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Abstract

In this thesis, we propose a novel algorithm for stochastic routing optimized
for autonomous vehicles. The key idea of stochastic routing is to include
information on travel time reliability, rather than only estimating travel time
itself. Travel time reliability is of major importance for travelers and trans-
portation managers as it simplifies decision making and schedule planning.
The concept of stochastic routing is then extended to fit the specific needs for
an optimal autonomous drive. In near future, when vehicles enabled with
fully autonomous driving become available, the autonomous driving features
will only be possible on roads that fulfil certain criteria. Thus, when searching
for an optimal route for one origin-destination-pair, we are not only interested
in the travel time, but also on the route’s properties concerning autonomous
driving.

We estimate path travel time reliability by using empirical travel time data
on segment-level. For that purpose we dive into the mathematical area of
probability theory. First, we measure dependence between road segments.
Then we use copulas for estimating travel time distribution on path-level by
including the dependence between neighbouring road segments. In order to
improve efficiency, which is needed for a real-world application, we use the
following hybrid approach. We take convolution, which assumes indepen-
dence, and extend it to the dependent case by integrating copulas, referred to
as copula-based Dependent Discrete Convolution (DDC). Based on DDC we
develop a methodology for stochastic routing.

We formulate a multicriteria optimization problem, in order to find a route
optimized for an autonomous drive. Different approaches to obtain one op-
timal solution from the Pareto front are compared, and the best fitting one
is selected. This framework is then combined with the stochastic routing
methodology.





Zusammenfassung

Diese Arbeit präsentiert einen neuartigen stochastischen Router, welcher für
autonomes Fahren optimiert wurde. Ein stochastischer Router gibt Informa-
tionen zur Verlässlichkeit der Reisezeit an. Die Verlässlichkeit von Reisezeiten
vereinfacht sowohl das Treffen von reisebedingten Entscheidungen als auch
logistische Zeitplanungen und ist somit von hoher Relevanz für Reisende und
Transportmanager. Das Konzept des stochastischen Routers wird erweitert,
um auf die spezifischen Anforderungen für autonomes Fahren einzugehen. In
naher Zukunft wird vollautonomes Fahren voraussichtlich nur auf einzelnen
Streckenabschnitten möglich sein, welche bestimmte Kriterien erfüllen. Bei
der Suche nach einer optimalen Route für eine Start-Ziel-Beziehung werden
daher zusätzlich zur Reisezeit auch weitere Kriterien bezüglich autonomen
Fahrens relevant sein.

Wir schätzen die Verlässlichkeit der Reisezeit einer Route mithilfe von em-
pirischen Reisezeitdaten von Streckensegmenten. Zu diesem Zweck begeben
wir uns in den mathematischen Bereich der Wahrscheinlichkeitstheorie. Zu-
nächst analysieren wir die Abhängigkeiten zwischen den Streckensegmenten.
Dann benutzen wir Copulas um Reisezeitverteilungen für eine gesamte Route
ausgehend von den Daten der einzelnen Segmente zu schätzen. Anschließend
präsentieren wir einen Hybridansatz, um die Effizienz der Methodik zu
steigern. Wir erweitern die Faltung, welcher die Annahme der Unabhängigkeit
zwischen Operanden zugrunde liegt, zu einem Operator, der Abhängigkeiten
berücksichtigen kann. Dafür integrieren wir Copulas in die Formulierung
der Faltung, welche dann als „Dependent Discrete Convolution“ (DDC) be-
zeichnet wird. Basierend auf der DDC entwickeln wir eine Methodik für einen
stochastischen Router.

Wir formulieren ein multikriterielles Optimierungsproblem, um die opti-
male Route für eine autonome Fahrt zu finden. Verschiedene Ansätze werden
miteinander verglichen und der am besten geeignete Ansatz wir gewählt.
Dieses Modell wird dann mit der Methodik des stochastischen Routers kom-
biniert.
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Introduction

Let us begin with the following scenario. We need to travel from an origin to
a destination. For that matter, we want to obtain the route with the minimal
travel time. In addition, we need to be at our destination at a sharp deadline.
A state-of-the-art routing device can calculate the shortest route and gives
us the estimated travel time. However, we do not know how reliable that
estimated travel time is. As we are bound to our deadline, we need to plan
some buffer in case of a possible variance in travel time. But how much buffer
should we plan? Should we rather plan a small buffer and risk that we arrive
late, or should we plan a large buffer and risk loosing a lot of time waiting
at the destination? Both alternatives are not optimal. But what if we had a
routing device that could give us a route with a reliable travel time with a
90%, 95%, or even a 100% probability of arriving on time? Then we could
avoid this dilemma altogether, as we would not need to plan any buffer. In
this thesis such a routing algorithm will be developed.

In our scenario reliability of travel time estimates is important for travel-
ers. But it is also crucial for transport managers and logistics planners as
it provides information for decision making and planning schedules. Fur-
thermore, travel time reliability is one of the key indicators for evaluating
the performance of transportation systems. In [40] it is shown that measures
on travel time reliability can improve regional transportation planning and
operations.

Providing travel time reliability in route guidance systems is the key idea of
Stochastic Shortest Path Problem (SSP). Such an application is also referred to
as stochastic router. While the traditional shortest path problem is defined in a
static environment, the SSP problem considers also the uncertainties of traffic
conditions. These uncertainties can originate, for example, from demand
fluctuations, weather conditions, and accidents. Providing a solution in the
SSP problem enables to include travel time reliability into route guidance
systems.
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Another scope of this thesis is to optimize the stochastic router for Au-
tonomous Driving (AD). Before we elucidate why we need such an approach,
we briefly discuss AD. The development of AD attracts extensive attention
from both academy and industry. Based on the degree of transition from
assisted driving towards fully autonomous vehicles, i.e. vehicles that do not
need any human interaction, AD is divided into different Levels by SAE Inter-
national [32]. Level 0 contains basic assisted driving features, e.g. automatic
emergency braking, blind spot warning, and lane departure warning, whereas
Level 5 describes full AD possible everywhere in all conditions. From Level 3,
certain road sections can be driven completely autonomously. The property,
that enables AD on a road, is called road clearance. In order to determine if
road clearance can be activated for a particular road sections, several steps
need to performed. First an evaluation based on on-board sensor information
is conducted. If the surrounding is accurately reconstructed and defined as
safe, then the vehicle is allowed to drive autonomously. In addition, relevant
information on the actual road segment is transferred from the vehicle to a
central server, enabling to extend the limited horizon of the individual vehicle.
Then, the vehicle requests the status of the road clearance from this server on
a regular basis. The activation of road clearance depends on weather condi-
tions, incidents, and on road conditions, such as missing lane marks or badly
maintained roads. Thus, activation and deactivation of road clearance is a
highly dynamic process. In case the road clearance is deactivated due to one
of these reasons, the driver has to take over the control over the vehicle.

So why do we need to optimize route guidance systems for AD? At the
time of writing this thesis, vehicles capable of Level 3 AD are announced
by several automotive manufacturers to be released onto the market soon.
When purchasing such a vehicle, we can assume that customers want to drive
autonomously as much as possible. Thus, when providing route guidance,
not only travel time becomes a criteria, but also which route is best suited for
AD, which is highly dependent on the dynamics of road clearance.

The contributions of this thesis can be summarized as follows:

• Methodologies are developed for estimating travel time reliability.

• Based on these methodologies a stochastic router is designed.

• A routing framework optimized for autonomous driving is developed.
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FIGURE 1: Structure of this thesis.

• An integrated approach for a stochastic router optimized for autonomous
driving is proposed.

Structure of this thesis

The outline of this thesis is illustrated in Figure 1. First we set the stage for
our research objectives. We start by giving an overview of the underlying
theoretical basics of this thesis. The mathematical area of probability theory
is introduced to cover the preliminaries for the stochastic aspects of stochas-
tic routing. There we will discuss random variables, distributions and the
concept of dependence. As dependence between random variables plays a
crucial role throughout this thesis, the focus is set on this topic especially.
The next chapter covers the theoretical requirements of vehicle routing. We
will present the shortest path problem as well as the k-shortest path problem
and its solutions using Dijkstra’s Algorithm and Yen’s Algorithm, respectively.

Then we present the floating car data, which was used for this work in Chapter
3. We will elucidate how the raw data is sampled and collected from probe
vehicles, before it is preprocessed in a format which contains the information
we need.



4 Introduction

In the next chapter, we begin with the research objective. First we discuss
travel time reliability and give an overview of the state-of-the-art approaches
for its modelling. Then we present the methodologies that we have developed
together with case studies for evaluation which have been published as

• A. Samara, F. Rempe, U. Fastenrath and S. Göttlich, "Assessing the
probability of arriving on time using historical travel time data in a
road network", 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 2019, pp. 1343-1348.

• A. Samara, F. Rempe and S. Göttlich, "Modelling arterial travel time
distribution using copulas", 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020, pp.
1-6.

In Chapter 5 we will use the methodologies developed in the previous chapter
to design a stochastic router, after giving an overview of the state-of-the-art
approaches. A case study is conducted in order to demonstrate the use case
for a real world application. Results have been published as

• A. Samara, F. Rempe, S. Göttlich. "A novel approach for vehicle travel
time distribution: copula-based dependent discrete convolution", Trans-
portation Letters, 2021, pp. 1-12, DOI: 10.1080/19427867.2021.1941707.

Chapter 6 is devoted to routing optimized for autonomous vehicles. We will
present two distinct methodologies, where the first one is based on subjective
perception and the second one on multiobjective optimization. Case studies
are conducted in order to compare both methods. Results have been published
as

• A. Samara, F. Rempe and S. Göttlich, "Vehicle Routing Optimized for
Autonomous Driving", 2021 32nd IEEE Intelligent Vehicles Symposium
(IV), Nagoya, Japan, 2021.

Finally, we design a stochastic router optimized for autonomous vehicles by
integrating the methodologies we have developed.

In the last chapter we give a conclusion as well as an outlook for potential
future work.
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Chapter 1

Probability Theory

In this chapter we set the theoretical basis for this thesis. In order to model
stochastic processes such as travel time estimation, we employ tools from
probability theory. We give an overview of probability spaces leading to the
definition of random variables and their distribution functions. One major
contribution of this work is the inclusion of dependence into the modelling
of travel time distributions and, thus, into the development of the stochastic
routing application. Therefore, the focus here is set on modelling dependence
between random variables.

The definitions and theorems in this chapter are based on the following
literature, if not stated otherwise. For the discussion of the theoretical pre-
liminaries and random variables we follow the books "Probability: Theory
and Examples" by Rick Durret [20], "Measure Theory" by Donald Cohn [15]
and "An Introduction to Measure Theory" by Terence Tao [56]. The section on
dependence follows the books "An Introduction to Copulas" by Nelson Roger
[3] and "Correlation and Dependence in Risk Management: Properties and
Pitfalls" by Paul Embrechts et al. [21].

1.1 Preliminaries

Here we set the stage for our methodology. For that purpose, we introduce
probability spaces.

Definition 1.1. A probability space is a triple (Ω,F , P) where Ω is a set of
outcomes, F is a set of events, and P : F → [0, 1] is a function assigning
probabilities to events. F is assumed to be a σ-algebra, i.e. a nonempty
collection of subsets of Ω that satisfy

(i) if A ∈ F then Ac ∈ F , where Ac is the complement of A, and

(ii) if Ai ∈ F is a countable sequence of sets then ∪i Ai ∈ F .



6 Chapter 1. Probability Theory

We refer to countable as finite or countably infinite. Because ∩i Ai, a σ-algebra
is therefore closed under countable intersections.

When removing P from the probability space, the remaining set (Ω,F ) is
denoted as measurable space.

Definition 1.2. A measure is a nonnegative countably additive set function, i.e.
a function µ : F → R with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ F , and

(ii) if Ai ∈ F is a countable sequence of disjoint sets, then µ(∪i Ai) =

∑i µ(Ai).

If µ(Ω) = 1, we refer to µ as a probability measure.

Theorem 1.1. Let µ be a measure on (Ω,F ). Then µ has the following properties:

(i) monotonicity: If A ⊂ B then µ(A) ≤ µ(B).

(ii) subadditivity: If A ⊂ ∪∞
m=1Am then µ(A) ≤ ∑∞

m=1 µ(Am).

(iii) continuity from below: If A1 ↑ A, i.e. A1 ⊂ A2 ⊂ ... ⊂ An, and ∪i Ai = A
then µ(A1) ⊂ µ(A2) ⊂ ... ⊂ µ(An).

(iv) continuity from above: If A1 ↓ A, i.e. A1 ⊃ A2 ⊃ ... ⊃ An, and ∩i Ai = A,
with µ(A1) < ∞, then µ(A1) ↓ µ(A).

Proof. (i) Let B− A = B ∩ Ac be the difference of the two sets. We use + to
denote disjoint union, B = A + (B− A) so

µ(B) = µ(A) + µ(B− A) ≥ µ(A).

(ii) Let A′ = An ∩ A, B1 = A′1 and for n > 1, Bn = A′n −∪n−1
m=1A′m. The Bn are

disjoint and have union A, hence, when we use (ii) of Definition 1.2, Bm ⊂ Am,
and (i) of this theorem, we have

µ(A) =
∞

∑
m=1

µ(Bm) ≤
∞

∑
m=1

µ(Am).

(iii) Let Bn = An − An−1. Then the Bn are disjoint and have ∪∞
m=1Bm =

A,∪n
m=1Bm = An so

µ(A) =
∞

∑
m=1

µ(Bm) = lim
n→∞

n

∑
m=1

µ(Bm) = lim
n→∞

µ(An).
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(iv) A1 − An ↑ A1 − A so from (iii) it follows that µ(A1 − An) ↑ µ(A1 − A).
Since A1 ⊃ A we have µ(A1 − A) = µ(A1) − µ(A) and, thus, µ(An) ↓
µ(A).

The following two definitions are included, as we will encounter these
terminologies in the next section.

Definition 1.3. Let Rn be the set of vectors (x1, ..., xn) of real numbers. Then,
Rn are the Borel sets defined as the smallest σ-algebra containing the open
sets.

Definition 1.4. A set E ⊂ Rn is referred to as Lebesgue measurable if, for every
ε > 0, there exists an open set U ⊂ Rn containing E such that m?(U\E) ≤ ε.
If E is Lebesgue measurable, we call m(E) := m?(E) the Lebesgue measure of E.

1.2 Random Variables and Distributions

Now that we are familiar with probability spaces, we can define random
variables on them. The representation of arterial travel times as random
variables builds the core of the methodology presented in this thesis.

Definition 1.5. A real valued function X defined on Ω is referred to as random
variable if for every Borel set B ∈ R we have X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Definition 1.6. If X is a random variable, then X induces a probability mea-
sure on R referred to as its distribution by setting µ(A) = P(X ∈ A) =

P(X−1(A)) for Borel sets A.

Definition 1.7. The distribution of a random variable X is described by giving
its distribution function, F(x) = P(X ≤ x). When X has distribution function
F, we denote X ∼ F.

Theorem 1.2. Any distribution function F has the following properties:

(i) F is nondecreasing.

(ii) limx→∞ F(x) = 1, limx→−∞ F(x) = 0.

(iii) F is right continuous, i.e. limy↓x F(y) = F(x).

(iv) If F(x−) = limy↑x F(y) then F(x−) = P(X < x).

(v) P(X = x) = F(x)− F(x−).
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Proof. (i) If x ≤ y, then {X ≤ x} ⊂ {X ≤ y}, and then by using (i) of Theorem
1.1 we can conclude that P(X ≤ x) ≤ P(X ≤ y).
(ii) If x ↑ ∞, then {X ≤ x} ↑ Ω, and if x ↓ −∞, then {X ≤ x} ↓ ∅. Then we
can use (iii) and (iv) of Theorem 1.1.
(iii) If y ↓ x, then {X ≤ y} ↓ {X ≤ x}.
(iv) If y ↑ x, then {X ≤ y} ↑ {X ≤ x}.
(v) Note that P(X = x) = P(X ≤ x)− P(X < x) and use (iii) and (iv).

Theorem 1.3. If F satisfies (i), (ii), and (iii) in Theorem 1.2, then it is the distribution
function of some random variable.

Proof. Let F be the Borel sets, P a Lebesgue measure and Ω = (0, 1). If
ω ∈ (0, 1), let

X(ω) = sup{y : F(y) < ω}.

If ω ≤ F(x) then X(ω) ≤ x, since x /∈ {y : F(y) < y}. If ω > F(x), then
since F is right continuous, there is an ε > 0 so that F(x + ε < ω) and
X(ω) ≥ x + ε > x. Therefore

{ω : X(ω) ≤ x} = {ω : ω ≤ F(x)}

and the desired result follows since P(ω : ω ≤ F(x)) = F(x).

Definition 1.8. If X and Y induce the same distribution µ on (R,R) we say
that X and Y are equal in distribution. This holds if and only if X and Y induce
the same distribution function, i.e. P(X ≤ x) = P(Y ≤ x).

Definition 1.9. When the distribution function F(x) = P(X ≤ x) has the form

F(x) =
∫ x

−∞
f (y)dy,

we say that X has density function f , satisfying f (x) ≥ 0 and
∫

f (x)dx = 1.

Definition 1.10. For X ≥ 0 the expected value is obtained by

E[X] =
∫

XdP.

E[X] is called the mean of X and is denoted by µ.

One important example of distributions which we will encounter during
this thesis is the normal distribution, also referred to as Gaussian distribution

φ(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

, (1.1)
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where σ =
√

E[X2]− (E[X])2 is called the standard deviation of X.
In the following we study the relationship between random variables.

Thus, we introduce the concept of independence.

Definition 1.11. Two events A and B are independent if P(A∩ B) = P(A)P(B).
Subsequently, two random variables X and Y are independent if for all C, D ∈
R, P(X ∈ C, Y ∈ D) = P(X ∈ C)P(Y ∈ D).

Theorem 1.4. In order for X1, ..., Xn to be independent, it is sufficient that for all
x1, ..., xn ∈ R

P(X1 ≤ x1, ..., Xi ≤ xn) =
n

∏
i=1

P(Xi ≤ xi). (1.2)

Theorem 1.5. If X and Y with distribution functions F(x) = P(X ≤ x) and
G(y) = P(Y ≤ y) are independent, then

P(X + Y ≤ z) = F(x) ∗ G(y)

:=
∫

F(z− y)dG(y).
(1.3)

As the proofs of Theorem 1.4 and Theorem 1.5 require additional lemmas
and definitions which are not in the scope of this thesis, we refer to [20] for
the proofs. The right hand side of Eq. (1.3) is called the convolution of F and G,
where ∗ denotes the convolution operator. Theorem 1.5 provides us a way to
obtain a sum of independent random variables. For an efficient computation
of the convolution the following theorem can be applied ([9]).

Theorem 1.6. Let F{ f } and F{g} be the Fourier transforms of f and g, respec-
tively. Then

F{ f ∗ g} = F{ f } · F{g}.

Proof. We have

f (t) = F−1[F(ν)](t) =
∫

F(ν)e2πiνtdν

g(t) = F−1[G(ν)](t) =
∫

G(ν)e2πiνtdν,
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where F (t) denotes the inverse Fourier transform. The convolution is then

f ∗ g =
∫

g(t′) f (t− t′)dt′

=
∫

g(t′)
[∫

F(ν)e2πiν(t−t′)dν

]
dt′

=
∫

F(ν)
[∫

g(t′)e−2πiνt′dt′
]

e2πiνtdν

=
∫

F(ν)G(ν)e2πiνtdν

= F−1[F(ν)G(ν)](t).

1.3 Dependence

1.3.1 Copulas

Above we introduced independence between random variables. Here we
discuss dependence, following [21] and [3]. Definitions, theorems, and propo-
sitions are based thereon, unless specified otherwise. For an n-dimensional
vector of random variables (X1, ..., Xn) the dependence between X1, ..., Xn is
described by the joint distribution function

F(x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn). (1.4)

The concept of a copula is to separate F in Eq. (1.4) into one part describing
the dependence structure and other parts describing solely the marginal
behaviour. The next proposition is necessary to derive the methodology of
copulas.

Proposition 1.1. Let X be a random variable with distribution function F. Let F−1

be the quantile function of F, i.e.

F−1(α) = inf{x|F(x) ≥ α},

with α ∈ (0, 1). Then

(i) For any standard-uniform distributed U ∼ U(0, 1) we have F−1(U) ∼ F,
providing a simple method to simulate random variables with distribution
function F.
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(ii) If F is continuous then the random variable F(X) is standard-uniformly dis-
tributed, i.e. F(X) ∼ U(0, 1).

In order to achieve the separation of F into the respective parts, we first
transform each component of the random vector X = (X1, ..., Xn)T to have
standard-uniform marginal distributions U(0, 1). This can be accomplished
by using the probability-integral transformation T : Rn → Rn, (x1, ..., xn)T →
(F1(x1), ..., Fn(xn))T, assuming that X1, ..., Xn have continuous marginal distri-
butions F1, ..., Fn. Then, the joint distribution function C is referred to as the
copula of (X1, ..., Xn)T. This sets the basis for Sklar’s theorem.

Definition 1.12. A copula is the distribution function of a random vector in
Rn with uniform-(0,1) marginals. Alternatively, a copula is any function
C : [0, 1]n → [0, 1], which has the following properties:

(i) C(x1, ..., xn) is increasing in each component xi.

(ii) C(1, ..., 1, xi, 1, ..., 1) = xi for all i ∈ {1, ..., n}, xi ∈ [0, 1].

(iii) For all (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n with ai ≤ bi it holds:

2

∑
i1=1

...
2

∑
in=1

(−1)i1+...+in C(x1i1 , ..., xnin) ≥ 0,

where xj1 = aj and xj2 = bj for all j ∈ {1, ..., n}.

Theorem 1.7 (Sklar’s theorem). Let F be an n-dimensional distribution function
with margins F1, F2, ..., Fn. Then there exists an n-dimensional Copula C such that
for all (x1, ..., xn) in Rn

F(x1, x2, ..., xn) = C(F1(x1), ..., Fn(xn)). (1.5)

For any continuous multivariate distribution C is unique. Conversely, if F1, ..., Fn

are not all continuous, then C is not unique.

The proof of Theorem 1.7 can be found in [3]. Sklar’s theorem provides an
efficient way of modelling dependent random variables. Following from Eq.
(1.5) the joint density function for a n-dimensional vector (x1, ..., xn) ∈ Rn can
be obtained by

f (x1, ..., xn) = c
(

F1(x1), ..., Fn(xn)
) n

∏
i=1

fi(xi) (1.6)
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with copula density

c
(

F1(x1), ..., Fn(xn)
)
=

∂C
(

F1(x1), ..., Fn(xn)
)

∂F1(x1), ..., ∂Fn(xn)
.

Copulas can be classified into two major categories - elliptical and archimedian
copulas. The first class is derived from its related elliptical distributions. In
the following we describe the copulas, which will be used throughout this
thesis. The Gaussian copula is an elliptical copula, which is derived from the
joint normal distribution

ΦΣ(x) =
1

(2π)(n/2)|Σ|1/2
e−

1
2 (x−µ)TΣ−1(x−µ)

for x = (x1, ..., xn)T ∈ R with mean vector µ and covariance matrix Σ. The
n-dimensional Gaussian copula is given by

CGauss(u1, ..., un) = ΦΣ(Φ−1(u1), ..., Φ−1(un)), (1.7)

where ui := Fi(xi), i ∈ (1, ..., n) and Φ−1 is the quantile function of the
univariate standard normal distribution. Another elliptical copula is based on
the Student-t distribution

tν,Σ(x) =
Γ( ν+n

2 )

Γ( ν
2 )
√
(πν)n|Σ|

(
1 +

(x−µµµ)′Σ−1(x−µµµ)

ν

)− ν+n
2

,

thus, referred to as Student-t copula, with gamma function Γ(x) = (x− 1)!. It
is defined analogous to the Gaussian copula in Eq. (1.7).

Archimedian copulas are not derived from parametric distribution. Instead,
they are based on a generator function ϕ. Archimedian copulas are defined as

CArchimedian(u1, ..., un) = ϕ(−1)(ϕ(u1) + ... + ϕ(un)),

where ϕ(−1) is the pseudo-inverse of ϕ. Archimedean copulas are popular in
empirical applications as they produce wide ranges of dependence properties
for different choices of the generator function. Examples of Archimedian
copulas are the Clayton Copula with the generator function

ϕClayton(u) = (1 + u)(−1/α),
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and the Gumbel Copula with the generator function

ϕGumbel(u) = exp(−u(−1/α)),

where α is the Copula parameter, which describes the dependency between
the random variables xi.

1.3.2 Correlation

The terms correlation and dependence are often set as equal, however, correla-
tion is only one measure of stochastic dependence. More precisely, [21] defines
correlation as "the canonical measure in the world of multivariate normal
distributions, and more generally for spherical and elliptical distributions".

Definition 1.13. The linear correlation coefficient, also known as Pearson’s corre-
lation coefficient, between two random variables X and Y is given by

ρ(X, Y) =
Cov[X, Y]√
σ2[X]σ2[Y]

,

where Cov[X, Y] is the covarianve between X and Y, Cov[X, Y] = E[XY]−
E[X]E[Y], and σ2[X], σ2[Y] denote the variances of X and Y.

As its name suggests, the linear correlation coefficient is a measure of
linear dependence. If X and Y are independent, then ρ(X, Y) = 0. If X and
Y are perfectly linear dependent, i.e. Y = aX + b for a ∈ R\{0}, b ∈ R,then
ρ(X, Y) = ±1. This follows from

ρ(X, Y)2 =
σ2[Y]−mina,b E[(Y− (aX + b))2]

σ2[Y]
. (1.8)

If X and Y are imperfectly linear dependent, then−1 < ρ(X, Y) < 1. Linearity
property is fulfilled by correlation, i.e.

ρ(αX + β, γY + δ) = sgn(α · γ)ρ(X, Y),

for α, γ ∈ R\{0}, β, δ ∈ R. Thus, correlation is invariant under strictly
increasing linear transformations.

A correlation measure gives us the opportunity to describe the depen-
dence structure of two random variables with a single number. The desired
properties that a dependence measure δ(·, ·) should fulfil are the following:

P1. Symmetry: δ(X, Y) = δ(Y, X).
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P2. Normalisation: −1 ≤ δ(X, Y) ≤ 1.

P3. X, Y comonotonic⇔ δ(X, Y) = 1;
X, Y countermonotonic⇔ δ(X, Y) = −1.

P3. For T : R→ R strictly monotonic on the range of X:

δ(T(X), Y) =

δ(X, Y) T increasing

−δ(X, Y) T decreasing.
(1.9)

In the case of linear correlation as a dependence measure only P1 and P2
are fulfilled. Another measurement of correlation is rank correlation. There
are two rank correlation coefficients.

Definition 1.14. Let X, Y be random variables with distribution functions
F1 and F2, respectively, and joint distribution function F. Spearman’s rank
correlation, also referred to as Spearman’s rho, is given by

ρs(X, Y) = ρ(F1(X), F2(Y)), (1.10)

where ρ is Pearson’s linear correlation coefficient.

Definition 1.15. Let (X1, Y1), (X2, Y2) be two independent pairs of random
variables from F, then Kendall’s rank correlation, also referred to as Kendall’s tau,
is given by:

τ(X, Y) = P[(X1 − X2)(Y1 −Y2) > 0]− P[(X1 − X2)(Y1 −Y2) < 0]. (1.11)

The advantage of rank correlation is that it measures the degree of mono-
tonic dependence between X and Y instead of only measuring linear depen-
dence.

Theorem 1.8. Let X and Y be random variables with distributions F1 and F2, respec-
tively, jount distribution F and copula C. Then the following holds:

(i) ρs(X, Y) = ρs(Y, X), τ(X, Y) = τ(Y, X).

(ii) If X and Y are independent then ρs(X, Y) = τ(X, Y) = 0.

(iii) −1 ≤ ρS(X, Y), τ(X, Y) ≤ 1.

(iv) ρs(X, Y) = 12
∫ 1

0

∫ 1
0 {C(x, y)− xy}dxdy.

(v) τ(X, Y) = 4
∫ 1

0

∫ 1
0 C(u, v)dC(u, v)− 1.
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(vi) For T : R→ R strictly monotonic on the range of X, both ρs and τ satisfy Eq.
(1.9).

(vii) ρs(X, Y) = τ(X, Y) = 1⇔ C = Cu ⇔ Y = T(X) a.s. with T increasing.

(viii) ρs(X, Y) = τ(X, Y) = −1⇔ C = Cl ⇔ Y = T(X) a.s. with T decreasing.

Proof. The verifcation of (i), (ii) and (iii) are straighforward. (iv) Using the
identity due to [30]

Cov[X, Y] =
∫ ∞

−∞

∫ ∞

−∞
{F(x, y)− F1(x)F2(y)}dxdy (1.12)

which can be found in [16].
(v) Calculate

τ(X, Y) = 2P[(X1 − X2)(Y1 −Y2) > 0]− 1

= 2 · 2
∫∫∫∫

R4
1{x1>x2}1{y1>y2}dF(x2, y2)dF(x1, y1)− 1

= 4
∫∫

R2
F(x1, y1)dF(x1, y1)− 1

= 4
∫∫

C(u, v)dC(u, v)− 1.

(vi) Is a consequence of the fact that τ and ρs can be expressed in terms of
the copula which is invariant under strictly increasing transformations of the
marginals.
(vii) From (iv) it follows that ρs(X, Y) = 1 is maximized if only if C = Cu if
and only if Y = T(X) a.s. Suppose Y = T(X) a.s. with T increasing, then due
to the continuity of F2 it follows that

P[Y1 = Y2] = P[T(X1) = T(X2)] = 0,

which means

τ(X, Y) = P[Y1 = Y2] = P[(X1 − X2)(Y1 −Y2) > 0] = 1.

Conversely, τ(X, Y) = 1 implies

P× P[(ω1, ω2) ∈ Ω×Ω|(X(ω1)− X(ω2))(Y(ω1)−Y(ω2)) > 0] = 1.

Let A, B be sets with A = {ω ∈ Ω|X(ω) ≤ x} and B = {ω ∈ Ω|Y(ω) ≤ y}.
Assuming P[A] ≤ P[B], we need to show P[A ∩ B] = P[A]. If P[A\B] > 0
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then also P[B\A] > 0 and

(X(ω1)− X(ω2))(Y(ω1)−Y(ω2)) < 0

on the set (A\B)× (B\A), which has measure P[A\B] · P[B\A] > 0, which is
a contradiction. Hence P[A\B] = 0, thus, P[A ∩ B] = P[A].
(viii) Can be proven analogously to (vii).

With this result we have shown that rank correlation has properties P1, P2,
P3 and P4.

1.3.3 Dependent Discrete Convolution

Here, we present the methodology of the Dependent Discrete Convolution
(DDC) ([70, 63]). We denote travel time for segment 1 as a random variable α,
and travel time for segment 2 as β. The PDF for path travel time distribution
denoted as fα+β can be calculated from the joint Probability Density Function
(PDF) fα,β with Cumulative Distribution Function (CDF) Fα and Fβ, and PDFs
fα and fβ, respectively:

fα+β(a) =
∫ α

α
fα,β(x, a− x)dx, a ∈ [α + β, α + β],

where [α, α] is the domain of α and [β, β] is the domain of β. If α and β are
independent, fα,β(x, y) can be obtained by the product of its marginal PDFs:

fα,β(x, y) = fα(x) fβ(y),

and 1.3.3 becomes

fα+β(a) =
∫ α

α
fα(x) fβ(a− x)dx, a ∈ [α + β, α + β],

which is the convolution equation. For computerized calculation, the discrete
form of convolution is used:

Pα+β(i) =
iα

∑
j=iα

Pα(j)Pβ(i− j), i ∈ [iα + iβ, iα + iβ],

where Pα(i), Pβ(i) and Pα+β(i) are the discrete approximations of fα(·), fβ(·)
and fα+β(a). For that purpose, an N-dimensional space is discretized with
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a step of ∆p, as shown in Figure 1.1. For each dimension ∆p may differ,
however, for simplicity reasons the same ∆p is chosen for every dimension.

�

�

Δ�

Δ�

(� − �)Δ� + Δ�/2

(� − �)Δ� − Δ�/2

�Δ� − Δ�/2 �Δ� + Δ�/2

FIGURE 1.1: Discretization of the 2-dimensional plane for DDC.

Then the discrete approximation of fα(·) is defined as follows:

Pα(i) =
∫ i∆p+∆p/2

i∆p−∆p/2
fα(x)dx.

The discrete approximation Pβ(i) of fβ(·) is defined analogously.
Now we consider the case, where α and β are dependent. Then (1.3.3) does

not hold. However, based on Sklar’s theorem we can use (1.6) and obtain

fα,β(x, y) = c
(

Fα(x), Fβ(y)
)

fα(x) fβ(y).

Using (1.3.3) and (1.3.3), the dependent convolution becomes

fα+β(a) =
∫ α

α
c
(

Fα(x), Fβ(a− x)
)

fα(x) fβ(a− x)dx.

Then the DDC can be formulated as

Pα+β(i) =
iα

∑
j=iα

∫ j∆p+∆p/2

j∆p−∆p/2

∫ (i−j)∆p+∆p/2

(i−j)∆p−∆p/2
fα,β dx dy

=
iα

∑
j=iα

∫ j∆p+∆p/2

j∆p−∆p/2

∫ (i−j)∆p+∆p/2

(i−j)∆p−∆p/2
c
(

Fα(x), Fβ(y)
)

fα(x) fβ(y) dx dy.
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If ∆p is small enough, c(Fα(x), Fβ(y)) can be approximated as a constant
over the 2-dimensional interval of [j∆p− ∆p/2, j∆p + ∆p/2]× [(i− j)∆p−
∆p/2, (i− j)∆p + ∆p/2] and is denoted as cj∆p,(i−j)∆p. It can be calculated by

cj∆p,(i−j)∆p = c
( j

∑
m=0

Pα(m),
i−j

∑
n=0

Pβ(n)
)

.

Then (1.3.3) becomes

Pα+β(i) =
iα

∑
j=iα

cj∆p,(i−j)∆p

∫ j∆p+∆p/2

j∆p−∆p/2
fα(x)dx

∫ (i−j)∆p+∆p/2

(i−j)∆p−∆p/2
fβ(y)dy,

=
iα

∑
j=iα

cj∆p,(i−j)∆pPα(j)Pβ(i− j).

Compared to the traditional convolution the DDC has similar form as (1.3.3),
except that there is a an extra multiplier cj∆p,(i−j)∆p determined by the de-
pendency between α and β. When α and β are independent, cj∆p,(i−j)∆p := 1
and (1.3.3) degenerates into the traditional convolution in (1.3.3). In case of
dependent segments, this factor incorporates the copula based correlation
between the segments.
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Chapter 2

Shortest Path Problem and Data
Sampling

2.1 Shortest Path Problem

Route guidance systems commonly aim at finding the shortest route for a
specified origin – destination pair. Finding the shortest route can be formu-
lated as a Shortest Path Problem (SPP), which is a well-studied combinatorial
optimization problem.

In this chapter, we first present the SPP and the state-of-the-art solution
approach. Next, we discuss how we can obtain alternate routes for one o− d
pair instead of only the shortest route.

2.1.1 Problem Formulation

The road network is represented as a directed graph G(N, L, C), where N is
the set of nodes N(|N| = n) representing geolocations, L(|L| = m) is the set
of links representing road links connecting these locations , and C(|C| = m)

contains the link costs representing travel times on each road link. An example
of a directed graph is illustrated in Figure 2.1. The goal of finding the shortest
path from origin o ∈ N to destination d ∈ N can be achieved by solving the
SPP.

State-of-the-art route guidance systems underlie a deterministic SPP where
the estimated link travel times are discrete. Travel times can be assessed using
real-time traffic information in combination with historical data. We will give
a detailed explanation on how to obtain historical travel time data in Chapter
5. There we will also discuss non-deterministic SSPs.
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FIGURE 2.1: A directed Graph with blue nodes and black links.
The arrows represent the possible directions for each link.

2.1.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm, first proposed in [18], provides an efficient method to
solve the SSP. Its description, based on [18] and [23], can be found in Algorithm
1. Worse case time complexity of Dijkstra’s Algorithm us O(N2), however
using a Fibonacci heap it becomes O(L + N log N). Following [18] we will

Algorithm 1: Dijkstra (G, s)
∀t ∈ N, d[t]← ∞ // set initial distance estimates ;
d[s]← 0 ;
F ← {v|∀v ∈ V} // F is the set of nodes that are yet to achieve final
distance estimates ;

D ← ∅ // D will be the set of nodes that have achieved final distance
estimates ;

while F 6= ∅ do
x ← element in F with minimum distance estimate ;
for (x, y) ∈ E do

d [y]←min{d[y], d[x] + c(x, y)} // relax the estimate of y to
maintain paths: if d[y] changes, then π(y)← x;

end
F ← F\{x};
D ← D ∪ {x}

end

prove that Dijkstra’s algorithm calculates the distances from s to all t ∈ V
correctly.
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Proposition 2.1. For every u, at any point of time d[u] ≥ d(s, u).

Proof. Follows by induction by showing that any point in time, if d[u] < ∞,
then d[u] is the weight of some path from s to t. Hence at any point d[u] is at
least the weight of the shortest path, and thus d[u] ≥ d(s, u). As d[s] = 0 =

d(s, s) and all other distance estimates are +∞ the claim holds initially. When
d[u] is changed to d[x] + c(x, u) then there exists a path from s to x with cost
d[x] and an edge (x, u) with cost c(x, u). Subsequently there is a path from s
to u with cost d[u] = d[x] + c(x, y). This implies that d[u] is at least the cost of
the shortest path d(s, u), which completes the induction argument.

Proposition 2.2. When node x is placed in D, d[x] = d(s, x).

Proof. Follows by induction on the order of placements of nodes into D. In
the basic case s is placed into D where d[s] = d(s, s) = 0, thus, the claim holds
initially. For the inductive step we assume that for all nodes y currently in D,
d[y] = d(s, y). Let x be the node with minimum distance estimate in F at the
moment. In order to complete the induction we will show that d[x] = d(s, x).
Let p be the shortest path from s to x. Suppose z is the node on p which is
closest to x with d[z] = d(s, z). Since d[s] = d(s, s) we know z exists. For every
node y on p between z to x by the choice if z it holds that d[y] > d(s, y). We
consider the following options for z.

1. If z = x, then d[x] = d(s, x).

2. Suppose z 6= x. Then there exists a node z′ after z on p. It holds
that d[z] = d(s, z) ≤ d(s, x) ≤ d[x] as subpaths of shortest paths are
also shortest paths, so that the prefix of p from s to z has cost d(s, z).
Furthermore, the costs on links are non-negative, so that the portion
of p from z to x has a non-negative cost, hence, d(s, z) ≤ d(s, x). Now,
suppose d[z] < d[x]. By the choice of x ∈ F it holds that d[x] is the
minimum distance estimate that was in F. Hence, since d[z] < d[x],
z /∈ F has to be in D. Subsequently, d[z′] ≤ d(s, z) + c(z, z′), as z lies on
the shortest path from s′ to z, and the distance estimate of z′ must be
correct. But this contradicts z being the closest node on p to x fulfilling
d[z] = d(s, z). Hence, our initial assumption that d[z] < d[x] has to be
false which leads to d[z] = d(s, x).

Note that the correctness of Dijkstra’s algorithm follows from Proposition
2.2 since d[x] remains unchanged after x is added to D. The only possibility
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to change it would be for some node y ∈ F, d[y] + c(y, x) < d[x] which is
not possible since d[x] ≤ d[y] and c(y, x) ≥ 0. For all y ∈ F it holds that
d[x] ≤ d[y] at all points after x is inserted into D.

2.1.3 Yen’s k-shortest Path Algorithm

The k-shortest path problem is a generalization of the SPP which aims at
computing k paths from origin to destination in non-decreasing order of their
costs. We will use Yen’s algorithm, which was introduced in [67], in order to
find the k-shortest paths.

We will describe Yen’s Algorithm based on [51]. First, the shortest path
from s to d, denoted as P0 = (s, ..., t), is computed using Dijkstra’s Algo-
rithm. A priority queue Q of candidates for the upcoming shortest paths
is maintained. At the start of the algorithm, C consists of only P0 with
the priority weight(P0). Then, the shortest paths Pi, i ∈ {1, ..., k − 1}, are
computed and C is updated with candidate paths for the upcoming iter-
ation. We obtain path Pi by extracting the minimum weight path from
C. Let Pi = (vi

1 = s, vi
2, ..., vi

d, ..., vi
l = t) and let Pj be the path with the

maximum common prefix (vj
1 = vi

1, vj
2 = vi

2, ..., vj
d = vi

d) among the to-
tal set of paths {P1, ..., Pi−1}. In addition, let dev(Pi) = vi

d be the node at
which Pi diverged from Pj. The shortest path deviating from Pi at nodes
{vi

d, ..., vi
l−1} are then the new candidate paths which will be inserted into

C. In order to calculate the deviation path from a node vi
f , the shortest

path P f is first computed from vi
f to t in the graph G′ obtained by remov-

ing nodes {vi
1, ..., vi

f−1}, incident links and all links in E f from G, where
E f = {(vh

f , vh
f+1) : 1 ≤ h ≤ i and vh

1 = vi
1, ..., vh

f = vi
f }. The shortest deviation

path from Pi at node vi
f is the path {vi

1, vi
2, ..., vi

f−1} appended by P f , which is
inserted into C with its weight as priority. Algorithm 2 gives a pseudo-code
for the algorithm. Dijkstra’s Algorithm is performed kv times within Yen’s
Algorithm, where v is the length of spurs paths. As the expected value of
v is O(log N), time complexity becomes O(KN(M + N log N)). There is no
additional theoretical basis concerning Yen’s Algorithm as it relies on the
underlying theory of Dijkstra’s Algorithm.
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Algorithm 2: Yen (G, s, d), K
Kpaths ← ∅ ;
P0 ← Dijkstra(G, s, d) ;
α0 ← 0 ;
j0 ← 0 ;
k← 1 ;
while k < K and Q 6= ∅ do

Proot = (vk−1
0 , ..., vk−1

αk−1−1) ;
G′(V′, E′) = G[V\Proot] for i ∈ {0, ..., k− 2} do

if ji == jk−1 or i == jk−1 then
E′ = E′\{(vi

αi
, vi

αi+1)}
end

end
for n = αk−1, ..., qk−1 − 1 do

E′ = E′\{(vk−1
n , vk−1

n+1)} ;
P = Dijkstra(G′, n) ;
P = Proot ∩ P, j = k− 1, α = n ;
Q = Q ∪ {(P, j, α)} ;
G′(V′, E′) = G[V\{vk−1

n }] ;
end
(Pk, jk, αk) = shortest path in Q ;
Q = Q\{Pk, jk, αk} ;
Kpaths = Kpaths ∪ {Pk} ;
k = k + 1 ;

end
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2.2 Data

In order to solve the SPP link costs are necessary representing travel times
for each link. These can be estimated in route guidance systems using real
time traffic information. Another possibility is to collect historical travel time
data. This approach has several advantages and is crucial for developing a
stochastic router, which we will be described later in this thesis. There are
multiple possibilities to obtain historical travel time data. We will give an
overview in the next chapter, when we will discuss related work.

Here we rather focus on presenting the so called Floating Car Data (FCD)
which will be used throughout this thesis. First, we give an overview on how
the the raw data is sampled and collected. Then, we elucidate how the raw
data is processed in order to obtain link travel time data.

2.2.1 Sampling and Collection

The FCD provided by BMW Group is collected from probe vehicles. The setup
includes a fleet of probe vehicles, which has a module that reports Global
Navigation Satellite System (GNSS) data and a central server, which collects
all data in a database. A GNSS position is determined via the principle of
trilateration using satellite signals as illustrated in Figure 2.2. Each vehicle
samples the current GNSS positions in intervals ranging from 10s to 30s, which
are then stored in the local memory of the vehicle together with the according
timestamp. After a few positions have been sampled, a filter mechanism
decides weather sampled GNSS positions will be transmitted to the central
server. This filter is continuously comparing the velocity of the vehicle with
the velocity obtained by a traffic provider. If the velocity at one of the sampled
data points differs more than 10 % to 30 % (depending on the software version
on the module) from the provided velocity, the recently sampled positions and
according timestamps are transmitted to the central server. Each transmitted
position is linked to an alias, which is randomly generated by the vehicle and
changes over time due to protection of the driver’s privacy. At the central
server, single transmitted positions of the same alias can be connected in
order to reconstruct trajectories of the vehicles . However, since vehicles are
not transmitting continuously, and hide their vehicle ID, it is not possible to
reconstruct complete trips or infer driver’s identity.
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FIGURE 2.2: Determination of a GNSS position on earth using
the principle of trilateration 1.

2.2.2 Preprocessing

Raw data collected in the central server consist of GNSS positions and their
according timestamps. This data then needs to be matched to links of the road
network in a process called map-matching. This algorithm returns a sorted list
of links depending on the position and time data which are supposed to match
the roads that the respective vehicle traversed. Furthermore, functions are
computed representing time-dependent position and velocity of the specific
vehicle on the reconstructed link denoted as xc(t) and vc(t), respectively. The
map-matching algorithm is described in detail in [52]. A set of hypotheses of
possible trajectories is constructed, which are all compared. Then, the most
probable one is selected. The procedure for obtaining historical link travel
times from probe vehicles is summarized in Figure 2.3.

2.2.3 Data Set

1Source: https://www.nationalgeographic.org/photo/triangulation-sized
2Source: https://www.bmwgroup.com/en/brands-and-services/bmw.html



26 Chapter 2. Shortest Path Problem and Data Sampling

FIGURE 2.3: Obtaining historical link travel times from probe
vehicles 2.

FIGURE 2.4: Map of Munich and its surroundings.

As maps as well as the software installed in the vehicles are constantly updated
there are different data sets corresponding to the specific versions. In this
thesis, we used a data set containing travel times for the area of Munich and
its surroundings, which is shown in Figure 2.4. The data was collected during
a period from March 2014 to March 2015.
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Chapter 3

Modelling travel time reliability

3.1 Related Work

The US Federal Highway Administration [4] defined travel time reliability
as the consistency or dependability in travel times, as measured from day to
day and/or across different times of the day. So how can we measure travel
time reliability? For that purpose a travel time distribution is required, which
can be obtained from empirical data. The progress of information technology
enables a variety of possibilities for travel time data collection. One example
is to use loop detectors. ([54, 37, 38]). Another possibility to obtain data is
Automated Vehicle Identification (AVI) ([13]). In [39] floating car data is used
for travel time estimation. Probe vehicles can also be used as a source for
travel time data ([49, 22, 35]). Travel time data is usually avalailable only on
link-level rather for longer paths consisting of multiple links. Historical travel
times can then be used as an evaluation benchmark for statistical models
estimating travel time distribution.

First we consider the state-of-the-art models for assessing link-level travel
time distribution. In [68] a hierarchical Bayesian mixture model for assess-
ing segment travel time distribution is developed based on bus probe data.
Predominately bimodal distributions were revealed by the authors, with one
mode corresponding to the uncongested state and the other corresponding to
the congested state. In [19] an adaptive information fusion model was intro-
duced which predicted short-term link travel time distribution by iteratively
combining historical travel time data with real time information available at
discrete time points. Furthermore, a partial differential equation describing
link travel time distribution was proposed by [33]. The equation was solved
in terms of Laplace transforms, which were inverted by a numerical inversion
algorithm. Travel time distribution in large networks was assessed by [6] us-
ing the universal generating function. In [71] a probabilistic delay distribution
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model with stochastic arrivals and departures was presented for investigating
urban link travel time distribution.

In order to enable providing route guidance it is necessary to determine
path-level travel time distribution. A common approach is deducing path
travel time distribution from its individual link travel time distributions. Most
of the state-of-the-art methods for estimating link or path travel time distribu-
tion in a road network assume independence of individual link travel times
([31, 49]). But is this assumption realistic? Intuitively, one would assume that
if one link is congested, then the successive link will very likely also be con-
gested. This would induce a dependence of travel times. In [28] dependence
between link travel times was found based on vehicle tracking data from
Paramics simulation. It was shown that both temporal and spatial depen-
dence between individual links needs to be taken into account for developing
route guidance systems. In [46] the variance of freeway path travel time was
assessed by modelling dependence between variances of link travel times.
Here, the limitations are that the variances cannot fully describe the travel
time properties. In [27] linear dependence between neighbouring link travel
times was assumed for assessing the variance of one urban route travel time.
However, link travel times may have complex dependence structure. In [47]
Markov chains were used to predict path travel time. It was assumed that the
traffic states of successive links form a Markov chain, but Markovian property
of links is rather unrealisitc. In [64] a regression approach was proposed for
modelling travel time distributions from ambulances at trip level. It was
argumented, that the dependence between links is intrinsically included as
the data was already available on path level. However, ambulances traversing
with sirenes and flashing lights may not appropriately refelct the features and
dependences of urban road travel times.

Recently, copulas, which are commonly used in econometrics ([60]), have
been proposed for modelling dependence in path travel time distribution
estimation ([13, 14, 50]). In [13] travel time distribution for a path consisting
of two arterials in Shanghai, China and Los Angeles, California, based on
AVI and Next Generation Simulation data. The Copula Model was compared
to the empirical distribution and to the convolution method, which assumes
independence between links. The results showed link travel times were depen-
dent at both study sites, and that the Copula Model performed better than the
convolution method. In [14] a Copula Model was developed and evaluated
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by using VISSIM simulation with calibration to generate travel time data on
one arterial in Hangzhou, China. The authors implemented two signal control
strategies, denoted as "favorable" and "unfavorable". While they were able to
determine different travel time states in the favorable case, no such distinction
could be observed for the unfavorable case. Dependencies between successive
links were analyzed in both cases. Also here, the Copula Model was then
compared to the empirical distribution and to the convolution method. In the
unfavorable case, no strong dependence could be measured, and the Copula
Model showed no clear superiority over the convolution. But in the favorable
case, a stronger dependence could be measured, and the Copula Model was
closer to the empircal distribution than the convolution method.

As copulas are already a well-proven tool to model a variety of different
dependence structures in econometrics and first promising results already
occurred in the field of transportation systems, we will also use copulas in
this thesis to model the dependence between link travel times for estimating
path travel time distribution. However, there is still a long way to go from
the state-of-the-art approaches mentioned above to an implementation based
on copulas for real world application in route guidance systems. First, the
benchmark for the validation of the the Copula Model in [13] and [14] does
not represent real day-to-day travel time observations. Furthermore, travel
time distribution was estimated for a path consisting of only two and three
links, respectively. Thus, it is still an open question how the Copula Model
performs with real day-to-day data and for an increased number of links.

In the following we tackle the open questions on the Copula Model by evalu-
ating it using real day to day data and for an increased number of links. In
addition, different copulas are applied, which where not yet used for esti-
mating path travel time distribution. Eventually, we will expand the use of
copulas for estimating travel time distribution beyond the Copula Model in
order to improve efficiency for real world application.

3.2 Copula Model

First we give an overview of the methodology behind the Copula Model.
Then, we conduct two case studies for different study sites for evaluation of
the Copula Model. These two study sites show different road features, as the
first one is a freeway arterial and the second one is an urban arterial. Different
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road features may cause different dependence structures. We will go into
detail of the study site description below.

3.2.1 Methodology

The Copula Model is comprised of two stages. At first, a continuous distribu-
tion for link travel times needs to be estimated from data. Then, the Copula
Model can be fitted in order to obtain path travel time distributions in the
second stage. We elucidate the procedure in the following. For computer
implementation the R Framework ([57]) and the packages developed by [29],
[65] and [34] were used.

The continuous distributions are estimated using the finite Gaussian Mix-
ture Model (GMM) ([48]). For each segment travel time Xi we have a d-
dimensional vector measurement xi obtained from the historical travel time
dataset D = {x1, ..., xN}. We assume that the underlying density px is defined
as a finite mixture with K components:

p(x|Θ) =
K

∑
k=1

αk pk(x|zk, θk)

where pk(x|zk, θk) are mixture components with parameters θk, 1 ≤ k ≤ K,
z = (z1, ..., zk) is a vector of K binary indicator variables that are mutually
exclusive and exhaustive and represents the identity of the mixture component
that generated x, and αk = p(zk) are the mixture weigths, representing that
the probability that a randomly selected x was generated by component k,
where ∑K

k=1 αk = 1. The complete set of parameters for a mixture model with
K components is Θ = {α1, ..., αK, θ1, ..., θK}. The weight of data point x in
cluster k, given parameters Θ is

ωik = p(zik = 1|xi, Θ) =
pk(x|zk, θk) · αk

∑K
m=1 pm(x|zm, θm) · αm

, (3.1)

where 1 ≤ k ≤ K and 1 ≤ i ≤ N. The weights reflect the uncertainty, given xi

and Θ, about which of the K components generated xi. For xi ∈ Rd a GMM
is defined by making each of the K components a Gaussian density with
parameters µµµk and Σk. Each component is a multivariate Gaussian density

p(x|θk) =
1

(2π)d/2|Σk|1/2
e−

1
2 (x−µkµkµk)

TΣ−1
k (x−µkµkµk)
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with parameters θk = {µkµkµk, Σk} The parameters of the GMM are obtained by
the Expectation-Maximization (EM) algorithm. The EM algorithm is an itera-
tive algorithm that starts from some initial estimate of Θ and then proceeds to
iteratively update Θ until convergence is detected. Each iteration consists of
an E-step and an M-step. In the E-step, ωik is computed following equation 3.1
for all data points xi and all mixture components k. For each data point xi the
weights are defined such that ∑K

k=1 ωik = 1. In the M-step, these membership
weights and the data are used to calculate new parameter values

αnew
k = Nk/N, µµµnew

k = (1/Nk)
N

∑
i=1

ωik · xi

and Σnew
k = (1/Nk)

N

∑
i=1

ωik · (xxxi −µµµnew
k )(xi −µµµnew

k )T,

where Nk = ∑N
i=1 ωik is the effective number of data points assigned to com-

ponent k. After the new parameters are computed, the M-step is complete
and the weights are recomputed in the E-Step. Then the parameters are again
recomputed in the M-Step. Each pair of E and M-step is considered as one
iteration.

For the second stage of the estimation process, the copula parameters are
estimated. Extending multivariate Archimedian Copulas to different depen-
dencies across link pairs is not straightforward as shown by [17], which would
go beyond the scope of applying copulas in our use case for real world applica-
tions. Thus, an Archimedian Copula with single dependency parameter was
fitted by using Maximum Likelihood Estimation. For d-variate observations
x = (xi1, ..., xid)

t with i ∈ {1, ..., n} the log likelihood is given by

l(θθθ; x) =
n

∑
i=1

log c(F1(xi1; β1), ..., Fd(xid; βd); θθθ),

where θθθ is the copula parameter space β1, ..., βd are the marginal parameters.

3.2.2 Goodness of Fit Tests

For model testing and verification the following goodness of fit tests are
used. Let x1, x2, ..., xn be an sample of n independent observations from
a distribution with CDF FN(x). In order to test the null hypothesis H0 :
Fn(x) = FH(x), where Fn(x) and FH(x) define the empirical CDF and the
hypothetical CDF, respectively. In our case, FH(x) is the historical path travel
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time distribution and Fn(x) is the path travel time distribution estimated by
each model, i.e. the various Copula Models and Convolution, respectively.
The discrepancy between the two distributions can be either measured by

D = max
x
|Fn(x)− FH(x)|

where D is referred to as the Kolmogorov-Smirnov statistic (KS) ([55]), or
using quadratic statistics,

W2 =
∫

Ran x
[Fn(x)− FH(x)]2dF(x)

which is denoted as Cramer-von-Mises statistic (CVM) ([5]). Hence, the KS
statistic gives us the largest discrepancy in a single point, while the CVM
statistic describes the discrepancy over the total spectrum of the distribution.

3.2.3 Case Study: Urban Arterial

We evaluate the Copula Model by comparing it with the convolution method
and an empirical distribution which we derived directly from historical data.
For that purpose, we filtered the travel time samples for our study sites by
Drive-ID obtaining actual through movements of all links of the paths for
each vehicle. The samples with same Drive-ID corresponding to one vehicle
were then added in order to derive the historical path travel time distribution.
As the Drive-ID changes frequently during a trip due to data privacy, we can
track a vehicle only for a limited amount of links. Thus, the length of our
empirical path is restricted by this measure.

Study Site Description

This study site is comprised of ten segments with a total length of 586 m on
Leopoldstraße, a major urban arterial in Munich, Germany. The speed limit
on this aretrial is 50 km/h. A schematic illustration can be found in Figure 3.1.
The arterial consists of two signalized intersections. Furthermore, there is one
bus lane, which stretches from Münchner Freiheit until Hohenzollernstraße,
and there is signal control both at the start and at the end of the bus lane. The
travel time data was collected over a period of one year, from 01. March 2013
until 01. March 2014. For the through movement of the arterial, i.e. trips of
vehicles with constant Drive-ID, 4495 trips were recorded.
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FIGURE 3.1: Schematic illustration of the urban arterial on
Leopoldstraße in Munich.
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Link Travel Time Distributions and Correlation

In [13] the authors suggested that travel time on urban arterials follow multi-
modal distribution with three peaks. They chose a GMM with three compo-
nents GMM to estimate marginal distribution. Also for this study, GMM with
three components showed an accurate fit. Figure ?? and 3.3 show the travel
time distributions and the GMM estimation for all ten links of the study site.
The parameters of the GMM can be found in Table 3.1. The first component of
GMM describes the free flow state. The second component implies partially
delayed vehicles, while the third component reflects the congested situation.
For the longest segment, Segment 1 in Figure 3.9a, with a length of 105m, three
peaks can be observed. For the segments with a shorter length, the observable
distinction is not that obvious, however GMM with three components still
shows an accurate fit.

TABLE 3.1: GMM Parameters for urban segment travel time
distribution estimation.

Segment Mean (µ) Sigma (σ) Weight (π)
Segment 1 (16.08, 31.41, 62.92) (5.25, 9.79, 12.65) (0.31, 0.34, 0.34)
Segment 2 (5.41, 8.86, 16.31) (1.44, 2.68, 5.58) (0.52, 0.38, 0.09)
Segment 3 (8.92, 14.55, 29.37) (2.03, 4.06, 9.55) (0.43, 0.34, 0.22)
Segment 4 (3.11, 5.72, 10.33) (0.72, 1.69, 3.26) (0.43, 0.38, 0.17)
Segment 5 (9.46, 17.58, 36.01) (2.18, 5.26, 10.38) (0.33, 0.38, 0.28)
Segment 6 ( 6.43, 12.26, 29.55) (1.53, 3.94, 5.36) (0.46, 0.35, 0.17)
Segment 7 (8.24, 13.30, 27.82) (1.68, 3.75, 10.94) (0.54, 0.37, 0.07)
Segment 8 (2.76, 3.97, 7.09) (0.48, 0.91, 2.69) (0.48, 0.38, 0.12)
Segment 9 (3.59, 5.42, 10.17) (0.64, 1.34, 3.94) (0.52, 0.35, 0.11)
Segment 10 (6.67, 11.29, 22.46) (1.32, 3.22, 8.64) (0.52, 0.35, 0.11)

In order to investigate segment correlation, scatter diagrams for successive
segments are shown in Figure 3.4. In addition, Kendall’s tau for each segment
pair is given. The values range from 0.318 to 0.835 showing that segment
correlation does exist. The mean value for Kendall’ tau for neighbouring links
is τurban = 0.58. Dependency is a function of network connectivity which is
shown in [7] and [8]. In our study site the segments are connected and vehicles
are able to travel all segments without the need to leave the route. However,
as there are several factors affecting the travel time of each segment and the
correlation in between segments, such as signal control, turning lane, parking
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(A) (B)

(C) (D)

(E)

FIGURE 3.2: Urban Segment travel time distributions: a) Seg-
ment 1 , b) Segment 2 , ..., e) Segment 5
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(A) (B)

(C) (D)

(E)

FIGURE 3.3: Urban Segment travel time distributions: a) Seg-
ment 6 , b) Segment 7 , ..., e) Segment 10
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FIGURE 3.4: Scatter Diagrams for Urban Segment travel time
distributions: a) Segment 1 and Segment 2 , b) Segment 2 and

Segment 3 , ..., i) Segment 9 and Segment 10.
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lane, weather, and congestion, the correlation structure is complex and differs
for each segment pair. For each segment pair the values of individual travel
times scatter in a wide range of the joint distribution space. Only segment
pairs shown in 3.4g, 3.4h, and 3.4i, which are relatively short and do not have
signal control nor turning lanes show a strong lower tail dependence. This is
also resembled by a high value for Kendall’s tau, with 0.639, 0.835, and 0.748,
respectively. The line through the origin is caused by the estimation of the
velocities of probe vehicle described in the Data chapter. If one GPS point is
located before Segment i and the next GPS point is located behind Segment j,
the velocity for both segments is equal. Therefore, travel time of Segment i
and Segment j are proportional, which causes the line through origin, where
the corresponding samples lie.

Estimation of Path Travel Time Distribution

Now that we have described our link travel times by continuous distributions,
we can proceed to the second stage and fit a Copula Model for estimating
path travel time distribution for the total arterial. In order to assess the
scalability of the Copula Model in terms of number of links, we first estimate
the distribution for a path comprised of the first two segments, which we will
refer to as 2D Copula Model. Then, we estimate the distribution for the total
arterial, which we will refer to as 10D Copula Model. We compare the following
copulas: Gauss, Student-t, Clayton and Gumbel. For each of these copulas
we fit a corresponding Copula Model. We start with the 2D Copula Models.
Figure 3.5 shows the PDF and CDF for path travel time distribution by the
respective 2D Copula Models, convolution and empirical data. In order to
evaluate the performance of Copula Model and convolution, we compare the
distributions obtained by the respective models with the empirical one. The
goodness of fit tests can be found in Table 3.2. As both KS and CVM describe
deviations from the reference distribution, a lower value for both statistics
indicates a better fit. We can observe, that each Copula Model performs better
than the convolution. That is due to their ability to incorporate segment
correlation, while the convolution assumes independence. The 2D Clayton
Copula Model has the lowest values for both KS and CVM and, thus, is the
most accurate model. A possible reason may be its ability to capture lower
tail dependence, which we can partially observe in the scatter diagrams in
Figure 3.4.

Now we increase the number of segments. PDF and CDF for path distribu-
tion estimation by the 10D models is shown in Figure 3.6. The corresponding
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(A)

(B)

FIGURE 3.5: Path Distribution estimation by 2D Models: PDF
(A) and CDF (B).
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TABLE 3.2: Goodness of fit tests of the 2D models for path TTD
estimation.

2D Model KS CVM
Convolution 0.031 0.023
Gauss 0.015 0.004
Student-t 0.016 0.010
Clayton 0.014 0.003
Gumbel 0.024 0.008

goodness of fit tests are listed in table 3.3. Compared to the results for the 2D
models, the inaccurate estimation of the convolution as well as the superior
estimation of the Copula Models is more distinct. Again, each Copula Model
performs better than the convolution, while the Clayton copula shows the
best fit.

TABLE 3.3: Goodness of fit tests and parameters of the 10D
models for path TTD estimation.

10D Model KS CVM
Convolution 0.113 0.760
Gauss. 0.046 0.340
Student-t 0.053 0.472
Clayton 0.026 0.061
Gumbel 0.054 0.579

In order to test the scalability of the Copula Model, we iteratively increased
the number of segments from two to ten. To show the results for every number
of segments would be redundant, that is why we only show the results for
the 2D and 10D Copula Model. But what we do include here, is an overview
of the goodness of fit for every iteration. As CVM describes the deviation of
the estimation to the reference distribution over the total spectrum, while KS
only gives the highest deviation of one point, we choose to monitor CVM.
Furthermore, we only compare the convolution to the best fitting copula,
i.e. Clayton. Figure 3.7 shows CVM for each iteration. The accuracy of the
convolution decreases with the number of segments, while the accuracy of
the Clayton copula stays nearly constant.
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(A)

(B)

FIGURE 3.6: Path Distribution estimation by 10D Models: PDF
(A) and CDF (B).
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FIGURE 3.7: CVM Overview

3.2.4 Case Study: Freeway Arterial

Study Site Description

This study site is comprised of ten segments of the freeway facility A9 north of
Munich, Germany, with a total length of 1164 m. It is illustrated in Figure 3.8.
There are three through lanes with occasional on ramp lanes. The speed limit
is only valid for certain time of the day and traffic conditions. Depending
on the traffic situation the speed limit takes values of 80 km/h, 100 km/h or
120 km/h. Otherwise there is no speed limit. The recommended velocity on
German freeways in that case is 130 km/h .

Link Travel Time Distributions and Correlation

In [61] the authors suggested that freeway travel time consist of four phases.
The first phase corresponds to a free flow state, where median travel times are
low and the spreads of the distribution are small. The distribution is approxi-
mately symmetric. The second phase describes the congestion onset, where
median travel times are still low. The third phase is congested traffic, where
median travel times are high, while the distribution is wide. In these periods
the congestion can be expected in different degrees of severity, resulting in
a wide range of possible travel times. The fourth state describes congestion
dissolve, where median travel times are low, but the distribution is skewed
to the left. This resembles that in most cases congestion has dissolved but in
a decreasing number of cases still congestion occurred. Figure 3.9 and 3.10
show the distributions of travel times for each segment of the freeway arterial.
For estimation of an underlying continuous distribution, a GMM with four
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FIGURE 3.8: Schematic illustration of the freeway arterial on A9.

components was found as best fitting. The parameters of the GMM can be
found in Table 3.4. In accordance with the results of [61] the four components
can be interpreted as follows. The first GMM component reflects the free flow
phase. The second component resembles the phase of congestion onset, as
well as the congestion dissolve. The third and fourth components correspond
to states with congested traffic with different levels of congestion, respectively.

Figure 3.11 shows the scatter diagrams for each successive link pair. A clear
left tail dependence structure can be observed for every link pair with values
of Kendall’s tau ranging from 0.62 to 0.85 with a mean value of τfreeway = 0.73.
Compared to the urban arterial, where τurban = 0.58, the correlation is stronger
and its structure is more distinct. That is due to the mostly uninterrupted
traffic flow on the freeway compared to the interrupted traffic flow on the
urban arterial.

Estimation of Path Travel Time Distribution

Analogously to the case study on the urban arterial, we compare Copula
Models of the same copulas, i.e. Gauss, Student-t, Clayton and Gumbel, with
convolution and the empirical distribution. We also start by creating 2D
models for the first two segments and compare the 10D models for the total
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(A) (B)

(C) (D)

(E)

FIGURE 3.9: Freeway Segment travel time distributions: a) Seg-
ment 1 , b) Segment 2 , ..., e) Segment 5
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(A) (B)

(C) (D)

(E)

FIGURE 3.10: Freeway Segment travel time distributions: a)
Segment 6 , b) Segment 7 , ..., e) Segment 10
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(A) τ = 0.69 (B) τ = 0.76 (C) τ = 0.71

(D) τ = 0.66 (E) τ = 0.63 (F) τ = 0.77

(G) τ = 0.85 (H) τ = 0.80 (I) τ = 0.72

FIGURE 3.11: Scatter Diagrams for freeway Segment travel time
distributions: a) Segment 1 and Segment 2 , b) Segment 2 and

Segment 3 , ..., i) Segment 9 and Segment 10.
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TABLE 3.4: GMM Parameters for highway segment travel time
distribution estimation.

Seg. Mean (µ) Sigma (σ) Weight (π)
1 (9.70, 17.06, 23.06, 32.16) (0.96, 3.24, 5.28, 8.46) (0.12, 0.37, 0.36, 0.11)
2 (2.79, 5.03, 7.00, 10.16) (0.27, 1.01, 1.60, 2.84) (0.12, 0.32, 0.41, 0.11)
3 (4.72, 9.22, 12.32, 17.70) (0.47, 1.97, 2.80, 4.80) (0.13, 0.35, 0.40, 0.08)
4 (3.94, 8.36, 11.25, 17,40) (0.42, 1.71, 2.77, 5.30) (0.14, 0.56, 0.24, 0.04)
5 (7.88, 15.23, 16.96, 24.10) (0.86, 1.65, 3.71, 6.27) (0.13, 0.19, 0.56, 0.09)
6 (6.21, 11.13, 12.51, 16.92) (0.72, 1.44, 2.49,4.40) (0.12, 0.32, 0.48, 0.05)
7 (1.86, 3.30, 3.38, 4.95) (0.23, 0.50, 0.71, 1.23) (0.12, 0.35, 0.46, 0.04)
8 (1.98, 3.81, 4.65, 7.15) (0.24, 0.71, 1.04, 2.09) (0.11, 0.69, 0.17, 0.01)
9 (2.07, 4.09, 5.12, 8.05) (0.25, 0.77, 1.20, 2.40) (0.11, 0.71, 0.15, 0.01)
10 (6.51, 13.25, 13.62, 12.31) (0.78, 3.06, 1.48, 0.94) (0.10, 0.18, 0.11, 0.57)

path afterwards. The PDF and CDF for the 2D models and 10D models are
shown in Figure 3.12 and Figure 3.13, respectively. The goodness of fit tests
for the 2D models can be found in Table 3.5 and the tests for the 10D models
are listed in Table 3.6. We can observe analogous results to the ones in the
urban case. For both 2D and 10D models every Copula Model performs better
than the convolution, while the Clayton copula shows the best fit. That is,
because we have a clear left tail dependence structure for the neighbouring
segments, and the Clayton copula is able to capture that specific structure. In
Figure 3.14 we compare CVM of the convolution with CVM of the Clayton
copula for path travel time estimation reaching from two segments until ten
segments. Analogously to the urban case study, we can observe a decreasing
accuracy of the convolution with the number of segments compared to the
Copula Model.

TABLE 3.5: Goodness of fit tests of the 2D models for highway
path TTD estimation.

2D Model KS CVM
Convolution 0.089 0.056
Gauss 0.023 0.004
Student-t 0.018 0.003
Clayton 0.011 0.001
Gumbel 0.033 0.007
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(A)

(B)

FIGURE 3.12: Path Distribution estimation by 2D Models: PDF
(A) and CDF (B).
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(A)

(B)

FIGURE 3.13: Path Distribution estimation by 2D Models: PDF
(A) and CDF (B).
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TABLE 3.6: Goodness of fit tests of the 10D models for highway
path TTD estimation.

10D Model KS CVM
Convolution 0.159 1.244
Gauss 0.073 0.386
Student-t 0.060 0.294
Clayton 0.040 0.137
Gumbel 0.060 0.294

FIGURE 3.14: CVM Highway Overview

3.3 DDC Model

We have showed that copulas provide the ability for modelling path travel
time distribution from link distributions as they are able to incorporate the
dependence structure between successive links. Now, we can proceed to the
next step towards developing a stochastic router. For that purpose we have
to ask the following question. Can we use the Copula Model in real world
application? The answer is no, simply because its architecture is too complex.
Marginal distribution have to be estimated, a multivariate distribution has to
be generated and samples need to be generated from that distribution. Due to
these procedure stages, the Copula Model may be limited in its applicability
due to long computational time. Thus, we need to find another way to use
copulas for incorporating correlation into the modelling of travel time distri-
bution.
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This work proposes a novel approach for modelling travel time distribu-
tion by using copula-based dependent discrete convolution (DDC). In [70] DDC
was previously introduced for power system uncertainty analysis. The results
indicated that DDC improves the calculation accuracy compared with tradi-
tional convolution by successfully capturing the dependency of wind power.
The theory of DDC was already elucidated in Chapter 1. Compared to the
Copula Model this approach allows for a simplified and fast computation of
the travel time distribution as shown in Figure 3.15.

FIGURE 3.15: Comparison of the Copula Model (a) and the DDC
(b) for estimating path travel time distribution from empirical

segment travel times.

3.3.1 Methodology

DDC requires a distinct factor describing correlation between two random
variables for each iteration. Therefore, we cannot apply DDC for more than
two variables at the same time as we can when using convolution. For esti-
mating path travel time distribution, where we need to aggregate multiple
link distributions, we propose the DDC Model. Here, we apply the DDC
pairwise in an upside down pyramid scheme on all link distribution until
path distribution is reached as illustrated in Figure 3.16. For comparison with
the Copula Model we will apply the DDC Model on the same study sites
presented above, which consist of ten links, respectively. In Iteration 1 we
apply DDC on each link pair and obtain travel time distributions for "1-2",
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FIGURE 3.16: Illustration of the DDC Model for modelling path
travel time distribution for ten link distributions. The path
distribution consisting of Link 1 and Link 2 is denoted as "1-2",

and so on.

..., "9-10". In Iteration 2 the number of DDC inputs is not an integer multiple
of two. For that reason, we introduce an intermediate step within Iteration
2. We first apply DDC on the first two pairs to obtain "1-4" and "5-8". In the
intermediate step we then apply DDC on "5-8" and "9-10". Eventually, we
aggregate "1-4" and "5-10" in Iteration 3 to obtain the total path distribution
"1-10".

3.3.2 Comparison to Copula Model

We estimate path travel time distribution for the same two study sites as
above, i.e. urban arterial and freeway arterial, using DDC Model and Copula
Model in order to compare both methods. As the Clayton copula showed
the best results in the previous case studies, we will use it in the DDC. We
compare it with the Clayton Copula Model. We will directly show the path
distribution for the total arterial of ten segments.

The urban arterial as well as the freeway arterial and their corresponding
travel time data have already been described in Subsection 3.2.3 and Subsec-
tion 3.2.4, respectively. In order to determine the remaining correlation needed
for the DDC Model, we compute Kendall’s tau for the respective link pairs.
For Iteration 1 we need the to determine the correlation between neighbouring
links, which we have already shown in the previous section. Next, we add the
empirical travel times for the individual links in order to obtain travel times
for "1-2", ..., "9-10". We proceed analogously for obtaining historical travel
times for "1-4", "5-8", and "5-10". Then we can calculate the respective values
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for Kendall’s tau, which we need in each Iteration step. These are shown for
both study sites in Table 3.7.

TABLE 3.7: Values for Kendall’s tau for each Iteration step of the
DDC Model for urban and freeway arterial.

Urban Freeway
Link Pair τ(·, ·) τ(·, ·)
Link 1, Link 2 0.32 0.69
Link 3, Link 4 0.70 0.72
Link 5, Link 6 0.42 0.63
Link 7, Link 8 0.64 0.85
Link 9, Link 10 0.75 0.72
1-2, 3-4 0.21 0.57
5-6, 7-8 0.30 0.59
5-8, 9-10 0.23 0.52
1-4, 5-10 0.24 0.40

Now, we can apply the DDC Model for estimating path travel time distribu-
tion. Figure 3.17 and Figure 3.18 show the PDFs and CDFs for path travel
time distribution estimation obtained by each model for the urban arterial
and freeway arterial, respectively. The corresponding goodness of fit tests are
listed in Table 3.8. Goodness of fit tests show that the Copula Model estimates
path travel time distribution slightly more accurately than the DDC, while the
path travel time distribution estimate of the DDC is still more accurate than
convolution by far. However, when comparing computing time, the power
of the DDC Model is unveiled. Figure 3.19 shows the computing time per
number of segments. The computing time is illustrated for the iterative aggre-
gation of the total path comprised of ten segments on a machine with a 2.8
GHz core and 16GB memory. Furthermore, a fictional path is computed using
both DDC and Copula Model by repeatedly aggregating the ten segments
in order to estimate the scaling of computing time. For application in route
guidance systems, a path consisting of 100 segments is realistic. While the
DDC takes approximately 3 seconds, which is totally feasible for applications,
the Copula Model takes approximately 20 seconds, which is not eligible for
real world applications.
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(A)

(B)

FIGURE 3.17: Path Distribution estimation for each model for
the urban arterial: PDF (A) and CDF (B).
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(A)

(B)

FIGURE 3.18: Path Distribution estimation for each model for
the freeway arterial: PDF (A) and CDF (B).
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TABLE 3.8: Goodness of fit tests of the for Path travel time
distribution estimated by the respective models for the urban

arterial.

Urban Freeway
Model KS CVM KS CVM
DDC Model 0.054 0.196 0.115 0.336
Copula Model 0.026 0.061 0.040 0.137
Convolution 0.113 0.760 0.159 1.244
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FIGURE 3.19: Computing time for the DDC and Copula Model
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Chapter 4

Stochastic Routing

In this chapter we will use the methodology we have achieved so far and
develop it further to a stochastic router. We have briefly mentioned the key
idea of stochastic routing in the Introduction. Here, we go further into detail
and give an overview of related work. Then, we elucidate the methodology
behind our concept. Eventually, a case study is presented for evaluation.

4.1 Related Work

Finding a solution to the SSP is of high interest for both industry and academy
as it is directly relevant for people’s daily life ([11]). While in the traditional
shortest path problem there are static discrete link costs, the SSP problem
deals with dynamic probabilistic link costs. In shortest path problem, the
definition optimality is straightforward as the optimal path is the one with the
minimal travel time. In SSP problem, however, there is no unique definition
of optimality resulting from uncertain user demands and traffic conditions
([53]). Hence, several optimality definitions can be found in the literature.
One common approach is to set the least expected travel time as a criteria
([26], [42], [62], [66]). Optimal paths are then obtained by setting each link cost
to its expected value and solving the corresponding deterministic problem.
Another possibility is to take a minimal weighted combination of standard
deviation and expected value for the travel time ([44], [45]). However, both of
these approaches do not provide an opportunity to include user preferences
into their optimality definition, e.g probability of arriving on time with re-
spect to a deadline. For that purpose, it is necessary to work with probability
distributions describing link travel times instead of deriving discrete values.

The optimal path is then defined as the path that maximizes the probability
of arriving on time. In [24], instead of giving an a priori solution to the SSP
problem, the aim is to identify which node should be visited next in order



58 Chapter 4. Stochastic Routing

to maximize the probability of on time arrival. For the formulation of the
mathematical problem Bellman’s principle of optimality is applied. The Pi-
card method of successive approximations is used to estimate the unknown
functions describing the maximum probability of arriving on time. As convo-
lution is used in the successive approximation procedure, link travel times
are treated as independent. In [25] a similar procedure is applied with the dif-
ference that for each link two possible states are assumed, i.e. one congested
state and one state without congestion. The correlation between the states of
adjacent nodes are considered by introducing two conditional probabilities.
The authors stated that they proposed only two possible levels of link states
for convenience, but this assumption is rather unrealistic as links may show
different levels of congestion. In [45] an algorithm based on quasi-convex
maximization is proposed to find the path with maximum probability of not
exceeding a certain cost. However, this approach is limited by the assump-
tion that link travel times follow a normal distribution and are independent.
In [36] a stochastic motion planning algorithm and its application to traffic
navigation is presented. The algorithm can determine a path for a origin –
destination pair that maximizes the probability of arriving on time. Yet, the
limitations of this procedure are also the assumption of a normal link travel
time distribution and independence between link travel times.

In order to tackle these shortcomings of previous work the authors in [12]
propose a a formulation of the SSP problem as a cardinality minimization
problem. This approach is directly based on travel time samples of each
road link, which are obtained by probe vehicles. An l1-norm minimization
technique is applied to solve the cardinality problem. It is then reformulated
as linear programming problem, which can be solved using state-of-the-art
solvers. The authors claim that their approach solves the limitation of previous
work. First, they claim that their method does not need any assumption on
travel time distribution as it can work directly with historical travel time data.
However, their problem formulation creates a different limitation as there has
to be the same amount of travel time samples for each road link. In reality,
this may not be the case. Hence, there are two possibilities for applying their
method. Either, one compromises on a number of samples which is given by
the link with the lowest amount of data, loosing valuable data for other links,
or, one uses methods to generate samples for the links with a low amount
of data, where one needs to assume a underlying travel time distribution
again. None of these choices is optimal. Secondly, the authors claim that their
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approach does not rely on the assumption that links are independent of each
other and can be applied to correlated links as well. However, the authors do
not perform any correlation analysis on real data. For the evaluation they only
use distributions for each link with random correlations. This may not reflect
the true dependence structure of link travel times. Furthermore, the method
is very expensive as it requires the enumeration of every possible path for one
origin – destination pair.

In this thesis we propose a method for solving the SSP problem in terms
of stochastic vehicle routing, which tackles the shortcomings of related state-
of-the-art work. Firstly, our method does not require the assumption of an
underlying distribution for link travel times. It can handle historical data
directly without the strong restriction of needing the same amount of samples
per link. Secondly, our method incorporates the true dependence structure
between link travel times based on correlation analysis of real data.

4.2 Preliminaries

We first give a brief overview of the notation which is used in the upcoming
methodology. We describe the road network ad a directed graph G(N, L, P),
where N is the set of nodes N(|N| = n), L(|L| = m) is the set of links and P
is the probability distribution of link travel times. A path connecting origin
o ∈ N and destination node d ∈ N is denoted as kod and its corresponding
travel time is referred to as πod

k . All paths connecting o and d form a set Kod.

For defining optimality with respect to stochastic routing we follow [43].
The subsequent definitions and propositions are based thereon. The optimal
path with respect to a time budget b is defined as follows.

Definition 4.1. A path kod is b-reliable in Kod if and only if uod
k (b) ≥ uod

l (b) for
all l, where uod

k (b) = P(πod
k ≤ b) denotes the CDF of πod

k .

As the time budget b depends on the length of the path, it is advantageous
to define optimality with respect to a given on-time reliability α instead.

Definition 4.2. A path kod is α-shortest in Kod if and only if vod
k (α) ≤ vod

l (α) for
all l, where vod

k = (uod
k )−1 is the inverse CDF.

Definition 4.2 enables travelers to budget travel time in order to obtain
a desirable reliability of on-time arrival and, thus, better describes their risk
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averse routing behavior. Both definitions for the optimal path are, however,
equivalent.

Proposition 4.1. A path kod is α-shortest if and only if it is b-reliable for b = vod
k (α).

Proof. α-shortest implies that bk ≡ vod
k (α) ≤ bl ≡ vod

l (α) for all l. This implies
that uod

k (bk) ≥ uod
l (bk) ≥ uod

l (bl) for all l. The last inequality holds as uod
l is

monotone and the first inequality implies b-reliability.

4.3 Methodology

We have introduced the DDC Model in the previous chapter. It enables
us to estimate travel time distribution for a path by using historical travel
times on link level. For applying the DDC Model one does not need to
make assumptions on the travel time distributions, instead one can work
directly with historical travel times. In addition, the DDC Model incorporates
correlation of travel times between successive links. These are precisely the
two shortcomings of the state-of-the-art SSP problem we want to tackle for
developing a stochastic router. We propose a stochastic router that gives an a
priori solution. For that reason we calculate alternate routes for the specified
origin – destination pair. Next, we will generalize the DDC Model and apply
it to each alternate route in order to determine the α-shortest path.

4.3.1 Calculating Alternate Routes

The requirements for the alternate routes are that they need to be geometri-
cally different but also feasible regarding travel time. Using Yen’s algorithm
we can obtain a set of k shortest paths. Here, we work with deterministic
travel times as in the traditional SPP in order to obtain the paths, i.e. we take
the expectation value of the travel time of each link as its cost. However, the
paths obtained by Yen’s algorithm are very similar due to the procedure of
the algorithm itself. In order to obtain a set of alternate routes that fulfil our
requirements, we propose the following approach: We calculate k shortest
paths using Yen’s algorithm for a large k, which depends on the distance
between origin and destination. Then, we filter these paths by introducing a
similarity score γ ∈ [0, 1] which gives the portion of same links between two
paths. The procedure for obtaining alternate routes is described in Algorithm
3 with time complexity O(N).
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Algorithm 3: AlternateRoutes (o, d, k, γ)

Kod ← Yen(o, d, k) // Compute k shortest paths between o and d using
Yen’s algorithm ;

A[0]← kod
1 // A will be the set of alternate routes ;

S← L1 // Save all n links L1 = {l11, ..., l1n}, of the shortest path kod
1

where S will be the set of used links ;
for i ∈ range(2, k) do

Compare all m links Li = {li1, ..., lim} of path kod
i with the links

stored in S and calculate portion of same links x(Li, S) ;
if x(Li, S) ≤ γ then

Append kod
i to A ;

AppendLi to S ;
end

end
return A

As the parameters k and γ are highly dependent on the specific origin – desti-
nation pair, it is not possible to derive a generalized expression for them. They
need to be estimated for each request. For research purposes this approach
works just fine. However, for real world application it is neither realistic to
expect from the user to define these parameters nor to conduct an estimation
procedure for each request.

There are already providers such as Camvit ([1]) and HERE ([2]) which offer
a service for computing alternate routes. As this is their business model, the
underlying algorithms are not available publicly. Because these alternate
routes already meet our requirements without filtering we will use the API
provided by HERE for that purpose, such that

A← HEREAPI(o, d, k).

We can either specify a k to obtain k alternate routes or request all alternate
routes that are possible.

4.3.2 Generalized DDC Model

We have introduced the DDC Model for estimating path travel time distribu-
tion for ten links in the previous chapter. Now, we need to generalize the DDC
Model in order to work with an arbitrary number of links, which is illustrated
in Figure 4.1. For that purpose, we need to generalize the values for Kendall’s
tau for each iteration, as we want to avoid performing a correlation analysis in
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FIGURE 4.1: DDC Model for an arbitrary number of links.

real world application. Furthermore, the data we have for a though movement
of an arterial is limited due to privacy reasons as we have mentioned earlier.
It is not possible to analyze correlation for iterations higher than Iteration
3 as we only have travel time data for a path comprised of ten links. Thus,
we propose an extrapolation method for estimating the correlation for higher
iterations.

The average value for Kendall’s tau between two successive links is given by

τpair =
1
k

k

∑
i=1,j=i+1

τ(xi, xj)

where k = n − 1, n is the number of links, and xi = {xi1, ..., xil}T are the l
empirical travel times for link i. In Figure 4.2a we show the correlation matrix
for the ten link pairs and we have τpair,1 = 0.59 for Iteration 1. Next, we
add the empirical travel times for the individual links order to obtain travel
times for "1-2", ..., "9-10". The correlation between "1-2", ..., "9-10" are shown
in Figure 4.2b. The corresponding τpair,2 = 0.36 can then be used for Iteration
2. We will use the same value for the intermediate step within Iteration 2
for the sake of simplicity. Analogously we obtain τpair,3 = 0.24 for Iteration
3 as shown in Figure 4.2c. We can then extrapolate a function based on our
data points. An exponential function showed the best fit, which is shown in
Figure 4.3. This correlation function provides a value of Kendall’s tau for each
Iteration within the DDC Model, which enables us to use the DDC Model for
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an arbitrary number of links.

As our goal is to develop a stochastic router for real world application, we aim
for a best possible efficiency of the model. From Figure 4.3 we can observe
that the correlation decreases with the number of iterations and becomes
marginal after Iteration 5 as τ(Iteration 5) < 0.15. For that reason we propose
an extension of the DDC Model, where we use traditional convolution starting
from Iteration 5 as the correlation at that point becomes neglectable. We can
calculate discrete convolution efficiently using Fast Fourier Transformation
(FFT) and denote this extension of the DDC Model as DDC-FFT Model, which
is illustrated in Figure 4.4.

Pseudo-code for the generalized DDC Model can be found in Algorithm 4
with the following notation:

• S = {X1, ..., Xn}: Set of travel times Xi for link i for path consisting of n
links.

• (
τ∗): Operator of the DDC with a specified τ.

• |S|: Number of elements in S.

• a mod b = 0: Denotes that a is an integer multiple of b.

4.3.3 Stochastic Router Formulation

Now we can formulate our stochastic router. Given G(N, L, P), s, d ∈ G,
k ∈ N+ and α ∈ [0, 1] we compute the α-shortest path from s to d. First, we
calculate the alternate routes. Then, we apply the DDC Model on each route.
Finally, we select the optimal path. The procedure of the stochastic router is
summarized in Algorithm 6.

4.4 Case Study

We have already evaluated the DDC Model in the previous chapter. Hence,
the purpose of this case study is the illustration of applying the DDC Model
in a real world scenario. We have chosen an origin - destination pair in the
inner city of Munich, Germany, which is shown in Figure 4.5. Alternate routes
have been calculated and for each route the DDC Model was applied. Yen’s
algorithm was applied for k = 20 paths and a similarity score of γ = 0.5 was
chosen as it showed a good fit for obtaining geometrically different alternate
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Algorithm 4: DDCModel (S)
c← 0 // Iteration c ;
while |S| > 1 do

c← c + 1 ;
τ ← fτ(c) ;
Snew ← ∅ ;
if |S| mod 2 = 0 then

for (A, B) ∈ S do
Z ← A

τ∗ B ;
Append Z to Snew ;

end
else

for (A, B) ∈ S\{X|S|−2, X|S|−1, X|S|} do
Z ← A

τ∗ B ;
Append Z to Snew ;

end
Z ← X|S|−2

τ∗ X|S|−1 ;

Z ← Z
τ∗ X|S| ;

Append Z to Snew ;
end
S← Snew

end
Xpath ← S[1] // Xpath is the path travel time ;
return Xpath

Algorithm 5: DDC-FFTModel (S)
c← 0 ;
for c ∈ [1, 4] do

S← DDCModel(S) ;
end
Xpath = F−1(∏m

i=1F{S[i]}) ;
return Xpath

Algorithm 6: StochasticRouter (G, s, d, k, α)

B← ∅ ;
A← HEREAPI(s, d, k) ;
for Ai ∈ {A0, ..., An} do

XAi ← DDC-FFTModel(SAi) ;
bi ← vi(α) ;
Append bi to B ;

end
boptimal = min{B} ;
return Optimal path
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routes. Figure 4.6 shows the PDFs for each route and in Table 4.1 the travel
times for different values of α are listed.

TABLE 4.1: Results for Case Study for different values of α.

α Path 1 Path 2 Path 3
0.5 15 min 18min 20min
0.7 16 min 20 min 22 min
0.9 18 min 22 min 25 min
1 32 min 38 min 41 min

In order to demonstrate the use case for finding the b-reliable path, which
is the path that maximizes the probability of arriving on time, we set our
deadline to b = 20 min. Therefore, Path 1 is the path that maximizes the
probability of arriving within b.

TABLE 4.2: Probability of arriving within b = 15min for each
path of the case study.

Path 1 Path 2 Path 3
Probability of arriving on time 0.96 0.65 0.40
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FIGURE 4.3: Correlation function for the DDC Model.

FIGURE 4.4: Schematic illustration of the DDC-FFT Model.
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FIGURE 4.5: Case Study for DDC-Routing in the inner city of
Munich, Germany.

FIGURE 4.6: Case Study for DDC-Routing in the inner city of
Munich, Germany.



69

Chapter 5

Routing Optimized for
Autonomous Driving

So far, we have developed a methodology for assessing travel time reliability
and used this as a basis to design a stochastic router. We will now extend the
concept of routing to optimize it for AD. The motivation for this procedure
has already been elucidated in the Introduction. Related work on routing has
been discussed in the previous chapter. To the best of our knowledge, there
is no approach in state-of-the-art literature that discusses a the problem of
finding an optimal route with respect to AD.

This thesis provides two solution approaches for the just mentioned problem.
The initial situation is the same as for the stochastic router. We calculate a
set of alternate routes for one origin – destination pair. From the set of alter-
nate routes our goal is to find the optimal route with respect to AD. The first
approach is purely subjective, i.e. based on our personal preferences. In the
second one, we use tools provided by the area of multiobjective optimiza-
tion. There, we aim to avoid subjectivity for the most part. We introduce the
methodology for both solution approaches. Then, we conduct a case study
applying both models for real world scenarios. The results are compared and
interpreted. In the end of this chapter, we propose an integrated approach of
a stochastic router optimized for AD. As both the model of stochastic routing
and the model of optimized routing for AD will be evaluated separately by
then, an additional evaluation for their combination is redundant.
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5.1 Methodology

5.1.1 A Subjective Approach

In order to find one optimal route with respect to AD from a set of alternate
routes, we need to clarify the relevant criteria for the selection process as a
prior. The first criteria is straightforward, it is the estimated travel time. The
second criteria is the fraction of estimated travel time that cannot be driven
autonomously compared to the estimated total travel time. The third and
last criteria is how often the driver is requested by the vehicle to take over
control when in autonomous mode. This happens before reaching a road
section where road clearance is deactivated. Based on these three criteria we
need to rate the alternate routes to find the best one. For that purpose, our
idea is to introduce a quality for each path, which enables such a rating. In the
following, we describe how we can obtain a value for this quality.

Let us first clarify the notation:

• x = {1, 2, ..., l}T: Vector containing all l ∈ R+
n alternate paths, which

are represented as an integer ordered by the outcome of the alternate
routing application.

• ttotal(x): Estimated total travel time for each alternate path.

• tmanual(x): Estimated travel time that needs to be driven manually for
each alternate path, or in other words, estimated travel time that cannot
be driven autonomously.

• ntor(x): Number of take over requests for each alternate path., i.e. re-
quests from the vehicle to the driver to take over control of the vehicle
in autonomous mode.

For each criteria ttotal, tmanual, and ntor, we introduce a subquality q1, q2, and
q3, respectively. Each subquality is represented as a function that is designed
to map the value of the respective criteria to a value of satisfaction of the user.
The functions were obtained in an iterative process by describing our own
preferences.

Derivation of q1

When selecting an alternate route, how much delay compared to the shortest
route would we accept and still be satisfied? We denote the delay as d, and
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define it as d(xi) := ttotal(xi)/tshortest, where xi, i ∈ {1, 2, ..., n} is the route
currently under consideration and tshortest = min{ttotal(x)} i.e. travel time
of the shortest route. Then, for the shortest route it holds d = 0 and we
set q1(d = 0) = 1, i.e. the value that represents maximum satisfaction.
We assume a linear decrease in satisfaction with increasing delay and set
q1(d = 0.25 · tshortest) = 0 and q1(d > 0.25 · tshortest) < 0, leading to

q1(d) = 1− 4 · d,

i.e. with a delay up to 25 % compared to the shortest route we are still satisfied,
afterwards we penalize.

Derivation of q2

The more travel time can be driven autonomously, the more satisfied we are.
Therefore, we simply define

q2(ttotal, tmanual) =
ttotal − tmanual

ttotal
.

Derivation of q3

Analogously to the derivation of q1, we assume a linear decrease in satisfaction
with an increasing number of take over requests. We set q3(ntor/hr = 0) = 1
for maximum satisfaction, where ntor/hr denotes the the number of take over
requests per hour. We set q3(ntor/hr = 5) = 0 and obtain

q3(ntor/hr) = 1− 0.2 · ntor/hr.

Now that we have derived each subquality we define the quality of each
alternate path xi, denoted as Q, as a weighted sum

Q(xi) = ω1q1(xi) + ω2q2(xi) + ω3q3(xi),

where ωωω = {ω1, ω2, ω3}, commonly chosen so that ∑3
j=1 ωj = 1, are the re-

spective weights. We set ωωω = {1
3 , 1

3 , 1
3} as we want to include each criteria

with equal impact.

Clearly, this approach is highly subjective. We have made several assumptions
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and have defined arbitrary parameters according to our own preferences. In
order to further evaluate and develop this model, we would need to conduct
surveys with a larger sample size, which is not within the scope of this thesis.
Nevertheless, we included this approach in order to compare it with the for-
mulation as a multiobjective optimization problem, where we tried to avoid
subjectivity at all.

5.1.2 Multiobjective Optimization Problem Formulation

For the second solution approach, we also start by calculating alternate routes
dor one origin – destination pair. Our criteria for finding the optimal route
from the set of alternate routes stay the same, i.e. ttotal, tmanual, and ntor.
Optimization problems that involve multiple conflicting objectives are referred
to as multiobjective optimization problems. As this is the case for our problem,
we will now derive a formulation in the sense of multiobjective optimization
based on [10], which takes the form

minimize { f1(x), f2(x), ..., fk(x)}
subject to x ∈ S, (5.1)

with objective functions fi : Rn → R and decision vectors x = (x1, x2, ..., xn)T,
which belong to the nonempty feasible region S ⊂ Rn. Objective vectors are
images of decision vectors and are comprised of objective values z = f(x) =
( f1(x), f2(x), ..., fk(x))T. The image of the feasible region in the objective space
is referred to as objective region Z = f(S).

Objective vectors are considered as optimal if none of their components can
be improved without diminution of at least one of the other components. A
decision vector is referred to as Pareto optimal if there is no other x ∈ S such
that fi(x) ≤ fi(x′) for all i = 1, ..., k and f j(x) ≤ f j(x′) for at least one index
j. The set of Pareto optimal decision vectors is denoted as P(S). Thus, an
objective vector is Pareto optimal if its decision vector is Pareto optimal. The
set of Pareto optimal objective vectors is denoted as P(Z). The set of Pareto
optimal solutions is a subset of the set of weakly Pareto optimal solutions. A
decision vector (x′) is weakly Pareto optimal if there is no other x ∈ S such
that fi(x) ≤ fi(x′) for all i = 1, ..., k. Analogously two sets are denoted corre-
sponding to decision and objective spaces by WP(S) and WP(Z), respectively.
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In order to obtain one optimal solution from the set of Pareto optimal so-
lutions, there are several methods. The key difference considering these
methods is, if there is a Decision Maker (DM) bringing in subjective prefer-
ences into the solution process, or not. These methods are divided into two
classes. There are interactive methods, where an iterative solution algorithm is
generated and applied repeatedly. After each iteration, information is given to
the DM, who can then specify his preferences. It is the most expensive class of
methods and does not fit our purpose to find an optimal route for autonomous
vehicles. We need more straightforward approaches, which are provided by
the class of non-interactive methods. Depending on the role of the DM the
non-interactive methods are divided into three categories. If there is no DM
involved in the solution process, we refer to this case as no-preference method.
Thus, the goal is to find a compromise solution without any preferences. On
example for a no-preference method is the method of global criterion [69].
The idea is to minimize the distance between the feasible region and an ideal
objective vector zideal. The problem is formulated and solved as

minimize || fi(x)− zideal
i ||

subject to x ∈ S,

where ||.|| can be any Lp norm. In [41] it is shown that the choice of the norm
affects the obtained solution. Furthermore, the objective functions need to be
scaled to a uniform dimensionless space. Finding such a standardization for
our problem is not straighforward. In [58] is it mentioned, that the selected
standardization affects the ranking. We would rather avoid such a procedure
and apply a solution method without needing to manipulate our objective
functions.

In the remaining cases, the DM is included in the decision process. In a
priori methods, the DM sets preferences beforehand and the goal is to find
one Pareto optimal solution that satisfies them as well as possible. Here, the
difficulty is that the DM may not be aware of the limitations of the problem
and, therefore, his expectations may be too optimistic or pessimistic. One
example is the value function method. If the DM knows an explicit mathematical
formulation for the value function and if that function is able to incorporate
all of the DM’s preferences, the problem is solved by

maximize v(f(x))

subject to x ∈ S.
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However, this is not the case for our problem.

There is one category of non-interactive methods left, which is the class a
posteriori methods. Here, the set of Pareto optimal solution is obtained at first,
and the DM then selects the most preferred one. The DM obtains an overview
of varying solutions, and articulates his preference information afterwards. A
posteriori methods show the best fit to our problem. Now, we have to find
one method in this class, where we do not have to manipulate our objective
functions. The Weighted Product Model (WPM), see [58, 59], provides just
this. Before we give its definition, we first formulate our problem.

We define our optimization model as follows. The decision vector x =

{1, 2, ..., l}T remains the same as in the subjective solution approach. The
objective functions are formulated as

f1(x) = ttotal(x)

f2(x) = tmanual(x)

f3(x) = ntor(x).

Following Eq. (5.1) our optimization problem takes the form

minimize { f1(x), f2(x), f3(x)}
subject to x ∈ S.

First, we obtain the set of Pareto optimal routes from the set of alternate routes.
This process is straightforward using the definition of Pareto optimality. Then,
we need to select one optimal route from the set of Pareto optimal routes.
This is where the WPM comes into play. It enables us to compare two Pareto
optimal routes with each other and is defined as

R(xk/xl) =
3

∏
j=1

( f j(xk)/ f j(xl))
ωj ,

where ωi is the weight for the i-the criteria with ∑3
j=1 ωj = 1. We set ωωω =

{ω1, ω2, ω3} = {1
3 , 1

3 , 1
3} for the same reason as in the previous section. If

R(xk/xl) < 1, then xl is better than xk. Conversely, if R(xk/xl) > 1, then xk is
better than xl . For a manageable amount of Pareto optimal alternatives (which
is the case for our alternative routing as we will see when conducting case
studies) we can simply compare all of the alternatives and obtain the optimal
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one. Note, that the WPM does not require any form of standardization. We
can simply plug in the values of our objective functions, without needing to
worry about units.

5.2 Case Studies

For evaluation, we apply both proposed methodologies to three origin - desti-
nation pairs in Germany, namely Stuttgart - Cologne, Munich - Frankfurt, and
Frankfurt - Dresden. For obtaining alternate routes we first used Algorithm
3, that we developed and applied in the previous chapter. However, this
approach was not feasible as the distance between two cities is very large
compared to the distance between origin and destination in an urban scenario.
Even by setting k = 100 there was no obvious second alternate route available
yet. Therefore, we used an already existing alternative with HERE ([2]) which
provides alternate routes and their corresponding travel time information.

For the sake of simplicity, we assume activated road clearance for all freeway
facilities, also referred to as road sections of functional class 1. In order to
represent the dynamics of the features affecting road clearance, we include
incidents restricting road clearance, motivated by actual traffic information
data. Those incidents can be any of which cause a withdrawal of road clear-
ance activation. Thus, they are not specified, and referred to as restrictions in
the following. For each case study, we compare the results of three scenarios
with different traffic situations.

5.2.1 Munich – Frankfurt

Our first case study is to find an optimal route for AD from Munich to Frank-
furt. Figure 5.1 shows the alternate routes available for this origin – destination
pair, and the relevant information for our criteria can be found in Table 5.1.
The results obtained by the quality functions are shown in Table 5.2 and the
results obtained by the multiobjective optimization are illustrated in Table 5.3.
We can observe that for every scenario both approaches yield the same results.
In Scenario I Path 1 is optimal, in Scenario II Path 2 is optimal, and in Scenario
III the optimal path is Path 3.
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(A) Scenario I (B) Scenario II

(C) Scenario III

FIGURE 5.1: Munich – Frankfurt: Three scenarios with different
restrictions for activation of road clearance. The warning triangle

symbolizes the restriction on the respective path.



5.2. Case Studies 77

Path Total Time Manual Driving Time TORs

Scenario I 1 3h 38min 0h 26 min 1
2 3h 34min 0h 39min 2
3 4h 17min 0h 34min 2
4 4h 17min 0h 38min 1

Scenario II 1 3h 38min 0h 56 min 2
2 3h 34min 0h 39min 2
3 4h 17min 0h 34min 2
4 4h 17min 1h 08min 2

Scenario III 1 3h 38min 1h 44min 5
2 3h 34min 1h 27min 4
3 4h 17min 0h 34min 2
4 4h 17min 1h 35 min 3

TABLE 5.1: Munich – Frankfurt: Relevant information on each
path shown in Figure 5.1.

Scenario I Scenario II Scenario III
Path Quality Path Quality Path Quality
1 0.85 1 0.72 1 0.40
2 0.77 2 0.77 2 0.53
3 0.56 3 0.56 3 0.56
4 0.64 4 0.52 4 0.40

TABLE 5.2: Munich – Frankfurt: Results qualtiy functions.

5.2.2 Stuttgart – Cologne

The second case study is to find an optimal route for AD from Stuttgart to
Cologne. Figure 5.2 shows the alternate routes and the relevant information
for our criteria can be found in Table 5.4. The results obtained by the quality
functions are shown in Table 5.5 and the results obtained by the multiobjective
optimization are illustrated in Table 5.6. For every scenario both approaches
yield the same results. In Scenario I Path 4 is optimal, in Scenario II Path 1 is
optimal, and in Scenario III the optimal path is Path 3.

5.2.3 Frankfurt – Dresden

Here, we take Stuttgart and Cologne as our origin – destination pair. Figure
5.3 shows the alternate routes and the relevant information for our criteria can
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Scenario I Scenario II Scenario III
Pareto WPM Pareto WPM Pareto WPM
1, 2 R1,2 = 0.70 2, 3 R2,3 = 0.98 2, 3, 4 R2,3 = 1.60

R2,4 = 1.01
R3,4 = 0.63

TABLE 5.3: Munich – Frankfurt: Results multiobjective optimiza-
tion WPM. We denoted Rj,k := R(xj/xk).

(A) Scenario I (B) Scenario II

(C) Scenario III

FIGURE 5.2: Munich – Frankfurt: Three scenarios with different
restrictions for activation of road clearance. The warning triangle

symbolizes the restriction on the respective path.
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Path Total Time Manual Driving Time TORs

Scenario I 1 4h 19min 0h 36min 1
2 4h 42min 0h 41min 1
3 4h 08min 0h 38min 1
4 4h 00min 0h 38min 1

Scenario II 1 4h 19min 0h 36min 1
2 4h 42min 1h 18min 2
3 4h 08min 0h 54min 2
4 4h 00min 1h 15min 2

Scenario III 1 4h 19min 0h 36min 1
2 4h 42min 0h 41min 1
3 4h 08min 0h 38min 1
4 4h 00min 0h 56min 2

TABLE 5.4: Stuttgart – Cologne: Relevant information on each
path shown in Figure 5.1.

Scenario I Scenario II Scenario III
Path Quality Path Quality Path Quality
1 0.77 1 0.77 1 0.77
2 0.67 2 0.54 2 0.62
3 0.82 3 0.71 3 0.82
4 0.86 4 0.73 4 0.76

TABLE 5.5: Stuttgart – Cologne: Results quality functions.

be found in Table 5.7. The results obtained by the quality functions are shown
in Table 5.8 and the results obtained by the multiobjective optimization are
listed in Table 5.9. Also in this case study, both approaches yield the same
results for every scenario. In Scenario I Path 1 is optimal, in Scenario II Path 2
is optimal, and in Scenario III the optimal path is Path 3.

5.2.4 Summary

In all three case studies, the subjective approach with quality functions and
the approach using multiobjective optimization yielded the same results. This
shows that our definitions for criteria for finding an optimal route for AD are
reasonable, as they were the same in both approaches. Furthermore, it can
be interpreted as a cross-check that in routing optimality with respect to AD
does exists. That is, because we come to the same conclusion with a purely
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Scenario I Scenario II Scenario III
Pareto WPM Pareto WPM Pareto WPM
1, 3, 4 R1,3 = 1.01 1, 3, 4 R1,3 = 0.70 1, 3, 4 R1,3 = 1.01

R1,4 = 1.02 R1,4 = 0.64 R1,4 = 0.70
R3,4 = 1.01 R3,4 = 0.90 R3,4 = 0.71

TABLE 5.6: Stuttgart – Cologne: Results multiobjective optimiza-
tion WPM. We denoted Rj,k := R(xj/xk).

(A) Scenario I (B) Scenario II

(C) Scenario III

FIGURE 5.3: Frankfurt – Dresden: Three scenarios with different
restrictions for activation of road clearance. The warning triangle

symbolizes the restriction on the respective path.
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Path Total Time Manual Driving Time TORs

Scenario I 1 4h 26min 0h 23min 1
2 5h 01min 0h 31min 1
3 4h 51min 0h 23min 1
4 5h 20min 1h 47min 2
5 6h 37min 0h 39min 1

Scenario II 1 4h 26min 0h 59min 3
2 5h 01min 0h 31min 1
3 4h 51min 0h 23min 3
4 5h 20min 1h 47min 2
5 6h 37min 0h 39min 1

Scenario III 1 4h 26min 1h 20min 2
2 5h 01min 1h 02min 2
3 4h 51min 0h 43min 1
4 5h 20min 2h 44min 3
5 6h 37min 1h 01min 2

TABLE 5.7: Frankfurt – Dresden: Relevant information on each
path shown in Figure 5.1.

subjective approach and an approach, where we avoided subjectivity for the
most part. Thus, the sense of optimality based solely on our own preferences
does coincide with the notion of optimality provided by the mathematical
area of optimization.

The different scenarios reflected how dynamic the activation of road clearance
is. As each scenario resulted in a different optimal path, it was shown that
the inclusion of AD related optimality into route guidance system for real
world application is necessary to ensure an optimal drive with an autonomous

Scenario I Scenario II Scenario III
Path Quality Path Quality Path Quality
1 0.89 1 0.68 1 0.73
2 0.73 2 0.73 2 0.61
3 0.78 3 0.57 3 0.76
4 0.50 4 0.50 4 0.36
5 0.45 5 0.45 5 0.34

TABLE 5.8: Frankfurt – Dresden: Results qualtiy functions.
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Scenario I Scenario II Scenario III
Pareto WPM Pareto WPM Pareto WPM
1, 3 R1,3 = 0.97 1, 2, 3, 5 R1,2 = 1.70 1, 3 R1,3 = 1.49

R1,3 = 0.97
R1,5 = 1.57
R2,3 = 0.57
R2,5 = 0.92
R3,5 = 1.62

TABLE 5.9: Frankfurt – Dresden: Results multiobjective opti-
mization WPM. We denoted Rj,k := R(xj/xk).

vehicle.
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5.3 Combination with Stochastic Routing

So far we have developed a stochastic router and an AD router separately.
Now we aim at merging these two approaches in order to obtain a stochastic
router optimized for AD, that is introducing travel time reliability in our AD
routing framework.

The reliable total travel time can be obtained by applying the DDC Model,
as we presented in the previous chapter. For calculating the reliable manual
driving time, we apply the DDC Model only on the links, where there is no
road clearance activated. The number of take over requests remains the same
as in the non-stochastic case, because it is not time-dependent. Figure 5.4

FIGURE 5.4: Schematic illustration of stochastic routing opti-
mized for AD.

illustrates this procedure.

We have already evaluated both the DDC Model and the framework for



84 Chapter 5. Routing Optimized for Autonomous Driving

AD routing by conducting case studies. Hence, an evaluation of the integrated
approach is redundant.
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Chapter 6

Conclusion and Outlook

Summary

The aim of this thesis was to develop a stochastic router optimized for au-
tonomous driving. This can be divided into three research objectives.

First a methodology for modelling travel time reliability was presented. His-
torical travel times were provided by Floating Car Data obtained by a fleet
of probe vehicles. A Copula Model was used to aggregate link travel times
to a path travel time distribution. Compared to state-of-the-art approaches
where link travel times are considered as independent, the Copula Model is
able to capture the dependence between links. A case study was conducted
for two study sites with different road features, that is one urban arterial and
one freeway arterial, in order to evaluate the Copula Model. First link correla-
tion was analyzed and different copulas were compared with respect to their
ability to model the respective correlation structure. For both study sites, the
Clayton copula performed best and was therefore used in the Copula Model.
It was shown that the travel time distribution estimated by the Copula Model
is more accurate to the empirical one than the convolution, which assumes
independence of link travel times. For the use in a real world stochastic router,
the idea of modelling dependence between links using copulas was trans-
ferred from the Copula Model and incorporated in the DDC Model. The case
study showed that the DDC Model was more accurate than the convolution
and more efficient that the Copula Model.

Next, a stochastic router was designed based on the DDC Model. Addi-
tional link correlation analysis was performed and an extrapolation method
for describing correlation for each Iteration of the generalized DDC model was
developed. Alternate routes for one origin – destination pair were calculated
and travel time distribution for each route was obtained by a generalized
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DDC Model. The b-reliable or α-shortest path was then determined. A case
study was presented as a use case for real world application.

A routing framework optimized for autonomous driving was developed.
Two methodologies were presented. The first one was based on subjective
perception and the second one was formulated as an multiobjective optimiza-
tion problem. Both methods were compared by conducting three case studies
and showed analogous results for the optimal path. Eventually, a stochastic
router optimized for autonomous driving was designed by integrating the
stochastic router into this framework.

Outlook

Although the available data set was relatively large compared to data used in
related literature, there are some limitations to it. As empirical travel times
for a through movement of a path consisting of several links is limited due to
privacy reasons, the evaluation of both the Copula Model and DDC Model is
restricted concerning the length of a path. Future work can focus on obtain-
ing data for longer arterials for further evaluation purposes. For example, a
program could be established, where vehicle owners can choose to consent
that their FCD are sent out not anonymously but with the possibility to track
their total trajectory.

Furthermore, as the stochastic router relies on historical travel time data,
a world wide use would require travel time data for each link in the total
network. A topic for upcoming research could be to develop novel methods
for obtaining data in order to make this possible.

Concerning the routing optimized for AD, a survey could be conducted,
where the participants can choose between the alternate routes given the infor-
mation of each path. This would enable further evaluation for the subjective
approach for a larger sample size.

In addition, future work could focus on the implementation of DDC routing
algorithm with the goal to further improve efficiency.
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