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Convergence Towards the Vlasov–Poisson
Equation from the N -Fermionic
Schrödinger Equation

Li Chen, Jinyeop Lee and Matthew Liew

Abstract. We consider the quantum dynamics of N interacting fermions
in the large N limit. The particles in the system interact with each other
via repulsive interaction that is regularized Coulomb potential with a
polynomial cutoff with respect to N . From the quantum system, we derive
the Vlasov–Poisson system by simultaneously estimating the semiclassical
and mean-field residues in terms of the Husimi measure.

1. Introduction

In this study, we consider a system of N identical spinless fermions character-
ized by the wave function ψN : R

3N → C in L2
a(R3N ) with ||ψN ||2L2 = 1. The

antisymmetric space L2
a(R3N ), which is a subspace of L2(R3N ), is given by

L2
a(R3N ) :=

{
ψN ∈ L2(R3N ) : ψN (xπ(1), . . . , xπ(N))

= επψN (x1, . . . , xN ), for all π ∈ SN

}
, (1.1)

where SN is the odd-permutation group and επ is the sign of the permutation π.
The antisymmetric space considered above is a reflection of fermions

obeying the Pauli exclusion principle, i.e., no two identical fermions simul-
taneously occupy the same single quantum state. It is observed that when N
fermions are initially trapped in a volume of order one, their kinetic energy is
at least of order N5/3. This implies that the coupling constant should be chosen
as N−1/3 to balance the order of the potential energy and the kinetic energy
in the Hamiltonian. Thus, the mean-field Hamiltonian acting on L2

a(R3N ) is
given by
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HN = −1
2

N∑

j=1

Δxj
+

1
2N1/3

N∑

i�=j

VN (xi − xj),

where Δxj
is the Laplacian acting on particle xj and VN is the interaction

potential given by the regularized Coulomb potential defined as follows:

Definition 1.1. For any x ∈ R
3 and let V (x) = |x|−1, then we call the following

VN to be the regularized Coulomb potential:

VN (x) = (V ∗ GβN
)(x), (1.2)

where GβN
(x) := 1

(2πβ2
N )3/2 e−(x/βN )2 .

The regularized Coulomb potential defined in (1.2) can be understood
as an interaction potential between spherical particles with a vanishing radius
βN → 0 as N → ∞. This method of using the regularized Coulomb potential
depending on N → ∞ has been applied in many works, for example, in [35,
43] for the derivation of the Vlasov–Poisson dynamics from N -body classical
dynamics. In [17], such a regularized potential was considered for the bosonic
case.

Observe that, the time-dependent Schrödinger equation is given by

i∂τψN,τ = HNψN,τ ,

for all ψN,τ ∈ L2
a(R3N ) and τ � 0. Since the average kinetic energy for each

fermionic particle is of order N2/3, then its average velocity is of order N1/3.
Therefore, in the mean-field regime, the time evolution of the fermion system
is expected to be of order N−1/3. Rescaling the time variable t = N1/3τ , one
obtains the following Schrödinger equation for N fermions:

N1/3i∂tψN,t = HNψN,t. (1.3)

As suggested in Thomas–Fermi theory in [44,46], we set � = N−1/3 as
the semiclassical scale. Then, multiplying both sides of (1.3) by �

2, we obtain
the time-dependent Schrödinger equation as follows:1

⎧
⎪⎪⎨

⎪⎪⎩

i�∂tψN,t =

⎡

⎣−�
2

2

N∑

j=1

Δxj
+

1
2N

N∑

i�=j

VN (xi − xj)

⎤

⎦ψN,t,

ψN,0 = ψN ,

(1.4)

where ψN is the initial data in L2
a(R3N ). The choice of other coupling constants

for different scenarios is summarized in [6].
Solving numerically the Schrödinger equation in (1.4) with a large particle

number and analyzing the behavior of its solution is hard even for N = 1000.
An efficient way to analyze and solve the behavior of a large quantum system
is to derive its corresponding effective evolution equations. Therefore, we con-
sider the density matrix operator instead of the wave function ψN,t. Namely, for

1Note that � here can be interpreted as the effective Planck’s constant.
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t � 0, we define the 1-particle reduced density matrix γN,t, a positive semidef-
inite trace class operator in L2

a(R3N ), with trace equal to N . Specifically, for
pure states, it is an operator with the corresponding kernel given by

γ
(1)
N,t(x; y) := N

∫
· · ·
∫

dx2 · · · dxN ψN,t(y, x2, . . . xN )ψN,t(x, x2, . . . , xN ),

for any normalized ψN,t ∈ L2
a(R3N ). It can be easily shown that the trace of the

1-density particle is given by Trγ(1)
N,t = N . Furthermore, for indistinguishable

fermions, we can analyze the quantum dynamics by density matrices depending
on a small number of particles, 1 � k � N . Denoting Tr(k) as the k-partial
trace, we define the k-particle reduced density matrix as

γ
(k)
N,t =

N !
(N − k)!

Tr(k)γN,t, (1.5)

where its corresponding integral kernel is given by

γ
(k)
N,t(x1, . . . , xk; y1, . . . , yN )

=
N !

(N − k)!

∫
· · ·
∫

dxk+1 · · · dxNγN (x1, . . . , xk, xk+1, . . . , xN ; y1, . . . ,

yk, xk+1, . . . , xN ).

We denote the inner-product of L2
a(R3N ) as 〈ψ, φ〉 =

∫
dxψ(x)φ(x).

Given any N and time t, the expectation of the physical observable associ-
ated with a self-adjoint operator O is given as

〈ψN,t, OψN,t〉 =
∫

· · ·
∫

dx1 · · · dxN ψN,t(x1, . . . , xN )
(
OψN,t

)
(x1, . . . , xN ).

Equivalently, we can write the expectation of an observable O with

TrOγN,t = 〈ψN,t, OψN,t〉 , (1.6)

and the expectation of any k-observables O(k) is

Tr(O(k) ⊗ 1(N−k))γN,t =
N !

(N − k)!
TrO(k)γ

(k)
N,t.

Therefore, the k-particle reduced density matrix γ
(k)
N is also a positive semi-

definite trace class operator with trace

Trγ(k)
N,t =

N !
(N − k)!

.

With a k-particle density matrix, we can avoid analyzing the complicated
case with N -particles by finding an approximating effective equation that de-
scribes the system. In the fermionic case, we let γ

(1)
N,0 ≡ ωN , a 1-particle density

matrix associated with initial state ψN , be a Slater determinant defined as

ψSlater
N (x1, . . . , xN ) = (N !)−1/2 det{ei(xj)}N

i,j=1, (1.7)
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for any family of orthonormal bases {ej}N
j=1 ⊂ L2(R3). In particular, we have

ωN =
N∑

j=1

|ej 〉〈 ej | , (1.8)

which corresponds to the 1-particle reduced density matrix with an integral
kernel of ωN (x; y) =

∑N
j=1 ej(y)ej(x). In [57], the mean-field approximation of

the Schrödinger equation is given by the following Hartree–Fock equation:
{

i�∂tωN,t =
[−�

2Δ + (| · |−1 ∗ ρN,t) − Xt, ωN,t

]
,

ωN,t

∣
∣
t=0

= ωN ,
(1.9)

where ρN,t has the integral kernel 1
N ωN,t(x;x), Xt is the exchange operator

with the integral kernel 1
N |x − y|−1ωN,t(x; y), and the commutator is denoted

as [A,B] := AB − BA for any bounded operators A and B.
The mean-field limit from the Schrödinger equation to the Hartree–Fock

equation has been studied extensively. In [23], where the Slater determinant
constitutes the initial data and a regular interaction is assumed, the conver-
gence is obtained by the use of the Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy method for short times. In [10], the rates of convergence
in both the trace norm and Hilbert–Schmidt norm for pure states are obtained
for an arbitrary time and more general potential in the framework of second
quantization. The extension to mixed states has been considered in [8] for
a positive temperature and for the relativistic case in [11]. Furthermore, by
utilizing the Fefferman–de la Llave decomposition presented in [6,25,34], the
rate of convergence, with more assumptions on the initial data is obtained in
[57] for Coulomb potential and in [59] for inverse power law potential. Further
literature on the mean-field limit for fermionic cases can be found in [27,53–55].

The semiclassical limit from the Hartree–Fock equation to the Vlasov
equation has also been extensively studied. In [47], this is achieved by using
the Wigner–Weyl transformation of the density matrix. In [9], the authors
compared the inverse Wigner transform of the Vlasov solution and the solution
of the Hartree–Fock equation and obtained the rate of convergence in the trace
norm as well as the Hilbert–Schmidt norm with regular assumptions on the
initial data. In fact, [9,60] utilized the k-particle Wigner measure as follows:

W
(k)
N,t(x1, p1, . . . , xk, pk)

=
(

N

k

)−1 ∫
· · ·
∫

(dy)⊗kγ
(k)
N,t

(
x1 +

�

2
y1, . . . , xk +

�

2
yk;x1

−�

2
y1, . . . , xk − �

2
yk

)
e−i

∑k
i=1 pi·yi ,

(1.10)

where γ
(k)
N,t is the kernel of the k-particle reduced density defined in (1.5).

The works in this direction have also been extended for the inverse power
law potential in [61], rate of convergence in the Schatten norm in [42], Coulomb
potential and mixed states in [60], and convergence in the Wasserstein distance
in [40,41]. The convergence of relativistic Hartree dynamic to the relativistic
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Vlasov equation was considered in [21]. Further analysis of the semiclassical
limit from the Hartree–Fock equation to the Vlasov equation can be found in
[2,3,5,28,51].

We can combine both mean-field and semiclassical limits and directly
obtain the convergence from the Schrödinger equation to the Vlasov equation.
The notable pioneers in this direction are Narnhofer and Sewell in [52] and
Spohn in [64]. They proved the limit from the Schrödinger equation to Vlasov,
in which the interaction potential V was assumed to be analytic in [52] and C2

in [64]. The rate of convergence of the combined limit in terms of the Wasser-
stein (pseudo)distance was obtained in [31–33]. In fact, the authors studied
the rate of convergence in terms of the Wasserstein distance by treating the
Vlasov equation as a transport equation and applying the Dobrushin estimate
with appropriately chosen initial data. Then, the result for the Husimi mea-
sure was obtained by transforming its Wigner measure similar to (1.11) with
a specifically chosen coherent state. In this study, we instead consider a more
generalized coherent state. Recently, the combined limit for the singular po-
tential case was obtained in [18]. They provided a derivation of the Vlasov
equation using the weighted Schatten norm with a higher moment, and more
conditions on the initial data were assumed.

Nevertheless, it is known that the Wigner measure defined in (1.10) is not
a true probability density, as it may be negative in a certain phase space. This
is shown numerically in [39] for chosen Fock states. Moreover, in [38], a vis-
à-vis comparison of the classical and quantum systems of a nonlinear Duffing
resonator shows that the classical system develops a probability density in the
traditional sense, while the quantum system yields a negative region in phase
space corresponding to the Wigner measure. In fact, it is proven in [37,50,63]
that the Wigner measure is nonnegative if and only if the pure quantum states
are Gaussian. Additionally, in [13], it is stated that the Wigner measure is
nonnegative if the state is a convex combination of coherent states. The issue
of incompatibility between the quantum Wigner and classical regimes remains
an open question [14].

Nevertheless, it has been shown that we can obtain a nonnegative proba-
bility measure by taking the convolution of the Wigner measure with a Gauss-
ian function as a mollifier; this is known as the Husimi measure [19,26,66]. In
particular, from [26, p.21], given a specific Gaussian coherent state, the rela-
tion between the Husimi measure and Wigner measure is given by the following
convolution: for any 1 � k � N ,

m
(k)
N,t =

N(N − 1) · · · (N − k + 1)
Nk

W
(k)
N,t ∗ G�, (1.11)

where m
(k)
N,t is the k-particle Husimi measure and

G� := (π�)−3k exp

⎛

⎝−�
−1

⎛

⎝
k∑

j=1

|qj |2 + |pj |2
⎞

⎠

⎞

⎠ .
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Figure 1. Relations of N -fermionic Schrödinger systems to
other mean-field equations [15,30,31]

The smoothing of the Wigner measure presented in (1.11) motivates the
objective of our study: to directly obtain the Vlasov–Poisson equation from
the Schrödinger equation in terms of the Husimi measure.2 In fact, we have
explored the direct method in [15] with the use of the BBGKY hierarchy
method, under the assumption that V ∈ W 2,∞(R3). The main contribution of
the current work is that by using the generalized version of Husimi measure
defined later in (2.10), we are able to write N -fermionic Schrödinger equation
directly into Vlasov type of equation in (3.4) and obtain a convergence in
combined limit without the use of BBGKY hierarchy method. Furthermore,
compared to [15], the new remainder terms in (3.4) obtained in this paper
allow us to handle the regularized Coulomb potential defined in (1.2).

Note that the case for bosons has been extensively studied. In fact, there
are more studies on bosonic cases than on fermionic cases. As bosons are not
the main concern of this paper, we mention only a selected few of these studies
in passing. In particular, [24] proved that the Schrödinger equation for bosons
converges to the nonlinear Hartree equation for the Coulomb potential. In
addition, the convergence for the aforementioned equation is obtained in [58]
with a rate of N1/2 for the Coulomb potential. The convergence rate of N−1

has been optimized in [17] for the Coulomb potential, as well as for more
singular potentials in [16].

This article is organized as follows. Brief introductions to the second
quantization and Husimi measure are presented in Sects. 2.1 and 2.2, respec-
tively. This is followed by the statement of our main theorem and proof strat-
egy in Sect. 3. Then, uniform estimates are given in Sect. 3.2, followed by the
proof of the main theorem in Sect. 3.3. The estimates for the residual terms
are covered in Sect. 4.

2See Fig. 1.
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2. Preliminaries

2.1. Second Quantization

In the study of large particle systems, we expect the operators to interact with
different Hilbert spaces of the N -particle system by creating and annihilat-
ing particles. Therefore, to analyze a large particle system, it is convenient
for us to build a ‘larger’ Hilbert space that accompanies the aforementioned
interactions, equipped with the norm || · ||. In particular, for a large fermionic
system, we consider the Fock space for fermions as

Fa := C

⊕

n�1

L2
a(R3n, (dx)⊗n),

where L2
a(R3n; (dx)⊗n) represents the n-fold antisymmetric tensor product of

L2(R3). Moreover, the vacuum state is denoted as Ω = 1 ⊕ 0 ⊕ 0 ⊕ · · · ∈ Fa.
For f ∈ L2(R3), the annihilation operator a(f) and creation operator

a∗(f) acting on Ψ =
⊕

n�0 ψ(n) ∈ Fa are defined by

(
a(f)Ψ

)(n) :=
√

n + 1
∫

dxf(x)ψ(n+1)(x, x1, . . . , xn),

(
a∗(f)Ψ

)(n) :=
1√
n

n∑

j=1

f(xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn).

Here, Ψ(n) denotes the n-th particle sector of Ψ ∈ Fa. Following the notations
from [10], we will use the operator valued distributions a∗

x and ax, to represent
the creation and annihilation operators:

a∗(f) =
∫

dx f(x)a∗
x, a(f) =

∫
dx f(x)ax. (2.1)

Note that the operator-valued distribution a∗
x formally creates a particle at po-

sition x ∈ R
3, while the operator-valued distribution ax annihilates a particle

at x.
Furthermore, by the corresponding canonical anticommutation relations

(CAR) in the fermionic system, we have that for any f, g ∈ L2(R3)

{a(f), a∗(g)} = 〈f, g〉 , {a∗(f), a∗(g)} = {a(f), a(g)} = 0, (2.2)

where {A,B} := AB + BA is the anticommutator. Following from (2.2), the
CAR for operator kernels holds as follows:

{ax, a∗
y} = δx=y, {a∗

x, a∗
y} = {ax, ay} = 0. (2.3)

For any normalized ΨN,t ∈ Fa, it is straightforward to show that

||a(f)ΨN,t||2 � ||f ||2L2 , ||a∗(f)|| = ||a(f)|| (2.4)

for any f ∈ L2(R3).3

3See Theorem 3.52 in [20] for a more pedagogical approach to the annihilation and creation
operator for the fermionic case.
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We extend the Hamilton operator appeared in (1.4) acting on L2
a(R3N )

to an operator acting on the Fock space Fa by (HNΨ)(n) = H(n)
N ψ(n) with

H(n)
N =

n∑

j=1

−�
2

2
Δxj

+
1

2N

n∑

i�=j

V (xi − xj).

Then, we can write the Hamiltonian HN in terms of the operator-valued dis-
tributions ax and a∗

x by

HN =
�

2

2

∫
dx ∇xa∗

x∇xax +
1

2N

∫∫
dxdy VN (x − y)a∗

xa∗
yayax. (2.5)

In this article, we will consider only the following Schrödinger equation
in Fock space:

{
i�∂tΨN,t = HNΨN,t,

ΨN,0 = ΨN ,
(2.6)

for all ΨN,t ∈ Fa and ‖ΨN,t‖ = 1 for t ∈ [0, T ].
Next, we denote the number of particles operator and kinetic energy

operator as

N =
∫

dx a∗
xax and K =

�
2

2

∫
dx ∇xa∗

x∇xax, (2.7)

respectively.
For any given Ψ ∈ Fa in the n-th sector, we can interpret the number of

particles operator as

(NΨ)(n) = nψ(n), (2.8)

where ψ(n) ∈ L2
a(R3n) for any n � 1. In the vacuum state, we have NΩ = 0.

It is therefore straightforward to show that for k � 1,
〈
ΨN,t,N kΨN,t

〉
= N(N − 1) · · · (N − k + 1),

for any normalized ΨN,t ∈ Fa and t � 0. Clearly, the relation between the
number of particles operator and the 1-particle reduced density matrix is given
as

〈ΨN,t,NΨN,t〉 =
∫

dw 〈ΨN,t, a
∗
wawΨN,t〉 = γ

(1)
N,t(w;w),

and observe Trγ(1)
N,t = N .

2.2. The Husimi Measure

We use the definition of the Husimi measure given in [26]. Let f be any real-
valued normalized function in Hilbert space; then, the coherent state is defined
as

f�

q,p(y) := �
− 3

4 f

(
y − q√

�

)
e

i
�

p·y. (2.9)
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Then, the projection of coherent state is given by

1
(2π�)3

∫∫
dqdp |f�

q,p〉〈f�

q,p| = 1.

For any ΨN,t ∈ Fa, 1 � k � N and t � 0, the k-particle Husimi measure
is defined as

m
(k)
N,t(q1, p1, . . . , qk, pk)

:=

∫
· · ·
∫

(dwdu)⊗k
(
f�

q,p(w)f�
q,p(u)

)⊗k 〈
ΨN,t, a

∗
w1

· · · a∗
wk

auk
· · · au1ΨN,t

〉

=

∫
· · ·
∫

(dwdu)⊗k
(
f�

q,p(w)f�
q,p(u)

)⊗k
γ
(k)
N,t(u1, . . . , uk; w1, . . . , wk), (2.10)

where we use the short notations

(dwdu)⊗k := dw1du1 · · · dwkduk, and
(
f�

q,p(w)f�
q,p(u)

)⊗k

:=
k∏

j=1

f�

qj ,pj
(wj)f�

qj ,pj
(uj).

The Husimi measure defined in (2.10) measures how many particles, in par-
ticular fermions, are in the k-semiclassical boxes with a length scale of

√
�

centered in its respective phase-space pairs, (q1, p1), . . . , (qk, pk).

Remark 2.1. The Husimi measure (2.10) is a more generalized version of (1.11).
If f is given by a Gaussian function, then the definitions of m

(k)
N,t and m

(k)
N,t co-

incide.

Then, we observe that by using the operator kernels defined in (2.1), the
Husimi measure can be expressed by

The relation between the Husimi measure and the number of particles
operator can be expressed as follows, for the 1-particle Husimi measure mN,t :=
m

(1)
N,t,

∫∫
dqdp mN,t(q, p)

=

∫∫
dqdp

∫∫
dw1du1 f�

q,p(w1)γ
(1)
N,t(w1; u1)f�

q,p(u1)

= �
− 3

2

∫
dq

∫∫
dw1du1 f

(
w1 − q1√

�

)
f

(
u1 − q1√

�

)(∫
dp e

i
�

p·(w1−u1)
)

γ
(1)
N,t(w1; u1)

= (2π�)3�
− 3

2

∫∫
dq1dw1

∣
∣
∣
∣f
(

w1 − q1√
�

)∣∣
∣
∣
2

γ
(1)
N,t(w1; w1)

= (2π�)3
∫

dq̃ |f(q̃)|2
∫

dw1 γ
(1)
N,t(w1; w1)

= (2π)3,

where we use the Dirac-delta δx(y) := (2π�)−3
∫

e
i
�

p·(x−y)dp. Further prop-
erties of the Husimi measure are covered in Lemma 3.1. Observe that if the
initial data is described by Slater determinant as in (1.8), then the Husimi
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measure at initial time is

mSlater
N (q, p) =

N∑

j=1

∫∫
dw1du1 f�

q,p(w1)ej(w1)ej(u1)f�
q,p(u1). (2.11)

We are now ready to state the main theorem.

3. Main Result

In this section, we provide our main result, proof strategies, and the a priori
estimates. The complete proof will be presented in Sect. 3.3. In the following,
we denote ∇qf and ∇pf to be the gradients of f with respect to the position
and momentum variables, respectively.

Theorem 3.1. Suppose that VN is the regularized Coulomb potential given in
(1.2) with βN := N−ε and 0 < ε < 1

24 hold. For any fixed T > 0, let ΨN,t ∈ Fa,
t ∈ [0, T ], be the solution to the Schrödinger equation (2.6) with the Slater de-
terminant as the initial data. Let mN,t be the 1-particle Husimi measure defined
in (2.10), where f is a compact supported positive-valued function in H1(R3)
with ‖f‖L2 = 1. Moreover, let mSlater

N be the initial 1-particle Husimi measure
with its L1-weak limit m0 and there exists a constant C > 0 independent of N
such that

∫∫
dqdp (|p|2 + |q|)mN (q, p) � C. (3.1)

Then, mN,t has a weak-� convergent subsequence in L∞((0, T ];L1(R3 × R
3))

with limit mt, and mt is the solution of the Vlasov–Poisson equation with
repulsive Coulomb potential,

{
∂tmt(q, p) + p · ∇qmt(q, p) = ∇q

(| · |−1 ∗ �t

)
(q) · ∇pmt(q, p),

mt(q, p)
∣
∣
t=0

= m0(q, p),
(3.2)

in the sense of distribution where �t(q) :=
∫
dpmt(q, p).

Remark 3.1. Since the total energy is conserved in this problem, the assump-
tion of repulsive interacting potential is important to give uniform estimates
both for kinetic energy and potential energy.4 In fact, the result in Theorem
3.1 holds also for attractive singular potential if the kinetic energy can be
bounded uniformly in N .

Remark 3.2. It is proven in Proposition 3.1 that the first moment of the Husimi
measure mN,t is uniformly bounded. Therefore, by Theorem 7.12 in [65], the
convergence stated in theorem also holds in terms of the 1-Wasserstein metric.5

4See Lemma 3.2 below.
5The 1-Wasserstein metric is defined as W1(μ, ν) := maxπ∈Π(μ,ν)

∫ |x−y| dπ(x, y), where μ

and ν are probability measures and Π(μ, ν) the set of all probability measures with marginals
μ and ν [65].
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Remark 3.3. In [31], the rate of convergence from Schrödinger to the Vlasov
equation in the pseudometric is obtained for the interaction potential V ∈ C1,1.
In addition, the authors commented that their result can be extended for the
truncated Coulomb interaction, but with order higher than C/

√
ln N for some

constant C > 0. In Theorem 3.1, the mollification of the Coulomb interaction
can be handled with polynomial truncation.

Remark 3.4. The global existence of classical solution to the Vlasov–Poisson
equation in 3-dimension is proven in [48,56] for a general class of initial data.
The uniqueness of the solution is proven in [48] for initial datum with strong
moment conditions and integrability. In [49], the uniqueness of the solution is
also proven for bounded macroscopic density. Furthermore, the global existence
of weak solutions is provided in [4] for bounded initial data and kinetic energy.
The result is then relaxed to only Lp-bound for p > 1 in [29]. Result on
existence with symmetric initial data is proven in [7,22,62]. For other results,
we refer to the works given in [1,12,36] to list a few.

3.1. Proof Strategies

From [15, Proposition 2.1], we obtain the following equation from the
Schrödinger equation given (1.4), i.e.,

∂tmN,t(q, p) + p · ∇qmN,t(q, p) − ∇q · (�� 〈∇qa(f�

q,p)ψN,t, a(f�

q,p)ψN,t

〉)

=
1

(2π)3
∇p ·

∫∫
dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

∫ 1

0

ds ∇VN

(
su1 + (1 − s)w1 − w2

)
γ

(2)
N,t(u1, u2;w1, w2), (3.3)

where we denote
(
f�

q,p(w)f�
q,p(u)

)⊗2

:= f�

q,p(w1)f�
q,p(u1)f�

q2,p2
(w2)f�

q2,p2
(u2).

In particular, this can be rewritten into the Vlasov equation with remainder
terms, i.e.,

∂tmN,t(q, p) + p · ∇qmN,t(q, p)

=
1

(2π)3
∇p ·

∫
dq2∇VN (q − q2)�N,t(q2)mN,t(q, p) + ∇q · R̃ + ∇p · R,

(3.4)

where �N,t(q) :=
∫

dpmN,t(q, p), R̃ and R = R1 + R2 are given by

R̃ := �� 〈∇qa(f�

q,p)ψN,t, a(f�

q,p)ψN,t

〉
,

R1 :=
1

(2π)3

∫∫
dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

[ ∫ 1

0
ds ∇VN

(
su1 + (1 − s)w1 − w2

) − ∇VN (q − q2)

]
γ
(2)
N,t(u1, u2; w1, w2),

R2 :=
1

(2π)3

∫∫
dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

∇VN (q − q2)

[
γ
(2)
N,t(u1, u2; w1, w2) − γ

(1)
N,t(u1; w1)γ

(1)
N,t(u2; w2)

]
. (3.5)
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The main contribution of this article is to rigorously prove the limit N → ∞
from (3.4) to the Vlasov–Poisson equation (3.2) in the sense of distribution.

First, from the uniform estimate of the kinetic energy shown in Lemma
3.2, we prove in Proposition 3.1 the uniform estimate for the moments of
Husimi measure. Additionally, because the Husimi measure belongs to L∞

([0, T ];L1(R3) ∩ L∞(R3)) (see Lemma 3.1), we obtain directly the weak com-
pactness of the two linear terms on the left-hand side of (3.4) by the Dunford–
Pettis theorem.6

For the quadratic term on the right-hand side of (3.4), the classical
Thomas–Fermi theory gives that �N,t ∈ L∞([0, T ];L5/3(R3)). With the a priori
estimate obtained in Sect. 3.2, the Aubin–Lions compact embedding theorem
shows the strong compactness of ∇VN ∗ �N,t.

The estimate for the remainder term R̃ is provided in [15, Proposition
2.4]. Thus, the main work of this paper is dealing with the challenging term R.
Unlike the BBGKY hierarchy used in [15], where the remainder term contains
only the difference between the 2-particle density matrices, we write the term
R as a combination of the semiclassical and mean-field terms as R1 and R2,
respectively.7 Thus, the factorization effect can be directly obtained from R2

instead of using the method of the BBGKY hierarchy.
The estimates for R1 and R2 are shown in Proposition 4.2 and Proposi-

tion 4.3, respectively, in which we utilize the estimates of the ‘cutoff’ number
operator and momentum oscillation presented in Lemma 4.1 and Lemma 4.2,
to control the growth of the Lipschitz constant VN , which is of order β−2

N .

3.2. A priori Estimates

We present in this subsection a sequence of estimates that is used repeatedly
in the proof.

First, we cite the following properties of k-particle Husimi measures from
(or [15, Lemma 2.2] for the time dependent version).

Lemma 3.1. Suppose that ΨN,t ∈ Fa is normalized for any t � 0. Then, the
following properties hold true for m

(k)
N,t,

1. m
(k)
N,t(q, p, . . . , qk, pk) is symmetric,

2. 1
(2π)3k

∫· · ·∫ (dqdp)⊗km
(k)
N,t(q, p, . . . , qk, pk) = N(N−1)···(N−k+1)

Nk ,

3. 1
(2π�)3

∫∫
dqkdpk m

(k)
N,t(q, p, . . . , qk, pk) = (N −k+1)m(k−1)

N,t (q, p, . . . , qk−1,

pk−1),
4. 0 � m

(k)
N,t(q, p, . . . , qk, pk) � 1 a.e.,

where 1 � k � N .

Then, due to the conservation of energy and the repulsive effect of the
Coulomb force, we obtain the following estimate for the kinetic energy.

6See Proposition 3.2.
7See (4.5) for the full structure.
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Lemma 3.2. Assuming that VN (x) � 0 and the initial total energy is bounded
in the sense that 1

N 〈ΨN ,HNΨN 〉 � C, then there exists a constant C > 0
independent of N such that

〈
ΨN,t,

K
N

ΨN,t

〉
� C. (3.6)

Proof. We define the operator

VN :=
1
N

∫∫
dxdy VN (x − y)a∗

xa∗
yayax.

Since VN � 0, we have 〈ΨN,t,VNΨN,t〉 � 0. Then

〈ΨN,t,HNΨN,t〉 = 〈ΨN,t,KΨN,t〉 + 〈ΨN,t,VNΨN,t〉,
implies

0 � 〈ΨN,t,KΨN,t〉 � 〈ΨN,t,HNΨN,t〉.
Hence,

1
N

〈ΨN,t,KΨN,t〉 � 1
N

〈ΨN,t,HNΨN,t〉 =
1
N

〈ΨN ,HNΨN 〉 � C.

�

Consequently, the moment estimate of the Husimi measure is obtained
directly from the uniform bound in Lemma 3.2.

Proposition 3.1. For t � 0, we have the following finite moments:
∫∫

dqdp (|q| + |p|2)mN,t(q, p) � C(1 + t), (3.7)

where C > 0 is a constant that depends on initial data
∫∫

dqdp (|q| + |p|2)mN

(q, p).

Proof. First, from equation (2.16) in [15], we obtain that
〈

ψN,t,
K
N

ψN,t

〉
=

1
(2π)3

∫∫
dqdp |p|2mN,t(q, p) + �

∫
dq |∇f (q)|2 ,

(3.8)

which implies that
1

(2π)3

∫∫
dqdp |p|2mN,t(q, p) �

〈
ψN,t,

K
N

ψN,t

〉
� C, (3.9)

where we use Lemma 3.2 in the last inequality.
Then, for the moment with respect to q, we obtain from (3.4) that

d
dt

∫∫
dqdp |q|mN,t(q, p) =

∫∫
dqdp |q|∂tmN,t(q, p)

=
∫∫

dqdp |q|
(

− p · ∇qmN,t(q, p) +
1

(2π)3
∇p

·
∫∫

dw1du1

∫∫
dw1du2

∫∫
dq2dp2

∫ 1

0

ds
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∇V
(
su2 + (1 − s)w1 − w2

)
f�

q,p(w1)f�
q,p(u1)f�

q2,p2
(w2)f�

q2,p2
(u2)

〈aw2aw1ΨN,t, au2au1ΨN,t〉 + ∇q · R̃
)

. (3.10)

By applying the divergence theorem first with respect to p and then with
respect to q in (3.10), we obtain

d
dt

∫∫
dqdp |q|mN,t(q, p) =

∫∫
dqdp

q

|q| · p mN,t(q, p)

�
∫∫

dqdp (1 + |p|2) · mN,t(q, p),

where we use Young’s product inequality. Finally, taking the integral over t,
we obtain the desired result. �

3.3. Proof of Theorem 3.1

First, denoting �N,t(q) :=
∫

mN,t(q, p)dp, recall the Vlasov equation

∂tmN,t(q, p) + p · ∇qmN,t(q, p)

=
1

(2π)3
∇p ·

∫
dq2∇VN (q − q2)�N,t(q2)mN,t(q, p) + ∇q · R̃ + ∇p · R

=
1

(2π)3
(∇VN ∗ �N,t)(q) · ∇pmN,t(q, p) + ∇q · R̃ + ∇p · R, (3.11)

with

R̃ := �Im
〈∇qa(f�

q,p)ΨN,t, a(f�

q,p)ΨN,t

〉
,

R := (2π)3
∫∫

dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

[ ∫ 1

0

ds ∇VN

(
su1 + (1 − s)w1 − w2

)
γ

(2)
N,t(u1, u2;w1, w2)

−∇VN (q − q2)γ
(1)
N,t(u1;w1)γ

(1)
N,t(u2;w2)

]
. (3.12)

The main task is now reduced to taking limits in (3.12). In fact, Sect. 4 is
devoted to deriving the estimates for the residuals. As a summary, it is proven
in Sect. 4 that for ϕ, φ ∈ C∞

0 (R3), there exists a positive constant K such that
∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇q · R̃(q, p)

∣
∣
∣
∣ � K�

1
2 −δ,

∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R(q, p)

∣
∣
∣
∣ � K

(
�

1
4 (6α1−5)−2δ + �

3
2 (α2− 1

2 )−2δ
)
,

(3.13)

where 5
6 < α1 < 1, 1

2 < α2 < 1 and 0 < δ � 1. The estimates in (3.13) show
that the residual terms converge to zero in the sense of distribution.

Next, we have the following result on weak convergent in L1:
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Proposition 3.2 (Proposition 2.7 of [15]). Let {mN,t}N∈N be the 1-particle
Husimi measure; then, there exists a subsequence {mNj ,t}j∈N that converges
weakly in L1(R3 × R

3) to a function (2π)3mt; i.e., for all Φ ∈ L∞(R3 × R
3),

it holds that
1

(2π)3

∫∫
dqdp mNj ,t(q, p)Φ(q, p) →

∫∫
dqdp mt(q, p)Φ(q, p),

as j → ∞.

Remark 3.5. The proof for Lemma 3.2 is obtained by proving its uniform in-
tegrability and employing the Dunford–Pettis theorem for L1 compactness.

Furthermore, to prove the convergence of the nonlinear term (∇VN ∗ρN ) ·
∇pmN,t, we first show the strong convergence of ∇VN ∗ ρN .

Lemma 3.3. Let VN be defined as (1.2). Then, for t ∈ [0,∞), there exists
constant C > 0 independent on N such that

||∇VN ∗ �N,t||
L∞([0,∞);W 1, 5

3 (R3))
� C, (3.14)

||∂t(∇VN ∗ �N,t)||
L∞([0,∞);W −1, 15

7 (R3))
� C. (3.15)

Proof. From Lemma 3.1 and Proposition 3.1, one finds that mN,t is uni-
formly bounded in L∞([0,∞);L1(R3 × R

3)) ∩ L∞([0,∞);L∞(R3 × R
3)) and

|p|2mN,t(q, p) uniformly in L∞([0,∞);L1(R3 × R
3)), respectively. As a conse-

quence, it holds that

||�N,t||
L∞([0,∞);L

5
3 (R3))

� C.

Thus, VN ∗�N,t = V ∗GβN
∗�N,t is uniformly bounded in L∞([0,∞);W 2, 5

3 (R3))
due to the fact that V is the fundamental solution of the Poisson equation and

||GβN
∗ �N,t||

L∞([0,∞);L
5
3 (R3))

� ||GβN
||L1(R3) · ||�N,t||

L∞([0,∞);L
5
3 (R3))

.

This implies the result (3.14) directly.
To prove (3.15), recall again the transport equation for mN,t

∂tmN,t + p · ∇qmN,t − 1
(2π)3

(∇VN ∗ �N,t) · ∇pmN,t = ∇q · R̃ + ∇p · R,

(3.16)

where �N,t(q) :=
∫

mN,t(q, p)dp. Taking the integral with respect to p,

∂t

∫
dpmN,t(q, p) + ∇q ·

∫
dpp mN,t(q, p) = ∇q ·

∫
dpR̃.

Next, by taking the convolution with ∇VN , we obtain

∂t

(∇VN ∗ �N,t

)
+ ∇q · (∇VN ⊗∗ JN,t) = ∇q ·

(
∇VN ⊗∗

∫
dpR̃

)
,

(3.17)
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where JN,t(q) :=
∫

dpp mN,t(q, p), (u ⊗∗ v)ij = ui ∗ vj for u, v ∈ R
3. Then, we

observe that∣
∣
∣
∣

∫
dpp mN,t(q, p)

∣
∣
∣
∣

�
[∫

dp|p|2mN,t

] 1
2
[∫

dpmN,t

] 1
2

=
[∫

dp|p|2mN,t

] 1
2

�
1
2
N,t. (3.18)

Therefore, we have
∫

dq |JN,t(q)|
5
4 =

∫
dq

∣
∣
∣
∣

∫
dpp mN,t(q, p)

∣
∣
∣
∣

5
4

�
[∫∫

dqdp |p|2mN,t

] 5
8
[∫

dq�
5
3
N,t

] 3
8

� C,

where we use Proposition 3.1 in the last inequality, yielding that JN,t is
uniformly bounded in L∞(

[0,∞);L
5
4 (R3)

)
. Then, for any test function ϕ ∈

L
15
8 (R3), we obtain for a.e. t � 0 that

∫
dq|ϕ(q)|

∣
∣
∣
∣

∫
dq2∇VN (q − q2)JN,t(q2)

∣
∣
∣
∣

�
∫

dq|ϕ(q)|
∣
∣
∣
∣

∫
dq2∇V (q − q2)GβN

∗ JN,t(q2)
∣
∣
∣
∣

�
∫∫

dqdq2|ϕ(q)||∇V (q − q2)||GβN
∗ JN,t(q2)| � C ||ϕ||

L
15
8

||GβN
∗ JN,t||

L
5
4

� C ||ϕ||
L

15
8

||GβN
||L1 ||JN,t||

L
5
4

� C ||ϕ||
L

15
8

,

where we use the Hardy–Littlewood–Sobolev inequality in the third inequal-
ity. This implies that, by using dual formulation of Lp norms and taking the
supremum in ϕ ∈ L

15
8 , one obtains that ∇VN ∗ JN,t is uniformly bounded in

L∞([0,∞);L
15
7 (R3)).

Therefore, focusing on the estimate of R̃, we have
∣
∣
∣
∣

∫
dp R̃

∣
∣
∣
∣ � �

∫
dp

∣
∣
∣
〈∇qa(f�

q,p)ΨN,t, a(f�

q,p)ΨN,t

〉 ∣∣
∣

� �

∫
dp

∣
∣
∣
∣∇qa(f�

q,p)ΨN,t

∣
∣
∣
∣
∣
∣
∣
∣a(f�

q,p)ΨN,t

∣
∣
∣
∣

�
[
�

2

∫
dp

〈∇qa(f�

q,p)ΨN,t,∇qa(f�

q,p)ΨN,t

〉
] 1

2
[∫

dp mN,t(q, p)
] 1

2

=
[
�

2

∫
dp

〈∇qa(f�

q,p)ΨN,t,∇qa(f�

q,p)ΨN,t

〉
] 1

2

�
1
2
N,t.

Note that since it holds that

�
2

∫∫
dqdp

〈
∇qa(f�

q,p)ΨN,t, ∇qa(f�

q,p)ΨN,tv

= �
1
2

∫∫
dqdp

∫∫
dwdu ∇qf

(
w − q√

�

)
∇qf

(
u − q√

�

)
e

i
�

p·(w−u) 〈ΨN,t, a
∗
wauΨN,t

〉
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= �
1
2 +3

∫∫
dqdw �

−1

∣
∣
∣
∣∇f

(
w − q√

�

)∣∣
∣
∣

2 〈
ΨN,t, a

∗
wawΨN,t

〉

= �
4

∫
dq̃ |∇f(q̃)|2 〈ΨN,t, NΨN,t〉

� � ||∇f ||22 ,

this implies
∫

dq

∣
∣
∣
∣

∫
dp R̃

∣
∣
∣
∣

5
4

�
[
�

2

∫∫
dqdp

〈∇qa(f�

q,p)ΨN,t,∇qa(f�

q,p)ΨN,t

〉
] 5

8
(∫

dq�
5
3
N,t

) 3
8

� �
5
4 C.

Repeating the calculation in (3.18), we have that ∇VN ∗ ∫ dpR̃ is uniformly
bounded in L∞([0,∞);L

15
7 (R3)), which implies that ∇VN ∗∫ dp(∇q ·R̃+∇p·R)

is uniformly bounded in L∞([0,∞);L
15
7 (R3)). Thus, from (3.17), we have that

there exists a C which is independent of N such that

||∂t(∇VN ∗ �N,t)||
L∞([0,∞);W −1, 15

7 (R3))
� C.

This completes the proof for Lemma 3.3. �
Finally, we conclude the proof of main theorem with the following com-

pactness argument.

3.3.1. Compactness Argument. As in Sect. 3.1, the weak convergence of the
linear terms in the Vlasov equation is obtained from Proposition 3.2. The fol-
lowing discussion is focused on the nonlinear term. Without loss of generality,
assume that Φ(q, p) = ϕ(q)φ(p) for any test functions ϕ, φ ∈ C∞

0 (R3), and let
the sphere B� with radius � > 0 be the support of ϕ. Due to the Sobolev’s
embedding theorem, we have

W 1, 5
3 (B�) ↪↪→Lr(B�) ↪→ W−1, 15

7 (B�),

where 5
4 � r < 15

4 and ↪↪→ means the compact embedding. Recall the results
in Lemma 3.3, we have

||(∇VN ∗ �N,t)||
L∞([0,∞);W 1, 5

3 (R3))
+ ||∂t(∇VN ∗ �N,t)||

L∞([0,∞);W −1, 15
7 (R3))

� C.

Then, by Aubin–Lions lemma, we obtain that there exists a subsequence de-
noted also by

(∇VN ∗ �N,t

)
N∈N

, and h ∈ L∞([0, T ];Lr(B�)) such that, as
N → ∞, we have

∇VN ∗ �N,t → h in L∞([0, T ];Lr(R3)), (3.19)

where 5
4 � r < 15

4 . The weak star convergence of �N,t ⇀∗ �t in L∞((0, T );L
5
3

(R3)), where �t(q) :=
∫

mt(q, p)dp, and the definition of VN in (1.2) imply
that the limit function h coincides with ∇V ∗ �t a.e. in B�.

Now, to show the convergence to the Vlasov–Poisson equation, we first
compute
∣
∣
∣
∣

∫ T

0

dt

∫∫
dqdp ϕ(q)∇pφ(p) · [(∇VN ∗ �N,t)(q)mN,t(q, p) − (∇V ∗ �t)mt(q, p)]

∣
∣
∣
∣
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=

∣
∣
∣
∣

∫ T

0

dt

∫∫
dqdp ϕ(q)∇pφ(p) · [(∇VN ∗ �N,t)(q) − (∇V ∗ �t)(q)] mN,t(q, p)

+

∫ T

0

dt

∫∫
dqdp ϕ(q)∇pφ(p) · (∇V ∗ �t)(q) [mN,t(q, p) − mt(q, p)]

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ T

0

dt

∫∫
dqdp ϕ(q)∇pφ(p) · [(∇VN ∗ �N,t)(q) − (∇V ∗ �t)(q)] mN,t(q, p)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ T

0

dt

∫∫
dqdp ϕ(q)∇pφ(p) · (∇V ∗ �t)(q) [mN,t(q, p) − mt(q, p)]

∣
∣
∣
∣

=: A1 + A2.

Let us focus on the first term.

A1 =

∣
∣
∣
∣

∫ T

0

dt

∫

B�

dq ϕ(q) [(∇VN ∗ �N,t)(q) − (∇V ∗ �t)(q)] ·
∫

dp ∇pφ(p)mN,t(q, p)

∣
∣
∣
∣

� T sup
t∈[0,T ]

||(∇VN ∗ �N,t) − (∇V ∗ �t)||Lr(B�)

∣
∣
∣
∣

∣
∣
∣
∣ϕ
∫

dp ∇pφ(p)mN,t(·, p)

∣
∣
∣
∣

∣
∣
∣
∣
Lr′ (B�)

� T sup
t∈[0,T ]

||(∇VN ∗ �N,t) − (∇V ∗ �t)||Lr(B�)
||ϕ||Lr′ (B�)

||∇pφ||L1(R3)

� CT ||(∇VN ∗ �N,t) − (∇V ∗ �t)||L∞([0,T ];Lr(B�))
,

where we use the fact that 0 � mN,t � 1 almost everywhere. Taking the limit
N → ∞ on both sides, then we have

lim
N→∞

A1 = 0.

We focus now on A2. We observe that since ||mN,t||L∞ is uniformly
bounded, it is implied that there is a subsequence still denoted by (mN,t)N∈N

such that mN,t ⇀∗ mt in L∞((0, T );L∞(R3×R
3)) as N → ∞. Since ϕ(q)∇pφ(p)·

(∇V ∗ �t)(q) ∈ L1((0, T );L1(R3 × R
3)), we have limN→∞ A2 = 0. This com-

pletes the proof of Theorem 3.1. �

4. Estimates of Residuals

To estimate the residuals outlined in (3.5), we first present the following im-
portant facts, which are used frequently in the proof: the �-weighted Fourier
transformation is given as

∫
dy G(y)F (y) =

∫
dy G(y)

1
(2π�)3

∫∫
dp2dv F̂ (v)e

i
�

p2·(y−v), (4.1)

for any given function F,G ∈ L2(R3).
The results in [15] for the localized number operator and oscillation esti-

mates are

Lemma 4.1. (Lemma 2.4 of [15]) For t � 0, let ΨN,t ∈ Fa with ||ΨN,t|| = 1
and R1 > 0 be the radius of a ball such that the volume is 1. Then, for all
1 � k � N , we have
∫

· · ·
∫

(dqdx)⊗k

(
k∏

n=1

χ|xn−qn|�√
�R1

)

γ
(k)
N,t(x1, . . . , xk;x1, . . . , xk) � �

− 3
2 k,
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(4.2)

where χ is a characteristic function.

Lemma 4.2. (Lemma 2.5 of [15]) For g ∈ C∞
0 (R3) and

Ω� := {x ∈ R
3; max

1�j�3
|xj | � �

α}, (4.3)

it holds that for every α ∈ (0, 1), s ∈ N, and x ∈ R
3\Ω�,

∣
∣
∣
∣

∫

R3
dp e

i
�

p·xg(p)
∣
∣
∣
∣ � c1�

(1−α)s, (4.4)

where the constant c1 depends on the compact support and the W s,∞-norm of
the test function g.

The estimate for the residual term R̃ given in (3.5) is obtained exactly
as shown in [15], i.e.,

Proposition 4.1 (Proposition 2.4 of [15]). Suppose that f ∈ H1(R3), ‖f‖L2 = 1
and has compact support; then, we have the following bound for R̃ in (3.4);
i.e., for an arbitrarily small δ > 0, there exists s(δ) > 0 such that the following
estimate holds for any test function ϕ, φ ∈ C∞

0 (R3)
∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇q · R̃(q, p)

∣
∣
∣
∣ � c2�

1
2 −δ,

where the constant c2 depends on ‖∇ϕ‖L∞ and ‖φ‖W s,∞ .

For the residual term R, we insert the terms

±∇VN (q − q2)γ
(2)
N,t(u1, u2;w1, w2),

and write into a sum R = R1 + R2, where

R1 :=(2π)3
∫∫

dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

[∫ 1

0

ds ∇VN

(
su1 + (1 − s)w1 − w2

)− ∇VN (q − q2)

]
γ

(2)
N,t(u1, u2; w1, w2),

R2 :=(2π)3
∫∫

dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2 ∇VN (q − q2)

[
γ

(2)
N,t(u1, u2; w1, w2) − γ

(1)
N,t(u1; w1)γ

(1)
N,t(u2; w2)

]
.

(4.5)

Note that in (4.5), R1 represents the semiclassical limit part, and R2 represents
the mean-field limit.

As a preparation for the estimates of the residual term R, we present the
following estimate for regularized Coulomb potential:

Lemma 4.3. Let VN be the regularized Coulomb potential given in (1.2), then
it holds that

‖∇VN‖L∞ � Cβ−2
N . (4.6)
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Proof. Let V̂N be the Fourier transform of VN . Recall that for VN = |·|−1∗GβN
,

[45, Theorem 5.9] yields

V̂N (p) =
C

|p|2 e
−
(
p

βN
2

)2

,

for some positive constant C. Then, by inverse Fourier transform, we get

|∇VN (x)| =
1

(2π)3/2

∣
∣
∣
∣∇x

∫
dpeip·xV̂N (p)

∣
∣
∣
∣

� C

∫
dp|p||V̂N (p)|

= C

∫
dp

1
|p|e

−
(
p

βN
2

)2

� Cβ−2
N ,

where we use the spherical coordination in the last inequality. �

In the following, we treat the semiclassical and mean-field residual terms,
i.e., R1 and R2, by using the truncated radius βN , the oscillation estimate,
the cutoff number operator and the kinetic operator estimates outlined in Sect.
3.2.

4.1. Estimate for the Semiclassical Residual Term R1

In this subsection, we present in full detail the estimate for the semiclassical
residue.

Proposition 4.2. Let ϕ, φ ∈ C∞
0 (R3). Then, for 5

6 < α1 < 1, 0 < δ < 1
8 (6α1 −

5), and s =
⌈

3(2α1+1)
4(1−α1)

⌉
, we have

∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R1(q, p)

∣
∣
∣
∣ � C̃�

1
4 (6α1−5)−2δ, (4.7)

where the constant C̃ depends on ||ϕ||W 1,∞ , ||∇φ||L1∩W s,∞ , suppφ, ||f ||L∞∩H1 ,
and supp f .

Proof. Recall from (4.5) that we have

R1 := (2π)3
∫∫

dw1du1

∫∫
dw2du2

∫∫
dq2dp2

(
f�

q,p(w)f�
q,p(u)

)⊗2

[∫ 1

0
ds ∇VN

(
su1 + (1 − s)w1 − w2

) − ∇VN (q − q2)

]
γ
(2)
N,t(u1, u2; w1, w2).

(4.8)

For ϕ, φ ∈ C∞
0 (R3), we have

∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R1(q, p)

∣
∣
∣
∣

= (2π)3
∣
∣
∣
∣

∫
· · ·
∫

(dqdp)⊗2 ϕ(q)∇pφ(p) ·
∫∫

dw1du1

∫∫
dw2du2

(
f�

q,p(w)f�
q,p(u)

)⊗2

[∫ 1

0
ds ∇VN

(
su1 + (1 − s)w1 − w2

) − ∇VN (q − q2)

]
γ
(2)
N,t(u1, u2; w1, w2)

∣
∣
∣
∣
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= (2π)6
∣
∣
∣
∣

∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [∫ 1

0
ds ∇VN

(
su1 + (1 − s)w1 − w2

) − ∇VN (q − q2)

]

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣,

where we apply the fact that (2π�)3δx(y) =
∫

e
i
�

p·(x−y)dp. Then, inserting
±∇VN (q − w2), by the triangle inequality, we have

� (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [

∇w2

∫ 1

0
ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

+ (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2

∇q [VN (q − w2) − VN (q − q2)]

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

= (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [∫ 1

0
ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]

∇w2γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

+ (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)∇w2

∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [∫ 1

0
ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

+ (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ∇φ(p) · ∇q

(
ϕ(q)f

(
w1 − q√

�

)
f

(
u1 − q√

�

))

e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [

VN

(
q − w2

) − VN (q − q2)
]

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣,

=: I1 + J1 + K1

where we use integration by parts in the second to last equality.

Before advancing, we observe that by splitting the integral with respect
to momentum space Ω� and Ωc

�
as defined in (4.3), for constant C1 depending
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on ||∇φ||L1∩W s,∞ and suppφ, we have
∣
∣
∣
∣

∫
dp∇φ(p)e

i
�

p·(w−u)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
dp(χ(w1−u1)∈Ω�

+ χ(w1−u1)∈Ωc
�
)φ(p)e

i
�

p·(w−u)

∣
∣
∣
∣

� C1

(
χ(w1−u1)∈Ω�

+ �
(1−α1)s

)
,

(4.9)

where we use (4.4) in the last inequality.
Now, we want to separately estimate the terms I1 and J1. We begin by

estimating I1. Recall that

I1 = (2π)6�
3
2

∣
∣∣
∣

∫∫
dqdp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�

p·(w1−u1)
(∫

dq̃2 |f (q̃2)|2
)[∫

ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]

∇w2γ
(2)
N,t(u1, w2; w1, w2)

∣
∣∣
∣.

By using (4.9) we have,

I1� ||∇VN ||L∞ C1�
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1dw2

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣
∣
∣

(|u1 − q| + |w1 − q|) ∣∣∇w2γ
(2)
N,t(u1, w2; w1, w2)

∣∣

� ||∇VN ||L∞ C1�
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣
∣∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣
∣∣

(|u1 − q| + |w1 − q|)
∫

dw2
∣∣∇w2γ

(2)
N,t(w1, w2; u1, w2)

∣∣

= ||∇VN ||L∞ C1�
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣∣
∣

(|u1 − q| + |w1 − q|)
∫

dw2
∣
∣∇w2 〈aw2aw1ΨN,t, aw2au1ΨN,t〉

∣
∣

� ||∇VN ||L∞ C1�
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣
∣∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣
∣∣

(|u1 − q| + |w1 − q|)
∫

dw2

[
||∇w2aw2aw1ΨN,t|| ||aw2au1ΨN,t||

+ ||aw2aw1ΨN,t|| ||∇w2aw2au1ΨN,t||
]

� ||∇VN ||L∞ C1�
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣∣
∣
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(|u1 − q| + |w1 − q|)
[(∫

dw2 ||∇w2aw2aw1ΨN,t||2
) 1

2
(∫

dw2
∣∣∣∣aw2au1Ψ

2
N,t

∣∣∣∣
) 1

2

+

(∫
dw2 ||aw2aw1ΨN,t||2

) 1
2
(∫

dw2 ||∇w2aw2au1ΨN,t||2
) 1

2
]

=: C1 ||∇VN ||L∞

[
i1,1 + i1,2

]
,

Before we continue, we observe that from the definition of the kinetic
energy operator K and number operator N , we have

∫
dq |ϕ(q)|

[∫∫
dw1du1 χ|w1−q|�R1

√
�
χ|u1−q|�R1

√
�

(∫
dw2 ||∇w2aw2aw1ΨN,t||2

)(∫
dw2 ||aw2au1ΨN,t||2

)] 1
2

= 2�
−1

∫
dq |ϕ(q)|

[∫∫
dw1du1 χ|w1−q|�R1

√
�
χ|u1−q|�R1

√
�

〈
ΨN,t, a

∗
w1Kaw1ΨN,t

〉 〈
ΨN,t, a

∗
u1Nau1ΨN,t

〉] 1
2

= 2�
−1

∫
dq |ϕ(q)|

[ ∫
dw1 χ|w1−q|�R1

√
�

〈
ΨN,t, K(a∗

w1aw1 − 1)ΨN,t

〉

∫
du1 χ|u1−q|�R1

√
�

〈
ΨN,t, (N − 1)a∗

u1au1ΨN,t

〉
] 1

2

� 2�
−1

(∫∫
dqdw1 |ϕ(q)| χ|w1−q|�R1

√
�

〈
ΨN,t, Ka∗

w1aw1ΨN,t

〉
) 1

2

(∫∫
dqdu1 |ϕ(q)|χ|u1−q|�R1

√
�

〈
ΨN,t, Na∗

u1au1ΨN,t

〉
) 1

2

� C2�
−4− 3

2 ,

(4.10)

where in the last step we use a direct outcome of (4.2) and (3.2), i.e.,

∫∫
dqdx χ|x−q|�R1

√
�
|ϕ(q)| 〈ΨN,t, a

∗
xKaxΨN,t〉

=
∫∫

dqdx χ|x−q|�R1
√

�
|ϕ(q)| 〈ΨN,t,K(a∗

xax − 1)ΨN,t〉

�
∫∫

dqdx χ|x−q|�R1
√

�
|ϕ(q)| 〈ΨN,t,Ka∗

xaxΨN,t〉

=
〈

ΨN,t,K
∫∫

dqdx χ|x−q|�R1
√

�
|ϕ(q)|a∗

xaxΨN,t

〉

� C2�
− 3

2 〈ΨN,t,KΨN,t〉
� C2�

− 3
2 −3.

(4.11)

In the above estimate, C2 is a constant depends on ||ϕ||L∞ and supp f .
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To continue, we apply the Hölder inequality to i1,1 with respect to the
terms w1 and u1,

i1,1 � �
3
2

∫
dq |ϕ(q)|

[ ∫∫
dw1du1χ(w1−u1)∈Ω�

∣
∣
∣
∣f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

2

(|u1 − q| + |w1 − q|)2
] 1

2

[ ∫∫
dw1du1 χ|w1−q|�R1

√
�
χ|u1−q|�R1

√
�

(∫
dw2 ||∇w2aw2aw1ΨN,t||2

)(∫
dw2 ||aw2au1ΨN,t||2

)

+
∫∫

dw1du1 χ|w1−q|�R1
√

�
χ|u1−q|�R1

√
�

(∫
dw2 ||aw2aw1ΨN,t||2

)(∫
dw2 ||∇w2aw2au1ΨN,t||2

)] 1
2

= �
3
2

[
�

3

∫∫
dw̃1dũ1χ|w̃1−ũ1|��

α1+ 1
2
|f (w̃1) f (ũ) |2� (|ũ1| + |w̃1|)2

] 1
2

∫
dq |ϕ(q)|

[
2
∫∫

dw1du1 χ|w1−q|�R1
√

�
χ|u1−q|�R1

√
�

(∫
dw2 ||∇w2aw2aw1ΨN,t||2

)(∫
dw2 ||aw2au1ΨN,t||2

)] 1
2

.

Then by using (4.10), the estimate goes further

� C2�
3−4− 3

2+ 1
2

[ ∫∫
dw̃1dũ1χ|w̃1−ũ1|�R1�

α1+ 1
2
|f (w̃1) f (ũ) |2 (|ũ1| + |w̃1|)2

] 1
2

� C2�
−2

[ ∫∫
dw̃1dũ1 χ|w̃1−ũ1|�R1�

α1+ 1
2
|f (w̃1) f (ũ) |2 |ũ1 + w̃1|2

] 1
2

� C3�
−2+ 3

2 (α1+
1
2 ) = C3�

6α1−5
4 ,

where C3 depends on ||ϕ||L∞ , ||f ||L∞∩L2 , supp f and we use the following
estimate in the last inequality above:

∫
dw |f(w)|2

∫
du χ|w−u|�R1�

α1+ 1
2
|f(u)|2

� sup
u

|f(u)|2
∫

dw |f(w)|2
∫

du χ|w−u|�R1�
α1+ 1

2

� ||f ||L∞ ||f ||L2 �
3(α1+

1
2 ),

(4.12)

where the fixed radius R1 arises from the compactness assumption of f .
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With steps similar to those for i1,1, we have

i1,2 � C3�
−2

�
(1−α1)s

[ ∫∫
dw̃1dũ1|f (w̃1) f (ũ) |2 (|ũ1| + |w̃1|)2

] 1
2

� C4�
−2+(1−α1)s,

where the constant C4 depends on ||ϕ||∞, ||f ||L∞∩L2 , and supp f . To balance
the order between i1,1 and i1,2, s is chosen to be

s =
⌈

3(2α1 + 1)
4(1 − α1)

⌉
,

for α1 ∈ ( 5
6 , 1). Therefore, we have

I1 � C̃ ||∇VN ||L∞ �
6α1−5

4 . (4.13)

To estimate J1, we compute

J1 = (2π)6
∣
∣
∣
∣

∫∫
dqdp

∫∫∫
dw1du1dw2 ϕ(q)∇φ(p) · f

(
w1 − q√

�

)
f

(
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�

)
e

i
�

p·(w1−u1)

[
2�

∫
dq̃2 f (q̃2) ∇f (q̃2)

]

[∫ 1

0

ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]
γ

(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

� (2π)6�

∫
dq|ϕ(q)|

∫∫∫
dw1du1dw2

∣
∣
∣
∣

∫
dp(χ(w1−u1)∈Ω�

+χ(w1−u1)∈Ωc
�
)∇φ(p) · e

i
�

p·(w1−u1)
∣
∣
∣
[∫

dq̃2 |∇f (q̃2) |
] ∣∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

)[∫ 1

0

ds VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)

]
γ

(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

� C1�

∫
dq|ϕ(q)|

∫∫∫
dw1du1dw2

(
χ(w1−u1)∈Ω�

+ �
(1−α1)s

) ∣∣
∣
∣

f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

[∫ 1

0

ds |VN

(
su1 + (1 − s)w1 − w2

) − VN (q − w2)|
] ∣∣
∣
∣

γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

� C1 ||∇VN ||L∞ �

∫
dq|ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
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) ∣∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

(|u1 − q| + |w1 − q|)
∫

dw2 ||aw2aw1ΨN,t||2 ||aw2au1ΨN,t||2

� C1 ||∇VN ||L∞ �

∫
dq|ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)∈Ω�

+�
(1−α1)s

) ∣∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

(|u1 − q| + |w1 − q|)
(∫

dw2 ||aw2aw1ΨN,t||22
) 1

2
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(∫
dw2 ||aw2au1ΨN,t||22

) 1
2

=: C1 ||∇VN ||L∞
[
j1,1 + j1,2

]
. (4.14)

As in part I1, we separately analyze j1,1 and j1,2.

j1,1 = �

∫
dq|ϕ(q)|

∫∫
dw1du1χ(w1−u1)∈Ω�

∣
∣
∣
∣f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣ (|u1 − q| + |w1 − q|)

χ|u1−q|�R1
√

�
χ|w1−q|�R1

√
�

(∫
dw2

〈
ΨN,t, a

∗
w1

a∗
w2

aw2aw1ΨN,t

〉
) 1

2

(∫
dw2

〈
ΨN,t, a

∗
u1

a∗
w2

aw2au1ΨN,t

〉
) 1

2

� �

∫
dq|ϕ(q)|

(∫∫
dw1du1χ(w1−u1)∈Ω�

∣
∣
∣
∣f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

2

(|u1 − q| + |w1 − q|)2
) 1

2

(∫∫
dw1dw2 χ|w1−q|�R1

√
�

〈
ΨN,t, a

∗
w1

a∗
w2

aw2aw1ΨN,t

〉
)

= �

(
�

3

∫∫
dw̃1dũ1χ(w̃1−ũ1)∈Ω�

|f (w̃) f (ũ) |2�

(|ũ| + |w̃|)2
) 1

2
∫∫

dqdw1 χ|w1−q|�R1
√

�
|ϕ(q)|

〈
ΨN,t, a

∗
w1

Naw1ΨN,t

〉

� ||ϕ||L∞ �
1+2−3− 3

2

(∫∫
dw̃1dũ1χ(w̃1−ũ1)∈Ω�

|f

(w̃) f (ũ) |2 (|ũ| + |w̃|)2
) 1

2

�C4�
3
2 (α1− 1

2 ),

where we use (4.12) in the last inequality.
On the other hand, from the definition of j1,2 in (4.14), we get

j1,2 = �

∫
dq|ϕ(q)|

∫∫
dw1du1 �

(1−α1)s

∣
∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣ (|u1 − q| + |w1 − q|)

χ|u1−q|�R1
√

�
χ|w1−q|�R1

√
�

(∫
dw2 ||aw2aw1ΨN,t||22

) 1
2
(∫

dw2 ||aw2au1ΨN,t||22
) 1

2

� �
1+(1−α1)s

(∫∫
dw1du1

∣
∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣
2

(|u1 − q| + |w1 − q|)2
) 1

2

∫
dq|ϕ(q)|

∫∫
dw1dw2 χ|w1−q|�R1

√
�

〈
ΨN,t, a

∗
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aw2aw1ΨN,t

〉
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� �
1+(1−α1)s−3− 3

2

(
�
4
∫∫

dw̃1dũ1 χ|w̃1−ũ1|��
α1+ 1

2
|f(w̃1)f(ũ)|2(|ũ1| + |w̃1|)2

) 1
2

� C4�
(1−α1)s− 3

2 .

To obtain the same order for j1,1 and j1,2, we can choose

s =
⌈

3(2α1 + 1)
4(1 − α1)

⌉
.

Thus, for α1 ∈ ( 1
2 , 1), we have

J1 � C̃ ||∇VN ||L∞ �
3
2 (α1− 1

2 ). (4.15)

Now, we want to estimate K1.

K1 = (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ∇φ(p) · ∇q

(
ϕ(q)f

(
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)
f

(
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�
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e
i
�

p·(w1−u1)
∣
∣
∣
∣f
(
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)∣∣
∣
∣
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(
q − w2
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γ
(2)
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∣
∣
∣
∣

= (2π)6
∣
∣
∣
∣

∫∫∫
(dq)⊗2dp

∫∫∫
dw1du1dw2 ∇φ(p) ·

[
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2 ϕ(q)∇f

(
w1 − q√

�

)
f

(
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)
− �

− 1
2 ϕ(q)f

(
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�
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∇f

(
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)]

e
i
�
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∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣
2 [

VN

(
q − w2

) − VN (q − q2)
]
γ
(2)
N,t(u1, w2; w1, w2)

∣
∣
∣
∣

=: k1,1 + k1,2 + k1,3.

Note that, for any ϕ ∈ C∞
0 and f ∈ W 1,2

0 , the term k1,1 is
√

�-order
higher than k1,2 and k1,3. Moreover, the estimate of the terms k1,2 and k1,3

is the same when doing change of variables in the final steps. Therefore, we
focus only on the term k1,2.

k1,2 � (2π)6�
− 1
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∫∫∫
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∣
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∣
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∣
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∣
∣
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∣
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∣
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�
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∣
∣
∣

∫
�

3
2 dq̃2

|f(q̃2)|2
∣
∣
∣VN

(
q − w2

)− VN (q −
√
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∣
∣
∣
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� C1 ||∇VN ||L∞ �
1+ 1

2

∫
dq

∫∫
dw1du1

∣
∣
∣χ(w1−u1)∈Ω�

+ �
(1−α1)s

∣
∣
∣

∣
∣
∣
∣ϕ(q)∇f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

(∫
dq̃2|q̃2| |f(q̃2)|2

)∫
dw2 |γ(2)

N,t(u1, w2;w1, w2)|

� C1 ||∇VN ||L∞ �
1+ 1

2

∫
dq |ϕ(q)|

∫∫
dw1du1

(
χ(w1−u1)��α1

+�
(1−α1)s

) ∣∣
∣
∣∇f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

χ|w1−q|�R1
√

�
χ|u1−q|�R1

√
�

(∫
dw2 ||aw2aw1ΨN,t||2

) 1
2
(∫

dw2 ||aw2au1ΨN,t||2
) 1

2

=: C1 ||∇VN ||L∞ [k̃1 + k̃2, ].

Using the Hölder inequality with respect to w1 and u1, we obtain that

k̃1 � �
1+ 1

2

∫
dq |ϕ(q)|

[∫∫
dw1du1 χ(w1−u1)��α1

∣
∣
∣
∣∇f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

2
] 1

2

[∫∫
dw1du1 χ|w1−q|�R1

√
�
χ|u1−q|�R1

√
�

(∫
dw2 ||aw2aw1ΨN,t||2

)(∫
dw2 ||aw2au1ΨN,t||2

)] 1
2

= �
3
2

[

�
3

∫∫
dw̃1dũ1 χ(w̃1−ũ1)��α1+ 1

2

∣
∣
∣
∣∇f (w̃1) f (ũ1)

∣
∣
∣
∣

2
] 1

2

∫
dq |ϕ(q)|

[∫
dw1 χ|w1−q|�R1

√
�

〈
ΨN,t, a

∗
w1Naw1ΨN,t

〉
]

� C5�
3
2 (α1+

1
2 )− 3

2 = C5�
3(2α1−1)

4 ,

where we use (4.2) in the last inequality and C5 depending on ||f ||L∞ , ||∇f ||L2 ,
supp f , and ||ϕ||L∞ .

Similarly, to calculate j1,2,

k̃2 � �
1+ 1

2

∫
dq |ϕ(q)|

∫∫
dw1du1�
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∣
∣
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(
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�

)
f

(
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�

) ∣
∣
∣
∣

χ|w1−q|�R1
√

�
χ|u1−q|�R1

√
�

(∫
dw2 ||aw2aw1ΨN,t||2

) 1
2

(∫
dw2 ||aw2au1ΨN,t||2

) 1
2

� C5�
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2 ,
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where s is chosen as

s =
⌈

3(2α1 + 1)
4(1 − α1)

⌉
,

for α1 ∈ ( 1
2 , 1). Thus,

K1 � C̃ ||∇VN ||L∞ �
3(2α1−1)

4 , (4.16)

where we recall that the constant C̃ depends on ||ϕ||W 1,∞ , ||∇φ||L1∩W s,∞ ,
suppφ, ||f ||L∞∩H1 , and supp f .

Therefore, in summary, we have
∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R1(q, p)

∣
∣
∣
∣ � C̃ ||∇VN ||L∞ �

1
4 (6α1−5) � C̃β−2

N �
1
4 (6α1−5),

where we use (4.6) in the second inequality.
Setting βN = �

δ for 0 < δ < 1
8 (6α1 − 5), we obtain the desired result.

�

4.2. Estimate for the Mean-Field Residual Term R2

Proposition 4.3. Let ϕ, φ ∈ C∞
0 (R3). Then, for 1

2 < α2 < 1, 0 < δ < 3
4 (α2− 1

2 ),

and s =
⌈

3(2α2+1)
4(1−α2)

⌉
, we have

∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R2(q, p)

∣
∣
∣
∣ � C̃�

3
2 (α2− 1

2 )−2δ (4.17)

where the constant C̃ depends on ||ϕ||∞, ||∇φ||L1∩W s,∞ , ||f ||L∞∩H1 , supp f ,
and suppφ.

Proof. Recall that from (4.5), we have

R2 := (2π)3
∫∫

dw1du1

∫∫
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∫∫
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Then, we have
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∣
∣
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∣
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∣
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= �
−3

∣
∣
∣
∣
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where we use the weighted Dirac-delta function in the last equality; i.e.,

1
(2π�)3

∫
dp2 e

i
�

p2·(w2−u2) = δw2(u2).

Now, splitting the domains of w1 and u1 into two, namely with the character-
istic functions χ(w1−u1)∈Ω�
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as defined in (4.3), we have
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Without the loss of generality, we let Φ(q, p) = ϕ(q)φ(p). First, consider-
ing the term J2,

J2 = (2π)3
∣
∣
∣
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By the change of variable
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(
w1 − q√

�

)
f

(
u1 − q√

�

)∣∣
∣
∣

∣
∣
∣
∣

∫
dp χ(w1−u1)∈Ωc

�
∇φ(p)e

i
�

p·(w1−u1)

∣
∣
∣
∣ |

(
γ

(2)
N,t(u1, w2;w1, w2) − γN,t(u1;w1)γN,t(w2;w2)

)∣∣
∣

� C ||∇VN ||L∞ �
3
2

∫
dq |ϕ(q)|

∫∫
dw1du1

∣
∣
∣
∣f
(

w1 − q√
�

)

f

(
u1 − q√

�

) ∣
∣
∣
∣χ|w1−u1|�2R1

√
�

∫
dw2

∣
∣
∣γ(2)

N,t(u1, w2;w1, w2) − γ
(1)
N,t(u1;w1)γ

(1)
N,t(w2;w2)

∣
∣
∣

∣
∣
∣
∣

∫
dp χ(w1−u1)∈Ωc

�
∇φ(p)e

i
�

p·(w1−u1)

∣
∣
∣
∣ .

Recall again from Lemma 4.2 that we have
∣
∣
∣
∣

∫
dp χ(w1−u1)∈Ωc

�
e

i
�

p·(w1−u1)∇φ(p)
∣
∣
∣
∣

� ||∇φ||W s,∞ �
(1−α2)s,



L. Chen et al. Ann. Henri Poincaré

for s to be chosen later. Then, we obtain

J2 � C ||∇φ||W s,∞ ||∇VN ||L∞ �
3
2+(1−α2)s

∫
dq |ϕ(q)|

∫∫
dw1du1

∣
∣
∣
∣f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣

Tr(1)
∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)χ|w1−u1|�2R1

√
�
,

The Hölder inequality yields

J2 � C ||∇φ||W s,∞ ||∇VN ||L∞ �
3
2+(1−α2)s

∫
dq |ϕ(q)|

(∫∫
dw1du1 χ|w1−u1|�2R1

√
�

∣
∣
∣
∣f
(

w1 − q√
�

)
f

(
u1 − q√

�

)∣∣
∣
∣

2
) 1

2

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t

⊗γ
(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

= C ||ϕ||L∞ ||∇φ||W s,∞ ||∇VN ||L∞ �
3
2+(1−α2)s

(
�

3

∫∫
dw̃1dũ1 χ|w̃1−ũ1|�2R1 |f (w̃) f (ũ) |2

) 1
2

∫
dq

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t

⊗γ
(1)
N,t

∣
∣
∣ (u1;w1)

]2
χ|w1−q|�R1

√
�

) 1
2

� C ||ϕ||L∞ ||∇φ||W s,∞ ||∇VN ||L∞ �
3+(1−α2)s

(∫∫
dw̃1dũ1 |f (w̃) f (ũ) |2

) 1
2

�
3
2

∫
dq̃1χ|q̃1|�R1

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t

⊗γ
(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

� C̃ ||∇VN ||L∞ �
3+(1−α2)s+

3
2

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

,

where we denote

Tr(1)
∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)
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=
∫

dw2|γ(2)
N,t(u1, w2;w1, w2) − γ

(1)
N,t(u1;w1)γ

(1)
N,t(w2;w2)|.

Thus, we have

J2 � C̃ ||∇VN ||L∞ �
3+(1−α2)s+

3
2

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

.

Now, we focus on I2,1

I2,1 = (2π)3
∣
∣
∣
∣

∫∫
(dq)⊗2ϕ(q)

∫∫∫
dw1du1dw2 f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣
∣
∣
∣f
(

w2 − q2√
�

)∣∣
∣
∣

2

(∫
dp χ(w1−u1)∈Ω�

e
i
�

p·(w1−u1)∇φ(p)
)

· ∇VN (q − q2)

[
γ

(2)
N,t(u1, w2;w1, w2) − γ

(1)
N,t(u1;w1)γ

(1)
N,t(w2;w2)

] ∣∣
∣
∣.

We observe that
∣
∣
∣
∣

∫
dp e

i
�

p·(w1−u1)∇φ(p)
∣
∣
∣
∣ � ||∇φ||L1 .

Then, we obtain the following estimate:

I2 � C ||∇φ||L1 ||∇VN ||L∞

∫
dq |ϕ(q)|

(∫∫
dw1du1 χ|w1−u1|��α

2
χ|w1−u1|�2R1
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�

∣
∣
∣
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(

w1 − q√
�
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f

(
u1 − q√

�
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∣
∣

2
) 1

2

�
3
2

∫
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(∫∫
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[
Tr(1)

∣
∣
∣γ(2)
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(1)
N,t ⊗ γ

(1)
N,t

∣
∣
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χ|w1−q|�R1

√
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) 1
2
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2

(
�

3
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α2+ 1
2
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|f(w̃1)f(ũ1)|2
) 1

2

∫
dq

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2
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√
�

) 1
2
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(∫∫
dw̃1dũ1 χ|w̃1−ũ1|��

α2+ 1
2

|f(w̃1)f(ũ1)|2
) 1

2

�
3
2

∫
dq̃1χ|q̃1|�R1

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

.

From (4.12), we have

I2 � C̃ ||∇VN ||L∞ �
3+ 3

2 (α2+
1
2 )+ 3

2

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

.

To balance the order between I2 and J2, s is chosen to be

s =
⌈

3(2α2 + 1)
4(1 − α2)

⌉
,

for α2 ∈ [0, 1). Therefore, we have
∣
∣
∣
∣

∫∫
dqdp ϕ(q)φ(p)∇p · R2

∣
∣
∣
∣ � I2 + J2

� C̃ ||∇VN ||L∞ �
3+ 3

2 (α2+
1
2 )+ 3

2

(∫∫
dw1du1

[
Tr(1)

∣
∣
∣γ(2)

N,t − γ
(1)
N,t ⊗ γ

(1)
N,t

∣
∣
∣ (u1;w1)

]2) 1
2

� C̃β−2
N �

3+ 3
2 (α2+

1
2 )+ 3

2 N2.

Setting βN = �
δ for 0 < δ < 1

8 (6α1 − 5), we have the desired inequality.
�
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[13] Bröcker, T., Werner, R.F.: Mixed states with positive Wigner functions. J. Math.
Phys. 36(1), 62–75 (1995)

[14] Case, W.: Wigner functions and Weyl transforms for pedestrians. Am. J. Phys.
76, 10 (2008)

[15] Chen, L., Lee, J., Liew, M.: Combined mean-field and semiclassical limits of
large fermionic systems. J. Stat. Phys. 182(2), (2021)

[16] Chen, L., Lee, J.O., Lee, J.: Rate of convergence toward Hartree dynamics with
singular interaction potential. J. Math. Phys. 59(3), 031902 (2018)

[17] Chen, L., Lee, J.O., Schlein, B.: Rate of convergence towards Hartree dynamics.
J. Stat. Phys. 144(4), 872 (2011)

[18] Chong, J., Lafleche, L., Saffirio, C.: From Schrödinger to Hartree–Fock and
Vlasov equations with singular potentials. arXiv preprint arXiv:2103.10946
(2021)

[19] Combescure, M., Robert, D.: Coherent States and Applications in Mathematical
Physics. Springer, Netherlands (2012)

[20] Derezinski, J., Gerard, C.: Mathematics of Quantization and Quantum Fields.
Cambridge University Press, Cambridge (2009)

[21] Dietler, E., Rademacher, S., Schlein, B.: From Hartree dynamics to the relativis-
tic Vlasov equation. J. Stat. Phys. 172(2), 398–433 (2018)

[22] Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)

[23] Elgart, A., Erdös, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as
the mean field limit of weakly coupled fermions. J. de Mathématiques Pures et
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