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Abstract
We integrate Markov Logic networks with deep learning architectures operating on high-dimensional
and noisy feature inputs. Instead of relaxing the discrete components into smooth functions, we propose
an approach that allows us to backpropagate through standard statistical relational learning components
using perturbation-based differentiation. The resulting hybrid models are shown to outperform models
solely relying on deep learning based function fitting. We find that using noise perturbations is required
to allow the proposed hybrid models to robustly learn from the training data.
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1. Introduction

Connectionist models in artificial intelligence (AI) have achieved tremendous success in the last
decade. Shortcomings in regard to explainability and the lack of reasoning abilities, however,
raise concerns about robustness and generalizability [1, 2]. Neural-symbolic integration [3] seeks
to overcome these issues by bridging the gap between deep learning and classical logic-based
approaches with the ultimate goal of combining the best of both worlds.

Markov Logic Networks (MLNs) [4] have been applied to numerous tasks such as sentiment
analysis [5], activity recognition [6], ontologies and the semantic web [7, 8]. However, their
impact is still lacking in NLP and related areas due to the success of end-to-end learning and
powerful languagemodels such as long short-termmemory networks [9] and self-attention based
models [10, 11]. In this work, we explore the integration ofMLNs in end-to-endmachine learning
by utilizing recent advances in methods for backpropagating through discrete probability
distributions [12, 13]. We focus on settings where inputs are high-dimensional and noisy but
logical rules can be utilized to predict dataset specific outcomes. By connecting the discrete
inference mechanism of MLNs with continuous learning we hope to enrich their possible
application scenarios.

In particular, we demonstrate that the perceptron rule [14, 15], which was developed over a
decade ago, may serve as the conceptual entry point for a hybrid model which is solely based on
a neural backbone, a maximum a posteriori (MAP ) solver, and an implementation of the backward
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pass for the MLN. We further show that more general model classes can be achieved by utilizing
perturbation-based implicit differentiation [13, 16]. We then investigate how different gradient
formulations [12, 13, 15] for this simplistic neural-symbolic model behave in the context of
datasets based on text inputs which are governed by a set of global regularities. We present
experimental results of the hybrid model on a schema dataset constructed for Description Logic
reasoning and on the CLUTRR benchmark suite [17]. We find that using noise-perturbations is
necessary to achieve proper training behavior within the scope of our experiments which also
provides new evidence in regard to recent methods of backpropagating through combinatorial
optimization problems [12, 13].

2. Related Work

Multiple directions exist in the literature of integrating classical logic into deep learning. Seman-
tic based regularization augments neural training objectives with constraints based on first-order
programs [18, 19, 20, 21]. In general, these approaches adapt the learning process of neural
models and no explicit reasoning is performed when models are applied to unseen data.

Differentiable interpreters, on the other hand, combine learning and reasoning by using fuzzy-
logic, i.e., relaxing the discreteness of the logic side. In Logic Tensor Networks [22], constants
are represented as tensors and predicates are parameterized functions which take the constants
and output soft truth values. While [23] provides a differentiable formulation of forward
chaining, Neural Theorem Provers [24] relax the backward chaining algorithm in the Datalog
subset of Prolog. Further works extend them towards better scalability [25, 26] and query
adaptive rule learning [27]. In TensorLog [28], a deductive database syntax is proposed which
allows for efficient inference performed by using message passing compiled into a differentiable
function. Relational neural machines [29] unify the neural and the logic side by defining general
exponential family distributions assigned with potentials for the two components. Inference is
performed by using fuzzy-logic and gradients are based on average formula satisfaction, hence,
requiring to modify and track internals of the logical side. The aforementioned works focus on
advanced procedures of making the inference process differentiable while the goal of our work
is to explore if the implementation of one backward pass suffices to guarantee learning when
reasoning over continuous inputs is required.
In Neural Markov Logic Networks [30], first-order logic rules are replaced with neural net-

works and inference is performed using Gibbs sampling on the resulting exponential distribution.
The focus of our work is different as for our joint model the MLN is not modified and the model
operates on continuous inputs when a set of first-order rules is provided whereas in [30] the
input is structured data (knowledge graphs). Similar to our work, logic and neural components
operate independently in DeepProbLog [31] where aProbLog [32] is used as the underlying
logic formalism. The type of inference in DeepProbLog is query-based whereas in our approach
interpretation-based inference is utilized by obtaining the MAP state of the MLN which allows to
predict many atoms simultaneously as we will describe in Section 5.



3. Markov Logic Networks

MLNs [4] combine undirected probabilistic graphical models, parameterized as log-linear models,
with function free first-order logic. We briefly review the concepts required throughout the
remaining sections. Let 𝑎 ∶= 𝑝(𝑡1, ..., 𝑡𝑚𝑎) be an atom. In particular, 𝑡1, ..., 𝑡𝑚𝑎 is a collection of
terms where a term is either a constant or a variable and 𝑝 is a predicate of arity 𝑚𝑎 ∈ ℕ+.
When terms are variables, they are universally quantified. An atom containing only constants
is a ground atom. A clause or rule is the disjunction of atoms or negated atoms, for instance,
𝐹𝑗 ∶= 𝑎1 ∨ 𝑎2 ∨ ... ∨ 𝑎𝑘𝑗 . When every atom in 𝐹𝑗 is a ground atom, we term this one possible
grounding of the clause. Note that a clause can have length one, i.e., it may consist of only one
atom.
A MLN is a collection of tuples (𝐹𝑗, 𝑤𝑗) with 𝑗 ∈ {1, ..., 𝑚} where 𝐹𝑗 is a clause and 𝑤𝑗 is a

real-valued number, the weight or confidence of the clause. Let 𝒞 = {𝑐1, ..., 𝑐|𝒞 |} be a set of
constants. The MLN forms a ground MLN by a) assigning a binary node 𝑧𝑖 in the graphical
model to every possible ground atom that can be formed given 𝒞 and all predicates occurring
in the set of clauses of the MLN, and b) by adding a binary feature for every possible grounding
of every clause. The binary feature is weighted with the underlying weight of the clause and it
is one if the associated grounding is true and it is zero otherwise. Moreover, the set of clauses
can be extended with hard clauses, i.e., clauses with a weight of infinity enforcing that every
possible grounding of these clauses must hold true. The ground MLN defines the probability
mass over worlds: 1

𝑝(z; w) = 1
𝑍
exp {∑

𝑗
𝑤𝑗𝑛𝑗(z)}. (1)

Where z ∈ {0, 1}𝑁 is a possible world, 𝑛𝑗(z) is the number of true groundings of 𝐹𝑗 in z, and 𝑍
normalizes the distribution. Note that for clauses of length one, which are termed weighted
ground atoms, 𝑛𝑗 is either zero or one. The MAP state is defined as the world with the highest
probability and we assume access to a MAP solver is provided throughout the following sections.

Learning the weight parameters specified in equation (1) can be performed by gradient-based
optimization when defining the loss criterion 𝐿(w) to be the negative log likelihood of a given
dataset. Taking the derivative of the negative logarithm of (1), we obtain

𝜕𝐿
𝜕𝑤𝑗

= −
𝜕 log 𝑝(z; w)

𝜕𝑤𝑗
= 𝔼z∼𝑝(𝑧)[𝑛𝑗(z)] − 𝑛𝑗(z). (2)

The expectation in equation (2) requires summation over all possible worlds; therefore, the
perceptron rule approximates it by using the counts in the MAP state [14, 15] which is much
easier to obtain in the most cases (e.g., [33]).

4. Backpropagating through Markov Logic

Instead of promoting a novel neural-symbolic model, the goal of this work is to combine already
existing components and investigate how far we can get with a hybrid pipeline that simply relies

1Hard clauses define an additional collection of constraints which is omitted for brevity.



on the implementation of one backward pass. We focus on model behavior when intersecting
neural and symbolic components and therefore restrict the setting to uncertain clauses of length
one, hence, weighted ground atoms, and hard clauses.

Let us assume that we are given a MLN with of a set of hard clauses { ̃𝐹𝑗}𝑘𝑗=1 and a collection of
clauses {(𝐹𝑖, 𝑤𝑖)}𝑚𝑖=1 representing uncertain ground atoms {𝑧𝑖}𝑚𝑖=1. We assume continuous input
features x are available and provide information about the atoms of the MLN. As the MLN
exclusively deals with symbolic inputs and weights, we use a neural module as an intermediate
between the input and the MLN. We do not pose any restriction on the structure of x but we
require the neural module to be queryable in regard to the uncertain atoms, given x. Therefore,
the neural module defines a parameterized function, 𝑓, with parameters 𝜃, which takes x as input
and outputs a real valued score for some or all of the uncertain ground atoms, e.g., 𝑓 (x; 𝜃) ∈ ℝ𝑚.
The goal is to infer the correct truth values of the ground atoms {𝑧𝑖}𝑚𝑖=1 or a subset thereof.

Please note, inference in form of interpretations, i.e., the MAP state of an MLN, can be advan-
tageous already for moderate sizes of 𝑚 as query-based inference would require to transform
every ground atom into a query and infer its truth value separately, given the clauses.

4.1. Hybrid Model

Equation (1) defines a probability distribution in the exponential family with natural parameter
w. We model the natural parameter with the neural module, hence, we consider the following
probabilistic model

z ∼ 𝑝(z; w) w = 𝑓 (x; 𝜃), (3)

where 𝑝(z; w) is the distribution according to equation (1). In the forward pass, the neural
module processes the input and computes atom confidences which serve as input for the MLN.
We seek to learn the parameters of the neural module in this hybrid pipeline, i.e., we seek 𝑑𝐿

𝑑𝜃
for a loss criterion 𝐿(𝜃). If we now assume 𝐿(𝜃) is the negative log-likelihood as in Section 3, we
can base the backward pass of the hybrid model on the perceptron rule. By using the chain rule
and equation (2) with the perceptron approximation, we obtain 2

𝑑𝐿
𝑑 𝜃

= 𝑑𝐿
𝑑w

𝑑w
𝑑 𝜃

≈ [MAP(w) − z]𝑇 𝑑w
𝑑 𝜃

. (4)

In equation (4), 𝑑w𝑑 𝜃 is simply the gradient of the neural network, 𝑓. Differentiating through the

MLN is achieved by approximating the gradients of the negative log-likelihood 𝑑𝐿
𝑑w ≈ MAP(w)− z,

which is the expression of interest throughout the next sections. In the realm of automatic
differentiation, it suffices to implement 𝑑𝐿

𝑑wwithout making further conceptual modifications to
the logical component.

2Note that in the perceptron rule the expectation in equation (2) is substituted with the MAP state and 𝑛(z) directly
corresponds to z as the count of a weighted atom in the data is either 0 or 1.



4.2. Perturbation-based Implicit Differentiation

While in the previous section we are restricted to a likelihood criterion directly applied to the
MLN output, perturbation-based implicit differentiation [16] allows for more general models and
arbitrary loss functions 𝐿(𝜃). In particular, we utilize implicit maximum likelihood estimation
(IMLE) [13] which minimizes the KL-divergence between the model distribution of the discrete
component, in our case the MLN, and a target distribution whose parameters depend on the
weights w and the downstream gradient of the loss function 𝑑𝐿

𝑑z . Our gradient expression of
interest is then calculated by using a noise perturbation scheme based on Gumbel perturbations.
For any loss criterion 𝐿, we compute the gradients as

𝑑𝐿
𝑑w

≈ 1
𝜆
[1
𝑆

𝑆
∑
𝑖=1

MAP(w + 𝜖𝑖) −
1
𝑆

𝑆
∑
𝑖=1

MAP(w − 𝜆𝑑𝐿
𝑑z

+ 𝜖𝑖)] (5)

where 𝑆 ∈ ℕ+ and each 𝜖𝑖 is a vector of 𝑖.𝑖.𝑑. Gumbel samples. We use the sampling scheme
proposed in [13] and sample the elements of 𝜖𝑖 from

𝜏
𝑘
[

𝐶
∑
𝑐=1

{Gamma(1/𝑘, 𝑘/𝑐)} − log(𝐶)], (6)

where 𝜏 is a temperature parameter, 𝐶 ∈ ℕ+, and 𝑘 controls how many entries of z must be true.
As there is no such restriction in the context of our experiments, we treat 𝑘 as a hyperparameter.
By using IMLE, we can extend the model in (3) to cases where the perceptron rule is not
applicable or does not provide enough gradient signal. For the extended model, we have

y = g(z; 𝛺) z ∼ p(z, w) w = f(x; 𝜃), (7)

with y representing any observable output pattern and 𝑔 a parameterized function. After
defining any loss criterion on y, equation (7) may represent a general computational graph
with the MLN embedded as a node, receiving upstream gradients 𝑑𝐿

𝑑z and sending downstream

gradients 𝑑𝐿
𝑑w by using equation (5). A special case of equation (5) is also proposed in [12]:

𝑑𝐿
𝑑w

≈ 1
𝜆
[MAP(w) − MAP(w − 𝜆𝑑𝐿

𝑑z
)] (8)

It can be shown that, for large values of 𝜆, equation (8) approximates the perception rule when
the Hamming distance is chosen as the loss criterion [13] .

5. Experiments

We evaluate the gradient formulations presented in the previous sections in two scenarios. In
particular, we construct a dataset in the context of description logic based schema reasoning
and we use the CLUTRR benchmark suite [17]. Both datasets are comprised of textual input
instances which describe a symbolic world represented by atoms. The challenging part is that
the dataset instances are separated into explicit and implicit atoms where the explicit atoms can
be derived from the textual input but the implicit atoms must be derived by reasoning over the



explicit atoms. Although inference times are an important factor in these settings, backward
times roughly double in comparison to neural-only baselines when training the hybrid model,
i.e., inducing the MLN does not produce a bottleneck within the scope of our experiments.3

One finding of our experiments is that using gradients of equation (4) and (8) does not
lead to well behaved training dynamics, i.e., the loss value does not decrease when training
under various hyperparemter settings. This is in contrast to using equation (5) on which the
experimental results in the following sections are based. We conjecture that noise perturbations
are beneficial and we discuss this further in Section 5.4.

5.1. General Architecture

For function 𝑓 in equation (3), we use the base BERT architecture [10] pre-trained for next
sentence prediction and masked language modelling and we make the word embeddings con-
stants throughout the experiments.4 For obtaining atom confidences, we employ the standard
procedures used in the context of question answering with transformers. In particular, the text
input is preceded by a [cls] token and the query is appended to the input following a [sep] token.
The query may represent an individual target atom (schema) or refers to two target entities
(CLUTRR). The embedding of the [cls] token is fed into a fully connected layer for predicting a
score (schema) or a vector of scores (CLUTRR). For the neural-only baseline, we directly use
these scores for the final prediction.

The confidence score or vector obtained by the fully connected layer defines the atom weights
for the MLN as proposed in equation (3). Instead of using the raw confidences, we found
applying a leaky-ReLu [37] layer is beneficial in the context of our experiments. The hybrid
model is then trained end-to-end using stochastic optimization and the gradient formulations
proposed in Section 4 while using absolute error on the MLN output. We use the same random
seed for all the experiments and in regard to equation (5) we set 𝑆 to one and 𝐶 = 10. In regard
to the loss criterion as specified in Section 4.2 we use absolute error. Detailed architecture
descriptions, training details, and hyperparameter specifications are presented in Appendix B.

5.2. Schema Dataset

Description Logic. We construct a NLP dataset based on schema reasoning in the description
logic 𝔼𝕃 + + [38, 39]. The basic building blocks of the syntax are concepts and roles. A schema,
also termed Tbox, consists of axioms expressing knowledge about the concepts and roles. For
instance, the axiom 𝐴 ⊑ 𝐵 states that every individual belonging to concept 𝐴 also belongs to
concept 𝐵. The combination with MLNs is well studied and therefore we only focus on the
relevant parts for this work and refer to [7] for a detailed discussion.
In general, schema axioms are associated with a confidence score and they are mapped

towards weighted MLN atoms, i.e., clauses with length one. Furthermore, the MLN is equipped
with a set of hard clauses, termed the completion rules [39]. Given a collection of weighted
atoms and the completion rules, the reasoning task performed by the MLN is to output the most

3For all the experiments we use RockIt [34] under the fast cutting plane inference algorithm [35] as the MAP
solver.

4We use the implementation provided by the Huggingface transformer library [36].



probable classified Tbox. A classified Tbox contains all axioms that must hold true. We show
the mapping of axioms to atoms in Table 1 in the appendix.

Dataset construction. The schema dataset is based on textualizing the atoms contained in
the schemas, as shown in Table 1 in the appendix. The dataset consists of multiple instances
where each defines a textualized schema containing on average 20 atoms and four predicate
types. Every instance is generated as follows: We first sample a set of concepts and roles given
a vocabulary of words. Subsequently, we sample a set of axioms between the concepts and
roles where the corresponding MLN atoms define the set of explicit atoms. We then derive the
implicit atoms by classifying the schema, i.e., deriving all atoms that follow from the explicit
atoms. We additionally sample a set of negative atoms. Finally, we textualize the explicit atoms
receiving the textual input for the models. The following example demonstrates one dataset
instance with the respective inputs and required outputs if the input schema only contained
two atoms.

Simplified dataset example. For the Tbox {(sub(minister, politician)); (sub(politician, person)},
the classified Tbox additionally contains the implicit atom sub(minister, person) derived by the
hard clause 𝑠𝑢𝑏(𝐴, 𝐵) ∧ 𝑠𝑢𝑏(𝐵, 𝐶) → 𝑠𝑢𝑏(𝐴, 𝐶). The explicit atoms are transformed into the text
input “Minister subset politician. Politician subset person”. For this simplified example, a model
would take the text as input and is required to predict the truth values of the explicit atoms, the
implicit atom, and a set of randomly selected false atoms with same cardinality, for instance,
{sub(person, politician); sub(politician, minister)}. In the hybrid architectures, the neural module
calculates the atom confidences which are passed to the MLN. The MAP state of the MLN defines
the final output prediction.

Setting. We generate training, validation, and testing splits according to the above procedure.
We define the reasoning degree as the proportion of implicit and explicit atoms in the dataset.
We generate an additional dataset (Train middle) in which we augment the data with instances
exclusively containing explicit atoms to investigate if the amount of reasoning in the dataset
affects the overall performance. The training datasets contain 20000 atoms and the test and
valid splits contain 4000 atoms. During training and at test time, a model receives the textu-
alized explicit atoms as input and has to classify the explicit, implicit and sampled negative atoms.

Results. Table 5.2 depicts results on the test sets for the schema dataset after training for
5 epochs and using early stopping based on the performance on the validation set. Train
middle and Train high denotes training on a dataset with a reasoning degree of 15% and 37%,
respectively. The test sets have a reasoning degree of 15% and 38%, respectively. We calculate
results for the implicit and explicit atoms separately and due to the unbalance of positives and
negatives we report F1 scores. The neural baseline achieves reasonable results, however, the
complexity of the dataset is too high in general. The hybrid training strategy leads to strong
results for the explicit and implicit atoms, suggesting the combination of neural and reasoning
is beneficial for this dataset.



Train middle Train high

Test middle Test high Test middle Test high

implicit explicit implicit explicit implicit explicit implicit explicit

Hybrid 98.19 99.25 98.98 99.04 98.23 98.45 99.03 98.94

Neural 78.23 91.84 78.15 83.14 78.40 88.69 77.76 82.64

Random 35.47 45.77 44.54 40.23 35.47 45.77 44.54 40.23

Table 1
F1 scores on the schema datasets for the implicit and explicit atoms. For the hybrid model, the gradient
formulation of equation (5) is used.

5.3. CLUTRR Dataset

The CLUTRR benchmark suite [17] is designed for testing robustness and reasoning abilities of
natural language understanding systems. The datasets consist of small stories describing kinship
relationships between entities and the task is to infer the missing relationship between two
target entities. The dataset is governed by a set of rules such as 𝑤𝑖𝑓 𝑒(𝐴, 𝐵) ∧ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝐵, 𝐶) →
ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝐴, 𝐶). We cannot use the same dataset as in [17] and compare as we found two er-
roneous rules in the dataset construction; further details are provided in Appendix B.2. We
deleted these rules and recreated two dataset instances with a) using stories with raw facts such
as ”A is the sister of B” and b) facts replaced with paraphrases gathered by Mturk users [17].

Setting. The datasets contain a training split with roughly 10000 stories and 9 test splits with
500 stories respectively. Each test split is characterized by a different number of reasoning hops
required to find the target relationships. The training sets contain exclusively stories where
two hops are required. Likewise, we use as a validation set the test set containing stories with
two hops. A model takes a story as input and has to predict truth values of the atoms defining
the relationships between the entities in the story (implicit and explicit). At test time, the model
is evaluated in regard to predicting the relationship between the target entities correctly.

Results. Table 2 shows accuracies on the test sets (3-10 hops) after training on stories with
two hops for 4 epochs and validating on stories with two hops. The random baseline achieves
an accuracy of 1

11% and we also report the majority baseline for every test set. The neural
baseline achieves high accuracies for the easier settings sets but the performance is more
stable for the hybrid on more difficult test sets suggesting generalizability towards unseen
reasoning complexities. The results in the Mturk setting are significantly weaker for both
models. Nevertheless, the hybrid model achieves a notable accuracy of 72.37% for the hardest
test set. The difference between the Mturk and the Vanilla setting highlights that the model
performance strongly depends on the ability of finding the explicit atoms.



Test set (hops) 3 4 5 6 7 8 9 10

Vanilla

Hybrid 100 97.60 95.05 93.81 95.13 94.84 95.22 93.64

Neural 100 97.46 94.34 84.63 75.63 59.72 54.18 44.67

Majority 9.09 13.80 11.30 6.30 4.28 1.98 1.39 0.20

Mturk

Hybrid 89.01 89.11 84.95 82.62 80.98 81.08 75.90 72.37

Neural 92.64 73.66 55.56 45.61 40.49 38.65 32.47 32.20

Majority 9.09 14.14 10.75 7.99 4.14 1.59 0.39 9.09

Table 2
Accuracy results on the CLUTRR dataset for multiple test sets with varying story lengths. For the hybrid
model, the gradient formulation of equation (5) is used.

5.4. Discussion

While gradients calculated by using equations (4) and (8) also may work in different settings
[13, 12], in our experiments, the Gumbel perturbations are necessary. One reason is that
noise perturbations allow for additional gradient signal even if the corresponding confidence is
already correct in regard to an explicit atom. For instance, assume the neural model calculates
a confidence of 0.3 for an explicit atom. If this atom is predicted correctly by the MLN, the
upstream gradient for the neural model is zero when using equations (4) or (8), hence, no further
gradient signal will be provided. When using Gumbel noise, on the other hand, a negative 𝜖𝑖
can lead to a negative confidence and a respective prediction of 0 for the label. This will lead
to an upstream gradient unequal to zero for the neural module, e.g., allowing for an update
towards a higher confidence.

We found a potential limitation of our approach is given by the fact that the atoms for which
the neural module calculates confidences need to be specified by a deterministic mechanism. In
other words, we need to know for which atoms we require the neural model to pass confidences
to the MLN. While this is possible in our experiments, it imposes a limitation in terms of
applicability as, for instance, querying the neural module for every possible atom is not feasible
in general. Nevertheless, we hypothesize, this expresses a general challenge for neuro-symbolic
models where often the outputs of a neural module are directly interpreted as atom or predicate
confidences in a predefined logical structure (e.g. [31, 40]).

6. Conclusion

In this work, we presented a simple yet effective strategy of integrating MLNs into end-to-end
machine learning. We utilize perturbation-based implicit differentiation [16, 13] for achieving a
differentiable objective formulation. Our experimental findings suggest that the integration
strategy can be beneficial in the context of relational datasets with continuous input when using
noise perturbations on the MLN parameters. A more thorough investigation of the different
gradient estimators is required in future work.
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A. Axioms Mapping

Axiom MLN Atom Textualized Representation

𝐴 ⊑ 𝐵 𝑠𝑢𝑏(𝐴, 𝐵) [A] subset of [B]

𝐴 ⊓ 𝐵 ⊑ 𝐶 𝑖𝑛𝑡(𝐴, 𝐵, 𝐶) The intersection of [A] and [B] is a subset of [C]

∃𝑟 .⊤ ⊑ 𝐶 rsub(T,r,C) Everything that is in role [r] with something is also in [C]

𝐶 ⊑ ∃𝑟 .⊤ rsup(C,r,T) [C] is a subset of everything that is in role [r] with something

Table 1
Example axioms and textual representation.

B. Experimental Details

B.1. Schema Dataset

Architecture/Training details. For each instance of the dataset, the neural backbone predicts
confidences for the explicit, implicit and sampled false atoms. Each of these query atoms is
textualized and appended to the input after a [sep] token as explained in Section 5.1. This proce-
dure is applied for every query atom separately to not hard-code specific world configurations.
The fully connected layer, which is trained from scratch, outputs one real-valued confidence
score on which the leaky-ReLu is applied and the so obtained atom confidences are forwarded
to the MLN. During training the hybrid model, we use absolute error as a loss criterion based
on the MLN output (MAP state). During test time, the output of the MLN as used as the final
atom predictions. The neural baseline uses the exact same architecture as the neural backbone
and is trained using binary cross entropy.

Hyperparameter for the schema dataset. We use the Adam optimizer with betas equal to
0.5. The weight decay is set to 5 × 10−4. We search over learning rates, 𝜏 and the negative slope
of the leaky-ReLu activations on the validation set and use absolute error as a loss criterion. We
set k=10, the average number of true atoms in a schema instance. Finally, we use a learning
rate of 10−4, 𝜏 = 0.5, 𝜆 = 10, and a negative slope of 5 × 10−2.

B.2. CLUTRR dataset

Dataset recreation. The dataset is governed by a set of rules such as ”When A is the wife of B
and B has child C then A has child C”. We found two erroneous rules in the dataset construction
which rendered almost every entity pair as siblings on some instances. We noticed this when



observing an initial bad performances of the hybrid model on the CLUTRR dataset. Despite the
confidences for the explicit relationships in the input story were reasonable, the MLN was not
able to infer the relationship between the two target entities correctly. Therefore, for debugging
purposes, we enforced the the target relationship by adding it as an evidence atom. In the
new MAP state (with the target relationship treated as hard evidence) all entities in the story
were rendered as siblings despite the neural confidences for these relationships being negative.
Therefore, we further investigated the dataset internals and we found the two erroneous rules
used during dataset construction:

When A has child B and B has uncle C then A and C are siblings.

This is not always the case, however, as C could be the sibling of A’s spouse.

When A has child B and B has grandparent C then A is child of C.

Here, A is not in general child of C as C could be the parent of A’s spouse. We cloned the project
repository and deleted these rules from the dataset construction. We recreated the two dataset
types with a) using stories with raw facts such as ”A is the sister of B” and b) facts replaced with
paraphrases gathered by Mturk users [17]. For a), we used the following command:

python main.py --train_tasks 1.2,1.3 --test_tasks 1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10
--train_rows 10000 --test_rows 500 --holdout

For b), we used the command:

python main.py --train_tasks 1.2,1.3 --test_tasks 1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10
--train_rows 10000 --test_rows 500 --holdout --use_mturk_template

Architecture/Training details. For the hybrid model, the neural backbone takes the story
inputs and is queried for the relationship between the entities whose relationships are described
in the story (explicit and implicit) and passes the confidences to the MLN. We only consider
gender neutral relations, for instance, treating mother and father as parent. Therefore, the fully
connected layer takes the embedding of the [cls] token and outputs a vector with 11 scores for
the relationships in regard to one query atom. We follow [17] and substitute the entity names
randomly with digit placeholders and likewise for the Mturk setting we augment the stories
with two irrelevant facts. The hybrid model is then trained end-to-end using absolute error on
the output of the MLN. During test time, the output of the MLN defines the final predictions
where we only regard the predicted atom between the target entities in a respective story.
When training the neural baseline, the same neural architecture as the neural backbone is used
and trained using binary cross entropy, however, in favor of the neural model it is exclusively
trained on the target relationship.

Hyperparameter for CLUTRR. We use the same optimizer parameters as for the schema
experiments except that we use a learning rate of 10−5. Furthermore, we use k=5, the same value
of 𝜏 as above, and a value of one for 𝜆. Hyperparameters are found by training and validating
on a different dataset instance created under the same configurations as described above.



C. Ablation results

Percep-
tron

𝑀-𝑀 𝜏=0.5 𝜏=1.0 𝜏=2.0 𝜏=3.0 𝜏=4.0

implicit ≈ 35.47 ≈ 35.47 99.03 98.05 98.08 98.30 77.53

explicit ≈ 45.77 ≈ 45.77 98.94 98.41 98.19 98.39 78.74

Table 2
F1 scores on the validation set of the schema dataset under different model specifications.
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