric covariate adjustments, which can reduce the variance of the RD
estimator even further. We allow for a wide range of covariate adjustments under mild
conditions. Despite using possibly highly-complex covariate adjustments, inference on the
RD parameter can be conducted using standard methods available in the literature. We
illustrate our results in a simulation study.
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Appendix

3.A. FURTHER SUFFICIENT CONDITIONS FOR MAIN ASSUMPTIONS

In this section, we discuss sufficient conditions for our high-level Assumptions 3.3 and 3.4.

3.A.1. Sufficient Conditions for Assumption 3.3. We outline a generic way of ensuring
that Assumption 3.3 holds, which can be employed for a wide range of estimators. For
concreteness, we assume that the additional covariates are continuously distributed condi-
tional on the running variable, but similar results can be derived for discrete distributions
or intermediate cases.

Many results in the machine learning literature concern convergence in mean square,
which means that we can obtain the following property:

sup
µ∈Tn

E
[
(µ(Zi) − µ̄n(Zi))2|Xi ∈ Xh

]
= o(1). (3.A.1)

We can infer our assumption from the above condition if the conditional distribution of
the additional covariates does not change abruptly around the cutoff. Specifically, suppose
that

sup
x∈Xh

sup
z∈Zh

fZ|X(z|x)
fZ|X∈Xh

(z) < B, (3.A.2)

for some constant B and h small enough. If the conditions in (3.A.1) and (3.A.2) hold,
then Assumption 3.3 is satisfied because::

sup
µ∈Tn

sup
x∈Xh

E
[
(µ(Zi) − µ̄n(Zi))2|Xi = x

]
= sup

µ∈Tn

sup
x∈Xh

∫
Zh

(µ(Zi) − µ̄n(Zi))2fZ|X∈Xh
(z) fZ|X(z|x)

fZ|X∈Xh
(z)dz

≤ B sup
µ∈Tn

E
[
(µ(Zi) − µ̄n(Zi))2|Xi ∈ Xh

]
= o(1).

3.A.2. Sufficient Conditions for Assumption 3.4. We show that Assumption 3.4
can be inferred from the convergence imposed in Assumption 3.3 under mild additional
smoothness conditions on the conditional distribution of the additional covariates given
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the running variable. This can be most intuitively seen when the support Z is discrete. In
the continuous case some additional integrability conditions are needed.

Discrete Additional Covariates. Suppose that the support of the additional covariates, Z,
is finite. In this case, Assumption 3.3 implies that supµ∈Tn

supz∈Zh
|µ(z) − µ̄(z)| = o(1).

Then for j ∈ {1, 2},

∂j
xE[µ(Zi) − µ̄n(Zi)|Xi = x] =

∑
z∈Z

(µ(z) − µ̄(z))∂j
xP[Zi = z|Xi = x].

Given Assumption 3.3, Assumption 3.4 holds if supx∈Xh\{0} supz∈Zh
∂1

xP[Zi = z|Xi = x] =
O(1/h) and supx∈Xh\{0} supz∈Zh

∂2
xP[Zi = z|Xi = x] = O(1).

Continuous Additional Covariates. Suppose that the additional covariates are continuously
distributed given the running variable, and that the conditional density fZ|X(z|x) is twice
differentiable with respect to x on X \ {0} for all z. Further, assume that for j ∈ {0, 1},
there exists a function Hj(z) integrable over Z such that for all x1,x2 ∈ (0, h),∣∣∣∂j

xfZ|X(z|x1) − ∂j
xfZ|X(z|x2)

∣∣∣+ ∣∣∣∂j
xfZ|X(z|−x1) − ∂j

xfZ|X(z|−x2)
∣∣∣ ≤ Hj(z)|x1 − x2|.

In this setting, Assumption 3.4 holds if in addition to Assumption 3.3 for j ∈ {0, 1} either

(i) sup
µ∈Tn

sup
z∈Zh

|µ(z) − µ̄n(z)| → 0, or

(ii) sup
x∈Xh\{0}

E
[(
Hj(Zi)/fZ|X(Zi|x)

)2 ∣∣∣Xi = x
]
< ∞.

The first condition requires that the first-stage estimator converges in the supremum
norm. This condition is satisfied for classic nonparametric estimators such as kernel and
sieve estimators, see, e.g., Masry (1996); Newey (1997).

The second condition ensures that Assumption 3.4 holds in combination with L2-
convergence assumed in Assumption 3.3. The additional integrability condition holds for
example if the conditional density fZ|X(z|x) is bounded away from zero and ∂j

xfZ|X(z|x)
is bounded for j ∈ {1, 2} uniformly in x and z.

3.B. RELATION TO THE LITERATURE

In this section, we compare our asymptotic results with those of Frölich and Huber (2019)
and draw an analogy between our approach and double-robust estimation of the average
treatment effect in randomized experiments. We also discuss the relation to estimation
based on Neyman-orthogonal moments.

3.B.1. Comparison with Frölich and Huber (2019). Our procedure with the local
linear estimator in the first stage is related to that proposed by Frölich and Huber (2019).
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Under our assumptions, for sharp designs with the same kernels of order λ = 2 used in
both stages, their bias expression simplifies to:

biasF H = ν̄

2

∫
(µ+

n (z) − µ−
n (z) − τ)∂

2
xf(x, z)
fX(0) dzh2

+ ν̄

2

∫
(∂2

xµn(x, z)|x=0+ − ∂2
xµn(x, z)|x=0−)fZ|X(z|0)dzh2

x

+ ν2

2

L∑
l=1

∫
(∂2

zl
µ+

n (z) − ∂2
zl
µ−

n (z))fZ|X(z|0)dzh2
z,

where µn(x, z) = E[Yi|Xi = x, Zi = z], ν̄ is the “boundary bias kernel constant” defined
before Theorem 3.1, and ν2 =

∫
v2k(v)dv. This expression has a more complicated than

the bias in Theorem 3.1, and it does not simplify further under the additional smoothness
assumption in Corollary 3.1.

The asymptotic variance equals the variance of our proposed estimator when the
first-stage estimator is consistent, VF H = V (µn). The procedure of Frölich and Huber
(2019), however, allows for at most three continuous additional covariates if a second-order
kernel is used in the first-stage local linear regression.

3.B.2. Analogy with ATE estimation. RD designs are very similar in nature to
randomized controlled trials. Conditional on the running variable being close to the cutoff,
if the distribution of the covariates evolves continuously through the cutoff, the probability
of observing a unit with any given value of the additional covariate is approximately the
same to the left and to the right of the cutoff. Hence, the treatment is as if randomly
assigned and the propensity score is constant.

In an experiment where the treatment probability is constant across covariates, the
augmented inverse probability weighted estimator of the average treatment effect is given
by:

τ̂ = 1
n

n∑
i=1

(
m̂1(Zi) − m̂0(Zi) + Ti(Yi − m̂1(Zi))

p̂
− (1 − Ti)(Yi − m̂0(Zi))

1 − p̂

)
, (3.B.1)

where, m̂t(z) is an estimator of E[Yi|Zi = z, Ti = t] for t ∈ {0, 1}, and p̂ = 1
n

∑n
i=1 Ti is the

proportion of treated units.
This estimator can be also represented as the difference in means in the treatment and

control group of a modified outcome variable:

τ̂ =
∑n

i=1 Ti(Yi − m̂(Zi; p̂))∑n
i=1 Ti

−
∑n

i=1(1 − Ti)(Yi − m̂(Zi; p̂))∑n
i=1(1 − Ti)

, (3.B.2)

where m̂(z; p̂) = (1 − p̂)m̂1(z) + p̂ m̂0(z). Our proposed estimator is analogous to the
expression in (3.B.2) in the sense that it is the difference between estimates from the
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treatment and control group, except that we replace the estimated propensity score p̂ with
the known one, which equals one half.

3.B.3. Insensitivity to the First Stage. In two-stage estimation procedures, the first
stage generally affects the properties of the final estimator. This complication, however,
can be avoided using estimators based on so-called Neyman-orthogonal moments (Neyman,
1959, 1979), whose derivative with respect to the nuisance parameter estimated in the
first stage is zero. This method has been recently used in the semiparametric literature
in settings where a, possibly high-dimensional, nuisance parameter is estimated using
machine learning methods; see, e.g., Belloni et al. (2017); Chernozhukov et al. (2018). In
our context, Neyman-orthogonality means that

∂1
µ

(
E[Mi(µ)|Xi = 0+] − E[Mi(µ)|Xi = 0−]

) ∣∣∣
µ=µn

= 0, (3.B.3)

where ∂k
µ denotes the k-th functional derivative in all possible directions.

Our setting is related to estimation problems with Neyman-orthogonal moments but
it differs in two main aspects. The property in Equation (3.4.1) is much stronger than
(3.B.3) because functional derivatives of all orders evaluated at any function µ ∈ Mn

vanish. However, this property holds only conditional on the running variable been at the
cutoff, whereas any estimation procedure has to rely on the data in some neighborhood of
the cutoff.

3.C. PROOFS OF MAIN RESULTS

3.C.1. Additional Notation. We use the following notation throughout the proofs. For
s ∈ [S], i ∈ Is(i), and j ∈ {0, 1}, we define the local linear weights as

w
(j)
i,s (h) = w

(j)
i,s,+(h) − w

(j)
i,s,−(h),

w
(j)
i,s,+(h) = e⊤

j+1Q
−1
s,+X̃iK(Xi/h)1{Xi ≥ 0}, Qs,+ =

∑
i∈Is

K(Xi/h)X̃i, X̃
⊤
i 1{Xi ≥ 0},

w
(j)
i,s,−(h) = e⊤

j+1Q
−1
s,−X̃iK(Xi/h)1{Xi < 0}, Qs,− =

∑
i∈Is

K(Xi/h)X̃iX̃
⊤
i 1{Xi < 0},

with X̃i = (1, Xi)⊤. We omit the index s if the sum is taken over the whole sample and
we omit the superscript (j) if j = 0.

Further, for µ ∈ Mn, we let

Ts,+(µ) =
∑
i∈Is

K(Xi/h)X̃iµ(Zi)1{Xi ≥ 0}

Ts,−(µ) =
∑
i∈Is

K(Xi/h)X̃iµ(Zi)1{Xi < 0}.
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Let m(x;µ) = E[µ̄(Zi) − µ(Zi)|Xi = x]. We define β0(µ) = m(0;µ), β+
1 (µ) =

∂xm(x;µ)|x=0+ , and β−
1 (µ) = ∂xm(x;µ)|x=0− , and further β+(µ) = (β0(µ), β+

1 (µ)) and
β−(µ) = (β0(µ), β−

1 (µ)). Let H = diag(1, h) and I2 = diag(1,1).

3.C.2. Proof of Theorem 3.1. The proof of Theorem 3.1 is preceded by two lemmas.

Lemma 3.C.1. Suppose that Assumption 3.2 holds. Then for all s ∈ [S] it holds that:

(i) For all j ∈ N,

1
nh

n∑
i=1

K(Xi/h)(Xi/h)jTi = ν̄jfX(0+) + oP (1),

1
nh

n∑
i=1

K(Xi/h)(Xi/h)j(1 − Ti) = ν̄jfX(0−) + oP (1),

1
nh

n∑
i=1

K(Xi/h)(Xi/h)jTi = S

nh

∑
i∈Is

K(Xi/h)(Xi/h)jTi +OP ((nh)−1/2),

1
nh

n∑
i=1

K(Xi/h)(Xi/h)j(1 − Ti) = S

nh

∑
i∈Is

K(Xi/h)(Xi/h)j(1 − Ti) +OP ((nh)−1/2).

(ii) For j ∈ {0, 1}, h2j
∑
i∈Is

w
(j)
i,s (h)2 = OP ((nh)−1) and hj

∑
i∈Is

|w(j)
i,s (h)X2

i | = OP (h2).

Proof. Standard kernel calculations.

Lemma 3.C.2. Suppose that Assumptions 3.1–3.4 hold. Then

G(j)
s,⋆ ≡ e⊤

j+1H(Q−1
s,⋆Ts,⋆(µ̄n − µ̂n,s) − β⋆(µ̄n − µ̂n,s)) = op(h2 + (nh)−1/2)

for all s ∈ [S], ⋆ ∈ {+,−}, and j ∈ {0, 1}.

Proof. We analyze the expectation and variance of G(j)
s,⋆ conditional on Xn and (Wj)j∈Ic

s
.

First, we consider the expectation. It holds with probability approaching one that

|E[G(j)
s,⋆|Xn, (Wj)j∈Ic

s
]| =

∣∣∣∣∣∣
∑
i∈Is

w
(j)
i,s,⋆(h)E[µ̄n(Zi) − µ̂n,s(Zi)|Xi, (Wj)j∈Ic

s
]

∣∣∣∣∣∣
≤ sup

µ∈Tn

∣∣∣∣∣∣
∑
i∈Is

w
(j)
i,s,⋆(h)E[µ̄n(Zi) − µ(Zi)|Xi]

∣∣∣∣∣∣
By Taylor’s theorem with the mean-value form of the remainder, it holds that

m(Xi;µ) = m(0;µ) + ∂xm(x;µ)|x=0⋆Xi + 1
2∂

2
xm(x̃i;µ)X2

i ,

for some x̃i between 0 and Xi. Using standard local linear algebra and the triangle
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inequality, we obtain that

|E[G(j)
s,⋆|Xn, (Wj)j∈Ic

s
]| ≤ sup

µ∈Tn

∣∣∣∣∣∣12
∑
i∈Is

w
(j)
i,s,⋆(h)∂2

xm(x̃i;µ)X2
i

∣∣∣∣∣∣
≤ sup

µ∈Tn

sup
x∈Xh\{0}

1
2 |∂2

xm(x;µ)|
∑
i∈Is

∣∣∣∣w(j)
i,s,⋆(h)X2

i

∣∣∣∣ = op(h2),

where we use Lemma 3.C.1 and Assumption 3.4 in the last step.
Second, we consider the conditional variance. It holds with probability approaching

one that

V
[
G(j)

s,⋆|Xn, (Wj)j∈Ic
s

]
=
∑
i∈Is

w
(j)
i,s,⋆(h)2V

[
µ̄n(Zi) − µ̂n,s(Zi)|Xn, (Wj)j∈Ic

s

]
≤ sup

µ∈Tn

∑
i∈Is

w
(j)
i,s,⋆(h)2E[(µ̄n(Zi) − µ(Zi))2|Xi]

≤ sup
µ∈Tn

sup
x∈Xh

E[(µ̄n(Zi) − µ(Zi))2|Xi = x]
∑
i∈Is

w
(j)
i,s,⋆(h)2

= op((nh)−1).

where we use Lemma 3.C.1 and Assumption 3.3 in the last step. The conditional conver-
gence implies the unconditional one (see Chernozhukov et al., 2018, Lemma 6.1), which
concludes the proof.

Proof of Theorem 3.1. We prove the three parts separately.
Part (i) It holds that:

τ̂CF (h; µ̂n) − τ̂(h; µ̄n)

= e⊤
1

S∑
s=1

{
Q−1

+ Ts,+(µ̄n − µ̂n,s) −Q−1
− Ts,−(µ̄n − µ̂n,s)

}

= e⊤
1

S∑
s=1

Q−1
+ Qs,+(Q−1

s,+Ts,+(µ̄n − µ̂n,s) − β+(µ̄n − µ̂n,s)) + e⊤
1

S∑
s=1

Q−1
+ Qs,+ β

+(µ̄n − µ̂n,s)

− e⊤
1

S∑
s=1

Q−1
− Qs,−(Q−1

−,sTs,−(µ̄n − µ̂n,s) − β−(µ̄n − µ̂n,s)) − e⊤
1

S∑
s=1

Q−1
− Qs,− β

−(µ̄n − µ̂n,s).

≡ A1 + A2 − A3 − A4.

In the following, we consider each of the four terms separately. First, note that

A1 = e⊤
1 H

−1
S∑

s=1
HQ−1

+ HH−1Qs,+H
−1H(Q−1

s,+Ts,+(µ̄n − µ̂n,s) − β+(µ̄n − µ̂n,s))
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By Lemma 3.C.1, for all s ∈ [S], it holds that

HQ−1
+ HH−1Qs,+H

−1 = 1
S
I2 +OP ((nh)−1/2), (3.C.1)

where throughout the proof we assume that the term OP ((nh)−1/2) has conformable
dimensions. Using Lemma 3.C.2 and noting that e⊤

1 H
−1 = e⊤

1 , we obtain that A1 =
op(h2 + (nh)−1/2).

Second, it holds that

A2 = e⊤
1 H

−1
S∑

s=1
HQ−1

+ HH−1Qs,+H
−1H β+(µ̄n − µ̂n,s).

Using equation (3.C.1), we obtain that

A2 = 1
S

S∑
s=1

(e⊤
1 +Op((nh)−1/2))H β+(µ̄n − µ̂n,s)

= 1
S

S∑
s=1

β0(µ̄n − µ̂n,s)(1 +Op((nh)−1/2)) + hβ+
1 (µ̄n − µ̂n,s)Op((nh)−1/2)

= 1
S

S∑
s=1

β0(µ̄n − µ̂n,s) + op((nh)−1/2),

where we use the fact β0(µ̄n − µ̂n,s) = op(1) by Assumption 3.3 and hβ+
1 (µ̄n − µ̂n,s) = op(1)

by Assumption 3.4 for all s ∈ [S].
Using analogous calculations, we can show that A3 = oP (h2 + (nh)−1/2) and A4 =

1
S

∑S
s=1 β0(µ̄n − µ̂n,s) + oP ((nh)−1/2), which concludes the proof of part (i).

Part (ii). By the conditional version of Lyapunov CLT, we obtain that

se(h; µ̄n)−1(τ̂(h; µ̄n) − E[τ̂(h; µ̄n)|Xn]) → N (0, 1).

where se2(h; µ̄n) = ∑n
i=1 wi(h)2V[Mi(µ̄n)|Xi = Xi]. Further, using L-Lipschitz continuity

of V[Mi(µ̄n)|Xi = x], we obtain that

se2(h; µ̄n)

=
n∑

i=1
wi,−(h)2V[Mi(µ̄n)|Xi = 0−] +

n∑
i=1

wi,+(h)2V[Mi(µ̄n)|Xi = 0+] + op((nh)−1/2).

It then follows from standard local linear arguments, that nh se2(h; µ̄n) − V (µ̄n) = oP (1)
and E[τ̂(h; µ̄n)|Xn] − τ = B(µ̄n)h2 + op(h2).
Part (iii). The proof is discussed in Section 3.3.2. It also follows from Proposition 3.D.1.
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3.C.3. Proof of Corollary 3.1. This result follows directly from linearity of the second
derivative operator.

3.C.4. Definition of Standard Error. We first introduce the notation. Let µ ∈ Mn.

We denote the standard error by ŝ2(h;µ) = ∑n
i=1 w

2
i (h)σ̂2

i (µ), where

σ̂2
i (µ) = 1

1 +Hi

Mi(µ) −
∑

j∈Ri

vj,iMj(µ)
2

,

vj,i = X̃i

∑
j∈Ri

X̃⊤
j X̃j

−1

X̃⊤
j , Hi = X̃i

∑
j∈Ri

X̃⊤
j X̃j

−1

X̃i

Here X̃i = (1, Xi) and Ri is the set of the R nearest neighbors of unit i based on the running
variable and within the same fold and on the same side of the cutoff as unit i. We note
that by basic OLS algebra, the weights vj,i satisfy: ∑j∈Ri

vj,i = 1, ∑j∈Ri
vj,i(Xj −Xi) = 0,

and ∑j∈Ri
v2

j,i = Hi.
We further let ŝ2

s(h;µ) = ∑
i∈Is

w2
i (h)σ̂2

i (µ), so that ŝ2(h;µ) = ∑S
s=1 ŝ

2
s(h;µ). Similarly,

we define se2
s(h;µ) = ∑

i∈Is
w2

i (h)σ2
i (µ) and se2(h;µ) = ∑S

s=1 se2
s(h;µ).

3.C.5. Proof of Proposition 3.4.1. Using the triangular inequality, we first note that

|nh ŝ2
CF (h; µ̂n) − V (µ̄n)| ≤ nh|ŝ2

CF (h; µ̂n) − se2(h; µ̄n)| + |nh se2(h; µ̄n) − V (µ̄n)|

≤ Smax
s∈[S]

nh|ŝ2
s(h; µ̂n,s) − se2

s(h; µ̄n)| + op(1),

where the second inequality follows from the proof of Theorem 3.1. The main step in this
proof is to show that for any s ∈ [S] and conditional on Xn and (Wj)j∈Ic

s
, it holds that

nh|ŝ2
s(h; µ̂n,s) − se2

s(h; µ̄n)| = oP (1). (3.C.2)

We remark that the condition in (3.C.2) would essentially follow from the results of Noack
and Rothe (2021) if V[Mi(µ)|Xi = x] was L-Lipschitz continuous for all µ ∈ Tn. Our setting
is different as we impose L-Lipschitz continuity only for the function V[Mi(µ̄n)|Xi = x].
Still, some steps of our proof follow from the proof of Theorem 4 of Noack and Rothe
(2021). We note that

ŝ2
s(h; µ̂n,s) − se2

s(h; µ̄n)

= (E[ŝ2
s(h; µ̄n)|Xn] − se2

s(h; µ̄n)) + (ŝ2
s(h; µ̂n,s) − E[ŝ2

s(h; µ̂n,s)|Xn, (Wj)j∈Ic
s
])

+ (E[ŝ2
s(h; µ̂n,s) − ŝ2

s(h; µ̄n)|Xn, (Wj)j∈Ic
s
])

≡ G1 +G2 +G3.
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In the following, we show that each of the three terms is of order oP ((nh)−1). First, it
follows from the proof of Theorem 4 of Noack and Rothe (2021) that G1 = oP ((nh)−1) as
V[Mi(µ̄n)|Xi = x] is L-Lipschitz continuous by Assumption 3.5.

Second, it is clear that E[G2|Xn, (Wj)j∈Ic
s
] = 0. Further, it follows that with probability

approaching one,

E[G2
2|Xn, (Wj)j∈Ic

s
] ≤ sup

µ∈Tn

E
[(
ŝ2

s(h;µ) − E[ŝ2
s(h;µ)|Xn]

)2
]

= op((nh)−2),

where the last equality follows from the proof of Theorem 4 of Noack and Rothe (2021)
using boundedness of the fourth conditional moment assumed in the proposition.

We now consider G3. We note that with probability approaching one

|G3| = |
∑
i∈Is

w2
i (h)E[σ̂2

i (µ̂n,s) − σ̂2
i (µ̄n)|Xn, (Wj)j∈Ic

s
]|

≤ sup
j∈Is: Xj∈Xh

sup
µ∈Tn

∣∣∣E[σ̂2
j (µ) − σ̂2

j (µ̄n)|Xn]
∣∣∣ ∑

i∈Is

wi(h)2.

Following Noack and Rothe (2021), we note that for any µ ∈ Tn and any i ∈ Is

E[σ̂i(µ)|Xn] = σ2
i (µ) + 1

1 +Hi

∑
j∈Ri

v2
j,i(σ2

j (µ) − σ2
i (µ))

 (3.C.3)

+ 1
1 +Hi

E[Mi(µ)|Xi] −
∑

j∈Ri

vj,iE[Mj(µ)|Xj]
2

.

In the following, we denote by C a positive constant, which might be different from line to
line. By a second-order Taylor-expansion and by a simple OLS-algebra, it holds for the
last term in the above expression that

sup
i∈Is: Xi∈Xh

sup
µ∈Tn

1
1 +Hi

E[Mi(µ)|Xi] −
∑

j∈Ri

vj,iE[Mj(µ)|Xj]
2

(3.C.4)

≤ C sup
i∈Is: Xi∈Xh

sup
j∈Ri

|Xi −Xj|4 sup
x∈Xh

sup
µ∈Tn

(∂2
xE[Mi(µ)|Xi = x])2 = op(1),

where we used that 1
1+Hi

∑
j∈Ri

v2
j,i ≤ 1 and supx∈Xh

supµ∈Tn
∂2

xE[Mi(µ)|Xi = x] = O(1) by
Assumptions 3.4 and 3.5.
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Using (3.C.3) and (3.C.4), we obtain that

sup
i∈Is: Xi∈Xh

sup
µ∈Tn

|E[σ̂2
i (µ) − σ̂2

i (µ̄n)|Xn]|

≤ sup
i∈Is: Xi∈Xh

sup
µ∈Tn

∣∣∣∣∣∣σ2
i (µ) − σ2

i (µ̄n) + 1
1 +Hi

∑
j∈Ri

v2
j,i(σ2

j (µ) − σ2
j (µ̄n) + σ2

i (µ̄n) − σ2
i (µ))

∣∣∣∣∣∣
+ op(1)

≤ C sup
i∈Is: Xi∈Xh

sup
µ∈Tn

|σ2
i (µ) − σ2

i (µ̄n)| + op(1)

≤ C sup
x∈Xh

sup
µ∈Tn

∣∣V[Mi(µ)|Xi = x] − V[Mi(µ̄n)|Xi = x]
∣∣+ op(1) = op(1),

where we used that 1
1+Hi

∑
j∈Ri

v2
j,i ≤ 1 and Assumption 3.3.

Since ∑i∈Is
wi(h)2 = Op((nh)−1), we conclude that G3 = oP ((nh)−1).

3.C.6. Proofs for sufficient conditions in Section 3.6.

Proof of Proposition 3.6.1. We start by showing that Assumption 3.3 holds. It follows
from basic OLS algebra that there exists β̄Z such that for all s ∈ [S] it holds that
∥β̂s,Z − β̄Z∥∞ = OP ((nh1)−1/2). This implies that β̂s,Z ∈ [β̄s,Z ± (nh1)−1/2vn] w.p.a. 1. Let
vn → ∞ be a sequence s.t. (nh1)−1/2vn → 0. We define

Tn = {µ : µ(z) = β⊤z, where β ∈ Bn = [β̄Z ± (nh1)−1/2vn]}.

By construction, µ̄ ∈ Tn and P[µ̂n,s ∈ Tn] = 1 + o(1) for all s ∈ [S]. Assumption 3.3 follows
by noting that

sup
β∈Bn

sup
x∈Xh

E
[
(β⊤Zi − β̄⊤

ZZi)2|Xi = x
]

≤ d sup
β∈Bn

∥β − β̄Z∥2
∞ sup

x∈Xh

E
[
Z⊤

i Zi|Xi = x
]

= o(1).

We now consider Assumption 3.4. For j ∈ {1, 2}, all β ∈ Bn and x ∈ X \ {0}, we have
that

∂j
xE
[
β⊤Zi − β̄⊤

ZZi|Xi = x
]

= (βZ − β̄Z)⊤∂j
xE
[
Zi|Xi = x

]
,

which concludes this proof.

Proof of Proposition 3.6.2. We start by showing that Assumption 3.3 holds. Let vn be a
sequence such that vn → ∞ and rnvn → 0. We define

Tn = {µ : µ(z) = mβ(z), where β ∈ Bn = [β̄ ± rnvn]}.

By construction, µ̄ ∈ Tn and P[µ̂n,s ∈ Tn] = 1 + o(1) for all s ∈ [S]. Assumption 3.3 follows
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by noting that

sup
β∈Bn

sup
x∈Xh

E[(mβ(Zi) −mβ̄(Zi))2|Xi = x] ≤ sup
β∈Bn

∥β − β̄∥2
∞G

2 = o(1).

We now consider Assumption 3.4. Under the assumptions made, for j ∈ {1, 2}, all β ∈ Bn,
and x ∈ X \ {0}, we have that

∂j
xE[mβ(Zi) −mβ̄(Zi)|Xi = x] =

∫
(mβ(z) −mβ̄(z))∂j

xfZ|X(z|x)dz.

It then follows that for j ∈ {1, 2}

sup
β∈Bn

sup
x∈Xh\{0}

∣∣∣∂j
xE[mβ(Zi) −mβ̄(Zi)|Xi = x]

∣∣∣
≤ G sup

β∈Bn

∥β − β̄∥∞

∫
Z

|∂j
xfZ|X(z|x)|dz = oP (1),

which concludes the proof.

For completeness, we restate the classic assumptions for uniform convergence of the
local linear estimator used by Masry (1996).

Assumption 3.8. (i) (Xi, Zi) are continuously distributed, and X and Z are compact
and convex; (ii) The joint density f(x, z) is bounded, has bounded first-order derivatives,
and is bounded away from zero for all (x, z) ∈ X × Z; (iii) E[Yi|Xi = x, Zi = z] is
twice continuously differentiable w.r.t. x and z and the second derivatives are Lipschitz
continuous; (iv) supx,z E[|Yi|2+δ|Xi = x, Zi = z] < ∞ for some constant δ > 0; (v) For
j ∈ {0, ..., 3}, Hj(u) ≡ ujK(u) is Lipschitz continuous;

Proof of Proposition 3.6.3. By Theorem 6 of Masry (1996), supz∈Zh
∥µ̂n(z) − µn(z)∥ =

OP (rn), where rn = o(1). Hence, the set Tn can be chosen s.t. supµ∈Tn
∥µ(Zi)−µn(Zi)∥∞ =

o(1). Assumption 3.3 follows trivially. Assumption 3.4 is also satisfied, as discussed in
Section 3.A.2.

3.D. VARIANCE CALCULATIONS

In this section, we provide formal derivations for the optimality result discussed in
Section 3.5.3 and for the discussion of variance reductions in comparison to the standard
RD estimator discussed in Section 3.4. Recall that

Ṽ (µ) = ω+V[Mi(µ)|Xi = 0+] + ω−V[Mi(µ)|Xi = 0−],

µ∗
n(z) = ω−

ω− + ω+
µ−

n (z) + ω+

ω− + ω+
µ+

n (z).

We obtain the variance V (µ) and the function µn as a special case when ω+ = ω− = 1.
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Proposition 3.D.1. Suppose that Assumptions 3.1–3.5 hold. Then for all µ ∈ Mn, it
holds that:

(i) Ṽ (µ∗
n) ≤ Ṽ (µ) with Ṽ (µ∗

n) = Ṽ (µ) if and only if V[µ(Zi) − µ∗
n(Zi)|Xi = 0] = 0;

(ii) Ṽ (µ) < Ṽ (0) if and only if V[µn(Zi) − µ(Zi)|Xi = 0] < V[µn(Zi)|Xi = 0].

Proof. Fix µ, µ̃ ∈ Mn. By basic properties of the conditional expectation, we have that

Ṽ (µ) = ω+V[Yi − µ+
n (Zi)|Xi = 0+] + ω−V[Yi − µ−

n (Zi)|Xi = 0−] + Ṽ(µ),

where the first two terms on the right-hand side do not depend on µ, and

Ṽ(µ) = ω+V[µ+
n (Zi) − µ(Zi)|Xi = 0] + ω−V[µ−

n (Zi) − µ(Zi)|Xi = 0].

Further, it holds that

Ṽ(µ) = Ṽ(µ∗
n + µ− µ∗

n) = ω+V
[

ω−

ω+ + ω−
(µ+

n (Zi) − µ−
n (Zi)) − (µ(Zi) − µ∗

n(Zi))|Xi = 0
]

+ ω−V
[

−ω+

ω+ + ω−
(µ+

n (Zi) − µ−
n (Zi)) − (µ(Zi) − µ∗

n(Zi))|Xi = 0
]

= Ṽ (µ∗
n) + (ω+ + ω−)V[µ(Zi) − µ∗

n(Zi)|Xi = 0].

Hence, Ṽ (µ) < Ṽ (µ̃) if and only if V[µ(Zi) − µ∗
n(Zi)|Xi = 0] < V[µ̃(Zi) − µ∗

n(Zi)|Xi = 0],
and similarly with equalities instead of inequalities. Both parts of the lemma follow.

3.E. ADDITIONAL SIMULATION RESULTS

In this section, we present further simulation results. Table 3.E.1 extends the results
in Table 3.1. Apart from the bias-aware approach discussed in the main text, we con-
sider bandwidth choices and confidence intervals based on robust bias corrections and
undersmoothing.20 The qualitative conclusions about the relative performance of different
first-stage estimators in different models remain the same as discussed in the main text.

The simulated mean bandwidth of robust bias corrections is on average smaller than
that of the bias-aware approach, and the confidence intervals are larger. This feature is
known in the nonparametric literature. In the last two rows of Table 3.E.1 we report the
results using the procedure of Calonico et al. (2019). In this simulation setting, they are
essentially the same as the results for our procedure with a linear adjustment function.

In Table 3.E.2, we report simulation results for Model 3 for different values of the
signal-to-noise ratio. This illustrates that the potential gains from covariate adjustments
are large if the covariates explain a large portion of variation in the outcome variable.

20The bandwidth for undersmoothing is chosen as n−1/20 times the MSE-optimal bandwidth estimated
using the rdrobust package.
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Table 3.E.1: Full simulation results for different numbers of relevant covariates.
Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h

Model 1: L=0 Model 2: L=4 Model 3: L=10 Model 4: L=25

Standard
BA 97.0 -1.4 7.4 32.4 43.2 96.1 -7.1 18.6 81.8 68.8 96.4 -9.5 19.1 87.6 79.3 95.9 -6.3 18.5 81.0 68.5

RBC 94.8 1.5 11.0 41.5 29.9 94.7 0.0 35.1 130.9 30.5 94.6 1.1 37.1 140.0 26.9 94.2 1.6 39.3 145.7 24.5
US 94.9 0.6 11.3 42.5 20.5 94.5 -1.1 36.0 133.4 20.9 94.7 0.1 38.0 142.4 18.4 94.3 0.8 40.5 148.4 16.7

Optimal Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2 96.5 -1.3 7.6 32.5 43.2 96.9 -1.3 7.4 32.4 43.2

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.6 1.5 11.3 41.5 29.9 94.2 1.5 11.0 41.4 30.0
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 93.7 0.5 11.6 42.6 20.4 94.4 0.5 11.3 42.5 20.5

Linear Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2 96.7 -4.8 12.7 56.2 61.8 96.8 -4.3 10.3 47.2 59.0

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.7 1.3 23.4 85.9 26.3 94.6 0.7 19.9 75.4 19.7
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 94.1 0.3 23.9 87.6 18.0 94.2 0.2 20.5 76.6 13.4

Linear
BA 97.0 -1.4 7.4 32.7 43.3 96.7 -1.5 7.5 32.6 43.3 95.9 -4.0 13.7 59.1 59.7 96.5 -4.3 10.8 49.2 58.8

RBC 94.8 1.5 11.0 41.8 30.0 94.3 1.4 11.1 41.8 29.9 94.0 1.6 25.0 91.8 27.9 94.3 0.7 21.6 81.0 20.3
US 95.1 0.6 11.3 42.9 20.5 94.6 0.3 11.4 42.8 20.5 94.2 0.6 25.6 93.7 19.1 94.4 0.2 22.2 82.4 13.9

Local Linear
BA 97.0 -1.4 7.4 32.7 43.3 96.8 -1.4 7.5 32.7 43.3 96.3 -1.6 8.3 35.6 45.2 96.8 -1.6 8.2 35.9 45.6

RBC 94.5 1.5 11.1 41.9 30.0 94.5 1.4 11.1 41.9 29.9 94.3 1.4 12.7 47.1 29.3 94.2 1.5 13.0 49.0 27.8
US 94.9 0.6 11.4 42.9 20.5 94.7 0.4 11.4 43.0 20.5 94.3 0.5 13.1 48.2 20.0 94.3 0.5 13.5 50.1 19.0

Lasso
BA 96.7 -1.4 7.6 33.1 43.6 96.6 -2.1 8.8 38.3 46.6 96.2 -2.0 9.2 39.1 46.7 96.8 -1.4 7.7 34.0 44.3

RBC 94.4 1.5 11.6 43.5 28.8 95.0 1.2 13.8 52.1 29.1 93.9 1.3 14.6 53.0 29.5 94.3 1.1 13.2 49.0 24.3
US 95.1 0.7 11.8 44.5 19.7 94.7 0.2 14.2 53.2 19.9 94.1 0.4 15.0 54.2 20.2 94.2 0.5 13.5 50.0 16.6

Forest
BA 96.8 -1.5 7.6 33.1 43.6 96.7 -2.1 8.7 37.9 46.5 96.6 -1.9 8.5 37.2 46.9 97.1 -2.2 9.3 41.3 49.0

RBC 94.6 1.5 11.3 42.5 29.9 94.9 1.0 13.4 50.7 29.7 94.0 1.0 15.2 56.0 23.3 94.0 0.8 18.6 68.8 19.8
US 94.6 0.6 11.6 43.6 20.5 94.8 0.0 13.8 51.8 20.3 94.3 0.3 15.5 57.0 15.9 94.3 0.4 19.1 70.1 13.6

CCFT RBC 94.5 1.4 11.0 41.3 29.7 93.9 1.3 11.1 41.3 29.7 93.4 1.3 23.5 85.1 26.3 94.3 0.7 20.1 74.6 19.6
US 94.4 0.6 11.4 42.2 20.3 94.0 0.3 11.4 42.2 20.3 93.4 0.3 24.1 86.3 18.0 93.5 0.2 20.8 75.2 13.4

Notes: Results based on 5,000 Monte Carlo draws based on Model 3 explained in the main text. All numbers are multiplied by 100. Columns show results for
simulated coverage for a nominal confidence level of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence interval length (CI);
and the mean bandwidth (h). Bandwidth and confidence intervals are constructed based on the bias-aware approach (BA), robust bias correction (RBC), and
undersmoothing (US).
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Table 3.E.2: Simulation results for different signal-to-noise ratios.
Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h

ρ = 3 ρ = 1 ρ = 5 ρ = 10

Standard
BA 96.2 -8.9 19.6 87.5 79.3 96.4 -3.1 9.8 43.3 52.0 96.0 -14.7 29.6 134.7 95.5 95.5 -16.8 58.6 241.5 99.9

RBC 94.7 1.1 37.2 139.6 26.9 94.1 0.8 16.4 61.2 27.9 94.6 0.9 59.8 226.5 26.7 94.7 -0.1 118.3 446.9 26.7
US 94.3 0.4 38.2 142.1 18.4 93.8 -0.2 16.9 62.4 19.1 94.5 -0.2 61.4 230.3 18.3 94.8 -0.5 120.5 454.4 18.3

Optimal Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.4 32.5 43.2 96.5 -1.3 7.6 32.4 43.2 96.9 -1.3 7.3 32.5 43.2

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.5 1.5 11.3 41.5 29.8 94.2 1.5 11.0 41.4 30.0
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 93.6 0.6 11.6 42.6 20.4 94.5 0.5 11.3 42.5 20.5

Linear Inf
BA 96.0 -4.8 12.9 56.2 61.9 96.2 -1.9 8.3 36.1 46.1 96.4 -8.5 18.1 81.5 76.6 95.9 -14.1 33.0 146.9 96.3

RBC 94.2 1.2 23.1 85.8 26.4 94.0 1.2 13.1 48.9 28.3 93.8 1.2 35.8 131.6 25.8 94.8 1.2 66.2 252.9 25.6
US 93.9 0.6 23.8 87.5 18.0 94.4 0.2 13.4 49.9 19.4 94.1 0.1 36.6 134.0 17.7 95.0 0.6 67.2 257.4 17.5

Linear
BA 96.1 -4.0 13.8 59.1 59.8 96.1 -1.9 8.4 36.5 45.9 95.6 -7.2 21.2 90.7 74.0 95.8 -14.1 37.0 161.5 95.4

RBC 94.0 1.7 24.9 91.9 27.9 94.0 1.2 13.2 49.3 28.6 94.0 1.7 42.2 155.3 28.8 94.6 2.3 83.4 312.8 29.0
US 93.9 1.0 25.6 93.8 19.1 94.3 0.3 13.5 50.4 19.5 94.2 0.7 43.3 158.4 19.7 94.8 1.0 85.5 318.8 19.8

Local Linear
BA 96.7 -1.7 8.2 35.6 45.1 96.5 -1.5 7.8 33.9 44.1 96.5 -1.7 8.7 37.3 46.3 97.0 -2.6 10.2 45.1 52.3

RBC 94.4 1.5 12.5 47.1 29.3 94.2 1.3 11.7 43.9 29.7 94.0 1.5 13.7 50.5 28.8 94.6 1.6 17.4 65.1 27.6
US 94.7 0.7 12.9 48.2 20.1 94.3 0.4 12.0 45.0 20.3 94.0 0.6 14.1 51.7 19.7 94.6 0.7 18.0 66.4 18.9

Lasso
BA 96.8 -2.0 9.1 39.3 46.9 96.8 -1.6 7.7 34.0 44.5 96.1 -2.7 11.5 48.4 51.0 96.2 -4.9 18.1 75.8 61.6

RBC 93.8 1.5 14.4 53.3 29.6 94.3 1.0 12.4 46.9 26.5 93.9 1.5 18.5 67.7 31.1 94.1 1.9 32.6 117.7 32.2
US 94.3 0.6 14.9 54.6 20.2 94.4 0.3 12.7 47.9 18.1 94.2 0.6 19.1 69.2 21.3 94.2 0.8 33.3 120.1 22.0

Forest
BA 96.6 -1.9 8.5 37.2 46.9 96.5 -1.6 7.7 33.7 44.3 96.7 -2.6 10.0 43.8 51.1 96.3 -5.8 14.7 64.5 64.5

RBC 94.1 1.1 15.1 56.1 23.1 94.1 1.1 12.1 45.3 27.7 94.5 0.8 18.9 70.6 21.8 93.9 0.5 31.7 116.1 20.7
US 94.3 0.6 15.5 57.2 15.8 94.5 0.2 12.4 46.2 19.0 95.0 0.2 19.3 71.8 14.9 94.2 0.1 32.5 118.1 14.2

CCFT RBC 93.8 1.2 23.3 85.0 26.3 93.5 1.1 13.2 48.6 28.1 93.4 1.2 36.0 130.3 25.8 94.6 1.3 66.2 250.4 25.6
US 93.3 0.6 24.0 86.3 18.0 93.9 0.2 13.5 49.4 19.2 93.3 0.2 36.9 132.0 17.7 94.7 0.5 67.4 253.4 17.5

Notes: Results based on 5,000 Monte Carlo draws based on Model 3 explained in the main text. All numbers are multiplied by 100. Columns show results for simulated
coverage for a nominal confidence level of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence interval length (CI); and the mean
bandwidth (h). Bandwidth and confidence intervals are constructed based on the bias-aware approach (BA), robust bias correction (RBC), and undersmoothing (US).
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